
A MATHEMATICAL THEORY OF SYNCHRONOUS
COMMUNICATION

by

Janet E. Barnes

Technical Monograph PRG-112
ISBN 0902928899

Hilary Term 1993

Oxford University Computing Laboratory
Programming Re"earch Group
11 Keble Road
Oxford OXl 3QD
England

Copyright © 1993 Janet E. Barnes

Oxford Uni'vNsjty Computing Laboratory
Programmill~ Researrh Group
11 Keble Road
Oxford OX I 3QD
England

A Mathematical Theory of

Synchronous Communication

Janet E. Barnes

Hilary Term 1993

Abstract

A mathematical theory of synchronous communication is presented.
The process algebra SCSP, ~hares many of its constructors with Hoare's
Communicating Sf'quential Processes. It models components of a dis­
tributed system i":lS processes evolving in lockstep. A synchronous vari­
ant, SRPT, of Joscphs' Rl~c('ptive Process Theory, which distinguishes
between iuput. and outpnt evenb in its model of communication, is also
investigated.

The langna-gt:' SCSP is given a. denotational semantics. The seman­
tic model captmes the behaviour of proce~ses using failures-divergences
information. SCS? exhibit.s Rufflcient algebr<l,ic laws to form a sound
and complete proof system with respect to t.he semantics. This allows
reasoning about COnClirTellt systems by means of algebraic manipula­
tion of process expressions. The notation is extended to capture com­
munication of data via channels and is used to specify a token ring
protocol. SCSP is sufficiently expressive to establish temporal details
of tbe protocol.

SRPT can be interpreted as a receptive sublanguage of SCSP. This
is demonstrated by embedding both the language and its semantic
model in those of SCSP. The embedding allows many of the mathemat­
ical results concerning SRPT to be deduced from their counterparts in
SCSP. SRPT is shown to he applicable 1.0 the modelling of synchronous
circnits. The Ilotion of discrete time in !.lie algebra captnres the dock's
bebaviour while the receptive nature of SRPT matches the commu­
nication of signals in a circuit. By introducing a notion of timewise
abstraction, the effect of vanation in the speed at which circuits are
docked can be analysed. Timewise abst.raction is also applied to the
analysis of pipes.

To my Parents and Dave
for their love and 8upport.

Acknowledgements

Firstly, I must thank my supervisor, Mark Josephs l for his encouragement,
advice and guidance throughout the production of this thesis. This work has also
profited from the comments and advice of John Barnes, Jim Davies, Tony Hoare,
Dave Jackson, Geraint Jones, Steve Schneider, Brian Scott and other colleagues at
the PRG 1.0 whom I extend my thanks.

This work WM made possible by the financial support of the UK SERe for
which [am grateful.

Contents

1	 Introduction 1

1.1 Tf'chnicaJ Overview ...	 2

1.1.1 Synchronous CSP	 2

1.1.2 Synchronous Receptive Process Theory	 3

1.2 Structure of lhis Thesis.	 4

2	 Synchronous CSP 6

2.1 The Language 6

2.1.1 Primitive processes i:Uld operators	 7

2.1.2 Recursion	 12

2.1.3 Derived processes a.nd operators	 14

2.2 Examples ...	 17

2.2.1 A watdlclog timer	 17

2.2.2 A lift lobby	 21

2.3 Conclusion.	 26

3	 Semantics and Proof System for SCSP 28

3.1 Semantic Model . ..	 28

3.1.1 Notation	 28

3.1.2 Closure conditions	 31

3.1.3 Non-detenninism ordering	 32

3.2 Semantic Function ..	 33

3.3 Expressivityof the Language.	 40

3.4 A Sound and Complete Algebra	 42

3.4.1 The sublanguage SCSPI	 42

3.4.2 An extended proof system	 50

3.5 Conclusion . .	 ,52

4	 Communication and Protocols 53

ol.l Communication . 53

4.1.1 Syntax for communication	 55

"

-1.1.2 Laws for communication 58

4.2 Token Ring .. 59

4.2.1 Specification in SCSP . 61

4.2.2 Ring intE"rface 62

4.2.3 A complete ring 65

4.2.'1 Investigating thp interface 66

4.3 Condnsion. 72

5 Synchronous Receptive Process Theory 74

5.1 The Language 75

5.1.1 Primitive processps a.nd operators 76

.5.l.2 Recursion 80

5.1.3 DerivlC'd processes and operators 80

5.2 Example: Basic digital logic circuits. 81

5.2.1 Gates 82

5.2.2 Half-adder. 82

.5.2.:{ Clocked flipflops . 84

.1.3 Semantic Model 86

5.:1.1 Notation. 86

5.3.2 Closure conditions 88

5.3.3 Information ordering 89

5.4 Semantic Function 92

5.5 Conclusion. 98

6 SRPT as a Sublanguage of SCSP 99

6.1 Embedding RM in SM 100

6.1.1 Properties of <P 102

6.2 Relating the Languages SI/PT and SCSP 106

6.3 Deducing results of SRPT from SCSP . 107

6.3.1 Continuity ... 109

6.3.2 A proof systlC'm for SRPT 110

6.4 Conclusion. 119

7 Timewise Abstraction 120

7.1 Timf'wise Abstra.ction in SRPT 123

7.2 Exa.mples 124

7.2.1 A conditional circuit . 124

7.2.2 A grey-code cOllnter 125

7.3 RlC'lating Timewise Abstraction to the Model 131

7.3.1 Notation. 131

7.:(2 The semant.ics of timlC'wise abstraction 132

jii

7.4	 Pipes. . . . 134

7.4.1 Timewise abstraction and pipes	 136

7.4.2 Example: A sorter 138

7.,J Conclusion 144

8 Summary and Related Work	 145

8.1	 Summary 145

8.2	 Comparisons. 148

8.:U Feat.ures of formal methods for real-time systems 1,\0

8.2.2 Furmalism::! for clocked circuit design 156

8.:J Fut.tlr(' work 1,\7

A Proofs of Stated Results	 160

A.I	 R.esults in t.he model for SCSP 160

A.2	 Hesults in the model for SRPT 162

A.3 Results relating SRPT to SCSP 163

AA Results involving timewi"e a.bstra.ction 16·5

B Proof Rules	 168

B.1	 Proof system for SCSp J 168

B.2	 Proof system for SCSP 169

B.3	 Derivations in the proof system for SCSP 170

B.4 Proof syst.em for SRPT J . 171

B.,J Proof system for SRPT . 1"0,­

C Algebraic Derivations	 173

C.1	 Token ring interface with data 173

C.2	 The sorter pipeline 176

C.2.1 First phase of the pipeline	 176

C.2.2 Composing pipes	 182

iv

Chapter 1

Introduction

As technology advances and society places a greater reliance on computer systems
ill critical applications, verifying the correctness of these systems becomes more
important and more difficult as the size of the systems increases. FUrthermore, in
an endeavour to increase efficiency more empha..~is is being placed on concurrent
systems which are harder to analyse thaJ.l their sequential counterparts. A con­
current systl:'lTI can be viewed as a network of component processes interacting via
some form of communication. Because of an awareness by computer scientists of
the need for formal design and vel'ification techniques for such systems, the last
decade has 8ef>n the development of mathematical models (including so-called pro­
cess algebras) of communication and concurrency which can be used to analyse
the behaviour of networks of processes. Well-known process algebras are Hoare's
CSP [Hoa85J, Milner's CCS [Mi1891 and Bergstra and Klop's ACP [BK84). The
usual approach of these algebraic methods is to view th~ system at an appropriate
level of abstraction at which only key events are observed. At this level the sys­
tem is described in an equational form which, by the use of algebraic laws, can be
manipulated to give information concerning the interaction of these events.

The original process algebras do not display any concept of quantitative timej
they restrict, t.heir concerus to the ordering of events. This makes them unsuitable
for examining systl'lnS in which timing is critical. for example a nuclear reactor con~

troller must insert the control rods within time t once an overtemperature signal
has been detected, where t is typically a very short time. There are also situations
in which s.ystems, without time critical requirements, may be more satisfactorily
modelled in a timed framework. In an idle token ring the token passes unhindered
around the ring; there is no guarantee of the availability of a message for trans­
mission around the ring and any model must be able to represent this situation.
Consequently in an untimed model it may be difficult to hide the mechanism of
the protocol (the t.oken) while avoiding infinite chatter (the possibility of an arbi­
trary number of internal events occurring). In a timed model this problem can be

avoided by assuming that the token ta.kes time (which cannot be hidden) to pass
around (he ring.

In order to extend the domain of problems which can he sa.tisfactorily addressed
by process algebra tecbniques, there has been interest in extending the original
algebras to incorporate the concept of time. Both dense and discrete time domains
have be€n considered for the measure of time. Dense time models typically use the
real numbers, R, a~ their time domain and view the passage of time as continuous.
Dense time models include Reed and Roscoels Timed esp [DS89, RR86], Moller
a.nd Tofts' Tempmal CCS [MT90] and Baeten and Be'gstm's Timed ACP [BB91a].
Discrete time models typically use the natural numbers, N, as their time domain
and assume that time increases in a, stepwise fashion, each step corresponding to
the 'tick' of a global dock. Discrete time models include Milner's Synchronous
ees [fo.liI83], Hennessy and Regan's TPL [HR90], and Jeffrey's Discrete Timed
CSP [Jei91a.].

This the~is is devoted to the development of a new discrete time model, Syn­
chronous esp, and its 'receptive' submodel [DiI89, Jos92]. It is hoped that these
process algebras will be widely applicable; case studies in protocol verification and
digital logic design are described in this thesis.

1.1 Technical Overview

1.1.1 Synchronous CSP

The next chapter presents a discrete time algebra, Synchronous esp. Whereas ees
and sees are basf"d on an operational semantics, esp and sesp are based on a
denotational semantics. In sesp, tbe underlying model is a failures~divergences

model [BR85] in which time is recorded implicitly. The failures have heen encoded
as traces (finite sequences) of sets, these sets consisting of occurrences and refusals
of events. Divergences are also encoded in the t.race sets as in (Jos92], giving us a
very simple model.

In designing the language SCSP, the aim has Leen to achieve a formalism which
is sufficiently expressive to capture the time dimension of systems under analysis,
while at the same time maintaining a powerful algebraic struct.ure. By choosing a
discrete model of time we limit the applications of oUr algebra. It only applies to
systems where a lowest common denominator on the delays between observations
can be postulated. This is less restrictive tban one might imagine; in fact for a
majority of systems a discrete time model is the natural r.boice. This is particularly
so in hardware whicb is often clocked at a speed whir.b allows individual components
to reach a stable state. hI applications where the concept of discrete time does
indeed suffice, the advantages of using an algebra which supports the same level
of expressibility can be extensive. By using a discrete time model we are able to

2

obtain a complete axiomatisation within the algebra; this is not the case in the
current models of Timed esp, for example. Such an axiomatisation makes the
algebra a powerful specification and design language.

Although many of the constructs within the algebra are constructs familiar to
esp, SCSP should not be regarded as a syntactic extension of esp. Instead, advan­
tage has been taken of the timlC' dimension in setting up the model, while keeping
the mod('[c1oslC' enough to that of CSP to draw from the wealth of experience that
has been generated by the latter.

In SCSP, WlC' assume that events which occur simultaneously are independent.
This j::; a fairly llatural assumption ~ince it merely assumes that time must pass
between cau::;e and effect. We exprlC'SS t.he simultaneous occurrence of events by t.he
use of sets in the trac('s, rather t.han artificially imposing an ordering on events
occurring simultaneously. This resembles the 'true concurrency' approach and con­
trasts with the 'interleaving concurrency' approach of many other process algebras.

A second assumption of our model is that a given event can occur at most once
at each time step. (We are not jnterested in pathological cases, such as that of
an infinite Humbcr of occurrences of an event at a given time which Jeffrey finds
himself considering [Jef91aJ. Indeed, we restrict ourselves to finite alphabets of
events and so wc ean be sore that only a finite number of events occur at any
given time.) Again the assumption is less restrictive than it might first appear .
.For example, the voltage-level on a wire may change many times between clock
pulses, but provided it always stabilises before the rising edge of the clock, say, at
most one event (indicating the final voltage level associated with that wire) need
be recorded on each tick.

1.1.2 Synchronous Receptive Process Theory

In the latter half of this the.'lis a second algebra, Synchronous Receptive Process
Theory is presented. There are st.rong similarities between the design principles
of this lan.s;uage and sesp; namely SRPT is based on a discrete t.ime frame, si­
multaneously occurring events are a..<;snmed to possess causal independence a.nd
simultaneous multiple occurrences of the same event are prohibited in the language.

The main difference between SCSP and SRPT is the assumed method of com­
munication blC'tween processes and t!wil' environment. In SCSP we assume t.hat
events O(TUr only on ~imultal1eous co-operation of tbe process and its environment.
In SRPT events performed by a process are classified into two types. input events
and output events. The process is always receptive to input events l in that it is
always willing to co-0plC'rate with the environment on the performance of input
events. Symmet.rically the envirollment is always prepared to allow the perfor­
mance of output ev(>nts from t.he process. The process has complete control over
the performance of oul put events, while the environment has complete cont.rol over

:3

the performance of input events, Naturally the behaviour of a process is influenced
by the inpnt events performed, so input to a process can affect subsequent output
by that process. The method of communication adopted by SRPT, coupled with
the choire of time frame, make SRPT particularly appropriate for problems which
involve modelling clocked circuits.

Like SCSP, SRPT is based on a denotational semantics. The underlying model
for SRPT is very simple: by distinguishing between input and output events in the
model and considering the receptive nature of communication, it is no longer nec­
essary to record refusal information. It is sufficieut to consider a traces-divergences
model in which time is recorded implicitly. Terms in the traces are sets of events.
Divergeo.ces are again encoded ill the traces, although a. slightly different approach
to this encoding result-s in us considering a different partial order on the model to
the usual non-determinism ordering used in CSP [BR85] and SCSP.

The similarities in the design principles of SCSP and SRPT are borne out in
our ability to l'mbed SRPT and its associated model into SCSP and its associated
model. The embedding demonstrates how SRPT can be viewed as a receptive
sublangllage of SCSP. Moreover, many of the theoretical results of SRPT can be
deduced via the embedding and corresponding results for SCSP.

A final consequence of the combination of the receptive model of communication
and the discrete time frame in SRPT is the ability to perform timewise abstraction.
Timewise abstraction provides a method for translating the time frame in which a
system is represented. This can be particularly useful when the internal workings
of components of a system are most appropriately verified in a time frame different
to that appropriate to the ultim<lte interaction between the system and its environ­
ment. Timewise abstraction can be viewed as the time dimensiona.l counterpart to
communication a.bstraction which is already recogni~ed as a powerful development
tool.

1.2 Structure of this Thesis

This thesis can be divided into two parts. The first part consists of Chapters 2--4
and is concerned with the discrete time process algebra, SCSP. Chapter 2 intro­
duces the language SCSP; each of the operators of the langnage is described, these
descriptions are supported by axioms satisfied by processes in SCSP and some ex­
amples. A mathematical theory ullderpiuning the algebra of SCSP is developed in
Chapter 3; a failures-divergences model representing the behaviours of processes
is presented, this enables the construction of a denotational semantics for SCSP.
A proof s)'stem for SCSP. incorporating the axioms presented in Chapter 2, is
shown lo be sound and complete with respect to the semantics in Chapter 3. In
Chapter 4 the language is enhanced to allow value passing in communication, this

4

enhancement is used in the specification of a token ring protocol in SCSP.
Tbe second half of this thesis, Chapters 5-7, presents a synchronous receptive

process theory (SRPT) and considers some of the features of this algebra. In
Chapter 5 thl' la.nguage SRPT and its a.<;sociated denotational model are presented
and informally compared with those of SCSP. The comparison of SRPT with SCSP
is formalised in Chapter 6 where, by embedding both the language and model of
SRPT into that of SCSP, it is demonstrated how SRPT can be viewed as a receptive
sublanguage of SCSP. The embedding makes it possible to deduce a sound and
complete proof system for SRPT from the results of SCSP. The theory of timewise
abstractiou and its application to SRPT are considered in Chapter 7, the use of
timewise abstra.ction is supported by several examples drawn from the field of
digital logic design.

The final chapter outlines the ma.in restdts of this thesis, make.~ comparisons
with work by other authors and concludes with a. discussion of possible future
developments resulting from this work.

5

Chapter 2

Synchronous CSP

Like Hoare's CSP [Hoa85], Synchronous CSP is designed to provide a clear model
for systems of concurrent processes interacting via synchronised communication.
Moreover, 8eSp allows us to model timing conditions by assuming that events
occur at discrete points in time. It provides an algebra and associated algebraic laws
allowing us to manipulate expressions into forms which make the consequences of
the interaction explicit. Non-determinism and concurrency are handled in a manner
familiar from esp, although other constructs have been superseded by constructs
which ellable us to grasp better the considerations which are our concern: namely
our implicit measure of absolute time and our true concurrency approach to events
which occur simultaneously.

We shall see in this chapter that Synchronous CSP is a simple language which is,
nevertheless, sufficiently expressive to capture the characteristics of many systems.
The algebra and laws are underpinned by the denotational model which will be
presented in Chapter 3.

2.1 The Language

As in Hoare's esp, we assume that the system we wish to model can be viewed
as performing, in cooperation with the environment, a selection of instantaneous
events. We take the environment to be all components which may interact with
the system under scrutiny. Such components will typically be other systems or a
user. We choose to insist that events have no duration; actions with duration can
be represented by two events symbolising the commencement and termination of
the action.

We presuppose a universal alphabet of events B. We associate with each process
an alphabet of events, A ~ E, in which it may participate. We require that A is
finite and non-empty. We also presuppose a set of process variables, Var. These
va.riables facilitate the definition of processes by recursion.

6

The abstrad synt.ax of our language is similar to a subset of esp, the ob\'ious
difference being the replacement of the event prefix const.ruct by the set prefix
const.ruct. We take P to rallge over process terms*, A E !F'E : x E Var and 5 to
range over bijeet.iyp rcnaming functions S : r; ...-.jo 'E. Then, wit.h certain restrictions
on the a.lphnbets of tlw proc<'sses, the following grammar defines the syntax of our
language.

P ::= -i A	 Chaos

process variable
 I'
I Pn P non-det.erminist.ic choice

1 [X<;,1 ~ Px] set prefix

IP II P parallel composit.ion

IP \ A hiding

I PiS] renaming

1~·r:A.p recursiOIl

1 (Xi eo Pi), with A mu tual recursion

We now consider the informal int.erpretation of each of t.hese terms along with
restrictions imposed upon the alphabets of the process terms.

2.1.1 Primitive processes and operators

In presenting t.he operators in t.he following sections we shall state various equa­
tional propert.ies of these operat.ors expressed in the form P ::::: Q (P == Qmeans, on
the other hand, P is defint,d equnl to Q). When t.he E'fjllat.ionaJ property is stated
as an axiom, it is an axiom of t.hp proof system t.o be presented in Section 3.4.
When the equationa.l propert.y is stated as a law then it is derivable within the
proof system - the derivation of many of these laws is however tedious involving
reduction find comparison of the terms Oil hoth sides of the equation, so will not
be presented here.

Chaos

The process -itt is the most undesirable process with alphabet A; it can arbitrarily
mimic t.he beltaxiour of any other process with the same alpha.bet. Such a process
is si'\.id to be divergent. It is llsed to model behaviour when things go wrong, it is a
worst case scenario and we aSSUllle' there is no escape from this erroneous beha.viour.
Often the alphabet will be clear from the context and we will simply write 1-.

*If X denot.ffi the set or fiuite subsf't,s of X while I? X denotes the power sl"! of X.

7

Process variable

The inclusion of process variables within the syntax allows a proper treatment of
recursion. The term .1' E Vat· represents tht:' process bound to variable x in the
context of a particular choice of variable bindings. It is necessary to make explicit
the choice of va..riable bindings before we can make any deductions about the process
to which x is bound.

Non-deterministic choice

v..'hen two proct:'~~es P and Q have a comOlon alphabet A, we define the non­
deterrrllrristicchoice between these processes, pnQ, to be the process with alphabet
A which non-deterministically behaves like P or like Q. As with esp, this choice
can be viewed a... oC('ltrring internally within the system; the environment has no
control over the outcome of the choice.

Non-deterministic choice satisfies the following axioms:

A-I: pnQ=Qnp

A-2: (pnQ)nR=pn(QnR)

A-3: PnP= P

A-4: P n 1-=1­

Axiom 4 reflects the observation that .1 call mimic the bl?haviour of any pro­
cess; in particular, we cannot distinguish between a choice in favour of P and 1­
arbitrarily mimicking the behaviour of P.

Set prefix

A choice set B is a subset of an alphabet A. Let P be a lP(B)~indexed family
of processes, each with alphabet A. Tllf' process [X ~ B - P x] can perform the
events in any subset, C, of B at the first time step alld then go on to behave
like Pc. None of the events in B can initially be refused by the process, so the
largest subset of events from B offered by the environment will he performed by
the process. The process is initiall)' unable to perform events not present in B.
This process has a built in time-out behaviour in that, if the environment is not
initially willing to offer any e'''ents in B, then the process will 'time-out' and then
behave like PO'

COll5ider the process

[Xc:{a,b} ~ (1- if X ~ {} else PII.

8

Iuitially it is able to perform events a or b or both, but cannot perform any other
events in its alpha.bet. If the environment is able to participate in at least one of a
and b then the process will evolve to P at the next time step. On the other hand,
if the environment is not in a position to offer either a or 6 to the process, then the
process will not perform an event at the firsl time step and will evolve to chaos at
the next time step.

Set prefixing provides the only form of environmental choice in our language.
This choice differs from the extemal choice of both untimed and timed CSP [BHR84,
RR86]. Unlike those models, SCSP does not support instantaneous resolution of
external choice. A process cannot offer its environment the choice between two
events without being able to oifer both together. This is a direct consequence of
our assumption that events observed sicoultanconslyoccur independently; the per­
formance of (1)(' event at a particular time cannot preempt another event at the
same time.

We ha.ve one axiom involving set prefix.

A-5: If C<;: B,

[X<;:B ~ Px]nIY<;:C~ Qv]"rX<;:B ~RxlnIY<;:C -; Qy]

_{P8' n QB' if B' <;: C
where RBI:::: PBI if B' <l:. C

This axiom is explained by noting that all observer can establish which way the
process resolved t.he non-deterministic choice after the first time step exactly when
at least one of th(' events offered hy the environment is in the set B - C.

Consider the process

rX<;:{a,b}~ PJn[Y<;:{a}~ Q]

If the environment offers a b initia.lly, then we can tell after the first time stl?P
whether the process will behave like P or like Q by noticing whether the b occurred
or not. If the environment does not offer a b initially, then there is DO way of
establishing whicb way the choice wa.." resolved without further observation. We
can therefore postpone tllf' resolution of choice in those circumstances when the b
is uot initia.lly offerf'c!. Hence the aboye process is equivalent to:

IX <;: {a, b) ~ (P if b E X else P n Ql] n [Y <;: {a) ~ QJ

In the case where B = C A-5 and the idempotence of non-deterministic dl0ice
allow us to deduce the dist.ributivity law:

L-l: IX <;:B ~ P"ln [J'<;:B ~ Q,]",,[2<;:8 ~ (Pz n Qz)l

~

It is convenient to provide an alternative notation (or set ~refix. Let J = {1 .. n}
be a finite indexing set, let. Bi (j E /) be distinct finite subsets of the alphabet .4,
and let Pi (i E 1) and Q be processes with alphabet A. Then we write

[B, ~ P, 0 IJ, ~ P, 0 ... 0 B, ~ P, Do Q] '" IX <:; UBi ~ Px]

P, if B I = Bi and i E J
where PB, == Q{ otherwise

Parallel compositioll

The paIilUel cornjJositioll. P II Q, of two processes P and Q is the process which
results (rom their cOIlCllrrent execulion. Assuming that the alphabets of P and Q
are oP ond oQ r(,s[H'ctively. Uten the a.lphabet of P II Q is o.:PUo:.Q. While neither
of the compouent processes arc divergent, synchronisation mnst occur on common
events. Synchronisatioll over common evt'nts means that such events can only occur
when both P a.nd Q are prepared to perfofm them; they are refused if one or both
of the component processes refuses them. Events not in the common alphabet can
occur or be refused according to the state of the corresponding component process.
Once onE' or other of the component processes becomes divergent so does P II Q.

Parallel composition satisfies the following axioms:

A-6: ~A II P "~AU"P

A-7: P II~A=~,uQP

A-B: (PnQ)IIR,,(PIIRln(QIIR)

A-9: PII(QnRl=(PIIQ)n(PIIR)

A-IO: IX<:;A'~Fx]II[Y<:;B'~Q,.]"

[Z <:; ((A' n B') U (A' - BI U (B' - A)) ~ (PznA, II QznB,J]
wlH're [X~AI- pxJ and [Yo;B' ---I Q}.j have alphabets A and B.

Commutat.ivity and associativit ...· of parallel composition CaJ] be deduced within the
proof sysf,Plll. The proof of L-2 is given a~ Theorem 8.1 in Appendix 8.

L-2: F II Q" Q II F

L-3: (F II Q) 1111 " P II (Q II R)

10

Hiding

It is often useful to be able to change the level of abstraction of a problem by hiding
events from tbe environment. For example, when building a model of a circuit we
may develop subcomponents, take their parallel composition and finally hide all
communication on internal wires between subcomponents. The set of events to be
hidden, B, do~s not include the whole alphabet of the process P. A hidden event
occurs as soon as the process is ready; the environment plays no part. As the
passage of time cannot be hidden and events are assumed to occur no more than
once a.t each tick of the glohal clock, ;infinite chatter' ca.nnot arise over a finite time
span.

Hiding satisfies t.he following axioms:

A~ll 1-A \B ,,1-.'_B

A-12 (pn Q)\A" (P\A)n(Q\A)

A-13: IX c;B ~ P x] \ Jl;=[l~ c; (B - A) ~ (PYU(BnA) \ A)I

and the following laws:

L-4: (P\A)\B"P\(AUR)

L-S: (P II Q) \ A'" (P \;l') II (Q \ A')
if A' n oP no Q ~ {}

Renaming

Renaming facilita.tes reUse of components. It is often the case that two processes
in a system can be viewed as isomorphic in that their behaviour is the same up to
some relabeling of eveuts. Rest.ricting ourselves to a bijective renaming fnnction
S : :E ----t I'; , we denote P[S] to be a renaming of process P. If process P has
alphabet A then peocess PIS] has alphabet AIS] ={Sial I a E A}. PIS] performs
event S(a) in exactly the circumstances that P would perform event a.

Renaming satisfies thf' following axioms:

A-14 : 1-A [S] "1- A[sJ

A-IS: (P n Q)[Sj " PIS] n Q[S]

A-16: IX c;B ~ PxIlS]"IX C;BIS] ~ Pxls-'JiSll

and the following laws:

L-6: PIS][R] " PIR . SI

L-7: (P II Q)[S] " P[S] II QIS]

L-8: (P \ B)[S] " PIS] \ BISI

II

2.1.2 Recursion

Until now we have only provided operators suitable for expressing finite processes.
Any process whicn can be expressed using the operators developed so far will, after
a finite time, hehave like our basic process ..1.

Jl:r: A • P represents the solution of the recursive definition of the process J

defined 1\8 a part.icular (least) fixed point of the function). :I • P. The mathematical
details of this con~truction will be presented in a. later section.

A-17 , I'" A • P '" PIU" ,A· P)/x)

Here PIUI x A. P)/.r] denotes the proCf~SS P with pI : A • P substituted for
every free occurrence of the variable x. (This syntactic substitution [E/x] Call

always be distinguished from renaming [8] by its context.) Recursion also satisfies
alpha c0nver~ion:

L-9: 1",A,P"'I'y,A.P[y/x! where y is not free in P.

Uniqueness of fixed points

Following Brookes, Hoare and Roscoe, [BHR84j, we define P l n to be the process
which behaves like P for the first n steps and then becomes chaotic, behaving like
..l. A function, F, from process terms to process terms is said to be constru.ctive if
the first n+l steps of the behaviour of process F(P), for an arbitrary process P,
are onl)' dependent on the first 11 steps of process P's behaviour; i.e.

F(P) 1 (n+1) ~ F(P 1 n) 1 (n+1) for all P.

Similarly F is said to be a non-destructive function jf the first n steps of the be­
haviourof a process F(P), are only dependeut ou the first 11 steps of P's behaviour;
i.e.

F(P) 1 n = F(P 1 n) 1 n forallP.

These definitions can be extended to functions with more that one argument
and a function can be described as being constructive or non-destructive in some
or all of its arguments.

All the primitive operators developed here are non-destructive and [X ~ B -t .J
is constructive in all its arguments. It is a simple exercise to show that the compo­
sition of two non-destructive functions is non-destructive, while the composition of
a constructive and non-destructive function is constructive. So any).:r • P with P
a process tlC'rm is non-destructive. l\.-loreover if every occurrence of the free variable
x in P is dirlC'etly or indirectly guarded by a set prefix, then). x • P is constructive
in x. Formally:

12

Definition 2.1 We say that a process term P is guarded in z if one of the following
conditions i8 met:

1.	 x does not occur free in P.

2.	 P = y for SOIW' process variable y /:. .r and y is bound to a process which is
guarded in x.

3.	 P = [X ~B -t Pxl for SOOle subset, B, of the alphabet.

4,	 P = Q II R, where Q and R are guarded in z .

.5.	 P = Qn R, where Q and R are guarded ill x.

6.	 P = Q \ A, where Q is guarded iu I.

7.	 P = Q[S] where Q is guarded ill x.

8.	 P = 1/ y: A. Q, where Q is guarded in :T:.

9.	 P = (Xi == Qi)) with A, where QJ is guarded in z. (Mutual recursion IS

defined helow.)

o
Not", that. unlike esp, SCSP gives P \ A guarded jf P is guarded.

It is a trivia.J consequence of the above definition that P is guarded in X implies
).;(• P is constrnctive in x.

It follows from the argument set out in [BHR84] that if P is guarded in x then
JL x ; A • P is the unique fixed point of). z • P in an appropriate partia.l order.

Mutual recursion

Let A be a finite totally ordered indexing set and let i,j range over A. If, for all
i E A, P, i8 guarded in x) for all j S; 'I then

(x, "Pi)i with A i E A

represents the jlh component of the solntion of the recursive definition of the vector
of processes (I,) defined as a particular (nnique fixed point) solution to the equation
(Xi == P,), In a manner similar to the case for simple recursion we have the fol(owing
axiom.

A-IS:	 «Xi" Pi), with A) '" P,[(x," Pi)' with Al/x.]
where k range8 over tIle Xl: free in p).

and alpha conversion:

L-IO: «"" Pi), with A) '" «(y," P,[y';"'])i with A)
where no YJ: i8 free in any Pi and k ranges over A.

13

2.1.3 Derived processes and operators

The following processes and operators can be constructed from those introduced in
the previous sections. They are presented separately here since they are useful in
their own right.

Wait

Wait is simply a special case of set prefixing. It may be that a process waits for
a number of units of time, unable to engage in any actions, and then hehaves like
process P. We denote such a process hy wail (n) -+ P. We can define the wait
prefix in terms of set prefixing with {} as follows:

wad(O)_P == P

wat(n+1) ~ P '" [XC;;{} ~ (wait(n) ~ P)]

L-l1; wait(m) _ lWQit(n) -+P}= wait(n+ m)--tP

Proof: by induction on m..

Base case m = 0 is trivial by definition of wail.

Inductive step.

wait(m + 1) ~ (wait(n) ~ P)
== {defn. of wait}

[X(;{j ~ (wait(m) ~ (wait(n) ~ P))]
== {inductive hypothesis}

[X(;{j ~ (wait(n + m) ~ P)]
== {defo. of wait}

wail(n + 111 + 1) -+ P o

Stop

The process STOPA is not prepared to perform any event in its alphabet, A, at
any time. The stability [RR86] of the process is not recorded in this model so this
process covers both the case where the process is genuinely unwilling to participate
in any event and the case where the process is only prepared to participate in
internal events invisible to the en vironment. As far as the environment is concerned
these are indistinguishable; in both cases the process is idling. So the process
STOPA is the process which waits forever.

STOP. '" ~ x, A. wait(1) ~ x.

An obvious consequence of this definition is the following law:

14

L-12: wait(t) ~ STOP,,, STOP,.

Proof: by induction on t.

Base case I. = 0, trivial by definition of wait.

Inductive step.

wait(t + 1) ~ STOP,
{ by L-ll }

wait(!) ~ (Wait(t) ~ STOPA)
{ inductive hypothesis}

wait(l) ~ STOPA
{ defn. of STOP}

waite 1) --+ tt, x • wa.it(1) --+ x)
{byA-17}

J1X. wait(l) --+:t'

{ defn. of STOP}
STOPA o

Run

The process RUNA is always prepared to perform any set of events from its alpha­
bet. It. is given by:

RUN, e, I" : A • IX <; A ~ xl

As RUNA never refuses to perform all event we have the following laws:

L-13: RUNA II RIIN." RUNAu•

Proof:

RUN, II RUN.
" {deln. 01 RUN}

IX <;A ~ RUNA) II IX <;8 ~ RUN.]
" {by A-lO }

IZ<;(A nB) U (A - 8) U (8 ­ A) ~ RUN, II RUN.]
::=: {set manipuation }

[Z<;A U 8 ~ RUN, II RUN.]
== {by uniquness of solutions to guarded recursive equations}

RUNAuB o

15

L-14: RUNA II P = P where A'; aP

Proof: Later, in Section 3.4, we show that every process can he characterised by
a set of finite processf'S, each of which can be expressed using the process 1.- and
the set prefix and non-deterministic choice constructs. By structural induction it
is sufficient to establish the result in the following cases:

•	 Rl'NA II1-B=1-B if A'; 13, by A-6

•	 If "(P n Q) = 13 and A '; 13 then, RUNA II (P n Q) =P n Q assuming
R['NA II P =P and RUNA II Q=Q, follows fwm:

RUNA II (pn Q)
{by A-8 }

(RUNA II P) n (RUNA II Q)
{ by inductive hypothesis }
pnQ

•	 A'mming a(lX ';13' ~ Px]) = B, A '; B and VC '; 13'. RUNA II Pc =Pc
then, RUNA II IX ';13' ~ Px]=IX ';13' ~ Pxl follows from

RUNA II IX ';13' ~ Pxl
{expanding definition of RUN}

IY,; A~ RliNAlli IX ';13' ~ Pxl

_ {by A-lO }

IZ '; (A n 13') u (B' - A) ~ PznB' II RUNAI
{ rea.rra..nging terms }

IZ';B' ~ Pz II RUNAI
_ {by inductive hypothesis

IZ';B' ~ PzI

o

Event prefixing

If P is a process and an event in the alphabet of P, then the process a '"'-'lo P (P (L

prefixed by evenl a) will wait indefinitely until an a is offered, at which point the
a is performed wd the process behaves like P. This is defined as follows:

a~P",p,. [{a} ~ P t> 'I
This event guarded construct has a behaviour comparable with the prefix construct
of both CSP and Timed esp. For example we have the following laws:

L-15: (a~P)n(a~Q)=a~(PnQ)

16

L-16 (a~ P) II (a~ Q)~ a~(P II Q)

L-17 : (a~P)II(b~QJ~

STOP

a~ (P II (b~ Qj)

b~ ((a~ P) II Qj

[(a,b}~(PIIQ)

D{a}~PII(b~Q)

D{b}~(a~P)IIQ

C> (a~ P) II (b~ QJ]

ifa,bEapnaQ
a i b

if a ¢ <>P n <>Q
b E <>P n <>Q

if a E oP naQ
b ¢ <>P n <>Q

if a,b ¢ <>pn<>Q

Notice that our explicit 'true ('OIlCUI'L'ency' approach results in the possilJility of
both a aud b occurring s1[TIultaneotls!y when the occurrence of these events is
independent of interadion betweeu component processes.

L-18 : (a ~ P) \ {aJ ~ wall(1) ~ (P \ {aJ)

Here we S~~ that, like Reed and Roscoe's Timed CSP [RR86L hiding events cannot
hide time. Although we can hide the event a prefixing P, the time lapse, during
which the hidden event is performed internally, remains visible.

2.2 Examples

In this section we present two examples which demonstrate the features of the
language and the use of the algebraic laws.

2,2,1 A watchdog timer

A watchdog timer, as proposed by Haoman [Hoo90]. monitors several processes in
a system. Earll of the processes which is being monitored is required to send an
ok signal to the monitor at regular iutervals. If the time between ok signals from
any one pro~ess exceeds a given maximum then the timer signals failure.

Implementations of watchdog timers have been proposed in Timed CSP [8cb91]
and PARTY [HSZFH92]. 'Ne shall demonstrate two ways of constructing such a
timer in our algebra. Using the algebraic laws we then show these two implemen­
tations are equivalent.

For simpli~ity we shall consider a system in which there are two processes being
monitored, Suppose also that the intenal between consecutive ok signals from each
process mllst not exceed 2 units.

17

a.ok : I

M I-- f ---1 I:A/a"m bell

b.ok I

Watch!

Figure 2.1: \Vatchdog timer: version 1

Version 1

III this version, Figul'e 2.1, the process M does all the work, monitoring the two
proc:essel on a.ok and b.ok. If a signal is not received on either channel within the
required time then failure is signalled to A/ali/l. Once the failure has been signalled
the timer swi tches off and no longer checks the frequency of the signals from the
processes it was monitoring.

M ;oMn "M ~ (a.ok,b.ok,f)

whe" My '" IX <:: {a.ok, b.ok} ~ (M{ •.••.•.••)_X if Y <:: X else Fail)]
Fail ;0 IX <:: (a.ok, b.ok,f) ~ (Off if f E X else Fail)]
Off '" IX<::{a.ok,b.ok} ~ Off)

My will fail unless every event in Y occurs in tlw next interval. Fail will signal f
as soon as the alarm is ready.

The alarm simply waits for a failure signal (\.nd then rings an alarm, signalled
by the event bell. We are not interested in the behaviour of the system once the
alarm ha.'l been ra.ised; this is modelled by assuming the worst possible behaviour.

Alann == f Ring "Alarm = {f,bdl}

Ring == bell -.t

The watchdog timer system is then given by composing the monitor process
and the alarm in parallel and making the failure signal f internal.

Walch! '" (M II A/M'm) \ {f}

18

http:�.��.�.��

a.ok

b.ok

i I MA ~aI-

Aim I:

! I M. ~bI-
I I

Watch2

Figure 2.2: Wa.tchdog timer: version 2

b,1I

Version 2

The second approach, Figure 2.2, is to divide the task of monitoring the various
processes alUong several components in the timer. Each component in the timer
monitors a differf'nt process. The alarm is raised by the monitor a.'3 a whole if one
of these components detects an error.

The general behaviour of the monitoring component is given by Mi.

MI - [{ok} ~ MI [> MI'] oMI = {ok,f}
MI' - [{ok} ~ MI [> F]

~F IX <;; {ok,f} ~ (0 if f E X else F))
0 - ok~ 0

The monitoring component awaits an ok signal from the specified process and
signa.ls failure to t.he alarm if excess t,ime h&3 elapsed since the process Ia.'3t com­
munica.ted satisfactorily with the monitor. The specific monitoring components in
our system can be expressed as renamings of such a general monitor component.

MA =MI[a.okjok,a.flf]

M. =MI[b.okjok,b.flfl

The alarm waits for a failure signal on either of the channels a.f or b.f. Once
such a signal hag be€'ll observed the alarm activates the bell. As before we are
not concerned with the subsequent behaviour of the system and we assume that
the alarm, a.nd hence the whole system, behaves chaotically after its task hag been
performpd.

Aim = [X <;; {oJ, bJ} ~ (Rug if X f {] else Aim)]
Rng bell '""'-+..L

19

The watchdog timer is obtained by taking the parallel composition of these
three components and hiding the failure signals a.f and b.f

Walch2 = (M., II MB II Aim) \ {aI, bI}

Comparing processes

We wisll to establish that Walchl cUHl Wal.ch2 are equivalent systems. To achieve
this we shall, using the algebraic laws, reformulate the two processes eliminating
both parallpJ composition and hiding constructs. Once in this simplified form it
will bp trivial to verify thal the two systems are equivalent.

FirsL we mmider ll'atchl. By ilpplyillg the algebraic laws and appealing to the
llniquenP:'s of guarded recursi~'e equations we can establish that

Watth r =: l'Vl{)
wlwe WI, =IX <:; {"ok, b,ok} ~ (WI{.A,lA}_X if Y <:; X else FI)I

FI =IX <:; {a.ok, b.ok} ~ RlJ
Jll=[X<:;{",ok,b.ok,bdl} ~ (-l ifbdlE XelseRI)]

It remains to consider Wafch2 _ In this case we will go into a little more detail.
To ease notation we shall write M~, FA, 01\ and M~, FE, OB for the obvious
renarnings of MI', F and O. By expanding the expressions and applying the
algebrai(laws A-6, A-lO, A-ll and A-l:3 we see that

/ (0, II MB II R"g) \ {aI,b.Jl)

\ (0, II M~ II Rag) \ {aI,b.Jl

(OA II F. II Rng) \ {aI,b.Jl

satisfies the guarded mutually recursi~'(' equation:

/ "=IX <:; {a.ok, b.ok, bell} ~ (-l ifbell E X else (x if b,ok E X else V))])
\ Y=I,\ <:; {a.ok, b.ok, bell} ~ (-l 'f bdl E ,\ else (x ,f b,ok E ,\ else z))]

z=IX<:;{',ok,b,ok,bdl} ~ (-l iflwllE Xelsez)]

Moreover so too does (Rl,Rl.Rl). So by Ulliqueness of solution to guarded re­
cursive equations

(0, II M. II Rng) \ {,./, b.J)}
(0, II M~ II Rng) \ {a./, b.J) "RI
(0, IIF. II Rng) \ {a./,b.J)

By a simiJal' argument we can show that

(MA II 0. II Rng) \ {a./, b.J) }
(M; II 0. II Rng) \ {a./, b.J) "Ill
(FA II OB II Rng) \ {,I, b.J)

20

and

(OA	 II OB II Rnq) \ {aI,b.Jl =Ri

Now by expanding terms and noting the anove ideutities we can show that

(Al.	 II FB II Aim) \ {aI, b.Jl)
(M~ II FB 11 Aim) \ {aI,h.Jl
(FA	 11 FB II Aim) \ {aI,h.Jl = Fi

(FA	 IIM~ II Aim) \ {aI,h.Jl
(FA II "'f. II Aim) \ {aI,b.Jl

Finally, by expanding the expressiolls and applying the algebraic laws A-lO and
A-13, we can establish that

(M A II MB II Aim) \ {aI,h.Jl

=[{a.ak,h.ak} ~ (MA II MB II Aim) \ {aI,h.Jl

o {a.ok} ~ (M, II ME II Aim) \ {aI,h·n
o {h.ok} ~ (M~ II ,If. II Aim) \ {aI,b.Jl

t> (M~ II M~ II Aim) \ {aI,h.Jl]

(MA II M~ II Aim) \ {aI,h·n

=({a.ok,b,ok) ~ (MA II MB II Aim) \ {aI,h.Jl

O{h.ak} ~ (M~ II M. II Aim) \ {aI,b.Jl t>FJ]

(M~ II MB II Aim) \ {aI,b·n

=[{a.ok,b.ak] ~ (MA II MB II Aim) \ {aI, hI}

o {a.ok} ~ (MA II M~ II Aim) \ {aI, hI} t> Fi]

(M;	 II M~ II Aim) \ {aI, b.Jl

=[{a.ok,b,ok} ~ (MA II MH II Alm)\ {aI,b.Jl t> FJ]

By uniqueness of guarded recursive equations (AlA II AlB II Aim) \ {a./,b.I} ~ Wi.
Hence

Watchl =: tt'atch2

as required, showitlg the systems equivalent.

2.2.2 A lift lobby

As a second example, wf'-'ihall consider the behaviour of Hoare's lift lobby [H(la86].
We shall see that the 'tn\C concurrency' approach of SCSP gives us a slightly
different insight into the working of the system from the 'interleaving concurrency'
approach of esp. Also thf" implicit discrete time framework of the algebra a.llows
us to consider timing constrainls Oil the system, constraints that could not e',en be
expressed in esp.

21

Components of the system

The lift lobby consist.s of a button, light and door. Each of these three components
performs two actions; the two actions of a given component occur alternately. Tbe
bu UOH can be p7'essed or released, the light goes on and off and the door opens and
closes. Initially the button is released, the light is off and the door is dosed. So
t.he three components can he described as follows.

CtBUTTON = {press, release}

BUrTON'" R R '" pm' ~ D D == release R

"Llr:IIT ~ {on, off)

LIGHT == F F == [I.' N'" off ~ F
on "-'I

crDOOR = {open, elose}

DOOR == C C == open "-'I 0 o == clo.<ie C

When considering the system it is helpful to realize that, as specified, tbe button
light and door eadl have two states. For example the button is either depressed
(D) or released (R), depending on the last action performed by the button. In the
depressed state the only event the button may participate in is a release, while
in the released state press is the only event in which the button may participate.
Similarly the light is eit.her orr (F) or on (N) and the door is either dosed (C) or
open (0). Making use of these observations, we aTe able to provide very simple
algebraic encodings of the requirements.

System requirements

We shall assume several coustraints on the interaction between the components of
the system. Using the algebra, we are able to establish the possjble observations
of events in the lift lobby. All the conditions we shall place on the system arc
safety requirements; these restrict the occurrence rather than the refusal of events.
Consequently: b.y the nature of parallel composition, we can take the composition
of processes, each of which represents an individual constraint, to obtain a process
which salisfies all the constraints.

When developing processes which specify system requirements, WP shall use a
naming convention which reflects the state of thl" system at each point. The safety
requirements of the system aTe given bPlow .

• The light does not go off while the door is closed.

81 == C1 aS1 = {off,open,close}

C1 == open 01
01'" [X<;{off,dosc) ~ (el ifdosc E X else 01)1

22

Notice that we allow the door to close and the light to go off simultaneously.
We assume that the light can only go off i{ it observes that the door is open.
It must take time to react to such an observation so it is reasonable {or the
lighes reaction to coincide with the door closing. It is this type of assumption
which gives us a different view of the system to that given in esp.

• TllP light does not go on unless the button is depressed.

52 ~ RZ aS2 = {pTe8<~, I'dease, on.}

Hi-==- PI'f8<~--V+ D2

D2 === [X c: {on., rdfUM}--.t (/(2 if release E X else DE)]

• The ligbt goes on only when thl? door is closed.

S.']-== C'J oS8 = {on.oprll,dosr}

C:J =:: [X ~ {all, open}--.t (0.)' if open. E X else C3]

():] =:: close ~ ('3

• The door ca.nnot close while the button is depressed.

S.{ == R..{ nS4 ::::: {prest:. releaM, dose}

114'" iX'; {pms, clo.<c} ~ (D.{ ifpcessE Xel,eR4)]

D..{ =::: ,'deaM "-'+ R..{

• The door does not open unless the light is on or the huttou is depressed.

