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Abstract 

A mathematical theory of synchronous communication is presented. 
The process algebra SCSP, ~hares many of its constructors with Hoare's 
Communicating Sf'quential Processes. It models components of a dis­
tributed system i":lS processes evolving in lockstep. A synchronous vari­
ant, SRPT, of Joscphs' Rl~c('ptive Process Theory, which distinguishes 
between iuput. and outpnt evenb in its model of communication, is also 
investigated. 

The langna-gt:' SCSP is given a. denotational semantics. The seman­
tic model captmes the behaviour of proce~ses using failures-divergences 
information. SCS? exhibit.s Rufflcient algebr<l,ic laws to form a sound 
and complete proof system with respect to t.he semantics. This allows 
reasoning about COnClirTellt systems by means of algebraic manipula­
tion of process expressions. The notation is extended to capture com­
munication of data via channels and is used to specify a token ring 
protocol. SCSP is sufficiently expressive to establish temporal details 
of tbe protocol. 

SRPT can be interpreted as a receptive sublanguage of SCSP. This 
is demonstrated by embedding both the language and its semantic 
model in those of SCSP. The embedding allows many of the mathemat­
ical results concerning SRPT to be deduced from their counterparts in 
SCSP. SRPT is shown to he applicable 1.0 the modelling of synchronous 
circnits. The Ilotion of discrete time in !.lie algebra captnres the dock's 
bebaviour while the receptive nature of SRPT matches the commu­
nication of signals in a circuit. By introducing a notion of timewise 
abstraction, the effect of vanation in the speed at which circuits are 
docked can be analysed. Timewise abst.raction is also applied to the 
analysis of pipes. 
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Chapter 1 

Introduction 

As technology advances and society places a greater reliance on computer systems 
ill critical applications, verifying the correctness of these systems becomes more 
important and more difficult as the size of the systems increases. FUrthermore, in 
an endeavour to increase efficiency more empha..~is is being placed on concurrent 
systems which are harder to analyse thaJ.l their sequential counterparts. A con­
current systl:'lTI can be viewed as a network of component processes interacting via 
some form of communication. Because of an awareness by computer scientists of 
the need for formal design and vel'ification techniques for such systems, the last 
decade has 8ef>n the development of mathematical models (including so-called pro­
cess algebras) of communication and concurrency which can be used to analyse 
the behaviour of networks of processes. Well-known process algebras are Hoare's 
CSP [Hoa85J, Milner's CCS [Mi1891 and Bergstra and Klop's ACP [BK84). The 
usual approach of these algebraic methods is to view th~ system at an appropriate 
level of abstraction at which only key events are observed. At this level the sys­
tem is described in an equational form which, by the use of algebraic laws, can be 
manipulated to give information concerning the interaction of these events. 

The original process algebras do not display any concept of quantitative timej 
they restrict, t.heir concerus to the ordering of events. This makes them unsuitable 
for examining systl'lnS in which timing is critical. for example a nuclear reactor con~ 

troller must insert the control rods within time t once an overtemperature signal 
has been detected, where t is typically a very short time. There are also situations 
in which s.ystems, without time critical requirements, may be more satisfactorily 
modelled in a timed framework. In an idle token ring the token passes unhindered 
around the ring; there is no guarantee of the availability of a message for trans­
mission around the ring and any model must be able to represent this situation. 
Consequently in an untimed model it may be difficult to hide the mechanism of 
the protocol (the t.oken) while avoiding infinite chatter (the possibility of an arbi­
trary number of internal events occurring). In a timed model this problem can be 



avoided by assuming that the token ta.kes time (which cannot be hidden) to pass 
around (he ring. 

In order to extend the domain of problems which can he sa.tisfactorily addressed 
by process algebra tecbniques, there has been interest in extending the original 
algebras to incorporate the concept of time. Both dense and discrete time domains 
have be€n considered for the measure of time. Dense time models typically use the 
real numbers, R, a~ their time domain and view the passage of time as continuous. 
Dense time models include Reed and Roscoels Timed esp [DS89, RR86], Moller 
a.nd Tofts' Tempmal CCS [MT90] and Baeten and Be'gstm's Timed ACP [BB91a]. 
Discrete time models typically use the natural numbers, N, as their time domain 
and assume that time increases in a, stepwise fashion, each step corresponding to 
the 'tick' of a global dock. Discrete time models include Milner's Synchronous 
ees [fo.liI83], Hennessy and Regan's TPL [HR90], and Jeffrey's Discrete Timed 
CSP [Jei91a.]. 

This the~is is devoted to the development of a new discrete time model, Syn­
chronous esp, and its 'receptive' submodel [DiI89, Jos92]. It is hoped that these 
process algebras will be widely applicable; case studies in protocol verification and 
digital logic design are described in this thesis. 

1.1 Technical Overview 

1.1.1 Synchronous CSP 

The next chapter presents a discrete time algebra, Synchronous esp. Whereas ees 
and sees are basf"d on an operational semantics, esp and sesp are based on a 
denotational semantics. In sesp, tbe underlying model is a failures~divergences 

model [BR85] in which time is recorded implicitly. The failures have heen encoded 
as traces (finite sequences) of sets, these sets consisting of occurrences and refusals 
of events. Divergences are also encoded in the t.race sets as in (Jos92], giving us a 
very simple model. 

In designing the language SCSP, the aim has Leen to achieve a formalism which 
is sufficiently expressive to capture the time dimension of systems under analysis, 
while at the same time maintaining a powerful algebraic struct.ure. By choosing a 
discrete model of time we limit the applications of oUr algebra. It only applies to 
systems where a lowest common denominator on the delays between observations 
can be postulated. This is less restrictive tban one might imagine; in fact for a 
majority of systems a discrete time model is the natural r.boice. This is particularly 
so in hardware whicb is often clocked at a speed whir.b allows individual components 
to reach a stable state. hI applications where the concept of discrete time does 
indeed suffice, the advantages of using an algebra which supports the same level 
of expressibility can be extensive. By using a discrete time model we are able to 
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obtain a complete axiomatisation within the algebra; this is not the case in the 
current models of Timed esp, for example. Such an axiomatisation makes the 
algebra a powerful specification and design language. 

Although many of the constructs within the algebra are constructs familiar to 
esp, SCSP should not be regarded as a syntactic extension of esp. Instead, advan­
tage has been taken of the timlC' dimension in setting up the model, while keeping 
the mod('[ c1oslC' enough to that of CSP to draw from the wealth of experience that 
has been generated by the latter. 

In SCSP, WlC' assume that events which occur simultaneously are independent. 
This j::; a fairly llatural assumption ~ince it merely assumes that time must pass 
between cau::;e and effect. We exprlC'SS t.he simultaneous occurrence of events by t.he 
use of sets in the trac('s, rather t.han artificially imposing an ordering on events 
occurring simultaneously. This resembles the 'true concurrency' approach and con­
trasts with the 'interleaving concurrency' approach of many other process algebras. 

A second assumption of our model is that a given event can occur at most once 
at each time step. (We are not jnterested in pathological cases, such as that of 
an infinite Humbcr of occurrences of an event at a given time which Jeffrey finds 
himself considering [Jef91aJ. Indeed, we restrict ourselves to finite alphabets of 
events and so wc ean be sore that only a finite number of events occur at any 
given time.) Again the assumption is less restrictive than it might first appear . 
.For example, the voltage-level on a wire may change many times between clock 
pulses, but provided it always stabilises before the rising edge of the clock, say, at 
most one event (indicating the final voltage level associated with that wire) need 
be recorded on each tick. 

1.1.2 Synchronous Receptive Process Theory 

In the latter half of this the.'lis a second algebra, Synchronous Receptive Process 
Theory is presented. There are st.rong similarities between the design principles 
of this lan.s;uage and sesp; namely SRPT is based on a discrete t.ime frame, si­
multaneously occurring events are a..<;snmed to possess causal independence a.nd 
simultaneous multiple occurrences of the same event are prohibited in the language. 

The main difference between SCSP and SRPT is the assumed method of com­
munication blC'tween processes and t!wil' environment. In SCSP we assume t.hat 
events O(TUr only on ~imultal1eous co-operation of tbe process and its environment. 
In SRPT events performed by a process are classified into two types. input events 
and output events. The process is always receptive to input events l in that it is 
always willing to co-0plC'rate with the environment on the performance of input 
events. Symmet.rically the envirollment is always prepared to allow the perfor­
mance of output ev(>nts from t.he process. The process has complete control over 
the performance of oul put events, while the environment has complete cont.rol over 
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the performance of input events, Naturally the behaviour of a process is influenced 
by the inpnt events performed, so input to a process can affect subsequent output 
by that process. The method of communication adopted by SRPT, coupled with 
the choire of time frame, make SRPT particularly appropriate for problems which 
involve modelling clocked circuits. 

Like SCSP, SRPT is based on a denotational semantics. The underlying model 
for SRPT is very simple: by distinguishing between input and output events in the 
model and considering the receptive nature of communication, it is no longer nec­
essary to record refusal information. It is sufficieut to consider a traces-divergences 
model in which time is recorded implicitly. Terms in the traces are sets of events. 
Divergeo.ces are again encoded ill the traces, although a. slightly different approach 
to this encoding result-s in us considering a different partial order on the model to 
the usual non-determinism ordering used in CSP [BR85] and SCSP. 

The similarities in the design principles of SCSP and SRPT are borne out in 
our ability to l'mbed SRPT and its associated model into SCSP and its associated 
model. The embedding demonstrates how SRPT can be viewed as a receptive 
sublangllage of SCSP. Moreover, many of the theoretical results of SRPT can be 
deduced via the embedding and corresponding results for SCSP. 

A final consequence of the combination of the receptive model of communication 
and the discrete time frame in SRPT is the ability to perform timewise abstraction. 
Timewise abstraction provides a method for translating the time frame in which a 
system is represented. This can be particularly useful when the internal workings 
of components of a system are most appropriately verified in a time frame different 
to that appropriate to the ultim<lte interaction between the system and its environ­
ment. Timewise abstraction can be viewed as the time dimensiona.l counterpart to 
communication a.bstraction which is already recogni~ed as a powerful development 
tool. 

1.2 Structure of this Thesis 

This thesis can be divided into two parts. The first part consists of Chapters 2--4 
and is concerned with the discrete time process algebra, SCSP. Chapter 2 intro­
duces the language SCSP; each of the operators of the langnage is described, these 
descriptions are supported by axioms satisfied by processes in SCSP and some ex­
amples. A mathematical theory ullderpiuning the algebra of SCSP is developed in 
Chapter 3; a failures-divergences model representing the behaviours of processes 
is presented, this enables the construction of a denotational semantics for SCSP. 
A proof s)'stem for SCSP. incorporating the axioms presented in Chapter 2, is 
shown lo be sound and complete with respect to the semantics in Chapter 3. In 
Chapter 4 the language is enhanced to allow value passing in communication, this 
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enhancement is used in the specification of a token ring protocol in SCSP. 
Tbe second half of this thesis, Chapters 5-7, presents a synchronous receptive 

process theory (SRPT) and considers some of the features of this algebra. In 
Chapter 5 thl' la.nguage SRPT and its a.<;sociated denotational model are presented 
and informally compared with those of SCSP. The comparison of SRPT with SCSP 
is formalised in Chapter 6 where, by embedding both the language and model of 
SRPT into that of SCSP, it is demonstrated how SRPT can be viewed as a receptive 
sublanguage of SCSP. The embedding makes it possible to deduce a sound and 
complete proof system for SRPT from the results of SCSP. The theory of timewise 
abstractiou and its application to SRPT are considered in Chapter 7, the use of 
timewise abstra.ction is supported by several examples drawn from the field of 
digital logic design. 

The final chapter outlines the ma.in restdts of this thesis, make.~ comparisons 
with work by other authors and concludes with a. discussion of possible future 
developments resulting from this work. 
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Chapter 2 

Synchronous CSP 

Like Hoare's CSP [Hoa85], Synchronous CSP is designed to provide a clear model 
for systems of concurrent processes interacting via synchronised communication. 
Moreover, 8eSp allows us to model timing conditions by assuming that events 
occur at discrete points in time. It provides an algebra and associated algebraic laws 
allowing us to manipulate expressions into forms which make the consequences of 
the interaction explicit. Non-determinism and concurrency are handled in a manner 
familiar from esp, although other constructs have been superseded by constructs 
which ellable us to grasp better the considerations which are our concern: namely 
our implicit measure of absolute time and our true concurrency approach to events 
which occur simultaneously. 

We shall see in this chapter that Synchronous CSP is a simple language which is, 
nevertheless, sufficiently expressive to capture the characteristics of many systems. 
The algebra and laws are underpinned by the denotational model which will be 
presented in Chapter 3. 

2.1 The Language 

As in Hoare's esp, we assume that the system we wish to model can be viewed 
as performing, in cooperation with the environment, a selection of instantaneous 
events. We take the environment to be all components which may interact with 
the system under scrutiny. Such components will typically be other systems or a 
user. We choose to insist that events have no duration; actions with duration can 
be represented by two events symbolising the commencement and termination of 
the action. 

We presuppose a universal alphabet of events B. We associate with each process 
an alphabet of events, A ~ E, in which it may participate. We require that A is 
finite and non-empty. We also presuppose a set of process variables, Var. These 
va.riables facilitate the definition of processes by recursion. 
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The abstrad synt.ax of our language is similar to a subset of esp, the ob\'ious 
difference being the replacement of the event prefix const.ruct by the set prefix 
const.ruct. We take P to rallge over process terms*, A E !F'E : x E Var and 5 to 
range over bijeet.iyp rcnaming functions S : r; ...-.jo 'E. Then, wit.h certain restrictions 
on the a.lphnbets of tlw proc<'sses, the following grammar defines the syntax of our 
language. 

P ::= -i A	 Chaos
 

process variable
 I' 
I Pn P non-det.erminist.ic choice 

1 [X<;,1 ~ Px ] set prefix 

IP II P parallel composit.ion 

IP \ A hiding 

I PiS] renaming 

1~·r:A.p recursiOIl 

1 (Xi eo Pi), with A mu tual recursion 

We now consider the informal int.erpretation of each of t.hese terms along with 
restrictions imposed upon the alphabets of the process terms. 

2.1.1 Primitive processes and operators 

In presenting t.he operators in t.he following sections we shall state various equa­
tional propert.ies of these operat.ors expressed in the form P ::::: Q (P == Qmeans, on 
the other hand, P is defint,d equnl to Q). When t.he E'fjllat.ionaJ property is stated 
as an axiom, it is an axiom of t.hp proof system t.o be presented in Section 3.4. 
When the equationa.l propert.y is stated as a law then it is derivable within the 
proof system - the derivation of many of these laws is however tedious involving 
reduction find comparison of the terms Oil hoth sides of the equation, so will not 
be presented here. 

Chaos 

The process -itt is the most undesirable process with alphabet A; it can arbitrarily 
mimic t.he beltaxiour of any other process with the same alpha.bet. Such a process 
is si'\.id to be divergent. It is llsed to model behaviour when things go wrong, it is a 
worst case scenario and we aSSUllle' there is no escape from this erroneous beha.viour. 
Often the alphabet will be clear from the context and we will simply write 1-. 

*If X denot.ffi the set or fiuite subsf't,s of X while I? X denotes the power sl"! of X. 
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Process variable 

The inclusion of process variables within the syntax allows a proper treatment of 
recursion. The term .1' E Vat· represents tht:' process bound to variable x in the 
context of a particular choice of variable bindings. It is necessary to make explicit 
the choice of va..riable bindings before we can make any deductions about the process 
to which x is bound. 

Non-deterministic choice 

v..'hen two proct:'~~es P and Q have a comOlon alphabet A, we define the non­
deterrrllrristicchoice between these processes, pnQ, to be the process with alphabet 
A which non-deterministically behaves like P or like Q. As with esp, this choice 
can be viewed a... oC('ltrring internally within the system; the environment has no 
control over the outcome of the choice. 

Non-deterministic choice satisfies the following axioms: 

A-I: pnQ=Qnp 

A-2: (pnQ)nR=pn(QnR) 

A-3: PnP= P 

A-4: P n 1-=1­

Axiom 4 reflects the observation that .1 call mimic the bl?haviour of any pro­
cess; in particular, we cannot distinguish between a choice in favour of P and 1­
arbitrarily mimicking the behaviour of P. 

Set prefix 

A choice set B is a subset of an alphabet A. Let P be a lP(B)~indexed family 
of processes, each with alphabet A. Tllf' process [X ~ B - P x] can perform the 
events in any subset, C, of B at the first time step alld then go on to behave 
like Pc. None of the events in B can initially be refused by the process, so the 
largest subset of events from B offered by the environment will he performed by 
the process. The process is initiall)' unable to perform events not present in B. 
This process has a built in time-out behaviour in that, if the environment is not 
initially willing to offer any e'''ents in B, then the process will 'time-out' and then 
behave like PO' 

COll5ider the process 

[Xc:{a,b} ~ (1- if X ~ {} else PII. 
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Iuitially it is able to perform events a or b or both, but cannot perform any other 
events in its alpha.bet. If the environment is able to participate in at least one of a 
and b then the process will evolve to P at the next time step. On the other hand, 
if the environment is not in a position to offer either a or 6 to the process, then the 
process will not perform an event at the firsl time step and will evolve to chaos at 
the next time step. 

Set prefixing provides the only form of environmental choice in our language. 
This choice differs from the extemal choice of both untimed and timed CSP [BHR84, 
RR86]. Unlike those models, SCSP does not support instantaneous resolution of 
external choice. A process cannot offer its environment the choice between two 
events without being able to oifer both together. This is a direct consequence of 
our assumption that events observed sicoultanconslyoccur independently; the per­
formance of (1)(' event at a particular time cannot preempt another event at the 
same time. 

We ha.ve one axiom involving set prefix. 

A-5: If C<;: B, 

[X<;:B ~ Px]nIY<;:C~ Qv]"rX<;:B ~RxlnIY<;:C -; Qy] 

_{P8' n QB' if B' <;: C 
where RBI:::: PBI if B' <l:. C 

This axiom is explained by noting that all observer can establish which way the 
process resolved t.he non-deterministic choice after the first time step exactly when 
at least one of th(' events offered hy the environment is in the set B - C. 

Consider the process 

rX<;:{a,b}~ PJn[Y<;:{a}~ Q] 

If the environment offers a b initia.lly, then we can tell after the first time stl?P 
whether the process will behave like P or like Q by noticing whether the b occurred 
or not. If the environment does not offer a b initially, then there is DO way of 
establishing whicb way the choice wa.." resolved without further observation. We 
can therefore postpone tllf' resolution of choice in those circumstances when the b 
is uot initia.lly offerf'c!. Hence the aboye process is equivalent to: 

IX <;: {a, b) ~ (P if b E X else P n Ql] n [Y <;: {a) ~ QJ 

In the case where B = C A-5 and the idempotence of non-deterministic dl0ice 
allow us to deduce the dist.ributivity law: 

L-l: IX <;:B ~ P"ln [J'<;:B ~ Q,]",,[2<;:8 ~ (Pz n Qz)l 
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It is convenient to provide an alternative notation (or set ~refix. Let J = {1 .. n} 
be a finite indexing set, let. Bi (j E /) be distinct finite subsets of the alphabet .4, 
and let Pi (i E 1) and Q be processes with alphabet A. Then we write 

[B, ~ P, 0 IJ, ~ P, 0 ... 0 B, ~ P, Do Q] '" IX <:; UBi ~ Px ] 

P, if B I = Bi and i E J 
where PB, == Q{ otherwise 

Parallel compositioll 

The paIilUel cornjJositioll. P II Q, of two processes P and Q is the process which 
results (rom their cOIlCllrrent execulion. Assuming that the alphabets of P and Q 
are oP ond oQ r(,s[H'ctively. Uten the a.lphabet of P II Q is o.:PUo:.Q. While neither 
of the compouent processes arc divergent, synchronisation mnst occur on common 
events. Synchronisatioll over common evt'nts means that such events can only occur 
when both P a.nd Q are prepared to perfofm them; they are refused if one or both 
of the component processes refuses them. Events not in the common alphabet can 
occur or be refused according to the state of the corresponding component process. 
Once onE' or other of the component processes becomes divergent so does P II Q. 

Parallel composition satisfies the following axioms: 

A-6: ~A II P "~AU"P 

A-7: P II~A=~,uQP 

A-B: (PnQ)IIR,,(PIIRln(QIIR) 

A-9: PII(QnRl=(PIIQ)n(PIIR) 

A-IO: IX<:;A'~Fx]II[Y<:;B'~Q,.]" 

[Z <:; ((A' n B') U (A' - BI U (B' - A)) ~ (PznA, II QznB,J] 
wlH're [X~AI- pxJ and [Yo;B' ---I Q}.j have alphabets A and B. 

Commutat.ivity and associativit ...· of parallel composition CaJ] be deduced within the 
proof sysf,Plll. The proof of L-2 is given a~ Theorem 8.1 in Appendix 8. 

L-2: F II Q" Q II F 

L-3: (F II Q) 1111 " P II (Q II R) 
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Hiding 

It is often useful to be able to change the level of abstraction of a problem by hiding 
events from tbe environment. For example, when building a model of a circuit we 
may develop subcomponents, take their parallel composition and finally hide all 
communication on internal wires between subcomponents. The set of events to be 
hidden, B, do~s not include the whole alphabet of the process P. A hidden event 
occurs as soon as the process is ready; the environment plays no part. As the 
passage of time cannot be hidden and events are assumed to occur no more than 
once a.t each tick of the glohal clock, ;infinite chatter' ca.nnot arise over a finite time 
span. 

Hiding satisfies t.he following axioms: 

A~ll 1-A \B ,,1-.'_B 

A-12 (pn Q)\A" (P\A)n(Q\A) 

A-13: IX c;B ~ P x ] \ Jl;=[l~ c; (B - A) ~ (PYU(BnA) \ A)I 

and the following laws: 

L-4: (P\A)\B"P\(AUR) 

L-S: (P II Q) \ A'" (P \;l') II (Q \ A') 
if A' n oP no Q ~ {} 

Renaming 

Renaming facilita.tes reUse of components. It is often the case that two processes 
in a system can be viewed as isomorphic in that their behaviour is the same up to 
some relabeling of eveuts. Rest.ricting ourselves to a bijective renaming fnnction 
S : :E ----t I'; , we denote P[S] to be a renaming of process P. If process P has 
alphabet A then peocess PIS] has alphabet AIS] ={Sial I a E A}. PIS] performs 
event S(a) in exactly the circumstances that P would perform event a. 

Renaming satisfies thf' following axioms: 

A-14 : 1-A [S] "1- A[sJ 

A-IS: (P n Q)[Sj " PIS] n Q[S] 

A-16: IX c;B ~ PxIlS]"IX C;BIS] ~ Pxls-'JiSll 

and the following laws: 

L-6: PIS][R] " PIR . SI 

L-7: (P II Q)[S] " P[S] II QIS] 

L-8: (P \ B)[S] " PIS] \ BISI 
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2.1.2 Recursion 

Until now we have only provided operators suitable for expressing finite processes. 
Any process whicn can be expressed using the operators developed so far will, after 
a finite time, hehave like our basic process ..1. 

Jl:r: A • P represents the solution of the recursive definition of the process J 

defined 1\8 a part.icular (least) fixed point of the function). :I • P. The mathematical 
details of this con~truction will be presented in a. later section. 

A-17 , I'" A • P '" PIU" ,A· P)/x) 

Here PIUI x A. P)/.r] denotes the proCf~SS P with pI : A • P substituted for 
every free occurrence of the variable x. (This syntactic substitution [E/x] Call 

always be distinguished from renaming [8] by its context.) Recursion also satisfies 
alpha c0nver~ion: 

L-9: 1",A,P"'I'y,A.P[y/x! where y is not free in P. 

Uniqueness of fixed points 

Following Brookes, Hoare and Roscoe, [BHR84j, we define P l n to be the process 
which behaves like P for the first n steps and then becomes chaotic, behaving like 
..l. A function, F, from process terms to process terms is said to be constru.ctive if 
the first n+l steps of the behaviour of process F(P), for an arbitrary process P, 
are onl)' dependent on the first 11 steps of process P's behaviour; i.e. 

F(P) 1 (n+1) ~ F(P 1 n) 1 (n+1) for all P. 

Similarly F is said to be a non-destructive function jf the first n steps of the be­
haviourof a process F(P), are only dependeut ou the first 11 steps of P's behaviour; 
i.e. 

F(P) 1 n = F(P 1 n) 1 n forallP. 

These definitions can be extended to functions with more that one argument 
and a function can be described as being constructive or non-destructive in some 
or all of its arguments. 

All the primitive operators developed here are non-destructive and [X ~ B -t .J 
is constructive in all its arguments. It is a simple exercise to show that the compo­
sition of two non-destructive functions is non-destructive, while the composition of 
a constructive and non-destructive function is constructive. So any ).:r • P with P 
a process tlC'rm is non-destructive. l\.-loreover if every occurrence of the free variable 
x in P is dirlC'etly or indirectly guarded by a set prefix, then ). x • P is constructive 
in x. Formally: 
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Definition 2.1 We say that a process term P is guarded in z if one of the following 
conditions i8 met: 

1.	 x does not occur free in P. 

2.	 P = y for SOIW' process variable y /:. .r and y is bound to a process which is 
guarded in x. 

3.	 P = [X ~B -t Pxl for SOOle subset, B, of the alphabet. 

4,	 P = Q II R, where Q and R are guarded in z . 

.5.	 P = Qn R, where Q and R are guarded ill x. 

6.	 P = Q \ A, where Q is guarded iu I. 

7.	 P = Q[S] where Q is guarded ill x. 

8.	 P = 1/ y: A. Q, where Q is guarded in :T:. 

9.	 P = (Xi == Qi)) with A, where QJ is guarded in z. (Mutual recursion IS 

defined helow.) 

o 
Not", that. unlike esp, SCSP gives P \ A guarded jf P is guarded. 

It is a trivia.J consequence of the above definition that P is guarded in X implies 
).;( • P is constrnctive in x. 

It follows from the argument set out in [BHR84] that if P is guarded in x then 
JL x ; A • P is the unique fixed point of). z • P in an appropriate partia.l order. 

Mutual recursion 

Let A be a finite totally ordered indexing set and let i,j range over A. If, for all 
i E A, P, i8 guarded in x) for all j S; 'I then 

(x, "Pi)i with A i E A 

represents the jlh component of the solntion of the recursive definition of the vector 
of processes (I,) defined as a particular (nnique fixed point) solution to the equation 
(Xi == P,), In a manner similar to the case for simple recursion we have the fol(owing 
axiom. 

A-IS:	 «Xi" Pi), with A) '" P,[(x," Pi)' with Al/x.] 
where k range8 over tIle Xl: free in p). 

and alpha conversion: 

L-IO: «"" Pi), with A) '" «(y," P,[y';"'])i with A) 
where no YJ: i8 free in any Pi and k ranges over A. 
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2.1.3 Derived processes and operators 

The following processes and operators can be constructed from those introduced in 
the previous sections. They are presented separately here since they are useful in 
their own right. 

Wait 

Wait is simply a special case of set prefixing. It may be that a process waits for 
a number of units of time, unable to engage in any actions, and then hehaves like 
process P. We denote such a process hy wail (n) -+ P. We can define the wait 
prefix in terms of set prefixing with {} as follows: 

wad(O)_P == P
 
wat(n+1) ~ P '" [XC;;{} ~ (wait(n) ~ P)]
 

L-l1; wait(m) _ lWQit(n) -+P}= wait(n+ m)--tP 

Proof: by induction on m.. 

Base case m = 0 is trivial by definition of wail. 

Inductive step. 

wait(m + 1) ~ (wait(n) ~ P) 
== {defn. of wait} 

[X(;{j ~ (wait(m) ~ (wait(n) ~ P))] 
== {inductive hypothesis} 

[X(;{j ~ (wait(n + m) ~ P)] 
== {defo. of wait} 

wail( n + 111 + 1) -+ P o 

Stop 

The process STOPA is not prepared to perform any event in its alphabet, A, at 
any time. The stability [RR86] of the process is not recorded in this model so this 
process covers both the case where the process is genuinely unwilling to participate 
in any event and the case where the process is only prepared to participate in 
internal events invisible to the en vironment. As far as the environment is concerned 
these are indistinguishable; in both cases the process is idling. So the process 
STOPA is the process which waits forever. 

STOP. '" ~ x, A. wait(1) ~ x. 

An obvious consequence of this definition is the following law: 
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L-12: wait(t) ~ STOP,,, STOP,. 

Proof: by induction on t.
 

Base case I. = 0, trivial by definition of wait.
 

Inductive step.
 

wait(t + 1) ~ STOP, 
{ by L-ll } 

wait(!) ~ (Wait(t) ~ STOPA) 
{ inductive hypothesis} 

wait(l) ~ STOPA 
{ defn. of STOP} 

waite 1) --+ tt, x • wa.it( 1 ) --+ x) 
{byA-17} 

J1X. wait(l) --+:t' 

{ defn. of STOP} 
STOPA o 

Run 

The process RUNA is always prepared to perform any set of events from its alpha­
bet. It. is given by: 

RUN, e, I" : A • IX <; A ~ xl 

As RUNA never refuses to perform all event we have the following laws: 

L-13: RUNA II RIIN." RUNAu• 

Proof: 

RUN, II RUN. 
" {deln. 01 RUN} 

IX <;A ~ RUNA) II IX <;8 ~ RUN.] 
" {by A-lO } 

IZ<;(A nB) U (A - 8) U (8 ­ A) ~ RUN, II RUN.] 
::=: {set manipuation } 

[Z<;A U 8 ~ RUN, II RUN.] 
== {by uniquness of solutions to guarded recursive equations} 

RUNAuB o 
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L-14: RUNA II P = P where A'; aP 

Proof: Later, in Section 3.4, we show that every process can he characterised by 
a set of finite processf'S, each of which can be expressed using the process 1.- and 
the set prefix and non-deterministic choice constructs. By structural induction it 
is sufficient to establish the result in the following cases: 

•	 Rl'NA II1-B=1-B if A'; 13, by A-6 

•	 If "(P n Q) = 13 and A '; 13 then, RUNA II (P n Q) =P n Q assuming 
R['NA II P =P and RUNA II Q=Q, follows fwm: 

RUNA II (pn Q) 
{by A-8 } 

(RUNA II P) n (RUNA II Q) 
{ by inductive hypothesis } 
pnQ 

•	 A'mming a(lX ';13' ~ Px ]) = B, A '; B and VC '; 13'. RUNA II Pc =Pc 
then, RUNA II IX ';13' ~ Px]=IX ';13' ~ Pxl follows from 

RUNA II IX ';13' ~ Pxl 
{expanding definition of RUN} 

IY,; A~ RliNAlli IX ';13' ~ Pxl
 
_ {by A-lO }
 

IZ '; (A n 13') u (B' - A) ~ PznB' II RUNAI 
{ rea.rra..nging terms } 

IZ';B' ~ Pz II RUNAI 
_ {by inductive hypothesis 

IZ';B' ~ PzI 

o 

Event prefixing 

If P is a process and an event in the alphabet of P, then the process a '"'-'lo P (P (L 

prefixed by evenl a) will wait indefinitely until an a is offered, at which point the 
a is performed wd the process behaves like P. This is defined as follows: 

a~P",p,. [{a} ~ P t> 'I 
This event guarded construct has a behaviour comparable with the prefix construct 
of both CSP and Timed esp. For example we have the following laws: 

L-15: (a~P)n(a~Q)=a~(PnQ) 
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L-16 (a~ P) II (a~ Q)~ a~(P II Q) 

L-17 : (a~P)II(b~QJ~ 

STOP 

a~ (P II (b~ Qj) 

b~ ((a~ P) II Qj 

[(a,b}~(PIIQ) 

D{a}~PII(b~Q) 

D{b}~(a~P)IIQ 

C> (a~ P) II (b~ QJ] 

ifa,bEapnaQ 
a i b 

if a ¢ <>P n <>Q 
b E <>P n <>Q 

if a E oP naQ 
b ¢ <>P n <>Q 

if a,b ¢ <>pn<>Q 

Notice that our explicit 'true ('OIlCUI'L'ency' approach results in the possilJility of 
both a aud b occurring s1[TIultaneotls!y when the occurrence of these events is 
independent of interadion betweeu component processes. 

L-18 : (a ~ P) \ {aJ ~ wall( 1) ~ (P \ {aJ) 

Here we S~~ that, like Reed and Roscoe's Timed CSP [RR86L hiding events cannot 
hide time. Although we can hide the event a prefixing P, the time lapse, during 
which the hidden event is performed internally, remains visible. 

2.2 Examples 

In this section we present two examples which demonstrate the features of the 
language and the use of the algebraic laws. 

2,2,1 A watchdog timer 

A watchdog timer, as proposed by Haoman [Hoo90]. monitors several processes in 
a system. Earll of the processes which is being monitored is required to send an 
ok signal to the monitor at regular iutervals. If the time between ok signals from 
any one pro~ess exceeds a given maximum then the timer signals failure. 

Implementations of watchdog timers have been proposed in Timed CSP [8cb91] 
and PARTY [HSZFH92]. 'Ne shall demonstrate two ways of constructing such a 
timer in our algebra. Using the algebraic laws we then show these two implemen­
tations are equivalent. 

For simpli~ity we shall consider a system in which there are two processes being 
monitored, Suppose also that the intenal between consecutive ok signals from each 
process mllst not exceed 2 units. 
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a.ok : I 

M I-- f ---1 I:A/a"m bell 

b.ok I 

Watch! 

Figure 2.1: \Vatchdog timer: version 1 

Version 1 

III this version, Figul'e 2.1, the process M does all the work, monitoring the two 
proc:essel on a.ok and b.ok. If a signal is not received on either channel within the 
required time then failure is signalled to A/ali/l. Once the failure has been signalled 
the timer swi tches off and no longer checks the frequency of the signals from the 
processes it was monitoring. 

M ;oMn "M ~ (a.ok,b.ok,f) 

whe" My '" IX <:: {a.ok, b.ok} ~ (M{ •.••.•.•• )_X if Y <:: X else Fail)] 
Fail ;0 IX <:: (a.ok, b.ok,f) ~ (Off if f E X else Fail)] 
Off '" IX<::{a.ok,b.ok} ~ Off) 

My will fail unless every event in Y occurs in tlw next interval. Fail will signal f 
as soon as the alarm is ready. 

The alarm simply waits for a failure signal (\.nd then rings an alarm, signalled 
by the event bell. We are not interested in the behaviour of the system once the 
alarm ha.'l been ra.ised; this is modelled by assuming the worst possible behaviour. 

Alann == f .......... Ring "Alarm = {f,bdl}
 
Ring == bell .......... -.t
 

The watchdog timer system is then given by composing the monitor process 
and the alarm in parallel and making the failure signal f internal. 

Walch! '" (M II A/M'm) \ {f} 
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a.ok 

b.ok 

i I MA ~aI-

Aim I: 

! I M. ~bI-
I I 

Watch2 

Figure 2.2: Wa.tchdog timer: version 2 

b,1I 

Version 2 

The second approach, Figure 2.2, is to divide the task of monitoring the various 
processes alUong several components in the timer. Each component in the timer 
monitors a differf'nt process. The alarm is raised by the monitor a.'3 a whole if one 
of these components detects an error. 

The general behaviour of the monitoring component is given by Mi. 

MI - [{ok} ~ MI [> MI'] oMI = {ok,f} 
MI' - [{ok} ~ MI [> F] 

~F IX <;; {ok,f} ~ (0 if f E X else F)) 
0 - ok~ 0 

The monitoring component awaits an ok signal from the specified process and 
signa.ls failure to t.he alarm if excess t,ime h&3 elapsed since the process Ia.'3t com­
munica.ted satisfactorily with the monitor. The specific monitoring components in 
our system can be expressed as renamings of such a general monitor component. 

MA =MI[a.okjok,a.flf] 

M. =MI[b.okjok,b.flfl 

The alarm waits for a failure signal on either of the channels a.f or b.f. Once 
such a signal hag be€'ll observed the alarm activates the bell. As before we are 
not concerned with the subsequent behaviour of the system and we assume that 
the alarm, a.nd hence the whole system, behaves chaotically after its task hag been 
performpd. 

Aim = [X <;; {oJ, bJ} ~ (Rug if X f {] else Aim)] 
Rng bell '""'-+..L 
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The watchdog timer is obtained by taking the parallel composition of these 
three components and hiding the failure signals a.f and b.f 

Walch2 = (M., II MB II Aim) \ {aI, bI} 

Comparing processes 

We wisll to establish that Walchl cUHl Wal.ch2 are equivalent systems. To achieve 
this we shall, using the algebraic laws, reformulate the two processes eliminating 
both parallpJ composition and hiding constructs. Once in this simplified form it 
will bp trivial to verify thal the two systems are equivalent. 

FirsL we mmider ll'atchl. By ilpplyillg the algebraic laws and appealing to the 
llniquenP:'s of guarded recursi~'e equations we can establish that 

Watth r =: l'Vl{) 
wlwe WI, =IX <:; {"ok, b,ok} ~ ( WI{.A,lA}_X if Y <:; X else FI)I 

FI =IX <:; {a.ok, b.ok} ~ RlJ 
Jll=[X<:;{",ok,b.ok,bdl} ~ (-l ifbdlE XelseRI)] 

It remains to consider Wafch2 _ In this case we will go into a little more detail. 
To ease notation we shall write M~, FA, 01\ and M~, FE, OB for the obvious 
renarnings of MI', F and O. By expanding the expressions and applying the 
algebrai( laws A-6, A-lO, A-ll and A-l:3 we see that 

/ (0, II MB II R"g) \ {aI,b.Jl )
 
\ (0, II M~ II Rag) \ {aI,b.Jl
 

(OA II F. II Rng) \ {aI,b.Jl
 

satisfies the guarded mutually recursi~'(' equation: 

/ "=IX <:; {a.ok, b.ok, bell} ~ (-l ifbell E X else (x if b,ok E X else V))] ) 
\ Y=I,\ <:; {a.ok, b.ok, bell} ~ (-l 'f bdl E ,\ else (x ,f b,ok E ,\ else z))] 

z=IX<:;{',ok,b,ok,bdl} ~ (-l iflwllE Xelsez)] 

Moreover so too does (Rl,Rl.Rl). So by Ulliqueness of solution to guarded re­
cursive equations 

(0, II M. II Rng) \ {,./, b.J)} 
(0, II M~ II Rng) \ {a./, b.J) "RI 
(0, IIF. II Rng) \ {a./,b.J) 

By a simiJal' argument we can show that 

(MA II 0. II Rng) \ {a./, b.J) } 
(M; II 0. II Rng) \ {a./, b.J) "Ill 
(FA II OB II Rng) \ {,I, b.J) 
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and 

(OA	 II OB II Rnq) \ {aI,b.Jl =Ri 

Now by expanding terms and noting the anove ideutities we can show that 

(Al.	 II FB II Aim) \ {aI, b.Jl ) 
(M~ II FB 11 Aim) \ {aI,h.Jl 
(FA	 11 FB II Aim) \ {aI,h.Jl = Fi 

(FA	 IIM~ II Aim) \ {aI,h.Jl 
(FA II "'f. II Aim) \ {aI,b.Jl 

Finally, by expanding the expressiolls and applying the algebraic laws A-lO and 
A-13, we can establish that 

(M A II MB II Aim) \ {aI,h.Jl
 
=[{a.ak,h.ak} ~ (MA II MB II Aim) \ {aI,h.Jl
 

o {a.ok} ~ (M, II ME II Aim) \ {aI,h·n 
o {h.ok} ~ (M~ II ,If. II Aim) \ {aI,b.Jl
 
t> (M~ II M~ II Aim) \ {aI,h.Jl]
 

(MA II M~ II Aim) \ {aI,h·n
 
=({a.ok,b,ok) ~ (MA II MB II Aim) \ {aI,h.Jl
 

O{h.ak} ~ (M~ II M. II Aim) \ {aI,b.Jl t>FJ]
 

(M~ II MB II Aim) \ {aI,b·n
 
=[{a.ok,b.ak] ~ (MA II MB II Aim) \ {aI, hI}
 

o {a.ok} ~ (MA II M~ II Aim) \ {aI, hI} t> Fi] 

(M;	 II M~ II Aim) \ {aI, b.Jl
 
=[{a.ok,b,ok} ~ (MA II MH II Alm)\ {aI,b.Jl t> FJ]
 

By uniqueness of guarded recursive equations (AlA II AlB II Aim) \ {a./,b.I} ~ Wi. 
Hence 

Watchl =: tt'atch2 

as required, showitlg the systems equivalent. 

2.2.2 A lift lobby 

As a second example, wf'-'ihall consider the behaviour of Hoare's lift lobby [H(la86]. 
We shall see that the 'tn\C concurrency' approach of SCSP gives us a slightly 
different insight into the working of the system from the 'interleaving concurrency' 
approach of esp. Also thf" implicit discrete time framework of the algebra a.llows 
us to consider timing constrainls Oil the system, constraints that could not e',en be 
expressed in esp. 
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Components of the system 

The lift lobby consist.s of a button, light and door. Each of these three components 
performs two actions; the two actions of a given component occur alternately. Tbe 
bu UOH can be p7'essed or released, the light goes on and off and the door opens and 
closes. Initially the button is released, the light is off and the door is dosed. So 
t.he three components can he described as follows. 

CtBUTTON = {press, release}
 

BUrTON'" R R '" pm' ~ D D == release .......... R
 

"Llr:IIT ~ {on, off)
 
LIGHT == F F == [I.' N'" off ~ F
on "-'I 

crDOOR = {open, elose}
 
DOOR == C C == open "-'I 0 o == clo.<ie .......... C
 

When considering the system it is helpful to realize that, as specified, tbe button 
light and door eadl have two states. For example the button is either depressed 
(D) or released (R), depending on the last action performed by the button. In the 
depressed state the only event the button may participate in is a release, while 
in the released state press is the only event in which the button may participate. 
Similarly the light is eit.her orr (F) or on (N) and the door is either dosed (C) or 
open (0). Making use of these observations, we aTe able to provide very simple 
algebraic encodings of the requirements. 

System requirements 

We shall assume several coustraints on the interaction between the components of 
the system. Using the algebra, we are able to establish the possjble observations 
of events in the lift lobby. All the conditions we shall place on the system arc 
safety requirements; these restrict the occurrence rather than the refusal of events. 
Consequently: b.y the nature of parallel composition, we can take the composition 
of processes, each of which represents an individual constraint, to obtain a process 
which salisfies all the constraints. 

When developing processes which specify system requirements, WP shall use a 
naming convention which reflects the state of thl" system at each point. The safety 
requirements of the system aTe given bPlow . 

• The light does not go off while the door is closed. 

81 == C1 aS1 = {off,open,close} 

C1 == open .......... 01 
01'" [X<;{off,dosc) ~ (el ifdosc E X else 01)1 
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Notice that we allow the door to close and the light to go off simultaneously. 
We assume that the light can only go off i{ it observes that the door is open. 
It must take time to react to such an observation so it is reasonable {or the 
lighes reaction to coincide with the door closing. It is this type of assumption 
which gives us a different view of the system to that given in esp. 

• TllP light does not go on unless the button is depressed. 

52 ~ RZ aS2 = {pTe8<~, I'dease, on.} 

Hi-==- PI'f8<~--V+ D2
 
D2 === [X c: {on., rdfUM} ....--.t (/(2 if release E X else DE)]
 

• The ligbt goes on only when thl? door is closed. 

S.']-== C'J oS8 = {on.oprll,dosr} 

C:J =:: [X ~ {all, open} ....--.t (0.)' if open. E X else C3]
 
():] =:: close ~ ..... ('3
 

• The door ca.nnot close while the button is depressed. 

S.{ == R..{ nS4 ::::: {prest:. releaM, dose} 

114'" iX'; {pms, clo.<c} ~ (D.{ ifpcessE Xel,eR4)]
 
D..{ =::: ,'deaM "-'+ R..{
 

• The door does not open unless the light is on or the huttou is depressed. 

S.5 '" lin aSS = {press, release, on, off, open.} 

liPS'" IX'; {press, on} ~ (DNS if on E X el'e Dn) 
if press E X else 

(RN.5 if press E X el'e IIF.5)] 
DFij::::: [X~{release,on.,open}....--.t (RN5 ifon E X elseRFS) 

if relea.<;e E X else 
(DNS if on E X el'e DFS)] 

/iNS'" IX,; lImss, off, open} ~ (DFS if off E X el'e DNS) 
if press E X else 

(RFS if off E X el'e RNS)] 
DNS'" IX'; {nlease. off, open} ~ (RF.5 if off E X else IIN.5) 

if ,'efease E X else 
(DFS if off E X else DN.5)] 
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• The button is not released if thE' doors a.re closed and the light is off. 

86 =:: RF6 0:56 = {releou, on, off, open, close} 

FC6'= IX c: {on, open} ~ (N06 if on E X else F06) 
if open E X else 

(NC6 if Oft E X else FC6)] 
NC6 '= IX c: {off, 0l',n, rdease} ~ (F06 if off E X else N06) 

if open E X else 
(FC6 if off E X else NC6)] 

F06 =:: [X <;;;: {on, close, nlf.(/.~r} - (NC6 if Oft E X else FC6) 
if close E X else 

(N06 if 071 E X else F06)] 
N06'= IXc:{olr,closf,f'e!ease) ~ (FC6ifoffE X else NC6) 

if close E X eLse 
IF06 if off E X else N06)] 

• The door does not close when the light is OIL 

51:3=. F1 0:87 = {press, release, close} 

F7'= IX c:{on,close) ~ (N7 if on E X else F7)1
 
N7'= off ~ F7
 

Behaviours of the Lift Lobby 

As a.lready sllggestE'd, we can take the composition of these seven constraints and 
the threl' components in the lift lobby to establish the allowed behaviours of the 
system. We aTe interested in the process given by: 

LIFT'= BUTTON II LIGHT II DOOR II SI II S2 II S3 II S4 II S5 II S6 JI S7 

By use of the algebraic laws we are able to eliminate the parallel composition 
operatorfrom this expression, giving: 

LIFT" RFC 

24 



where 

RFC == J)1't'.s~ ---..l DFC 
DFC""[{oo,open)·~ ONOO {oo) ~ DiVCO {open) ~ DFO I> DFC] 
DNO""[{cdwse,off) ~ RFO 

o {,.,/,a.,,) ~ RNO 0 {off) ~ DFO I> DNOI
 
DI"C~/{1'f:lcasr', oprn} ----0 UNO
 

o {release} ----'I R,VC 0 {oprll} ----'I DNO [> DNCJ 
DFO-:=:: nlrrlsc,-"",,; RFO 
RFO-:=:: [{[JI·f:.~,~, c!().'I('} ---+ J)PC 

o {press) ~ DFO 0 {clo,") ~ RFC I> RFOj 
RNO"" [{/HTss. off} ~ OFO 0 {I"'''.') - DNO 0 {off} ~ RFO I> RNO] 
RNC::=' [{pre",." oprn} ---+ D/I/O 

o {pn'8S} ---+ DNC 0 {OPf'l1} ----0 R/VO [> RNeJ 

Ht're the naming of pron'sses j::; such tlHlt the first letter corresponds to the 
state of tlw hUl tOll. the s~col1d to tll(' state of the light and the final to the state 
of tbe door. (In the jnitial state the hut-ton is r("lf'aBed, light off alld door closed.) 
Tlu:, t.ransitions betw('('ll the yariolls states of the system an~ shown in Figure 2.3. 

