A MATHEMATICAL THEORY OF SYNCHRONQOUS
COMMUNICATION

by

Janet E. Barnes

Technical Monograph PRG-112
ISBN 0902928899

Hilary Term 1993

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road

Oxford OX1 3QD

England

Copyright © 1993 Janet E. Barnes

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road

Oxford OX13QD

England

A Mathematical Theory of
Synchronous Communication

Janet E. Barnes

Hilary Term 1993

Abstract

A mathematical theory of synchronous communication is presented.
The process algebra SCSP, shaves many of its constructors with Hoare’s
Communicating Sequential Processes. [t madels components of a dis-
tributed system as processes evolving in lockstep. A synchronous vari-
ant, SRPT, of Josephs’ Receptive Process Theory, which distinguishes
between iuput and outpnt events in its model of communication, is also
investigated,

The language SCSP is given a denotational semantics. The seman-
tic model captures the beliaviour of processes using failures-djvergences
information. SCSP exhibits sulficient algebraic laws to forin a sound
and complete proof system with respect to the semantics. This allows
reasoning about concurreut systemns by means of algebraic manipula-
tion of process expressious. The notation is extended to capture com-
wuanicalion of data via channels and is used to specify a token ring
prolocol. SCSP is sufficiently expressive to establish temporal details
of the protocol. .

SRPT can be interpreted as a receptive sublanguage of SCSP. This
18 demonstrated by embedding both the language and its semantic
model in those of SCSP. The embedding allows many of the mathemat-
ical results concerning SRPT to be deduced from their counterparts in
SCSP. SRPT is shown to he applicable to the modelling of synchronous
circaits. The notion of discrete time in the algebra caplures the clock’s
behaviour while the receptive nature of SRPT matches the commu-
nication of signals in a circuit. By introducing a notjon of timewise
abstraction, the eflect of variation in the speed at which circuits are
clocked can be analysed, Timewise abstraction is also applied to the
analysis of pipes.

To my Parents and Dave
for their love and support.

Acknowledgements

Tirstly, I must thank my supervisor, Mark Josephs, for his encouragement,
advice and guidance throughout the production of this thesis. This work has also
profited from the comments and advice of John Barnes, Jim Davies, Tony Hoare,
Dave Jackson, (Geraint Jones, Steve Schneider, Brian Scott and other colleagues at
the PRG to whom [extend my thanks.

This work was made possible by the financial support of the UK SERC for
whick [am grateful.

Contents

1 Introduction
1.1 Technical Oversiew
1.1.1 Synchronous CSP
1.1.2 Swvnchronous Receptive Process Theary
1.2 Structurc of this Thesis ,,

2 Synchronous CSP

2.1 The Language e
2.1.1 Primitive processes aud operators
2.1.2 Recursion
2.1.3 Derived processes and operators

22 Examples
22.1 Awatchdog timer Lo
222 Aliftlobby o

23 Conclusian,

3 Semantics and Proof System for SCSP

3.1 SemanticModel,o Lo
3.1.1 Notation e
31,2 Closureconditions oL,
3.1.3 Non-determinismordering,

3.2 Semantic Function 0o o000 o

1.3 Expressivity of the Language

3.4 A Sonnd and Complete Algebra
3.4.1 Thesublanguage SCSP*
3.42 An extended proof system

3.5 Conclusion e

4 Communication and Protocols

41 Comununmicallon L e e e

4.1.1 Syotax for communication L.

ol B DD e

12
14
17
17
21
26

28
28
28
31
32
33
40
42
42
50
52

4.1.2 Laws for communication
42 Token Ring e e
4.2,1 Specificationin SCSP.o oL
422 Ringinterface oo
423 Acompletering e e
4.24 lovestigating the interface
4.3 Conclision Lo e
Synchronous Receptive Process Theory
5.1 Thelanguage i e
5.1.1 Primitive processes aud operators,
5,12 Recursiono e e e e
5.1.3 Derived processes and gperators
5.2 DExample: Basic digital logic circuits
521 Gates e
522 Half-adder o e
523 Clockedflipflops
5.3 SemanticModelo Lo
531 Notation
5.3.2 Closure conditions e
53.3 Information ordering
5.4 Semantic Function e
55 Conclusion L o e
SRPT as a Sublanguage of SCSP
6.1 Embedding RMinSM
6.1.1 Propesrtiesof & L oL
6.2 Relating the Languages SRPT and SCSP
6.3 Deducing resulis of SRPT from SCSP
6.3.1 Continuity
6.3.2 A proof system for SRPT
64 Conclusion L e e
Timewise Abstraction
7.1 Timewise Abstraction in SRPT
T2 Examples e
7.2.1 A conditional circuit oL
722 Agrey-codecounter .,,
7.3 Relating Timewise Absiraction to the Model
T3] Notation

7.3.2 The semantics of timewise absiraction

it

89
100
102
106
107
109
110
119

12¢
123
124
124
125
131
131
132

Td Pipes . . . oo o e
7.4.1 Timewise abstraction and pipes
74.2 Examnple: Asorter Lo

T.5 Conclusion e

Summary and Related Work

Bl Summary e e e e e e e e e e

8.2 Comparisons
8.2.1 Features of formal methods for real-timte systems
822 Formalisms for clocked circuit design

83 Futurework . - . o .. e e

Proofs of Stated Results

A.l Results in the modelfor SCSP
A.2 Results in the model for SRPT
A3 Results relating SRPT o SCSP o000 o0 oo

A4 Results involving timewise abstraction

Proof Rules

B.1 Proof system for SCSPY
B.2 Proofl system for SCSP L. oL
B.3 Derivations in the proof systemfor SCSP
B4 Proof systemfor SRPT! L
B.5 Proof systemfor SRP'T

Algebraic Derivations

C.1 Token ring interface with data

C.2 Thesorter pipeline L.
(1.2.1 First phase of the pipeline
(2.2 Compesing pipes

iv

Chapter 1

Introduction

As technology advances and sotiety places a greater reliance on computer systems
in critical applications, verifying the correctness of these systems becomes more
important and more difficult as the size of the systems increases. Furthermore, in
an endeavour to increase efficienrcy more emphasis is being placed on concurrent
systems which are harder to analyse than their sequential counterparts. A con-
current systemn can be viewed as a network of component processes interacting via
some form of communication. Because of an awareness by computer scientists of
the need for formal design and verification techniques for such systems, the last
decade has seen the development of matheinatical models (including so-called pro-
cess algebras) of communication and concurrency which can be used to analyse
the behaviour of networks of processes. Well-know process algebras are Hoare’s
('SP [Hoa85], Milner's CCS [Mil89] and Bergstra and Klop’s ACP [BK84]. The
usual approach of these algebraic methods is to view the system at an appropriate
level of abstraction at which only key events are observed. At this level the sys-
tem is described in an equational form which, by the use of algebraic laws, can be
manipulated to give information concerning the interaction of these events.

The original process algebras do not display any concept of quantitative time;
they restrict their concerus to the ordering of events. This makes them unsuitable
for examining systems in which timtug is critical. for example a nuclear reactor con-
troller must insert the contrel rods within time f once an overtemperature signal
has been detected, where f is typically a very short time. There are also situations
in which systems, without time critical requirements, may be mere satisfactorily
modelled in a timed framework. [n an idle token ring the token passes unhindered
around the ring; there is no guarantee of the availability of a message for trans-
mission around the ring and any model must be able to represent this situation.
Consequently in an untimed model it may be difficult to hide the mechanism of
the protoco] {the token) while avoiding infinite chatter (the possibility of an arbi-
trary nuinber of internal events accurring). In a timed model this problem can be

avoided by assuming that the token takes time (which cannet be hidden) to pass
around the ring.

In order to extend the domain of problems which can he satisfactorily addressed
by process algebra tecbniques, there has been interest in extending the original
algebras to incorporate the concept of time. Both dense and discrete time domains
have been considered for the measure of time. Dense time models typically use the
real numbers, R, as their titne domain and view the passage of time as continuous.
Dense time models include Reed and Roscoe’s Timed CSP [DS89, RR86], Moller
and Tofts’ Temparal CCS [MT90] and Baeten and Bergstra’s Timed ACP [BB91al.
Discrete time models typically use the natural numbers, N, as their time domain
and assume that time increases in a stepwise fashion, each step corresponding to
the ‘tick’ of a global clock. Discrete time models include Milner's Synchronous
CCS [Mil83], Hennessy and Regan's TPL [HR30], and Jeffrey’s Discrete Timed
CSP [Jel91a].

This thesis 1s devoted to the development of a new discrete timne model, Syn-
chronous CSP, and its ‘receptive’ submodel [Dil89, Jos92]. It is hoped that these
process algebras will be widely applicable; case studies in protocol verification and
digital logic design are described in this thesis.

1.1 Technical Overview

1.1.1 Synchronous CSP

The nexl chapter presents a discrete lime algebra, Synchronous CSP. Whereas CCS
and SCCS are based on an operational semantics, CSP and SCSP are based on a
denotational semantics. In SCSP, the underlying model is a failures-divergences
model [BR85] in which time is recorded implicitly. The failures have heen encoded
as traces (finite sequences) of sets, these sets consisting of occurrences and refusals
of events. Divergences are also encoded in the trace sets as in [Jos92], giving us a
very simple model.

In designing the language SCSP, the aim has lieen to achieve a formalism which
1s sufficiently expressive to capture the time dimension of systems under analysis,
while at the samne time maintaining a powerful algebraic structure. By choosing a
discrete model of time we limit the applications of our algebra. It only applies to
systems where a lowest common denominator on the delays between observations
can be postulated. This is less restrictive than one might imagine; in fact for a
majority of systems a discrete time model is the natural choice. This is particularly
so in hardware whicb is often clocked at a speed which allows individual components
to reach a stable state. In applications where the concept of discrete time does
indeed suffice, the advantages of using an algebra which supports the same level
of expressibility can be extensive. By using a discrete time model we are able to

2

obtain a complete axiomatisation within the algebra; this is not the case in the
current models of Timed CSP, for example. Such an axiomatisation makes the
algebra a powerful apecification and design language.

Although many of the constructs within the algebra are constructs familiar to
CSP, SCSP should uot be regarded as a syntactic extenston of CSP. Instead, advan-
tage has been taken of the time dimension in setting up the model, while keeping
the model close enough to that of CSP ¢o draw from the wealth of experience that
has been generated by the latter.

In SCSP, we assume that events which occur simultaneously are independent.
'This is a fairly natural assumption since it merely assumes that time must pass
between cause and effect. We express the simultareous occurtence of events by the
use of sels in the traces, rather than artificially imposing an ordering on cvents
occurring sirnultaneously. This resembles the *true concurrency’ appreach and con-
trasts with the *intetleaving concurrency’ approach of many other process algebras.

A second assumption of our mode] is that a given event can occur at most once
at each time step. (We are not interested in pathological cases, such as that of
an infinite number of occurrences of an event at a given time which Jeffrey finds
himself considering [Jef91a]. Indeed, we restrict ourselves to finite alphabets of
events and so we ean be snre that only a finite number of events occur at any
given time.) Again the assumption s less restriclive than it might first appear.
For example, the voltage-level on a wire may change many times between clock
pulses, but provided it always stabilises before the rising edge of the clock, say, at
most one event (indicating the final voltage level associated with that wite) need
be recorded on each tick.

1.1.2 Synchronous Receptive Process Theory

In the Jatter half of this thesis a second algebra, Synchronous Receptive Process
Theory is presented. There are strong similarities between the design principles
of this language and SCSP; namely SRPT is based on a discrete time frame, sj-
multanecusly occurring events are assnmed to possess causal independence and
simultaneous multiple occurrences of the same event are prohibited in the language.

The main difference between SCSP and SRPT is the assumed method of com-
munication between processes and their environment. In SCSP we assume that
events occur only on simultaneous co-operation of tbe process and its environment,
In SRPT events performed by a process are classified into two types. input events
and output events. The process is always receptive to input events, in that it is
always willing to co-operate with the environment on the performance of input
events. Symmetrically the environment is always prepared to allow the perfar-
mance of output events fron the process. The process has complete control over
the perfortnance of output events. while the environment has complete control over

3

the performance of input events, Naturally the behaviour of a process is influenced
by the inpnt events performe, so input to a process can affect subsequent output
by that process. The method of communication adopted by SRPT, coupled with
the choire of time frame, make SRPT particularly appropriate for problems which
involve modelling clocked circuits.

Like SCSP, SRPT is based on a denotational semantics. The underlying model
for SRPT is very simple: by distinguishing between input and output events in the
model and considering the receptive nature of communication, it is no longer nec-
essary to record refusal information. It is sufficieut to consider a traces-divergences
model in which time is recorded implicitly. Terms in the traces are sets of events.
Divergences are again encoded in the traces, although a slightly different approach
to this encoding results in us considering a different partial order on the model to
the usual non-determinism ordering used in CSP [BR85] and SCSP.

The siinilarities in the design principles of SCSP and SRPT are borne out in
our abilily to ernbed SRPT and its associated model into SCSP and its associated
model. The embedding demonstrates how SRPT can be viewed as a receptive
sublangrage of SCSP. Moreover, many of the theoretical resuits of SRPT can be
deduced via the embedding and corresponding results for SCSP.

A final consequence of the combination of the receptive model of communication
and thediscrete time frame in SRPT is the ability to perform timewise abstraction.
Timewise abstraction provides a method for translating the time {rame in which a
gystem js represented. This can be particularly useful when the internal workings
of components of a system are most appropriately verified in a time frame different
to that appropriate to the ultimate interaction between the system and ita environ-
ment. Timewise abstraction can he viewed as the time dimensional counterpart to
communication abstraction which is already recognised as a powerful development
tool.

1.2 Structure of this Thesis

This thesis can be divided into two parts. The first part consists of Chapters 2—4
and is concerned with the discrete time process algebra, SCSP. Chapter 2 intro-
duces the language SCSP; each of the operators of the langnage is described, these
descriptions are supported by axioms satisfied by processes in SCSP and some ex-
amples. A mathematical theory underpiuning the algebra of SCSP is developed in
Chapter 3; a failures-divergences model representing the behaviours of preocesses
is presented, this enables the construction of a denotational semantics for SCSP.
A proof system for SCSP, incorporating the axioms presented in Chapter 2, is
shown to be sound and complete with respect to the semantics in Chapter 3. In
Chapter 4 the language is enhanced to allow value passing in communication, this

4

enhancemeut is used in the specification of a token ring protocol in SCSP.

The second half of this thesis, Chapters 5-7, presents a synchronous receptive
process theary (SRPT) and considers some of the features of this algebra. In
Chapter § the language SRPT and its associated denotational model are presented
and informally conipared with those of SCSP. The comparison of SRPT with SCSP
is formalised in Chapter 6 where, by embedding both the langnage and model of
SRPT into that of SCSP, it is demonstrated how SRPT can be viewed as a receptive
sublanguage of SCS5P. The embedding makes it possible to deduce a sound and
complete proof systein for SRPT from the results of SCSP. The theory of timewise
abstractiou and its applicalion to SRPT are considered in Chapter 7, the use of
timewise abstraclion is supported by several examples drawn from the field of
digital logic design.

The final chapter outlines the main results of this thesis, makes comparisons
with work by other authors and concludes with a discussion of possible future
developments resulting from this work.

Chapter 2

Synchronous CSP

Like Hoare's CSP [Hoa85), Synchronous ('SP is designed to provide a clear model
for systemns of concurrent processes inleracting via synchronised communication.
Moreover, SCSP allows us to model timing conditions by assuming that events
occur at discrete points in time. It provides an algebra and associated algebraic laws
allowing us to manipulate expressions into forms which make the consequences of
the interaction explicit. Non-determinism and concurrency are handled in a manner
familiar from ('SP, although other constructs have been superseded by constructs
which enable us to grasp better the considerations which are our concern: namely
our implicit measure of absolute time and our true concurrency approach to events
which occur simultaneously.

We shall see in this chapter that Synchronous CSP is a simple language which is,
nevertleless, sufficiently expressive to capture the characteristics of many systems.
The algehra and laws are underpinned by the denotational model which will be
presented in Chapter 3.

2.1 The Language

As in Hoare’s CSP, we assume that the system we wish to model can be viewed
as performing, in cooperation with the environment, a selection of instantanecus
events. We take the environment to be all components which may interact with
the system under scrutiny. Such components will typically be other systems or a
user. We choose to insist that events have no duration; actions with duration can
be represented by two events symbolising the commencement and termination of
the action.

We presuppose a universal alphabet of events ©.. We associate with each process
an alphabet of events, 4 C ¥, in which it may participate. We require that A is
finite and non-empty. We also presuppose a set of process variables, Var. These
variables facilitate the definition of processes by recursion.

6

The abstract svntax of our fanguage is similar to a subset of CSP, the obvious
difference being the replacement of the event prefix construct by the set prefix
construct. We take P to range over process terms*, A € FX , z € Ver and § to
range over bijective renaming functions S : & — X. Then, with certain restrictions
on the alphabets of the processes, the following grammar defines the syntax of our
language.

Pa= 1, Chaos
| + process variable
|POP not-deterministic choice
[V C A — Py set prefix
VPP parallel composition
PPN A hiding
| PLS] renaming
|pe:deP recursion
| {z: = P;), with A mutual recursion

We now consider the informal interpretation of each of these terms along with
restrictions imposed upon the alphabets of the process terms.

2.1.1 Primitive processes and operators

In presenting tle operators in the {ollowing sections we shall state vaiious equa-
tional properties of these operators expressed in the form P = @ (P = (means, on
the other hand, P is defined equal te). When the equational property is stated
as an axiom, it is an axiom of the proof system to be presented iu Section 3.4.
When the equational property is stated as a law then it is derivable within the
proof system - the derivation of many of these laws is however tedious involving
reduction and comparison of the terms on hoth sides of the equation, so will not
be presented here.

Chaos

The process 1 4 is the most undesirable process with alphabet A; it can arbitrarily
mimic the beliaviour of any other process with the same alphabet. Such a process
is sald Lo be divergen!. It is used to model behaviour when things go wrong, it is a
worst case scenario and we assuine there is no escape from this erroneots behaviour.
Often the alphabet will be clear from the context and we will simply write L.

*F X denotes the set of fuite subsets of X while PY denotes the power set of X .

-1

Process variable

The inclusion of process variables within the syntax allows a proper treatment of
recursion. The term r € Var represents the process bound to variable r in the
context of a particular choice of variable bindings. It is necessary to make explicit
the chaice of variable bindings before we can make any deductions about the process
to which r is bound.

Non-deterministic choice

When two processes P and) have a commmon alphabet A, we define the non-
deterministic choice between these processes, PM¢), to be the process with alphabet
A which non-deterministically behaves like P or like (). As with CSP, this choice
can be viewed as occurring internally within the system; the environment has no
coutrol aver the outcome of the choice.

Non-deterministic choice satisfies the following axioms:

A-1: Png=@gnPe

A-2: (PNQINR=PN(QNH)
A-3: PNP=P

A-4: Pnil=sl

Axiom 4 reflects the observation that L can mimic the behaviour of any pro-
cess; in particular, we cannot distinguish between a choice in favour of P and 1
arbitrarily mimicking the behaviour of P.

Set prefix

A choice set B is a subset of an alphabet A. Let P be a P(8)-indexed family
of processes, each with alphabet 4. The process [X¥ CB — Px] can perform the
events . any subset, C, of B at the first tune step and then go on to behave
like Pe. None of the events in B can initially be refused by the process, so the
largest subset of events from B offered by the environment will he performed by
the process. The process is initially unable to perform events not present in 5.
This process has a built in time-out behaviour in that, if the environment is not
initially willing to offer any events in B, then the process will ‘time-out’ and then
behave like Py;.
Consider the process

[XC{a,b) = (L if X = {} else P)].

3

Iuitially it is able to perform eventis a or b or both, but cannot perform any other
events in its alphabet. If the environment is able to participate in at least oneof a
and b then the process will evolve to P at the next time step. On the other hand,
if the environment is pot in a position to offer either a or § to the process, then the
process will not perform an event at the first time step and will evolve to chaos at
the next time step.

Set prefixing provides the only form of environmental choice in our language.
This chotce differs from the external choice of both untimed and timed CSP [BHR84,
RR86]. Unlike those models, SCSP does not supporl instantaneous resoluiion of
external choice. A process cannot offer its environment the choice between two
events without being able to offer both together. This is a direct consequence of
our assumption that events observed sunultaneonsly occur independently; the per-
formance of one event at a particular tiine cannot preempt another event at the
same time.

We lave one axjom mvolving set prefix,

A-5: [CCBH,
[XCB = PIN[YCC ~ uIRINCB — RN Y C - 1]

L fPenQe B CC
where Hy = { HPB.QB ;f iy ,E_ c

This axiom is explained by noting that au observer can establish which way the
process resolved the non-deterministic choice after the first time step exactly when
at least one of the events offered by the environment is in the set B ~ C.

Consider the process

(XC{a. b} = PIN[Y C{e} - Q]

If the environnent offers a b initiaily, then we can tell after the first time step
whether the process will behave like P or like ¢ by noticing whether the b occurred
or not. If the environment does not offer a b initially, then there s no way of
establishing which way the choice was resolved without further observation. We
can therefore postpone the resofution of choice in those circumstances when the &
is uot initially offered. Hence Lhie above process is equivalent to:

(X C{a,b} -+ (Pifbe X else PIIQY N [Y Cfa} — Q]

In the case where B = ' A-3 and the idempotence of non-deterministic choice
allow us to deduce the distributivity law:

L-1: [XCB— Pxin[YCB = Qyv|S[ZCE — (P21 Q7))

4

1t isconvenient to provide an alternalive notation for set prefix. Let f = {!.n}
be a hoite indexing set, let B; (i € [} be distinct finite subsets of the alphabet A4,
and let P; {i € [) and @ be processes with alphabet 4. Then we write

B/ P, OB: > P,0.. 0By o Py 1> Q2 [X C|JB; — Px]

here Pay 2 P, ifB =B andi€e [
where Te: = Q otherwise

Parallel composition

The parallel composition. P || @, of two processes P and @ is the process which
results from their concurrent execulion. Assuming that the alphabets of P and ¢
are af and o @ respectively. then the alphabel of P || @ 1s P Ua@. While neither
of the component processes are divergent, synchronisation nmst occur on common
events. Synchronisalian over common events means that such eventa can only occur
when both P and @ are prepared to perforin them; they are refused if one or both
of the compouent processes refuses themn. Events not in the cormmon alphabet can
oceur of be refused according to the state of the corresponding component process.
Once one or other of the component processes becomes divergent so does P || .
Paralel comnposition satisfies the following axioms:

A-6: La|l P =L auer
AT: PlLli=Luar
A-8: (PRQV|[R=(PR)N(Q)EA)
A-9: PI(QNRY=(PIQ)N(P| &)
A-10: [CA S Py|IYCH - Q=
[Z CANBjU(A - B)U(B — A4) = (Pzaw || Qzns)]

where [X CA' = Py and [¥ C B — Q] have alphabets 4 and B.

Commutativity and associativity of parallel composition can be deduced within the
proof system. The proof of L-2 is given as Theorem B.1 in Appendix B.

L2: PIQ=¢Q|P

L3 (Pl@ylia=rl@l s

Hiding

It is often useful to be able to change the level of abstraction of a problem by hiding
events from tbe environment. For example, when building a model of a circuit we
may develop subcomponents, take their parallel comnposition and finally hide all
communication on internal wires between subcomponents. The set of events to be
hidden, B, does not inciude the whole alphabet of the process P. A hidden event
occurs as soon as the process is ready; the environinent plays no part. As the
passage of time cannot be hidden and events are assumed to occur no more than
once at each tick of the glohal clock, "infinite chatter’ cannot arise over a finite time
span.

Hiding satisfies the following axioms:

A-11: L, \B=l,p

A-12: (PN A= (PA\AN(Q\A)

A-13: [XCB = Py|\A=[Y C(B — A) = (Pyyang \ 4)]
and the following laws:

L4: (P\A)\B=P\(AUR

L-5: (Pl @\A = (PAA){Q\A)
fANaPNa@ =1}

Renaming

Renaming facilitates reuse of components. It is often the case that two processes

in a system can be viewed as isomorphic in that their behaviour is the same up to

some relabeling of eveuts. Restricting ourselves to a bijective renaming fnnction

§ : L — E, we denote P[S] to be a renaming of process P. If process P has

alphabet A then process P[S] has alphabet A[S] = {S(a) | a € A}. P[S] performs

event 5(«) in exactly the civcumstances that P would perform event a.
Renaming satisfies the following axioms:

A-14: 1,4 18] =Ly

A-15: (PN Q)S]= P[SIN Q5]

A-16 : [XCB - Px][S]=[X CB[S] — Pxi5-n[S]]
and the following laws:

L-6: P[S|{R]= P[R-S5]

L-7: (P QIS]= PIST I} QLS]

L-8: (P\ B)S]= P[S)\ B[5)

1i

2.1.2 Recursion

Until now we have only provided operators suitable for expressing finite processes.
Any process which can be expressed using the operators developed so far will, after
a finite time, hehave like our basic process L.

#x: A+ P represents the solution of the recursive definition of the process r
definedas a particular (least) fixed point of the function Az « P. The mathematical
details of this consiruction will be presented in a later section.

A-17: pz:AP=Pllgr:A-P)/z]

Here P|(jtz : A « P)/r] denotes the process P with gz : A « P substitnted for
every free occurrence of the variable x. (This syntactic substitution [E/z] can
always be distinguished from renaming [S] by its context.) Recursion also satisfies
alpha conversion:

L9: pa:AP=py:A«Ply/r where y is not free in P.

Uniqueness of fixed points

Following Brookes, Hoare and Roscoe, [BHR84], we define P | n to be the process
which behaves like P {or the first n steps and then becomes chaotic, behaving like
L. A {unction, F, from process terms to process terms is said to be constructive if
the firsl n+1 steps of the behaviour of process F(P), for an arbitrary process P,
are only dependent on the first # steps of process P’s behaviour; i.e.

F{iPYl(a+1)=F(Pin}|(at+]) for all P.

Similarly F' is said to be a non-destructive function if the first = steps of the be-
haviourof a process F(P), are only dependeut ou the first n steps of P’s behaviour;
ie,

F(P)ln=F/FP|n)]n for all P.

These definitions can be extended to functions with more that one argument
and a function can be described as being constructive or non-destructive in some
or all of its arguments.

All the primitive operators developed here are non-destructive and [X C B — .]
is constructive in all its arguments. 1t is a simple exercise to show that the compo-
sition of two non-destructive functions is non-destructive, while the composition of
a constructive and non-destructive function is constructive. So any Ar + P with P
a process term is non-destructive. Moreaver if every occurrence of the free variable
z in P js directly or indirectly guarded by a set prefix, then Az « F is constructive
in z. Formally:

12

Definition 2.1 We say that a process term P 15 guarded in £ if one of the following
conditions i@ met:

1. z does not occur free in P.

2. P = y for some process variable y # £ and y is bound to a process which is
guarded in z.

[

. P =[X B — Py for some subset, B, of the alphabet.
. P=@Q| R, where @ and R are guarded in r.
P = @n R, where and R are guarded in r.

. P =@\ A, where @ is guarded iu r.
. P = Q[S] where @ is guarded in .

~

P =py . @, where @ is guarded m .

[S=R o]

P = {5 = @), with A, where @ is guarded in x. (Mutual recursion is
defined below.)

Y
Note that. unlike CSP, SCSP gives P\ A guarded if P is guarded.

It is a trivial consequence of the above definition that P is guarded in x implies
Az« P is constrnctive in z.

It follows from the argument set out in [BHR84] that if P is guarded in z then
o1 : A« Pis the unique fixed pomt of Ar+ Pin an appropriate partial order.

Mutual recursion

Let A be a finite totally ordered indexing set and let 7,j range over A. If, for all
i1 € A, P, 12 guarded in z, for all j < then

(z, 2 Pi); with A i€A

represents the 5% coruponent of the solution of the recursive definition of the vector
of processes (z,} defined as a particular (nnique fixed point) sclution to the equation

{z; £ P,}. In a manner similar to the case for simple recursion we have the following
axicm.
A-18 : ({z = B;), with A) = P[({z, = P}y with A)/ 5]
where k ranges over the z; free in P,.
and alpha conversion:
L-10: {{wm = P}, with A) = ({4 = P.[w/n]); with A)
where no g is free in any P; and & ranges over A.

13

2.1.3 Derived pracesses and operators

The following processes and operators can be constructed from those introduced in
the previous sections. They are presented separately here since they are useful in
their own right.

Wait

Wait is simply a special case of set prefixing. [t may be that a process waits for
a nomber of units of time, unable to engage in any actions, and then hehaves like
process P. We denote such a process hy wait(n) — P. We can define the wait
prefix in terms of set prefixing with {} as follows:

P
[X C{} — (wait{n) — P)]

wait{) — P
wait(n+d) - P

e

L-11: wait{m) — (wait{n) = P} = wait(n+ m) - P

Proof: by induction on m.

Base case m = 0 is trivial by definition of war!.

Inductive step.

wait{m + 1) — (wait(n) — P)

{ defn. of wait }

[X) = (wait{m) — (wait(n) — P))]

{ inductive hypothesis }

(X C{) = (wait(n + m) — P)]

{ defo. of wait }

wail{n +m+ [) = P [}

Stop

The process STOP, is not prepared to perform any event in its alphabet, A, at
any time. The stability [RR86) of the process is not, recorded in this model so this
process covers both the case where the process is genuinely unwilling to participate
in any event and the case where the process is only prepared to participate in
internal events invisible to the environment. As far as the environment is concerned
these are indistinguishable; in both cases the process is idling. So the process
STOP, is the process which waits forever,

STOPs = pz: A wait{l) — z.

An obvigus consequence of this definition is the following law:

14

L-12: wadt(t) — STOPy = STOP,.

Proof: by induction on {.
Base case ! = {, trivial by definition of wail.

Inductive step.

wait(f + 1) — STOP,

{ by L-11}

watt{1) — (wa(t) — STOP,)
{ inductive hypothesis }
wait({) — STOP,

= {defn.of STOP }

wait(l) — (g z « wait{!) — 2)
{ by A-17 }

pzoewail(l)—+

{ defn. of STOP }

STOP, 0

it

It

fif

Run

The process RN, is always prepared to perform any set of events from its alpha-
bet. [t is given by:

RUNj=2pur: A«[XCA =)
As RUN, never vefuses to perforni au event we have the following laws:

L-13: RUN, || RUNp = RUN4us

Proof:

RUNy || RUNg

{ defn. of RUN }

JACA— RUN) || [XCB — RUNg|

{by A-10 }

(ZCAnByu(A-BU(B - A) - RUN4 || RUNg]

{ set manipuation }
[ZCAUB - RUN, || RUNg|

{ by uniquness of solutions Lo guarded recursive equations }

RUNjup a

il

H

il

15

L-14: RUN,|[P=P where ACaP

Proof: Later, in Section 3.4, we show that every process can be characterised by
a set of finite processes, each of which can be expressed using the process L and
the set prefix and non-deterministic choice constructs. By structural induction it
is sufficient to establish the result in the following cases:

H[:’VA ”LBELB if A - B, by A-6

(PN Q)= B and A C B then, RUN, | (PT1 Q) = PN @ assuming
RUN4 || P= P and RUNy || @ = @, follows from:

RUNy [(P Q)

{hy A-8 }

(HUN4 || PYNV(RUN4 || @)
{ by inductive hypothesis }
Prg

I

Asuming o [X CB = Px])=B, ACBandVC C B « RUN, || Pc = Pe
then, RUN, || [X €B' — Px]=[X CB' — Pyx] follows from

RUN4 || [X CB — Py

{expanding definition of RUN }

[YCTA - RUNJ || [X¥ CB — Pyl

{ by A-10 }

[ZC(ANBYU(B' — A) = Pzap || RUN,]
= { rearranging terms }

[ZCB' — Py || RUN,]

{ by inductive hypothesis }

[ZC B — P;]

Event prefixing

If P is aprocess and a an event in the alphabet of P, then the process a ~+ P (P
prefixed by event a) will wait indefinitely until an a is offered, at which point the
a is performed and the process behaves like P. This is defined as follows:

ﬂMPEp;-Ha}—)PDz]

This event guarded construct has a behaviour comparable with the prefix construct
of both (5P and Timed CSP. For example we have the following laws:

L-15: (a~ P)MN{a~ Q)=a~ (PTI Q)

16

L-16: (a~P)||l{a~@Q)=a~(P| Q)

STOF if a,b € aPNaQ
a#b

a~ (Pli(b~ Q) ifa¢gaPNaog
beaPNal

~ (@~ facaPNa

L-17: (a~ PY| (b~ @)= {07 Ue A1 Q) lbzapgag

({a,b} = (P Q) it a.bg aPNaQ

0{a} — Pl {b~ Q)

Q{b} ={a~ P} Q

B (g~ P)]| (b~ Q)]

Notice that our explicit ‘true concurrency’ approach results in the possibility of
both a aud 4 occurring simultaneously when the occurrence of these events is
independent of interaction betweeu component processes.

L-18: (e~ P}\{a} = wart{?) = (P\ {a})

Here we see that, like Reed and Roscoe’s Timed CSP [RR86], hiding events cannot
hide time. Although we can hide the event a prefixing P, the time lapse, during
which the hidden event is performed internally, remains visible.

2.2 Examples

In this section we present two examples which demonstrate the features of the
language and the use of the algebraic laws.

2.2.1 A watchdog timer

A watchdog timer, as proposed by Hooman [Hoo80], monitors several processes in
a syslem. Each of the processes which is being monitored is required to send an
ok signal lo the monitor at regular tutervals. If the time between ok signals from
any one process exceeds a given maximum then the timer signals failere,

Impieinentations of watchdog timers have been proposed in Timed CSP [Sch91]
and PARTY [HSZFHY92]. We shall demonstrate two ways of constructing such a
timer in our algebra. Using the algebraic laws we then show these two implemen-
tations are equivalent.

Far simplicity we shall consider a system in which there are two processes being
monitored. Suppose also that the interval between consecutive ok signals from each
process must not exceed 2 units.

17

g.ok E i
ol b—f— Alem p——bei
b.ok E E
I: Walch! E
Figure 2.1: Watchdog timer: version 1
Version 1

In this version, Figure 2.1, the process M does all the work, monitoring the two
processeson a.ok and b.0k. If a signal is not received on either channel within the
requirediime then failure is signalled to Algrm. Once the failure has been signalled
the timer switches off and no longer checks the frequency of the signals from the
processes it was monjtoring.

M =M, aM = {a.ok,b.ok,f)}

where My [XC{a.ok,b.ok} = (Misotb.o}-x if ¥ C X else Fail)]
Fail (X C{a.ok,b.ok.f) = (OF if f € X else Fail)|
off [X C{a.ok, b.0k} — Off)

My will(ail unless every event in Y occurs in the next interval, Fa:il will signal f
as soon as the alarm is ready.

The alarm simply waits for a failure signal and then rings an alarm, signalled
by the event bell. We are not interested in the behaviour of the system once the
alarm has been raised; this is modelled by assuming the worst possible behaviour.

1 i

Alarm
Ring

f~ Ring aAlarm = {f, bell}
bell ~» L

6> 1

The watchdog timer system is then given hy composing the meonitor process
and the alarm in parallel and making the failure signal f internal.

Watdi! = (M || Alarm)\ {f)

18

http:�.��.�.��

u. ok ; My af ;
g Alm f:ibell
b.ok g Mg b.f E
g Waich2 E
Figure 2.2: Watchdog timer: version 2
Version 2

The second approach, Figure 2.2, is to divide the task of monitoring the various
processes among several components in the timer. Each component ia the timer
monitors a different progess. The alarm is raised by the moniter as a whole if one
of these components detects an error.

The general behaviour of the monitoring component is given by M1,

Ml = [{ok} = MI > M1 aM! = {ok,f)
Mi" = [{ok} - MI>F]

F = [XC{ok,f} = (Oiff € X else IF))

0 = 6k~ 0

The monitoring component awaits an ok signal from the specified process and
signals failure to the alarm if excess titne has elapsed since the process last com-
municated satisfactorily with the monitor. The specific monitoring components in
our system can he expressed as renamings of such a general monitor component.

Ma = Mi{a.okfok,af/f]
Mg = Mli[b.okjok,b.f/f]

The alarm waits for a failure signal on either of the channels e¢.f or b.f. Once
such a signal has been observed the alarm activates the bell. As hefore we are
not concerned with the subsequent behaviour of the system and we assume that
the alarm, and herce the whole system, behaves chaotically after its task has been
performed.

Alm
Ang

[X C{af,b.f) = (Bng if X # {] else Alm)
bell ~» 1.

{Ea)}

19

The watchdog timer is obtained by taking the parallel composition of these
three components and hiding the failure signals a.f and b.f

Watch? = (Mg || Mp || Alm)\ {a f.b.f)

Comparing processes

We wish to establish that Walchi and Walch? are equivalent systems. Ta achieve
this we shall, using the algebraic laws, reformulate the iwo processes eliminating
both parailel composition and hiding constructs, Once in this simplified form it
will be rivial to verifly that the two systems are equivalent.

Firsl we consider Watekl. By applying the algebraic laws and appealing to the
unigueness of guarded recursive equations we can establish that

Wateht = Wiy

where Wiy = [X Cle.ok, b0k} — { Wil ok pory—x if Y C X else It}
Fi=[NC{a.ok, bok) — A1)
Ri={X C{a.0k, b0k bell} — (L if bell € X else /)]

It remains to cousider Walch?. In this case we will go into a little more detail.
To case notation we shall write My, Fy, Oy and Mp, Fp, Og for the obvious
renamings of A{!’, # and (). By expanding the expressions and applying the
algebraic laws A-6, A-10, A-11 and A-13 we see that

(04 I Ma || fing) \ {af)
< (O || M || Reng) \ {af b1})
(04 1l Pa || Rng) \ {af. bf])

satisfies the guarded mutually recursive equalion:

y=[X C{a.ok, book,bell} — (1 if bell € X else (z if b.ok € X else z})]

< 12[X C{a.ok,b.ok bell} — (L if bell € X else (z if b.ok € X else y))] >
22| X C{a.ok.b.ok, bell} — (L if bell € X else z))

Moreover so too does {f#!, 1 ,R1}). So by uniqueness of solution to guarded re-
cursive equations

(Onil Mg || Rag)\ {af,b.f}
(Onil My || Rng) \ {af,0f} =
(Ou |l F5 || Bng) \ {af, 0.0}

\
\
\
By a similar arguinent we can show that
\
\
\

(Mi || Op |} Hng) \ {af, b))
(M || Op i Rng)\ {af,bf)
(Fu|| O || Rng) \ {a.f,6.1)

= i

and
{O4 || O || Bng) \ {af,b.f} = RI

Now by expanding terms and noting the ahove ideutities we can show thal

(Ma || Fy || Alm)\ {af b.f)
(M} || Fp || Alm)\{af.b]})
(Fa || Fy || Abn)\ {af. bf} b= Fi
(Fa || My || Abm)\ {af b1}
(Fa ll Ma || Alm) \ {af 0.0}

Finally, by expanding the expressions and applying the algebraic laws A-10 and
A-13, we can cstablish that

(Mo | My | Abn) \ {o.f,0.)
=[{o-0k, b.ok} — (M | My || Alm)\{af,07)
O{a.ok} — (M, || Mg | Atm)\{a . b.f}
0O {b.ok} — (M4 || Mg || Alm)\ {a.f,b.f}
B (ML My || Alm)\ {af,b.f}]

(M || Mg | Alm) \{a.f,bf)
=[{a.ok,b.ok) - (Mg || Mp || Abm)\ {a.f,b.f)
0 {b.ok) — (MY || Mz || Atm)\ {a.f,b.f} b F1]

(M || My i Alm) \ {a.f,b.f}
=f{a.ok,b.ok} — (M || Mg || Alm)\{a.f.b.f}
O{a.ok} — (Ms || Mg || Alm)\{a [, bf} > FI]

(Ml My || Alm)\ {a.f.b.f)
=[{a.ok,b.ok) — (Ms || Mg || Alm)\ {a.f, 0} > F1]
By uniqueness of guarded recursive equations (M, || Mp || Alm)\{a.f,bf} = WI.
Hence

Watchl = Watch?

as required, showing the systems equivalent.

2.2.2 A lift lobby

As a second example, we shall consider the behaviour of Hoare's lift lobby [Hoa86].
We shall see that the ‘truc concurrency’ approach of SCSP gives us a slightly
different insight into the working of the systein from the ‘interleaving concurrency’
approach of CSP. Also the implicit discrete time framework of the algebra allows
us to consider timing constraints on the system, constraints that covld not even be
expressed in CSP.

