
Design, Implementation and Evaluation

of a Declarative Object-Oriented

Programming Language

Adolfo J. Socorro Ramos

Wolfson College

A thesis submitted in partial fulfilment of the
requiremen~ for the degree of Doctor of Philosophy

at the University of Oxford, Trinity Tt;>rm, 1993

Abstract

This thesis is a detailed study of FOOPS, a "wide spectrum" object-oriented program

ming language. FOOPS supports all ofthe classical features of the object paradigm, includ
ing classes, overloading. polymorphism, and multiple class inheritance with overriding and

dynamic binding. However, it goes beyond other object-oriented. languages in its facilities
for the specification. composition and reuse of modules. FOOPS is patterned after OBJ, a

functional programming language, and from which it derives several of these facilities.
The type system of FOOPS distinguishes bet\\'eell sorts, which are collections of val

ues (immutable entities), and classes, which are collections of objects (mutable entities).

Moreover, both of these are different from modules, which may declare together several re
lated sorts and classes. lnheritance exists for all of these. Sort and class inheritance concern

the hierarchical classification of values anu objects; modole inheritance supports code reuse

by importation.
Theories are special kinds of modules that serve to classify other theories and modules

by the syntactic and semantic properties that they satisfy; they are mostly used to constrain

the actual arguments to parameterised modules. So-called views are bindings that express
how a theory is satisfied by another theory or module, allowing many-man,' relationships

between them.
FOOPS is declarative in that it uses axioms to define the properties of functions,

attributes and methods. Also, there is a formal semantics given by a deduction system,

which can be used to prove properties of FOOPS programs.
FOOPS supports design in the same framework as specification and coding. Designs

are given as module expressions, and when they consist of executable modules, can

be composed to produce rapid prototypes. Module expressions can describe both vertical
structure, which relates to implementation layers, and horizontal structure, which con

cerns module aggregation and specialisation. Furthermore, built-in modules can be used
to interface other languages, and can also appear in module expressions. Finally, views can

be employed to capture relationships of refinement and evolution of system designs.

This thesis considers the design of FOOPS, explaining all its features and examining
their application to the design and development of object.-oriented systems, Also, it de
scribes a prototype implementation of FOOPS that was bnilt using facilities given by the
implementation of OB.13, and which supports most features. Moreover, this thesis performs

an in-depth evaluation of FOOPS that focnses on large-grain issues such as the distinction
between classes and modules, modulpinstantiation with views, vertical and horizontal struc

turing, and integrated support for specification and prototyping; comparisons with many
other languages are given. Additionally, t.his thesis presents a detailed summary of current
work towards a mathematical semantics for FOOPS, inclnding order-sorted algebra, hidden

order-sorted algebra, and the theory of institutions. Examples motivate OUl" discussions
throughout, and an appendix expands some of those that appear in the body of the thesis.

Acknowledgements

If I h,/J,lif .'leen /urlher It i.s beclluse J
Iltllnd on the shoulders of giants.

- Isaac Newt.on

I firnt wish to thank my supervisor, Professor Joseph Goguen, whose work is the basis for

this thesis, and who provided careful ad....ice and direction to the research that is reported

here. I am also very gratefnl for his continuous "trarts to help me concentrate on fundamental

aspects, and for sti.mulating my interest in being a better writer.
My fellow students and research officers in the Declarative Languages Group gave me

a forum to express not only ide<l.S. but also doubts. I am particularly indebted to Antonio

Alencar, Paulo Boroa, Jason Brown, IUzvan Diaconescu, Hendrik Hilberdink, Tom Kemp,
Grant Malcolm and Lucia. Rapanotti. The Category Theory Study Group helprrl me un

derstand mathematical foundat.ions: Jose B<l.rros, Jason Brown, Lub Hamel, and especially

Antonio Alpncar.

I was fortunate for the kindness of those who rpad drafts of this thesis and provided

valnable suggl'Stions on how to improve it. My examiners, Professor Hans-Dieter Ehrich and

Bernard Sufrin, noted several a.'3pects that needed clarification and uncovered typographical

errors. Augnsto Sampaio contributed extensive COmments on sevpral chapten;, and Igna

cio Trejos~Zelaya carefully read some chapters. Paulo Borba and Razvan Diaconescu also

deserve my gratitude.

I have had the pleasnre to correspond with people external to Oxford who have helped

me understand what I was trying to do. I wish to thank Professor Don Batory, of the

University of Texas, and Professor Ehrich and his group at the Technische Vniversitat

Braunschweig, Germany. Also, my supervisor at the University of Massachusett~, Professor

David Stemple, is fl'Sponsible for much of my earlier interest in Computing Science and

encouraged me to come to Oxford.

I am very thankful to Tracy Fuzzard of Wolfson College who so willingl}" took care of

much administrative drudgery.

In Oxford I met tbree people whom I now cOnBider family, and they are re>ponsible for

much of my residual sanity. They always had time to listen, to hetp, to laugh, and to worry,

not to mention cook (the little one also screampd and cried). They are among the kindest

people I have ever met. Claudia, Augusto e Gabi, eu vou ter muita8 3audades de voces.
Other friends in Oxford have made it all more bearable. My sincere thanks go to Paulo

Borba and Ignacio Trejos-Zelaya, and also to Janelle and Luis Montaner.

My friend Frank shared the diffieultil'S of being a PhD studpnt, and he always had an

ear to tend and good advice to give from this vantage point. Thank you, Fmnk.
A large amount of my everyday inspiration to work was due to the encouragement and

love of my family and friends at home, and to the thought that one of the rewards of

finishing :his thesis would be our reunion. Even though I was not always able to explain
exactly what I was doing, why I had come so far to do it, or why it was taking so long, they

firm!y stood by me.
My mother has lived up to thaI title like no other person I know, and her uufailing

support in both the peaks and the slumps has beell vital. This achievement is as much hers

as it is mine. Gracias Mami.
My grauduJother supplied weekly cheer to work hard and concentrate, always in the

character:Stic style with which she loves, Grocias Mtma.

My aunt Saida has al60 seen me through some tough times and I have been blessed with
receiving much of the affe~tion that ~he !'l0 happily gives to all. Gmcias htl Saida.

Some other aums and uncles haw always believed in me. I am grateful to tiD Chiqui,

tio Junior, tio Victor, tio Arturo and titi Milagros, and tio Meeo and titi Zulma. Two other

relatives whom 1 loved dearly are no longer with us, but their memory has been a constant
source of inspiration: Abita and titi Bare remain in my heart.

A close friend of our family has unceasingly been a supporter of mine, and lowe her

much gratitude. Gracias Miriam.
My friends at home always receive me with oj)en arms, and fortunately our closeness

has not withered across the miles. Cassie and Posky always had time to put pen to paper;

Chino has been a great ally; and Hector, Javi, Juan Carlos and Luis have b~n remarkable.
Gmcias hermanos.

Two more-recent friends have also been heartening: Don William and Dona Miriam.

Last on this list of relations, but by no means least, my girlfriend Tita has given me
love, support, encouragement, aud much needed hu!';s and kis~e~;. Linda, we beat all the

odds. Nue!Jtro momento llega.
Finally, I wish to gratefully acknowledge the foUowiug for their financial support through

out my ~turlies: Administracion de Fomento Economico de Puerto Rico; Committee of
Vice-Chancellors and Principals, United Kingdom; National Science Foundation, U.S.A.;
Science and Engineering Research Council, United Kingdom; Wolfson College, Oxford; and

Mami, Wi Saida and Miriam.

. m

~
;-;

~

.E. .~
~

"'0 8

" ",<
0

e
R

'B
. 0

"w

"BCD
'0

.,;

:;;" W

0 ~

'0

-0
'0

0

.
~

~

0

.<!l
m

.el

w

0

."
e

.
~

-"

~
f-<

'"

Contents

Introduction 1

1.1 Object-oriented Systems 2

1.1.1 Origins and Cnrrent Research 3

1.2 Object-oriented Design. 4

1.3 Software Reuse 6

1.4 Aspects of FOOPS 7

1.4.1 Parameterised Programming 9

15 Contributions of this Thesis 10

1.5 Overview of Subsequ('Dt Chapters. 11

2 Modules 12

2.1 Functional-level Modules. 13

2.1.1 Sorts and Subsorts 13

2.1.2 Functions and Terms . 14

2.1.3 Parsing and Qualification 17

2.1.4 Inheritance Diagrams 19

2.1.5 Axioms and Evaluation 19

2.1.6 Flexible Typing and Error Handling 25

2.1.7 Function Properties 28

2.1.8 Order of Evaluation 30

2.2 Object-level Modules. 30

2.2.1 Classes and Subclasses . 31

2.2.2 Attributes 32

2.2.3 Creating Objects 33

2.2.4 Methods. 40

2.2.5 Deleting Objects 44

2.2.6 Invalid Object Identifiers 44

2.27 Redefinition and Dynamic Binding 45

2.2.8 Inheritance Diagrams 48

2.3 Summary 49

Contents U

3 Module Reuse and Interconnection 50

3.1 Module Hierarchies 51

3.1.1 Principal Constants 55

3.2 Theories 55

3.3 Abst ract Classes 57

3.4 Parameterised Modules 59

3.5 Views and Ill£tantiation 61

3.5.1 Module Inst.antiation . 65

3.5.2 Verification of Views 68

3.6 Module Blocks and Higher-Order Composition 69

37 Jlodule Expressions 70

3.8 Encapsulation Rules 73

3.9 Vertical Strncturing and Information Hiding. 74

3.9.1 Attribute and Method Visibility 75

3.9.2 Funct.ion Visibility 77

3.9.3 Sort and Class Visihility 77

3.9.4 Vertical Module Importation 77

3.9.5 Vertical Parameterisation 78

3.9.6 Views 79

3.9.7 Type Checking 80

3.9.8 A Note on Language Design. 81

3.10 System Design and Prototyping . 81

3.11 Summary 83

4 Formal Semantics 84

4.1 FuuctionaJ~level Semantics. 85

4.1.1 Order-Sorted Algebra 85

4.1.2 Order-Sorted Couditional Equat.ional Logic 95

4.1.3 Term Rewritiug . 96

42 Object-level Semantics 98

4.2.1 Hidden-Sorted Algebra. 99

4.2.2 Reflection 104

4.3 Semantics of Parameterised Programming 107

4.3.1 Institutions 107

4.3.2 Theories . 109

4.3.3 Dependent Theories llO

4.:J.4 Coustraints llO
t3.5 Instantiation ll3

4.3.6 Module Hierarchi~ . ll3
4.3.7 Module Expressions ll4

4.4 Summary ll5

Coo tents	 iii

5	 Implementation 116

51 Modules 117
5.2 Sorts and CI~	 117

5.2.1 The Class Table	 119
5.3 Objects ..	 120

5.3.1 Object Creation	 121
5.3.2 Entr'y-time Objects.	 122
5.33 Object Destruction.	 122

5.4 Attribute Axioms .	 123

5.4.1 Dangling References	 123

5.5 Method Axioms.	 124

5.6 Class Inheritance and Redefinitions.	 126
5.6.1 Dynamic Binding.	 127

5.7 Theories, Views and MOd\lle Expressions.	 127

5.8 Further Work	 126
5.9 Summary and Conclusions.	 130

6	 Evaluation and Comparison with other Languages 131

6.1 Objects and Values.	 132

6.1.1 C++.	 133
6.1.2 Eiffel.	 133
6.1.3 Oberon-2	 134

6.1.4 Smalltatk	 134

6.1.5 FOOPS	 134

6.1.6 Conclusions	 134
6.2 Classes and Modules	 135

6.2.1 Other Languages	 139

6.2.2 Summary and Conclusions.	 139

6.3 Rena.ming	 140
6.3.1 Eiffel .	 140
6.3.2 FOOPS	 143
6.3.3 Other Languages	 145
6.3.4 Summary and Conclusions .	 145

6.4 Class Inheritance	 146
6.4.1 Kinds of Inheritance	 146
6.4.2 Redefio.ition and Dynamic Binding	 146
6.4.3 Inheritance Conflicts	 148
6.4.4 Summary and Conclusions . 151

65 Genericity 151
6.5.1 Ada a.od Ada 9X	 151
6.52 C++.	 152
6.5.3 CLU	 152

7

Contents ;v

6.5.4 Eiffel.

6.5.5 ML.
6.5.6 Modula-3

6,5.7 Oberoo-2

6.5.8 P++.

6.5.9 Smalltalk
6.5.10 FOOPS

6.5.11 Comparison wit.h Constmined Genericity
6.5.12 Comparison with Higher-Order Capabilities

6.5.13 Snmmary and Conclusions.
6.6 Information Hiding

6.6.1 Ada and Ada 9X

6.6.2 C++.
6.6.3 Eiffel.
6.6.4 Oberon-2

6.6.5 Smalltalk

6.6.6 FOOPS
6.6.7 Summary and Conclusions.

6.7 System Design and Development
6.8 Summary

Summary and Further Work

7,1 Further Work

A Formal Syntax for FOOPS
A.l Lexical Analysis

A.2 Functional-level Modules.