Timing constraints 

Unlike CSP we call also consider timing constraints on our system. Suppose we 
now insist that the button UUtrlot be rdeased until two time units after it Was 

last. pressed. The doors canllot close while t.be bUUon is depre!'sed (54), so in the 
situation where IJlf' button is pressed while thf' door is open, this new constraint 
will ensllJ'f' an incn'<lsf'd deJay before the door may be shut,. This could be seen as 
impleTI1I'1lting a hold facility in our system. The new constraint is given by: 

88 -:=:: R,I( 058::= {prrs."I. n:lrasc} 

R8 == prrss.-......+ (wait(!) ----'I D8) 
D8 ::::: Trleasr. '-d US 

The effect of such a requirement on the system can easily be established by con­
sideration of the process; 

LEFT II 58 

We find that. t.hf' behaviour of the new system is fiirnilar to that of the oIrl with 
only the following terms in the Inutua.l reCllrsion being different to the processes in 
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the expansion of the process LIFT. 

RFO"" [{press, dose} ~ DFC 
o (press) ~ DFO' 0 {do,,} ~ RFC I> RFO]
 

RNO"" [{pms, off) ~ DFO'
 
o {p,·e.,,) ~ O,vO' 0 {off} ~ RFO I> RNOl
 

Rf\'(' =0: [{pT·r.".". opcn} _ DNO'
 
o (pres.;) ~ DNe' 0 (open) ~ IlNO I> RNC] 

where 

DFO' "" wadi I) ~ OFO 
DNO' "" [{ off) ~ DFO I> ONO] 
DI,C' "" [{ open) ~ [)NO I> DNe] 

'When the light. is off and the dool' closed, then pressing the button initiates a 
call for the lifL V\"(' st't' that ill thi.<; ~ituation the introduction of extra unit delay 
between tilt' ew'nt J)/TS$ and t.he subscquent nlwse does not cause a. delay in the 
overall system. It is ouly in situations where the system is already in the process 
of responding to a button press that the delay affects tbe possible behaviours. 

2.3 Conclusion 

In this chapter we have presented a language SCSP which 

•	 expresses non-determinism, parallelism, hiding and recursion in a manner 
comparable with CSP; 

•	 incorporates qua.ntitative timiug deta,ils via, a set prefix operator l which takes 
a unit of time to evolve; 

•	 captures the notion of true concurrency by a set prefix operator which repre­
sents the possibility of simultaneously occurring events; 

•	 has sufficient algebraic laws to be a.ble to eliminate parallel composition and 
hiding from expressions. 

These feiltures wefe demonstrated via. examples, where we showed implementations 
of a watchdog timer to be equivalellt and examined the allowed behaviours of a ljft 
system \'isible from the lift lobby. 
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"Flw8f'~ f}C'f)! 

pn'ss---­~~. Trlfl.q
open close

fJre,~,~"',
,~P'fSS ~ ~

on
 
optn
 

,'"./
/ 

on o off 

offuff "'~ l'e!caS( pre.s·s 

~p"ss ~l;,0 ~---;dcn." ""~ 
open open 

I rdcn." press" 
open ope~ 

------Jlres~
Dl\ (' re!f'(tse Rille ~ 

Figure 2.3: State transitions observable in the lift lobby
 
The transiijon arrows a.r~ labelled with the events that occur at that. time step.
 
The arrows corresponding to no events occurring at a time step are omitted; in all
 
cases this does not result in a change of state.
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Chapter 3 

Semantics and Proof System for 
SCSP 

In this chapter we preseu t a. dpHotational semantics for the language SCSP. The se­
mantic Illodel record,", (,he hella-viollr:> of processes in the form of failures-divergences 
infonnatioIl. This model forms it complete partial order nnder the non-determinism 
ordering presented ill Section 3.1.:3, which enables TIS to usc a, domain theoretic ap­
proa,ch to est.a,hlish a. semantics for recursion. 

Finally we develop a. proof system for SCSP which is sound and complete with 
respect to the denotational semantics. The availability of such a proof system 
allows U~ to use an <\,xiomatic approach when reasoning about process expressions. 

3.1 Semantic Model 

In this ~(:dion we deVf~lop a semantic model which mathematically underpins the 
algebra. presented in Chapter 2. The underlying model records failures-divergences 
information in a, simple format. As we shaH see the model consists of traces of sets; 
the structure of the trarps naturally capturing the implicit timing aspect. By the 
provision of a. semantic function from SCSP to the model and use of the strncture 
inherent in thf' model we are able to make explicit the meaning of recursively­
defined exprp.~sions in SCSP. 

3.1.1 Notation 

Here we introduce the key concepts of the model. We also provide some useful 
opera.tors on t.races. 
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Events and observation-sets 

The model takes a:-; its basis the notion t.hat, at each time step. i'l process may engage 
in or refuse events offered b~' the environnwlll. The universal alphabet 1: denotes 
t.he set of all pm;sible ('vents. From I: we construct a disjoint set:t == {a I a E E} 
of refusals. The OCCUlTenn~ of an eVf'Ht a is dellated by the ewnt itself, whereas its 
refusal is denoted by a E 1:;. 

A particular proces!) lllay participate ill a finitc, flon-zero number of events 
A E lFl: - {}; this set i!-i the alphabd of dw Jlt'OCCS:'i, while the set ,1, being the­
obvious subset of ~. is nlJeu the refusal alphil,bet.. Clearly the refusal alphabet is 
disjoint from the i\Jphahet. it.'ielf, .~1 n A = {}. 

Vv'e ilSSllnw thi11. diP refusal of <Ul eVt'll( is as observab1e as its occurrelice, To 
refled tbis Yif'w \Vf' record as ,Ul ObSfl'l'ulioll-set the ('vents wJlich occurred or ,vere 
refused at a givell lillt(, step. For a protes.,> witb a.lphllbet A cdch observat.ion-set 
is a subsd uf .:\ == Il U X TIl(' ohscrvatioll-!-iet provides a record of t.he process' 
hehaviotlr ill r('!;pons(' to the en\"ironmeJlt 1l1<lking n.\"llilable a set of events at a 
givcn ill:;(,aJlt of time. 

Traces 

A trace is a finite sequenn~ of oh"l'l'v(\tioJL,sets. So, given the a.Jphal)f't ,4, f.hl" set 
of all traces is given by: 

Sl'A ~ (11"(:1))" 

At each tick of <I global dock an ObSN\'er may witlWSS a number of occurrences and 
refusals from the .c;et X By recording these sets of obseTvations in a chronologically 
ordered sequence we obtain (\, trace of the proCI"SS. Time is recorded implicitly - if 
there i~ nothing to observe at a given till1e, thf' empt.y set is recorded in the trace. 
Thns the nil. e!eJlwllt vf the trace is tllf' set of observations seen at time n. 

It is convenient to introduce ojwrators on traces and observation-sets. The 
union of an ohservation-set. B, wjlb a trace is the mapping of 'union B' to each 
element of t.he trace. Formally: .. 

OUB ()
 
((C)~ c_) U B (CuB)C'(.'UB)
 

We ddilJe the intersection (8 n U) and suht.raction (s - B) similarly. 

V/e abo lift operat.ors on sets to operators on traces; these rdurn a trace whose 
1l ' '\ element. is the result of the set operation on the TIl'" elements of the original 

*51 /"'0 5f! repr~sellts cOll(atenat.ion of tract's 51 ant] 52. 
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traces. For example, the nnion of two traces is given by: 

OUT T­


sUO s
 
((B)~s) U ((C)~r) (1J U C)~(s U r)
 

Saturation 

Due t.o the maximal progres.s i\..<;slIlHption made when defining hiding, the concept 
of a saturated trace is important. 

Definition 3.1 A trace 5 is salllni/I'd with respect to a subset AI of the alphabet 
:1 if al eil.ch point in time the trace records the occurrence or refusal of each event 
in A'. 

satw¥Jlcd,l'(s) == 'Va E A',B ills. a E B V a E B 

where tlie relation ill is defined as follows: 

Bills == 3 II., D. u....... (B) ....... ·v = s,
 

This holds whenever the element B appears in the trace s. o 

If the environment always offers all the elements from A' then a trace saturated 
with respect to the e"errts in AI will be observed. 

Feasibility 

It makes no sense for an event to occllr and be refused simultaneously. An observation­
set B is [ea.<;ible, feasible(B), exactly when 

feas;~I,(lJ) '" Va EA. ~ (a E B 1\ a E B) 

Processes 

A process P is represented in our model by t.be pair (:1, T), where A = crP is the 
alphabet of the process and T is the set of traces describing all possible behaviours 
of the process. 

Not all subsets of STA will repre.<;ent trace-sets of processes. Those that dOl also 
satisfy certain closure conditions which are considered in the next section. 
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3.1.2 Closure conditions 

In this section. we in\.roduc(' doslJre conditions on a. set T of traces witb respect to 
alpbabet :1. Only tho~[' set., of traces which meet. the closure conditious describe 
the observable behaviour of a process in our algebra. 

oE T
 

The ('mpty tr{l,('(' is observa.ble at t.iml' O.
 

ii .~"'·rE 7'=>8E T 

If <I part.icular trace C<tIl hI' oh.~f~r\"E'd QV('f it certain time span. then prefixes of 
this trace. cmresjwudillg to observatioll!; made for a shortf'r period of time, 
may also 1)(' ohserw'd. 

iii sC'(I3) E T /\ B' <:; B => ,,~(13') E '[' 

If a BPl lJf oIJ;-,cn'at.iofls is madf' at one tilllt'; then it would <tbo be possible to 
ob,-rH' ilJl.\' ~llbset of these obsen"atiolls. \Ve would see fewer f'vent,g refused 
i\.lld fewn (,\'ellts (}ccttr; tile environment offered the process [('wel' E'Vt:'ots, (If 
\.he environment. does not ofrf'r all ('\-ent then it ca.n neither occnr lIor be re~ 

fwwd.) This closure ("[mJitioll also says that. events that occur simultaneously 
dTe not depenJcnt on aile another: eV('nts o(("ur or aTe refused regardless of 
the OCCUrrel\Cf' or refusa,1 of other events at thaI time. 

iv 8E T"'s~({))E T 

l'inw marches Ol\_ If the environment doe,'; not offer the process any events 
t,lw pr<H:ess will idle. which is H'("orded by extending the trace with an empty 
set. 

v X <:; ;1/\ ,~(B)~c E T => s~(B ~ X)~r E T 

The suhsequent behaviour of a process is not affected if thf'environment does 
not offer all (','ent that woulJ be refused. 

vi 8~(B)~rE T 
,'x ~ {, E A I a rt B /\ a rt B) => ,~(13 U X) E T 

V3aEX,,~(BU{aWrE r 
A process will alway,'; respond to events offered by the environment, either 
by refusing or performing them. If it cannot perform all events it has not 
re[ust:>d, then then:- mllst be one such e\-ent which the process can lefuse 
without affect.ing its subsequent behaviour. 

vii s'~(B) E r /\ ~fcasibl€(B) /\ r E (11'(,41)" => s~r E T 

Onct:> i\ process is able to exhibit infeasible behaviour. it can do anything from 
thnt time on_ In esp. such a process is said to be divergent. 
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vVe shall denote by SM the set of all pairs (A, T) where A is a fil1it~ alphabet 
and T satisfies the closure conditions with resJ-lect to the alphabet A. This set is 
the underlyiug model for our algebra.. 

SAl =:: {(A. T' ) I A E If(E) - n /\ T' S; 81'.4;\ T' satisfies conditions i-vii} 

where B is the uniw'rsal set of all r.vt'nts. 

'Ve shall let SM A be the set of all processes ~vitiJ alphabet .4. 

8M'" {(A. T') I (A. 1") E 8M} 

Furt.hpr. WI" shall use SMT to denote tbf' sel of all sets of traces for processes and 
8M: to\lelloi,f' the suhset of SMT corresponding to processes with alphabet. A. 

SA'h" (T' I 3 A E !F(E) • (A, T') E .I'M} 

.I'M!" (T' I IA. T') E SM"} 

3.1.3 Non-determinism ordering 

We define a non-determinism orderiug on proc('sses ~'... ith the same alphabet. If 
(,1, Tp ) ond (A, l'Q) represent two processe~ P alld Q then we define the ordering 
C; by, 

(A, Tp ) C; (A. 1'0)" TQ c; Tp 

We say (hat Q is mor~ detf'l'ministic than P, P ~ Q, in the same sense as in the 
CSP failllres-diwrgf'!\(,('s llIodel. [BIl85]: that is Q is more predictable than P; any 
behaviour of Q is a bdlaviour of P. 

ThaL ~ is a compll'tf' partial order on SMA follows from the foJ]owillg theorem. 

Theorem 3.1 (SM·i~.:21 forms a. complete pa'l'twl order. 

Proof: We musL show 
a) SMi has a. leas!. element. under the ordering, 
b) every dired('d D ~ SAl:} has a least Ilpper bound in SAl.:. 

a) It is a t.rivial exerci::;e Lo show that S1 A satisfi~s the closure conditions i'-vii and 
clearly. 'V T1 E SM1, STA ;2 T'. 

b) Suppose D ~ 8M:} is directed. Clearly nD is the least upper bound of D in 
IP'(STA ) 2 SM1. Thus n D is the required If'asL upper bouud if n D E SM~. nD 
t.rivially satisfies cloSIlTt:' conditions i-v aud vii. It remains to show nD satisfies 
condition vi. 

vi) Assume s~'(B)~ lEn D. 
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Now suppose nD fails condiliou vi. Tben selting X = {a E A I a ~ B A Ii ~ B} 
we have ,~ (B u X) <f- nD and 'V" EX· s~(B u {a})~t <f- nD. Hence 3 D, E D 
such that .<:""(B U X) rf-- Do- Abo we GUl fiud a finite indexing set I to cover the 
elements of X, i.f>_ X = {a, liE I}, so tbat for each i E 1, there exists a D, ED 
such that s~(li u {a,})~t <f- D,. 

By lbc property of directed sels and as I is tinite, we can find some D' E D such 
that Do ~ D' AV -i E 1 • Di ~ V'.
 

So s~(li)·~t E D' /\ .• ~(B U X) <f- D' /\ 'V" EX. s~(B U {a})~t <f- 0',
 
contradicting V' E SM}. 0
 

'I'll<' set of pron'SSf>S with finite alphabet .4 represented by our model also form 
a complete semi-lattin' under 1hl: H,finemenl ordering, ~. This is a direct conse­
quence of tiw theorem: 

Theorem 3.2 (,)'M~,d) f()nn.~ a complt:le semi~la.tlice. 

Proof: \Ve already have frmH the previous theorem that (SM.j, 2) forms a 
compJetf' partial order, so it n~lllains to show that arbilrary subsets of Slv!1 have 
a greatest lower bound in SA!1­
By construction UB is the greatest lower bOllnd of the arbitrary subset B ~ SM~, 

seen as ;.,. subset of the set lP'(STA ) ~ SMi. Moreover UB trivially satisfies the 
closme condjtiollS i--vii, hence UB E 8M:;'. 0 

3.2 Semantic Function 

In this section Wf> COll:'itruct a semantic function whidl maps synt.actic expressions of 
our language to proct'sses in our model SA!. Before we ran consider the semantics of 
a procf'SS term we must provide a specific binding of process variables to processes 
in the standa.rd way [StOlT, Hen88]. 

Variable bindings 

Given a sd of varia.bles Var. we define a domain of bindings, BIND. This consists 
of all mappings froill l'm' t.o the sp<lCe of processes Sll,J. 

BIND :E:. Var --> SM 

Now ViC are able to define a semantic function 

M : SCSP ~ BIND ~ SM 
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M [PDp denotes the meaning of process term P with variable binding p in terms 
of our model. This is evaluated by a.ssociating each free variable x with its value 
pix] given by tbe' bindiug p. 

Syntadic substitution of free variahlf's. as introduced in Section 2.1.2. results 
in a change in the variable binding in which a process is given its meaning. This 
occurs in the follovl,.'ing s('nse: 

,I-1IPIQ/rllp =' M[Pjp[(,I-1[Q!p)j.!'] 

where th€' binding fJ[:/l'] i~ defilwd as follows: 

if .II = ,r

pI'/lllyj =' { ~[y] o\.llf'l'wi;-;('
 

We shall be pl't~domillatf'ly ("ol\('erned with process terms whose meaning is the 
Si\lllf" wit.h nll po:-.siblc variable bindings. 

Definition 3.2 A pnH'('SS term i~ closed if it has no free variables, o 

Lemma 3.3 'the f1/t(/,W:H,q of (I d08[,(Z process term P is independent of the CU1Tent 

binditlg. Formally. fo/' P do,~'cd 

vp,p' • BIND. M[P]p = M[Pj/ 

• 
When reasoning aboHt ("105f'd Lf'l'lJIS it is unnecessary to make the binding explicit. 

The semantic function M 

Given a variable binding, M maps cCl,h proc('ss t€'rm to a pair representing the 
process a.lphabf't and ttl(' sp! of traces of the pron'ss. \Ve define a a.nd T to be the 
natural projections onto the first and sf'('Qlld compon€'nls of this pair. 

MIPjp ~ (e>[Pjp. np!p) 

For a gE'Ueral process term botb the alphClbet and the set of traces of the process 
will depend upon the variable binding. 

e> • SC8P ~ HIND ~ IF l:. 

T .SC.,P ~ BIND ~ 8Mr . 
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Non-recursive processes 

We define M over the non-recursive terms of SCSP by defining the two projections 
O'andT_ 

V'le take SCSPOto be the restriction of SCSP to non-recursive terms, that is 
terms with syntax: 

I' "=~A I ., IP n I' I [X <:;.4 ~ P] I I' II I' II' \ .4 IPIS] 

Definition 3.3 The fuuetioll 0 is defined as followstover the syntax of SCSp o. 

o[ ~A lll' ,: .4 

"["~I' ­ ~,pl·'] 

n[pn Ollp ­ a[P]p if ,,[I'llI' = 0[0]1' 

o[[X<:;E ~ P"lllp -­ a[PBlp if V E' <:; Jj • o[pB,llp ~ a[P.llp 

0[1' II Ollp ~ a[Plp U a[ Qlll' 
0[1' \ B]p a[P]p - B if a[Pip 'lc B 

alP[SJllp - (o[p~p)[S] o 

Definition 3.4 Thf' function T is defined a.s follows over the syntax of SCSp o. 

T[ ~A IIp,: ST" 

T[,,]p,:~,plxll 

T[p n 0]1'': T[pllp U T[ Qlp 

Ti[X <:; E ~ Pxnp,: {(B' U C)~., IB' <:; B f, C <:; (A - B) f, s E T[PB'llp} 
u{()) 

whNe ,1 = a[IX <:; B ~ Px Illp 

t1tn is the projection of an m-tuple onto its n'h component. So 1tl{a, b) = a and lI".e(a, b) = b 
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TIP II Qip ={5 I "5,,5, , (I"(A n BlI" • s, n 5, = ({})(.(
 
A (5nA)-s, ET[P]pA (snB)-s, E TIQlp)
 

u 
{5~"1	 "5"5,, (I"(A n lJ))" 5, n S, ~ ({})(,( 

1\ r E STAUB 
A ((((5 n A) - 5, n,4) E T[Plp 

A (s n E) - 5, E TIQlp) 
V 

(((onE) -.,,)~(lJ) ETIQ]p 
A (s n A) - 5, E T[P~p))} 

wherc /1 = ()[P~p and B = o[Q~p 

T[P\ Blp= {s - j; Is E T[Pip A salurai<;dAnB(SJ}
 

wilere 11 = Cr'[P]p
 

TIPlsnp= {s I'[S-'] E TIP]p}	 o 

Notes 

1.	 .1 4 is modelled by the least element jn the partial order ("'MA, 1;;). This 
corresponds to .LA being the Iea.Rt predictable process with alphabet A. 

2.	 The non-deterministic choice operator is closely related to the ordering, !;;, 
on the model. We can define the ordering in terms of thi~ operator. 

/viIP]	 C; /viIQ]'" /viIP n Q] ~ /vill"I 

This relationship mirrors tht> fact that the ordering is a measure of IlOll­

determinism pxhihiled by proce"ses. 

3.	 The gemil.nl.ic fundion for parallel composition is by far the most complex 
and it is worth noting how its construction relates to the description of the 
operator. 

The first set (in the df'finition of T[P II Q~p) gives the behaviours of P II Q 
obt.ained while both P and Q are not divergent. Each behaviour of P II Q 
is the result of the intt:'raction of behaviours of P and Q, We recall that 
an event can only occur if all component processes with that event in their 
alphahet can perform the event, whereas an event is refused if eilher one of 
the component processes with that event in its alphabet refuses the event. So 
given a behaviour,s, of P II Q we should be able to find tra.ces of refusals 51 

and 52 in the common alphabet which rcprest:'nt those refusals from s solely 
due to Q and P respectively. Note that s/ and s!! are disjoint. Given this 
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choice of s, a.nd Sf, (s n,4) - s/ must be a behaviour of P and (5 n 13) - Sf 

must be a behavionr of Q. 

The second se.t gives the hehaviours of P II Q which result once one of 
the components has become divergent. The term s""'r is composed of the 
behaviour up to divergence, 8, which is governed as before, and arbitrary 
behaviour, r, following divergence. 

4.	 In defining the hiding construct we assume that a hidden event occurs as 
soon as the process is ready. To capture this assumption in the semantic 
function we Quly consider behaviours of P which are saturated with regpect to 
thoo"f' events wbich are to be hidden in the alphabet of P. These behaviours 
correspond to the hidden events beilLg offered by the environment for the 
duration of obs~l"\'ation; dills they correspond to the hidden events occurring 
as SOOB as the proce% P is willing to perform them. 

Theorem 3.4 Thf' if:nns 0/ 5C:;po an: well df'jiflfd 'with respect to the. model. 

Proof: It is necessary and sufficil?nt to I?stabJish t.hat M[P]p E 3M for all 
process expressions Pin SCSp li . This is athicved by structural induction over the 
syntax. 

atomic terlns It is clear by ('Qn~tmdion that .LA is well defined with respect 
to the model. Moreover by definition of p, and since M[x]p = p[x] the process 
variables are also well defl1led. 

operators We sbalt consider the two place operator II; other operaLors follow in 
a similar mantleL Assuming M [l'~p, M [Qip E SM we deduce that MIl' II Qlp E 
SM. This requires u.s to cbe.ck that I[P II Q~p satisfies the closure conditions for 
the alphabet a[P II Q]. Conditions i--v and vii are easily verified; due to condition 
vi exhibiting a choice this is the hardest to verify. We present the proof that 
I[P II Q~p satisfies condition vi as Theorem A.I in Appendix A.I. 0 

Recursive processes 

Definition 3.5 We extend the definition of M to the full synta.x of SCSP as 
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follows. 

Mlp, : A· Pip - fixA'\ y. MIPlp[ylxl 
\vhere y does not occur free in P and fiXA 

denotes the function's least fixed 
point in (Sll;/A.~) 

Mil'; =P,), w;th Alp (fix,!'\ y. MIl:'lp[vl ;:J), 
wh~e fur all i,j th~ y, are not free in Pj and 
fiXA denotes the function's least fixed point 
in the product c.p.o. TIi(S.IlIA, ~) 

o 
III order to e:-<tablish that M is well defined over 8CSP we must ensure that 

tIll' lea.~t fixed point.s utilised in the above defmitioll exist. 

Lemma 3.5 For' P a. recul'H1Unjree proN'$ti term, Ay. JV1[P]p[y/ x] is continuuus. 

Proof: We must establish that 

M[Plp[UDlx] ~ UdEDM[P!p[dj.,j 

for V a directed set in (SlvI A, ~). 

The continuity of atomic processes follows trivially in the case of -.LA and is a direct 
consequeuce of the defiuition of variahle bindiugs in the case of process variables. 

It is sufficient to check that each operat.or is continuous in each argument. The 
requiredreslllt thpn follows from the coutinuity of finite composi tions of continuous 
functiom [Sto77]. 

The continuity of most of tlw operat.ors follows from the distributivity of union 
through arbitrary intersection. The proofs for parallel composition and hiding are 
slightly lllore iu(,cresting. They are of a. similar form and that for hiding is presented 
as Theorem A.2 in Appendix A.I. 0 

Lemma 3.6 FOT" y not free in P and>.. V • •M[P]p[V/.r.] continuous in (SMA,~) 
1m' all IE Va.', then M[p x: A • PI is well defined and'\ y. M [I' x: A • P]p[ylz] 
is conti~uous in (SM A , ~). 

Proof: (SMA,~) is a complete semi-lattice and A y. M[P]p[yj x] is, by assump­
tion, cOf,tinuotis within the semi-lattice. So, appealing to the Knaster-Tarski Fixed 
Point Tileorem [Tar55], a, least fixed point exists. Hence fix A y • M[P]p[y/x] is 
well defined. 
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Moreover, siltting H :2 ,\ Y • M[P]p[yjx], the least fixed point is given by tbe 
limit, U::'~, H"(M[ LA ill· 
As l.u.b. preserves continuity the required result holds. o 

Lemma 3.7 Let A be the totally ordered finite indexing set over which (Xi ­
P,)) with A i..<; defined. If. for erIch i E A, ,\ y • MIPi~p[yjx] i.s continuou.5 in 
(SMA,~) for all variable.<j x rmd y IS not free in Pi, then M[{x, == Pi}j WIth A] 
exists and ,\ y. M[(.c, == P,)j]p[yjz] i.s continuous in (SMA,~). 

Proof: For eachi E i\ we COllSLrud 

ji ' IT 8MA _ SM"
 
,EA
 

such that 

f, ~ ,\ ~. M [Pi IP[df] 

fi is continuous since by hypothesis it is continuous in each of its finite number of 
arguments. 

From this we define 

[, IT 8M A 
--> IT 8M A 

JEA kEA 

such that f === j,. This fuuctioll is coutinuous by construction. Now it is easy to 
verify that-' 

[ ~ >. JL • M [flplJd 'fl 

Sof is the function for which we require a least fixed point. Following the reasoning 
of the previous lemma we ha.ve the required results. 0 

Theorem 3.8 All proceS$ te.rms P of SCSP m·e well defined with respect to the 
model and .\ y. M[Pjp[y/xJ is continuo'/LS. 

Proof: Tbis follows from the previous lemmata. o 

Corollary 3.9 The operatOJ~s of 8CSP are monotonic with respect to the orJ.ering 
~. . 
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3.3 Expressivity of the Language 

By definmg a semantic function frolll SCSP to the model we have esta.blished a 
meaning in the model for every pl'oce:'iS expression. Conversely we now seek to 
establish that every process in the model, which exhibits infeasible behaviour after 
finite time, can be represented by .it finite expression in the language. 

GiVt'll all such a process (A, T) in the model, we shall construct a. closed process 
expressiv.I1 P( T) in t.he algebra which is mapped to (A, T) by the semantic function 
M. In order to build our process expression it will be necessary to consider the 
process (A, T!B) which is a. process which behaves like (A, T) after the set B has 
been ohserved. 

Definition 3.6 For T E SJfr and (B) E T we define' 

TIB", {, I (B)"8 E T). 
o 

Lemma 3.10 I/(A,T)E 8M ,,"d(U) E T thw(A. TIB) ESM. 

Proof: It is it trivial exercise to verify that T / B satisfies the closure conditions. 
o 

Theorem 3.11 Let (A, T) be a proCf8.9 in the model Whl:ch exhibits in/ea.sible be­
haviour a/fer a finite tirne mJ thai lS VsET· lsi ~ m ::::} s ........ (,4) E T. Then 
(A, T) is denoted by a closed term in the languagf' SCSP. 

Proof: We must construct a term P with alphabet A such that T[P] = T. 

Following the approach taken by Jeffrf'.Y [Jcf91a,J, for (A, T) in the model we con­
sider the following definition of a PTOce~S Pt T) 

if (.4) E T
 
P( T) = otherwise
{~~ED[X <; DnA ~ P( T/(X U (D n A)))J 

where 1) = {B ! ,afurahdA ( (B)) A (8) E T} is finite. 

Note that D represents the set of initial observations containing maximal (total) 
information about the events in the alphabet A. We shall prove that T[P( T)] = T 
by induction on m, the time after which infeasible behaviour must result. We take 
as our inductive hypothesis: 

\I(A, TI E 8M. (\I, E T 'Isl :> m=> ,~(A) E T) => T[P(T)I = T. 

base case m = a 
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(A) E T thus P(T) =l..A and by closure condition vii and the definition of T, 
T = ST, = TI .LA ~ 

inductive step 

ca.e 1: P( TJ =.L A 

The result follow as for the base case since (A) E T 

case 2: P( T) takes the form of the non-deterministic choice between set-prefixed 
processes. 

Notice that for DEDi by construction, we have that (X U (D n A)) E T for aU 
X s:; DnA. So by the prev;ous lemma (A, TI(X U (D n A)I) E SM. 

We shaJJ use PD.X to denote P( TI(X U (D n A))) for all X s:; DnA. 

A"uming (V sET. 151 '" m + 1 '* s~ (A) E T) we must .how T = TIP(T)!. 

Firstly note by considering the Jefinition of T/(X U (D n 11)) we can show 

lsi '" mAs E T IIX U (D n A)) '* s~ (A) E T I(X U (D n A)) 

Hence by induction TIPD.xl = TI(X U (D n A)). 

Now we can demonstrate that I' = TIP(T)I· Tdvially 0 E I' A 0 E TlP(T)I. 
It remains to show (B)~.; E I' .. (B)~s E TIP( Til. 
We shall use BE =B n A and BR =B n A to Jenote the events and refusals in B. 

'* : Suppose (B)~s E I' then ,etbug y", {a E A I a 1 B A a 1 B} we can 
establish from closure condition vi and induction over IVI that 

oX E s:; Y,X R s:; y. saturated,t((X E U X R U B)) A (X E U X R U B) E I' 
A (XRUB)~s E I' 

'* { by definition of V ) 
oDE V. B s:; D A ((D n A) U BE)~s E I' 

'* { construction of TI((D n A) U BE) } 
oDE D. B s:; DA sE TI((DnA)uB E) 

=> { by the inductive hypothesis as noted above 
j D E V • B s:; D A s E TIPD,.E I 

=> { by set manipulation and as D is saturated } 
oDE D. BR s:; A - (D n A) A BE s:; (D n A) As E TIPD.eI 

=> { by Jefinition of set-prefix) . 
oDE D. (BE U BR)~s E TIIX s:; DnA ~ PD,xli 

=> { by definition of non-deterministic choice) 
(BE U BR)~s E TInDEV IX S:;D n A ~ PD.xll 

'* { by definition of T(P) ) 
(B)~s E TIP(T)I 
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The comerse follows similarly gi ving the rt'qnired result. o 

3.4 A Sound and Complete Algebra 

111 this sfrt ion we introduce a proof system for our language which is sound <Uld com­
plete for f<juivaleuce of processes in the s('mantic model introduced in Section 3.1. 
In a 8tyie :-iimilar to Brookes [Br083] we consider the suhlangnage SCSpl first. This 
suhlanguage is restricted to the nun-recursive closed terms of SCSP. The logical 
language will consist of assertions of the form P ~ Q and P == Q. We give a set 
ofaxioms and inferpl1ce ruk's for proving assertions, and show Lhat the system is 
both sound and cOllll'lete. 

We extf'nd the remll to the full language srsp. allowing recursive terms. 

3.4.1 The sublanguage SCSP' 

The sYlltax of SCSpJ is givPll b.t": 

P "=.lAlpnP IIXC;.4~ PI IP II P IPH I PIS] 
This la.ngui'lgp is a sublanguage of SCSpOresulting from the elimination of free 
variables We refer the reader to Section 3.2 for the definition of the semantic 
function ...\11 over terms generated by the above syntax. 

The logical language of our proof system is built from SCSp1 terms and two 
hinary relation symbols I;;;; and == (which can be defined over the fnl! l<Ulguage 
SCSP). F'ormulae in the l<Ulguage take the form P ~ Q or P == Q. We take P ~ Q 
to mean 

'I pE BIND. MIPlp C; M[Qlp 

and P :: Q t.o mean 

'I pE BIND· MIPlp ~ M!Qlp. 

The axioms of the system afe given ill Appendix B.1. These include many of the 
equivalences already stated. A further axiom relates the non-deterministic choice 
operator to the relation 1;;;;. Inference rules aTe included which esta.blish ~ to be a 
partial order with == the associated equiva.lence. Finally there a.re inference rules 
asserting the monotonicity of the operators. 

Sewral simple properties of ~ and =: are not explicitly giveD iD the axiom 
system rt.S they a.re dt'ducible from the axioms. These results include 

0-1 ~ P=P 0-6 ~ .lC; P 

0-1 
Pn Q= P 

PC;Q 
0-8 

PC;Q 

Pn Q~ P 
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0-7 and 0-8 demonstrate t.he link between non-det.erministic choice and the or­
dering. 0-6 states that 1- is the least element in the ordering. We shaJ.l present 
the proofs for 0-5 and 0-8. 

0-5: 

f-pnp=p 
PCI' n PCP 0-:1
 

- PCP - 0-4
 

P ~ P 0-2 

0-8: 

f- P", P 
'--0:'-::---::- 0-3 

P",Q 1'",1' f-pnp",p 
~=--;:--=--~=-;;--M-) 0-3
pnp",pnQ p",pnp 

p",pnQ 0-4 f- pnQ",p 

I' n Q = P 0-2 

o 

Soundness 

In order t.o establish soundness of the proof system we must ensure that every 
provable assertion is trUe. It is necessary to verify the truth of each of the axioms 
of our system. These checks are trivial and unenlightening, so are omitted here. 
The inference rules stating that!;: is a partial order follow from the structure of 
(SM, !;:). As all the operators were shown to be monotone the rules M-l and M~2 

follow. 
If w~ write f- P ~ Q to assert that P ~ Q is provable then the following 

theorem states that the proof system is sound. 

Theorem 3.12 (Soundness) Fol' all terms PI Q in SCSpl 

(f- P", QJ c} Mlp! '" .I1[Q~ 

• 
Completeness 

In order to establish completeness of a system we must show that whenever an 
assertion is true. it is provable. We must show that whenever M[P] ~ M[Q~ 

then the formula P ~ Q is provable. We shall define a class of normal forms 
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and show [hat every term is provably equi'/alent to a unique normal form. Finally 
we establish t.hat the system consisting of tIle class of normal form processes is 
complete. 

Normal form 

A nornli'l./ [onn i~ a term in the language with a specific structure. -.LA is a normal 
form, All other normal forms arc tlle non-deterministic dlOice between a finite 
number of seL-prefixed processes, where each of the set-prefixed processes is in 
normal ronn. The choice set~ in the set-prefix constructs '-lie unique. This and a 
furt.her cwdition imisting that the set prefixed processes are as non-determiuistic 
<1$ possible ensllrP that the norma] forms are unique. 

Definition 3.7 \Ve say a process, P, with alphabet A, is in not'mal form if it is 
l.A or t.akes t.he form 

p	 = n[X<;;1J ~ FE,x] 
8EB 

where 

• B is a non-empty, buite subset of lP' A 

•	 V E, B' E B • X <;;; B ~ 8' :;. PE',.\' [;:; PE• 

•	 For all B E B and X ~ B, PE .X is ill normal fortn. 

I) 

By the second condition we ensure that the set-prefixed processes are as non­
deterministic as possible. This reflects A-,J and the ability to postpone the re~m­
lution of choice; such postponenlPnt can occur exactly when the observation of a 
gi\'en sel of events must be the result of the environment's initial offer of events 
being insufficient to resolye t.he choiee instantly. 

Rather than prove directly that eyery process is provably equivalent to a unique 
normal form, Wf' shall first consider diP class of processes in pre-normal form. The 
pre-normal form is similar to the llormal form; the structure of the processes is 
the same, although with fewer restrictions on the construction, uniqueness cannot 
be guaranteed. We shall demonstrate that each process in pre-normal form is 
provably equivalent to a process iu normal form, It is then sufficient to show that 
each gelleral process is proyahly eql.liv'nlent to a process in pre-normal form. 

Definition 3.8 We say a process. P, with alphabet A, is in pre-normal form if: 

p	 _ {~A
 
- n'EI[X<;;1J,·~Pi"rI
 

where 
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• J is a non-empty, finite indexing set. and {Bi 1'1 E I} ~ lP' A. 

• Each P"x is in pre-normal form. 

o 
Notic~ that we no longer insist on the uniqueness of the choice-sets Bi • 

Lemma 3.13 Every pre~nol~malform in SCSPJ is provably equivalent to a process 
in normul form. 

Proof: We define the depth of a proc~ss in pre-normal form as follows: 

d(.L) = 0
 
d(n'EI P,) =max,,1 d(P,!
 

d(IX,;n ~ Px)J = maxX,B d(Px !+ 1
 

We shall prove the r~quired result by induction all the depth of processes. 

Base case: d( P) = 0 

Trivia.l since the only possible pre-normal form wIth zero depth is .1.. which lS in 
normal form. 

Inductive step: d(P) = 11+ 1 

P is in pre-norma.l form 

P = niX ';8, ~ P,x], 
'EI 

by a.pplications of A-,5, A-4 and A-3 we ha.ve 

~ P,= nrX,; B, ~ P:. x ] 
iEJ 

' {.L if PI •x =.L for any j E {k lB. ,; B;}h P r = n PI'were i 
,- BJt;;",B, J,X at lerWlse 

By the construction of the P:,x they a,re a.ll in pre-normal form. By the idempotence 
of non·deterrninistic choice (A--3) we can remove all duplicate set-prefixed terms. 
So we ca.n a.ssume that the B, are unique. Now 

d(P:,x)::; maxBJ~B, d(Pj,x) ::; max'El maxx~B, d(Pi,X)
 
< max'E/(maxx,B, d( P"x) + I) = d(P)
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so we have that d(Pix) < d(P)_ So since d(Pi,x) < d(P) we can find, by induction. 
Q.,x in normal form such that Q,.x == P;,x is provable. Then clearly 

~ p=n[XC;B;~Q;,x] 
,cr 

with the right hand sidp heing iu normal form. o 

Lemma 3.14 El'cry proceS8 e:.r.pl'fssioll P. In SC,-'iPl is provably e.quivalent to a 
proCESS ill p'I'e-normal form.. 

Proof: We define a rank function 1011 tillite processes a.s follows: 

1(1-) ~ 0 
I(P, n P,) ~ 1(1',) + I(P,) + 1 
1(1', II P,) ~ 1(1', ),1(1',) + 1 

I([X~H ~ P,,]) ~ maxxcB I(l'x) + 1 
1(1' \ A) ~ 2.1(1') + 1 
1(1'[.1']) ~ 3,I(P) + 1 

We shall prove hy induction on the rank of P, l(P), that all processes in SCSPI are 
provablrequivalent to a process ill pre-normal form with rank no greater than that 
of P. So we take as our inductive hypothesis: 

I(P) = 11 =? :l Q. Q is ill pre-normal form
 
/\ I(Q) :; 1(1')
 
/\~ Q~p, 

Base case: n = 0 

We must ha.ve P = .1., so P is already ill pre-normal form and we are done. 

Inductive step: I(P) = 11+1 

P must take the form of an operator on component processes. Vie shall only present 
the proof for parallel composition here, proofs for the other operators being similar. 

l' ~ 1', II 1', 

By defi,itioll of the 'ank function, I(P) ~ 1(1', ),1(1',) +1, 

Either I(P) = 1 in which case OIle of PI or P2 is .1., so by A-6 or A-7 we have 
that ~- P =- .1. and we are done. 

Alternatively I(P) > 1, in which case neither of PI nor P, is .1. and we must bave 
1(1';) <1(1') fo" E {l,2], 
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So by the inductive hypothesis we can find Q. in pre~normalform such that 1(Q;):'S 
I( Po) and I- P," Q,. 

By monotonicity I- P::: Q1 II Q~. 

Now eithf'r one of Q, =.1, in which case by A-6 or A-7, I- P:::::l. and we are 
done. Or hoth Q, take the form of a non-deterministic choice between set-prefixed 
processes. 

Q, ~nQ,' where Q,' = [l'<;:B,' ~ Q,'y]
," 

Q, = nQ,' wl"'re Qf ~ [l' <;: Bf ~ Q,'yJ
 
iEJ
 

Con~ideJ' the casf' where III or I.II is greater than 1 and without loss of generality 
assu.me If I> 1. Then by k-8 

I- Q, II Q, "n.EI( Q,' II Q,)
 
We can deduce thnt I(Q,' !1 Q,) < I(Q, II Q,) s I(P). So, by the inductive
 
hypothesis we can find Q;Q in pre-normal form such that I- Q/ II QI. =: Ql and 
I(Q,') S I(Q,' II Q,). 

Thus I- P == niEJ Q,a. Either one of the Q,a =1., iu which case as .1 is a zero 
of non~detel'minist.ic choice, I- P::: 1. and we are done. Otherwise niEJ Qt is in 
pre-normal form and it remains (.0 establish that the rank of this process is no 
greater t.han the rank of P. 

Consider the eMf' when l( Q2) > 1. 

l(n;EI Qn = LEI I( Qn + III - 1 { by definition of I} 
< L'EI I(Q,' II Q,) + 1/1- 1 ( I(Qn s I(Q,' II Q.)} 

L,,,(I(Q/).I(Q,) + 1) + 1/1-1 (by definition of I) 
S I(Q,j.IL.EII(Q,') + 1/1-1)+ 1 {assuming I(Q,)?c2} 

I(Q,).I(Q') + 1 {by definition of/and QJ} 

S I(P, j.I(?,) + 1 ( I(Q;) S I(P;)} 
I(P) { by definition of I and P } 

In the case where l( Q2) = 1 we must consider the form of Qt more closely. As
 
Q£ is ill pre-normal form the ollly form this process can take is [X~B£ -10.1). In
 
which cnse, by A-lO and A-7,
 

I- Q,' II Q, " Q,'
 
where Q,' ~ [Y <;: Co ~L] and Co = (B,' n H'j U (H,' - A.) U (B; - A,), Al and
 
At' being the a.Ipbabf'ts of Q1 and Q2 respectively.
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Clearly Q,ry is in pr{'-normal form and i( Q,O) = 1. Thus b.y simple analysis of terms
 

we can SllOW l(n'EI Qt) ::; I(P).
 

Hence s{'lling q = n'EI Q,o WP h<'lve the required result.
 

Finally wr must consider thf' Cil.__t" wlwre III = IJI = 1. So
 

Ql ~[YC:;IJ, ~ Q;] Q, = [Yc:;B, ~ Q~] 

By the a.xiom for parallf'l cOHlpo:-;itioll of set-prefixed processes (A -10) we have 

f- Ql II Q, '" [y c:; C ~ (Qi-n8, II QfnB,J] 
where C= (H/ n B~) U (B I - :-I.,.,) U (B2 - AI) with Al and .4 2 the alphabets of 
Ql ;l/1c\ Q2 rf'spectivdy. 

Now Wf' fan df'ducp that 

I(Qj-nB; II Qf-nBf) < I(P). Thus by the lllducti\'f' hypothesis, Wt? can find Qf- in 
pre-norma.l form s\lch that 

t- qr- == Qi-nB I II QfnB2 a.lld I(Qf,)::; I(Q~nHI II Qfn8:J 

Setting (J = [Y ~ C --+ Q~], dearly Q is in pre-normal forll and f- P '" Q_ 
Analysis of t"xprt"ssions gives I(Q) ::; I(P), so we art" dOlle. o 

Corollary 3.15 Eve'I'y process erpnssioll, P, tTl SCSpl ki provably equivalent to a 
p"ocr:ss III nonnal form. 

Proof: This follows fTOm the previons two lemmata. o 

Finally we show thnt the class of normal forms is complete. 

Lemma 3.16 For P and Q, Wtth alphabet A, ill normaiform 

MIP! c; M[CJ1 => (f- PC; QJ 

Proof: By structural induction on P.
 

base case: P =-l
 

Then the reslllt follows by 0-6 (page 43).
 

inductive step: P takes the form of a nondett"rministic choice.
 

Now -l is the only process with "n initial infc<'lsible event, so (It) ¢ T[P~ hence
 
(.4) ¢ 1[Q] and Q ITlllst also take the form of a non-d{'terministic choice. 

P = n[XC:;B ~ PB,X] 
BE" 
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whereIlB.B' E B. B c;: B' =} (IIX c;: B. MIPB',x! I;;M[Pa,xll 

and 

Q~ n[XC;:C~ QG,x] 
Gee 

where II C, C' E C. C c;: C' =} (IIX c;: C· M[QC'.xl I;; M[Qc,x!) 