21

Components of the system

The lift Iobby consists of a button, light and door. Each of these three components
performs Lwo actions; the two actions of a given component occur alternately. The
button can be pressed or released, the light goes on and off and the door opens and
closes. Initially the button is released, the light is off and the door is closed. So
the three components can he described as follows.

aBUTTON = {press, release }
BUTTON = R R = press~ D D = release ~+ R

allGHT = {on, off }
LIGHT = I Fzon~ N N=off — F

aDOOR = {open, elose}
DooR = ¢ = open -~ 0 O = close ~

When considering the system it is helpful to realize that, as specified, the button
light and door each Lave two states. IFor exainple the button is either depressed
(D) or rdeased (R), depending on the last action performed by the button. In the
depressed state the only event the button may participate in is a release, while
in the released state press is the only event in which the button may participate.
Similarly the light is either off (F) or on (N) and the door is either closed (C) or
open (Q]. Making use of these observalions, we are able to provide very simple
algebraic encodings of the requirements.

System requirements

We shall assume several coustraints on the interaction between the components of
the system. Using the algebra, we are able to establish the possible observations
of events in the lift lobby. All the conditions we shall place on the system are
safely requirements; these restrict the occurrence rather than the refusal of events.
Consequently, by the nature of paraliel composition, we can take the composition
of processes, each of which represents an individual constraint, to obtain a process
which salisfies all the constraints.

When developing processes which specifly system requirements, we shall use a
naming convention which reflects the state of the system at each point. The safety
requirements of the system are given below.

e The light does not go off while the door is closed.
St =t aS! = {off, open, close}
¢l = opern~» 01
01 = [X C{off, close} — (! if elose € X else O1)]

22

Notice that we allow the door to close and the light to go off simuitaneously.
We assume that the light can only go off i it observes that the door is open.
1t must take time to react to such an observation so it is reasonable for the
light’s reaction to coincide with the door closing. It is this type of assumption
whicl gives us a diflerent view of the system to that given in CSP.

The light does not go on unless the button is depressed.

So= R aS8 = {press, release, on}

2= press~+ D2
D2 = |.X C{on, release} — (B2 if releasc € X else D2

The hight goes op orly when the door is closed.
83203 oS9 = {on. open, closr)

€3 = |X C{on, open} — (OF if open € X else (3]
03 = close -+ (O3

b Ip

The door cannot close while the button is depressed.

54 =Ry a5 = {press. release, close}

R§ = [X C{press, close} — (D4 if press € X else R4)]
Dy = release ~+ R§

b

The door does not open unless the light is on or the buttou is depressed.

55 = RF»s aS5 = {press, release, on, off , open}

BEg = [X C{press,on} = (DN3if on € X else DFJ)
if press € X else
{(RNS5 if press € X else RFJ)]
DF5 2 [X C{release, on, open} — (RNS if on € X else RF5)
if release € X else
(DN5 if on € X else DF3)]
RN5 = (X C{press, off, open} — (DF5 if off € X eise DN5)
if press € X else
(RF5If off € X else RN5))
DN5 & [X C{release. off, open} — (RF5 if off € X else RNS)
if release € X else
(DF5if off € X else DN5)]

23

s The bution is not released if the doors are closed and the light is off.

86 = RF6 aS6 = {release, on, off . open, close}

FC6 = [X C{on,open} — (NOG if on € X else FO6)
if open € X else
(NC6 if on € X else FC6)]
NCE = [X C{off, open, release} — (FOB if off € X else NOG)
if open € X else
(FC6if off € X else NC6)]
FOf = [X C{on,close, release} — (NCE if on € X else FCF)
if close € X else
(NOG if on € X else FO6)]
NOG 2 [X C{off, close, release} — (FC6 If off € X else NC6)
if close € X else
(FO6 if off € X else NO§)]

¢ The door does not close when the light is on.

ST=F7 87T = {press, release, close}

F72[X C{on,cose}) — (N7if on € X else F7)]
NT = off ~ £7

Behaviours of the Lift Lobby

As already suggested, we can take the composition of these seven constraints and
the three components in the lift lobby to establish the allowed behaviours of the
system. We are interested in the process given by:

LIFT = BUTTON || LIGHT || DOOR || SI || S2 || 52 || 54 || S5 || $6 || $7

By uwse of the algebraic laws we are able to eliminate the parallel composition
operator from this expression. giving:

LIFT = RFC

where

RFC = press ~» DFC
DFC=[{on,open} — DNO O {or} = DNC O {eper} — DFO > DFC)
DNO={{release, off} — RFO
0 {releasr} = RNQ O {ef} = DFO > DNO]
DNC = [{relcase. open) — RNO
0 {release) - RNC O {open) - DNO = DNC)
DFQO=release ~ IFQO
RFEO=[{press, close) — DFC
QO {press} — DFO O {elose} - RFC > RFOQ)
RNQ =[{press. off} — DFO O {press} — DNO O {eff } = BFO > RAO)
RN(C = [{press, open} — DNO
Q {press} — DNC O {open} — RNO - RNCY

Here the naming of procosses is such that the first letter corresponds to the
state of the hutton. the seeond to (he state of the light and the final 10 the state
of the door. {Iu the initial state the button is released, light off and door closed.}
The transitions between the various states of the syslem are shown in Figure 2.3,

Timing constraints

Unlike ('SP we can also consider tining constraints on our system. Suppose we
now insist that the button cannot be released until two time units after iL was
last. pressed. The doors cannot close while the button is depressed (54), so in the
situation where the button is pressed while the door is open, this new constraint
will ensure an increased delay before the door may be shut. This could be seen as
implementing a bold lacility in our system. The new constraint is given by:

S8 =Rx oS58 = {press, relrasc}

B8 = press ~ (wei({} — D#)
D& = releasc -+ 18

The effect of such a requirement on the system can easily be established by con-
sideration of the process:

LIFT || 88

We find that the behaviour of the new svsten is similar to that of the old with
only the following terms in the tnutual recursion being different to the processes in

25

the expansion of the process LIFT.

RFQ = [{press, close} — DFC

O {press} — DFO' O {clese} — RFC 1> RFO)
RNO = |{press, off] — DFC'

O {press} — DNO' D {off } = RFO > RNO]
BNC = [{prrss. open) — DNO'

O {press} — DNC' 0O {open} — ANO > RNC)

where

DFQ" = wau({l) - DFO
DN = [{off} — DFO > DNO]
DNC' = [{open) — DNO > DNC]

When the light is offl and the door closed, then pressing the button initiates a
call for the lilt. We see that in this situation the introduction of extra unit delay
between the event press and the subseguent refease does not cause a delay in the
overall system. 1t is only in situations where the system is already in the process
of respouding to a button press that the delay affects tbe possible behaviours.

2.3 Conclusion
In this chapter we have presented a language SCSP which

* expresses non-determinism, parallelism, hiding and recursion in a manner
comparable with CSP;

incorporates quantitative timing details via a set prefix operator, which takes
a unit of time to evolve;

® captures the notion of true concurrency by a set prefix operator which repre-
sents the possibility of simultaneously occurring events;

® has sufficient algebraic laws to be able o eliminate parallel composition and
hiding from expressions.

These features were demonstrated via examples, where we showed implementations
of a watchdog timer to be equivalent and examined the allowed behaviours of a lift
system visible from the lift lobby.

26

press — REC
('l”-‘*'([
press —— |
]E" release RFO |
/
on
apen
on off off
/“
off off
release press\
: |
.- press
DNOT release
\\‘
open open
| release press
epen apen\\
press ’\4’

releqse RNC

Figure 2.3: State transitions observable in the lift Jobby

The transition arrows are labelled with the events that occur at that time step.
The arrows correspending to no eveuts occurring al a iime step are omitled; in all
cases this does not result in a change of state.

Chapter 3

Semantics and Proof System for
SCSP

Ln this chapter we preseus a denotational semantics for the language SCSP. The se-
mantic model records the behaviours of processes in the form of failures-divergences
inforination. This nodel forms a complete partial order nnder the non-determinism
ordering presented iu Section 3.1.3, which enabies ns to use a domain theoretic ap-
proach te establish a semantics for recursion.

Finally we develop a proof system for SCSP which is sound an<d complete with
respect lo the denotational semantics. The availability of such a proof system
allows us to use an axiomatic approach when reasoning about process expressions.

3.1 Semantic Model

In this section we develop a sernantic model which mathematically underpins the
algebia presented in Chapter 2. The underlying model records failures-divergences
informnalion in a simple format. As we shall see the model consists of traces of sets;
the structure of the traces naturally capturing the implicil timing aspect. By the
provision of a semantic function frorn SCSP to the model and use of the strncture
inherent in the model we are able to make explicit the meaning of recursively-
defined expressions in SCSP.

3.1.1 Notation

Here we introduce the key concepts of the model. We also provide some useful
operalors on traces.

28

Events and observation-sets

The meoclel takes as its basis the notion that, at each time step. a process may engage
in or refuse events offered by the environment. The universal alphabet ¥ denotes
the set of all possible events. From & we construcl a disjoint set £ 2 {& | e € T}
of refusals. Tle occurrence of an event a is denoted by the event itself, whereas its
refusal is denoted by a € .

A particular process may participate in a finite, non-zere number of events
A€ FY — {): this set is the alphabet of the process, while the set A, being the
obvious subset of ¥, is called the refusal alphabet. Clearly the refusal alphabet is
disjoint from the alphabet itself, AN A = {].

We assumae that the reflusal of an eveul is as observable as its occurrence. To
veflect this view we recard as an observalion-set the events which occtrred or were
refused al a given Liine step. For a process with alphabet A each observation-set

is a subset of o1 2 AU 4. The observation-set provides a record of the process’
bebaviour in response 1o the environment making available a set of events at a
given iustant of time,

Traces

A trace 1z a finite sequence of observation-sets. So, given the alphabet 4, the set
of all traces is given by:

STy = (PLAY”

At cach tick of a global clock an observer may witness a number of oceurrences and
refusals [rotn the set A. By recording these sels of observations in a chronologically
ordered sequence we obtain a trace of the process. Time is recorded implicitly - if
there is nothing {o observe at a given tiine, the empty set is recorded in the trace.
"Thns the n™ element of the trace is the set of observations seen at time n.

It is convenient to mtroduce operators on traces and observation-sets. The
union of an ohservation-set. B, with a trace is the mapping of ‘union B’ to cach
element of the trace. Formally: *

{
{CUBY (sUB)

QuUB
ey s)u

It

I

We define the intersection (s M B) and subtraction {s — B) similariy.
We also lift operators on sets Lo operators on traces; these return a trace whose
n™ element is the resull of the set operalion on the n™ elements of the original

* .
537 sa represents concatenation of traces s; and S3.

29

traces. Far example, the nnion of two traces is given by:

._]
il

"
§
(BUC)Y " (sU7)

(u
sU{
({By"s)u{C)r

—

Saturation

Due to the maximal progress assumption made when defining hiding, the concept
of a saturated trace is important.

Definition 3.1 A trace s is safuraled with respect to a subset A’ of the alphabet
A il at esch paint in time the race records the occurrence or vefusal of each event
in A",

satualedg(s) =Vae A, Bins+ae BvaeB
where the relation in is defined as {ollows:
Bins=Juveu (B v=s.
This holds whenever the element B appears in the trace s. ¢

If the environment always offers all the elements from A’ then a trace saturated
with respect to the events in A’ will be observed.

Feasibility

It makesno sense for an event to occur and be refused simullaneously. An observation-
set B isfeasible, fegsible{B), exactly when

feasible(BYy2Vac A~ (ae BArae B)

Processes

A process P is represented in our maodel by the pair (A, T), where 4 = oF i3 the
alphabet of the process and T is the set of traces describing all possible behaviours
of the process.

Not all subsets of STy will represent trace-sels of processes. Those that do, also
satis[y certain closure conditions which are considered in the next section.

30

3.1.2 Closure conditions

In this section, we introduce closire conditions on a set T of traces with respect to
alphabet A. Only those sets of iraces which meet the closure conditions describe
the observable behaviour of a process in our algebra.

] Hhet
The cmply trace is observable at time 0,

it SSreT=sel
1f a particalar trace can be ohserved over a certain time span. then prefixes of
this trace. cotresponding Lo observations made for a shorter period of time,
may also he ohserved.

iii sTBYe TAB CB=."(BYeT
If a set of observalions is made at one tiipe, then it would also be possible to
observe any subsel of these observations. We would see lewer events relused
and fewer events oecur; the environment offered the process fewer events. (If
the envirenment does not offer au event ilen it can neither ocenr aor be re-
fused.) This closure condition also says that evenls thal occur simuitaneously
are nol dependent on aue another: events occur or are relused regardless of
the accurrence or refusal of otlier events at that time,

iv se I'=s"{{het
Tinme marches on. If the environment does not offer the process any events
the process will idle. which is recorded by extending the trace with an empty
set.

v XCAAB) reT s (B-X"reT

The subsequent behaviour of a process is not aftected if the environment does
not offer an event thal would be refused.

sT{B)Y"re T
AN={u€eAdla¢Bra¢Bl= s~BUX}eT
vdge XosT(BU{a}}"reT
A process will always respond to events offered by the environment, either
by refusing or performing then. If it cannot perform all events it has not
refused, then there must be one such event which the process can refuse
without affecting its subsequent behaviour,

vi

vii sT(BYE T A feasible(B) A r e (P(A)) =s"re T

Once a process is able to exhibit infeasible bekaviour. it can do anything from
that time gu. In CSP, such a process is said to be divergent.

3L

We shall denote by SM the set of all pairs (4, T) where A4 ia a finite alphabet
and T satisfies the closure conditions with respect to the alphabet A. This set is
Lhe underlyiug model for our algebra.

SMz{(A.TY]AeFE) —{} A T CS5Ty A T satisfies conditions i-vii}

where ¥ is the universal set of all events.
We shall let 53 be the set of all processes witl alphabet 4.

SAMA 2 {(A.T) | (A T) € SM}

TPurther, we shall use SA{ ¢ to denote the sct of all sets of traces for processes and
SM$ todenote the subset of SMy corresponding to processes with alphabet A.

SMr= {T'|3A € F(E)» (4, T') € SM}

SAfE= [T | (A, T') € SM*)

3.1.3 Non-determinism ordering

We define a non-deternnnisim orderiug on processes with the same alphabet. If
(A, Tr) and (A, To) represent two processes P and () then we define the ordering
C by:

(A,TP] C (4, T{‘n) = TQ CTp

We say lhat €} is more deterministic than P, P € @, in the same sense as in the
CSP failures-divergences model. [BR85]; that is ¢ is more predictable than P; any
behaviour of @ is a behaviour of P.

That C is a complete partial order on SM A foliows from the {ollowing theorem.

Theorem 3.1 (SM;,2) forms o complete partiol order.

Proof: We musl show
a) SM# lias a leasl element under the ordering,
b) every directed D C SM# has a Jeast upper bound in SM$.

a) It is a trivial exercise to show thal §7, salisfies the closure conditions i-vii and
clearly. ¥ T' € SM$, 8T, > T".

b) Suppose D C SM# is directed. Clearly (1D is the least upper bound of D in
P(5T4) 2 SM#A. Thus M D is the required least upper hound if D € SMA. N D
trivially satisfies closure conditions i-v aud vii. H remains to show [D satisfies
condition vi.

vi) Assume s7{B)"t € N D.

Now suppose [D Tails condition vi. Then setting X = {e € A |a ¢ B A & ¢ B}
we have s (BUX} gNPandVae X« s {(Bu{aly"t¢ND. Hence AD, € D
such that =™(B U X} ¢ D;. Also we can fiud a finite indexing set I to cover the
elementsof X.ie. X = {g | i € I}.so that for each i € [, there exists a [, € D
such that s~ (B U {4}}7t ¢ D,.

By the property of directed sets and as [is finite, we can find some D' € D such
that Dy DDAV el D 2D

So s(BY"t e Y AST(BUX) ¢ D AVae X« sT(BuialhTt g D,
contradicting I € SM¢.]

The set of processes with finite alpliabet A represented by our model also form
a complete semi-lattice under 1l reflinement ordering, T, This is a direct conse-
quence of the theorem:

Theorem 3.2 (SM4, D) forws a complele semi-latlice.

Proof: We alteady have fraw the previous theorem that (SME, 2) forms a
complete pactial order, so it vemaing to show that arbitrary subsets of SM7 have
a greatesl lower bound in SM4.

By construction |J B is the greatest lower bound of the arbitrary subset 5 C SM4,
seen as a subset of lhe set P(STy) 2 SM;. Moreover U B trivially satisfies the
closure conditions i-vii, hence U B € SMF. (]

3.2 Semantic Function

In this section we construct a semantic function which maps syntactic expressions of
our tanguage to processes in our model SM. Before we can consider the semantics of
a process term we nust provide a specific binding of process variables to processes
in the standard way [Sto77, Hen88].

Variable bindings

Given a set of variables Var, we defite a domain of bindings, BIVD. This consists
of all mappings from Var to the space of processes SM.

BIND = Var — S5M
Now we are able to define a semantic function

M : SCSP - BIND - SM

33

M[P]p denotes the meaning of process term P with variable binding in terms
of our model. This is evalnated by associating each free variable z with ils value
2lz] given by the bindiug p.

Symlactic substitution of {ree variables, as introduced in Section 2.1.2, results
in a change in Lhe variable binding in which a process is given its meaning. This
occurs in the following sense:

MIP[Q/r1lp = MFp((M]Q]p)/ 2]
where the hinding p[:/r] is defined as follows:

fy=ur

ol iellu] = { :

rivl ollierwise

We shall be predominately coucerned with process terms whose meaning is the
same with all possible variable bindings.

Definition 3.2 A process termn is closed If it has no {ree variables. 4]

Lemma 3.3 The mcaning of a closed process term P is independent of the current
binding. Formally, for P closed

Vg BIND « M[P]p = M[P]#

When reasoning about ¢losed Lerms it is unnecessary to make the binding explicit.

The semantic function M

(iven a variable binding. A1 maps each process term lo a pair representing the
process alphabet and the set of traces of the process. We defiue o and T o be the
natural prejections onto the first and second components of this pair.

MPlp = (a[P]p- TIE]p)

For a geueral process term hoth the alphabet and the sel of traces of the process
wi]l depend upon the variable hinding.

a1 SCSPF — BIND - FX.
T :5CSP — BIND — SMt.

hEY

Non-recursive processes

We define M over the non-recursive terms of SCSP by defining the two projections
aand T.

We take SCSP%to be the restriction of SCSP to non-recursive terms, that is
terms with syntax:

Pu=lyule|POP

XCA- PII P PP ALPS]

Definition 3.3 The fuuction o is defined as follows Tover the synlax of SCSPY.

af LyJp = A

afzlp = 7, p[s]

oIPAQly = alPlp if alPlo = alQlp
a[XCB - Prllp & olPslp 1IVE CB:alPulp=alPslp

alP 1 @l = olPlrualQlp

olP\Blo = afPlp~B alPlog B

olPIST 2 (alPllS) 0

13

Definition 3.4 The function T is defined as follows over the syntax of SCSP?,
TlLalp=STy
Tz]p=meplz}
TIP 1 Qlo= TIPly U TEQl

TIXCH = Pe]lo={{iBUCY s |B'CBACC(A—-BYAse TPyl
u{Q}
where 4 = af[X CB — Pxl]p

t1r,. is the prajection of an m-tupte onto its n** component. So 7 4{a,b) = aand rg(a, DER

35

TP Qlp={s|3sr.se s (BANB)) ¢ 5 Nse = ({Hk
AlsnA} -5, €T[P]pn (sNB)—iz € T[Q]p}
U
{71 | 3sg,80 : (P{ANBY) v 8, Ny = {{ DM
A€ STas i
A= A) =5) (A) e T[P]p
A{sNB)Y — s € T[Q]p)
%
(s M B) —s)~(BY € T[Q]p
A{sNA)—s, € TP}
where A = afP]p and B = o[@Q]p

TP\ Blp={s - 18 |5 € T[P]p A saturaledsnp(s)}
where A = o[P[p

T[P[SIle={s | +(57'] € T[Plp} 0

Nates

L. L, is modelled by the leasl element in the partial order {(SM* C). This
carresponds to L4 being the least predictable process with alphabel A.

2. The non-delerministic choice operator is closely related to the ordering, C,
on the model. We can define the ordering in lerms of this operator.

M[P] C M[Q] & M[P 1 Q] = M[F]

This relationship mirrors the fact that the ordering is a measure of non-
determinism exhibited by processes.

3. The semantic functivn for parallel composition is by far the most complex
and it is worth noting how its coustruction refates to the description of the
operator.

The first set (in the definition of T[P || @]p) gives the behaviours of P ||
obtained while both P and ¢ are not divergent. Fach behaviour of P || @
is the result of the interaction of behaviours of P and . We recall that
an event can only oceur if all component processes with that event in their
alphahet can perform the event, whereas an event is refused if eilher one of
the component processes with thal event in its alphabet refuses the event. So
given a behaviour, s, of P || @ we should be able to find traces of refusals s,
and sz in the common alphabet which represent those refusals from s solely
due to @ and P respectively. Note that s, and sg are disjoint. Given this

36

choice of s, and sg. (s A) — s, must be a behaviour of P and {(§ 1 B) — 8¢
must be a behavionr of Q.

The second set gives the hehaviours of P || @ which result once one of
the cornponents has become divergent. The term s7r is composed of the
hehaviour up to divergence, s, which is governed as before, and arbitrary
behaviour, r, following divergence.

4. In defining the hiding construct we assume that a hidden event occurs as
5000 a5 the process is ready. To capturc this assumption in the semantic
function we ouly consider beliaviours of P which are saturated with respect to
those events which are to be hidden m the alphabet of P. These behaviours
correspond to the hidden events being offered by the environment for the
duration of observation; thns theyv correspond to the hidden events occurring
as sooll as the process P is willing to perform them.

Theorem 3.4 The terms of SCSP are well drfined with respect to the model,

Proof: It is necessary and sufficient to establish that M[P]p € SM for all
process expressions P in SCSP“. This is achicved by structural induction over the
syntax.

atomic terms 1t is clear by constrnction that L, is well defined with respect
to the model. Moreover by definition of p, and since Mz]p = p[z] the process
variables are also well defined.

operators We shall consider the two place operator ||; other operalors follow in
a similar manner. Assuming M[P]p, M[Q]p € SM we deduce that MIP || Qfp &
SM. This requires us to chbeck that TP || Q]p satisfies the closure conditions for
the alphabet afP || J]. Conditions i~v and vii are easily verified; due to condition
vi exhibiting a choice this is the hardest to verifv. We present the proof that
TP || Qe satisfies condition vi as Theorem A.1 in Appendix A.1. i

Recursive processes
Definition 3.5 We extend the definition of A to the full syntax of SCSP as

37

follows.

I

Mlpc: A Plp = fix, hy - M[P[ply/z]
where y does not occur free in P and fix,
denotes the function’s least fixed

point in (SM*.C)
(fixy Ay« M[P]e[y/2]),
where for all ¢,/ the y, are not Ireein P; and

fix, derotes the function’s least fixed point
in the product c.p.o. [[;(SM4,C)

i

.‘HE(B,‘ = P,)J with Aﬂp

0

In order to establish thal A is well defined over SCSP we must ensure that
the least fixed poiuts utilised in the above definition exist.

Lenmma 3.5 For P a recursion free process term, Ay « M[P]ply/] is continuous.

Proof: We must establish that
MPlp[uD/z] = Usep M[P]o]d /)

for D a lirected set in (SM4,0).

The continuity of atomic processes follows trivially in the case of L4 and is a direct
consequeuce of the defiuition of variahle bindiugs in the case of process variables.

It is suflicient to check thal each operator is continuous in each argument. The
requiredresull then follows from the coutinuity of finite compositions of continuous
functions {Sto77].

The commuity of most of the operators follows from the distributivity of unien
through arbitrary intersection. The proofs for parallel composition and hiding are
slightly more inlecresting. They are of a similar form and that for hiding is presented
as Theorem A.2 in Appendix A.L. o

Lemma 3.6 For y aot free in P and Ay « M[P]p[y/s] continuous in (SM?,C)
forallize Var, then M pz : A+ P] is well definedand Ay s Mz : A+ Plply/z]
13 contiruous in (SM4,C0).

Proof: (SM#,C)isa complete semi-lattice and A y « M[P]p[y/x] is, by assump-
tion, cortinuous within the semi-lattice. So, appealing to the Knaster-Tarski Fixed
Point Theorem [Tar55], a least fixed point exists. Hence fix Ay « M[P]p[y/z] is
well defined.

38

Moreover, setting H = Ay « M[P]ply/z], the least fixed point is given by the
limit, Lo H"(M[14 1)

As |.u.b. preserves continuity the required result holds. £l

Lemma 3.7 Let A be the totally ordered finite indezing set over which (5 =
P, with A is defined. If. for each i € A, Ay « M{E]p[y/z] is continuous in
{SM* .) for all variables T and y 15 not free in P;, then M[{z, = Pi); with A]
exists and dy « M[{r, = P.);]ply/z] is continuous in (SM*).

Proof: For each i € A we construct

£ I sM* — smA
JEA

such that
fi = Az - M[Pi]plz/ £]

fi is continuous since by hypothesis it is continuous in each of its finite number of
arguments.

From this we define

LT[Sm? -+ T sm4

JEA EEA

such that [= f. This fuuction is coutinuous by construction. Now it is easy to
verify that

[= Ay~ M[Eloly/zi

50 f is the function for which we require a least fixed point. Following the reasoning
of the previous lemma we have the required results.]

Theorem 3.8 All process terms P of SCSP are well defined with respect lo the
model and Xy« M[Plp{y/z] is continuous.

Proof: This fvilows from the previous lemmata. (]

Corollary 8.9 The operators of SCSP are monotonic with respect to the ordering
C. n

39

3.3 Expressivity of the Language

By definng a semantic function from SCSP to the inodel we have established a
meaning in the model for every process expression. Conversely we now seck to
establish that every process in the model, which exhibits infeasible behaviour after
finite time, can be represented by a finite expression in the language.

Given an such a process (4, T') in the model, we shall construct a closed process
expression P{ T} in the algebra which is mapped to (A, T') by the semantic function
M. In order to build our process expression it will be necessary Lo consider the
process (A, T/D) wlich is a process which behaves like (A, T') after the set B has
been ohserved.

Definition 3.6 For T € SMp and (B} € T we define

T/B= (s |{B) s € T}

Lemmma 3.10 [f (A, T) € SM and {B3) € T then (A, T/B) € 5M.

Proof: It is a trivial exercise to verify that T/B satisfies the closure conditions.
u]

Theorem 3.11 Let (A, T) be a process in the model which exhibils infeasible be-

haviour after a finite time m, thal Vs € T o |s| > m = s {4) € T. Then
(A, T) is denoted by a closed term ir the langrage SCSP.

Proof: We must consiruct a term P with alphabet A such that T[P] = T.

Following the approach taken by Jeffrey [Jef9la], for {4, T) in the model we con-
sider the following definition of a process P(T)

P(T) = {l,, _ ' i if (A) €T
Moep NEDNA P(T/(XU(DNAY)] otherwise
where D = {B | saturatedy({B)) A {B) € T} is finite.

Note that D represents the set of initial observations contairing maximal (total)
information about the events in the alphabet A. We shall prove that T{P(T)] =T
by induction on m, the time after whicl infeasible behaviour must result. We take
as our inductive hypothesis:

Y(A, T)ESM +(¥se Tels|>m= (A e T)=TP(T)] = T.

base case m = 0

40

{A) € T thus P(T) =1, and by closure condition vii and the definition of T,
T=S8Ty=7[1,]

inductive step
case 1: P(T) =1,

The result {ollow as for the base case since {(d) € T

case 2: P(T) takes the form of the non-delerministic choice between set-prefixed
processes.

Notice that for [? € D, by construction, we have that (X U (DN A)) € T for all
X € Dn 4. So by the previous lemma (A, T/(X U{D N A))) € SM.
We shall use Pp x to denote P(T/(X U (DN ANy foral X € DA
Assuming (Ys € T+ |s| > m+ { = s~{d) € T) we must show T = T[P(T)].
Firstly note by considering the definition of 7/(X U (DN A)) we can show
IsizmAsE T/HXNUDNA)) = s {A) e T/(X U(DnA))
Hence by inductior T[Pp x] = T/(X U(Dn A)).
Now we can demonstrate that T' = T[P(T)]. Trivially () € T A {} € T{P{T)].
It remains to show (B) s € T & (BY s € T[P(T)].
We shall use BE = Bn 4 and BR = B A (o denote the events and refusals in B.
= : Suppose (BY"s € T thensetting ¥ = {e € A | a ¢ B A & ¢ B} we can
establish froin closure condition vi aud induction over | Y| ¢hat
AXEC Y, XRC ¥ vsatwrated, ((XFUXPUBYAXEUXRUB ET
AXRUBY " seT
= { by definition of T)
ADeDBCDADNAUBA™se T
= { construction of T/{(D N AYU BE) }
IDeD.BC Dase T/((DnA)uUBE)
= { by the inductive hypothesis as noted ahave }
IDeD«BCDAsecT[Ppge]
= { by set manipulation and as [is saturated }
ADeD+BRCA-(DRAYABE C(DNA) Ase T[Pp e}
= { by definition of set-prefix }
ADe D (BEU BH)AS S TH{,YQDF]A — PD.X]H
= { by definition of non-deterministic choice }
(BEUBM s € T[MNpep [XEDNA - Ppyll
= { by definition of T(P) }
(BY s € TLP(T)]

41

The converse follows similazly giving the reqnired result. O

3.4 A Sound and Complete Algebra

In1 this section we introduce a proof system for our language which is seund and com-
plete for equivaleuce of processes in the semantic model introduced in Section 3.1.
I a style siinilar to Brookes [Bro83) we consider the suhlangnage SCSFP!first. This
sublanguage is restricted to the non-recursive closed terms of SCSP. The logical
language will consist of assertions of the form P C @ and P = @. We give a set
of axioms and inlerence rules far proviug assertions, and show that the system is
both sound and conplete.
We extend the resull to the full language SCSP. allowing recursive terms.

3.4.1 The sublanguage SCSP'
The synlax of SC'SP'is given by:
P:=1,|POP|[XCA-P]|P||P|P\4A]|PIS]
This language is a sublanguage of SCSP’resulting from the elimination of free
variables, We refer the reader to Section 3.2 for the definition of the semantic
function M over terms generated by the above syntax.
The logical language of our proof system is built from SCSP!terms and two
binary telation symbols C and = (which can be defined over the fll language
SCSP). Formulae in the language take thelorm PC Qor P = Q. Wetake PC @

Lo mean

¥p€ BIND « M{P[p T M[Q]p
and P = €} to mean

Ype BIND « M[P]p = M[Q]p.

The axioms of the system are given in Appendix B.1. These include many of the
equivalences already stated. A futther axiom relates the non-deterministic choice
operator to the relation C. Inference rules are included which establish C to be a
partial order with = the associated equivalence. Finally there are inference rules
asserting the monotonicity of the operators.

Several simple properties of C and = are not explicitly given in the axiom
system as they are deducible from the axioms. These results include

0-5 F P=P O-6 | Y
PRQR=F PLC
o-7 —Q— O-8 ;Q
PCQ POQ=P

42

O-T and Q-8 demonstrate the link between non-deterministic choice and the or-
dering. -6 states that L is the least element in the ordering. We shall present
the proofs for O-5 and O-8.

0--5:
F PNP=P 03
P;PHP;PO‘
PgPO2 4
P=p
0-8
I-PEPO
PCQ PCP "" +k PAP=P
PrPCPnQ PCPnp 07
PCPNQ 0-4 F POQCP
PNQ=P -
o
Soundness

In order to establish soundness of the proof system we must ensure that every
provable assertion is true. Ii is necessary to verify the truth of each of the axioms
of our system. These checks are trivial and unenlightening, so are omilted here.
The inference rules stating that T is a partial order follow from the structure of
(SM,C). As all the operators were shown to be monotene the rules M-1 and M-2
follow.

If we write - F C @ to assert that £ T Q is provable then tbe following
theorem states that the proof system is sound.

Theorem 3.12 (Soundness) For all terms P, @ in SCSP!

(F PC Q)= M[P]C M[Q]

Completeness

In order to establish completeness of a system we mwust show that whenever an
assertion is true. it is provabje. We must show that whenever M[P] C M[Q]
then the formula P C ¢} is provable. We shall define a class of normel forms

43

and show that every term is provably equivalent to a unique normal form. Finally
we establish that the system consisting of the class of normal form processes is
complete.

Normal form

A normallonn is a term in the language with a specific structure. L4 is a normal
form. All other normal forms are the non-deterministic choice between a finite
number o set-piefixed processes, where each of the set-prefixed processes is in
norntal form. The choice sets in fhe set-prefix constructs are unigque. This and a
further condition insisting that the set prefixed processes are as mon-determiuistic
as possible ensure that the normal forms are unigue.

Definition 3.7 We say a process, PP, with alphabet A. is in normal form if it is
4.4 or takes the [orm

P= ﬂ [,\QB — Ppx]
e
where

e 3 is a non-empty, huite subset of P A
¢ VBB cB+X CBCH =Py C Py
e Forall B € Band X C B, Ppy is iu normal forin.
&

By the second condition we ensure that the set-prefixed processes are as non-
deterministic as possible. This reflects A-5 and the ability to postpone the reso-
lution of choice; such postponement can occur exactly when the observation of a
given sel of events rmust be the result of the environment’s initial offer of events
being insufficient to resolve Lhe choice instantly.

Rather than prove directly Lhat every process is provably equivalent to a unigue
normal form, we shall first consider the class of processes in pre-normal form. The
pre-normal form is similar to the normal form; the structure of the processes is
the same, although with fewer restrictions on the construction, nmiqueness cannot
be guaranteed. We shall demonsirate that each process in pre-normal form is
provably equivalent to a process iu normal form. It is then sufficient to show that
each general process is provahly equivalent to a process in pre-normal form.

Definition 3.8 We say a process, P, with alphabet A, is in pre-normal form if:

da
P= {H,GI{XEB. — Pix]

where

44

e I is a non-empty, finite indexing set and {B; |+ € [} CPA.

e Each P, x is in pre-normal form.

Notice that we no longer iusist on the uniqueness of the choice-sets B;.

Lemma 3.13 Ewvery pre-normal form in SCSP' is provably equivalent to a proceas
in normul form.

Proof: We define the depth of a process in pre-normal form as follows:

d(L)
(ﬂ P)= ax,efd F)
d{[XCB — Py])=maxycn d(Px)+ !

We shall prove the required result by induciion on the depth of processes.
Base case: d{FP)=4¢

Trivial since the only possible pre-norinal forin with zero depth is L which is in
normal forn.

Inductive step: d(P} = 24!
P is in pre-normal form
P= I_“-!‘ gB: — PIX]'A
3

by applications of A-5, A4 and A-3 we have

F P= l—l[X CB, - Py
ief

L it P, x =1 for any j € {k| By C Bi}

where P! | = .
[¢ r]BJCB. P, x otherwise

By the construction of the ;] ; they are allin pre-normal form. By theidempotence

of non-deterministic choice (A-3) we can remove all duplicate set-prefixed terms.
So we can assume that the B, are unique. Now

d(P)< maxg cp, d{F;,x} < max,e; maxxcs, d(Pix)
< maxref(ma-xxgs. AP x)+)= d(P

45

5o we have that d(P{y) < d(P). So since d{F] v} < d(P) we can find, by induction.
G x In normal form such that Q. y = P/ x is provable. Then clearly

b oPe[|IX B — Qix]

el

with the right hand side heing iu normal forin. a

Lemma 3.14 Erery process expression P, in SCSP'is provably equivalent to a
process in pre-novmal form.

Proof: We define a rank function / on finite processes as follows:

{1)=
(P:HPH D+ P+
iP; | P;.)—!(P,][(P;.)+1
I([,\'Qb’ — P,\'“ = maxxcg f(Px}+ 1
{P\ A) = 2.0(P) + 1
UP[S]) = 3.4(P) + 1

We shall prove hy induction on the rank of P, i(P), that all processes in SCSP'are
provablyequivalent to a process in pre-normal form with rank no greater than that
of P. Sowe take as our inductive hypothesis:

(PY=n= 3@+ Qisin pre-normal form
A{Q) < I(P)
AR Q=P,
Base case: n = 0
We must have P = 1, s0 P is already in pre-normal form and we are done.
Inductive step: {(P) = n+!

P 1must take the form of an operator on component processes. We shall only present
the prodl for parallel composition here, proofs for the other operatars being similar.

P=P P
By definition of the rank function, I(P) = {{P).I(Ps) + 1.

Either {{P) = I in which case one of P; or P» is L, so by A—6 or A-T we have
that - P = 1 and we are done.

Alternaiively I{P) > I, in whicl case neither of P; nor Py is L and we must bave
KP:) <lP)fori € {1,2).

46

So by the inductive hypothesis we can find (@, in pre-normal form such that I(¢}) <
{(P)and F P, = Q.

By monotonicity F P = Q; || Qe.

Now either one of ¢ =L, in which case by A-6 or A-T,F P =1 and we are

done, Or hoth), take the form of a non-deterministic choice between set-prefixed
processes.

Q= |—| Q! where @ = [YC8' — Q:1Y]

1€]

Qs = ﬂ Q? where Q2 = [Y CB? — Q%)

ied

Consider the case where || or |J| is greater than I and without loss of generality
assume }J| > f. Then by A-8

F QJ H Q2 Eﬂ:el(‘l H Qz]

We can deduce that Q' || ¢) < H@Q; || Q2) < [(P). So, by the inductive
hypothesis we can find @ in pre-normal forin such that F Q! || Qe = @ and
KMy < HQ)] Q).

Thus F P = Hiel @?. Either one of the @F =1, iu which case as L is a zero
of non-deterministic choice, - P = L and we are done. Otherwise [1,.; @ is in
pre-normal form and it remains to establish that the rank of this process is no
greater than the rank of P.

Consider the case when (@) > f.

([Tigr @) = s Q) + 11— ! { by definition of {)
S L QI Qe)+ ! {0 =@ | Q))
= VoM@ 1{Q)+ L)+ 1| =1 { by definition of I}
< HUQ)(T,ef QN+~ 1)+ 1 { assuming I(Q:) > 2 }
= U(Qe) Q)+ { { by definition of land @,)
< PP+ 1 { Q) iP)}
= I{P) { by definition of [and P)

In the case where { Q) = / we must consider the form of Qf more closely. As
@2 is in pre-normal form the ouly form this process can take is [X CBf —1]. In
which case, by A-10 and A-7,

F Q:i ” Q2 = Qla
where @7 = [YCC, — 1] and G = (B N B2 U(B; — A)U(Bi - Ay), 4, and
Ay being the alphabets of @, and @, respectively.

47

Clearly ¢ is in pre-normal form and {{Q°) = 7. Thus by simple analysis of terms
we can show I(,., Q) < U(P).

Hence setting () = [, & we have the required result.

Finally we must consider the case where |{| = [J| = 1. So
Q@ =[YCB — @] Q= [YC By — QF]

By the axiom for parallel composition of set-prefixed processes {A -10} we have

BoQr | ={Y S = (Qiny, | Qfna,)i

where (= (4, N B)U(B, — A;)U(By — A,) with 4, and 4, the alphabets of
¢ and Qs respectively.

Now we can deduce thal

HQ{ng, || @ins,) < {(P). Thus by the mductive hypothesis, we can find Qf in
pre-normal form such that

b QY = Qi | QFnp, and HQT) < UQynp, || QF s,)-
Setting @ = [V € — @], clearly @ is in pre-normal form and + P = @.
Analysis of expressions gives [{ Q) < I{P), so we are done. o

Corollary 3.15 Every process erprrssion, P, wn SCSP' 15 provably eguivalent Lo a
process m normal form.

Proof: This follows from the previons two lemmata. a

Finaliy we show that the class of normal forms is complete.

Lemma 3.16 For P and @, wilh alphabet A, in normal form
MIPICM[Q] = (+ PC Q).

Proof: By structnral induction on P.

base case; F =1

Then the result follows by O-6 (page 43).

inductive step: P takes the form of a nondeterministic choice.

Now 1 is the only process with an initial infeasible event, so (A} ¢ T[FP] hence
(A) ¢ T{Q] and @ must also take the form of a non-deterministic choice.

P=[]IXCB - Py
BeB

where¥B.B' € B« BC B' = (VX C B+ M[Pg x] EM[Psx])

and

Q=[)I¥<C = Qea)

[4=4

whete ¥ (', (" € C+ CC ("= (VX C C» M[Qerx] C M[Qe.x])
Now by the definition of the semantic function,
Vel (CUd - One Tl
= { as M[P] C M[Q] by hypothesis }
YO eC (CU(A-OYeTIP|
= { by defivition of P and semantic functien on non-deterninistic choice }
YOCCCABEB(CU{A- N ETINCSE — Ppxll
= { by deflinition of sernantic functiou on set-prefix |
YCECsFBCB.CCBA[A-—YC(A-B)
= { by set manipulation }
CCH

Now by axiom O-!

FPC[]yce - Py

e

It is sufficient to show that, for all C € &, M[Pc x] T M[Qr.x]. The result then
foliows from structural induction and monotonicity of the operators.