A.3 Object-level1-fodules.
A.4 Views and Module Expressiolls
A.5 The Top Level

B More Examples

B.l Bank Accounts

R.I.l Computing with Metaclasses
B.2 A Resource Manager

B.2.1 Auxiliaries
B.3 Herators

Bibliography

152

152

154

155

155

155

156

156

157

158

158

158

160

161

161

161

161

162

163

164

166

168

169

169

170

171

173

174

177

177

180

182

185

191

199

Chapter 1

Introduction

Complexity [. .. } seems to be an essenttal property (Jf all

large software systems. By e,uentJal we mean that we

may ffla5ter tlus oomplentv. but we can never make it go

away.

- Grady Booch

The object paradigm ad....ocates the design and development of systems as structured col

lections of objects that communicate with each other, have local storage, and persist and
evolve with time. The paradigm represents an evolution and maturation of ideas in pro

gramming languages, data abstraction, modularity, communication and hierarchical system

organisation. Because system structure is based on the entities being modelled, it is claimed
that the use of obje<'t-oriented techniques leads to systems that are easier to mamtain and,
furthermore, that the resulting software is more reusable. The first c\aim has to do with
the observation that what changes most in a system are its functions, not the ",ntities it

manipulates; the reusability claim is rooted in the belief that object descriptions often tran

scend particular applications. These two promises have aroused much excitement in the

computer industry, which has had difficulty coping with software systems of increasing size
and complexity. In addition, the continuously diminishing cost of hardware. together with

spectacular advances in machine capacity and performance, has placl'd !'!oftware issues on
centre stage.

Objects are aL<;o natural units of concurrency and distribution. because their local storage
wd communic(l.tion aspects directly reflect the dispersal of entities in a system and of

memory iu computers. Moreover, objects are a unifying concept in Computing Science; they
arise in programming languages, databases, knowledge-representation systems, graphical

user interfaces, machine arcbit.ectures and in many other places. Finally, the basic intuition
of software artifacts tbat correspond to the entities of the application domain appeals to
both software engine€rs and individuals from otber disciplines, and this should improve
their ability to communicate.

The purpose of this thesis is t.o discuss the design, prototype implementation and prag

1.1 Object-oriented Systems 2

matics of FOOPS, a wide-spectrum object-oriented language l . FOOPS provides abstract
data types, objects, classes, overloading, polymorphism. inheritance with overriding, and

many additional facilities that go beyond what other current-generation object-oriented
languages offer, including parameterist'd modules with semantic interfact' requirl"'ments, a
module interconnection language that can he used to compose modules both vertically and

horizontally, and "mixfix" syntax for functions, attributes and methods (Section 1.4 ex
plains all these fea.tures). FOOPS is patterned after OBJ [53), a functional specification

language, from whkh it derives sev('ral of these facilities; in fact, FOOPS retains OBJ as a

sublanguage.
FOOrS was first de~cribed by Goguen and ~Iesegller in [48]. On the one hand, it. was

recognised that functional programming offered declarativeue;;s and simplicity of language
design, hilt that its lack of a notion of state made very unnatural the specification and

implement.ation of networks and database systems, fOr example. On the other hand, object
oriented programming provided state but lacked dedarativeness and formal foundations.

Thus FOOPS used abstract data typt's as its fOlludatioll, with a formal semantics based on

algebra and category theory. Mnch infiuellLe came from earlier work by the same authors on
order-sorted algebra [49). a logic of inheritance. and on abstract machines [47J; a more recent

development by Goguen is hidden-sortp.d algebra, which formally capt ures basic intnitions
about encapsulation and information hiding [39,43]. Furt.hermore, FOOPS ran be seeu a.<;

hringing state-of-the-art module tet:hnology to object orientation.
In the sections that follov.· we discuss the object-oriented paradigm in more detail, and

also tra.<,·e its early influences. \Ve then discuss the reus~ of software, followed hy an overview

of the characteristic aspects of FOOPS. To conclude, we examine the contributions of this
[hesis and provide an onttine of the chapters to come.

1.1 Object-oriented Systems

Each object in an object-oriented system has a unique identifier and belongs to a class,

where each class is associated with a set of attrihutes and a set of methods. Attributes
'lccess parts of the local storage ofthe objects of the class, wllile methods are the operations

that can change the state ofobjects. A form of information hiding is built into thi$ paradigm,
in that an object can only be npdated through the methods a...~ociated with its class. This

style of interaction between obj~ts is called message passing, but it is usually no more
than procedure invocation. There is also class inheritance, which refers to the hierarchical

organisation of classes to reflect th'lt objects can simultaneously belong to several classes
(e.g., at the same time, a person may he a teunis player, a teacher and a mother). When a
class 8 inherits from a class A, we say that B is a subclass of A and that A is a supercllL'ls of

B; moreover, inheritance is a transitive relationship. so that if C is a subclass of 8, then it is
also a suhclass of A, Multiple inheritance allows a cla...;;s to have more than one immediate
superclass. A class whose attributes and methods refer to objects of other classes is said

'The acronym ~tands for Functional aud Object-Oriented ProgTfl.mming Sy6tem, although we gelleral.ly
1I~ it to refer to the language thal it suppor'~'

1.1 Object-oriented Systems 3

to be their client. For example, a class Queue would be a client of the class of the objects

that queues store.
Class inheritance supports a form of reuse, hecause the attributes and methods as

sociated with a class inclnde those of its superclasses. This gives rise to so-called sub

class polymorphism, which allows an object of some class to be placed wherever an

object of any of its snperclasses is expected. For example, if SquareWindov is a subclass of
RectangularWindov, any software that manipulates rectangular windows can alsomanipu

late square windows, without any mediatmg conversIons 0'" "case" statements. Furthermore,
a subclass may redefine some of the methods it inherits; this may be desirable because

the nature of the class allows them to be more efficiently implemented, or because new
attributes need to be updated. For example, SquareWindov may reimplement the method

perimeter using the fact that squares have fOllr sides of equalleugth. Tben, an application

of method perimeter to au ohject bouud to some variable X of class RectangularWindov

will be resolved at nm-I.ime, based on the e.xact class of the object that X refers 10: if the
object is of class RectangularWindolJ, then the original perimeter method will be chosen; if

the object is of class SquareWindolJ, then the new perimeter method will be selec[ed. This

mechauism is called dynamic binding.
Subclass polymorphism and dynamic binding allow for variation in data structures and

algorithms in a way such that software is automatically accommodated to deal with. objects
of classes derived from existing ones. Said differently, these two mechanisms permit a
reconciliation hetween reusability and extendibility (77], and their combination is one of the

salient features of this paradigm.
Lastly, we note that there exist several variations on the tbeme, such as the re?lacement

of class inheritance by various forms of inheritance at the level of objects (for example. see
[69, 115]). Other variations occur in languages which support concurrency.

1.1.1 Origins and Current Research

Object-orientation grew out of Simula-67 [87], a discrete-event simulation language de
veloped in Norway by Nygaard and Dahl as au extension of Algol-60. Its emphasis on

simulatiou gave rise to the general idea that software artifacts should directly reflect the
entities beiug modelled. Simula-67 (or Simula, for short) included classes. objects with local

state, dynamic object creation, single inheritance, and redefinition and dynamic binding.

The lauguage also introduced garbage collection and heap allocation. Clearly, Simula was

ahead of its time.
In the late 1960s and early 1970s, the work of Alau Kay and his colleagues a.t Xerox's

Learning Research Group iu California led to the Smalltalk system, which is credited with

much of the early popularity of object-orientation. Smalltalk has uever been just a language,
but a revolutionary single-user environment. Besides the Simula influence, Srna.lltalk is a
synthesis of ideas from algebra (sets with associated operations), biology (enca~ulated cells

tbat communicate with each otber), operating systems (capabilities), Lisp (simplicity and
declarativeness) and interactive, graphical user interfaces (including the use ofthe mouse,
pens, and pop-up menus) [26, 63\. Kay's principal objective was personal computing, and

1.2 Object-oriented Design 4

several prototype machines that rail Smalltalk were then built at Xerox, aud they iucluded

the user-interface facilities just mentioned.
The late 1970's saw the advent of"C with classes," which evol\'ed into C++ [112], and

of the Smalllalk-76 and Smalltalk-80 ~ystems [56) (there wa:; also Smalltalk-72). C++ and
Smalllalk-80 an' currently the most widely used object-oriented languages.

The 1980s and early 1990s have experienced an explosion in the amonut of researcb
dedicated 10 object-oriented systems. There is much interest in linguistic. implementation

and environment issues, and several design and analysis notations have beel! proposed (for
example, see [8. 20, 116]). Also, there is a growing community of theoreticians trying to

explain ln~ formal semantics of object-orientation.

1.2 Object-oriented Design

Object-oriented design focuses on the data components-the objects-and not on algorith
mic abl>tractions or on the functions a system is supposed to perform. There exist various

reasons for this_ First, a successful system is soon asked to support further functionality
[11,24]; therefore, if its design was based on functions performed it will probably require

major structural changes. Also. changes in functionality are more common than chauges in
the kind of objects a system manipulates. In the words of Coad and YourdOI1 [20, page 29]:

The most stable aspects of a system are tbe classps and objects \vhich strictly

depict the problem domain aud the system's responsibility witbin that domain.
'Whether aIle specifies a very low budget or a very sophisticated system, one

will still have thl:' same basic classes and objects with which to organise the
analysis and ultimately the specification. A more expensive system might have:

mort' attributes for certain objE'Cts; more sophisticated services (methods); and,
a.ddi(.Ional classes and objects. Yet the basic clasi'es and objects in the problem

domain will remain the same.

ME'yer [77] gives tbe followiug examples to illustrate the situation. Initi<lily, a compiler

is developed to translate one language into another. But later on. it might be modified

to provide pretty printing, to support a schematic editor, to gatber statistics on common
syntactic errors, to generatp different code, and so on. Evpu though the tasks performed by
the compilpr might have cbanged quite dramatically, the kinds of data it manipulates will

remain more or less intact: tokeus, grammar, syntax trees, etc. Another famLliar example
is payroll systems, which are soon called upon to gather employee statistics, compute taxes
and employee benefits, and to interact with various media, while the data items, such

a.c; persons. cheques, and time cards, remain undisturbed. Thus, object-oriented design
attempts to provide a system tvith ~stable intermediate forms" [8] that will make it more
resilient to changes in requirements. Furthermorp, because the '·user's view of reality" [601 is
embodied in the systE'm 's structure, object-oriented design is closer to a true design method,
which mll.'lt be repeatable, te3.('hable, and reliable [6].

1.2 Object-oriented Design	 5

Tbis style of software development is in a sense tbe opposite of tbe functional decompo
sition metbod, a top-down, sequeutial approacb in whicb one is forced to make (and freeze)
tbe most important design decisions at tbe very beginning, exactly when the problem is

least understood [77]. This premature binding of affairs tpnds to create inflexible arcbi
tectures, and ignores issues of data abstraction and information hiding [8J. Furthermore,
functional decomposition is unprpdictable and variable, as it is often unclear wbetber tbe
decomposition should be witb respect to time order, data How, access to common resources,
control flow, etc. [6J; such accidpntal dependencies also tend to hamper reuse [90). Jackson
[60, page 370J summarises some of these deficiencil'S as follows:

Top-down is a rpasonahle way of describiug things which are already fully un
derstood [... J When the developer of a system already has a clear idea of the
completed result in his mind, he can use top-down to describe on paper what
is iu bis mind. [But] the metbod of description is confused with the method of
development. A method of development must allow the designer to solve Plob

lems to which he does uot already know the solution. Top-down development
comppls the developer to make tbe largest and most far-reacbing decisioru; at

the beginning.

Of course, at some point onp must establisb some sequential constraints; the difFereuce is
that with object-orientation thpy are not a primary concern. On the positive side, we note
that functional decomposition is a well-understood and generally applicable method that
has been widely used.

Booch [8J summarises ohject-oriented development as an iterative and incremental pro
cess involving the following steps:

(a)	 Identify I.he classes and objects at a gwen level of abstrnchon. According to Stroustrup
[111], classes exist at three levels:

(1 J application, which includes classes for user-level concepts such as cars, and for
generalisations of these, such as vehicles.

(2)	 machine, which iucludcs classes that model hardware resources (e.g., memory),
and system resources (e.g., input-output facilities).

(3)	 implementation, which includes classes for data structures such as lists.

(This separation is not strict, but serve'! to illustrate the overall situation.)

(b)	 Identify the semantics of theJe classes and objel:ts. Tbis involve'! the association of
attributes and methods with classes.

(c)	 Identify the relationships between these classes and objects. This involves tbe declara
tion of inheritance rela.tionships, and the design of interfaces between the objects of
the va.rious classes; this step is the hardest oue.

(d)	 Implement these classes and objel:ts. This entails decisions of large-grain structure
and organisation, such as gatbering related classes into modules.

1.3 Software .R~e,::u"se::.-- _ 6

We wish to note that while object-oriented design and programming may not constitute
Brooks' "silver bnllet" [ll], it is widely acknowleJged that the object paradigm advances
the art of software engineering. There is no denying that achieving good designs requires

sound management, experience, good taste, intelligence, aud perhaps even luck [84]. Object
orientation is an attempt to proviJe hetter tools for tbe sorcerers and 8orceresSes.

1.3 Software Reuse

"The most radical possible solution for software is not to construct it at all." With thl'se

words, Brooks [11, page 16) summarised his view abollt the complexity of bnilding software
systems, adding his voice to thc increasing uumbt'r of computer professionals lobbying

for more reuse in software construction. Object-orientation has brought renewed interest.
because objPcts and classes are natural units of reusel .