Now by the dt'tillition of the semantic fnnctioll, 

lIeEC. (CU (;1- (J)) E T[QI 
=} { as M [PI I;; 0\1[ QI by hypothesis ) 

IICEC, (CU (A- e)) Enp~ 
::::} { by defiuition of P and :-;emantio:' function on uon-deterministic choice} 

IICEC, 3B E B. (CU(A - C)) E T[[XC;:B ~ Pa,d! 
::::} { by df'fiuitioll of Sf'mantj(; functioll on :-;d-prefix } 

liCE C • 3 B E B • C c;: B A (,4 - C) c;: (A - B) 
::::} { by set manipulation} 

CC;:B 

Now by i\.XiOBl 0-1 

f- PI;; n[XC;:C~Pr,x] 
C'EC 

II is sufficient to show that, for all C E C, M~Pc,x~ ~ Jvt[Qc,xl The result then 
follows from structural inrluctioJ1 and ITlonotonicity of tbe operators. 

sET[Qc,x! 
::::} { definition of set-prefix and lion-deterministic choice} 

(X U (,1- (,))n, E T[QI 
=} { '" M[P! I;; M[Q! by hypnthesis ) 

(X U (A - C))~" E TIP! 
::::} { definition of non-deterministic choice and set-prefix} 

38 E B· X c;: B A (,4 - (') c;: (A - B) A s E T[PB,x! 
::::} { by set manipulation} 

3 H E B • X c;: B c;: CAs E T[P.,X H 

::::} { since P is in normal form} 

3B E B., E T[P8 ",.J A TlPB,X! c;: T[Pe,x! 
::::} { by dcfi[]ition of subset} 

sET!Pc,x! 
Giving the required result.. o 

From I,hf' previolls resuJt.s it is trivial to deduce completeness. 
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Theorem 3.17 (Completeness) Fo,. all terms P. Q in SCSPI 

MIPI c= MIQI "" (f- P c= Q) 

• 
3.4.2 An extended proof system 

In this section we extpnd our proof syst.em to cover the full language of closed t.erms 
ill SC"'P. Like Brookes [Br08:3], we rhMil.cterise eil,ch process by its set of finite 
syutactic a.pproximations, This f>1l;,hL('s us to reaSOll about an infinite process, that. 
is one containing recursive constructs. by considering it.s finite approximations. 

Definition 3.9 TIl(> relatioll --< is the smallest relation on terms sat.isfying: 

1­ -< P
 
P -< P
 

P[ilu. P)/r] --< 'i J' • J} 
Pjl(·', =p.)d",] -< (x, =P,), 

P-<Q-<R "" P-<H
 
P, -< Q,. P, -< Q, "" (P, n P,I -< (Q, n Q,)
 

\I Xc: B • P" -< Q, "" [Xc: B ~ Pxl -< [Xc: B ~ Qx]
 
Pi --< Ql,Pt --< Q2 =} (P, II P,) -< (Q, II Q,)
 

P -< Q "" (P\A)-«Q\A)
 
P -< Q PIS] -< Q[S]
"" 

u P -< Q then we say that P is a syntactl.c app'mrimation of Q. o 
It can be shown by simple s\.ruetnral induction that if P is a syntactic approx­

imation of Q t.hen Q is rnOf(~ det.{'rminist.ic than P. 

P -< Q "" MIP] c= MiQ! 

Given il closed pro('(~ss P, we construct the set of its finite 5yntactic approxi­
mat.ions FIN(P). III t.his context. we say a process is finite preci5dy when it is a 
term in thl' Ia.nguage SCSpJ. So the formal definition of FI.'V(P) is given by: 

Definition 3.10 FlN(P) = {Q E SCSP' I Q -< P} o 
FIN(P) forms il directed set under --< and cOllsequent.ly the semantic image 

or the set forms a directed set. under ~, with .""f[P] an upper bound, It can be 
established t.hat €"very finit.e process, Q, which is less deterministic than P is less 
determinist.ic than some pi E FIN(P). Intuitively t.his follows since every finit.e 
process must bdlave like chaos after a finit.e time. Suppose Q degenerates to chaos 
after n time unit.s. By choosing any finite syntactic approximation pi of P which 
has the same behaviour as P uutil time It we are guaranteed Q !;;;; pl. This gives 
us t.bf'reSldt. 
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Lemma 3.18 11 Q E SCSP' and MIQi E;; MIPI, then there cs"'I.' P' E FIN(P)
such thai MIQI c;: A-1iP 'J. • 

The :-;ernantic model consists solely of finite traces. We have already seen the 
semantics of a recursive process constructed as the limit. of the semantics of a 
chain of finite i1pproximatiolls to that process. Mort" generally the semantics of 
any process. P, can be described a.<; the lea.<;t upper bound of the directed set. of 
the semantics of certain finite syntactic approximations. By t.he above lemma the 
least upper bound of this set must lie be!o\y that of the semantic image of Ff,\'(P). 
Thus we have 

Theorem 3.19 TIPI = nQEFIN(p) TIQI • 
Extended proof system 

We extelHl tlw proof syst,em of Section 3.4.1 with the following: 

A-17 f- P[(I' ,r • P)IT] '" I' ,r • P 

A-18 r P,!(T, '" p,),j.r;J '" (cr, '" P')j 

'if Q E FIN(P). Q c;: R 
R-l 

PE;;H 

The inference rule captures the fad that P is the least fixed point. of its set of 
finite sYllt<'let,ic approximants. It should be observed that the inference rule is an 
infinit-a.ry nt!(' as FIN(P) may Iw an infinite set. We would not expect to be 
able to construct a decidable proof system for a, language which is Thring [nachine 
equi valen t. 

Soundness and completeness 

The lea.st fixed point construction of the semantics of recursive constructs guaran­
tees the soundness of axioms A-17 and A-LB. While the inferencerulei~sound by 
Theorem :LI9. 

Theorem 3.20 (Soundness) Fo/' all closed terms P and Q in 5GS? 

(f- Pi;: Q) '* M[PH E;; M[Qi 

• 
Completeness is established by considering the cha,ra.ctel'isation of a. process by 

its syntactic approximation. 
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Theorem 3.21 (Completeness) FOI' aU close.d terms P and Q in SCSP 

M[PI [; MIQI ~ (f- I' [; Q) 

Proof: Suppa," M[I'J [; M[QI· 

Let P' E FIN(P). Theu M[P'I [; M~PI [; M[QI.
 

SO by Lemma.:j.18 we can find Q' E Fll\/(Q) such that /\If[P' ] i;; M[QT
 

By Theon'ln 3.1 j we hav'e f- P'!; q.
 
Now Q' [;; Q is provable fur eH'ry Q' E FIN(Q), so f- Pi!; Q.
 

Hence by the inference rule R-I tbc result follows. o
 

3.5 Conclusion 

The semantic model for SCSP presented ill thi:o: chapter has provided a rnathemat­
icaluuderpinning of the language in Chapter 2. The ima.ge of a process expression 
in tlle' language, under the seman tit: function ..\..1, gives a denotat.ional interpreta­
tion of the process in the modE'\. The model captures the behaviours of processes 
by recording failures-divergences Information cornpaJ:ablc to tha.L used in [BR85] 
for CSF: by incorporating refusalfi into the tra(~e of events and introducing the 
concept. of iufeasihlc hehaviour it was possible to provide an elegant mechanism 
for recording divPrgences within the traces. The traces record time implicitly; si­
Hlllltalleo\lsly occurrin.'!; events are recorded in a single set, the position of this set 
in t.he trace rt'pres€llts thp time at whicb it was observed. Moreovl?r the model 
has sufficient mat.hemii.t.ical structure for domain theoretic results to be applicable, 
giving a formal underpinning of recursion. 

Finally, a sound and ('omplete proof system for SCSP has been developed. In 
verifying t.hat til(' proof system was complete, a normal form for dosed terms 
in t.he language Wi\-S considered. The proof system enables relat.ionships between 
processes, deducible from the semantic model, to be established dired]y, using 
axioms, within the algebra. 
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Chapter 4 

Communication and Protocols 

So far any interaction between processes has been by their cooperation m"er the 
perfOfmal)("(' of common events. In this chapter we cons/fler how we can model the 
concE'pt of commullica.tiou of data via channels within a system. 

In the sf>colJd part of this dlil.pter we utilise the notation developed for commu­
nication in order to specify a token ring protocol in SCSP. 

4.1 Communication 

A cha:r1llel is seen as a medium for the comnllmicatioll of data between processes. 
The data carried h:v a chanlwl may take a finite number of values. We stipulate 
that the channels an- uui-directional so a. process will use a given channel for inpu t 
or output exclusively for all t,illle. Also, only one process in a system will use a 
given chall.llel for output. 

Like esp, we consider c.t', the \'<thl€ 11 communica,ted on channel c, as being 
an atomic evellt.. Wit.hin our model a.tomic events should be independent in the 
sense t.hat the oCCllrrence of one should not be able to affect the ability of another 
to be pPl"formed at the ~ame time. We must be aware that c.v and c.w are distinct 
atomic ('venis and 3.-" such it is possible to dE'scribe processes which allow these 
ew'n(,s to be performed simultaneously without chaotic consequences. Clearly such 
an OCCllncnce would have little meaning in the context in which these e\-ents were 
intended. The HoLation we will provide simply ensures a disciplined use of the 
events, so that processes, which purport to model communication along channels, 
conform to the expected behaviour. 

Output channels 

If channel c is an output channel for a process, then whenever the process is willing 
to output data we wOllld expect the process to select a particular data. value. v, say. 
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The pnxess should only Illake available this chosen data, value for communication 
to the environment. Moreover any attempt to send several data values along a 
chiUlnel at a given time would, in general, have catastrophic consequences. 

'We me tht' 1I0tation elv to indicate that the occurrence of the event c.v should 
be interpreted as tbe process olltputting data along channel c. So 

IX ~(rlv) ~ (P if X ~ {) else Q)] 

will reprrsent il. proCf'SS which \11il,y initiall.".· output value v on channel c and then 
go OIl to behave likf' Q or like P depending on whether the output occurred. 

Input channels 

If r;hanllrl cis a.n input C!lll.lLIl('1 for il, process thea whenever the process is willing 
to accept an item of <.laLa on c it should be ahle to a.ccept any of the possible 
data valiles. The elwin> as to which v,lll1e is actually received will be ma.de by the 
environment. However. tlJ(' process should not be able t.o accept more than ooe 
data vahle from the channel at an.y one time as this ca.nllot be a,chieve<.l without 
illlcrfert'lice (111 tbe channel. 

Letting ;r be a free variable, we use the notation c?.r within the choice set 
of (I, sd prefix construct to indicate the a.vailability of all the events from {c. v I 
V im allowed data value on c} ill t.he r:hoire set. This should be seen within the 
cOlltf'xt of the pro('('1>S being able to recf'ive any data value along channel c, We 
Shil,]] assume that ally attf'mpt. by the environment to perform more than one of the 
availahle data communications on a given channel will result in chaotic behaviour. 
We therefore find it unllecessa,ry to staLl' the behaviour of the process in such 
cirrulIlsl,alll..:es. For examplf', 

IX~{c?,'} ~ (P if X ~ {} else Q(x))] 

reprf's(,llts a process which may initially receive input on cha.nnel c; it then goes 
OJ) to l)l'ha"e like P or q(:r) depellding 011 whether iln input action occurred. In 
the cast' where a single data value is recf'ived, J.' takes this value. determining the 
behaviour of Q(.;>:}. 

Composition of processes with channels 

Vy'f' have a.lreil.dy stipuJa,ted that only oBe process in a systf>m wiJl nse a given 
Ch<Ulllt:'t for output. We put no restrictions on the number of processes in a system 
using a given channel for input. Thus we allow for simple specification of the 
concept of channels being forked supplying many processes with input. We shall 
now cOllsider the efff'ct of composing processes which have rhan:nels. 

Suppose c is all output channel of P an<.l an input ch<Ulnel of Q. Within the 
compo,ed processes P II Q data is transmitted from P to Q via channel c. Other 
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processes within the system can read the data from P. To allow this, the channel 
l' is .... isible a.', an output channel of the process P II Q. 

[f (' is an input channel of both P and Q, then the channel c is an input channel 
of the composed process P II Q. Data tra.Ilsmitted to the composed process is forked 
internally to the component processes. 

If c is a channel of P bnt not of Q, then thjs channel is visible as a channel of 
P II Q of the same type (input or output) as for process P. 

4.1.1 Syntax for communication 

Suppose, within a system, e ....ents which arise in the context of data communication 
are only referred to using the notation for input and ontput. Then we can provide 
a syntax within our algebra which allows liS to abstract away from the individual 
events which make up the commnnication. We are able to view the problem as on~ 

of channels parameterised by the data they al"e carrying. 

Alphabets 

In SCSP every process has an alphabrt. When considering communication it is 
convenient. to distinguish the communication events from other events in the al~ 

phabet. \Ve shall associate with each process, P, its input channels in(P), its 
olltput channels out(P) and non-communication events et·(P). We define the set 
of channels of P to be chan(P) :::: in(P) U ollt(P). Each channel, c, has an asso­
ciated data set lllc), a finite set giving permissible data values all channel c. The 
data set should be seen to be an attribute of a given channel in a system. Every 
process with a particular channel c will see the same associated data set for that 
channel. The alphabet of P is then given by 

aP = ev(P) U {c." leE ehan(P) A v E o(e)} 

We also stipulat.e that the input and output channels of a process are disjoint, 

i,,(PI n oullP) = {J 

and that non-communication events do not coincide with communicatiou events 

ev(P) n {c .•. ICE ehan(P) A v E o(e)} = {J. 

We stl'ellgtben our requirements on the alphabets of component pl'oce~ses in 
process expressions . 

•	 Whereas previously compont'nt processes were reqnired to have the same 
alphabets, we now also demand that the input channels and output c1annels 
of the various components coincide. 
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•	 Parallel composition is re~triett-'d to the case where there are no output chan­
nels common to the component processes, and non-communication events of 
one process do not coincide with communication events of the other. The 
process p 11 Q ha.<; an alphahet composed of the following: 

,v(P II Q) = ev(P) U ev( Q) 
oul(P II Q) = old(P) U o"I(Q) 
io(P II Q) = (m(P) U m( Q)) - oul(P II QJ 

Processes 

COml11Ullicittioll e\"t:,uts arise wit.hin processes expressions in the same situations as 
UOIl-collllIluniciltlon f'vent.s. We provide spt'cial notation for referencing communi­
cation c\'ents to ensure they ouly appear in a nleaningful context. If we restrict 
oursE'lve< t.o t.he notation provided here for <.'ommunication along channels, we can 
provide clarity in our modelling of such cO\llffiunication and ensure that the process 
COllstructs adherf' t.o the requiremclIts of such syst.ems. We consider each of the 
COllstrurCs in which events appear explicitly. 

Set prefix 

Any reff'l'encf' to communication events in the choice set of the set prefix construct 
is only made vi<l communication ttl'lll~. 

Definition 4.1 A cfHTlTnJ/1licafion lel'Ill is either an input lerm or an otdput term. 

01ltput terms tCl,ke the form r!e, ,".... hert' r E olll(P) and C'xpression e denotes a 
value in o(e). Inpul terms take the form e'rI. where e E in,(P) and :r is a free 
va.riable 0 

For ry('ry ChallIlt'1 of th~ process there can be at most one communication term 
in the choice set. As before the bdlClviour of a procp-ss aftN a prefix choice will 
depend on the terlTI:>, X, selectf'd from the choice set. The process is parameterist:'d 
by X where ally output terms, e!r, and input terms d'!:z. tn X are replaced by c.v 
and d.l resp8rtiYf>Jy in X. Formally 

e. v if a = C!V
 
,t={alaEXj, where a= C.I if a, = e?x
 

{ 
a otherwise 

So the r~suJtant process is paramet,erised by the free variables corresponding to 
input data. 
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We give the set prefix construct containing communication terms the following 
meaning in hasic SCSP. 

[XC;B ~ Pil '" [YC;B' ~ Qd 

For every output term ,!'v in B the eVPIlt C.'V is made available in B'. For every 
input.term d?r. in H all the events in the set {d.t, [v E 6(d)} are made available 
in B' . .rormally. 

{c. v} ifa=c!v 
B' = Ug(a), where g(a) =

{ 
{cv I" E '(eJ) jf a = clI
 

'EB {a} otherwise.
 

When an input term r?:t arises in the dlOice set B we lleed only provide processes 
corresponding to no more than olle of the C.'V being chosen, the assnmption being 
that in all othf'f cases the process behave~ chaotically. Thus 

1­ if 3c"?x E B. C.J,',C.W E f /\ 'v -# w 
Qr = { P y otllerwise 

Hiding 

In addition to non-communication events we allow hiding of output channels. The 
implication is that all data comIllunication events associated with a hidden channel 
Me hidden. The set of hidden events may now include output channel names 
annotated with the! symbol. So 

P \ {e!} 

behaves like process P with all tbe communication events on dlannel e hidden. 
In general, the process P \ H has out.put channels out(P) - {c I cl E B}, the 

same input chanueb as P and non-communication events e'v(P) - B. We give the 
hiding construct containing output channels the following meaning in basic SCSP. 

P \ B '" P \ B' 

For every output channel, c!, in B all the events in the set {e.v I v E 6(c)} are 
pre~ent in B'. Formally: 

{ {c.v I v E b(eJ) if a = c!
B' = U 9(a), where g(a.) = {a} otherwise.

'EB 
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Renaming 

Renamingmust respect the type of an event and shonld preserve all the restrictions 
mentioned a.bon~. In order to ell"llre this. renaming of communication terms is 
divided int.o renaming of t.he channeb iUld renaming of the data set b( c) associated 
with thf" dlanJl~1. 

4.1.2 Laws for communication 

The law:,; provided here call be e~tablisb('d by expressing the processes in basic 
SCSP, applying laws of SCSP, thf'n retufI1ing to the notation for communication. 
'With these new laws available it is UlllleC('ssary to concern ourselves with the nn­
derlying SCSP treatment of communica.tion. Instead we will be able to view data 
communication along channels a.t a level of abstraction more appropriate to the 
system being described. 

AlnlOsL a.1I the laws of SCSP can lw applied directly to processes which use the 
commullicatioIl notation. The laws which cannot be applied in their current form 
are those where the structure of either the choice set in a set. prefix construct, or the 
set of terms hidden in communication abstri\dioll is important. We shall consider 
genera.lised forms for the laws in quest iOll. 

The axiom for parallel cornpositioll of set prefixed processes becomes: 

A-lO': [XC;A'~ Pi] II [YC;E'~ Qi] = [Z<;;C~ (PIIi,P) II QJIZ,Qj)] 

Terms in C are either communication terms or non-communica.tion events. Com­
lllunici\tion terms arise in C if one component process is prepared to communicate 
with the environment on it channel which is not shared by the components, or 
if both components an' willing to communicate along a common channel. If the 
common channel is an input channel for both components then ('ooperation will 
result in lUI input to the composite pron·ss. If the cornman channel is an input 
channel for olle component and an outpnt channel for the othpr then data flow 
ca.n occur between the components. The data can be seen to be output by the 
composed process. The occurrence of non-communication events in C is governed 
in the samf" way a<; before. Formally: 

C = {e!v IcE (outIP) U oul( QJ) - Ieh"o(P) n chaal Q)) A c! c' E A' U B') 
U{c",r, IcE (io(?) U iu( Q)) - (ch"u(P) n ehoo( Q)) A 3 I • c?x E A' U E'} 
U{e?I, leE ialP) n io(Q) A 3x, y. c7" E A' A ely E E'} 
U{c'e leE iu(P) n out(Q) A 3,. c'" E A' A c'v E E'} 
U{c!'/J IcE iTl(Q) n out(P) 1\ :3:1'. c'!r E B' 1\ c!u E AI} 
U{o I a E cv(P) U ev(Q) A a E ((A' nil') U (A' - cv(Q)) U (E' - cv(P)))} 

j(i.p) gives the terms from Z Sf'en in the context of process P. We can only 
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see events in the alphabet of P and communication on the channels of P. 

f(z.P)~ {e.v E Z I eE ehan(P)}U(Zn,v(P)) 

The axiom for distributing hiding through set prefix becomes: 

A-13J 
: IX ~B ~ Px]\ A = [Y~ C ~ (PYU(iJ-C) \ A)] 

where C = B - (A U {c!v E B Ie! E A}). This ensures that all communication 
terms on hidden channels are hidden. 

Finally tht' law for distributing biding through paraHel composition is further 
restricted: 

L-5': (P II Q)\,I= (P\A) II (Q\AJ 

where An ,e(?) n '''(Q) = {} and {c I c! E A} n chan(P) n chan(Q) = {}. So 
hiding only distributes through parallel composition when neither common events 
nor common channels are hidden. 

4.2 Token Ring 

Using the communica.tion notation developed in this chapt.t>r, we demonstrate the 
use of SCSP in specifying a protocol for local area networks. The protocol chOSt>D 
is a token ring protocol based on the IEEE 802.5 Standa.rd [IEE85] as described in 
ITan89]. 

In a network using a token ring protocol every station in the network is con­
nected to a 1'/11.9 intujace, Figure 4.1. The ring itself is constructed by connecting 
the ring interfaces by point-to-poillt links to form a complete circle, allowing uni­
directional data flow around the ring. When a bit arrives at a ring interface it is 
copied into a l-bit buffer, inspected and possibly modifit>d, then written back out 
to the ring. 

Whenever all 1JH::~ stations are idle, baving nothing to transmit, a special bit 
pattern, calJed the token, circulates around the ring. There is only ont' such token 
on the ring. When <l, station wa.nts to transmit data it must capture the token. It 
may then enter its data on Lo tbe ring and, once transmission is complete, replace 
the token. As there ig only one token, this procedure elimlnates any possibility of 
collisions. 

The token ring has a minimum capacity implicit in its design - when all stations 
are idle tht" complete token must reside on the ring. The capacity of the ring is 
dependent all the number of stations in the network, each providing a I-bit delay, 
and signal propagation delay along the wires. 

Ea.ch ring interface has two modes of operation, listen or transmit. In listen 
mode data is simply copied from the input to the output. If the data is addressed 
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rillg 
interfal'e 

1 
uni·direc\.ional station 

nng 

Figuft" 4.1: A Token Ring 

to the U~l.emng station. thf:n it is also copied to the station as jt passes through 
the interface. A ring interface call ollly enter transmit mode if it is in possession 
of the token. In this mode thp- interface breaks the connection between input and 
output and enters its own data onto the ring. Once the data is retul'Iled to Lhe 
"wilding iut.erfal'/" it i~ drained from the rillg. The sending station IIlay then discard 
the returned data or check it against the original. Transmission completed, the 
token iSl'egenerated. Finally, once all the data has returned to the sender the ring 
interface returns to listen mode, completing the ring. 

As it is not nel'e:')sary to hold the ('ample I.e frame of data on the ring at anyone 
instant. there is no physical limit on the ,."ize of data packets which may be trans­
mitted. Acknowledgement of receipt of uata call be achieved simply by including a 
bit in the frame fonnat which is inVt'rtru by tlw n>ceiying station and checkeu on 
return to the sending station. 

When traffic is light the token spenus most of it:') timE' going around the ring. 
When traffic is heavy the station:') lire given the opportunity to transmit in turn 
around the ring; as tl1l." token is relillquishf'd hy one station it is captured by the 
next statiou round the ring which wishes to transmit. Setting an upper bound on 
token holding time we can ensure that the protocol is fair. Also network efficiency, 
with respect to utilising the ring, can approach 100 percent under heavy loads. 

Each ring has a monitor station which is responsible for ring maintenance. 
Its respousibilit.ies include ensllfillg the token is not lost, keeping the ring free of 
garbage and dealing with breaks in the ring. Other features of the 802.5 token ring 
include a priorit.y system for ring access and the ability to broadcast data to several 
stations. 
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4.2.1 Specification in SCSP 

The specification developed here Duly covers the basic features of the token ring. 
By making the following assumptions we restrict ourselves to specifying a simple 
ring interface in this study. 

•	 We shaH ignore signal propagation delay along links between interfaces. The 
assumption being that the ring is started with sufficient stations to provide 
the ring capacity required to hold th", token. 

•	 We assume that the sending station discards the returned data without check­
ing it. 

•	 AckJlDwledgement of data is nut collsidered here. We are only concerned with 
the flow of dati'l rather than itg exact value, we shall assume that data reached 
its destination if it returned to the sender. 

•	 We- shall 1101. specify a monitor station: we shall only coucem ourselves with 
the bdliwiour of the riug when all the ~tatious are opera.ting correctly. Ring 
maintenance only becomes necessary when the stations go down, loosing the 
token or breaking the ring as they do so. 

•	 Special features of the 802.5 token ring sllch as a priority system for ring 
access <lI(' not conside.red in this study. 

•	 The seuding station is r('~trieted to sending just one data frame on each 
occasion it captures the token. In the 802 ..) token ring several data frames 
may tw seu!. but, to ensure snccessful draining of the ring, no more than one 
header is allowed to reside on the ring at any aile instant and the token is not 
replaced until the la"t header has been drained from tbe ring. This way once 
transmission is complete it is sufficient to drain all data up to and including 
the first 'end-oC-frame' field before resuming listen mode. 

Finally we shall use a very simplified format for both the token and the data 
frame. The token in the 802,5 tok(~n ring consists of 3 octets and can be distin­
guished from other data on the ring by its first two octets. This mf'ans that a ring 
interface must keep recorded the last few values it has seen on the ring so that it 
can recognise the token when necessary. S-imilarly the data frame contains stveral 
fixed length fields in its head and tail, the details of which can be found in [Ta.n89]. 

We shall assume that the following distinguished bits are available. 

Tl\ -- token 
SF - start-of-frame 
EF - end-of-frame 
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Figure 4.2: StrucLnre of n, ring interface 

For our purposes the Loken is a single distinguished bit while the data frame has 
rormat: 

SF DA Datn E:F 

SF and EF ate I-bit markers while DA is a fixed length field containing the des­
tination addrf'ss. B.r a,ssllming the existence of these distinguished bits we can 
ignore the problem of internal buffering and concentrate on the mec.hanism of the 
protocoL 

4.2.2 Ring interface 

We divide the ring interface into four components as shown in Figure 4.2. These 
conlponents are: 

BUFFER This is a I-place buffer the contents of which can be viewed and altered 
by the CONTROL process. 

CONTROL This process switches between letting data through the buffer un­
changed and setting the value in the buffer, depending on whether the inter­
face is in listen or transmit mode. 
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WRITER This process provides a buffer of data waiting to be transmitted. 

READER This process observes data entering the buffer and forwards data with 
matching address to its station. 

The CONTROL and WRITER processes are responsible for transmission oC data 
while the READER acts as a receiver for the station. 

BUFFER 

BUFFER ads as a I-place buffer on the ring. Between the data entering the buffer 
from the ring and exiting the buffer to the ring there is an opportunity for the data 
to be viewed a.nd altered. In order to allow the controller to modify the buffer, the 
buffer cycles its behaviour over a 3 phase clock cycle. 

[0 the first pIlose the data currently held by the buffer is written to the ring 
and a Dew data value is read from the ring. In the second phase the controller and 
the read{'l' call if nen'ssary view the data which has been read into the buffer. In 
tbe final phase the controUer may overwrite the contents of the buffer. 

~BUFF, [{ill?"olt/!y} ~ BUFF; [>~] 

BUFF; - [X';; {view!y} ~ BUFF;] 

BUFF;' ::'1: [{-,<Ii,} ~ BUFf~ [> BUFF,] 

The design requires all the intt?rfaces to be synchronised to aHow the da.ta transfer 
around the ring to occur without corruption. The ability to specify synchronised 
data transfer around the ring means that the ring capacity in our model is equal 
to the number of buffers on the ring 

CONTROL 

When th{' ring interface is in listen mode the controller allows the hits to pass 
through the buffer unchanged. The controller also registers whether its station has 
outstanding data to send. If the station sends data to the interface for transmission 
then it is the task of the controller to capture the token so the interface can enter 
transmission mode. 

LISTEN "	 [{ up? " view? r} ~ (TRANSSF if r = Til" elve REQ)
 
D {"ph} ~ REQ [> LISTEN]
 

REQ " v;cw?, ~ (TRANSSF if, = Til elve REQ) 
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Once the ring interface has captured the token it enters transmission mode and 
the CONTROL process transmits all the data provided by the WRITER process. 

TRANS, [{sel!y} ~ TRANS' c>1-] 

TRASS' [{uplx) ~ TRANS;' c> DRAIN]'K! 

TRAi"i,,; 'l.lIait lJ ) --I TRA i"lSy 

Transmis3ion work!> on a 3 phase cycle ill order to keep synchronised with the buffer. 
The first phase of the transmitter must coincide with the final phase of the bufferj 
in this step the data in the buffer is reset. Failure to reset data in the buffer before 
it is transferred would result in data C'OJTuption. In the second phase, the next 
value to bp t.ransmitted is collpded; if no such value is available transmission is 
assumed to be complete. The token Illust be repla,ed and the data frame drained 
from the ring before the controliN retufll~ to listen mode. It is not necessary to 
view incoming da.ta from the ring during transmission as we have chosen to discard 
the rdurnpd dat.a without checking it. Consequeutly the third phase, which could 
have iuvolved inspectioll of the buffer, involves a wait to maintain synchrollisation. 

Once tra.nsmission is complete the data frame must be drained from the ring. 
This is adlieved by transmitting null charaeterM (denoted *) nntil the end of frame 
marker has }"t':'turned to the sender. 

DRAIN, [{set'y} ~ DRAIN' C>1-] 

DRAIN' wait(I) --I DRAIN:' 

DRAIN;' I{ uhw?z} ~ (END if z ~ EF else DRAIN,) [>1-) 

Vv'hile the ring interface is draining the data from the ring, it is imperative that 
each bit of incoming data is viewed so as not to miss the end of frame delimiter. 
Failure to see t.his delimiter would result in either the token or messages belonging 
to other stntions erroneously being drained from the ring. 

Once the end of frame marker has returned we must delete this from the buffer 
and immediately return to listen mode. 

END =c [{sd ) ~ LISTEN c>1-]
" 

WRITER 

Dat.a. ariives at the ring interface from the station orr channel OTl. The WRITER is 
responsible for formatting the data into a data frame. As the token holding time is 
directly proportional to the length of tht':' data. frame the writer can be responsible 
for ensuring that the token is returned within the token holding time. This is 
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achieved by splitting data across several frames if it is too long to be transmitted 
within the time limit. 

WRITE - WRITEO 

WRITEO - on?d -....+ WRfTE/..(dj 

WRfTE(g;&):/..& - up!y -....+	 WRfTE&;jr& 

WRITEOJ"' - wait. (3) ~ WRITE!", 

where /r( d) is a list of frames l (05 : /rs) denotes frame s followed by frames /rs l and 
(y: 05) denotes bit y followed by bits s. 

Onc(' a complete frame has been sent, the I''lR/TER blocks sending for sufficient 
time to gua.rantee the controller will stop transmitting and return the token to the 
ring. 

READER 

This process acts as a f(~c{'iyer, vi~wing data as it passes the buffer. Ifit sees a start 
frame delimiter then it checks the destination address of the frame. If the address 
matches the address of the station then the reader stores all subsequent data until 
the end of frame delimiter and passes the data to the station. If the data does not 
carry the correct address then it is ignored by the reader. 

READ - "if"'?y ~ (CUECI,O if y = SF else READ) 

CHECA·, - TnUII?y ~ (	 /\BEPO if s"'(y) = address else 
(CHECII,~(,) if s~(y) < address else READ)) 

flEEP.• - vif'w?y ~ (SEND& if Y= EF else KEEP&/'-.{v)) 

SEND, - I{ vi"'" y, o!J's} ~ (CHECIIO if y ~ SF else READ) 
o {o!J',} ~ READ t>.L] 

We assume that the st.alion is always able to accept data. This may require some 
intermediate buffering. 

Notice also, this process is always wilJing to view data. Thus it cannot block 
the buffer process. 

4.2.3 A complete ring 

~len the system is started we assume that one of the buffers carries the token and 
the remaining buffNS ou the ring contain null bits. We assume that every interfa.ce 
is in listen mode with no data pending transmission. So every interface is given by: 

INTER, '" (BUFF, II LISTb"N II WRITE II READ) \ {view!,up!,set.!} 

65 



where x E I TA.*} 
Assuming there are 11 +1 stations and the interface labeled 0 contains the token 

then the s~'stf'm is initially df'suibed by the process: 

SYSTEM"= ( II LiNTER.) II O.INTER TK 

'E[I,,") 

where 

,.IiVTEJi, "= IN TER, [",","y / in, (i '" 1) .1'I71g / oul, i. off / oj], i. 0" / onl 

(E! being addition modulo n + 1. 
We could hide thf' ring mechanism by hiding the channels {I. ring I 0 ~ i s: It}. 

Although this hides the token, f'nabling it to travel arollnd the ring internally, snch 
a.bstraction does not resnlt in infinite cha.t.ter and cha.oll. Even when an event is 
hidden we- know it can oc('ur at most once in every time unit. This contrasts to 
esp, where mll("h ("are must be t.aken (,0 avoid infinite chatter when hiding events­
which cOllld ocmr arbitrarily often, such as t.he token passing round a ring when 
all interfacell are idle. 

4.2.4 Investigating the interface 

In order to investigate the behaviour of a ring interface we shall consider the com­
position of the components BUFFER, CONTROL, and WRITER. We shall 
restrict our interest to the transmission properties of the interface, so we shall 
exclude the READER component from our investigations. We simply note that 
the READER cannot affect the behaviour of the dIanne! vIew and this is the only 
opportunity for communication between tht" READER process and the remaining 
processes wit.hin the interface. 

We wish to establish the bebavionrs of the process 

INT, "= (BUFF, II LISTEN II WRITE) \ {vieu,', sel!, up!} 

To achieve this we use the algebraic laws to reduce the above expression to a form 
which does not involve the parallel composition or hiding operators. 

INT,
 
{ by definition of INTy }
 

(BUFF, II LISTEN II WRITE) \ {vieu'!,set!, up!}
 
{byL-3}
 

((BUFF, II LISTEN) II WRITE) \ {v"w!, sel!, up!}
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Now 

(BUFF, II LISTEN) 
{ expanding definition or BUFF" and LISTEN} 

[{m',z, out'y} ~ BUFF; [>~]
 

II [{up?z,"",,'x} ~ (TRANSsFifx = TIl else REQ)
 
o {up' z ) ~ REQ t> LISTEN]
 

{ by A-IO' }
 
[{ill'?.x,out!y, up?z} ----1 BUFF; 11 REQ 
o {in'lx, "UI'y} ~ BUFF; II LISTEN t>~l 

So 

((BUFF, II LISTE:N) II WRITE) \ {view!,set!, up!} 
{ expanding WRITE and from above } 

([{in'/x.out'y.up?z} ~ BUFF; II IlEQ 
o {i"'!x, oUll y } ~ BUFF; II I.J5TEN t>~J 

II	 [{on? d} ~ WRITJojd" t> WRI1'E]) \ {"i,w', ,.eI!, up!}
 
{by A-IO' and A-13' }
 

[{in?T,o'ufly,on?d) ----1 

(BUFF; II LISTEN II WIlITf,Jd") \ {"i,w!,sell.up!} 
o {i",'I,r,oul!y} ~ (BUFF; II LISTEN II WRITE) \ {view!,sell,op!} 
[>~I 

By continuing to eliminate parallel composition and hiding in the above manner 
we ea,n demonstrate that 

INT, '" I(y,L,O) 

where J(y, L, OJ is given by the mutual recursion in Figure 4.3. The parameters of 
I ca.n be given the foHowing intel'pectation in the system: 

•	 The first parameter is the currellt value stored in the buffer. 

•	 The second parameter is a value taken from the set {L, T, D} a.nd indicates 
t.he mode or the interfa.ce, 

L	 - Listen mode 

T	 - Transmit mode, data still being sent 

D - Transmit mode, returned data being drained. 

•	 The final parameter is a. list or lists of bits, representing data pending trans­
mission, stored in frames. 
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Interface with arbitrary data supply 

When we consider properties of the ring interface we want to be sure tha.t these 
hold regardless of the data transmitted. y.'/e shall thus place the interface in an 

environment in which the data snpply is specified as weakly as possible. We model 
an arbitrary data supply by the process: 

DATA =( n (an!d~ DA1A)Jn ("'ad(l) ~ DATA) 
dE5( on) 

The process waits a random (possibly infinite) lengt.h of time before offering the first 
data item to the interface. Once this is accepted further data items may be offered 
after random delays. Assuming that once data is made available for transmission 
it willl'emain available until accepted by the interface, then any actual data supply 
D will be more deterministic than the process DATA, DATA ~ D. 

vVe shall now consider t.he behaviour of the interface when supplied WiLh data 
in the above arbitrary manner, by considering lhe process 

(lNT, II DA1A) \ {oo!} 

As before We use the algebraic laws to eliminate parallel composition and hiding 
from this expres!'iion. We define 

ID(y, X, s) =(1('1, X, s) II DATA) \ {on!} 

Clearly by the definition of INTg 

(lN1; II DA1>!) \ {ool} 0: !D(y,L,O) 

We can derive the mutual recursion shown in Figure 4.4. The first stel-lS of this 
derivation a.re presented ill Appendix C.l. 

Timing properties of the interface 

\Ve shall demonstra.te that, regardless of the data sent to the interface for trans~ 

mission, the time lapse between an interface receiving the token and outputting 
the token to the next. ring interface does not exceed .'3 (Tn + 1) units. Here m is the 
maximum allowed length of a data. fra.me. 

We recall there is onl.r one token on the ring. While data is beiIlg transmitted 
by an interface the token must be held by that int.erface, so no token can arrive a.t 
an interface while it is transmitting data. The last bit of the data frame is an. end~ 

of-frame marker. once this has been transmitted the token is returned to tbe ring. 
Ouce the end-of-frame marker ha..<j retnrned to the sending interface it immediately 
returns to listen mode. The token caHuot arrive at the draining interface before 
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ID(y,LOI " [{i,,'?x,oul' y} ~ ((nOES",,) ID'(x,L,fr(d))) 
nID'(x, L, 0)) 

I> 1-] 

ID'(y,L.O) " wa,l( 2) ~ II n,,,, '0' ID(y, L,fl'(d))) n ID( y, L, 0)) 

(D(y,L,s:!rs) :::= [{in'?.r,oui!y} ---t ID'(r,L,8:/rs)
 
1>1-1
 

ID'(y, L,(z: s) ,frs) '" u:od( 2) ~ (ID(SF, T, soil's) jf Y = 1'[( else
 
ID( y. I" (z: s) :[I's))
 

ID(y. T,(z"):[1'8) " [{in?z, o"fly} ~ (w"d(21 ~ ID(z, T,s:frs)) 
I> 1-] 

ID(y, T, 0 : (soil's)) " [[;n?x, OId'y} ~ (wail(i) ~ ID(T[(, D,sJrs)) 
I> 1-1 

lD(y, T,(())) " [{i,,'I",oul!y} ~ ID'(TI\., T,O) 
I> 1-1 

W(y, T, 01 " wod(2) ~ ((n'E"'" ID(y, U,fr( d))) n ID(y, D, 0)) 

W(Y,LJ,s:/rs) =: [{iu'!.r,out!y} (wait(2) -----'llD"(x,s:frs)) -----'I 

I> 1-1 

ID(y,D,OJ " [{i"?",o,d'y} ~ ID'(x,D, 0)
 
I>1-J
 

lD'(y,D·O) " woil(2) ~ lin'E"") ID"(Y,[I'(d))) n ID"(y, 0)) 

ID"(z, 5) " ID(., L, 5) ifr = EF else lD(., D, s) 

Figure 4.4: Specification of the ring interface supplied with random data 
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the end-of-frame marker. So the token can only arrive at an interface if it is in 
listen mode. 

We consider the behaviour of an interface in listen mode, with a random supply 
of data, when a token is input to the interface on channel in. We are interested in 
the time it takes for the token to be output to the next interface on channel out. 

We shall descrihe the provision of a token by 

TO/\· :=: in! T/\" ~ NUL 
NUL == inh ......... NUL
 

This process prO'·ides the interface with a token followed by arbitrary data, rep­
resented by the * symbol. We shall assume that data flow around the ring is not 
blocked, so all output on channel ouf is allowed by the environment. 

We are interested in the time elapsed before the event oull TJ( can be performed 
by the process 

(ID(y,L,s) 111'0/\') \ {i,,!} 

where" E {OJ U {/>'(d) IdE b(on)} 
Dy application of the laws of SCSP we can show: 

(ID(y,L, 0) II TO/\) \ {in!} 
=' [{ouf!y} ~ (wait(2) ~ ((n",(,",(ID(SF, 1',fr'(d) II NUL) \ {ia l }) 

nl{ out! TI\} ~ P ".L]) 

" .LI 

and 

(ID(y,L,fr'ld)) II TOf{) \ {in!} 
=' [{ouI!y} ~ (waif(2) ~ (ID(SF, 1',!>,,(d) [I NUL) \ {in!}) 

" .LI 
where!>,,( d) = S :/"s, given /r'( d) = (SF: s) :/1's, 

We see that aIter 3 units either the token is returned or the interface eaters 
transmit mode. If the interface does llOt enter transmit mode then the token is 
passed through the buffer unchanged. 

It remains to consider t.he time taken for an interface in transmit mode to return 
a token. /1" (d) is a list of frames with the start-of-frame marker removed from the 
first frame. So the first frame has length less than 1n. We sha.ll establish, by 
induction on Is I, that the process 

(ID(y, 1',s:/r's) II NUL) \ {on!} 

is willing to perform the event out! TA' aIter S( lsi +1 ) units. This result is sufficient 
to gua.rantee our requirement regarding the token holding time. 
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Base case lsi = O. Using the laws of SCSP we can demonstrate that: 

(ID(y.T,01r') II NUL) \ {o'.!)
 
" [{ oul'y} ~ (u'0;1(2) ~ [{ 0.1' TK} ~ P [>1-])
 

[> 1-1 
So (lD(y, T, () :[1'5) II ,Vl'L) \ {on!} is willing to perform the ('v~nt oul! Tl\' after 3 
units. 

Inductive step 1=: s I = n + 1. Again using the law::; of SCSP we can show that: 

(lD(y, T,(':oHr,) II NUL) \ {oo!}
 
~ [(ord!y) ~ (woil(2) ~ (ID(y, T,"!rs) II NUL) \ {on!})
 

[> 1-1 
So. "."sllJ1ling till' l'llvirOlllnpnl is a.lways willing to receive data on channel out, 
(ID( y, T, (z ,,) 1,'.,) [I Ii['I,) \ { 00 '1 behaves like p,'oce" 

(ID(y, T,81"s) 11 NUL) \ {on') 

after 3 units ilnd by induction this proCl'SS is willillg to perform the event o'ut! TA' 
after 3(n+1) units. So 

(ID(y, T, (z:o) 1r8) II NUL) \ {"o!} 

is willillgto perform the event ouf!TA' Nter 3(lz:sl + 1) units. 
Hence we have esta,blished that tile time lapse between the token arriving at 

the interface and its being relinquished by the interface does not ('Heed S( m + 1) 
units, where In is the maximum allowed frame length. 

4.3 Conclusion 

By prm-iding a special notation, communication of data via channels between com­
ponents of a syst.em can be captured succinctly by SCSP processes iu a lllanner 
familiar to CSP [Hoa85]. Although the underlying treatment of communication 
is fairly complex in SCSP, modification of some of the algebraic laws of SCSP 
has made it possible to manipulate algebraically expressions, which use the com­
munication notatiofl, without referring to the underlying SCSP representation of 
communication. 

Using the communication notation, we have been able to specify a simple token 
ring in SCSP in terms of sf'vera.l simple components. Vv'e have demonstrated that 
the algebra is sufficiently powerful for us to establish behavioural properties of the 
ring interface by simple algebraic manipulation. Moreover, as SCSP incorporates 
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an element of timing informa.tion, we have been able to establish the token holding 
time of the ring interface. The timed framework of sesp makes it possible to 
hide the mechanism of the protocol by hiding the channels which constitute the 
ring. If the ring is idle, the (then hidden J token could be passed around the ring 
indefinitely; however, this abstraction does not result in infinite chatter t as it would 
in an untjmed model ~uch as esp, since the token takes time (which is not hidden) 
to pass around the ring. 
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Chapter 5 

Synchronous Receptive Process 
Theory 

A discrete time algebra is particularly appropriat.e for modelling docked circuiis; 
Uw t.iIllt:'cornpoIlC'Ht exadly captures (}H' dock"s behaviour. l1owever. components 

within a (ircuit ,Uf' ahvays willing to I't'cei ve illpu t, ,,,,hile ou Lpn t is ne\'eC blocked. In 
SCSP it j, po~siblf' to model slidl systems by making sure every event corresponding 
to an illput is available fol' all tim/' and a.ssllrning that the system becomes chaotic 
if all outpllt i~ blocked by thf' em'iL'onm('llL 

Example \Ve consider the SCSP specific<lt,ioll of a. NAND gate with unit response 
time. The output of a NAND gate is only low if both inputs were high at the 
previous time step. We assume lIw NAND gate has input wirps 'a' and 'b' and 
output wire 'c' as shown in Figure .J.1. \Ve model the gale by recording voltage­
levels OIl wires. Event a occurring corresponds lo the voltage.-Ievel on the wire 
labdkd 'a,' being high, oLllE'fwise the voHage-level is assumed lo be low_ We assume 
that both inputs a.re initially high. This gives us the following specification: 

NAND ~ IX C; {a. b} ~ (NAND if X = (n. b) else SAND')]
 

NAND'cc IXC;{n.b,c} ~ (i\AND if.\: = {n,b,c} else
 
(NAND' if c E X else l-J)]
 

a [)- c 
b-

Figurp .5.L A NAND Gate 
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The gate is always williug to a,(:cept a high voltage-level on the input wires, while 
the voltage-level on th", output wire can only vary in accordance with the inputs 
at the previolls time step. 

This small example has resulted iu a process expression which is encumbered 
by the Msumptions concerning the na.ture of communication. By encoding such 
Msumptions into OllT model we are able to develop a synchronous version of Re­
ceptive Process Theory [Jos92]. This language can be viewed as a sublanguage of 
SCSP and its links ith SCSP will be presented in a later chapter. 

[n this chapter e. present tbe language of the synchronous receptive process 
theory, SRPT, and its associated denotational model. As with SCSP, a given event 
can occur a.t most once at each time step. In contrast to SCSP, the language of 
SRPT distinguishes between input events and output events. 

Later in this chapter we shall see that., by making a semantic distinction between 
input and output events, we do not need to record refusal information in the model 
for SRPT. Behaviours are recorded as traces of sets, the sets consisting simply of 
events. We also obtain a straightforward encoding of divergence, however, by doing 
this we find ourselves considering a partial order on processes different to the usual 
non-deterministism ordering. 

5.1 The Language 

SRPT is intended to model the interaction of a.n input-output system with its en­
vironment. A system is always able to a,ccept any input from the environment and 
the environment may not block any output from a system. The term 'receptive', 
previously used by Josephs [Jos92j and Dill [Di189L is used to capture these con­
ditions on the input and output of a system. As in SCSP all communication is 
instantaneous. 