5 € Tl[Qg‘}(]]
= { definition of set-prefix and non-deterministic choice }
{(XYU(A— P7s e T[Q)
= { as M[P]C M[Q] by hypothesis }
(YUMA-—CN"seTIP]
= { definition of non-deterministic choice and set-prefix }
I3BeB« X CBA(A-()C{A-B)YAsET[Psx]
= { by set manipulation }
ABeEB X CBCOASET[Pgx]
= { since P is in normal form }
IBEB s € T[Ppx] A T[Pgx] C TI[PC'.-\’F
= { by definition of subset }
s € T[Pc x]
Giving the required result. m]

From the previous resulis it is trivial to deduce completeness.

49

Theorem 3.17 (Completeness) For all terms P, @ in SCSP!
MIPIT M[Q] = (F PEQ)

3.4.2 An extended proof system

In this section we extend our proof systein to cover the full language of closed terms
in SCSP. Like Brookes [Bro83], we characterise each process by its set of finite
syntactic approximations. This enahies us to reasou ahout an infinite process, that
is one containing recursive constructs, by considering its finite approximations.

Definition 3.9 The relation < is the smallest relation on terms satisfying:

i =< P
P < P
Pligge » PYjr] < pos /P
Pil{r = Plefm] < (u = P,
P<@Q=<l == P<R
Pr< Qi P <Qe = (PP <(Q, N Q)
YXCB«Py <Qy = [XCU— Py} <[XCB— @Qx)
Pr<@Q:i,Pe <Qp = (P || Pa} <(Q | Q)
P<@Q = (PLAY=(Q\A)
P <@ = P[5]<qQ[9
Il P < @ then we say that P is a syntactic approrimation of Q. ¢

It can be shown by simple structural induction that if P is a syntactic approx-
itnation of ¢ then @ is more deterministic than F.

P <Q= M[P]EM[Q]

Given a closed process P, we construct the set of its finite syatactic approxi-
mations FIN(FP). In this context we say a process is finite precisely when it is a
term in the language SCSP!. So the formal definition of FIN{P) is given by:

Definition 3.10 FIN(P) = {Q € 5CSP' | Q < P} ¢

FIN{P) forms a directed set under < and consequently the semantic image
of the st forms a direrted set under C, with M[P] an upper bound. It can be
established that every finite process, Q, which is less deterministic than P is less
deterministic than some P € FIN({P). Intuitively this follows since every finite
Process must behave like chaos alter a finite time. Suppose) degenerates to chaos
alter niime units. By choosing any finite syntactic approximation P’ of P which
has the same behaviour as P until time n we are guaranteed ¢ C P'. This gives
us the resuit.

a0

Lemma 3.18 If § € SCSP' and M[Q] T M[P|, then there exisis P! € FIN(P)
such that MG] C M[F]. a

The semantic model consists solely of finite traces. We have already seen the
semantics of a recursive process copstructed as the linit of the semantics of a
chain of finite approximatjons to that process. More generally the semantics of
any process. P, can be described as the least upper bound of the directed set of
the semantics of ceriain finite syntactic approximations. By the above lemma the
least upper bound of this set must lie below that of the semantic image of FIN({P).
Thus we have

Theorem 3.19 TIP] = Ngeriniem T1E] u

Extended proof system
We extend the proof system of Section 3.4.1 with the following:
A-1T + Plptr+PYrl=pr+ P
A-18 b P = Pi/n) = (0 2)
Ve FINP)+ QCR
PCR

R-1

The inference rule captures the fact that £ is the least fixed point of its set of
finite syntaclic approximants. It should be observed that the inference rule is an
infinitary tule as FIN(P) may be an infinite set. We would not expect to be
able Lo construct a decidable proof system for a langnage which is Turing tnachine
equivalent.

Soundness and completeness

The least fixed point construction of the semantics of recursive constructs guaran-
tees the soundness of axioms A-17 and A- I8, While the inference rule is sound by
Theorem 3.19.

Theorem 3.20 (Soundness) For all closed terms P and @ in SCSP
(- PC @)= MIP]C M[Q]
|

Completeness is established by considering the characterisation of a procesa by
its syntactic approximation.

51

Theorem 3.21 {Completeness) For all elosed lerms P and @ in SCSP
MIPJIEM[Qf = (- PCQ)

Proof: Suppose M[¥] C M[Q].

Let P’ € FIN(P). Then M[P'] C M[P] C M][Q].

So by Lemma 3.18 we can find ' € FIN(@) such that M[P'] C M[Q'].
By Theorein 3.17 we have - P C .

Now ¢ C () is provable for every ¢/ € FIN(Q),s0o - P C Q.

Hence by the inference rule R-1 tbe result follows. a

3.5 Conclusion

The semantic model for SCSP presented 1u this chapter has provided a mathemat-
ical underpinning ol the language in Chapter 2. The image of a process expression
in the language, under the semantic function M, gives a denotational interpreta-
tion of the process in the model. The model captures the behaviours of processes
by recording failures-divergences information comparable to thal used in [BR85]
for ('SP: by incorporating refusals into tlie trace of events and introducing the
coneept of jufeasible behaviour it was possible to provide an elegant mechanism
for recording Jivergences within the traces. The traces record time implicitly; si-
mltanecusly cccurring events are recorded in a single set, the position of this set
in the trace represents the time at which it was observed. Moreover the model
has sufficient mathematical structure for domain theoretic results to be applicable,
giving aformal underpinning of recursion.

I"inally. a sound and complete proof systemi for SCSP has been developed. In
verifying that the proof system was complete, a normal form for closed terms
m the language was considered. The proof system enables relationships between
processes, deducible from the semantic model, to be established directly, using
axioms, within the algebra.

52

Chapter 4

Communication and Protocols

So far any interaction between processes has beet by their cooperation over the
performance of common events. In this chapter we consider how we can madel the
concept of communicatiou of data via channels within a system.

[n the secoud pari of this ciapter we utilise the notation developed for commu.-
nication in order to specify a token ring protocol in SCSP.

4.1 Communication

A channel is seen as a mediuin for the communication of data between processes,
The data carried by a channel may take a finite number of values. We stipulate
that the channels are uni-directional so a process will use a given channe for input
or oulput exclusively for all time. Also. only one process in a system will use a
given channel for output.

Like ("SP, we consider ¢.v, the valile » communicated on channel ¢, as being
an atomic event, Within our model atonic events should be independent in the
sense that the occurrence of one should not be able to affect the ability of another
to be performed at the same time. We must be aware that e.v and c.w are distinct
atomic events and as such it is possible to describe processes which allow these
events to be performed simultaneously without chaotic consequences. Clearly such
an occurrence would have little meaning in the context in which these events were
intended. The notation we will provide simply ensures a disciplined use of the
events, so that processes, which purport to model communication along channels,
conform to the expected behaviour.

Output channels

If channel ¢ is an output channel for a process, then whenever the process is willing
to outpul data we wonld expect the process ta select a particular data value, v, say.

53

The process should ouly make available this chosen data value for communication
to the environment. Morrover any attempt to send several data values along a
channel st a given time would, in general, have catastrophic consequences.

We use the notation clv to indicate that the occurrence of the event c.v should
be interpreted as the process outputting data along channel ¢. So

[X C{elo) = (P if X = {] else Q)]

will represent a process which may initially output value v on channel ¢ and then
go on to belave like @ or like P depending on whether the output accurred.

Input channels

Il chamnel ¢ is an input chaunel for a process then whenever the process is willing
Lo accepl an item ol dala on ¢ it should be ahle to accept any of the possible
data valies. The choice as Lo which value is actually received will be made by the
environmeni. However, the process should not be able to accept more than one
data valie from the channel at any one time as this cannot be achieved without
inferference on the channel.

Letting » be a [ree variable, we use the notation ¢?r within the choice set
ol a set prefix construct to indicate the availability of all the events from {c.v |
¢ an allowed data value on ¢} in the choice set. This should be seen within the
context of the process being able to receive any data value along channel ¢. We
shall assime that any attempt by the environment to perform more than one of the
available data communications on a given channel will result in chaotic behaviour.
We therefore find it unuccessary to state the behaviour of the process in such
circumstances, For example,

[XC{etz} = (Pif X = {] else Q(x))]

represcits a process which may initially receive input on channel ¢; it then goes
on to behave like P or (J(x) depending on whether an input action occurred. In
the case where a single data value is received, r takes this value, determining the

behaviour of Q(z}.

Compaosition of processes with channels

We have already stipulated that only one pracess in a system will nse a given
channel for output. We put no restrictions on the number of processes in a system
using a given channel for input. Thus we allow for simple specification of the
concept ol channels being forked supplying many processes with input. We shall
now consider the effect of composing processes which have channels.

Suppose ¢ is an oudput clianne! of P and an input channel of . Within the
composed processes P || ¢ data is transmitted from P to @ via channel ¢. Qther

H4

processes within the system can read the data from P. To allow this, the channel
¢ is visible as an output channe! of the process P | Q.

If ¢ is an input channel of both P and @, then the channel ¢ is an input channel
of the composed process P || @. Data trausmitted to the composed process is forked
intetnally to the comnporent processes.

If ¢ 13 a channel of P bnt not of ¢}, then this channel is visible as a channel of
P || @ of the same type (input or output) as for process .

4.1.1 Syntax for communication

Suppose, within a systetn, events which arise in the context of data communication
are only referred 1o using the notation for input and ontput. Then we can provide
a syntax within our algebra which allows us to abstract away from the individual
events which make up the commnnication. We arc able to view the problem as one
of channels parameterised by the data they are carrying.

Alphabets

In SCSP every process has an alphabet. When considering communication it is
cohivenient to distinguish the communication events from other events in the al-
phabet. We shall associate with each process, P, its input channels in(P), its
output channels ouf(P) and non-communication events ex{P). We define the set
of channels of P to be chan(P) = in(P)U out(P). Each channel, c, has an asso-
ciated data seil é(c), a finite set giving permissible data values on channel ¢, The
data set should be seen to be an attribule of a given channel in a system. Every
process With a particular channel ¢ will see the same associated data set for that
channel. The alphabet of P is then given by

af = ev(P)U{cv | c € chan(P) A v € §(c)}

We also stipulate that the jnput and output chanrels of a process are disjoint,
a(P)n oul(P) = {}

and that non-communication events do not coincide with communicatiou events
er(P)N{cu|c€ chan(PY A veEb(c)) ={}).

We strengthen our requirements on the alphabets of component processes in
Process eXpressions.

* Whereas previously comuponent processes were reqnired to have the same
alphabets, we now also demand that the input channels and output channels
of the various components coincide.

55

o Panallel composition is restricted to the case where there are no output chan-
nels common to the component processes, and non-communication events of
one process do not coincide with communicatien events of the other. The
process P ||) has an alphahet composed of the following:

er(P || Q) = ew(P) U en(Q)

oul (Pl Q) = owtiP)U out{Q}

(P @)= {in(PYUmn(Q)) — ouf (£ || Q)
Processes

Commurication eveuts arise within processes expressions in the same situations as
non-connnunication events. We provide special notation for referencing comuuni-
cation cvents to ensure tliey only appear in a meaningful context. If we restrict
ourselves o the notalion provided here for communication along cliannels, we can
provide clarity in our modeiling of such corumunication and ensure that the process
construcis adhere to the regquirements of such systems. We consider each of the
constructs in which events appear explicitly.

Set prefix

Any relerence to communication events in the choice set of the set prefix construct
is only made via communication terms,

Definition 4.1 A communicalion lerm is either an inpul term or an output term.
Qutput terms take the form rle, where ¢ € ont(P} aud expression e denotes a
value in §(c). Inpul tertns take the form c7z, where ¢ € in(FP) and 1 is a free
variable O

For every channel of the process there can be at most one communication term
in the dioice set. As before the behaviour of a process after a prefix choice will
depend on the terins, X, selected from the choice set. The process is parameterised
by X where any output terms, clv, and input terms d?z. in \" are replaced by e.v
and d.r respectively in X. Formally

. cv fa=cly
X={alac X}, where a=¢{ cz fa=c'z

a otherwise

So the resultant process is parameterised by the [ree variables corresponding to
input data.

36

We give the set prefix construct containing communication terms the following
meaning in basic SCSP.

(XCB — Pyl 2 [YCB — @y

For every output term clv in B the event c.v is made available in B'. For every
input.terin d?x in 4 all the events in the set {d.v | v € §(d)} are made available
in B'. Formally,

{c.o} if a=cle
B'=] ¢la), where gla) =< {cv|v&é(c)) Ha=cls
w7 {a} otherwise.

When an input term ¢?r arises in the choice set B we need only provide processes
corresponding to no more than one of the ¢.v being chosen, the assnmption being
that in all other cases the process behaves chaoticalty. Thus

Q {_L f3clreBecr,ccwe Y Av#w
y o=

Py otherwise

Hiding
In addition to non-communication events we allow hiding of cutput channels. The
implication is that al! data commuunication events associated with a hidden channel

are hidden. The set of hidden events may now include output channel names
annotated with the ! symhbol. So

Py {e}

behaves like process P with all the communication events on channel ¢ hidden,

In general, the process P\ B has output channels out(P) — {¢ | ¢! € B}, the
same input channels as P and non-comununication events ev{P) — B. We give the
biding construct contaming output channels the following meaning in basic SCSP.

P\B=P\ B

For every output channel, ¢!, in 8 all the events in the set {c.v | v &€ 6{c)} are
present in B’. Formally:

B = gla). where g(a) ={ o

oyt a} otherwise.

n
-1

Renaming

Renaming must respect the type of an event and shanld preserve all the restrictions
menlioned above, In order to ensure this. renaming of communication terms is
divided into renanming of the channels and renaming of the data set 4(¢) associated
with the channel.

4.1.2 Laws for communication

The laws provided here can he established by expressing tlie processes in basic
SCSP, applying laws of SCSP, then returning to the notation for cormuminicatiern.
With these new laws available it 1s unnecessary to concern ourselves with the un-
derlying SCSP treatment of communication. Instead we will be able to view data
communjcation along channels at a level of abstraction more approptiate to the
system being described.

Almost all the laws of SCSP can be applied direclly Lo processes which use the
commuuication notation. Tlhe laws which cannot be applied in their current form
are tlose where the structure of either the choice set in a set prefix construct, or the
set of terms hidden in communication abstraction is important. We shall consider
generalised forms for the laws in question.

The axiom for parallel composition of set prefixed processes becomes:

A0 [XCA o PRIV EE = Q] =[2CC = (P p || @iz

Terms in (7 are either communication terms or non-commurication events, Com-
munication terms arise in (i one component process is prepared to communicate
with the environment on a channel which is not shared by the components, or
if both components arc willing to coinmunicate along a common channel. If the
common channel is an input channel for both components then cooperation will
result i an inpul to the composite process. If the common channel is an input
channel lor one component and an output channel for the other then data flow
can occur between the components. The data can be seen to be output by the
composed process. The occurrence of non-communication events in €' is governed
in the same way as before. Formally:

C= {dv]ee (out{P)Uout () — (chan(P)YN chan{@)) A cle € A'U B')
U{cle, | c € (in(PYU in(@)) = (chan(PYN chan{@)) A dz « 7z € A'UB'}
U{clr, |eein(Pinin(@) ATz y-c?r € A" A clye B')
UWdvle€m(P)Nout(Q)AIr»clre A Aclve B}

U{co |[ectn(@Nout(PYATdrse?r e B A clee A')
Ufe| e €en(PYUen(Q) A a € (A NBYIU(A - en(Q)) U (B — ev(P)))}

F{Z.P) gives the terms from Z seen in the context of process P. We can only

53

see events in the alphabet of P and communication or the channels of P.
flZ.P)y={ev € Z|ce chan(P)}U(Z N er(P))
The axiom for distributing hiding through set prefix becomes:

A-13: [XCB = PyINA=[YCC = (Pyyp_i\ A)

where (' = B — (AU {clv € B | ¢! € A}). This ensures that all communijcation
terms on hidden charnels are hidden.

Finally the law for distributing biding through parallel composition is further
restricted:

L5 (Pl NA=(PNA(QVA)

where 4 N ev(P) Nev(Q) = {} and {c | ¢! € 4} N chan(P) N chan(Q) = {}. So
hiding only distributes through parallel composition when neither common events
nor commnon channels are hidden.

4.2 Token Ring

Using the communication nolation developed in this chapter, we demonstrate the
use of SCSP in specilving a protocol for local area networks. The protocol chosen
ts a token ring protocol based on the [EEE 802.5 Standard [IEE85] as described in
[Tan89).

In a network using a token ring protocol every station in the network is con-
nected to a ring nterface, Figure 4.1. The ring itsell is constructed by connecting
the ring interfaces by point-to-point links to form a complete circle, allowing uni-
directional data flow around the ring. When a bit arrives at a ring inlerface it is
copied into a 1-bit buffer, inspected and possibly modified, then writien back out
to the ring.

Whenever all the stations are idle, having nothing to transmit, a special bit
pattern, called the token, circulates around the ring. There is only one such token
on the ring. When a station wants to transmit data it must capture the token. It
may then enter its data on Lo the ring and, once transmission is complete, replace
the token. As there is only one token, this procedure eliminales any possibility of
collisions.

The token ring has a minimum capacity implicit in jts design — when all stations
are idle the complete token must reside on the ring. The capacity of the ring is
dependent on the munber of stations in the network, each providing a 1-bit delay,
and signal propagation delay along the wires.

Each ring interface has two modes of operation, Hsien or transmit. In listen
mode data is simply copied from the input to the output. If the data is addressed

59

|
ring uni-directional station
interface ring

Figure 4.1: A Token Ring

to the lislening station, then it is also copied to the station as it passes through
the interface. A ring interface can only enter transmit mode il it is in possession
of the token. In this mode the interface breaks the connection between input and
cutput and enters its own data ente the ring. Once the data is returned to the
sending inlerface it is drained froni the ring. The sending station may then discard
the returned data or check it against the original. Transmission completed, the
token is regenerated. Finally, once all the data has returned to the sender the ring
interface returns to listen mode, completing the ring.

As ilis not necessary to hold the complete frame of data on the ring at any one
instani, there is no physical limit on the size of data packets which may be trans-
mitted. Acknowledgement of receipt of dala can be achieved simply by including a
bit in the frame format which is inverted by the receiving station and checked on
return to the sending station.

When traflic is light the tokeu spends most of its time geing around the ring.
When traffic is heavy the stations arve given the opportunity to transmit in turn
around (he ring; as the token is relinquished hy one station it is captured by the
next station round the ring which wishes to transmit. Seiting an upper bound on
token helding time we can ensure that the protocol is fair. Also network efficiency,
with respect to utilising the ring, can approach 100 percent under heavy loads.

Fach ring has a monitor station which is responsible for ring maintenance.
Ils respousibilities include ensuring the token is not lost, keeping the ring free of
garbage and dealing with breaks in the ring. Other features of the 802.5 token ring
includea priority system for ring access and the ability to broadcast data to several
stations.

GO

4.2.1 Specification in SCSP

The specification developed here ouly covers the basic features of the ioken ring.
By making the following assumptions we restrict ourselves to specifying a simple
ring interface in this study.

We shall ignore signal propagation delay along links between interfaces. The
assumption being that the ring is started with sufficient stations to provide
the ring capacity required to hold the token.

We assume that the sending station discards the returned data without check-
ing it.

Acknowledgement of data is not considered here. We are only concerned with
the flow of data rather than its exact value, we shall assume that data reached
its destination if it returned to the sender.

We shall not specify 2 monitor station: we shall only coucern ourselves with
the behaviour of the ring when all the statious are operating correctly. Ring
mainienance only becomes necessary when the stations go down, loosing the
token or breaking the ring as they do so.

Special features of the 802.5 token ring such as a priority system for ring
access are not considered in this study.

The seuding station is resiricted to sending just one data frame on each
occasion it captures the token. In the 302.5 token ring several data frames
may be seul but, to ensure snccessful draining of the ring, no more than one
header is allowed to reside on the ring at any one instant and the token is not
replaced until the last header has heen drained from tbe ring. This way once
transmission is complete it is sufficient to drain all data up to and including
the first ‘end-of-frame’ field before resurning listen mode.

Finally we shall use a very sunplified format for both the token and the data
frame. The token in the 802.5 token ring consists of 3 octets and can be distin-
guished from other data on the ring by its first two octets. This means that a ring
interface must keep recorded the last few values it has seen on the ring so that it
can recognise the token when necessary. Similarly the data {frame contains several
fixed length fields in its head and tail, the details of which can be found in [Tan89).

We shall assume that the following distinguished bits are available,

TK -- token
SF — start-of-frame
EF — end-of-frame

61

i BUFFER o
E ricuw sect E
- — CONTROL
f up f
 |READER WRITER |
Y B on

Iigure 4.2: Struclure of a ring interface

For our purposes the token 1s a single distinguished bit while the data frame has
[ormal:

5F | DA | Data | EF

SF and EF are 1-bit markers while DA is a lixed length field containing the des-
tination address. By assuning the existence of these distinguished bits we can
ignore the problem of internal buffering and concentrate on the mechanism of the
protocol.

4.2.2 Ring interface

We divide the ring interface into four components as shown in Figure 4.2. These
components are:

BUFFER This is a 1-place buffer the contents of which can be viewed and altered
by the CONTH(L process.

CONTROL This process switches between letting data through the buffer un-
changed and setting the value in the buffer, depending on whether the inter-
face is in listen or transmit mode.

62

WRITER This process provides a huffer of data waiting te be transmitted.

READER This process observes dala entering the buffer and forwards data with
matching address to its station.

The CONTROL and WRITER processes are responsible for transmission of data
while the READIR acts as a receiver for the station.

BUFFER

BUFFER acls as a 1-place bulfer on the ring. Between the data eniering the buffer
from the ring and exiting the buffer to the ring there is an opportunity for the data
to be viewed and altered. In order to allow the controlier to modily the buffer, the
buffer cycles its bebaviour over a 3 phase clock cycle.

[n the first phase the data currentiy held by the buffer is wrilien to the ring
and a new data value is read from the ring. In the second phase the controller and
the reader can if necessary view the data which has been read intc the buffer. In
the final plase the controller may overwrite the contents of the buffer.

BUFF, = [{in?r, oully} — BUFF] > 1]

BUFF

ih

[X C{view!y} — BUFF]]
BUFF) = [{setlz} = BUFF, > BUFF,]

The design requires all the interfaces to be synchronised to ailow the data transfer
arcund the ring to occur without corruption. The ability to specify synchronised
data transfer around the rig means that the ring capacity in our model is equal
to the number of buffers on tlie nng.

CONTROL

When the ring interface is in listen mode the controller allows the hits to pass
through the buffer unchanged. The controller also registers whether its station has
outstanding data to send. If the station sends data to the interface for transmission
then it is the task of the controller to capture the token so the interface can enter
transmission mode.

LISTEN = [{up?z,view?z} — (TRANSsp if r = TH else REQ)
O{wp?s} - REQ > LISTEN]
REQ = viewlr ~ (TRANSsp if £ = TK else REQ)

63

Qnce the ring interface has captured the token it enters transmission mode and

the CONTROL process transmits all the data provided by the WRITER process.
TRANS, = [{setly} = TRANS 1]
TRAXS [{up?z) — TRANS! » DRAINY]
TRANS) wail (1) — TRANS,

I

IH

Transmission works on a 3 phase cycle in order to keep synchronised with the buffer.
The first phase of the transmitter must coincide with the final phase of the buffer;
in Lhis step the data in the buffer is reset. Failure to reset data in the butfer before
it is Lranslerred would result in dala corruption. In the second phase, the next
value to be transmitted is collecled; if no such value is available transmission is
assumed 1o be complete. The token must be replaced and the data frame drained
from the ring before the coutroller returns to listen mode. It is not necessary to
view incoming data from the ring during transmission as we have chosen ta discard
the returned dala without checking it. Consequently the third phase, which could
have iuvolved inspection of the buffer, involves a waitl Lo naintain synchronisation.

Otice transniission is complete the data fraine must be drained from the ring.
This is achieved by transmitting null characters (denoted *) nntil the end of frame
marker has returned to the sender.

13

DRAIN, [{setly} — DRAIN' 1> 1]
DRAIN' = wait{]) — DHAIN!
DRAIN, [{view?z} — (END if = EF else DRAIN,) 1> 1)

il

While the ring interface is draining the data from the ring, it is irnperative that
each bit of incoming data is viewed s0 as not to miss the end of frame delimiter.
Failure lo sec this deliriter would result in either the token or messages belonging
to other stations erroueously being drained from the ring.

Ouice the end of frame marker has returned we must delete this from the buffer
and immediately return to listen mode.

END = [{set's} — LISTEN 1]

WRITER

Data amives at the ring interface from the station o channel on. The WRITER is
responsible for formatting the data into a data frame. As the token holding time is
directly proportional to the length of the data frame the writer can be responsible
for ensuring that the token is returned within the token holding time. This is

G4

achieved by splitting data across several frames if it is too long to be transmitted
within the time limit.

WRITE = WRITE

WRITE) = ogn?d ~ WRITEL
WRITE y.y.5rs = uply~ WRITE, s,
WRITEY.f = wait(3) - WRITEq,

where fr(d) is a list of frames, {s : frs) denotes frame s followed by frames frs, and
(v : 5) denotes bit y followed by bits s.

Once a complete frame has been sent, the WRITER blocks sending for sufficient
time to guarantee the controller will stop transmitting and return the token to the
ring.

READER

This process acts as a receiver, viewing «ata as it passes the huffer. If it sees a start
frame delimiter ther it checks the destination address of the frame. If the address
matches the address of the station tlien the reader stores all subsequent data until
the end of frame delimiter and passes the data to the station. If the data does not
carry the correct address then it is ignored by the reader.

READ = wiewly ~ (CHECKy if y = 5F else READ)
CHECK, = wmewly~ (KEEPy if s7(y) = address else
(CHECK,~ ¢, if s7{y) < address else HEAD))
REEP, = viewly~s (SEND, if y = EF else KEEP,™)
SEND, = [{eienTy, off 's} — (CHECK) if y = SF else READ)

O{offls}) — READ 1]

We assume that the stalion is always able to accept data, This may require some
intermediate buffering.

Notice also, this process is always willing to view data. Thus it cannot block
the buffer process.

4.2.3 A complete ring

When the system is starled we assume that one of the buffers carries the token and
the remaining buffers ou the ring contain null bits. We assume that every interface
is in listen mode with no data pending transmission. So every interface is given by:

INTER, = (BUFF, || LISTEN || WRITE || READ)\ {view!, up!, set!}

65

where z € { TH . *}
Assuming there are n4 I stations and the interface labeled # contains the token
then the system is initially described by the process:

SYSTEM = (|| «INTER.) || 0.INTER

1€[2un]

where
{INTER, = INTER [i.ving/in, (i 1).ring/out, {.0ff foff . i.on/on]

b being addition modulo 1+ 1,

We could hide the ring mechanism by Liding the channels {2.ring | § <{ < n}.
Although this hides the token, enabling it to travel around the 1ing internally, such
abstraction does not resnlt in infinite chatter and chaos. Lven when an event is
lidden we knew it can occur at most oce in every time unil. This contrasts to
(CSP, where much care must be taken Lo avoid infinite chatier when hiding events -
which could occur arbitrarily often, such as the token passing round a ring when
all interfaces are idle.

4.2.4 Investigating the interface

In order to investigate the behaviour of a ring interface we shall consider the com-
position of the components BUFFER |, CONTROL , and WRITER . We shall
restrict our inierest o the transmission properties of the interface, so we shall
exclude the READER component from onr investigations. We simply note that
the READER cannot affect the behaviour of the channel mew and this is the only
opportunity for communication between the RFEADER process and the remaining
processes within the interface.
We wish to establish the bebavjonrs of the process

INT, = (BUFF, | LISTEN || WRITE)\ {view!, set!, up!}

To achieve this we use the algebraic laws to reduce the above expression to a form
which does not involve the parallel composition or hiding operators,

INT,

{ by definition of INT, }

(BUFF, || LISTEN || WRITE)\ {view!, set!, upl}
{by L-3 }

((BUFF, || LISTEN) || WRITE)\ {view!, set!, up!}

il

I

66

Now

{BUFF, || LISTEN)
{ expanding definition of BUFF, and LISTEN)
{inTz. outly} — BUFF, > 1]
| {up72, view?z} — (TRANSsp if 2 = TR else REQ)
O {up?z) — REQ 1> LISTEN]
{ by A-10" }
[{sn?z, 0utly, wp?z} — BUFF] || REQ
O {in?z, oully} — BUFF! {| LISTEN 1]

i}

So
{((BUFF, || LISTENY || WRITE)\ { view!, setl, up!}
{ expanding WRITE and from above }
{({mlz. outly. up?z} — BUFF! || REQ
O {inlz,outly} — BUFF. || LISTEN > 1]
| {on?d} — WRITE} 4 > WRITE)N {riew!, sef!, up!}
{ by A-10 and A-13" }
{inlz, outly, on?d}) —
{BUFF!) LISTEN || WRITE (o) \ {view!, set!l. up!}

O {inTx,outly} — (BUFF. || LISTEN || WRITE)\ {vie!, set! up!}
1]

By continuing to elininate parallel composition and hiding in the above manner
we can demonstrate that

INT, = I(y.L,0))

where [{y, L, (}) is given by the inutual recursion in Figure 4.3. The parameters of
I can be given the following interpretation in the system:

¢ The first parameter is the curent value stored in the buffer.

¢ The seccond parameter is a value taken from the set {L, T, D} and indicates
the mode ol the interface,

L. — Listen mode
T — Transmit mode, data still being sent

D — Transmit mode, returned data being drained.

¢ The final parameter is a list of lists of bits, representing data pending trans-
mission, stored in [rames.

67

Hy L ()

iy L)

1[”1 [.. S:f}‘s)

Iy, Lz:s):frs)

I{y, T.(z:5):frs)

Hy, T.0):(s:frs))

My, T,{0))

iy, T.4)

Iy, D, s:frs)

1y, D.()

'y, D, ()

Mz, s)

LB

I

I

b

13

I

I

ih

{I»

I

Iy

[{m7z, outly. on?d} — ["{x. L fr(d)}
O{in?x, eutly} = I'(z. L,)
4]

{en?d} — (waif(1) — I(y, L, fr(d)))
> {{on?d} — [{y. L. fr{d))
&y L, ()]

{w?r, outly) = Iz, L,s:frs)
L]

wait(2) — (I{SF.T.s:frs}if y = Th else
Hy. L.(z:8):frs))

Hin7e, 0ully} — (wuit(2}) — [z, T,s: frs))
L]

[{in?z, ouily} — (wait(2) — [{TK, D, s:frs))
1)

Hinle,outly} — I'{TK, T, {))
1]

[{on?d} — (wait(!) — Iy, D.fr(d))}
> [{on?d} — I{y, D, fr(d))
> I(wa’())H

[{in?x, outly} — (wait(2) — {(z,5: frs))
B> L]

[(#n?z., outly. on?d} — (wait(8) = I"(x fr(d)))
O{in?z, outly} — Iz, D, (})
£ 1]

[{on?d} — (watt(1) — ["(y,fr(d}))
> [{on?d} — {"(y.fr(d))
e My, ()]

i(*,L,s)if« = EF else [(x, D, s)

Figure 4.3: Specification of the ring interface, INT, = I'(y, L,{})

68

Interface with arbitrary data supply

When we consider properties of the ring interface we want to be sure that these
hold regardless of the data transmitted. We shall thus place the interface in an
enviroument in which the data snpply is specified as weakly as possible. We model
an arbitrary data supply by the pracess:

DATA= ([7] (onld~s DATA))N (wait(1) -+ DATA)
dES(on)

The process waits arandom (possibly infinite) length of time before offering the first
data item to the interface. Once this is accepled further data items may be offered
after random delays. Assuming that once data js made available for transmission
it will remain available until accepted by the interface, then any actual data supply
[} will be more deterininistic than the process DATA, DATA C D,

We shall now consider the behaviour of the interlace when supplied with data
in the above arbitrary manner, by considering the process

(INT, | DATA)\ {on'}

As before we use the algebraic laws o eliminate parallel composition and hiding
from this expressiou. We define

ID(y, X.5) = ({y, X,s) || DPATA) \ {on!}
Clearly by the definition of INT,
(INT, || DATA)\ {ont} = [D(y, L, ())

We can derive the mutual recursion shown in Figure 4.4. The first steps of this
derivation are presented in Appendix C.]1.

Timing properties of the interface

We shall demonstrate that, regardless of the data sent to the interface for trans-
mission, the tinte lapse between an interface receiving the token and outputting
the token to the next ring interface does not exceed 3(m + I') units. Here m is the
maximum allowed length of a data frame.

We recall there is only one token on the ring. While data is being transmitted
by an interface the token must be lield by that interface, so no token can arrive at
an interface while it is iransmitting data. The last hit of the data frame is an end-
of-frame marker. once this has been transmitted the token is returned to the ring.
Once the end-of-fraimne marker has returned to the sending interface it immediately
returns to listen mode. The token cannot arrive at tlie draining interface before

69

ID{y.L.{))

D'y, L)

J‘7L7 f’S]

1Dy, L (z:8) frs)

ID(y, T (z:8):frs)

1D(y, T, (}:(s:frs))

ID{y, T, (O

(4. T, ()

IDiy, D, s5:frs)

{D(y. D))

10{y,D.{))

ID"(x,s)

il

il

i

It

1l

M

[{in?e, outly} — ((Meesgony 12 (2, L fr{d)))
i (z, L, (1)
B L]

L, ()

wart(2)

= ({[Magsrom D0y, L fr(d))) N Dy,

Hin?r, outly} — 1D (. L, s:frs)
E>1]

wail(2) — (ID{SF, T s:frs)if y = TR else
ID(y. Ly (z:8):frs))

({in?z, outly} — (wait(2) = [D(z, T, s:frs))

L 4]

[{in?z, outly} — (weit(2) — ID(TK, D, s:frs))

e>1]

Him?z. outly) - IDN(TK, T, {))
=

wait(2) = (([Nyes o) 00y D r(d))) 0 ID(y, D (}))

[{intr, outly} — (waid(2) — ID"(z,5:frs))

1)

[{inTe, outly} — 1D'{z,D,{})

L]

wait(2) = (([Nyesion) 10" (5, /r(d))) 1 ID"(y, (3)

ID(», L, s)if 1 = EF else [D(»,D,s)

Figure 4.4: Specification of the ring interface supplied with random data

the end-of-frame marker. So the token can only arrive at an interface if it is in
listen mode.

We consider the behaviour of an intetface in listen mode, with a random supply
of data, when a token is input to the interface on channel in. We are interested in
the time it takes for the token to be output to the next interface on channel oui.

We shall describe the provision of a token by

TOKR = inlTh ~» NUL
NUL inls ~ NUL

n

This process provides the interface with a token followed by arbitrary dala, rep-
resented by the * symbol. We shall assume that data flow around the ring is not
blocked, so all output on channel out is allowed by the environment.

We are interested in the time elapsed before the event out! TR can be performed
by the process

(ID{y.L,s) {| TOK}\ {int}
where s € {()} U{fr(d) | d € &{on)}

By application of the laws of SCSP we can show:
(D(y, L, () || TOR)\ {in!}

= [{outly} — (wait(2) - (Maegom UDESF, T,/7(d)) || NUL) \ {in0))
Ni{out! TR} — P> 1])

>4
and

(ID(y, L, fr(d)) {| TOK)\ {in!}
= [{outly} — {(wail(2) — (ID(SF, T,f¥*{d)) || NUL)\ {in!})
e 1]
where fr'(d) = s:frs, given fr(d) = {SF :s):frs.

We see that alter 3 units either the token is returned or the interface enters
transmit mode. If the interface does not enter transmit mode then the token is
passed through the buffer unchanged.

It remains to consider the time taken for an interface in transmit mode to return
a token. f+'(d) is a list of frames with the start-of-frame marker removed from the
first frame. So the first frame has length less than m. We shall establish, by
induction on |s], that the process

(ID(y, T, s:frs) || NUL)\ {on!}

is willing to petform the event out! TA after §(|s|+ {) units. This result is suficient
to guarantee our requirement regarding the token holding time.

71

Base case [s| = 0. Using the laws of SCSP we can demonstrate that:

(ID(y. T () frs) || NULYN {ont}
= [{out!y} —r (wait(2) — Hoﬂ!!Tﬁ'] — P I>J_])
> L]

So (ID{y, 7. {):frs) || NUL)\ {on!} is willing Lo perform the event ou!! TA alter 3
units.

Inductive step |z:s5{ = n+ 1. Again using the laws of SCSP we can show that:

(D0, T, (z:8):frs) | ¥ULY\ {on!}
= [{outty} — (wait(2) — ([D(y, T.s:frs) || NUL)\ {en!})
© L]

So. assuming the enviromnent is always willing to receive data on channel ouf,

(IP(y, T.z:s):fra) || NULY\ {on!} behaves like process
(ID{y, T.s:frs) | NUL)\ {en!}

after 3 units and by induction this process is willing to perform the event cut! TH
after 3(n+1) units. So

(ID(y, T, (z:8): frs) || NUL) \ {on!}

is willing te perform the event ouf! TA after F(|z:5|+ I} units.

Henee we have established that the time lapse between the token arriving at
the interface and its being relinquished by the interface does not exveed F{m + !}
units, where m is the maximum allowed frame jength.

4.3 Conclusion

By providing a special notation, cornmunication of data via channels between com-
ponents of a system can be captured succinctly by SCSP processes iu a 1nanner
familiar to CSP [HoaB5]. Although the underlying treatment of communication
is fairly complex in S8CSP, modification of some of the algebraic laws of SCSP
has made it possible to manipulate algebraically expressions, which use the com-
munication notation, without referring to the underlying SCSP representation of
communication.

Using the communication notation, we have been able to specify a simple token
ring in SCSP in terms of several simple components. We have demonstrated that
the algebra is sufficiently powerfu! for us to establish behavioural properties of the
ring interface by simple algebraic manipulation. Moreover, as SCSP incorporates

T2

an element of timing information, we have been able to establish the token holding
time of the ring interface. The timed framework of SCSP makes it possible to
hide the mechanism of the protocol by hiding the channels which constitute the
rig. If the ring is idle, the {then hidden) token could be passed around the ring
indefinitely; however, this abstraction does not result in infinite chatter, as it would
in an untimed model such as CSP, since the token takes time (which is not hidden)
to pass around the ring.

Chapter 5

Synchronous Receptive Process
Theory

A discrete fime alechra is particularly appropriate for modelling clocked circuits;
the time comnponent exactly captures the clock’s behaviour. llowever, components
wilthin acircuit are always willing to receive input, while output is never blocked. In
SCSP iLis possible to nodel such sysiems by making sure every evert cotresponding
to an tnput is available for all time and assuming thal the systemn becomes chaotic
if an output is blocked by the environment.

Example We consider the SCSP specification of a NAND gate with unit response
time. The output of a NAND gate is only low if both inputs were high at the
previous lime step. We assume the NANJ) gate has input wires ‘2" and ‘b’ and
outpnut wire ‘¢’ as shown in Figure 5.1. We model the gate by recording voltage-
levels on wires. Event a occurring corresponds to the voltage-level on the wire
labelled'a’ being high, oltherwise the voltage-level is assumned Lo be low. We assume
that bolh inputs are initially high. This gives us the following specificalion:

NAND = [X € {a.b} —» (NAND if X = {a.4} else NAND')]

NAVD' = [X C{a.b,c] = (NAND if X = {a,b, ¢} else
(VAND if c € X else 1))

Figure 5.1: A NAND Gate

4

The gate is always williug to accept a high voltage-level on the input wires, while
the voltage-level on the output wire can only vary in accordance with the inputs
at the previous time step.

This small example has resulted fu a process expression which is encumbered
by the assumptions concerning the nature of communication. By encoding such
assumptions into our model we are able to develop a synchronous version of Re-
ceptive Process Theory [Jos32]. This language can be viewed as a sublanguage of
SCSP and its links with SCSP will be presented in a later chapter.

In this chapter we present tbe language of the synchronous receptive process
theory, SRPT, and its associated denotational model. Aswith SCSP, a given event
can occur at most atice at each time step. In contrast to SCSP, the language of
SRPT distinguishes between input events and output events.

Later in this chapter we shall see that, by making a semantic distinction between
input and output events, we do not need to record refusal information in the model
for SRPT. Behaviours are recorded as traces of sets, the sets consisting simply of
events. We also obtain a straighlforward encoding of divergence, however, by doing
this we find ourselves considering a partjal order on processes different to the usual
non-deterministism ordering.

5.1 The Language

SRPT is intended to model Lthe inleraction of an input-output system with its en-
vironment. A system is always able to accept any input from the environment and
the environment may not block any output from a system. The term ‘receptive’,
previously used by Josephs [Jos92] and Dill [Dil89], is used to capture these con-
ditions on the input and output of a svstem. As in SCSP all communication is
instantaneous.

As in SCSP, we presuppose a universal alphabet of events L. In SRPT we
associale two sets of events I, 0 € ¥ with each process. These are referred to as
the input and output alphabets of a process. We require both [and O to be finite,
at least one of and O to be non-empty, I U O # {}, and the sets to be disjoint,
I[N O ={}. We also presuppose a set of process variables Var. As before, these
variables facilitate the definition of recursion.