The vision of an off· the-shelf components indnstry that would support the building of

new software systems based on standardised components is due to Mcilroy and dates back
to 1968 [68]. He also argued for libraries with compont'uts that could be customised to fit

particular needs. Twenty-five years later, McIlroy's visiou still remains largely unrealiserl

[25,68,771·
BesidE'S complexity, there are other nat.ural and p.conomic forces that motivate reuse.

First, according to Standish [109J (who cites a study by Boehm [71), tlJe cost of software

increases exponentially with its size. Therefore, the presence of a components industry in
which buying a component is cheaper than building it from scratch would reduce software

costs and aliow more sophisticated (i.e., Larger) systl'ms to be bnilt 3. Reuse could cut down
development time. including testing, and could have a positive impact on maintenance.

Additionally, there are commercial benefits associated with reuse. The most immediate

one is that ideas would reach their realisation in software more rapidly. Now that sy~tems

are also being built for innova.tive ilnd strategic reasons [31], fast delivery is crucial (This
~cenario assumes that a purchased component is reliable, at least in the sense of having

satisfied some form of rigorous testing.)

Second, companies could use pre-fabricated components to build rapid (and perhaps
even multiple) prototypes to not only advertise ideas, but abo to help capture requirements

mOTe effectivf'ly [11, 31J.
La.stly, thp astonishing adva.nces in hardware have made it clear that software is thl:'

major bottleneck.
Toda.)', most successful reuse occurs at, the level of subroutines [25,30]. Examples include

routines from mathematical libraries (most written in FORTRAN), EMACS functions, and
UNIX shell utilities (which can be easily glued together with "pipes"). Another popUlar
technique, albeit much less structllTed, is called "code scavenging" [68); it refers to program

~Ho""evrr, th~ tbes,/$ will argue that rnodl.ll~s, which may declar~ several related cI<IS.'le!l, are more appro
priate units of reuse

3S tandi&h al:oo Dotes that &ehm's study predicts tha.t In the coming yeal'!! there WIll not be enough
programmeI' to 8at~fy the demand for l'oflware--unless a more efficient approach t..o huilding systems i5
adopted.

1.4 Aspects of FOOPS 7

mers picking out arbitrary pieces of old software and patching them onto their C<lde. This
is a tedious and difficult activity, especially with regards to searching through old software,

understanding the context of the extracted bits, modifying them, and then debugging the

resulting whole.
The kind of reuse being advocated at present involves not only logIcal fragments of code,

hut also logical fragments of designs and documentation [30,38,50,68]. Additionally, there

is a need for flexible reconfiguration tools that will allow components to be adapted before
being reused; rapid and multiple prototypp-s would particularly gain from such facilities.

Apart from these linguistic issues, much difficulty lies in that developing reusable com

ponents is as much an art as software engineering is; compommts should be neither too
specific nor too general. The practice requires a commitmpnt for building reusable parts

[111], and also some way of classifying the components built so that they can later on be
found by otbers [94]. Recent success stories seem to indicate that reuse occurs most prof

itably within narrow domains, such a.8 database and nptwork software [4, 19). A further

difficulty is due to the lack of standard interfaces for software components; in hardware
design and in other disciplines, reuse is commonplace because ofstandardisationj25, 103].

1.4 Aspects of FOOPS

The type system of FOOPS introduced two important distinctions. First, data elements

are not objects. Data elements are stateless and thus cannot chlUlge; examples include

the natural numbers and the colours. Objects have an internal state and persist and
pvolve with time; examples include gardens and video screens. When these two concepts

are merged, as they are in many ohject-oriented languages, much confusion arises because it

is then possible, for example, to "send a message" to the colour blue so tbat it "adds a shade

of yellow" to itself. Clearly, there is no such thing; blue will always be hlue. However, it is
possible to have functiollB tbat accept data elements as arguml'nts; for instance, one that

gives as result the colour arising from the combination of two otber colours. Consequently,
in FOOPS data elements are collected into sorts and objects are collected into classes,

Following the ADJ tradition [51J and the work of Goguen and Meseguer, an abstract data
type in FOOPS is a sort together witb its set of associated functions. Also, an abstract
object type is a class together with its associated attributes and methods.

Second, cla.8ses are not modules. The modules of FOOPS may declare sewral related

classes together, a.nd constitute its main programming unit. By contrast, most other object
oripnted languages take 8.'i their main programming unit a syntal:tic construction for the

dpf1nition of a single class with its associated attributes and metbods. While this simpli

fies language design, it is nevertheless a step backwards from the advances introduced by
languages such as Ada [59], 1fodula [118J, OBl and many others in supporting the more
general construct ion.

Given the disjunction bptween sorts and classes in FOOPS, we say that it has a func·
tionallevel and an object level. Abstract data types exist at the functionalleo'elj abstract
object types exist at the object level. At each level there are two kinds of modulf, one which

1.4 Aspt'Cts of FOOPS 8

encapsulates executable code and the otber which declares properties. The former are sim

ply called modules, or functional modules and object modules when their level needs
to be made explicit; the latter are called theories, or functional theories and object

theories when there is a need to make their level clear.
Theones serve to classify other theories and modules by the syntactic and semantic

propertie:l that they satisfy, and are mostly used in FOOPS to constrain the actual argu
ments to parameterised modules (see below). The)" constitute the purely declarative aspect

of FOOPS. So-called views are bindings that express how a themy is satisfied by another

theory or module. This allows the capture of the rather common ca.c;e in which a theory
is satisfied by more than one module, or in which a particular module satisfies a theory in

more tha.n one way. For example, the natural numbers form a partially-ordered set under
pither the less-than or the grcater-tban relations; also, the strings over the Roman alphabet

form a partially-ordered set Ilnder the usual lexicographical ordering.
FOOPS also offers (and distinguishes) inheritancp for sorts, classes and modules. In

heritance of sorts and classes has to do with the hierarciJical classification of data elements

a.nd objects. For example, the sort Nat Df natural numbers inherits, or is a subsort of,
the sort Int of integer~, because all natural numbers are also integers; similarly, the class

LandVehicle is a subclass of the class Vehicle. These two kinds of inheritance have a

set-inclusion semantics givpn by order-sorted and hidden order-sorted algebra, respectively
[.19, 4:3, 49]. Module inheritance supports code reUSl? by importation. This other kind of

inheritance allows old sorts ami classes to be imported and enriched with operations de
rived from the ones originally assDciated with them. For example, a module that defines

trigonometric functions may be defined by extending a pre-existing module for floatiug

point numbers with declarations for sine, cosine, etc. Or a generic module that declares
iteration methods over special kinds of data structnres may simply define the new methods

as combinations of already existing methods on these data structures. Note that these ex
amples do not use either elMS inheritance or clientship, and thns could not be done using

the features that are typically available in languages that identify classes and modult'li. The

~emantics of module inheritance is based on category theory [41].
Both modules and theories nse equations, or axioms, to define the properties of func

tions, attributes and met.hods, FOOPS is a logical language in the sense that its formal

sl'mantics defines a deduction system which can be used to derive new axioms from old
ones; said differently, its deduction syste-m can be used to prove properties about FOOPS

programs. (Much more details about this are given in Chapter 4.)
When axioms have a particular form, they can be regarded as executable code; thus,

one synt~tic difference between modules and theories is that a.x1oms declared in modules

a.re required to have this form. For functional modules, these axioms are interpreted as left
to-right rewrite rules in the classical term-rewriting sense [67], except tbat rewriting takes
int.o accollnt sort orderings or hierarchies, and is called order-sorted term rewriting [44].

For object modules, axioms are in general considered from left to right, but as descriptions
of updates to an implicit object datahase [48]. In FOOPS. however, tbe notion of "main
program" is absent. Rather, computations are started by supplying terms, or expr{'ssions,

to tbe top level of the S}'stem, which evaluates them with respect to the axioms in a given

modnle.

1.4.1 Parameterised Programming

While much work in object-orientation has concentrated on issues such as low-level type

systems, not enough attention has been devoted to the study of system-level phenomena,
such as overall structure, large-grain properties, sub-component compatibility, variants and

configurations [28, 85J. FOQPS addresses tbese concerns.
FOOPS is equipped with facilities for composing modules, including renaming, sum,

parameterisation, instantiation and importation. These constitute parameterised pro
gramming [36], which can be seen as functional programming with modules as values,

theories as types, and modnle expressions as (functional) programs. Renaming allows the
sorts, classC'.s, attributes and metbods of modulC'.s to get new names, while sum is a kind

of parallel composition of modules that takes account of sharing. The interfaces of param

eterised modules are defined by theories. Instantiation is specified by a view from an
interface theory to an actual module, describing a binding of parts in the theory to parts in

the actual module; default views can be used to give "obvious" bindings. Importation

allows mnltiple inheritance at the module level. Parameterised programming was first im~

plemented in OBJ [53J, has a rigorous semantics based on catpgory theory [29, 39, 41J, and
is a dpveJopment of ideas in the Clear specification language [14J. Much of tht' power of

parameterised programming comes from treating tbeories aud views as first class citizens.

For pxample, it can provide a higber order capabilit}, in a first order setting [37, SD].
A major advantagp of parameterised programming is its support for design in the same

framework as specification and coding [50]. Designs are expressed as module expres

siaM, and they can be executed symbolically if specifications having a suitable form are

amiable. This gives a convenient form of prototyping. An interpsting feature of the ap

proach we advocate is its distinction between horizontal and vertical structuring. genericity
and compositionality. Vertical structure relates to layers of abstraction, where lower lay

ers implement or support higher layers. Horizontal structure is concerned with module

aggregation, enrichment and specialisation. Both kinds of structure can appear in module
expressions, and both are evaluated wben a module expression is evaluated. There is also

support for rather efficient prototyping througb built-in modules, which can be composed

just like other modules, and gie a way to combine symbolic execution with access to an
underlying implementation language.

Parameterised programming is considerably more general than thp module systems of

languages like Ada, CLlI [71] and Modula-3 [83], which provide only limited support for

module composi~ion. For example, interfacps can only express purely syntactic restrictions
on actual arguments, cannot be horizontalJ}' structured, and cannot be reused. But in pa

rameterised programming, theoriC'.s are modules which can be generic and can be combined
using instantiation, sum, renaming. and importation. Recent work of Batory [3.104] shares
many of our concerns, and in particular distinguishes between components and "realm in

terfaces," which correspond to thPOries in parameterised programming, although without

1.5 Contributions of this Thesis 10

any semantic constraints. Batory's approach is primarily based on vertical parameterisa

tion, althougb a limited form a horizontal parameterisation allows constants and types,
witbout any horizontal composition. Another difference is that FOOPS allows non-trivial
views, wbt'reas Batory's approacb only has (implicit) default views. Related work has also

been done by 'fracz [114J, whose LILEANNA system implements tbe horizontal and verti
cal composition ideas of 1IL [35] for the Ada langnage, using ANf\A [i3] as its specification

language.

1.5 Contributions of this Thesis

As its title suggests, tbe contributions of this thesis lie mainly in three areas: design,

implementation and evaluation of FOOPS. Because we build upon previous research by
otbers, we here give details of what distingnishes our work.

Our starting point was [48], the first publication on FOOPS, togetber with the work
that led to it, particnlarly [36J and /49]. We began by providing more precise definitions

far the language features proposed in [48], including object destruction, the interpretation

of groups of axioms that define methods, redefinition and dynamic binding, and class and

sort inheritance conflicts and tbeir resolution.
Some ot.her features of the language were extended. For example, object creation is now

much more flexible (e.g., identifiers need not always be explicitly given), attributes can bp

"derived" (i.e., defined in terms of others) and can have multiple arguments, and a method
can return any rpsult, not jnst the same objpct it modifies.

Furthermore, SOlDe aspPcts of the langnage are new or have been reworked from earlier
proposals. For example, we defined the encaponlation rules of tbe language and designed

its information hiding mechanism, except for vertical parameterisation, which was added to

FOOPS in joint work with Joseph Goguen [501, nsing ideas from Ll1 [35J. Module blocks

had been proposed earlier [55], but we give a more detailed design. Also, abstract classes
are a new feature that we helped to develop. (These l~t two aspects are also reported in
(50].)

Our prototype implementation of FOOPS builds upon facilities given by the OBJ3
implementation [53}. Early design help was provided by Goguen and by Timotby Winkler

of SRI International, California. This prototype implemeutation has served as the basis

for simulating a concurrent version of FOOPS [9], and to support the implementation of
OOZE (I].

Tbis thesis also evalnates FOOPS and compares it witb other languages. In addition, it
provides extended discnssions on the applicability and benefits of parameterised program
ming (as defined here) for tbe design and implementation of object-oriented systems. We

have focused On large-grain issues such as module reuse and composition, and have found
added lewrage in several of the aspects mentioned in the previons section. snch as: the
distinction between classes and modules. including the different kind., of inheritance; mod
ule instantiation with views; vertical module parameterisation, which allows fine-tuning the
implementation of modules by !:iupplying diffprent vertical parameters; and integrated sup

port for specification and prototyping, including the use of views to express refinement and
evolution relationships between systems defined hy module expressions. Some of this work
was inspired by a paper by Goguen aud Wolfram [54]; we offer a more comprehensive and
in-depth analysis, and include in it the aspects of FOOPS that are new with this thesis.
Also, the comparisons with other languaga<> is new (a small part of it was added to [50]).