S.5 '" lin aSS = {press, release, on, off, open.}

liPS'" IX'; {press, on} ~ (DNS if on E X el'e Dn)
if press E X else

(RN.5 if press E X el'e IIF.5)]
DFij::::: [X~{release,on.,open}....--.t (RN5 ifon E X elseRFS)

if relea.<;e E X else
(DNS if on E X el'e DFS)]

/iNS'" IX,; lImss, off, open} ~ (DFS if off E X el'e DNS)
if press E X else

(RFS if off E X el'e RNS)]
DNS'" IX'; {nlease. off, open} ~ (RF.5 if off E X else IIN.5)

if ,'efease E X else
(DFS if off E X else DN.5)]

23

• The button is not released if thE' doors a.re closed and the light is off.

86 =:: RF6 0:56 = {releou, on, off, open, close}

FC6'= IX c: {on, open} ~ (N06 if on E X else F06)
if open E X else

(NC6 if Oft E X else FC6)]
NC6 '= IX c: {off, 0l',n, rdease} ~ (F06 if off E X else N06)

if open E X else
(FC6 if off E X else NC6)]

F06 =:: [X <;;;: {on, close, nlf.(/.~r} - (NC6 if Oft E X else FC6)
if close E X else

(N06 if 071 E X else F06)]
N06'= IXc:{olr,closf,f'e!ease) ~ (FC6ifoffE X else NC6)

if close E X eLse
IF06 if off E X else N06)]

• The door does not close when the light is OIL

51:3=. F1 0:87 = {press, release, close}

F7'= IX c:{on,close) ~ (N7 if on E X else F7)1

N7'= off ~ F7

Behaviours of the Lift Lobby

As a.lready sllggestE'd, we can take the composition of these seven constraints and
the threl' components in the lift lobby to establish the allowed behaviours of the
system. We aTe interested in the process given by:

LIFT'= BUTTON II LIGHT II DOOR II SI II S2 II S3 II S4 II S5 II S6 JI S7

By use of the algebraic laws we are able to eliminate the parallel composition
operatorfrom this expression, giving:

LIFT" RFC

24

where

RFC == J)1't'.s~ ---..l DFC
DFC""[{oo,open)·~ ONOO {oo) ~ DiVCO {open) ~ DFO I> DFC]
DNO""[{cdwse,off) ~ RFO

o {,.,/,a.,,) ~ RNO 0 {off) ~ DFO I> DNOI

DI"C~/{1'f:lcasr', oprn} ----0 UNO

o {release} ----'I R,VC 0 {oprll} ----'I DNO [> DNCJ
DFO-:=:: nlrrlsc,-"",,; RFO
RFO-:=:: [{[JI·f:.~,~, c!().'I('} ---+ J)PC

o {press) ~ DFO 0 {clo,") ~ RFC I> RFOj
RNO"" [{/HTss. off} ~ OFO 0 {I"'''.') - DNO 0 {off} ~ RFO I> RNO]
RNC::=' [{pre",." oprn} ---+ D/I/O

o {pn'8S} ---+ DNC 0 {OPf'l1} ----0 R/VO [> RNeJ

Ht're the naming of pron'sses j::; such tlHlt the first letter corresponds to the
state of tlw hUl tOll. the s~col1d to tll(' state of the light and the final to the state
of tbe door. (In the jnitial state the hut-ton is r("lf'aBed, light off alld door closed.)
Tlu:, t.ransitions betw('('ll the yariolls states of the system an~ shown in Figure 2.3.

Timing constraints

Unlike CSP we call also consider timing constraints on our system. Suppose we
now insist that the button UUtrlot be rdeased until two time units after it Was

last. pressed. The doors canllot close while t.be bUUon is depre!'sed (54), so in the
situation where IJlf' button is pressed while thf' door is open, this new constraint
will ensllJ'f' an incn'<lsf'd deJay before the door may be shut,. This could be seen as
impleTI1I'1lting a hold facility in our system. The new constraint is given by:

88 -:=:: R,I(058::= {prrs."I. n:lrasc}

R8 == prrss.-......+ (wait(!) ----'I D8)
D8 ::::: Trleasr. '-d US

The effect of such a requirement on the system can easily be established by con­
sideration of the process;

LEFT II 58

We find that. t.hf' behaviour of the new system is fiirnilar to that of the oIrl with
only the following terms in the Inutua.l reCllrsion being different to the processes in

25

the expansion of the process LIFT.

RFO"" [{press, dose} ~ DFC
o (press) ~ DFO' 0 {do,,} ~ RFC I> RFO]

RNO"" [{pms, off) ~ DFO'

o {p,·e.,,) ~ O,vO' 0 {off} ~ RFO I> RNOl

Rf\'(' =0: [{pT·r.".". opcn} _ DNO'

o (pres.;) ~ DNe' 0 (open) ~ IlNO I> RNC]

where

DFO' "" wadi I) ~ OFO
DNO' "" [{ off) ~ DFO I> ONO]
DI,C' "" [{ open) ~ [)NO I> DNe]

'When the light. is off and the dool' closed, then pressing the button initiates a
call for the lifL V\"(' st't' that ill thi.<; ~ituation the introduction of extra unit delay
between tilt' ew'nt J)/TS$ and t.he subscquent nlwse does not cause a. delay in the
overall system. It is ouly in situations where the system is already in the process
of responding to a button press that the delay affects tbe possible behaviours.

2.3 Conclusion

In this chapter we have presented a language SCSP which

•	 expresses non-determinism, parallelism, hiding and recursion in a manner
comparable with CSP;

•	 incorporates qua.ntitative timiug deta,ils via, a set prefix operator l which takes
a unit of time to evolve;

•	 captures the notion of true concurrency by a set prefix operator which repre­
sents the possibility of simultaneously occurring events;

•	 has sufficient algebraic laws to be a.ble to eliminate parallel composition and
hiding from expressions.

These feiltures wefe demonstrated via. examples, where we showed implementations
of a watchdog timer to be equivalellt and examined the allowed behaviours of a ljft
system \'isible from the lift lobby.

26

"Flw8f'~ f}C'f)!

pn'ss---­~~. Trlfl.q
open close

fJre,~,~"',
,~P'fSS ~ ~

on

optn

,'"./
/

on o off

offuff "'~ l'e!caS(pre.s·s

~p"ss ~l;,0 ~---;dcn." ""~
open open

I rdcn." press"
open ope~

------Jlres~
Dl\ (' re!f'(tse Rille ~

Figure 2.3: State transitions observable in the lift lobby

The transiijon arrows a.r~ labelled with the events that occur at that. time step.

The arrows corresponding to no events occurring at a time step are omitted; in all

cases this does not result in a change of state.

27

Chapter 3

Semantics and Proof System for
SCSP

In this chapter we preseu t a. dpHotational semantics for the language SCSP. The se­
mantic Illodel record,", (,he hella-viollr:> of processes in the form of failures-divergences
infonnatioIl. This model forms it complete partial order nnder the non-determinism
ordering presented ill Section 3.1.:3, which enables TIS to usc a, domain theoretic ap­
proa,ch to est.a,hlish a. semantics for recursion.

Finally we develop a. proof system for SCSP which is sound and complete with
respect to the denotational semantics. The availability of such a proof system
allows U~ to use an <\,xiomatic approach when reasoning about process expressions.

3.1 Semantic Model

In this ~(:dion we deVf~lop a semantic model which mathematically underpins the
algebra. presented in Chapter 2. The underlying model records failures-divergences
information in a, simple format. As we shaH see the model consists of traces of sets;
the structure of the trarps naturally capturing the implicit timing aspect. By the
provision of a. semantic function from SCSP to the model and use of the strncture
inherent in thf' model we are able to make explicit the meaning of recursively­
defined exprp.~sions in SCSP.

3.1.1 Notation

Here we introduce the key concepts of the model. We also provide some useful
opera.tors on t.races.

28

Events and observation-sets

The model takes a:-; its basis the notion t.hat, at each time step. i'l process may engage
in or refuse events offered b~' the environnwlll. The universal alphabet 1: denotes
t.he set of all pm;sible ('vents. From I: we construct a disjoint set:t == {a I a E E}
of refusals. The OCCUlTenn~ of an eVf'Ht a is dellated by the ewnt itself, whereas its
refusal is denoted by a E 1:;.

A particular proces!) lllay participate ill a finitc, flon-zero number of events
A E lFl: - {}; this set i!-i the alphabd of dw Jlt'OCCS:'i, while the set ,1, being the­
obvious subset of ~. is nlJeu the refusal alphil,bet.. Clearly the refusal alphabet is
disjoint from the i\Jphahet. it.'ielf, .~1 n A = {}.

Vv'e ilSSllnw thi11. diP refusal of <Ul eVt'll(is as observab1e as its occurrelice, To
refled tbis Yif'w \Vf' record as ,Ul ObSfl'l'ulioll-set the ('vents wJlich occurred or ,vere
refused at a givell lillt(, step. For a protes.,> witb a.lphllbet A cdch observat.ion-set
is a subsd uf .:\ == Il U X TIl(' ohscrvatioll-!-iet provides a record of t.he process'
hehaviotlr ill r('!;pons(' to the en\"ironmeJlt 1l1<lking n.\"llilable a set of events at a
givcn ill:;(,aJlt of time.

Traces

A trace is a finite sequenn~ of oh"l'l'v(\tioJL,sets. So, given the a.Jphal)f't ,4, f.hl" set
of all traces is given by:

Sl'A ~ (11"(:1))"

At each tick of <I global dock an ObSN\'er may witlWSS a number of occurrences and
refusals from the .c;et X By recording these sets of obseTvations in a chronologically
ordered sequence we obtain (\, trace of the proCI"SS. Time is recorded implicitly - if
there i~ nothing to observe at a given till1e, thf' empt.y set is recorded in the trace.
Thns the nil. e!eJlwllt vf the trace is tllf' set of observations seen at time n.

It is convenient to introduce ojwrators on traces and observation-sets. The
union of an ohservation-set. B, wjlb a trace is the mapping of 'union B' to each
element of t.he trace. Formally: ..

OUB ()

((C)~ c_) U B (CuB)C'(.'UB)

We ddilJe the intersection (8 n U) and suht.raction (s - B) similarly.

V/e abo lift operat.ors on sets to operators on traces; these rdurn a trace whose
1l ' '\ element. is the result of the set operation on the TIl'" elements of the original

*51 /"'0 5f! repr~sellts cOll(atenat.ion of tract's 51 ant] 52.

29

traces. For example, the nnion of two traces is given by:

OUT T­

sUO s

((B)~s) U ((C)~r) (1J U C)~(s U r)

Saturation

Due t.o the maximal progres.s i\..<;slIlHption made when defining hiding, the concept
of a saturated trace is important.

Definition 3.1 A trace 5 is salllni/I'd with respect to a subset AI of the alphabet
:1 if al eil.ch point in time the trace records the occurrence or refusal of each event
in A'.

satw¥Jlcd,l'(s) == 'Va E A',B ills. a E B V a E B

where tlie relation ill is defined as follows:

Bills == 3 II., D. u....... (B) ·v = s,

This holds whenever the element B appears in the trace s. o

If the environment always offers all the elements from A' then a trace saturated
with respect to the e"errts in AI will be observed.

Feasibility

It makes no sense for an event to occllr and be refused simultaneously. An observation­
set B is [ea.<;ible, feasible(B), exactly when

feas;~I,(lJ) '" Va EA. ~ (a E B 1\ a E B)

Processes

A process P is represented in our model by t.be pair (:1, T), where A = crP is the
alphabet of the process and T is the set of traces describing all possible behaviours
of the process.

Not all subsets of STA will repre.<;ent trace-sets of processes. Those that dOl also
satisfy certain closure conditions which are considered in the next section.

30

3.1.2 Closure conditions

In this section. we in\.roduc(' doslJre conditions on a. set T of traces witb respect to
alpbabet :1. Only tho~[' set., of traces which meet. the closure conditious describe
the observable behaviour of a process in our algebra.

oE T

The ('mpty tr{l,('(' is observa.ble at t.iml' O.

ii .~"'·rE 7'=>8E T

If <I part.icular trace C<tIl hI' oh.~f~r\"E'd QV('f it certain time span. then prefixes of
this trace. cmresjwudillg to observatioll!; made for a shortf'r period of time,
may also 1)(' ohserw'd.

iii sC'(I3) E T /\ B' <:; B => ,,~(13') E '['

If a BPl lJf oIJ;-,cn'at.iofls is madf' at one tilllt'; then it would <tbo be possible to
ob,-rH' ilJl.\' ~llbset of these obsen"atiolls. \Ve would see fewer f'vent,g refused
i\.lld fewn (,\'ellts (}ccttr; tile environment offered the process [('wel' E'Vt:'ots, (If
\.he environment. does not ofrf'r all ('\-ent then it ca.n neither occnr lIor be re~

fwwd.) This closure ("[mJitioll also says that. events that occur simultaneously
dTe not depenJcnt on aile another: eV('nts o(("ur or aTe refused regardless of
the OCCUrrel\Cf' or refusa,1 of other events at thaI time.

iv 8E T"'s~({))E T

l'inw marches Ol_ If the environment doe,'; not offer the process any events
t,lw pr<H:ess will idle. which is H'("orded by extending the trace with an empty
set.

v X <:; ;1/\ ,~(B)~c E T => s~(B ~ X)~r E T

The suhsequent behaviour of a process is not affected if thf'environment does
not offer all (','ent that woulJ be refused.

vi 8~(B)~rE T
,'x ~ {, E A I a rt B /\ a rt B) => ,~(13 U X) E T

V3aEX,,~(BU{aWrE r
A process will alway,'; respond to events offered by the environment, either
by refusing or performing them. If it cannot perform all events it has not
re[ust:>d, then then:- mllst be one such e\-ent which the process can lefuse
without affect.ing its subsequent behaviour.

vii s'~(B) E r /\ ~fcasibl€(B) /\ r E (11'(,41)" => s~r E T

Onct:> i\ process is able to exhibit infeasible behaviour. it can do anything from
thnt time on_ In esp. such a process is said to be divergent.

3l

vVe shall denote by SM the set of all pairs (A, T) where A is a fil1it~ alphabet
and T satisfies the closure conditions with resJ-lect to the alphabet A. This set is
the underlyiug model for our algebra..

SAl =:: {(A. T') I A E If(E) - n /\ T' S; 81'.4;\ T' satisfies conditions i-vii}

where B is the uniw'rsal set of all r.vt'nts.

'Ve shall let SM A be the set of all processes ~vitiJ alphabet .4.

8M'" {(A. T') I (A. 1") E 8M}

Furt.hpr. WI" shall use SMT to denote tbf' sel of all sets of traces for processes and
8M: to\lelloi,f' the suhset of SMT corresponding to processes with alphabet. A.

SA'h" (T' I 3 A E !F(E) • (A, T') E .I'M}

.I'M!" (T' I IA. T') E SM"}

3.1.3 Non-determinism ordering

We define a non-determinism orderiug on proc('sses ~'... ith the same alphabet. If
(,1, Tp) ond (A, l'Q) represent two processe~ P alld Q then we define the ordering
C; by,

(A, Tp) C; (A. 1'0)" TQ c; Tp

We say (hat Q is mor~ detf'l'ministic than P, P ~ Q, in the same sense as in the
CSP failllres-diwrgf'!\(,('s llIodel. [BIl85]: that is Q is more predictable than P; any
behaviour of Q is a bdlaviour of P.

ThaL ~ is a compll'tf' partial order on SMA follows from the foJ]owillg theorem.

Theorem 3.1 (SM·i~.:21 forms a. complete pa'l'twl order.

Proof: We musL show
a) SMi has a. leas!. element. under the ordering,
b) every dired('d D ~ SAl:} has a least Ilpper bound in SAl.:.

a) It is a t.rivial exerci::;e Lo show that S1 A satisfi~s the closure conditions i'-vii and
clearly. 'V T1 E SM1, STA ;2 T'.

b) Suppose D ~ 8M:} is directed. Clearly nD is the least upper bound of D in
IP'(STA) 2 SM1. Thus n D is the required If'asL upper bouud if n D E SM~. nD
t.rivially satisfies cloSIlTt:' conditions i-v aud vii. It remains to show nD satisfies
condition vi.

vi) Assume s~'(B)~ lEn D.

32

Now suppose nD fails condiliou vi. Tben selting X = {a E A I a ~ B A Ii ~ B}
we have ,~ (B u X) <f- nD and 'V" EX· s~(B u {a})~t <f- nD. Hence 3 D, E D
such that .<:""(B U X) rf-- Do- Abo we GUl fiud a finite indexing set I to cover the
elements of X, i.f>_ X = {a, liE I}, so tbat for each i E 1, there exists a D, ED
such that s~(li u {a,})~t <f- D,.

By lbc property of directed sels and as I is tinite, we can find some D' E D such
that Do ~ D' AV -i E 1 • Di ~ V'.

So s~(li)·~t E D' /\ .• ~(B U X) <f- D' /\ 'V" EX. s~(B U {a})~t <f- 0',

contradicting V' E SM}. 0

'I'll<' set of pron'SSf>S with finite alphabet .4 represented by our model also form
a complete semi-lattin' under 1hl: H,finemenl ordering, ~. This is a direct conse­
quence of tiw theorem:

Theorem 3.2 (,)'M~,d) f()nn.~ a complt:le semi~la.tlice.

Proof: \Ve already have frmH the previous theorem that (SM.j, 2) forms a
compJetf' partial order, so it n~lllains to show that arbilrary subsets of Slv!1 have
a greatest lower bound in SA!1­
By construction UB is the greatest lower bOllnd of the arbitrary subset B ~ SM~,

seen as ;.,. subset of the set lP'(STA) ~ SMi. Moreover UB trivially satisfies the
closme condjtiollS i--vii, hence UB E 8M:;'. 0

3.2 Semantic Function

In this section Wf> COll:'itruct a semantic function whidl maps synt.actic expressions of
our language to proct'sses in our model SA!. Before we ran consider the semantics of
a procf'SS term we must provide a specific binding of process variables to processes
in the standa.rd way [StOlT, Hen88].

Variable bindings

Given a sd of varia.bles Var. we define a domain of bindings, BIND. This consists
of all mappings froill l'm' t.o the sp<lCe of processes Sll,J.

BIND :E:. Var --> SM

Now ViC are able to define a semantic function

M : SCSP ~ BIND ~ SM

33

M [PDp denotes the meaning of process term P with variable binding p in terms
of our model. This is evaluated by a.ssociating each free variable x with its value
pix] given by tbe' bindiug p.

Syntadic substitution of free variahlf's. as introduced in Section 2.1.2. results
in a change in the variable binding in which a process is given its meaning. This
occurs in the follovl,.'ing s('nse:

,I-1IPIQ/rllp =' M[Pjp[(,I-1[Q!p)j.!']

where th€' binding fJ[:/l'] i~ defilwd as follows:

if .II = ,r

pI'/lllyj =' { ~[y] o\.llf'l'wi;-;('

We shall be pl't~domillatf'ly ("ol\('erned with process terms whose meaning is the
Si\lllf" wit.h nll po:-.siblc variable bindings.

Definition 3.2 A pnH'('SS term i~ closed if it has no free variables, o

Lemma 3.3 'the f1/t(/,W:H,q of (I d08[,(Z process term P is independent of the CU1Tent

binditlg. Formally. fo/' P do,~'cd

vp,p' • BIND. M[P]p = M[Pj/

•
When reasoning aboHt ("105f'd Lf'l'lJIS it is unnecessary to make the binding explicit.

The semantic function M

Given a variable binding, M maps cCl,h proc('ss t€'rm to a pair representing the
process a.lphabf't and ttl(' sp! of traces of the pron'ss. \Ve define a a.nd T to be the
natural projections onto the first and sf'('Qlld compon€'nls of this pair.

MIPjp ~ (e>[Pjp. np!p)

For a gE'Ueral process term botb the alphClbet and the set of traces of the process
will depend upon the variable binding.

e> • SC8P ~ HIND ~ IF l:.

T .SC.,P ~ BIND ~ 8Mr .

:J4

Non-recursive processes

We define M over the non-recursive terms of SCSP by defining the two projections
O'andT_

V'le take SCSPOto be the restriction of SCSP to non-recursive terms, that is
terms with syntax:

I' "=~A I ., IP n I' I [X <:;.4 ~ P] I I' II I' II' \ .4 IPIS]

Definition 3.3 The fuuetioll 0 is defined as followstover the syntax of SCSp o.

o[~A lll' ,: .4

"["~I' ­ ~,pl·']

n[pn Ollp ­ a[P]p if ,,[I'llI' = 0[0]1'

o[[X<:;E ~ P"lllp -­ a[PBlp if V E' <:; Jj • o[pB,llp ~ a[P.llp

0[1' II Ollp ~ a[Plp U a[Qlll'
0[1' \ B]p a[P]p - B if a[Pip 'lc B

alP[SJllp - (o[p~p)[S] o

Definition 3.4 Thf' function T is defined a.s follows over the syntax of SCSp o.

T[~A IIp,: ST"

T[,,]p,:~,plxll

T[p n 0]1'': T[pllp U T[Qlp

Ti[X <:; E ~ Pxnp,: {(B' U C)~., IB' <:; B f, C <:; (A - B) f, s E T[PB'llp}
u{())

whNe ,1 = a[IX <:; B ~ Px Illp

t1tn is the projection of an m-tuple onto its n'h component. So 1tl{a, b) = a and lI".e(a, b) = b

35

TIP II Qip ={5 I "5,,5, , (I"(A n BlI" • s, n 5, = ({})(.(

A (5nA)-s, ET[P]pA (snB)-s, E TIQlp)

u
{5~"1	 "5"5,, (I"(A n lJ))" 5, n S, ~ ({})(,(

1\ r E STAUB
A ((((5 n A) - 5, n,4) E T[Plp

A (s n E) - 5, E TIQlp)
V

(((onE) -.,,)~(lJ) ETIQ]p
A (s n A) - 5, E T[P~p))}

wherc /1 = ()[P~p and B = o[Q~p

T[P\ Blp= {s - j; Is E T[Pip A salurai<;dAnB(SJ}

wilere 11 = Cr'[P]p

TIPlsnp= {s I'[S-'] E TIP]p}	 o

Notes

1.	 .1 4 is modelled by the least element jn the partial order ("'MA, 1;;). This
corresponds to .LA being the Iea.Rt predictable process with alphabet A.

2.	 The non-deterministic choice operator is closely related to the ordering, !;;,
on the model. We can define the ordering in terms of thi~ operator.

/viIP]	 C; /viIQ]'" /viIP n Q] ~ /vill"I

This relationship mirrors tht> fact that the ordering is a measure of IlOll­

determinism pxhihiled by proce"ses.

3.	 The gemil.nl.ic fundion for parallel composition is by far the most complex
and it is worth noting how its construction relates to the description of the
operator.

The first set (in the df'finition of T[P II Q~p) gives the behaviours of P II Q
obt.ained while both P and Q are not divergent. Each behaviour of P II Q
is the result of the intt:'raction of behaviours of P and Q, We recall that
an event can only occur if all component processes with that event in their
alphahet can perform the event, whereas an event is refused if eilher one of
the component processes with that event in its alphabet refuses the event. So
given a behaviour,s, of P II Q we should be able to find tra.ces of refusals 51

and 52 in the common alphabet which rcprest:'nt those refusals from s solely
due to Q and P respectively. Note that s/ and s!! are disjoint. Given this

36

choice of s, a.nd Sf, (s n,4) - s/ must be a behaviour of P and (5 n 13) - Sf

must be a behavionr of Q.

The second se.t gives the hehaviours of P II Q which result once one of
the components has become divergent. The term s""'r is composed of the
behaviour up to divergence, 8, which is governed as before, and arbitrary
behaviour, r, following divergence.

4.	 In defining the hiding construct we assume that a hidden event occurs as
soon as the process is ready. To capture this assumption in the semantic
function we Quly consider behaviours of P which are saturated with regpect to
thoo"f' events wbich are to be hidden in the alphabet of P. These behaviours
correspond to the hidden events beilLg offered by the environment for the
duration of obs~l"\'ation; dills they correspond to the hidden events occurring
as SOOB as the proce% P is willing to perform them.

Theorem 3.4 Thf' if:nns 0/ 5C:;po an: well df'jiflfd 'with respect to the. model.

Proof: It is necessary and sufficil?nt to I?stabJish t.hat M[P]p E 3M for all
process expressions Pin SCSp li . This is athicved by structural induction over the
syntax.

atomic terlns It is clear by ('Qn~tmdion that .LA is well defined with respect
to the model. Moreover by definition of p, and since M[x]p = p[x] the process
variables are also well defl1led.

operators We sbalt consider the two place operator II; other operaLors follow in
a similar mantleL Assuming M [l'~p, M [Qip E SM we deduce that MIl' II Qlp E
SM. This requires u.s to cbe.ck that I[P II Q~p satisfies the closure conditions for
the alphabet a[P II Q]. Conditions i--v and vii are easily verified; due to condition
vi exhibiting a choice this is the hardest to verify. We present the proof that
I[P II Q~p satisfies condition vi as Theorem A.I in Appendix A.I. 0

Recursive processes

Definition 3.5 We extend the definition of M to the full synta.x of SCSP as

37

follows.

Mlp, : A· Pip - fixA'\ y. MIPlp[ylxl
\vhere y does not occur free in P and fiXA

denotes the function's least fixed
point in (Sll;/A.~)

Mil'; =P,), w;th Alp (fix,!'\ y. MIl:'lp[vl ;:J),
wh~e fur all i,j th~ y, are not free in Pj and
fiXA denotes the function's least fixed point
in the product c.p.o. TIi(S.IlIA, ~)

o
III order to e:-<tablish that M is well defined over 8CSP we must ensure that

tIll' lea.~t fixed point.s utilised in the above defmitioll exist.

Lemma 3.5 For' P a. recul'H1Unjree proN'$ti term, Ay. JV1[P]p[y/ x] is continuuus.

Proof: We must establish that

M[Plp[UDlx] ~ UdEDM[P!p[dj.,j

for V a directed set in (SlvI A, ~).

The continuity of atomic processes follows trivially in the case of -.LA and is a direct
consequeuce of the defiuition of variahle bindiugs in the case of process variables.

It is sufficient to check that each operat.or is continuous in each argument. The
requiredreslllt thpn follows from the coutinuity of finite composi tions of continuous
functiom [Sto77].

The continuity of most of tlw operat.ors follows from the distributivity of union
through arbitrary intersection. The proofs for parallel composition and hiding are
slightly lllore iu(,cresting. They are of a. similar form and that for hiding is presented
as Theorem A.2 in Appendix A.I. 0

Lemma 3.6 FOT" y not free in P and>.. V • •M[P]p[V/.r.] continuous in (SMA,~)
1m' all IE Va.', then M[p x: A • PI is well defined and'\ y. M [I' x: A • P]p[ylz]
is conti~uous in (SM A , ~).

Proof: (SMA,~) is a complete semi-lattice and A y. M[P]p[yj x] is, by assump­
tion, cOf,tinuotis within the semi-lattice. So, appealing to the Knaster-Tarski Fixed
Point Tileorem [Tar55], a, least fixed point exists. Hence fix A y • M[P]p[y/x] is
well defined.

38

Moreover, siltting H :2 ,\ Y • M[P]p[yjx], the least fixed point is given by tbe
limit, U::'~, H"(M[LA ill·
As l.u.b. preserves continuity the required result holds. o

Lemma 3.7 Let A be the totally ordered finite indexing set over which (Xi ­
P,)) with A i..<; defined. If. for erIch i E A, ,\ y • MIPi~p[yjx] i.s continuou.5 in
(SMA,~) for all variable.<j x rmd y IS not free in Pi, then M[{x, == Pi}j WIth A]
exists and ,\ y. M[(.c, == P,)j]p[yjz] i.s continuous in (SMA,~).

Proof: For eachi E i\ we COllSLrud

ji ' IT 8MA _ SM"

,EA

such that

f, ~ ,\ ~. M [Pi IP[df]

fi is continuous since by hypothesis it is continuous in each of its finite number of
arguments.

From this we define

[, IT 8M A
--> IT 8M A

JEA kEA

such that f === j,. This fuuctioll is coutinuous by construction. Now it is easy to
verify that-'

[~ >. JL • M [flplJd 'fl

Sof is the function for which we require a least fixed point. Following the reasoning
of the previous lemma we ha.ve the required results. 0

Theorem 3.8 All proceS$ te.rms P of SCSP m·e well defined with respect to the
model and .\ y. M[Pjp[y/xJ is continuo'/LS.

Proof: Tbis follows from the previous lemmata. o

Corollary 3.9 The operatOJ~s of 8CSP are monotonic with respect to the orJ.ering
~. .

39

3.3 Expressivity of the Language

By definmg a semantic function frolll SCSP to the model we have esta.blished a
meaning in the model for every pl'oce:'iS expression. Conversely we now seek to
establish that every process in the model, which exhibits infeasible behaviour after
finite time, can be represented by .it finite expression in the language.

GiVt'll all such a process (A, T) in the model, we shall construct a. closed process
expressiv.I1 P(T) in t.he algebra which is mapped to (A, T) by the semantic function
M. In order to build our process expression it will be necessary to consider the
process (A, T!B) which is a. process which behaves like (A, T) after the set B has
been ohserved.

Definition 3.6 For T E SJfr and (B) E T we define'

TIB", {, I (B)"8 E T).
o

Lemma 3.10 I/(A,T)E 8M ,,"d(U) E T thw(A. TIB) ESM.

Proof: It is it trivial exercise to verify that T / B satisfies the closure conditions.
o

Theorem 3.11 Let (A, T) be a proCf8.9 in the model Whl:ch exhibits in/ea.sible be­
haviour a/fer a finite tirne mJ thai lS VsET· lsi ~ m ::::} s (,4) E T. Then
(A, T) is denoted by a closed term in the languagf' SCSP.

Proof: We must construct a term P with alphabet A such that T[P] = T.

Following the approach taken by Jeffrf'.Y [Jcf91a,J, for (A, T) in the model we con­
sider the following definition of a PTOce~S Pt T)

if (.4) E T

P(T) = otherwise
{~~ED[X <; DnA ~ P(T/(X U (D n A)))J

where 1) = {B ! ,afurahdA ((B)) A (8) E T} is finite.

Note that D represents the set of initial observations containing maximal (total)
information about the events in the alphabet A. We shall prove that T[P(T)] = T
by induction on m, the time after which infeasible behaviour must result. We take
as our inductive hypothesis:

\I(A, TI E 8M. (\I, E T 'Isl :> m=> ,~(A) E T) => T[P(T)I = T.

base case m = a

40

(A) E T thus P(T) =l..A and by closure condition vii and the definition of T,
T = ST, = TI .LA ~

inductive step

ca.e 1: P(TJ =.L A

The result follow as for the base case since (A) E T

case 2: P(T) takes the form of the non-deterministic choice between set-prefixed
processes.

Notice that for DEDi by construction, we have that (X U (D n A)) E T for aU
X s:; DnA. So by the prev;ous lemma (A, TI(X U (D n A)I) E SM.

We shaJJ use PD.X to denote P(TI(X U (D n A))) for all X s:; DnA.

A"uming (V sET. 151 '" m + 1 '* s~ (A) E T) we must .how T = TIP(T)!.

Firstly note by considering the Jefinition of T/(X U (D n 11)) we can show

lsi '" mAs E T IIX U (D n A)) '* s~ (A) E T I(X U (D n A))

Hence by induction TIPD.xl = TI(X U (D n A)).

Now we can demonstrate that I' = TIP(T)I· Tdvially 0 E I' A 0 E TlP(T)I.
It remains to show (B)~.; E I' .. (B)~s E TIP(Til.
We shall use BE =B n A and BR =B n A to Jenote the events and refusals in B.

'* : Suppose (B)~s E I' then ,etbug y", {a E A I a 1 B A a 1 B} we can
establish from closure condition vi and induction over IVI that

oX E s:; Y,X R s:; y. saturated,t((X E U X R U B)) A (X E U X R U B) E I'
A (XRUB)~s E I'

'* { by definition of V)
oDE V. B s:; D A ((D n A) U BE)~s E I'

'* { construction of TI((D n A) U BE) }
oDE D. B s:; DA sE TI((DnA)uB E)

=> { by the inductive hypothesis as noted above
j D E V • B s:; D A s E TIPD,.E I

=> { by set manipulation and as D is saturated }
oDE D. BR s:; A - (D n A) A BE s:; (D n A) As E TIPD.eI

=> { by Jefinition of set-prefix) .
oDE D. (BE U BR)~s E TIIX s:; DnA ~ PD,xli

=> { by definition of non-deterministic choice)
(BE U BR)~s E TInDEV IX S:;D n A ~ PD.xll

'* { by definition of T(P))
(B)~s E TIP(T)I

41

The comerse follows similarly gi ving the rt'qnired result. o

3.4 A Sound and Complete Algebra

111 this sfrt ion we introduce a proof system for our language which is sound <Uld com­
plete for f<juivaleuce of processes in the s('mantic model introduced in Section 3.1.
In a 8tyie :-iimilar to Brookes [Br083] we consider the suhlangnage SCSpl first. This
suhlanguage is restricted to the nun-recursive closed terms of SCSP. The logical
language will consist of assertions of the form P ~ Q and P == Q. We give a set
ofaxioms and inferpl1ce ruk's for proving assertions, and show Lhat the system is
both sound and cOllll'lete.

We extf'nd the remll to the full language srsp. allowing recursive terms.

3.4.1 The sublanguage SCSP'

The sYlltax of SCSpJ is givPll b.t":

P "=.lAlpnP IIXC;.4~ PI IP II P IPH I PIS]
This la.ngui'lgp is a sublanguage of SCSpOresulting from the elimination of free
variables We refer the reader to Section 3.2 for the definition of the semantic
function ...\11 over terms generated by the above syntax.

The logical language of our proof system is built from SCSp1 terms and two
hinary relation symbols I;;;; and == (which can be defined over the fnl! l<Ulguage
SCSP). F'ormulae in the l<Ulguage take the form P ~ Q or P == Q. We take P ~ Q
to mean

'I pE BIND. MIPlp C; M[Qlp

and P :: Q t.o mean

'I pE BIND· MIPlp ~ M!Qlp.

The axioms of the system afe given ill Appendix B.1. These include many of the
equivalences already stated. A further axiom relates the non-deterministic choice
operator to the relation 1;;;;. Inference rules aTe included which esta.blish ~ to be a
partial order with == the associated equiva.lence. Finally there a.re inference rules
asserting the monotonicity of the operators.

Sewral simple properties of ~ and =: are not explicitly giveD iD the axiom
system rt.S they a.re dt'ducible from the axioms. These results include

0-1 ~ P=P 0-6 ~ .lC; P

0-1
Pn Q= P

PC;Q
0-8

PC;Q

Pn Q~ P

.12

0-7 and 0-8 demonstrate t.he link between non-det.erministic choice and the or­
dering. 0-6 states that 1- is the least element in the ordering. We shaJ.l present
the proofs for 0-5 and 0-8.

0-5:

f-pnp=p
PCI' n PCP 0-:1

- PCP - 0-4

P ~ P 0-2

0-8:

f- P", P
'--0:'-::---::- 0-3

P",Q 1'",1' f-pnp",p
~=--;:--=--~=-;;--M-) 0-3
pnp",pnQ p",pnp

p",pnQ 0-4 f- pnQ",p

I' n Q = P 0-2

o

Soundness

In order t.o establish soundness of the proof system we must ensure that every
provable assertion is trUe. It is necessary to verify the truth of each of the axioms
of our system. These checks are trivial and unenlightening, so are omitted here.
The inference rules stating that!;: is a partial order follow from the structure of
(SM, !;:). As all the operators were shown to be monotone the rules M-l and M~2

follow.
If w~ write f- P ~ Q to assert that P ~ Q is provable then the following

theorem states that the proof system is sound.

Theorem 3.12 (Soundness) Fol' all terms PI Q in SCSpl

(f- P", QJ c} Mlp! '" .I1[Q~

•
Completeness

In order to establish completeness of a system we must show that whenever an
assertion is true. it is provable. We must show that whenever M[P] ~ M[Q~

then the formula P ~ Q is provable. We shall define a class of normal forms

43

and show [hat every term is provably equi'/alent to a unique normal form. Finally
we establish t.hat the system consisting of tIle class of normal form processes is
complete.

Normal form

A nornli'l./ [onn i~ a term in the language with a specific structure. -.LA is a normal
form, All other normal forms arc tlle non-deterministic dlOice between a finite
number of seL-prefixed processes, where each of the set-prefixed processes is in
normal ronn. The choice set~ in the set-prefix constructs '-lie unique. This and a
furt.her cwdition imisting that the set prefixed processes are as non-determiuistic
<1$ possible ensllrP that the norma] forms are unique.

Definition 3.7 \Ve say a process, P, with alphabet A, is in not'mal form if it is
l.A or t.akes t.he form

p	 = n[X<;;1J ~ FE,x]
8EB

where

• B is a non-empty, buite subset of lP' A

•	 V E, B' E B • X <;;; B ~ 8' :;. PE',.\' [;:; PE•

•	 For all B E B and X ~ B, PE .X is ill normal fortn.

I)

By the second condition we ensure that the set-prefixed processes are as non­
deterministic as possible. This reflects A-,J and the ability to postpone the re~m­
lution of choice; such postponenlPnt can occur exactly when the observation of a
gi\'en sel of events must be the result of the environment's initial offer of events
being insufficient to resolye t.he choiee instantly.

Rather than prove directly that eyery process is provably equivalent to a unique
normal form, Wf' shall first consider diP class of processes in pre-normal form. The
pre-normal form is similar to the llormal form; the structure of the processes is
the same, although with fewer restrictions on the construction, uniqueness cannot
be guaranteed. We shall demonstrate that each process in pre-normal form is
provably equivalent to a process iu normal form, It is then sufficient to show that
each gelleral process is proyahly eql.liv'nlent to a process in pre-normal form.

Definition 3.8 We say a process. P, with alphabet A, is in pre-normal form if:

p	 _ {~A

- n'EI[X<;;1J,·~Pi"rI

where

41

• J is a non-empty, finite indexing set. and {Bi 1'1 E I} ~ lP' A.

• Each P"x is in pre-normal form.

o
Notic~ that we no longer insist on the uniqueness of the choice-sets Bi •

Lemma 3.13 Every pre~nol~malform in SCSPJ is provably equivalent to a process
in normul form.

Proof: We define the depth of a proc~ss in pre-normal form as follows:

d(.L) = 0

d(n'EI P,) =max,,1 d(P,!

d(IX,;n ~ Px)J = maxX,B d(Px !+ 1

We shall prove the r~quired result by induction all the depth of processes.

Base case: d(P) = 0

Trivia.l since the only possible pre-normal form wIth zero depth is .1.. which lS in
normal form.

Inductive step: d(P) = 11+ 1

P is in pre-norma.l form

P = niX ';8, ~ P,x],
'EI

by a.pplications of A-,5, A-4 and A-3 we ha.ve

~ P,= nrX,; B, ~ P:. x]
iEJ

' {.L if PI •x =.L for any j E {k lB. ,; B;}h P r = n PI'were i
,- BJt;;",B, J,X at lerWlse

By the construction of the P:,x they a,re a.ll in pre-normal form. By the idempotence
of non·deterrninistic choice (A--3) we can remove all duplicate set-prefixed terms.
So we ca.n a.ssume that the B, are unique. Now

d(P:,x)::; maxBJ~B, d(Pj,x) ::; max'El maxx~B, d(Pi,X)

< max'E/(maxx,B, d(P"x) + I) = d(P)

45

so we have that d(Pix) < d(P)_ So since d(Pi,x) < d(P) we can find, by induction.
Q.,x in normal form such that Q,.x == P;,x is provable. Then clearly

~ p=n[XC;B;~Q;,x]
,cr

with the right hand sidp heing iu normal form. o

Lemma 3.14 El'cry proceS8 e:.r.pl'fssioll P. In SC,-'iPl is provably e.quivalent to a
proCESS ill p'I'e-normal form..

Proof: We define a rank function 1011 tillite processes a.s follows:

1(1-) ~ 0
I(P, n P,) ~ 1(1',) + I(P,) + 1
1(1', II P,) ~ 1(1',),1(1',) + 1

I([X~H ~ P,,]) ~ maxxcB I(l'x) + 1
1(1' \ A) ~ 2.1(1') + 1
1(1'[.1']) ~ 3,I(P) + 1

We shall prove hy induction on the rank of P, l(P), that all processes in SCSPI are
provablrequivalent to a process ill pre-normal form with rank no greater than that
of P. So we take as our inductive hypothesis:

I(P) = 11 =? :l Q. Q is ill pre-normal form

/\ I(Q) :; 1(1')

/\~ Q~p,

Base case: n = 0

We must ha.ve P = .1., so P is already ill pre-normal form and we are done.

Inductive step: I(P) = 11+1

P must take the form of an operator on component processes. Vie shall only present
the proof for parallel composition here, proofs for the other operators being similar.

l' ~ 1', II 1',

By defi,itioll of the 'ank function, I(P) ~ 1(1',),1(1',) +1,

Either I(P) = 1 in which case OIle of PI or P2 is .1., so by A-6 or A-7 we have
that ~- P =- .1. and we are done.

Alternatively I(P) > 1, in which case neither of PI nor P, is .1. and we must bave
1(1';) <1(1') fo" E {l,2],

46

So by the inductive hypothesis we can find Q. in pre~normalform such that 1(Q;):'S
I(Po) and I- P," Q,.

By monotonicity I- P::: Q1 II Q~.

Now eithf'r one of Q, =.1, in which case by A-6 or A-7, I- P:::::l. and we are
done. Or hoth Q, take the form of a non-deterministic choice between set-prefixed
processes.

Q, ~nQ,' where Q,' = [l'<;:B,' ~ Q,'y]
,"

Q, = nQ,' wl"'re Qf ~ [l' <;: Bf ~ Q,'yJ

iEJ

Con~ideJ' the casf' where III or I.II is greater than 1 and without loss of generality
assu.me If I> 1. Then by k-8

I- Q, II Q, "n.EI(Q,' II Q,)

We can deduce thnt I(Q,' !1 Q,) < I(Q, II Q,) s I(P). So, by the inductive

hypothesis we can find Q;Q in pre-normal form such that I- Q/ II QI. =: Ql and
I(Q,') S I(Q,' II Q,).

Thus I- P == niEJ Q,a. Either one of the Q,a =1., iu which case as .1 is a zero
of non~detel'minist.ic choice, I- P::: 1. and we are done. Otherwise niEJ Qt is in
pre-normal form and it remains (.0 establish that the rank of this process is no
greater t.han the rank of P.

Consider the eMf' when l(Q2) > 1.

l(n;EI Qn = LEI I(Qn + III - 1 { by definition of I}
< L'EI I(Q,' II Q,) + 1/1- 1 (I(Qn s I(Q,' II Q.)}

L,,,(I(Q/).I(Q,) + 1) + 1/1-1 (by definition of I)
S I(Q,j.IL.EII(Q,') + 1/1-1)+ 1 {assuming I(Q,)?c2}

I(Q,).I(Q') + 1 {by definition of/and QJ}

S I(P, j.I(?,) + 1 (I(Q;) S I(P;)}
I(P) { by definition of I and P }

In the case where l(Q2) = 1 we must consider the form of Qt more closely. As

Q£ is ill pre-normal form the ollly form this process can take is [X~B£ -10.1). In

which cnse, by A-lO and A-7,

I- Q,' II Q, " Q,'

where Q,' ~ [Y <;: Co ~L] and Co = (B,' n H'j U (H,' - A.) U (B; - A,), Al and

At' being the a.Ipbabf'ts of Q1 and Q2 respectively.

47

Clearly Q,ry is in pr{'-normal form and i(Q,O) = 1. Thus b.y simple analysis of terms

we can SllOW l(n'EI Qt) ::; I(P).

Hence s{'lling q = n'EI Q,o WP h<'lve the required result.

Finally wr must consider thf' Cil.__t" wlwre III = IJI = 1. So

Ql ~[YC:;IJ, ~ Q;] Q, = [Yc:;B, ~ Q~]

By the a.xiom for parallf'l cOHlpo:-;itioll of set-prefixed processes (A -10) we have

f- Ql II Q, '" [y c:; C ~ (Qi-n8, II QfnB,J]
where C= (H/ n B~) U (B I - :-I.,.,) U (B2 - AI) with Al and .4 2 the alphabets of
Ql ;l/1c\ Q2 rf'spectivdy.

Now Wf' fan df'ducp that

I(Qj-nB; II Qf-nBf) < I(P). Thus by the lllducti\'f' hypothesis, Wt? can find Qf- in
pre-norma.l form s\lch that

t- qr- == Qi-nB I II QfnB2 a.lld I(Qf,)::; I(Q~nHI II Qfn8:J

Setting (J = [Y ~ C --+ Q~], dearly Q is in pre-normal forll and f- P '" Q_
Analysis of t"xprt"ssions gives I(Q) ::; I(P), so we art" dOlle. o

Corollary 3.15 Eve'I'y process erpnssioll, P, tTl SCSpl ki provably equivalent to a
p"ocr:ss III nonnal form.

Proof: This follows fTOm the previons two lemmata. o

Finally we show thnt the class of normal forms is complete.

Lemma 3.16 For P and Q, Wtth alphabet A, ill normaiform

MIP! c; M[CJ1 => (f- PC; QJ

Proof: By structural induction on P.

base case: P =-l

Then the reslllt follows by 0-6 (page 43).

inductive step: P takes the form of a nondett"rministic choice.

Now -l is the only process with "n initial infc<'lsible event, so (It) ¢ T[P~ hence

(.4) ¢ 1[Q] and Q ITlllst also take the form of a non-d{'terministic choice.

P = n[XC:;B ~ PB,X]
BE"

-18

whereIlB.B' E B. B c;: B' =} (IIX c;: B. MIPB',x! I;;M[Pa,xll

and

Q~ n[XC;:C~ QG,x]
Gee

where II C, C' E C. C c;: C' =} (IIX c;: C· M[QC'.xl I;; M[Qc,x!)

Now by the dt'tillition of the semantic fnnctioll,

lIeEC. (CU (;1- (J)) E T[QI
=} { as M [PI I;; 0\1[QI by hypothesis)

IICEC, (CU (A- e)) Enp~
::::} { by defiuition of P and :-;emantio:' function on uon-deterministic choice}

IICEC, 3B E B. (CU(A - C)) E T[[XC;:B ~ Pa,d!
::::} { by df'fiuitioll of Sf'mantj(; functioll on :-;d-prefix }

liCE C • 3 B E B • C c;: B A (,4 - C) c;: (A - B)
::::} { by set manipulation}

CC;:B

Now by i\.XiOBl 0-1

f- PI;; n[XC;:C~Pr,x]
C'EC

II is sufficient to show that, for all C E C, M~Pc,x~ ~ Jvt[Qc,xl The result then
follows from structural inrluctioJ1 and ITlonotonicity of tbe operators.

sET[Qc,x!
::::} { definition of set-prefix and lion-deterministic choice}

(X U (,1- (,))n, E T[QI
=} { '" M[P! I;; M[Q! by hypnthesis)

(X U (A - C))~" E TIP!
::::} { definition of non-deterministic choice and set-prefix}

38 E B· X c;: B A (,4 - (') c;: (A - B) A s E T[PB,x!
::::} { by set manipulation}

3 H E B • X c;: B c;: CAs E T[P.,X H

::::} { since P is in normal form}

3B E B., E T[P8 ",.J A TlPB,X! c;: T[Pe,x!
::::} { by dcfi[]ition of subset}

sET!Pc,x!
Giving the required result.. o

From I,hf' previolls resuJt.s it is trivial to deduce completeness.