The abstract syntax of the receptive language is similar to that of SCSP, the only
noticeable variation being the slightly different form of the prefix construct. Take
P to range over process terms. [,0 € FX, z € Var and S to range over bijective
renaming functions S : £ — E. Then, with certain restrictions on the alphabets of

5

the processes. the following grammar defines the syntax of the language SRPT:

Pu= 150 Chaos
| process variahle
|PNP non-deterministic choice

[[1O?X — Pyx] output prefix

| P P parallel composition
| P\ O hiding
| £[5] renaning

jpr: 1, 0«F recursion

We now present the informal interpretation of each of these terms, highlighting
the cliflerences hetween this language and SCSP. We also consider the restrictions
imposed upon the alpbabets of the process terms.

5.1.1 Primitive processes and operators

Throughout this section we shall use (P and of to denote the input and ontpnt
alphabels of process P, while P will denote the combined alphabets of P, aP =
P U oP.

Chaos

The process L; o is the most undesirable process with input alphabet [and output
alphabel @; it can give uo information aboul its behavionr. This process is nsed
to model behaviour when things go wrong, no useful information is available about
the system, the process is divergent. No recovery is available [rom a process in this
erroneous slate and in this respect chaos is identifiable with the process 1| in SCSP.

Where the alphahets can he deduced from the context we will simply write L.

Process variable

€ Var represents the process hound to variable z in the context of given variable
bindings. As in SCSP, we cannot make any deductions about the process to which
& is bound until the choice of variable bindings ts made explicit.

Non-deterministic choice

If two processes P and @ have cominon input and output alphabets, [and O
respeclively, then the non-deterministic choice of these two processes PN @ is

76

defined to be the process with juput alphabet I and output alphabet O which
non-deterministically hehaves like P or ¢. The choice occurs internally within
the system; the environment has no control over the outcome of the choice. Non-
deterministic choice is a demonic choice: a process which may internally choose to
behave erroneously, is itself erroneous. This is reflected in a-4 below:

a-1: PNE=4gQnPer

a-2: (PFN@NRER=FN(Qni}
a-3: PnrP=~F

a—4: Pnl=1

Qutput prefix

Let P be a P({)-indexed family of processes, each with input alphabet I and
output alphabet O. A prefix set B is a subset of the output alphabet 0, The
process [1BTX —» Py| performs Lhe events in B and any subset C of events from [
at the first time step. The process then goes on to behave like Pc. If P is a process
with empty input alphabet we shall simply write [[B — P].

This differs from the set prefix construct of SCSP io that it reflects thereceptive
behaviour of processes. The enviromment must allow the process to perform ali the
output events in B, This prefix construct does not provide a choice as to the output
performmed. The environment only has a choice as to how much input it provides
the process. The process must allow any possible combination of input and its
subsequent behaviour is influenced hy the input provided by the environment.

Consider, for example, the process

Ma}?X — (L if X = {} else P)]

Initially this process will perform the cutput event a and a set of eventsin its input
alphabet. No other output can occur. If the environment provides the process with
input, then the process will evolve to P at the next time step. If no inputisreceived,
then the process evolves to chaos at the next time step.

We have one axiom involving output prefix:

a-5: [\B7X - Px]n[IBTY — Qy|=[1B72 — (Pz 1 @)

This is weaker that the corresponding axiom in SCSP. Consider the process
IB7X — Px|N[1CTY — @y

All the events in the prefix set must occur at the first time step. So whenever

B # (7, an observer will be able to establish which way the process resolved the

choice at the first time step, simply by considering the output which occurred. The

only situation in which the resoution of choice can be postponed is when both
prefix sets are equal, which justifies the distributivity result, a-5.

i

Parallel composition

The parallel composition of two processes. P || &, is the process which results from
the interaction between two concurrently executing processes. Parallel cowposition
is defined for processes with disjoint output alphabets: P || @ is defined if oF N
o = {}. The input and cutput alphabets of £ || Q are (¢P U Q) — {0 U oQ)
and (eP U o@}). Synchronisation must occur on commmon events, in the sense that
such comnmon events can only occur when both component processes are prepared to
perform them. The occurrence of other events in the comyposition is governed hy the
behaviour of the comnponent process which contributed these events. [f one process
becomes chaotic and can provide uo furlher information about its behaviour, then
the compositiou also hecomes uninformative. Communication between component
processes, resulting from outpnt from one component being received as input to
the other comnponent. is seen as outpul of the composed process. This allows us to
model forks in wires casily,
Parallel composition satisfies the [ollowing axioms:

a6: L,gl|P=L1,0 where ' = (6PU QY and I'= (WP UI) = O
a—T: Plllpo= Lo where ' = (0P U Q) and I' = P LT}~ O
a-8: (PNQ)R=(P|R)N(Q]R)
a9: P(QNE)=(F|Q)n(P|Rr)

a-10 : [BYX = Px] | {IC7Y = Qy] =
MBUCYZ - Paucimryy || @zubimegy]

and the following laws:
F1: PlQ=Q|P
=2 (Ple)le=Pl(Q]R)

Hiding

As in SCSP we sliould be able to change the level of abstraction of a problem by
hiding events frorn the environment. Since input events form the external control
of a process, it does not make sense to e able to hide input events. The only events
in a process’ alphabet which may be liidden are output events; this corresponds
to ignoring the information provided by the process. A hidden event will occur
unseen wheuever the process desires to perform it. We note that, unlike SCSP,
hiding does not infroduce maxinal progress implications. Rather, all output in a
receplive system already occurs as soon as possible.

78

If B is a set of events disjoint from the input alphabet of F such that P — B #
{}, then P\ B is the process which behaves as P, with all the events in B occurring
unseen by the environment. Notice, we are always able to hide events which are
the result of comumunication between processes in parallel composition, since such
communication is visible as output.

Hiding satisfies the following axions:

a-11: Lio\B=Llrp-p

a-12: (PMQ\A=(PAAN(QNA)

a-13 : [B7X — Py]\As[{B - AN — (Px \ A)]
and the following taws:

1-3: (P\AI\B=P\(AUB)

-4: (PQNA=(PANA)|(QNA)
ifANaPNa@ ={}

Renaming

Given a bijective renaming function § : £ -—» I, we use P[] to denole arenaming of

process P. Process P[S] has input alphabet (¢£)[S] and ontput alphabet (aP)[5],

where for a subset B of & we define B[S] = {S(e} | e € B}. Like 8CSP, P[3]

performs event S(a) in exactly the circumstances thal P would perform event q.
Renaming satisfies the following axioms:

a-14: Lo [5]=Lys,as

a-15: (PTQ)S]= PIS]NQ[S]

a-16 : [\BY7X — Px][S]=['BIS[TY - (Py5-1)IS]]
and the following laws:

-5 : P[S][H] =P[R - 5]

6: (Pl Q)St= P[S]{ QIS

-7 (P B)[S] = P(S]\ B[S]

9

5.1.2 Recursion

By the use of recursion we are able to extend our language to describe infinite
processes. gz : [, {3+ P represents the solution of the recursive definition of the
process r deftued as a particular (least) fixed point of the functiou Ar « £, The
matheruatical details of this consiruction will be presented later.

a—-17: pr: I, OP=Pllur: 1,0+ P)/z]

here P{{px : I, 0« P)/z] denotes the process P with pz : I, O « P substituted for
every free occurrence of the variable r.
Recursion also satisfies alpla reduction:

1-8: wz: 1, O0«P=py: I, 0«Ply/z where y s not a variable in P.
f ! ¥

By the same argument as for SCSP, we can show that there is a unique fixed
point of the function Ar + P whenever every occurrence of r in P is directly or
indirectly guarded by an output prefix.

5.1.3 Derived processes and operators

Maty of the derived processes and operators of SCSP cannot be expressed in SRPT.
Processes in SRPT can always accept input; they cannot wait for time to pass
witliout making input events available. The only process which can be viewed as
a unit of paraliel composition, in the sense that RUN could be in SCSP, mnust
have anempty output alphabet. This is a consequence of the alphahet restrictions
on paralle] composition. Due to the requirenients on input events, the only non-
divergent process with input alphabet ! and empty output alphabet is STOP; ;,
which is presented Lelow.

Stop

The process STOP; o never outputs and never becomes chaotic; it represents a
deadlocked process. Like all other processes of SRPT, STOP; ¢ can always ac-
cept input; in this respect it resewnbles the deadlocked process in the theory of
Asyuchronous pracesses presented in [JHH89].

STOP1p=2puz:1,0+[H{}7X - 1],
We have the following law:

-9 : STOPJJ,OI H 5'T0P12,02 = STOP; o where 0 = Oy U (s
fF=(L,uly)~0

80

Proof:

STOFP,, 0, || STOPy, 0,

[defn of STOP and by a-17 }

M}7X — STOP;, o,)IIM)TY — STOP, o,

{ by a-10 }

172 — (STOP;, 0, || STOPy,,0,)]

{ by uniqueness of solutions ta guarded recursive equations }

STOP; o o

If the output alpliabet is empty, then STOP; y; is prepared to perform any of
the events in its alphabet. We obtain the following law:

i

M

1-10: STOP,[[P=P HICaP

5.2 Example: Basic digital logic circuits

In tbis section we draw on the field of digital circuit design to provide sotne small
examples of the use of SRPT. Throughout tliese examples we shall model compo-
nents by recording voltage-levels ou labelled input and output wires. A component
is represented by a process with iupnt events corresponding to input wires and out-
put events corresponding to output wires. Event a occurring corresponds to the
voltage-level on the wire ‘a’ being high; otherwise the voltage-level is assumed to be
low. We shall assumne that initially all the wires in the system are low. Throughout
these examples we shall assume there is a delay associated with the gates modelled,
in that time must elapse between the provisiou of input and the observatien of the
desired output corresponding to this tput. In reality there is no sigrificant delay
associated with the simple gates described here.

5.2.1 Gates

AND gate The output of an AND gale with unit delay is only high wben both
the inputs were high at the previous time step.

AND = [{17TX — (AN if X = {e, b} else AND)
AND' 2 eP1X — (AND'Af X = {a, b} else ANVD))]

OR gate The output of an OR gate is only low when both inpuis were low at
the previous time step.

OH e [HP?X = (ORI X = {} else O]
R = M} — (ORI X = {} else Ot')]

EXOR gate The output of an FXOR (exclusive or) gate is only high when
exactly one of the inputs was high al the previous time step.

EXOR = [{}?X — (EXOR if {X| = I else EXOR)]
EXOR' = [{c}7X — (EXOR'if | X| = I else EXOR)|

5.2.2 Half-adder

A circuit for caiculating the sum s and carry ¢ of two bits a and b can be
constructed from two gates as shown in Figure 5.3. So the process describing the
half-adder can be defined as

HA 2 AND || EXOR[s/]

We shail expand the definition, eliminating parallel composition and renaming
[rom the expressions. This way we are able Lo demonstrate that the ciruit has the
desired behaviour.

Firstly we define:

HA; = AND || EXOR'(s/ (|
and HA, = AND' || EXOR|[s/ c|
a =) a

AND OR EXOR

Figute 5.2: Three gates, all with input wires a, b and output wire c.

82

Figure 5.3: A half-adder

Now we have
HA
= { by definition }
MI7X = (AND' If X = {a, b} else AND)]
MHIZX — (EXOR if |X| = I else EXOR)][s/¢]
= {bya-16 }
17X = (AND'if A = {a, b} else AND)]
N1 — (EXOR'[s/c]) if |X| = 1 else EXOR[s/c]}|
= {bya-10 }
M}?X — (AND' | EXOR[s/c] if X = {a,b} else
(AND || EXOit|s/c]if A = {] else AND || EXOR'[s/d]))]
= { by the above definitions }
H{}1X — (HAp if X = {a. b} else
{HA X = {} else H4,))]
Continuing in this manner we can show:
HA={1TX - HA(X))
where
HA(X)= HA: f X = {a,b} else (HAIT X = {} else HA[)
HA, = [Ms}tX —~ HA(X)]
HAs= [He}?X — HA(X)]
This has the behaviour of a half-adder with unit delay.
Up to now we have only considered combinatorial ciccuits with unit delay. Iu

sucl circuits output is a function of the previous input alone. Thus these combi-
natorial circuits can be represented by processes with general form:

P)'E ['f[}’)r"/Y — le

where X, Y C P and f : o P — oP.
In the next section we shall consider circuits which have state.

83

o i Yae Ve
b k—K A—b —b
—
T-type JK-type T-type from JK-type

Figure 5.4: Flipflops

5.2.3 Clocked flipfiops

Flipflops are one ol the basic components of computer memory. Flipflops are
clocked components which are typically triggered by the rising edge of the clock
cycle. The output of a flipflop is determined by its own state and the state of its
inpul wires on Lhe rising edge of the clock cycle. It determines the state of its
output wires before tle [ollowing rising edge.

By assuming that the *tick’ of the clock in our language corresponds to the rising
edge of the clock cycle in the circuit we can provide a representation of fipflops
by recording the value on their input and output wires at these ‘ticks’. We shall
consider lhe T-flipflop and the JK-flipfop and show how the former can he derived
[rom the latter, a well-known result.

T-type
The output of a T-type Hipflop toggles belween a and b with every clock pulse.
eT={} ol = {a,b}

T 2[{a) = T
Tz} — T

JK-type

Output A is set high when J=1 and K=0 and reset low when J=0 and K=1. When
both J and K are high the output toggles and when both J and K are low the
output remains unchanged.

WJE = {5k} oJK ={a,b}

JE = [Ha)?X — (JA' ifk € X else JK)]
JE' = [Hp}?X — (JW ifj € X else JA'))

84

Deriving a T-type from a JX-type

Clearly by holding both J and K high we can construct a T-type from a JK-type
flipflop. So all we need to do is attach both inputs to power. Power consists of a
single outpnt which is always high.

POWER = [{{a} - POWER) tPOWER = {} oPOWER = {a}
So consider

(JK || POWER[j/a) || POWER[k/a])\ {j, k}

First consider

POWER[j/a] | POWER(K /[«
= { expanding definition of POWER }

Ha} —= POWER][j/a]|[!{e} - POWER)k/a]
= {bya-16 }

[{j} — (POWER[j/a])]|I[{k} — (POWER[k/a])]
= {bya-10 }

('), k} — ((POWER[;/a])l[(POWERk/a]))}]

So by uniqueness of guarded recursive equations
POWER[j/a) || POWER[k/a]= P

where P = [[{j, k} — P|
Thus
(JK || POWER[j/a] || POWER|k/a])\ {J. k}
= { substituting P }
(JE | PIN{), &)
= { expanding processes }
H{e}TX — (JA"if k€ X else JK))||[H7, k) — P)\ {5, k)
= {byal0 }
(a,s k) — (JE" || P\ A4, K}
= {bya-13 }
[Ma} = (JE" | PYN {5 K}
= { continuing expansion }
[Ma}—=[H{e} — (48" [PYN\{j, k]
So by the uniqueness of solutions to guarded recursive equaticns:
(JK | POWER[j/a) || POWER[k/a)\ {j. k} = T.

We shall return to the modelling of clocked circuits in Chapter 7.

85

5.3 Semantic Model

In this section we present a deuotational semantics for the language SPRT. The
semantic model makes a distinction between input and output everrts. This and the
receptive nature of the language results iu it being uuuecessary to record refusal
inforination. A process canuot refuse to perform input events, Qutput events are
not blocked, so if an ontput event does not occur the process must be refusing
to perform it, This results in a inodel which is far simpler than that presented
for 5CSP in Chapter 3, The new model forms a complete partial order under an
information ordering presented in Section 5.3.3.

5.3.1 Notation

Here we introduce the key concepts of the model.

Events

An eventis either an input to a process {rom the envivonment, or an output frotn
a process We denote the unmersal alphabet X to be the set of all possible events.

A particular process may participate in a finite number of input and output
events J,0 € I; [is the input alphabet of the process, while O is its output
alphabet, The input and output alphabets are necessarily disjoint, I N & = {},
and at least one of these is non-empty, U O # {}.

Within our inode] we shall record the set of events performed at a given time
step. We shall refer to such a set as an oecurrence-sel, it is a subset of 1 U @. The
receptive nature of our model means that any input event which was not observed,
was not offered by the environment, while any output event which was not observed,
was not made available by the process,

Traces

A traceis a finite sequence of occurrence-sets. Given input and output alphabets,
I and 0, the set of all traces is given by:

KT o= (U O))

At each tick of a global clock an observer may witness a number of events from
the set [U O. By recording these sets of ocenrrences in a chronologically ordered
sequence we obtain a trace of the process. As in the model for SCSP, time is
recorded implicitly, times when nothing occurred being marked by the empty set
in the trace.

Aslraces take the form of sequences of sets we shall continue to use the operators
developed for traces in Section 3.1.1.

86

Maximal behaviours

If a process is divergent it can give no useful information about its behaviour. We
shall record nothing about tbe behaviour of a process once it has become divergent.
If a process diverges alter exhibiting behaviour s then no extension of this behaviour
is a behaviour of the process. No further record of the passage of time is made.
This is comparable to the use of time stops by Moller and Tofts [MT90] to mode)
an undesirable state.

A behaviour which precedes a divergent state is maximal in that no extension
of this behaviour is recorded in the model.

Definition 5.1 The set of marimal behaviowrs of a process with trace set T is
given by

Ta{seT|=-3reTer>s}

For any set of traces T, T is a marimal sel.

Processes

A process P is represented in our model by the triple {{, O, T') where ! is the
input alphabet, O is the output alphabet and T = T(P) is the sel of all traces
describing possible behaviours of the process. Only subsets of RT% o satislying the
closure conditions to be given in Section 5.3.2 will represent trace sets of processes,

Restriction

Definition 5.2 We can take the restriction of a trace set, 7, by a (maximal} set
of traces, S, to obtain a tracesel T | S,

TlS5={seT|[~(IreS.r<s)}
0

T | 5 consists of the bebhaviours of T which are not extensions of any behaviour
in 5. A process with trace set I' | § diverges more often than one with trace set
T.If s € §is a trace in T, then either 5 is a waximal behaviour in T | § and
immediately precedes divergence, or there is a trace s < s which is a maximal
behaviour in T | & so s is not a behaviour of T | &, If S is a maximal set then
only the former of the above cases applies.

The following ave direct consequences of the definition of maximal behaviours
and restriclion,

37

Lemmab5.1 If T, S, R and M are trace sels and M is a mazimal set then:
1. T|T=T
2 TIRCT
3. TCS=>T|RCS|R
4. TCS | TeTcCs
5. MCSAT=8|M=>MCT
6 (TIRY|S=(TLS LR
7. resiriction by § is idempotent.

8. reslrection by S distributes through union and inlersection.

5.3.2 Closure conditions

In this section we introduce closure conditions on a set T of traces which must
be satisfied for T to represent the trace set of a process with input and output
alphabets f and (. We notice that the first two conditions correspond to conditions
i and ii of SCSP. The elimination of refusal information from the model results in
a reduction in the number of closure conditions required to just three.

I(eT

The empty trace is observable at time 0.

M reT=5seT

Prefix closure; if a particular traces can be observed over a certain time span,
then prefixes of this trace, corresponding to observation made for a shorter
time, may also be ohserved.

I X)eTAY Sl s~ (XNO)UYYET

Al each time step the process can accept any input. This reflects the assump-
tion that the process is always receptive to any input. We also notice that
the output performed at a given time step is not influenced by npunt received
al that time.

88

We shall let R A be the set of all triples (I, 0, T) where [and © are finite
disjoint input and output alphabets and T satisfies the closure conditions with
respect to [and (3. This set is the underlying model for our receptive language.

RM=2{(f,O, TY|LOeFE)AINO={}ATuO#]}
A T' C RTy,p A T satisfies conditions [-11T}

Where ¥ is the universal set of all events.
We use BM7+? to denote the set of all processes with input alphabet / and
outpnt alphabet .

AMMC = {(f,0,T)|({,0,T") € RM}

Furthermore we Jet RM7 be the set of all sets of traces for processes and RML°
be the subset of A M7 corresponding to processes with input and output alphabets
I and O.

RMe={T |31,0€¥FT (1,0, T) € kM}
RMpC ={T"{(1,0,T") € RM!%}

We notice that RJU}’-’O is closed under restriction by any subset of BT} o.

5.3.3 Information ordering

The natural ordering on the model for SCSP was a non-determinism ordering. Due
to the novel representation of divergence in the model for SRPT, a non-determinism
ordering, as presented in Section 3.1.3, is no longer the most natural ordering to
work with. We define a new information ordering on processes with the same
alphahets.

If(f,0,Tp) aud (1,0, Ty) represeni two processes P and (}, then we define
the ordering < by:

(1,0,Tp) < (1,0,Tg)2 Tg | Tr = Tp

This relation does not give an ordering hetween any non-divergent processes. The
information ordering has the same philosophy as Roscoe’s definedness ordering
{Ros88a].) is more reliable than P, P € @; any behaviour of P is a behaviour
of @; moreover any hehaviour of () is either a behaviour of P or an extension of a
maximal behaviour of P,

Lemma 5.2 [f (1.0, Tp) and (I, 0. Ty) represent lwo processes P and () then

P<@Qe TrC Ty
A(reToAr ¢ Tp=>3s€ Tpeagr)

89

Since lhe ordering is only on processes with the same alphabets we can consider
it as an ordering on RM7z¢.

Lemma 5.3 The least element of Rﬁ[{«'o under the information ordering is {{}}.
|

{(}} is the trace set of the provess which diverges immediately, so never gives
any usefu] information.

Lemma 5.4 Every < —dirvected set, D C RMJI-‘O, has a least upper bound in R‘M;’o
and this least upper bound s J D,
Proof: We claim that YD € AME? and iD= D.
The [ormer is immediate, it remains to show that LUg¢D = [J D.
Firstly we show that [J 7] is an upper bound, that sYP € DD | P=~F
For PEDwehaves cUD | P (AP eDscP)A-(ArcPor<s).
Choose Py € 1) with s € P;. As D is directed, choose @ with P € @ and Py € Q.
QlP,=P,=>:€@Q, {sincescP,}
QlP=P=s¢eP, {sinCesGQa.ndas—'(Eerﬁ-rc(s)}

Hence UD | P € P. Moreover P C UD,givng PC D | P by Lemma 5.1, as
required. It remains to show that [JD is the least upper bound of D. Take ¢ an
upper bound of D,s0 VP € D« P £). We must show Q| UD =UD.

Clearly unc @l LTD We show that Q | LTD C U D by contradiction. Suppose
s€@lUDands¢UD. Thens€ Qand VP € Dvs ¢ P, giving (VP e D -
Ar € P+r < s),as s an upper bound of D. Now consider the set

Tz{r{3PeDrePArr<as}

This is clearly non-empty and finite as s is of finite length, so we can take the
maxtmum of this set /. We claim that »' € |JD. We know that » € YD, if it is
not maximal then we can find vy € (J D such that r; > +'. We can choose P € [}

such that rp € P, but we know that there exists an €T with r, € P. So
rp > v > v, contradicting the definition of P. Hence ¥ € J D and +/ < s. a

Theorem 5.5 (RM"?, <) forms a complete partial order.

Proof: Follows from Lemma 5.3 and Lemma 5.4. (]

Lemma 5.6 Fvery non-emply subsel of RM Y has a <-greatest lower bound.

90

Proof: Suppose S is a non-empty subset of RM,[FI'OJ, We define
Kz2{seS|IP.QeESXCIVO s (X)eP— Q)
and
Kz{seK|—-3rehir<s).

We claim that §" = (15) | &7 is the grealest lower bound of S in RM}I‘OJ,

S satisfies conditions I-III, thus &' € Rﬂr[?'o). We must show that § =1¢S
Firstly we show that § is a lower bound of §, that is VP &€ S5 =P | F

¥ CP| s since 5" C P, We shall show that P] g C 5 by contradiction.
Suppose s € P | 5 and s ¢ &

case 5 € []9: As 5 ¢ 5 there exists » € A" such that r < s. Now by
construction &' € S s0 3r € § + r < 5. Thus s ¢ P | 5 contradicting our
original assumption.

case s ¢ N S: We can find a prefix »~{X) < s with r €N S and »~ (X} ¢ N S.
So we can choose @ € § such that r™{X) ¢ Q. Hencer € K and 3+ € k'« /' <
r < s. Since k' C 5 we have that 37" € 5"« v < 5. Thus s ¢ P | §. Hence
result by contradiction.

It remains to show that 5 is the greatest lower bound of S,

Take Q a lower bound of .50 VP € S+ P] a = . We must show 5° la = Q.
51 @ C @, by the construction of 5. We show that ¢ € 5' | Q by contradiction.
Suppose s € QandsgﬁS’la. Then s¢ S'and s € G=>VPeES3eP =2 5¢
NS So3dre K+ r <5 Wecan choose Po, P, € § and X C (U O) such that
v {X) € Py—Py. Sinces € @, no prefix of s is maximalin @,so r~{(X)Y€ Py | Q,
thus +7{X} € Q. However, 1 (X} € @ = r"(X} € NS = (k) € P,.
Contradicting the choice of P;. m]

Theorem 5.7 {RM7°. <) forms a complete semi-lattice.

Proof: This {ollows from Theoremn 3.5 and Lemnma 5.6.]

Lemma 5.8 If D C RM7° is a <-divected set, then

UPp={se |JPIVPeD . (AS€P. ¢ <5))
Pel

9l

5.4 Semantic Function

In this serlion we construct a semantic function which maps syntactic expressions
of our langnage to processes i our model RM. It is necessary to consider each
process term with a specific binding of process variables to processes.
Variable bindings
Given a set of variables Var, we define a domain of bindings, BINDg, this consists
of all ;mappings from Var to the space of processes RM.

BINDy = Var — RM.
Now we arc able to deline a sejnantic function:

Mz SRPT — BINDR — RM

Mz P]e dencles the meaniug of process lerm /> with variable binding o, in terms
of our moedel. This is evaluated by associatiug each free variable r with its value
o[r] in binding .

Semantic substitution of free variables occurs in the same sense as in Section 3.2.
As before, when reasoning about closed process terms, that is those with no free
variables, it is unneeessary to make the variable bindings explicit.

The semantic function Mg

Given a variable binding, AMp maps each process term to a triple representing the
process’ input alphabet, output alphabet and the set of traces of the process. We
define 1, o, and Tx to be the natural projections onto the first, second and last
component of this triple.

Mz(Pla = (1[Ple. o[P]o, TR P)e)
For a general process both alphabets and the set of traces of the process will depend
upon the variable bhinding.

,0:SPRT — BINDg —» FL

Tr :SPRT — BINDp — RMy

Non-recursive processes

We defne My over Llie non-recursive terms of SRPT by defining the projections
t. o and Tr. We take SRPT to be the restriction of SRPT to the nan-recursive
terms, that is the terms with syntax:

Pi=L,p|lr | POP|B?X S Pyl |P|| PP\ A|P[S)

2

Definition 5.3 The functions ¢ and ¢ are defined as follows over the syntax of
SRPT?,
Hfirole =1
Oﬂ _L]‘()]iO' = O
dJrie = 7 0(x]
ofzfo = meerfz]
WP[S)e = (:[P]o)lS]
o[P[S)]e = (o[P[o)[S]
it ([Plo = :[Q]o and ¢[P]o = ¢[Q]o. then
(P Qe = P]e
ofP 1 Qe o|Ple
if B CofP;je and ¥ C C [Pl + :[Prlo = [Pple A o]Pclo = o[Pplle, then
tff!B?X — Pxllo = ([Pyfe
o[[!BTX — Pyxlle = o[Pyle
if ([Po N [@Q]o = {}, then
P Qe = ([Pleu[Q)e) — (o]Ple U o[Q]e)
ofP I Qe = o[P]o U o[Q]o
if BN:[Plo = {} and ¢[PJoUo[Ple — B # {}, then
(PN Ble = i[P]e QO
o[P\ B]le = of[Ploc - B

I

i

0

I

Definition 5.4 The function Tr is defined as {ollows * over the gyntax of SRPT?.
Trl Lr.0Jo = {{}
Tr[z]e = msofz]
Tz[P 1 Qlo = (Tr[Plo | Tr[Qlo) U (TrIQle | Ta[P)o)
Tri[lB?X — Pxlle = {{(BUY) s | ¥ CI As€ Tg[Py]o}
u{(}
where [= ([[!lB?X — Pxlle
TriP |l Qlo = {s{snAeTg[PloAsnBeTr[Q]r}
where A = ([P]o U ofP]e
B = @]e Us[Q]c
Tz[P\ Blo = {s — B |s € Tg[Plo} | {r ~ B | r € Tx[P]o}
TriP[Slle = (5| s(57') € Te[F]o] 0

*We write Tz [Pe for the set of maximal behaviours of T=iP)e

93

Notes

1. As for SCSP, L; 0 is modelled by the least element in the partial order, in
the case of SRPT this partial order is {RM %, £). This corresponds to Ly o
being the least informative process with alphabets I and 0.

2. Nen-deterministic choice cannot be defined as easily as in SCSP. This is be-
canse we no longer model divergent processes as arbitrarily non-deterministic
processes. The restriction in the expression herc ensures that undefined be-
liaviour ensues if both components can behave in a manner given by trace s,
and s 35 a maximal behaviour of one of the component processes.

The information ordering is weaker that a non-determinisin ordering, if we
define the non-determinism ordering in terms of the non-deterministic choice
operator as {or SCSP:

MzfP] Ty MR[Q] = Mr[F (1 Q) = Ma[P]

then Mg[P] € Mz[Q] = Mz[P] Cr Mz[Q]

Proof: We can assume that the alphabets of P and @ are the same.
Mzr[P] < Mr[Q]

= { by definition of the ordering }
T=[Q] | To[P] = T=(P]

= { trivially }
Tz[Q] | TrlPJUT=[P] L T=IQ] = T=[P]UT=[P] | Tr[C]

= { recalling definition of T and hy properties of restriction }
Tr[P N Q] = T=|P]

= { as we can assume the alphabets of P and €) are the same }
Mz[P) Cr Mz[Q] o

The process with behaviours Tr[P] U Tx[Q] represents an angelic non-
delerministic choice hetween processes P and Q. This process can, whenever
possible, avoid chaotic . undefined behaviour. Any implementation of this
form of non-determinism wonld require hacktracking, which is unsatisfactory.
We shall not, therefore, consider this form of non-determinism any further.

3. The semantic fnnction for parallel compesition is much simpler that that
for SCSP. The absence of refusal information in the model for SRPT means
it is only necessary to consider synchronisation on common events. The
representation of divergence by no information means that there is no need
to distinguish between the cases where one process becomes divergent and
neither processes become divergent. Any trace of the composed process,

91

when restricted to the alphabet of a component process, must represent a
behaviour of thal compouent process,

Suppose P || 2 has behaviour s and s restricted to the alphabets of Pis a
maximal behaviour of P. There can be no extension of s in P || @, as any
such extension restricted to the alphabet of P cannot be a behaviour of P.
So P || @ has s as a maximal trace. Thus we ensure that if one component
diverges, the composition must also diverge.

. When considering the semantic function for hiding we cannot simply consider
all traces with the hidden events removed — if we did, in certain circumstances
a resolution of internal choice may be made 50 as to avoid divergence.

Consider the process P with empty input alphabet and output alphabet {a, &}

P =[Ha} —L]N[{}-({a} —1]]

This process has trace set Tz [P] = {{}, ({a}), {{}}, {{},{a}}} divergence oc-
curs after one time unit if an a is output at the first time step, otherwise
divergeuce occurs after two time units. If we hide the e we can no longer dis-
tinguish between the case where the @ occurred initially, causing divergence
after the first time step, and the case where nothing occurred initially, delay-
ing divetgence. In our demonic approach to non-determinism we assume the
worst case occurred so:

P\{a} =[{} —1]

this process hastrace set 7o [P\ {a}} = {{}, {{}}}, demonstrating that T [P \ {a}] #
{s —{a} | s € Tr[P}}.

The restriction in the semantic function for hiding is necessary to ensure that
divergence is not avoided by hiding events,

5]

Corollary 5.9 The marimal behaviours of lerms of SRP T’ are given over the syn-
taz a5 follows:" -
Tl Lio o = {(})
Talz]le 2 {s € mooz] | - 3¢ € myafz] + & > 5}
T2[P 1 Qle = (Tz]Plo | Tz[Qlo) U (Tz[Qle | Tx[P]o)
Tr['B?X = Pxllo = ({(BUY) s | Y C1As€ Tr[Pylo}
where [= ([{!B?X — Pxl|o
TP L Qle = {s|snAch(PlonsnB e Tr[Q)r
VsndeTr[Ple AsnB eTr[{]e}
where A = Plouo[P]o
B =[Qlou o[Q]s
TP\ Bo = {s =B ls € Tz[Plo} | {r - B | r € Ta|P]o}
Tr[PiS|le = {s]sl5) € Tz[P]e}

b

I

I

i

Proof: These all lollow from the definition of Tg. o

Theorem 5.10 The terms of SRP T are well defined with respect 1o the model.

Proof: 1t is neressary and sufficient that Mz[P]e € RAM for all process
expressions £ in SRPT?. This is demonsirated by structural indnciion over the
syntax.

atomicterms It is clear by construction that L; ¢ is well defined with respect
ta the model. By definition of ¢ and as Mg [r]e = oz] the process variables are
well defined.

operators It is sufficient to show that the result of applying an operator o
well defined process expressions is a well defined process expression. It is a trivial
exercizeto verify thal the semantic image of the application of an operator satisfies
the closure conditions I-I1I in such circumstances. o

Theorem 5.11 For P o term of SRPT. Ay + Mg[P]o[y/z] is monotanic.
Prool: We must establish that for q.§ € EM

9 <4 = Mg[P]ola/<) < Mr[Pa[q/4]
If P isan atomic process this follows trivially, either P =1 o i which case the two

expressions are constant, o P is a variable and the result is a direct consequence
of the definition of variable hindings,

96

It is sufficient to check that each operator is monotonic in each argument, the re-
quired result then follows from the monotonicity of finite compositions of menotonic
functions. The proof of monotonicity is presented as Theoremn A.3 in Appendix A 2.
[m}

Recursive processes

Definition 5.5 We extend the definition of Mg to the full syntax of SRPT as
follows:

Mzgluz:1,0+Ple=fix; o Ay Mr[Plo(y/2]
where y does not occur free in P and
fix; o denotes the function’s least fixed
point in (RMT2, <)

¢

In order Lo establish that My is well defined over SPRT we must ensure that
the least fixed points utilised in the above definitions exist.

Lemma 5.12 If y is nol o varichle in P and Ay « Mg[P]o[y/z] is continuous
in (RMT79) for all variables r, then Mg[pz : 1,0+ Plo is well defined and
Ayr Mglur: 1,0 Ploly/z| is continuous in (RM'9,<).

Proof: (RM 12 <€) is a complete semi-lattice and Ay + Mg[P]e[y/z] is, by
assumptiou, continuous within the semi-lattice. So, by the Knaster-Tarski Fixed
Point Theorem, a least fixed poinl exists. Hence fix A y + Mg [P]o[y/z] is well
defined.

Moreover, setting Hr = Ay » Mg[P]o{y/z], the least fixed point is given by the
limit, US?:GHE (Mﬁl[i.,r'o]])
As Lu.b. preserves continuity the required result holds. Iu|

In the next chapter we shall establish, via an embedding of RM into SM, that
all the operators of SRPTare continuous. Hence the following is a theorem.

Theorem 5.13 All processes terms P of SRPT are well defined with respect to the
model. a

97

5.5 Conclusion

In this chapter we have introduced the language SRPT. This language, in common
with SCSP,

a expresses non-determinism, parallelism, hiding and recursion;

e caplures both quantitative timing details and the notion of trme concurrency
through its prefix eperator;

» has sufficient algebraic laws to be able to eliminate paraliel composition and
hiding from expressions.

Ty coutrast 1o SCSP, SRPT distiuguishes between input and ouiput events; all input
events are made available in the prefix construct while those output events present
in the prefix constriict are assumed to occur unresiricted by the environment. These
differences in the langnage capture its receptive nature,

The sernantic model for SRPT presented in this chapter is very simple; the
receptive nature of the language made it nnnecessary to record refusal information
in the model. The behaviours of a process are captnred completely by traces;
cach term in the trace is a set of events seen to occur siinultanecusly and the
position of the set in the trace indicates the time it was observed. Traces in the
model can be viewed as a mathematical representation of the information captured
by the informal timing diagrams [Too93] ofter: nsed in engineering to clarify the
relationship between inputs and outputs of circuit components.

By introducing the concept of maximal behaviours and choosing an interpreta-
tion of the model in which the progression of tiine is not recorded after divergence,
divergences were encoded into traces. This led to tbe consideration of an infor-
mation ordering on the model in contrast to the usual non-ceterminism otdering.
The model forins a complete partial order under this ordering, providing the math-
¢matical structure required to underpin recursion.

98

Chapter 6

SRPT as a Sublanguage of SCSP

In this chapter we demonstrate how SRIPPT can be viewed as a receptive sublanguage
of SCSP. To achieve this we develop two embeddings; € : EM — SM which relates
the two models and @ : SRPT — SCSP which relates the two languages. These
two fnnctions are chosen to preserve the intnilive representation of the processes, in
the sense that 7 € SRFPT and its image 8F € SCSP can be seen to represent the
same system In the different languages. While @ € M and its image ¢@Q € SM
can be interpreted as representing the same system in different models.

We establish a natural relationship hetween © and ®, such that, given an em-
hedding 5, of BINDg into BIND induced by @

VP € SRFPT ;o€ BINDy « BMy[P]oc = M[BP]yo.

Informally the following commutes:

RM ® SM

Mz M

SRPT xBINDg — SCSP xBIND

Oxn

Fram this we are able to draw on the results established for SCSP to demonstrate
the continuity of the operators of SRPT and construct a proof system for closed
terms of SRPT which is sound and complete,

99

6.1 Embedding RM in SM

Processes in #M are designed to model receptive systems, where input is never
refused and the envirenment cannot block output, s0 all possible output happeus.
Processes in SM are not specifically designed to model receptive systems but we
can modelsuch systems by making a few assumptions. A process in SM modelling
a receptive system cannot refuse input so it must always offer any subset of the
input alphabet to the environment. In a receptive system, output events that can
occur, dooccur. We shall inedel this in the processes in SM by assuming that if a
proper subset of the possible output occurs at a particular time step, then infeasible
behaviour follows at the next time step. Notice that the traces of a process in SM
corresponding to the environment allowing all possible output are the traces which
are saturaled with respect to the output alphabet.

Processes in RM model divergent or undesivable behaviour by providing no
further mformation abont the process. The system is only modelled during the
titne it is well behaved. By contrast, we use the concept of infeasible hehaviour
in SM to model undesirable behaviour. Despite the difference in representation,
both RM and SM assume there is no possible recovery from undesirable bebaviour,
allowing us to make a simple correspondence in the case of divergence.

We define & as follows and claim it provides a suitable embedding.

Definition 6.1 Taking A = I U O, we define ® : RM — SM by *
QL0 TY=(A,¢{1,0,T))
where,

$(L,0,T) = J o, 0,90 |J #,(1,0,3)

aeT €T

¥(1.0.0) = {{}
P(LOsT(X) ={e STy |TreFO) - (S Ur=9h(sT (X)) V
IV CANO(Y #{} A
7o) (ro(X) - ¥y < s'ur))}
UL, 0,8)={s7r | s €91, 0.5) A r € F(A)")

and 74(X) = X U (O — X) is defined for X C A ¢

H [.A— B isa lunction then [: A* — B* is the mapping for f onto every element of 2
trace comisting of elements of type A. =06 riE7s)y= ()

100

We shall now consider how & maps processes in AM to thosein SM. Clearly the
alphabet of the process ®(P) is the union of the input and output alphabets of P,
processes in RM distinguish between events which are to be considered as output
and those which are to be considered as input, processes in M make no such
distinction. It rernains to consider the way i which a process in £M is mapped to
a trace set in SM, this involves considering the map ¢. Assuming P = (I,0, T)
we shall consider the map ¢ by decomposing it into several steps.

Firstly we saturate every trace in T with respect to output by adding refusals,
we only add refusals corresponding to output which could not happen so each term
ju the trace remains feasible. The function 7, performs such saturation of a set
with respect to the alphabet (@ so we need to map this function on every trace in
T giving us the set:

Ty=A{ypls) s € T}

Next we add traces correspouding to teo little output being allowed by the en-
vironment. We have already commented that infeasible behaviour will lollow, so
recalling closure condition vii any trace may follow. This gives us T, U T where:

To = {15(s) " (r(X) = VY™ [{} CY C(ANO)As™(X)ET
A 7 € F(A))

Notice that the traces corresponding to insufficient output being allowed are not
saturated. So for a process which non-deterministically outputs O, or Oy, where
02 C Oy, by considering refusal information, we can distinguish between the case
where the process chooses to output O and the case where the environment 1s only
willing to perform the events from O from the process’ offer of events 0,

Next we must change our representation of undesirable behaviour from unde-
fined behaviour to infeasible hehavionr. For each maximal behaviour s, we must
extend the trace 75 (s) by infeasible behaviour and, by closure condition vii, by
arbitrary behaviour. The set of such extensions is given by:

Ty ={15(s}"r|s € T A7 e F(A))

Finally we close all the traces we have thns far obtained under removal of refusal
information, we can remove any amount of refusal information without affecting
the behaviour of the process. This ensures the set, T”, is closed under condition v,
where

T’={S|3FEF(O).'5UT€ T[UT’UTJ}

Now T" = ¢(J. 0, T). By considering the traces in ¢(f, O, T) generated by each
trace in T we obtain the sets y1(/, 0,3} or ¢,(/, 0,2) depending on whether s €

T — T or s € T. Thus we cbtain the above definition of &.