Moreover, we feel that we will contribute to the understanding of the semantics of
FOOPS by threading together several separate publications on the subject, from the per
spective of someone who is not a theoretician.

Overall, one of the main points of this tha<>is is that parameterised programming clarifies
and enriches several aspects of the object paradigm. Another main point is the use of
semantic foundations to explicate, propose and analyse features and applicatious ofFOOPS.

1.6 Overview of Subsequent Chapters

The rest of this thesis is organised as follows:

Chapter 2 discusses the form and informal meaning of the declarations that modules en~

capsulate, such as those for sorts, classes, inheritance relationships, axioms, and soon; it also

descrihes object creation and destruction. This chapter deals exclusi....ely with executable

modules, although most details carryover to theories.

Chapter 3 explains facilities for composing modules and designing systems. including

theories, views, parameterisation aud module expressious. It also examines abstract classes,

module importation, module hlocks and information hiding capahilitia<>.

Chapter 4 summarises current work towards a mathematical semantics for FOOPS, in~

cluding order-sorted algebra, hidden order-sorted algebra, and the theory of institutions.

Chapter 5 describes a prototype implementation of FOOPS. It supports a majority of the

features discussed in this thesis, and gives ideas on how to implement some which are not

currently available..

Chapter 6 is an evaluation of FOOPS carried out by comparing several of its facilities to

those pra<>ent in other ohject~orieuted languages, with particular emphasis on constructs for

programming-in-tlIe-large. Among other aspects, it treats the distinctions between mod

ula<> and cla..-o.ses, and examina<> renaming, paramet.erised modules and information biding

capabilities. Around fifteen languages are considered, including the major ones in use today.

Chapter 7 concludes this tha<>is witb a summary of what was achieved and an outline of

areas that remain unexplored.

Appendix A gives the full syntax of FOOPS.

Appendix B provides additional examples.

Chapter 2

Modules

ObJur orientatJon comes to full fruItIOn only when COni

bmed Mill. modulanty and stnct typmg of data.

- Niklaus Wirth

The main programming unit of FOOPS is the module, which encapsulates executable code.

This chapter describes the form and informal meaning of module dpclarations, including

sorts, classes, functions, attributes, methods and axioms. Also, we discuss the models of

computation at the functional and object levels of FOOPS. This presentation is based on
Sections 2 and 3 of [95J, the reference manual for the language aud our prototype imple

mentation. The discussion of abstract classes, encapsulation rules, and information hiding

facilities in FOOPS is delayed uutil the next chapter, as they can only be fully understood

once module inheritance is explained. La.'ltly, the functional sublanguage of FOOPS is a

syntactic yariant of OBJ3, and therefore we do not attempt to cover it in as much detail as

other documents (e.g., [53]); Appendix A gives the exact syntactic correspondence between

the two. Our main concern is with f,he object level of FOOPS.

Syntactic descriptions are presellted incrementally in syntax boxes, which have the

form

Syntax ""N (Name.)
text

o

where NN is t.he box number, Name is the name of the syntactic unit being described and

text gives the formal syntax of the unit (and often some Englisb commentary), Syntax

is described in the following extended BNF notation: the symbols { and} are used as

meta-parentheses; the symbol I is used to separate alternatives; [and] pairs enclose op

tiOnal syntax; (NonT) is a non-terminal symbol; " indicates 0 or more repetitions of the

prece-ding unit; and x denotes x literally. As an application of this notation,

A (, A) ..

is an idiom used for non-empty lists of A's separated hy commas.

12

2.1 Functional-level Modules 13

2.1 Functional-level Modules

A functiollal module defines one or more abstract data types, which consist of a set of
data elements and operations on them. Data elements (also called "values") are stateless

entities, such as the numbers and the colours. A set of data elements is called a sort, while
operations on data elements are called functions. Sorts may he placed in a partial order,

interpreted as suhset inclusion. This order defines an inheritance hierarchy amollg sorts,

in which a sort A inherits from a sort B if A < B; in tbis case we say that A is a'mbsort
of B. A signature js a group of sort, subsort and function declarations, and an algebra

is a partially-ordered collection of sorts together with interpretations (or definitions) for

each function symbol. A term at the functional level is an expression tbat is buHt up from
function :lymbols and from variables denoting data elements. The model of computation

at this level is order-sorted term rewriting, which regards the axioms that define the
properties of functions as left-to-right rewrite rules. (Chapter 4 gives formal definitions for

all these concepts; informal definitions will suffice for the purposes of this chapter.) When

not parameterised, functional modules have this form:

Syntax 2.1 (Unparameterised Functional Modules)

fmod (Mod/d) is

(fModElt) . ..

endf

where {Mod/d) stands for the name of the module, by convention given in upper case letters.

UModElt} stands for the things that may be declared by a functional module, namely sorts,

functions, variables, and axioms. Functional modules may also import other functional

modules. 0

2.1.1 Sorts and Subsorts

Sort declarations have the following syntax:

Syntax 2.2 (~)

sorts (SorlldList)

where (SortldLisl) is a non-empty list of 80rt names separated by blanks; by convention,

sort names are capitalised. Since it may sometimes be more natural to use the singular
rather than the plural, the keyword sort is allowed as a synonym to sorts. 0

For example, a single sort Nat. may be declared like this:

sort Nat .

while to declare together the sorts Nat, Int and Rat we write:

sort.s Nat Int. Rat

2.1 Functional-level Modules 14

51lbsort declarations have the following syntax:

Syntax 2.3 (Sllb"orta)

15ubsorts (SortLlSt) < (SortL1St) {< (SoriList)) ..

where (SortList) is a non-empty list of sort names, separated by blanks and possibly qnal

ified (this is explained in Section 2.1.3). This syntax specifies that the sorts mentioned in

t.he first list are all subsorts of those in the second list, and so on. The keyword sub150rt

is allowed a.<; a synonym to subsorts. Also, note tbat the intended meaning is that of

less-than-or-equaL although for typograpbical convenience the less-than symbol ha.<; been

used. 0

For instance, we may declare a sort Nat, denoting the natural numbers, to be a subsort of

the sort Int. denoting the integers, because ali natural numbers are also integers:

subsort Nat < lnt

Since tbe integerB are in turn asnbset of the rationals (of sort Rat, say), we could also write:

subsort Nat (lut < Rat

or, similarly,

15ubsort lnt < Rat

subsort Nat < lnt

or even,

r:;ub60rts Nat lnt < Rat

subBort Nat < lnt .

2.1.2 Functions and Terms

When the language of a particular application domain can be readily used in a specification.

program8 are easier to read and to write. Towards that ead, FOOPS allows each function

to be given a "syntactic form" that describes whether the function is to be referred to in

infix, prefix, postfix, out fix or, in general, mixfix syntax. Also. function names may be

overloaded, in that there can be two or more functions with the same name. These options

require some sophisticated parsing, and a term in FOOPS is considered to be well-formed

if and only if it has a unique least parse. I'.,here the ordering is derived from the subsort

relation. The next subsection gives more details on this.

Syntactic specifications are of two forms. The first is the standard form, which gives

ordinary prefix-with-parenthesis syntax to a function, with arguments separated by commas.

For example, the function cons for prepending an element onto a list is normally written

with this syntax. For a natural number X and a fist L of natUIal numbers, a simple term

involving cans is cons (X, L). In FOOPS, tbis syntax is declared like this:

fn cons; Nat List -;> List

Here fn is a keyword and cons is the name, or form, of the function. The list of sorts between

the u:" and the "->" givps the sort of each argument; this list is called the function's arity.
The sort between the "-;>" and the"." is called the conrity, or value sort, of the r.uJction.

Tbe rank of a function is its arity and coarity taken together; for example, the rank of
cons may be written (Nat List,List). 110re formatly, standard form syntax is:

Syntax 2.4 (Standard Form Syntax)

fn (StdOpForm) : (Sort) ... -;> (Sort) .

where (StdOpForm) is a string of symbols that cannot include underbars (i.e., "_"), and

(Sort) is the name of a sort, possibly qualified. 0

Constant, or nullary, functions are those whose arity is empty. For instance, the natural

number 0 may be specified as the following constant:

fn 0 -;> Nat

and the empty list of sort List as

fn nil -;> List

With these declarations, the following are well-formed terms:

o
cons(O,cons(O,nil))

The first term has sort Nat and the second has sort List.

The other syntactic form is the mixflx form. It has this syntax:

Syntax 2.5 (Mixfix Form Syntax)

fn (Mi:rjixOpForm) : (Sort) ... -;> (Sort) .

where (MixfixOpForm) is like (StdOpForm) except that underscotes are permitted. Under
scores serve as placE-holders for the arguments to the function, and there must be exactly

as many as there are sorts In its arity, to which they correspond in order. Single underbars

or just blauks are not valid syntactic forms. 0

For example, the symbol "+-" for infix addition of naturals may be declared like this:

fn _+-_ Nat Nat -;> Nat

For Nand 1'1 of sort Nat, N +- 1'1 is a well-formed term using this syntax. Also, the successor
function on natura.lE is usually prefix:

fn succ ; Nat -;> Nat

Factorial, on the other hand, is usually postfix:

2.1 Functional-level Modules 16

fn I : Nat -> Nat .

These are well-formed terms of sort Nat:

suee; 0

(suee suee O)!

To illustrate outfix syntax, consider a sort Set for sets of natural numbers. Singleton
sets may be syntactically described in this way:

fn {_} : Nat -> Set

Finally, syntax may be mix-fix, as in:

if_tben_els8_fi Bool Nat Nat -> Nat

when' Boo1 would denote the sort of boolean values. (By the way, Bool is declax-ed in a
module called BODL t.hat is automatically imported into every other module; see Section
2.1.5.5 for more details about BOOL.) In the context of these declarations, the following

terms may be formed:

eons(O,nil)

{ euee 0 }

WhC'n two or more functions haw the same rank, they may be declared together, as in:

fns C+_) C*_) : Nat Nat -> Nat.

Note here the use of the keyword fns and that the form ofeach function h~ to be enclosed in
parentheses. However, the parentheses may he omitted for constants or when standard-form

syntax is desired:

fns 0 1 2 : -> Nat

fns plus times : Nat Nat -> Nat

Formally, the syntax is:

Syntax 2.6 (MultipJe Function Declarations)

fns (OpFonn) (OpFonn)... (Sort). -> (Sort)

where (OpFonn) is either (StdOpFonn) or (MixjixOpForm). 0

Example 2.7 The following is a simple syntactic specification of the hexadecimal numbers:

fmod HEX is

sorts HexDigit HexNum .

subsort HexDigit < HexNum

ins 0 1 2 3 4 5 6 7 8 9 : -> HexDigit

fns ABC D E F : -> HexDigit

fn _: HexDigit HexNum -> HexNum .

end!

2.1 Functional-level Module$ 17

Example terms f.ronl HEX are:

o
1 F

1 5 A 2

The first has (lowest) sort HexDigJ.t, whil~ the othf:ts have sort HexNum. 0

2.1.3 Parsing and Qualification

The flexible syntax of FOOPS offers many opportunities for ambiguity, and sometimes

extra information mnst be attached to terms. or pl.'rhaps ext,ra parentheses added. in order

to ensure unique parses.
When functions are overloaded. trrm!'; may nerd to be qualified with sort information

to resolve ambiguities. A sort-qualified term has this synta.x:

Syntax 2.8 (Qualification with Sort ~ames)

«(Tenn)l.(Sod/d)

where (Sortld) is the namp of a sort. 0

For example, if the declarations

sert Nat
1n 0 -;> Nat

are added to module HEX. the term 0 is ambiguous (it could be either of sort Nat or of sort

HexDigit). To resolve t.his ambiguity, we need to specify which zero we are referring to, by

using either (0) .Nat or (0) .HexDigit.
For a slightly more complicat-ed example, consider these further declarations:

1n _+_ HexNum HexNwn -;> HexNwn

1n _+_ Nat Nat -;> Nat

Theu the parse of 0 + 0 is also ambiguous, but this t.ime in more than one way. To resolve
it. we can either quali~y the term on the outside or qualify OIl(' of the zeroes. For example,

(0 + 0) . HexNum

and

(0) .Nat + 0

are hoth unambiguous. As with the second zero in the last term, context jnformation

resolves ambiguities in lllany ca..;;('s. and makes explicit qualifications unnecessary.
Somdimes sort qualifioation is not enough, because two different modllles might intro

duce sorts with the same name: tht:'n, qualification with module uames is required. For

I'xample. each of the module.~ NAT-LIST and COLOUR-LIST may definp both a sort List and

2.1 Functional-level Modules	 18

a constant nil of that sort. To disambiguate nil, we need to write either (nil) . NAT-LIST

or (nil) .COLOUR-LIST. Sorts may also ueed to be qualified; for example, in syntactic spec

ifications. Formally, qualifkation with module names has this syntax:

Syntax 2.9 (Q_ualification with Module Names)

«T,,,,,) . (ModJd)

(S'rlJd). (ModJd)

Note tbat the second form does not require parentheses. 0

HO,"'ever, in cases where a sort and a module bave the same name the ambiguity may

persist. On the other hand, if our naming conventions are followed (module names in

upper ca..o.e, sort names capitalised) tbis will not be a problem. Qualification with module

expressimu is discussed in Section 3.7.