As in SCSP, we presuppose. a universal alphabet of events:E. In SRPT we 
associate t.wo sets of event.s I, 0 <;;; 'E with each process. These are referred to as 
the input and output alphabets of a process. We require both I and 0 to be finite, 
at least one of I and 0 to be non-empty, I U 0 ¥- {}, and the sets to be disjoint, 
In 0 = {}. We also presuppose a set of process variables Yar. As before, these 
variables facilitate the definition of recursion. 

The abstract syntax of the receptive language is similar to that. of SCSP, the only 
noticeable variation being the slightly different form of the prefix construct. Ta.ke 
P to range over process terms. I, 0 E :r 'E, x E Yar and S to range over bijective 
renaming functions S : 'E -+ 'E. Then, with certain restrictions on the a.Jphabets of 
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the processes. the following grammar defines the syntax of the language SRPT: 

P ::= 1-1,0 Chaos
 

II process variable
 

Ipnp non-deterministic choice
 

I [!O'X ~ Pxl ou tpu I. prefix
 

I P II P paralld composition
 

IPIO hiding
 

IPIS] renaming
 

1~r:I,O.P recur"ion
 

\Ve lIOW present the informal interpretation of each of these terms, highlighting 
the differences between this language and SCSP. We also consider the restrictions 
imposed upon lhe a.lpbabets of the process terms. 

5,1.1 Primitive processes and operators 

Throughout this !oiection we shall use IP and oP to denote the input and ontpnt 
alphabets of process P, while aP will denote the combined alphabets of P, oP = 
LP U of. 

Chaos 

The process 1-1.0 is the most undesirable process with input alphabet I a.nd output 
alpha.bel. 0; it can give 110 information about its behavionr. This process is nsed 
to modd behaviour when things go wrong, no useful information is available about 
the system, the process is divergent. No recovery is available from a process in this 
erroneOLlS sta.te and in this respect ('haas is identifiable witb the process 1- in SCSP. 

Where the alphahets can be deduced from the context we will simply write 1-. 

Process variable 

.:r E Vnr represents the process bound to variable x in the context of given variable 
bindings. As in SCSP, we cannot make any deductions about the process to which 
.r is bound until the choice of variable bindings is made explici t. 

Non-deterministic choice 

If two processes P and Q have COIllmon input and output alphabets, I and 0 
respectively, then the non-deterministic choice of these two processes P n Q is 
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defined to be the process witb iuput alphabet I and output alphabet 0 which 
non-deterministically hehaves like P or Q. The choice occurs internally within 
the system; the environment has no control over the outcome of the choice. Non­
determjnistic choice i.~ a dlC'monic cboice: a process which may internally choose to 
behave erroneously, is itself erroneous. This is refleetl?d in a-4 below: 

a-I: PnQ""Qnp 

a-2: (P n Q) n R =P n (Q n 11) 

a-3: P nP =P 

a-4: Pn~=~ 

Output prefix 

Let P be a, IP(l)-indexed family of processes, each with input alphabet I and 
output alphabet O. A prefix set B is a. subset of the output alphabet O. The 
process [!B? X --I' Px ]performs the events in B and any subset C of events from I 
at the first time step. 'fhe process then goes on to behave like Pc. If P is a. process 
with empty input alphabet we sha.ll simply write [!B ---t Pl. 

This differs from the set prefix construct of SCSP in that it reflects the receptive 
behaviour of processes. The environment must aUow the process to perform aU the 
output events in B. This pn'fix construct does not provide a choice a.s to the out put 
performed. The environment only ha.'l a choice a.s to how much input it provides 
tht' process. The process must allow a.ny possible combination of input and its 
subRf'quent behaviour is influenced by the input provided by the environment. 

Consider, for example, the process 

1!{n}?X ~ (~ if X = {} else Pi] 

Initially this process will perform the output. pvent a and a set of events in its input 
alphabet. No other output. can occur. If the environment provides the process with 
input, then the process will evolve to P at the [lext t.ime step. If no input is received, 
then the process evolves to chaos at the next time step. 

We have one axiom j[l\'olving OHtput prefix: 

a-5 : I!B? X ~ Px ]n pB"Y ~ Qrl=I!B? Z ~ (Pz n Qz)] 

This is weaker that the corresponding axiom in SCSP. Consider the process 

PB?X ~ Prjnl'C?J' ~ Qr] 
All the e .....ents in the prefix sd must occur at the first time step. So whenever 
B f:- C, an ohser ....er will be able to est.ablish which way the process resolved the 
choice at the first time step, simply by considering the out.put which ocalrred. The 
only situation in which t.he resoJutioll of choice can be postponed is wben both 
prefix sets are equal. which justifies the distributivity result, a-5. 
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Parallel composition 

The parallel composition of two processes, P 11 Q, is the process which results from 
the interact,ion between two concurrently executing processes. Parallel composition 
is defined for processes with disjoint output a.lphahets: P II Q is defined if of n 
oQ = {J. The input aIld output alphabets of P II Q Me (,P U ,Q) - (oP u oQ) 
and (oPU oQ). Synchronisation mnst occur on common events, in the ~eIlse that 
such common events can only occur when both component processes are prepared to 
perform them. The occurrence of other events in the composition is governed hy the 
behaviour of the component process which contributed these events. ff one proC"ess 
becomes chaotic and can provide uo fmLher information about its behaviollr, then 
the composition also hecomes uninformative. Communication between compollent 
pron'sses, resulting from olltpnt from Olle component being rect'ived as input to 
tlw other componellt. is seen as output of the composed process. This allows us to 
modfJ forks in wires easily. 

paJ·allel composition satisfies the following a,xioms: 

a-6 1-1.011 P =1-1'.0' where 0' = (oP u 0) and I' = (rP u 1) - 0' 

a-7 P 111-[,0= 1-['.0' where 0' = (oP u 0) and I' = (~P U I) - 0' 

a-8: (P n QJ II R = (P II R) n (Q II R) 

a-9: P II (QnIl)= (P II Q)n(P II II) 

a-lO: I'B?X~Pxlll[!C?Y~Qyl= 

I'(BU C)?Z ~ p(zuc,n,p" II Q,zuBln,q,,] 

and the following laws: 

1-1: P II Q =Q II P 

1-2: (P II QJ II Ii" P II (Q II Ii) 

Hiding 

As in SCSP we should be able to change the level of abstraction of a problem by 
hiuing evpnts from th~ f'nvironrnent. Since input events form the external control 
of a process, it does \lot make sellse tu be able to hide input events. The only events 
in a process' alph<l,bet which may be hidden a.re output events; this corresponds 
to ignoring the information provided by the process. A hidden event will occur 
unseen wheuevpr the prucess desires to perform it. We note that, unlike SCSP, 
hiding does not introdUCE maximal progress implications. Rather, aU output in a. 
receptive system already occurs a<; soon as possible. 
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If B is a set of events disjoint from the input alphabet of P such that aP -8 =l­
n, then P\B is the process which behaves as P, with all the events in B occurring 
unseen by the environment. Notice, we are always able to hide events which are 
the result of communication between processes in parallel composition, since such 
communication is visible as ou tpu t. 

Hiding satisfies the following axioms: 

a-II: .1/.o \B ::::.1[,0-8 

a-12: (pnQ)\A",(p\Aln(Q\A) 

a-13: [!H?X ~ px ] \ A",['(B - A)LY ~ (Px \ All 

aIld the following laws: 

1-3:	 (P\ AI\ B ",P\(AUB) 

1-4:	 (I'll Q)\A'", (p\A') II (Q\A') 
ifA'n"pn"Q={) 

Renaming 

Given a biject.ive renamingfunetion S : r; -. E, we use PiS] to denote a renaming of 
proce" p. Pm"e" PIS] has input alphabet (l.p)[S] and output alphabet (op)[SJ, 
where for a subset B of E we define B[S] =0 iSle) leE B). Like SCSP, PIS] 
performs event 5'(0.) in exactly the circumstances tha1 P would perform event a. 

Renaming satisfies the follm.... ing axioms: 

a-14 : 1-1,0 [S] "'1-1[51.0['1 

a-IS: (I' n Q)[S] '" PIS] n Q[S] 

a-16: [IB'iX ~ pxIlS]"'I'BiSj?Y ~ (Pl'['-'I)[SII 

and the following laws: 

1-5: PISJlR] '" p[R . S] 

1-6: (I' II Q)[S) '" PIS] II Q[S] 

1-7: (I' \ B)IS] '" PiS] \ BIS] 
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5.1.2 Recursion 

By the USE' of recursion we are able to extend our language to describe infinite 
processes. J.l;; : 1,0 • P represents the solution of the recursive definition of the 
process :r defiue-u as it pal"ti,ular (least) fixl:'c1 point of tIle function>' r • P. The 
ma.themalical details of this collstruction will be presented later. 

a-17: I": 1,0· 1'" 1'[(1": I, (). P)/II 

here P[(jtx: I, O. P)/.r] denotes tlie process P with}1 x: 1,0. P substituted for 
every free occurn'llce of the viLriable :r. 

Recursion also si1,tisfies alpha redudion: 

1-8 : f'I : I, 0 • P " I' !I : I, () • Ply/ I I where y is not a variable in P. 

By t.lll' sallie argument as for SCSP, we can show that there is a unique fixed 
poinl, of rhe function). I • P whenever every occurrence of :r in P is dirt:'ctly or 
indirectly guarded by a.n output prefix. 

5.1.3 Derived processes and operators 

MallY orlhe derived processes and operators of SCSP cannot be expressed in SRPT. 
Processes in SRPT UU] always accept input; they ca.nnot wait for time to pass 
without making input event.s availabll:'. The only process which can be viewed as 
a unit of pal·aBel composit.ion, in the sense that RUN could be in SCSP, must 
have an empt.y output alphabet. This is it consequence of the alphabet restrictions 
on parallel composition. Due to the requirements on input events, the only nOI1­

divergent process with input alphahet } and empty output alphabet is STOPl,{), 
which is prese-ntpd below. 

Stop 

The process STOPJ,o [leVer Ql.ltPIlts a.nd never becomes chaotic; it represents a 
deadlocked procf'Ss. Like all other processes of SRPT, STOPJ,o can always ac­
cept input; in t.his respect it resembles the deadlocked process in the theory of 
Asynchronous processes presented in [.THH89]. 

STOP},O '" ~ I: 1,0. [!{}'!X ~ xl, 

We have the following law: 

1-9: STOP}"o, II STOP}"o, "STOP},o where	 0 = 0 1 U O2 

1 = (l, u I,) - 0 
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Proof: 

STOP/"o, II STOPf"o, 
2' {defn of STOP and by a-17 } 

[!{)?X ~ STOpf/,o,III[!{)?Y ~ STOp/"o,1 
2' {bya-10) 

[ill? Z ~ (STOP/, ,0, II STOPf"o,)] 
== {by uniqueuess of solutions to guarded recursive equations 

STOPf,o 0 

If the output alphabet is empty, then STOPr,{J is prepared to perform any of 
the events ill its alphabet, We obtain the following law: 

1-10: STOPf,{j II P 2' P if 1<;; oP 

5.2 ExaIllple: Basic digital logic circuits 

In tbis section we draw on the field of digita.l circuit design to provide some small 
examples of the use of SIlPT. Throughout t[lese examples we shall model compo­
nents by recording voltage-leveh au labelled input and output wires. A component 
is represented by a process with iupnt events corresponding to input wires and out­
put events corresponding to output wires. Event a occurring corresponds to the 
voltage-level on the wire 'a' being high; otherwise the voltage-level is assumed to be 
low. We shan assume that initiaJly all the wires in the system are low. Througbout 
these examples we shall assume there is a delay associated with the gates modelled, 
ill that time must elapse between the pl'ovisiou of input and the observation of tbe 
desired olltput corresponding to this input. In reality there is no significant delay 
associated with the simple gates described here. 
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5.2.1 Gates 

AND gate The output of an AND gate wit.h uilit delay is only high when both 
the inputs were high at the previolls time step. 

AND'" [I{J?X ~ (AND'ifX = {a,b} elseANDl]
 
AND' '" [!{ c}? X ~ (AND' if X = {a, bI eLse AND)]
 

OR gate 1'hp output of ill) OR gate is only low WhPJl both inputs Wefe low at 
the previous time step. 

OR '" [ill'X ~ (OR if X ~ {I else OR')]
 
OR' '" [i{ IFX ~ (OR if ,\ = {} else OR')]
 

EXOR gate The output of all EXOR (exdllsive or) gate is only high when 
exactly olle of th(' inputs was high a.t. t.he previous time step. 

EXOR '" [I{}" X ~ (EXOR' if IX I ~ 1 else EXOR)]
 
EXOR' '" [1{c}?X ~ (EXOR' if IXI = 1 else EXOR)J
 

5.2.2 Half-adder 

A circuit for calculating the sum s and carry c of two bits a and b can be 
constructed from two gates as shown in FigUl'e 5.3. So the process describing the 
halr~addt'r can be defined as 

HA'" AND II EXOR[s/c] 

We shall expand the definition, eliminating parallel composition and renaming 
[rom t.he expressions. This way we <Il'e able to demonstrate that the circuit has the 
desired hehaviour. 

Firstly we define: 

HA, '" AND II EXOIl'[s/ c]
 

and HA, '" AND' II EXOR[s/ c]
 

~=D-c ~=D-c ~=JD-c 
AND OR EXOR 

Figure 5.2: Three gates, all with input wires a, b and output wire c. 
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c 

Figure .5.3: A half-adder 

Now we have 

HA 
{ by definition } 

['{}?X ~ (AND' if X = {n,b} else AND)] 
III!{}'IX ~ (EXOR' if IXI = 1 else EXOR)Jls/ eJ 

{ by • -16 } 
[!{}?X ~ lAND' if X = {a, b) else AND)] 

III!{}? X ~ (EXOR'[s/ c] if IX I = 1 else EXOR[,/ eJ)] 
{ by.-10 } 

[I{}?X ~ (AND' II EXOR[,/c! if X = {a,b} else 
(AND II EXOR[s/c] ifX = {} else AND II EXOR'[s/eJ))] 

{ by the abovf' definition~ } 
[!{}'X ~ (HA, if X = {a,b} else 

(HA if X = {} else HA, ))] 

Continuing in this manner we can show: 

HA"" [!{}? X ~ HAIX I] 

where 

HA(X)'" HA, if X = {a,b] else (HA if X = {} else HA,)
 

HA,,,,, [1{s]'?X ~ HAIX)]
 
HA,,,,, p{e]'X ~ HA(X)]
 

This has the behaviour of a half-adder with unit delay. 
Up to now we have only considered combinatorial circuits with unit delay. In 

such circuits output is a function of the previous input alone. Thus these combi­
natorial circuit.s can be represented by processes with general form: 

P y "" ['!I Y)?X ~ Px ] 

where X, Y <;; tP and f : IP _ oP.
 
In the next section we shall consider circuits which have sta.te.
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iNa ~aD: k{J-b 8-LJ-b
 
T-type JI\-type T-type from JK-type
 

Figurf' 5.1: Flipflops
 

5.2.3 Clocked f1ipflops 

Flipflop." an' onc or the basic components of computer memory. Flipftops are 
docked components which are typically triggered by the rising edge of the dock 
cycle. The output or a flipflop is determined by its own st.ate and the state of its 
input wir('s 011 tu<' li~ing pclge of the clock cycle. It determines the state of its 
output wires before the following rising edge. 

By <l.Ssurnilig that the 'tick' of the clock in our language corresponds to the rising 
edge of the clock cycle in the circuit we can provide a representation of f1.ipflops 
by recording the value on their input and output wires at these 'ticks', We shall 
consider lbe T-f1.ipfl.op and the JK-flipftop and show how the former can he derived 
from the la.tter, a well-knowll result. 

T-type 

The output of a. T-type flipflop toggles between a and b with every clock pulse. 

,T= {} oT= {a,b} 
T ~ [i{a} ~ T'] 
T' ~ [lib} ~ T] 

JK-type 

Output A is set high when J==l all(l 1(==0 and reset low when J==O and K:::::1. When 
both J and 1\ are high the output toggles a.nd when both J and K are low the 
output remains unchanged. 

,JK = {j,kj oJA' = {a.b) 
JK'" [!{a}?X ~ (Jl\' ilk E X else JII)] 
JA' '" [!{b)'X ~ (J/I ifj E X else JII'l] 
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Deriving a T-type from a JK-type 

Clearly by holding both J a.nd K high we can construct a T-type from a JK-type 
flipflop. So all we need to do is attach both inputs to power. Power consists of a 
single outpnt which is alway~ high. 

POWER" [!{a} ~ POWER] ,POWER = {} oPOWER = {a} 

So consider 

(J/\ II POWERli/a] II POWER[k/a)) \ {j,k) 

First consider 

POWERU/a] II POWER[k/ll] 
{ expanding definition of POWER } 

[ria} ~ POWERlli/a]III'{a} ~ POWERJlk/a] 
{ by a -16 } 

[!lJ) ~ (POWERli/a])]II[!{k) ~ (POWER[k/a])]
 
{ by .~10 }
 

[!{),k} ~ «POWERli/a))lI(POWER[k/a]))]
 

So by uniqueness of guarded recursive equations 

POWERli/a] II POWER[k/a] '= P 

where p" [!{}, k} ~ PI 
Thus 

(J/, II POWERli/a] II POWER[k/a)) \ {i,k) 
{ substituting P }
 

(JI, II P) \ {),k}
 
{ expaJ1(ling processes } 

[!{a)'!'>; ~ (J/,' ilk E.\: else J/\)lll[!{j,k) ~ PJ \ {j,k) 
{ by .-10 } 

[! { Il,) , k} ~ (J/C II P)] \ {j, k) 
{ by .-13 }
 

[!(Il) ~ (JlI' II P) \ {j,k)]
 
{ continuing expansion } 
[r{a}~[!{b} ~ (J/I II P) \ {j,k)ll 

So by the uniqueness of solutions to guarded recursive equations: 

(J/\ II PO WER li/alII POWER[k/a)) \ {j,k) '= T, 

We shall return to the modelling of docked circuits in Chapter 7. 
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5.3 Semantic Model 

In this section we present a dellotational semantics for the language SPRT. The 
semantic model makes a distinction between input aud output events. This and the 
receptive nature of the language results iu it being uuuecessary to record rdusal 
informatioll. A process canllot refuse to perform input events. Output t'vents are 
not blocked, so if all output e\TCHt does not occur the process must be refusing 
to perform it. This results in a mod",) which is far simpler than that presented 
for SCSP in Chapter :3. The new model forms a complete partial order under all 
information ordering presented in Sed ion .5 ..1.;l. 

5.3.1 Notation
 

Here Wl' illtruduu:> the k{:'y cOllcepts of the model.
 

Events 

An event is either all input to a process from the environmeut, or an output from 
il process We denote the unllJCrsa( nlplwbd E to be the set of all possible events. 

A particular process Illay p<u·ticipate in a finite number of input and output 
events 1,0 c;: ~; I is the input alphabpt of the process, while 0 is its output 
alphabet. The inpnt and output alphabets are necessarily disjoint, In 0 = {}, 
and at lea.st one of these is non-empty, I U 0 # {}. 

Within our modd we shall record the set of events performed at a given time 
step. We shall refer to such a set as an occurrencc-sel, it is a subset of I U O. The 
receptive nature of our model means that any input event which was not observed, 
was not offered by the euvironment. while any output event which was not observed, 
was not made available by the process. 

Traces 

A trace is a fiuite sequence of occurrence-sets. Given input and output alphabets, 
I and 0, the spt of all traces is given by: 

RTI,O '" (1P'(I U 0))" 

At each tick of a global clock an observer may witness a number of events from 
the set I U O. By recording these sets of occurrences in a chronologically ordered 
sequence we obtain a trace of the process. As in the model for SCSP, time is 
recorded implicitly, times when nothing occurred being marked by the empty set 
in the trace. 

As lraces take the form of sequences of sets we shall continue to use the operators 
developed for traces in Section 3.1.1. 
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Maximal behaviours 

If a process is divergent it can give no useful information about its behaviour. We 
shaH record llothing about the behaviour of a process once it has become divergent. 
If a process diverge~ after exhibiting behaviour s then no extension of this behaviour 
is a beha.viour of the process. No further record of the passage of time is made. 
This is comparable to the use of time stops by Moller and Tofts [MT90] to model 
an undesirable state. 

A behaviour which precedes a divergent state is maximal in that no extension 
of this beha.viour is recorded in the model. 

Definition 5.1 The set of marimaJ beha'lJiours of a process with trace set T is 
given by' 

T={.'E TI~ 3"E T.,.>s} 

o 
For any set of traces T, T is a mn..rimaJ sr:!. 

Processes 

A process P is represent.ed in our model by the triple (1,0, T) where J is the 
input alphabet, 0 is the output alphabet and T = T(P) is the set of all traces 
describing possible bel1aviours of the process. Only subsets of RT1,o satisfying the 
closure ('ondition.~ to be given in Section 5.3.2 will represent trace sets of processes. 

Restrietlon 

Definition 5.2 We call take the restriction of a tra.ce set. T, by a (maximal) set 
of traces, S, to obt.ain a trace set T ! S, 

TLS={sE TI~(3rES.r<s)} 

o 
T 1 S consists of the behaviours of T which are not extensions of any behaviour 
ill S. A process with trace set T ! S diverges more often than one with trace set 
T. If s E S is a tra.ce in T, then either.., is a maximal behaviour in T 1 5 and 
immediately precedes divergence, or there is a trace 51 < s which is a maximal 
behaviour in T 1 5 ~o s is not a behaviour of T ! S. If 5 is a maximal sel then 
only the former of the above cases applies. 

The following are direct consequences of the definition of maximal behaviours 
a.nd restriction. 
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Lemma .5.1 If T, S, Rand M are trace sets and AI tS a maximal set then: 

1. T j T ~ T 

2. T j R ~ T 

3. T~S~ TjRr;SjR 

.. T~SjT""r~S 

,5.	 M ~ S A r = S j M ~ M r; T 

6.	 (Tj R) j S = (T I S) j R 

7.	 n:slrietwn by S is idempotent. 

8.	 1'l"slf'tc!ion by S distribulf:s thmugh union and intersection. 

• 
5.3.2 Closure conditions 

In this section we introduce closure conditions on a set T of tI'aces which must 
be satisfied for T to represent the trace set of a process with input and output 
alphabets / .Hld O. We notice that the first two conditions correspond to conditions 
i and ii of SCSP. The eliminatioll of refusal information from the model results in 
a reduction in the number of closure conditions required to just three. 

I	 () E T
 

The empty tra<'"e is observable at time' O.
 

II s""" rET:::} sET 

Prefix closure; if a particular traces ca.n be observed over a certaln time span, 
then prefixes of this trace, corresponding to observation made for a shorter 
time, may also be observed. 

III s~(X) ETA Y r; I ~ s~((X nO) U Y) E T 

At each time step the process can. accept any input. This rcflects the assump· 
tion that the process is always re'ceptive to any input. We also notice that 
the output performed at a given time step is not influenced by inpnt received 
a( that time. 
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We shall let RM be the set of all triples (1,0, T) where I and 0 are finite 
disjoint input and output alphabets and T satisfies the closure conditions with 
respect to J and O. This set is the underlying model for our receptive language. 

RM'" {(I,O, T') II,OEli'IL:)i\ In 0= {} i\Iu 0# {}
 
A T ~ RT1,O A T satisfies conditions I-III}
 

Where L.: is the universal set of all events. 
We use RM 1• O to denote the set of all processes with input alphabet I and 

outpnt alphabet O. 

RM1,o", {(I, 0, T') I (1,0, T') E RM} 

F\Hthermore we let 8M1" be the set of all sets of traces for processes and RM~'o 
be the subset of Rilly corresponding to proce::ises with input and output alphabets 
I and O. 

RMT '" {1" I 3 I, 0 E IF I: • II, 0, T') E IiM} 
ORM~'o '" {1" I II, 0, T') E RM l . } 

We notice that 8Mi: o is dosed under restriction by any subset of RT1,o. 

5.3.3 Information ordering 

The natural ordering Oll the model for SCSP was a non-determinism ordering. Due 
to the novel representation of divergence in the model for SRPT, a non-determinism 
ordering, as presented in Section 3.1.3: is no longer the most natural ordering to 
work with. We define a new information order'ing on processes with the same 
alphahets. 

If (1,0, T p ) alld (l,O:TQ) represent two processes P and Q, then we define 
the ordering :<::; by: 

(1,0, Tp) ,;; II, 0, TO) '" TO 1 Tp = Tp 

This relation does not give an ordering between any non-divergent processes. The 
information ordering has the same philosophy as Roscoe's definedness ordering 
[TIDs88a]. Q is more rpliable than P, P ~ Q; any behaviour of P is a behaviour 
of Q; moreover any be.haviour of Q is either a behaviour of P or an extension of a 
maximal behaviour of P. 

Lemma 5.2 If (l, 0, Tp ) and (l, 0. T Q) l'epr'esent two p7'Ocesses P and Q then 

p(Q¢} Tpo;To 
l\(l'E TQAr¢. Tp ::::::;}'3sE Tp.s~r), 

•
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Since the ordering is only on processes with the same a.lphabets we can consider 
it as an ordering on RMf'o. 

Lemma 5.3 The /en,<;t dement 0/ RMf·o under the in/ormat.ion O1Y1ering is {O}·

• 
{O} is t.he trare set of t.he proce.')s which diverges immediately, so never gives 

any llseful information. 

Lemma 5.4 Every ~-dincfed .set, 05; RMf' o, has a least "Upper bound in RMf·o 

a.nd th.is lfast uppr r boltud i.s U D. 

Proof: We claim that un E RM~'O and U~D = UD.
 

The former is immediate, it remains to show that U~ D = UD.
 

Firstly we 'lhow that U [J is all upper hound, that is V P ED. U D! P = P.
 

For P EDwehaves EUV 1 p~ (3P'E D., EP')fI~(3r E p. r<8).
 

Choose Pa E n with 8 E Po. As D i~ directed, choose Q with P ~ Q and Po ~ Q.
 

Q 1 fi, = Po ~ , E Q, (since' E Po ) 
Q 1 P == P =* s E P, { since sEQ and as ...., (3 rEP. r < 8) } 

Hence UD 1 P 5; P. Moreover P 5; UD, giving P 5; UD ! P by Lemma 5.1, as 
required. It rema.ins to show tha.t U D is the least upper bound of D. Take Q an 
upper bound of D, so VP ED. P ~ Q. We must show Q! UD = UD. 

Clearly UD <;: Q1 U D. We show that Q 1U D <;: U D by contradictioo. Suppose 
8 E Q 1U D and -' i U D. Then 8 E Q and If P ED. , i P, giving (If P ED· 
3 rEP. r < 8), as Q is an upper bound of D. Now consider the set 

T" (r 13P E V· rEP fI r < 8) 

This is dearly non-empty and finite as s is of finite length, 90 we can take the 
maximum of this set. 1,1. We claim that ,.' E U D. We know that r' E U D, if it is 
not maximal then we can find ro E U D such that ro > ,/. We can choose P E D 
such tha.t ro E P, but we know that there exists an rJ E T with rJ E P. SO 
1'0> ,/:::: ,'/ contradicting the definition of P. Hence r' E UD and ,I < 8. 0 

Theorem 5.5 (RMI,O,~) /01'r1l..'3 a complete paliial order. 

Proof: Follows from Lemma 5.3 a.nd Lemma 5.4. o 

Lemma 5.6 EVf.ry non-empty subset 0/ RM~'o has a ~-gre.atest lower bound. 
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Proof: Suppose S is a non-empty subset of RM¥,OJ. We define 

I( '" {.< EnS 13 P, Q E S, X C; I U o. ,~(X) E P - QJ 

and 

K' '" {, E I( I ~ 3, Ell'" < .<}. 

We claim that S' == (nS) 1 A" is the greatest lower bound of 5 in RM!j,OJ_ 

5' satisfies conditions I-III, thus 5" E RAJ¥,Ol. We must show that 5' = n:s;5 

Firstly we show dlat S' is a lower bound of 5, that is VP E 5·5' = P 1 S 
S' ~ p 1 S' since 8' ~ P. We shall show that P 1 Yfi .; 8' by contradiction. 
Suppose s E P 1 S' and s rf- 51 

case ~ EnS: As s ¢ S' there exists r E A'I such that r < s. Now by 
construction !{' ~ .I:f so :3 l' E S' • r < s. Thus s 't P 1 S contradicting our 
original assumption. 

case s ~ nS: We can find i\ prefix ,.~(X) S.< with,. E nS and ,~(X) ~ nS. 
So we can choose Q E S such that r"""(X) rf- Q. Hence l' E K and 3 r' E /{' • r' ~ 

l r < s. Since 1\' .; S' we have that 3 r' E Si • r < s. Thus s 1- P 1 8. Hence
 
result by contradiction.
 

It remains t,o show that 8' is the greatest lower bound of S.
 

Take Q a lower bound of S. so VP E 5. P 1Q= Q. We must show 5' 1Q= Q.
 

,," 1Q ~ Q, by the tollstruetion of /3'. \Ve show that Q ~ 5' 10 by conlradiction.
 

Suppose sEQ and s ~ 5' 1 Q. Then .< ~ 5' and sEQ""" V PES· s E P """ s E
 
nS. So 31' E !{' • r < s. We can choose P~,Pl E 5 and X ~ (l U 0) such that
 
r"""(X) E Po -Pl. Since sEQ, no prefix of s is maximal in Q, so r'""'(X) E Po 10,
 
thus ,~(X) E Q. However, T~(X) E Q """ T~(X) EnS """ "~(X) E P,.
 
Contradicting the choice of Pl. 0
 

Theorem 5.7 (R.fl,[['O.~) [orm$ a complete aemi-lattice. 

Proof: This follows from Theorem 3.5 and Lemma 5.6. o 

Lemma 5.8 1/ D ~ RMf'o is ~-di.,.ecttd set, then(I 

UD={sE U PIVPED.(3.:Ei'·'Ss)} 
"ED 

•
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5.4 Semantic Function 

In this sedion we construct a sema.ntic function which maps syntactic expressions 
of our langnage t,o processes in our model RAI. It is necessary to consider each 
process tf'J"1TI with a spl"cific binding of process variables to processes. 

Variable bindings 

Given a Sft of va.riables VfU', we define a domain of bindings, BINDR, this consists 
of all mappings from j/(ll' to the space of proC('S~es RM. 

BINDR == Vl1r --+ RM. 

Now we aT\"' a.ble to derine it semantic funct.ion: 

M n ,511PT ~ BINDR ~ RM 

M R [P]rJ dE'llotes the meaniug, of process term P with variable binding IJ', in terms 
of our model. Thi~ is eva.luated by dssociatillg each free variable .r with its value 
O"[J'~ in hinding 0, 

SemaJltic Suh3tit.ution of free variables occurs in the same sense as in Section 3.2. 
As before, when reasoning a.bout closed process terms, that is those with no free 
variables, it is llUn('Cpssary to mflke t.he nlriahle bindings explicit. 

The semantic function ,.\If 1( 

Given a va.riable binding, Mn maps each process term to a tripl~ representing the 
process' input a.lphabet., out-put alphabet and the set of traces of the process. We 
define ., o. flnd Tn to be the nat.ural projections onto the first, second and last 
WmpOll€lLt of this triple. 

M.IP~a ~ (I [Pia. o[Pla. TRIP!a) 

POl' a. geuf'ral process both a.lpba.bets alld the set of traces of the process will depend 
upon t.he variabk bimling. 

1,0: SPRT -----> BI/VDR -----> lF~ 

Tn ,SPRT ~ BINDR ~ RM T 

Non-r€cursive processes 

W(' define M R over' \.hf' non-H'cursivt" t.erms of SRPT by defining the projections 
l. 0 and Tn. We take SRPTlJto be the restriction of SRPT to the non-recursive 
t.erms. that is the terms with syntax: 

P~l-I"I' IPnP I [iB?X ~ Pxll P II P I PIA I 1'[5) 

n 



Definition 5.3 The functions! iWd 0 are defined as follows over the syntax of 
SRPT'. 

'I.i,.o I". "" f
 
o[ .i'.o I". "" 0
 

'·['1'" "' ~la['1
 
O[.Tj". "' ~,a['1
 

,·IP[Sjl"."' (,IPI"')[S]
 
oIP[SII'" "' (oIPI".liSj
 

if ,[PI'" = ,·IQla &nd olPI". = alQI"., then 

'IP n QJ". '" 'W~". 
alP n QI'" "' o[P]". 

if B ,;: o[Pn!". and V C';: ,IPnl' ,iPd'" ~ ,IPnl'" A 0IPeI". = olPnlo, then 
'1I1B' X ~ PxH". "' 'IP,II". 
ol[!B?X ~ PxH". "' alPol". 

if ,IPI".n 'IQ~O' ~ {), then 
,IP II Q]'" '" I'IP~"'U ,IQI".) - 101PI". U oIQ]"') 
olP II Qi". '" olPI". U 01QI". 

if B n ,[Pi". = {} and ,IPI". U oIP~'" - B .;, {}, then 

,IP \ BI'" '" ,IPI". 0 
DIP \ BI'" '" oIP~'" - B 

Definition 5.4 The function Tn is defined as follows * over the syntax of SRPTo. 
Td .i/.O k"' {O} 

Tn 1'1'" "' ~s"'I'1
 
Tn!P n QI". "' (TnIPI". LTnIQ~"') U (Tn[QI". LTnIPI".)
 

TnI[!B?X ~ Pxl!'" "' {(B U Y)~s II'';: f A s E TnIPd"') 
U{O} 

where f = ,I[!B"X ~ Pxll". 

TnlP II Qi'" "' {s I s n;1 E TnIPI". A s n BE Tn[Qj".}
 

where A = ,IPI". U olPI'"
 
B = 1·IQj".U 0IQI".
 

TnIP \ BI'" '" {s - B 18 E TnIPI".} L {r - B IrE TnIPI".} 

TnIP[SII". "' (8 Is[s-'J E TRiPJ".) 0 

*We write Tn[P]u rOJ (,he set of maximal behaviours of T'R[Plu 
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Notes 

1.	 As for SCSP, .i 1,0 is modelled by the least element in the partia.l order, in 
the case of SRPT this pi\Ttial order is (RM1,o, ~). This corresponds to .il,O 

being the least informative prOCe,5::i wltb alphabets I and O. 

2. Non-det.f'rministic choice cannot be defined as easily as in SCSP. Thii'l is be­
canse we no longer mode.l divergent processes as arbitrarily non-dlC'terministic 
procesi'le:o:. The restriction ill tIle expression here ensures that undefined be­
haviour ensw's if both components can behave in a manner given by tra.ce 5, 

and s is <1_ maximal behaviour of one of the component processes. 

The information ordering is weaker that a non-determinism ordering, jf we 
define the non-determinism ordering in tf'rms of the non-deterministic choice 
operator as for SCSP: 

A1dPj C;H ,\1. Iq] "' MRiP n qj = Aidp] 

tile" AiRIPI,; Ainlq~ '* MnlPI C;R Mdq] 
Proof: "0/e Crm a.%ume that the alphabets of P and Q ",re the same. 

MdPI,; Mnlqi 
==> {by definition of the ordering 

TRlq!" Tn 11'1 = hil'I 
==> {trivially} 

'Tnlq] " TnlpIUTn[pl" TnIQ] = TR[PIUTnIPI" TR!ql 
==> {recalling definition of 71( and by properties of restriction} 

Tn [1' n ql = hil'I 
==> {as we can assume the alphabets of P and q are the same } 

MnlPI C;R MnlQI 

The process with behaviours T'R[P~ U T;z;'[Q~ represents an angelic 110n­
delerminislic ,hoi,e between processes P and q. This process can, whenever 
possible. avoid chaotic , llndefin~d beha.viollf. Any implementation of this 
fmlll of lion-determinism wonld require backtracking, which is unsatisfactory. 
We shall not, therefore, consider this form of non-determinism any further. 

3. The	 semantic fnnctioll for parallel composition is much simpler that that 
for SCSP. The absence of refllsal information in the model for SRPT means 
it is only necessary to consider synchronisation on common events. The 
representation of divcrgence by no information means that then' is no need 
t.o distingujsh between the ca~ws where one process becomes divergent and 
neither processes become divergent. Any t,ra.ce of the compmied process, 
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when restricted to the alphabet of a component process, must represen t a
 
behaviour of that component process.
 

Suppose P II Q has behaviour s and s restricted to the alphabets of P is a
 
maximal behaviour of P. There can be no extension of s in P II Q, as any
 
such extension restricted to the alphabet of P cannot be a behaviour of P.
 
So P II Q has 8 as a maximal trace. Thus we ensure that if one component
 
diverges, the <-'omposition must also diverge.
 

4.	 When considering tbe semantic function for hiditlg we cannot simply consider 
all traces with the hidden events rernoved- if we did, in certain circumstances 
a resolution of internal choice may be made so as to avoid divergence. 

Consider the process P with empty input alphabet and output alphabet {Q, b} 

P = [!{a} ~.LI n [!{)~[!{a} ~.LI] 

This peacess has trace set Tn [PI = {(), ({ a}), ({)), ({), {a})} divergence oc­

curs after one time unit if an a is output at the first time step, otherwise
 
divergeuce occurs after two time units. If we hide the a we can no longer dis­

tinguish between the case where the a occurred initially, causing divergence
 
after the first t.ime step, and the case where nothing occurred initially, delay­

ing divergence. In our demonic approach to non-determinism we assume the
 
worst case occurred so:
 

P \ {a} = [i{) ~.Ll 

this peac,,"s has trace set 7" IP \ {a 1I = {(), ({)), demonstrating that 7" IP \ {all';' 
{s - {a} Is E 7,,[P!}. 

The restriction in the semantic function for hiding is necessary to en~ure that
 
divergence is not avoided by hiding events.
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Corollary 5.9 The: maximal behaviours 0/ lenns of SRPTJare given Ol'er the syn.­
t.a;r as follows:' . 

T.I.1I.o Da '" {()} 

TRlxDa'" {s E "alxD 1 ~ 3s' E rr,alxD' s' > s} 

TRIP n Qla '" (TRIPla I Tn IQia) U (Tn IQ!a I TRIPla) 

TRlliB?X ~ Pxlla '" {(B U Y)~s 1 y <; / A s E TnlPyJa} 
where / ~ I[['B?X ~ Pxlla 

TRIP II Qla '" {s I s n A E TniPla A s n B E TRIQDa 
V s n A E Tn [Pia A s n B E TRI Qla} 
where A = '[PIa U o[PIa 

B = I[QlaU o[Qla 

TR[P\B!a - {s - B I s E Tn [Pia) I {r - B 1r E TR [Pia} 

TR[P[Slla {s I.;[S-IJ E Tn [Pja} 

Proof: These all follow from the definition of YR. o 

Theorem 5.10 The Itrrn..5 of SRPTJ al'e well df;jined with 7'CSpf;et to the model. 

Proof: It i,~ necessary and sufficient that M R [P]<7 E Rkf for all process 
expressions P ill SRPTo. This is demonstrated by structural indnetion over the 
syntax. 

atomic terms It is dear by construction that .11,0 is well defined with respect 
to the model. By definition of a and as ;\,1R[.r~<7 = <7[2:] the process vaIia,bles are 
well defined. 

operators It is sufficient to show that the result of applying an operator to 
well defined process expressions is a well defined process expression. It is a trivial 
exerciset.o verify that the ~eDli\ntic ima,ge of the applica.tion of an operator satisfies 
th(' closure conditions I-III in such circumstances. 0 

Theorem 5.11 For P a term of SRPTJ. ~ y. MR[P]a[yjx] is monoton.ic. 

Proof: vVe must establish that for q, if E RM 

q" q' "" MR[PJa[qjx) " Mn[Pja[q'jrl 

If P is an atomic process t.his follows trivially, either P =.11,0 in which case the two 
expressions are ronstant, or P is a. variable and the result is a direct consequence 
of the definition of variable bindings. 
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It is sufficient to check that each operator is monotonic in each argument, the re­
quired result then follows from the mOllotonicity of finite compositions of monotonic 
functions. The proof of monotonicity is presellted as Theorem A.3 in Appendix A.2. 
o 

Recursive processes 

Definition 5.5 \Ve extend the definition of MR to the full syntax of SRPT CUl 

follows: 

M,,[~ x: [,0. Pia eo fix"o'\ y. M,,[Pla[y/x]
 
where y does not occur free in P and
 
fiXI,O denotes the function's least fixed
 
point in (RMI,O,~)
 

o 
In order to establish that Mn is well defined over SPRT we must ensure that 

the least fixed points utilised in the above definitions exist. 

Lemma 5.12 If y ok,,; not a 'VaT'iab/e in P and>. y • MR[P]a[y/xJ is continuous 
in (RMI,O,~) for all variables x, then MR[1l x : I, °.P]a is well defined and 
>.y.MR[Il.r: I,O.PDa[y/z] i.~ confimlOUS in (RAfl,O,~). 

Proof: (RNII,O,~) is a complete semi-lattice and>. y • MR[P]a[yjx] is, by 
assumptiou, continuous within the semi-lattice. So, by the Knaster-Taxski Fixed 
Point Theorem, a least fixed point exists. Hence fix>. y • MR[P]a[y(xJ is well 
defined. 

Moreover, setting HR == >. y. MR[P]a[y/x], the least fixed point is given by the 
limit, U~:::,H;; (M,,[ ~"o I), 

As lou.b. preserves continuity the required result holds. 

In the next chapter we sball establish, via an embedding of RM into SM, that 
all the operators of SRPToare continuous. Hence the following is a theorem. 

Theorem 5.13 All processes terms P 0/ SRPT are well defined with respect to the 
model. • 
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5.5 Conclusion 

In this cha.pt.er we have introduced (,he language SRPT. This language, in common 
with SCSP, 

•	 exprrsses nOIHleterminism, parallelism, hiding a.nd recursion; 

•	 captures hoth t1uantitativ(' timing details and the notion of t.me concurrency 
through its pu'fix operator; 

•	 has sufficient algebraic laws to be able to eliminate parallel composition and 
hiding from expressions. 

III cOlLtra~t 1,0 SCSP. SRPT distinguishes between input a.nd output events; all input 
l"vent~ are made aVlliJable ill the prdix construct while those output events present 
in the prefix construct are assumed to occur unrestricted by the environment. These 
difference~ ill the la.llgnage captur/" its receptive nature. 

The sern<lutic model for SRPT presented in this chapter is very simple; the 
rccepl.iveuat,ltfe of t.he language ma,ue it nnn{'c{'ssary to record refusal information 
in t.he modeL The behaviours of a. prores.'! ace captnred completely by traces; 
each t.erm in t.he trace is a set of events seen to occnr simultaneously and t.he 
posit.ion of the sd ill the t.race indicates the time it was observed. Traces in the 
model CilJl he viewed as a mathpmatical representation of the information captured 
by the informal timing diagrams ['1'0093] often nsed in engineering to clarify the 
rela.tiomhip between inputs and out.puts of circuit components. 

By introducing the concept of maximal behaviours and choosing all interpreta­
tion of thE' modf't in which the progressioll of time is not recorded after divergence, 
divergences .....ere encoded into traces. This led to tbe consideration of an infor­
mation ordering on the model ill contrast to tIw usual non-determinism ordering. 
The modfl forms a complete partial order under this ordering, providing t.he mat.h­
ema.tical structure required to und<"rpin r{'cursiou. 

98 



Chapter 6 

SRPT as a Sublanguage of SCSP 

In this cha.pter we demonstrate how SRPT Call be viewed as a. recept.ive sublanguage 
of SCSP. To adli~vf' this we develop two embeddings; lJ> : RM --t 8M which relates 
the two models and e : SRPT ---t SCSP which relates the two languages. These 
two fnnctiotl:-i are chosen to preserve the intllilive representation of the processes, in 
tIll:' sense that P E SRPT and its image 81' E SCSP can be seen to represent the 
same system in the different languages. While Q E RM and its image l}lQ E 8M 
can be interpret,ed as representing the same system in different models. 

We establish a natural relationship between e and '1>, such that, given an em­
bedding 1/> of BINDR into BiND induced by lJ> 

If P E 8RPT; a E BINDR • <PMR[PJa = M[epJ~a. 

Informa.lly the following commutes: 

RM <P 8M 

MR M 

SRPT xBINDR e x ~ SCSP xBfND 

From this we are able to draw on the results established for SCSP to demonstrate 
the continuity of the operators of SRPT and construct a proof system for closed 
terms of SRPT which is sound and complete. 
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6.1 Embedding RM in 8M 

Processes in Rk! are designed to model receptive systems, where input is never 
refused and the environment cannot block output, so all possible output bappens. 
Processes in SM are not specifically designed to model receptive systems but we 
can model such systems by making a few assumptions. A process in SM modelling 
a receptive system cannot refuse input so it must always offer any subset of the 
input alphabet to the environment. In a receptive system, output events that can 
occur, doocem. We shall model this in thl:' processes in SM by assuming that if a 
proper subset of the possible output occurs at a particular time step, tben infeasible 
behaviourfollows at the next time step. Notice that the traces of a process in SM 
corresponding to the environment allowing all possible output are the traces which 
are satlirated with respect to the output alphabet. 

Pro('e9~es in RAJ model Jivergent or undesira.ble behaviour by providing no 
further information abon t the process. The system is only modelled during the 
time it is well behaved. By corrtr(\.<;t. we USf:' tbe concept of infeasible behaviour 
in 8M to modC'! undesirable behaviour. Despite the difference in representation, 
both RM and SM assume there is no possible recovery from undesirable bebaviour, 
allowing us to make a simple correspondence in the case of divergence. 

We define lJ> as follows and claim it provides a suitable embedding. 

Definition 6.1 Taking A ::::: I U 0, "ve define 4> ; RM _ SM by * 

'1>(/,0, T) = (A,¢(!, a, T)) 

where, 

1>(!,O,T)~ u,'(I,a,s)U U"I(/,a,s) 
.ET .E'T 

,,(I,a,O) = {OJ 

,,(!,a,s~(X)) ~ {s'E STA ]31' E IF( OJ". Is' U 1 = ,ols~(X)) V
 
3V<:;Xna.(V9'{}1I
 

'ols)~bo(X) - n s s' U r))}
 

V', (I, a, 8) ~ {s'~ 1'1 s' E ,,(I, a,s) II l' E F(An 

and ,"IX) = X U 10 - A) is defined fO>' X <:; A o 
- 11 J ; A ~ 11 Ji'; a function then r :A- ~ BO ill the m3l>ping for f onto every element of a 

trace consisting or element,s oftypl:' A. r(OJ::::: () r((x)""'s):: (jx)""'(r(s)) 
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We shall now consider how ~ maps processes in RM to those in SM. Clearly the 
alphabet of the process 4;l(P) is the union of the input and output alphabets of P, 
processes in RAl distinguish between events which are to be considered as output 
and those which are to be considered as input, processes in SM make no such 
distinction. It remains to consider the way in which a process in RM is mapped to 
a trace set in SAl, this involves considering the map ¢. Assuming P = (I, 0, T) 
we shall consider the map ¢ by decomposing it into several steps. 