101

6.1.1 Properties of &

We verify that ® is well-defined and prove that it is monotonic, continuous and
injective gver a Testricted domain,

Lemma6.1 Fors € AT p and A=10U O

¢ (5) = () = {s | Ir € F(O) +qp(s) <§'Ur)

Theorem 6.2 9 is well-defined.

Proof: We must show that if (J,0,T) € BM then (U 0,4(],0,T)) 15 a
process in SM . Assuining T satisfies closure conditions I-1I1 with respect Lo input
and output alphabets I and O, it is sullicient to show that ¢(7, (), T') satisfes
closure conditions i-vii with respect Lo alphabet 7 U O.

Since I and O remain unchanged throughout this proof we will abuse notation and
write ¢(T) for ¢(1, O, T), ¢o(s) for ¢:(1, O, s) and ¥ for 4.

The pattern of proof being similar for each closure condition, only that for condition
vi is presented here.

Assume that s7{8)"s (T and ¢ = {a elfud
to show that either s™ OYeRT ~(Bu{z})

sT(B) TS € q};(T)
= { by the definition of ¢ }

Ja¢ B Aag B}, wewant
“s'€¢(T) forsomez € C.

(Que T2 s™(BY s € w(u) vV (Tue Tos™(B) s €9 (u) —p(u))

= { recalling defiuition of iand P}
Jue T ™R € FO) « (sUr) (BUR)T(s'Ur') = v*(u) (L
vITXYeT; R eR(O)Y ;Y CXNO(Y£{} A (2)

y(0) (5(X) = ¥) < (sUn) (B UR(UT)
Ve T (™ r e F(O) sy (u) < (sUr)(BURY"(s'Ur") (3

We now proceed by case analysis on the form of traces in ¢(T), so we shall consider
87 (B)"s satislying each of the above disjuncts in turn,

Case 1. If #— B 5 {} then, as all elements in the trace ¥*(u) are feasible, we
can choose ¥ € KN C and s™{BU{E})7s' € ¢(T) as required.

If RuE = B. then (sUr)™{B) < 1*(u) so B must be saturated with respect
to outptl as every elerent in the trace ¥"(u) is. Hence ¢ € [. Then by the

closure conditions on T and the nature of ¥ we can find «' € T with v*(¥) =
{(sUr)™(BUC). Thus s™{BU () € ¢(T) as required.

102

Case 2. [Usur 2+ (u)”(y (X))~ Y) then (sUr)"(BUC) € (s} and we are
done,

I (sur)™{(BUR) <+*(u)™{y(X)-Y), then when B — B # {} or the inequality is
strict the result follows as before. In the remaining case v{X)~ ¥ = B. Now 7(X)
is feasible and saturated with respect to output,and ¥ C O s0 ¥ = C 1 0. Also
w{XU(CNHY € T by condition [ITon T and (sUr) " {BUC) =y (" (X U
(Cn). Hence s™{B U) € ¢(T) as required.

Case 3. If sUr 2 7 (u) then clearly s {BU C) € ¢, (n) and we have the required
result. Otherwise (s U r)” (8 U R) < ¥*(u) and the result follows as before.

u]
Lemma 6.3 If #,8 € F(f U O)". then
a. d)([', 0)5) c u"f([-n 053)
b, s <& = (I.G.8NCTwi(],0,5)

Proof:
a. Trivial by definition of #;.
b. [f & = s then the result is trivial, so suppose s > s, clearly 5’ £ {} so we
can choose s and X such that s’ = s"7(X}.
By the definition of 41, we have r € ¢, ({,0,5') = Ir, € ¥{{,0,5) e o < »
Now

e € $(1, O, 5" (X))
= { by the definition of ¢]

Jup € F{(O) ¢ (1o U up =y (s"{X))

VAY CXNOrrgUug >y (s") (X)) - ¥}

= {asy(s) <7(s") }

Jug € F(O)* « 15 Uy > *(s)
= { taking f.ppropria.te subsequences of vy and ug }

Ju, eF(O)Y i, EFIUO)» vryUuy > (s) AT, < 1g
= { by the definition of ¢ }

Ary €91, 0,8y 7y <1y
Thus, as 11 < rp £ v we have that r € ¢,(f, 0,5) w]

Theorem 6.4 & is a monotonic function from (RM,<) te (SM,C). Thal is,

YP.Qe RM+P < Q= ®P)C Q)

103

Proof: Suppose (J,0,T(P}) and (I, O, T(Q)) represent P and §) resectively.
Processes in SM are only ordered il they have the same alphabets. Tor P and
(2 to be ordered in the information ordering they must have the same input and
output alphabets, thus ®(P} and (@} have the same alphabels. It remains to
verify that, if the traces sels of P and @ satisfy T(Q) | T(P) = T(P) then
(1,0, T(0) < #(1,0, T(P)).
seT(Qs | since T(Q) | T(P) = T(P) }
35 € T(P)ss>s
= { bv Lemma 6.3 }
I35 € T(PYs v {1.0,8) T v, (d,0,¢)
= { by definition of ¢ |
w1, 0.8) Coll. O, T(P))
s€ T(Q {since T(Q) L T(P)=1(I) }
s€ T(P)vIAL € TP s 2
= | by Lemma 6.3 }
sE€ TPYVIS € TP (i . O.8) Ty, (1,0,5)
= | by definition ol ¢ }
(I, 0,8) S, 0, T(P))

Hence, recalling the definition of ¢, we have o{f, O, T(@Q1) C ¢(f, 0, T(P)) and
the result follows.

Theorem 6.5 ¢ is continuous. That s, for D a <-direcied set.
(L0 =U{2(P) | P e D}

Proof: Suppose ([. 0. Tp) represents process P. Since the alphabets remain
unchanged throughout this proof, we shall abuse notation slightly, writing #(s) for
U’J(] ’ 07 SJ'

By monctonicity of @, ¢(Ue D} CN{#(P) | P € D).
It remairs to show that N{p{P) | P € D} C é(U¢ D). We do this by coutradiction.
Recall

[HetPY 1 PeD} = [11U w()u U #ils))

PeD seTp seTp

and @(UgD) = U Yisju U ¥ (s)

s€TueD ,efi‘u‘D
Suppase s € N {p(P) | P € D} and s ¢ p(LUc D).

104

From the former we deduce that
YPeD(3s €Tpesep(s) V(AL E€Tpisev,(s)
while from s ¢ ¢(LI¢ D) we deduce that)
YPe D~ (3¢ € Tpesep(s).
Combining these we have
YPeD (s € Tpasey(s)
Now consider the set B2 {¢' |IP e D¢ € TeAse ¥{s")}
By coustruction B is finite and noo-empty and VP € DeJre B re T
We shall show by contradiction that 34’ € B+ s’ € ?ugp
Suppuse not, then by Lemma 583 V¥s' € Be3P e Do (dgy € Tpesg < 8.
For r € B choose P, such that r € ?pr antd P such that = {dry € "fp; rg = T)
By the directed sel property, choose @ € Dsuch thatVre B P, QAP £ Q
TolTp. = Tp, =re Ty
Tol Tp=Tp =r¢Ty
Thus = (37 € B+ re Ty) contrary to our constraction of B. So
Is'eB.s € "fusné { by definition of B]._
ds'vs €y (AT €Ty

= { hy definition of ¢ and U¢D }
8 € qﬁ(ngD)

Heuce result by contradiction. |
Theorem 6.6 Given inpul and outpul alphabets I and O, the restriction of € to
RMDC o5 injective. That is

YP,QcAMYC . o(P)=0¢(Q)=>P=¢Q.

Proof: Suppose that (1,0, Ty) and (I, O, Tp) represent processes P and Q
respectively. As in earlier proofs we shall abuse notation since the alphabets do
not vary throughout the proof; we write v(s) for ¢:(f, (7, s} and 7 for yo. We must
show that whenever the trace sets of ®(F) and ®(()) agree, so to do the trace sets
of P and .

$(P)=¢iQ)= Te=Tp

Suppose not, so ¢{(FP) = ¢(Q) and Tp # To. Without loss of generality, we can
choose s € Tp such that 5 ¢ Ty.

105

35 & Tp
= { by definition of ¢ }
7'(s) €4(P)
= { by assumptien }
7'(s) € ¢(Q)
= { by definition of ¢ } _
(Fs' e Tg e (s) € (NI v (T € Ty er*(s) € w,(s) —¥(s))
= { by definition of 1 and noting (s} is saturated w.r.t. output }
(s eTgen*(s)=4"(&)) v (T € Tger-{s} ¥, (<) — $(s))
= { since 7 ia injective and s ¢ Ty }
35 € Tgo1°(8) € 4 (<) — ()
= { by definition of v, (s} — (s} }
35 € Ty (s) > 7{s)
= {7 isiyjectiveon F(fU Q) }
JdeTges>d
Now y*(s) (O U) € 8(Q) since 5 € To.
Thus 7'(5')A(C.) U 1) € ¢(P) by assumption. This trace is saturated with respect
to cutput with an infeasible end se v*{s')" {QUT) € 4, {s55) —1(sp) where s, € Tp.
Thus v*(5') = 7*(ss). giving & > 5

So 5, € Tpoand s € Tp with 5 > 54 contrary to the definition of Tp. D

6.2 Relating the Languages SRPT and SCSP

We have emhbedded the receptive model RM into SM i a manner which, to a
certain extent, relates processes in BM (o those which can be seen to represent
the same syatem in $4{. In this section we define a function © : SRPT — SCSP
over the syntax of SRPT which maps terms of SRPT to terms of SCSP. Like the
function ¢. @ is chosen so that the process expression P € SRPT and its image
©(P) € SCSP can be regarded as describing the saine system in ihe two different
la-nguages.

106

Definition 6.2 We define the function © : SHPT — SCSP over the syntax of
SRPT as follows:

@(J_[,o) = Lo
O(r) = =z
8PN Q) = (OPIN(BQ)
9([139).' — Pg]) = lY(_:(B U [) — ((@)P}’-—B) if B C Y else L[Ug)l

where [and () are input and oulput alphabets
of [1B7X — Px]

o Q) = (@P)| (eQ)
AP\ A) = (OP)\ A
OP[S) = (BP)S]

Ope:L.O«P) = pr:l1U0(OF)

H P has inpnt alphabet I and output alphabet @ then OF has alphabel fUG. §

6.3 Deducing results of SRPT from SCSP

We shall demonstrate that the function © is closely related to @ in the sense that,
il we define 5 to be the projection of BINDg outo BIND induced by & then the
following holds for all processes P € SHP T and all variable bindings o € BINDg.

M@P]ye = dMy[Ple

This relationship allows us to deduce the continuity of the operators of SRPT. It
also enables us to deduce the soundness and completeness of the proof system for

SRPT from corresponding results in SCSP.

Definition 6.3 We define 5 : BINDg — BIND to be the unique function induced
by ® which maps BINDyg into BIND. Formally:

Yo & BINDg ;7 € Var . (yo)[z] = ®(c]=])

Informally the following commutes for all o € BINDg:
@

kM SM
\ %
Var o

Lemma 6.7 For all processes P € SRPTY and all variable bindings ¢ € BINDg
MIBPpo = dMg[P]e

Proof: By structural indnction over the syntax of SRPT*

atomic terms

a) M[P Liolne = MU Lolye { definition of & }
={IUuO0,5T0) { definition of M }
= (1U 0,61 0.{)})) { definition of ¢ }
=TV O.6{Mgr[Lr0]e)) { definition of Mg }
= (I)(MR[[1lro I]O') { definition of ¢ }

b} M[Bzlne = M[z]ys { definition of © }

= {no)[£] { definition of M }
= ®{c[x]) { definition of 3 }

= ®({Mg[c]e) { definition of Mg]

operators That the alphabets are the same is a trivial observalion. Qur task is
to verify Lhat the traces sets of the expressions on the left and right sides of the
equatiou correspond. That is

TOPyo = ¢(Mz[P]o)

We assuine that all arguments of an operator satisfy the above equation and deduce
that the application of the operator to these arguments does alsa. The proof for
non-deterministic ¢hoice is presented as Theorem A .4 in Appendix A.3. The proofs
are in generzal long and not particularly enlightening, involving examination of the
terms on hath sides of the equation. a

Lemmab.8 If Ay« Mg[Plo[y/z] is monotenic in (RM,),
Yo € BINDp « M[@P]ne = ¢(Mz[P]o)
and ¥ p € BIND « Ay « M[OF]plyfz] is continuous in (SM,C)

then
al Ay« Mu[Ploly/r] is continuous i (RM <),
o) MB(pr: L. 0. PYpe=d(Mglpz: 1,0 P)o).

Proof: a) Suppose D is directed in (RM, €), we must show that

U Mz[Plolg/z] = MrPlolucD/s)

¢€

as Ay« Mg[P]e(y/z] is monotone [Mr[Plo(q/s] is well defined.
geD

108

Now
CI’(U% Mz[Plolq/=])
€
T = Usjen BIMr[Plog/=]) { as ¢ is continuous }
= Len (MO Pln(elq/z])) { by hypothesis }
= Len(M[OP)(yo)[(®g)/x]) { by definition of 7 }
= M[OP]|(no)l(U,es ®a)/zl) {as Ay« M[OP]p[y/z] is continuous]
= M[OP{na)[(®(U¢ 9))/r]) { as ® is continuous }
q€D
= MBP(n(e[(Ug ¢)/z]}) { by definition of 1 }
el
= &(M[P}o((Uc ¢}/ { by hypothesis }
g€l
The result follows as P is injective when restricted to processes with the same
alphahets.
by Weset hr 2 Ay Mg[P]e[y/z]
H = Ay M[OP)o)[y/£)
It can be shown that Vg & BM « Oh{g) = H(bg)
Now

M[B(pz: 1.0« P)]yo
=Mpz: 100« (QP)yo { by definition of & }
= fix; 0 Ay M[OP](no)ly/z] { definition of recursion }

=, A" (M[Liwo 1) { by definition and continuity of # }
= UL, A" (MIO(L10)]) { by definition of @ }
= U?:n H(®(M=z] Lro])) { by Lemma 6.7 }

i)
s PR (M=z] Lo 1)} { by above observation }
= q?(l_]oo gt Mzl Lio])) { as @ is continuous }
= @(fix; o A y» Mgr[Ple{y/z]) { by definition and continuity of h }
=P{Mg[p : [,0+ Plo) { by definition of recursion }

6.3.1 Continuity

Now we have established a sufficiently strong link between SRPT and SCSP and
the corresponding models to deduce the continuity result required in Section 5.4.

Theorem 6.9 For all P € SRPT, Ay +» Mgp[P|o[y/z] is continsows.

Proof: After Lemma 5.12 it is sufficient to consider only P € SRPT?. If
P & SRPTY then ©F ¢ SCSP’. So by combining the resuits of Theorem 5.11,

108

Lemma 3.5 and Lemma 6.7 with Lemina 6.8{a) we have the required result. o

Theorem 6.10 For all P € SRPT, o € BIND,
MIOP]yo = ®{Mr(P]o)

Proof: This {ollows by structural induction over the syntax of SRPT, all but the
case of recursion are covered in Lemma 6.7. The final case follows from Theorem 6.9
and Lemma 6.8(1y). g

6.3.2 A proof system for SRPT

As far SCSP we introduce a proof system for the sublanguage SRPT!of SRPT
cousisting of the non-recursive closed terms of SRPT, we then extend this to allow
recursive terms. The logical language cousists of assertions of the form P Tz @
and P =5 (}. We give a set of axioms and inference rules for proving assertions,
aud show that the system is both sound and complete by relating it to the proof
system for SCSP.

The sublanguage SRP T’
The syntax of SRPT /15 given by:
Pu=lyol PNP|[1BIX — Px|tPYPIPVA|PIS

Formulae in the logical language take the form P Cp @ ot P =g Q, where these
relations are defined as follows.

Definition 6.4 ['or process expressions P,) € SRPT we say that P is less de-
terministic that ¢}, written P Cp @, if for every possible variable binding the
semantics of P M @ cannot be distinguished from the seinantics of P in RM. For-
mally:

P Cy Q=Vo & BINDg « Mg[P]e Ca Mz[Q]o.

recalling that Mz [Plloe Sz Mz[Qle & Me[P N Q] = Mz[P]
We say that P aud () are equivalent, written P =5 Q. if for every possible
variable binding P and @ have the same semantics in BM.

P=, Q=Yg € BINDp « Mg[P]o = Mz[]e.

110

In situations where there can be no confnsion as to the langnage being referred
to we shall often drop the R suffix from the above relations and simply write P C @
and P = Q.

Notice that the ordering used in the language is the non-determinism order-
ing. This ordering is more appropriate to the problem of deriving implementations
from specifications than the inforrnation ordering. In many circumstances we re-
quire an implemnentation to be completely deterministic, snch processes are the
maximal processes with respect to the non-determinism ordering. On the other
hand, specifications olten exhibit an element of non-determinisr. By encorporat-
ing the non-deterniinism ordering in our language we can refine a non-deterministic
specification Lo a deterininistic implementation within our proaf system.

Had we used the information ordering we would only be able to find an imple-
mentation to a specification which diverged less; the information ordering does not
relate non-divergent processes.

The axionis of the system are given iu Appendix B4, The axioms are very
similar to the axioms for SCSP’. the noticeable difference heing the equations
concerning the prefix ronstruct, We write b P =5 @ to assert that F=, @ is
provable in the axion system for SRPT?.

Notes

1. Notice that as for the prool system for SCSP7 the following resnlts can be
derived from the axiom systen.

05 F PERP o—6 '_J,ERP
PNQ=,P PLr@Q
o7 —_— o8 —_—
PCr@Q Prg@=xP

These results clearly demonstrate the link between the ordering Ty and the
non-deterministic choice operator.

2. The strong link between this axiom system and that of SCSP/is demonstrated
by noting that each of the axioms A-1 to A-14 preserves receptiveness. That
is, if OF € 8CSP! and by oue of the axioms A-1 to A-14 we ean deduce:

FerP=g

then @' is the image under © of some ¢ € SRPT!. Moreover, P =5 @ is
deducible in the proof system for SRPT!. In many cases this is clear by the
definition of @. By demonstrating this link between A-5 and a-j it becomes
apparent that the axioms concerning the prefix construct are closely related.

111

Suppose ¢ C B, then

Q([BTX - Px|N[IC7¥ — Qv
{ by definition of & }
[NCBUIl 5 (BPx_pif BC X else L))
I'I[} Q Curl— (OQ}'_(} if C Q Y else l]uo)]
{ by A-5 }
[XCBUI - P§
AYCCQUI - {0Qy_c i CC Yelse Lo

where for B C B U I:

po . J(@Ps_pif BC B else Lyuo) B ZCuf
8 ((OPy_ g OQu_c)ifBUCC B else Ly,p) B CCUI

Consider the case when " = B and C C I separately.

KCcBthen B CCUI =B ¢ B hence
Pl = (OPp_pif B C B else li.y)
H (=B then
P2 = (O(Pp_sN Qu_c)if B C B else 1,,0)

Soif ¢ B then A-5 reduces to a trivial equality for receptive processes. If
("= D then

F O(IBTX = Py]N[ICTY = @yl)
= O([IB7X — Py N Q| N[ICTY = Qy])

but [I1B7X — Py|n[ICTY — Qy] == 1BTY - Py Qx| N[IC?TY — Qy)
is provable as follows:
(1B!X = Px|N[IB?Y — Qy]

{a-3)= [B7X - Px|N([I1B?Y - QIN[IB?Y - Qy])

(2) =n (IBTX — Py|N[B7Y — Q)N [B?Y — Qv]

{a5}=r [B?X - PxNx]|N[BTY - Qy]

12

Soundness

If every assertion, provable in the proof system is true, then the system is sound.
We shall deduce the soundness of Lhe proof system for SRPT!by considering the
image of the rules under the map 8. f P Ty @ and P =5 @ are assertions in the
logical langnage for SRPT/then we take their images under © to be OP C 6@
and ©F = () respectively. \We note that the images are assertions in the logical
language for SCSP.

By the nature of €, the inlage of each axiom of the proof system of SRPT!under
O is a provable asscrtion of SCSPY. It follows that:

Lemma 6.11 Forall P, Qe SRPT'

(ke PCr Q)= (F OPCOQ)

B
From this result. and the soundness of the proof systent for SCSP ! we deduce:
Theorem 6.12 (Soundness) For all P.(J € SRPT'
(Frn PCs Q)= (Mg[P]Cxn Mz[Q])
Proof:
Fa PCa@Q = F GPCOQ { by Lemuna 6.11 }
= M[OP|C M[BQ] { soundness of SCSP! }
= MeP)M(OQ)] = M[OP] { equivalent formulation }
= M[eHPnf=m[eP] { definition of © }
= PMr[P11Q]) = d(Mr[P]) { by Theorem 6.7 }
= Mg[PN Q] =Mz[P] { ® injective }
0
Completeness

In order to establish completeness of the system we must show that every true
assertion is provable. We mnst show that whenever Mz [FP] C Mz|[@] then the
formula P Ci @ is provable. We shall define a class of normal forms and show that
every terni is provahly equivalent to a unique normal form. Finally, by using the
map © we can relate these normal forms to those of SCSP. Through this we deduce
that the system consisting of the class of normal form processes is complete,

113

Normal form

The nommal forms of SRPT 'have a similar structure to those of SCSP!. L; o is
a noimal form, all other uormal forms are the non-deterministic choice between a
finite number of output prefixed processes. The output sets in the prefix constructs
are nnique, ensuring normal lorms are unique.

Definition 8.5 We say a process. P € SCSP’. with alphabets 7 and O is in
normal form if it is L, o or takes the form:

P=[]1B7X - Pp]
Beli

where
e 3 is a non-empiy finite subset of PO,
o Pgyisinnormal formforall B € Band X C 1.

¢

The proof that every process in SRPT'is provably equivalent to a process in
normal from follows the form of the equivalent proof in SCSP?, so is not presented
here.

Lemma 6.13 Every process in SRP T is provably equivalent to @ process in normal
Jorm, |

Lemma 6.14 [f P € SRPT' iz in normal form wilth alphabets 7 and O, then
OF € SCSP! is in normal form.

Proof: 8y structural induction on P.
base case. P =1; . Then @F =1;,0 is in normal form.

inductive step:

P=T1IB1X - Ppxl.
Ben

Then by definitiou of ©:

OP =[|[YCBUI — P}y
feld

where Py y= (OPy x_p)if B C Yelse Lo

114

By induction Pp x is in normal form,
It remains to show BUI CB'UI = VX CBUI. Ppox EPpy
Now BUJICBUI=BCH

If B = B then as the choice sets are unique in the definition of P, we have
P x = Pp x and we are done.

IFB ¢ B then X € BUI= B'Z X so by definition Py x =Lruo and theresult

follows.]

Lemma 6.15 If P. () € SRPT! are in normal form with alphabets I and O then
FOPCOQ =y PLgQ

Proof: By structvral induction over P,

base case: P =_1; o. the result follows by o-6.

inductive step:
P={]0B?X - Ppx]
Bes
by the definition of &
OP = [T [V CB - Ppyl
BB

where Pi?',)’ = (G(Pﬂlno_yn[) if B = YUI else 1, e} and B = {BU[1 Be B}.
By Lemma 6.14 @ P and ©¢) are in normal form in SCSP! . Mareover as the proof
system for SCSP'is sound M[OP] C M[OQ]. So following the argument of
Lemma 3.16, © ¢ must take the forin of a non-deterministic choice of set prefixed
constructs. Hence @ must also take thia form.

Q=[x - Qoxl

Cec

with:

0= {1 [YCC - oyl

e
where Qv y = (8(Qono, v} if C' = YUl else 1;,p}and C' = {Cuf | C € C}.

115

following the arguiment of Lemma 3.16, C' € B, hence C € B. So by axiom o-1

PC[]CTY - Pry]
Cec

it i sufficient to show that + (0Fcx) C (@Qcy)for all C € C, X C I then the
result follows by induction and the monotonicity of operators.
As MIoP] C MO Q] it follows that:
YCe; YV C e M[Pe] EMIQ 4]
= { by definition of P’ and @ }
Vel YT« ("=YUI= .M[[(-)Pgnna,}-m-]] C MHGQC'HO. Ynl]}
= { by definition of " }
Yiecl 3 X o MII@P{_'._\']I [J‘v‘tﬂ(‘)Q(',xﬂ
= { as the proof system for SCSP!is complete }
YOO, X CIoF OP-y COQcy

giving tle required result. O

Theorem 6.18 (Completeness} For £, () € SRPT' with alphabets [and O,
Mp[P] Er Mz[Q] = (Fa P Tk Q)

Proof: By Lemuma 6.13 we can find P, Q" € SRPT! in normal form with
br P=xPandtr Q=4 g
As the proof system for SRPT/is sound
Me[P'NQT = Mz[P N Q) = Me[F] = Mz]FT].
So it is suflicient to prove Mz|P' N Q| = Mz[P] =g P Cr ¢
Mz D] = Mz]F']
= OMR[P' N Q] = dMg[#] { as @ is a function]
= Mjeryn(0g)] = M[0F] { byden. of ® and Theorem 6.10 }

=+ e C e { by Theoremn 3.17 }
=ky PPz Q) { by Lemma 6.15)

An extended proof system

As for SCSP. we extend our praof system to cover the full language of closed terms
in SRPT. This involves characterising each process by its set of finite syntactic
approximations, thus enabling us to reason about infinile processes.

116

Definition 6.6 The relation <7 is the smallest relation on closed terms of SRPT
with alphahets [and O satislving:

L =z P
P <5 P
Plppx+ P)fz] <z pr-F
P<p Q=<xl = P<ph
P < Qi Pe < @ = (PN Pg) <g (G NGs)
YXCTePy <g Qv = [\B7X = Py < [1B?7X — Qy)
Pr<p Q. P < Q2 = (Pl Pe) <o (Qr || @Q2)
P<p@ = (P\A)=<5(Q\4)
P<a@ = P[S] <z Q[Y]
Il P <,) then we say that £ is a syniaclic approrimation of Q. o)

[t can be shown by structural induction that the ordering given by <g is weaker
that the information ordering, and hence the non-determinism ordering.

P <p Q = Mz[P] € Mz[Q] = Mz]P] Cx Mz[Q]

Given a closed process P, we construct the set of its finite syntactic approxima-
tions FIN,(P). We say a process is finite exactly when it is a term in thelanguage
SRPT'. Thus we have the following:

Definition 6.7 FINy(P) = {Q € SRPT" | @ < P} o

FINg(P) forms a directed sel under <g and consequently the semantic image
forms a directed set under Cp and <. [ollowing the argument used to deduce
Theorem 3.1 we obtain the result below.

Lemma 6.17 Mg[P] = Ll Mz[Q] n
QeFINg(P)

Now we can show that [gemwyr Ma[@] (the least upper bound under the
Cg otdering) coincides with | Mz[@Q].
QEFINR (P

Lemma 6.18 [f D 1s a set of closed terms in the language SRPT and {Mz[F] |
F € D} is <-directed, then

LI MeiPl = U Mr[P]
FeD Peh

7

Proof: Using the links established between RM and SM we can establish that
Mz[F] € Mz[Q] = Mz[P] Cr Mz[Q] = ®Mz[P] C 2MR[Q].
While rom Theorem 6.5

(|l Mr[P]) = || (@M=[P])

Peh teD

it follows that

(e Mr[P]) = @o(|] Mr[P]
FeD PeD

The result follows as @, restricted to processes with the same alphabets, is injective.
a

Combining these results we have:
Theorem 6.19 Mz P[] = Ugcrivyp M= Q- n
We extend the proof system for SRP'IY with the following:
a-17 F Pl(pzsP)/z]=Sgppzel
VQE FING(P)+ Q Cr R

R-1
PCirR

These rules are similar to those presented in Section 3.4.2. They allow us to extend
the proof system to all closed terins of SRPT

Soundness and completeness

The least fixed point construction of the sernantics of recursive constructs guar-
antees the soundness of axiomn a-17. While the inference rule is sound by Theo-
rem G.15.

Theorem 6.20 {(Soundness) For all closed terms P and Q n SRPT
(Fa PCr Q)= Mg[P] Er M=[Q]
a

Completeness is establislied by cousidering the characterisation of a process by
its syntaciic approximation in the saine way as presented in Theorem 3.21.

Theorem 6.21 {(Completeness) For all closed terms P and @ in SRPT
Mz[F] Cr Me[Ql = (Fr P Tr Q).

118

6.4 Conclusion

By considering the way in which one might model receptive systems in the language
SCSP. we have estahlished an embedding of the language SRPT and its associated
model into the laniguage and model of SCSP. The embedding between models RM
and SM was proved to be continuous; this made it possible to establish many of
the mathematical results concerning SRPT via the equivalent resulls for SCSP
and the embedding. Results assumed in Chapter § have been proved here; the
semantic images of operators in the language were shown to be continuous. Also,
the soundness and roinpleteness ol the proof system for SRPT was deduced from
similar results m SCSP. The embedding and the results drawn from it demonstrate
how SRPT can be viewed as a receptive sublanguage of SCSP.

119

Chapter 7

Timewise Abstraction

We are slready familiar with abstraction as a powerful development tool. Duriug
development it is often necessary to be aware of communication between com-
ponents of the system which ultimately should be hidden from the environment.
Abstraclion allows us to hide from the environment those details of the specifica-
tion which can be viewed as specific ouly to the internal working of the system.
The langnages presented in this thesis allow communication abstraction via the
hiding operator.

Similarly, when modelling a systen by a discrete time algebra, it may be appro-
priate toview the internal working of components of a system in a different tine
{rame to that appropriate to the ultimate interaction hetween the whole system
and the environment, Specifying components of the system in the context of a
short clock cyele we could ascertain the details of the interual behaviour. Then
the specification could be translated to a time frame with a longer clock cycle ap-
propriate to the svstem as a wlole. The ability to slow down the speed at which
the process is viewed would allow us 1o reason about systems in the time frame
as well as the communication level mnost appropriate to the final application. The
procedure of translating a process in a discrete time algebra o a slower time frame
will be relerred to as timewise abstraction.

We recall that, when considering communication abstraction, we had to make
agsumpticls concerning the circumstances under which hidden events should be
performed internally; we used a maximal progress assumption. In the same way,
when considering tirewise abstraction we must take care to avoid ambiguity by
making clear the context in which we can translate the time frame. Timewise
abstraction can be usefully incorporated in thie receptive language SRPT without
ambiguity.

Suppose we have a receptive system modelled in SRPT in a given time frame,
then by making certain assumptions we can derive a model for the same system
in a new time frame. The new time frame is chosen such that a unit of time in

120

DS

]

NN

—

Fignre 7.1: A couditioual circuit,

the new {ramne is an integer multiple ol & unit of time in the original frame. We
assnme that input only changes at the tick of the clock in the new frame, so there
is less apportunity for input to vary, In the new model, the value of output is
only recorded on the tick of the new, slower clock. The new model provides less
information about the system’s hehavionr as it takes ‘snapshots’ of the system less
frequently. For systemns in which suel assumptions are appropriate we will provide
algebraic methods to perform timewise abstraction, changing the time frame in
which the system is viewed.

The langnage SRPT gives us a way of modelling components with lalched in-
puts. The input received by such a component at the start of the clock cycle is
latched and held constant for the remainder of the clock cycle. In SRPT we are able
to record the behaviour of the component by giving the input and output observed
on the tick of the clock. We give a stroboscopic view of the system which, if timed
to coincide with the systemn clock, gives us a useful representation of components.

Suppose we require a clock speed snch that the output is stable after one time
unit. A system is often composed of several subcomponents. Even f each of
the subcomponents stabilises within one time unit, it is not necessarily the case
that the whole system will stabilise within one time unit. The system as a whole
should be latched at a speed which ensures that it is stable after a single clock cycle.
Tinmewise abstraction allows us to investigate the effect of latching the whole system
at a slower speed.

Example: A conditional circuit

A conditional circnit can be bnilt from components A and B as shown in Fig-
ure 7.1. Suppose bolh components stabilise within tinie d. If we take a unit of time
in SRPT to be length d then we can model components 4 and B as follows (using
the conventions introduced in Chapter 5 and the definition of OR from Section 5.2).

A= [HITX = A(X)

121

where
AN)=A, ifee X AceXNelse(A,ifug X AbCX else 4)

(r)7X — A(X)]
Hy]?X — ACY)]

b i

A
A;
and

B 2 OR|z{a.y/b. out/c]

Now to consider the hehaviour of the complete cirenit we must consider the process
(A]| B)\ {z.y}. 1t can be shown using the laws of SRPT that

{(AB)\{x,y} = Con

where

Con =M}IX = (Con'if([ce X AceX)V{be X AagX)else Con))
Con' = {}1X — (Conj if (e € X Ace X}V (bEXN Aag) else Cony))
Cony={out}?X - (Con'if(a € X Ace X) V(b€ X Aag X)else Con))
Coni= [[out}?X — (Conjif(a€ X AceX)V(beX Aag X)else Con,)]

We have been able to hide the internal communication but clearly the whole
circnit will take two time units to stabilise. It would be easier to reason about the
circuit if it stabilised in one time unit. We would like to look at the whale system
in a timeframe where each timne nnit has length 24, In such a time frame we would
expect the circuit to be nodelled by the process:

Cond= [H}7X — Cond(X))
where
Cond{X)= Cond' if{face X AceX)V{ag X Abe X)else Cond
Cond' = [{ow }2X — Cond{X)]

Our aim inthis chapter is to provide a simple algebraic method to perform timewise
abstraction and hence derive process Cond from process Con.

In this chapter we develop the theory of timewise abstraction; we provide simple
algebrajc laws for its application in SRPT and verify that it is consistent with the
model. Wealso show how timewise abstractiou can be nsefully employed 1o reason
about pipes. Through the examples it will become clear that timewise abstraction
often reduces the number of states of a process, making the system easier o reason
about.

122

7.1 Timewise Abstraction in SRPT

Rather than extend the syntax of SRPT, timewise abstraction will be defined in
terms of a map beiween Lwo copies of the closed terms of SRPT. We regard the
two copies of the language as having different time frames, in that the unit of time
has a different absoclute length in the two copies of the language. We could view
each copy of the language to be associated with a clock; observations are only made
when this clock ticks. Timewise abstraction maps processes with a given associated
clock o processes with an associated clock which ticks less frequently. The effect
of timewise abstraction is to slow down the frequency at which observations are
tnade of the system, under certain assumptious about the behaviour at the times
observatious are no longer made.

Suppose P is a process which models a systemn in a time frame with time ¢
between ticks of the clock. If (" is a set of events in the input alphabet of P and n
and m are nalural numbers, with z non-zero, theu Slow(n, m, C, P) is a process
which models the system in a time frame with time n.f between ticks of the clock,
such that:

e The first clock tick in the new frame coincides with the (m + 1)™ tick of the
old clock.

* Subsequent clock ticks are made at n.¢ time intervals; coinciding with the
{m+ {4 k.n)™ ticks of the clock in the old frame, for k € N.

o Until the first clock tick is made in the new frame, input to the system
modelled by Slow({n, m, C. P} is assumed to he C.

o The input is assumed to be held fixed at the value seen at a tick of the clock
in the new frame until the subsequent clock tick occurs.

Timewise abstractiou preserves alphabets, so if P has input alphabet I aad ouiput
alphabet O, so too does process Slow(a, m, C, P).

From Section 6.3.2, closed process terms can be characterised by their finite
syntactic approximations and each finite closed process s equivalent to a process
in normal form. So we can define Slow{n, m, ', P), up to = equivalence, over the
closed terms of SRPT by the following axioms:

a-18 : Slow(n.m,C,1;p) =10
a-19 : Slow(r.m,C,PNQ} = Slow(n.m,C,P)NSlow(n,m,C, Q)

a-20: Slow(n,m,C,[IB?X — Py])
IB?X — Slow(n, n-1,X,Px)] Mm=40
Slow(rn,m - 1,0, Pc) itm>4g

I

123

We also have the foliowing law, which demonstrates that communication abstrac-
tion and timewise abstraction are independent of one another,

I-11 : Slow(n,m,C, P\ A)=(Slow(n,m,C,P))\ A

Notes

1. I Chaotic behaviour can occur al any time between two consecutive clock
ticks it the new frame, then we assume it does occur,

2. I m = 0 then the first clock tick in the new frame coincides with the first
clock tick in the old frame and there is no need to record the value of input
prior to the first clock tick in the new frame. Thus, if I is the input alphabet
of P then

VO, (" € FleSlow(n, 0,¢,P) = Slow(n, 0, (", P).

3. If a = [then the two time frames are identical and Slow({, m, C, P} behaves
like process P with the inpul held fixed at the value (7 for the first m time
units. 1t follows that

Slow({,0,C,P)=P.

4. Had we introduced Slow(n. m, ¢, P) into the syntax of the language, then
expressions like

p P X — Slow(n, m, C,P)]

would be valid. The exact meaning of such an expression is not clear however,
because {imewise abstraction alters the time frame and the time frame is
assumed Lo be fixed in the language. Considering timewise abstraction as a
map between copies of the language allows ns to realise the implications of
timevise abstraction on the time [rarmes.

7.2 Examples

7.2.1 A conditional circuit

Let us return to the example presented in the introduction to this chapter. We
are interesled in ronsidering the process Con in a lime frame where the clock ticks
hall as frequently and the initial clock tick in the new frame coincides with the

124

initial clock tick in the original time frame. So we are now interested in evaluating

Slow{2,8.{}, Con).

Recall

Con = [{{}?A — (Con’ if B(X) else Cox))
Con' = [H{}7X — (Con, if B(X) else Con,))
Con; = [Mout}]?X — (Con' if B(X) else Clon)]
Con', = [{outP?A — (Con, if B(X) else Cony))

where B(.X) is the boolean given by:
BN)z(e€e X aecX)VUeXnag X)

Now:
Slow(2.0.{}, Con)

= { expanding definition of Con }

Slow(2. 0, {},[{}1X — (Con' if B(X) else Con)])
= {bya-20 }

MPEX = (Slow(2,1,X. Con'yif 13{X) else Slow(2,1,X, Con))|
= { expanding definition of Con and Con’ }

HP?7X = (Slow(2,1,X,[{}7Y - (Con) if B(Y) else Con,)])

if B(X) else
Slow(2,1, X, [{}TY = (Con’' if B(Y) else Con)]}}]

= {bya20 }

317X — (Slow(2,0,X, Con) If B(X) else Slow(2,0,X, Con)))
= { recalling note 2 }

17X = (Stow(2,0,{}, Con’) if B{X) else Slow(2,0,{}, Con))]
similarly we can show that

Slow(2,0,{}, Conl} =
[Mouf}?7X — (Slow(2,0,(}. Con)) if B{X) else Slow(2,0,{}, Con)}]

so by uniqueness of solutions to guarded recursive equations:
Show(2,0,{},Con) = Cond

where Cond is as given in the introduction to this chapter (page 122).

7.2.2 A grey-code counter

Our aim in this example is to verify the design of a 2-bit grey-code counter,
such a counter should output, in sequence, the bit patterns

00— 01 — 11 — 10— 00 — ...

b;

I
t
L T,

ek

Figure 7.2: A grey-code counter

A change in output is triggered by the system clock. Notice that each increment of
the counler only involves one bit changing: such codes eliminaie the risk of glitches
in the counter, which could be encountered when using a simple binary counter.
The component we shall investigate is a sequential circuit consisting of a combi-
natorial part and two clocked T-type fip-flops configured as shown in Figure 7.2.
This cirauit exhibits feedback. Unlike previous circuits we have considered output
depends o the previous state of the system rather than the values of last input.
The only nput to this system is the clock. The output of the system is determined
by iwo wires b; and b, which encode the grey code in thelr voltage levels.

We shall investigate the behaviour of this circuit, takiug advantage of timewise
abstraction to model each component in the most appropriate time frame,

The combinatorial circuit

The combinatorial circuit comprises of two gates, an EXOR gate and a ¥OT gatc.
We model both these gates in a time {rame which ensures that the output is stable
one Lime unit after the input is made available. The definition of a NOT gate with
input wire a and output wire b, is given by:

(NOT = {a} oNOT = {b}
NOT = [{{b}7X — (NOTIf X = {] else NOT")]
NOT' 2 [{]7X — (NOT if X = {} else NOT')]

126

While we recall the definition of an EXOR gale from Section 5.2.1

\EXOR = {a, b} oEXOR = {c}
EXOR = [[{}?X — (EXOR' if |X| = I else EXOR)]|
EXOR' 2 [{c)}?X — (EXOR'if |X| = | else EXOR)]

The combinalorial circuit is then given by:
EXOR[b, Ja, bofb t, fe] || NOT[t,[a, ts/b).