2.1.3.1 Least ParseR

It is possible to have 8 < A and the functions

fn f A -> A

fn f a -> B

This is of course overloading, but of a more subtle kind, as it. involves not only names but

also sorts that are related. From the previous discussion we know that a term f (x) for

x of sort a will have sort a, because that is tbe "least" of the two possible parses. More

specifically, rank (Sl 82 ... 8N, fU} is less than rank {Tl T2 TN, R2} if and only if for i =

1 .. N, 8i:-::; Ti and H1 S R2; below we also speak of orderings among arities, with a similar

meaning. For unique least parses to exist, a condition on signatures, called "regularity,"

must be obeyed [49]. Regularity depends on a signature being monotonic, which means

that for each pair

fn f 81 82 8N -> R1

fn f T1 T2 TN -) R2

if the first arity is less than the second then R1 S; H2. For example, the declarations

fn f A A -> B

fn f a 8 -) A

violate monotonicity, because tbe coarities are related in the opposite direction. A signature

is regular if and only if

•	 it is monotonic, and

•	 given a function symbol f and a lower bound Wo for its arity, there is a least arity for

f among those f's with arity greater tban or equal t.o woo

2.1 Functional-level Modules 19

For example, given B < A, the declarations

tn t A a -> A

fn t a A -> B

violate regularity, because neither rank is less than the other. (A lower bonnd arity here is

(B B).)

2.1.4 Inheritance Diagrams

Let us now consider some gpuera.l examples of multiple inheritance and relate them to the

preceding discussion on parsing. As a graphical 3id, we will use diagrams in which an arrow

from X to Y indicates that X is a subsort of Y. Thp diagram in Figure 2.1 shows three sorts
a. C and D, wbere 0 is a subsort of both Band C; it also shows that. each of Band C have a

function f associated witb them. This situation is erroneous because it violates regularity.

(Hint; take Wo :::; D.)
The diagram in Figure 2.2 shows D itself with an f. This is fine because regularity is

obeyed. We call this situation merging.
Finally, the diagram in Figure 2.3 shows a rather common situation: inheritance of

the same sort via distinct paths. A key question here is wbetber D is associated with two

functions f, by virtue of there beiug two paths froID D to A. As the diagram givt'S away, in

FOOPS there is only one sort A from which D inberits, and therefore D is associated with
only one t. Another way of viewing this is to consider thl' transitive closure of the subsort

relation, whicb gives {(a,A), (C,A), (D,B), (D,C), (D,A)}, clearly showing that multip]p ways

of seeing D as a subsort of A have no effect on the relationship between the two.

2.1.5 Axioms and Evaluation

In the functional levet of FOOPS, an axiom declares that two terms are equa.l. The terms
iu an axiom are more general than those given above as examples because they may also

involve variables, which can be thought of as placeholders for arbitrary terms of thpir
dpclarl'd sort. Terms in a...,doms are therefore called patterns, or tprnplates of possible

terms; a tl'rm without variables is called a ground term. For example, given a variable

N of sort Nat and a function pred_ (predecessor) on natural nnmbers, the following is an

axiom:

ax pred succ N = N

Axioms may also be conditional, meaning that the equality bolds only if a certain condi

tion, given by a Baal-valued term, is true; furthermore, conditions may invol~ variables.
By regarding axioms as left-ta-right rewrite rules, FOOPS takes order-sorted term

rewriting as the model of computation for functional modules. Computations are started
by supplying terms to the top level of tbe system. They proceed by repeatedly matching
subterms against thp left-hand sides of the rPwrite rules and then rewriting, or rpplacing.

the matched subterms with the right-hand side of the corresponding matching rules, until
no more matches arp found.

2.1 F'uncl.ional-level Modules 20

f : B ---7 B B C f: C ---7 C

"'/
D

Figure 2.1: Multiple inheritance of a similar function.

f: B ---7 B B C f:C---7C , ;'

~/
D f: 0 ---7 0

Figure 2.2: An example of merging.

A f: A ---7 A

C
B/'", ;'

~/
D

Figure 2.3: Inheritance via distinct paths.

2.1.5.1 Variables

Variable declarations associate an identifier with a sort, and have this synt.ax:

Syntax 2.10 (Variables)

var (Varld} (Sort)

vars (VarldLisl; (Sort)

where (Varld) is the name of the "ariable, by convention written in upper case, and

(VarldL1st) is a list of (Varld). 0

Example applications of this syntax are

vax N Nat.

vars FIRST MID LAST Nat

2.1.5.2 Axioms

Unconditional axioms have the following syntax:

Syntax 2.11 (Unconditional Axioms)

ax (Term) = (Term) .

The equal sign separates the left from the right-hand side of the axiom. The sort of the term

on the right-hand side must be less than or equal to the sort of the term on the left-hand

side; otherwise, under certain conditions, retracts might be added to the right.hand side,

as explained in Section 2.1.6. 0

Given the variable N above. another example axiom is

axN+O-N

Conditional axioms have this syntax:

Syntax 2.12 (Conditional Axioms)

cax (Term) = (Term) if (BooITerm)

where (Boo/Term) is a Bool-valued term. 0

For example, given variables Nand M of sort Nat, and a declaration of the greatpr-than

function on naturals,

fn _>_ Nat Nat -> Bool

the following is a couditional axiom:

cax N + M > N :::: true if H > 0

So that an axiom may be interpreted as a rev.'Tite rule, the V"dl"iables that appear in its

right-hand side and in its condition (if conditional) must. be a subset of those that appear

in its left-hand side. Also, the left-hand side of an axiom may not be a single \ariahle.

2.1 Functional·-Ievel Modules ~~~_~~~~~_~_~_22

2.1.5.3 Evaluating Terms

The following informal definitions will help understand what a computation is in the order

sorted term rewriting model; formal mathemat.ical definitions are given in Chapter 4. An
assignment is a function u X --t T from a set X of variable symbols to a set T of

ground terms ov('r some signatnre; for V E X, a(V) is called the value of V (under a). An
assignmem a : X --+ T <.:an be extended to a term-assignment a* : T(X) --+ T which takes

terms with variables from X to ground terms, by using a to assign values to each variable;
for a term t E T(X), a*(t) is called the instantiation of t (under a*). A ground term t

matches a. term p if there exists an assignment A such that p instantiated with A yields a

term that is equal to t.
Given a set of rewrite rules, a computation starts with a term t and proceeds by re

peatedly oearching for a r('write rule whose left-hand side is matched by some subterm s

of 1. instantiating the right-hand side of the rule with the assignment that generated the
match, and rewriting, or rp:placing, s in t with the instantiated right-hand side. A condi

tional rill" has its left.-hand side matched similarly, bnt the rewrite takes place only if th('

instantiated condition evaluates to the constant "true. If it does not, the matching process
resumes by considering other rules. A computation terminates (if at all) when there are no

more matches. This entire process is called the evaluation or reduction of /., and if it
terminates, the resulting ground term is called the normal form of t. In general, FOOPS
performs matching modulo associativity and commutativity, using facilities given by OBJ3;
Section 2.1.7 gives details of this.

A set of rewrite rules is said to he terminating when the evaluation of terms terminates.

Also, a set. of rewrite rules is called confluent, or Church-Rosser, if whenever a term t can
be rewritten to two different terms tl and t2, these two terms can themselves be rewritten

to some term t J . FOOPS does not require that sets of rewrite roles satisfy either of these

properties (an undecidable task au}'way).
A further monotonicity condition exists for algebras, and states the following for each

pair

tn f S1 S2 SN -) R1

tn f T1 T2 TN -) R2

in whi<.:h the first rank is less than the second: for arguments of sorts Sl S2 ... SN, relpec
tively, the two must give the same result. This phenomenon in which diHerellt instances of
a function symbol are related. by inheritance such that the result does not depend on the

instance used is knowll as subsort poJymorphism [49].
Below we give a module that ddi.nes lists of colours, in the context of which we will

exemplify evaluations iu FOOPS:

fmod LIST-Of-COLOUR is

sorts Colour List
subsor"t Colour (list

pro"tec"ting NAT .

2.1 Functional-level Modules 23

fna red blue yellov : -> Colour
fn __ : Colour List -> List .

fn len~h_ : List -> Nat .
var C Colour. vax L : List

ax length C '" 1 .

ax length (C L) = 1 + length L

e.df

Colour is declared to be a subsort of List purely for the convenience of having single

colours themselves as lists. The line "protecting NAT ." indicates that the module NAT
should be imported into it (this is explained ill more detail in the next chapter). NAT

is part of the FOOPS default environment, and declares a sort Nat that represents the

natural numbers plus the nsual operations on them. Nat has a subsort called Zero whose

only element is the constant O. and a subsort called NzNat whose elements are the natural
numbers except zero. Note the juxtaposition notation used for constructing lists, with
syntax __ (two underbn.rs). The first axiom describes the length of single-element lists; the

second axiom defines the length of lists with 2 or more elements in them.

Some evaluations are now in order. The top-level command for evaluating terms in

FOOPS has this syntax:

Syntax 2.13 (Eval)

eva I (Tenn)

o

For instance, executing

eval blue .

results in the following output being displayed:

evaluate in LIST-OF-COLOUR blue

revrites: 0

result Colour: blue

Since blue does not match any left-hand side, no rewrites were possible. But for length

blue there is one match, and the result of execllting

eval length blue .

;,

evaluate in LIST-OF-COLOUR len~h blue

revrites: 1

result NzNat: 1

Also,

2.1 Functional-level Modules 24

eval length (red yellow) .

gives

evaluate in LIST-OF-COLOUR lengtb (red yellow)

rewrites: 3

result NzNat: 2

where (initially) red ma.tches C and yello.... matches L in the second axiom
The axioms of module LIST-Of-COLOUR are confluent because a given term can only be

matched by one axiom, ne\,('r by both. as tbeir left-hand sides define mutually exclusive
patterns. The axioms are also terminating.

2.1.5.4 Traces

The trace of an evaluation of a term t is a sequence of terms beginning with t such that
each subsequent term is the r("sult of applying a rewTite rule to the previous term. For

cxample, assuming a rewrite mil' that expresses the result of adding two numbers, a trace

of the evaluation of 2 + 3 + 5 is:

2 + 3 + 5

5 + 5

10

As a debugging and teaching aid. our prototype implementation of FOOPS offers a
facility that allows following its evaluations step by step (this facility is inherited from
OBJ3). A trace shows, for each matched sub term, the rule being applied, the assignment

that generated the match, and the result of the rewrite.

2.1.5.5 Term Equality and the Module BOOL

FOOPS supports a polymorphic operator for testing the equality of two terms. For a sort

S, it bas syntax

fn_ S S -> 8001

It works by first evaluating both terms and then checking if the results are identical (modulo

associativity and commutativity; see Section 2.1.7). Therefore, it is only appropriate to use
it if the rewrite rules are terminating and coofluent. There is also incquality, with syntax
""/=, and if-then-else, with syntax iCtben_else_fi. These three functions, along with
the sort Bool, its constants true and false, and the logical functions _and_, _oc and

implies. are part of a module called 800L that is by default imported into every other

module.

2.1 Functional-level Modules 25

2.1.5.6 A Larger Example

This section presents an extended version of LIST-OF-COLOUR to exemplify more features of

FOOPS. The extension includes functions for testing membership in a list and for reversing

a list. Tbe membership test illustrates the use of the equality predicate and of if-then

else. The reversal function illustrates more sophisticated pattern matching, and employs

this algorithm: split the list in two, reverse the two parts, and then append the (reversed)

second part onto the (reversed) first part; where to split the list is left to th.. pattern

matcher. Note also that the append function is generalised, so that its first argument is

a list and not just a single colour; it is also declared to be a..9.9ocialme (see Section 2.1.7).

Lastly, we use ;;- -->" , a command that prints whatever follows it, to document the expected

resnlts. When used without the >, uothing is printed. thus serving as a passive comment.

Both comment forms can also be used inside modules.

fmod LIST-OF-COLOUR is

sorts Colour Li5t

protecting NAT

subsort Colour < List

fns red blue yello~ : -> Colour .

fn __ : List List -> List (assoc]

fn length_ List -> Nat

fn _3-n Colour List -> Bool

fn rev List -> List .

vars C C1 C2 : Colour. vars L Ll L2 List .

ax length C '" 1 .

ax length(C L) '" 1 + length L

ax Cl in C2 = Cl .'" C2 .

ax Cl in (C2 L) = if Cl == C2 then true else Cl in L fi .

ax rev (C) = C

ax rev(L! L2) = rev(L2) reveL!) .

endf

eva1 red in (red blue) ---> should be true

eval red in (blue yello~) ---> should be false

eval revered blue yello~) ---> should be (yellow blue red)

eval rev(rev(red blue yellow)) ---> shOUld be (red blue yellow)

2.1.6 Flexible Typing and Error Handling

Sometimes static type-checking is too restrictive because it rejects expressions that, while

not completely well-formed, could achieve a correct type at run time. On the other hand,

dynamic typing is too liberal, allowing truly nonsensical expressions to go undetected until

run-time, with possibly disastrous consequences. To provide a middle ground, the FOOPS

type checker does as much static typing as possible, but gives "the benefit of the doubt" to

2.1 Functional-level.\fodules 26

certain expressions that show the potential of becoming type correct as evaluation proceeds.