49

Theorem 3.17 (Completeness) Fo,. all terms P. Q in SCSPI

MIPI c= MIQI "" (f- P c= Q)

•
3.4.2 An extended proof system

In this section we extpnd our proof syst.em to cover the full language of closed t.erms
ill SC"'P. Like Brookes [Br08:3], we rhMil.cterise eil,ch process by its set of finite
syutactic a.pproximations, This f>1l;,hL('s us to reaSOll about an infinite process, that.
is one containing recursive constructs. by considering it.s finite approximations.

Definition 3.9 TIl(> relatioll --< is the smallest relation on terms sat.isfying:

1­ -< P

P -< P

P[ilu. P)/r] --< 'i J' • J}
Pjl(·', =p.)d",] -< (x, =P,),

P-<Q-<R "" P-<H

P, -< Q,. P, -< Q, "" (P, n P,I -< (Q, n Q,)

\I Xc: B • P" -< Q, "" [Xc: B ~ Pxl -< [Xc: B ~ Qx]

Pi --< Ql,Pt --< Q2 =} (P, II P,) -< (Q, II Q,)

P -< Q "" (P\A)-«Q\A)

P -< Q PIS] -< Q[S]
""

u P -< Q then we say that P is a syntactl.c app'mrimation of Q. o
It can be shown by simple s\.ruetnral induction that if P is a syntactic approx­

imation of Q t.hen Q is rnOf(~ det.{'rminist.ic than P.

P -< Q "" MIP] c= MiQ!

Given il closed pro('(~ss P, we construct the set of its finite 5yntactic approxi­
mat.ions FIN(P). III t.his context. we say a process is finite preci5dy when it is a
term in thl' Ia.nguage SCSpJ. So the formal definition of FI.'V(P) is given by:

Definition 3.10 FlN(P) = {Q E SCSP' I Q -< P} o
FIN(P) forms il directed set under --< and cOllsequent.ly the semantic image

or the set forms a directed set. under ~, with .""f[P] an upper bound, It can be
established t.hat €"very finit.e process, Q, which is less deterministic than P is less
determinist.ic than some pi E FIN(P). Intuitively t.his follows since every finit.e
process must bdlave like chaos after a finit.e time. Suppose Q degenerates to chaos
after n time unit.s. By choosing any finite syntactic approximation pi of P which
has the same behaviour as P uutil time It we are guaranteed Q !;;;; pl. This gives
us t.bf'reSldt.

.50

Lemma 3.18 11 Q E SCSP' and MIQi E;; MIPI, then there cs"'I.' P' E FIN(P)
such thai MIQI c;: A-1iP 'J. •

The :-;ernantic model consists solely of finite traces. We have already seen the
semantics of a recursive process constructed as the limit. of the semantics of a
chain of finite i1pproximatiolls to that process. Mort" generally the semantics of
any process. P, can be described a.<; the lea.<;t upper bound of the directed set. of
the semantics of certain finite syntactic approximations. By t.he above lemma the
least upper bound of this set must lie be!o\y that of the semantic image of Ff,\'(P).
Thus we have

Theorem 3.19 TIPI = nQEFIN(p) TIQI •
Extended proof system

We extelHl tlw proof syst,em of Section 3.4.1 with the following:

A-17 f- P[(I' ,r • P)IT] '" I' ,r • P

A-18 r P,!(T, '" p,),j.r;J '" (cr, '" P')j

'if Q E FIN(P). Q c;: R
R-l

PE;;H

The inference rule captures the fad that P is the least fixed point. of its set of
finite sYllt<'let,ic approximants. It should be observed that the inference rule is an
infinit-a.ry nt!(' as FIN(P) may Iw an infinite set. We would not expect to be
able to construct a decidable proof system for a, language which is Thring [nachine
equi valen t.

Soundness and completeness

The lea.st fixed point construction of the semantics of recursive constructs guaran­
tees the soundness of axioms A-17 and A-LB. While the inferencerulei~sound by
Theorem :LI9.

Theorem 3.20 (Soundness) Fo/' all closed terms P and Q in 5GS?

(f- Pi;: Q) '* M[PH E;; M[Qi

•
Completeness is established by considering the cha,ra.ctel'isation of a. process by

its syntactic approximation.

51

Theorem 3.21 (Completeness) FOI' aU close.d terms P and Q in SCSP

M[PI [; MIQI ~ (f- I' [; Q)

Proof: Suppa," M[I'J [; M[QI·

Let P' E FIN(P). Theu M[P'I [; M~PI [; M[QI.

SO by Lemma.:j.18 we can find Q' E Fll\/(Q) such that /\If[P'] i;; M[QT

By Theon'ln 3.1 j we hav'e f- P'!; q.

Now Q' [;; Q is provable fur eH'ry Q' E FIN(Q), so f- Pi!; Q.

Hence by the inference rule R-I tbc result follows. o

3.5 Conclusion

The semantic model for SCSP presented ill thi:o: chapter has provided a rnathemat­
icaluuderpinning of the language in Chapter 2. The ima.ge of a process expression
in tlle' language, under the seman tit: function ..\..1, gives a denotat.ional interpreta­
tion of the process in the modE'\. The model captures the behaviours of processes
by recording failures-divergences Information cornpaJ:ablc to tha.L used in [BR85]
for CSF: by incorporating refusalfi into the tra(~e of events and introducing the
concept. of iufeasihlc hehaviour it was possible to provide an elegant mechanism
for recording divPrgences within the traces. The traces record time implicitly; si­
Hlllltalleo\lsly occurrin.'!; events are recorded in a single set, the position of this set
in t.he trace rt'pres€llts thp time at whicb it was observed. Moreovl?r the model
has sufficient mat.hemii.t.ical structure for domain theoretic results to be applicable,
giving a formal underpinning of recursion.

Finally, a sound and ('omplete proof system for SCSP has been developed. In
verifying t.hat til(' proof system was complete, a normal form for dosed terms
in t.he language Wi\-S considered. The proof system enables relat.ionships between
processes, deducible from the semantic model, to be established dired]y, using
axioms, within the algebra.

52

Chapter 4

Communication and Protocols

So far any interaction between processes has been by their cooperation m"er the
perfOfmal)("(' of common events. In this chapter we cons/fler how we can model the
concE'pt of commullica.tiou of data via channels within a system.

In the sf>colJd part of this dlil.pter we utilise the notation developed for commu­
nication in order to specify a token ring protocol in SCSP.

4.1 Communication

A cha:r1llel is seen as a medium for the comnllmicatioll of data between processes.
The data carried h:v a chanlwl may take a finite number of values. We stipulate
that the channels an- uui-directional so a. process will use a given channel for inpu t
or output exclusively for all t,illle. Also, only one process in a system will use a
given chall.llel for output.

Like esp, we consider c.t', the \'<thl€ 11 communica,ted on channel c, as being
an atomic evellt.. Wit.hin our model a.tomic events should be independent in the
sense t.hat the oCCllrrence of one should not be able to affect the ability of another
to be pPl"formed at the ~ame time. We must be aware that c.v and c.w are distinct
atomic ('venis and 3.-" such it is possible to dE'scribe processes which allow these
ew'n(,s to be performed simultaneously without chaotic consequences. Clearly such
an OCCllncnce would have little meaning in the context in which these e\-ents were
intended. The HoLation we will provide simply ensures a disciplined use of the
events, so that processes, which purport to model communication along channels,
conform to the expected behaviour.

Output channels

If channel c is an output channel for a process, then whenever the process is willing
to output data we wOllld expect the process to select a particular data. value. v, say.

53

The pnxess should only Illake available this chosen data, value for communication
to the environment. Moreover any attempt to send several data values along a
chiUlnel at a given time would, in general, have catastrophic consequences.

'We me tht' 1I0tation elv to indicate that the occurrence of the event c.v should
be interpreted as tbe process olltputting data along channel c. So

IX ~(rlv) ~ (P if X ~ {) else Q)]

will reprrsent il. proCf'SS which \11il,y initiall.".· output value v on channel c and then
go OIl to behave likf' Q or like P depending on whether the output occurred.

Input channels

If r;hanllrl cis a.n input C!lll.lLIl('1 for il, process thea whenever the process is willing
to accept an item of <.laLa on c it should be ahle to a.ccept any of the possible
data valiles. The elwin> as to which v,lll1e is actually received will be ma.de by the
environment. However. tlJ(' process should not be able t.o accept more than ooe
data vahle from the channel at an.y one time as this ca.nllot be a,chieve<.l without
illlcrfert'lice (111 tbe channel.

Letting ;r be a free variable, we use the notation c?.r within the choice set
of (I, sd prefix construct to indicate the a.vailability of all the events from {c. v I
V im allowed data value on c} ill t.he r:hoire set. This should be seen within the
cOlltf'xt of the pro('('1>S being able to recf'ive any data value along channel c, We
Shil,]] assume that ally attf'mpt. by the environment to perform more than one of the
availahle data communications on a given channel will result in chaotic behaviour.
We therefore find it unllecessa,ry to staLl' the behaviour of the process in such
cirrulIlsl,alll..:es. For examplf',

IX~{c?,'} ~ (P if X ~ {} else Q(x))]

reprf's(,llts a process which may initially receive input on cha.nnel c; it then goes
OJ) to l)l'ha"e like P or q(:r) depellding 011 whether iln input action occurred. In
the cast' where a single data value is recf'ived, J.' takes this value. determining the
behaviour of Q(.;>:}.

Composition of processes with channels

Vy'f' have a.lreil.dy stipuJa,ted that only oBe process in a systf>m wiJl nse a given
Ch<Ulllt:'t for output. We put no restrictions on the number of processes in a system
using a given channel for input. Thus we allow for simple specification of the
concept of channels being forked supplying many processes with input. We shall
now cOllsider the efff'ct of composing processes which have rhan:nels.

Suppose c is all output channel of P an<.l an input ch<Ulnel of Q. Within the
compo,ed processes P II Q data is transmitted from P to Q via channel c. Other

54

processes within the system can read the data from P. To allow this, the channel
l' is isible a.', an output channel of the process P II Q.

[f (' is an input channel of both P and Q, then the channel c is an input channel
of the composed process P II Q. Data tra.Ilsmitted to the composed process is forked
internally to the component processes.

If c is a channel of P bnt not of Q, then thjs channel is visible as a channel of
P II Q of the same type (input or output) as for process P.

4.1.1 Syntax for communication

Suppose, within a system, eents which arise in the context of data communication
are only referred to using the notation for input and ontput. Then we can provide
a syntax within our algebra which allows liS to abstract away from the individual
events which make up the commnnication. We are able to view the problem as on~

of channels parameterised by the data they al"e carrying.

Alphabets

In SCSP every process has an alphabrt. When considering communication it is
convenient. to distinguish the communication events from other events in the al~

phabet. \Ve shall associate with each process, P, its input channels in(P), its
olltput channels out(P) and non-communication events et·(P). We define the set
of channels of P to be chan(P) :::: in(P) U ollt(P). Each channel, c, has an asso­
ciated data set lllc), a finite set giving permissible data values all channel c. The
data set should be seen to be an attribute of a given channel in a system. Every
process with a particular channel c will see the same associated data set for that
channel. The alphabet of P is then given by

aP = ev(P) U {c." leE ehan(P) A v E o(e)}

We also stipulat.e that the input and output channels of a process are disjoint,

i,,(PI n oullP) = {J

and that non-communication events do not coincide with communicatiou events

ev(P) n {c .•. ICE ehan(P) A v E o(e)} = {J.

We stl'ellgtben our requirements on the alphabets of component pl'oce~ses in
process expressions .

•	 Whereas previously compont'nt processes were reqnired to have the same
alphabets, we now also demand that the input channels and output c1annels
of the various components coincide.

55

•	 Parallel composition is re~triett-'d to the case where there are no output chan­
nels common to the component processes, and non-communication events of
one process do not coincide with communication events of the other. The
process p 11 Q ha.<; an alphahet composed of the following:

,v(P II Q) = ev(P) U ev(Q)
oul(P II Q) = old(P) U o"I(Q)
io(P II Q) = (m(P) U m(Q)) - oul(P II QJ

Processes

COml11Ullicittioll e\"t:,uts arise wit.hin processes expressions in the same situations as
UOIl-collllIluniciltlon f'vent.s. We provide spt'cial notation for referencing communi­
cation c\'ents to ensure they ouly appear in a nleaningful context. If we restrict
oursE'lve< t.o t.he notation provided here for <.'ommunication along channels, we can
provide clarity in our modelling of such cO\llffiunication and ensure that the process
COllstructs adherf' t.o the requiremclIts of such syst.ems. We consider each of the
COllstrurCs in which events appear explicitly.

Set prefix

Any reff'l'encf' to communication events in the choice set of the set prefix construct
is only made vi<l communication ttl'lll~.

Definition 4.1 A cfHTlTnJ/1licafion lel'Ill is either an input lerm or an otdput term.

01ltput terms tCl,ke the form r!e, ,".... hert' r E olll(P) and C'xpression e denotes a
value in o(e). Inpul terms take the form e'rI. where e E in,(P) and :r is a free
va.riable 0

For ry('ry ChallIlt'1 of th~ process there can be at most one communication term
in the choice set. As before the bdlClviour of a procp-ss aftN a prefix choice will
depend on the terlTI:>, X, selectf'd from the choice set. The process is parameterist:'d
by X where ally output terms, e!r, and input terms d'!:z. tn X are replaced by c.v
and d.l resp8rtiYf>Jy in X. Formally

e. v if a = C!V

,t={alaEXj, where a= C.I if a, = e?x

{
a otherwise

So the r~suJtant process is paramet,erised by the free variables corresponding to
input data.

.56

We give the set prefix construct containing communication terms the following
meaning in hasic SCSP.

[XC;B ~ Pil '" [YC;B' ~ Qd

For every output term ,!'v in B the eVPIlt C.'V is made available in B'. For every
input.term d?r. in H all the events in the set {d.t, [v E 6(d)} are made available
in B' . .rormally.

{c. v} ifa=c!v
B' = Ug(a), where g(a) =

{
{cv I" E '(eJ) jf a = clI

'EB {a} otherwise.

When an input term r?:t arises in the dlOice set B we lleed only provide processes
corresponding to no more than olle of the C.'V being chosen, the assnmption being
that in all othf'f cases the process behave~ chaotically. Thus

1­ if 3c"?x E B. C.J,',C.W E f /\ 'v -# w
Qr = { P y otllerwise

Hiding

In addition to non-communication events we allow hiding of output channels. The
implication is that all data comIllunication events associated with a hidden channel
Me hidden. The set of hidden events may now include output channel names
annotated with the! symbol. So

P \ {e!}

behaves like process P with all tbe communication events on dlannel e hidden.
In general, the process P \ H has out.put channels out(P) - {c I cl E B}, the

same input chanueb as P and non-communication events e'v(P) - B. We give the
hiding construct containing output channels the following meaning in basic SCSP.

P \ B '" P \ B'

For every output channel, c!, in B all the events in the set {e.v I v E 6(c)} are
pre~ent in B'. Formally:

{ {c.v I v E b(eJ) if a = c!
B' = U 9(a), where g(a.) = {a} otherwise.

'EB

57

Renaming

Renamingmust respect the type of an event and shonld preserve all the restrictions
mentioned a.bon~. In order to ell"llre this. renaming of communication terms is
divided int.o renaming of t.he channeb iUld renaming of the data set b(c) associated
with thf" dlanJl~1.

4.1.2 Laws for communication

The law:,; provided here call be e~tablisb('d by expressing the processes in basic
SCSP, applying laws of SCSP, thf'n retufI1ing to the notation for communication.
'With these new laws available it is UlllleC('ssary to concern ourselves with the nn­
derlying SCSP treatment of communica.tion. Instead we will be able to view data
communication along channels a.t a level of abstraction more appropriate to the
system being described.

AlnlOsL a.1I the laws of SCSP can lw applied directly to processes which use the
commullicatioIl notation. The laws which cannot be applied in their current form
are those where the structure of either the choice set in a set. prefix construct, or the
set of terms hidden in communication abstri\dioll is important. We shall consider
genera.lised forms for the laws in quest iOll.

The axiom for parallel cornpositioll of set prefixed processes becomes:

A-lO': [XC;A'~ Pi] II [YC;E'~ Qi] = [Z<;;C~ (PIIi,P) II QJIZ,Qj)]

Terms in C are either communication terms or non-communica.tion events. Com­
lllunici\tion terms arise in C if one component process is prepared to communicate
with the environment on it channel which is not shared by the components, or
if both components an' willing to communicate along a common channel. If the
common channel is an input channel for both components then ('ooperation will
result in lUI input to the composite pron·ss. If the cornman channel is an input
channel for olle component and an outpnt channel for the othpr then data flow
ca.n occur between the components. The data can be seen to be output by the
composed process. The occurrence of non-communication events in C is governed
in the samf" way a<; before. Formally:

C = {e!v IcE (outIP) U oul(QJ) - Ieh"o(P) n chaal Q)) A c! c' E A' U B')
U{c",r, IcE (io(?) U iu(Q)) - (ch"u(P) n ehoo(Q)) A 3 I • c?x E A' U E'}
U{e?I, leE ialP) n io(Q) A 3x, y. c7" E A' A ely E E'}
U{c'e leE iu(P) n out(Q) A 3,. c'" E A' A c'v E E'}
U{c!'/J IcE iTl(Q) n out(P) 1\ :3:1'. c'!r E B' 1\ c!u E AI}
U{o I a E cv(P) U ev(Q) A a E ((A' nil') U (A' - cv(Q)) U (E' - cv(P)))}

j(i.p) gives the terms from Z Sf'en in the context of process P. We can only

.58

see events in the alphabet of P and communication on the channels of P.

f(z.P)~ {e.v E Z I eE ehan(P)}U(Zn,v(P))

The axiom for distributing hiding through set prefix becomes:

A-13J
: IX ~B ~ Px]\ A = [Y~ C ~ (PYU(iJ-C) \ A)]

where C = B - (A U {c!v E B Ie! E A}). This ensures that all communication
terms on hidden channels are hidden.

Finally tht' law for distributing biding through paraHel composition is further
restricted:

L-5': (P II Q)\,I= (P\A) II (Q\AJ

where An ,e(?) n '''(Q) = {} and {c I c! E A} n chan(P) n chan(Q) = {}. So
hiding only distributes through parallel composition when neither common events
nor common channels are hidden.

4.2 Token Ring

Using the communica.tion notation developed in this chapt.t>r, we demonstrate the
use of SCSP in specifying a protocol for local area networks. The protocol chOSt>D
is a token ring protocol based on the IEEE 802.5 Standa.rd [IEE85] as described in
ITan89].

In a network using a token ring protocol every station in the network is con­
nected to a 1'/11.9 intujace, Figure 4.1. The ring itself is constructed by connecting
the ring interfaces by point-to-poillt links to form a complete circle, allowing uni­
directional data flow around the ring. When a bit arrives at a ring interface it is
copied into a l-bit buffer, inspected and possibly modifit>d, then written back out
to the ring.

Whenever all 1JH::~ stations are idle, baving nothing to transmit, a special bit
pattern, calJed the token, circulates around the ring. There is only ont' such token
on the ring. When <l, station wa.nts to transmit data it must capture the token. It
may then enter its data on Lo tbe ring and, once transmission is complete, replace
the token. As there ig only one token, this procedure elimlnates any possibility of
collisions.

The token ring has a minimum capacity implicit in its design - when all stations
are idle tht" complete token must reside on the ring. The capacity of the ring is
dependent all the number of stations in the network, each providing a I-bit delay,
and signal propagation delay along the wires.

Ea.ch ring interface has two modes of operation, listen or transmit. In listen
mode data is simply copied from the input to the output. If the data is addressed

59

rillg
interfal'e

1
uni·direc\.ional station

nng

Figuft" 4.1: A Token Ring

to the U~l.emng station. thf:n it is also copied to the station as jt passes through
the interface. A ring interface call ollly enter transmit mode if it is in possession
of the token. In this mode thp- interface breaks the connection between input and
output and enters its own data onto the ring. Once the data is retul'Iled to Lhe
"wilding iut.erfal'/" it i~ drained from the rillg. The sending station IIlay then discard
the returned data or check it against the original. Transmission completed, the
token iSl'egenerated. Finally, once all the data has returned to the sender the ring
interface returns to listen mode, completing the ring.

As it is not nel'e:')sary to hold the ('ample I.e frame of data on the ring at anyone
instant. there is no physical limit on the ,."ize of data packets which may be trans­
mitted. Acknowledgement of receipt of uata call be achieved simply by including a
bit in the frame fonnat which is inVt'rtru by tlw n>ceiying station and checkeu on
return to the sending station.

When traffic is light the token spenus most of it:') timE' going around the ring.
When traffic is heavy the station:') lire given the opportunity to transmit in turn
around the ring; as tl1l." token is relillquishf'd hy one station it is captured by the
next statiou round the ring which wishes to transmit. Setting an upper bound on
token holding time we can ensure that the protocol is fair. Also network efficiency,
with respect to utilising the ring, can approach 100 percent under heavy loads.

Each ring has a monitor station which is responsible for ring maintenance.
Its respousibilit.ies include ensllfillg the token is not lost, keeping the ring free of
garbage and dealing with breaks in the ring. Other features of the 802.5 token ring
include a priorit.y system for ring access and the ability to broadcast data to several
stations.

60

4.2.1 Specification in SCSP

The specification developed here Duly covers the basic features of the token ring.
By making the following assumptions we restrict ourselves to specifying a simple
ring interface in this study.

•	 We shaH ignore signal propagation delay along links between interfaces. The
assumption being that the ring is started with sufficient stations to provide
the ring capacity required to hold th", token.

•	 We assume that the sending station discards the returned data without check­
ing it.

•	 AckJlDwledgement of data is nut collsidered here. We are only concerned with
the flow of dati'l rather than itg exact value, we shall assume that data reached
its destination if it returned to the sender.

•	 We- shall 1101. specify a monitor station: we shall only coucem ourselves with
the bdliwiour of the riug when all the ~tatious are opera.ting correctly. Ring
maintenance only becomes necessary when the stations go down, loosing the
token or breaking the ring as they do so.

•	 Special features of the 802.5 token ring sllch as a priority system for ring
access <lI(' not conside.red in this study.

•	 The seuding station is r('~trieted to sending just one data frame on each
occasion it captures the token. In the 802 ..) token ring several data frames
may tw seu!. but, to ensure snccessful draining of the ring, no more than one
header is allowed to reside on the ring at any aile instant and the token is not
replaced until the la"t header has been drained from tbe ring. This way once
transmission is complete it is sufficient to drain all data up to and including
the first 'end-oC-frame' field before resuming listen mode.

Finally we shall use a very simplified format for both the token and the data
frame. The token in the 802,5 tok(~n ring consists of 3 octets and can be distin­
guished from other data on the ring by its first two octets. This mf'ans that a ring
interface must keep recorded the last few values it has seen on the ring so that it
can recognise the token when necessary. S-imilarly the data frame contains stveral
fixed length fields in its head and tail, the details of which can be found in [Ta.n89].

We shall assume that the following distinguished bits are available.

Tl\ -- token
SF - start-of-frame
EF - end-of-frame

61

- - --

I//. I , U'H: BUFFER
I I

ricUi set

- CONTROL

up

READEn WRITER

------------"­ - - - - _.
off on

Figure 4.2: StrucLnre of n, ring interface

For our purposes the Loken is a single distinguished bit while the data frame has
rormat:

SF DA Datn E:F

SF and EF ate I-bit markers while DA is a fixed length field containing the des­
tination addrf'ss. B.r a,ssllming the existence of these distinguished bits we can
ignore the problem of internal buffering and concentrate on the mec.hanism of the
protocoL

4.2.2 Ring interface

We divide the ring interface into four components as shown in Figure 4.2. These
conlponents are:

BUFFER This is a I-place buffer the contents of which can be viewed and altered
by the CONTROL process.

CONTROL This process switches between letting data through the buffer un­
changed and setting the value in the buffer, depending on whether the inter­
face is in listen or transmit mode.

62

WRITER This process provides a buffer of data waiting to be transmitted.

READER This process observes data entering the buffer and forwards data with
matching address to its station.

The CONTROL and WRITER processes are responsible for transmission oC data
while the READER acts as a receiver for the station.

BUFFER

BUFFER ads as a I-place buffer on the ring. Between the data entering the buffer
from the ring and exiting the buffer to the ring there is an opportunity for the data
to be viewed a.nd altered. In order to allow the controller to modify the buffer, the
buffer cycles its behaviour over a 3 phase clock cycle.

[0 the first pIlose the data currently held by the buffer is written to the ring
and a Dew data value is read from the ring. In the second phase the controller and
the read{'l' call if nen'ssary view the data which has been read into the buffer. In
tbe final phase the controUer may overwrite the contents of the buffer.

~BUFF, [{ill?"olt/!y} ~ BUFF; [>~]

BUFF; - [X';; {view!y} ~ BUFF;]

BUFF;' ::'1: [{-,<Ii,} ~ BUFf~ [> BUFF,]

The design requires all the intt?rfaces to be synchronised to aHow the da.ta transfer
around the ring to occur without corruption. The ability to specify synchronised
data transfer around the ring means that the ring capacity in our model is equal
to the number of buffers on the ring

CONTROL

When th{' ring interface is in listen mode the controller allows the hits to pass
through the buffer unchanged. The controller also registers whether its station has
outstanding data to send. If the station sends data to the interface for transmission
then it is the task of the controller to capture the token so the interface can enter
transmission mode.

LISTEN "	 [{ up? " view? r} ~ (TRANSSF if r = Til" elve REQ)

D {"ph} ~ REQ [> LISTEN]

REQ " v;cw?, ~ (TRANSSF if, = Til elve REQ)

63

Once the ring interface has captured the token it enters transmission mode and
the CONTROL process transmits all the data provided by the WRITER process.

TRANS, [{sel!y} ~ TRANS' c>1-]

TRASS' [{uplx) ~ TRANS;' c> DRAIN]'K!

TRAi"i,,; 'l.lIait lJ) --I TRA i"lSy

Transmis3ion work!> on a 3 phase cycle ill order to keep synchronised with the buffer.
The first phase of the transmitter must coincide with the final phase of the bufferj
in this step the data in the buffer is reset. Failure to reset data in the buffer before
it is transferred would result in data C'OJTuption. In the second phase, the next
value to bp t.ransmitted is collpded; if no such value is available transmission is
assumed to be complete. The token Illust be repla,ed and the data frame drained
from the ring before the controliN retufll~ to listen mode. It is not necessary to
view incoming da.ta from the ring during transmission as we have chosen to discard
the rdurnpd dat.a without checking it. Consequeutly the third phase, which could
have iuvolved inspectioll of the buffer, involves a wait to maintain synchrollisation.

Once tra.nsmission is complete the data frame must be drained from the ring.
This is adlieved by transmitting null charaeterM (denoted *) nntil the end of frame
marker has }"t':'turned to the sender.

DRAIN, [{set'y} ~ DRAIN' C>1-]

DRAIN' wait(I) --I DRAIN:'

DRAIN;' I{ uhw?z} ~ (END if z ~ EF else DRAIN,) [>1-)

Vv'hile the ring interface is draining the data from the ring, it is imperative that
each bit of incoming data is viewed so as not to miss the end of frame delimiter.
Failure to see t.his delimiter would result in either the token or messages belonging
to other stntions erroneously being drained from the ring.

Once the end of frame marker has returned we must delete this from the buffer
and immediately return to listen mode.

END =c [{sd) ~ LISTEN c>1-]
"

WRITER

Dat.a. ariives at the ring interface from the station orr channel OTl. The WRITER is
responsible for formatting the data into a data frame. As the token holding time is
directly proportional to the length of tht':' data. frame the writer can be responsible
for ensuring that the token is returned within the token holding time. This is

64

achieved by splitting data across several frames if it is too long to be transmitted
within the time limit.

WRITE - WRITEO

WRITEO - on?d -....+ WRfTE/..(dj

WRfTE(g;&):/..& - up!y -....+	 WRfTE&;jr&

WRITEOJ"' - wait. (3) ~ WRITE!",

where /r(d) is a list of frames l (05 : /rs) denotes frame s followed by frames /rs l and
(y: 05) denotes bit y followed by bits s.

Onc(' a complete frame has been sent, the I''lR/TER blocks sending for sufficient
time to gua.rantee the controller will stop transmitting and return the token to the
ring.

READER

This process acts as a f(~c{'iyer, vi~wing data as it passes the buffer. Ifit sees a start
frame delimiter then it checks the destination address of the frame. If the address
matches the address of the station then the reader stores all subsequent data until
the end of frame delimiter and passes the data to the station. If the data does not
carry the correct address then it is ignored by the reader.

READ - "if"'?y ~ (CUECI,O if y = SF else READ)

CHECA·, - TnUII?y ~ (/\BEPO if s"'(y) = address else
(CHECII,~(,) if s~(y) < address else READ))

flEEP.• - vif'w?y ~ (SEND& if Y= EF else KEEP&/'-.{v))

SEND, - I{ vi"'" y, o!J's} ~ (CHECIIO if y ~ SF else READ)
o {o!J',} ~ READ t>.L]

We assume that the st.alion is always able to accept data. This may require some
intermediate buffering.

Notice also, this process is always wilJing to view data. Thus it cannot block
the buffer process.

4.2.3 A complete ring

~len the system is started we assume that one of the buffers carries the token and
the remaining buffNS ou the ring contain null bits. We assume that every interfa.ce
is in listen mode with no data pending transmission. So every interface is given by:

INTER, '" (BUFF, II LISTb"N II WRITE II READ) \ {view!,up!,set.!}

65

where x E I TA.*}
Assuming there are 11 +1 stations and the interface labeled 0 contains the token

then the s~'stf'm is initially df'suibed by the process:

SYSTEM"= (II LiNTER.) II O.INTER TK

'E[I,,")

where

,.IiVTEJi, "= IN TER, [",","y / in, (i '" 1) .1'I71g / oul, i. off / oj], i. 0" / onl

(E! being addition modulo n + 1.
We could hide thf' ring mechanism by hiding the channels {I. ring I 0 ~ i s: It}.

Although this hides the token, f'nabling it to travel arollnd the ring internally, snch
a.bstraction does not resnlt in infinite cha.t.ter and cha.oll. Even when an event is
hidden we- know it can oc('ur at most once in every time unit. This contrasts to
esp, where mll("h ("are must be t.aken (,0 avoid infinite chatter when hiding events­
which cOllld ocmr arbitrarily often, such as t.he token passing round a ring when
all interfacell are idle.

4.2.4 Investigating the interface

In order to investigate the behaviour of a ring interface we shall consider the com­
position of the components BUFFER, CONTROL, and WRITER. We shall
restrict our interest to the transmission properties of the interface, so we shall
exclude the READER component from our investigations. We simply note that
the READER cannot affect the behaviour of the dIanne! vIew and this is the only
opportunity for communication between tht" READER process and the remaining
processes wit.hin the interface.

We wish to establish the bebavionrs of the process

INT, "= (BUFF, II LISTEN II WRITE) \ {vieu,', sel!, up!}

To achieve this we use the algebraic laws to reduce the above expression to a form
which does not involve the parallel composition or hiding operators.

INT,

{ by definition of INTy }

(BUFF, II LISTEN II WRITE) \ {vieu'!,set!, up!}

{byL-3}

((BUFF, II LISTEN) II WRITE) \ {v"w!, sel!, up!}

66

Now

(BUFF, II LISTEN)
{ expanding definition or BUFF" and LISTEN}

[{m',z, out'y} ~ BUFF; [>~]

II [{up?z,"",,'x} ~ (TRANSsFifx = TIl else REQ)

o {up' z) ~ REQ t> LISTEN]

{ by A-IO' }

[{ill'?.x,out!y, up?z} ----1 BUFF; 11 REQ
o {in'lx, "UI'y} ~ BUFF; II LISTEN t>~l

So

((BUFF, II LISTE:N) II WRITE) \ {view!,set!, up!}
{ expanding WRITE and from above }

([{in'/x.out'y.up?z} ~ BUFF; II IlEQ
o {i"'!x, oUll y } ~ BUFF; II I.J5TEN t>~J

II	 [{on? d} ~ WRITJojd" t> WRI1'E]) \ {"i,w', ,.eI!, up!}

{by A-IO' and A-13' }

[{in?T,o'ufly,on?d) ----1

(BUFF; II LISTEN II WIlITf,Jd") \ {"i,w!,sell.up!}
o {i",'I,r,oul!y} ~ (BUFF; II LISTEN II WRITE) \ {view!,sell,op!}
[>~I

By continuing to eliminate parallel composition and hiding in the above manner
we ea,n demonstrate that

INT, '" I(y,L,O)

where J(y, L, OJ is given by the mutual recursion in Figure 4.3. The parameters of
I ca.n be given the foHowing intel'pectation in the system:

•	 The first parameter is the currellt value stored in the buffer.

•	 The second parameter is a value taken from the set {L, T, D} a.nd indicates
t.he mode or the interfa.ce,

L	 - Listen mode

T	 - Transmit mode, data still being sent

D - Transmit mode, returned data being drained.

•	 The final parameter is a. list or lists of bits, representing data pending trans­
mission, stored in frames.

67

~

~

'::

""	

­
..

"	

-""

'" ~
'":-;

",
,'

':
:

':
:	

'"

':'"

~

c	

-
t:

::=:

-

,...
.:2

~
,	

:::::

'"
~

"
"

"	

~
~

'Y

,
•

'" t:J
t:

•

'"
'.

"
~

""

...	
S

:-'

S
S

S
S

'" ,­
~

	
:,;

'.ii

uo

"" •
-

-
"

-
-

"
"

--
­

11)
", •

II'

II'

II'

II>

II'

II>

II'

II'

",
II'

II'

s;

~

	
~

~
0

~
	

e
~

,
'V

'V
	

'V

'V

0
'V

'V
'V

'V

'V

'V

0
f-

c-
~

~

f
-
-

;;
~

,
~

~

~
,
~

,
~

	
~

..-
0

J=
:::

-
s·

- ;,;'
;=;"

!:::

. ;;"

!:::
. ;;"

.':::

:.-
- 0

,
c'

'V

" ,~
;.
.,
~

'V

,
~

	
,"

;..,..
...

'V
 -

" ,~
",	

]-
~

~

"-
0

" "-
,
~

0

"-
c,

 .'
,
~

	
~'

"

!l.
,	

•
, :

":
'..

,'-
-'

,"
0 "

0
;:

:
~
~

 ~

0
0

0
c
-~-..;>

'-.
-'

,
0

:::;

"-
I

0
"

f:..

~
~

1

"-
"-

,
I

"-
<;=

:
~

1

c
;.

	
,

""
:;;

:
"

0	

~
I

~

""
:::

01
-:

:'
:s

:s

-;::

;
~

~-

1
-

!';
.

""
0

0

II
~

0

-
•

'"	
-
.

0
'"

" 0'

-
)3

:
""

1
-
-
~
~

1

1
1

"" ,...
~

1

~
;
:
:
:
~

""

" ,~
,
~

~
:
;
:
:

0
'

:!-
'"): -

':
:

•
~ I:

J
-- 1	

"

" >

'CF
.

':

: ""
~

'" .. ""	
~

 •"'".,.,

"-

~

~

1
, 1
~

1 "-

.'::?

~

'::;
-

.....

" .., ~

<," c

{;
;;;

~

---.
:.:.

.
..

.., -;

"" " '::

~
"
" ~
l

~
 "1

~

1
0

...
';

t:J
	

--
~t
--

,..
.::

: ,
"-
-	

•
"-
­

~
O

	
..

0
::

::
::

~
:-

'
"'

.
,
­

-
~

 "
1	

1

1
:::-

_.
~

-"

"
-
~

~

:;:	

t:J

'"
:::

:::
:t;

,

t:J

"

"" "
~

~

'l
	

'"
-	

- "
-

~
	

II
.'

l	

"
'"'"-

1
:::l

..,"

""
~­

~
,

	
"­

III
	

~

,
I:J

	
-

""
"'	

-, "'
'" •

-
>

"

;;-" •
.:!.

.
'"	

•
]-

):

"-
	

'i'
""

-	
~

Interface with arbitrary data supply

When we consider properties of the ring interface we want to be sure tha.t these
hold regardless of the data transmitted. y.'/e shall thus place the interface in an

environment in which the data snpply is specified as weakly as possible. We model
an arbitrary data supply by the process:

DATA =(n (an!d~ DA1A)Jn ("'ad(l) ~ DATA)
dE5(on)

The process waits a random (possibly infinite) lengt.h of time before offering the first
data item to the interface. Once this is accepted further data items may be offered
after random delays. Assuming that once data is made available for transmission
it willl'emain available until accepted by the interface, then any actual data supply
D will be more deterministic than the process DATA, DATA ~ D.

vVe shall now consider t.he behaviour of the interface when supplied WiLh data
in the above arbitrary manner, by considering lhe process

(lNT, II DA1A) \ {oo!}

As before We use the algebraic laws to eliminate parallel composition and hiding
from this expres!'iion. We define

ID(y, X, s) =(1('1, X, s) II DATA) \ {on!}

Clearly by the definition of INTg

(lN1; II DA1>!) \ {ool} 0: !D(y,L,O)

We can derive the mutual recursion shown in Figure 4.4. The first stel-lS of this
derivation a.re presented ill Appendix C.l.

Timing properties of the interface

\Ve shall demonstra.te that, regardless of the data sent to the interface for trans~

mission, the time lapse between an interface receiving the token and outputting
the token to the next. ring interface does not exceed .'3 (Tn + 1) units. Here m is the
maximum allowed length of a data. fra.me.

We recall there is onl.r one token on the ring. While data is beiIlg transmitted
by an interface the token must be held by that int.erface, so no token can arrive a.t
an interface while it is transmitting data. The last bit of the data frame is an. end~

of-frame marker. once this has been transmitted the token is returned to tbe ring.
Ouce the end-of-frame marker ha..<j retnrned to the sending interface it immediately
returns to listen mode. The token caHuot arrive at the draining interface before

69

ID(y,LOI " [{i,,'?x,oul' y} ~ ((nOES",,) ID'(x,L,fr(d)))
nID'(x, L, 0))

I> 1-]

ID'(y,L.O) " wa,l(2) ~ II n,,,, '0' ID(y, L,fl'(d))) n ID(y, L, 0))

(D(y,L,s:!rs) :::= [{in'?.r,oui!y} ---t ID'(r,L,8:/rs)

1>1-1

ID'(y, L,(z: s) ,frs) '" u:od(2) ~ (ID(SF, T, soil's) jf Y = 1'[(else

ID(y. I" (z: s) :[I's))

ID(y. T,(z"):[1'8) " [{in?z, o"fly} ~ (w"d(21 ~ ID(z, T,s:frs))
I> 1-]

ID(y, T, 0 : (soil's)) " [[;n?x, OId'y} ~ (wail(i) ~ ID(T[(, D,sJrs))
I> 1-1

lD(y, T,(())) " [{i,,'I",oul!y} ~ ID'(TI\., T,O)
I> 1-1

W(y, T, 01 " wod(2) ~ ((n'E"'" ID(y, U,fr(d))) n ID(y, D, 0))

W(Y,LJ,s:/rs) =: [{iu'!.r,out!y} (wait(2) -----'llD"(x,s:frs)) -----'I

I> 1-1

ID(y,D,OJ " [{i"?",o,d'y} ~ ID'(x,D, 0)

I>1-J

lD'(y,D·O) " woil(2) ~ lin'E"") ID"(Y,[I'(d))) n ID"(y, 0))

ID"(z, 5) " ID(., L, 5) ifr = EF else lD(., D, s)

Figure 4.4: Specification of the ring interface supplied with random data

70

the end-of-frame marker. So the token can only arrive at an interface if it is in
listen mode.

We consider the behaviour of an interface in listen mode, with a random supply
of data, when a token is input to the interface on channel in. We are interested in
the time it takes for the token to be output to the next interface on channel out.

We shall descrihe the provision of a token by

TO/\· :=: in! T/\" ~ NUL
NUL == inh NUL

This process prO'·ides the interface with a token followed by arbitrary data, rep­
resented by the * symbol. We shall assume that data flow around the ring is not
blocked, so all output on channel ouf is allowed by the environment.

We are interested in the time elapsed before the event oull TJ(can be performed
by the process

(ID(y,L,s) 111'0/\') \ {i,,!}

where" E {OJ U {/>'(d) IdE b(on)}
Dy application of the laws of SCSP we can show:

(ID(y,L, 0) II TO/\) \ {in!}
=' [{ouf!y} ~ (wait(2) ~ ((n",(,",(ID(SF, 1',fr'(d) II NUL) \ {ia l })

nl{ out! TI\} ~ P ".L])

" .LI

and

(ID(y,L,fr'ld)) II TOf{) \ {in!}
=' [{ouI!y} ~ (waif(2) ~ (ID(SF, 1',!>,,(d) [I NUL) \ {in!})

" .LI
where!>,,(d) = S :/"s, given /r'(d) = (SF: s) :/1's,

We see that aIter 3 units either the token is returned or the interface eaters
transmit mode. If the interface does llOt enter transmit mode then the token is
passed through the buffer unchanged.

It remains to consider t.he time taken for an interface in transmit mode to return
a token. /1" (d) is a list of frames with the start-of-frame marker removed from the
first frame. So the first frame has length less than 1n. We sha.ll establish, by
induction on Is I, that the process

(ID(y, 1',s:/r's) II NUL) \ {on!}

is willing to perform the event out! TA' aIter S(lsi +1) units. This result is sufficient
to gua.rantee our requirement regarding the token holding time.

71

Base case lsi = O. Using the laws of SCSP we can demonstrate that:

(ID(y.T,01r') II NUL) \ {o'.!)

" [{ oul'y} ~ (u'0;1(2) ~ [{ 0.1' TK} ~ P [>1-])

[> 1-1
So (lD(y, T, () :[1'5) II ,Vl'L) \ {on!} is willing to perform the ('v~nt oul! Tl\' after 3
units.

Inductive step 1=: s I = n + 1. Again using the law::; of SCSP we can show that:

(lD(y, T,(':oHr,) II NUL) \ {oo!}

~ [(ord!y) ~ (woil(2) ~ (ID(y, T,"!rs) II NUL) \ {on!})

[> 1-1
So. "."sllJ1ling till' l'llvirOlllnpnl is a.lways willing to receive data on channel out,
(ID(y, T, (z ,,) 1,'.,) [I Ii['I,) \ { 00 '1 behaves like p,'oce"

(ID(y, T,81"s) 11 NUL) \ {on')

after 3 units ilnd by induction this proCl'SS is willillg to perform the event o'ut! TA'
after 3(n+1) units. So

(ID(y, T, (z:o) 1r8) II NUL) \ {"o!}

is willillgto perform the event ouf!TA' Nter 3(lz:sl + 1) units.
Hence we have esta,blished that tile time lapse between the token arriving at

the interface and its being relinquished by the interface does not ('Heed S(m + 1)
units, where In is the maximum allowed frame length.

4.3 Conclusion

By prm-iding a special notation, communication of data via channels between com­
ponents of a syst.em can be captured succinctly by SCSP processes iu a lllanner
familiar to CSP [Hoa85]. Although the underlying treatment of communication
is fairly complex in SCSP, modification of some of the algebraic laws of SCSP
has made it possible to manipulate algebraically expressions, which use the com­
munication notatiofl, without referring to the underlying SCSP representation of
communication.

Using the communication notation, we have been able to specify a simple token
ring in SCSP in terms of sf'vera.l simple components. Vv'e have demonstrated that
the algebra is sufficiently powerful for us to establish behavioural properties of the
ring interface by simple algebraic manipulation. Moreover, as SCSP incorporates

72

an element of timing informa.tion, we have been able to establish the token holding
time of the ring interface. The timed framework of sesp makes it possible to
hide the mechanism of the protocol by hiding the channels which constitute the
ring. If the ring is idle, the (then hidden J token could be passed around the ring
indefinitely; however, this abstraction does not result in infinite chatter t as it would
in an untjmed model ~uch as esp, since the token takes time (which is not hidden)
to pass around the ring.

73

Chapter 5

Synchronous Receptive Process
Theory

A discrete time algebra is particularly appropriat.e for modelling docked circuiis;
Uw t.iIllt:'cornpoIlC'Ht exadly captures (}H' dock"s behaviour. l1owever. components

within a (ircuit ,Uf' ahvays willing to I't'cei ve illpu t, ,,,,hile ou Lpn t is ne\'eC blocked. In
SCSP it j, po~siblf' to model slidl systems by making sure every event corresponding
to an illput is available fol' all tim/' and a.ssllrning that the system becomes chaotic
if all outpllt i~ blocked by thf' em'iL'onm('llL

Example \Ve consider the SCSP specific<lt,ioll of a. NAND gate with unit response
time. The output of a NAND gate is only low if both inputs were high at the
previous time step. We assume lIw NAND gate has input wirps 'a' and 'b' and
output wire 'c' as shown in Figure .J.1. \Ve model the gale by recording voltage­
levels OIl wires. Event a occurring corresponds lo the voltage.-Ievel on the wire
labdkd 'a,' being high, oLllE'fwise the voHage-level is assumed lo be low_ We assume
that both inputs a.re initially high. This gives us the following specification:

NAND ~ IX C; {a. b} ~ (NAND if X = (n. b) else SAND')]

NAND'cc IXC;{n.b,c} ~ (i\AND if.\: = {n,b,c} else

(NAND' if c E X else l-J)]

a [)- c
b-

Figurp .5.L A NAND Gate

74

The gate is always williug to a,(:cept a high voltage-level on the input wires, while
the voltage-level on th", output wire can only vary in accordance with the inputs
at the previolls time step.

This small example has resulted iu a process expression which is encumbered
by the Msumptions concerning the na.ture of communication. By encoding such
Msumptions into OllT model we are able to develop a synchronous version of Re­
ceptive Process Theory [Jos92]. This language can be viewed as a sublanguage of
SCSP and its links ith SCSP will be presented in a later chapter.

[n this chapter e. present tbe language of the synchronous receptive process
theory, SRPT, and its associated denotational model. As with SCSP, a given event
can occur a.t most once at each time step. In contrast to SCSP, the language of
SRPT distinguishes between input events and output events.

Later in this chapter we shall see that., by making a semantic distinction between
input and output events, we do not need to record refusal information in the model
for SRPT. Behaviours are recorded as traces of sets, the sets consisting simply of
events. We also obtain a straightforward encoding of divergence, however, by doing
this we find ourselves considering a partial order on processes different to the usual
non-deterministism ordering.

5.1 The Language

SRPT is intended to model the interaction of a.n input-output system with its en­
vironment. A system is always able to a,ccept any input from the environment and
the environment may not block any output from a system. The term 'receptive',
previously used by Josephs [Jos92j and Dill [Di189L is used to capture these con­
ditions on the input and output of a system. As in SCSP all communication is
instantaneous.

As in SCSP, we presuppose. a universal alphabet of events:E. In SRPT we
associate t.wo sets of event.s I, 0 <;;; 'E with each process. These are referred to as
the input and output alphabets of a process. We require both I and 0 to be finite,
at least one of I and 0 to be non-empty, I U 0 ¥- {}, and the sets to be disjoint,
In 0 = {}. We also presuppose a set of process variables Yar. As before, these
variables facilitate the definition of recursion.