By applications of the axioms of SRPT, we can eliminate parallel composition from
the above ani prove tiic following identity:

EXORIb, Ja. by b t,/c} }| NOT(,/a,1,/b] = EN.

where EN [He}?XN — (EN I |X] = f else £N))

ENT = [He 11X = (EN]if|X]| = ! else EN,)]
EN, = [11X — (BN if |X| = 1 else EN,)]
EN, = [H}X = (E'N’ if|X]| = ! else ENY]

We notice that this eircuit takes longer that one time unit to stabilise. The input
must be held constant for sulficicut time for the race condition on the wires ¢; and
tg, (caused hy the NOT gate), to pass before output is used. We are interested in
the combinatorial circuil being modelled in a time fraine which ensures output js
stable after one tiine unit. If input is held fixed for two units the output after this
time 1s stable. We consider the cirenit in a tiine frame which is a factor of 2 slower.

COMB = Slow(2,0,{}, EN)

defining COMB’ = Slow(2, 0,{}. EN]) we cau use the axioms for timewise ab-
straction to obtain the following expansion of COMB,

[H4:)7X - (COMB' i = [else COMB)]
(e }1.X — (COMB 1f|¥| = 1 else COMBE)]

COMB =
COMB' =

A clocked T-type flip-flop

A rising edge triggered T-type flip-llop has one output ¢ and two inpuls ¢ and ck.
The value of the output remains fixed unless the input t is high on therising edge
of the clock ¢k. If the iuput ¢ is high on the rising edge of the clock, then the
output toggles, that is, changes from high to low or from low to high.

We shall assume that the flip-flop 1s modelled in a time frame such that all
changes in the system clock ck coincide with observations in the model. The value
on the wire ck should be seen to represent the state of the clock after any change
al the tiine of observation in the model. The value on the wire ¢ should be seen to

127

represent the stable state of the wire at the time of chservation. We also assume
that output is stable within one time unit of any change of input. So assnming
that the clock is initially low and the output initially low we obtain the following
description of a rising edge triggered T-tvpe Aip-flop:

¢ TH = {t,ck) oTH = {a} T =T

where Iff; =HP?X = (T, if ek & X else (T, if t € X else T{y))]
Ify = [{1?7X = (Tfy if ck € X else Tf)]
8 = Hal?X — (T if ck € X else Tf;)]
I, 2 Hal?X > (T if ck ¢ X else (Tfy if t € X else TH}))]
(L and # represent the current state of the cloek.)

The complete circuit

We are now In # position ta investigate Lhe complete circuit, we assume that the
flip-flops and combinatorial circuit are modelled in the same time frame, one in
which each of these unita stabilises within one {ime unit. So the complete eircuit,
modelled in this {ime frame, ts given by:

GREY = (COMB || TF[ts/¢.be/a] || Tt /¢, b /al)\ {ts, t: }

In order to establish the behaviours of this process. we use the algebraic laws of
SRPT toreduce the above expression to a form which does not involve parallel
composition or hiding operators.

GREY

I by definition of GREY '}

(COMB || T (to/t. bofa] | THF{t /8, 00/ a]) \ {to, 1;]
{by -2 }

(COMB || (T lt0/t, 6o/ a] | L1t/ 1,61 Fal)\ {to, 0]

Now by a-10 and a-16 and the definition of 7JJ

T/t bofa) || THL: /2,6, /a)
S(Y8 o (THLlto/ 1 bofa) || THLIL 1.5, a]) if ok ¢ X else
(THiltaft bafal || Tfglt: /.60 a]) if {ts, 8} C X else
(Tfulteft, bafa) || THEL /1.8, /a]) il 1; € X else
(T e/t bofa) || Tt /t b, /a])if tp € X else
(THulto/t 0o/ a) | THult: /L, b:/a]))))))

123

So

(COMB || T [to/t.bo/a] | T 1t /4, befal) \ {to, 1}

{ expanding COMBE and from above }

(&)Y — (COMBif |V | = | else COMB)|

NHIZA — ((Tfeito/t,bsfal || THLt: /L. b1/ a]) if ck ¢ X else
(T 1o/ bofa] | T (4271, bu fa]) € {1t} C X else
(T{dalte/t-bofa) | THRE /0, /a])if t; € X else
(TH(ta/t-bo/a] || Tffult:i/t,bi/a]) if L € X else
iTﬂn[io;’i bofa) || Thult/t, b2/ eI\ Ao, 1 })
(

(COMB [(TfF[taft,bs/a) || Tf:[t: /8.0, /a)))
if ck ¢ X else
(COMB | (Tf;lta/ ¢, b0/ a} || THu[t:/4,b:/a)IN (b, 4h]}
{ by a-13 }
MI2X - ((COMB || (Tflulte/t, b0/ a) || THL{ /8,00 a]) N\ ALey 81}
if ck ¢ X else
(COMB || (TfT}{to/.bo/al Il Thult: /4,81 /al))\ {to,1))]

By continuing to climinate parallel composition and hiding constructs we can

{ by a-10
[!{fu]?‘\— —

demonstrate that

GREY = G(L,0)

where G{H.0) =[H{1?7X — (G(H.0)if ¢k € X else G(L,0))]
GL0y =[H{PX = (G0l ck ¢ X else GH, 1)]]
GiH) =[H{6}TX = (GH, if ck € X else G(L, 1))]
GL. 1Y =6 }TX — (G(L, 1)if ck ¢ X else G(H, 2})]
GiH.2) E[‘{bgb}”(a(W(H,2)if ck € X else G{L, ¢)]
G(L.2) =Nbp. 0, 17X — (G(L,2)if ck ¢ X else G(H,3))

G, 8) 2]Mb))7X — (G(H.3)if ck € X else G(L, 2))i
G(L.3) = Mb)7X = [G(L, 9)if ck ¢ X else G{H,0))]

The numerical parameter of (7 indicates the current phase ol the counter.

Incorporating the clock

By way of example, suppose we have au asymmetric system clock which has low
time twice as long as its high time. This can be described by the process CLA or
pictorially as in Figure 7.3.

We wanl to incorporate the clock into the system and abstract away from details
of the clock which are considered internal to the system. To achieve thiswe consider
the process (CLA)| GREY). By liding the evenl ck we can make internal the

129

CLE = [{ck}=[{}=} — CLET]

voltage l‘
HIGH _\ ’—1
|

Figure 7.3: Two descriptions of an asymmetric clock

time

behavioir of the clork. As we are not interested in the mechanics of the clock
it also makes sense to consider 1lic whole syslem in a time frame where a nnit
of time coincides with a complete cycle of the system clock. We choose 1o make
observations coincide with the rising edge of the clock cycle. So we evaluate the
following:

SYS= Slow(3.0,{},(GREY | CLI)\ {ck})
Now

GREY || CLK

= { by definition of GREY, LK and a-10 }
Plek} — (GIH, DY} -=H} — CLRY)

= | by definition of G(H,0) and a-10 }
[Hek}— by} ={!{bs} — (C{L. 1} || CLK)]]]

Tlus, noling that SY5 has an empty inpul alphabet,

ST
{by definition of SYS }
Slowi3.0,{}, (GREY || CLK)\ {ck])
{y 111}
Slow(3,0.{}.(GREY || CLE))\ {ck}
{ noting the above expansion and by a-20 }
[{ck} —
Stow(3,2,{}.[Mbo}—=[{be} — (G(L, 1) [| CLAN]\ { ck}
{ by two applications of a-20 }
Hek} - Slow(2,0,{},(G(L, I}]| CLEN]\ { <k}
{by a-13 and 1-11 }
= (Slow(3.0,{}.(G(L, 1) || CLK}\ {ck])))

i

Il

il

fil

130

continuing in this manner and by the uniqueness of solutions to guarded recursive
eguations we can demonstrate that:

SYS=p P o [Hj=[{ba}— ko, br }— {5, J =PIl

So our system clearly behaves like a grey-code counter.

By using timewisc abstraction we have been ahle to present the process iz a time
framme in which ils behaviour is easy to verify. The coarser time frame abstracts
away (rom all the delays which arise when data abstraction is performed.

7.3 Relating Timewise Abstraction to the Model

In this seclion we shall establish the semantics of Slow(n,m,C,P) in BM. Once
we have defined the semantics of 1inewise abstraction we can verify that it is well
defiued and ensure that the axioms presented in Section 7.1 are sound with respect
to the model. Before we present the semantics of Slow(n, m, (", P) we introduce
some notalion.

7.3.1 Notation

‘e define two functions on traces, both of which will be associated with the concept
of slowing down the frequency of cbservation.

Choose

The first function, ehoose(n, m, s), Lakes as its arguments two natural numbers n,m
and a trace 5. [t returns a trace which has as its (k4 1)* element the (m+7 4+ n.k)t
elemeut of s. If s corresponds to a trace of observations made in the original time
frame, then choose(n, m.s) correspouds to a trace of observations in a new time
frame, where the clock runs slower that that in the original frame by a factor n,
and the first tick of the clock in the new frame coincides with the {(m + 1)®* clock
tick in the original frame.
The formal definition of chosse is given for n > §:

choose(n, m,{}) ={)
choose(n. 0, (1) s) {BY " choose(n,n— 1,s)
choose(n, m + [{B})7s) choose{n,m,s)

Il

Il

Properties
& |choose(n, m, s} = [(|s| - m)/n]. for n # 0.

e choosr(i,0,5) = s.

131

e 5< 5 = choose(n,m,s) < choose{n.m.s')

Trace multiplication

The operator & takes as its arguments a natural number and a trace. The result,
£ @ 5 isa trace n times as long as s with each term duplicated = times. Whea
consideriug systems viewed under the new, slower time franie we assume that the
input tothe system can only be changed at the {less frequent) ticks of the new
clock. We will have to examine the effect of this input pattern on the system
viewed in the original time frame in order (v establish the output which will he
observed in the new [rane of reference.
We define & as follows:

vl =0
RSUEXNY s) = (X)) (ns)

Properties

o 0l sl =nls|

7.3.2 The semantics of timewise abstraction

We extend the semantic function My to incorporate timewise abstraction. Recall-
ing the definition of Mg, it is sufficient to define ¢, 0 and Ty of Slow(n, m. C'. P).

Definition 7.1 For m € N. n € N*, C € FE, P € SAPT and 0 € BINDy we
extend the definitions of 1, o and Tr as follows:
t[Stowin,m, ', P)]o = (Plo
o[Slow(n o, C,P)lo = o[Fle
Te[Slow(n.m. C,PYo = {5 | (35 € Tr[Plo » choose(n, m.s') = 5
AN ()T ((n@s)N{})
A (- 35" € T[] » choose(n, m,s") < s
AT <Y {((n@s)0 1))}
where | = [P]o O

1

Notes

1. Observing Tr[Slew(n, m, (U, P}, it is clear that when m = 0 the semantics
of Slow(n, m, C, P) are independent of the value of C'.

2. Noticethat il (" € [P]o and m > @ then
TelSlowin. m, C,Pllg = {(}} =Tr] L]

132

Until the first tick of the new clock the environment attempts to input to the
process, il Lhis input is not in the alphabet of the process the result is chaotic
behaviour.

3. We can explain the definition of the semnantics for Slow(n, m, C, P) aslollows.
If 5 is a trace giving a possible behaviour of Slow(n, m, C, P) then it isderived
from a behaviour s of P. By requiring choose(n, m,s’) = s, we ensure that
the (k4 #)™ observation in s coincides with the (m + { + n.k)™ observation
in . By requiring s N T < (Y7 ((n & s) N T}, we guarantee that Lhe
hehaviour s is derived [rom a behaviour in which input does not change
betweeu observations made in the new time frame.

Finaliv, we exclude any behaviours which are extensions of behaviours derived
from maximal behaviours of the original process. So if a behaviour could have
been derived from a behaviour which results in the original process becoming
uninformalive, we assuine that the process viewed in the new time frame
becotnes uninformative.,

Theorem 7.1 Slow is well defined wilh respert to the model RM .

Proof: It is necessary and sufficient that Mz [[Slow(n, m, C, P)]o € RM for all
process expressions P in SRP’T, m € N. n € Nt and € € FE. To achieve this we
must show that Tg[Slew(». m, ', P)]e salisfies closure conditions I-1II (see Sec-
tion 5.3.2) with respect to alphabets [P and o[[P]e, under the assumption that
Mz[P]e € M. The proofs of all three conditions involve careful examination
of the coustruction of the set delining Tr[Slow(n,m, C, P)]o; the proof of 111 is
preseuted as Theorem A.5 in Appendix A4, D

Theorem 7.2 Axioms a-18 a-19 and a 20 are sonnd with respecl to the model
.

Proof: [t is necessary to prove that the foilowing equalities hold for m € N,
n € Bt and (" a subset of the input alphabel:

Tr[Slow(n, m,C,)] =Te[L]
TriSlow(n, m,C, PN Q)] = Tr[Stow(n, m, C, P) N Slow(n, m, C, Q)]

Tr[Slow(n, 0,C,[|B?X — Px]|)] = TRI!B?X — Slow(r,n — 1, X Py)]]
and for m > 0
Te[Stow(n, m,C,[\B1X — Px])] = TrSlow(n,m — 1, C,P¢)]

This can be shown by set analysis. The proof for a-19 is presented as Thearem A.8
in Appeudix A .4, o

133

7.4 Pipes

Pipelining is a conimonly used techniyue for obtaining speed up in sequential cir-
cuits. I many pieces of data reguire processing by a sequential circuit, and this
sequential circuil can be deconiposed into several simaller components whick pro-
cess the data in turn, then pipelining enables data processing to be averlapped.
Each input docs not have to wail for the previous one to be output. Typically such
pipelinirg is achieved by latching interiediate vesults.

For exarnple the conditional circuit inlroduced at the beginning of this chapter
conld be easily presented as a pipeline of lenglh two units by latching the output
from component A. Then. assunuing both comporneiits 4 and B stabilise in unit
time. new data can be inpul every unil and the corresponding output is available
two snils later. Such a circuit is described by the process Con.

Unforlunately as a pipeline increzses in lengih, the process describing it imust
have mote stalcs, recording the data latched in the pipeline. Moreover the num-
ber of staies may increase exponentially with the length of the pipeline. In this
section we shall demenstrate how Limewise absiraction can be used to simplify the

reasoning about pipes.

Definition 7.2 A closed process P is a pipe il there exists £p > ¢ and a function
Ep 1 F(iFy = (PiP(e)) — {}) such thal

P is apipe of length #p with eflect &p
& seTr[Pl=3X eP{O)s7(X) € Tr[F]
2
SHXNYTST{YY S e TR[PI A |8 = Ffp = 1
= YNolP]e £p{X NI
A
YBCI;Ze&r(B)
SUX N OV UBY Y N U Z) 8" € Ta[P)

where O = o[P] and I = ([P]. %

Notes

I. ¢p represents the non-zero length of the pipe. At any time ¢ > £p outpul 15
solelv dependent on the input {p units previously.

2. For a pipe P, the relationship between inpnt and output £p units of time
later is characterised by the [unction £, £p defines the set of possible values
of output resulting from a given input set. We refer to £ as the effect of P
since this function descrihes all the possible consequences of processing input
through the pipe. Clearly £p is uniquely defined for a given process P.

134

Notice thal the empty set is omitted from the range of £p. This follows
our assumption that pipes are nou-divergent. Terms in the range take the
form of sets of possible output configurations. This makes provision for non-
determinism in pipes. If a pipe P responds deterministically Lo a given input
set B then £p(8) is a singleton set.

3. The first condition on the heliaviours states that P is non-divergent by en-
suring that every behaviour of P can be extended.

4. The second condition states that output £p units after a given input 8 is one
of the possible effects of the pipe on B. Any one of the passible effects in
Ep(B) could have been observed without altering the subsequent hehaviour.
Moreover altering the itiput at any time only cffects the output £ nnits later.

=

. The output seeu at the first £p ticks of the system clock will depend on the
initial state of the pipe. It is only after this period of initialisation that the
possible outputs can be deduced from earlier input.

We shall identify two pipes 2 aud) if they have the same length and the same
effect. This identification disregards output during the period of initialisation; so
P and ¢ may have different output during the first #p units of time. After this
period of initialisation P and @ have the same behaviours.

Definition 7.3 If P and @ are pipes with the same input and output alphabets,
then we say P and @ are equivalen! pipes, £ ~, @ exactly when they have the
same length and the same effect, formally:

Py @Q=Ep=Egnitp=1{g.
0

It is common practice in development to compose pipes to obtain longer pipes,
we present the chaining operator for tfiis purpose.

Definition 7.4 If P, € SRPT with oP = :f) and (P N ¢§} = {] Lthen we define
the chaining operator % as follows:

P> Q=(P|Q)\oP
0

The chaining operator is a composite operator in which all communication be-
tween the processes being chained together is made internal. It follows that the
process P 3 ¢ has input alphabet P and output alphabet 0. The following is
an obvious law of the chaining operator:

135

-12: il«@nok={}, P>Q»R=P>»(Q>» M)

Preoof: For the above to be well defined we can make the [ollowing deductions
coneerning the alphabets of P. Q) and .

ol = and 0Q =
tProg=1{), «Pnof={} and (QnoR=1{}

From thiz we can show that o NaR = {} and 0@ NaP = {}. Now
(P> Q>R =((P>Q ﬁ'}\oP>>Q { defn. of chaining }

M
({(P>Q) K { defn. of alphahets }
{rnpive) H H)\ o) { defn. 0[chaining }

E(

(P QRN oP) Vo {byla]

=P Nm)Nel)\vo@ {by! 2}

= (P(QI L))\ o)\ of {by 3}
=(PI{QI RN o)\ 0P {byl4 }

={P(Q>)\ oP { by defn. chaining }

=P Q> H) { by defn. chainiog } o

Theorem 7.3 If P is a pipe of length £p with effect £p, @ is a pipe of length £g
with cffect £, o = Q@ und a@ NP = {}. then P> Q 15 a pipe of length £p + g
with effed Epw g, where

v B QIP-EP)Q(B)E U gQ(C)

Cefpl B

Proof: This Jollows dircetly [rom the definitions of chaining and pipes. 0

7.4.1 Timewise abstraction and pipes

In this section we look at the ways we can use timewise abstraction when reasouing
about. pipes. First we look at some of Lhe properties of pipes and the timewise
abstraction of pipes. Then we discuss the ways in which these results can be
utilised toald verification of the hehaviour of pipes.

Theorem 7.4 If P is a pipe of length {p and cffect Ep then Slow(€p, 0,{},P) 1=
a pipe of kngth I with effect Ep. |

Intnitively Slow(€p.0.,{}.P) represents the pipe P viewed in a time [rame
where a wnil of time has the same length as the pipe. So there is sufficient
time belween observations for Lhe pipe to completely process the input. Hence
Slow(fp,d,{}. P} behaves like a pipe of length 1.

136

Theorem 7.5 If P and } are pipes then

Shuw(fp +Lg,0,{},P>» Q=
Slow(2, 0.{),(Slow{lp,0,{},P) > Slow(fq, 2,{}, @)

Proof: This follows noting that the initial output of both sides of the equivalence
is the initial output of . O

Theorem 7.6 If P and @ are pipes of length €, with input end output alphabets I
and O then:

P~, Q& VBCI. Slow(l.6,B,P)= Slow(!,0,B, Q)

Proof:

=: If P and @ arc equivalent pipes of length £ then, if provided with lhe same
input, their hehaviours are the same after £ units of time. Slow(1,¢ B, P) gives a
process with behaviours corresponding to those of P after ¢ units of time,assuming
the input over those first £ units is the set B. Clearly the implication follows.

«: Pis a pipe of length ¢ and by the definition of Slow({,£, B, P), the initial
output of Slow(!.(, B, P) corresponds to the effect of pipe P on input B. As
¥vB CI.Slow(i,{,B.P)= Slow(i,t,B,Q) it follows that the pipes P and @
have the same eflect on all input sets B C I. Hence P and @} are equivalent pipes.
[m]

When designing pipes the main concern is the pipe’s behaviour once it is ini-
tialised. It is often unnecessary to concern ourselves with the output of the pipe
during the period of initialisation. This is the time before the pipe outputs the data
correspouding to the first input. If this is the case, then to verify the behaviour of
pipe P of length £p it is sufficient ta consider Slow(fp, 0, {), P). This pipe has the
same effect as P although it has length L.

A pipe of length | can only have as many states as there are possible configu-
rations of inuput. Supposing there are k configurations of input, a pipe of length £p
can have as many as k%7 states. Clearly the pipe of length 1 is easier to verify that
that of length £p since there are in general fewer states to consider.

Often, during development, a pipe is broken down into several components.
where these components correspond to various stages in the pipeline. If each of
these components is itself a pipe, as is often the case in such circumstances, then
by making use of Theorem 7.5 we need never consider the full expansion of the
overall pipeline when verifying its behaviour. Suppose P is a process which can be
decomposed into components P;, P;, ...P, where each of the P; is a pipe and

P=P,»>P,>»..> P,

137

il Comp| ar b1

10 ad % . . 14 [%77_4—00
{

ey

a2 . b2

_Ia)mp as Comp| s 0F
L7

A
f=
|
|

Phase 1 Phase 2 Phase 3

Figure 7.4: A Sorter

It follaws that P is a pipe from Theorem: 7.3. Moreover, as each of the P, is a
shorter pipe than P it is easier to verily that each of the P, are pipes, especially
if they ate of length 1, than to show that F is a pipe directly. To investigate the
effect of pipe P we can use the following iterative technique.

Seiting @ = Slow(lp,.0,{},F)

in+1 = Sl’aw(Q. Uy {}y Q‘m > SID'U}(“‘P,—,—,41 * 0' {}1Pm+l))
We can show by induction that

Qm ES!D'W(E,";ran 01{}»P1 > >>'Pm)

hence @, will have the sarue effect as pipe P. Using the above iterative technique
to evaluate (), we only ever chain pipes of unil length.

In the example that follows we shail see these techniques applied in order to
verily the behavionr of a pipelined sarter.

7.4.2 Example: A sorter

Taking simple 2-bit comparators as onr hasic components we shall construct a
pipeline of lengthk 3 and demonstrate that it sorts four bits. We say a pipe
gorts four bits input on the set of wires {if, if, 72,3} if the ouiput on the wires
{08, 01, 02,03} has the same number of high wires as the corresponding input and
if j € 0..3then

of high=> Y& € 0.j+ ok high

Data is latched along the pipeline by D-type fip-Bops. The configuration of the
circuit being shown in Figure 7.1, where Comyp is a comparator and D is an array
of four D-type flip-flops.

138

We shall consider the algebraic representation in SRPT of the basic components
from which the above sorter is comprised. From these we shall derive the three
compenents which make up the three phases of the pipeline. In a time frame in
which one unit of time has the same length as one cycie of the system clockeach of
these three components is a pipe of length 1. Then, by application of the results of
the previous section, we shall establish that the complete system is a pipe of length
3 which sorts four bits.

Comparator

A simple comparator can be construected from an AND gate and an OR gate as
shown in Figure 7.5. Using the definitions of AND and OR from Section 3.2.1 the
comparator circuit can be described as follows:

Comp = OR || AND[d/fc).
It is & simple exercise to show that
Comp=[{}?X — Comp(X)]
where

Comp(X) = Comp if X = {} else (Comp” if X = {q, b} else Comp’)

Comp'=[{c}?7X — Comp(X))
Comp"=[{ e, d}7X — Comp(X)]

Rising edge triggered D-type flip-flop

A D-type fllip-flop is a 1-bit storage device. It latches the value on wire d at
the time of the rising edge of the clock signal. This data is available a5 output
until the Hip-flop is reset at the next rising edge in the clock signal. Making the

b_

Figure 7.5: A simple comparator

139

same asumptions as were made when describing the clocked T-type flop-flop in
Section 7.2.2, the following describes a D-type flip-flap.

Df = {d, ck} oDff = {q} D = Dff:

where Dffy 17X — (Dffyif ok ¢ X else (Dffy if d € X else Dffy))]
D 17X — (Dffu if ck € X else Dff})]
Oy = [He}?X — (Dffy if ck € X else Dff)]
D, = [Hq)?X = (DL ok ¢ X else (Dff; if d € X else Dffy))]

Here L and H represent the value of the clock signal.

oAl

The clack

In this example we shall assume each of the three phases is controlled by a sym-
metric cock, deseribed by the process:

CK = 1+ [ek} = [{} = P

This clock is deterministic and has no inputs so its behaviour is governed precisely
by time. We shall take advantage of Lhis observation and ahsorb the clock into
the implicit timing of the model. We shall ultimately model each phase of Lhe
pipeline in a time frame such that one time unit corresponds to a single clock
cycle. Maoreover, we shall assume the ‘tick’ in the model coincides with the rising

edge of 1be clock signal,

The components of the pipeline

We want a representation ol the three phases of the pipeline which corresponds
to the system being viewed in a time frame where one time unit corresponds to a
single clock cycle. We also require the represeutation to be in a forin from which
it is easy to deduce that each phase is a pipe. We shall only demonstrate the
derivation of the component which makes up the first phase here. The algebraic
representations for the other two phases are simply stated, their derivations being
similar.
The fist phase is built of four D-type flip-flops and two comparators:

Phasel = (Comp(t0 fa, t1 /b, a0 ¢, al /d) | DF[i0/d. 10/ q] || DF[il /d,t] /]
| Complt2fa,td/b,a2fec,«3/d) || DF[i2/d,t2/q] || DF[18/4d,3/q])
0.t 12019}

this can be considered as two components in parallel:
Phascl = Qi0/d0,iljdl af/c.al [d) || Q[i2/d0,iF/dl,a2]c, a3/ d]
where @ = (Dff[40/d, a/q) | DF(d1/d,b/q) || Comp)\ {a, b}.

140

By eliminating parallel composition and hiding from the above expression we
can demonstrate that:

Q=50.{})
where § is given by:

S Y)= g Y}7X — (S(L.Y)if ck ¢ X else
[tg(Y)1Z = (S(H, X — {ck}}if ck € Z else S(L, X — {k}))])]
S(H. Y)Y = [lg{Y 11X + {(S(H,Y)if ck € X else S(L, ¥))]

where ¢ : P{df). d1} — P{c,d} is defined by:

g4 = 0 g({do}) }ﬁ e
gi{d0,d1)) = {¢.d} gi{di}y [~

The derivation is given in Appendix C.2.1.

Tle vising edge of the systemn clock coineides with the 2k + I* ticks of the
tirne fratne in which the system is modelled. We shall incorporate the details of
the clock into the model of this phase of the pipeline and abstract away [rom the
details of the clock.

Phsl = (Phasel || CK)\ {ck}

Then we translate the model to a time frame in which a unit of time corresponds
to a single cycle of the system clock and observations occur at the rising edge of
the clock cycle. Thus we absorh the system clock into the implicit timing of the
model.

Phasel' = Slow(2,0,{}, Phsl)

By applications of the laws of SRPT we calculate an expansion of Phs! which does
not involve parallel composition. We then apply the laws for timewise abstraction
(as showu in Appendix C.2.1) 1o demonstrate that

Phuset’ = P1({})

where P1 is given in Fignre 7.6. Clearly Phasel’ is a pipe of length | with effect
given by gph“,[l(/\') = {f; (1")}

Absorbing the system clock into the implicit timing of the model we obtain
similar descriptions of the final two phases of the sorter. The pipes Phase2’ and
Phased', both of length 1, which make up the final two phases of the pipeline are
described as follows:

Phase? = P2({}) Phased = P3({}}

where P2 and P3 are given in Figure 7.7

141

Compoasing pipes

When we compose processes in SRPT we assnme the components are modelled
in the same time frame and the components in a parallel composition evolve in
lockstep. We assume that all three components of the composed pipeline share the
same time frame, and due to the way in which the components are modelled, the
rising edges of the clocks controlling these three camponents coincide.

By applying the theory of Section 7.4.1 we know that

{Phasel’” 3 Phase?’) » Phased

is a pipeol length 3 with the same ellect as the pipe of length 1 given by:
Slowl2,0,{). (Phasel’ 3 Phuose2') Phased")

Now by Thevrem 7.5

Slowld, 0, {}. (Phasel’ » Phase2) > Phased’)
= Slow(2,0,4),Slow(2, 0,1} Phasel’ > Phase?’) > Phased')

So we can evalvate an expansiou for Slow(2,d,{}, Phasel’ » Phase2’). From this
and the algebraic laws of SRPT (as demonstrated in Appendix C.2.2) we can deduce
that

Slow(8,0.{},(Phasel’ 3 Phase2') » Phased’) = Sori(0)

PHX) = /(XY — PI{Y))
where [, is delined over the domain P{if?,i!,12,:3} as follows:
f;({iﬂ}) B f,({iO,iI]):{aO,aI}
Fe({r}) };{a(}} hi{iz,ig})={a2, a3}
fitleh . fidi0,e1 22} }: al,al,a
Ji (i) }’{“2} fdioyir,ig)) f=lad-al a2}
fo({io.ie}) fi{{i0,2.i5} }: af,a2,a
BT |y by Ptz 10807
Ji{i0.13}) ' £i{i0,i1.42,i8))={a0, al, a2, a3}
Ji{i1.3}) Ldh={

Figure 7.6: The first phase of the sorter pipeline

142

where Sort(0) = {({}TX — Sert(|X])]
Sort{1) = [H{e0}?X — Sori{|X])]
Sort{2) = ["{of.01}7X — Sori(|X]))]
Sort{3) = (Yo, 01,02}7X — Sort{|X]))
Sort(4) = Mo, 08,02, 03} X — Sort{|X|}]

Clearly this pipeline sorts 4 bits. Hence s0 too does the pipeline

(Phasc !’ > Phase2') > Phased’

and we have the required result.

PRXY & [1LIX1TY - P2(Y)]
PI(X) = [fs(X)TY = PI(Y)]
with f; and fy defined by

Je ({h={} f (?t%;:}}ﬂ}
fe({al0}) s =1e
ifee) J=t0 AU Lo
f({at}) }:{b"’} fs({62})
fe({a3}) N fs({b3})={03}

fel{a0,a1 }) fs({b0,b1}) }:{oa o}
fe({al, a2} :{bf) b2} ff({bgvb‘?}) '
fe({a0, a3}) " fi({b1,03)) }={01 03]
fo({a2, a3} fe({b2,83]) ’
fe({a0, a2})={b0, b/} fs({b1,62})={0l, 02}
fe({al, a3})={b2,b3} f+({60,63})={00, 03}
fol{al,al, a2}) | _ Fo{{b0,b1 02)={00, 01,02}
fe({al, a2, a3}) }_{w‘bl‘b?} f,{{b},b:?,b;‘}%:{af,02,03}

fi({al,at, a8}) | fs({bo, b1, b3))
it bt S A A =to0.01,08)

fel{a0.al,a2,a2})={b0,81,62,53} 1 ({60, b1, 82, 89))={00, 01,02, 03}

Figure 7.7: The final two phases of the sorler pipeline

143

7.5 Conclusion

In this chapter we have iutroduced the notion of timewise abstraction in discrete
time algebras. In frameworks where timewise abstraction can be applied unambigu-
ously, such as SRPT. it provides a mechanism for translating processes to a less
detailed time frame, thal is one Where observations are made less frequently. We
have applied timewise abstraction in SRPT, using it to investigate the behaviour of
components, intially described in a time {rame appropriate to recording gate de-
lays, when their mput is latched at the slower speed governed by the system clock.
We have also demonstrated how timewise abstraction may be used to evaluale the
behaviour of pipes. The technique involves translating a process which represents a
pipe of length € to a time frame a factor of { slower. The resultant process is a pipe
ol unit length with tiie same overall effect; the problem of verifving the behaviour
of a unitlength pipe is simpler than the same investigation of a longer pipe.

144

Chapter 8

Summary and Related Work

8.1 Summary

We have explored the result of adopting a synchronous view of concnrrency, that 1s
one in which components evolve in lockstep. The languages SCSP, a variant of the
familiar CSP formalism, and SRPT, a synchronous version of Receptive Process
Theory [Josy2], were introdnced and given a denotational semantics. Despite vari-
ations in the way behaviours were described, the semantic models chosen for SCSP
and SRPT both capture failure and divergence information concerning processes,
We have formally demonstrated the way in which SRPT may be viewed as a sub-
language of SCSP hy means of embeddings which map the language and model
of the [ormer into those of the latter. A syntactic extension to SCSP facilitated
reasoning about the communication of data via channels. Finally, we introduced
the theory of timewise absiraction, applying it to the language SRPT.

One interpretation of synchronous commnnication is that all components of a
process running in parallel evolve together on the tick of a global clock. In this
sense, both SCSP and SRPT are discrete time process algebras and are applicable
te a domain of problems which inciudes systems with time-critical requirements.
By working in a synchronons framework, we can express the relationship between
timing of components and timing of the whole system. Interaction between com-
ponents can affect the way in which they evolve, but not their speed. The result is
a very simple model of timed behaviour.

As several components of a system evolve in absolute synchrony it is possible
that the components may perform distinct events at the same time; yet in process
algebras it is desirable to be able to eliminate the parallel composition operator
from process expressions. Therefore, in both the languages presented in this thesis
we allowed prefixing of processes with sets of events, the implication being that
events drawn from such a set may occur concurrently. The tanguages thus support
the notion of true concurrency in a very explicit manner.

145

The final significant feature of both the languages we have presented here is the
strong causality assnmption. We assnme that time must pass between cause and
effect; simultaneously occurring events do so independently of one another. More-
over, the occurrence of one event at a given time cannot preempt the occurrence of
another event at that tine. This results in the envirommental choice being a choice
as to wlich subset of the set of events. offered by the process at a given time,
shonld be perforined. This design assumption reflects the fact that in circuits, for
example. the value on one wire at a given time cannot, in general, influence the
value sen at the same time ou an independent wire.

The receptive language, SRPT, contrasts with SCSP by dividing the alphabet
of events assaciated with a process into inpnt events and cutput events. The resnlt
is an implied direction of commuuication between components. Two processes P
and) cooperating on an event a. which is classed as an output event of P and
au inpul event of §}, are seen as comnmunicating by P sending @ a signal along
channel 4. By insisting that a process is always ready to perform any of its input
cveats and output events occur as soon as they are made available, we have heen
able to capture the notion of receptiveness of processes in SRPT. Being both a
synchronous and receptive theory inakes SRPT highly appropriate as a theory for
modelling and reasoning abont synchronous cirenits, where components are latched
by a global clock and comnmunication along wires between components is inherently
receplive.

Both the languages SCSP and SRPT were given a denotational semantics. The
semantic models chosen for the two languages capture the same behavioural infor-
mation, namely occurrence and refusal of events and divergence. The way in which
this information was captured differed in the two cases. In the model for SCSP,
the refusal of a process to perform an event was considered as observable as the ac-
currence of an event. So refusal information was captnred in the traces along with
the eventswhich occurred. By introducing the concept of infeasible behaviour into
the traces a simple metliod was devised for encoding divergences into the traces.
The non-determinism ordering, familiar to CSP, provided a simple ordering on this
model. This allowed us to draw on a wealth of experience, accumulated in the
development of semantics for CSP, to obtain comparable results in our model and
a mathematical underpinning of the language SCSP.

The features of SRPT which characterise its receptive nature make refusal in-
formation directly deducible from the events performed. Inpnt events are never
refused, while all output events which could occur de, so those not seen to occur
would be refused. This observation resulted in a model which did not record re-
fusal information. In order to capture divergences within the traces once more,
we chaose to represent divergence by the abhsence of information; consequently an
information orderiug on the model berame a natural choice in contrast to the usual
non-determnism ordering.

146

As the languages have so many leatures in common, it seems appropriate that
there should be a relationship hetween SCSP and SRPT. By considering a method
for describing receplive systems in SCSP (assuming that refusal of events represent-
ing output results in divergence and making available all events representing input
in all prefix constructs} it was possible to devise a natural embedding of SRPT
into SCSP. This embedding preserves the intuitive representation of processes and
results in a continuous map from the semantic model of SRPT to that of SCSP. So
SRPT can be viewed as a receptive sublanguage of SCSP, as well as a syachronous
variant of Receptive Process Theory.

We have shown in this thesis that both languages have sufficient algebraic laws
for us to establish proof systems which are sound and complete with respect to
the semantic moclels. The algebraic laws make it possible to eliminate parallel
composition and hiding from process expressions; this allows us to deriverepresen-
tations of systems with all concurrency explicitly modelled in the prefix construct.
Such representations give a clear perspective on the concurrency in the system. A
complete proof system of algebraic laws enables refinement relationships deducible
in the model to be established fromn algebraic manipulation of process expressions.
As is shown in the examples throughout this thesis, this makes it unnecessary to
consider the underlying semanties when reasoning about processes.

Adaptations were made to the language SCSP, in Chapier 4, which provide
a framework in which to describe directional communication. The modifications
to the language involved defining new notation in terms of existing syntax. This
ensured the changes were well defined with respect to the model. The new notation
made il easy to model the flow of data between components of a system along
directional channels. The transfer of data between components is often afeature of
complex systerns whose development may benefit from the formal analysis offered
by process algebras. With the enhanced notation, SCSP offers itself as a viable
framewark for such analysis.

Finally, we introduced the notion of timewise abstraction which provides a
procedure for iranslating a process, in a discrete time algebra, to a slower time
frame. Timewise abstraction was easy to define for SRPT, the interpretation being
that input is held fixed for the length of the new longer clock cycle, changes to input
and output are only recorded on the tick of the new clock. This interprelation was
found to be particularly suited to the problem of modelling synchronous circuits;
components could be developed at speeds appropriate to judividual gate delays,
then reinterpreted in a time frame correspending to the speed at which input is
latched. Timewise ahstraction was also applied to aid the verification of pipelines
modelled in SRPT.

Through the development of the laugnages SCSP and SRPT, we have shown
how a synchronous view of communication may be adopted in process algebras.
Within this thesis the lockstep progression of processes is used to capture discrete

147

time, enabling problems with quantitative timing details to be analysed with the
languagss presented here. We have striven for simplicity in both the design of the
languages and the design of the niodels in this thesis, We have also demonstrated
that the languages are applicable in diverse problem domains.

8.2 Comparisons

A variely of formalisms have been applied to the problem of specifying and verifying
real-time systems. Originally. inany of these formalisms took a qualitative approach
Lo time. restricting their concern Lo the relative ordering of events within a systen.
More retently, reflecting the increased use of computer systerns in time-critical
applications, these formalisms have heen extended to take a quantitative approach
Lo time, encouipassing the relative fiming of events within a system. We shall
briefly consider four approaches to formal analysis of real-time systems, and theu
compare and conirast the varions fealures of other authors’ approaches with those
aof the wark presented in this thesis. Finally, we consider some of the formalisms
which have been applied specifically to VLS design.

Temporal Logics [Pou77, MPY2] are logical lauguages which include statements
about variation in tire, such as ‘eventually’or ‘until’. These allow qualitative tim-
ing condilions to be specified, for example, pifq is true iz a given computation if p
holds until ¢ becoines triue, The languages have been enhanced to allow statements
which capture quantitative timing requirements hoth by allowing predicates that
make staleinents about time in the language [PH88] and hy annotating the modal
operators {such as /) with times [KdR85].

Graphical methods arc exemplified by Petri nets |Reid5, Pet77) and State-
charts [Har87]. Petri nets are bipartite directed graphs consisting of a set of places
{or conditions), a set of transitions (or evenis) and directed arcs from places to
transitions and from transitions to places. A net is marked by tokens at places.
A transition is enabled and may fire when all places with arcs to that transition
{input places) are marked. When a transition is fired a token is removed from
each of the input places and a token is added to each of the places reached by arcs
fram the transition. There are several variants of Petri nets, all based on the above
scheine. Quantitative timing restraints have been added to transitions [MF76] by
associating a time interval (¢, #z) with each transition: the transition nust be en-
abled for atime {; before it may fire and cannot be enabled for a Lime in excess of
t; without firing. Another approach to incorporating temporal details into Petri
nets is presented in [(R3$3] where a minimum tokeu helding time is associated with
each place.

148

Stalecharts is a visnal specificatiou language dealing with hierarchy, concurrency
and communication. In its simplest form a Statechart is a labelled direcled graph
with nodes represeuting siates and arcs labelled by events. Timed Statecharts
[KP92] annotate each arc with a time interval (I, u) denoting lower and upper time
hounds of the event in a inanner comparable to [MF76].