Firstly we saturate every trace in T with respect to output by adding refusals, 
we only add rdusa.ls corresponding to output which could not happen so each term 
iu the trace remains feasible. The function 10 performs such saturation of a set 
with respect to the alphabet a so we need to map this function on every trace in 
T giving us the set: 

T, = bo(s) IsET} 

Next we add tra<:es corresponding to too little output being allowed by the en­
vironment. 'vVe have already commented that infeasible behaviour will follow , so 
recalling closure condition vii any t.race may follow. This gives us ]'/ U T2 where: 

T, ~ bo(s)~bo(X) ~ Y)~"I {} c Y <;: (X n 0) A 8~(X) E T 
ArE F(At} 

Notice that the traces corresponding to insufficient output being allowed are not 
saturated. So for a process which non-deterministically outputs 0/ or Ot, wbere 
0: C 0/ 1 by considering refusal information, we CaIl distinguish between the case 
whNe the process chooses to output O2 and the case where the environment is only 
willing to perform the events from 01! from the process' offer of events OJ. 

Next we must change our representation of undesirable behaviour from unde-­
fined behaviour to infeasible behaviour. For each maximal behaviour s, we must 
extend the trace 10(s) by infeasible behaviour and, by closure condition vii, by 
arbitrary behaviour. The set of sudl extensions is given by: 

T, = bo(")~'·I" ETA r E F(A)"} 

Finally we dose all the traces we have thns far obtained under removal of refusal 
information, we can remove any amount of refusal information without affecting 
the behaviour of the process. This ensures the set, T', is dosed under condition v, 
where 

T' = {.< I 3 r E F( 0)" • sUr E T, U T, U T,} 

Now T' = ¢( 1. O. T). By considering the traces in ¢( I, 0 , T) generated by each 
trace in T we obtain the sets 1/' (/,0,8) or v., /(/.0,8) depending on whether s E 
T - Tor sET. Thus we obtain the above definition of~. 
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6.1.1 Properties of <l> 

We verify that ~ is well-defined and prove that it is monotonic, continuous and 
injective over a H'strieted domain. 

Lemma 6.1 For s E RT1,o and A :::: I U 0 

"I (sj -"(8) = 1"13 r E F(O)'. ,~(8j < 8' U r) 

• 
Theorem 6.2 II> is w(ll-drjinrd. 

Proof: Wt> must ~how that if (1,0, T) E RM then (I U 0, rjJ(I, 0, T)) is a 
process in SI'f'J. Assuming T satisfies closure conditions I-III with respect to input 
and outPllt alphabet::; } and 0, it is sufficient to show that r/J(J, 0, T) satisfies 
closure nlllditions I--\,ij wid, respect t.o alphabet I U O. 

Since I and 0 remain unchanged throughout this proof we will abuse notation and 
write ¢(T) for 9(/, 0, T), ,'(s) for .'(1, O,s) and, for ,0.
 
The pattern of proof being similar for each closure condition, only that for condition
 
vi is preS€llted here.
 

A"ume that s~(B)~s' E 9(T) and C = {a E I U 0 I a ~ B /I a ~ B}, we want 
to ,how that .ithee s~(BU C) E ~(T) m s~(B Uli))·~s' E ~(T) for ,orne" E C. 

s~·(B)~s' E ~(T) 

::::> {by the definition of ¢ } 

(3 a E T, s~(B)~s' E ,,( a)j V (3 a E T ' s~ (B)~ s' E "d u) - ,,( ail 
::::} {recalling df'fiuitioll of 1/.' and lj; 1 } 

3 a E T; r~(R)~," E no)", (s U 'F(B U R)~(s' U r') = ,'(a) (1) 
V 3,~(X) E T; r~(R)~r' E F(O)'; \. C; X no, (Y i' {} /I (2) 

,'(a)~b(X j - Y) " (s U r)~(B U R)~(s' U r')) 

V C3 rET; "~(R)~r' E F(O)' ,,'( u) < (8 U r)~(B U R)~(s' U ,') (3) 

We now proceed by case analysis on thp form of traces in ~(T), so we shall consider 
8"'(8)""'s' satisfying each of the a.bove disjuncts in turn. 

Case 1. If R - B f:- {} thPll, as all elements in the trace ,*(u) are feasible, we 
can choCiSei E RnCand s ....... (B U{i})"""'S' E rt(T) as required. 

If RUB:::: B. thell (.,:, U rr'(B) s; l*(U) so B must be saturated with respect 
to output as every element in the trace ,*(u) is. Hence 'c ~ I. Then by the 
closure conditions on l' and the nature of I we can find '1/ E T with 1'*( u') = 
(s U r )~(B U C). Tin" s~ (B U C) E w( T) as reqnired. 
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Case 2, [[sUr 2-1'(u)~b(X)-Y) then (sUr)~(BUC) E >/>(s') and weare 
done. 

If(sU rl~ (8 UH) :S )'(u)~b(X I - Y), lhell when H - B i' {} or lhe inequality is 
:'itrid the result follows as before. In the remaining case I'(X) - Y = B. Now ,(X) 
is feasible a.nd s<lturated with respect to output, and Y ~ 0 so Y = en O. Also 
u~(X U (en I)) E T by condition III on T and (s U r)~(B U C) ~ )'(u~(X U 
(Cn II)), lienee s~(B U C) E ¢(T) as required, 

Case 3. If sUr 2': -((u) then clearly s"'"'(BU C) E 1/;1(lJ) and we have the required 
result. Otherwise (8 U 1')"-""(8 'J R) ::; l'~(u) and the result follows as before. 

o 

Lemma 6.3 If s, s' E IF(I U O)~. then 

a, 1'(1, a,s) c;, 1,,(1, O,sl 

b. s~s'=:} lj.'dl,O,s')<;:I/'J(I,U,s) 

Proof: 

a. Trivial by definition of 1/J/. 

b. If $' = s then the result is trivial, so suppose i > s, clearly s' i: 0 so we 
can choo:'ie s'/ and X such that s' = s""'(X). 

By the definit ion of J/-'/ we have r E ,,pI (I, 0, s') =:} :3 roE 'IjJ(I, 0, s') • fO $ 7' 

Now 

", E ';'(1, O,s"~(X)1 

:::;} {by the definition of~' } 
3 u, E IF( OJ"' (", U u, = )'(s"~(X)) 

V 3 Y c;, X no, r, u",? )'(s")~()(X) - Y)) 
=> {as )'(8) S; )'(s") } 

3 u, E IF( 0)' , r, U ", > )'(,) 
=> {taking appropriate subsequences of 7'0 a.nd Uo } 

3", E IF( OJ' ; ", E F(! U 0)' • r, U u, > )'(s) 1\ ", < ", 
=> {by the definition of ',p } 

3 r, E >/>(1, a,s), r, < ", 
Tbus, as rJ < ro ~ r we have that 7' E ~'d/, D,s) 

Theorem 6.4 ~ is a monotonic function from (RM,~) 1-0 (SM, !;;;;). That is, 

"p. Q E RM' P';; Q => ~(PI l;; ~(Q) 
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Proof: Suppose (l,a,T(F)) and (I,a,T(Q)) :epresent I' and Q :esectively. 
Processes ill 8M are only ordered if they have the same alphabets. For P and 
Q to be ordered in the information ordering they must have the same input and 
output alphabets, thus 4:t(P) and 4:t( Q) have the same alphabets. It remains to 
ve"ify thal, if the t:aces sets of I' and Q satisfy T(Q) 1 I(F) = 7'(1') then 
1>(1, a, 7'(Q)j <; W,a, T(F)). 

,E r(Q)~ {since T(Q) 1r(F) ~ T(P) } 

:ls' E T(P). s 2: 5' 

=? {by Lemma 6.., } 

3,' E r(p). ",(1. a,,) <; <1,,(1, 0,,<') 
:::;. {by ddinition of ¢ } 

'/',(1,0,,<) <; ~(I, 0, T(F)) 

S E T(Q),; {since T(Q) 1I(F) = r(l') } 
,~E np) V .38' E r{p) • .5 2. s' 

~ {IJ)' Lemma 6.3 } 
s E T(P) V 3$' E 1'(1'). ,"(I. O.s) <; v'dl, 0,,<') 

::::} {hy clelinition o[ rP } 
'M!, O,s) <; ¢(I, 0, 'liP)) 

Hence, rfcalling the definition of 1;, We have ¢(l, 0, 1'( QJ) ~ ¢(I, 0, T(P)) and 
the result follows. 0 

Theorem 6.5 l' is continuous. That I~~, for D a ";;-directed set. 

<I>(U,O) = U{<I>(P) I I' E OJ 

Proof: Suppose (L O. 1'p) reprCSf'lIts process P. Since the a.lphabets remain 
unchanged throughout this proof, we shall abnse notation slightly, writing 'I/;{s) for 
V'(l,0,5).
 

By monotonici!)' of <1>, ¢(U<O) <; n{1>(F) I I' E OJ.
 

It remaiJls to show that n{ ¢(P) IP E DJ r;; tP(U~ D). Vie do this by coutradiction.
 

Recall
 

n{~(F) I P E OJ ~ n ( u v'(s) U U ¢'d')) 
PED "ETp 'ETr 

and ~(U,D)= U v,(,ju U <1,,(5) 
.E 1'u.,:;;D JE l'u,D 

Suppose 5 E n{¢(P) I I' E OJ and s i ¢(U~O). 
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From the former we deduce that 

If P ED. (3 s' E Tp • s E ';'(s'» V 13,. E Tp • s E 1/>'(s') 

while from s rf- ¢(U.:!;D) we deduce that 

IfP E D. ~ (3,' E Tp os E "(s'»). 

Combining th('sp we have 

If P ED. (3 s' E Tf • s E ';·,(s'») 

Now consider the s('t 13:2: {Sl 13P ED. s' E Tp A s E Vl/(Sl)} 

By construction B is finite and nOIl-pmpty and VP ED. 3 rEB. r E I p 

We shaH show by contradiction that 381 E B • s' E TU(D 

Suppose 110t, then by Lemma 5.8 Vs' E 13 • :I P ED. -, (3 So E Tp • So S; s').
 

For rED choose Pr such that r E TPT and P; such that -, (3 ro E Tp~ • ro ~ r)
 

By the directed set property, choose QED such that VrEB. Pr ::; Q A P; ::; Q
 

TQ1T f ,. = 1'p, '* rE I'Q 
I'Q 1 T p; = 1'p; '* ,.~ TQ 

Thus -, (3 rEB. r E l'Q) contrary to our construction of B. So 

3s' E B. s' E TU~D~ { by definition of 8 ) 
3s'. s E 'lj.!j{/) A 8' E Tu,D 
{ hy definition of ¢ and U~D'* s E ¢(U,D) 

Heuce re:mlt by contradiction. o 

Theorem 6.6 Given input and output alphabets I and 0, the. re.striction of ~ to 
RM1,o 1S injective. That is 

OIf P, Q E RM 1
• • ~IP) = ~(Q) '* P = Q. 

Proof: Suppose thal- (I, 0, TI.J) and (I, 0, Tp) represent processes P and Q 
respectively. As in earlier proofs We shall abuse notation since the alphabets do 
Ilot vary throughout the proof; we write Tf"( s) for If.'( I 10,8) and 'Y for 'Yo. We must 
show that. whellever the trace sets of l1>(P) and ~(Q) agree, so to do the trace sets 
of P and Q. 

¢(P) ~ ¢(Q) '* I'Q = Tp 

Suppose not, so ¢(P) = c,b(Q) a.nd TI' -# TQ • Without loss of generality, we can 
choose s E Tp such that s rJ Tq. 
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S E Tp 

::} {by definition of ¢ 
,'(s) E ¢(P) 

::} {by assumption } 
,'(5) E¢(Q) 

=> {by definition of ¢ } 
(35' E TQ ,,'(,,) E "(5')) V (3s' E TQ ,,'(S) E ,p,(S') - ~'(S')) 

==} {by definition of V' a,Hd noting ,*(s) is saturated w.r.t. ontput } 

(3s' E TQ ,,'(s) = ,'(5')) V (3s' E TQ ' ,'Is) E ~'l("') -,,(5')) 
::} {since 'Y is inj~ct.ive and S ~ TQ } 

3 s' E rQ ' ,'( s) E 4',(s') - ;1'(',') 
::} {by definition of V'/ (/) -~)C;,/) 

3 s' E TQ • ,*(s) > i'~ (.~I) 
::} {, is iujpcti~'f' Oll 1F(l U 0) } 

3 s' ETQ .:i > S' 

Now ,'(,ru'J u i) E ¢( Q) since s' E TQ. 
Thus ,.(~I)"""'(b U I) E 1J(P) by assumption. This trace is saturated with respect 
to output with all jnf~(\Sible end so ,* (5') ....... (0 u i) E 4'1 (so) -1/'( so) where Sf) E Tp. 
Thus ,*(/)? 1'*(80)' giving s' 2' So 

So So E Tp and s E Tp with .' > So contrary to t.he ddlnit.ion of ~Tp. 

6,2 Relating the Languages SRPT and SCSP 

We have emhedd~d the recepti\'c model RM into SM iu a manner which, to a 
certain f.xtent, relates processes in lUi to tbose which can be seen to represent 
t.he same system in ,';,'t\[. In this section \"'e dcfinf' a function <3 : SRPT _ 50SP 
over the synttlx of SRPT which maps terms of SRPT to terms of SCSP. Likc the 
function 11>. <3 is chosen so that the process expression P E 8RPT and its image 
8(P) E 80SP can be rega.rded as describing the same system in the two different 
languages. 
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Definition 6.2 \\le define the function 8 : SRPT -+ sesp over the syntax of 
SRPT as follows: 

El(l-I.O) l.-/uo
 

8(x) r
 

El(pn Q) (ElP)n(ElQ)
 
El(['B? X ~ P,])	 [Y c: (13 U /) ~ ((ElP y _ B ) if B c: Yelse l-[uo)1 

where I and 0 are inpnt and ontput alphabets 
of [!BeX ~ Px] 

El(P II Q) (ElP) II (ElQ)
 
El(P \ ..1) (ElP) \ A
 
El(P[S]) (ElP)[S]
 

El(~., .. I. 0 • P) p"lUO.(ElP)
 

If P hil.s jnpnt alpludwt 1 and Olltput alphabet. 0 t.hen 8P has aJphabet I U O. 0 

6.3 Deducing results of SRPT from SCSP 

We shall dt:'monst,rate that th<> function 8 is closely related to l}) in the sense that, 
if we define 11 to be the projection of BINDn onto BIND induced by $ then the 
follmyjng holds for all processes P E SRPT and all variable bindings a E HINDn . 

MIElP~,}a = "'MnlPk 

This relationship allows us to deduce t.he continuity of the operators of SRPT. It 
also f'nables us to deduce the sounclness and completeness of the proof system for 
SRPT from corresponding results in SCSP. 

Definition 6.3 We define 'Il : BINDn -+ BIND to be the unique function induced 
by 4l ,.... hich maps HINDR into BIND. J<ormaIly: 

lia E BINDR ;, EVa" (,}aJ!.'i '" "'(alx!) 

Informally the following commutes for aJI a E BINDu: 

'" 
o 

Lemma 6.7 For all processes P E SRPJC and all val'iable bindings a E BINDn 

MIElPlrya ~ "'A"hIPla 
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Proof: By structural indnction over the syntax of SRPTo 

atomic terms 

a) M!El-L/,o ~'w	 ~ M[ -L/uo j,w { definition of e } 
= (I U 0, ST/uo ) { definition of M } 
= (IU O,¢(I,O,{O}» { definition of ¢ } 
~ (I U O,¢(.I,.{.[ -L"o la)) { definition of MR. } 
=<I>(Mn[-Ll. o ~a) { definition of <I> ) 

h) MIG"I,/a	 = MI,j,w { definition of e }
 
= ('w)['1 { definitioll of M }
 
= <I>(a["I) { definition of 11 }
 

= <I>(M,,['k) { definition of M R
 

operators That the alphabet!'> are the same is a trivial observation. Our task is 
to verify lhat tlw traces sets of the expressions on the left and right sides of the 
equation fOITf'!'>pond. That is 

TlElPl,w = ¢(M,,[Pla) 

We assulIle t.hat al] ~rgl1lllent.s of an operator satisfy the above equation and deduce 
that the application of the operat.or t.u these argnments does also_ The proof for 
non-deterministic choice is presented as Theorem AA in Appendix A.3. The proofs 
are in gelleral long and llot particularly enligbtening, involving examillation of the 
terms on bottl side:::; of tlH' equatiou. 0 

Lemma 6.8 If .\ y • Mn[Pla[yj,,] is monotonic in (RAJ, ';;), 
Va E BINDR , M[0P!,W = <I>(Mn[P]a) 

fwd V(J E BIND. ,\ y • M [0P]p[yjx] i.~ continuous in (SA'I,~) 

tilton 

a) Ay. ,\.1g[P]a[yj.rJ is continuOlLs ill (RM,~). 

b) M[El(p, :/,0· P)I,/a = <I>(M.[(p, :I,O'P)la), 

Proof: a)	 Snppose D is directed in (RM, E;). we must show that 

u~ .\1" [Pla[qjx] = M,,[Pla[U~Dj'J 
,ED 

as Ay •.\.1RIP~a[yj.rl i~ monotone U:;:; :\A'R[P~a[qj.rl is well defined. 
,ED 
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Now 

ol>(U< MnIPI<7[q/~]) 
qED 

= U,ED ol>(,Vl7<IP~<7[ qj.,]) { as ¢' is continuous }
 

=U'ED(MIEJPi~(<7[qj.,])) { by hypothesis }
 

= U'ED(M[EJPj('W)[(ol>q)/x]) { by definition of 1/ }
 

= M[8PI('I")[(U,ED ol>q)/,I) { as Ay. M[8Plp[v/xj is continuous 

= M[8PH~<7)[(ol>(U, q))/X]) { as ¢' is continuous }
,ED
 

= M[8PH'I(<7[(U, q)/X])) { by definition of Tf
 
,ED
 

= ol>(MIP!o-[IU, q)/X]) { by hypothesis }
 
qED 

The r('sult follow~ as ¢' is injective WhPll restricted to processes with the same 
alphabets. 

b) We set h" A y. M R IPI<7[yj.,j 

H"'.\ y. M[8PI('/<7)[y/x] 

It can be shown that 'f q E RM· ol>h(q) = H(ol>q) 

Now 

M[8(1' x , J, o. P)!,W 
=MIl' x, J u O· (8PH./<7 { by definition of 8 } 
~ fixIuo'\ y. M[8PH~<7)[vj.,] { definition of recursion } 

= U::'=o H" IM[ 1-,uo I) { by definition and continuity of H 
= U~o H"(M[8(1-,,0)1) { by definition of 8 } 
= U::'=o H"(ol>(MRI1-r,o m { by Lemma 6.7 J 
= U::'=o ol>(h"(Mn[ 1-1.0 I)) { by above observation 

= ol>(U::'=o h"(M.[ 1-r,o I)) { as ((> is continuous } 

= ol>(fixl.o Ay. M R [PJ<7[Y/x]) { by definition and continuity of h 
= ol>(,Vl.[p , r, O· PI<7) { by definition of recursion } 

o 

6.3.1 Continuity 

Now we have established a sufficiently strong link between SRPT and SCSP and 
the corresponding models to deduce the continuity result required in Section 5.4. 

Theorem 6.9 For all P E SRPT, ), y. i\..1R[P~u[y/:rl is continuous, 

Proof: After Lemma 5.12 it is sufficient to consider only P E SRPT o. If 
P E SRPTo then SP E SCSp o. So by combining the results of Theorem 5.11, 
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Lemma 3.5 and Lemma 6.7 with Lemma 6.8(a) we have the required result. 0 

Theorem 6.10 For all P E SRPT, 0' E BIND. 

MlePj~O' = <l>(MR[PIO') 

Proof: This follows by st.ructural induction over the syntax of SRPT, all but the 
case of recursion art' co...ned in Lemma 6.7. The final case follows from Theorem 6.9 
and Lemma 6.8(h). 0 

6.3.2 A proof system for SRPT 

As for SCSP we int.roduce a proof system fur the sublanguage SRPT 1 0f SRPT 
cousisting of the 1l0n-recursiVf' closed terms of SRPT, we then ext.end this to allow 
recUf3iv(' terms. The logical langua.ge consists of assertions of the form P ~R Q 
a_ud P =fl Q. We give a set of axioms and inference rules for proving assertions, 
alld show that the system is both suund amI complete by relating it t.o the proof 
system for SCSP. 

The sublanguage SRPT J 

The syntax of SRPTJ-js given by: 

P ::=.L/ol P n P II'B?X ~ P, I IP II PIP \ A I PIS] 

Formulae in the logicallangllage take the form P ~R Q or P =R Q, where these 
relations a,re defined as follows. 

Definition 6.4 For process expressions P~ Q E SRPT we say that P is less de­
t.erministic that Q, written P ~ll Q, if for every pos~ible variable binding the 
semantics of P 11 Q cannol be distinguished from the semantics of Pin RM. For­
mally, 

P [;;, Q '" '10' E BIll/D•• MR[PIO' [;;R MR[QJu. 

recalling thai. MR/PJu [;;R M,,[Q~O' ... MR[P n QI = M,,[Pj 
We say that P aud Q are equivalent, written P =R Q, if for every possible 

variable binding P and Q have the same semantics in RM. 

P =1' Q" '10' E BIND•• M"iPjO' = M"[Qj,,. 

o 
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In situations where there can be no confnsion as to the language being referred 
to we shall often drop the R suffix from the above relations and simply write P ~ Q 
and P"" Q. 

Notice that the ordering used in the language is the non-determinism order­
ing. This ordering is more appropriatf' to the problem of deriving implementations 
from spet:ifications thaJl the information ordering, In many circumstances we re­
quire all implelnentation to be completely deterministic, snch processes are the 
maximal rrocesscs with respect to the non-determinism ordering. On the other 
hand, specifications often exhibit all element of Horr-determinism. Byencorpora.t­
ing the non-detf'rrllinism ordering in our lallguage we (aD refirre a non-deterministic 
specifLcatioIl Lo a detcrmirristic implemellt<l.t.iorr within our proof system. 

Had we used th" informatioLl ordering we would only be abie to fInd an imple­
mentation to a s})l'cification which diverged le.o.;s; the informa.tion ordering does not 
relate non-divergent processes. 

The axiOl1lS of tIlE' sysknl cIT" gin'Ll ill Appendix n.4. The axioms are very 
similar to the axiolJl!' for SCSpJ. flw noticeable difference heing the equations 
concerning tIlt" prefix consln\(:t. WI? \'vTit,t' I- rl P =R Q to assert that P ~fI. Q is 
provable in the axiom s)"stelll for SRPT ' . 

Notes 

1.	 Notice that as for thf' proof systP'l1l for SCSpl the following re~mlts can be 
derived from the axiom systCl1l. 

0-5 f- P ""R P 0-6 f­ ~C;;R P 

0-7 
P n Q ""R P 

P C;;R Q 
0-8 

P C;;R Q 

P n Q=R P 

These result.s dearly uemonstrate the link between the ordering [;;;R and the 
non-deterministic choice operator. 

2.	 The strong link between this axiom system and that of SCSP 1 is demonstrated 
by noting that eacb of the axioms A-I to A-~14 preserves receptiveness. Tha.t 
is, if 8P E SCSPf and by one of the axioms A-I to A-14 we eall deduce: 

f-	 0P"" Q' 

then CJ' is the image under 8 of some Q E SRPT 1 
• Moreover, P =R Q is 

deducible in t.he proof system for SRPT J • In many cases this is clear by the 
definition of 8. By demonstrating this link between A-5 and a-5 it becomes 
appa.rent that the axioms concerning the prefix construct are closely related. 
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Suppose C ~ 8 l then 

El([IB'?X ~ Px ]n [ICn ~ Qj']) 
{ by definition of 0 } 

IX <:; B u I ~ (ElPX - B if B <:; X else ~IUO)]
 

nil <:; Cui ~ (0Qy-c if C C;; Y else ~IUO)J
 

( by A-5 )

IX <:;BU I ~ pn
 

n[YC;;CU/~(0QY_cifCC;; Yel,e ~IuO)] 

whew for 8' ~ B u J: 

p' _ {(8PBI-B if B ~ 8' else ~Juo) if B' 11: CU [ 
8' - ((ElPw _8 n ElQ8'_c) if B u C C;; B' else ~IUO) if B' C;; CU [ 

Comirlpr t-hr case when (. = Band C c B separately. 

If C c B thm B' ~ C u [ => 8 r£:. 8 ' hence 

P;, = (f"lPS'_B if B ~ B' else l.]uo) 

If C ~ B then 

Pg, = (0(P8'_8 n Q8'-C) if B C;; B' else ~IUO) 

So if C c B then A-5 reducps to a trivial e4uality for receptive processes. If 
C = B tlJen 

f- 0([!B?X ~ px]n [!en ~ QylJ
 
= El([!B?X ~ Px n Qxl n [iC?Y ~ Qy])
 

but [iB?X ~ Pd n [!C? Y ~ Qy] O'R [!B?X ~ Px n Qx] n [!C? Y ~ Qy] 
is prova.ble flS follows: 

[!B'X ~ Pxl n [!B" Y ~ Qy] 
(.-3) O'R [!B?X~ px]n([!B?Y ~ Q]n[!B?Y ~ QylJ 
{ a-2 } O'R ([!B? X ~ Px) n [!B? Y ~ QIJ n [!B? Y ~ Qy] 
{.-5} O'R [!B'X ~ Px n Qx] n [IB?Y ~ Qy] 
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Soundness 

If every a.ssertion, provable in the proof system is true, then the system is sound. 
Wf' shall deducf' th{' soundness of the proof system for SRPT 1 by considering the 
image of the ruleH under the map 8. If P ~R Q and P::::=:R Q are assertions in the 
logical langnage for SHPT' then we take their images under 8 to be 8P I; 8 Q 
and SP =.:: 8Q r~speetively. Wf' notf' that the images are assertions in the logical 
language for SCSpl. 

By the nature of 8. til{' image of each axiom of the proof system of SRPT' under 
8 is a provable assertion of SCSP 1 

. It follows that: 

Lemma 6.11 For aJ! P, Q E SHPT' 

(eR P C;:R Q) => Ie 0P c;: 0(21 

• 
From this rf'SU It. il1ld t.he soundness of the proof system for SCSP I we deduce: 

Theorem 6.12 (Soundness) FOI' flf{ P. Q E SHPT' 

(en P C;:n QJ => (MR~PI C;:n M",Q~) 

Proof: 

eR P C;:R Q '* e 0P c;: 0Q { by Lemma 6.11 J 
'* M~0P~ c;: M[0QI { soundness of SCSP1 

}

'* MI(0P) n (0Q)1 ~ M~0PI { equivalent formulation } 
=> M~0(P n Q)l ~ MI0PI { definition of 0 J 
=> <l>(MdP n Q!) ~ <l>(.MdPI) { by Tbeorem 6.7 J 
=> Mn~P n Q! ~ MdPI { <II injective } 

o 

Completeness 

In order to esta.blish completeness of the system we must show that every true 
assertion is provable. \Ve mnst show that whenever M1l[P~ ~ M'RfQ] then the 
formula P ~R Q is provable. We shall define a class of normal forms and show that 
every term is provably equivalent to a unique normal form. Finally, by using the 
ma.p e we can relate these normal forms to those of SCSP. Through this we deduce 
that the system consisting of the class of normal form processes is complete. 
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Normal form 

The nOlhlal forms of SRPT'have a similar structure to those of SCSpJ . .1.[,0 is 
a normal form, all other uormal forms a.re the non-deterministic choice between a 
finite number of output prefixed processc~. The output sets in the prefix constructs 
are nnique, cnsuring Bormal forms are unique. 

Defiuition 6.5 \Ve SnJ' a process. P ~ SCSpl, with alphabets 1 and ° is in 
norma,} form if it is .1./,0 01' takes the form: 

l' =nI!B?X - p •..,] 
8Et; 

\vhere 

• B i. a non-empty tinite subset of IF' 0 . 

• PBX is in normal form for all 13 E B and X r; 1. 

o 
The proof thnt every process in SRPT 1 is prova,bly equivalent to a process in 

normal from follows the form of the equiva.lent proof in SCSpJ 1 so is not presented 
here. 

Lemma 6.13 ELlery pl'octss in SRPTI is plY>vably eq'uivalent to a process in non-nal 
/onn. • 

Lemma 6.14 1/ P E SRPT1 is iTt normal/onn wilh alphabets 1 and 0, then 
8P E 8CSPJ i ... in. normal/orm. 

Proof: By structural induction on P. 

base caSt!: P =.1./,0_ Theil HP =.1./uO i.s in normal form. 

inductive step: 

l' = npmx - PH.xl· 
HW 

Then by d~finitiou of 8: 

81' ~ nIX<:;B U I - p~.xl 
BEG 

where PB ..~ = (8PlJ ,X-B) if Be; ,r else .1.[UO 
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0 

By induction PE,x is in uormal form.
 

It remains to show B U I ~ B' U I ~ V X ~ B U I • PE"x ~ PB,x
 

Now B U I ~ H' U I ~ B ~
 B I
 

If B = B' then a.s the choice sets are unique in the definition of P, we b.ave
 
PEI,x = PE.X and We are done.
 

If B C BI then X s;:;; B U I ~ B' C1. X so by defiuition PE"x =.lIuo and the result
 
~I~s. 

Lemma 6.15 If P. Q E SRPT1 a1'e in lw7''TTl.alfol'm wilh alphabets I and 0 then 

I- ep~eQ~I-R P~R Q 

Proof: By structural induction over P. 

base case: P =--l../.o, t,he 1'('5ult follows by 0-6. 

inductive step: 

P ~	 n[!B? X ~ PB,x]
 
BEB
 

by the definition of 0: 

ep ~ n [1'<:;8' ~ P~"yJ 
B'EB' 

where PEI,r = (0(PB'no.l'nI) if B I = YUI else .llUO) and 8' = {BUll BE 8}, 
By Lemma 6.14 0 P and 0Q are in normal form in SCSPI. Moreover as the proof 
system for SCSPlis sound M[0P~ ~ M[0Q~. SO folJowing the argument of 
Lemma 3.16, eQ must take the form of a non-deterministic choice of set prefixed 
mnstructs. Hence Q must also take this form. 

Q ~	 n[! C1 X ~ Qc,x I 
CEe 

with: 

eQ~ n[Y<:;C~Q~"yJ 
e'E'e' 

where Q'c', y ~ (6( Qc'no,YnI) if C' ~ Yu I else .LIUO) and C' ~ {CUI ICE C), 
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following the argumen t of Lemma 3.16, C' ~ B' , hence C :; B. So by axiom 0-1 

I' c; nI'C?X ~ Pr,xl 
CEe 

it is sutficiellt to show tha.t r- (8Pc,x) ~ (8Qc.x) for all C E C, X ~ [then the 
result follows by induction and the monotol1lCity of operators. 

A, Mlep] c;: M~0Q! it follows that: 

'I Co C' : Y <c; (" • M[pc,. y! c;: M[Qc'.,1 
::::> { by definition of pi und Q' } 

'ICE C': Y <c; C'. C' = YU ["", M[0po'00,"n1! c;: M[6Qc'no,Yn1! 
~ { by defillit.ioll of C' } 

'I Co C; X <c; [. ,1.1 [0Pc ,x! c;: M[0Qc.x~ 

::::} {<IS the- proof system for SCSpiis complete 
'I C E C; X <c; [,f- 0Pc.x C; 0Qc.x 

giving tile required result o 

Theorem 6.16 (Completeness) Fm' P, Q E SRPTJ WI,I.h alphabet.s / and 0, 

MR{Pi C;:R Mn[Q! "'" (I- n I' C;:H Q) 

Proof: By Lemma 6.13 we can find pi. Q' E SRPT 1 in normal form with 
I- R P=RP'andI-R Q~RQ' 

As the proof system for SRPT 1 is sound 

Mn[p' n Q'! = MRjP n QI ~ ,vi,,[p! = }"h[?'j. 

So it is suflicipnt to prove MR.~P' rl Q'] = Mn.[PI]::::} I- R pI I;R Q' 

M"IP' nt.l'l = M,,[p'i 
"'" 'Mi,,[?, n Q'~ ~ ~M,,[P'! { as <II is a function ) 
"'" M[(0?') n (6Q')I = M[0p'! { by defn. of 8 and Theorem 6.10 
""'I- SP' c;: 6Q' { by Theorem .3.17 } 
::::}I- R pi (;;;;R Q' { hy Lemma 6.1.5 } 

o 

An extended proof system 

As for SCSP. we extend our proof system to can'r the full language of dosed terms 
in SRPT. This involves characterising each process by it.s set of finite syntactic 
approximations, t.hus f'nabling us to rea.."on about infinite processes. 
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Definition 6.6 The relation -<R is the smallest relation on closed terms of SRPT 
with alphabets I and 0 satisfyillg: 

1 -<R P 
P -<n P 

1'[(" .r .P)/x] -<R I'." l' 

P -<R Q -<rr. II => P -<'fl U
 
PI -<'R QI,P2 -<Ii Q2 => (I', n 1',) -<R (Q, n Q,)
 
'I X C; 1 • Px -<R Qr => [!1J?X ~ Pxl-<n [!B?X ~ Qd
 
P j -<RQI.Po!-<r.Q2 => (I', II 1',) -<R (Q, II Q,)
 

P -<'R Q => (P\A) -<R (Q\A) 
l' -<R Q => 1'[.1'] -<R Q[S] 

If P -<II Cd then we say tha.t P is a syntactic approximation of Q. <) 

[I. can be shown by stl'1lct.ural induction that the ordering given by -<R is weaker 
that. the information order'lIlg. and hence t.he non-determinism ordering. 

l' -<R Q => MdPI,;; .'vf,,[Q~ => M,,[pi C;R MdQI 

Given a dosed process P, we constmct the set of its finite synta.ctic approxima­
tions FliY,dP). \Vc say a process is finite exactly when it is a term in t.helanguage 
SRPT ' . Thus we have the following: 

Definition 6.7 FlNR(p)"" {Q E SRPT' [ Q -<n p} o 

FINR(P) forms a directed set under -<R and consequently the semantic image 
forms a. directed set IlJlder l;;n and ~. following the argument used to deduce 
Theorem 3,19 we obtain the result below. 

Lemma 6.17 M,,[pi ~ U, M,,[Q! • 
QEF'lNR(P) 

Now we eRn show that UQeFfNR(F) /\.1R.[Q~ (the least upper bound under the 
!;R ordering) coincides with U~ MR[Q~, 

QEFfNR(P) 

Lemma 6.18 1/ D k" a set 0/ closed tenn.s in the language SRPT and {Mn[P~ I 
P E D} is ~·di7'eCffrlT then 

U M" [PI ~ U, M,,[pj 
FeD PED 
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Proof: Using the Jinks established between RM and SM we can establish that 

M,,[Pj ,;; M"IQI ~ M"IPI c;R M,,[QI ~ <i>M"IPI c; <i>M"IQI· 
\-Vhile from Theorem 6.5 

<i>(U~ M,,[PIJ = U (<I>M"IP!J 
PED }JED 

it follows that 

<I>(U~ M,,[PIJ = <1>( U M"IPll 
fED PED 

Tlw result follows as ~, restl'ict.('d to pl'ore1ises with the same alphabets, is injective. 
o 

Combining these r('sldts we haw: 

Theorem 6.19 MdPH ~ UQUINRIPJ M,,[QI· • 
We extend t.he proof system for SnPT J with the following; 

a-l1 ~ PI(p I' P)/.r) =R I' X • P 

R-l 
'<t Q E F'INR(P) • Q c;R R 

P c;R Il 

These rules a.re similar to those prf'senled ill Section 3.4.2. They allow us to extend 
the proof syst.em t.o all closed ten liS of SllPT 

Soundness and completeness 

The least fixed point construction of the semantics of recursive Constructs guar­
antees the- ~ollildness of axiom a-17. While the inference rule is sound by Theo­
rem 6.l9. 

Theorem 6.20 (Soundness) For all closed terms P and Q in SRPT 

(~R Pc;R Q) ~ M,,[PI c;R .I-1,,[QI 

•
 
Completeness is establislted hy considering the characterisation of a process by 

its syntactic approximation in the same way as presented in Theorem 3.21. 

Theorem &.21 (Completeness) For all closed terms P and Q in SRPT 

M,,/PI c;R M,,[QI ~ (~R P c;R Q). 

•
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6.4 Conclusion 

By considering the way in which one might model receptive systems in the language 
SCSP. we ha.ve estahlished an embedding of the language SRPT and its associated 
model into tlte language and model of SCSP. The embedding between models RM 
and SM was proved to be continuous; this made it possible to establish many of 
the ma,thematical results concerning SRPT \'ia the equivalent results for SCSP 
and the embedding, Reslllts assumed in Chapter 5 have been proved here; the 
semantic iUl3,ges of o~rators in the language were shown to be continuous. Also. 
the souudness and ,ompJt>telless ur the proof system for SRPT was deduced from 
similar results in SCSI'. Tbe embedding and the results drawn from it rlemonstrate 
how SR PT can he vie....·ed as a rec~ptjvc sublanguage of SCSP. 
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Chapter 7 

Timewise Abstraction 

\Ve are olready familiar \\it,h abstra.ction as a powerful developmeut tool. Duriug 
development it is oftell llecessary to be aWare of COl1UIlUlIit:ation between com­

ponents of the system which nltimately should be hidden from the enviwument. 
Abstraction allows liS to hide from the ellVirOlltlient t.hose details of the specifica­
tion which can !w vipwed as specific Oldy to the internal working of the system. 
The langnages presented in this thesis allow communjcation abstraction via the 
hiding 0pE'rator. 

Similarly, when modelling a system by a discrete time algebra., it may be appro­
priate to view the internal working of components of a system in a different time 
frame to that. appropriate to the ultim<l.te interaction between the whole system 
and the eovironment. Specifyiog components of the system in the context of a 
~hort dock cycle we could ascertain the details of the interual behaviour. Then 
the specifICation could be tra.n!<lat.ed to a time frame with a longer clock cycle a,p­
propriate Co the system as a whole. The ability to slow down the speed at whicb 
the process is viewed would aHow us to reason about systems in the time frame 
as well a.s the communication leyel most appropriate to the final application. The 
procedure of translating a process in a discrete time algebra to a slower time frame 
will be reftrred to as timewisf' aosl.mclion. 

We recall that, when considering communication a,bstraction, we had to make 
assumptions concerning the circumstances under which hidden pvents should be 
performed internally; we used a maximal progress ~sumption. In the same way, 
when considering timewise abstraction we must take care to avoid ambiguity by 
making dea,r the context in which W L' can translate the time frame. Timewise 
abstraction can be usefully incorporated in the receptive language SRPT without 
ambiguity. 

Suppose we have a receptive system modelled in SRPT in a given time (rame, 
then by making certain assumptions we can derive a model fOT the same system 
in a new time frame. The new time frame is chosen such that a unit of time in 
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Fignre 1.1: A collditioua[ circuit. 

out 

the new triune is art integer H1ultiplfcof <~ unit of time in the original frame. We 
assnme that input only dl3Hg{'S at tbe tit'k of the clock in the new frame, so there 
is less opportunity for inpllt to vary. In the new model, the value of output is 
only recorded on tIle tick of the lIew 1 ~lower clock. The new model provides less 
information about the sysLt'fTl's behaviour as it takes 'snapshots' of the system less 
freqnently. For systems in which sUell assumptions are appropriate we will provide 
algebraic methods to perform timewise abstraction, changing the time frame in 
which the system is \'iewed. 

The language SRPT gives us a way of modelling components with latched in­
puts. The input received by such a component at the start of the clock cycle is 
latched and held constant for tIw remainder of t.he clock cycle. In SRPT we are able 
to record the behaviour of the component by giving the input and output observed 
on the tick of the dock. We givC' a stroboscopic view of the system which, if timed 
to coincide with the syst.em clock, gives us a useful representation of components. 

Suppose we require a dock speed snch that the output is stable after one time 
unit. A syst,em is often composed of several subcomponents. Even if each of 
the subcomponents stabilises within one time unit, it is not necessariJ} the case 
that the whole system will stabilise within one time unit. The system as a whole 
should be latched a.t a speed which ensures that it is stable after a single dock cycle. 
Timewise abstraction allows us to investigate the effect of latching the whole system 
at a slower speed. 

Example: A conditional circuit 

A conditional circllit Gill be built from components A and B as shown in Fig­
ure 7.1. Suppos{' both components stabilise within time d. If we take a unit of time 
ill SRPT to bp length d then We can model components A and B as follows (using 
the convention~ introduced in Chapter 5 and the definition of OR from Section 5.2). 

A'" I'l}? X ~ A(X)] 
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where 

.1(.\")= A" if a E X 1\ c E X else (A, if" ~ X 1\ b E X else A) 

A"c: [!{.r}'X ~ .1(.1')]
 
h'" [1{y}'X ~ .1(.1')]
 

a.nd 

B '" OR[x/a.y/b.out/c] 

Now to wmiider tl,e Iwha'o'ioul' of the I'olnplete circllit we must consider the process 
(A II B)\ {.r,y}. It can be shown Ilsing the laws of SRPT that 

(A!I B) \ {.e, y} =' ('on 

where 

Con c: ['(}'X ~ (eoa' if(" E X 1\ c E X) V (b E X II a ~ X) else Con)] 
Con'"", [!(FX ~ (('oa~ if(o EX 1\, E X) V (b E X 1\ a ~ X) else Coo,)) 
Coa,"'" ['(out}'X ~ (Con' if(a E X 1\ c E X) V (b E X 1\ a ~ X) else rou)] 
Con~"", ['( oul)' X ~ (Cou; if (a E X 1\ c E X) V (b E X II a ~ X) else Con,)] 

\Ve h,rve been able to hide the internal communication but clearly the whole 
circuit will take two time units to st.abilise. It would be easier to reason about the 
circuit if it stahiIiseo in one time unit. We \vould like to look at the whole system 
in a time(rame where each time nnit has length 2d. In snch a. time frame we would 
expect the circuit to be modelled by the process: 

Cond'" [!{FX ~ rond(X)] 

where 

Cond(X)= ('ond' if(a EX 1\ c E X) V (a f/: X 1\ b E X) else Cond
 

COI,d'"", [!{ont}'X ~ ('ond(X)]
 

Our aim in this chapter is to provide a simple algebraic method to perform timewise 
abstraction and hence derive Pl'oC(~ss Cond from process Con. 

In this chapter we develop the thf>OT'y of timewise abstraction i we provide simple 
algebraic laws for its application ill SRPT and verify that it is consistent with the 
model. Wea}so show how timewise abstr<lctiou can be nsefully employed to reason 
about pipes. Through the examples it will become clear that timewise abstraction 
often reduQ's the number of states of a process, making the system easier to reason 
about. 
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7.1 Time-wise Abstraction in SRPT 

Rather than extend the syntax of SRPT, timewise abstraction will be defined in 
terms of a. map between two copies of the dosed terms of SRPT. We regard the 
two copies of the language as having different time frames, in that the unit of time 
has a different absolute length in tb~ two copies of the language. We could view 
earh copy of the language to be associated with a clock; observations are only made 
when this clock ticks. Timewise abstraction maps processes with a given associated 
clock to processes with an associated clock which ticks less frequently. The effect 
of tirnewise abstraction is to slow clown the frequency at which observations ate 
made of the system, under certain aS3umptiollS about th(> behaviour at the times 
observations are no longer made. 

Suppose P is a process which models a. system in a time frame with time t 
between ticks of the dock. If (' is a set of events in the input alphabet of P and n 
and 'Ill are na1.u raj numbers, with n non-zero, theu Slow(n. m, C, P) is a process 
which models the ::ly.~tem in a time frame with time ILt between ticks of the dock, 
such that: 

•	 The first dock tick in tI1(' new frame coincides with the (m + 1 )110 tick of the 
old clock. 

•	 Sub.~equent clock ticks are made at n.t time intervals; coinciding with the 
(m + l + k.n)lh ticks of the clock in the old frame, for It E N. 

•	 Until the first clock tick is made in the new frame, input to the system 
modelled by Slow(n,m, C.P) is assumed to be C. 

•	 The input i.'S assumed to be held fixed at the value seen at a tick ofthe dock 
in the new frame until the su bsequent clock tick occurs. 

Timewise a.bstraetiou preserves alphabets, so if P has input alphabet I and output 
alphabet 0, so too does process Slow(n, m, C,P). 

From Section 6.:3.2, closed process terms can be characterised by t.heir finite 
syntactic approximations and ea.ch finite dosed process is equivalent to a process 
in normal form. So we can define Slow( n, m, C, P), up to == equivalence, over the 
closed terms of SRPT uy the following axioms: 

a-18: Slow(n.m, C,~I.o) == ~l,O 

a-19, Slow(n, m, C', P n QJ '" Slow(n, m, C,Pj n Slow( n, m, C, Q) 

a-20 Slow(n, m, C,['B?X ~ PxlJ 
= { [!B?X ~ Slow(n,n -l,X,Pxl] ifm=O 
- Slow(n,m-l,C',Pcl if m > 0 
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We also have the foHowing law, which demonstrates that communication abstrac­
tion and tJmewise abstraction are independent of one another. 

1-11 S/ow(n, m, C, P \ A) "' (S/ow(n, m, C, P)) \ A 

Notes 

1.	 Jf Chaotic behaviour can occur at any time between two consecutive dock 
tirks in the new frame, then we assume it does OCCtil'. 

2.	 If m = 0 then the first clock tick in the new frame coincides with the first 
clock tick in the old frame and there is no need to record the value of input 
prior to th£' first dock tick in the IH'W frame, Thus, if I is the input alphabet 
of P thf'll 

VC,c' E IFI.Slo1V(n,IJ,C',P) = S/ow(n,O,C',P). 