The determination of when to do this is based upon the semantics of the subsort relation.
The approach is this: if a function e.xpects an argument of sort S but is given an argumeut

of sort T, and S < T, then the type-checker inserts a function that will try to loW€r the
sort of the actual argument to S. If the argument evaluates to a term of sort S (or perhaps
lower), then the fuuction that was inserted will disappear at run-time, and all is fine. If
it does not, the function will not disappear but will instead remain in the expression as
an informative error message. This kind of function is called a retract. In general, there

is a retract function from a sort T to a sort S if S < T or if Sand T have a common

supersort. This technique naturally supports error detection and recovery, while .at thi>
same time avoiding the complexities associated with partial fuuctions and the arbitrariness

of the exception-handling mechanisms of some languages.

First a simple example illustrating retracts. Consider the following (incomplete) module;

fmod NUMBERS is

sorta Rat Nat

subsort Nat < Rat

in j _ ; Nat Nat -> Rat

in _! : Nat -> Nat.

endf

where Nat is iutended to represent the natural numbers and Rat the rationals. For Nand M
of sort Nat, an expression such as

(N / H)!

does not strictly type-check, because the division function has value sort Rat but the fac

torial fundion expects a Nat. However, certain divisions, such as 4 divided by 2, actually
result in a natural number, and thus

(4 / 2)!

makes sense. Since Nat < Rat, the FOOPS type checker will insert a retract fuuction in

this expression to try to lower the sort of the result of the division. In this case, th{' retract
function is named r; Rat>Nat and would be defined by these declarations (altbough it is

actually built-inI
):

in r:Rat>Nat ; Rat -> Nat
var N : Nat
ax r:Rat>Nat (N) '" N

Note that the axiom says exactly what we want: if the argument is a natural number, then
the retract function disappears. The previous expression would therefore be converted by
t he parser to

lIn OBJ3, alii well as In FOOPS, a built-in feature ill aile which is automatically provided, defined either
in term.6 ar other features or in termll of the ra.c.ilities af an underlying implementation language.

2.1 Functional-level Modules

(r:Rat>Nat(4 /2))!

and its evaluation yields 2.

We now consider how to do error detection and recovery in FOOPS. A familiar bench

mark is stacks, becaUBe they force us to deal with situations such as top(empty) and

pop (empty) . In the pxample that follows, the approach is to restrict the domain of these

functions to the non-empty stacks by defining a subsort NeStack of Stack, and declaring

pueh to have coarity NeStack. This code realises t,his idea:

fmod STACK-OF-NAT is

sorts Stack NeStack

subsort NeStack < Stack

protecting NAT .

fn empty : -) Stack.

fn push Nat Stack -) NeStack

fn top_ : NeStack -) Nat

fn pop_ : NeStack -) Stack

var X : Nat. var S Stack

ax top push(X,S) '" X

ax pop push(X.S) = S

endf

Then. an expression such as top push(S,empty) is well-formed and evaluates to

reeult NzNat: S

but top pop push (1,push(2.empty)) needs a retract, and is converted to

top r:Stack>NeStack(pop push(1,push(2.empty)))

During its evaluation the retract disappears, and yields

result N:tNat: 2

On the other hand, top pop push(S,empty) parses as

top r:Stack>NeStack(pop push(S,empty))

but its evaluation cannot make the retract disappear, and gives

result Nat: top r:Stack)NeStack(empty)

The retract then serves as an indication of how and where something went wrong.

There are at least three ways to add error recovery code to this specification. First, top

and pop may be overloaded (to accept arguments of sort Stack), and then axioms of the

follov.dng form may be declared:

ax top empt y ..

ax pop empt y

2.1 Functional-level.Modules 28

Second, retracts can be explicitly used on the left-hand side of axioms. For example:

ax top r:Stack>NeStack(empty) ~

ax pop r:Stack>NeStack(empty)

(A large example of the use of retract.s in tbis way is given in [42].)

Lastly, [531 presents an approach that involves declaring error mpersorts to contain
messagps for exceptional conditions. In FOOPS, however. error sorts are automatically

dedared, and named by appending the string "?" to the name of the original sort. For
exa.mple, declaring a sort S causes the interpreter to declare a sort S? with 8 < 8?

2.1.7 Function Properties

It is of great advantage aJld convenience to be able to declare whether a function bas certain
properties, and for a system to directly recognise them, rather than havlng to encode these

properties as axioms. This section describes three properties that can be given to fnnctions
in FOOPS. namely associativit:Y, commutativity and identities, and their effect on pattern

matching and rewriting. Some other properties, such as precedence and memoisation, are

discllssed in [53f.
Properties are given &3 part of tbe syntactic form declaration of a function, between the

coarity and the final period, and are enclosed in square brackets. In full, tbe syntax for

fundioIl8 with properties is:

Syntax 2.14 (Functions with Properties)

fn (OpF,nn) (Sort) . .. -> (S,"') [(Pmp,)]

where (Props) is a list of properties, and (OpForm 1 is either (StdOpForm) or

(MixjixOpForm) (as before). The associative property bas syntax as soc, the commuta

tive prop~rty has syntax comm, and the identity property has syntax

id, C(T,nn))

The order in which properties are given is irrelevant. 0

for instance. boolean conjunction would be declared to be associative:

fn _and_ Boo1 Boo1 -> Boo1 [asBoc]

This allows us to write, gay, the term

true and false and true

2That document calls properties ~attributel.~ \','e avoid this terminology because "attribuk:s~ also has
a techniclll meaning at the object level of FooPS.

2.1 Functional-level Modules 29

witbout the parentheses that would otherwise be required to disambiguate its two possible

parses. More important, perhaps, is that the pattern matcher will take this information into
account and ignore parentheses when matching terms that involve associative functions,

even if we explicitly write tile parentheses for readability. The associative property also
affects the eqnality and inequality predicates _==_ and _""'/=_, and the s}"Stem will be able

to determine that, for example,

true and (false and true) (true and false) and true

is true. The assoc property is only meaningful for a binary function with rank (A B, C)

when C < A and C < B; however, retracts may be inserted if either A < Cor B < C.

Since Boolean conjunction is also commutative, it would be declared as such with the

COIMl property:

fn _and_ 8001 Bool -) Bool [assoc comm] .

Here the situation is more subtle because the axiom that expm<;ses commutativIty, i.e.,

axPandQ=QandP

causes termination problems when considered as a left-to-right rewrite rule. If instead we

let the pattern matcher of FOOPS take care of this property, the termination problem is

avoided, because it tries all possihle orderings of arguments to commutative functions when

attempting matches. For example, there is no need to write two versions of the axiom

ax P and false = false .

hecause the termS true and false and false and true are hoth matched by the left

hand side of the axiom. In addition. the equality and inequality predicates will also take
commutativity into account, and the system will be ahle to determine that

true and (false and true) (true and true) and false

is true (because _and_ is also associative). The comm. property is only meaningful for a
binary function whose two arity sorts have a common supersort.

The kind of matching that reslllts when a function is given associativity and commuta
tivity properties is called Ale matching. Although it is an NP-complete problem, Ale
matching is highly optimised iu the implementation of FOOPS, using facilities given by

OBJ3.
Lastly, functions ma.y he given identities. For example, Boolea.n disjunction has false

as a left and a right identity. Thns, it would he declared like this:

fn or Bool Bool -) Bool [id: (false)]

This givl:'.s the effects of the axioms

ax false or P = P

ax P or false = P

2.2 Object-level Modules 30

(Of course, _or_ would also be declared to be associative and commutative.) More specifi
cally, a left-identity equation is added if the sort of the identity is less than the sort of the

first argument, and a right-identity equation is added if the sort of the identity is less than
the sort of the second argument. See [53] for a presentation of the propositional calculus

that uses all of the above properties.

2.1.8 Order of Evaluation

Rather than adopting a fixed strategy for evaluating the arguments of a function, FOOPS

allows tht' user to specify the order in which arguments are to be evaluated. Thus, strategies

such as lazy, eager, or any mixture of those, can be specified on a per-function basis. This

flexibility has wide-ranging applications, including language specification and operating
system scheduling [46). To make matters simple for the programmer, FOOPS computes a

default strategy for functions that are not explicitly given one; for most cases of interest, it

is left-to-right and eagPL
The evaluation strategy, Dr E-strategy, of a function is also given as part of its dec

laration, in thp section for properties. It consists of a list of argument indexes that in the

!iimplest case gives the- order in which arguments should he evaluated; laziness on au argu
ment is specified by omitting its index from the list. An example is if-then-else, declared

like this for eome sort s:

fn if_~hen_else_fi : Bool S S -> S [strat (1 O)J .

The strat.egy is the parenthesised list. given after the keyword strat. It indicates that the

first argument should be evaluated first, follov,,'ed by rewrites at "the top,", i.e., involving
if_theD_else_fi (indicated by "0"). In other words, the then and else branches are

evaluatpd lazily.
Section C.5 Dr {53] presents another example of the use of lazy pvaluation, where the

Sieve of Erathostenes is used to find all prime numbers.

2.2 Object-level Modules

Au object module defines one or more classes, which are collections of (potential) objects.
The attrihutes and methods associated with a class give the description of the intprnal state
of its objpcts and the operations that can change that state. Objects are created and deleted.

dynamically and an:! accessed wit.h nnique object identifiers that. are assigned. to them
at t.he time of creation. In FOOPS objects also persISt, meaning that once created they

become PilIt of the pnvironment and remain there until explicitly deleted3 . In addition,
metaclasses are provided; these are lists of the current ohjects of a certain class, and
may be used to effect changes on groups of objects of the same class. Furthprmore, object

modules may declare abstract data types.
Man)' of the concepts and mechanisms presented in the previous section also apply to

the object level. First, classes may be organised in inheritance hierarchies, and when a class

3Thi9 p~r5i5t.en~ 15 per .le~.llOn

2.2 Object-level MOdules 31

A inherits from a class B we say that A is a subclass of B. Second, the informal definitions of
signature and algebra carryover as expected to include classes, subclasses, attributes and

methods (but see Chapter 4 for precise definitions). Also, mixfu syntax is available. Terms

at tbis level may then be constructed using attrihutes, methods, variables and even function
symbols, and tbe same qualification notation for disambiguating parses at the functional

level may be used. In addition, the concept of a least parse carries over.
A further feature at this level is redefinition, or overriding, by which snbclasses

may replace by new ones the definitions of attributes and methods associated with their
superdasses. Tberefore, subclass relationships cannot be strictly interpreted as inclusions,

although operationally an object of some class B can be placed wherever an object of any

of its superclasses is expected, giving risp to subclass polymorphism. At rllll time, a
mechanism called dynamic binding selects the most specific version of a metllOd, based

on the class of tbe object to which the method is applied; similarly for attributes.

Lastly, the model of compntation at this level is a generalised form of term rt!writing in
which implicit refereIlce is made to a database of objects. We win use examples to explain

the interpretation of axioms nnder this model.
When not parameterised, object modules have this form:

Syntax 2.15 (Unparamelerised Object Modules)

omod (MadId) is

(oModEII) .

endo

where (MadId) stands for the name of the module, by convention given in upper case

letters. (aMadElt) stands for the things that may he declared by an object module, which

include classes, attributes, mpthods and axioms, but also anything that can be declared by

a functional module. Object modules may also import other functional or object modules.
o

2.2.1 Classes and Subclasses

Class declarations have t.he following syntax:

Syntax 2.16 (Classes)

classes (ClassIdLI8t)

where (ClassIdLisi) is a non-empty list of class names separated by blanks; by convention,

class names are capitalised. The keyword class is al10wed as a synonym to classes. 0

Example applications of tbi~ synta.x are:

class LinkedList .

classes Teacher Student

2.2 Object-Jev-,ee-1e-Me-0e-de-u=le-e''--- _ 32

Subcla.'iS declarations have the follO\\'ing syntax:

Syntax 2.17 (Subclass~)

subclasses (ClassLlst) < (ClassLl9t) {< (ClassLlst)}.

where (Cll1ssLlSt) is a non-empty list of cla..~s names, separated by blanks and possibly

qualified (this was explained in Section 2.1.3). This syntax specifi('~ that the classes men

tioned in the first list are ail subclasses of those in thc second list, and so on. The kep',rord
:subclass is allowed as a synonym to subclasse:s. 0

For example, we may declare the following "ubclas~ relationships:

subc1as:s Teacher < Person

subc1a:sses TeachingAssistant < Teacher Student < Person

2.2.2 Attributes

The synt-a., for declaring attribut('~ is similar to that for declaring functions. It is:

Syntax 2.18 (Attributes)

at (OpForm 1 (KmdList) -:> (Kmd)

where (OpForm) is the syntactic fmlll of the attribute Uust as for functions), (Kmd) is the
name of a sort or a cla..~s (possibly qualified). and {KmdLlsf} is a non-empty list of (Kmd).

The arity must include at least OTle class 0

For example, a class Person might have an attribute mlled age_, declared like this:

a~ age_ : Per:son -> Nat

Likewise. ,\II attribute called nth-person for a class PersonList lIlay be declared like this:

at nth-person PersonList Nat -:> Person .

~ote from these declarations that an object of class Person has only one age. but that an
object of r;la.'iS PersonList can have many values for its nth-person attribute.