The abstract syntax of the receptive language is similar to that. of SCSP, the only
noticeable variation being the slightly different form of the prefix construct. Ta.ke
P to range over process terms. I, 0 E :r 'E, x E Yar and S to range over bijective
renaming functions S : 'E -+ 'E. Then, with certain restrictions on the a.Jphabets of

75

the processes. the following grammar defines the syntax of the language SRPT:

P ::= 1-1,0 Chaos

II process variable

Ipnp non-deterministic choice

I [!O'X ~ Pxl ou tpu I. prefix

I P II P paralld composition

IPIO hiding

IPIS] renaming

1~r:I,O.P recur"ion

\Ve lIOW present the informal interpretation of each of these terms, highlighting
the differences between this language and SCSP. We also consider the restrictions
imposed upon lhe a.lpbabets of the process terms.

5,1.1 Primitive processes and operators

Throughout this !oiection we shall use IP and oP to denote the input and ontpnt
alphabets of process P, while aP will denote the combined alphabets of P, oP =
LP U of.

Chaos

The process 1-1.0 is the most undesirable process with input alphabet I a.nd output
alpha.bel. 0; it can give 110 information about its behavionr. This process is nsed
to modd behaviour when things go wrong, no useful information is available about
the system, the process is divergent. No recovery is available from a process in this
erroneOLlS sta.te and in this respect ('haas is identifiable witb the process 1- in SCSP.

Where the alphahets can be deduced from the context we will simply write 1-.

Process variable

.:r E Vnr represents the process bound to variable x in the context of given variable
bindings. As in SCSP, we cannot make any deductions about the process to which
.r is bound until the choice of variable bindings is made explici t.

Non-deterministic choice

If two processes P and Q have COIllmon input and output alphabets, I and 0
respectively, then the non-deterministic choice of these two processes P n Q is

76

defined to be the process witb iuput alphabet I and output alphabet 0 which
non-deterministically hehaves like P or Q. The choice occurs internally within
the system; the environment has no control over the outcome of the choice. Non­
determjnistic choice i.~ a dlC'monic cboice: a process which may internally choose to
behave erroneously, is itself erroneous. This is refleetl?d in a-4 below:

a-I: PnQ""Qnp

a-2: (P n Q) n R =P n (Q n 11)

a-3: P nP =P

a-4: Pn~=~

Output prefix

Let P be a, IP(l)-indexed family of processes, each with input alphabet I and
output alphabet O. A prefix set B is a. subset of the output alphabet O. The
process [!B? X --I' Px]performs the events in B and any subset C of events from I
at the first time step. 'fhe process then goes on to behave like Pc. If P is a. process
with empty input alphabet we sha.ll simply write [!B ---t Pl.

This differs from the set prefix construct of SCSP in that it reflects the receptive
behaviour of processes. The environment must aUow the process to perform aU the
output events in B. This pn'fix construct does not provide a choice a.s to the out put
performed. The environment only ha.'l a choice a.s to how much input it provides
tht' process. The process must allow a.ny possible combination of input and its
subRf'quent behaviour is influenced by the input provided by the environment.

Consider, for example, the process

1!{n}?X ~ (~ if X = {} else Pi]

Initially this process will perform the output. pvent a and a set of events in its input
alphabet. No other output. can occur. If the environment provides the process with
input, then the process will evolve to P at the [lext t.ime step. If no input is received,
then the process evolves to chaos at the next time step.

We have one axiom j[l\'olving OHtput prefix:

a-5 : I!B? X ~ Px]n pB"Y ~ Qrl=I!B? Z ~ (Pz n Qz)]

This is weaker that the corresponding axiom in SCSP. Consider the process

PB?X ~ Prjnl'C?J' ~ Qr]
All the eents in the prefix sd must occur at the first time step. So whenever
B f:- C, an ohserer will be able to est.ablish which way the process resolved the
choice at the first time step, simply by considering the out.put which ocalrred. The
only situation in which t.he resoJutioll of choice can be postponed is wben both
prefix sets are equal. which justifies the distributivity result, a-5.

i7

Parallel composition

The parallel composition of two processes, P 11 Q, is the process which results from
the interact,ion between two concurrently executing processes. Parallel composition
is defined for processes with disjoint output a.lphahets: P II Q is defined if of n
oQ = {J. The input aIld output alphabets of P II Q Me (,P U ,Q) - (oP u oQ)
and (oPU oQ). Synchronisation mnst occur on common events, in the ~eIlse that
such common events can only occur when both component processes are prepared to
perform them. The occurrence of other events in the composition is governed hy the
behaviour of the component process which contributed these events. ff one proC"ess
becomes chaotic and can provide uo fmLher information about its behaviollr, then
the composition also hecomes uninformative. Communication between compollent
pron'sses, resulting from olltpnt from Olle component being rect'ived as input to
tlw other componellt. is seen as output of the composed process. This allows us to
modfJ forks in wires easily.

paJ·allel composition satisfies the following a,xioms:

a-6 1-1.011 P =1-1'.0' where 0' = (oP u 0) and I' = (rP u 1) - 0'

a-7 P 111-[,0= 1-['.0' where 0' = (oP u 0) and I' = (~P U I) - 0'

a-8: (P n QJ II R = (P II R) n (Q II R)

a-9: P II (QnIl)= (P II Q)n(P II II)

a-lO: I'B?X~Pxlll[!C?Y~Qyl=

I'(BU C)?Z ~ p(zuc,n,p" II Q,zuBln,q,,]

and the following laws:

1-1: P II Q =Q II P

1-2: (P II QJ II Ii" P II (Q II Ii)

Hiding

As in SCSP we should be able to change the level of abstraction of a problem by
hiuing evpnts from th~ f'nvironrnent. Since input events form the external control
of a process, it does \lot make sellse tu be able to hide input events. The only events
in a process' alph<l,bet which may be hidden a.re output events; this corresponds
to ignoring the information provided by the process. A hidden event will occur
unseen wheuevpr the prucess desires to perform it. We note that, unlike SCSP,
hiding does not introdUCE maximal progress implications. Rather, aU output in a.
receptive system already occurs a<; soon as possible.

78

If B is a set of events disjoint from the input alphabet of P such that aP -8 =l­
n, then P\B is the process which behaves as P, with all the events in B occurring
unseen by the environment. Notice, we are always able to hide events which are
the result of communication between processes in parallel composition, since such
communication is visible as ou tpu t.

Hiding satisfies the following axioms:

a-II: .1/.o \B ::::.1[,0-8

a-12: (pnQ)\A",(p\Aln(Q\A)

a-13: [!H?X ~ px] \ A",['(B - A)LY ~ (Px \ All

aIld the following laws:

1-3:	 (P\ AI\ B ",P\(AUB)

1-4:	 (I'll Q)\A'", (p\A') II (Q\A')
ifA'n"pn"Q={)

Renaming

Given a biject.ive renamingfunetion S : r; -. E, we use PiS] to denote a renaming of
proce" p. Pm"e" PIS] has input alphabet (l.p)[S] and output alphabet (op)[SJ,
where for a subset B of E we define B[S] =0 iSle) leE B). Like SCSP, PIS]
performs event 5'(0.) in exactly the circumstances tha1 P would perform event a.

Renaming satisfies the follm.... ing axioms:

a-14 : 1-1,0 [S] "'1-1[51.0['1

a-IS: (I' n Q)[S] '" PIS] n Q[S]

a-16: [IB'iX ~ pxIlS]"'I'BiSj?Y ~ (Pl'['-'I)[SII

and the following laws:

1-5: PISJlR] '" p[R . S]

1-6: (I' II Q)[S) '" PIS] II Q[S]

1-7: (I' \ B)IS] '" PiS] \ BIS]

79

5.1.2 Recursion

By the USE' of recursion we are able to extend our language to describe infinite
processes. J.l;; : 1,0 • P represents the solution of the recursive definition of the
process :r defiue-u as it pal"ti,ular (least) fixl:'c1 point of tIle function>' r • P. The
ma.themalical details of this collstruction will be presented later.

a-17: I": 1,0· 1'" 1'[(1": I, (). P)/II

here P[(jtx: I, O. P)/.r] denotes tlie process P with}1 x: 1,0. P substituted for
every free occurn'llce of the viLriable :r.

Recursion also si1,tisfies alpha redudion:

1-8 : f'I : I, 0 • P " I' !I : I, () • Ply/ I I where y is not a variable in P.

By t.lll' sallie argument as for SCSP, we can show that there is a unique fixed
poinl, of rhe function). I • P whenever every occurrence of :r in P is dirt:'ctly or
indirectly guarded by a.n output prefix.

5.1.3 Derived processes and operators

MallY orlhe derived processes and operators of SCSP cannot be expressed in SRPT.
Processes in SRPT UU] always accept input; they ca.nnot wait for time to pass
without making input event.s availabll:'. The only process which can be viewed as
a unit of pal·aBel composit.ion, in the sense that RUN could be in SCSP, must
have an empt.y output alphabet. This is it consequence of the alphabet restrictions
on parallel composition. Due to the requirements on input events, the only nOI1­

divergent process with input alphahet } and empty output alphabet is STOPl,{),
which is prese-ntpd below.

Stop

The process STOPJ,o [leVer Ql.ltPIlts a.nd never becomes chaotic; it represents a
deadlocked procf'Ss. Like all other processes of SRPT, STOPJ,o can always ac­
cept input; in t.his respect it resembles the deadlocked process in the theory of
Asynchronous processes presented in [.THH89].

STOP},O '" ~ I: 1,0. [!{}'!X ~ xl,

We have the following law:

1-9: STOP}"o, II STOP}"o, "STOP},o where	 0 = 0 1 U O2

1 = (l, u I,) - 0

80

Proof:

STOP/"o, II STOPf"o,
2' {defn of STOP and by a-17 }

[!{)?X ~ STOpf/,o,III[!{)?Y ~ STOp/"o,1
2' {bya-10)

[ill? Z ~ (STOP/, ,0, II STOPf"o,)]
== {by uniqueuess of solutions to guarded recursive equations

STOPf,o 0

If the output alphabet is empty, then STOPr,{J is prepared to perform any of
the events ill its alphabet, We obtain the following law:

1-10: STOPf,{j II P 2' P if 1<;; oP

5.2 ExaIllple: Basic digital logic circuits

In tbis section we draw on the field of digita.l circuit design to provide some small
examples of the use of SIlPT. Throughout t[lese examples we shall model compo­
nents by recording voltage-leveh au labelled input and output wires. A component
is represented by a process with iupnt events corresponding to input wires and out­
put events corresponding to output wires. Event a occurring corresponds to the
voltage-level on the wire 'a' being high; otherwise the voltage-level is assumed to be
low. We shan assume that initiaJly all the wires in the system are low. Througbout
these examples we shall assume there is a delay associated with the gates modelled,
ill that time must elapse between the pl'ovisiou of input and the observation of tbe
desired olltput corresponding to this input. In reality there is no significant delay
associated with the simple gates described here.

81

5.2.1 Gates

AND gate The output of an AND gate wit.h uilit delay is only high when both
the inputs were high at the previolls time step.

AND'" [I{J?X ~ (AND'ifX = {a,b} elseANDl]

AND' '" [!{ c}? X ~ (AND' if X = {a, bI eLse AND)]

OR gate 1'hp output of ill) OR gate is only low WhPJl both inputs Wefe low at
the previous time step.

OR '" [ill'X ~ (OR if X ~ {I else OR')]

OR' '" [i{ IFX ~ (OR if ,\ = {} else OR')]

EXOR gate The output of all EXOR (exdllsive or) gate is only high when
exactly olle of th(' inputs was high a.t. t.he previous time step.

EXOR '" [I{}" X ~ (EXOR' if IX I ~ 1 else EXOR)]

EXOR' '" [1{c}?X ~ (EXOR' if IXI = 1 else EXOR)J

5.2.2 Half-adder

A circuit for calculating the sum s and carry c of two bits a and b can be
constructed from two gates as shown in FigUl'e 5.3. So the process describing the
halr~addt'r can be defined as

HA'" AND II EXOR[s/c]

We shall expand the definition, eliminating parallel composition and renaming
[rom t.he expressions. This way we <Il'e able to demonstrate that the circuit has the
desired hehaviour.

Firstly we define:

HA, '" AND II EXOIl'[s/ c]

and HA, '" AND' II EXOR[s/ c]

~=D-c ~=D-c ~=JD-c
AND OR EXOR

Figure 5.2: Three gates, all with input wires a, b and output wire c.

82

~===1 , ~

c

Figure .5.3: A half-adder

Now we have

HA
{ by definition }

['{}?X ~ (AND' if X = {n,b} else AND)]
III!{}'IX ~ (EXOR' if IXI = 1 else EXOR)Jls/ eJ

{ by • -16 }
[!{}?X ~ lAND' if X = {a, b) else AND)]

III!{}? X ~ (EXOR'[s/ c] if IX I = 1 else EXOR[,/ eJ)]
{ by.-10 }

[I{}?X ~ (AND' II EXOR[,/c! if X = {a,b} else
(AND II EXOR[s/c] ifX = {} else AND II EXOR'[s/eJ))]

{ by the abovf' definition~ }
[!{}'X ~ (HA, if X = {a,b} else

(HA if X = {} else HA,))]

Continuing in this manner we can show:

HA"" [!{}? X ~ HAIX I]

where

HA(X)'" HA, if X = {a,b] else (HA if X = {} else HA,)

HA,,,,, [1{s]'?X ~ HAIX)]

HA,,,,, p{e]'X ~ HA(X)]

This has the behaviour of a half-adder with unit delay.
Up to now we have only considered combinatorial circuits with unit delay. In

such circuits output is a function of the previous input alone. Thus these combi­
natorial circuit.s can be represented by processes with general form:

P y "" ['!I Y)?X ~ Px]

where X, Y <;; tP and f : IP _ oP.

In the next section we shall consider circuits which have sta.te.

83

iNa ~aD: k{J-b 8-LJ-b

T-type JI\-type T-type from JK-type

Figurf' 5.1: Flipflops

5.2.3 Clocked f1ipflops

Flipflop." an' onc or the basic components of computer memory. Flipftops are
docked components which are typically triggered by the rising edge of the dock
cycle. The output or a flipflop is determined by its own st.ate and the state of its
input wir('s 011 tu<' li~ing pclge of the clock cycle. It determines the state of its
output wires before the following rising edge.

By <l.Ssurnilig that the 'tick' of the clock in our language corresponds to the rising
edge of the clock cycle in the circuit we can provide a representation of f1.ipflops
by recording the value on their input and output wires at these 'ticks', We shall
consider lbe T-f1.ipfl.op and the JK-flipftop and show how the former can he derived
from the la.tter, a well-knowll result.

T-type

The output of a. T-type flipflop toggles between a and b with every clock pulse.

,T= {} oT= {a,b}
T ~ [i{a} ~ T']
T' ~ [lib} ~ T]

JK-type

Output A is set high when J==l all(l 1(==0 and reset low when J==O and K:::::1. When
both J and 1\ are high the output toggles a.nd when both J and K are low the
output remains unchanged.

,JK = {j,kj oJA' = {a.b)
JK'" [!{a}?X ~ (Jl\' ilk E X else JII)]
JA' '" [!{b)'X ~ (J/I ifj E X else JII'l]

81

Deriving a T-type from a JK-type

Clearly by holding both J a.nd K high we can construct a T-type from a JK-type
flipflop. So all we need to do is attach both inputs to power. Power consists of a
single outpnt which is alway~ high.

POWER" [!{a} ~ POWER] ,POWER = {} oPOWER = {a}

So consider

(J/\ II POWERli/a] II POWER[k/a)) \ {j,k)

First consider

POWERU/a] II POWER[k/ll]
{ expanding definition of POWER }

[ria} ~ POWERlli/a]III'{a} ~ POWERJlk/a]
{ by a -16 }

[!lJ) ~ (POWERli/a])]II[!{k) ~ (POWER[k/a])]

{ by .~10 }

[!{),k} ~ «POWERli/a))lI(POWER[k/a]))]

So by uniqueness of guarded recursive equations

POWERli/a] II POWER[k/a] '= P

where p" [!{}, k} ~ PI
Thus

(J/, II POWERli/a] II POWER[k/a)) \ {i,k)
{ substituting P }

(JI, II P) \ {),k}

{ expaJ1(ling processes }

[!{a)'!'>; ~ (J/,' ilk E.\: else J/\)lll[!{j,k) ~ PJ \ {j,k)
{ by .-10 }

[! { Il,) , k} ~ (J/C II P)] \ {j, k)
{ by .-13 }

[!(Il) ~ (JlI' II P) \ {j,k)]

{ continuing expansion }
[r{a}~[!{b} ~ (J/I II P) \ {j,k)ll

So by the uniqueness of solutions to guarded recursive equations:

(J/\ II PO WER li/alII POWER[k/a)) \ {j,k) '= T,

We shall return to the modelling of docked circuits in Chapter 7.

85

5.3 Semantic Model

In this section we present a dellotational semantics for the language SPRT. The
semantic model makes a distinction between input aud output events. This and the
receptive nature of the language results iu it being uuuecessary to record rdusal
informatioll. A process canllot refuse to perform input events. Output t'vents are
not blocked, so if all output e\TCHt does not occur the process must be refusing
to perform it. This results in a mod",) which is far simpler than that presented
for SCSP in Chapter :3. The new model forms a complete partial order under all
information ordering presented in Sed ion .5 ..1.;l.

5.3.1 Notation

Here Wl' illtruduu:> the k{:'y cOllcepts of the model.

Events

An event is either all input to a process from the environmeut, or an output from
il process We denote the unllJCrsa(nlplwbd E to be the set of all possible events.

A particular process Illay p<u·ticipate in a finite number of input and output
events 1,0 c;: ~; I is the input alphabpt of the process, while 0 is its output
alphabet. The inpnt and output alphabets are necessarily disjoint, In 0 = {},
and at lea.st one of these is non-empty, I U 0 # {}.

Within our modd we shall record the set of events performed at a given time
step. We shall refer to such a set as an occurrencc-sel, it is a subset of I U O. The
receptive nature of our model means that any input event which was not observed,
was not offered by the euvironment. while any output event which was not observed,
was not made available by the process.

Traces

A trace is a fiuite sequence of occurrence-sets. Given input and output alphabets,
I and 0, the spt of all traces is given by:

RTI,O '" (1P'(I U 0))"

At each tick of a global clock an observer may witness a number of events from
the set I U O. By recording these sets of occurrences in a chronologically ordered
sequence we obtain a trace of the process. As in the model for SCSP, time is
recorded implicitly, times when nothing occurred being marked by the empty set
in the trace.

As lraces take the form of sequences of sets we shall continue to use the operators
developed for traces in Section 3.1.1.

86

Maximal behaviours

If a process is divergent it can give no useful information about its behaviour. We
shaH record llothing about the behaviour of a process once it has become divergent.
If a process diverge~ after exhibiting behaviour s then no extension of this behaviour
is a beha.viour of the process. No further record of the passage of time is made.
This is comparable to the use of time stops by Moller and Tofts [MT90] to model
an undesirable state.

A behaviour which precedes a divergent state is maximal in that no extension
of this beha.viour is recorded in the model.

Definition 5.1 The set of marimaJ beha'lJiours of a process with trace set T is
given by'

T={.'E TI~ 3"E T.,.>s}

o
For any set of traces T, T is a mn..rimaJ sr:!.

Processes

A process P is represent.ed in our model by the triple (1,0, T) where J is the
input alphabet, 0 is the output alphabet and T = T(P) is the set of all traces
describing possible bel1aviours of the process. Only subsets of RT1,o satisfying the
closure ('ondition.~ to be given in Section 5.3.2 will represent trace sets of processes.

Restrietlon

Definition 5.2 We call take the restriction of a tra.ce set. T, by a (maximal) set
of traces, S, to obt.ain a trace set T ! S,

TLS={sE TI~(3rES.r<s)}

o
T 1 S consists of the behaviours of T which are not extensions of any behaviour
ill S. A process with trace set T ! S diverges more often than one with trace set
T. If s E S is a tra.ce in T, then either.., is a maximal behaviour in T 1 5 and
immediately precedes divergence, or there is a trace 51 < s which is a maximal
behaviour in T 1 5 ~o s is not a behaviour of T ! S. If 5 is a maximal sel then
only the former of the above cases applies.

The following are direct consequences of the definition of maximal behaviours
a.nd restriction.

87

Lemma .5.1 If T, S, Rand M are trace sets and AI tS a maximal set then:

1. T j T ~ T

2. T j R ~ T

3. T~S~ TjRr;SjR

.. T~SjT""r~S

,5.	 M ~ S A r = S j M ~ M r; T

6.	 (Tj R) j S = (T I S) j R

7.	 n:slrietwn by S is idempotent.

8.	 1'l"slf'tc!ion by S distribulf:s thmugh union and intersection.

•
5.3.2 Closure conditions

In this section we introduce closure conditions on a set T of tI'aces which must
be satisfied for T to represent the trace set of a process with input and output
alphabets / .Hld O. We notice that the first two conditions correspond to conditions
i and ii of SCSP. The eliminatioll of refusal information from the model results in
a reduction in the number of closure conditions required to just three.

I	 () E T

The empty tra<'"e is observable at time' O.

II s""" rET:::} sET

Prefix closure; if a particular traces ca.n be observed over a certaln time span,
then prefixes of this trace, corresponding to observation made for a shorter
time, may also be observed.

III s~(X) ETA Y r; I ~ s~((X nO) U Y) E T

At each time step the process can. accept any input. This rcflects the assump·
tion that the process is always re'ceptive to any input. We also notice that
the output performed at a given time step is not influenced by inpnt received
a(that time.

88

We shall let RM be the set of all triples (1,0, T) where I and 0 are finite
disjoint input and output alphabets and T satisfies the closure conditions with
respect to J and O. This set is the underlying model for our receptive language.

RM'" {(I,O, T') II,OEli'IL:)i\ In 0= {} i\Iu 0# {}

A T ~ RT1,O A T satisfies conditions I-III}

Where L.: is the universal set of all events.
We use RM 1• O to denote the set of all processes with input alphabet I and

outpnt alphabet O.

RM1,o", {(I, 0, T') I (1,0, T') E RM}

F\Hthermore we let 8M1" be the set of all sets of traces for processes and RM~'o
be the subset of Rilly corresponding to proce::ises with input and output alphabets
I and O.

RMT '" {1" I 3 I, 0 E IF I: • II, 0, T') E IiM}
ORM~'o '" {1" I II, 0, T') E RM l . }

We notice that 8Mi: o is dosed under restriction by any subset of RT1,o.

5.3.3 Information ordering

The natural ordering Oll the model for SCSP was a non-determinism ordering. Due
to the novel representation of divergence in the model for SRPT, a non-determinism
ordering, as presented in Section 3.1.3: is no longer the most natural ordering to
work with. We define a new information order'ing on processes with the same
alphahets.

If (1,0, T p) alld (l,O:TQ) represent two processes P and Q, then we define
the ordering :<::; by:

(1,0, Tp) ,;; II, 0, TO) '" TO 1 Tp = Tp

This relation does not give an ordering between any non-divergent processes. The
information ordering has the same philosophy as Roscoe's definedness ordering
[TIDs88a]. Q is more rpliable than P, P ~ Q; any behaviour of P is a behaviour
of Q; moreover any be.haviour of Q is either a behaviour of P or an extension of a
maximal behaviour of P.

Lemma 5.2 If (l, 0, Tp) and (l, 0. T Q) l'epr'esent two p7'Ocesses P and Q then

p(Q¢} Tpo;To
l\(l'E TQAr¢. Tp ::::::;}'3sE Tp.s~r),

•

89

Since the ordering is only on processes with the same a.lphabets we can consider
it as an ordering on RMf'o.

Lemma 5.3 The /en,<;t dement 0/ RMf·o under the in/ormat.ion O1Y1ering is {O}·

•
{O} is t.he trare set of t.he proce.')s which diverges immediately, so never gives

any llseful information.

Lemma 5.4 Every ~-dincfed .set, 05; RMf' o, has a least "Upper bound in RMf·o

a.nd th.is lfast uppr r boltud i.s U D.

Proof: We claim that un E RM~'O and U~D = UD.

The former is immediate, it remains to show that U~ D = UD.

Firstly we 'lhow that U [J is all upper hound, that is V P ED. U D! P = P.

For P EDwehaves EUV 1 p~ (3P'E D., EP')fI~(3r E p. r<8).

Choose Pa E n with 8 E Po. As D i~ directed, choose Q with P ~ Q and Po ~ Q.

Q 1 fi, = Po ~ , E Q, (since' E Po)
Q 1 P == P =* s E P, { since sEQ and as, (3 rEP. r < 8) }

Hence UD 1 P 5; P. Moreover P 5; UD, giving P 5; UD ! P by Lemma 5.1, as
required. It rema.ins to show tha.t U D is the least upper bound of D. Take Q an
upper bound of D, so VP ED. P ~ Q. We must show Q! UD = UD.

Clearly UD <;: Q1 U D. We show that Q 1U D <;: U D by contradictioo. Suppose
8 E Q 1U D and -' i U D. Then 8 E Q and If P ED. , i P, giving (If P ED·
3 rEP. r < 8), as Q is an upper bound of D. Now consider the set

T" (r 13P E V· rEP fI r < 8)

This is dearly non-empty and finite as s is of finite length, 90 we can take the
maximum of this set. 1,1. We claim that ,.' E U D. We know that r' E U D, if it is
not maximal then we can find ro E U D such that ro > ,/. We can choose P E D
such tha.t ro E P, but we know that there exists an rJ E T with rJ E P. SO
1'0> ,/:::: ,'/ contradicting the definition of P. Hence r' E UD and ,I < 8. 0

Theorem 5.5 (RMI,O,~) /01'r1l..'3 a complete paliial order.

Proof: Follows from Lemma 5.3 a.nd Lemma 5.4. o

Lemma 5.6 EVf.ry non-empty subset 0/ RM~'o has a ~-gre.atest lower bound.

90

Proof: Suppose S is a non-empty subset of RM¥,OJ. We define

I('" {.< EnS 13 P, Q E S, X C; I U o. ,~(X) E P - QJ

and

K' '" {, E I(I ~ 3, Ell'" < .<}.

We claim that S' == (nS) 1 A" is the greatest lower bound of 5 in RM!j,OJ_

5' satisfies conditions I-III, thus 5" E RAJ¥,Ol. We must show that 5' = n:s;5

Firstly we show dlat S' is a lower bound of 5, that is VP E 5·5' = P 1 S
S' ~ p 1 S' since 8' ~ P. We shall show that P 1 Yfi .; 8' by contradiction.
Suppose s E P 1 S' and s rf- 51

case ~ EnS: As s ¢ S' there exists r E A'I such that r < s. Now by
construction !{' ~ .I:f so :3 l' E S' • r < s. Thus s 't P 1 S contradicting our
original assumption.

case s ~ nS: We can find i\ prefix ,.~(X) S.< with,. E nS and ,~(X) ~ nS.
So we can choose Q E S such that r"""(X) rf- Q. Hence l' E K and 3 r' E /{' • r' ~

l r < s. Since 1\' .; S' we have that 3 r' E Si • r < s. Thus s 1- P 1 8. Hence

result by contradiction.

It remains t,o show that 8' is the greatest lower bound of S.

Take Q a lower bound of S. so VP E 5. P 1Q= Q. We must show 5' 1Q= Q.

,," 1Q ~ Q, by the tollstruetion of /3'. \Ve show that Q ~ 5' 10 by conlradiction.

Suppose sEQ and s ~ 5' 1 Q. Then .< ~ 5' and sEQ""" V PES· s E P """ s E

nS. So 31' E !{' • r < s. We can choose P~,Pl E 5 and X ~ (l U 0) such that

r"""(X) E Po -Pl. Since sEQ, no prefix of s is maximal in Q, so r'""'(X) E Po 10,

thus ,~(X) E Q. However, T~(X) E Q """ T~(X) EnS """ "~(X) E P,.

Contradicting the choice of Pl. 0

Theorem 5.7 (R.fl,[['O.~) [orm$ a complete aemi-lattice.

Proof: This follows from Theorem 3.5 and Lemma 5.6. o

Lemma 5.8 1/ D ~ RMf'o is ~-di.,.ecttd set, then(I

UD={sE U PIVPED.(3.:Ei'·'Ss)}
"ED

•

~l

5.4 Semantic Function

In this sedion we construct a sema.ntic function which maps syntactic expressions
of our langnage t,o processes in our model RAI. It is necessary to consider each
process tf'J"1TI with a spl"cific binding of process variables to processes.

Variable bindings

Given a Sft of va.riables VfU', we define a domain of bindings, BINDR, this consists
of all mappings from j/(ll' to the space of proC('S~es RM.

BINDR == Vl1r --+ RM.

Now we aT\"' a.ble to derine it semantic funct.ion:

M n ,511PT ~ BINDR ~ RM

M R [P]rJ dE'llotes the meaniug, of process term P with variable binding IJ', in terms
of our model. Thi~ is eva.luated by dssociatillg each free variable .r with its value
O"[J'~ in hinding 0,

SemaJltic Suh3tit.ution of free variables occurs in the same sense as in Section 3.2.
As before, when reasoning a.bout closed process terms, that is those with no free
variables, it is llUn('Cpssary to mflke t.he nlriahle bindings explicit.

The semantic function ,.\If 1(

Given a va.riable binding, Mn maps each process term to a tripl~ representing the
process' input a.lphabet., out-put alphabet and the set of traces of the process. We
define ., o. flnd Tn to be the nat.ural projections onto the first, second and last
WmpOll€lLt of this triple.

M.IP~a ~ (I [Pia. o[Pla. TRIP!a)

POl' a. geuf'ral process both a.lpba.bets alld the set of traces of the process will depend
upon t.he variabk bimling.

1,0: SPRT -----> BI/VDR -----> lF~

Tn ,SPRT ~ BINDR ~ RM T

Non-r€cursive processes

W(' define M R over' \.hf' non-H'cursivt" t.erms of SRPT by defining the projections
l. 0 and Tn. We take SRPTlJto be the restriction of SRPT to the non-recursive
t.erms. that is the terms with syntax:

P~l-I"I' IPnP I [iB?X ~ Pxll P II P I PIA I 1'[5)

n

Definition 5.3 The functions! iWd 0 are defined as follows over the syntax of
SRPT'.

'I.i,.o I". "" f

o[.i'.o I". "" 0

'·['1'" "' ~la['1

O[.Tj". "' ~,a['1

,·IP[Sjl"."' (,IPI"')[S]

oIP[SII'" "' (oIPI".liSj

if ,[PI'" = ,·IQla &nd olPI". = alQI"., then

'IP n QJ". '" 'W~".
alP n QI'" "' o[P]".

if B ,;: o[Pn!". and V C';: ,IPnl' ,iPd'" ~ ,IPnl'" A 0IPeI". = olPnlo, then
'1I1B' X ~ PxH". "' 'IP,II".
ol[!B?X ~ PxH". "' alPol".

if ,IPI".n 'IQ~O' ~ {), then
,IP II Q]'" '" I'IP~"'U ,IQI".) - 101PI". U oIQ]"')
olP II Qi". '" olPI". U 01QI".

if B n ,[Pi". = {} and ,IPI". U oIP~'" - B .;, {}, then

,IP \ BI'" '" ,IPI". 0
DIP \ BI'" '" oIP~'" - B

Definition 5.4 The function Tn is defined as follows * over the syntax of SRPTo.
Td .i/.O k"' {O}

Tn 1'1'" "' ~s"'I'1

Tn!P n QI". "' (TnIPI". LTnIQ~"') U (Tn[QI". LTnIPI".)

TnI[!B?X ~ Pxl!'" "' {(B U Y)~s II'';: f A s E TnIPd"')
U{O}

where f = ,I[!B"X ~ Pxll".

TnlP II Qi'" "' {s I s n;1 E TnIPI". A s n BE Tn[Qj".}

where A = ,IPI". U olPI'"

B = 1·IQj".U 0IQI".

TnIP \ BI'" '" {s - B 18 E TnIPI".} L {r - B IrE TnIPI".}

TnIP[SII". "' (8 Is[s-'J E TRiPJ".) 0

*We write Tn[P]u rOJ (,he set of maximal behaviours of T'R[Plu

93

Notes

1.	 As for SCSP, .i 1,0 is modelled by the least element in the partia.l order, in
the case of SRPT this pi\Ttial order is (RM1,o, ~). This corresponds to .il,O

being the least informative prOCe,5::i wltb alphabets I and O.

2. Non-det.f'rministic choice cannot be defined as easily as in SCSP. Thii'l is be­
canse we no longer mode.l divergent processes as arbitrarily non-dlC'terministic
procesi'le:o:. The restriction ill tIle expression here ensures that undefined be­
haviour ensw's if both components can behave in a manner given by tra.ce 5,

and s is <1_ maximal behaviour of one of the component processes.

The information ordering is weaker that a non-determinism ordering, jf we
define the non-determinism ordering in tf'rms of the non-deterministic choice
operator as for SCSP:

A1dPj C;H ,\1. Iq] "' MRiP n qj = Aidp]

tile" AiRIPI,; Ainlq~ '* MnlPI C;R Mdq]
Proof: "0/e Crm a.%ume that the alphabets of P and Q ",re the same.

MdPI,; Mnlqi
==> {by definition of the ordering

TRlq!" Tn 11'1 = hil'I
==> {trivially}

'Tnlq] " TnlpIUTn[pl" TnIQ] = TR[PIUTnIPI" TR!ql
==> {recalling definition of 71(and by properties of restriction}

Tn [1' n ql = hil'I
==> {as we can assume the alphabets of P and q are the same }

MnlPI C;R MnlQI

The process with behaviours T'R[P~ U T;z;'[Q~ represents an angelic 110n­
delerminislic ,hoi,e between processes P and q. This process can, whenever
possible. avoid chaotic , llndefin~d beha.viollf. Any implementation of this
fmlll of lion-determinism wonld require backtracking, which is unsatisfactory.
We shall not, therefore, consider this form of non-determinism any further.

3. The	 semantic fnnctioll for parallel composition is much simpler that that
for SCSP. The absence of refllsal information in the model for SRPT means
it is only necessary to consider synchronisation on common events. The
representation of divcrgence by no information means that then' is no need
t.o distingujsh between the ca~ws where one process becomes divergent and
neither processes become divergent. Any t,ra.ce of the compmied process,

91

0

when restricted to the alphabet of a component process, must represen t a

behaviour of that component process.

Suppose P II Q has behaviour s and s restricted to the alphabets of P is a

maximal behaviour of P. There can be no extension of s in P II Q, as any

such extension restricted to the alphabet of P cannot be a behaviour of P.

So P II Q has 8 as a maximal trace. Thus we ensure that if one component

diverges, the <-'omposition must also diverge.

4.	 When considering tbe semantic function for hiditlg we cannot simply consider
all traces with the hidden events rernoved- if we did, in certain circumstances
a resolution of internal choice may be made so as to avoid divergence.

Consider the process P with empty input alphabet and output alphabet {Q, b}

P = [!{a} ~.LI n [!{)~[!{a} ~.LI]

This peacess has trace set Tn [PI = {(), ({ a}), ({)), ({), {a})} divergence oc­

curs after one time unit if an a is output at the first time step, otherwise

divergeuce occurs after two time units. If we hide the a we can no longer dis­

tinguish between the case where the a occurred initially, causing divergence

after the first t.ime step, and the case where nothing occurred initially, delay­

ing divergence. In our demonic approach to non-determinism we assume the

worst case occurred so:

P \ {a} = [i{) ~.Ll

this peac,,"s has trace set 7" IP \ {a 1I = {(), ({)), demonstrating that 7" IP \ {all';'
{s - {a} Is E 7,,[P!}.

The restriction in the semantic function for hiding is necessary to en~ure that

divergence is not avoided by hiding events.

95

Corollary 5.9 The: maximal behaviours 0/ lenns of SRPTJare given Ol'er the syn.­
t.a;r as follows:' .

T.I.1I.o Da '" {()}

TRlxDa'" {s E "alxD 1 ~ 3s' E rr,alxD' s' > s}

TRIP n Qla '" (TRIPla I Tn IQia) U (Tn IQ!a I TRIPla)

TRlliB?X ~ Pxlla '" {(B U Y)~s 1 y <; / A s E TnlPyJa}
where / ~ I[['B?X ~ Pxlla

TRIP II Qla '" {s I s n A E TniPla A s n B E TRIQDa
V s n A E Tn [Pia A s n B E TRI Qla}
where A = '[PIa U o[PIa

B = I[QlaU o[Qla

TR[P\B!a - {s - B I s E Tn [Pia) I {r - B 1r E TR [Pia}

TR[P[Slla {s I.;[S-IJ E Tn [Pja}

Proof: These all follow from the definition of YR. o

Theorem 5.10 The Itrrn..5 of SRPTJ al'e well df;jined with 7'CSpf;et to the model.

Proof: It i,~ necessary and sufficient that M R [P]<7 E Rkf for all process
expressions P ill SRPTo. This is demonstrated by structural indnetion over the
syntax.

atomic terms It is dear by construction that .11,0 is well defined with respect
to the model. By definition of a and as ;\,1R[.r~<7 = <7[2:] the process vaIia,bles are
well defined.

operators It is sufficient to show that the result of applying an operator to
well defined process expressions is a well defined process expression. It is a trivial
exerciset.o verify that the ~eDli\ntic ima,ge of the applica.tion of an operator satisfies
th(' closure conditions I-III in such circumstances. 0

Theorem 5.11 For P a term of SRPTJ. ~ y. MR[P]a[yjx] is monoton.ic.

Proof: vVe must establish that for q, if E RM

q" q' "" MR[PJa[qjx) " Mn[Pja[q'jrl

If P is an atomic process t.his follows trivially, either P =.11,0 in which case the two
expressions are ronstant, or P is a. variable and the result is a direct consequence
of the definition of variable bindings.

96

It is sufficient to check that each operator is monotonic in each argument, the re­
quired result then follows from the mOllotonicity of finite compositions of monotonic
functions. The proof of monotonicity is presellted as Theorem A.3 in Appendix A.2.
o

Recursive processes

Definition 5.5 \Ve extend the definition of MR to the full syntax of SRPT CUl

follows:

M,,[~ x: [,0. Pia eo fix"o'\ y. M,,[Pla[y/x]

where y does not occur free in P and

fiXI,O denotes the function's least fixed

point in (RMI,O,~)

o
In order to establish that Mn is well defined over SPRT we must ensure that

the least fixed points utilised in the above definitions exist.

Lemma 5.12 If y ok,,; not a 'VaT'iab/e in P and>. y • MR[P]a[y/xJ is continuous
in (RMI,O,~) for all variables x, then MR[1l x : I, °.P]a is well defined and
>.y.MR[Il.r: I,O.PDa[y/z] i.~ confimlOUS in (RAfl,O,~).

Proof: (RNII,O,~) is a complete semi-lattice and>. y • MR[P]a[yjx] is, by
assumptiou, continuous within the semi-lattice. So, by the Knaster-Taxski Fixed
Point Theorem, a least fixed point exists. Hence fix>. y • MR[P]a[y(xJ is well
defined.

Moreover, setting HR == >. y. MR[P]a[y/x], the least fixed point is given by the
limit, U~:::,H;; (M,,[~"o I),

As lou.b. preserves continuity the required result holds.

In the next chapter we sball establish, via an embedding of RM into SM, that
all the operators of SRPToare continuous. Hence the following is a theorem.

Theorem 5.13 All processes terms P 0/ SRPT are well defined with respect to the
model. •

97

0

5.5 Conclusion

In this cha.pt.er we have introduced (,he language SRPT. This language, in common
with SCSP,

•	 exprrsses nOIHleterminism, parallelism, hiding a.nd recursion;

•	 captures hoth t1uantitativ(' timing details and the notion of t.me concurrency
through its pu'fix operator;

•	 has sufficient algebraic laws to be able to eliminate parallel composition and
hiding from expressions.

III cOlLtra~t 1,0 SCSP. SRPT distinguishes between input a.nd output events; all input
l"vent~ are made aVlliJable ill the prdix construct while those output events present
in the prefix construct are assumed to occur unrestricted by the environment. These
difference~ ill the la.llgnage captur/" its receptive nature.

The sern<lutic model for SRPT presented in this chapter is very simple; the
rccepl.iveuat,ltfe of t.he language ma,ue it nnn{'c{'ssary to record refusal information
in t.he modeL The behaviours of a. prores.'! ace captnred completely by traces;
each t.erm in t.he trace is a set of events seen to occnr simultaneously and t.he
posit.ion of the sd ill the t.race indicates the time it was observed. Traces in the
model CilJl he viewed as a mathpmatical representation of the information captured
by the informal timing diagrams ['1'0093] often nsed in engineering to clarify the
rela.tiomhip between inputs and out.puts of circuit components.

By introducing the concept of maximal behaviours and choosing all interpreta­
tion of thE' modf't in which the progressioll of time is not recorded after divergence,
divergencesere encoded into traces. This led to tbe consideration of an infor­
mation ordering on the model ill contrast to tIw usual non-determinism ordering.
The modfl forms a complete partial order under this ordering, providing t.he mat.h­
ema.tical structure required to und<"rpin r{'cursiou.

98

Chapter 6

SRPT as a Sublanguage of SCSP

In this cha.pter we demonstrate how SRPT Call be viewed as a. recept.ive sublanguage
of SCSP. To adli~vf' this we develop two embeddings; lJ> : RM --t 8M which relates
the two models and e : SRPT ---t SCSP which relates the two languages. These
two fnnctiotl:-i are chosen to preserve the intllilive representation of the processes, in
tIll:' sense that P E SRPT and its image 81' E SCSP can be seen to represent the
same system in the different languages. While Q E RM and its image l}lQ E 8M
can be interpret,ed as representing the same system in different models.

We establish a natural relationship between e and '1>, such that, given an em­
bedding 1/> of BINDR into BiND induced by lJ>

If P E 8RPT; a E BINDR • <PMR[PJa = M[epJ~a.

Informa.lly the following commutes:

RM <P 8M

MR M

SRPT xBINDR e x ~ SCSP xBfND

From this we are able to draw on the results established for SCSP to demonstrate
the continuity of the operators of SRPT and construct a proof system for closed
terms of SRPT which is sound and complete.

99

6.1 Embedding RM in 8M

Processes in Rk! are designed to model receptive systems, where input is never
refused and the environment cannot block output, so all possible output bappens.
Processes in SM are not specifically designed to model receptive systems but we
can model such systems by making a few assumptions. A process in SM modelling
a receptive system cannot refuse input so it must always offer any subset of the
input alphabet to the environment. In a receptive system, output events that can
occur, doocem. We shall model this in thl:' processes in SM by assuming that if a
proper subset of the possible output occurs at a particular time step, tben infeasible
behaviourfollows at the next time step. Notice that the traces of a process in SM
corresponding to the environment allowing all possible output are the traces which
are satlirated with respect to the output alphabet.

Pro('e9~es in RAJ model Jivergent or undesira.ble behaviour by providing no
further information abon t the process. The system is only modelled during the
time it is well behaved. By corrtr(\.<;t. we USf:' tbe concept of infeasible behaviour
in 8M to modC'! undesirable behaviour. Despite the difference in representation,
both RM and SM assume there is no possible recovery from undesirable bebaviour,
allowing us to make a simple correspondence in the case of divergence.

We define lJ> as follows and claim it provides a suitable embedding.

Definition 6.1 Taking A ::::: I U 0, "ve define 4> ; RM _ SM by *

'1>(/,0, T) = (A,¢(!, a, T))

where,

1>(!,O,T)~ u,'(I,a,s)U U"I(/,a,s)
.ET .E'T

,,(I,a,O) = {OJ

,,(!,a,s~(X)) ~ {s'E STA]31' E IF(OJ". Is' U 1 = ,ols~(X)) V

3V<:;Xna.(V9'{}1I

'ols)~bo(X) - n s s' U r))}

V', (I, a, 8) ~ {s'~ 1'1 s' E ,,(I, a,s) II l' E F(An

and ,"IX) = X U 10 - A) is defined fO>' X <:; A o
- 11 J ; A ~ 11 Ji'; a function then r :A- ~ BO ill the m3l>ping for f onto every element of a

trace consisting or element,s oftypl:' A. r(OJ::::: () r((x)""'s):: (jx)""'(r(s))

100

We shall now consider how ~ maps processes in RM to those in SM. Clearly the
alphabet of the process 4;l(P) is the union of the input and output alphabets of P,
processes in RAl distinguish between events which are to be considered as output
and those which are to be considered as input, processes in SM make no such
distinction. It remains to consider the way in which a process in RM is mapped to
a trace set in SAl, this involves considering the map ¢. Assuming P = (I, 0, T)
we shall consider the map ¢ by decomposing it into several steps.

Firstly we saturate every trace in T with respect to output by adding refusals,
we only add rdusa.ls corresponding to output which could not happen so each term
iu the trace remains feasible. The function 10 performs such saturation of a set
with respect to the alphabet a so we need to map this function on every trace in
T giving us the set:

T, = bo(s) IsET}

Next we add tra<:es corresponding to too little output being allowed by the en­
vironment. 'vVe have already commented that infeasible behaviour will follow , so
recalling closure condition vii any t.race may follow. This gives us]'/ U T2 where:

T, ~ bo(s)~bo(X) ~ Y)~"I {} c Y <;: (X n 0) A 8~(X) E T
ArE F(At}

Notice that the traces corresponding to insufficient output being allowed are not
saturated. So for a process which non-deterministically outputs 0/ or Ot, wbere
0: C 0/ 1 by considering refusal information, we CaIl distinguish between the case
whNe the process chooses to output O2 and the case where the environment is only
willing to perform the events from 01! from the process' offer of events OJ.

Next we must change our representation of undesirable behaviour from unde-­
fined behaviour to infeasible behaviour. For each maximal behaviour s, we must
extend the trace 10(s) by infeasible behaviour and, by closure condition vii, by
arbitrary behaviour. The set of sudl extensions is given by:

T, = bo(")~'·I" ETA r E F(A)"}

Finally we dose all the traces we have thns far obtained under removal of refusal
information, we can remove any amount of refusal information without affecting
the behaviour of the process. This ensures the set, T', is dosed under condition v,
where

T' = {.< I 3 r E F(0)" • sUr E T, U T, U T,}

Now T' = ¢(1. O. T). By considering the traces in ¢(I, 0 , T) generated by each
trace in T we obtain the sets 1/' (/,0,8) or v., /(/.0,8) depending on whether s E
T - Tor sET. Thus we obtain the above definition of~.

101

6.1.1 Properties of <l>

We verify that ~ is well-defined and prove that it is monotonic, continuous and
injective over a H'strieted domain.

Lemma 6.1 For s E RT1,o and A :::: I U 0

"I (sj -"(8) = 1"13 r E F(O)'. ,~(8j < 8' U r)

•
Theorem 6.2 II> is w(ll-drjinrd.

Proof: Wt> must ~how that if (1,0, T) E RM then (I U 0, rjJ(I, 0, T)) is a
process in SI'f'J. Assuming T satisfies closure conditions I-III with respect to input
and outPllt alphabet::; } and 0, it is sufficient to show that r/J(J, 0, T) satisfies
closure nlllditions I--\,ij wid, respect t.o alphabet I U O.