3.	 If II = 1 then the- two time frames a.re idt:.>nf,ical and Slow( 1, m, C, P) behaves 
like process P with the input held fixed at t.he value C for the first m time 
units. It follows that 

Slow(l, 0, C,P) = P 

4.	 Ha.d we introduced Slow(n. 711, C,P) into the syntax of the liUlguage, then 
expressions like 

I' P • [i{}'? X ~ Slow(n,"" C, P)] 

would be va.lid. The exact meaning of such an expression is not dea.r however, 
bec311se timewise abstraction alters the time frame and the time frame is 
a.SSllllle-d to be fixed in the language. Considering timewise a,bstraction as a 
map between copies of the langu<lge allows 11S to realise the implications of 
timewise abstraction on the time frames. 

7.2 Examples 

7.2.1 A conditional circuit 

Let us return to the example presented in the introduction to this chapter. We 
are interested ill ronsidering the process Con in a time frame where the clock ticks 
half as frequenlly and the initia.l clock tick in the new frame coincides with the 

124 



initia.l clock tick ill the original time frame. So we are now interested in evaluating 
51010(2,0, {}, Con). 

Recall 

Con '" [!{I" X ~ (Con' if B(X) else Con)) 
Con' '" [!{}?X ~ (Con~ if B(X) else Con,)) 
Con, '" [1{olll)'X ~ (Con' if il(X) else Con)) 
Con.~ == [!{ 0 Itt}?X --+ (Con l 

t if B(X) else C01lt)J 

where B(X) is the boolean giYf'Jl by: 

B(X) '" (n E X to 'E X) V (b E X to a ¢ X) 

Now; 
Slow(2,O,{}, (.'on) 

-= {exp<'l.1ldillg d('fillition of COl/. } 

510",(2.0, {}, I!{}?X ~ ((.'on' if B(X) else Con)1l 
'= {by a-~O } 

['{}'! X ~ (S 1"".(2.1, X, ('on') if 1J(X) else 51010(2,1, X, Con))] 
= {expanding definition of Con and ('on' } 

['{}'X ~ (Slow(2, 1, X, I!{)" Y ~ (Con~ if B( Y) else Con,)]) 
if B(X) else 

S 1"",(2 ,1 ..\, I'{}? j' ~ (Con' if B( j') else Con)]))] 
_ {by .-20 } 

[!{)? X ~ (S lou'(?, 0. X, Con',) if B(X) else Slow( 2,0, X, Con))1 
= {recalling note 2 } 

I'{}'X ~ (S 10".(2. 0, {}, Con~) if B(X) else Slow( 2,0. {), Con))) 
similarly we can show that 

S low( 2, 0, {}, Con~ ) = 
I!{ oul)'?X ~ (Slow( 2,0, {), (.'0":) if B(X) else 510",(2,0, {}, Con))] 

so by llniquelles~ of solutions to guarded [('cursive equations: 

Slnw(2, 0, {}, Con) '= ('ond 

where C0111i is as given in tb(' introduction to this chapter (page 122). 

7.2.2 A grey-code counter 

Our aim in this example is to verify the design of a 2-bit grey-code counter, 
such a connter should output, in sequence, the bit patterns 

00 --+ OJ --+ 11 --+ JO --+ 00 --+ ... 
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F;gu,e 7.2, A grey-code counte' 

A change in output is triggered by the .'1ystem clock. Notice that each increment of 
the counler only involves one bit changing: such codes eliminate the risk of glitches 
in the counter, which could be encountered when using a. simple binary counter, 
The component we shall investigate if> a, sequential circuit consisting of a combi­
na,torial part and two clocked 'I-type flip-flops configured as shown in Figure 7.2. 
This circuit f'xhibit.s feedback Unlike previous circuits we have considered output 
depends on tilt' previous state of the system rather than the values of la-"t input. 
The only input to this system is the dock. The output of tIle system is determined 
by two wires bo aud bJ which f"llcode the grey code in their voltage levels. 

VVe shaH in vefltigate the behaviour of this circuit. takiug advan tage of timewise 
abstra.ction to model ('ach component ill thf' mOflt avpropriate time frame. 

The cornhillatorial circuit 

The combinatorial circuit compri~es of two gates, an EXOR gate and a l'fOT gatc. 
We model both these gates in a time frame which ensures that the output is stable 
ooe time unit after the input is made <'I,\'ailable. The definition of it NOT gate with 
input wire a <'Iud output wirf' b, is given by: 

,NOT~ {a} oNOT ~ (h}
 
NOT" [1{b}?X ~ (NOT if X ~ {} el5e NOr)]
 
NOT'" ['{}?X ~ (NOT if X ~ {} el5e NOT')]
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While we recall the definition of an EXOR gate from Section 5.2.1 

,EXOR = {a, h) oEXOR = {cJ 
EXOR :c I!{}? X - (EXOR' if IX I ~ 1 else EXOR)] 
EXOR':c [!{ c}? X ~ (EXOR' if 1.1'1 ~ 1 else EXOR)] 

The combinatorial circuit is then given by: 

EXOR[b,/a, ba/b,l,fc] II N07'[I,/a,ta/b]. 

By application~ of thf' axioms of SRPT, \Ve call eliminate parallel composition from 
the abovp <'Inri prove tbe following idf'nt.ity: 

EX08[b,/a, ba/b. I, /clI11\'07'[I,/a, la/b] co EN. 

where EN :c ['{td?X ~ (EN' iflX] = 1 else EN)] 
EN' :c [!{ta,I,)'!X ~ (J-.'N; if/XI ~ I else EN,)] 
EN; :c [!{t,}'.\' ~ (EN; ifiXI = I else EN,)] 
EIV1 :c [!{}?X _ (EN' iflXI = 1 else EN)] 

We notin' that this rircuit take:" longer that one time unit to stabilise. The input. 
must be held const.ant for suliicicnt time for the race condition on the wires t1 and 
to, (cau:"ed hy the NOT gate), to pass before output is used. We are interested in 
the combiJl~t.oriil.l circuit being modelled in a time frame which ensures output is 
stable after one time unit. If input is held fixed for two units the output after this 
time is stablf'. Vv'e consider the circllit in a tirne frame which is a fador of2 slower. 

COMB :cSlow(2,O,{},EN) 

defining C'OMB' == Sloll'(Z,O,{},EN;) we cau use the axioms for timewise ab­
straction to obtain the following expansion of COAtB. 

COMB co ['{la}?X - (COMB' iflXI ~ 1 else COMB)] 
COMB' co ['{I,}?X ~ (COMB' iflXI = 1 else COMB)] 

A docked T-type flip-flop 

A rising edgf' trigg~rpd T-type flip-Hop has one output a and two inputs t and ck. 
The value of the output remains fixed unless the input t is high on the rising edge 
of the clock ck. If the iuput t is high on the rising edge of the dock, then the 
output toggles, that is. changes from high to low or from low to high. 

We shall assume that the flip-flop is modelled in a time frame such that all 
changes in the system clock ck coincide with observations in the model. The value 
on the wire ck should be seen to represent the state of the clock after any change 
at the time of observation in the model. The value on the wire t should be seen to 
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represent the stable state of the wire at the time of ohservation. We also assume 
that output is stable within one tiIlle unit of any change of input. So assnming 
that thl' dock is initially [ow and the output initially low we obtain the following 
description of a rising edge triggered T-type flip-flop: 

,Tjf ~ {I,ck} oT17={o) TiJ = T17L 

where	 T17L = [ii]? X - (T17I, if ck ~ X else (T17f/ iff ~ X else TiJH ))] 
T17H = [ii)? X - (T17H if ck E X else Tffd] 
ljn = I!{ 0)' X - (T17f, if ck E X else T17n] 
Jft; = [1 (oJ ?X _ (TiJl if ck ~ X else (T17lJ if I E X else T17f, ))1 

(L and II I'q)j'(~s('nl the current. state of the clot:k.) 

The complete circuit 

We are HOW in i'l position t.o investigate the complete circuit, we assume that the 
flip-flops and combina.torial circuit arl' modelled in the same time frame, one in 
which eMl! of these unit." slabilifles Ivithill one time unit. So the complete circuit., 
modelled in this time frame, is given by: 

GREY =(COMIJ II T17[to/ I. bo/ a] II Tml,j I. bl / a]) \ {I o, I,) 

In order to e:>tablisb the behaviours of this process. we use the algebraic laws of 
SRPT t.u reduce the above expression to a form which Goes not involve parallel 
composition 01' hiding opera/.ors. 

GREY 
{by definition of GREY } 

(COMB II T17[lo/l,b%J !ll1T[tr/I,b,ja])\{lo,trJ 
{by 1-2 } 

(COMB II (TiJ[lcll,b%] II TlJIt,jl,bl/a])) \ {Io,ttl 

Now by a-IO and a-16 and the definition of TlJ 

TiJ[lo/U,/a] II TiJlII/I,bl/a) 
:[!{}U _ ((TffLilo/U,/aJ II T17LlldUI/a]) ifck ~ X else 

(( T17f,llo/l, bo/ aJ II Tff~111 /U,j a]) if {Io, trJ <;; X else 
((TiJl/ito/t,bo/a] II T17~[I,/I,bl/a])iftl E X else 
((TiJ~[to/l,bo/"] 117'iJH[t,jI,b l /a])iflo E X else 
(TiJH[lo/t.bo/a] II 7'/fI/[II/I,b,ja])))))J 
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So 

(COMB II TIJII,,/Uo/a]1I1:tJ[I,jt,b,ja]) \ {lo,I,} 
== {expanding COMB and from above } 

([!{lo)?Y ~ (COMB' ifl}~1 = 1 else COMB)] 
II[!{}" X ~ (I I:tTdlo/ I, bo/ a] II Tffdl,jt.b, / a]) if ck ¢ X else 

((Tff~[lo/t.bo/a] II Tff~[t,jl, b,ja]) if (Io, t,) c; X else 
(( TffH[to/l. bola] II Tfff/lt,/I,b//a]) if I, E X else 
((Tff~[lo/l.bo/a] II TffH[I,jI,b,/a]) if to E X else 
(TffJl [1 0 /1. bo/ aJ II '1:tJH [I,j t, b,j a])))))] \ {I", I,)) 

c= {by a-10 J 
[1{lo}?X ~ ((COMB II (1[f,[lo/l,b o/alli Tffdl,/I,b,/aj)) 

if ek ¢ X else 
(COMB II (1:tJW,,/I,b,,/a] II TffH[I,jI,b,/aJ)))1 \ {II,I,] 

c= {by a~):j } 

[!{}'X ~ (I COMB II (Tffd1o/l, bo/ oj II 1:tJdl,j I, b, / oJ)) \ {I o, I,] 
if ck ¢ X else 

((:OMI! II (Tff~[lo/l,bo/alli TffH[I,/I,b,/aJ)) \ (lo,I,])] 

Dy continuing 1.0 ('liminate paralld composition a.nd hiding constructs we can 
demonstra.te that 

GlIEI' c= ({(L,O) 

whmG(H.O) ",[!{}?X~(G(H,O)ifekEXelseG(LO))] 

G(L,O) "' [!{j?X ~ (G(L, 0) if ck ¢ X else G(JI, 1 ))] 

G(H,l) ",[!{boFX~(G(H,1)ifckEXe1seG(L,1))] 

G(LI) "'1'{bo}?X ~ (G(L,J)ifek ¢ X else G(H,2))] 

G(H.2) "' [!{b",b,}?X ~ ((:(H,2) ifck E X else G(L,2))] 
G(L,2) "' [!{ b". b,]'X ~ (G(L, 2) if ek ¢ X else G{H, 3))] 

G(ll,3) "' [!{b,}? X ~ (G(H, 3) if ck E X else G(L,3))]
 
G(L,:l) "' [!(b,}?X ~ (G(L,3) ifek ¢ X else G(H,O))]
 

The numerica.l parameter of G indicates the curreut phase of the counter. 

Incorporating the clock 

By way of example, suppose we ha.ve au asymmetric system clock which has low 
time twice as long as its high time. This Call be described by the process GLf( or 
pictorially il.S in Figure 7.3. 

Wf' want to incorporate the clock ill to the system and abstract away from details 
of thf' dock whirb i'I.f(' considered internal to the system. To achieve this we consider 
the process (eLA" 1/ GREY). By hiding the event. ck we can make internal the 
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CLI, 00 I'{ ck)~[!{}~!,{} ~ eLK]]] 

"'.::l l n Il 
w·1 t,= 

Fi~ure 7.3: Two descriptions of an a."iymmetric clock 

behaviour of the c1of:k. As we are Hot interested in the mechanics of the clock 
it <llso makf's sense to t:omider the whole systf'nl in a time frame where a. unit 
of time coincides with ;-t complete cycle of t.he system clock. We choose to make 
observations coincide with the rising pdge of the clock cycle. So we evalLJate the 
following: 

SY5 oo Slow(.J,O,{},(GREY II CLl\') \ {rk)) 

Now 

GREY II CLI,'
 
I by definition of GREY, eLK ;-tnd a-1O
 

[!lck} ~ (G(H, 1)1I[!{)~[!{} ~ CLI,] I II
 
I by definition of G(H, 0) aud a,-10 }
 
[!lck}~[I{b"}~[!{b,,} ~ (C(Ll) II CLK)])]
 

Thus, nOling that SYS has an empty input alphabet, 

SIS 
{by definition of SYS }
 

Slow(.1, O,{], (CiREY Ii G'LK)\ {ck})
 
{ by H1 }
 

Slow(.1, 0, {}, (GREY II CLl'l) \ {ck)
 
{noting the (I,bove expansion and by a-20
 

[lick) ~ 

SI0",(,1, 2, {}, P{ b"}~[I{ b,} ~ (G(L, 1) II CLlI')IJ)] \ {ck} 
{ hy two applications of a-20 } 

[I{ck)·~ Slow(3,O,{],(G(L, 1) II CL1»)I\ {ck} 
{bya-13andl-ll }
 

[! {) ~ (S low(.1, 0, {}, (G( L, 1) II CLli) \ {ck} ))]
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continuing in this manner a.nd by the uniqueness of solutions to guarded recursive 
equations we can demonstrate that; 

SYS =' I'P, [!{}~[I(bol~[!{b"b,)~[!{b')~Pllll 

So our sy:-tem clearly behaves like a grey-code counter. 
By using timewis(: abstraction w(' have been ahle to present t.he process in a time 

frame in which its behaviour is easy to verify. The coarser time frame abstracts 
aW<l.y from all the dela.ys whi("h arisp wheIl data abstradion is performed. 

7.3 Relating Timewise Abstraction to the Model 

In this section wp shall esta.blish the sf'lIlantics of S low( 11, tit, C, P) in RM. Once 
we have defined the semant.ics of tilllewise abstraction we can verify that it is well 
defiued anu ensure that the <lxJoms present.ed in Section 7.1 are sound with respect 
to the model. Spfore WI" pr('sent tIl(' s<'IlHmti("s of Slow(n, 'In, C,P) we introduce 
some 1I0ia,llon. 

7.3.1 Notation 

We define two fundions Oll traces, both of which will be associated with the concept 
of slowing down the frequellcy of observation. 

Choose 

The first function, choo.~r;(n, In, 8), takes as its <lcguments two natural numbers n,m 
cwd a. trace -5. It ret.urns a. trace which has as its (k+ J /11. element the (m+ J+1l.k )111. 

elemeut of s. If s corresponds to a tr<l,("e of observations made in the original time 
frame, then choose( n, In,s) ("orrespollds to a trace of observations in a new time 
frame, where the clock runs slower that that in the original frame by a factor n, 
and the first tick of the do("k in the lIew frame coincides with the (m +1)111. clock 
tick in lllf' original frame. 

The form<l.l definition of choos( is given for 11 > 0: 

clIO08t·(II, m, (1) =0 
choo$e( '/to 0, (8)'"' s ) ~ (B)~clwose(n,n--l,sl
 

choo$c(n, HI + J, (B)""'s) = chOO$e(lI l 1n,s)
 

Properties 

• Ichoosc(n, m,.<)I= [(lsl- ml/"l· for n f:- O. 

• Ch008f(J, O,s) = s. 
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• s~ s/::::} choose(n,lII,~):::; choo.~e(n,m.s') 

Trace tnultiplication 

The operator 0 takes as its arguments a natura.l number a.nd a trace. The result, 
11- (9 s is a trace n times as long M s with each term duplicated n times. When 
considel'iug systems viewed under the llew, slower time frame we assume that the 
input to the syst.em can ouly be chaJlg~d at (he (kss frequent) ticks of the new 
clock. We will have to examine the elfect of tbis input pattern on the system 
viewed in the origillal time franw in order to e:=;tablish the ol.ltpul which will be 
observed in the new frome of referencE'. 

\Ve define 3) a.s follows: 

n () () ~()
 

n0UX)~s) ~ (X)"~ In Ceo .,j
 

Properties 

• In I~ sl' = 71·1051 

7.3.2 The semantics of timewise abstraction 

We f'xtenu the Sf'tnaJltic functioll .,\.1R 1.0 incorporate timewise abstraction. Recall­
ing t.he dt'finition of M R , it is sufficient to define I, 0 and Tn of Slow(n" m~ C. P). 

Definition 7.1 For mEN. II, E N+, (' E !FE, P E SRPT and a E BINDH Vie 
extend the definition:=; of /, 0 and TR a,s follows: 

,[Slow(", m, C,P)k "" ,[P~O" 

0[510"'1". m, c'P)k "" 0[1'10­
TR[Slow('I. 711, C,PHa:=: {s I (3.5' E Tn [P]17 choos£(n, nJ,,:/) s0 = 

A.5' n J S; lC)m~((n ® ,) n I)) 
1\ (-, 3.~f/ Efn[l']ao choose(lI,m,sll) <8 

A," n J S; Ic)m~l(n 0) s) n I))) 
whe'e J = ,[PIo- I) 

Notes 

1. Observing TR~Slow(n, 711, C. PHa, it is clear that when m = 0 the semantics 
of S }ow( 11, In, C, P) are independent of tbe value of C. 

2. Notice tha.t if C' g t[P]a and m > 0 then 

TdS1owln. m, C,PHo = {()} = Tr-! 1- k. 
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Until the first tick of the new clock thE' environment attempts to input to the 
proce:=;s, if Lhis input is not in the alphabet of the process the result is chaotic 
behaviour. 

3.	 We can explain the definition of the semantics for Slow( n, m, C, P) as follows. 
If.5 is a trace giving a possible behaviour of Slo'w( n, m, C, P) then it is derived 
from a. behaviour s' of P. By requiring choose(n, m,s') = s, we ensure that 
the (k + J )t/l. observation in s coincides with the (m + J + n.k)l/l. observation 
in s'. By l'equiring s' n / ~ (c)m"'-"((ll @,'J) n /), we guarantee that Lhe 
hehaviour s i~ derived from a behaviour in which input does nol. change 
bf't.weeu observations made in the new time frame. 

Finally, we exclude any behaviours which are extensions of behaviourg derived 
from maximal behaviours of the original process. So if a behaviour could have 
been <ierived from a behaviour which results in the original process becoming 
uuiIlformaLive, We aSSUlIle that the process viewed in the new time frame 
becomes uninformative. 

Theorem 7.1 Slo"w is well flejined wil.h r('sper;f to ihe mOflcl RAf. 

Proof: It if; ilt,>ceSS<1f} and sufficient that ....\.1n[Slow(n, TrI, C, PHa E RM for all 
process expressjoDs P in SRPT, III E N. 71 E N+ and C E :IF E. To achiel,iC t,his we 
must show that Tn~Slow(n. m, C.P)]a sa(.isfies closure conditions I-III (see Sec­
tion 5.::L2) with l'pspect to alphabets I[P~a and o[P~a~ under the assumption that 
Mn[P]a E RM. Till"' proofs of all three conditions involve careful examination 
of the construction of the set defining Tn [Slow( n, Tn, C, PHa; the proof of III is 
preseut.ed as Theorem A.5 in Appendix A.4. 0 

Theorem 7.2 AflOTrlS a-1f( a-J9 aTui a- 20 are sonnd with respect to lite model 

HAl. 

Proof: It is necessary to prove that the following equalities hold for mEN, 
n E N+ and (' a subset of the input a.lphabet: 

TdSlow(n, m, C, ~)I = Td ~ I 
T,,[Slow(n, m, C, P n Qll = TniS1ow(n, In, C, P) n Slow(n, m, C, Q)~ 

T,,[Slow( 'I, 0, C, [IB? X _ Px])J = T"II!B? X - S low( '1,71 - 1, X ,Px )J] 
and for m > 0 

T,,[Slow(n, In, C, [!B?X _ Px])J = TdSlow(n, m - 1, C, Pell 

This can be shown by set analY::lis. The proof for a-19 is presented as Theorem A.S 
in Appeudix A.4. o 
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7.4 Pipes 

Pipdining is a cotllnlonly used tedllliqllf' for obta,ining speed up in sequential rir­
tuits. If many pie('e~ of data re-quirl> pro(('ssing by a serluential circuit, and this 
sequential cil"( lIit call he d('comf.lO.~t.'d into scyeril.l sillaller components which pro­
cess t,h(' dilta in turn, t.hen pip('lilling enables datil processing to be oYerlapped. 
Each input do('s not ba,'f' to wail, for tht" prp\'iou.s OIle to be output. Ty~ica.lly such 
fJipeliniIig is ilchiew'd by latcbing interlllediat.'.' results. 

For example thf' cOllditloIlaJ rir(ltit introduced at the b('gillning of this chapter 
coHld be f'a~ily prf'sented as il pipcliw' of lengLh lwo units by' latching the output 
from CmnpOllE'llt A. TheIl. iiS.~UllJirlg both components A and B stilbilise in Ullit 

time, WOlle dnlil can be inpul evpry IIlli( and the corr<'spoIl<.ling output is available 
two nnil> lat.er. Such ~) circuit is c!csrribf'd by Hl(' pruccs::, Con. 

lluforLullaf.ely as a pipeline incrcil;ws ill length, thp proress describing it must 

have mOll' ",1,aV'.,;. recording the data lat,hed in the pipeline. Moreover tht' Hum­

her of st.. te,"i nlay innea.;w cxponelltially with the length of t.he pipeline. In this 
spetion Wp shall dpnlOilstrilte Ito\\, Linwwisc ilbstrilction caIl be used t.o simplify t,he 
reasoning (I,bout pjpe~. 

Definition 7.2 A closf'd proc('ss P is il IJ'lpr if tIH:'re exist,s (p > () a.nd a function 
[p: II'(,PI ~ (11'(11'(01')1- {)) ,lOch 'hal 

P is a pipe of length f p with efT('c! Ep
 

" , E TR[P! => j X E 11'(0). s~(X) E TR[PI
 
A 

.'~(X)~s'~(Y)~s" E TRIP] A 15'1 = fp - 1 

=>	 Y n o[P! E [p(}, n} I 
A 

VB C; } ; Z E [d B) • 
s~((X n 0) u lW·."~(( Y n I) U Z)~s" E'I.[PI 

where 0 == o[P~ and [ = I[P],	 o 

Notes 

L	 (p l't'presf'nts tItp non-zero If'ng1h nf the pipe. At any time f > f. p output is 
solely dependent on the input {p units previously. 

2.	 For <l. pipe P, tIle relationship between inpnt and output lp units of time 
la,ter is characterised by the function [po Ep defines the set of possible values 
of outpllt resulting from a, givf'n input set. We refer to Ep as the effect of P 
since Ihis function descrihes all the possible consequences of processing input 
t.hrough the pipe. Clearly £1' is uniquely defined for a given process P. 
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Notice that the empty set is omitted from the range of £p. This follows 
our assllmption that pipes are nou-divergent. Terms in the range take the 
form of sets of possible output configurations. This makes provision for nOD­
determinism in pipE's, If a pipe P responds deterministically to a given input 
,~f't B then Ep (B) is a singleton set. 

;j,	 Thf' first condition on tlte behaviours sta.tes that P is non-divergent by en­
~uring that every hehaviouf of P can be extended. 

4.	 The second condition states thilt output £p units after a given input B is one 
of tilt'" possible effpcts of the pipt'" on B. Anyone of the possible effects in 
£p(B) could have het·n observed without. altering the subsequent behaviour. 
Moreover altering the input at allY time only effects the output f.p nnits later. 

S.	 Tht'" olitp" t seeu at the first ep ticks of the system clock will depend on the 
initial state of the pipe. It is only after this period of initialisation that the 
possible outputs ('iUl he deduced from ea.r1ier input. 

Wp shall identify two pipes P and Q if they have the same length and the same 
eff~d. This identification disregards output during the period of initialisation; so 
P and Q may have different output during the first f.p units of time. After this 
period of init,ialisatiou P and Q have the same behaViours. 

Definition 7.3 If P and Q are pipes with the same input and output alphabets\ 
then we say P and Q are eq'U,ivaleni pJ:pt:s, P "-'p Q exactly when they have the 
same length and the same effect, formally: 

P~, Q=Ep = Eo 1\ (p ~ {o· 

o 
It is common praLtice in development to compose pipes to obtain longer pipes, 

we present tht'" chaining operator for this purpose. 

Definition 7.4 If P, Q E SliPI' with oP ~ 'Q and ,P n oQ = {} then we define 
the chaining operator» as follows: 

P» Q =(P II Q) \ oP 

o 
The chaining operator is a composite operator in which all communication be­

tween the processf"S bf'ing chained together is made internal. It follows that the 
process P» Q has input alphabet rP and output alphabet oQ. The following is 
an obvious law of the chaining operator: 
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1-12: if,Qnol1={j, (P»Q)»R,",P»(Q>>R) 

Proof: For the above to be well defined we CiiI) make tbe following deductions 
conceruiLlg the alphabets of P. Q and R, 

oP:=c IQ a.nd oQ = ,R 
,pr'oQ={j, ,pnoR~{j and 'Q n oR ~ {j 

From thi~ we (an show that oP n oR = {} and oQ n oP = O. Now 

(P» QI» R '"' ((I'» (jJ II 111 I o(P» (j) {defo, of chaining) 
'"' liP» (J) II R) I o(j 
'"' 11(1' 11 Q) loP) II H) I oQ 
'"' (((p II (j) 11 11)1 "Pi I a(j 
'"' ((P II ((j II R)) I 01') I o(j 

{ defn, of alphabets } 
{ defn. of chaining} 
{by H ) 
{ by 1-2 } 

'"' (P II ((j 11 ai) I o(j) I of' 
'"' (P II ((idll R) I oQi) loP 
'"' (P II ((j» Jill I oP 

{by 1-3 ) 
{ by 1-4 } 
{ by defn. chaining 

== p 2> (Q» H) { by deEn. t.:haiuing 1 0 

Theorem 7.3 If P i.~ pipe of hngth t p with eifert [p, Q is a. pipe of length f Q(l 

with eJTer/£QI oP= IQ undOQnlP= {}. Ih,r/J ?»Q /,8 a1Jipc ojh'ugfhfp+£Q 
with. ejJeel [.P"> Q I wh. ere 

VH"I'.E">Q(Bi= U EQ(C) 
re£p[B/ 

Proof: This follows directly [rom the definit.ions u[ chaining and pipes. 0 

7.4.1 Timewise abstraction and pipes 

In this section we look at the ways \"'e can use timewise abstraction when reasoning 
(I,bout. pilJl's. first. WI-' look at some of the properties of pipes and the timewise 
ab:;traetioIl of pipes. Then WI' discuss the ways in which tbese results can be 
utilil'ied to aiel verifica.tion of the Iwhaviour of pipes. 

Theorem7.4 Ij Pis aptpe ojleng/II (p andcffecl [p InenSlow(fp,O,{},P) 18 

tl piPf oj length 1 with rjJec! [p. • 

Intnitil'ely Slow(fp , 0, O.P) represents the pipe P vie\ved in a time frame 
where a. uIlit of time hil.9 the same length as the pipe. So there is sufficient 
time bet.ween observations for the pipe to completely process the input. Hence 
Slow(£p, 1J,{j, P) bebave, like a pipe of length 1. 
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0 

Theorem 7.5 If P and Q are pipes then 

Slow(lp + I Q , 0, (l,P:>.> Q) =
 
Slow(2, O. {j,(Slow(lp , 0, {l,P):>.> Slow(I Q , 0, (l, Q)))
 

Proof: This follows noting that the initial ontpu t of both sides of the equivalence 
is the initial output of Q. 

Theorem 7.6 If P lInd Q are pipes of length (, wdh input and output alphabets I 
and 0 then: 

P~, Q '" VB <; I. Slow(1 .I,B,P) = Slow(1 ,I,B, Q) 

Proof: 

.::::}: If P and Q arc equivalent pipes of length f then, if provided with the same 
inpnt, their behaviours are the same after (units of time. Slow(l ,(,B,P) gives a 
process wit.h hehaviours corresponding to those of P after (units of time, assuming 
the input over those first £ units is the set B. Clearly the implication follows. 

{=:: P is a pip£' of length f and by the definition of S/ow(l ,f,B,P), the initial 
output of Slow( 1 ,C, B, P) corresponds to the effect of pipe P on input B. As 
VB <; I. Slow(1,I,B,P) = Slow(1,I,B,Q) it follows that the pipes? and Q 
have the same effect on all input sets B ~ I. Hence P and Q are equivalent pipes. 
o 

When designing pipes the main concern is the pipe's behaviour once it is ini~ 

tialised. It is often unnecessary to concern ourselves with the outpnt of the pipe 
during the period of initialisation. This is the time before the pipe outputs the data 
corresponding to the first inpnt. If this is the case, then to verify the behaviour of 
pipe P of length i p it is sufficient to consider Slow((p l 0, {}, P). This pipe ha.'> the 
same effect as P although it has length 1. 

A pipe of length 1 can only have as many states as there are possible configu­
rations of inpnt. Supposing there are k configurations of input, a pipe oflength fp 

cau have as many as kip stat.es. Clearly the pipe of length 1 is easier to verify that 
that of length f p since there are in general fewer states to consider. 

Often, during development, a pipe is broken down into several components. 
where these components correspond to various stages in the pipeline. If each of 
these components is itself a pipe, as is often the case in such circumstances, then 
by making use of Theorem 7.5 we need never consider the full expansion of the 
overall pipeline when verifying its behaviour. Suppose P is a process which can be 
decomposed into components PI' P2, . ..Pn where each of the Pi is a pipe and 

P=:Pj::t>PE"::t> ... >Pn 

137 



12 

00 iO 
il 

i2 
t.1 

ck ck ck 

r-­
01 I 

12 12 02 

I 01 

Pha:'ie 2 Phase 3I ~ "" .. , 
Figure 7.4: A Sorter 

It follows that P is a pipe from TheolTlll 7.3. 1'1oreover, as eadl of the P, is a 
~horter pipf" than P it is ea..<;ier to n~rify tha.t each of the P, are pipes, especially 
if they are of length 1, than to show t.bat P is a pipe directly. To inycstigate the 
effect of pipe P we call use the following it~Ta.tivl;' technique. 

Setting Q, = Slow(!p" 0, {j,P,) 

Qm+, =S low(2, 0, {j, Qm :» Slow«( Pm'" O. {}, P m+, )) 
Vv'e can show by induction that 

Q.,. ,=,Slow(r;~,£p.,O,{},PI ::» ... ::PP,,,) 

hence Q" will have the same effect as ~ipe P. Using the above iterative technique 
to eva.luate Q" we only ever chain pipes of unil length. 

III the example that follows we shall see these techniqu{'s a.pplied in order to 
verify the )whavionr of a, pipelined sorter. 

7.4.2 Example: A sorter 

Taking simple 2-hit comparat.ors [l."l Olll' basic components we shall construct a. 

pipeline of length 3 and demonstrate that it sorts four bits. We say a pipe 
sorts four bits input on the set of wires {iO l if, i2, is} if the output on the wires 
{00, 01,02, o3} has the same number of high wires as the corresponding input and 
if j E 0 ..3 then 

oj h;gh "'" 'if k E O..j • ok high 

Data is latched along the pipeline by D-l.)'pe flip-flops. The configuration of the 
circuit being shown in Figure 7.:1, where Camp is a. comparator and 12 is an array 
of four D-type Jlip-flops. 
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We shall consider the algebraic representation in SRPT of the basic compunents 
from which the a.bove sorter is comprised. From tbese we shall derive the three 
components which make up the three phases of the pipeline. In a time frame in 
which one unit of time has the same length as one cycle of the system clock~ach of 
these three components is a pipe of length 1. Then, by application of the r('sults of 
the: previous section, Wf' shall establish thaI t.he complete systf?m is a pipe of length 
,) which sorts four hits, 

Comparator 

A simple comparator C(lll be constructed from all AND gate and an OR gate as 
shown in Figure 7.::'. Using t.he definitions of AND and OR from Section .1.2,1 the 
comparator circuit can be described as follows: 

Comp"= OR II kIVD[djcJ. 

It. is a. simple ex(~.. cise to sho\v thaI 

Comp",,[l{]? X ~ Comp(X)] 

where 

Comp(X) = Comp if X = {} else (Comp" if X = {a, b} else Coml) 

Comp'",,[I{ c}? X ~ Comp(X)] 
Comp"",,[I{ c, d)7 X ~ Comp(X)] 

Rising edge triggered D-type flip-flop 

A D-type flip-flop is a I-hit storage device. It latches the value on wire d at 
the time of the rising edge of the clock signal. This data is available as out.put 
until the £tip-flop is reset at the next rising edge in the clock signal. Making the 

I 

L, 

c 
a 1 

d
b! 

Figure 7.5: A simple comparator 
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same assumptions as were made when describing the clocked T -type flop-flop m 
Section 7.2.2, the following describes a D-type flip-flop. 

,DJJ~ {d,ck) aDff = (q) IJjJ '" DffL 

whe'" DIlL '" [I{)'X ~ (DffL if ck ~ X else (Dfff, if d E X else DffH))] 
Dffll 
Lim, 

'" [Ill' X ~ (DjJH if d, E X else DlTdl 
'" 1'{q)?X ~ (DlT!/ if ck E X else Uff:!] 

Dffi '" I!{ q)'X ~ (Dffi if ck ~ X else (Dffl1 if dE X else DlTH ))] 

Hen> Land 1/ represent the value of the clock signal. 

The clock 

In this example we shall assume each of the three phase~ is controlled by a sym­
mdric dock, described hy thl" process: 

C/\" p p. [lick} ~ I'll - 1')1 
This clock is determinist ic and has no ill puts so it.s behaviour is governed precisely 
hy time. 'We shall take a.dvantage of this observation and ahsorb the clock into 
the implicit timing of the model. We shall ultimately model each pha.<;e of the 
pipf'iine in il time frame SUell that one time unit corresponds to a single clock 
cycle. MlJreover, we shall assume tlte 'tick' in the model coincides with the rising 
edge of l.ht" clock signal. 

The components of the pipeline 

'Aie want a l'epn~sentation of the three phases of the pipeline which corresponds 
to the system being viewed in a time frame where olle time unit corresponds to a 
single clark cyck. We also require tht" represE'utation to be in a form from which 
it is easy to deduce that each phase is a pipe. We shall only demonstrate the 
derivation o[ the component which OIa,kes up tlw llrs\. phase here. The algebraic 
representations [or the ot.lwr lwo phas~s are simply st.ated, their derivations being 
similar. 

The first pha.<;e is built of four D-tYI)C flip-flops and two comparators: 

Ph'L" 1 " IComp[fO/a,tl/b,aO/c,aI/dJ II DffllO/d.JO/qlll Dff[U/d,tl/q] 
II Comp[t2/a,t3/b,a2/c,a3/d] II Dff[i2/d,t2/q) II Dff[13/d,t.~/q]) 

\{IO.tl,t2.tJ) 

this can be considered a.<; two cornponellts in parallel: 

Pha..,d'" Q[,O/dO, U /di. aO/c. <11 /d] II Q[i2/dO,i.J/dI, a2/c, 03/d) 

where Q "' (UffldO/ d, 0/ q) II Dff[di /d, b/qJ II Camp) \ {o, b). 
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By eliminating para.llel composition and hiding from the above expression we 
can demonstrate that: 

Q,=S(L,{}) 

where S is given by: 

.I'(L, }')" [!g( Y)?X ~ (S(L, Y) if ,k ¢ X else 
[!g( Y)? Z ~ (.1'(11, X - {ek}) if ek E Z else S(L,X - {ek)))])] 

.1'(11, Y)" ['g(y)?X ~jS(II, Y)ifek E X else.l'(L, Y))] 

when' 9 : IF{ 110. d1 } -t lP'{ c, d} is defined by: 

g( {J) = {}	 g({dO}) }

g({d1}) ~ {e}
g( { dO, dl }) ~ {e, d} 

The derivation is given in Appendix C.2.l. 
Tile rising edge of the system clock coincides with the 2k -+ 1 'A ticks of the 

time frame ill whicl1 the system is modelled. We shall incorporate the details of 
the dock into the model of this pha~(' of the pipeline and abstract away from the 
details of the dock. 

Ph,d " (Phase! II CK) \ {ek} 

Theil we translate the model to a time frame in which a unit of time corresponds 
to a single cycle of the system clock and observations occur at the rising edge of 
the clock cycle. Thus Wt;> absorb th(· system clock into the implicit timing of the 
model. 

Phasd' " S 10,"(2,0, {}, Ph,,!) 

By applications of the laws of SHPT we calculate an expansion of Phs1 which does 
not involve parallel compositiOll. \\le then apply the laws for timewise abstraction 
(as shown in Appendix C.2.1) to demonstrate that 

Phasei' '= P 1 ({)) 

where P1 is given in Figure 7.6. Clearly Phasel' is a pipe of length 1 with effect 
given by [PA",,,(X) = {/l(X)}. 

Absorbing the system clock into the implicit timing of the model we obtain 
similar descriptions of the final two phases of the sorter. The pipes Phase2' and 
Phase3', both of length 1, which make up the final two phases of the pipeline are 
described as follows: 

Pha.<e2' " P2( {}) PhaseS' " P1( {)) 

where P2 and P 3 are given in Figure 7.7 
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Composlng pipes 

When WI." compose processes in SRPT we assnme the components are modelled 
in the same time frame and the component~ in a parallel composition evolve in 
lockstep. We assume that all three components of the composed pipeline share the 
sanw time frame, and due to the way in which the components are modelled, the 
rising ed~es of th<-' clocks controlling these three components coincide. 

By applying the theory of Section 7.4.1 we know that 

(Pha.ifl'» PhasrQ')>> Phase31 

is a pipe of length 3 with the same erreet as the pipe of length 1 given by: 

S [o'll'I·"], 0, {}, (PllU.5f 11 » Pha.<;rfJ') » Pha.se:f) 

Now by Theurem 7.5 

Slowl,'], 0, {}. (PllasrI' » Phasr2') » Pha."eS' )
 
::: Slow(2, 0, {} ,SIow(2, 0, {}. Phuse1' » Phase2') » PhaseSI 

)
 

So we can evaluate an expansiou for Slo-w(2, 0, {},Phase1 l » Phase2'). From Ihis 
and the algebraic laws of SRPT (a,s demonstrated in Appendix C.2.2) we can deduce 
that 

S 10"11'(3, 0, {}, (Phase l' » Plwse2' ) » Phase.'}') == Sort (0) 

P1IX) '" [!I,(X)'!Y ~ P/(Y)] I 

where JI is dennen oVPr the domain lP'{ iO, if, 12, i3} as follow.~: 

I, ({iO, il })={ aO, al }I,({,O})}
Id{,l) ={aO} I, ({ ,2, iJ) )={ "P, as} 

I,(I,2}) } I, ({iO, ;1, '2})} { }
 
I,({iJ}) ={a2}
 I,({iO,il,'Sj) = aO,al,a2 

I,({iO, ,2, in)} {I,({iO,i2}) } I,({il,i2,i3}) = aO,a2,,,S)I,({il,,2})
 
I,({iO,,3}) =(aO,a2)
 1,( {iO"I, ;2, is))={ aO, ,,1, ,,2, a3} 
I,({il,d}) J,({})={) 

figure 7.6: The first phase of the sorter pipeline 
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where 50rl(0) "" [!{}?X ~ 50d(lXIl] 
Sorl(1) "" [!{oO)?X ~ 50,I(lXIl] 
50'1(2) "" ['{oO,ol}?X ~ 5"'I(IXIl) 
50d(S) "" ['{00,ol,02j'X ~ Sorl(IXII! 
501'1(4) "" ['{oO, 01,02, o.Jj?X ~ S"'I(!XIl] 

Clearly this pipeline sorts 4 biLs. Hence 80 too does the pipeline 

(Pha,~( l' » Phase2') » PhaseS I 

aJld we h<lvc the required result. 

f'2(XI'= [!fdX)?Y ~ Pity)] 

PJ(X) '= [!f,(X)? Y ~ P3(Yl] 

with i2 and r~ defined by 

fd {})={} 

f,({aO}) }-{bO}
f,({a2}) ­

f,({ al }) }_{ b"}
f,({aB}) - , 

f,({ao,al}l} 
f,({al,a2}1 ={bO,b2} 
f,({aO, a:l}) 
f,({a2,a:I}) 

f,({aO, a2})~{bO,b!} 

f,( {al , a3})~{ b2, bJ} 

f,( {aO, ai, a2}) }={bO, bl, b2} 
f,({aO,a2,aB}) 

f,({aO,al,a3}) }~{bO b2 b3} 
fd{al.a2,a3}) " 

j,({aO,al, a2, a.J})~{bO,bl ,b2, b3} 

f,({})={} 
f,({bO})={oO} 

f,({b!}) }={ J)
f,({b2}) 0 

f,({b3})={03} 

f,({bO,bJ)) }={ ° I}
f,({bO,b2}) 0,0
 

f,({bl,b3}) }

f,({b2,b3}) ={01,03}
 

f,( {bl, b2} )={ 01 ,02}
 
f,( {bO, b3} )={ 00, 03}
 

f,( lbO, bl, b2} )={ 00,01, o2}
 
f,( {bl, b2, b3})~{ 01,02, o3}
 

f,({b O,bl,b3})} { }

f,({bO,b2,b3}) = 00,01,03 

f,( {bO, bl, b2, b3} )={ 00,01,02, 03} 

Figure 7.7: The final two phases of the sorter pipeline 
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7.5 Conclusion 

In this chapter we have iutroduceu the notion of timewise abstraction in discrete 
time alg!'bras. In frameworks where t imewise abstraction can be applied unambigu­
ously, such as SRPT. it provides a mechanism for translating processes to a. less 
detailed ~ime frame, that is 001" where observations are made less frequently. We 
have applied timewise ab~traetjon in SRPT. using it to investigate the behaviour of 
comp0llrnts. initially described in a time frame appropriate to recording gate de­
lays, whm their input is latched at the "lower speed governed by the system dock. 
V,le hav(' abo demonstrated how timewise abstraction may be used to evaluate the 
behaviour of pjpe~. The technique involves translating a process which represents a 
pipe of length { to a time frame a factor of Cslower. The resultant process is a. pipe 
of unit length with tlte same overall effect.; the problem of verifying the behaviour 
of a unit length pipE' is simpler than the same investigation of a longer pipe. 
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Chapter 8 

Summary and Related Work 

8.1 Summary 

'1'f'e have explored the result. of adopting a synchronous view of concurrency, that is 
one in which components evolve in lockstep. The languages SCSP, a variant of the 
familiar CSP formalism, and SRPT, a synchronous version of Receptiye Process 
Theory (Jos92], were introdnced and given a denotational semantics. De9pite vari­
ations in the way behaviours were described, the semantic models chosen for SCSP 
and SRPT both capture failure <llld divergence information concerning processes. 
We have formally demonstrated the way in which SRPT may be viewed as a 8ub­
language of SCSP hy means of embeddings which map the language and model 
of the former into t.hose of the latter. A syntactic extension to SCSP facilitated 
reasoning about the communication of data via channels. Finally, we introduced 
the theory of timewise abstraction, applying it to the language SRPT. 

One interpretation of synchronous commnnication is that all compeJl].ents of a 
process running in parallel evolve toget.her 011 the tick of a global dock. In this 
sense, both SCSP and SRPT are di~Krete time process algebras and are applicable 
to a doma.in of problems which includes systems with t.ime-critical requirements. 
By working in a synchronons framework, we can express t.he relationship bet.ween 
t.iming of components and timing of the whole system. Int.eraction between com~ 

ponent.s can affect the way in which they evolve, but not their speed. The result is 
a very simple mode! of t.imed behaviour. 

As several components of a system evolve in absolute synchrony it. is possible 
tha.t the components may perform distinct events at the same time; yet in process 
algebras it is desirable to be able to eliminate the parallel composition operator 
from procf'SS expressions. Therefore, in both the languages presented in this thesis 
we allowed prefixing of processes with sets of event.s, the implication being that 
events drawn from such a set may occur concurrently. The languages thus support 
the notion of t.rue concurrency in a very explicit manner. 
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The final significant feature of both the languages we have presented here is the 
strong causality assnmption. We assnllle that time must pass between cause and 
effect; simultaneously occurring events do so independently of one another. More­
over, tbe occurrenc<;> of one event at a given time cannot preempt the occurrence of 
another ('vent at that time. This resldt." in the environmental choice being a choice 
as to which subset of the set of events. offer<;>d by the process at a given time, 
shonld he performed. This design asslJlnption reflects the fact that in circuits, for 
example. the value on one wire at a given time cannot, in general, influence the 
value sem at the same time ou an independent wire. 

The receptive language, SRPT, contrasts with SCSP by dividing the alphabet 
of events associated with a process into inpnt events and output events. The resnlt 
is an implied direction of communication between components. Two processes P 
and Q cooperating on an event u. which is classed as all output event of P and 
an input event of Q, are seen as communicating by P sending Q a signal along 
channel~. Hy insisting that a process is a.lways ready to perform any of its input 
events and output events oc('ur a.s soon as they are made available. we have been 
able to capture the Hotion of receptiveness of processes in SRPT. Being both a 
synchronolls and receptive theory makes SRPT highly appropriate as a theory for 
modeJlingand reasouing about synchronous circnits, where components are latched 
by a global clock and communication along wires between components is inherently 
receptive. 