Like tns, the keyword ats is used to declare together attributes with the same rank, as
in

ats (age_) (number-of-children_) Person -> Nat .

An attribute is always associated with the first class mentioned in its arity. For instance,
if Circle and Square are cla.-;ses, then

at fits-inside Circle Square -> Bool

is regarded as an attribute of objects of cla'3s Circle. Attributes wbose coarity is a sort

are commonly refened to as sort-vaJued attributes, and those whose coarity is a class

as object-valued or complex attributes. Au object with complex attributes i.l called a

complex object.
Attributes are also classified by wbether their value:" are stored or derived. The value

of a stored attribute is explicitly kept in an object and can be directly updated by methods.

The value of a derived attribute is gi ...·en by an expression that may involve varions function

and attribute symbols, and thus cannot be directly updated; said differently, the value of a
derived attribute is fnnctionally determined from thc stored state of the object. (Derived

attributes are analogous to what the database community calls computed or virtual field~.)

It is ofteu clear whether an attribute should he stored or derived, but occasionally an

attribute can be either, and the choice is oue of convenience_ An example of this would

be an attribute height for a cla.,:;s of balanced binary tr('{'s. If stored, the operations tbat

cbange the strllcture of trees (e.g., insert) must ensure that the value of height is always

up to date; if derived, this value may be computed on demand by traversing trees from tbeir

root to any leaf, giviug as result the number of uodes visited minus one. Another example

of an attribute requiring a similar decision is ntb-person, which could be computed on

demand or stored in the object for every currently valid iudex.

In FOOPS there is no special syntax for distinguishing stored from derived attribntes.

An attribute is assumed stored unless an axiom that defines its value is given. For instance,

t,he value of an attribute age_ for persons might be dcfiued with an axiom such as

ax age P = year-difference(current-date,birth-date(P))

wbere current-date would be a built-iu nnllary function returning the current date and

birth-date a stored a.ttribut.e.

For each stored attribute there is a built-in axiom that indicates how to fetch its value

from the database of objects in the FOOPS em'ironmeut. Axioms for both derived and

stored attributes are interpreted operationally as rewrite rules in this extended sense.

Finally, attribute.s can be declared <u;sociative bnt not commutative, and can have eval

uation strategies. See Section 2,2.4 for more details about evaluation order.

2.2.3 Creating Objects

Objects iu FOOPS may be treated either dynamically or at module-entry time. For dynamk

creation, FOOPS provides a method that is built-in for every class. For a class C, it is a

staudard-form method called new. C that accept.s as arguments a unique object identifier and

iuitial values for each of the stored attributes of the object; it gives as result tbe identifier.

Objl:'ct identifiers are simple symbols such as Johnny, TheRedArmy and Chapter1. Initial

values for attributes are specified by giving tbe attribute's syntactic form, tben an equal

sigu, and finally the term for the value itsl?'lf. To illustrate object creation, cousider this

simple module:

omod NAT-LINKABLE is

2.2 Object-level Modules 3,1

class Linkable

protecting NAT
at value_ Linkable -> Nat

at next Linkable -> Linkable
endo

NAT-LINKABLE defines a class of node" similar to those tbat would be used in a linked

implementation of lists. To create an object of class Linkable, we can execute

eval nev.Linkable(SomeLinkable, value_ = 10, next = AnotberLinkable)

where SomeLinkable is the (uniqne) identifier of the new object, and AnotherLinkable is

the identifier of another object of class Linkable tbat must have been created previously1.

The semanl,ics of creation calls for attributes to be initialised ill parallel, so that the expres
sions on tbe right-hand side of the equal sign cannot refer t.o the new object's state.

It. is an error to attempt to create an object whose identifier i.., not unique within its
cIa<;s. However, objects of unrelated classes may have the same identifier, and qnalification

may be required to resolve ambiguities
Objpd creation is very flexiblp and powerful in FOOPS, as we now illnstrate. First,

there is tJo fixed order in which initial values for attrihutes must be given, so that

nev,Linkable(SomeLinkable, next_ ~ AnotherLinkable. value_ = 10)

is the same as

nev.LinkableCSomeLinkable, value_ = 10, next_ = AnotherLinkable)

:\1oreover, object ident.ifiers are optionaL and in their absence generated automatically by
the syst.em. For example, it is possible to write

nev.Linkable(value_ = 10, next_ ~ AnotherLinkable)

and let the SystPill choose a Illlique identifier for the new Linkable object; this is useful for
data st.ructures in which we do not. care about the names of iuternal components.

Finally. initialising an attribute is optional. An attribute that is not initialised is assigned
a default value, whiCh is either given explicitly or else is determined from tbp environment

(see below for the details). For exampLe. the execution of

eval nev.Linkable(value_ = 25)

will involve assigning a default value to next~. Combining all of these conventions, we see

that

nev.Linkable()

'There is 11. circularity problem here. how can a. Unkable object be created without there being other
linkable; a1relLdy ill eXI"tence? Further bela..... we show how this is solve-d.

2.2 Object-level Modules 35

is a valid expression in FOOPS. It creates an object of class Linkable which is given a.

unique identifier and default values for its attributes.
Formally, the syntax for object creation is:

Syntax 2.19 (Object Creation)

neW'. (Classld) C[(NewObjArys)j)

where (NewOb)Args) is defined to be:

(Ob]edld) (, (O"Forn,): (Term)).

o

2.2.3.1 Entry-time Creation

Objects created a.t module-entry time may sen'e to denote spedal situat.ions, in much
the same way that const.ant.s are sometimes used at the functional level; for example, the

constant nil is used to denote empty lists. The attributes of tbese objects ma~' be given
initial values by declaring the appropriate axioms: those attributes not initialised receive

default values, as explained below. The synta.x for specifying the identifiers of these ohjects

is to declare a method without arguments:

Syntax 2.20 (Entry-time Objects)

me (Ob]/d) -> (Clas,~)

where (Ob)Id) is an object identifier, as described earlier. 0

(Section 2.2.4 describes hm... methods witb arguments are used for updating objects.)

For example. we may declare a class of stacks and a constant empty to denClte empty

~tacks, as follows:

omod STACK-OF-NAT is

class Stack .

extending NAT

in no-top : -> Nat? .

at top Stack -> Nat? [default: (no-top)]

at rest Stack -> Stack

at is-empty Stack -> Bool .

me empty -> Stack

me pop Stack -> Stack

me push Nat Stack -> Stack

var S : Stack var N Nat

--- the next tW'o axioms declare initial values for empty:

ax topCempty) = no-top

ax restCsmpty) = empty

2.2 Objpct-le\'el Modules 36

ax is-empty(S) : topeS) == no-top and rest(S) == empty .
ax top(pop(S» = top(rest(S»
ax rest(pop(S» s rest(rest(S»

ax top(push(N,S» = N
ax rest(push(N,S» = ne~.Sta~k(top = top(S), rest = rest(S)

endo

(The line ('extending NAT ." declares that NAT is imported in extending modp. The

details of ellis mode may be ignored here: the next chapter gives more information.)
Two remarks are in order. First, the axiom

ax rest(push(N,S» = S

wOllld have been incorrect: it specifies that after a push, tbe rest of a stark is itself; this

is so because S denotes a.n object identifier and not the state of somE' stack. The axiom
in the module says tbat the currpnt state of the stack is copied onto its rest, so tbat this

circularity problplll is avoided; t.his seems to be a good example of the differeuc(' between

reference ?nd copy semant.ics for assignment in programming languages.
Second. terms such as pusheS,empty) are valid. However, jf empty is npdated its

intended meaning is destroyed. This misuse can he preventpd by declaring that empty is
pnvate to STACK-OF-NAT (and indeed rest would need t,o be private too, so that empty

could not be accessed indirectly eithpr]; Section 3.9 describes how to do this.

2.2.3.2 Default Values for Attributes

'Vhen an attribute of a new object is not initialised it is assigned a default value. There ate
two kinds of default value: explicit and implicit. Expltctl default valnes are tbose specified

as part of an attribute's declaration, in the sectiou for properties, as in:

a.t age_ ~ Person -> Nat [default: (1)] .

which indicates that if age_ is not given a value iu a call to ne~.Person, for example, it
should be set to 1 automatically. The syntax for specifying an explicit default value is:

Syntax 2.21 (Explicit Default Value)

default: «(Term)

o

If an attribute is not given an initial 'value in a call to neli' or with an axiom (for entry
time objects) and it does not have an explicit default vaJue, an Impltcit default value for it

is determined from the environment. This helps with the creation of objects with complex
structU!€, and works as follows. For a sort-valnl:'d attribute of sort S, the implicit default
value is the principal constant of S, which is the first-declared constant of that sorts.

'
!\ more 8atlsfao:::tory definition of prin~ipal con~tant~ l"k~ mto account modlale hierarchi",,; it is given

in Section 3.1.1.

.2.2 Object-level .Modules 37

If S does not have a principal constant, the implicit default value for the attribute is an

automatically provided constant called void-S of sort S?, tbe error supersort of S. For

example, in

new.LinkahleCSomeLinkable, next : AnotherLinkable)

attribute value_ is assigned 0, because that is the principal constant ofsort Nat in module
NAT (see [95] for a complete li.c;t of tbe principal constants of the sorts of modules in the

default environment).
For an object-valued attribnte with class C as roarity, the implicit default value is

the first-declared entry-time object of tbat class. For example, in the context of mod

ule STACK-OF-NAT, new.StackO creates an empty stack (as determined by is-empty); i.e.,
is-empty(new.StackO) evaluates to true. If such an entry-time object does not exist,

t.hen the implicit default valu(' is a uew obj('ct of class C wbose attributes are all initialised

with defaults. The t.crmination of tbis r('cursive strategy can h~' guaranteed by remembering
r,he classes that have beeu iHstantiated and stopping at the point where the default value for

an attribute requires the instantiatiou of a class for tbe second time. Then, that attribute
is assigned an object of class C? the error superclass of C, whose identifier is void-C. This

object is automatically provided hy FOOPS and is by convention used to denote a nnll

reference. For example, in

new.LinkahleCSomeLinkahle, value = 15)

attribute next_ is assigued void-Linkable. More examples of default value computations

are given in Section 2.2.3.4.

2.2.3.3 Met.aclasses

Sometimes there is a need to define operations that act upon all of the objects or a certain

class. To facilitate this, e\'ery class in FOOPS has all associated "metaclass," which is a list
of its objects; in fact, object creation and deletion can be seen as methods associated with

metadasses (deletion is explained in Section 2.2 ..5). The metaclass of a class C is accessed
with the nullary operation all-C. Tbe next section and Appendix B provide more details

and examples.

2.2.3.4 An Example

This section further demonstrate:- the various features presented thus far with two modules

and several evaluations6
; also, it shows that objects persist in the FOOPS environment. The

first module declares a class Person and two subclasses of it, Hale and Female. Objects

of class Person have two stored attributes. name_ and age_, and one derived attribute,
gender_. Because Male and Female are subclasses of Person, their objects also have these
attributes; bowever, no others are declared for them in particular. Attribute name_ is given

~""'L , •
l!lese mOQWe'3 a.pp<:>an·d onginaJ.ly "" examples in [48J, but we ha.n· chiWged some of the details in order

to use new language reatures.

2.2 Object-Jeve=l-OM"o"d"",,',,e''- _ 38

an explicit default value bu~ age_ is not. Its default value is implicitly the natural number

0, because that is the principal constant of sort Nat in module NAT.

PERSON imports QID, a functional module provided iu the FOOPS uefault environment.

This module declares a sort named Id who:,;e elements are quoted symbol.::, such as 'Car

and 'Book. (QID has nothing to do with object identifiers.)

The evaluations are straightfofwaru

omod PERSON is

class@s Person Male Female .

subclasses Male Female < Person

:sort Gender .

fns male female ; -> Gender

protecting QID

protecting NAT

--- stored attributes:
at name Person -) Id [default: ('NoNarne)]

at age_ Person -) Nat

--- a derived attribute:

at gender_ : Person -) Gender

var F Female var M ; Male

ax gender F female

ax gender M male

endo

eval new. Female (Wilma, nan::e 'WilmaPebble, age_ ~ 30)

---> should be Wilma

eval new.MaleCFred, narne_ ~ 'FredFlin~tone. age_ ~ 3S)

---> should be Fred

eval new.Person(Somebody, age_ "" 23) ---) should be Somebody

eval narne Somebody ---) should be 'NoName

e val gender Wilma ---> should be female

eval gender Fred ---) should be male

eva I gender Somebody ---> should not evaluate any further

---) examine metaclasses

eval all-Person ---> should be Wilma, Fred, and Somebody

eval all-Male ---> should be Fred

eval all-Female ---> should be Wilma

The second module declares a class of families and imports module PERSON. Objects

of class Fa.ruily have two stored attributes, vife_ and husband_. and by their coarities it

is dear that only females call be wives and Duly males can he husbands. There is also a

2.2 Object-level Modules 39

derived attribute, name_, defined to be the name of the husband.
The evaluations make use of the fact that objects persist in the environment: the objects

created in the context of module PERSON are available when carrying out evaluatiuns in the
context of module FAMILY, because PERSON is imported into FAMILY.

omod FAMILY is

class Family

protecting PERSDN

--- stored attributes:

at wife_ Family -> Female

at husband_ : Family -> Male

--- a derived attribute;

at name Family -> Id

vax F : Family

ax name F == name husband F

endo

---> the next evaluation uses objects created previously

eval new.Family(TheFlinstones, vife_ = Wilma, husband_ == Fred)

eval name TheFlinstones ---> should be 'FredFlinstone

eval age wife TheFlinstones ---> should be 30

---> initial values can also be calls to nev:
eval new.Family(TheMunsters,

busband_ = new.Male(Herman, age_ = 42, name_ == 'HermanMWlster),
wife_ = new. Female(Lily, age_ = 37, name_ = 'LilyHunster)

eval age husband TheHunsters ---> should be 42

eval name vife TheMunsters ---) should be 'LilyHunster

eval name TheMunsters . ---> should be 'HermanHunster

---> implicit default values for comple% attributes
---> need to be computed next:
eval new.Family(TheNeighbours)
eval wife The Neighbours ---> should be some Female identifier
eval age husband TheNeighbours ---> should be 0
eval name TheNeighbours . ---> should be 'NoName

---> ids axe also optional

eval new.Person(age_ : 20, name_ 'GrandpaJ1unster)

eval new.Family()

eval new.Person()

2.2 Object-le"'el Modules 40

2.2.4 Methods

Methods (v"ith arguments) are the opf'ratious that change the state of objects by assigning
new values to their attributes. In POOPS, the effect of a method is described declaratively
by axioms. Also, methods may be combined to form method expressions th,lt perform

complex updates on various objects.