Since I and 0 remain unchanged throughout this proof we will abuse notation and
write ¢(T) for 9(/, 0, T), ,'(s) for .'(1, O,s) and, for ,0.

The pattern of proof being similar for each closure condition, only that for condition

vi is preS€llted here.

A"ume that s~(B)~s' E 9(T) and C = {a E I U 0 I a ~ B /I a ~ B}, we want
to ,how that .ithee s~(BU C) E ~(T) m s~(B Uli))·~s' E ~(T) for ,orne" E C.

s~·(B)~s' E ~(T)

::::> {by the definition of ¢ }

(3 a E T, s~(B)~s' E ,,(a)j V (3 a E T ' s~ (B)~ s' E "d u) - ,,(ail
::::} {recalling df'fiuitioll of 1/.' and lj; 1 }

3 a E T; r~(R)~," E no)", (s U 'F(B U R)~(s' U r') = ,'(a) (1)
V 3,~(X) E T; r~(R)~r' E F(O)'; \. C; X no, (Y i' {} /I (2)

,'(a)~b(X j - Y) " (s U r)~(B U R)~(s' U r'))

V C3 rET; "~(R)~r' E F(O)' ,,'(u) < (8 U r)~(B U R)~(s' U ,') (3)

We now proceed by case analysis on thp form of traces in ~(T), so we shall consider
8"'(8)""'s' satisfying each of the a.bove disjuncts in turn.

Case 1. If R - B f:- {} thPll, as all elements in the trace ,*(u) are feasible, we
can choCiSei E RnCand s (B U{i})"""'S' E rt(T) as required.

If RUB:::: B. thell (.,:, U rr'(B) s; l*(U) so B must be saturated with respect
to output as every element in the trace ,*(u) is. Hence 'c ~ I. Then by the
closure conditions on l' and the nature of I we can find '1/ E T with 1'*(u') =
(s U r)~(B U C). Tin" s~ (B U C) E w(T) as reqnired.

102

Case 2, [[sUr 2-1'(u)~b(X)-Y) then (sUr)~(BUC) E >/>(s') and weare
done.

If(sU rl~ (8 UH) :S)'(u)~b(X I - Y), lhell when H - B i' {} or lhe inequality is
:'itrid the result follows as before. In the remaining case I'(X) - Y = B. Now ,(X)
is feasible a.nd s<lturated with respect to output, and Y ~ 0 so Y = en O. Also
u~(X U (en I)) E T by condition III on T and (s U r)~(B U C) ~)'(u~(X U
(Cn II)), lienee s~(B U C) E ¢(T) as required,

Case 3. If sUr 2': -((u) then clearly s"'"'(BU C) E 1/;1(lJ) and we have the required
result. Otherwise (8 U 1')"-""(8 'J R) ::; l'~(u) and the result follows as before.

o

Lemma 6.3 If s, s' E IF(I U O)~. then

a, 1'(1, a,s) c;, 1,,(1, O,sl

b. s~s'=:} lj.'dl,O,s')<;:I/'J(I,U,s)

Proof:

a. Trivial by definition of 1/J/.

b. If $' = s then the result is trivial, so suppose i > s, clearly s' i: 0 so we
can choo:'ie s'/ and X such that s' = s""'(X).

By the definit ion of J/-'/ we have r E ,,pI (I, 0, s') =:} :3 roE 'IjJ(I, 0, s') • fO $ 7'

Now

", E ';'(1, O,s"~(X)1

:::;} {by the definition of~' }
3 u, E IF(OJ"' (", U u, =)'(s"~(X))

V 3 Y c;, X no, r, u",?)'(s")~()(X) - Y))
=> {as)'(8) S;)'(s") }

3 u, E IF(0)' , r, U ", >)'(,)
=> {taking appropriate subsequences of 7'0 a.nd Uo }

3", E IF(OJ' ; ", E F(! U 0)' • r, U u, >)'(s) 1\ ", < ",
=> {by the definition of ',p }

3 r, E >/>(1, a,s), r, < ",
Tbus, as rJ < ro ~ r we have that 7' E ~'d/, D,s)

Theorem 6.4 ~ is a monotonic function from (RM,~) 1-0 (SM, !;;;;). That is,

"p. Q E RM' P';; Q => ~(PI l;; ~(Q)

103

0

Proof: Suppose (l,a,T(F)) and (I,a,T(Q)) :epresent I' and Q :esectively.
Processes ill 8M are only ordered if they have the same alphabets. For P and
Q to be ordered in the information ordering they must have the same input and
output alphabets, thus 4:t(P) and 4:t(Q) have the same alphabets. It remains to
ve"ify thal, if the t:aces sets of I' and Q satisfy T(Q) 1 I(F) = 7'(1') then
1>(1, a, 7'(Q)j <; W,a, T(F)).

,E r(Q)~ {since T(Q) 1r(F) ~ T(P) }

:ls' E T(P). s 2: 5'

=? {by Lemma 6.., }

3,' E r(p). ",(1. a,,) <; <1,,(1, 0,,<')
:::;. {by ddinition of ¢ }

'/',(1,0,,<) <; ~(I, 0, T(F))

S E T(Q),; {since T(Q) 1I(F) = r(l') }
,~E np) V .38' E r{p) • .5 2. s'

~ {IJ)' Lemma 6.3 }
s E T(P) V 3$' E 1'(1'). ,"(I. O.s) <; v'dl, 0,,<')

::::} {hy clelinition o[rP }
'M!, O,s) <; ¢(I, 0, 'liP))

Hence, rfcalling the definition of 1;, We have ¢(l, 0, 1'(QJ) ~ ¢(I, 0, T(P)) and
the result follows. 0

Theorem 6.5 l' is continuous. That I~~, for D a ";;-directed set.

<I>(U,O) = U{<I>(P) I I' E OJ

Proof: Suppose (L O. 1'p) reprCSf'lIts process P. Since the a.lphabets remain
unchanged throughout this proof, we shall abnse notation slightly, writing 'I/;{s) for
V'(l,0,5).

By monotonici!)' of <1>, ¢(U<O) <; n{1>(F) I I' E OJ.

It remaiJls to show that n{ ¢(P) IP E DJ r;; tP(U~ D). Vie do this by coutradiction.

Recall

n{~(F) I P E OJ ~ n (u v'(s) U U ¢'d'))
PED "ETp 'ETr

and ~(U,D)= U v,(,ju U <1,,(5)
.E 1'u.,:;;D JE l'u,D

Suppose 5 E n{¢(P) I I' E OJ and s i ¢(U~O).

104

From the former we deduce that

If P ED. (3 s' E Tp • s E ';'(s'» V 13,. E Tp • s E 1/>'(s')

while from s rf- ¢(U.:!;D) we deduce that

IfP E D. ~ (3,' E Tp os E "(s'»).

Combining th('sp we have

If P ED. (3 s' E Tf • s E ';·,(s'»)

Now consider the s('t 13:2: {Sl 13P ED. s' E Tp A s E Vl/(Sl)}

By construction B is finite and nOIl-pmpty and VP ED. 3 rEB. r E I p

We shaH show by contradiction that 381 E B • s' E TU(D

Suppose 110t, then by Lemma 5.8 Vs' E 13 • :I P ED. -, (3 So E Tp • So S; s').

For rED choose Pr such that r E TPT and P; such that -, (3 ro E Tp~ • ro ~ r)

By the directed set property, choose QED such that VrEB. Pr ::; Q A P; ::; Q

TQ1T f ,. = 1'p, '* rE I'Q
I'Q 1 T p; = 1'p; '* ,.~ TQ

Thus -, (3 rEB. r E l'Q) contrary to our construction of B. So

3s' E B. s' E TU~D~ { by definition of 8)
3s'. s E 'lj.!j{/) A 8' E Tu,D
{ hy definition of ¢ and U~D'* s E ¢(U,D)

Heuce re:mlt by contradiction. o

Theorem 6.6 Given input and output alphabets I and 0, the. re.striction of ~ to
RM1,o 1S injective. That is

OIf P, Q E RM 1
• • ~IP) = ~(Q) '* P = Q.

Proof: Suppose thal- (I, 0, TI.J) and (I, 0, Tp) represent processes P and Q
respectively. As in earlier proofs We shall abuse notation since the alphabets do
Ilot vary throughout the proof; we write Tf"(s) for If.'(I 10,8) and 'Y for 'Yo. We must
show that. whellever the trace sets of l1>(P) and ~(Q) agree, so to do the trace sets
of P and Q.

¢(P) ~ ¢(Q) '* I'Q = Tp

Suppose not, so ¢(P) = c,b(Q) a.nd TI' -# TQ • Without loss of generality, we can
choose s E Tp such that s rJ Tq.

105

S E Tp

::} {by definition of ¢
,'(s) E ¢(P)

::} {by assumption }
,'(5) E¢(Q)

=> {by definition of ¢ }
(35' E TQ ,,'(,,) E "(5')) V (3s' E TQ ,,'(S) E ,p,(S') - ~'(S'))

==} {by definition of V' a,Hd noting ,*(s) is saturated w.r.t. ontput }

(3s' E TQ ,,'(s) = ,'(5')) V (3s' E TQ ' ,'Is) E ~'l("') -,,(5'))
::} {since 'Y is inj~ct.ive and S ~ TQ }

3 s' E rQ ' ,'(s) E 4',(s') - ;1'(',')
::} {by definition of V'/ (/) -~)C;,/)

3 s' E TQ • ,*(s) > i'~ (.~I)
::} {, is iujpcti~'f' Oll 1F(l U 0) }

3 s' ETQ .:i > S'

Now ,'(,ru'J u i) E ¢(Q) since s' E TQ.
Thus ,.(~I)"""'(b U I) E 1J(P) by assumption. This trace is saturated with respect
to output with all jnf~(\Sible end so ,* (5') (0 u i) E 4'1 (so) -1/'(so) where Sf) E Tp.
Thus ,*(/)? 1'*(80)' giving s' 2' So

So So E Tp and s E Tp with .' > So contrary to t.he ddlnit.ion of ~Tp.

6,2 Relating the Languages SRPT and SCSP

We have emhedd~d the recepti\'c model RM into SM iu a manner which, to a
certain f.xtent, relates processes in lUi to tbose which can be seen to represent
t.he same system in ,';,'t\[. In this section \"'e dcfinf' a function <3 : SRPT _ 50SP
over the synttlx of SRPT which maps terms of SRPT to terms of SCSP. Likc the
function 11>. <3 is chosen so that the process expression P E 8RPT and its image
8(P) E 80SP can be rega.rded as describing the same system in the two different
languages.

106

0

Definition 6.2 \\le define the function 8 : SRPT -+ sesp over the syntax of
SRPT as follows:

El(l-I.O) l.-/uo

8(x) r

El(pn Q) (ElP)n(ElQ)

El(['B? X ~ P,])	 [Y c: (13 U /) ~ ((ElP y _ B) if B c: Yelse l-[uo)1

where I and 0 are inpnt and ontput alphabets
of [!BeX ~ Px]

El(P II Q) (ElP) II (ElQ)

El(P \ ..1) (ElP) \ A

El(P[S]) (ElP)[S]

El(~., .. I. 0 • P) p"lUO.(ElP)

If P hil.s jnpnt alpludwt 1 and Olltput alphabet. 0 t.hen 8P has aJphabet I U O. 0

6.3 Deducing results of SRPT from SCSP

We shall dt:'monst,rate that th<> function 8 is closely related to l}) in the sense that,
if we define 11 to be the projection of BINDn onto BIND induced by $ then the
follmyjng holds for all processes P E SRPT and all variable bindings a E HINDn .

MIElP~,}a = "'MnlPk

This relationship allows us to deduce t.he continuity of the operators of SRPT. It
also f'nables us to deduce the sounclness and completeness of the proof system for
SRPT from corresponding results in SCSP.

Definition 6.3 We define 'Il : BINDn -+ BIND to be the unique function induced
by 4l ,.... hich maps HINDR into BIND. J<ormaIly:

lia E BINDR ;, EVa" (,}aJ!.'i '" "'(alx!)

Informally the following commutes for aJI a E BINDu:

'"
o

Lemma 6.7 For all processes P E SRPJC and all val'iable bindings a E BINDn

MIElPlrya ~ "'A"hIPla

107

Proof: By structural indnction over the syntax of SRPTo

atomic terms

a) M!El-L/,o ~'w	 ~ M[-L/uo j,w { definition of e }
= (I U 0, ST/uo) { definition of M }
= (IU O,¢(I,O,{O}» { definition of ¢ }
~ (I U O,¢(.I,.{.[-L"o la)) { definition of MR. }
=<I>(Mn[-Ll. o ~a) { definition of <I>)

h) MIG"I,/a	 = MI,j,w { definition of e }

= ('w)['1 { definitioll of M }

= <I>(a["I) { definition of 11 }

= <I>(M,,['k) { definition of M R

operators That the alphabet!'> are the same is a trivial observation. Our task is
to verify lhat tlw traces sets of the expressions on the left and right sides of the
equation fOITf'!'>pond. That is

TlElPl,w = ¢(M,,[Pla)

We assulIle t.hat al] ~rgl1lllent.s of an operator satisfy the above equation and deduce
that the application of the operat.or t.u these argnments does also_ The proof for
non-deterministic choice is presented as Theorem AA in Appendix A.3. The proofs
are in gelleral long and llot particularly enligbtening, involving examillation of the
terms on bottl side:::; of tlH' equatiou. 0

Lemma 6.8 If .\ y • Mn[Pla[yj,,] is monotonic in (RAJ, ';;),
Va E BINDR , M[0P!,W = <I>(Mn[P]a)

fwd V(J E BIND. ,\ y • M [0P]p[yjx] i.~ continuous in (SA'I,~)

tilton

a) Ay. ,\.1g[P]a[yj.rJ is continuOlLs ill (RM,~).

b) M[El(p, :/,0· P)I,/a = <I>(M.[(p, :I,O'P)la),

Proof: a)	 Snppose D is directed in (RM, E;). we must show that

u~ .\1" [Pla[qjx] = M,,[Pla[U~Dj'J
,ED

as Ay •.\.1RIP~a[yj.rl i~ monotone U:;:; :\A'R[P~a[qj.rl is well defined.
,ED

108

Now

ol>(U< MnIPI<7[q/~])
qED

= U,ED ol>(,Vl7<IP~<7[qj.,]) { as ¢' is continuous }

=U'ED(MIEJPi~(<7[qj.,])) { by hypothesis }

= U'ED(M[EJPj('W)[(ol>q)/x]) { by definition of 1/ }

= M[8PI('I")[(U,ED ol>q)/,I) { as Ay. M[8Plp[v/xj is continuous

= M[8PH~<7)[(ol>(U, q))/X]) { as ¢' is continuous }
,ED

= M[8PH'I(<7[(U, q)/X])) { by definition of Tf

,ED

= ol>(MIP!o-[IU, q)/X]) { by hypothesis }

qED

The r('sult follow~ as ¢' is injective WhPll restricted to processes with the same
alphabets.

b) We set h" A y. M R IPI<7[yj.,j

H"'.\ y. M[8PI('/<7)[y/x]

It can be shown that 'f q E RM· ol>h(q) = H(ol>q)

Now

M[8(1' x , J, o. P)!,W
=MIl' x, J u O· (8PH./<7 { by definition of 8 }
~ fixIuo'\ y. M[8PH~<7)[vj.,] { definition of recursion }

= U::'=o H" IM[1-,uo I) { by definition and continuity of H
= U~o H"(M[8(1-,,0)1) { by definition of 8 }
= U::'=o H"(ol>(MRI1-r,o m { by Lemma 6.7 J
= U::'=o ol>(h"(Mn[1-1.0 I)) { by above observation

= ol>(U::'=o h"(M.[1-r,o I)) { as ((> is continuous }

= ol>(fixl.o Ay. M R [PJ<7[Y/x]) { by definition and continuity of h
= ol>(,Vl.[p , r, O· PI<7) { by definition of recursion }

o

6.3.1 Continuity

Now we have established a sufficiently strong link between SRPT and SCSP and
the corresponding models to deduce the continuity result required in Section 5.4.

Theorem 6.9 For all P E SRPT,), y. i\..1R[P~u[y/:rl is continuous,

Proof: After Lemma 5.12 it is sufficient to consider only P E SRPT o. If
P E SRPTo then SP E SCSp o. So by combining the results of Theorem 5.11,

109

Lemma 3.5 and Lemma 6.7 with Lemma 6.8(a) we have the required result. 0

Theorem 6.10 For all P E SRPT, 0' E BIND.

MlePj~O' = <l>(MR[PIO')

Proof: This follows by st.ructural induction over the syntax of SRPT, all but the
case of recursion art' co...ned in Lemma 6.7. The final case follows from Theorem 6.9
and Lemma 6.8(h). 0

6.3.2 A proof system for SRPT

As for SCSP we int.roduce a proof system fur the sublanguage SRPT 1 0f SRPT
cousisting of the 1l0n-recursiVf' closed terms of SRPT, we then ext.end this to allow
recUf3iv(' terms. The logical langua.ge consists of assertions of the form P ~R Q
a_ud P =fl Q. We give a set of axioms and inference rules for proving assertions,
alld show that the system is both suund amI complete by relating it t.o the proof
system for SCSP.

The sublanguage SRPT J

The syntax of SRPTJ-js given by:

P ::=.L/ol P n P II'B?X ~ P, I IP II PIP \ A I PIS]

Formulae in the logicallangllage take the form P ~R Q or P =R Q, where these
relations a,re defined as follows.

Definition 6.4 For process expressions P~ Q E SRPT we say that P is less de­
t.erministic that Q, written P ~ll Q, if for every pos~ible variable binding the
semantics of P 11 Q cannol be distinguished from the semantics of Pin RM. For­
mally,

P [;;, Q '" '10' E BIll/D•• MR[PIO' [;;R MR[QJu.

recalling thai. MR/PJu [;;R M,,[Q~O' ... MR[P n QI = M,,[Pj
We say that P aud Q are equivalent, written P =R Q, if for every possible

variable binding P and Q have the same semantics in RM.

P =1' Q" '10' E BIND•• M"iPjO' = M"[Qj,,.

o

1]0

In situations where there can be no confnsion as to the language being referred
to we shall often drop the R suffix from the above relations and simply write P ~ Q
and P"" Q.

Notice that the ordering used in the language is the non-determinism order­
ing. This ordering is more appropriatf' to the problem of deriving implementations
from spet:ifications thaJl the information ordering, In many circumstances we re­
quire all implelnentation to be completely deterministic, snch processes are the
maximal rrocesscs with respect to the non-determinism ordering. On the other
hand, specifications often exhibit all element of Horr-determinism. Byencorpora.t­
ing the non-detf'rrllinism ordering in our lallguage we (aD refirre a non-deterministic
specifLcatioIl Lo a detcrmirristic implemellt<l.t.iorr within our proof system.

Had we used th" informatioLl ordering we would only be abie to fInd an imple­
mentation to a s})l'cification which diverged le.o.;s; the informa.tion ordering does not
relate non-divergent processes.

The axiOl1lS of tIlE' sysknl cIT" gin'Ll ill Appendix n.4. The axioms are very
similar to the axiolJl!' for SCSpJ. flw noticeable difference heing the equations
concerning tIlt" prefix consln\(:t. WI? \'vTit,t' I- rl P =R Q to assert that P ~fI. Q is
provable in the axiom s)"stelll for SRPT ' .

Notes

1.	 Notice that as for thf' proof systP'l1l for SCSpl the following re~mlts can be
derived from the axiom systCl1l.

0-5 f- P ""R P 0-6 f­ ~C;;R P

0-7
P n Q ""R P

P C;;R Q
0-8

P C;;R Q

P n Q=R P

These result.s dearly uemonstrate the link between the ordering [;;;R and the
non-deterministic choice operator.

2.	 The strong link between this axiom system and that of SCSP 1 is demonstrated
by noting that eacb of the axioms A-I to A-~14 preserves receptiveness. Tha.t
is, if 8P E SCSPf and by one of the axioms A-I to A-14 we eall deduce:

f-	 0P"" Q'

then CJ' is the image under 8 of some Q E SRPT 1
• Moreover, P =R Q is

deducible in t.he proof system for SRPT J • In many cases this is clear by the
definition of 8. By demonstrating this link between A-5 and a-5 it becomes
appa.rent that the axioms concerning the prefix construct are closely related.

111

Suppose C ~ 8 l then

El([IB'?X ~ Px]n [ICn ~ Qj'])
{ by definition of 0 }

IX <:; B u I ~ (ElPX - B if B <:; X else ~IUO)]

nil <:; Cui ~ (0Qy-c if C C;; Y else ~IUO)J

(by A-5)

IX <:;BU I ~ pn

n[YC;;CU/~(0QY_cifCC;; Yel,e ~IuO)]

whew for 8' ~ B u J:

p' _ {(8PBI-B if B ~ 8' else ~Juo) if B' 11: CU [
8' - ((ElPw _8 n ElQ8'_c) if B u C C;; B' else ~IUO) if B' C;; CU [

Comirlpr t-hr case when (. = Band C c B separately.

If C c B thm B' ~ C u [=> 8 r£:. 8 ' hence

P;, = (f"lPS'_B if B ~ B' else l.]uo)

If C ~ B then

Pg, = (0(P8'_8 n Q8'-C) if B C;; B' else ~IUO)

So if C c B then A-5 reducps to a trivial e4uality for receptive processes. If
C = B tlJen

f- 0([!B?X ~ px]n [!en ~ QylJ

= El([!B?X ~ Px n Qxl n [iC?Y ~ Qy])

but [iB?X ~ Pd n [!C? Y ~ Qy] O'R [!B?X ~ Px n Qx] n [!C? Y ~ Qy]
is prova.ble flS follows:

[!B'X ~ Pxl n [!B" Y ~ Qy]
(.-3) O'R [!B?X~ px]n([!B?Y ~ Q]n[!B?Y ~ QylJ
{ a-2 } O'R ([!B? X ~ Px) n [!B? Y ~ QIJ n [!B? Y ~ Qy]
{.-5} O'R [!B'X ~ Px n Qx] n [IB?Y ~ Qy]

112

Soundness

If every a.ssertion, provable in the proof system is true, then the system is sound.
Wf' shall deducf' th{' soundness of the proof system for SRPT 1 by considering the
image of the ruleH under the map 8. If P ~R Q and P::::=:R Q are assertions in the
logical langnage for SHPT' then we take their images under 8 to be 8P I; 8 Q
and SP =.:: 8Q r~speetively. Wf' notf' that the images are assertions in the logical
language for SCSpl.

By the nature of 8. til{' image of each axiom of the proof system of SRPT' under
8 is a provable assertion of SCSP 1

. It follows that:

Lemma 6.11 For aJ! P, Q E SHPT'

(eR P C;:R Q) => Ie 0P c;: 0(21

•
From this rf'SU It. il1ld t.he soundness of the proof system for SCSP I we deduce:

Theorem 6.12 (Soundness) FOI' flf{ P. Q E SHPT'

(en P C;:n QJ => (MR~PI C;:n M",Q~)

Proof:

eR P C;:R Q '* e 0P c;: 0Q { by Lemma 6.11 J
'* M~0P~ c;: M[0QI { soundness of SCSP1

}

'* MI(0P) n (0Q)1 ~ M~0PI { equivalent formulation }
=> M~0(P n Q)l ~ MI0PI { definition of 0 J
=> <l>(MdP n Q!) ~ <l>(.MdPI) { by Tbeorem 6.7 J
=> Mn~P n Q! ~ MdPI { <II injective }

o

Completeness

In order to esta.blish completeness of the system we must show that every true
assertion is provable. \Ve mnst show that whenever M1l[P~ ~ M'RfQ] then the
formula P ~R Q is provable. We shall define a class of normal forms and show that
every term is provably equivalent to a unique normal form. Finally, by using the
ma.p e we can relate these normal forms to those of SCSP. Through this we deduce
that the system consisting of the class of normal form processes is complete.

113

Normal form

The nOlhlal forms of SRPT'have a similar structure to those of SCSpJ . .1.[,0 is
a normal form, all other uormal forms a.re the non-deterministic choice between a
finite number of output prefixed processc~. The output sets in the prefix constructs
are nnique, cnsuring Bormal forms are unique.

Defiuition 6.5 \Ve SnJ' a process. P ~ SCSpl, with alphabets 1 and ° is in
norma,} form if it is .1./,0 01' takes the form:

l' =nI!B?X - p •..,]
8Et;

\vhere

• B i. a non-empty tinite subset of IF' 0 .

• PBX is in normal form for all 13 E B and X r; 1.

o
The proof thnt every process in SRPT 1 is prova,bly equivalent to a process in

normal from follows the form of the equiva.lent proof in SCSpJ 1 so is not presented
here.

Lemma 6.13 ELlery pl'octss in SRPTI is plY>vably eq'uivalent to a process in non-nal
/onn. •

Lemma 6.14 1/ P E SRPT1 is iTt normal/onn wilh alphabets 1 and 0, then
8P E 8CSPJ i ... in. normal/orm.

Proof: By structural induction on P.

base caSt!: P =.1./,0_ Theil HP =.1./uO i.s in normal form.

inductive step:

l' = npmx - PH.xl·
HW

Then by d~finitiou of 8:

81' ~ nIX<:;B U I - p~.xl
BEG

where PB ..~ = (8PlJ ,X-B) if Be; ,r else .1.[UO

114

0

By induction PE,x is in uormal form.

It remains to show B U I ~ B' U I ~ V X ~ B U I • PE"x ~ PB,x

Now B U I ~ H' U I ~ B ~
 B I

If B = B' then a.s the choice sets are unique in the definition of P, we b.ave

PEI,x = PE.X and We are done.

If B C BI then X s;:;; B U I ~ B' C1. X so by defiuition PE"x =.lIuo and the result

~I~s.

Lemma 6.15 If P. Q E SRPT1 a1'e in lw7''TTl.alfol'm wilh alphabets I and 0 then

I- ep~eQ~I-R P~R Q

Proof: By structural induction over P.

base case: P =--l../.o, t,he 1'('5ult follows by 0-6.

inductive step:

P ~	 n[!B? X ~ PB,x]

BEB

by the definition of 0:

ep ~ n [1'<:;8' ~ P~"yJ
B'EB'

where PEI,r = (0(PB'no.l'nI) if B I = YUI else .llUO) and 8' = {BUll BE 8},
By Lemma 6.14 0 P and 0Q are in normal form in SCSPI. Moreover as the proof
system for SCSPlis sound M[0P~ ~ M[0Q~. SO folJowing the argument of
Lemma 3.16, eQ must take the form of a non-deterministic choice of set prefixed
mnstructs. Hence Q must also take this form.

Q ~	 n[! C1 X ~ Qc,x I
CEe

with:

eQ~ n[Y<:;C~Q~"yJ
e'E'e'

where Q'c', y ~ (6(Qc'no,YnI) if C' ~ Yu I else .LIUO) and C' ~ {CUI ICE C),

115

following the argumen t of Lemma 3.16, C' ~ B' , hence C :; B. So by axiom 0-1

I' c; nI'C?X ~ Pr,xl
CEe

it is sutficiellt to show tha.t r- (8Pc,x) ~ (8Qc.x) for all C E C, X ~ [then the
result follows by induction and the monotol1lCity of operators.

A, Mlep] c;: M~0Q! it follows that:

'I Co C' : Y <c; (" • M[pc,. y! c;: M[Qc'.,1
::::> { by definition of pi und Q' }

'ICE C': Y <c; C'. C' = YU ["", M[0po'00,"n1! c;: M[6Qc'no,Yn1!
~ { by defillit.ioll of C' }

'I Co C; X <c; [. ,1.1 [0Pc ,x! c;: M[0Qc.x~

::::} {<IS the- proof system for SCSpiis complete
'I C E C; X <c; [,f- 0Pc.x C; 0Qc.x

giving tile required result o

Theorem 6.16 (Completeness) Fm' P, Q E SRPTJ WI,I.h alphabet.s / and 0,

MR{Pi C;:R Mn[Q! "'" (I- n I' C;:H Q)

Proof: By Lemma 6.13 we can find pi. Q' E SRPT 1 in normal form with
I- R P=RP'andI-R Q~RQ'

As the proof system for SRPT 1 is sound

Mn[p' n Q'! = MRjP n QI ~ ,vi,,[p! = }"h[?'j.

So it is suflicipnt to prove MR.~P' rl Q'] = Mn.[PI]::::} I- R pI I;R Q'

M"IP' nt.l'l = M,,[p'i
"'" 'Mi,,[?, n Q'~ ~ ~M,,[P'! { as <II is a function)
"'" M[(0?') n (6Q')I = M[0p'! { by defn. of 8 and Theorem 6.10
""'I- SP' c;: 6Q' { by Theorem .3.17 }
::::}I- R pi (;;;;R Q' { hy Lemma 6.1.5 }

o

An extended proof system

As for SCSP. we extend our proof system to can'r the full language of dosed terms
in SRPT. This involves characterising each process by it.s set of finite syntactic
approximations, t.hus f'nabling us to rea.."on about infinite processes.

116

Definition 6.6 The relation -<R is the smallest relation on closed terms of SRPT
with alphabets I and 0 satisfyillg:

1 -<R P
P -<n P

1'[(" .r .P)/x] -<R I'." l'

P -<R Q -<rr. II => P -<'fl U

PI -<'R QI,P2 -<Ii Q2 => (I', n 1',) -<R (Q, n Q,)

'I X C; 1 • Px -<R Qr => [!1J?X ~ Pxl-<n [!B?X ~ Qd

P j -<RQI.Po!-<r.Q2 => (I', II 1',) -<R (Q, II Q,)

P -<'R Q => (P\A) -<R (Q\A)
l' -<R Q => 1'[.1'] -<R Q[S]

If P -<II Cd then we say tha.t P is a syntactic approximation of Q. <)

[I. can be shown by stl'1lct.ural induction that the ordering given by -<R is weaker
that. the information order'lIlg. and hence t.he non-determinism ordering.

l' -<R Q => MdPI,;; .'vf,,[Q~ => M,,[pi C;R MdQI

Given a dosed process P, we constmct the set of its finite synta.ctic approxima­
tions FliY,dP). \Vc say a process is finite exactly when it is a term in t.helanguage
SRPT ' . Thus we have the following:

Definition 6.7 FlNR(p)"" {Q E SRPT' [Q -<n p} o

FINR(P) forms a directed set under -<R and consequently the semantic image
forms a. directed set IlJlder l;;n and ~. following the argument used to deduce
Theorem 3,19 we obtain the result below.

Lemma 6.17 M,,[pi ~ U, M,,[Q! •
QEF'lNR(P)

Now we eRn show that UQeFfNR(F) /\.1R.[Q~ (the least upper bound under the
!;R ordering) coincides with U~ MR[Q~,

QEFfNR(P)

Lemma 6.18 1/ D k" a set 0/ closed tenn.s in the language SRPT and {Mn[P~ I
P E D} is ~·di7'eCffrlT then

U M" [PI ~ U, M,,[pj
FeD PED

117

Proof: Using the Jinks established between RM and SM we can establish that

M,,[Pj ,;; M"IQI ~ M"IPI c;R M,,[QI ~ <i>M"IPI c; <i>M"IQI·
\-Vhile from Theorem 6.5

<i>(U~ M,,[PIJ = U (<I>M"IP!J
PED }JED

it follows that

<I>(U~ M,,[PIJ = <1>(U M"IPll
fED PED

Tlw result follows as ~, restl'ict.('d to pl'ore1ises with the same alphabets, is injective.
o

Combining these r('sldts we haw:

Theorem 6.19 MdPH ~ UQUINRIPJ M,,[QI· •
We extend t.he proof system for SnPT J with the following;

a-l1 ~ PI(p I' P)/.r) =R I' X • P

R-l
'<t Q E F'INR(P) • Q c;R R

P c;R Il

These rules a.re similar to those prf'senled ill Section 3.4.2. They allow us to extend
the proof syst.em t.o all closed ten liS of SllPT

Soundness and completeness

The least fixed point construction of the semantics of recursive Constructs guar­
antees the- ~ollildness of axiom a-17. While the inference rule is sound by Theo­
rem 6.l9.

Theorem 6.20 (Soundness) For all closed terms P and Q in SRPT

(~R Pc;R Q) ~ M,,[PI c;R .I-1,,[QI

•

Completeness is establislted hy considering the characterisation of a process by

its syntactic approximation in the same way as presented in Theorem 3.21.

Theorem &.21 (Completeness) For all closed terms P and Q in SRPT

M,,/PI c;R M,,[QI ~ (~R P c;R Q).

•

118

6.4 Conclusion

By considering the way in which one might model receptive systems in the language
SCSP. we ha.ve estahlished an embedding of the language SRPT and its associated
model into tlte language and model of SCSP. The embedding between models RM
and SM was proved to be continuous; this made it possible to establish many of
the ma,thematical results concerning SRPT \'ia the equivalent results for SCSP
and the embedding, Reslllts assumed in Chapter 5 have been proved here; the
semantic iUl3,ges of o~rators in the language were shown to be continuous. Also.
the souudness and ,ompJt>telless ur the proof system for SRPT was deduced from
similar results in SCSI'. Tbe embedding and the results drawn from it rlemonstrate
how SR PT can he vie....·ed as a rec~ptjvc sublanguage of SCSP.

119

Chapter 7

Timewise Abstraction

\Ve are olready familiar \\it,h abstra.ction as a powerful developmeut tool. Duriug
development it is oftell llecessary to be aWare of COl1UIlUlIit:ation between com­

ponents of the system which nltimately should be hidden from the enviwument.
Abstraction allows liS to hide from the ellVirOlltlient t.hose details of the specifica­
tion which can !w vipwed as specific Oldy to the internal working of the system.
The langnages presented in this thesis allow communjcation abstraction via the
hiding 0pE'rator.

Similarly, when modelling a system by a discrete time algebra., it may be appro­
priate to view the internal working of components of a system in a different time
frame to that. appropriate to the ultim<l.te interaction between the whole system
and the eovironment. Specifyiog components of the system in the context of a
~hort dock cycle we could ascertain the details of the interual behaviour. Then
the specifICation could be tra.n!<lat.ed to a time frame with a longer clock cycle a,p­
propriate Co the system as a whole. The ability to slow down the speed at whicb
the process is viewed would aHow us to reason about systems in the time frame
as well a.s the communication leyel most appropriate to the final application. The
procedure of translating a process in a discrete time algebra to a slower time frame
will be reftrred to as timewisf' aosl.mclion.

We recall that, when considering communication a,bstraction, we had to make
assumptions concerning the circumstances under which hidden pvents should be
performed internally; we used a maximal progress ~sumption. In the same way,
when considering timewise abstraction we must take care to avoid ambiguity by
making dea,r the context in which W L' can translate the time frame. Timewise
abstraction can be usefully incorporated in the receptive language SRPT without
ambiguity.

Suppose we have a receptive system modelled in SRPT in a given time (rame,
then by making certain assumptions we can derive a model fOT the same system
in a new time frame. The new time frame is chosen such that a unit of time in

120

r

a

b

,

B

Fignre 1.1: A collditioua[circuit.

out

the new triune is art integer H1ultiplfcof <~ unit of time in the original frame. We
assnme that input only dl3Hg{'S at tbe tit'k of the clock in the new frame, so there
is less opportunity for inpllt to vary. In the new model, the value of output is
only recorded on tIle tick of the lIew 1 ~lower clock. The new model provides less
information about the sysLt'fTl's behaviour as it takes 'snapshots' of the system less
freqnently. For systems in which sUell assumptions are appropriate we will provide
algebraic methods to perform timewise abstraction, changing the time frame in
which the system is \'iewed.

The language SRPT gives us a way of modelling components with latched in­
puts. The input received by such a component at the start of the clock cycle is
latched and held constant for tIw remainder of t.he clock cycle. In SRPT we are able
to record the behaviour of the component by giving the input and output observed
on the tick of the dock. We givC' a stroboscopic view of the system which, if timed
to coincide with the syst.em clock, gives us a useful representation of components.

Suppose we require a dock speed snch that the output is stable after one time
unit. A syst,em is often composed of several subcomponents. Even if each of
the subcomponents stabilises within one time unit, it is not necessariJ} the case
that the whole system will stabilise within one time unit. The system as a whole
should be latched a.t a speed which ensures that it is stable after a single dock cycle.
Timewise abstraction allows us to investigate the effect of latching the whole system
at a slower speed.

Example: A conditional circuit

A conditional circllit Gill be built from components A and B as shown in Fig­
ure 7.1. Suppos{' both components stabilise within time d. If we take a unit of time
ill SRPT to bp length d then We can model components A and B as follows (using
the convention~ introduced in Chapter 5 and the definition of OR from Section 5.2).

A'" I'l}? X ~ A(X)]

121

where

.1(.\")= A" if a E X 1\ c E X else (A, if" ~ X 1\ b E X else A)

A"c: [!{.r}'X ~ .1(.1')]

h'" [1{y}'X ~ .1(.1')]

a.nd

B '" OR[x/a.y/b.out/c]

Now to wmiider tl,e Iwha'o'ioul' of the I'olnplete circllit we must consider the process
(A II B)\ {.r,y}. It can be shown Ilsing the laws of SRPT that

(A!I B) \ {.e, y} =' ('on

where

Con c: ['(}'X ~ (eoa' if(" E X 1\ c E X) V (b E X II a ~ X) else Con)]
Con'"", [!(FX ~ (('oa~ if(o EX 1\, E X) V (b E X 1\ a ~ X) else Coo,))
Coa,"'" ['(out}'X ~ (Con' if(a E X 1\ c E X) V (b E X 1\ a ~ X) else rou)]
Con~"", ['(oul)' X ~ (Cou; if (a E X 1\ c E X) V (b E X II a ~ X) else Con,)]

\Ve h,rve been able to hide the internal communication but clearly the whole
circuit will take two time units to st.abilise. It would be easier to reason about the
circuit if it stahiIiseo in one time unit. We \vould like to look at the whole system
in a time(rame where each time nnit has length 2d. In snch a. time frame we would
expect the circuit to be modelled by the process:

Cond'" [!{FX ~ rond(X)]

where

Cond(X)= ('ond' if(a EX 1\ c E X) V (a f/: X 1\ b E X) else Cond

COI,d'"", [!{ont}'X ~ ('ond(X)]

Our aim in this chapter is to provide a simple algebraic method to perform timewise
abstraction and hence derive Pl'oC(~ss Cond from process Con.

In this chapter we develop the thf>OT'y of timewise abstraction i we provide simple
algebraic laws for its application ill SRPT and verify that it is consistent with the
model. Wea}so show how timewise abstr<lctiou can be nsefully employed to reason
about pipes. Through the examples it will become clear that timewise abstraction
often reduQ's the number of states of a process, making the system easier to reason
about.

122

7.1 Time-wise Abstraction in SRPT

Rather than extend the syntax of SRPT, timewise abstraction will be defined in
terms of a. map between two copies of the dosed terms of SRPT. We regard the
two copies of the language as having different time frames, in that the unit of time
has a different absolute length in tb~ two copies of the language. We could view
earh copy of the language to be associated with a clock; observations are only made
when this clock ticks. Timewise abstraction maps processes with a given associated
clock to processes with an associated clock which ticks less frequently. The effect
of tirnewise abstraction is to slow clown the frequency at which observations ate
made of the system, under certain aS3umptiollS about th(> behaviour at the times
observations are no longer made.

Suppose P is a process which models a. system in a time frame with time t
between ticks of the dock. If (' is a set of events in the input alphabet of P and n
and 'Ill are na1.u raj numbers, with n non-zero, theu Slow(n. m, C, P) is a process
which models the ::ly.~tem in a time frame with time ILt between ticks of the dock,
such that:

•	 The first dock tick in tI1(' new frame coincides with the (m + 1)110 tick of the
old clock.

•	 Sub.~equent clock ticks are made at n.t time intervals; coinciding with the
(m + l + k.n)lh ticks of the clock in the old frame, for It E N.

•	 Until the first clock tick is made in the new frame, input to the system
modelled by Slow(n,m, C.P) is assumed to be C.

•	 The input i.'S assumed to be held fixed at the value seen at a tick ofthe dock
in the new frame until the su bsequent clock tick occurs.

Timewise a.bstraetiou preserves alphabets, so if P has input alphabet I and output
alphabet 0, so too does process Slow(n, m, C,P).

From Section 6.:3.2, closed process terms can be characterised by t.heir finite
syntactic approximations and ea.ch finite dosed process is equivalent to a process
in normal form. So we can define Slow(n, m, C, P), up to == equivalence, over the
closed terms of SRPT uy the following axioms:

a-18: Slow(n.m, C,~I.o) == ~l,O

a-19, Slow(n, m, C', P n QJ '" Slow(n, m, C,Pj n Slow(n, m, C, Q)

a-20 Slow(n, m, C,['B?X ~ PxlJ
= { [!B?X ~ Slow(n,n -l,X,Pxl] ifm=O
- Slow(n,m-l,C',Pcl if m > 0

123

We also have the foHowing law, which demonstrates that communication abstrac­
tion and tJmewise abstraction are independent of one another.

1-11 S/ow(n, m, C, P \ A) "' (S/ow(n, m, C, P)) \ A

Notes

1.	 Jf Chaotic behaviour can occur at any time between two consecutive dock
tirks in the new frame, then we assume it does OCCtil'.

2.	 If m = 0 then the first clock tick in the new frame coincides with the first
clock tick in the old frame and there is no need to record the value of input
prior to th£' first dock tick in the IH'W frame, Thus, if I is the input alphabet
of P thf'll

VC,c' E IFI.Slo1V(n,IJ,C',P) = S/ow(n,O,C',P).

3.	 If II = 1 then the- two time frames a.re idt:.>nf,ical and Slow(1, m, C, P) behaves
like process P with the input held fixed at t.he value C for the first m time
units. It follows that

Slow(l, 0, C,P) = P

4.	 Ha.d we introduced Slow(n. 711, C,P) into the syntax of the liUlguage, then
expressions like

I' P • [i{}'? X ~ Slow(n,"" C, P)]

would be va.lid. The exact meaning of such an expression is not dea.r however,
bec311se timewise abstraction alters the time frame and the time frame is
a.SSllllle-d to be fixed in the language. Considering timewise a,bstraction as a
map between copies of the langu<lge allows 11S to realise the implications of
timewise abstraction on the time frames.

7.2 Examples

7.2.1 A conditional circuit

Let us return to the example presented in the introduction to this chapter. We
are interested ill ronsidering the process Con in a time frame where the clock ticks
half as frequenlly and the initia.l clock tick in the new frame coincides with the

124

initia.l clock tick ill the original time frame. So we are now interested in evaluating
51010(2,0, {}, Con).

Recall

Con '" [!{I" X ~ (Con' if B(X) else Con))
Con' '" [!{}?X ~ (Con~ if B(X) else Con,))
Con, '" [1{olll)'X ~ (Con' if il(X) else Con))
Con.~ == [!{ 0 Itt}?X --+ (Con l

t if B(X) else C01lt)J

where B(X) is the boolean giYf'Jl by:

B(X) '" (n E X to 'E X) V (b E X to a ¢ X)

Now;
Slow(2,O,{}, (.'on)

-= {exp<'l.1ldillg d('fillition of COl/. }

510",(2.0, {}, I!{}?X ~ ((.'on' if B(X) else Con)1l
'= {by a-~O }

['{}'! X ~ (S 1"".(2.1, X, ('on') if 1J(X) else 51010(2,1, X, Con))]
= {expanding definition of Con and ('on' }

['{}'X ~ (Slow(2, 1, X, I!{)" Y ~ (Con~ if B(Y) else Con,)])
if B(X) else

S 1"",(2 ,1 ..\, I'{}? j' ~ (Con' if B(j') else Con)]))]
_ {by .-20 }

[!{)? X ~ (S lou'(?, 0. X, Con',) if B(X) else Slow(2,0, X, Con))1
= {recalling note 2 }

I'{}'X ~ (S 10".(2. 0, {}, Con~) if B(X) else Slow(2,0. {), Con)))
similarly we can show that

S low(2, 0, {}, Con~) =
I!{ oul)'?X ~ (Slow(2,0, {), (.'0":) if B(X) else 510",(2,0, {}, Con))]

so by llniquelles~ of solutions to guarded [('cursive equations:

Slnw(2, 0, {}, Con) '= ('ond

where C0111i is as given in tb(' introduction to this chapter (page 122).

7.2.2 A grey-code counter

Our aim in this example is to verify the design of a 2-bit grey-code counter,
such a connter should output, in sequence, the bit patterns

00 --+ OJ --+ 11 --+ JO --+ 00 --+ ...

125

- -

-
-

- - .
b,T,r-,------1

I t1

b10L
I

To

l
ck

F;gu,e 7.2, A grey-code counte'

A change in output is triggered by the .'1ystem clock. Notice that each increment of
the counler only involves one bit changing: such codes eliminate the risk of glitches
in the counter, which could be encountered when using a. simple binary counter,
The component we shall investigate if> a, sequential circuit consisting of a combi­
na,torial part and two clocked 'I-type flip-flops configured as shown in Figure 7.2.
This circuit f'xhibit.s feedback Unlike previous circuits we have considered output
depends on tilt' previous state of the system rather than the values of la-"t input.
The only input to this system is the dock. The output of tIle system is determined
by two wires bo aud bJ which f"llcode the grey code in their voltage levels.

VVe shaH in vefltigate the behaviour of this circuit. takiug advan tage of timewise
abstra.ction to model ('ach component ill thf' mOflt avpropriate time frame.

The cornhillatorial circuit

The combinatorial circuit compri~es of two gates, an EXOR gate and a l'fOT gatc.
We model both these gates in a time frame which ensures that the output is stable
ooe time unit after the input is made <'I,\'ailable. The definition of it NOT gate with
input wire a <'Iud output wirf' b, is given by:

,NOT~ {a} oNOT ~ (h}

NOT" [1{b}?X ~ (NOT if X ~ {} el5e NOr)]

NOT'" ['{}?X ~ (NOT if X ~ {} el5e NOT')]

126

While we recall the definition of an EXOR gate from Section 5.2.1

,EXOR = {a, h) oEXOR = {cJ
EXOR :c I!{}? X - (EXOR' if IX I ~ 1 else EXOR)]
EXOR':c [!{ c}? X ~ (EXOR' if 1.1'1 ~ 1 else EXOR)]

The combinatorial circuit is then given by:

EXOR[b,/a, ba/b,l,fc] II N07'[I,/a,ta/b].

By application~ of thf' axioms of SRPT, \Ve call eliminate parallel composition from
the abovp <'Inri prove tbe following idf'nt.ity:

EX08[b,/a, ba/b. I, /clI11\'07'[I,/a, la/b] co EN.

where EN :c ['{td?X ~ (EN' iflX] = 1 else EN)]
EN' :c [!{ta,I,)'!X ~ (J-.'N; if/XI ~ I else EN,)]
EN; :c [!{t,}'.\' ~ (EN; ifiXI = I else EN,)]
EIV1 :c [!{}?X _ (EN' iflXI = 1 else EN)]

We notin' that this rircuit take:" longer that one time unit to stabilise. The input.
must be held const.ant for suliicicnt time for the race condition on the wires t1 and
to, (cau:"ed hy the NOT gate), to pass before output is used. We are interested in
the combiJl~t.oriil.l circuit being modelled in a time frame which ensures output is
stable after one time unit. If input is held fixed for two units the output after this
time is stablf'. Vv'e consider the circllit in a tirne frame which is a fador of2 slower.