Programming languages such as ESTEREL [BG92], SIGNAL [BIGS592] and
CSML [CLM91] have been applied to reactive and real-time systems. Both ES-
TEREL and SIGNAL are deterministic languages based on the synchrony hypoth-
osis: this assurnes that cotmmunication and elementary computation take 1o time.
A program is conceptually executed on av infinitely fast machine; delays result
only from Iuteraction with the environment. ESTEREL is an imperative language
which can be compiled into finite autoinata and used to program reactive kernels
controlling the state of the system. SIGNAL is a relational style language suited
to data flow analysis. UUSML is a deterministic inperative language based on a
weaker version of the synchrony liypothesis in which all reactions take ove clock
cyele. This makes it patticularly suited to simulation of synchronous circrits.,

Process Algebras provide the final class of formalisms to be consideted here,
Typically process algebras are given a structured operational semantics [Plo8l1]
which takes the formn of transition rules. These transition rules allow one togenerate
a tree representing the possible transilions of a process. Both specification and
implementation of a system are represented by processes; an implemeutation is
verified with respect to a specification by establishing that the two processes are
equivalent under certain relations. Bisimnlations [Mil89] provide one class of such
relations; these cowpare the behaviours as viewed by an external agenl. Various
bisimulations exist. some of which take inte acconnt internal actions or the passage
of time {in real-time algebras) in their comparisons. Algebraic laws, representing
rewrite rules which preserve bisimnlation, allow processes to be compared by nmeans
of algebraic manipulation. Alternatively, processes can be related under a testing
equivalence [Hena§|, whereby the sucress of experiinents performed on processes
is compared. Testing preorders can be established on an algebra and these allow
comparison of processes.

The original process algebras CCS [Mil39] and ACP [BK84], and the ISO stan.
dard language LOTOS [BB88], which do not display any quantitative concept of
timing, have been extended to record temporal information in a variely of ways.
ACP, [BBY9la], the real-time extension of ACP, associates an absolute time stamp
witb actions: while that associated with actions in T1C [QAF90], a timed calculus
for LOTOS, is relative to the previous action. Timing is also assumed relative in
the time stamping of actions witl intervals in Liang Cher’s Timed CCS [Che91]
and CCSIiT [Dan92].

149

An aternative approach to tiine-stamping actions is the introduction of a time
prefix as taken in versions of Timed C'CS presented by Moller and Tofts {MT90]
and Wang Yi [Yi91] and in the timed extensions of LOTQS, p/ [BL92] and Timed
LOTOS (QF&7]. In TPL [HRY0] a distinguished action representing idling for one
clock cyrle is added to standard CCS.

Other timed algehras include ATP [N5490] which, like TPL, has a distinguished
time action. PARTY [HSZFH92] includes two forins of time prefix in its language,
a busy wait of fixed duration and an idle wait with arbitrary duration. Miiner’s
SCCS [Milg3]. MELIE developed by Boudol [Bou85] and Jeffrey’s Discrete Time
CSP [Jella] introduce the notion ol a clock tick in their action prefix constrncts.
In these hanguages the action prefix, like the set prefix of SCSP, takes one tiine unit
to evolve,

An alicrnative approach to the use of vperational semantics in the development
of process algebras is used in this thesis. This appraach, used by CSP {Hoa85] and
many of its timed extensions, associates a denotalional semantics with the algebra
and givesthe meanjng of a process in terms of a inathematical model, the semantic
model. Both specilication and unplementation can be represented by processes.
The former can be shown to be refined by the latter using algebraic manipulation,
aided hy laws which preserve the (refinement) ordering on the semantics of expres-
sions. Alternatively, specifications can take the form of predicates, representing
semantic requirements, which can be shown, with the aid of a proof system to be
satisfied by a process corresponding la the implementation. The latter approach is
Laken by Davies and Schneider [IYav91, Sch90] with Timed CSP.

Quantitative timming has heen mcorporated inlo extensions of CSP. Ortega-
Mallén and Frotos-Escrig assume that each action has an associated duration in
their Timed Observatious [OMdFE91], while the Timed CSP proposed by Reed
and Roacee [RRS7] introduces a delay operator and assoclates a non-zero, mini-
mum recoery time with the occurrence of actions in sequential processes. This
minimuin tecovery time has been dropped in later versions of ‘Timed CSP [DS92].

8.2.1 Features of formal methods for real-time systems
Time domain

Partially ordered time domains have been applied to process algebras by Baeten
and Bergsira [BB90] and Jeflrey [Jef91b]. hut in general the time domain used
in rmodels of real-time systems is a totally ordered set such as R or N. We shall
limit our discussion to such domains. Totally ordered time domains can be divided
into two classes; continuous — where typically Rt is used to represent time, and
discrete — where for example N is used to model time.

Processalgebras such as PARTY, and the timed extensions of CCS presented in

150

[MT90, Yig1, Chie91] admit either continuous or discrete time. Timed CSP, ACP,
and CCSiT provide examples of formalisins where the time domain is continuaus.
On the other hand, iu common with the languages SC5P and SRPT presented here,
the measure of time is discrete in many formalisms iucluding TPL, ATP, SCCS,
MEILJE and the timed extensions of LOTOS in [QAF90, BL92],

Real-time process algebras using a continuous time domain provide a more real-
istic, and hence more complex. description of time than their discrete time counter-
parts. A continuous time domain gives rise to algebras which are very expressive,
although the gain in expressibility is often off-set by the increase in complexity.
Only the discrete time version of Temporal CCS [MT90) admits a complete ax-
jomatisatiou. Stnilarly there is not an adequate axiomatisation of Timed CSP,
although mrch work has been done to ease the use of Timed CSP as a specifica-
tion language. In [Sch90]. Schneider developed a compositional proof system for
behavionral specificatious in Timed CSP based on the language's sernantics, while
Jackson {Jac92] uses a language based on temporal logic to describe and verify
programs in Timed ('SP,

The model of concurrency

‘There are two recognised models of concurrency: interleaving concurrency and true
concurrency. In the context of process algebras, interleaving concurrency cannot
distinguish hetween a process which concurrently offers two independent events
and a process which offers the choice between the sequential performance of two
events in either order. This can be summarised by the existence of an equation
equivalent to the CUS equation:

glb=ab+ b

in the algebra. Such algebras allow complete elimination of concurrency from ex-
pressions.

In process algebras exhibiting lrue concurrency, the simultaneous eccurrence
of concurrent events can he distinguished from sequential occurrence of events.
Concurrency cannot he conipletely eliminated from expressions in process algebras
exhibiting true cancurrency. Often the simultaneous occurrence of events is made
explicit in the language: to this purpose {Jef91a] uses bags of events in Discrete
Time CSP; the languages SCCS and MEIJE are built from monoids of indivisible
actions; ACP represents concurrency of events explicitly as g|b; while thelanguages
presented in this thesis use sets of events. Alternatively, true concurrency can be
implicit in the inability to eliminate paralle] composition from expressions, as is the
case in the Timed CSP of {RR86]. In the Timed Observation semantics [or CSP
[OMdFE91] concurrency cannot be eliminated without extending the language to
incorporate a bag prefix operator, which makes explicit the simultaneous occurrence
of events.

151

Those real-time process algebras. such as SCSP and theories presented jn [Mil83,
RRA86, JefGla]. which associate an inherent delay with sequential cornposition or
action prefix necessarily exhibit true concurrency. It is interesting to note that
the model of Timed CSP presented by [DS92]. in which the delay, 8, associated
wilh prefixing is removed, exhibils interleaving concurrency, like CSP. In general
it appews that timed algebras which exlend untined models by time-stampmg
actions jeg. ACP, or Liang Chen's TCCS [Chedl]), or with a distingnished time
aclion (eg. TPL)Y, or by introducing a delay construct (eg. Temporal CCS [MT90])
exhibil the same form of coneurrency as their untimed counterpart. In particular,
ACP,, like ACP. cxhibits true concurrency: while ATP and Temmporal CCS follow
the interleaving concurrency approach of CCS.

True roucurrency is also exhibited by graphical methods: Condition/Event sys-
Lems in Petri Net theory [Thi86] define a transition as a set of events firing concur-
rently, while Statecharts allow sirmultaneous transitions via labelled arcs in concur-
reni components of a system. However the timed Petri net models [MF76, CR85]
and Timed Statecharis [KP42) restrict themselves to a single transition at a time
{involving a single eveut). removing the true concurrency aspect from these models.

Persistent and urgent actions

Persistency and urgency are attributes associated with actions in timed process
algebras. An action is said 1o he persistent if, once it is offered by a process, the
passage of time alone cannot result in the process withdrawing the offer of the
action. In SCSP, the derived event prefix construct, a ~ P, allows us to nodel
persistency. However, events offered ju the primitive set prefix coustrnet need not
be persisteni. For example. the process [X € B — Px]| may idle for one unit and
evalve into a process Py which is unable to offer those events in set B. In SC'CS
persistent actions can he represeuted in a similar manner to SCSP, by explicitly
allowing the choice between performiug the action and idling nntil the action cecurs.

TPL and Timed CSP consider actions to be persistent in their prefix constructs,
although the provision of a tirmeout construct allows the offer of events to be with-
drawn. Wang Yi also uses persistent actions in the Timed CCS of [Yi91], where,
by parameterising the process with time, the behaviour, subsequent to the per-
formance of an action. may vary depending on tbe time at which the action was
performed. lu CCSiT and Lamg Chen’s Timed (/CS, actions are made available
over Lhe duration of an interval; by allowing the interval to extend to infinity, ac-
tions can be made persistent. The extension of LOTOS in {BL92], p!, considers
actions to be persistent unless explicitly marked as urgent.

An action is sald to be urgent if it must be performed as soon as it is made
available. In SRPT output evenis can be seen to be urgent; we assurne that they can
be performed when they are made available and, inake no provision for the failure of

152

occurrence of offered output events. In SCSP the only way to represent an urgent
event 15 to assume that the resnlt of idling is divergence, as in the following process

{a} = Pr_L].

Ii many process algehras (eg. Temporal CCS [MT%], ATP and PARTY) the failure
to perform an urgent event will result in timestop with the process unable to
progress in time. In Temporal CCS and PARTY, action prefix is urgent, although
the provision of an idie prefix § enables a persistent action to be represented by
§.a.P. Actions in ATP are also urgent; persistency of event @ can be captured
using the timeout constrnct reeX.|aP|(X). In TIC and ACP, all actions are
time-stamped and nrgent. Tle provision of a choice set of terms in TIC and an
integral construct representing the choice of an action over a continuum of times
in ACP, allows same degrec of freedom in interaction with the environment in
these algebras. The Timed ('CS of [Ched1] and CCSiT can represent urgency in
their actions by reducing the associated interval to a single instant. In the case
of [Chedl] the process cannot progress in time beyond the time interval unti] the
actiou is performed, while in (CCSiT time may progress beyond the time interval
associated with the action but the process prefixed by the action cannot evolve.
Finally, actions in SCCS can he considered nrgent as a consequence of the way that
parallel components proceed in absolute synchrowy.

Communication

In the original process algebras, CCS, CSP and ACP, one assumes that concurrently
runuing components in a system progress at acbitrary speeds. Synchronisation oc-
curs whenever communication is required between two components. To achieve this
may require one process to wait for the other; such waiting is not recorded explic-
itly. Commuuication is referred to as asynchronous [Mil83] in circumstances whbere
it involves the arbitrary delay of components. Like the algebras mentioned above,
some of tbe timed process algebras also take an asynclironous view of communica-
tion. With the introduction of timing, the delays are made explicit. However the
delays before canuinunication takes place can be arbitrary, as modelled in Timed
('SP, TPL and Waug Yi's Timed CCS [or example. A common feature of all these
algebras is the persistent nature of actions and this allows such arbitrary waiting.

Commuuication is regarded as synchronous, in the sense of Milner, il commu-
uicating components proceed in lockstep, cooperation on an action being possible
if the action is sunnltaneously made available by all components. This view of
synchronous communication is taken iu SCCS: components of a system proceed
i absolute synchrony; a component’s evolution may be governed by its interac-
tion with the environment and other components but the speed of this evolution
is independent of the component’s interactions. The same view of synchroncus

153

communication is taken iu SCSP: set prefix represents an opportunity for the en-
vironment to control the evolution of a process and will evolve after one time unit
regardless of the availability of eveuts froin the euviroument. ln [Jef9ia], Jeffrey
uses the same technique to represent synchronous commmuuication.

By using time-stamps on actions ACP,, TIC, CCSiT and Liang Chen’s Timed
CCS exbibit a synchronous model of communication. Qther algebras in which
actions are urgent {cg. Temporal CCS [MT90], PARTY aud ATP) also provide
a synchronous view of communication. although thal of ATP can also be viewed
as following the synchrony hypotliesis proposed by Berry [BB91b]. In this view
Lime is oaly marked at the points at which enviroumental interaction takes place;
Lhe system is assumed sufficlently fasy for all necessary internal interactions 1o be
completed before [urther environimental interaction is attempted. So at the lower
level of internal interaction. ATP behaves asyuchranously, while synehronisation of
componenls on time actions ensures Lhat componenls progress synchronously with
respecl to Lhe environment.

Most of the algelraic formalisms which present a synchironous view of comunu-
nication provide au arbitrary wait construct, which allows local desynchronisation
lo be wnodelled via persistent actions. In contrast, parallel composition in MELIE
is asynchronous but svochronisation can be achieved by use of a ticking opera-
tion: this can be secn as marking an agenl with an authorisation sigual sent by a
synchroniser,

Causality

One of the decisions made in designing the janguage SCSP was to mnsist that, if
the observation of one event is dependent on the occurrence of another, then time
must pass between these two events. That is, time must pass between cause and
effect {time dependent causality]. One way to examine whether such causality
assumptios have heeu nade is to consider whether the visible behaviours of a
syslemn can be completely described by a bag of time-stamped actians; if this is
the case then the ordering of events occurring at a given instant {s not significant.
Those timed process algebras (eg. SCCS, Discrete Time CSP and the Timed CSP
presented m [RR80]). which associate an inherent delay with sequential composition
or action prefix. prohibit the simultaneous ocenrreuce of cansally related events.
ACP, ensures that Lime passes between cause and effect via its axioms. PARTY
takes a novel view that a ;b cannot be distinguished froin 6: ¢ or afb. (It assumes
time passes between cause and effect, but does not reflect this in its sequential
composition construct.)

In SCSP the causality requirement is slightly stronger tban that in some of
the other inodels, notably Discrete Time CSP and Timed CSP. In SCSP the per-

formance of one event at a particular time cannot preempt another event at the

154

same timie; this results in the inability to instantly resolve (or even model)external
choice. Moreover, unlike the other algebras which exhibit time dependent causality,
SCSP does not support eute-concurrence, the ability to perform multiple copies of
an event at a single instant. This is consistent with the strong causality require-
ment and results in a model in which refusal infoermation at a given time is not
dependent on the events which occnrred at that time.

The alternative approach to time dependent causality is to allow instant causal-
ity; the ocenrrence of an event ¢ at time ! may effect the occurrence of other events
at time ¢. Instant cansality is demunstrated by many algebras including Tempo-
ral CCS [MT80], ['PL. ATP and the model of Tiined CSP advocated in [DS92].
Instant causafity in TPL is a result of the notion that timing constraints are not
always explicit. Idling is only made explieit when it must occur; on other occasions
timing consideralions are left arbitrary and unrecorded, as in CCS. In ATP instant
causality s due Lo a similar lack of concern as to temporal details between time ac-
tions, This view is shared by the languages ESTEREL and SIGNAL which, based
on the synchrony hypothesis, assume that there is no delay between the receipt of
input and the production of the consequent ontput; the anly delays modelled in
these langnages are those resulting from awailing environmental interaction.

Timing relations

In Chapter 7 of this thesis the notion of liinewise abstraction was developed and
applied to the langnage SRPT. This provides a mechanism for slowing down the
time frame in which components of a system are modelled. Other anthors have
considered timing relations which inay be incorperated into formal methads; some
of these will be considered herc.

Schneider [Sch90] introduced timewise refinement into Timed CSP. This for-
inalised the concept of a simple process in CSP being refined by processesin Timed
CSP which introduce timing considerations. This notion was complemented by a
mapping on processes in Timed CSP which removes all explicit timing information,
giving their untired connterparts in CSP. The original timed process is 2 timewise
refinement of its image. [t is then possible to verify those properties of a system
which are preserved by timewise refinement {eg. safety requirements) in the simpler
untimed model.

By considering a subcalculus of Temporal CCS in which all actions are persis-
tent, {TCCS, Moller and Tofts [MT91] are able to consider a ‘faster than’ relation
on processes. A process P is faster that @ if it may perform actions sooner. By
insisting that all actions are persistent, P is always capable of progressing at the
same speed as (2 and, after performing an action earlier than @ could, F is capa-
ble of idling to allow @ to ‘catch up’. This allows comparison of processes which
are behaviourally equivalent (in the untimed sense), but which operate at different

155

speeds, without loosing sight of all Lemporal considerations.

Daniels annotates events with intervals during which they may occur. This
leads to the definition of a time hased refinentent relation ». in {Dan92]. This
relation § 3 H can be interpreted as meaning than B has a more precise liming
spevificalion that &. Hence 5 includes the same visible bekaviour as 2 but intervals
i /{ when actions are enabled are included in the corresponding intervals in §.

8.2.2 Formalisms for clocked circuit design

It has bren shown in this thesis how SRPT may be empioved in the verification
of synchronous cirenits. 1t is therelore appropriate to consider other approaches
which have been applied in this area. Many of the approaches are niechanised
Lo somne extent. which is required to cope with the scale of realistic circuit design
problems. The lollowing approaches are just a representative seleetion and should
1ot he considered exhanstive.

Algebraic desciiptions of cirenits are provided both by CIRCAL [MilR6] and
IOP (Hardware viewed as Objects and Processes) [GMASY]. Both these algebras
adopt the concepl of lockstep sy nchronisation ol concurrent components associated
with SCUS. CIRCAL is viewed as giving a relative description of the occurrence of
cvents, with the provision for modelling simullaneously oceurring events. Actual
timing s modelled hy clocked comnponents having a special timing port which re-
ceives tick pvents from an abstrach timer also modelled in CIRCAL. Specification
and implementation of ciccuits can be shown to be equivalent by mechanical alge-
braic mampulation in the CIRCAL systemn. HOP represents circuits as finite state
transition systems. The overall behaviour of composed components is examined
with the aid of the PARCOMP tool which antornates process composition. Within
the languzge, output is scen to occul at the saine timme as the input which caused
it, giving a morlel comparable to synchronous languages like ESTEREL.

In the iinperative programming langnage SML [CLM%1], programs represent
synchronous circuils. and their setuantics are hased on the hardware implementa-
tion of a state machine. In SML. control conslrnels determine the next state and
are assumed to execute in zero time. Assignments change stale and are assumed
to take one clork cycle. Timing rules can prevent complicated relationships from
heing desaibed without delaying more than one clock eycle. In order to remove
excessive delays Lhe language incorporates a ‘compress’ statement which assumes
all assignments within its scope take place in a single clock cycle. This compress
facility can be used to a similar elfecl as limewise abstraction in SRPT.

jtEP [She86] and Ruby {JS90] adopt a [unctional approach to the design of cit-
cuits. Primitive circult descriptions are compused using higher-order-functions (or
refations) lo give a description of the complete circuit. Circuits are developed by
transforming a correct desigu to an implementable description using algebraic laws

156

to manipulate functional expressions. Functions which describe circuit behaviour
take streams of inputs (over lime) and produce streams of outputs, giving adiscrete
time model of circuit behaviour suitable for synchronous circuits. All reasoning is
done at a functional level, the data streams are not inade explicit unlike most meth-
ods. A functional approach has also been taken by [BT89] where formal verification
of synchrouoeus circuits using a string-functional semantics is mechanised using the
Boyer-Moore theorem prover [BM79].

A variety of logics have been applied to circuit design. Higher-order logic is
used by Gordon [Gor86] to specify and verify circuits, Here, devices are modelled
as predicates on input and output; only when outpul matches input is the predi-
cate true. In systems where values ou wires vary over tinie the inpnt and output
are represetited by functions froimn time to boolean values and predicates modelling
components are also time dependeut. The HOL theorem prover [Gor85] provides
assistance in the verification of ¢ircuit descriptions. Linear time temporal logic is
used in [FKTMOBS6] to capture formally timing requirements in circnits. Again
this approach considers ¢ircuits as predicates on their input and outpul A logic
programining language, Tokia, is preseinted which atlows computer aided verifica-
tion.

8.3 Future work

We have already suggested that SCSP is a simple language with a miuimal number
of operators. In Chapter 4 the langnage was enhanced by the provision of a mecha-
nism for deseribing value passing in cornmunication. It would be useful to consider
a number of other extensions to the language. Some would be easy to implement,
while others would require extension of the syntax and, in some cases, modification
of the semantic model.

A rendezvous on set H, B ~ P, could be defined in terms of the existing
language

P
[XCB — ((B - X)~ P)] if B £ {}.

{}~ P
B~ P

o

This is a generalisation of the derived event prefix construct and ouly allows B ~» P
toevolve to P once all the events in B have occurred. It would be useful toestablish
circumstances in which such an operator might be useful.

Timeouts and timed interrupts are features that any model of real-time systems
should be able to capture. SCSP captures timeout implicitly in the definition of
set prefix. In order to make it easier to apply SCSP to the description of real-
time systems it would be advantageous to extend the syntax of the lasguage to
incorpurate an explicit timeout operator. Oue possibility is to define a timeout

157

P ln|‘>B) @ parameterised by both a time and a set of events. The interpretation of

such anoperator is that P = P, {BmPg behaves like P; Tor the first = units of time,
then a tineout occurs and it behaves like Py il P had only performed events from
sel 13 prior to the timeout. The traditional timeout would correspond to B = {}
while a timed intertupl, comnparable to that prescuted in [Sch90] for Thned CSP,
would e represented by the case B = of’. (learly extending the syntax of the
langnage must bhe accompanied by verilication that the uew terms are well defined
with respect to the model. The proof system would also have to be modified to
incorporate the new terms.

SCSI' daes not iitcorporate the notion of successful termination [[{oagh]: cither
a process is defined recursively so as vot Lo terminate or 1t lerminates in chaos.
Incorporaling successful termination into SCSP would allow us to model systemns
which ate required to terminate in their normal hehaviour. It would also provide
a framevwork in which 16 define sequential coniposition of processes. If successful
termination is Lo he represented in the language then it must be supported by the
model of SCSP: this would mvolve modificalion of the semantic model, the effects
of which must be incorporated into all results involving the model.

Currently zero delay gates cannot be modelled in SRPT. As output wonld nec-
cssarily be dependent on the simultaneously occurring input in snch circunistances,
it 1s conlrary to the underlying language design assumptions to allow process rep-
resenling zero delay gates. A pussible solulion to this probler is to simulate zero
delay gales by functions which may be composed withh processes. For example,
consider a zero delay combinatorial cizeuil, which preprocesses inpnt to a larger
circuit with delavs. We could reprosent the combinaterial circuit by the function
J and the remainder of the circuit by process P. Then the process [« P could
represent the required circnit, where *o” is a functional composition operator. Such
an extension to SRP'l' may have applications in the study of synchrenous cireuits.

Another area of future developient lies in the construction of operational se-
mantics lor hoth SCSP and SRPT. By developiug « structured operational seinan-
Lics in thestyle of Plotkin {Plo81] we would be in a position to make more thorough
comparizans belween our work and the process algebras of other authors presented
with semantics in this form. An operational semantics is a prerequisite to the de-
velopmenl of software tools. Tools such as FDIR [For92), a refineiment checker for
C5P, provide mechanical techniques for comparison of process expressions; such
mechanical assistance makes it feasible to consider problems substantially larger
than would be practical by hand. Both SCSP and SRPT would benefit from the
availabilily of such tools. As has already been suggested, the scale of circuit design
problems means that for a formal development method to be applicable in practice
it must be supported by soltware tools.

158

It may be argued that tbere are certain circumstances when specifications in
terms of predicates on behaviours may be more appropriate than defining 2 specifi-
cation in terms of a process. It is ofteu easter lo formulate an abstract requirement
using predicates; a one place buffer can be characterised by a simple relationship
between input and ontput. This is easily captured by suitable predicates while the
process specifying such a buffer would be the least deterministic process with the
regnired hehaviour, Predicate based specifications can also be more appropriate
for the provision of partial requirements for a system. By using different techniques
for representing specifications and implementations we could make a clear distinc-
tion between the two stages of development. Taking advantage of the denotational
semantics of SCSP, a compositional proof system based on the quantification of
predicates over hehaviours could be developed. A possible approach is the develop-
menl of a systemn using the sat notation employed by [Hoa85]. Alternatively, linear
time temporal logics could be used to provide a basis for a specification language
for SCSP. To cousider the latter approach adequately would require ns lo extend
the model to an infinite traces model in which concepts used in temporal logics,
such as ‘eventually’. could be specificd.

Finally, as with all new formalisms. the langnages presented in ihis thesis would
beuefit from the experience gained through applicatiou. It is only by wing such
formalisms as those developed here that we can really appreciate their worth: to this
end the analysis of larger case studies using SCSP and SRPT would be appropriate.

159

Appendix A
Proofs of Stated Results

A.1 Results in the model for SCSP

Theorem A.1 Assuming T[Plp ond T[Q]p satisfy the closure conditions with
vespeel to wlphabets o[P] and o [Q] respectenely. Then TP || @p salisfics w wilh
respeel to alphabel o[| QF.

Proof: As the variable bindings will remain unchanged throughont this prool
we will nul make them explicit in our argumeut. By the construction of TP]| (J].
il s in TP || @] there are two cases to consider when estahlishing the closure
conditivns are satisfied, the case where 5" results [rom agreement of hoth processes
for the whale time of ubservation;

S €D | Bar e t PLAN D) v s, sy = ({HF A
sNA—s, €T asn b -5 e T[QL)

and the e where 5 is the resnit of divergence of one of the component processes.

se | SETNEE P(AN 1_3)’ s Nasg = ({J)lsl ArF (A
(((sNA s) AET[PIAsOB -5 € T[Q])
VisNA—-s €T[P]As0B—s)" BeTIQIN)

Notice, we ouly need Lo conrider situations where r £ () here, since, by closure
conditioni, if » = {} then 5" is included in the first case. Without loss of generality
we shall asume that the divergence is caused by the divergence of P.

Suppose (V7' € TP || €]
case 1: We can find s, (X} 75 and 5,7 (X5} s} such that

(sNA—) (CNA-X)"(¢NA=5)eTP]
ABNB -5,) {UNB -)7 (N B -v)e T[Q]

160

We shall assume that X; and X; are chosen to be minimal in the lollowing sense:
VY CX «(sNA—s) {CNA=-YY(sNA-5)¢TLP].
Set Dy={ané Alag¢CArad¢C—X}
De={beB|bgCArbg C-1N,}
and D={acAUB|a¢g CAhag (]}
Naw by condition vien T[P]
(sNA—s)"((CNA-X)uD,jeT[P]
VAre D s sNA=-5)"(CNA-X)U{E])"(s'NA-s})eTIP]
Now by the minimality ofl X;. r € X;.so0z2¢ Cand z € D.
If the latier case holds then

JzeDo(snA—s) (CU{thn A~ X)7 (s nd -s)) € T[P)
ASNB — s ((CU{ENNB - X7 (FNB —s) € T[Y]

X, ifreA-B
XsU{z} fz€ANB

Clearly X; and X; are disjoint so

where X} = {

JzeDsT{CU{ENTS € TP || Q)
A similar result 15 obtained by considering vi on 7[QJ.

The remaining case is when

(sNA—s){CNA-X,)uD;) e T[P]
A(NB—s5Y"((CNB = X,)U D) e T[QL

Now DN A C D, and DN B C Dy hence by condition iii.

(snA-s) (((CUDYNA—- X)) € TP
AN B — s (((CUD)N B - X)) € TIQ)
Thus s7(C U D) € T[P || @] as required.

case 2: If divergence occurs for trace r < s7{C)" s’ then either r < sin which
case the result follows by construction, otherwise for some r' < s’

(s™C)" PN A ~3) (A € TIPLA (7(C)F)N B - & € T[Q]

in which case everything follows as for case 1 to give condition vi. a

161

Theorem A.2 Hiding 15 conlinuous with respect to the partial order.

Proof: We must show

Tl AlplUD/) = () The \ Alpld/<]

where Dis a directed set in (SM*.C).

Now Tjz)p = mapfr]. As the projection 7 is a contimuous [mnction, we deduce
that {xef | 4 € D} forms a dicected set in (M4, C) and ma(LIDY = [Quep 72 d.
Now

TV ApuD /] .
={s|35 s =5 — A" A5 €Ngep Ted A saturated yn4(5')}

Naen Tlx \ A']pld/x] _
=Nuep{s |38 s =4 — A A& € 7pd A saturatedyna(s'))

Clearly Tz \ A]plUD/7]) € Naep T+ \ A']pld/=]. We nnst show tlie converse.

Suppose 5 € Nyep Tz \ A'lp[d/x]. then the number of ways of saturating s is
finite. Let J be a finite indexing sct such ihat {5, | j € J} is the set of all
possible salurations. Assume s ¢ T[r \ A'JpJluD/x] Then there is no s such that
& € Mgen Tzd. For each saturation s, we can find o, € I such that s & 7mpd;
Then by the property of directed sets and since J is finite, we can find & such that
Vi€ Jomady Cmady. SoVjEJvs & mpdy = s ¢ Tlr\A'|pldife] = s ¢
Ngep TLe\ Ap[d/z]. Hence result by conlradiction, o

A.2 Results in the model for SRPT
Theorem A.3 The oprrators of SPRT are monolonic in each argument.

Proof: For environment ¢ and P a process term which takes the form of an
application of an operator of SPRT on process terms, such that one of the argumeuts
of the operator is the process variable r and all other argunients are mndependent
of r. We must show Ay » Mz[P]o]y/z] is monolonic.

We shall consider the structure of the trace sets of the operators.

For each P of Lhe above form and ¢ € 1M, Tp[P]o[q/ 1] takes the form
Tr[Flelg/c] = T'(maq) | M'(737)

162

for example, if P = @7z and @ is independent of r then:

TrlPlole/z] = (TrlQlo Unsq) | (Tr[Qlo U #57)

T'{rsq) is a trace set with contribution 77({s})— T'({}) due to each trace s € =,,
The contribution cue to a given trace # € xy4 is independent of the structure of 4.
Hence

g< ¢ = T'(msq) C T'i7sq)
M'(75q) is a sel whos members are governed by the traces in 75g such that
0S¢ =T M(F79) CT|Mirsqg) for any trace set T.

Hence by the transitivity of C: ¢ € ¢ = TfPlole/r] € Tr[Plolq/4]
We also observe that
L. every maximal element of 74 ¢ only contributes to maximal traces in T'(mrq).

2. by the nature of restriction. if s € T'(73¢) is not present in Tg[P]o[g/z]
then there is a maximal element s’ € Tr[P]o[q/z] with 5' < s.

3.5 <«s€ myqand r € T'(72q) is a trace contributed by s then there is a
prefix of 7 in T"{nsq) which is a contribution from s'.

We uow have sufficient information to show that, if g < ¢ then

s € Tr[Plo|q'/r] A s ¢ Tr[Ploq/z] = Ar € Tx[Plo[q/z] » r < =
To show the above it is sufficient to note that, if s € T(wsq) then the result follows
from observation 2. Otherwise s must be a contribution from s, € (154} — (754},

then as ¢ € ¢ we can find r, € 754 with r; < s, by observations 1 and 3 there is
a maximal contribution r to T'(rgq) with » < 5. The result follows. a

A.3 Results relating SRPT to SCSP

Theorem A.4 For all processes P, @ € SRPTY with P11 Q well defined, and for
all o € BINDg if T[OP]no = ¢(Mz[P]o) and T[BQ]ns = ¢(Mz[Qls) then

T[O(P N Qe = $(Mzr[P N Qo)

163

Proof: Firstly note that:
TOPT Qe =THOPIN (O] { defn. of © }
=TIBPnas U TO Qe {defn. of T }
= ¢(Mz[Ple) U ¢(Mr{Qlo} { by hypothesis }
So it is sufficient to show that for all o € BIND,

$M:[P N Qo) = S(Mr[Plo)u d(Mz[Q]er]

Siuce the alphabets remain unchanged throughout this proof, we shall abuse nota-
tion slightly and write 24(s) for ¥(f. Q, s).
Recall $(Me[Ple)= | #s)U |J i(s)
A E seTe[P]e
Now
seTr[PH Q) ~
= seTR[Plel Tr[Qle v s € TrlW]e | Tr[F]o { defn. of 72 }
= seTp[Plev se Tr[Q]e { defn. of restriction }
= (5 C S MelPlo) U o(Mr]Qlo} { defn. of & }
Similarly s € 7ol 11 Qo = ¥, () € ¢(Mr[F]o) U d(Mz[Qlo)
Hence o(Me[P N Qo) C ¢(Mz[Plo)U $(Mx[Q]a)
It remains to prove the reverse inciusion.
s € Ie]P]o
= { logic, law of excluded middle } X
s € RIPloA (L €Tr[Qlos" <s)v - (s € Tr[Q]os s <))
= { delinition of restriction }
s € R[Ple | Tr[@)e v {s € Tr[Ple A 35" € Tr[Qo - & < 5)
= { delinition of 7z and as ¢ is non waximal in Tx[Pls }
sER(PNQlev (A € T2[Qo 8" <s) A = {(Ts" € Te[P]le « 8" < &))
= { definition of restriction }
s € [P QYo v (3¢ € (Tr1Qlo | Tr[Plo} - < < s)
= { defnition of 7% }
sE RPN Qlov (3 CTR[PN Qlas < 3)
= { definition of ¢ }
V() Co(Tr[P QLo V(38«8 <s Aguls) Co(TrP 01 Qo))
= { bylemmaG.3 }
¥(s) C o(Tr[P D Qo)
Similarly s € Tz[Ple = ¢,(s) € 6(Te [P 11 Qo)
Hence ¢(Mgz[Plo) C ${Mr[FP 1 Qo)

164

We can obtain a symmetric result for ¢(Mg[¢]o) and thus deduce the required
result. o

A.4 Results involving timewise abstraction

Theorem A.5 Assuming Tr[Plo satisfies the closure conditions for medel RM
with respect to alphakets ([Plo and o[Plo, then form € N, n € Nt and C €
FE, T [Stow(r. m, C, P)lo satisfies closure condition HI with respect to alphabets
([Ple and e[P]o.

Proof: As the variable bindings, . will remain unchanged throughout this
proof we will not make them cxplicit here. By the remarks of note 2 on page 132,
if @ Z «[P] the result follows trivially so we shall only consider the case ' C ([P].

Assuming that s (X) € Tg[Slow(n,m, C, F)] and Y C JP] we must show that:
sTUX No[Phu YV} € Tr[Slow(n, m. (", P)]

Now writing [for ([P] and O for o[P]:
sT(NY € Tr[[Slow(n, m, C. P)]
= { by definition of Tz }
(Ar € Tr[P] » choose{n, m,r) = s (X)
Arn I SO0 (s™(X)) N T)))
A-{re 'ﬁz [P] + choosc(n.m, ") < s™{X)
AT () (0@ (7 (X)) 0 1))
= { by condition Il on Tp[P], where r,”{X) <r }
(Fro € To[P]+ o (X)) € TRIP] A |re] = nls|+ m
A choose(n,m,ry) = s
AN NTZAC (e (X)) N D))
A= {r' € TrP]+ choose(n,m,r') < s
AT <{CY T (n@ (s)
= { by condition IIT on Tg[P] and considering lengths }
(3 T € TRI[P]I . T‘oﬁ((){ n O) U Y) S T‘R.[[P]I
A choose(n, m,(rs”" (AN YU YY) =sT{(XNO)UY)
A~ (X N O)UY)INT < {0 (@ (s~ (X 1 O)U Y} AT
A= (€ Tr[P] « choose(n,m, ") < s™ (XN O)UY)
AT (O m® (57X N 0)u YN)
= { by defintion of T }
sYA N O)U Y € TrlSlow(n, m, C. P)]

165

Lemma A.6 The marimal set of Tr[Slow(n, m, C, P)] i3 given by:
TelSlow(n,m,C,P))={s|3r e T=[P] + choose(n, m,r) = s
Arnf <{CYy"(n®(sN 1))
- (37" € Te[P] » choose(n, m,7) < s
ANl <Oy (@ (s D))}
where { = ([P]. Moreover,
Jue TnﬂSlow(ﬂ, m,C,Pij-u<csedre ’j"n[[P]] + choose(n,m,r) < s
Arnl <{Cy T (n®@(sN1})
Proof: The first part follows from the definition of Tg[Slow(n,m, C, P}]
It is trivial from the definition of Tx [Slow(n, m, C, P)] that

Ju e Tp[Slow(n.m, C.P)]+u <s= 3r e Tx[P]+ choose(n, m,r) <s
Arn Tl <{OY T (a@(sNIY)

To prove the remainder, suppose 3+ € ’i'R‘IP]] + choose(n,m.7) < s A rNil <
(€Y (aea (N 1)),

Now consider the set
{r G’}A'RIIP]] | chooseln,m,r) <sA rN T <{CY" " (n@(sN I}

This set iz non-empty, by our assumption, and finite, since the output alphabet
is finite and 2 is of fixed finile length. We take the minimum of this set, ry, and
choose s; to be Lhe prefix of s of length [{jrs) — m}/n]. Then

rg € 'Iﬁ'—RﬂP]] A choose(n,m) =8 Arg NI < {(CV* T (R® (5o N L)) A 5y < 5.
Moreaver. since we choose ry to be minimal

=~ (A € To[P] » choosc(n,m.r'} < ag A ¥ (VT < (3" (0@ (55 NT)).

Thus Fu € Tr[Slewin, m, C,P)] + v < s as required. o

Corollary A.7

s € Tr[Siw(n, m,C.P)) & Ir € Tr[P] « choose(n,m,r) =5
Arnls {0 (n@ (s 1))
A= (Tu € T[Slow(n.m,C,P)] + u < 5).

Theorem A.B ['orm € N, n € N¥, " C([P]r and P11 Q well defined, then

TriSlow(n.m, O, PN Q)| = Tr[Slow(n, m, C.P)NSlow(n, m, C, e

166

Proof: Asihe variable bindings, ¢, will remain unchanged throughout this proof
we will not make them explicit here.

Recalling the definition of T it is sufficient to show

Te[Stowin, m, C, PN Q}] = TalSlow(n, m,C,P)] | Te[Slow(n,m, C,Q)]

UTr[Slow(n, m, C, Q)] | Tr[Slew(n, m,C, P)]

Now
s € TrSlow(n,m,C, PN Q)]
= { by definition of T })
Ar € (T[P] | To[QIV T[] | T=[P]) «
choose{n,m,r)=as ArnNI <{CY""(n&{snI))
A-3reTe[PNQ]-
choose(m,m, vy < s AP N <{CY"(nG (sN 1))
= {since re Ta[PlUTRIQ] = 3s c TR[PN Q)5 < r }

ir e (TxfP] | Tl QI U TR[Q] | T=[P]) -
choose(n,m,r)=sArNI <{(CY" " (n@(sn1))
A= 3 e Tr[P] -
chosse(n,m, 7)< s AVNI<{(CY™ (0@ (sN 1))
A= 3 e TR[Q) -
ehoose(n,m, 7Y < s AP NI <{C)" " (a@Q (3N 1))
{ by Lemma A.6 }
ire (TlP] | T=lQ) U 7= [Q] L T=[F]) -
choose(n,m,7)=sAr] <{CY* " (n@{sN 1))
A-3du € ’f';g[SiOlU(ﬂ,m, C.P)+d <s
A-3u" e ’fnﬂSlow(n, m,C,Q)} " <s
{ by definition of restriction }
(3r € Tr[P] « choose{n,m,r)=sArnNI <(CY" " (n@ (sN[))
A~ T € 'fkﬂSlow(n, m,C,P)] ¢ < 5)
A (- Ju" € Te[Slow(n, m, C, Q)] + v < s))
V (Ar e Tp[Qf+ choose(n,m,r)=s Arn] <{CY" (@ (snN 1))
A (= 3 € Tr[Slow(a,m, C,P)] + ' < s)
A (= Fu" € r[Slow(n,m, C, Q)] » " < 5))
{ by previous corollary }
(s € Tr[Siow(n, m, C,P)} A (- 3u" € TR[Slour(n, m,C, Q)] « v <))
V(s € T[Slow(n, m,C, Q)] A (~ 34 € 'j'nﬂS[ow(n, m, C,P)} v <5))
{ by definition of restriction }
s € (Tr[Stow(n, m, C, P)) | Tx[Slow(n, m,C, Q)]
UTz[Slow(n, m, C, Q)] | Tr[Stow(n, m, C,P)])

The reverse follows similarly. o

167

Appendix B
Proof Rules

B.1 Proof system for SCSP’

Here we present the proof system for the language SCSP/. the language of finite
closed terms from SCSP.