Both the languages SCSP and SRPT were given a denotational semantics. The 
semantic models chosen for the two languages capture the Same behavioural infor­
mation, namely occurrence and rt:'fusal of events and divergence. The way in which 
this information was captured differed in the two cases. In the model for SCSP, 
the refusal of a process to perform an event was considered as observable as the oc­
curr<;>nce of an event. So refusal information was captnred in the traces along with 
the events which occurred. By introducing the concept of infeasible behaviour into 
the traces a simple method \vas devised for encoding divergences into the traces. 
The non-determinism ordering. familiar to esp, provided a simple ordering on this 
model. T~is allowed us to draw on a wealt.h of experience, a,ccumulated ill the 
development of semantics for esp, to obtain comparable results in our model and 
a mathematical underpinning of the language SCSP. 

The features of SRPT which characterise its receptive nature make refusal in­
format.ion directly d<;>ducible from the events performed. Inpnt events are never 
refused, while all output events which could occur do, so those not seen to occur 
would be refused. This observation resulted in a model which did not record re­
fusal information. In order to capture divergences within the traces once more, 
we chose to represent divergence by the absence of information; consequently an 
information orderiug on the model became a, natural choice in contrast to the usual 
non-determinism ordering. 
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As the languages have so many features in common, it seems appropriate that 
there should be a relationship hetween SCSP and SRPT. By considering a method 
for describing receptive systems in SCSP (assuming that refusal of events represent­
ing output results in divergence and making available all events representing input 
in all prefix constructs) it was possible to devise a natural embedding of SRPT 
into SCSP. This embedding preSE'rvE'S the intuitive representation of processE'S and 
results in a continuous map from the semantic model of SRPT to that of SCSP. So 
SRPT can be viewed as a receptive sublanguage of SCSP, as well as a synchronous 
variant of Receptive Process Tlleory. 

We have shown in this thesis that both languages havE' sufficient algebraic laws 
for us to pstablish proof systems whi("h are sound and complete with respect to 
the senHUltic models. The algf'braic Ja.ws make it possible to eliminate parallel 
composition and hiding from process expressions; this allows us to deriverepresen­
tations of systems with aU concurrency explicitly modelled in the prefix r.onstruct. 
Sudl representations give a dear persppctive on the concurrency in the system. A 
complete proof system of a.lgebraic laws enables refinement relationships deducible 
in the model to bp established from algebraic manipulation of process expressions. 
As is shown in the pxamples throughout this thesis, this makes it unnecessary to 
consider the underlying sE'mantics when reasoning about processes. 

Adaptations were made to the language SCSP, in Chapter 4, which provide 
a framework in which to describe directional communication. The modifications 
to the language iuvolve.d defining new notation in terms of existing syntax. This 
ensured the changes were well defined with respect to the model. The new notation 
made it easy to model the flow of data between components of a system along 
direet,ional channels. The transfer of data bE'tween components is often a feature of 
complex ~ystems whose development may benefit from the formal analysis offered 
by process algebras. \Vith the enhilollced notation, SCSP offers itself as a viable 
framework for such analysis. 

Finally, We introduced the notion of timewise abstraction which provides a 
procedure for translating a process, in a discrete time algebra, to a slower time 
frame. Timewisf' abstraction was easy to define for SR.PT, the interpretation being 
that input is held fixed for the length of the new longer dock cycle, changes to input 
and output are Dilly recorded on the tick of the new dock. This interpretation was 
fOllnd to be particularly suited to the problem of modelling synchronous circuits; 
components could be developed at speeds appropriate to iudividual gate delays, 
then reinterpreted in a time frame corresponding to the speed at which input is 
latched. Timewise ahstraction was also applied to aid the verification of pipelines 
modelled in SRPT. 

Through the development of the languages SCSP and SRPT, WE' have shown 
how a synchronous view of communication may be adopted in process algebras. 
Within this thesis the lockstep progression of processes is used to capture discrete 
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time, enabling problems with quantitative timing details to be analysed with the 
languages presented here. We have striven for simplicity in both the design of the 
languages and the design of the models in this thesis. We have also demonstrated 
that the langnages are applica.ble ill diverse problem domains. 

8.2 Comparisons 

A variely of formalisms have been applied to the problem of specify:ing and verifying 
rcal-time systems. Originally. lIIaHy of these fonmdisms t.ook a qu alitative approach 
Lo time. restricting their conc('l"n 1.0 the relative ordaingof events within a system. 
~'lore r('celltly, rdiect.ing the inueased use of computer systems in time-critical 
a.pplications, these formalisms have heen extended to take a quantitative approach 
to time, encolllpas::;illg the relative liming of events within a system. We shall 
briefly consider four approaches to furmal alla.lysis of real-time systems, and theu 
compar(' and contrast the \"Mions features of other authors' approaches with those 
of the work presented ill tllis thesis. Finally. we consider some of the formalisms 
which have bem applied spf'cifically to VLSI design. 

Tem.poral LogiJ:s [Pllu77, MP~2J <Ire logicallauguages which include statements 
about variatioll in time, such as 'eventually' or 'until'. These allow qualitative tim­
ing conditions to be Hpecified, for example, pUq is tnle in a given computa.tion if p 
holds until q becomes true. The la.nguages have been enhanced to allow sta.tements 
which ca.pture quantitative timing requirements hoth b.y allowing predicates that 
make 8ta~ements <I,bout time in the language [PESS] and hy annotatiug the modal 
operators (sneh as U) with times [KdR85]. 

Graphical methods arC' E'xemplified by Petri nets IRei8.5, Pet77] and State­
charts [Had7]. Petri nets aTe bipartite directed graphs consisting or a set of places 
(or conditIons), il set of transitions (or events) <lnd directed arcs from places to 
transitions and from transitions to places. A net is marked by tokens at places. 
A transition is enabled and may fire when all places with arcs to that transition 
(input places) are marked. When a transition is fired a token is removed from 
each or the input pla.ces and a token is added to ea.ch of the places reached by arcs 
from the transition. There are several Variallts of Petri nets, aU based on the above 
scheme. Quantitative timing restraints have been added to transitions [MF76] by 
associa.ting a time interval (tr, t£) with each transition: the transition must be en­
abled for il time t, before it may fire and cannot be enabled ror a time in excess of 
tf without firing. Another a.pproach to incorporating temporal details into Petri 
nets is presented in [C'R8,5) where a minimum tokeu holding time is associated with 
ea.ch place. 
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Stalecharts is a visnal spetifir.atiolL language dearing with hier archy, concurrency 
and communicatioll. In its simplest form a Statechart is a labelled directed graph 
with nodes represf'uting states and arcs labelled by events. Timed Statecharts 
[KP92] annotate pach atC with a tim<-' interval (l, u) denoting lower and upper time 
bounds of the evenl in a manner comparable to [MF76]. 

Programming languages such as ESTEHEL [BG92], SIGNAL [BIGSS92j and 
CSML [CLM91] have bCI~1l applied to reactive and real-time systems. Both ES­
TER EL and SIG N AL are deterministic languages based on the synchrony hypoth­
('sis: this assumes that communication and I'lementary computation take no time. 
A program is conclC'ptually lC'xf'('uted on au infinitely fast machine; dela.ys result 
only from iut.eraction with the envirOllment. ESTEREL is an imperativeliUlguage 
which can be comlJiled illtO finite automata and used tn program reactive kernels 
controlling the state of the syst.em. SICNAL is a relational style language suited 
to data flow analy~is. CS]\''1L is a. d('terministic imperative language based on a 
weak.. r version of the syllt:hrony hypothesis in which all reactions take oue clock 
cydf'. Tbis makes it particularly suit('d to simulation of synchronous circuits. 

Process Algebras provide the final dass of formalisms to be considered here. 
Typically process algebras a.re givell a sttuctured operational semantics [PIoSI] 
whir]} takes the fot'1Il of transition rules. These transition rules allow one tDgenerate 
a tref' representing the possible transitions of a process. Both specification and 
implementation of a system a.re represented by processes; an implementation is 
verifit'd with r('sperl to a specification by establishing that the two processes are 
equivalent under certain relations. Bisimnlations [Mi189] provide one class of such 
relations: thpse compare thf' bf·havioms as viewed by an external agent.. Various 
bisimulations exist. SOlll(' of whirh ta.ke into account internal actions or the passage 
of t.ime (in real-time algebra.-;) in their comparisons. Algebraic laws, representing 
rewrite mlf's which preserve bisimnlation, allow processes to be compared by means 
of algebraic rnaniplliation. Alternatively, processes can be related under a testing 
equivalen("(' [Hen8S], \\'hf'reby the SUCcess of experiments performed on processes 
is compared. Testing prcorders can be established on an algebra and these allow 
compi'lrison of processes. 

The ociginal process algebcao CCS [MiI8~j and ACP jBK84j, and the 150 stan· 
dard language LOTOS [BB88], which do not display any quantitative concept of 
timing, have been extended to record temporal information in a variety of ways. 
ACPp [BB91a], t.he real-time extension of ACP, associates an absolute time stamp 
witb actions: while that associated with actions in TIC [QAF90], a timed calculus 
for LOTOS, is relative to thf' previous action. Timing is also assumed relative in 
the time stamping of actions witb intervals in Liang Chen's Timed CCS [Che91] 
and CCSiT [Dan92j. 
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All a1temative approach to tilne-st.amping actions is the introduction of a time 
prefix as taken in versions of Timed ces present.ed by ~'1ol1er and Toft.s [MT90] 
and Wang Yi [Yi9Il and in the timed pxtensions of LOTOS, pi [BL92] and Timed 
LOTOS iQF87J. In TPL [HR90] a distinguished action representing idling for onp. 
clock cyde is added to stando.rd CCS. 

Other timed edge-hras include ATP [NSqO] which, like TPL, has a distillguished 
time fl.-ction. PART\' [HSZFH92] illcludes two forms of time prefix ill its language, 
a busy wait of hXf'd duration (md an idle wait with arbitrary duration. Milne.-r's 
sees [MiIS3], MELJE developed by Boudol [BOllS!)] and Jeffrey's Discrete Time 
CSP [.Jef~Ia] introduct> the notion of a clock t.ick in their action prefix constrnct.s. 
In these languages the action prefix, lib:' Uw Sf't prefix of SCSP, takes one time unit 
to evolvp_ 

All ahr.matiw i:l.pproach to the use of uperaliollal semantics in the dt>velopment 
of prorf'~~ algebras is llsed in this th{'~is. This approach, lls(~d by CSP [HaaS.')] and 
mauy of its timed P:dPIlSiollS. associate~ (\ dcnotaLiona.l semant.ics \'Y'ith the algehra 
and give.'i th(' meaning of a procf'SS ill terms of a mathematical model, the semantic 
model. Doth specification and ill1plf'mentation Call be reprcsented by processes. 
The fOnIwr can he shown to be rpfin('d by t.he latter llSlILg algebraic manipulation, 
aided hy laws which preserve tllP (refinl'ment.) ordering on the semantics of expres­
sions. Altematively, specifications call take Ute form of predicates, representing 
st>nlantic requirements, which can be shown, wit.h the aid of a proof system to be 
satisfied by a process corresponding 10 the inlp\ementation. The laHer approach is 
taken by Davies and Schneider [Dav91, Sch90] wit.h Timed esp. 

QUimtitat.ive timing has heen incorporated int.o extensions of esp. Ortega­
Mallen and Frntos-Esrrig assume that each action has an associated duration in 
their Tinwd Observatious [OMdFE91], while thf' Timed CSP proposed by Reed 
and R08cue IRRS7] introduces a delay operator and associates a non-zero, mini­
mum recorer!' time wit.h the oC('UlTE']1I'E' of actions in sequential processes. This 
minimllInrecovcry timl" has been dropped in later versions of Timed CSP [DS92]. 

8.2.1 Features of formal methods for real-time systems 

TiIne domain 

Partially ordlC'red time domains haw- bpen applied to process algebri\S by Baet.en 
and Bergslra [BB90] and Jeffrey [.J1"f91bJ. hut in general the t.ime domain used 
in models of real-time systems is a totoUy ordered set such as lR or N. We shall 
limit our discussion to such domains. Totally ordered time domains can be divided 
into two classes; continuous - where typically R+ is used to represent time, and 
discrete - wherlC' for example N is used to model time. 

Process algebros such as PARTY, and the timed lC'xtellsions of CCS presented in 
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[MT90, Yi9I, Che9I] admit eitht:'r continuous or discrete time. Timed CSP, ACPp 

and CCSiT provide examples of formalisms wht:'re the time domain is continuous. 
On the other hand, iu COIllITlon ..... ith the languages SCSP and SRPT presented here, 
the measure of time is di~crete in many formalisms iucluding TPL, ATP, sees, 
MEIJE and the timed extensions of LOTOS in [QAF90, BL92]. 

Real-time process algebras using a continuous time domain provide a more real­
istic, and hence more complex. description of time than their discrete time counter­
parts. A continuous time domain gives rise to algebras which are very expressive, 
although the gain in exprcssibility is often off-set by the increase in complexity. 
Only the discrete time version of Temporal CCS [MT90] admits a complete ax­
iomati~atiou. Similarly there is not an adequate axiomatisation of Timed CSP, 
although mnch work has been dOlle to ea~e the use or Timed CSP as a specifica­
tion lallguage. In [ScI190]. Schneider developed a compositional proof system for 
lwhavionral specifications in Timed CSP based on the language's semantics, while 
Jackson [Jac92] 1I8eS a language based on temporal logic to describe and verify 
programs ill Timed esp. 

The model of concurrency 

There are two ft'>cognised models of concurrency: iuterleaving cOllcurrency and true 
concllrrency. In the context of process algebras, interleaving concurrency cannot 
distinguish between a process which concurrently offers two independent events 
and a process which o£fer~ the choice between the sequential performance of two 
events in either ordt:'f. This can be summarised by the existence of an equation 
equivalent to the res t:'quation: 

alb = a.b + b.a 

in the algebra. Such algebras allow complete elimination of concurrency from ex­
pressiollf'. 

In process algehras exhibiting true cOllcurrency, the simultaneous occurrence 
of conCllfTellt ('vents can he distinguished from sequential occurrence of events. 
COnClll'l'Pllcy can Bot be completely ~'liminated from expressions in process algebras 
exbibiting true concurrency. Oft~1l the simultaneous occurrence of events is made 
t:'xrlicit in the language: to this purpose [Jef9Ia] Uses bags of events in Discrete 
Time CSP; the Iil.nguag~s sees and MEIJE are built from monoids of indivisible 
a.ctions; ACP re presents concurrency of event.s explicitly as alb; while the languages 
presented in this thesis me sets of events. Alternatively, true concurrellcy can be 
implicit in the inabilit.y to eliminate pari\llt:'l composition from expressions, as is the 
case in the Timed CSP of [RR86]. In the Tinwd Observation semantics [or esp 
[OMdFE91] concurrency cannot be eliminated without extending the language to 
incorporate a bag prefix operator, which makes t:'xplicit the simultaneous occurrence 
of events. 
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Those reaJ-timf' process algehra.-;. such as SCSP and theories presented in [Mil83, 
RR.86, Jef9La]. which (l.';sociate all inhercot delay with sequential composition or 
action prl"fix llf'cl"ssarily exhibit truf' concurrency. It i~ interesting to note that 
tJw model of Timed CSP presented by [D592J. in which the delay, 0, assot:iated 
with pl'{'fixing is removed, f'xhibiLs interleaving crmcurrency, like esp. In general 
it appeilIS tha.t timed algehra:; whicb extend untimed models by time-stamping 
aetiom (eg. ACP p or Liang Chen's TCeS [Che\:J1]), or wi til a distinguished time 
adioo (eg. TPL), or by introducing n. uf'Jay construct (eg. Temporal CCS [MT90J) 
exhihit the same form of COJ1eU!TeHcy <1...<; their untimed count.erpart. In particular, 
ACP p' like AC'P. ('xhibits true cOllcurreIlcy: while ATP and Temporal CCS follow 
the illtE'rlt:aving roncUlTl"ncy approach of C( :S. 

'[tue rOllcurreliCY is also exhibi1.f'd by graphical methods: ConditiolijEvellt sys­
Lf'lll::- in Petri ~et theory [Thi86] definc a transition as a set of events firing concur­
rf'Lltly, while S1.<l.te("harts a.llow ~jmllitanf'olls Lransit.ion!'1 via labelled arcs in concur­
rent compollents or a sy~teJIl. 1I0wewl" tilE' tiIllf'd Petri net models [NIF76, CR85] 
and Timpd StatcdJarls IKr~'2] restrict tltelllsch·es to a single transition at a time 
(involving a single ('H>lIt). removing tilt' true concurrency a.spect from t.hesf' models. 

Persistent and urgent actions 

Persistency anu urgency are attrihut(,s <L5sociated wit,h actions in timed process 
a.lgebras. An action is sa,id to lw persistent if, once it is offered by a process, the 
pa.<;sage of time alone cannot rf'sllit in t.he prQcess withdrawing tl1f~ offer of the 
action. [[\ SCSP, tbt> dl:'rived f'vellt prefix construct, a..-.....+ P, allows us to model 
pcrsisteul"Y. However. t"\Tnt.s offered ill the primitive set prefix coustruct nef'd not 
be pl"l'sist{'ot. For eXil,mple. the proCt'SS [X <; B - Px ] may idle for one unit and 
evolve into il process Pn w]licIJ is llnalJIf' to offt'l" thofle events in set B. In sees 
persistf'lll actio1l:; can he l'cpreseutcd in a similar ma.nner to SCSP: by explicitly 
allowing the choice be!.wet'n perfonuiug the adion and idling nntil thf' action occurs. 

TPL and Timcd CSP considf'r actions to be persistent in their prefix constructs, 
a.lthough Ill{' proviflioll of a timeout. construct allows the offer of eventfl to be with­
drawn. Wang Yi also \lSI'S pcrflist('nt actioll!" in the Timed ces of [Yi9ll, where, 
by paramet.erising the prOCess with time, the behaviour, subsequent to the per­
fonnance of an action. ma.y vary depending on tbe time at which the action was 
perforrn{'d. lu CCSiT and Laing Chen's Timed GCS, actions are made available 
over the Juration of an interval; by allowing the interval to extend to infinity, ac­
tions can be madl" persist,ent. Thl" extension of LOTOS in [8L92], pl, considers 
actions t.o be pf'rsistent unless explicitly 1llaJ.·ked as urgent. 

An adJon is said to be urgent if it must be performed as soon as it is made 
avaiIablf'. In SRPT output evenLs can be seen to be urgent; we assume that they CaIl 

be performed when they are made available and, make no provision for the failure of 
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occurrence of offer(>(l output events. In sesp the only way to represent an urgent 
event is to assumt>: that the resnlt of idling is divergence, as in the following process 

[{a} ~ P I>J-I. 

In many process algebras (f'g. Temporal ecs IMT90], AT? and PARTY) the failure 
to perform an urgf'nt evpHt will result in timestop with the process unable to 
progres:::i in time. In Temporal res alld PARTY, action prefix is urgent, a.lthough 
the provision of an idle prefix fJ enable:; a persistent action to be represented by 
b.a.P. Actions in AT1' are also urgent; persistency of evellt a can be captured 
using till"' timeout constrnd rfCX.lnPJ(X). In TIC and ACPp all actions are 
time-stamped and urgent. The pro\'ision of a choin' set of terms in TIC and an 
integral construct representing the choice of an action over a continuum of times 
in ACP p allow~ s()ltle degree of freedom in interaction with the environment in 
these algebras. Thf' Timed ('CS of [Che91] and CCSiT call represent urgency in 
their actions by L'('ducing the associated interval to a single instant. In the case 
of [Che91] the pro('e.':IS cannot progres~ in time beyond the time interval untjj the 
adiou is perfow.wel, while in CCSiT time may progress beyond the time interval 
associated \','ith the aetioll bUf the process prefixed by the action cannot evolve. 
finally, actions in sees Call be ,onsidered nrgent as a consequence of the way that 
parallel components proceed in o.bsolut(> synchrolly. 

Communication 

In the origLnal process algebras, ecs, CSP and ACP, one assumes that concurrently 
runuing components in a system progress a.t arbitrary speeds. Synchronisation oc­
curs whenever communication is required between two components. To achieve this 
may require One process to wait for the other; such waiting is not recorded explic­
itly. Commuuieation is referred to as asynchronous [MiI83] in circumstam:es wbere 
it involves the arbJtrary delay of components. Like the algebras mentioned above, 
some of tbe timl"d process algebras also take an asynchronous view of communica­
tion. With the introduction of timing, the delays are made explicit. However the 
delays before commullication takes place can be arbitrary, as modelled in Timed 
esp, TPL and ""'aug i'i's Timed ces for example. A common feature of all these 
algebras is the persistent nature of actions and this allows such arbitrarJ waiting. 

COllllnuuicatioll is regarded as synchronous, in the sense of Milner, if commu­
uicating compoIll"nis proceed ill lockstep, cooperation on an action being possible 
If the action is simnltaneously llla,de available by all components. This view of 
synchronous colnmunication is taken ill sees: components of a system proceed 
iu absolute synchronYi a component's evolution may be governed by its interac­
tion with the environment and other components but the speed of this evolution 
is indepC'ndent of t.he component's interactions. The same view of synchronous 
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communicatioll is taken iu SCSP: set prefix represents an opportunity for the en­
vironment to control the f'''olution of a. procf'SS and will evolvf' after one time unit 
regardless of the availability of eveuts from the euviroument. In [Jef91a], Jeffrey 
uses the same technique to represent. syndnonolls commuuication. 

By u:;ing time-stanlj]s OIL aetiOlls ACP p, TIC, CCSiT awl Lia.ng Chen's Timed 
CCS exhibit a synchronous model of romrnunication. Other algebra.~ in which 
actions ,,["(' urgent (('g. Temporal ces [~JT90], PARTY aud ATP) also provide 
a ::;ynChCiJIlO1l5 view of communication, although thal of ATP can aiso be viewed 
as following the synchrony hypothesis proposed by Berry [BB91b]. In this view 
time is 0;11y lllhrked at the poil\ts CIt which euviroum€ntal interaction takes place; 
the syst.em is assllmf'd "ufficieutly fast for all necessdl'y internal interactions t.o be 
complded before [urI her environllH"ntal interaction is attempted. So at the lower 
level of internal illt.erilcf,joO. ATP bcha\'es asynchroIlously, \....bile synchronisation of 
cOmpOnf'llts 011 time iH..:tioTl:< ellsures lilal componenls progress synchronously with 
resped to I,}w ellvironnwnt 

t-.'1os1 r} Ihl' algehraic fOl'lnalisl1]'~ which present a syllchronous view of commu­
nication !)l'O\'ide illl arbitrary Rrli( wilSt.ruct, which allows local desynchronisation 
10 he 1Il0d('lled vi(j. p<'rsistellt ildiollS, In contrast, parallel composition in r-.IElJE 
is asynchronolls hut. ~YB(hronisati(Jll can be achieved by use of a tirking opera­
tion: tbi& can be seeJl as marking all <Jgellt with an authorisation sigua.l sent by a 
syndlr()lli,(~r. 

Causality 

One of HIP decision:- made in designing the language SCSP was to insist that, if 
the observation of 011(' event is depplldcut on the occurrence of another, then time 
must pass between these two events. That is, time lIlust pass between cause and 
effect (tim(" dependent causalil,vJ. One way to examine whether such causality 
assumptions bavp beeu made is to consider whether the visible behaviours of a 
system call be completely described by a bag of time-stamped actiolls; if this is 
the case then the ordering of events occurring at a given instant is not significant. 
Those timed process itlgebras kg. sees, Discrete Time esp and the Timed esp 
presented 1I1 !R RSG)). "ih ich associate iUl inherent delay with sequential composition 
or a..dion prefix. prohibit the simultaneous OCClllTeUCe of cansally related events. 
ACP", eLlsures that time passes between cause aJld effect via its axioms, PARTY 
takes a no\·el view that a; b canBOt. bp distinguished fr010 b: a or alb. (It assumes 
time passes betw('en ause and effect, but does not rellect this in its sequential 
composition construct.) 

In SCSP tlte causality requirement. is slightly stronger tban that in some of 
the othf'r models, notably Discrete TiITle CSP and Timed esp, In sesp the per­
formance of one event. at a particular time cannot preempt another event at the 
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same tiOlt>; this results in the inability to instantly resolve (or even model) t:'xternal 
choice. Moreover, unlike the other algebras which exhibit time dependent causality, 
SCSP docs not support auto-concurrence, the ability to perform multiple copies of 
an event at a single instant. This is consistent with the strong causality require­
ment and results in a model in which refusal information at a given time is not 
dependent on the events which occnrred at that time. 

The alternative approach to time dependent causality is to allow instant causal­
ity; the occnrrence of an event a at time t may effect the occurrence of other events 
at time t. Instant cansality is demunstrated by many algebras including Tempo­
cal CCS [MT90], TPL. ATP and the model of Timed CSP advocated in [DS92]. 
Instant causality in TPL is a result of the notion that timing constraints are not 
always explicit. Idling is only made explicit when it must occur; on other occasions 
timing considerations are left arbitnu:y and unrecorded, as in CCS. In ATP instant 
causality is due (,0 a similar lack of concern as to temporal details between time ac­
tions. This view is shared by th<.' languages ESTEREL and SIGNAL which, based 
on the ::;yuchrony hypothesis, assUme that there is no delay between the receipt of 
input and the production of the consequent ontput; the only delays modelled in 
these langnages are those resultillg from awaiting environmental interaction. 

Timing relations 

In Chapter 7 of this t.hesis the notioll of liloewise abstraction was developed and 
applied to the langnage SRPT. This provides a mechanism for slowing down the 
time frame in which components of a system are modelled. Other authors have 
considered timing rf'la.tions which lllay be incorporated into formal methods; some 
of these ....·i11 be considf'red here. 

Schneider [Sch901 introduced timewise refinement into Timed CSP. This for­
malised the concept of a simple process in CSP being refined by processes in Timed 
CSP which introduce timing considerations. This notion was complemented by a 
mapping 011 processes in Timed CSP which remo....es all explicit timing information, 
giving their untirned connterparts in CSP. The original timed process is a timewise 
refinement of its image. It is then possible to verify those properties of a system 
which are preserved by timewise refinement (eg. safety requirement.s) in the simpler 
untimed model. 

By considering a subcalculus of Temporal CCS in which all actions are persis­
tent, fTCeS, Moller and Tofts [MT91] are able to consider a 'faster than' relation 
on processes. A process P is fast.er that Q if it may perform actions sooner. By 
insisting that all actions are persistent. P is always capable of progressing at the 
same spt'ed as Q and, after performing an action earlier than Q could, P is capa­
ble of idling to allow Q to 'catch up'. This allows comparison of processes which 
are behaviourally equivalent (in the untimed sense), but which operate a.t different 
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speeds, without loosing sight of alllemporal considerations. 
Daniels a.nllotatcs e'l:f'nts \.... ith interva1.~ during which they may occur. This 

leads to the defiIlition of a tinlc hfl:"f'd refinelllf'Ilt relation ,». in [Dan92]. This 
relation S' :?'> H can be interpreted il.S meaning lhiUl n has a more precise timing 
spf'cific~tio\l that ,,,', Hence S includ(,:-i tile same visihlp bE'haviour as U but intervah: 
iii II when adions are E'Hil-bled are iwluded in the corresponding intervals in S, 

8.2.2 Formalisms for clocked circuit design 

It has bl't'll shown in thi!' tllt'sis how SILPT may he employed in the verification 
of synchronous circuits. IL is tlwrefore appropriate to cOllsider ot.her approaches 
which hare Df>f'n applied in thi!; iI]"('iI. \Lwy of the approaches are Tllechilnised 
to SOlIlf' extent. which is rf'quired to cope with th(' scale of realistic (in:uit design 
probleIlls, Tlw following appl'oaclw-s Me just a lepr{,Sf.'lltative selection and <;hould 
1I0t. he considered (':.;:!Iil.ustivf'. 

Algl'braic df'sn ipt ions of cirCllit.~ ,\I"(' provided both by CIRCi\L [M.i186] and 
nop (llardware \ip\wd as Objens itnd Processes) [G:\IAS9]. Doth these algebras 
adopt t h" concept of locblep:-:i} !1chrolli:-.ation of coucurrcllt components ass0ciat,ed 
with sees. CIRCi\L i" viewed as giving a ]"(']ativp. description of the OCCUfI'l'nCe of 
('vents, with the provision for modelling silllul1,alH.'Olisly occurring ewnts. Actual 
timing is moueHed hy docked COll1pOncllts ha\'ing a special timing port which re­
ceiws tick pvellts from all abstract. time!' also modelled in C'I1tC'AL. Specification 
alld impl<'llwntation of circuits C<lll he shown to bf' eq~livah>nt by mechanical alge­
hraic Illanipulal,ioIl in 111<' CIRCi\L systeIlI. HOP [I'presents circuits as finitE' :-t.ate 
transition s'ystem~. TIlE' overall behavionr of composl'd components is examined 
with thf'aid of (,he PARC01'IP tool which alltornates procf'~s composition. ',.Vithin 
the l;m~uag/', output is S('('Il to OCCUI at Ih(· ~alTle time as the input which caused 
it, giving n model romparahle to synchronous lilnguages like ESTEREL. 

In t.he ilnperative programming language SML [eLM!)ll, programs represent 
:-ynchronous circuit,s. and thpir sf>ltlalltics are hased on the hardwa.re implementa­
I,ion of a SLate machine, In SML. control cOllslrncls determine the n('xt. st.a.te and 
,ue assumed to eXt'(u(c in zero timf'. AssiglllW'Llts cllallge stale and dJ€ assumcd 
to take onr clock t'yck. Timing ]'Illf's ("(111 preVf'nt complIca,tedl'elationships from 
heing desrribed wit.hout delaying more thall one clock cyrle. In order to remove 
excpssivp ~elays the lilngllage incorporates a, 'compress' statement which assumes 
all assignments within its scopc t.akf' plilCe in a, single clock cycle. This compress 
facility can be used to a similar effect a.s tin1f'wise dbstra.etion in SRPT. 

,IFP [SIl<'86] wd Ruby [JS90] adopt a functional approacb to t.hE" design of cir­
cuits. Primitive circuit descriptions are composed using higher-order-funetions (01' 
relationR) Lo give a description of the complete circuit. Circuits are developed by 
transforming a correct desigu to an implementable descript.ion using algebraic laws 
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to manipulate functional expressions. Functions which describe circuit behaviour 
take streams of inputs (over time) and produce streams of outputs, giving adiscrete 
time model of circuit. behaviour suitable for synchronous circuits. All reasoning is 
done at a fUllctionallf'Vel, tht' data streams afe not made explicit unlike most meth­
ods. A functional approach has also bt'en taken by [BT89] where formal verification 
of synrhrollolls circllits using a string-functional semantics is mechanised using the 
Boyer-Moon> theorem pl'o"'er [BM79J. 

A variety of logics have been applied to circuit design. Higher-order logic is 
used by Gordon [Gor86/ to specify and verify circuits. Here, devices are modelled 
as predicates on input and output; only when output matches input is the predi­
cate true. In systems where values Oil wires vary over time the inpnt and output 
are represented by functions frolll time to boolean values and predicates modelling 
componertb are also tillle dependent. The HaL theorem prover [Gor85] provides 
assistance ill t.he verific<ltion of circuit descriptions. Linear time temporal logic is 
used in [FI\Tf\,·IOH6) to capture formally timing requirements in circnits. Again 
this approach cOllsider:> circuit:" as predicates on their input and output A logic 
programming language, Tokio, is presented which allows computer aided verifica­
tion. 

8.3 Future work 

We have already suggested that SCSP is a simple language with a miuimal number 
of operators. In Chapter 4 the language was enhanced by the provision of a mecha­
nism for describing value passing in communication. It would be useful to consider 
a number of other extensions to the language. Some would be easy to implement, 
while others would require extension of the syntax and. in some cases, modification 
of the semantic model. 

A rendf'zvous on set B, B .......... P, could be defined in terms of the existing 
language 

{}~P",P
 

B~ P '" [X<;B ~ ((B -X)~P)1 ifB,<{).
 

This is a generalisation of the derived event prefix construct and ouly allows B ......... P 
to evolve to P OIlce all the events in B have occurred. It would be useful toestablish 
circumstances in which such an operator might be usefuL 

Tinlt'onts and timed interrupts are features that any model of real-time systems 
should be able to capture. SCSP captures timeout implicitly in the definition of 
st't prefix. In order to make it f'asier to apply SCSP to the descripti(]n of real­
time systems it would be advantageous to extend the syntax of the language to 
incorporate an explicit timeout. operator. Oue possibility is to define a timeout 
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p (n:) Q parilmet.crised by both a Li!llf: and a set of events. The intt"rpretation of 

such all Dperilt.or is that P == p/ 
1nC:1P:; behaves like Pi for the first n units of time, 

t.hen a timeout occurs and it [whaves like P2 if P ha.d only performed events from 
set }j prior to tile tinlf'out. 1'1](' traditional timeout would currespond to B = {} 
while a timed interrupt, cOHLparablf' to that prescnted in [Schga] for Timed esp, 
would 1w represent.cd by til(' case U = D.P. Clearly extending the syntax of the 
[;Hlg!\ag~ must be accoillpalli",d by verilication that the uew terms are well defmed 
with re<!)ect to the llIodei. The proof sy"tcm would also havc to be modified to 
incorporate the llew terms. 

SCSJl (kws [loL incorporate the notion or successful tenninalion [Iloa85]: either 
a process is detined r<-'cur:;i\·ely so as !Jot to tt'rminate or it terminates in chaos. 
Incorporating succe:<sful terminatiun into SCSP would allow us to model syst.ems 
which itl'C' required 1,0 t('rminat(' in their normitl nehaviour. It would also provide 
it fl'c\.lIlClI'ork in which to d('nne sequf'ntial composition of proc.esscs. If stl<:cessful 
termination is to he t'epresL'llted ill the language then it must be supported by the 
model of SCSP: this would inwlw modificalioll of the semantic model, the efff'CLs 
of which must 1)(' incorpofiltf'd into all results involving the model. 

CUlTf'tltly :-';(-'l'O (ll'lay gnu's ("(mnot br modelled in SRPT. As output wonkl nec­
cssarily he dC1wndenl 011 tlll' "inlll]t"l11eOlls)y occurring input in sneh circumstances, 
it is cOlllraty to the underlying li\n~l1age rjpsign a$~\lmptiolls to allow prucess rep­
rcsenting zero df'lay gaks, A possihle solul ion to Ihi~ problem is to simulate zero 
df'la.y g'ates h~' function." wbich mil.'r' Iw composed with proct>sses. For examplp, 
consider a zero delay combillatorial rircuil. which prepro(:esses inpnt to a la.rger 
circuit ,,'ith delays. We muld H"I)f('sf'nl til(' combinatorial circuit by the function 
f illld tIll' l"f'nIainder or OJe cirruit by proCf'SS P. Then the process f " P could 
represent the reqllired circllit" whert>',,' is a functional composition operator. Such 
a.ll cxtension to SRPT lTlay hav(' applicatiol1:" ill th(' study of synchronous circuits. 

Anothf'r area of fuLure de,·C'lnplllenl lies in the constrUdion of operational se­
Ill(lntics for both SCSP and SRPT. ily developing a structured operational seman­
tics ill thrst,yle of Plotkin [PloS!] we would be ill a position to make more thorough 
compari:'iOllS between 0111' work and the process alg'cbras of other authors presented 
with semantics ill this form. An opf'rational semantics is a prerequisite to the de­
velopmeul of software t.ools. Tools :mch as FDH [For92], a refinement checker for 
esp, provide mechanical techniques for cumparison of proccss expressions; such 
mechanical assistance makes it. feal>ible to consider problems substantially larger 
than would be practical by hand. Both SCSP a.nd SnPT would benefit from the 
availability of such tools. As has alrf'ady been suggested, Hit' scale of circuit design 
problems Uleans that for a. formal development method to be applicable in practice 
it mllst bf'supported by software tools. 
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It may be ar gued that tbere are cf'rtain circumstances when specifications in 
terms of predicates on behaviours may be more appropriate than defining a specifi­
cation in terms of a process. It is ofteu easier to formulate an abstract requirement 
using predicates; a one place buffer can be characterised by a simple relationship 
between input and ontput. This is easily captured by suitable predicates while the 
process specifying such a buffer would be the least deterministic process with the 
reqnired hehaviour. Predicate based specifications can also be more appropriate 
for the provision of partial requirement.s for a system. By using different techniques 
for representing specifications and implementations we could make a dear distinc­
tion between the two stages of development. Taking advantage of the denotational 
semantics of SCSP, a compositional proof system ba.~ed on the quantification of 
predicates over hchaviollrs cou ld be developed. A possible approach is the develop­
ment of a system \Ising the sat Ilotatioll employed by [HoaS5]. Alternatively, linear 
time temporal logics could be used to provide a basis for a specification language 
for SCSP. To COil sider the lattf'r approach adequately would require ns to extend 
the model to an infinite traces model in which concepts used in temporal logics, 
such as 'f'ventually', could be specified. 

Finally, as wit h all new formalisms, the langnages presented in this thesis would 
beuefit from the experience gained through applicatiou. It is only by using such 
formalisms as those developed here that we ca.1l really appreciate their worth: to this 
end the analysis of larger case studies using SCSP and SRPT would be appropriate. 
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Appendix A 

Proofs of Stated Results 

A.I Results in the model for SCSP 

Theorem A.1 1!,:;s'lulllny T[P]p (Ilid T[ Q](I saf'isj'y f1H~ clos'llre conditions with 
/'('<;jJfef tl) 1I1plrllbcls n[J-!] find nIt;] N.~jJrdw(ly. Thr'n T[P II Q]p salrsjhs t'l with 
ru'prrl ttl I/lphabr..{ n[P !\ q~. 

Proof: As tht' v(lj'iablf' bindings willl't'l1iaiu unchanged throughont t.his proof 
\\'(' wiJlnul mob, them explicit in <)1]1" ilrgllmeuL By the COllstrnction of T[P II Q~. 

if ::;' ill 1[P ,1,1 Q~ tlH're a.re tW() casp" to considf'r when esta.hlishing t.he closure 
condit.ioll;' i\l'p satisfied, tile CiHW wher!' .~I results from agreeIIlC'nt of hoth processes 
for t]w wllole time of llbscr\'ation; 

s' E 1, 13s"" : n'(.4 n lJ)" • .', n" o. ({})I'i A
 
.5 Il ,4 - s, E T[l'~ A s IlB - .;, E T[QI).
 

all(l the r.;;"e wberl' 8' is the ff'Slllt of divel'gcll(e of one of the component processes. 

s' E {'~'·13".8,n'(,4IlB)·,s, Ils, = ({]),.] A ,.f 0 A
 

(((s Il :\ - s,)~ ,1 E T~Pi A s Il i3 - 5, E T~QI)
 

V (s Il ,:\- 5, E T[P! ,\ (, Il iJ - s, )~ iJ E T [ QI) J).
 

Notice, we only need lo conl'ider situ<ltions where T' I- 0 here, since, by closure 
cOJl(/ition Ii, if l' = 0 then :.;' is included in the iirst case, \Vit-bout loss of generality 
we shall assume that tlte divergerlcc is ca1l5ed by the divergence of P. 

Suppo,e'~(C)~s' E T[P II QI 
case 1: \\'p call find .~/'(Xd"""$; (l1le! "2"""(X2)"""8~ ~l1ch that 

(8 Il A - "')~ (C Il A - x, )~(s' Il ;i - s', ) E T[P[ 
A (8 Il i3 - 5,)~(C Il iJ - X!)~(s' Il iJ -,;) E T[QI 
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We shall assume that XI and Xz are chosen to be minimal in the following sense: 

If Y c X, • (s n ,4 - s,)~ (c n A - Y)~(s' n ;1 - s:) ~ TIPJ, 

Set D, ~ {n E A I a ~ C II a ~ C - X,} 
D, ~ {b E Bib ~ ell b ~ C - X,) 

and D = {a E A uBI a ~ C II a~ C) 

Now hy condition \'j on 7[P] 

(s n A- sJl-(lCn A- X,) U D,) E TIPJ 
V3.r E D,· (,n.4 -s,)~(CnA-X,)U{i})~(s'nA-s',)ETIPJ 

Now by the minirnality of Xl,.r rt XI' SO i 1. C and I E D. 

If the laUer case holds then 

3 x E 1J • (8 n A- s,)~ «( c U (x)) n A- X, )~(s' n it - s~) E TIP] 
II (snB- 8,n(('Uu})nB -X;)~(s'nB -s;)E TIQJ 

v, {":r~ if ,r E A - BIw lel'e ,1.~ = X U {i} jf x E An B
2 

ClPady Xl and X; are disjoint so 

3x ED. s-(CU {i})~s' E TIP II QI 

A similBJ· result is obtained by considering vi on 7[Q]. 

The remaining case is when 

(sn A-s, )-((CnA -X,) UD,) E TIPJ 
lI(snB-s,)~((CnB-X,)UD,)ETIQJ 

Now DnA'; D1 and D n l3 ~ D2 hence by condition iii. 

(s n ,4 - sJl-((( CUD) n A- X,)) E TIPI
 
II (sn B - s,)~«((CUD)nB -X,)) E TIQJ
 

Thus s~(C U D) E TIP II QI as required. 

case 2: If divergence occurs for trace r < s"""(C)"""s' then either r ~ s in which 
case the result follows by construction, otherwise for some r' < 8' 

((s~(C)~r') n ,4 - s, J~(A) E TIPJ II (S~(C)~1J) n B - s, E TIQI 
in which Ca.<le everything follows as for case 1 to give condition vi. o 
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Theorem A.2 Hidillg 1,~ conlinuous with r('.~peet to the. parhal aT'der, 

Proof: \Vt> mu:;t show 

TUx" A'Jp[UDjr] = nTlx \ A'Jp[djx] 
'ED 

where D is a directed Sf't in (SM A, [;;:), 

Now T~.1~p = 7l"2(1[;r~, /\s the projection 7l"J! is a continuous fnnction, we deduce 
tha.t {To,J IdE D} forms a llircct.ed Sf't, in (SAO,~) and To2(UD) = n"ED 71"2 d. 
Now 

Tlr\ A']pIUDj.,] 
= {.:> 13.~'. 8 = 8' - ..1' 1\ s' EndED 7l";:d /\ saturatedA.nA(s')} 

ndE"T[r \ A']P1dj.,]
 
= n"'ED{S 13s'. s =::;' - A' 1\ .~' E if2d 1\ f>aturafl:dA' n A(3')}
 

Clearly T[.r \ il'Up[UD/.T] ~ ndED T[.r \ ;J'](I[d/:c]. We nmst show the conV('fse. 

Suppose .~ EndED T[.r \ iqp[d(l'], then the number of ways of saturating s is 
fillite. Let J be a finite indexing set such that {.5] I j E J} is t,he set of all 
po."isible s~Luratjons, AS::i\lmc 81- T[,r \ ,.qpfUDj.r] Tben there is no 5) such that 
5) E ndEfl To2tl, For each saturation SJ w(' can find (I; E D such that 5) 1- Toed; 
Then hy lllp propf'rty of directed sets and sin('f' J is fillite, we can find k such that 

If) E J ."d, c;; "d,. Solfj E J. ", '" ",d, o}, '" T[J·\A'JPld,j.,] =>, '" 
ndED T[.r \ >np[d/x]. Hence result by contradiction, 0 

A.2 Results in the model for SRPT 

Theorem A.3 The opf'Hlfol"S oj SPHT are nwnolonic in each arg'unlf:n.t. 

Proof: For envirolHl1f'lIt a and P i:l. process term which tClkes the form of an 
application of an operator of SPRT on procf'SS terms, such that one of the argumeuts 
of the opera.t.or is the procf'SS \'ariablf' .r and all other arguments are indepenuel1t 
of .r. \~/e must show .\ y ...\It R [Pk lY/:rJ is monotonic. 

We shall consider the strurtuJ'(> of the trace sets of tht' opf'rators. 

For each Pof thf' abm'e form and q E lUI, TR[P]a[q/.r] takes the form 

TRlPklqj.,] = T'(rr.,q) J M'I"",) 
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for exa.mple, if P == Qn x and Q is independent of x then: 

T"IPI<T[qlx] = IT"IQI<T U K,q) 1 (TnlQI<T U ",q) 

T'(1f3q) is a trace ~et with contribution T'l{ 8)) - T'( {}) due to each trac~ 8 E 1r3. 
The contribution due to a given trace s E 1fjq is independent of the structure of q. 
Hence 

q'::;; q'::::} T' (7rJq) ~ T'(1fjq') 

M'(7f3q) is a set whos members are governed by the traces in ifSq such that 

q'; q' => T 1 M'I",q) <;; T 1 M'(K,q) for any trace set T. 

Helice by the trau~itjvity of 0;: q'; q' => T"IP!<T[qlxj <;; TnIP!<T[q'I,J 

We also ob::::erve that 

1, every maximal element of 1f" q only contributes to maximal traces in T' (1r 3 q). 

2, by the na.ture of restriction. if 8 E T'(1f3q) is not present in T,dP]u[q/.xJ 
then there is a maximal element s' E Tn[P]O'[q/ xl with s' < s. 

3.	 if 8
1 < 8 E 1f1q and 7· E T'(1fJq) is a trace contributed by 8 then there is a 

prefix of, in 1"(1f3q) which is a contribution from Sl. 

We uow have sufficient information to show that, if q :::; q' then 

s E T"IP!<T[q' Ix) A s ~ T"IPI<T[qlx] => 3 r E T"IPI<T[qlxj. r <, 

To show the above it is sufficient to note that, if s E T'(1f"q) then the result follows 
from observation 2. Otherwise s must be a contribution from SI E (1r3q')- (1r3q), 
then a" q :::; q' we can find 'I E *9q with '1 < SI, by observations 1 and 3 there is 
a maximal contribution, to T'(1fsq) with r < s. The result follows. 0 

A.3 Results relating SRPT to SCSP 

Theorem A.4 POI' all processes P, Q E SRP'J'O with P n Q well defined, and for 
all <T E BIND" if Tlepl~<T =4>(M"IPI<T) and TleQI~<T = 4>(M,,[QI") then 

Tle(p n Qll,w = 4>(M"IP n QI<Tl 
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Proof: Firstly note that: 

T[6(Pn Q)I,w	 ~ T[(6P) n (6Q)I'w { defn. of 6 } 
=T[6Pha U T[6 Q~'w { defn. of T } 
~ 1>(MR!Pla) U 1'(M,[Qk) { by hypothesis 

So it is sllfficient to show that for ~ll 0' E BINDR 

1'(AI,[p n Q~a) = <b(MR!P~a) U1'(MR[Ql~) 

Sillce the alphabets temaill unchanged throughout this proof, we shall abuse nota.­
tion slightly amI write 1,&(s) for 4'(1. 0,3). 