COMB :cSlow(2,O,{},EN)

defining C'OMB' == Sloll'(Z,O,{},EN;) we cau use the axioms for timewise ab­
straction to obtain the following expansion of COAtB.

COMB co ['{la}?X - (COMB' iflXI ~ 1 else COMB)]
COMB' co ['{I,}?X ~ (COMB' iflXI = 1 else COMB)]

A docked T-type flip-flop

A rising edgf' trigg~rpd T-type flip-Hop has one output a and two inputs t and ck.
The value of the output remains fixed unless the input t is high on the rising edge
of the clock ck. If the iuput t is high on the rising edge of the dock, then the
output toggles, that is. changes from high to low or from low to high.

We shall assume that the flip-flop is modelled in a time frame such that all
changes in the system clock ck coincide with observations in the model. The value
on the wire ck should be seen to represent the state of the clock after any change
at the time of observation in the model. The value on the wire t should be seen to

127

represent the stable state of the wire at the time of ohservation. We also assume
that output is stable within one tiIlle unit of any change of input. So assnming
that thl' dock is initially [ow and the output initially low we obtain the following
description of a rising edge triggered T-type flip-flop:

,Tjf ~ {I,ck} oT17={o) TiJ = T17L

where	 T17L = [ii]? X - (T17I, if ck ~ X else (T17f/ iff ~ X else TiJH))]
T17H = [ii)? X - (T17H if ck E X else Tffd]
ljn = I!{ 0)' X - (T17f, if ck E X else T17n]
Jft; = [1 (oJ ?X _ (TiJl if ck ~ X else (T17lJ if I E X else T17f,))1

(L and II I'q)j'(~s('nl the current. state of the clot:k.)

The complete circuit

We are HOW in i'l position t.o investigate the complete circuit, we assume that the
flip-flops and combina.torial circuit arl' modelled in the same time frame, one in
which eMl! of these unit." slabilifles Ivithill one time unit. So the complete circuit.,
modelled in this time frame, is given by:

GREY =(COMIJ II T17[to/ I. bo/ a] II Tml,j I. bl / a]) \ {I o, I,)

In order to e:>tablisb the behaviours of this process. we use the algebraic laws of
SRPT t.u reduce the above expression to a form which Goes not involve parallel
composition 01' hiding opera/.ors.

GREY
{by definition of GREY }

(COMB II T17[lo/l,b%J !ll1T[tr/I,b,ja])\{lo,trJ
{by 1-2 }

(COMB II (TiJ[lcll,b%] II TlJIt,jl,bl/a])) \ {Io,ttl

Now by a-IO and a-16 and the definition of TlJ

TiJ[lo/U,/a] II TiJlII/I,bl/a)
:[!{}U _ ((TffLilo/U,/aJ II T17LlldUI/a]) ifck ~ X else

((T17f,llo/l, bo/ aJ II Tff~111 /U,j a]) if {Io, trJ <;; X else
((TiJl/ito/t,bo/a] II T17~[I,/I,bl/a])iftl E X else
((TiJ~[to/l,bo/"] 117'iJH[t,jI,b l /a])iflo E X else
(TiJH[lo/t.bo/a] II 7'/fI/[II/I,b,ja])))))J

128

So

(COMB II TIJII,,/Uo/a]1I1:tJ[I,jt,b,ja]) \ {lo,I,}
== {expanding COMB and from above }

([!{lo)?Y ~ (COMB' ifl}~1 = 1 else COMB)]
II[!{}" X ~ (I I:tTdlo/ I, bo/ a] II Tffdl,jt.b, / a]) if ck ¢ X else

((Tff~[lo/t.bo/a] II Tff~[t,jl, b,ja]) if (Io, t,) c; X else
((TffH[to/l. bola] II Tfff/lt,/I,b//a]) if I, E X else
((Tff~[lo/l.bo/a] II TffH[I,jI,b,/a]) if to E X else
(TffJl [1 0 /1. bo/ aJ II '1:tJH [I,j t, b,j a])))))] \ {I", I,))

c= {by a-10 J
[1{lo}?X ~ ((COMB II (1[f,[lo/l,b o/alli Tffdl,/I,b,/aj))

if ek ¢ X else
(COMB II (1:tJW,,/I,b,,/a] II TffH[I,jI,b,/aJ)))1 \ {II,I,]

c= {by a~):j }

[!{}'X ~ (I COMB II (Tffd1o/l, bo/ oj II 1:tJdl,j I, b, / oJ)) \ {I o, I,]
if ck ¢ X else

((:OMI! II (Tff~[lo/l,bo/alli TffH[I,/I,b,/aJ)) \ (lo,I,])]

Dy continuing 1.0 ('liminate paralld composition a.nd hiding constructs we can
demonstra.te that

GlIEI' c= ({(L,O)

whmG(H.O) ",[!{}?X~(G(H,O)ifekEXelseG(LO))]

G(L,O) "' [!{j?X ~ (G(L, 0) if ck ¢ X else G(JI, 1))]

G(H,l) ",[!{boFX~(G(H,1)ifckEXe1seG(L,1))]

G(LI) "'1'{bo}?X ~ (G(L,J)ifek ¢ X else G(H,2))]

G(H.2) "' [!{b",b,}?X ~ ((:(H,2) ifck E X else G(L,2))]
G(L,2) "' [!{ b". b,]'X ~ (G(L, 2) if ek ¢ X else G{H, 3))]

G(ll,3) "' [!{b,}? X ~ (G(H, 3) if ck E X else G(L,3))]

G(L,:l) "' [!(b,}?X ~ (G(L,3) ifek ¢ X else G(H,O))]

The numerica.l parameter of G indicates the curreut phase of the counter.

Incorporating the clock

By way of example, suppose we ha.ve au asymmetric system clock which has low
time twice as long as its high time. This Call be described by the process GLf(or
pictorially il.S in Figure 7.3.

Wf' want to incorporate the clock ill to the system and abstract away from details
of thf' dock whirb i'I.f(' considered internal to the system. To achieve this we consider
the process (eLA" 1/ GREY). By hiding the event. ck we can make internal the

129

CLI, 00 I'{ ck)~[!{}~!,{} ~ eLK]]]

"'.::l l n Il
w·1 t,=

Fi~ure 7.3: Two descriptions of an a."iymmetric clock

behaviour of the c1of:k. As we are Hot interested in the mechanics of the clock
it <llso makf's sense to t:omider the whole systf'nl in a time frame where a. unit
of time coincides with ;-t complete cycle of t.he system clock. We choose to make
observations coincide with the rising pdge of the clock cycle. So we evalLJate the
following:

SY5 oo Slow(.J,O,{},(GREY II CLl\') \ {rk))

Now

GREY II CLI,'

I by definition of GREY, eLK ;-tnd a-1O

[!lck} ~ (G(H, 1)1I[!{)~[!{} ~ CLI,] I II

I by definition of G(H, 0) aud a,-10 }

[!lck}~[I{b"}~[!{b,,} ~ (C(Ll) II CLK)])]

Thus, nOling that SYS has an empty input alphabet,

SIS
{by definition of SYS }

Slow(.1, O,{], (CiREY Ii G'LK)\ {ck})

{ by H1 }

Slow(.1, 0, {}, (GREY II CLl'l) \ {ck)

{noting the (I,bove expansion and by a-20

[lick) ~

SI0",(,1, 2, {}, P{ b"}~[I{ b,} ~ (G(L, 1) II CLlI')IJ)] \ {ck}
{ hy two applications of a-20 }

[I{ck)·~ Slow(3,O,{],(G(L, 1) II CL1»)I\ {ck}
{bya-13andl-ll }

[! {) ~ (S low(.1, 0, {}, (G(L, 1) II CLli) \ {ck}))]

130

continuing in this manner a.nd by the uniqueness of solutions to guarded recursive
equations we can demonstrate that;

SYS =' I'P, [!{}~[I(bol~[!{b"b,)~[!{b')~Pllll

So our sy:-tem clearly behaves like a grey-code counter.
By using timewis(: abstraction w(' have been ahle to present t.he process in a time

frame in which its behaviour is easy to verify. The coarser time frame abstracts
aW<l.y from all the dela.ys whi("h arisp wheIl data abstradion is performed.

7.3 Relating Timewise Abstraction to the Model

In this section wp shall esta.blish the sf'lIlantics of S low(11, tit, C, P) in RM. Once
we have defined the semant.ics of tilllewise abstraction we can verify that it is well
defiued anu ensure that the <lxJoms present.ed in Section 7.1 are sound with respect
to the model. Spfore WI" pr('sent tIl(' s<'IlHmti("s of Slow(n, 'In, C,P) we introduce
some 1I0ia,llon.

7.3.1 Notation

We define two fundions Oll traces, both of which will be associated with the concept
of slowing down the frequellcy of observation.

Choose

The first function, choo.~r;(n, In, 8), takes as its <lcguments two natural numbers n,m
cwd a. trace -5. It ret.urns a. trace which has as its (k+ J /11. element the (m+ J+1l.k)111.

elemeut of s. If s corresponds to a tr<l,("e of observations made in the original time
frame, then choose(n, In,s) ("orrespollds to a trace of observations in a new time
frame, where the clock runs slower that that in the original frame by a factor n,
and the first tick of the do("k in the lIew frame coincides with the (m +1)111. clock
tick in lllf' original frame.

The form<l.l definition of choos(is given for 11 > 0:

clIO08t·(II, m, (1) =0
choo$e('/to 0, (8)'"' s) ~ (B)~clwose(n,n--l,sl

choo$c(n, HI + J, (B)""'s) = chOO$e(lI l 1n,s)

Properties

• Ichoosc(n, m,.<)I= [(lsl- ml/"l· for n f:- O.

• Ch008f(J, O,s) = s.

131

• s~ s/::::} choose(n,lII,~):::; choo.~e(n,m.s')

Trace tnultiplication

The operator 0 takes as its arguments a natura.l number a.nd a trace. The result,
11- (9 s is a trace n times as long M s with each term duplicated n times. When
considel'iug systems viewed under the llew, slower time frame we assume that the
input to the syst.em can ouly be chaJlg~d at (he (kss frequent) ticks of the new
clock. We will have to examine the elfect of tbis input pattern on the system
viewed in the origillal time franw in order to e:=;tablish the ol.ltpul which will be
observed in the new frome of referencE'.

\Ve define 3) a.s follows:

n () () ~()

n0UX)~s) ~ (X)"~ In Ceo .,j

Properties

• In I~ sl' = 71·1051

7.3.2 The semantics of timewise abstraction

We f'xtenu the Sf'tnaJltic functioll .,\.1R 1.0 incorporate timewise abstraction. Recall­
ing t.he dt'finition of M R , it is sufficient to define I, 0 and Tn of Slow(n" m~ C. P).

Definition 7.1 For mEN. II, E N+, (' E !FE, P E SRPT and a E BINDH Vie
extend the definition:=; of /, 0 and TR a,s follows:

,[Slow(", m, C,P)k "" ,[P~O"

0[510"'1". m, c'P)k "" 0[1'10­
TR[Slow('I. 711, C,PHa:=: {s I (3.5' E Tn [P]17 choos£(n, nJ,,:/) s0 =

A.5' n J S; lC)m~((n ® ,) n I))
1\ (-, 3.~f/ Efn[l']ao choose(lI,m,sll) <8

A," n J S; Ic)m~l(n 0) s) n I)))
whe'e J = ,[PIo- I)

Notes

1. Observing TR~Slow(n, 711, C. PHa, it is clear that when m = 0 the semantics
of S }ow(11, In, C, P) are independent of tbe value of C.

2. Notice tha.t if C' g t[P]a and m > 0 then

TdS1owln. m, C,PHo = {()} = Tr-! 1- k.

\.J2

Until the first tick of the new clock thE' environment attempts to input to the
proce:=;s, if Lhis input is not in the alphabet of the process the result is chaotic
behaviour.

3.	 We can explain the definition of the semantics for Slow(n, m, C, P) as follows.
If.5 is a trace giving a possible behaviour of Slo'w(n, m, C, P) then it is derived
from a. behaviour s' of P. By requiring choose(n, m,s') = s, we ensure that
the (k + J)t/l. observation in s coincides with the (m + J + n.k)l/l. observation
in s'. By l'equiring s' n / ~ (c)m"'-"((ll @,'J) n /), we guarantee that Lhe
hehaviour s i~ derived from a behaviour in which input does nol. change
bf't.weeu observations made in the new time frame.

Finally, we exclude any behaviours which are extensions of behaviourg derived
from maximal behaviours of the original process. So if a behaviour could have
been <ierived from a behaviour which results in the original process becoming
uuiIlformaLive, We aSSUlIle that the process viewed in the new time frame
becomes uninformative.

Theorem 7.1 Slo"w is well flejined wil.h r('sper;f to ihe mOflcl RAf.

Proof: It if; ilt,>ceSS<1f} and sufficient that\.1n[Slow(n, TrI, C, PHa E RM for all
process expressjoDs P in SRPT, III E N. 71 E N+ and C E :IF E. To achiel,iC t,his we
must show that Tn~Slow(n. m, C.P)]a sa(.isfies closure conditions I-III (see Sec­
tion 5.::L2) with l'pspect to alphabets I[P~a and o[P~a~ under the assumption that
Mn[P]a E RM. Till"' proofs of all three conditions involve careful examination
of the construction of the set defining Tn [Slow(n, Tn, C, PHa; the proof of III is
preseut.ed as Theorem A.5 in Appendix A.4. 0

Theorem 7.2 AflOTrlS a-1f(a-J9 aTui a- 20 are sonnd with respect to lite model

HAl.

Proof: It is necessary to prove that the following equalities hold for mEN,
n E N+ and (' a subset of the input a.lphabet:

TdSlow(n, m, C, ~)I = Td ~ I
T,,[Slow(n, m, C, P n Qll = TniS1ow(n, In, C, P) n Slow(n, m, C, Q)~

T,,[Slow('I, 0, C, [IB? X _ Px])J = T"II!B? X - S low('1,71 - 1, X ,Px)J]
and for m > 0

T,,[Slow(n, In, C, [!B?X _ Px])J = TdSlow(n, m - 1, C, Pell

This can be shown by set analY::lis. The proof for a-19 is presented as Theorem A.S
in Appeudix A.4. o

133

7.4 Pipes

Pipdining is a cotllnlonly used tedllliqllf' for obta,ining speed up in sequential rir­
tuits. If many pie('e~ of data re-quirl> pro(('ssing by a serluential circuit, and this
sequential cil"(lIit call he d('comf.lO.~t.'d into scyeril.l sillaller components which pro­
cess t,h(' dilta in turn, t.hen pip('lilling enables datil processing to be oYerlapped.
Each input do('s not ba,'f' to wail, for tht" prp\'iou.s OIle to be output. Ty~ica.lly such
fJipeliniIig is ilchiew'd by latcbing interlllediat.'.' results.

For example thf' cOllditloIlaJ rir(ltit introduced at the b('gillning of this chapter
coHld be f'a~ily prf'sented as il pipcliw' of lengLh lwo units by' latching the output
from CmnpOllE'llt A. TheIl. iiS.~UllJirlg both components A and B stilbilise in Ullit

time, WOlle dnlil can be inpul evpry IIlli(and the corr<'spoIl<.ling output is available
two nnil> lat.er. Such ~) circuit is c!csrribf'd by Hl(' pruccs::, Con.

lluforLullaf.ely as a pipeline incrcil;ws ill length, thp proress describing it must

have mOll' ",1,aV'.,;. recording the data lat,hed in the pipeline. Moreover tht' Hum­

her of st.. te,"i nlay innea.;w cxponelltially with the length of t.he pipeline. In this
spetion Wp shall dpnlOilstrilte Ito\\, Linwwisc ilbstrilction caIl be used t.o simplify t,he
reasoning (I,bout pjpe~.

Definition 7.2 A closf'd proc('ss P is il IJ'lpr if tIH:'re exist,s (p > () a.nd a function
[p: II'(,PI ~ (11'(11'(01')1- {)) ,lOch 'hal

P is a pipe of length f p with efT('c! Ep

" , E TR[P! => j X E 11'(0). s~(X) E TR[PI

A

.'~(X)~s'~(Y)~s" E TRIP] A 15'1 = fp - 1

=>	 Y n o[P! E [p(}, n} I
A

VB C; } ; Z E [d B) •
s~((X n 0) u lW·."~((Y n I) U Z)~s" E'I.[PI

where 0 == o[P~ and [= I[P],	 o

Notes

L	 (p l't'presf'nts tItp non-zero If'ng1h nf the pipe. At any time f > f. p output is
solely dependent on the input {p units previously.

2.	 For <l. pipe P, tIle relationship between inpnt and output lp units of time
la,ter is characterised by the function [po Ep defines the set of possible values
of outpllt resulting from a, givf'n input set. We refer to Ep as the effect of P
since Ihis function descrihes all the possible consequences of processing input
t.hrough the pipe. Clearly £1' is uniquely defined for a given process P.

134

Notice that the empty set is omitted from the range of £p. This follows
our assllmption that pipes are nou-divergent. Terms in the range take the
form of sets of possible output configurations. This makes provision for nOD­
determinism in pipE's, If a pipe P responds deterministically to a given input
,~f't B then Ep (B) is a singleton set.

;j,	 Thf' first condition on tlte behaviours sta.tes that P is non-divergent by en­
~uring that every hehaviouf of P can be extended.

4.	 The second condition states thilt output £p units after a given input B is one
of tilt'" possible effpcts of the pipt'" on B. Anyone of the possible effects in
£p(B) could have het·n observed without. altering the subsequent behaviour.
Moreover altering the input at allY time only effects the output f.p nnits later.

S.	 Tht'" olitp" t seeu at the first ep ticks of the system clock will depend on the
initial state of the pipe. It is only after this period of initialisation that the
possible outputs ('iUl he deduced from ea.r1ier input.

Wp shall identify two pipes P and Q if they have the same length and the same
eff~d. This identification disregards output during the period of initialisation; so
P and Q may have different output during the first f.p units of time. After this
period of init,ialisatiou P and Q have the same behaViours.

Definition 7.3 If P and Q are pipes with the same input and output alphabets\
then we say P and Q are eq'U,ivaleni pJ:pt:s, P "-'p Q exactly when they have the
same length and the same effect, formally:

P~, Q=Ep = Eo 1\ (p ~ {o·

o
It is common praLtice in development to compose pipes to obtain longer pipes,

we present tht'" chaining operator for this purpose.

Definition 7.4 If P, Q E SliPI' with oP ~ 'Q and ,P n oQ = {} then we define
the chaining operator» as follows:

P» Q =(P II Q) \ oP

o
The chaining operator is a composite operator in which all communication be­

tween the processf"S bf'ing chained together is made internal. It follows that the
process P» Q has input alphabet rP and output alphabet oQ. The following is
an obvious law of the chaining operator:

135

1-12: if,Qnol1={j, (P»Q)»R,",P»(Q>>R)

Proof: For the above to be well defined we CiiI) make tbe following deductions
conceruiLlg the alphabets of P. Q and R,

oP:=c IQ a.nd oQ = ,R
,pr'oQ={j, ,pnoR~{j and 'Q n oR ~ {j

From thi~ we (an show that oP n oR = {} and oQ n oP = O. Now

(P» QI» R '"' ((I'» (jJ II 111 I o(P» (j) {defo, of chaining)
'"' liP» (J) II R) I o(j
'"' 11(1' 11 Q) loP) II H) I oQ
'"' (((p II (j) 11 11)1 "Pi I a(j
'"' ((P II ((j II R)) I 01') I o(j

{ defn, of alphabets }
{ defn. of chaining}
{by H)
{ by 1-2 }

'"' (P II ((j 11 ai) I o(j) I of'
'"' (P II ((idll R) I oQi) loP
'"' (P II ((j» Jill I oP

{by 1-3)
{ by 1-4 }
{ by defn. chaining

== p 2> (Q» H) { by deEn. t.:haiuing 1 0

Theorem 7.3 If P i.~ pipe of hngth t p with eifert [p, Q is a. pipe of length f Q(l

with eJTer/£QI oP= IQ undOQnlP= {}. Ih,r/J ?»Q /,8 a1Jipc ojh'ugfhfp+£Q
with. ejJeel [.P"> Q I wh. ere

VH"I'.E">Q(Bi= U EQ(C)
re£p[B/

Proof: This follows directly [rom the definit.ions u[chaining and pipes. 0

7.4.1 Timewise abstraction and pipes

In this section we look at the ways \"'e can use timewise abstraction when reasoning
(I,bout. pilJl's. first. WI-' look at some of the properties of pipes and the timewise
ab:;traetioIl of pipes. Then WI' discuss the ways in which tbese results can be
utilil'ied to aiel verifica.tion of the Iwhaviour of pipes.

Theorem7.4 Ij Pis aptpe ojleng/II (p andcffecl [p InenSlow(fp,O,{},P) 18

tl piPf oj length 1 with rjJec! [p. •

Intnitil'ely Slow(fp , 0, O.P) represents the pipe P vie\ved in a time frame
where a. uIlit of time hil.9 the same length as the pipe. So there is sufficient
time bet.ween observations for the pipe to completely process the input. Hence
Slow(£p, 1J,{j, P) bebave, like a pipe of length 1.

136

0

Theorem 7.5 If P and Q are pipes then

Slow(lp + I Q , 0, (l,P:>.> Q) =

Slow(2, O. {j,(Slow(lp , 0, {l,P):>.> Slow(I Q , 0, (l, Q)))

Proof: This follows noting that the initial ontpu t of both sides of the equivalence
is the initial output of Q.

Theorem 7.6 If P lInd Q are pipes of length (, wdh input and output alphabets I
and 0 then:

P~, Q '" VB <; I. Slow(1 .I,B,P) = Slow(1 ,I,B, Q)

Proof:

.::::}: If P and Q arc equivalent pipes of length f then, if provided with the same
inpnt, their behaviours are the same after (units of time. Slow(l ,(,B,P) gives a
process wit.h hehaviours corresponding to those of P after (units of time, assuming
the input over those first £ units is the set B. Clearly the implication follows.

{=:: P is a pip£' of length f and by the definition of S/ow(l ,f,B,P), the initial
output of Slow(1 ,C, B, P) corresponds to the effect of pipe P on input B. As
VB <; I. Slow(1,I,B,P) = Slow(1,I,B,Q) it follows that the pipes? and Q
have the same effect on all input sets B ~ I. Hence P and Q are equivalent pipes.
o

When designing pipes the main concern is the pipe's behaviour once it is ini~

tialised. It is often unnecessary to concern ourselves with the outpnt of the pipe
during the period of initialisation. This is the time before the pipe outputs the data
corresponding to the first inpnt. If this is the case, then to verify the behaviour of
pipe P of length i p it is sufficient to consider Slow((p l 0, {}, P). This pipe ha.'> the
same effect as P although it has length 1.

A pipe of length 1 can only have as many states as there are possible configu­
rations of inpnt. Supposing there are k configurations of input, a pipe oflength fp

cau have as many as kip stat.es. Clearly the pipe of length 1 is easier to verify that
that of length f p since there are in general fewer states to consider.

Often, during development, a pipe is broken down into several components.
where these components correspond to various stages in the pipeline. If each of
these components is itself a pipe, as is often the case in such circumstances, then
by making use of Theorem 7.5 we need never consider the full expansion of the
overall pipeline when verifying its behaviour. Suppose P is a process which can be
decomposed into components PI' P2, . ..Pn where each of the Pi is a pipe and

P=:Pj::t>PE"::t> ... >Pn

137

12

00 iO
il

i2
t.1

ck ck ck

r-­
01 I

12 12 02

I 01

Pha:'ie 2 Phase 3I ~ "" .. ,
Figure 7.4: A Sorter

It follows that P is a pipe from TheolTlll 7.3. 1'1oreover, as eadl of the P, is a
~horter pipf" than P it is ea..<;ier to n~rify tha.t each of the P, are pipes, especially
if they are of length 1, than to show t.bat P is a pipe directly. To inycstigate the
effect of pipe P we call use the following it~Ta.tivl;' technique.

Setting Q, = Slow(!p" 0, {j,P,)

Qm+, =S low(2, 0, {j, Qm :» Slow«(Pm'" O. {}, P m+,))
Vv'e can show by induction that

Q.,. ,=,Slow(r;~,£p.,O,{},PI ::» ... ::PP,,,)

hence Q" will have the same effect as ~ipe P. Using the above iterative technique
to eva.luate Q" we only ever chain pipes of unil length.

III the example that follows we shall see these techniqu{'s a.pplied in order to
verify the)whavionr of a, pipelined sorter.

7.4.2 Example: A sorter

Taking simple 2-hit comparat.ors [l."l Olll' basic components we shall construct a.

pipeline of length 3 and demonstrate that it sorts four bits. We say a pipe
sorts four bits input on the set of wires {iO l if, i2, is} if the output on the wires
{00, 01,02, o3} has the same number of high wires as the corresponding input and
if j E 0 ..3 then

oj h;gh "'" 'if k E O..j • ok high

Data is latched along the pipeline by D-l.)'pe flip-flops. The configuration of the
circuit being shown in Figure 7.:1, where Camp is a. comparator and 12 is an array
of four D-type Jlip-flops.

138

We shall consider the algebraic representation in SRPT of the basic compunents
from which the a.bove sorter is comprised. From tbese we shall derive the three
components which make up the three phases of the pipeline. In a time frame in
which one unit of time has the same length as one cycle of the system clock~ach of
these three components is a pipe of length 1. Then, by application of the r('sults of
the: previous section, Wf' shall establish thaI t.he complete systf?m is a pipe of length
,) which sorts four hits,

Comparator

A simple comparator C(lll be constructed from all AND gate and an OR gate as
shown in Figure 7.::'. Using t.he definitions of AND and OR from Section .1.2,1 the
comparator circuit can be described as follows:

Comp"= OR II kIVD[djcJ.

It. is a. simple ex(~.. cise to sho\v thaI

Comp",,[l{]? X ~ Comp(X)]

where

Comp(X) = Comp if X = {} else (Comp" if X = {a, b} else Coml)

Comp'",,[I{ c}? X ~ Comp(X)]
Comp"",,[I{ c, d)7 X ~ Comp(X)]

Rising edge triggered D-type flip-flop

A D-type flip-flop is a I-hit storage device. It latches the value on wire d at
the time of the rising edge of the clock signal. This data is available as out.put
until the £tip-flop is reset at the next rising edge in the clock signal. Making the

I

L,

c
a 1

d
b!

Figure 7.5: A simple comparator

139

same assumptions as were made when describing the clocked T -type flop-flop m
Section 7.2.2, the following describes a D-type flip-flop.

,DJJ~ {d,ck) aDff = (q) IJjJ '" DffL

whe'" DIlL '" [I{)'X ~ (DffL if ck ~ X else (Dfff, if d E X else DffH))]
Dffll
Lim,

'" [Ill' X ~ (DjJH if d, E X else DlTdl
'" 1'{q)?X ~ (DlT!/ if ck E X else Uff:!]

Dffi '" I!{ q)'X ~ (Dffi if ck ~ X else (Dffl1 if dE X else DlTH))]

Hen> Land 1/ represent the value of the clock signal.

The clock

In this example we shall assume each of the three phase~ is controlled by a sym­
mdric dock, described hy thl" process:

C/\" p p. [lick} ~ I'll - 1')1
This clock is determinist ic and has no ill puts so it.s behaviour is governed precisely
hy time. 'We shall take a.dvantage of this observation and ahsorb the clock into
the implicit timing of the model. We shall ultimately model each pha.<;e of the
pipf'iine in il time frame SUell that one time unit corresponds to a single clock
cycle. MlJreover, we shall assume tlte 'tick' in the model coincides with the rising
edge of l.ht" clock signal.

The components of the pipeline

'Aie want a l'epn~sentation of the three phases of the pipeline which corresponds
to the system being viewed in a time frame where olle time unit corresponds to a
single clark cyck. We also require tht" represE'utation to be in a form from which
it is easy to deduce that each phase is a pipe. We shall only demonstrate the
derivation o[the component which OIa,kes up tlw llrs\. phase here. The algebraic
representations [or the ot.lwr lwo phas~s are simply st.ated, their derivations being
similar.

The first pha.<;e is built of four D-tYI)C flip-flops and two comparators:

Ph'L" 1 " IComp[fO/a,tl/b,aO/c,aI/dJ II DffllO/d.JO/qlll Dff[U/d,tl/q]
II Comp[t2/a,t3/b,a2/c,a3/d] II Dff[i2/d,t2/q) II Dff[13/d,t.~/q])

\{IO.tl,t2.tJ)

this can be considered a.<; two cornponellts in parallel:

Pha..,d'" Q[,O/dO, U /di. aO/c. <11 /d] II Q[i2/dO,i.J/dI, a2/c, 03/d)

where Q "' (UffldO/ d, 0/ q) II Dff[di /d, b/qJ II Camp) \ {o, b).

140

By eliminating para.llel composition and hiding from the above expression we
can demonstrate that:

Q,=S(L,{})

where S is given by:

.I'(L, }')" [!g(Y)?X ~ (S(L, Y) if ,k ¢ X else
[!g(Y)? Z ~ (.1'(11, X - {ek}) if ek E Z else S(L,X - {ek)))])]

.1'(11, Y)" ['g(y)?X ~jS(II, Y)ifek E X else.l'(L, Y))]

when' 9 : IF{ 110. d1 } -t lP'{ c, d} is defined by:

g({J) = {}	 g({dO}) }

g({d1}) ~ {e}
g({ dO, dl }) ~ {e, d}

The derivation is given in Appendix C.2.l.
Tile rising edge of the system clock coincides with the 2k -+ 1 'A ticks of the

time frame ill whicl1 the system is modelled. We shall incorporate the details of
the dock into the model of this pha~(' of the pipeline and abstract away from the
details of the dock.

Ph,d " (Phase! II CK) \ {ek}

Theil we translate the model to a time frame in which a unit of time corresponds
to a single cycle of the system clock and observations occur at the rising edge of
the clock cycle. Thus Wt;> absorb th(· system clock into the implicit timing of the
model.

Phasd' " S 10,"(2,0, {}, Ph,,!)

By applications of the laws of SHPT we calculate an expansion of Phs1 which does
not involve parallel compositiOll. \\le then apply the laws for timewise abstraction
(as shown in Appendix C.2.1) to demonstrate that

Phasei' '= P 1 ({))

where P1 is given in Figure 7.6. Clearly Phasel' is a pipe of length 1 with effect
given by [PA",,,(X) = {/l(X)}.

Absorbing the system clock into the implicit timing of the model we obtain
similar descriptions of the final two phases of the sorter. The pipes Phase2' and
Phase3', both of length 1, which make up the final two phases of the pipeline are
described as follows:

Pha.<e2' " P2({}) PhaseS' " P1({))

where P2 and P 3 are given in Figure 7.7

141

Composlng pipes

When WI." compose processes in SRPT we assnme the components are modelled
in the same time frame and the component~ in a parallel composition evolve in
lockstep. We assume that all three components of the composed pipeline share the
sanw time frame, and due to the way in which the components are modelled, the
rising ed~es of th<-' clocks controlling these three components coincide.

By applying the theory of Section 7.4.1 we know that

(Pha.ifl'» PhasrQ')>> Phase31

is a pipe of length 3 with the same erreet as the pipe of length 1 given by:

S [o'll'I·"], 0, {}, (PllU.5f 11 » Pha.<;rfJ') » Pha.se:f)

Now by Theurem 7.5

Slowl,'], 0, {}. (PllasrI' » Phasr2') » Pha."eS')

::: Slow(2, 0, {} ,SIow(2, 0, {}. Phuse1' » Phase2') » PhaseSI

)

So we can evaluate an expansiou for Slo-w(2, 0, {},Phase1 l » Phase2'). From Ihis
and the algebraic laws of SRPT (a,s demonstrated in Appendix C.2.2) we can deduce
that

S 10"11'(3, 0, {}, (Phase l' » Plwse2') » Phase.'}') == Sort (0)

P1IX) '" [!I,(X)'!Y ~ P/(Y)] I

where JI is dennen oVPr the domain lP'{ iO, if, 12, i3} as follow.~:

I, ({iO, il })={ aO, al }I,({,O})}
Id{,l) ={aO} I, ({ ,2, iJ))={ "P, as}

I,(I,2}) } I, ({iO, ;1, '2})} { }

I,({iJ}) ={a2}
 I,({iO,il,'Sj) = aO,al,a2

I,({iO, ,2, in)} {I,({iO,i2}) } I,({il,i2,i3}) = aO,a2,,,S)I,({il,,2})

I,({iO,,3}) =(aO,a2)
 1,({iO"I, ;2, is))={ aO, ,,1, ,,2, a3}
I,({il,d}) J,({})={)

figure 7.6: The first phase of the sorter pipeline

142

where 50rl(0) "" [!{}?X ~ 50d(lXIl]
Sorl(1) "" [!{oO)?X ~ 50,I(lXIl]
50'1(2) "" ['{oO,ol}?X ~ 5"'I(IXIl)
50d(S) "" ['{00,ol,02j'X ~ Sorl(IXII!
501'1(4) "" ['{oO, 01,02, o.Jj?X ~ S"'I(!XIl]

Clearly this pipeline sorts 4 biLs. Hence 80 too does the pipeline

(Pha,~(l' » Phase2') » PhaseS I

aJld we h<lvc the required result.

f'2(XI'= [!fdX)?Y ~ Pity)]

PJ(X) '= [!f,(X)? Y ~ P3(Yl]

with i2 and r~ defined by

fd {})={}

f,({aO}) }-{bO}
f,({a2}) ­

f,({ al }) }_{ b"}
f,({aB}) - ,

f,({ao,al}l}
f,({al,a2}1 ={bO,b2}
f,({aO, a:l})
f,({a2,a:I})

f,({aO, a2})~{bO,b!}

f,({al , a3})~{ b2, bJ}

f,({aO, ai, a2}) }={bO, bl, b2}
f,({aO,a2,aB})

f,({aO,al,a3}) }~{bO b2 b3}
fd{al.a2,a3}) "

j,({aO,al, a2, a.J})~{bO,bl ,b2, b3}

f,({})={}
f,({bO})={oO}

f,({b!}) }={ J)
f,({b2}) 0

f,({b3})={03}

f,({bO,bJ)) }={ ° I}
f,({bO,b2}) 0,0

f,({bl,b3}) }

f,({b2,b3}) ={01,03}

f,({bl, b2})={ 01 ,02}

f,({bO, b3})={ 00, 03}

f,(lbO, bl, b2})={ 00,01, o2}

f,({bl, b2, b3})~{ 01,02, o3}

f,({b O,bl,b3})} { }

f,({bO,b2,b3}) = 00,01,03

f,({bO, bl, b2, b3})={ 00,01,02, 03}

Figure 7.7: The final two phases of the sorter pipeline

143

7.5 Conclusion

In this chapter we have iutroduceu the notion of timewise abstraction in discrete
time alg!'bras. In frameworks where t imewise abstraction can be applied unambigu­
ously, such as SRPT. it provides a mechanism for translating processes to a. less
detailed ~ime frame, that is 001" where observations are made less frequently. We
have applied timewise ab~traetjon in SRPT. using it to investigate the behaviour of
comp0llrnts. initially described in a time frame appropriate to recording gate de­
lays, whm their input is latched at the "lower speed governed by the system dock.
V,le hav(' abo demonstrated how timewise abstraction may be used to evaluate the
behaviour of pjpe~. The technique involves translating a process which represents a
pipe of length { to a time frame a factor of Cslower. The resultant process is a. pipe
of unit length with tlte same overall effect.; the problem of verifying the behaviour
of a unit length pipE' is simpler than the same investigation of a longer pipe.

14,1

Chapter 8

Summary and Related Work

8.1 Summary

'1'f'e have explored the result. of adopting a synchronous view of concurrency, that is
one in which components evolve in lockstep. The languages SCSP, a variant of the
familiar CSP formalism, and SRPT, a synchronous version of Receptiye Process
Theory (Jos92], were introdnced and given a denotational semantics. De9pite vari­
ations in the way behaviours were described, the semantic models chosen for SCSP
and SRPT both capture failure <llld divergence information concerning processes.
We have formally demonstrated the way in which SRPT may be viewed as a 8ub­
language of SCSP hy means of embeddings which map the language and model
of the former into t.hose of the latter. A syntactic extension to SCSP facilitated
reasoning about the communication of data via channels. Finally, we introduced
the theory of timewise abstraction, applying it to the language SRPT.

One interpretation of synchronous commnnication is that all compeJl].ents of a
process running in parallel evolve toget.her 011 the tick of a global dock. In this
sense, both SCSP and SRPT are di~Krete time process algebras and are applicable
to a doma.in of problems which includes systems with t.ime-critical requirements.
By working in a synchronons framework, we can express t.he relationship bet.ween
t.iming of components and timing of the whole system. Int.eraction between com~

ponent.s can affect the way in which they evolve, but not their speed. The result is
a very simple mode! of t.imed behaviour.

As several components of a system evolve in absolute synchrony it. is possible
tha.t the components may perform distinct events at the same time; yet in process
algebras it is desirable to be able to eliminate the parallel composition operator
from procf'SS expressions. Therefore, in both the languages presented in this thesis
we allowed prefixing of processes with sets of event.s, the implication being that
events drawn from such a set may occur concurrently. The languages thus support
the notion of t.rue concurrency in a very explicit manner.

145

The final significant feature of both the languages we have presented here is the
strong causality assnmption. We assnllle that time must pass between cause and
effect; simultaneously occurring events do so independently of one another. More­
over, tbe occurrenc<;> of one event at a given time cannot preempt the occurrence of
another ('vent at that time. This resldt." in the environmental choice being a choice
as to which subset of the set of events. offer<;>d by the process at a given time,
shonld he performed. This design asslJlnption reflects the fact that in circuits, for
example. the value on one wire at a given time cannot, in general, influence the
value sem at the same time ou an independent wire.

The receptive language, SRPT, contrasts with SCSP by dividing the alphabet
of events associated with a process into inpnt events and output events. The resnlt
is an implied direction of communication between components. Two processes P
and Q cooperating on an event u. which is classed as all output event of P and
an input event of Q, are seen as communicating by P sending Q a signal along
channel~. Hy insisting that a process is a.lways ready to perform any of its input
events and output events oc('ur a.s soon as they are made available. we have been
able to capture the Hotion of receptiveness of processes in SRPT. Being both a
synchronolls and receptive theory makes SRPT highly appropriate as a theory for
modeJlingand reasouing about synchronous circnits, where components are latched
by a global clock and communication along wires between components is inherently
receptive.

Both the languages SCSP and SRPT were given a denotational semantics. The
semantic models chosen for the two languages capture the Same behavioural infor­
mation, namely occurrence and rt:'fusal of events and divergence. The way in which
this information was captured differed in the two cases. In the model for SCSP,
the refusal of a process to perform an event was considered as observable as the oc­
curr<;>nce of an event. So refusal information was captnred in the traces along with
the events which occurred. By introducing the concept of infeasible behaviour into
the traces a simple method \vas devised for encoding divergences into the traces.
The non-determinism ordering. familiar to esp, provided a simple ordering on this
model. T~is allowed us to draw on a wealt.h of experience, a,ccumulated ill the
development of semantics for esp, to obtain comparable results in our model and
a mathematical underpinning of the language SCSP.

The features of SRPT which characterise its receptive nature make refusal in­
format.ion directly d<;>ducible from the events performed. Inpnt events are never
refused, while all output events which could occur do, so those not seen to occur
would be refused. This observation resulted in a model which did not record re­
fusal information. In order to capture divergences within the traces once more,
we chose to represent divergence by the absence of information; consequently an
information orderiug on the model became a, natural choice in contrast to the usual
non-determinism ordering.

146

As the languages have so many features in common, it seems appropriate that
there should be a relationship hetween SCSP and SRPT. By considering a method
for describing receptive systems in SCSP (assuming that refusal of events represent­
ing output results in divergence and making available all events representing input
in all prefix constructs) it was possible to devise a natural embedding of SRPT
into SCSP. This embedding preSE'rvE'S the intuitive representation of processE'S and
results in a continuous map from the semantic model of SRPT to that of SCSP. So
SRPT can be viewed as a receptive sublanguage of SCSP, as well as a synchronous
variant of Receptive Process Tlleory.

We have shown in this thesis that both languages havE' sufficient algebraic laws
for us to pstablish proof systems whi("h are sound and complete with respect to
the senHUltic models. The algf'braic Ja.ws make it possible to eliminate parallel
composition and hiding from process expressions; this allows us to deriverepresen­
tations of systems with aU concurrency explicitly modelled in the prefix r.onstruct.
Sudl representations give a dear persppctive on the concurrency in the system. A
complete proof system of a.lgebraic laws enables refinement relationships deducible
in the model to bp established from algebraic manipulation of process expressions.
As is shown in the pxamples throughout this thesis, this makes it unnecessary to
consider the underlying sE'mantics when reasoning about processes.

Adaptations were made to the language SCSP, in Chapter 4, which provide
a framework in which to describe directional communication. The modifications
to the language iuvolve.d defining new notation in terms of existing syntax. This
ensured the changes were well defined with respect to the model. The new notation
made it easy to model the flow of data between components of a system along
direet,ional channels. The transfer of data bE'tween components is often a feature of
complex ~ystems whose development may benefit from the formal analysis offered
by process algebras. \Vith the enhilollced notation, SCSP offers itself as a viable
framework for such analysis.

Finally, We introduced the notion of timewise abstraction which provides a
procedure for translating a process, in a discrete time algebra, to a slower time
frame. Timewisf' abstraction was easy to define for SR.PT, the interpretation being
that input is held fixed for the length of the new longer dock cycle, changes to input
and output are Dilly recorded on the tick of the new dock. This interpretation was
fOllnd to be particularly suited to the problem of modelling synchronous circuits;
components could be developed at speeds appropriate to iudividual gate delays,
then reinterpreted in a time frame corresponding to the speed at which input is
latched. Timewise ahstraction was also applied to aid the verification of pipelines
modelled in SRPT.

Through the development of the languages SCSP and SRPT, WE' have shown
how a synchronous view of communication may be adopted in process algebras.
Within this thesis the lockstep progression of processes is used to capture discrete

147

time, enabling problems with quantitative timing details to be analysed with the
languages presented here. We have striven for simplicity in both the design of the
languages and the design of the models in this thesis. We have also demonstrated
that the langnages are applica.ble ill diverse problem domains.

8.2 Comparisons

A variely of formalisms have been applied to the problem of specify:ing and verifying
rcal-time systems. Originally. lIIaHy of these fonmdisms t.ook a qu alitative approach
Lo time. restricting their conc('l"n 1.0 the relative ordaingof events within a system.
~'lore r('celltly, rdiect.ing the inueased use of computer systems in time-critical
a.pplications, these formalisms have heen extended to take a quantitative approach
to time, encolllpas::;illg the relative liming of events within a system. We shall
briefly consider four approaches to furmal alla.lysis of real-time systems, and theu
compar(' and contrast the \"Mions features of other authors' approaches with those
of the work presented ill tllis thesis. Finally. we consider some of the formalisms
which have bem applied spf'cifically to VLSI design.

Tem.poral LogiJ:s [Pllu77, MP~2J <Ire logicallauguages which include statements
about variatioll in time, such as 'eventually' or 'until'. These allow qualitative tim­
ing conditions to be Hpecified, for example, pUq is tnle in a given computa.tion if p
holds until q becomes true. The la.nguages have been enhanced to allow sta.tements
which ca.pture quantitative timing requirements hoth b.y allowing predicates that
make 8ta~ements <I,bout time in the language [PESS] and hy annotatiug the modal
operators (sneh as U) with times [KdR85].

Graphical methods arC' E'xemplified by Petri nets IRei8.5, Pet77] and State­
charts [Had7]. Petri nets aTe bipartite directed graphs consisting or a set of places
(or conditIons), il set of transitions (or events) <lnd directed arcs from places to
transitions and from transitions to places. A net is marked by tokens at places.
A transition is enabled and may fire when all places with arcs to that transition
(input places) are marked. When a transition is fired a token is removed from
each or the input pla.ces and a token is added to ea.ch of the places reached by arcs
from the transition. There are several Variallts of Petri nets, aU based on the above
scheme. Quantitative timing restraints have been added to transitions [MF76] by
associa.ting a time interval (tr, t£) with each transition: the transition must be en­
abled for il time t, before it may fire and cannot be enabled ror a time in excess of
tf without firing. Another a.pproach to incorporating temporal details into Petri
nets is presented in [C'R8,5) where a minimum tokeu holding time is associated with
ea.ch place.

148

Stalecharts is a visnal spetifir.atiolL language dearing with hier archy, concurrency
and communicatioll. In its simplest form a Statechart is a labelled directed graph
with nodes represf'uting states and arcs labelled by events. Timed Statecharts
[KP92] annotate pach atC with a tim<-' interval (l, u) denoting lower and upper time
bounds of the evenl in a manner comparable to [MF76].

Programming languages such as ESTEHEL [BG92], SIGNAL [BIGSS92j and
CSML [CLM91] have bCI~1l applied to reactive and real-time systems. Both ES­
TER EL and SIG N AL are deterministic languages based on the synchrony hypoth­
('sis: this assumes that communication and I'lementary computation take no time.
A program is conclC'ptually lC'xf'('uted on au infinitely fast machine; dela.ys result
only from iut.eraction with the envirOllment. ESTEREL is an imperativeliUlguage
which can be comlJiled illtO finite automata and used tn program reactive kernels
controlling the state of the syst.em. SICNAL is a relational style language suited
to data flow analy~is. CS]\''1L is a. d('terministic imperative language based on a
weak.. r version of the syllt:hrony hypothesis in which all reactions take oue clock
cydf'. Tbis makes it particularly suit('d to simulation of synchronous circuits.

Process Algebras provide the final dass of formalisms to be considered here.
Typically process algebras a.re givell a sttuctured operational semantics [PIoSI]
whir]} takes the fot'1Il of transition rules. These transition rules allow one tDgenerate
a tref' representing the possible transitions of a process. Both specification and
implementation of a system a.re represented by processes; an implementation is
verifit'd with r('sperl to a specification by establishing that the two processes are
equivalent under certain relations. Bisimnlations [Mi189] provide one class of such
relations: thpse compare thf' bf·havioms as viewed by an external agent.. Various
bisimulations exist. SOlll(' of whirh ta.ke into account internal actions or the passage
of t.ime (in real-time algebra.-;) in their comparisons. Algebraic laws, representing
rewrite mlf's which preserve bisimnlation, allow processes to be compared by means
of algebraic rnaniplliation. Alternatively, processes can be related under a testing
equivalen("(' [Hen8S], \\'hf'reby the SUCcess of experiments performed on processes
is compared. Testing prcorders can be established on an algebra and these allow
compi'lrison of processes.

The ociginal process algebcao CCS [MiI8~j and ACP jBK84j, and the 150 stan·
dard language LOTOS [BB88], which do not display any quantitative concept of
timing, have been extended to record temporal information in a variety of ways.
ACPp [BB91a], t.he real-time extension of ACP, associates an absolute time stamp
witb actions: while that associated with actions in TIC [QAF90], a timed calculus
for LOTOS, is relative to thf' previous action. Timing is also assumed relative in
the time stamping of actions witb intervals in Liang Chen's Timed CCS [Che91]
and CCSiT [Dan92j.