Axioms for non-deterininistic choice:

A-1 + PN@=QnF

A-2 FIPONQINBE=PN(QNR)
A-3 F POP=P

A4 F POl=1

Axjom for set prefix:
A-5 CCB F [XCB - Pyn[YCO — Qy]
=[XCB— RyJN[YCC - @yl

where Rg. = {PB'P[—IB!QBI :lf- gr ggé g

Axioms for parallel composition:

A-6 FLali P =Lagap

A-T F PllLi=Llaver

A-8 FAPDQIR=(PIIR)N(Q(R)
A-9 E@EHQER)= (P QNP R)

A-10 F [XC A = P|[[YCB = @v]=
[Z2C{ANBYU(A —aQe)U (B —aPy} = Pzaa | Qzap]

168

Axioms for hiding:

A-11 F ia\B=1ls_s
A-12 F (POEH\VA=(PVADIQN A)
A-13 b [XCB - Py]\VAS[YC(B - A) — {(Pyusos \ 4)]

Axioms for renamming:

A-14 Fla [5'] EJ.A[S']
A-15 F (PN @5 = PSIn @[]
A-16 + [XCB — Py][S]=[X CB[S] — Py5-[5]]

Ordering rules:

cCP F=0
0-1 F PNQC 0-3 PLOCP
CQ@CP
0-2 i;?; o PCQCR

Monotonicily rules;
P.l E ‘PZ A QJ g QE
Png CP0Q,

M-1

VXCB.PxCOx

M-2
[,-Y chB - Px] C [X CHB — Qx|

B.2 Proof system for SCSP

The proof system for the closed terms of SCSP consists of all the rules in the
previous section, with the following additions.

Axioms for recursion:
A-17 +i PlpzeP)/z]l=pz P

A-18 b Pz = Ph/zn)={n 2 P,

Least fixed point rule:
VQeFIN(P).QCR
PCR

R-1

169

B.3 Derivations in the proof system for SCSP

Theorem B.1 FPlQ=Q|P

Proof: By consideting the characterisation of infinite processes by their finite
syntactic approximations and recalling all finite processes can be expressed in nor-
mal form (Corollary 3.15} it is sufficient 1o assume hoth P and § are in normal
form. We define a rank function « on processes in normal form:

dil) = @
d(l_lﬂe_r_’-lPB) Lpead{Pg)+|B| - { it |B| > 1
(!f([.\ C_;A — P);]) maxxca4 (i(P,\') + !

([

and proceed by induclion on d{P} + d(Q).
base case: d(P)+ d(Q) = 4.
Here P = @ =L and the result {ollows from A-6.
inductive step:
H P =10 ¢ =1 then the result follows from A-6 and A-7.
L P = F NP, then d(P;) < d(P) and d(P»} < d(P} so:
PO PHI Q= (P | NP2 11 Q) {byA-8 }
(QP)n(@ | Pedy { by inductive hypothesis }
=G (P NP} { by A9 }
I = @ N then the resuli follows similarly.
Finally il P = [X C A = Pyjand Q@ = [Y CB — @Qy] then d(Pyx) + #(Qy) <
d(P) + diQ) for all X C A, ¥ C B.
[Y A= PAJIYEB — @y
{ by A-ID }
[Z<ANBYU{A—aQ)U (B —aP) = Pzna || Gznal
{ by inductive hypothesis }
[ZCANBYU{A - aQU (B —al) — Qznp || Pzna
= { asintersection and union are commutative }
[ZCBNAYU(B —aP)U (A~ aQ) = Qznp || Pznal
{byA-10 }
(Y €8 - @rillXSA— Pyl

]

170

B.4 Proof system for SRPT'

Here we present the proof system for the language SRPT’, the language of finite
closed terms frorm SRPT.

Axioms for non-deterministic choice:

a-1 Fr PN@=z@NF

a2 Fr (PNQ)NR=p PA(QNR)
a—3 Fr PHPERP

a—4 |_R PN 1=xL

Axiom for set prefix:

[a=s Fa [1B7X - Px]N[B7Y - Qy]=x [B2X = Py Qi] |

Axioms for paralle] composition:

a-8 Fr Lroll P =aliwr-iouer) ouer)
a-7 Fr P lLro=aLliuri-(0uep)(0uep)
a8 Fe (PRQ)[E=a(P||R)T(Q | R)
a—9 Fa PI(QOR)=A(P| @)N({F}RH)

al0 Fp [1B7X = Py] | [C7Y = Qv]=r
IBUC?Z — Pzuonry || Gzumng)

Axioms for hiding;:

a-11 Fr Lro\B=al;o 5
a-12 Fp (POQI\ASa (PVA)N(Q\A)
a-13 kg [IB?X = Py]\ A=, (B - AX = (Px \ A))

Axioms for renaming:

a—14 Fre l10 [S] =rlys).o08)
a-15 ke (POQ)S] =x (PIS])N(Q[S])
a—186 Fr [1B7X — Px|[8] =x ['B|S]?X — Px[s_1][S]]

171

Ordering rules:
Crn P 3 Pend h
o-1 Fr POQCR 0 PCaOC,P
PC CiP
o—2 _PR_Q =2 4 PCrQdlg R
= ¢ o PR

Manotenicity rules:
PrTpPohQCrtd

m—1 ;
PMQCr Pl
YA CB.«PyLCuOx
m—2 - - -
137X — Px| Cp 1B?7X — Qy]

B.5 Proof system for SRPT

The prod system for the closed Lerms of SRPT consists of all the rules in the

previous section. with the following additions,

Axioms for recursion:

a—17 T“ Pllug : I,OvPY/ 2] Sapur: 1, 0P

Leasl, fixed point rule:
) VO € FINA(P)» Q Cr B
- PChR

172

Appendix C

Algebraic Derivations

In this appendix we demonsirate the use of the algebraic laws of SCSP and SRPT.
We present the first steps in the derivation of resluts in the Token ring example
(Section 4.2.4), which used the language SCSP. We also derive some of the results
required in the sorter example (Section 7.4.2), which used the language SRPT and
timewise abstraction.

C.1 Token ring interface with data

Recall that for X € {L, T, D} the definition of ID{y, X', s) is
ID(y, X,s) ={{{y,X,s) || DATA) \ {on!}

where [(y, X,s) 1s defined in Figure 4.3 and

DATA=([] (onld~» DATA)) M {wait(1) — DATA)
dE€5(on)
We shall show that
ID(y,L,) = [{in?z,0utly} - ((Muesqon) 10 (2. L. fr(d)))

HID’(I: L, {)))
>1]

and

(g, L))

il

wait(2) = ((Myes(on) 10 (v, Lofr(d))) M ID(y, L, (}})

where ID'(y, L, s:frs) = (I'(y,L,s:frs) || DATA) \ {onl}

173

Firstly

Dy, 1.0)
= | by definition }
{1y, L. () | DATA) (o'}
= { expanding DATA)
(4 Ly) | (] T eggony (002~ DATA))
M{waxt{ [y — DATAN) N\ {onl}
= {byA-12 an(l A3}
el 100Ls 01 onld - DA (o)
Ny L)) (wait (L) = DATA)) N\ {onl])

Now we recall

[y, L, 0) = [{inle. outly, on?d} — I'(x, L, fr(d))
O {intr.outly) = (e . L, ()
1]

Thus

(Hu L, () || (onld ~ DATA)) \{Un']

{e‘{pdudmg I y L ()) and nsing axioms A-10 and A-13 }
[intz, outly} — (£'(x, L, fr{d)} || DATA)\ {onl}

>1]

{ by definition }

[{in?z, eutly} = I (=, L, fr(d)} >1]

i

and

(g L, () || Cwait (1) — DATA) N {on!}
{ expanding [(y, L, (}) and using axioms A-10 and A-13)}
HmTz,0ully) — ({2, £.0) (| DATAY {onl} 1]

I

Hence

D(y. L, ()
{substituting the above results }
(Magsgom[{m? 7. outly} — (D'(x, L, fr(d)) > L])
MN{in?z, oully} = (L, L,) || DATA)\ {on!} > 1]
{by L-1 }
[{in?z. outly} — ((Magsgomy (2, L Jr(d)))
N({'(z, L, () || DATA) \ {on!})

&1}
Now let us consider

(I'{y.L.O) | DATA)\ {on!)

174

We rewrite ['(y, L, () as follows:

Iy, L) = Hon?d) — Py, fr(d)) & Py)]
where

Ply.s:frs) = (wait{(1) — Iy, L,s:frs))

Ply, () 2 [{on?d) = [(y. L fr(d)) & Iy, L,)]

Now

Ni

I

ill

Also

Il

(P(y.s:frs) || DATA)\ {en!)

{ expanding DATA and by A-8 and A-12 }
(l_]dea(m)(P(yv"; fra) || (onld ~ DATAN N\ {on!})
M{(P(y, s frs) || (wast(1) — DATA))\ {en!})

{ expanding processes and applying axioms A-10 and A-13 }
(r]deﬂgn)(wait(j) — {Hy. L,s:frs) || (onld ~ DATAY)\ {onr!}))
Mwait(1)y — (F(y, L, s:frs) || DATA)\ {en!})

{by L-1}
watt (1) — (Mg oy H {4, Lg:frs) || {onld ~» DATARN {on!})

T (y, Ly s:frs) || DATA)\ {on!})

{ by axioms A-8 and A-12 }
wait(1) —

(. Ly s frs) | ([ggs(omy(on!d ~+ DATA) D DATANN {onl})

{ by definition of DATA and A-3 }
war(1) — ((H(y. L, s:frs) || DATA)\ {on!})

{ by definiticn of ID }
war (1) — ID(y, L. s:frs)

(Ply. () | DATA)\ {on!]

{ expanding DATA and by A-8 and A-12 }
(Hdea(m)(P(!J: () |l {onld ~» DATA} \ {onl})
DLy,) |t (wait(1) — DATA)\ {onl])

{ expanding processes and applying axioms A-10 and A-13 }
(Maest oy (it (1) — (Hy, L.Jr(d)) || DATA)\ {onl}})
Alwart(1) = (I{y, £,0)) {§ DATA}\ {onl})

{bhy L—1 }
wait{ 1) — ({[Tyesion) Ty Lo fr{d)) || DATAY\ {on!})

N (y, L, () || DATAY\ {onl])

{ by definition of 1D }

n_!m!(l) — ((I—'dES(on} ID(y‘L,f?‘(d)]} n ID[D'! L, ())}

175

Finally
(g LY)| DATA) Y\ {onl}

{ by the same working as above }
vait (1) = (Mieseony (Ply, fr(d)} || DATAY\ {onl})

Py, () | DATAY\ {onl})
{ substituting from earlier working }
cart(1) = ([yesgomy{wait() = 1D{y. L.e(d))))

AWwait(1) = (Maeston 101 L (D 1D (w, L))
= {byl-1}

vadit(2) — ((HJEMD"? D0y, L, fr(d)))
M Taenrny 1Dy L frld))} 7D (3, L DY

= {idempolence of N}

waat (2) — ((l_l,jeb(,m} 100y, L frid))) NV ID(y. L. {}))

Hence we liave the requived resnlts.

C.2 The sorter pipeline
In this section we present in more delail some of the steps of the derivations used

m Section 7.4.2.

C.2.1 First phase of the pipeline

We recall that the overall aim was to obtain an algebraic representation of the first
phase of lhe pipeline in a form and time frame in which it can be deduced that this
phase is 2 pipe. So we want to derive an expansion of:

Slowi2. 0. {}.(Phase] || CK)\ {ck})

which only involves tlie set prefix and nondeterministic choice constructs.

Recall
Phasel = Q[a0/d0.11/df, allfe,alfd] || Q[i2/d0,i3/dl a2/ c, ad/d]

whete Q 2 (DIF(40/d,a/q) | DF1d1/4.0/4) || Comp\ {a, b}
and the definitions of Comp and Dff are giveu tu Section 7.4.2 (pages 139 and 140).

156

In order to simplify the expansions, we set

DD(z,{}) = Dff.[d0/d, a/q] || DF[d!/d,b/q]
DD(x,{d0}) = DI:[d0/d. a/a) || D141 /d,5/q]
DD(z,{di}) = Df.[d0/d,a/q| || DF;[d!/d,b]q)
DDz, {d0,d1}) = DF(46/d, a/] | DF:(1/4,b/q
The first parameter of DD takes the value L or H and should be interpreted as
the voltage level on the clock. The second parameter is the set of input wires with
high voltage at the time of the last rising edge in the clock signal.

We also set
DDC(r, {}) = (DD(2. {}) || Comp)\ {a, b}
DDC(x, y) = (DD(z,y) || Comp)\ {a, b}
DDC(z,{d0, d1}) = (DD(z,{d0,d2}) || Comp”)\ {a,b}
where 2 € {L,H} and y € {{d0},{d1}}.
So @= DDC(L,{})
First we evaluate
DL, {})
= { expanding definition of DD }
DLld0fd, 2] g) | DFLLdL/d,b/4]
= { expanding definition of Df }
(M{1IX = (Dffp if ok ¢ X else
([H{q}?Y — (D} if ck € ¥ else Dff7)]
ifde X else
MY - (Dfy if ck € Y else D)) [40/d, a/q])
(YN — (Df if ck ¢ X else
([{q1? Y — (DfFg if ck € ¥ else Dff})]
ifd € X else
[{}?¥ — (Dffu i ck € ¥ else DF[d!/d.b/)
= {bya-I6 }
M)?X — (Dffc|d0/d.ajq] if ck ¢ X else
([{a}?Y — (Dfld0/d, ajq)if ck € ¥ else Dfff[d0/d, e/ q])}
if d0 € X else
[H}?Y — (DFu[d0/d,.a/qlif ck € Y else Dffi[d0/d, a/q]))})]
NNI?TX — (Dffe(di/d,bfq) if ck ¢ X else
(I{8)?Y — (Dffy[di/d,bjq)if ck € Y else Dff[[dI/d,b/q])]
if df € X else
{}?Y — (Dffuldi/d.bjg]if ck € Y else Dfft[d!/d,b/q]))))}

I

= { by a-10 and noting definition of DD }
M{}'X = (DD(L.{}if ek ¢ X else
(Ya,8)?Y — (DIHH,{d0,d1})if ok € ¥ else DD(L, {d0, d1}))]
if{do.dr) C X else
(Ma}?7Y — (DD(H.{d0})if ¢k € Y else DD(L, {d0}))]
if{di)} C X else
{(H&}?Y — (DD(H . {di})if ek € Y else DD(L,{di}})]
if[dl} C X else
MI7Y = (DD{H,{})if ek € Y else DDIL{})IN]

Thus
DL {n
= | ewanding definition of DDC '}
(DL AYY || Comp) \ {a. k)
= { recalling expansions and by a-10 }
Y = (D23 | Comp)if ek ¢ X else
(Ma, 6}1Y — ((DD(H, {40, d1}) || Comp”}if ck € Y else
{(DD(L.{d0,d1}}]| Comp™))]
if{did,dl} C X else
(Ma}?Y — (DD {d0}) || Comp') il ck € Y else
{(DD(L,{d0}) || Comp))]
if{dU} C X else
(MY = ((DR(H {diD || Comp’) if ck € Y else
(DDIL, (d1}) || Comp')]
if{di} € .Y else
HEY - ((DD(H, (D Comp)if ck € ¥ else
(DD(L,)} Comp})
DI {0, 5)
= { bya-13 and noting defimition of DDC }
{128 = (DDC(L {}}if ck ¢ X else
(MY = (DDCH {d0.d1)) il ck € Y else DDC(L,{d0, d1}))]
if{dU di} C X else
(1Y = (DDC(H {do})if ¢k € ¥ else DDC(L, {d0}))]
if {40} C \ else
(MY = (DDCH {d1})if ck € ¥ else DDC({L,{d1}))]
if{d/} C \ else
(HPY = (DDC(H, {1 if ¢k € ¥ else DOC(L,{})] 1]
= { rearranging terms }
PN = (DO {})if ck ¢ X else
HPY = (DDCIH.X = {ck])ifck € ¥ else DDC{L.X — {ck)))])]

178

Continuing in this manner we can also show that

DDC(H . {}) M{}?Xx — (DDC(H ,{})if ¢k € X else DDC(L,{})}]
DDC(L, {d0}) Mel?X — (DDCUL, {d0}) if ck ¢ X else
HOTY S (DD X~ (a
if ck € Y else DDC(L, X — {ck}))])]
[{c)}?X — (DDC(H,{d0})
if ¢k € X else DDC(L,{d0})))
{e}?X — (DDC(L,{di})if ck ¢ X else
[{e}?Y — (DDC(H, X — {ck})
if ek € Y else DDC(L, X — {ck})}]}]
M c}?X — (DDC(H,{di})
if ck € X else DDC(L,{d1}))]
e, d]TX — (DDC(L,{d0,d1})if ck ¢ X else
e, d}?Y — (DDC(H . X ~ {ck])
ifck € Y else DDC(L, X — {ck}))])]
(e, d}7X — (DDC(H,{do, d1})
if ¢k € X else DDC(L,{d0,d1}))]

Hence, by uniqueness of solutions to guarded recursive equations

Q=5LA{})

DDC(H ,{d0})

il

DDC(L,{d1})

DDC(H {d1})

Hi

DDC(L, {d0,d1})

DDC(H {d0,d1})

where S is defined in Section 7.4.2 (page 141).

We are now in a position to reduce the expression for Phs!, eliminating parallel
composition, hiding and renaming. We recall

Phs! = (Phasel | CK)\ {ck}

Now we can expand Phasel as follows:

Phasel
{ by definition]}
Qi0/do, it Jdl, alfc,al /d] |} Q[i2/d0,i3/d1, a2/ c, aF/ d]
{ by the equivalence deduced above }
S(L,{})[i6/ 0.4l /d1., abfc,al/d] || S(L, (})i2/d0,i3/d1, a2]e, ad/d]
{ expanding the definition of 5 }
({}?X — (S(,{})if ck ¢ X else
(HI7Y — (S(H.X — {ck})if ck € V else
S(L.X — {ckD))|(i0/d0, i1 d1, a0/ c, al }d))
(17X — (S(i,{})ifck ¢ X else
[{}TY — (S(H,X — {ck})ifck € Y else
S(L.X — {ck})52/ d0, i3/d1, a2/ c, a3/ d])

I

179

= {byal§ }
[M175 — (S(L{}) {t{)/dﬂ ijdr alfc,al[d]if ck ¢ X else
[M17Y — (S(H, (X — {ck})[d0/i0,d1 [il])i0/d0,il [dl,alfc,al [/ d]
if ¢k € Y else
S{L, (X — {ck})[dOfi0, di fil)[i0/d0,it [dI aB[c,al [d])])]
([H{)2X = (S(L{})]i2/d0,i3/dl,a2fc, aF/d]if ck ¢ X else
[P Y - (S(H,(X - {ekD)[dD/i2,d1[iF])[i2/d0,i3/dl, a2[c, a3 /d]
if ¢k € ¥V else
S(L.(X — {ck})[d0/i2, d1 [i3))[i2/ 0,3/ d1, a2 /e, a3/ d])]
= {bya-10 }
Y25 = ((S(L.{N)[i0/d0,itfdl al/c,al/d]
WS ANl2/d0, i2/d1, a2 /e, a8/ d))
ifck ¢ X else[{}?Y —
WSCHL LY 0 {30, i1 })]d0/i0, di fi1)[i0/d0. il jd1 affc, a1 /d]
) SCHL (N (1 [i2,49))(d0/ i2, d1 /i) [i2/d0, i3/ d1, a2/ c, a3/d))
if ck € ¥ else
(S(L (X N {ig, it D)[do/i0, di it])[i0/d0, 11 fdl, a0 fc, al/d]
| S{L, (X 0 {i2,43))[d0/e2, d1 [iI))[:2/dD, i3/ dl, a2/ ¢, a3 /d]))])]
Thus
Phsl
= { bydefinition of Phs! }
(Phase A || CKYN {ck)
= { expanding terms }
(MY — (S N[0/ de, it fdi . alfc,al/d]
I S A2/ 0. i3] dL, a2fc,ad/d])
ifck ¢ X else [I{}7Y —
(S(H (X 0 {0, })[d0fi0, dl Jit))[i0/ 40, i1 [dI el /¢, at [d]
VS(H. (X 0 {i2,i9})[d0/42,d1 }i3]))[i2/d0,i3/dl, a2/ c, a3/ d])
if ck € Y else
(S(L. (X (1 {40, i))[d0Jig. d1 [iI))[i0/d0, il [d1, abfc. al /d]
I S(L.(X 0 {i2,i3}){d0/i2, d1 /i3){i2/dv, i9/d1,a2/e, a3/d))))]
M cki—[{} — CKINN {ck}
= {byas10 }
HekPX=[H{}P?Y —
(S (X {0, i D[de /0, dt fit])]ig/d0, it fdl,a0/e, al/d]
I SIL, (X 0 {i2,i31)[d0/i2, d1 fi3))ii2/d0,i3/d1 , a2/ c, a3/ d]
I CRIIN { ek}

180

= {byal3 }
17X =[{}?Y =
(S(L,(X O {if.31))(d0/i0,d1 [i1))[i0/d0, i1 / d1 , a0/ c, al /d]
| S(L, (X ({2, i8})[d0/i2, di }i3|)[i2/ d0,i3/d!I , a2/ ¢, a3/ d]
| RN ekl

Continuing in this manner we can demonstrate that
Phst = Ph1({})

where Phl is given in Figure C.1.

PRI =[Y)TX — [{}?Y - PRI(X))])

’;2;({”‘” g }e[-{ 0)7X — [Ha0)?Y — PhI(X)}

’;Z; ; }e[‘{ a2)7X — [4a2)?Y —+ PRI(X)])

Phi({10,i1}}=[Hal,a1}?X — [{al,al}7Y — PRI{X)]]

Phl({zG :2})
PRI (e B 2 [0, a2)?X — [[{ad, a2)?Y -+ PRI(X)|)
Phi({sr . i3))

Phi({i2,i8))=[{a2,a3)?X — [{a2,a3)?VY — Phi(X]]]
;{:;({:(()] :: :g%% }E['{aﬂ al,a2)?X — [{ad,al,a21?Y — PRI{X)]]
iﬁﬁ :? :Z ’3%; }5[’{00 a2,a3)7X — [{a0, a2,a3)}? Y — Ph1(X)]]
Phi({i0,i1,i2,i3))=[{e0,al,a2,a3}7X —

[{af,al,a2,a2}1Y — Ph1(X)]]

Figure C.1: Expansion of the first phase of the sorter pipeline in original time frame

181

It remains to calculate Slow(2, 0,{}, Phs!).
For all A C {if}, 1], :2,13} we define:

SPRI(X) 2 Stow(2,0.{}, Ph1(X})

Now
sPhi{)
= { expanding definition of SPh{ }
Slowl 2, 0,{}, Ph1{{}})
= { expanding definition of Ph! }
Stouwi2, 0. {}.H{A=[{}?Y — PRI(X)]])
{bya-20 }
HYX = Slow(2,1, X, [{]?Y — Phi{X)])
{ bya-20 }
H}IX = Slow(2,0, X, Phi1(X))]
{ by note on page 124 }
()X = Stow(2,0,{}. Ph1(X))]
{ by definition of SPh1 }
MY — SPRI{X)
Hence, continuing in this manner, and by the uniqueness of solutions to guarded
recursive equalions we have that

[

Slowl2,0.{}. Phst) = PI{{})

where Pl is defined in Fignre 7.6.

C.2.2 Composing pipes

Recall that we need to evaluate an expansion of:
Slowl3.0,{},(Phasel’ > Phased') > Phased’)

which enables us to deduce the effect of this pipe of length 1.
By Theotem 7.5

Slowl3. 0,(Phasel’ » Phase2') > Phased’)
= Slow(2,0.{}.(Slow(2,0,{}, Phasel’ 3> Phese2'} > Phased’))

50 as a [irst step we should evaluate Slow(2. 0,4}, Phasel’ » Phase2')

182

Now

Phase!’ > Phase?'

{ definition ol processes and chaining }

Pi({h Il P2({h)\{a0,al, a2, a3}

= { expanding processes }

17X - PEXIR{}I?X — P2(X)\ {al,al,a2, ad}

{ by a-10 }

[{}?785 = (PH{X}|P2({}N]\ {a0,al, a2, a3}

{byai3 }

17X = (PHX)|P2i{}N\ {al, al, a2, a3]}]

{ expanding processes }

12X = (XY — PLVI}?Y — P2(Y))\ {a0, ol a2, &3}]
{ by a-10 }

MI?X = {(Y}Y = (PHY)P2(/i (X)) \ {a0,al, 82, a3)]
{bya13 }

[{}2X {371 — (PL{Y)IP2U (AW {00, o, 2. u3}]

M

So

Stow(2,0,{},Phasel’ » Phase2'}
{ by a~20 and using above expansion }

HP?X — Slow(2, 1, X, H{}TY = (PH{Y)||P2(f; (X)) \ {a0, al, a2,a3}])]
{ by a-20 }

17X = Slow(2,0,X,(PI{Y)|P2({((X))\ {af,a!,a2,a3})]
{by uote on page 124 and defn. of cl.lammg }

H}?TX = Slow(2,0,{}.(PI{(Y P20, (X))

Continuing in this manner we can show that

]

Slow(2,0,{},Pheasel’ » Phase2’) = P12({})

where P12 is given in Figure C.2.

Using the results above and the same approach we can show that
Slow(2,0,{},P12 > Phased’) = P13({})

where PIZ(X) = [, a(X)?Y — PI3(Y)] for X C {i0,:1,12,i5}

if[X|=0

00} i |X] =1

and fi5(X) = {o0,01} if | X|=2
{00, 01,02} if | X|=

{of,01,02,03} if|X] =

183

From Lhis Lhe effect of Slow(3,0,{},(Phasel’ 3> Phase2’' > Phased’)) can be de-
duced.

Pr2(X)= [fi2(X)7Y = P12(Y))
where [, is defined over the domain P{:0, i1.:i2,:7} as foflows:

fil{i0}) fr2({10,i1}) }7
Tt gy felliz i) [~ 100-02)
/ ({:2%) B ?g(}i(i,il,iﬂi)
r2(1#51) ({40, 41,49} B '
fre{{28,i2}) Felli0, 2 i3}y [—100-01,82})

fie({udighy | Fre({ad 12,13
fe({iniz)y (TUBYY p oy, 2. i9))=(60, b1, b2, b3}
S (il i3)) fa(1D)=0)

Figure C.2: The first two phases of the sorter pipeline

ind

Bibliography

(BBSS]

IBBYO]

[BBY1a]

(BB91b)

(BG92)

[BHRS84]

[BK34)

(BL92|

(BIGSSY92]

T. Bolognesi and Y. Brinksma. Introduction to the ISO specification
language LOTOS. Computer Nelworks and ISDN Systems, 14(1),
January 1988,

J. €. M. Baeten and J. A. Bergstra. Real space process algebra.
Techuical Report P9005, University of Amsterdam, Programming Re-
search Gronp, 1990.

J. C.M. Baeten and J. A. Bergstra. Real time process algabra. Formal
Aspects of Computing, 3(2):142-188, 1991.

A. Benveniste and G. Berry. The synchronous approach 1o reactive
and real-time systems. Proceedings of the IEEE, 79(9):1270-1282,
September 1991.

G. Berry and G. Gonthier. The ESTEREL synchronous pregramming
language: design, semantiics, implementation. Secience of Computer
Programming, 19(2):87-152, 1992.

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of
communicating sequential processes. Journal of the ACM, 31(3):560-
599, 1984.

J. A, Bergstra and J. W. Klop. Process algebra for synchronous
communication. Infermation and Control, 60:109-137, 1984,

T. Bolognesi and F. Lucidi. Timed process algebras with urgent inter-
actions and a unique pewerful binary cperator. In Real- Time: Theory
in Practice, LNCS 600. Springer-Verlag, 1992.

A. Benveniste, P. le Guernic, Y. Sorel, and M. Sorine. A denctational

theory of synchronous reactive systems. Information and Computa-
tion, 99:192-230, 1992.

185

[BM79)

[Bougs]

[BRS5]

[Brog3]

[BT&Y]

[Chet1]

[CLM9 1]

[CR85)

[Dan92)

[Davd1]

[Dil&g)

R. S, Boyer and J. 5. Moore. 4 Computational Logic. Academic
Press, 1979.

G. Boudol. Notes on algebraic calculi of processes. In K. R. Apt, edi-
tor. Logics and Models of Concurrent Systems, volume F13 of NATO
AST Series. Springer—Verlag, [985.

S. 12, Brookes and A. W. Rouscoe. An improved failures model for
communicating processes. In Proceedings of the Pittsburgh Seminar
on Concurrency, LNCS 197, pages 281-305. Springer—Verlag, 1985,

S. D. Braokes. A Model for Communicaling Scquential Processes,
D.Phil. Thesis, Oxford University, 1983.

A. Bronstein and C. L. Talcott. Formal verification of synchronous
cirenits hased on string-functional semantics: The 7 Paillet circuits
in Boyer-Moore. In Automatic Verifiealion Methods for Finite State
Syatems, LNCS 407, pages 317-333. Springer-Veriag, 1989

Liang Chen. An interleaving model for real-time systems. LFCS
Report ECS-LF(CS-91-184, Laboratory for Foundationa of Computer
Science, University of Edinburgh, 1991.

E. M. Clarke, Jr., D. E. Long, and K. L. McMillan. A {anguage for
compositional specification and verification of finite state hardware
controllers. Proceedings of the IEEE, 79(9):1283-1292, September
1991,

J. E. Coolahan, Jr. and N. Roussopoulos. A timed Petri Net method-
ology for specifying real-time system requirements. In Proceedings
of the International Workshop on Timed Petri Nets, pages 24-31,
Toronto, Italy, 1985. IEEE.

M. Daniels. Modelling real-time behaviour with an interval time cal-
culus. In Formal Techniques in Real-Time and Fault-Tolerant sys-

tems, LNCS 571, pages 53-72. Springer-Verlag, 1992.

J. Davies. Specification and Froof in Real-Time Systems. D.Phil.
Thesis, Oxford Uuiversity, 1991,

D. L. Gill. Trace theory for automatic hicrarchical verification of
speed-independent eireuits. MIT Press, 1989,

186

[DS8Y)

(DSY2)

IFKTMO86]

[For92]

[GMAS9]

[Gorss]

[Gors6]

[Har87]

[Heng8}
[Hoa85]

[HoaB6]

[Hoo90]

[HR90]

J. Davies and S. Schneider. An introduction to Timed CSP. Techni-
cal Monograph PRG-75, Oxford University, Programming Research
Group, 1589,

J. Davies and §. Schneider. A brief history of Timed CSP. Techni-
cal Monograph PRG-96, Oxford University, Programming Research
Group, 1992.

M. Fujita, S. Kono, H. Tanaka, and T. Moto-Oka. Aid to hierachial
and structured logic design using temporal logic and prolog. [EE
Proceedings, 133(5), 1986,

Formal Systems (Europe) Ltd. Failurcs Divergence Refinement:
Users manuel and tulorial, 1992,

G. C. Gopalakrishnan, N. 8. Mani, and V. Akella. Parallel com-
position of lockstep synchronous processes for hardware validatian:
divide-and-conquer composition. [u Automatic Verification Methods
for Finite State Systems, LNCS 707. Springer-Verlag, 1989.

M. Gordon. HOL: A machine oriented formulation of higher order
logic. Technical Report 68, Cambridge University, Compuling Labo-
ratory, 1985.

M. Gordon. Why higher-order logic is a good formalism for specifying
and verifying hardware. In Formal Aspects of VLSI Design. North-
Holland, 1986.

D. Harel. STATECHARTS: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231--274, 1987.

M. Hennessy. An Algebraic Theory of Processes. MIT, 1988,

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall
International, 1985.

C. A, R. Hoare. Communicaling Sequential Processes Erercises and
Answers. Prentice Hall International, 1986.

J. Hooman. Compositional verification of distributed real-time sys-
teims. In H. Zedan, editor, Real-Time Systems, pages 1-20. North-
Holland, 1990.

M. Hennessy and T. Reagan. A temporal process algebra. Technical
Report 2/90, University of Sussex, Computer Science, 1990.

187

[HSZFH92] C. Ho-Stuart, H. 5. M. Zedan, M. Fang, and C. M. Holt. PARTY:

[TEESS]
[Jacy2)

[Jef91a)
[Jel91h]

[JLIH8Y]

[Jos92]
[J890]

[KdRS5|

[KP92]

MFT6]

[Milg3)
[Milg6]

[Milsy]

A process algebra with real-time from York. Technical Report YCS
177. University of York, Department of Compnter Science, 1992.

802.5: Token Ring Access Method, New York, 1985. IEEE.

3. M. Jackson. [Logical Verification of Reactive Soffware Sysiems.
D.Phil Thesis, Oxford University, 1992.

A Jelfrey. Discrete Timed CSP. PMG Memo 78, Chalmers Univer-
sity, Programming Methodology Group, 1994,

A Jeffrey. Ahstract timed observatiou and process algebra. In CON-
CUR 91, LNCS 527, pages 332-345. Springer-Verlag, 1991,

M. 3. Josephs, C. A. R. Hoare, and He Jifeng. A theory of asyn-
chronous processes. Techuical Report TR-7-89, Oxford University
Compuling Laboratory, 1939,

M. B. Josephs. Receptive process theory. Acta fnformatica, 29(1):17-
31, 1992,

(. Jones and M. Sheerar. (ircuit design in Ruby. In Formal methods
for VLSI design. pages 13--70. North-Hoiland, 1990,

R. Koymans and W. P. de Roever. Examples of a real-time temporal
logic specification. In The Arealysis of Concurrent Systems, LNCS
207, pages 231-252. Springer-Verlag, 1985,

Y. Kesten and A. Pnueli, Timed and hybrid Statecharts and tleir
textual representation, In Forme! Techriques in Real- Time and Fault-
Tolevani Systems, LNCS 571, pages 591-620. Springer-Verlag, 1992.

P. M. Metlin and D. J. Farber. Recoverability of cominunication
prolocols - implications of a theoretical study. [EEE Trenseclions
on Communirations, COM-24(9), September 1976.

R. Milner. Caleuli for syuchrony and asynchrony. Theoretical Com-
puler Science, 25:267 -310, 1983.

G. J. Milne. Towards vrerifiably correct vlsi design. in Formal Aspects
of VLSI Design. North-Holland, 1986.

R. Milner. Commmunication and Concurrency. Prentice~Hall Interna-
tional, 1989.

183

[MP92]

[MT90]

[MT91]

[NS90]

[OMAFEY1]

[Pet77]

[PHRS]

[Plo81]

{Pnu7]

|QAF90]

[QF8T]

[Rei85)

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems: Specification. Springer-Verlag, 1992.

F. Moller and C. Tolts. A temporal calculus of communicating sys-
tems. In CONCUR 90 Theories of Concurrency: Unification and
Ertention, LNCS 458, pages 401-415. Springer—Verlag, 1990,

F. Moller and C. Tolts. Relating processes with repect to speed. LFCS
Report ECS-LFCS-91-143, Laboratory of Foundations of Computer
Science, University of Edinburgh, 1991.

X. Nicollin and J. Sifakis. The algebra of timed processes ATP: The-
ary and application, Technical Report RT-C26, LGI - IMAG, Greno-
hle, France, December 1990. (Revised version).

Y. Ortega-Mallén and D. de Frutos-Escrig. A complete proof system
for timed observations. In TAPSOFT’91, LNCS 493, pages 412-440,
Springer-Verlag, 1991.

J. L. Peterson. Petrinets. Computing Surveys, 9(3):223-252, 1977.

A. Poueli and E. Harel. Applications of temporal logic to the spec-
ification of real time systems. In Proceedings of a Symposium on
Formal techniques in Real-Time and Faull-Tolerant systems, LNCS
331, pages 84-98. Springer-Verlag, 1988.

G. D. Plotkin. A structural approach to operational semantics, Tech-
nical Report DAIMI-FN-19, Computer Science Dept, Arhus Univer-
sity, Denmark, 1981,

A. Pnueli. The temporal logic of programs. In Proceedings of the 19th
Annual Symposium on Foundetions of Computer Science. Providence,
R.I., 1977.

J. Quemada, A_ Azcorra, and D. Frutos. TIC: A timed caleulus for
LOTOS. In 5. T. Vuong, editor, Formal Discription Techniques, 11,
Proceedings of FORTE’89. North-Holland, 1990.

J. Quemada and A. Fernandez. Introduction of quantitative relative
time into lotos. In Protocol Specification, Testing and Verification
VII. North-Holland, 1987.

W. Reisig. Petri Nels: An Introduction, volume 4 of EATCS Mono-
graphs on Theorelical Computer Science. Springer—Verlag, 1985.

139

[Ros88a)

[Ros88b]

[RR6]

[RR87)

[Schop)
[Schol]
{Shesii]
[StoTT)
[TangY)
[Tarss)

[This6)

[Too%3]

[Yi91)

A. W. Roscoe. An alternalive order for the failures model. Technical
repart, Oxford University, Programming Research Group, 1988. In
[Ros88b].

A.W. Roscoe. Two papers on CSP. Technical Monograph PRG-67,
Oxford University, 'rogramming Research Group, 1988.

G. M. Reed and A. W, Roscoe. A timed mode] for communicating
sequential processes. In Proceedings of fCALP’86, LNCS 226, pages
314-323. Springer -Verlag, 1936.

G.M. Reed and A. W. Roscoe. Metric spaces as models for real-tinte
concurrency. In Procerdings of Third Workshop an the Mathematical
Foundations of Programming, LNCS 298, pages 331-343. Springer -
Verlag. 1987.

S. A. Schueider. Correctness and Communication of Heal-Time Sys-
tems. D.Phil. thesis, Oxford Unjversity, [990.

S. A, Schueider. The walchdog tiiner in Timed CSP, June 1991, BRA
project 3096-SPLC Deliverable.

M. Sheeran. Design and verification of regular synchronous circuits.
fEE Proceedings, 133(3), 1956.

J. E. Stoy. Denolational Semantics: The Scoit-Strachey Approach to
Programming Language Theory. MIT, 1977.

A, S, Tanenhaum. Computer Networks, Prentice-Hall International,
second edition, 1989.

A. Tarski, A lattice-theoretical fixpoint theorem and its applications.
Pacific Jonrnal of Mathematics, 5:285-309, 1955.

P. 8. Thiagarajan. FElemenlary net systems. In Pctri Nets: Cen-
tral Models and Their Properties, LNCS 254, pages 26-59. Springer—
Verlag, 1986.

M. Tooley. Electronic Cirenils Handbook, Butterworth-Heinmann
Ltd. second edition, [993.

Wang Yi. CCS + Tiue = an inlerleaving model for real-time systems.

In 1C’4LP 9! Proceedings, LNCS 510, pages 217-228. Springer- Verlag,
1997,

190

Glossary

Syntax

3~

T

(CA— Pyx]

[m]

g
['B1X — Px]
Il
\

P[S5]
pr:A-P
pr: 1,0+« P
{z: = P;), with 4
wait{n) —» P
srop

a~s P

cle

e’z

§(c)

chan(P)
oul{ P)

in{ P)

eu(P)

>

SCSP
SCSP*
sCsp!
SRPT
SRPT’
SRPT'

chaos
non-determinisiic choice
set prefix (SCSP)
choice in set prefix
default in set prefix
output prefix (SRPT)
parallel composition
hiding

renaimning

recursion (SCSP)
recursion (SRPT)
wutual recursion
watting

deadlock

event prefix

output term

input term

data set on channel
channels

output chaunels
input channels
nou-communication events
chaining

synchronous language terms
nou-recursive SCSP terms

closed SCSP? terms

synchrouous receptive language terms
non-recursive SRPT terms

closed SRPT? terms

191

10,78
11,78
11,79
12

80

13

14
14,80
16

56

56

55

55

55

55

55
1%

Rl
42
76
9
110

Semantics

Y] B 1

5T
R0
V]

n

satwrated(s)
in

Jeasible(B)

T

TS

SM
Spd
SA
RM

universal alphahet

alphabet

refusal alphabet

observation alphabet

all traces with alphabel 4 (SCSP)

all traces with alphabets T & O (SRPT)

union

intersection
subtraction

trace predicate
Lrace membership
set. predicale
maxynal behaviours
reatriction

modet for SC5P

model restricted to alphabet A
trace projection of inodel

model for SRPT
non-determinism order
informatiou order

variables

domain of bindings (SCSP)
domain of bindings (SRPT)
variable binding (SCSP)

variable binding (SRPT)
semantic mapping for SCSP
trace projection of M

alphiabet projection of M
semautic mapping for SRPT
trace projection of My

input alpliabet projection of My
output alphabet projection of My

192

29
29
28
29
29
86
29, 30
29

Proof Systems

AT N

=y
I ==
=

SCSP

non-determinism order 42 Cp
eqnivalence 42 =4
theorem 43 kg
syntactic approximation 50 =R

(F) approximations of F 50 FINg(P)

axiom a-

law -

Embeddings

¢
2]
7
é

embedding of RM in SM L00 P
embedding of SRPT in SCSP 106 1y
embedding of BINDg in BIND 107 5
trate projection of & 100

SRPT

non-determinism order 110
eqnivalence 110
theorem 111
syntactic approximation 117
approximations of P 117
axiom

law

image of trace 100
image of maximal trace 100
output saturation 100

Timewise Abstraction and Pipes

Slow timewise abstraciion operator 123
choose trace contraction 131
& trace mnlliplication 132

Mathematical Symbols

N set of natural numbers
R set of real numbers

P powerset operalor

F set of all finite subsets
{} empty set

A% finite traces

(..} trace

{} empty trace

concatenation

193

Ep effect of pipe 134
£p length of pipe 134
~yp pipe equivalence 135

length of trace

least upper bound
greatest lower bound
fixed point operator

“-;":II:

defined as

end of proof
end of theorem
end of definition

< ROl