Recall 6(Mn[p~a) = U ,j·(,)u U V'I(S) 
.EhJdu ,'ETR~P](7 

No\....· 

, E Tr. [I' n (Jla
 
=> sET.[P~alTdQi~V.'ETR[(JklTR[Pla {defn.ofTR )
 

=> s ETn[P]O' V s E 7n~Q~0' {defn. of restriction
 
=> '/>(') C;; 1'(MR[P~aJ U 1'(MR[Qla) {defn. of l'
 

Similarly s E TR[p n Qla => 'I·, (s) <:: ¢(MdPja) U1'(A'h[ma) 

Hence ~(Mn[p n Qla) <:: 1'(MR[P~a) U 1'(.\1,[Qla) 

It rem aim to prove thp revprse inclusion. 

s E 7,[Pla 
::::} {logk, law of exdudf'd middle } 

s E 7,[PkA ((3s'ET.[Q!a.s' < s) V ~ (3s'ETR[Q~a. 5' <8)) 
::::} {delinition of restriction } 

s E 7,[Pla 1TdQla V (, E TR[l'k A. os' E Tn[QI~' .,' < s) 
::::} {delinition of T'R. and as / is nOll maximal in TR [P]o- } 

s E T,[p n Qk V ((3.<' E TRIQ!a. 5' < 5) A ~ (3 s" E T'IPla. ," < s')) 
=> {definition of restriction } 

'E T,lpn QkV 10/ E (T,[Qlal TR[pl~)' s' <s) 
::::} {definition of TR } 

s E T,[p n Q~a V (0/ E TdP n Q~a '5' < s) 
::::} {definition of l' } 

¥'(s) ~ 1'(Tn[P n QkJ V (3 s'.,' <.5 A</',(s') C;; 1'(T,,[p n Qla)) 
::::} {by Lemma 6.3 } 

1>1 s) ~ 1'(T" [I' n Qla) 

Similarly., E T,IPla => '" (,) C;; <b(Tdp n Qla) 

Hence 1'(.M,[P[a) <:: 1'(Mn[pn Qk) 
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We can obtain a symmetric result for ~(M;Ii ~ Qla) and thus deduce the required 
result. 0 

A.4 Results involving timewise abstraction 

Theorem A.5 A8.5uming TR~P~a .satisfies the closure conditions /01' model RM 
with 1'e.sp(~cl to alphabets I[P~t7 and o[P~a, then /01' mEN, II E N+ and C E 
IF l:, T1\. [S low( n, m, C, P) ~a $afisjies closure condition III 1JJ1th respect to alphabets 

'[Pia a"d p[PHo-· 

Proof: A~ the variable bindings, u. will remain unchanged lhroughout this 
proof we will not makf' them f'xplicit here. By the remarks of note 2 all page 1,32, 
if C ~ I.[P~ tht> rC'sult follows trivially so we shall only consider the case C ~ t[P]. 

Assuming that. s ........ (X) E Tn.[Slow(n., m, e,p)] and Y <;;.; t[P] w(:' must show that:
 

s~((X n p[PH) u j') E T.[5Ipw(n, m. C, P)i 

Now ..."-riting J for I[P] and 0 for o[P]: 

s~ (X) E T,<l5/pw( ", m, C. P)i 
~ {by dt>finition of Tn. } 

(3" E Tn[PI • choose(", m, ,.) = s~(X) 

II "n[ S (C)'"~(n,<)((s~(X))nI))) 

/\ -, (1'1 E TR[P]. choosc(lI. m. r'·) < s""'(X) 
1I"'n[s(c)m~(n0((s~(X))nI))) 

~ {by cOlHJition II on Tn.[P] , where ro""'(X) ::; r } 
(3'" E TdPi' ,·,~(X) E Tn [Pi II hi = n·lsl + m
 

J\ chooBe(n, m, 1"0) = s
 
II ("0 ~(X)) nI S (c)m~( n (') ((s~(X)) n I)))
 

/\ -, (1,1 E TR[P]. choose(lI, m, 1,1) ::; s 
II ,-' n [ S (C) m ~(" (<) (s n [))) 

=} {by condition III on TR [P] and considering lengths } 
(3 "0 E TRIPi· "o~((X n 0) u Y) E TRIPi 

II choose(n,m,(,.o~((Xn O)U Y)))=s~((Xn O)U Y) 
II ("o~((X n 0) U l')) n [ S (c)m~(" 0 ((s~((X n 0) U Y) nil)) 

II ~ (,., E TR[PI- choose(n. m, ,I) < s~((X n 0) U Y) 
II (,., n J S (C)"'~(n 0 ((s~((X nO) U l')) n [JIl) 

=} {by clefintion of T" } 
s~((X n 0) u r) E T,,[5/ow(n, m, C,P)j 

o 
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Lemma A.6 The maximal sel of T'R.[S low( n. m, C, P)] is given by: 

TRIS/ow(n, m, C,P)I = {s 13 c E TR[PI • choose(n, m, c) = s
 
A" n! S (c)m~(n ® (s n I))
 

...., (3 ,/ E f'R.[p~ - choose(n, m,,.J) < s
 
A,,'nls(C)m~(n®(snI)))}
 

whC7'e I"", I [P~. A/oreover, 

:3 'U t:= Tn [S lowe II, m. C, PH -u < $ '¢::} :3 .,. E f'R. [P] • choose (n, m, ,) < s 
A "nl < (C)m~(n@(snl)) 

Proof: The first part follows frolll the definition of Tn[Slow(n, 711, C,P)]
 

It is Lri\ial from the definit.im] of fR[Slow(n, m, C,P)] that
 

:3 'U ET:R[SIO'll'(lI. 111, C.P)]. u < s:::}:3 ,. E 77?[P]. choose(n, m, r) < s 
A ,. n I < (C) m~( n '" (s n I)) 

To prove the (,cl11aindt'L", suppose 3,' E iR[p] • ch.oose(n, m, r) < 8 1\ r n I < 
(C)'''~("() (s n I)). 

Now consider the set 

{cErR[PII choo.-dn,m, c) < s A "n! < (C)'"~(nO(sn I))} 

This set is non-empty, by our assumption, and finite, since the output alphabet 
i::. finite and 8 is of fixed finite length. We take the minimum of this SE't, '0, and 
choose 8r,tobe the prefix of $ of length r(lrol- m)/nl. Then 

ro E T,dP] 1\ choose(n, m, ro) = .~r, 1\ '0 n 1< (C)"""-"(n 0 (so n I)) 1\ S(J < s. 

Moreover. since we choose 1"0 to be minima.l 

~ (3 ,., E rdP~, choose(n, m. r') < So A c' n I < (C)m~(n '" (so n I)).
 

Thus :3 'u E Tn ~S low( H, m, C, P)] • u < s as required. o
 

Corollary A.7
 

s E TR.[Slow(n, m, C.P)] {:}:3, E 7:R[P]. dlOose(n, m, ,) = s
 
A "nl S (C)m~(n®(snl)l
 

A ~ (3"ETn [5/ow(n.m,C,PjI. u <s).
 

• 
Theoreln A.S FOr" mEN, 11 E N+, C <; /[P]IY and P n Q well defined, then 

T,,[5/owln.m. C.p n Q)k = T"[510,"(,,, "', C.P) n5/ow(n, m, C, Q)/a 
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Proof: As the variable bindings. (7, will remain unchanged throughout this proof 
we will not make them explicit herc. 

Recalling the definition of T'R it is sufficient to show 

TRISlow(n,m, c,pn QiH ~TnIS/ow(n,m,C,P)ll TRISlow(n,m,C,Q)] 
UTRISlow(n, m, C, Q)]l TRIS/ow(n, m,C,P)] 

Now 

'E TRISlow(n,m,C,pn QJ! 
=> {by definition of Tn } 

:J r E (TniPll TnIQ] U TR[Q]l TRIPI)' 
chooser n, m, ,.) ~ 8 A r n I " (c)m~(o 0 (s n I)) 

A ~ :Jr' E T"IPn QI· 
choose( n, In, '1") < s A T ' n I ::; (c)mr..(n l) (s n I)) 

c~ {,ince ,. E TnIP] U TRIQI => :Js E TnIP n QI· s " r } 

:J r E (TnlPll TRlQ] U TnlQll TRIP]). 
ch 00" ( n, no, r) = , A ,. n I " (c)m~( n 0 I' n I)) 

A ~ :J r' E T" IP] • 
choose( n, Tn, r') < s A ,,I n I ::; (c)mr..(1l0 (s n I)) 

A ~	 :J,'" E T"IQ]· 
choo.'u;( n, 111, rl/) < sA rl/ n I ::; (c)m r..( n 0 (8 n I)) 

=> {by Lemma A.6 } 
:J r E ITnlPll TnIQ] U TRIQll TRIP]).
 

chooser n, 'n, r) = , A ,. n I " (c)m~(n 0 (, n I))
 
A --. 3 u' E fR~Slow(n, Tn, C.PH. u' < s
 

1\ --. .31/' E TR[Slow(n, rIl, C, Q)]. u/l < s
 
::} {by definition of restriction } 

I:J r E TnIP] • choo,,(o, m, r) = .' A Tn I " (c)m~(n 0 (, n I))
 
A (~ :J u' E TRiS/ow(n, m, C,P)]. u' < s)
 
A (~ :J u" E TnISlow(n, m, C, Q)]. u" < s))
 

V (:J r E TRI QI • chooser 0, m, r) = , A r n I " (c)m~(n 0 (, n I))
 
A I~ :J u' E TRIS/ow(n, m, C, Plio u' < s)
 
A I~ :J u" E TnISlow(n, m, C. QH' u" < s))
 

=> {by previous corollary } 
(s E Tn[Slow(n, m, C, PH A (~ :J u" E TRIS/owln. m, C, QH • u" < 8)) 
V (, E TnISIo",(n, m, C, QJ! A (~ :J u' E TRIS/ow(n, m, C,P)j. u' < ,)) 

=>	 {by definition of restriction } 
s E (TnIS/ow(n, m, C, PJ]l TnIS/ow(n, m, C. QH 
uTnIS/ow(n, m, C, QH l TnISlow(n, m. C,pm 

The reverse follows simila.r1y. 
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Appendix B 

Proof Rules 

B.! Proof system for SCSp l 

Here \ve present the proof system for the language SCSpl . t.he language of finite 
dosed t~TfllS from SCSP. 

Axioms fur nou-ddennlIlislic choice: 

A-I f- pn Q= Qnp
 

A-2 f- IPn Q)nR= PnIQnR)
 l
A-3 f- pnp=p 

I 
A-4 f- I' n -l=-l ~ 

Axjom fol' :'let prefix: 

A-5 C<;;/i f- IX" • ',Ie I'· ,C •Q,I ]
",[X<;B~Rx)n[Y<;c~ Qy] 

~ {FB' n QB' if B' <; Ch Hwere B' = PB' if B' r£. C
Il- 'O----= -=- _ 
Axioms for parallel composition: 

A-6
 

A-7
 

A-8 

A-9 

A-IO 

f- -l .. 11 I' =-l,u,P
 

f- PII-lA=-lAuoP
 

f- (I' n Q) II R '" (I' II R) n (Q II R)
 

f- (I'll (Q n R) '" (I' II Q) n II' II R)
 

f- [X<;;,l'~Pdll[Y<;;B'~Qy]'" 
[Z CIA' n B') u lA' - oQH') U (B' ­
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Axioms for hidin.g: 

A-ll f- l-A IB ",.LA_B 

A-12 f­ (pnQ)IA"'IPIA)nIQIA) 

A-I3 f­ [Xc;B~P,JIA",[Yc;(B-A)~(PYu(BnA)IA)] 

Axioms for rellauling: 

E f- l-A [SI ",.LA!SI 

f- I P n Q)[S] '" PIS] n Q[S] 

[X c;B ~ PxIlS]"'[X c;B[S] ~ P'ls-'JiSlll :-~ f-

Ordering rules: 
----------------,~=-------, 

P"'Q
PnQi;P 0-3 

Pi;Qi;P10-' > 
P i;Qi;P 

Pi;Qi;R 
P", Q 0-4 

Pi;R~ 
Monotonicity rules: 

M-I 
P 1 ~ FE 1\ QJ ~ Q! 

P J n Ql ~ Pt n Q2 

M-2 
'IXc;B'Pxi;Qx 

[X c;B ~ Px ] i; [X c;B ~ Qx] 

B.2 Proof system for SCSP 

The proof systern for the closed terms of SCSP consists of all the rules in the
 
previous section, with the following additions.
 

Axioms for recursion:
 

A-I7 f- R P[(p.TOP)/X]"'I"'P 

A-I8 f- R P,[(x; =P;)l/.Td '" (x, =p.), 

Least fixed point rule: 

I 'IQEFlN(P).Qi;R I 
R-I Pi;R 
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B.3 Derivations in the proof system for SCSP 

Theorem B.I ~ PIIQ=QIIP 

Proof: By considering the chara.cterisatioll of infinite processes by their finite 
syntactic approximations and recalling all finite processes can be expressed in nor­
mal form (Corollary :3.15) it is sufficient 1.0 assume hoth P and Q are in normal 
form. We defille a rank function d on processes in normal form: 

dl -l) o
 
dlnBEBPB) lCBEBd(PB1+ 161- I if 161 2 1
 

d([X(::A~Px]) maX;I;,"~A d(Px ) + I
 

and proceed b.y indudion on diP) + d( Q). 

base case: diP) + dl Q) ~ O. 

Here p:::: Q =.1. and the result follow!' from ;\···6. 

inductive step: 

If P =-.1 or Q =-.1 then the r('suIt follows from A-6 and A-7. 

If l' = P, n 1', then diP,) < diP) and diP,) < diP) so: 

(1', n 1',) II Q;c (1', II Q) n (1', II Q) {hy A-8 } 
=IQ 1/ p,)n(Q II 1',) {byinduclivchypothesis 
;c Q II (I', nP,) {byA-9 } 

If (J = QI n Q" then the result follows similarly. 

Finally if I' ~ IX (:: Jl ~ Pxl and Q = IY (::B ~ Q,.] then d(px ) + d(Q,.) < 
diP) + dlQI for all X (:: A, l' (:: B. 

IX <;;4 ~ p.,]llfY(::B ~ QJ] 
_ {hyA-JD} 

IZ (::IA n 13) U (A - nQ) U IB - ,,1') ~ Pzn , II QznB] 
_ {by inductive hypothesi~ } 

IZ(::(.4nB)u(A -nQ)U(B -nP) ~ QznB 11 Pzn,] 
{ as intersection i'll1d union are commutative} 

[Z (::IB n A) U (B - nP) U (A - nQ) ~ QZnB II pzn,] 
_ {by\-lD} 

[Y <;;8 ~ Qllll[X (::A ~ 1'>] 
o 
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B.4 Proof system for SRPT 1 

Here we present the proof system for the language SRPT', the language of finite
 
closed terms from SRPT.
 

Axioms for non-deterministic choice:
 

a-I rR Pn Q =R Qn P 

a-2 rR (PnQ)nR=RPn(QnR) 

a-3 rR pnP =R P 

a-4 rR Pn ~=R~ 

Axiom for set prefix: 

~-5 rR ['B?X ~ Pxl n ['wry ~ Qyl =R ['mx ~ P, n Qxl I 
Axioms for para.llel composition: 

a-6 f- R -.Lf,oll P =R~{lU'P)-(OUoP),(ou"P) 

a-7 rR p II~I,o=R~(Iu,P)-(ouoP),(OU"P) 

a-8 rR (P n Q) II R =R (P II R) n (Q II R) 

a-9 rR P II (Q n R) =R (P II Q) n (P II R) 

a-tO rR ['B7X ~ Pxlll [IC'! Y ~ Qyl =R 
[IB U C'! Z ~ P(ZUCln<pu II Q(ZUB)n<Qu l 

Axioms for hiding: 

a-II I- R -.LI,O \B =R-l/.O_8 

a-12 rR (PnQ)\A=R(p\A)n(Q\A) 

a-13 rR [!B?X ~ Pxl \ A =R [1(B - A)'!X ~ (Px \ A)l 

Axioms for fell<LTlling: 

a-14 r R ~I,O [S] =R~I(SI,O(S) 

a-IS r R (P n Q)[SI =R (PIS]) n (Q[S]) 

a-16 rR [!B'!X ~ PxllSI =R ['B[Sj'!X ~ px(s-'dSll 
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l Ordering rules: 

0-1 I- R P n Q !';n P 0-3 P "R Q ~ P c;R Q c;R P 
P c;R Q l:::R P 

0-2 P Ln Q LR R
 
p "n Q 0-4
 

( PCRR 

MOllotonicity ruJe8: 

P j !,;R Fe 1\ 01 !,;R Q2 
111-} 

PI n Ql ~R p~ n Q2 

vX t;;;: B • Px !,;[{ Qx 
111-2 

[!1FX ~ P<Jl:::n [IB?X ~ Q.vJ 

B.5 Proof system for SRPT 

The proof system for the closed term:; of SRPT consists of all the rules in the 
pre ...·iolls section, wit.h the following additions. 

Axioms for I'ecllfsion: 
I a-17 ,/,--p--c[--c(p-x-:-I-,O"-.-P-)--Cj.,-:-j-=-n-/-'-"-:-/-'O-.-P---------I 

Least fixed point rule: 

VQ E FINR(P). Q c;R R
 

P c;R R
~ --~
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Appendix C 

Algebraic Derivations 

In this appendix we demonstrate the use of the algebraic laws of SCSP and SRPT. 
We present. the fmit steps in the derivation of resluts in the Token ring example 
(Section 4.2.4), which used the language SCSP. We also derive some of the results 
required in the sorter E'xample (Section 7.4.2), which used the language SRPT and 
timewise abstraction. 

C.l Token ring interface with data 

Recall that for X E {L, T, D}the definition of ID(y, X, ,) i, 

ID(y, X, ,) eo (I(y,X, ,) II DATA) \ {on!} 

where I(y, X,5) is defined in Figure 4.3 and 

DATA'" ( n (on!d~ DAT,4)) n (wail(!) ~ DATA) 
dE6(~.. ) 

We shall show that 

ID(y,L,()) = [{in?x,out!y} ~	 ((n'E,!~)ID'(x,L,fr(d)))
 

nID'(x,L,()))
 
c>~l 

and 

1D'( y, L, ()) = wail( 2) ~ ((n'E6! ~J ID( y, L,fr( d))) n ID(y, L, ())) 

where ID'(y, L, s :fr.') '" (I'(y, L, s ofr,) II DATA) \ {on!} 
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Firstly 

fD(y,L.O) 
[ by definition}
 

(I(y, L, 0) II DATA) \ lool}
 
_ {expanding D.-ll~i }
 

(/(y,L,O) II ((n'E'("/(onld~ DA1il))
 
n(wm/(I) ~ DATA))) \ {oo!}
 

_ {by A ~ 12 and A·S }
 
IndEb,m,,(I( y, L, 0) II (oo!d ~ DA IA)) \ {on!})
 
n((1(y.L.O) 11 (wad(!) ~ D,ITA)) \ {on'})
 

Now wf'recall 

! (y, L, 0) '= [{ in?", ou'!y, ou'! d} ~ I'(x, L,IT'( d)) 
o {ill't.I',uul!!I} -1'(.r.L,O) 
[> -l] 

Thus 

(I(y, L, 0) 11 (on!d ~ D/1T4)) \ {"o!} 
( f'xpanding I (y, L. 0) and llsing axioms A··I0 a.nd A-13 

[lml ,7, ou/ly} ~ (1'(,7, L,Ir( d)) 11 DATA) \ {on!} 
I>L] 
{by definition } 

[{in?x, o"/' Y } ~ lD'(r,L,I,'(d)) [>-l] 

and 

(1(y,l, 0) 11 (,..ai/(l) ~ IJ,4TA)) \ {on!} 
{expanding I( y, L, 0) a.lTd using axioms A-I0 and A-13 

I(",?x, "u/!y} ~ (1'(x,L.O) II DA1:4) \ {on!} [>-l] 

H(']lct' 

ID(y,L,O) 
{substituting the abo'lie resnlts } 

IndEO",,[(m?r,ou/ly} ~ lD'(",L,I,'(d)) [>-lJ) 

nil in'." "ufly} ~ (1'(r, L, 0) 11 DATA) \ {on l } [>.L] 
{by L-1 } 

[{,,?x, oul!y} ~ ((n'E"''') lD'(r,L,Ir(d))) 
n(1'(x,L,O) II DATA) \ {on!}) 

[>LJ 

Now let liS cOllsidf'f 

(1'(y,L.O) 11 DATA) \ {on!} 
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We rewrit.e.l'(y, L,{)) as follows: 

I'(y, L, 0) '" [{on?d] ~ P(y,!r(d)) 0> Ply, 0)1 

where 

P(y,sJes) 2 (wail(/) ~ l(y,L,sJ,'s)) 

P(y,O) '" [{Oll?d] ~ [(y,L,!"(d)) 0> l(y,L,O)1 

Now 

(P(y,s:],,) II DATA) \ {on!] 
{ expanding DA1:4 and by A-8 and A-12 } 

(n"61,,,)(P(y,sJ,'s) II (o"ld~ DATA)) \ {on!})
 
n((p(y, s Jrs) II (wail(l) ~ DAT4)) \ {a"!])
 
{ expanding processf'~ and applying axioms A-lO and A-13 } 

(n'E",,")(wail(!) ~ {f(y.I.,sJr,,) II (01,," ~ DATA)) \ {on!])) 
nlwail(1) ~ {f(y,L,sJr.,) II DATil) \ {a"!]) 
{bvL-J] 

".aif( I) ~ un,,,, ,") {f (y, L, s :f",) II (a"! d ~ DATA)) \ {on!)) 
n{f(y,L,sJrs) II DATA) \ {a"')) 

{ by axioms A-8 a.nd A - [2 } 
lI'ai!( f)_ 

({f (y, L, s Jrs) II (n""",)( o,,!d ~ DATA) n DATA)) \ {ani)) 
{ by definit.ion of DATA and A-3 } 

wa"(l) ~ ((1ly,L,.8Jrs) II D.17:4) \ {Old}) 
{ by definition of ID }
 

lJlol/(f) ---+ ID(y,L,s:!,.sj
 

Also 

(Ply. 0) II DATA) \ {mol] 
{ expanding DATA and by A-8 and A-12 ]
 

(n,,6Ion)(P(y,0) II (o,,'d~ DA7:4)) \ {on'))
 
n((p(y, 0) II (wait(l) ~ DAT.4)) \ {a"'))
 

{ expanding proces~f'S and applying axioms A-lO and A-13 
In,,,,,,,)(wa,I(I) ~ (1(y,L,!r(d)) II DATA) \ {a"!])) 
n(wa,'(J)~ (1(y,L,O) Ii DAT.4) \ {on!)) 
{byL-J] 

wnil I1) ~ undE6, ",,11 (y, L,!,-( d)) II D.4 TA) \ {a"!]) 
n{f(y,L,O) II DATA) \ {on!}) 

{ hy definition of ID } 
",,,,, ( J) ~ un,,,,,,,, ID(y,I,,!,'( d))) n ID(y, L, 0)) 
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Finally 

(1'(y,l.,O) II DAT4) \ {on'} 
{ by thE' :::a!l1C working as abovE' }
 
lI'ai[(Ii ~ un;e8[,o)(P(y,f>'(d)) II DATA) \ {md})
 

n(p(y,O) II DAT;l) \ {on'})
 
( sllb:::t.itllting from eadier working } 

'Wlt( 1 ) ~ ((n",( ,oJ ( waitt 1) ~ W(y, L,fr( d)))) 
n( wai[( 1) ~ ((n'E8(,",ID(y, L,fe( d)) n ID(y, L, °I») 

i by L-l ) 
lI'ait(2) ~ un"",") [[)(y,L,f,'(d))) 

nun;e","",!D(y, L,f>'(d))) n !D(y, L, 0»)) 
1idcmpol,('nce of n } 

11",1 (i) ~ Un'E'! '") W( y, L,fe( d))) n !D( y, L, 0)) 

lIen,€, we It,we the required rCl'mlts. 

C.2 The sorter pipeline 

In thi~ section we preseJil in more ddail some of tile steps of the derivations used 
in Sectioll 7.1.2. 

C.2.! First phase of the pipeline 

We r('('(dl that the overa.lI aim was to obtain an algebraic representation of the first 
phase of the l-lipeline in a form <'IOU time frame in which it can be deduced that this 
phase is a pipe. So we want to derive an expansion of: 

SI01l'12,O.{},(Pha,,111 cr,') \ {"I,}) 

which only illvolvE's til;;' set prefix and nondeterministic choice constructs. 

Reca.ll 

Pha,,} "" QI,O/dO, Ii /dl, aa/r, 01 /d] Ii Q[i2/dO, i3/dl, a2/ c, a3/d] 

where Q" (Dffldo/ d, a/gill J)lJldl jd. b/glll Camp) \ {a, b)
 

<lnd the' definitions of ('amp and Dff are giveu iu Section 7.4.2 (pages 139 and 140).
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In order to simplify the expansions, we set 

DD(x,{)) =0 Dff.[dO/d,a/q) il Dff.[dl/d,b/q]
 
DD(x,{dO}) =0 Dff:[dO/d.a/qlll Dff,[dl/d,b/q]
 
DD(x,{d!}) =0 Dff.[dO/d,a/qlli Dff;[dl/d,b/q]
 

DD(x,{dO,dl}) =0 Dff;[dO/d,a/q] II Dff;[dl/d,b/q] 

The first parameter of DD takes the value L or H and should be interpreted as 
the voltage level on the clock. The second parameter is the set of input wires with 
high voltage at the time of the last rising edge in the clock signal. 

We also set 
DDC(x, {})=0 (DD(x,{}) II Camp) \ {a,b}
 
DDC(.l', y) =0 (DD(x, y) II Camp') \ {a, b}
 

DDC(x,(dO,dl})=o (DD(I,{dU,d!}) II Camp") \ {a,b}
 

where.x E {L,H} and y E {{dO}, {dl}}. 

So Q =0 DDC(L, {}) 

First we evaluate 

DD(L, {}) 
{ f'xpanding definition of DD } 

DffddO/d,Q/q] II Dffddl/d,b/q] 
{ expaJlding uefinition of DO' } 

([!{}?X -~ (DilL if rk ~ X else
 
([!{q}?Y ~(DffliifckE YeiseDfffl]
 
if d E X else 
[!{}' Y ~ (DffH if ck E Y else DffL)]))][dO / d, a/ qIJ


II ([Ill?X ~ (DffL if ck ~ X else
 
([!{q)"~' ~ (Dffli if ck E Y else Dfffl]
 
if d E .x else 
[I{}?)' ~ (DffH if ck E Y else Dff,)]))][dl / d, b/ qIJ
 

{bya-16 }
 
[I{}?X ~ (DffddO/d, a/q] if ck ~ X else
 

([!{a}'!}' ~ (Dffli[dO/d,a/q] ifck E Yelse Dm[dO/d,a/q])j
 
if dO E X else
 
[!{}?Y ~ (DffH[dO/d,a/qj ifck E Yelse DffddO/d,a/qIJ))))
 

II[!{},X ~ (Dffddl/d.b/q] ifck ~ X else
 
([!{ b)? Y ~ (Dffli[dl / d, b/ q] if ck E Y else Dfflldl / d, b/ q))]
 
if dl E X else 
[!{}' Y ~ (DffH[dl / d. b/ q] if ck E Y else Dffddl / d, b/ q))]))J 

t77 



{ by a-to and noting definition of DD } 
['n'X ~ (DD(L, {j) if ek 'Ie X else 

([!{a,bJlY ~ {DD(H,{dO,dI))ifek E}' else DD(L,{dO,dI}))) 
if {dO. dI} <;: X else 

(['{o}"?)' ~ (DD(H,{dO})ifekE YelseDD(L,{dO}))) 
if{ dO} <;: X else 

{['{b)"!}' ~ (DD(H,{dI})ifek E )' else DD(L,{dI}))] 
if[ dI} <;: X else 
['!r? Y ~ (DD(H, {}) if ek E l' else DD( L, {]J)]))))] 

Thlls 

DUe( L. {}) 
{ f'xvanding definition of ODe 

(DDiL.{}) II Campi \ {a.b} 
{ reralling {C'xpansioJls and by a--IO } 

[!{j'!I ~ ((DD(T,,{j) II CO"'I')iftk 'Ie X else 
(['{a, h}i Y ~ ((DD(H, {dO, <11)) II Camp") if ek E Yelse 

(DD(L{dO.dl)) II ('amp"»)] 
if {dO, dI} <;: X else 

([I(a j" Y ~ ( DD([[, {dO)) II Camp') if eR E Y else 
(DD(L,{dO}) II Coml")] 

if {dO} <:: X else 
([IP' JI Y ~ ((DD(H, {dI}) II Com/) if ek E Yelse 

(DD(L, {dI}) II Comp')I] 
if(dI} <;: X else 
[!O! y ~ (DD(H, {}) II Camp) if ek E Yelse 

(DD(L, {}) II Camp))] 
JIII]\{a,b} 

{ bya-J:3 and noting det1Jlltion of DDC } 
[!{}?X~ (DDCIL,{})ifek 'Ie X else 

(['{J'!Y ~ (DUC(H,{dO.dI})ifek E YelseDDC(L,{dO,dI}))] 
if IdO. dI} <;: X else 

(['{I'i l' ~ (DUC(H, {dO}) if ek E Y else DDC( L, (dO}))] 
if {dO} <;: X else 
(['{J?l' ~ (DDC(H,{dI})ifek E YelseDDC(L,{dI}))] 
if (dI) <;: Yelse 
[!O'}' ~ (DDC(lI, {}) if ek E Y else DDCIL, {]J)] ))))) 

{ rearranging t.('rms } 
[!O"X ~ (UDC(I.. {}) if ek 'Ie .1 else 

['{j'l' ~ (UDe(H.X - {ek)) ifd. E Yelse DDC(LX - {ek)))])] 
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Continuing in this manner we can also show that 

DDG(H,{}) '" ['{}?X~(DDG(H,{))ifekEXelseDDG(L,{}))l 

DDC(L,{dO}) '" [!{el'X~ (DDC(L,{dO})ifek ¢X else 
[lIe)? Y ~ (DDC(H,X - {ek)) 

if ek E Y else DDG(L, X - {ek)))])} 
DDC(H,{dO}) '" [!{e}?X ~ (DDC(H,{dO}) 

if ek E X else DDG(L, {dO}))1 
DDC(L,{d1}) '" [1{ej'X~ (DDG(L,{dl))ifek¢X else 

['{el'Y~ (DDG(H,X-{ek}) 
if ek E Y else DDG(L, X - {ek}))llJ 

DDe(H,{dl}) '" ['{ej'X ~ (DDG(H,{d1}) 
ifek E X else DDG(L,{dl}))] 

DDC(L,{dO,d1}) '" [!{e,dJ'X~(DDG(L,{dO,dl))ifek¢Xelse 

['{e,d)'!Y ~ (DDG(H,X - {ek}) 
if ek E Y else DDG(L, X - {ek}))])) 

DDG(H,{dO,d1}) '" [!{e,d}?X ~ (DDG(H,{dO,dl}) 
if ek E X else DDG(L, {dO, dl}))] 

Hence, by uniqueness of solutions to guarded recursive equations 

Q '" S(L,{}) 

where S is defined in Section 7.4.2 (pa.ge 141). 

We are now in a position to reduce the expression for Ph.91 ,eliminating parallel 
composition, hiding and renaming. We recall 

Ph,l " (Ph<U!d II GIl) \ {ek} 

Now we can expand Phase1 as follows: 

Phasel 
= {by definition } 

Q[iO/dO,il Idl,aOle,al/d] II Q[i2/dO,i3/dl,a2/e,a3/dJ 
= {by the equivalence deduced ahove J 

8! L, {} HiD I dO, i1 / dl, aD / e, al / dlll S(L, {} )[i2/ dO, i31dl , a2/ e, as/ d] 
== {expanding the definition 0['" } 

([!{}?X~ (S(I,{})ifck¢ X else
 
['{}? Y ~ (S(H,X - {ck}) if ck E Yelse
 

S(L,X - {ck) ))lllliO/dO, il /dl, aO/c, al Id])

II ([!{)? X ~ (05(1, {}) if ck ¢ X else
 

['{}'!l'~ (S(H,X-{ck))ifckE Yelse
 
S(L, X - {ck) ))])11,2/ dO, i.~ / dl, a21 c, a3/ dD
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{b)"-16 } 
[!{}'X ~ (5(1, {} )[ ,0 / dO, il / dl , aO / c, al / d] if ck i X else 

[!{J' y ~ (S(ll, (X - {ck) )[dO / iO, dl /il])[iO / dO, il / dl, aO / c, al / d] 
if ck E Y else 
S(L, (X - {ck) lIdO / iO, dl / il])[iO / dO,,1 / <11, aO / c, al / d])])] 

l\lin!X ~ (S(L, {} )[i2/ dO, i3/ dl, a2/ c. a3/ dl if ck i X else 
['{}? I" ~ (S(ll, (X - {ck})[dO/i2, dl /i3])[i2/dO, i3/dl, a2/c,a3/dJ 

if ck E Yelse 
S(L, (X - {ck})[ dO /i2, dl /i.i])['2/ dO, i3/ dl ,a2 / ,', a.1/ d])])] 

{by.-l0 } 
[!{}'X ~ «(S(L. {))[iO / dO, il / dl, aO / c, al / d] 

II 5(1, {))[i2/dO, iJ/dl, a2/c, a3/d]) 
ifck 1 X else ['{}?Y ~ 

(,S(ll, (X n {,O, il} lIdO / iO. dl / il ])[iO/ dO, il / dl ,aO / c, al / d] 
!I S(ll, (X n {i2, i3} lidO / i2, dl MI)[i2 / dO, i3/ dl, a2/ c, aJ/ d)) 
if ck E Y else 
IS(L, (X n {iO, il} l[dO/iO, dl /il ])[iO/dO, il /dl, aO/c, al/d] 
II S(L,(X n {i2, i3))[dO/i2, dl/i3])[i2/dO,i3/dl, a2/e, a3/d]))])] 

Thus 
Phsl 

== {by defillition of Phsl 
(P'''MA II ('11)1 {ck} 

=: {expanding terms } 
([!{}?X ~ «(5(1. {} )[iO / dO, il / dl •aO / c, al / dl 

II S(I, {} )[i2/ dO, 11/ dl ,a2 / c, a3/ d]) 
if ,k 1 X else [!{}? Y ~ 

((S(ll, (X n {iO, il})[ dO /iO, dl / il])[iO/ dO,,1 / dl ,aO / c, al / d] 
I S(ll, (X n {i2, is} I[ dO /,2, dl /i3])[i2 / dO, i3/ dl ,a2/ c, a3/ dJ) 
if ck E Yelse 
(S( L, (X n {iO, II} lIdO / iO. dl /il])[IO / dO,;Z / dl, aO / c. al / dl 
II S(L, (X n {i2, i3})[dO/i2, dl/i3])[i2/dO, i3/dl.a2/c, a3/d]))])] 

II[!{ ckl~['{} ~ ('IIIJ) I (ck] 
'" {by.-10) 

[!{ckl'.\"~[!{J'Y~ 

(S(L. (X n {iO, il})[ dO /iO, dl / il])[iO/ dO, il / dl, aO/ c, al / d] 
II SIL, (X n {i2, i3} lIdO / i2, dl /i3])[i2/ dO, i3/ dl, a2/ c. a.1/ d] 
II C/lIJlI{ck} 
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{bya-13 ) 
[!{)?X~[!{)?Y ~ 

(SIL, (X n {iO, ,I })ldO / iO, dl /,1])[,0/ dO, il / dl, aO / c, al / d] 
II 8(L, IX n {i2, is) )ldO / i2, dl / i.1])[,2/ dO, i.1 / dl ,a2/ c, a.1 / d] 
II CII') \ {ck)IJ 

Continuing in this manner we can demonstrate that 

Phsl" PhI (0) 

where PhI is given in Figure C.l. 

PhI ({)) =[!{)? X ~ [I{)?y ~ PhI IX)IJ
 

~~~ ~ 1:~n }=I!{ aO}? X ~ [!{ aO}?Y ~ PhI (XlIJ
 

~~~~l:;n }=[!{a2}?X ~ [!{a2}?Y ~ Phl(XJ]] 

Phl({iO,il})=[!{aO,al)?X ~ [!{aO,al}?Y ~ Phl(XllI 

Phl l{iO,i2}) } 
Phl l {i.0,i3}) =[I{ 0 2)"v~[I{ 0 2}?Y Phl(XlllPhI I{iI, i2}) , a , a .., , a ,a ' ~ 

Phll{il,i3}) 

PhI I{i2, is)) =[!{ a2, as}?X ~ [!{a2, a3}? Y ~ PhI (X)]] 

Phl({iII,il,i2}) }-[I{ 0 I 2}?X' [I{ 0 I 2)?Y Phl(Vl]]Ph J({ iO, if , i3}) =. a ,a , a . --+. a ,a ,a . --+ .1 

Phl({iII,i2,i3}) }-[I{ 0 2 "}?X [I{ 0 2 ")?Y PhI (!')]]PhI ({ if , i2, i3}) =. a ,a', a,J. --+. a , a , a,J. --+ " 

Phl({iO,il, i2,i.1})= [!{aO, al ,a2, a3}?X ~ 

[!{aO,al,a2,a3}?Y ~ PhIIX)IJ 

Figure C.I: Expansion of the first phase of the sorter pipeline in originaJ time frame 
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It n'm<lins to calculate S 101.1.'( 2 j 0, {}, Phs1 ). 

For all .\ ~ {iO, i1 ,i2, is} we define: 

SPhl(X) =' Slow(2, O,{},PhI(X)) 

Now 

SPhl({})
 
{ expanding definition of SPhl
 

5 lowl2, 0, {}, PhI ({)))
 
{ expanding definition of PIli }
 

S low~ 2,0, {}, [!{}? X ~[!{)? y ~ PhI (X )1])
 
{bya~20 }
 

[!{FX ~ 5 /ow(2, I , X, [!{}'? y ~ PhI (X)])]
 
{ bya-20 }
 

[!{}?r ~ 5/ow(2,0,X,Pld(X))]
 
{ by note on page 124 }
 

[!{}'!X ~ 510w(2, 0, {}, Phi (.1'))1
 
{ by definition of SPh.1 }
 

['U'" ~ SPhl(X)] 

Hence, cOlltinuing in this ma.rmet, and by the uniqueness of solutions to guarded 
recursive equations we have t!tat 

5 Im'12, 0, {}, Ph,d ) '= PI ( {} ) 

where Pl is defined in Figure 'j .6. 

C.2.2 Composing pipes 

Recall tha.t we ]u'ed to evalu<l.te an expansion of: 

S fowl3. 0, {}, (Phasc1'» Phase:J') » Pha5f.'j') 

which enables us to deduce the effect of this pipe of length 1. 

By Theorem 7.5 

S 10111(.'1.0, (Phasd' »Ph.ase2') » PhaseS')
 
" 510w( 2,0. {}. (510w( 2,0, {}, Phasd' ~ Phase2' ) ~ PhaseS'))
 

So as a first step we should f'va.lua.te S lou:( 2. 0, { }, Phasel' » Phase2') 
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Now 

Phasd'» Phase2' 
::= {definition of processes and chaining 

PI({)) II P2({))\{aO,al,a2,a3} 
== {expanding processes } 

['{)? X ~ P1 (X illll!{)? X ~ P2(X)] \ {aO, ai, a2, a3} = {by a-l0 } 
I!{}? X ~ (P 1(X i11P2( {)))I \ {aO, ai, a2, a3} = {by a-13 } 
I!{}" X ~ (PI (X)11P2({))) \ {aO, ai, a2, a3}] 

== { expanding processes } 
[lUi X ~ (l!f,(X)? Y ~ PI (1')]11[,{}" Y ~ P2( Y)]) \ {aO, ai, a2, a3}] 

= {by a-10 } 
['()?X ~ (I!{)? Y ~ (PI (rJlIP2I!,(X)))]) \ {aO, ai, a2, a3}] 

= {bya-13} 
I'{)?X ~[!{} n ~ (PI (rJIIP21!, (X))) \ {aO, ai, a2, a3}!) 

So 
5 low( 2, 0, { }, Phase]' » Phast2') 
{ by a-"20 and using above expansion } 

I!{},X ~ Slow(2, 1, X, [!{}? Y ~ (PI (Y)lIp21!, (X))) \ laO, ai, a2,a3}])] 
{ by a-20 } 

I!{}?X ~ Slow(2, O,X,(Pl( Y)IIP21!,(X))) \ laO, ai, a2, a3})] 
{by note on page 124 and defn. of chaining } 

I!{},X ~ 5 low( 2,0, {}, (P 1(Y )>>P21!, (X))))I 

Continuing in this manner we can show that 

Slaw(2, 0, II ,Phase!' » Phase2') = P12( {}) 

where P12 is given in Figure C.2. 

Using the results above a.nd the same approach we can show that 

Slaw(2, 0, ll,P12» Phase3') =P13({)) 

where PI3(X) '" l!f13 (X)? l' ~ PI3(!')] for X ~ {iO,il,i2,i3} 

j
ll iflXI=O 
laO} if IXI ~ 1 

andf13(X) = {aO,ol} if IXI = 2 
{oO,ol,02} if IXI ~ 3 
{oO,ol,02,o3} iflXI=4 
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From this the effect of Slow( 3,0, n, (Pha.se1'» Phase2' » Phase3')) can be de­
duced. 

PI?(X) '" [1!dX)?Y ~ F12( YII 

where 11 is defined over the domain IP'{ 10, £1. i2, i3} ?LS follows: 

!,,[{i0}) } !,d{iO, i1}) }~{bO b2}
!,,({i2,i.9}) ,!,,[{i1}) 

!"I{i2}) ={bO} !,,({iO,il,i2}) } 
!"I{i.9}) !"({i0,'~.,,.9}) ~{bO,bl,b2}

!" ({ ,0, ,2, '3) ) !,,({dJ,i2}) }

!d{d,i2}) !"I (,1, i2, i.9})
 
!,,({ill,i3}) ~{bO,b1}
 !d{ iO, ii, i2, i.9} )=(bO, bl, b2, b.9) 
!,,({iJ,i.9}) !,,({))=(} 

Figure C.2: The first two phases of tbe sorter pipelinE' 
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Glossary 

Syntax 

~ 

n 
[X<::A ~ Px] 
o 

" [!B'X - Pxl 

II
 
\ 
PIS] 
/lz:A.P 
/lx:I,O·p 
(:r.i == Pi)] with A 
wait(n) -I- P 
STOP 
(J."-+ P 
c!e .,
C.X 

'(oj 
ohan(P) 
outl P) 
.n(P) 
eo(P) 
-:P 

SCSP 
SCSp o 

SCSpJ 

SRPT 
SRPTo 
SRPT' 

chaos 
non-deterministic choice 
set prefix (SCSP) 
choice in set prefix 
default in set prefix 
output prefix lSRPT) 
pa,rallel composition 
hiding 
renaming 
recursion (SCSP) 
recursion (SRPT) 
mutual recursion 
waiting 
deadlock 
event prefix 
output term 
input term 
dab SE't on channel 
channels 
output rha,nneIs 
input channels 
non-communication events 
chaining 

synchronous language terms 
non-recursive SCSP terms 
closed SCSP 0 terms 
synchronous receptive langua.ge terms 
uon-recursive SRPT terms 
dospd SRPTo terms 
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14,80
 
16
 
56
 
56
 .,., 
55
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42
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Semantics 

E 
A 
If 
A 
STA 

Rho 
u 
n 

sutumte(IA(s) 

ill 
!ea3;ble( B) 
T 
TjS 

SM 
SM·{ 
SM] 
RM 
<;; 

VaT '" 
BIND 
BINDR 

p 
a 
..\1 
T 
a 
."1 R 

Tn 

0 

univer,:;al alphabet 29
 
alphabet 29
 
refusal alphabet 29
 
observation alphabet 29
 
all traces with alphahel A (SCSP) 29
 
a.ll traces with alphabet.~ J & () (SRPT) 86
 
union 29, 30
 
intersectioll 29
 
subtraction 29
 
trace predicat.e 30
 
Lrac(> memb{'Tship 30
 
set prpdicate :)0
 
maximal behaviours 87
 
re!ltrktion 87
 

model for SCSP 32
 
model restricted t,o alphabf't A 32
 
trace projection of model :12
 
model for SRPT 89
 
non-determinism ordf'f 32
 
illformatioll order 89
 
variables 33
 
domain of bindings (SCSPJ 33
 
domain of bindings (SRPT) 92
 
variable binding (SCSP) 34
 
variable binding (SRPT) 92
 
semantic mapping for SCSP 33
 
tra.({' projection of M 35
 
alphabet projection of M 35
 
sernal\tic mapping for SRPT 92
 
trace projection of M R 93
 
input alphabet projection of.M·r.. 93
 
output alphabpf, projection of M n 93
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Proof SysteIIls 

SCSP SRPT 
c: nOll-uelernliuism order 4l C:R non-determinism order 110 

eqn.ivaJence 42 =R equivalence 110 

f- theorem ,13 f- R theorem 111 

-< synta.ctic approximat.ion SO -<R syntactic approximation 117 

FIN!P) a,pproximatioTis of P ,50 FlNR!P) approximations of P 117 

A- axiom a· axiom 
L- law 1- law 

Embeddings 

() embedding of Ri\f in SAl LOa r/.J image of trace 100 
o embedding of SR PT in SCSP WI) 1/-11 image of ma.x.imal trace 100 
'II embedding of B/NDR in Bl/VD 107 'Y output saturation LOa 
d> tracE:' projertion of 41 100 

Timewise Abstraction and Pipes 

Slow thnewise abstracl.ion operator 123 [p effect of pipe 134 
choose t.race coul.ra,c liun 131 lp length of pipe 134 
(?, trace mnl1.iplication 132 "'p pille equivaJence [35 

Mathematical Symbols 

N set of natural numbers I-I length of trace 
R set of real llllInberB U least upper boun~ 

P powf>Tsel oppratof n greatest lower bound 
If set of <1.11 finite subsets flx fixed point operator 
{} empty set 
A" finite tra.res defined a.tl 

( .) trace o end of proof 
() empty trace end of theorem • 

concatenation o end of definition 
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