149

All a1temative approach to tilne-st.amping actions is the introduction of a time
prefix as taken in versions of Timed ces present.ed by ~'1ol1er and Toft.s [MT90]
and Wang Yi [Yi9Il and in the timed pxtensions of LOTOS, pi [BL92] and Timed
LOTOS iQF87J. In TPL [HR90] a distinguished action representing idling for onp.
clock cyde is added to stando.rd CCS.

Other timed edge-hras include ATP [NSqO] which, like TPL, has a distillguished
time fl.-ction. PART\' [HSZFH92] illcludes two forms of time prefix ill its language,
a busy wait of hXf'd duration (md an idle wait with arbitrary duration. Milne.-r's
sees [MiIS3], MELJE developed by Boudol [BOllS!)] and Jeffrey's Discrete Time
CSP [.Jef~Ia] introduct> the notion of a clock t.ick in their action prefix constrnct.s.
In these languages the action prefix, lib:' Uw Sf't prefix of SCSP, takes one time unit
to evolvp_

All ahr.matiw i:l.pproach to the use of uperaliollal semantics in the dt>velopment
of prorf'~~ algebras is llsed in this th{'~is. This approach, lls(~d by CSP [HaaS.')] and
mauy of its timed P:dPIlSiollS. associate~ (\ dcnotaLiona.l semant.ics \'Y'ith the algehra
and give.'i th(' meaning of a procf'SS ill terms of a mathematical model, the semantic
model. Doth specification and ill1plf'mentation Call be reprcsented by processes.
The fOnIwr can he shown to be rpfin('d by t.he latter llSlILg algebraic manipulation,
aided hy laws which preserve tllP (refinl'ment.) ordering on the semantics of expres­
sions. Altematively, specifications call take Ute form of predicates, representing
st>nlantic requirements, which can be shown, wit.h the aid of a proof system to be
satisfied by a process corresponding 10 the inlp\ementation. The laHer approach is
taken by Davies and Schneider [Dav91, Sch90] wit.h Timed esp.

QUimtitat.ive timing has heen incorporated int.o extensions of esp. Ortega­
Mallen and Frntos-Esrrig assume that each action has an associated duration in
their Tinwd Observatious [OMdFE91], while thf' Timed CSP proposed by Reed
and R08cue IRRS7] introduces a delay operator and associates a non-zero, mini­
mum recorer!' time wit.h the oC('UlTE']1I'E' of actions in sequential processes. This
minimllInrecovcry timl" has been dropped in later versions of Timed CSP [DS92].

8.2.1 Features of formal methods for real-time systems

TiIne domain

Partially ordlC'red time domains haw- bpen applied to process algebri\S by Baet.en
and Bergslra [BB90] and Jeffrey [.J1"f91bJ. hut in general the t.ime domain used
in models of real-time systems is a totoUy ordered set such as lR or N. We shall
limit our discussion to such domains. Totally ordered time domains can be divided
into two classes; continuous - where typically R+ is used to represent time, and
discrete - wherlC' for example N is used to model time.

Process algebros such as PARTY, and the timed lC'xtellsions of CCS presented in

1,0

[MT90, Yi9I, Che9I] admit eitht:'r continuous or discrete time. Timed CSP, ACPp

and CCSiT provide examples of formalisms wht:'re the time domain is continuous.
On the other hand, iu COIllITlon ith the languages SCSP and SRPT presented here,
the measure of time is di~crete in many formalisms iucluding TPL, ATP, sees,
MEIJE and the timed extensions of LOTOS in [QAF90, BL92].

Real-time process algebras using a continuous time domain provide a more real­
istic, and hence more complex. description of time than their discrete time counter­
parts. A continuous time domain gives rise to algebras which are very expressive,
although the gain in exprcssibility is often off-set by the increase in complexity.
Only the discrete time version of Temporal CCS [MT90] admits a complete ax­
iomati~atiou. Similarly there is not an adequate axiomatisation of Timed CSP,
although mnch work has been dOlle to ea~e the use or Timed CSP as a specifica­
tion lallguage. In [ScI190]. Schneider developed a compositional proof system for
lwhavionral specifications in Timed CSP based on the language's semantics, while
Jackson [Jac92] 1I8eS a language based on temporal logic to describe and verify
programs ill Timed esp.

The model of concurrency

There are two ft'>cognised models of concurrency: iuterleaving cOllcurrency and true
concllrrency. In the context of process algebras, interleaving concurrency cannot
distinguish between a process which concurrently offers two independent events
and a process which o£fer~ the choice between the sequential performance of two
events in either ordt:'f. This can be summarised by the existence of an equation
equivalent to the res t:'quation:

alb = a.b + b.a

in the algebra. Such algebras allow complete elimination of concurrency from ex­
pressiollf'.

In process algehras exhibiting true cOllcurrency, the simultaneous occurrence
of conCllfTellt ('vents can he distinguished from sequential occurrence of events.
COnClll'l'Pllcy can Bot be completely ~'liminated from expressions in process algebras
exbibiting true concurrency. Oft~1l the simultaneous occurrence of events is made
t:'xrlicit in the language: to this purpose [Jef9Ia] Uses bags of events in Discrete
Time CSP; the Iil.nguag~s sees and MEIJE are built from monoids of indivisible
a.ctions; ACP re presents concurrency of event.s explicitly as alb; while the languages
presented in this thesis me sets of events. Alternatively, true concurrellcy can be
implicit in the inabilit.y to eliminate pari\llt:'l composition from expressions, as is the
case in the Timed CSP of [RR86]. In the Tinwd Observation semantics [or esp
[OMdFE91] concurrency cannot be eliminated without extending the language to
incorporate a bag prefix operator, which makes t:'xplicit the simultaneous occurrence
of events.

151

Those reaJ-timf' process algehra.-;. such as SCSP and theories presented in [Mil83,
RR.86, Jef9La]. which (l.';sociate all inhercot delay with sequential composition or
action prl"fix llf'cl"ssarily exhibit truf' concurrency. It i~ interesting to note that
tJw model of Timed CSP presented by [D592J. in which the delay, 0, assot:iated
with pl'{'fixing is removed, f'xhibiLs interleaving crmcurrency, like esp. In general
it appeilIS tha.t timed algehra:; whicb extend untimed models by time-stamping
aetiom (eg. ACP p or Liang Chen's TCeS [Che\:J1]), or wi til a distinguished time
adioo (eg. TPL), or by introducing n. uf'Jay construct (eg. Temporal CCS [MT90J)
exhihit the same form of COJ1eU!TeHcy <1...<; their untimed count.erpart. In particular,
ACP p' like AC'P. ('xhibits true cOllcurreIlcy: while ATP and Temporal CCS follow
the illtE'rlt:aving roncUlTl"ncy approach of C(:S.

'[tue rOllcurreliCY is also exhibi1.f'd by graphical methods: ConditiolijEvellt sys­
Lf'lll::- in Petri ~et theory [Thi86] definc a transition as a set of events firing concur­
rf'Lltly, while S1.<l.te("harts a.llow ~jmllitanf'olls Lransit.ion!'1 via labelled arcs in concur­
rent compollents or a sy~teJIl. 1I0wewl" tilE' tiIllf'd Petri net models [NIF76, CR85]
and Timpd StatcdJarls IKr~'2] restrict tltelllsch·es to a single transition at a time
(involving a single ('H>lIt). removing tilt' true concurrency a.spect from t.hesf' models.

Persistent and urgent actions

Persistency anu urgency are attrihut(,s <L5sociated wit,h actions in timed process
a.lgebras. An action is sa,id to lw persistent if, once it is offered by a process, the
pa.<;sage of time alone cannot rf'sllit in t.he prQcess withdrawing tl1f~ offer of the
action. [[\ SCSP, tbt> dl:'rived f'vellt prefix construct, a..-.....+ P, allows us to model
pcrsisteul"Y. However. t"\Tnt.s offered ill the primitive set prefix coustruct nef'd not
be pl"l'sist{'ot. For eXil,mple. the proCt'SS [X <; B - Px] may idle for one unit and
evolve into il process Pn w]licIJ is llnalJIf' to offt'l" thofle events in set B. In sees
persistf'lll actio1l:; can he l'cpreseutcd in a similar ma.nner to SCSP: by explicitly
allowing the choice be!.wet'n perfonuiug the adion and idling nntil thf' action occurs.

TPL and Timcd CSP considf'r actions to be persistent in their prefix constructs,
a.lthough Ill{' proviflioll of a timeout. construct allows the offer of eventfl to be with­
drawn. Wang Yi also \lSI'S pcrflist('nt actioll!" in the Timed ces of [Yi9ll, where,
by paramet.erising the prOCess with time, the behaviour, subsequent to the per­
fonnance of an action. ma.y vary depending on tbe time at which the action was
perforrn{'d. lu CCSiT and Laing Chen's Timed GCS, actions are made available
over the Juration of an interval; by allowing the interval to extend to infinity, ac­
tions can be madl" persist,ent. Thl" extension of LOTOS in [8L92], pl, considers
actions t.o be pf'rsistent unless explicitly 1llaJ.·ked as urgent.

An adJon is said to be urgent if it must be performed as soon as it is made
avaiIablf'. In SRPT output evenLs can be seen to be urgent; we assume that they CaIl

be performed when they are made available and, make no provision for the failure of

152

occurrence of offer(>(l output events. In sesp the only way to represent an urgent
event is to assumt>: that the resnlt of idling is divergence, as in the following process

[{a} ~ P I>J-I.

In many process algebras (f'g. Temporal ecs IMT90], AT? and PARTY) the failure
to perform an urgf'nt evpHt will result in timestop with the process unable to
progres:::i in time. In Temporal res alld PARTY, action prefix is urgent, a.lthough
the provision of an idle prefix fJ enable:; a persistent action to be represented by
b.a.P. Actions in AT1' are also urgent; persistency of evellt a can be captured
using till"' timeout constrnd rfCX.lnPJ(X). In TIC and ACPp all actions are
time-stamped and urgent. The pro\'ision of a choin' set of terms in TIC and an
integral construct representing the choice of an action over a continuum of times
in ACP p allow~ s()ltle degree of freedom in interaction with the environment in
these algebras. Thf' Timed ('CS of [Che91] and CCSiT call represent urgency in
their actions by L'('ducing the associated interval to a single instant. In the case
of [Che91] the pro('e.':IS cannot progres~ in time beyond the time interval untjj the
adiou is perfow.wel, while in CCSiT time may progress beyond the time interval
associated \','ith the aetioll bUf the process prefixed by the action cannot evolve.
finally, actions in sees Call be ,onsidered nrgent as a consequence of the way that
parallel components proceed in o.bsolut(> synchrolly.

Communication

In the origLnal process algebras, ecs, CSP and ACP, one assumes that concurrently
runuing components in a system progress a.t arbitrary speeds. Synchronisation oc­
curs whenever communication is required between two components. To achieve this
may require One process to wait for the other; such waiting is not recorded explic­
itly. Commuuieation is referred to as asynchronous [MiI83] in circumstam:es wbere
it involves the arbJtrary delay of components. Like the algebras mentioned above,
some of tbe timl"d process algebras also take an asynchronous view of communica­
tion. With the introduction of timing, the delays are made explicit. However the
delays before commullication takes place can be arbitrary, as modelled in Timed
esp, TPL and ""'aug i'i's Timed ces for example. A common feature of all these
algebras is the persistent nature of actions and this allows such arbitrarJ waiting.

COllllnuuicatioll is regarded as synchronous, in the sense of Milner, if commu­
uicating compoIll"nis proceed ill lockstep, cooperation on an action being possible
If the action is simnltaneously llla,de available by all components. This view of
synchronous colnmunication is taken ill sees: components of a system proceed
iu absolute synchronYi a component's evolution may be governed by its interac­
tion with the environment and other components but the speed of this evolution
is indepC'ndent of t.he component's interactions. The same view of synchronous

1.\3

communicatioll is taken iu SCSP: set prefix represents an opportunity for the en­
vironment to control the f'''olution of a. procf'SS and will evolvf' after one time unit
regardless of the availability of eveuts from the euviroument. In [Jef91a], Jeffrey
uses the same technique to represent. syndnonolls commuuication.

By u:;ing time-stanlj]s OIL aetiOlls ACP p, TIC, CCSiT awl Lia.ng Chen's Timed
CCS exhibit a synchronous model of romrnunication. Other algebra.~ in which
actions ,,["(' urgent (('g. Temporal ces [~JT90], PARTY aud ATP) also provide
a ::;ynChCiJIlO1l5 view of communication, although thal of ATP can aiso be viewed
as following the synchrony hypothesis proposed by Berry [BB91b]. In this view
time is 0;11y lllhrked at the poil\ts CIt which euviroum€ntal interaction takes place;
the syst.em is assllmf'd "ufficieutly fast for all necessdl'y internal interactions t.o be
complded before [urI her environllH"ntal interaction is attempted. So at the lower
level of internal illt.erilcf,joO. ATP bcha\'es asynchroIlously, \....bile synchronisation of
cOmpOnf'llts 011 time iH..:tioTl:< ellsures lilal componenls progress synchronously with
resped to I,}w ellvironnwnt

t-.'1os1 r} Ihl' algehraic fOl'lnalisl1]'~ which present a syllchronous view of commu­
nication !)l'O\'ide illl arbitrary Rrli(wilSt.ruct, which allows local desynchronisation
10 he 1Il0d('lled vi(j. p<'rsistellt ildiollS, In contrast, parallel composition in r-.IElJE
is asynchronolls hut. ~YB(hronisati(Jll can be achieved by use of a tirking opera­
tion: tbi& can be seeJl as marking all <Jgellt with an authorisation sigua.l sent by a
syndlr()lli,(~r.

Causality

One of HIP decision:- made in designing the language SCSP was to insist that, if
the observation of 011(' event is depplldcut on the occurrence of another, then time
must pass between these two events. That is, time lIlust pass between cause and
effect (tim(" dependent causalil,vJ. One way to examine whether such causality
assumptions bavp beeu made is to consider whether the visible behaviours of a
system call be completely described by a bag of time-stamped actiolls; if this is
the case then the ordering of events occurring at a given instant is not significant.
Those timed process itlgebras kg. sees, Discrete Time esp and the Timed esp
presented 1I1 !R RSG)). "ih ich associate iUl inherent delay with sequential composition
or a..dion prefix. prohibit the simultaneous OCClllTeUCe of cansally related events.
ACP", eLlsures that time passes between cause aJld effect via its axioms, PARTY
takes a no\·el view that a; b canBOt. bp distinguished fr010 b: a or alb. (It assumes
time passes betw('en ause and effect, but does not rellect this in its sequential
composition construct.)

In SCSP tlte causality requirement. is slightly stronger tban that in some of
the othf'r models, notably Discrete TiITle CSP and Timed esp, In sesp the per­
formance of one event. at a particular time cannot preempt another event at the

V54

same tiOlt>; this results in the inability to instantly resolve (or even model) t:'xternal
choice. Moreover, unlike the other algebras which exhibit time dependent causality,
SCSP docs not support auto-concurrence, the ability to perform multiple copies of
an event at a single instant. This is consistent with the strong causality require­
ment and results in a model in which refusal information at a given time is not
dependent on the events which occnrred at that time.

The alternative approach to time dependent causality is to allow instant causal­
ity; the occnrrence of an event a at time t may effect the occurrence of other events
at time t. Instant cansality is demunstrated by many algebras including Tempo­
cal CCS [MT90], TPL. ATP and the model of Timed CSP advocated in [DS92].
Instant causality in TPL is a result of the notion that timing constraints are not
always explicit. Idling is only made explicit when it must occur; on other occasions
timing considerations are left arbitnu:y and unrecorded, as in CCS. In ATP instant
causality is due (,0 a similar lack of concern as to temporal details between time ac­
tions. This view is shared by th<.' languages ESTEREL and SIGNAL which, based
on the ::;yuchrony hypothesis, assUme that there is no delay between the receipt of
input and the production of the consequent ontput; the only delays modelled in
these langnages are those resultillg from awaiting environmental interaction.

Timing relations

In Chapter 7 of this t.hesis the notioll of liloewise abstraction was developed and
applied to the langnage SRPT. This provides a mechanism for slowing down the
time frame in which components of a system are modelled. Other authors have
considered timing rf'la.tions which lllay be incorporated into formal methods; some
of these·i11 be considf'red here.

Schneider [Sch901 introduced timewise refinement into Timed CSP. This for­
malised the concept of a simple process in CSP being refined by processes in Timed
CSP which introduce timing considerations. This notion was complemented by a
mapping 011 processes in Timed CSP which remo....es all explicit timing information,
giving their untirned connterparts in CSP. The original timed process is a timewise
refinement of its image. It is then possible to verify those properties of a system
which are preserved by timewise refinement (eg. safety requirement.s) in the simpler
untimed model.

By considering a subcalculus of Temporal CCS in which all actions are persis­
tent, fTCeS, Moller and Tofts [MT91] are able to consider a 'faster than' relation
on processes. A process P is fast.er that Q if it may perform actions sooner. By
insisting that all actions are persistent. P is always capable of progressing at the
same spt'ed as Q and, after performing an action earlier than Q could, P is capa­
ble of idling to allow Q to 'catch up'. This allows comparison of processes which
are behaviourally equivalent (in the untimed sense), but which operate a.t different

155

speeds, without loosing sight of alllemporal considerations.
Daniels a.nllotatcs e'l:f'nts \.... ith interva1.~ during which they may occur. This

leads to the defiIlition of a tinlc hfl:"f'd refinelllf'Ilt relation ,». in [Dan92]. This
relation S' :?'> H can be interpreted il.S meaning lhiUl n has a more precise timing
spf'cific~tio\l that ,,,', Hence S includ(,:-i tile same visihlp bE'haviour as U but intervah:
iii II when adions are E'Hil-bled are iwluded in the corresponding intervals in S,

8.2.2 Formalisms for clocked circuit design

It has bl't'll shown in thi!' tllt'sis how SILPT may he employed in the verification
of synchronous circuits. IL is tlwrefore appropriate to cOllsider ot.her approaches
which hare Df>f'n applied in thi!; iI]"('iI. \Lwy of the approaches are Tllechilnised
to SOlIlf' extent. which is rf'quired to cope with th(' scale of realistic (in:uit design
probleIlls, Tlw following appl'oaclw-s Me just a lepr{,Sf.'lltative selection and <;hould
1I0t. he considered (':.;:!Iil.ustivf'.

Algl'braic df'sn ipt ions of cirCllit.~ ,\I"(' provided both by CIRCi\L [M.i186] and
nop (llardware \ip\wd as Objens itnd Processes) [G:\IAS9]. Doth these algebras
adopt t h" concept of locblep:-:i} !1chrolli:-.ation of coucurrcllt components ass0ciat,ed
with sees. CIRCi\L i" viewed as giving a]"(']ativp. description of the OCCUfI'l'nCe of
('vents, with the provision for modelling silllul1,alH.'Olisly occurring ewnts. Actual
timing is moueHed hy docked COll1pOncllts ha\'ing a special timing port which re­
ceiws tick pvellts from all abstract. time!' also modelled in C'I1tC'AL. Specification
alld impl<'llwntation of circuits C<lll he shown to bf' eq~livah>nt by mechanical alge­
hraic Illanipulal,ioIl in 111<' CIRCi\L systeIlI. HOP [I'presents circuits as finitE' :-t.ate
transition s'ystem~. TIlE' overall behavionr of composl'd components is examined
with thf'aid of (,he PARC01'IP tool which alltornates procf'~s composition. ',.Vithin
the l;m~uag/', output is S('('Il to OCCUI at Ih(· ~alTle time as the input which caused
it, giving n model romparahle to synchronous lilnguages like ESTEREL.

In t.he ilnperative programming language SML [eLM!)ll, programs represent
:-ynchronous circuit,s. and thpir sf>ltlalltics are hased on the hardwa.re implementa­
I,ion of a SLate machine, In SML. control cOllslrncls determine the n('xt. st.a.te and
,ue assumed to eXt'(u(c in zero timf'. AssiglllW'Llts cllallge stale and dJ€ assumcd
to take onr clock t'yck. Timing]'Illf's ("(111 preVf'nt complIca,tedl'elationships from
heing desrribed wit.hout delaying more thall one clock cyrle. In order to remove
excpssivp ~elays the lilngllage incorporates a, 'compress' statement which assumes
all assignments within its scopc t.akf' plilCe in a, single clock cycle. This compress
facility can be used to a similar effect a.s tin1f'wise dbstra.etion in SRPT.

,IFP [SIl<'86] wd Ruby [JS90] adopt a functional approacb to t.hE" design of cir­
cuits. Primitive circuit descriptions are composed using higher-order-funetions (01'
relationR) Lo give a description of the complete circuit. Circuits are developed by
transforming a correct desigu to an implementable descript.ion using algebraic laws

j56

to manipulate functional expressions. Functions which describe circuit behaviour
take streams of inputs (over time) and produce streams of outputs, giving adiscrete
time model of circuit. behaviour suitable for synchronous circuits. All reasoning is
done at a fUllctionallf'Vel, tht' data streams afe not made explicit unlike most meth­
ods. A functional approach has also bt'en taken by [BT89] where formal verification
of synrhrollolls circllits using a string-functional semantics is mechanised using the
Boyer-Moon> theorem pl'o"'er [BM79J.

A variety of logics have been applied to circuit design. Higher-order logic is
used by Gordon [Gor86/ to specify and verify circuits. Here, devices are modelled
as predicates on input and output; only when output matches input is the predi­
cate true. In systems where values Oil wires vary over time the inpnt and output
are represented by functions frolll time to boolean values and predicates modelling
componertb are also tillle dependent. The HaL theorem prover [Gor85] provides
assistance ill t.he verific<ltion of circuit descriptions. Linear time temporal logic is
used in [FI\Tf\,·IOH6) to capture formally timing requirements in circnits. Again
this approach cOllsider:> circuit:" as predicates on their input and output A logic
programming language, Tokio, is presented which allows computer aided verifica­
tion.

8.3 Future work

We have already suggested that SCSP is a simple language with a miuimal number
of operators. In Chapter 4 the language was enhanced by the provision of a mecha­
nism for describing value passing in communication. It would be useful to consider
a number of other extensions to the language. Some would be easy to implement,
while others would require extension of the syntax and. in some cases, modification
of the semantic model.

A rendf'zvous on set B, B P, could be defined in terms of the existing
language

{}~P",P

B~ P '" [X<;B ~ ((B -X)~P)1 ifB,<{).

This is a generalisation of the derived event prefix construct and ouly allows B P
to evolve to P OIlce all the events in B have occurred. It would be useful toestablish
circumstances in which such an operator might be usefuL

Tinlt'onts and timed interrupts are features that any model of real-time systems
should be able to capture. SCSP captures timeout implicitly in the definition of
st't prefix. In order to make it f'asier to apply SCSP to the descripti(]n of real­
time systems it would be advantageous to extend the syntax of the language to
incorporate an explicit timeout. operator. Oue possibility is to define a timeout

157

p (n:) Q parilmet.crised by both a Li!llf: and a set of events. The intt"rpretation of

such all Dperilt.or is that P == p/
1nC:1P:; behaves like Pi for the first n units of time,

t.hen a timeout occurs and it [whaves like P2 if P ha.d only performed events from
set }j prior to tile tinlf'out. 1'1](' traditional timeout would currespond to B = {}
while a timed interrupt, cOHLparablf' to that prescnted in [Schga] for Timed esp,
would 1w represent.cd by til(' case U = D.P. Clearly extending the syntax of the
[;Hlg!\ag~ must be accoillpalli",d by verilication that the uew terms are well defmed
with re<!)ect to the llIodei. The proof sy"tcm would also havc to be modified to
incorporate the llew terms.

SCSJl (kws [loL incorporate the notion or successful tenninalion [Iloa85]: either
a process is detined r<-'cur:;i\·ely so as !Jot to tt'rminate or it terminates in chaos.
Incorporating succe:<sful terminatiun into SCSP would allow us to model syst.ems
which itl'C' required 1,0 t('rminat(' in their normitl nehaviour. It would also provide
it fl'c\.lIlClI'ork in which to d('nne sequf'ntial composition of proc.esscs. If stl<:cessful
termination is to he t'epresL'llted ill the language then it must be supported by the
model of SCSP: this would inwlw modificalioll of the semantic model, the efff'CLs
of which must 1)(' incorpofiltf'd into all results involving the model.

CUlTf'tltly :-';(-'l'O (ll'lay gnu's ("(mnot br modelled in SRPT. As output wonkl nec­
cssarily he dC1wndenl 011 tlll' "inlll]t"l11eOlls)y occurring input in sneh circumstances,
it is cOlllraty to the underlying li\n~l1age rjpsign a$~\lmptiolls to allow prucess rep­
rcsenting zero df'lay gaks, A possihle solul ion to Ihi~ problem is to simulate zero
df'la.y g'ates h~' function." wbich mil.'r' Iw composed with proct>sses. For examplp,
consider a zero delay combillatorial rircuil. which prepro(:esses inpnt to a la.rger
circuit ,,'ith delays. We muld H"I)f('sf'nl til(' combinatorial circuit by the function
f illld tIll' l"f'nIainder or OJe cirruit by proCf'SS P. Then the process f " P could
represent the reqllired circllit" whert>',,' is a functional composition operator. Such
a.ll cxtension to SRPT lTlay hav(' applicatiol1:" ill th(' study of synchronous circuits.

Anothf'r area of fuLure de,·C'lnplllenl lies in the constrUdion of operational se­
Ill(lntics for both SCSP and SRPT. ily developing a structured operational seman­
tics ill thrst,yle of Plotkin [PloS!] we would be ill a position to make more thorough
compari:'iOllS between 0111' work and the process alg'cbras of other authors presented
with semantics ill this form. An opf'rational semantics is a prerequisite to the de­
velopmeul of software t.ools. Tools :mch as FDH [For92], a refinement checker for
esp, provide mechanical techniques for cumparison of proccss expressions; such
mechanical assistance makes it. feal>ible to consider problems substantially larger
than would be practical by hand. Both SCSP a.nd SnPT would benefit from the
availability of such tools. As has alrf'ady been suggested, Hit' scale of circuit design
problems Uleans that for a. formal development method to be applicable in practice
it mllst bf'supported by software tools.

1,58

It may be ar gued that tbere are cf'rtain circumstances when specifications in
terms of predicates on behaviours may be more appropriate than defining a specifi­
cation in terms of a process. It is ofteu easier to formulate an abstract requirement
using predicates; a one place buffer can be characterised by a simple relationship
between input and ontput. This is easily captured by suitable predicates while the
process specifying such a buffer would be the least deterministic process with the
reqnired hehaviour. Predicate based specifications can also be more appropriate
for the provision of partial requirement.s for a system. By using different techniques
for representing specifications and implementations we could make a dear distinc­
tion between the two stages of development. Taking advantage of the denotational
semantics of SCSP, a compositional proof system ba.~ed on the quantification of
predicates over hchaviollrs cou ld be developed. A possible approach is the develop­
ment of a system \Ising the sat Ilotatioll employed by [HoaS5]. Alternatively, linear
time temporal logics could be used to provide a basis for a specification language
for SCSP. To COil sider the lattf'r approach adequately would require ns to extend
the model to an infinite traces model in which concepts used in temporal logics,
such as 'f'ventually', could be specified.

Finally, as wit h all new formalisms, the langnages presented in this thesis would
beuefit from the experience gained through applicatiou. It is only by using such
formalisms as those developed here that we ca.1l really appreciate their worth: to this
end the analysis of larger case studies using SCSP and SRPT would be appropriate.

159

Appendix A

Proofs of Stated Results

A.I Results in the model for SCSP

Theorem A.1 1!,:;s'lulllny T[P]p (Ilid T[Q](I saf'isj'y f1H~ clos'llre conditions with
/'('<;jJfef tl) 1I1plrllbcls n[J-!] find nIt;] N.~jJrdw(ly. Thr'n T[P II Q]p salrsjhs t'l with
ru'prrl ttl I/lphabr..{ n[P !\ q~.

Proof: As tht' v(lj'iablf' bindings willl't'l1iaiu unchanged throughont t.his proof
\\'(' wiJlnul mob, them explicit in <)1]1" ilrgllmeuL By the COllstrnction of T[P II Q~.

if ::;' ill 1[P ,1,1 Q~ tlH're a.re tW() casp" to considf'r when esta.hlishing t.he closure
condit.ioll;' i\l'p satisfied, tile CiHW wher!' .~I results from agreeIIlC'nt of hoth processes
for t]w wllole time of llbscr\'ation;

s' E 1, 13s"" : n'(.4 n lJ)" • .', n" o. ({})I'i A

.5 Il ,4 - s, E T[l'~ A s IlB - .;, E T[QI).

all(l the r.;;"e wberl' 8' is the ff'Slllt of divel'gcll(e of one of the component processes.

s' E {'~'·13".8,n'(,4IlB)·,s, Ils, = ({]),.] A ,.f 0 A

(((s Il :\ - s,)~ ,1 E T~Pi A s Il i3 - 5, E T~QI)

V (s Il ,:\- 5, E T[P! ,\ (, Il iJ - s,)~ iJ E T [QI) J).

Notice, we only need lo conl'ider situ<ltions where T' I- 0 here, since, by closure
cOJl(/ition Ii, if l' = 0 then :.;' is included in the iirst case, \Vit-bout loss of generality
we shall assume that tlte divergerlcc is ca1l5ed by the divergence of P.

Suppo,e'~(C)~s' E T[P II QI
case 1: \\'p call find .~/'(Xd"""$; (l1le! "2"""(X2)"""8~ ~l1ch that

(8 Il A - "')~ (C Il A - x,)~(s' Il ;i - s',) E T[P[
A (8 Il i3 - 5,)~(C Il iJ - X!)~(s' Il iJ -,;) E T[QI

160

We shall assume that XI and Xz are chosen to be minimal in the following sense:

If Y c X, • (s n ,4 - s,)~ (c n A - Y)~(s' n ;1 - s:) ~ TIPJ,

Set D, ~ {n E A I a ~ C II a ~ C - X,}
D, ~ {b E Bib ~ ell b ~ C - X,)

and D = {a E A uBI a ~ C II a~ C)

Now hy condition \'j on 7[P]

(s n A- sJl-(lCn A- X,) U D,) E TIPJ
V3.r E D,· (,n.4 -s,)~(CnA-X,)U{i})~(s'nA-s',)ETIPJ

Now by the minirnality of Xl,.r rt XI' SO i 1. C and I E D.

If the laUer case holds then

3 x E 1J • (8 n A- s,)~ «(c U (x)) n A- X,)~(s' n it - s~) E TIP]
II (snB- 8,n(('Uu})nB -X;)~(s'nB -s;)E TIQJ

v, {":r~ if ,r E A - BIw lel'e ,1.~ = X U {i} jf x E An B
2

ClPady Xl and X; are disjoint so

3x ED. s-(CU {i})~s' E TIP II QI

A similBJ· result is obtained by considering vi on 7[Q].

The remaining case is when

(sn A-s,)-((CnA -X,) UD,) E TIPJ
lI(snB-s,)~((CnB-X,)UD,)ETIQJ

Now DnA'; D1 and D n l3 ~ D2 hence by condition iii.

(s n ,4 - sJl-(((CUD) n A- X,)) E TIPI

II (sn B - s,)~«((CUD)nB -X,)) E TIQJ

Thus s~(C U D) E TIP II QI as required.

case 2: If divergence occurs for trace r < s"""(C)"""s' then either r ~ s in which
case the result follows by construction, otherwise for some r' < 8'

((s~(C)~r') n ,4 - s, J~(A) E TIPJ II (S~(C)~1J) n B - s, E TIQI
in which Ca.<le everything follows as for case 1 to give condition vi. o

161

Theorem A.2 Hidillg 1,~ conlinuous with r('.~peet to the. parhal aT'der,

Proof: \Vt> mu:;t show

TUx" A'Jp[UDjr] = nTlx \ A'Jp[djx]
'ED

where D is a directed Sf't in (SM A, [;;:),

Now T~.1~p = 7l"2(1[;r~, /\s the projection 7l"J! is a continuous fnnction, we deduce
tha.t {To,J IdE D} forms a llircct.ed Sf't, in (SAO,~) and To2(UD) = n"ED 71"2 d.
Now

Tlr\ A']pIUDj.,]
= {.:> 13.~'. 8 = 8' - ..1' 1\ s' EndED 7l";:d /\ saturatedA.nA(s')}

ndE"T[r \ A']P1dj.,]

= n"'ED{S 13s'. s =::;' - A' 1\ .~' E if2d 1\ f>aturafl:dA' n A(3')}

Clearly T[.r \ il'Up[UD/.T] ~ ndED T[.r \ ;J'](I[d/:c]. We nmst show the conV('fse.

Suppose .~ EndED T[.r \ iqp[d(l'], then the number of ways of saturating s is
fillite. Let J be a finite indexing set such that {.5] I j E J} is t,he set of all
po."isible s~Luratjons, AS::i\lmc 81- T[,r \ ,.qpfUDj.r] Tben there is no 5) such that
5) E ndEfl To2tl, For each saturation SJ w(' can find (I; E D such that 5) 1- Toed;
Then hy lllp propf'rty of directed sets and sin('f' J is fillite, we can find k such that

If) E J ."d, c;; "d,. Solfj E J. ", '" ",d, o}, '" T[J·\A'JPld,j.,] =>, '"
ndED T[.r \ >np[d/x]. Hence result by contradiction, 0

A.2 Results in the model for SRPT

Theorem A.3 The opf'Hlfol"S oj SPHT are nwnolonic in each arg'unlf:n.t.

Proof: For envirolHl1f'lIt a and P i:l. process term which tClkes the form of an
application of an operator of SPRT on procf'SS terms, such that one of the argumeuts
of the opera.t.or is the procf'SS \'ariablf' .r and all other arguments are indepenuel1t
of .r. \~/e must show .\ y ...\It R [Pk lY/:rJ is monotonic.

We shall consider the strurtuJ'(> of the trace sets of tht' opf'rators.

For each Pof thf' abm'e form and q E lUI, TR[P]a[q/.r] takes the form

TRlPklqj.,] = T'(rr.,q) J M'I"",)

162

for exa.mple, if P == Qn x and Q is independent of x then:

T"IPI<T[qlx] = IT"IQI<T U K,q) 1 (TnlQI<T U ",q)

T'(1f3q) is a trace ~et with contribution T'l{ 8)) - T'({}) due to each trac~ 8 E 1r3.
The contribution due to a given trace s E 1fjq is independent of the structure of q.
Hence

q'::;; q'::::} T' (7rJq) ~ T'(1fjq')

M'(7f3q) is a set whos members are governed by the traces in ifSq such that

q'; q' => T 1 M'I",q) <;; T 1 M'(K,q) for any trace set T.

Helice by the trau~itjvity of 0;: q'; q' => T"IP!<T[qlxj <;; TnIP!<T[q'I,J

We also ob::::erve that

1, every maximal element of 1f" q only contributes to maximal traces in T' (1r 3 q).

2, by the na.ture of restriction. if 8 E T'(1f3q) is not present in T,dP]u[q/.xJ
then there is a maximal element s' E Tn[P]O'[q/ xl with s' < s.

3.	 if 8
1 < 8 E 1f1q and 7· E T'(1fJq) is a trace contributed by 8 then there is a

prefix of, in 1"(1f3q) which is a contribution from Sl.

We uow have sufficient information to show that, if q :::; q' then

s E T"IP!<T[q' Ix) A s ~ T"IPI<T[qlx] => 3 r E T"IPI<T[qlxj. r <,

To show the above it is sufficient to note that, if s E T'(1f"q) then the result follows
from observation 2. Otherwise s must be a contribution from SI E (1r3q')- (1r3q),
then a" q :::; q' we can find 'I E *9q with '1 < SI, by observations 1 and 3 there is
a maximal contribution, to T'(1fsq) with r < s. The result follows. 0

A.3 Results relating SRPT to SCSP

Theorem A.4 POI' all processes P, Q E SRP'J'O with P n Q well defined, and for
all <T E BIND" if Tlepl~<T =4>(M"IPI<T) and TleQI~<T = 4>(M,,[QI") then

Tle(p n Qll,w = 4>(M"IP n QI<Tl

163

Proof: Firstly note that:

T[6(Pn Q)I,w	 ~ T[(6P) n (6Q)I'w { defn. of 6 }
=T[6Pha U T[6 Q~'w { defn. of T }
~ 1>(MR!Pla) U 1'(M,[Qk) { by hypothesis

So it is sllfficient to show that for ~ll 0' E BINDR

1'(AI,[p n Q~a) = <b(MR!P~a) U1'(MR[Ql~)

Sillce the alphabets temaill unchanged throughout this proof, we shall abuse nota.­
tion slightly amI write 1,&(s) for 4'(1. 0,3).

Recall 6(Mn[p~a) = U ,j·(,)u U V'I(S)
.EhJdu ,'ETR~P](7

No\....·

, E Tr. [I' n (Jla

=> sET.[P~alTdQi~V.'ETR[(JklTR[Pla {defn.ofTR)

=> s ETn[P]O' V s E 7n~Q~0' {defn. of restriction

=> '/>(') C;; 1'(MR[P~aJ U 1'(MR[Qla) {defn. of l'

Similarly s E TR[p n Qla => 'I·, (s) <:: ¢(MdPja) U1'(A'h[ma)

Hence ~(Mn[p n Qla) <:: 1'(MR[P~a) U 1'(.\1,[Qla)

It rem aim to prove thp revprse inclusion.

s E 7,[Pla
::::} {logk, law of exdudf'd middle }

s E 7,[PkA ((3s'ET.[Q!a.s' < s) V ~ (3s'ETR[Q~a. 5' <8))
::::} {delinition of restriction }

s E 7,[Pla 1TdQla V (, E TR[l'k A. os' E Tn[QI~' .,' < s)
::::} {delinition of T'R. and as / is nOll maximal in TR [P]o- }

s E T,[p n Qk V ((3.<' E TRIQ!a. 5' < 5) A ~ (3 s" E T'IPla. ," < s'))
=> {definition of restriction }

'E T,lpn QkV 10/ E (T,[Qlal TR[pl~)' s' <s)
::::} {definition of TR }

s E T,[p n Q~a V (0/ E TdP n Q~a '5' < s)
::::} {definition of l' }

¥'(s) ~ 1'(Tn[P n QkJ V (3 s'.,' <.5 A</',(s') C;; 1'(T,,[p n Qla))
::::} {by Lemma 6.3 }

1>1 s) ~ 1'(T" [I' n Qla)

Similarly., E T,IPla => '" (,) C;; <b(Tdp n Qla)

Hence 1'(.M,[P[a) <:: 1'(Mn[pn Qk)

164

We can obtain a symmetric result for ~(M;Ii ~ Qla) and thus deduce the required
result. 0

A.4 Results involving timewise abstraction

Theorem A.5 A8.5uming TR~P~a .satisfies the closure conditions /01' model RM
with 1'e.sp(~cl to alphabets I[P~t7 and o[P~a, then /01' mEN, II E N+ and C E
IF l:, T1\. [S low(n, m, C, P) ~a $afisjies closure condition III 1JJ1th respect to alphabets

'[Pia a"d p[PHo-·

Proof: A~ the variable bindings, u. will remain unchanged lhroughout this
proof we will not makf' them f'xplicit here. By the remarks of note 2 all page 1,32,
if C ~ I.[P~ tht> rC'sult follows trivially so we shall only consider the case C ~ t[P].

Assuming that. s (X) E Tn.[Slow(n., m, e,p)] and Y <;;.; t[P] w(:' must show that:

s~((X n p[PH) u j') E T.[5Ipw(n, m. C, P)i

Now ..."-riting J for I[P] and 0 for o[P]:

s~ (X) E T,<l5/pw(", m, C. P)i
~ {by dt>finition of Tn. }

(3" E Tn[PI • choose(", m, ,.) = s~(X)

II "n[S (C)'"~(n,<)((s~(X))nI)))

/\ -, (1'1 E TR[P]. choosc(lI. m. r'·) < s""'(X)
1I"'n[s(c)m~(n0((s~(X))nI)))

~ {by cOlHJition II on Tn.[P] , where ro""'(X) ::; r }
(3'" E TdPi' ,·,~(X) E Tn [Pi II hi = n·lsl + m

J\ chooBe(n, m, 1"0) = s

II ("0 ~(X)) nI S (c)m~(n (') ((s~(X)) n I)))

/\ -, (1,1 E TR[P]. choose(lI, m, 1,1) ::; s
II ,-' n [S (C) m ~(" (<) (s n [)))

=} {by condition III on TR [P] and considering lengths }
(3 "0 E TRIPi· "o~((X n 0) u Y) E TRIPi

II choose(n,m,(,.o~((Xn O)U Y)))=s~((Xn O)U Y)
II ("o~((X n 0) U l')) n [S (c)m~(" 0 ((s~((X n 0) U Y) nil))

II ~ (,., E TR[PI- choose(n. m, ,I) < s~((X n 0) U Y)
II (,., n J S (C)"'~(n 0 ((s~((X nO) U l')) n [JIl)

=} {by clefintion of T" }
s~((X n 0) u r) E T,,[5/ow(n, m, C,P)j

o

165

Lemma A.6 The maximal sel of T'R.[S low(n. m, C, P)] is given by:

TRIS/ow(n, m, C,P)I = {s 13 c E TR[PI • choose(n, m, c) = s

A" n! S (c)m~(n ® (s n I))

...., (3 ,/ E f'R.[p~ - choose(n, m,,.J) < s

A,,'nls(C)m~(n®(snI)))}

whC7'e I"", I [P~. A/oreover,

:3 'U t:= Tn [S lowe II, m. C, PH -u < $ '¢::} :3 .,. E f'R. [P] • choose (n, m, ,) < s
A "nl < (C)m~(n@(snl))

Proof: The first part follows frolll the definition of Tn[Slow(n, 711, C,P)]

It is Lri\ial from the definit.im] of fR[Slow(n, m, C,P)] that

:3 'U ET:R[SIO'll'(lI. 111, C.P)]. u < s:::}:3 ,. E 77?[P]. choose(n, m, r) < s
A ,. n I < (C) m~(n '" (s n I))

To prove the (,cl11aindt'L", suppose 3,' E iR[p] • ch.oose(n, m, r) < 8 1\ r n I <
(C)'''~("() (s n I)).

Now consider the set

{cErR[PII choo.-dn,m, c) < s A "n! < (C)'"~(nO(sn I))}

This set is non-empty, by our assumption, and finite, since the output alphabet
i::. finite and 8 is of fixed finite length. We take the minimum of this SE't, '0, and
choose 8r,tobe the prefix of $ of length r(lrol- m)/nl. Then

ro E T,dP] 1\ choose(n, m, ro) = .~r, 1\ '0 n 1< (C)"""-"(n 0 (so n I)) 1\ S(J < s.

Moreover. since we choose 1"0 to be minima.l

~ (3 ,., E rdP~, choose(n, m. r') < So A c' n I < (C)m~(n '" (so n I)).

Thus :3 'u E Tn ~S low(H, m, C, P)] • u < s as required. o

Corollary A.7

s E TR.[Slow(n, m, C.P)] {:}:3, E 7:R[P]. dlOose(n, m, ,) = s

A "nl S (C)m~(n®(snl)l

A ~ (3"ETn [5/ow(n.m,C,PjI. u <s).

•
Theoreln A.S FOr" mEN, 11 E N+, C <; /[P]IY and P n Q well defined, then

T,,[5/owln.m. C.p n Q)k = T"[510,"(,,, "', C.P) n5/ow(n, m, C, Q)/a

166

Proof: As the variable bindings. (7, will remain unchanged throughout this proof
we will not make them explicit herc.

Recalling the definition of T'R it is sufficient to show

TRISlow(n,m, c,pn QiH ~TnIS/ow(n,m,C,P)ll TRISlow(n,m,C,Q)]
UTRISlow(n, m, C, Q)]l TRIS/ow(n, m,C,P)]

Now

'E TRISlow(n,m,C,pn QJ!
=> {by definition of Tn }

:J r E (TniPll TnIQ] U TR[Q]l TRIPI)'
chooser n, m, ,.) ~ 8 A r n I " (c)m~(o 0 (s n I))

A ~ :Jr' E T"IPn QI·
choose(n, In, '1") < s A T ' n I ::; (c)mr..(n l) (s n I))

c~ {,ince ,. E TnIP] U TRIQI => :Js E TnIP n QI· s " r }

:J r E (TnlPll TRlQ] U TnlQll TRIP]).
ch 00" (n, no, r) = , A ,. n I " (c)m~(n 0 I' n I))

A ~ :J r' E T" IP] •
choose(n, Tn, r') < s A ,,I n I ::; (c)mr..(1l0 (s n I))

A ~	 :J,'" E T"IQ]·
choo.'u;(n, 111, rl/) < sA rl/ n I ::; (c)m r..(n 0 (8 n I))

=> {by Lemma A.6 }
:J r E ITnlPll TnIQ] U TRIQll TRIP]).

chooser n, 'n, r) = , A ,. n I " (c)m~(n 0 (, n I))

A --. 3 u' E fR~Slow(n, Tn, C.PH. u' < s

1\ --. .31/' E TR[Slow(n, rIl, C, Q)]. u/l < s

::} {by definition of restriction }

I:J r E TnIP] • choo,,(o, m, r) = .' A Tn I " (c)m~(n 0 (, n I))

A (~ :J u' E TRiS/ow(n, m, C,P)]. u' < s)

A (~ :J u" E TnISlow(n, m, C, Q)]. u" < s))

V (:J r E TRI QI • chooser 0, m, r) = , A r n I " (c)m~(n 0 (, n I))

A I~ :J u' E TRIS/ow(n, m, C, Plio u' < s)

A I~ :J u" E TnISlow(n, m, C. QH' u" < s))

=> {by previous corollary }
(s E Tn[Slow(n, m, C, PH A (~ :J u" E TRIS/owln. m, C, QH • u" < 8))
V (, E TnISIo",(n, m, C, QJ! A (~ :J u' E TRIS/ow(n, m, C,P)j. u' < ,))

=>	 {by definition of restriction }
s E (TnIS/ow(n, m, C, PJ]l TnIS/ow(n, m, C. QH
uTnIS/ow(n, m, C, QH l TnISlow(n, m. C,pm

The reverse follows simila.r1y.

167

0

Appendix B

Proof Rules

B.! Proof system for SCSp l

Here \ve present the proof system for the language SCSpl . t.he language of finite
dosed t~TfllS from SCSP.

Axioms fur nou-ddennlIlislic choice:

A-I f- pn Q= Qnp

A-2 f- IPn Q)nR= PnIQnR)
 l
A-3 f- pnp=p

I
A-4 f- I' n -l=-l ~

Axjom fol' :'let prefix:

A-5 C<;;/i f- IX" • ',Ie I'· ,C •Q,I]
",[X<;B~Rx)n[Y<;c~ Qy]

~ {FB' n QB' if B' <; Ch Hwere B' = PB' if B' r£. C
Il- 'O----= -=- _
Axioms for parallel composition:

A-6

A-7

A-8

A-9

A-IO

f- -l .. 11 I' =-l,u,P

f- PII-lA=-lAuoP

f- (I' n Q) II R '" (I' II R) n (Q II R)

f- (I'll (Q n R) '" (I' II Q) n II' II R)

f- [X<;;,l'~Pdll[Y<;;B'~Qy]'"
[Z CIA' n B') u lA' - oQH') U (B' ­

168

,I
aI'",) ~ P znA' II QznBiJ

Axioms for hidin.g:

A-ll f- l-A IB ",.LA_B

A-12 f­ (pnQ)IA"'IPIA)nIQIA)

A-I3 f­ [Xc;B~P,JIA",[Yc;(B-A)~(PYu(BnA)IA)]

Axioms for rellauling:

E f- l-A [SI ",.LA!SI

f- I P n Q)[S] '" PIS] n Q[S]

[X c;B ~ PxIlS]"'[X c;B[S] ~ P'ls-'JiSlll :-~ f-

Ordering rules:
----------------,~=-------,

P"'Q
PnQi;P 0-3

Pi;Qi;P10-' >
P i;Qi;P

Pi;Qi;R
P", Q 0-4

Pi;R~
Monotonicity rules:

M-I
P 1 ~ FE 1\ QJ ~ Q!

P J n Ql ~ Pt n Q2

M-2
'IXc;B'Pxi;Qx

[X c;B ~ Px] i; [X c;B ~ Qx]

B.2 Proof system for SCSP

The proof systern for the closed terms of SCSP consists of all the rules in the

previous section, with the following additions.

Axioms for recursion:

A-I7 f- R P[(p.TOP)/X]"'I"'P

A-I8 f- R P,[(x; =P;)l/.Td '" (x, =p.),

Least fixed point rule:

I 'IQEFlN(P).Qi;R I
R-I Pi;R

169

B.3 Derivations in the proof system for SCSP

Theorem B.I ~ PIIQ=QIIP

Proof: By considering the chara.cterisatioll of infinite processes by their finite
syntactic approximations and recalling all finite processes can be expressed in nor­
mal form (Corollary :3.15) it is sufficient 1.0 assume hoth P and Q are in normal
form. We defille a rank function d on processes in normal form:

dl -l) o

dlnBEBPB) lCBEBd(PB1+ 161- I if 161 2 1

d([X(::A~Px]) maX;I;,"~A d(Px) + I

and proceed b.y indudion on diP) + d(Q).

base case: diP) + dl Q) ~ O.

Here p:::: Q =.1. and the result follow!' from ;\···6.

inductive step:

If P =-.1 or Q =-.1 then the r('suIt follows from A-6 and A-7.

If l' = P, n 1', then diP,) < diP) and diP,) < diP) so:

(1', n 1',) II Q;c (1', II Q) n (1', II Q) {hy A-8 }
=IQ 1/ p,)n(Q II 1',) {byinduclivchypothesis
;c Q II (I', nP,) {byA-9 }

If (J = QI n Q" then the result follows similarly.

Finally if I' ~ IX (:: Jl ~ Pxl and Q = IY (::B ~ Q,.] then d(px) + d(Q,.) <
diP) + dlQI for all X (:: A, l' (:: B.

IX <;;4 ~ p.,]llfY(::B ~ QJ]
_ {hyA-JD}

IZ (::IA n 13) U (A - nQ) U IB - ,,1') ~ Pzn , II QznB]
_ {by inductive hypothesi~ }

IZ(::(.4nB)u(A -nQ)U(B -nP) ~ QznB 11 Pzn,]
{ as intersection i'll1d union are commutative}

[Z (::IB n A) U (B - nP) U (A - nQ) ~ QZnB II pzn,]
_ {by\-lD}

[Y <;;8 ~ Qllll[X (::A ~ 1'>]
o

170

B.4 Proof system for SRPT 1

Here we present the proof system for the language SRPT', the language of finite

closed terms from SRPT.

Axioms for non-deterministic choice:

a-I rR Pn Q =R Qn P

a-2 rR (PnQ)nR=RPn(QnR)

a-3 rR pnP =R P

a-4 rR Pn ~=R~

Axiom for set prefix:

~-5 rR ['B?X ~ Pxl n ['wry ~ Qyl =R ['mx ~ P, n Qxl I
Axioms for para.llel composition:

a-6 f- R -.Lf,oll P =R~{lU'P)-(OUoP),(ou"P)

a-7 rR p II~I,o=R~(Iu,P)-(ouoP),(OU"P)

a-8 rR (P n Q) II R =R (P II R) n (Q II R)

a-9 rR P II (Q n R) =R (P II Q) n (P II R)

a-tO rR ['B7X ~ Pxlll [IC'! Y ~ Qyl =R
[IB U C'! Z ~ P(ZUCln<pu II Q(ZUB)n<Qu l

Axioms for hiding:

a-II I- R -.LI,O \B =R-l/.O_8

a-12 rR (PnQ)\A=R(p\A)n(Q\A)

a-13 rR [!B?X ~ Pxl \ A =R [1(B - A)'!X ~ (Px \ A)l

Axioms for fell<LTlling:

a-14 r R ~I,O [S] =R~I(SI,O(S)

a-IS r R (P n Q)[SI =R (PIS]) n (Q[S])

a-16 rR [!B'!X ~ PxllSI =R ['B[Sj'!X ~ px(s-'dSll

171

l Ordering rules:

0-1 I- R P n Q !';n P 0-3 P "R Q ~ P c;R Q c;R P
P c;R Q l:::R P

0-2 P Ln Q LR R

p "n Q 0-4

(PCRR

MOllotonicity ruJe8:

P j !,;R Fe 1\ 01 !,;R Q2
111-}

PI n Ql ~R p~ n Q2

vX t;;;: B • Px !,;[{ Qx
111-2

[!1FX ~ P<Jl:::n [IB?X ~ Q.vJ

B.5 Proof system for SRPT

The proof system for the closed term:; of SRPT consists of all the rules in the
pre ...·iolls section, wit.h the following additions.

Axioms for I'ecllfsion:
I a-17 ,/,--p--c[--c(p-x-:-I-,O"-.-P-)--Cj.,-:-j-=-n-/-'-"-:-/-'O-.-P---------I

Least fixed point rule:

VQ E FINR(P). Q c;R R

P c;R R
~ --~

172

Appendix C

Algebraic Derivations

In this appendix we demonstrate the use of the algebraic laws of SCSP and SRPT.
We present. the fmit steps in the derivation of resluts in the Token ring example
(Section 4.2.4), which used the language SCSP. We also derive some of the results
required in the sorter E'xample (Section 7.4.2), which used the language SRPT and
timewise abstraction.

C.l Token ring interface with data

Recall that for X E {L, T, D}the definition of ID(y, X, ,) i,

ID(y, X, ,) eo (I(y,X, ,) II DATA) \ {on!}

where I(y, X,5) is defined in Figure 4.3 and

DATA'" (n (on!d~ DAT,4)) n (wail(!) ~ DATA)
dE6(~..)

We shall show that

ID(y,L,()) = [{in?x,out!y} ~	 ((n'E,!~)ID'(x,L,fr(d)))

nID'(x,L,()))

c>~l

and

1D'(y, L, ()) = wail(2) ~ ((n'E6! ~J ID(y, L,fr(d))) n ID(y, L, ()))

where ID'(y, L, s :fr.') '" (I'(y, L, s ofr,) II DATA) \ {on!}

173

Firstly

fD(y,L.O)
[by definition}

(I(y, L, 0) II DATA) \ lool}

_ {expanding D.-ll~i }

(/(y,L,O) II ((n'E'("/(onld~ DA1il))

n(wm/(I) ~ DATA))) \ {oo!}

_ {by A ~ 12 and A·S }

IndEb,m,,(I(y, L, 0) II (oo!d ~ DA IA)) \ {on!})

n((1(y.L.O) 11 (wad(!) ~ D,ITA)) \ {on'})

Now wf'recall

! (y, L, 0) '= [{ in?", ou'!y, ou'! d} ~ I'(x, L,IT'(d))
o {ill't.I',uul!!I} -1'(.r.L,O)
[> -l]

Thus

(I(y, L, 0) 11 (on!d ~ D/1T4)) \ {"o!}
(f'xpanding I (y, L. 0) and llsing axioms A··I0 a.nd A-13

[lml ,7, ou/ly} ~ (1'(,7, L,Ir(d)) 11 DATA) \ {on!}
I>L]
{by definition }

[{in?x, o"/' Y } ~ lD'(r,L,I,'(d)) [>-l]

and

(1(y,l, 0) 11 (,..ai/(l) ~ IJ,4TA)) \ {on!}
{expanding I(y, L, 0) a.lTd using axioms A-I0 and A-13

I(",?x, "u/!y} ~ (1'(x,L.O) II DA1:4) \ {on!} [>-l]

H(']lct'

ID(y,L,O)
{substituting the abo'lie resnlts }

IndEO",,[(m?r,ou/ly} ~ lD'(",L,I,'(d)) [>-lJ)

nil in'." "ufly} ~ (1'(r, L, 0) 11 DATA) \ {on l } [>.L]
{by L-1 }

[{,,?x, oul!y} ~ ((n'E"''') lD'(r,L,Ir(d)))
n(1'(x,L,O) II DATA) \ {on!})

[>LJ

Now let liS cOllsidf'f

(1'(y,L.O) 11 DATA) \ {on!}

174

We rewrit.e.l'(y, L,{)) as follows:

I'(y, L, 0) '" [{on?d] ~ P(y,!r(d)) 0> Ply, 0)1

where

P(y,sJes) 2 (wail(/) ~ l(y,L,sJ,'s))

P(y,O) '" [{Oll?d] ~ [(y,L,!"(d)) 0> l(y,L,O)1

Now

(P(y,s:],,) II DATA) \ {on!]
{ expanding DA1:4 and by A-8 and A-12 }

(n"61,,,)(P(y,sJ,'s) II (o"ld~ DATA)) \ {on!})

n((p(y, s Jrs) II (wail(l) ~ DAT4)) \ {a"!])

{ expanding processf'~ and applying axioms A-lO and A-13 }

(n'E",,")(wail(!) ~ {f(y.I.,sJr,,) II (01,," ~ DATA)) \ {on!]))
nlwail(1) ~ {f(y,L,sJr.,) II DATil) \ {a"!])
{bvL-J]

".aif(I) ~ un,,,, ,") {f (y, L, s :f",) II (a"! d ~ DATA)) \ {on!))
n{f(y,L,sJrs) II DATA) \ {a"'))

{ by axioms A-8 a.nd A - [2 }
lI'ai!(f)_

({f (y, L, s Jrs) II (n""",)(o,,!d ~ DATA) n DATA)) \ {ani))
{ by definit.ion of DATA and A-3 }

wa"(l) ~ ((1ly,L,.8Jrs) II D.17:4) \ {Old})
{ by definition of ID }

lJlol/(f) ---+ ID(y,L,s:!,.sj

Also

(Ply. 0) II DATA) \ {mol]
{ expanding DATA and by A-8 and A-12]

(n,,6Ion)(P(y,0) II (o,,'d~ DA7:4)) \ {on'))

n((p(y, 0) II (wait(l) ~ DAT.4)) \ {a"'))

{ expanding proces~f'S and applying axioms A-lO and A-13
In,,,,,,,)(wa,I(I) ~ (1(y,L,!r(d)) II DATA) \ {a"!]))
n(wa,'(J)~ (1(y,L,O) Ii DAT.4) \ {on!))
{byL-J]

wnil I1) ~ undE6, ",,11 (y, L,!,-(d)) II D.4 TA) \ {a"!])
n{f(y,L,O) II DATA) \ {on!})

{ hy definition of ID }
",,,,, (J) ~ un,,,,,,,, ID(y,I,,!,'(d))) n ID(y, L, 0))

175

Finally

(1'(y,l.,O) II DAT4) \ {on'}
{ by thE' :::a!l1C working as abovE' }

lI'ai[(Ii ~ un;e8[,o)(P(y,f>'(d)) II DATA) \ {md})

n(p(y,O) II DAT;l) \ {on'})

(sllb:::t.itllting from eadier working }

'Wlt(1) ~ ((n",(,oJ (waitt 1) ~ W(y, L,fr(d))))
n(wai[(1) ~ ((n'E8(,",ID(y, L,fe(d)) n ID(y, L, °I»)

i by L-l)
lI'ait(2) ~ un"",") [[)(y,L,f,'(d)))

nun;e","",!D(y, L,f>'(d))) n !D(y, L, 0»))
1idcmpol,('nce of n }

11",1 (i) ~ Un'E'! '") W(y, L,fe(d))) n !D(y, L, 0))

lIen,€, we It,we the required rCl'mlts.

C.2 The sorter pipeline

In thi~ section we preseJil in more ddail some of tile steps of the derivations used
in Sectioll 7.1.2.

C.2.! First phase of the pipeline

We r('('(dl that the overa.lI aim was to obtain an algebraic representation of the first
phase of the l-lipeline in a form <'IOU time frame in which it can be deduced that this
phase is a pipe. So we want to derive an expansion of:

SI01l'12,O.{},(Pha,,111 cr,') \ {"I,})

which only illvolvE's til;;' set prefix and nondeterministic choice constructs.

Reca.ll

Pha,,} "" QI,O/dO, Ii /dl, aa/r, 01 /d] Ii Q[i2/dO, i3/dl, a2/ c, a3/d]

where Q" (Dffldo/ d, a/gill J)lJldl jd. b/glll Camp) \ {a, b)

<lnd the' definitions of ('amp and Dff are giveu iu Section 7.4.2 (pages 139 and 140).

lin

In order to simplify the expansions, we set

DD(x,{)) =0 Dff.[dO/d,a/q) il Dff.[dl/d,b/q]

DD(x,{dO}) =0 Dff:[dO/d.a/qlll Dff,[dl/d,b/q]

DD(x,{d!}) =0 Dff.[dO/d,a/qlli Dff;[dl/d,b/q]

DD(x,{dO,dl}) =0 Dff;[dO/d,a/q] II Dff;[dl/d,b/q]

The first parameter of DD takes the value L or H and should be interpreted as
the voltage level on the clock. The second parameter is the set of input wires with
high voltage at the time of the last rising edge in the clock signal.

We also set
DDC(x, {})=0 (DD(x,{}) II Camp) \ {a,b}

DDC(.l', y) =0 (DD(x, y) II Camp') \ {a, b}

DDC(x,(dO,dl})=o (DD(I,{dU,d!}) II Camp") \ {a,b}

where.x E {L,H} and y E {{dO}, {dl}}.

So Q =0 DDC(L, {})

First we evaluate

DD(L, {})
{ f'xpanding definition of DD }

DffddO/d,Q/q] II Dffddl/d,b/q]
{ expaJlding uefinition of DO' }

([!{}?X -~ (DilL if rk ~ X else

([!{q}?Y ~(DffliifckE YeiseDfffl]

if d E X else
[!{}' Y ~ (DffH if ck E Y else DffL)]))][dO / d, a/ qIJ

II ([Ill?X ~ (DffL if ck ~ X else

([!{q)"~' ~ (Dffli if ck E Y else Dfffl]

if d E .x else
[I{}?)' ~ (DffH if ck E Y else Dff,)]))][dl / d, b/ qIJ

{bya-16 }

[I{}?X ~ (DffddO/d, a/q] if ck ~ X else

([!{a}'!}' ~ (Dffli[dO/d,a/q] ifck E Yelse Dm[dO/d,a/q])j

if dO E X else

[!{}?Y ~ (DffH[dO/d,a/qj ifck E Yelse DffddO/d,a/qIJ))))

II[!{},X ~ (Dffddl/d.b/q] ifck ~ X else

([!{ b)? Y ~ (Dffli[dl / d, b/ q] if ck E Y else Dfflldl / d, b/ q))]

if dl E X else
[!{}' Y ~ (DffH[dl / d. b/ q] if ck E Y else Dffddl / d, b/ q))]))J

t77

{ by a-to and noting definition of DD }
['n'X ~ (DD(L, {j) if ek 'Ie X else

([!{a,bJlY ~ {DD(H,{dO,dI))ifek E}' else DD(L,{dO,dI})))
if {dO. dI} <;: X else

(['{o}"?)' ~ (DD(H,{dO})ifekE YelseDD(L,{dO})))
if{ dO} <;: X else

{['{b)"!}' ~ (DD(H,{dI})ifek E)' else DD(L,{dI}))]
if[dI} <;: X else
['!r? Y ~ (DD(H, {}) if ek E l' else DD(L, {]J)]))))]

Thlls

DUe(L. {})
{ f'xvanding definition of ODe

(DDiL.{}) II Campi \ {a.b}
{ reralling {C'xpansioJls and by a--IO }

[!{j'!I ~ ((DD(T,,{j) II CO"'I')iftk 'Ie X else
(['{a, h}i Y ~ ((DD(H, {dO, <11)) II Camp") if ek E Yelse

(DD(L{dO.dl)) II ('amp"»)]
if {dO, dI} <;: X else

([I(a j" Y ~ (DD([[, {dO)) II Camp') if eR E Y else
(DD(L,{dO}) II Coml")]

if {dO} <:: X else
([IP' JI Y ~ ((DD(H, {dI}) II Com/) if ek E Yelse

(DD(L, {dI}) II Comp')I]
if(dI} <;: X else
[!O! y ~ (DD(H, {}) II Camp) if ek E Yelse

(DD(L, {}) II Camp))]
JIII]\{a,b}

{ bya-J:3 and noting det1Jlltion of DDC }
[!{}?X~ (DDCIL,{})ifek 'Ie X else

(['{J'!Y ~ (DUC(H,{dO.dI})ifek E YelseDDC(L,{dO,dI}))]
if IdO. dI} <;: X else

(['{I'i l' ~ (DUC(H, {dO}) if ek E Y else DDC(L, (dO}))]
if {dO} <;: X else
(['{J?l' ~ (DDC(H,{dI})ifek E YelseDDC(L,{dI}))]
if (dI) <;: Yelse
[!O'}' ~ (DDC(lI, {}) if ek E Y else DDCIL, {]J)])))))

{ rearranging t.('rms }
[!O"X ~ (UDC(I.. {}) if ek 'Ie .1 else

['{j'l' ~ (UDe(H.X - {ek)) ifd. E Yelse DDC(LX - {ek)))])]

178

Continuing in this manner we can also show that

DDG(H,{}) '" ['{}?X~(DDG(H,{))ifekEXelseDDG(L,{}))l

DDC(L,{dO}) '" [!{el'X~ (DDC(L,{dO})ifek ¢X else
[lIe)? Y ~ (DDC(H,X - {ek))

if ek E Y else DDG(L, X - {ek)))])}
DDC(H,{dO}) '" [!{e}?X ~ (DDC(H,{dO})

if ek E X else DDG(L, {dO}))1
DDC(L,{d1}) '" [1{ej'X~ (DDG(L,{dl))ifek¢X else

['{el'Y~ (DDG(H,X-{ek})
if ek E Y else DDG(L, X - {ek}))llJ

DDe(H,{dl}) '" ['{ej'X ~ (DDG(H,{d1})
ifek E X else DDG(L,{dl}))]

DDC(L,{dO,d1}) '" [!{e,dJ'X~(DDG(L,{dO,dl))ifek¢Xelse

['{e,d)'!Y ~ (DDG(H,X - {ek})
if ek E Y else DDG(L, X - {ek}))]))

DDG(H,{dO,d1}) '" [!{e,d}?X ~ (DDG(H,{dO,dl})
if ek E X else DDG(L, {dO, dl}))]

Hence, by uniqueness of solutions to guarded recursive equations

Q '" S(L,{})

where S is defined in Section 7.4.2 (pa.ge 141).

We are now in a position to reduce the expression for Ph.91 ,eliminating parallel
composition, hiding and renaming. We recall

Ph,l " (Ph<U!d II GIl) \ {ek}

Now we can expand Phase1 as follows:

Phasel
= {by definition }

Q[iO/dO,il Idl,aOle,al/d] II Q[i2/dO,i3/dl,a2/e,a3/dJ
= {by the equivalence deduced ahove J

8! L, {} HiD I dO, i1 / dl, aD / e, al / dlll S(L, {})[i2/ dO, i31dl , a2/ e, as/ d]
== {expanding the definition 0['" }

([!{}?X~ (S(I,{})ifck¢ X else

['{}? Y ~ (S(H,X - {ck}) if ck E Yelse

S(L,X - {ck)))lllliO/dO, il /dl, aO/c, al Id])

II ([!{)? X ~ (05(1, {}) if ck ¢ X else

['{}'!l'~ (S(H,X-{ck))ifckE Yelse

S(L, X - {ck)))])11,2/ dO, i.~ / dl, a21 c, a3/ dD

179

{b)"-16 }
[!{}'X ~ (5(1, {})[,0 / dO, il / dl , aO / c, al / d] if ck i X else

[!{J' y ~ (S(ll, (X - {ck))[dO / iO, dl /il])[iO / dO, il / dl, aO / c, al / d]
if ck E Y else
S(L, (X - {ck) lIdO / iO, dl / il])[iO / dO,,1 / <11, aO / c, al / d])])]

l\lin!X ~ (S(L, {})[i2/ dO, i3/ dl, a2/ c. a3/ dl if ck i X else
['{}? I" ~ (S(ll, (X - {ck})[dO/i2, dl /i3])[i2/dO, i3/dl, a2/c,a3/dJ

if ck E Yelse
S(L, (X - {ck})[dO /i2, dl /i.i])['2/ dO, i3/ dl ,a2 / ,', a.1/ d])])]

{by.-l0 }
[!{}'X ~ «(S(L. {))[iO / dO, il / dl, aO / c, al / d]

II 5(1, {))[i2/dO, iJ/dl, a2/c, a3/d])
ifck 1 X else ['{}?Y ~

(,S(ll, (X n {,O, il} lIdO / iO. dl / il])[iO/ dO, il / dl ,aO / c, al / d]
!I S(ll, (X n {i2, i3} lidO / i2, dl MI)[i2 / dO, i3/ dl, a2/ c, aJ/ d))
if ck E Y else
IS(L, (X n {iO, il} l[dO/iO, dl /il])[iO/dO, il /dl, aO/c, al/d]
II S(L,(X n {i2, i3))[dO/i2, dl/i3])[i2/dO,i3/dl, a2/e, a3/d]))])]

Thus
Phsl

== {by defillition of Phsl
(P'''MA II ('11)1 {ck}

=: {expanding terms }
([!{}?X ~ «(5(1. {})[iO / dO, il / dl •aO / c, al / dl

II S(I, {})[i2/ dO, 11/ dl ,a2 / c, a3/ d])
if ,k 1 X else [!{}? Y ~

((S(ll, (X n {iO, il})[dO /iO, dl / il])[iO/ dO,,1 / dl ,aO / c, al / d]
I S(ll, (X n {i2, is} I[dO /,2, dl /i3])[i2 / dO, i3/ dl ,a2/ c, a3/ dJ)
if ck E Yelse
(S(L, (X n {iO, II} lIdO / iO. dl /il])[IO / dO,;Z / dl, aO / c. al / dl
II S(L, (X n {i2, i3})[dO/i2, dl/i3])[i2/dO, i3/dl.a2/c, a3/d]))])]

II[!{ ckl~['{} ~ ('IIIJ) I (ck]
'" {by.-10)

[!{ckl'.\"~[!{J'Y~

(S(L. (X n {iO, il})[dO /iO, dl / il])[iO/ dO, il / dl, aO/ c, al / d]
II SIL, (X n {i2, i3} lIdO / i2, dl /i3])[i2/ dO, i3/ dl, a2/ c. a.1/ d]
II C/lIJlI{ck}

180

{bya-13)
[!{)?X~[!{)?Y ~

(SIL, (X n {iO, ,I })ldO / iO, dl /,1])[,0/ dO, il / dl, aO / c, al / d]
II 8(L, IX n {i2, is))ldO / i2, dl / i.1])[,2/ dO, i.1 / dl ,a2/ c, a.1 / d]
II CII') \ {ck)IJ

Continuing in this manner we can demonstrate that

Phsl" PhI (0)

where PhI is given in Figure C.l.

PhI ({)) =[!{)? X ~ [I{)?y ~ PhI IX)IJ


~~~ ~ 1:~n }=I!{ aO}? X ~ [!{ aO}?Y ~ PhI (XlIJ
 

~~~~l:;n }=[!{a2}?X ~ [!{a2}?Y ~ Phl(XJ]] 

Phl({iO,il})=[!{aO,al)?X ~ [!{aO,al}?Y ~ Phl(XllI

Phl l{iO,i2}) }
Phl l {i.0,i3}) =[I{ 0 2)"v~[I{ 0 2}?Y Phl(XlllPhI I{iI, i2}) , a , a .., , a ,a ' ~

Phll{il,i3})

PhI I{i2, is)) =[!{ a2, as}?X ~ [!{a2, a3}? Y ~ PhI (X)]]

Phl({iII,il,i2}) }-[I{ 0 I 2}?X' [I{ 0 I 2)?Y Phl(Vl]]Ph J({ iO, if , i3}) =. a ,a , a . --+. a ,a ,a . --+ .1

Phl({iII,i2,i3}) }-[I{ 0 2 "}?X [I{ 0 2 ")?Y PhI (!')]]PhI ({ if , i2, i3}) =. a ,a', a,J. --+. a , a , a,J. --+ "

Phl({iO,il, i2,i.1})= [!{aO, al ,a2, a3}?X ~

[!{aO,al,a2,a3}?Y ~ PhIIX)IJ

Figure C.I: Expansion of the first phase of the sorter pipeline in originaJ time frame

181

It n'm<lins to calculate S 101.1.'(2 j 0, {}, Phs1).

For all .\ ~ {iO, i1 ,i2, is} we define:

SPhl(X) =' Slow(2, O,{},PhI(X))

Now

SPhl({})

{ expanding definition of SPhl

5 lowl2, 0, {}, PhI ({)))

{ expanding definition of PIli }

S low~ 2,0, {}, [!{}? X ~[!{)? y ~ PhI (X)1])

{bya~20 }

[!{FX ~ 5 /ow(2, I , X, [!{}'? y ~ PhI (X)])]

{ bya-20 }

[!{}?r ~ 5/ow(2,0,X,Pld(X))]

{ by note on page 124 }

[!{}'!X ~ 510w(2, 0, {}, Phi (.1'))1

{ by definition of SPh.1 }

['U'" ~ SPhl(X)]

Hence, cOlltinuing in this ma.rmet, and by the uniqueness of solutions to guarded
recursive equations we have t!tat

5 Im'12, 0, {}, Ph,d) '= PI ({})

where Pl is defined in Figure 'j .6.

C.2.2 Composing pipes

Recall tha.t we]u'ed to evalu<l.te an expansion of:

S fowl3. 0, {}, (Phasc1'» Phase:J') » Pha5f.'j')

which enables us to deduce the effect of this pipe of length 1.

By Theorem 7.5

S 10111(.'1.0, (Phasd' »Ph.ase2') » PhaseS')

" 510w(2,0. {}. (510w(2,0, {}, Phasd' ~ Phase2') ~ PhaseS'))

So as a first step we should f'va.lua.te S lou:(2. 0, { }, Phasel' » Phase2')

lR2

Now

Phasd'» Phase2'
::= {definition of processes and chaining

PI({)) II P2({))\{aO,al,a2,a3}
== {expanding processes }

['{)? X ~ P1 (X illll!{)? X ~ P2(X)] \ {aO, ai, a2, a3} = {by a-l0 }
I!{}? X ~ (P 1(X i11P2({)))I \ {aO, ai, a2, a3} = {by a-13 }
I!{}" X ~ (PI (X)11P2({))) \ {aO, ai, a2, a3}]

== { expanding processes }
[lUi X ~ (l!f,(X)? Y ~ PI (1')]11[,{}" Y ~ P2(Y)]) \ {aO, ai, a2, a3}]

= {by a-10 }
['()?X ~ (I!{)? Y ~ (PI (rJlIP2I!,(X)))]) \ {aO, ai, a2, a3}]

= {bya-13}
I'{)?X ~[!{} n ~ (PI (rJIIP21!, (X))) \ {aO, ai, a2, a3}!)

So
5 low(2, 0, { }, Phase]' » Phast2')
{ by a-"20 and using above expansion }

I!{},X ~ Slow(2, 1, X, [!{}? Y ~ (PI (Y)lIp21!, (X))) \ laO, ai, a2,a3}])]
{ by a-20 }

I!{}?X ~ Slow(2, O,X,(Pl(Y)IIP21!,(X))) \ laO, ai, a2, a3})]
{by note on page 124 and defn. of chaining }

I!{},X ~ 5 low(2,0, {}, (P 1(Y)>>P21!, (X))))I

Continuing in this manner we can show that

Slaw(2, 0, II ,Phase!' » Phase2') = P12({})

where P12 is given in Figure C.2.

Using the results above a.nd the same approach we can show that

Slaw(2, 0, ll,P12» Phase3') =P13({))

where PI3(X) '" l!f13 (X)? l' ~ PI3(!')] for X ~ {iO,il,i2,i3}

j
ll iflXI=O
laO} if IXI ~ 1

andf13(X) = {aO,ol} if IXI = 2
{oO,ol,02} if IXI ~ 3
{oO,ol,02,o3} iflXI=4

183

From this the effect of Slow(3,0, n, (Pha.se1'» Phase2' » Phase3')) can be de­
duced.

PI?(X) '" [1!dX)?Y ~ F12(YII

where 11 is defined over the domain IP'{ 10, £1. i2, i3} ?LS follows:

!,,[{i0}) } !,d{iO, i1}) }~{bO b2}
!,,({i2,i.9}) ,!,,[{i1})

!"I{i2}) ={bO} !,,({iO,il,i2}) }
!"I{i.9}) !"({i0,'~.,,.9}) ~{bO,bl,b2}

!" ({ ,0, ,2, '3)) !,,({dJ,i2}) }

!d{d,i2}) !"I (,1, i2, i.9})

!,,({ill,i3}) ~{bO,b1}
 !d{ iO, ii, i2, i.9})=(bO, bl, b2, b.9)
!,,({iJ,i.9}) !,,({))=(}

Figure C.2: The first two phases of tbe sorter pipelinE'

18,\

Bibliography

[BBBS] T. Bolognesi and E. Brinksma.. Introduction to the ISO specification
language LOTOS. Computer Networks and ISDN Systeru, 14(1),
January 1988.

/BH901 J. C. M. Baeten and J. A. Bergstra. Real space process algebra.
Technical Report P900.'), University of Amsterdam, Programming Re­
search Gronp, 1990.

[BI391il,] J. C. M. Baeten andJ. A. Hergstra. Real time process a.lgebra.. Fo'rmal
Aspects 0/ Compufing, :3('2):142-188, 1991.

[BB9lh] A. Benveniste and G. Berry. The synchronous approach 10 reactive
and real-time systems. Proceedings of th.e IEEE, 79(9):1270-1282,
September 1991.

[BG92] G. Berry and G. Ganthier. The ESTEREL synchronous programming
language: design, sema.ntics, implementation. Science of Compute.T
Programming, 19(2):87-152, 1992.

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of
communicating sequential processes. Journal 0/ the ACM, 31(3):.560­
599, 1984.

[Bh.84] J. A. Bergstra and J. W. Klop. Process algebra for synchronous
communication. In/ormation and Control, 60:109-137, 1984.

[BL92] T. Bolognesi and F. Lucidi. Timed process algebras with urgent inter­
actions and a unique powerful binary operator. In Real- Time: Theory
itt Practice, LNCS 600. Springer-Verlag, 1992.

[BIGSS92j A. Benveniste, P.le Guernic, Y. Sorel, and M. Sarine. A denotational
theory of synchronous reactive systems. In/ormation and Computa­
I;on, 99:192-230, 1992.

185

[BM79] R. S. Boyer and J. S. Moore.
Press, 1979.

A Computational Logic. Academic

[Bou85] G. Boudo!. Notes on algebraic ca.lculi of processes. In K. R. Apt, edi­
tor. Logics u71d Models of Concurrent Systerns, volume F13 of NATO
AS! Series. Springer-Verlag, 1985.

IBR85] S. D. Brookes and A. W. Roscoe. An improved failures model for
communicating processes. In Pl'ou:edings of the Pittsburgh Seminar
on C'onrIJrrcncy, LNCS 197, pages 281-305. Springer-Veda,g, 1985.

[B1"083J S. D. Brookes. A Modd for Commu7Il:cating Sequential Processes,
D.Phil. Thesis. Oxford Ulli\'(:'~l'sity, 1983.

[B'1'891 A. Bronstein and C. 1. Talcott. Formal verification of synchronous
circ11its hased on strillg~fllnctio[jal semantics: The 7 Paillet circuits
in Boyer-Moore. In A lltfnnalic l/fCrifiealion Alethods for Fl:nitf State
Systems, LNCS 407, pages 317-333. Springer-Verlag, 1989.

[Che91] Liang Chen An interleaving model for real-time systems. LFCS
&port ECS-LFCS-91-184, Laboratory for FoundatioIl:,! of Computer
Sciellce, University of EcliIlhurgh, 1991.

[CLM911 E. M. Clarke, .Jr., D. E. Long, and K. 1. McMillan. A langua,ge for
composi tional specification and verification of finite state hardware
controllf'fs. Proceedings of the IEEE, 79(9):1283-1292, September
1991.

[CR85] J. E. Coolahan ..1r. and N. Rous!>opoulos. A timed Petri Net method­
olog~' for specifying real-t.ime system requirements. In P1'Oceedings
of thf Intf1"1wtional Wo'rkshop on Timed Petri Nets, pages 24-31,
Toronto. Italy, 1985. JEFE.

[Dau92] M. Daniel!>. ~Iodelling reill-time behaviour with an interval time cal­
cnlus. In Formal Techm:fJllf,s in Real-Time and Fo.1dt-Tolerant sys­
term. LNCS 571, pages 53-72. Springer-Verlag, 1992.

[Dav91} J. Davies. Specificahon and Proof in Real-Time Systems.
Thesis, Oxford Uuiversity, 1991.

D.Phil.

[Dil89] D. 1. Dill. Trace theory f()r allto'/uafic hicrarchical 'verification of
spfTd-indfpwdfnt r.irnlits. MIT Press, 1989.

186

[DS89j J. Davies and S. Schneider. An introduction to Timed CSP. Techni­
cal Monograph PRG-75, Oxford University, Programming Research
Group, 1989,

[DS92} J. Davies and S. Schneider. A brief history of Timed CSP. Techni­
ca.l Monograph PRG-96, Oxford University, Programming Research
Group, 1992.

[FKTM086]	 M. Fujita, S. Kono, H. Tanaka, and T. Moto-Oka. Aid to hierachial
and structured logic design using temporal logic and prolog. lEE
Proceedings, 133(5), 1986.

[FoI'92]	 Formal Systems (Europe) Ltd. Failurcs Divergence Refinement:
Us,;r" manual and tu.torial. 1992.

[GMA89]	 G. C. Gopalakrishni\.lI, N. S. Mani, and V. Akella. Parallel com­
position of lockstep synchronous processes for hardware ~'aJjdation:

divide-and-conquer compositioll. [n Automatic Ve7,fication Method3
f07' Finite State Syslem!3, LNCS 707. Springer-Verlag, 1989.

[GoI'85]	 M. Cordon. HOL: A machine oriented formulation of higher order
logic. Technical Report 68, Cambridge lhliversitYl Computing Labo­
ratory, 1985.

[Gm86]	 M. Gordon. Why higher-order logic is a good formalism for specifying
and verifying hardware. In Formal Aspects of VLSI Design. North­
Holland, 1986,

[Har87/	 D. Hare!. STATECHARTS: A visual formalism for complex systems.
Sci,;nce of Computa Programming, 8(3):231-274, 1987.

[Hen88)	 M. Hennessy. An Algebraic Theory of Processes. MIT, 1988.

[Hoa85]	 C. A. R. Hoare. Commu.nicating Sequential Processes. Prentice Hall
International, 1985.

[Hoa86]	 C. A. R. Hoare. Communicating Sequential Processes Exercises and
A nswer·s. Prentice Hall International, 1986.

[Ho090]	 J. Rooman. Compositional verification of distributed real· time sys­
tems. In H. Zedan, editor, Real-Time Systems, pages 1-20. North­
Holland, 1990,

[HR90]	 M. Hennessy and T. Reagan. A temporal process algebra. Technica.l
Report 2/90, University or Sussex, Computer Science, 1990.

187

[HSZFH92]

[IEE85]

[Jal.:92]

[Jef91a,]

[Jef9!b]

[JIIH89]

[Jo,92]

[JS90]

[KdR8ol

[KP92]

[MF76]

[MiI83]

[MiI86]

[Mi189]

C. Ho-S'uM', H. S. M. Zed.n. M. Fa.ng, and C. M. Holt. PARTY:
A process algebra with real-t.ime from York. Technical Report yeS
177. Vni ...·ersity of York, Department of Computer Science, 1992.

:302..5; Token Ring Access Afethod, New York, 198.5. IEEE.

D. M. Jarhon. LOglcrd Verification of Reaeti'vf Software Systems.
D.Phil Tbesis, Oxford University, 1992.

A. Jeffrey. Discrete 1'inwd esp. PMC Memo 78, Cha,lmers Univer­
~ity, Progl'amIIling rvlethodology Group, 1991.

A. Jeffrey. Abstract timed observation and process algebra. In CON­
CUR '91, LNCS 527, pages 332-345. Springer-Verlag, 1991.

M. B. Josephs, C. A. H. Hoare, and HE" Jifeng. A theory of asyn­
duonous pron'sses. Technical Report TR-7-89, Oxford University
Computing L"boratory, 1!J89.

M. B. Josephs. Receptive process theory. Ada Informatica., 29(1):17­
:31. 1992.

C. Jones a.nd M. Sheeran. Circuit design in R.uby. In Formal meth.ods
fOT VLSI design. pages 13,-70. North-Holland, 1990.

R. Koyma.ns and W. P. dt' HOf',·er. Examples of a real-time temporal
logic specification. In Thf Analysis of ConCllrn:nt Systfms, LNCS
207, pages 2:31-252. Springer- Verl",g, 1985.

'{. Kestf'n and A. Pllueli. Timed and hybrid Statecharts and their
t.extllal representation. In FO'l'nwl Tech.niques in Rful- Time and Fault­
Tolerant Systems, LNCS .571, pilges 591--620. Springer-Verlag, 1992.

P. 1'01. fl..ler\in "nd D. J. [""rber. Rccovf'rability of cOffilllunic",tion
protocols - implications of a. t.heoretica.,l st,udy. IEEE Tmnsachons
on Comm'lt71imtiol/s, CO:r-.1-2'1(9), September t976.

R. Mill1f'l". Calculi for synchrony and asynchrony. Theoretical Com­
put('r Snc1la, 25:267 -:]]0. 1983.

G. .J. f>.lilne. Towards vrC'fifiahly correct vlsi design. In Formal Aspects
of I''LSI Design, North-Holland, 1986.

R. Mihwl'. Communica.tion and Conc11'l'Tency. Prentice-Hllllinterna­
lion a!. 1989.

188

[MP92]	 Z. Manna and A. Pnueli. The Tfmporal Logic 0/ Reactive and Con­
current Systems: Specification. Springer-Verlag, 1992.

IMT90]	 F. Moller and C. Tofts. A temporal calculus of communicAting sys­
tems. In CONCUR '90 Theories 0/ Concurrency: Unification and
Extention, LNCS 458, pages 401-415. Springer-Verlag, 1990.

[MT91]	 F. Moller and C. Tofts. Relating processes with repeet to speed. LFCS
Report ECS-LFCS--91-143, Laboratory of Foundations of Computer
Science, University of Edinburgh, 1991.

[NS90]	 X. Nicollin and J. Sifakis. The algebra of timed processes ATP: The­
ory and application. Technical Report RT-C26, LGI - IMAG, Greno­
ble, France, December 1990. (Revised version).

[OMdFE91]	 Y. Ortega-Mallen and D. de Frutos-Escrig. A complete proof system
for timed observations. In TAPSOFT'91, LNCS 493, pages 412-440.
Springer-Verlag, 1991.

[Pet77]	 J. L. Petersoll.. Petri net.s. Computing Surveys, 9(3):223-252, 1977.

[PH88]	 A. Pnueli and E. Hard. Applications of temporal logic to the spec­
ification of real time systems. In Proceedings 0/ a Symposium on
Formal techniques in Real-Time and Fault-Toler'ant systems, LNCS
331, pages 84-98. Springer-Verlag, 1988.

[Plo81]	 G. D. Plotkin. A structural approach to operational semantics. Tech­
nical Report DAIMI-FN-19, Computer Science Dept, Arhus Univer­
sity, Denmark, 1981.

[Putln]	 A. Pnueli. The temporal logic of programs. In Proceedings of the 19th
Annual Symposium on Foundations 0/ Computer Science. Providence,
R.I.,1977.

IQAF90]	 J. Quemada, A. Azcorra, and D, &utos. TIC: A timed calculus for
LOTOS. In S. T. Vuong, editor, Formal Discription Techniques, II,
Proceedinys 0/ FORTE'8Y. North-Holland, 1990.

[QF87]	 J. Quemada and A. Fernandez. Introduction of quantitative relative
time into lotos. In Prot.ocol Specification, Testing and Verification
VII. North-Holland, 1987.

[Rei85]	 W. Reisig. Petri Nds: An Introduction, volume 4 of EATC'S Mono­
9raphs on Theoretical Computel' Science. Springer-Verlag, 1985.

189

[Ro,SSa]	 A. W. Rascof'. An alternalive order for the fallures model. Technical
repurt, Oxfonl University, Programming Research Group, 1988. In
[Ro,S8b].

[RosSSb]	 A. \V. Roscoe. Two papers on esp. Technical Monograph PRG-67,
Oxford UIliversity,. Programming Hpsearch Group, 1988.

[RR86j	 G.),1. Reed and A. \V. Roseof'. A tiowd model for communicating
sequPlltial processcs. In Procu'diugs 0/ ICALP'86, LNCS 226, pages
:JI4-:tl3. Springer-Verlag, 19:-36.

[RH87]	 G.1'1. Reed anti. A. W. Roscoe. Mdric spa-ees as models for real-time
concurrency. In P1'ocrrdinys oj [hiI'd Workshop on the Mathematical
Foundatio1Js 0/ Pl'Ogmmming, LNCS 298. pages 331--34:3. Springer­
V('rl<\~. H~87.

[Sch90]	 S. A. Schneider. Corrccfnpss and Commu1/l.calion of Real-Time Sys­
tpUiS. I).Phil. thesis, Oxford University, H190.

[5ch91]	 S. A. Schlleidpr. The wClldldog timer in Timed esp, June 1991. BRA
pl"Oject 3U!)6-·SPEC Delivprable.

[She8(;J	 J\1. Sheeran. Design and vprilkation of regular synchronous circuits.
lEE P"ocpedings, 13:3(:3). 1986.

[St077]	 .J. E. Sto.y. Deno/atjall-al Semantic.,,: Thp /',coll-Strachey Approach. to
Programl/lin.q Langllllgt Theal'y. MIT, 1977.

ITan8<)]	 A. S. Tallenhaum. ComputrJ' .Networh,. Prentice-Hall International,
second edition, 1989

[Ta"''>1	 f\. Tluski. A Jattin"-lhf'oreticill fi:..:point theorem alld itl' applications.
PaC/jie JV'll'r'/lal of Mathrmntic:'l, ,1):285-309, 195,5.

[Thi86]	 P. S. Tbiaga.ritjau. Elf'lllelllary llet :-:y:'ltems. In Petri Nets: Cen­
tml kIm/pis and Th.ci/' Pmpel'tif'8, LNC5 254, pages 26-59, Spl'inger­
v'erlag, 1986.

11'00(1:3]	 M. Tooley. Ehctm1/ic CirCilifs Handbook. Hutterworth-Heitlmann
Ltd, sf'cond edition. IU93.

[Yi91]	 Wang '{i. CC'S + Tillif' = all inleriea\'ing model for real-time systems.
In !CALP'91 Proceedings. LNCS 510, pages 217-228. Springer-Verlag,
1991.

j~O

Glossary

Syntax

~

n
[X<::A ~ Px]
o

" [!B'X - Pxl

II

\
PIS]
/lz:A.P
/lx:I,O·p
(:r.i == Pi)] with A
wait(n) -I- P
STOP
(J."-+ P
c!e .,
C.X

'(oj
ohan(P)
outl P)
.n(P)
eo(P)
-:P

SCSP
SCSp o

SCSpJ

SRPT
SRPTo
SRPT'

chaos
non-deterministic choice
set prefix (SCSP)
choice in set prefix
default in set prefix
output prefix lSRPT)
pa,rallel composition
hiding
renaming
recursion (SCSP)
recursion (SRPT)
mutual recursion
waiting
deadlock
event prefix
output term
input term
dab SE't on channel
channels
output rha,nneIs
input channels
non-communication events
chaining

synchronous language terms
non-recursive SCSP terms
closed SCSP 0 terms
synchronous receptive langua.ge terms
uon-recursive SRPT terms
dospd SRPTo terms

191

7,76

8, 76

8

10

10

77

la, 78

1l,78

11,79

12

80

13

14

14,80

16

56

56
 .,.,
55

55

55

55

135

7

35

42

76

92

llO

Semantics

E
A
If
A
STA

Rho
u
n

sutumte(IA(s)

ill
!ea3;ble(B)
T
TjS

SM
SM·{
SM]
RM
<;;

VaT '"
BIND
BINDR

p
a
..\1
T
a
."1 R

Tn

0

univer,:;al alphabet 29

alphabet 29

refusal alphabet 29

observation alphabet 29

all traces with alphahel A (SCSP) 29

a.ll traces with alphabet.~ J & () (SRPT) 86

union 29, 30

intersectioll 29

subtraction 29

trace predicat.e 30

Lrac(> memb{'Tship 30

set prpdicate :)0

maximal behaviours 87

re!ltrktion 87

model for SCSP 32

model restricted t,o alphabf't A 32

trace projection of model :12

model for SRPT 89

non-determinism ordf'f 32

illformatioll order 89

variables 33

domain of bindings (SCSPJ 33

domain of bindings (SRPT) 92

variable binding (SCSP) 34

variable binding (SRPT) 92

semantic mapping for SCSP 33

tra.({' projection of M 35

alphabet projection of M 35

sernal\tic mapping for SRPT 92

trace projection of M R 93

input alphabet projection of.M·r.. 93

output alphabpf, projection of M n 93

192

Proof SysteIIls

SCSP SRPT
c: nOll-uelernliuism order 4l C:R non-determinism order 110

eqn.ivaJence 42 =R equivalence 110

f- theorem ,13 f- R theorem 111

-< synta.ctic approximat.ion SO -<R syntactic approximation 117

FIN!P) a,pproximatioTis of P ,50 FlNR!P) approximations of P 117

A- axiom a· axiom
L- law 1- law

Embeddings

() embedding of Ri\f in SAl LOa r/.J image of trace 100
o embedding of SR PT in SCSP WI) 1/-11 image of ma.x.imal trace 100
'II embedding of B/NDR in Bl/VD 107 'Y output saturation LOa
d> tracE:' projertion of 41 100

Timewise Abstraction and Pipes

Slow thnewise abstracl.ion operator 123 [p effect of pipe 134
choose t.race coul.ra,c liun 131 lp length of pipe 134
(?, trace mnl1.iplication 132 "'p pille equivaJence [35

Mathematical Symbols

N set of natural numbers I-I length of trace
R set of real llllInberB U least upper boun~

P powf>Tsel oppratof n greatest lower bound
If set of <1.11 finite subsets flx fixed point operator
{} empty set
A" finite tra.res defined a.tl

(.) trace o end of proof
() empty trace end of theorem •

concatenation o end of definition

193