The syntax for declaring methods is similar to that for declaring attributes and fUllCtiollS'

Syntax 2.22 (Methods)

me {OpFon71 / (KmdL15t) -> (Kmd)

"\...here (Kmd) is t.he name of (l. sort or a cla.s:> (possibly qualified), and (KindLtst) is a

nOll-empty list of (Kmd). Tbe arity must iudude at least one cia&.. 0

Like a~r,ributes, metbods are associated with the first class mClltioned in their arity.

su t,hat for clwses NatTree and NatList, \.he following aTe methods on ohjee,ts of class

NatTree:

me insert_in_ Nat NatTree -> NatTree

me insert-each NatTree NatList -> NatTree

The keyword mes may be used to declare together methods with the same rank, as in

roes (insert_in_) (delete_from_) Nat NatTree -> NatTree

Method axioms can be of two forms. The first is thp direct form, whieh specifies the

at.tribute to be updated and t.he value of the attribute after the execution of the method.
For a standard-syntax a.ttribute a and a sta.ndard-syntax method m. the general form of a

direct method axiom (DMA) is:

ax a(lII(O,args)) = (Term)

where 0 is a variable that denotes the object that m updat.es, args stands for thc other
arguments to m (if any); and (Term) canuot contaiu any method symbols. The axiom

specifies that the value of a after the execution of m is eqnal to the term on the right-hand
side. The term on the right-band side may mention ii, so that its ne....· value call be defined in

terms of its old value. Moreover, wheu a gmup of DMAs define a. method, their right-hand
sides are evaluated before any attributes are changed.

It is not necessary to give a DMA for each of the object's attributes. If a DMA is
not given for a particular one, then the attribute retains its old value. This is termed a
fratne assumption, and reduces the number of axioms that must. be written, Finally, note

t.hat methods described with D~fAs evaluate to the identifier of the object they update.
Therefore, their coarity must be the class of this object (otherwisf', t.he left-hand side of the
DMAs would not parse properly).

Let liS consider some examples in the context of these declarations:

ITo HimpJify the exposition we have It.Bsumed that the object Lo update i5 given the first argument.

41 2._2 Objed-level Modules

class Pair .
ats fst snd : Pair -) Nat .

which define a class of objects whose state consists of a pair of natural numhers. A method

that increments attribute fst by a certain amount may be declared like this:

me incr-fst Pair Nat -) Pair .

Its effect is captured by the following axiom:

ax fst(incr-fst(P,N» z fst(P) + N

where P is a variable of class Pair and Nis a variahle of sort Nat. These evaluatiom illustrate

how the method works:

eval nev.Pair(p, fst = 0, snd = 0)

sval incr-ffit(p,5) ---> should be p

eval fst (p) ---) should be 5

eval snd(p) ---> should be 0 (no change)

The evaluations also show that each DMA is not interpreted directly as a rewrite rule.
The DMAs that describe a method may be thought of as one rewrite rule whose left-hand

side has the method as its top symbol and whose right-hand side gives the updated object.

(Again, this is not term rewriting in t.he classical sense. but an extension of it that takes
into account an implicit object database.) However, we regard the declarative reading of

individual DMAs as primary.
Now consider a method svap that sets the value of fst to that of snd and vice versa.

It is defined by these declarations:

me svap Pair -> Pair .
ax fst(svapCP» = snd(P)

ax snd(svapCP» = fst(P)

Note that the declarative ness of DMAs affords an exceptionally compact. description of this

method. Again, ewuations exemplify the situatiOll:

eval nev.Pair(p2, fst = 0, snd = 1)
eval svap(p2) ---> should be p2
eval f~t(p2) ---) should be 1

eval snd(p2) ---) should be 0

---> nov try a method expression!
eval svap(incr-fst(p2, 1» ---> should be p2

eval fst(p2) ---> should be °
eval snd(p2) ---> should be 2

A method copy that takes as arguments two pairs and sets the values of the attributes
of the first to be equal to those of the second is defined as follows:

2.2 Object-level Mod"",,l=',=- _ _ 42

me copy Pair Pair -) Pair .

vars Pl P2 : Pair
ax fst{copy{Pl,P2)) = fst(P2)

ax sDd(copy(Pl,P2)) = 5nd(P2)

The axioms spccify changes to the attributes of the object denoted by Pl, following tbe

convention stated earlier. Now some evaluations:

eval new.Pair{p3, fst = 5, snd : 10)

eval Dev.Pair(p4, fst = 7. snd = 14)

eval copy(p3.p4) ---) should be p3

eval fst{p3) ---) should be 7
eval snd(p3) ---) should be 14

eval fst(p4) ---) should be 7 {no change)

eval snd(p4) ---) should be 14 (no change)

DMAs may also be conditional. Their general form is:

cax a(m(O,args)) = (Tenn) if (BooITe.rm)

where (BooITerm) is a Bool-valued term that may not mntain any method symbols; ev

erything elsc is as before. Thi., axiom sa.)';; that mmakes attribnte a of 0 equal to (Term) if

the condition is satisfif'd; otherwise, the attribute is not changed. Also, both (Tenn) and

(RooITerm) are evalnat{'d before the execution of the method (ill a fashion similar to that of

unconditional D1'IAs, a...'l explained ,'have). By way of illustration, fOllsider a met, hod called

make-snd-zero on pairs that, sets the YallIe of snd to zero if its current value is greater than

tf'n but docs not change it othcrwise. The following declarations describe t.his method:

me make-snd-zero Pair -) Pair

cax snd(make-snd-zero(P)) = 0 if snd{P)) 10

~ow SOme cxample e\'aluations:

eval ne~.Pair(p5, fst = 5, snd "'" 10)

eval make-snd-zero(p5) ---) should be p5

eval sndCp5) ---) should be 10 (no change)

eval snd(swap(incr-fst(svap(p5).2))) ---) should be 12
eval make-snd-zero(p5) ---) should be p5
eval sndCp5) ---) should b. 0
eval fst (p5) ---) should be 5 (no change)

The sccond form of method axiom is the indirect form, which defines a method in

terms of a method expression. For 11 standard-syntax method m, an irldirect met.hod axiom

(IMA) has t.he following form'

ax llI(O.args) : mexpr

43 2,2 Object-level Modules

where 0 is a ...ariable and mexpr is a method expression, which is simply a term that involves

method symbols. Each IMA is interpreted as a rewrite rule, and a method defined ill this

way may return any ,'alue8 . To facilitate tbe construction of method expressions. FOOPS

provides a method exp,-esSton combmator tbat composes expressions sequent.ially. This

built-in feature has syntax _;_, so that ifmexpr2 and mexpr3 are met bod expreSliions, then

tbe following art~ also method expressions:

mexpr mexpr2

mexpr mexpr2 ; mexpr3

This combinator associat~ to tbe left and operates by eVd.luating its first argument and

then its second argument; it gives as r('sult the evaluation of its second argnment. For

t'.xamplc, assume that a method iner-snd (similar to incr-fst) hl\S been declarEd. Then a

method iner-both that adds a certain amouut to each component of a pair can be declared

like this:

me incr-both : Pair Nat Nat -) pair

ax incr-both(P.Ni,N2) = incr-fst(P,Ni) ; incr-snd(P.N2)

where Ni and N2 are ...ariables of sort Nat. Finally, I!'-'lAs may also be conditionaL with the

following form and usual interpretation as rewrite rules:

eax m(O,args) = mexpr if (Boo/Tenn) .

As before, the condition may not include any method symbols.

Metbods defined with IMAs are also called derived methods.

2.2.4.1 Order of Evaluation

Method expressions are evaluated bottom-up. This may be understood by examining the

parse tree of a term. For example, tbe parse tree of

swap(iner-fst(swap(p1).fst{p2»)

is:

swap

I
incr-fat

/ ~
swap fst

I I
pi p2

~Thus, unlike the situation in rome other object-oriented languag.... , in FOOPS there is no need for
"ruD(;tionll" with side eff...<:tB.

2.2 Object-le.~v-,e"l"M"o"d"",,le,,''--- _ 44

Bottom-up evaluation begins by first evaluating the leaves of the tree and then proceed

ing upward~ recursively, carrying the results obtained in lower levels As methods effect

state chaIlges, each method in a method expression is (possibly) €'\'a!uated in a different

context. Other evaluation strategies, such as top-down or mixed, would not be appropriate

because symbolic method execution does not make sense for objects: il. method lnllst have

real arguments before it can produce a real state chauge9
. However. the order in which the

arguments to a method are evalnated is not fixl"d, and any part.icular order may be declared

as a property of the method. The syntax for this is similar to that for fl.mctioni';, which was

given in Se<.::tion 2.1.8; default evaJuation orders are also similarly determined.

2.2.5 Deleting Objects

FOOPS provides every class with a. method to delete object.s: it giv~s as result the void

object a:;sociated with the class. For a cla.<;s C, its syntax i:-;:

me remove_ C -.> C?

If Blackvells is the identifier of an object of class Bookstore. then

remove Blackwells

yiclds void-Bookstore. In addition, remove_ has the "ffect of replacing ('very occurrence

of thp supplied identifier in other (complex) objects with the same void object it returns.

For example, consider a class of pCn;ons with au attribute

at: spouse Person -.> Person

and two objects, with identifiers John and Susan, such that John i~ the ;;pouse of Susan

and vice versa. After executing

remove John

spouse(Susan) yields void-Person.

Finally, entry-time objects cannot be deleted.

2.2.6 Invalid Object Identifiers

It is possible for methods and attributes to remain unevaluated iu an expression if no rewrite

rulps apply to them. This might be problematic wheu an att.ribute or method is supposed

to evaluate to an object identifier to be pa.'lsed as argument t.o another attribute or method.

Then what these would receie \\-'Quld not be aalid object ideutifier. By way of illustration,

consider the following declarations for a class of buffers of fixed size (giveu by the constant

bound):

9Ho",,-ever, there exi5t ~YlDbolic execution ~Y5terns simJiM to FOOPS in which method expres5ioTl!l remain
p"rtially uuevaluated until certain conditions he<"omc true. For eX!lll1ple, 5ee the proposals for obJl'ct-oriented
concurrent l'lt"cution iu 19J and [76].

2.2 Object-level l....fodules 45

class BoundedBuffer .

at current-size : BoundedBuffer -> Nat

me put BOUU1dedBuffer Nat -> BoundedBuffer

me get BOUU1dedBuffer -> Nat

vax B : Buffer var N : Nat

cax put(B,N) = if current-size(B) < bound

(Tbe details of the axiom for put are not important here.) Now assume that Buff is the

identifier of a buffer that is full. Since there are no axioms that specify the behaviour of

put on full buHers, a term such as

put (Buff, 5)

will not evaluate any further. If tbis term happens to be part of a larger term, eg.,

ge t (put(Buff.5))

then unless the axioms describing get explicitly test. for this kind of situation (see below).

the evaluation of the term fails because there is nO object with identifier put (Buff, 5).

Since it may be of interest to try to do something about an invalid object identifier,

FOOPS provides every class with a Bool-valued method that tests whether there exists an

object with a certain identifier. For a class C, its syntax is:

me exists? _ : C -> Bool .

2.2.7 Redefinition and Dynamic Binding

Class inheritance is more flexible when the methods associated with a subclass can rede

fine, or override, those associated with its snperclasses. POOPS and other object-oriented

languages that support rede/tnition come equipped with a run-time mechanism that selects

the most specific version of a method, hased on the class of the object to which the method

is applied. This is called dynamic binding. Redefinitions in FOOPS are giwn just by

introducing a new syntactic declaration, which ml1St include the redef property. ~ in

me insert : DoublyLinkedList Elt -> DoublyLinkedLiEt [redefJ

where Elt would be the class (or the sort) of the elements stored in the list. Regularity

mnst of course still be obeyed. so that unique least parses exist. However. a method and

its redefinition may behave diHerently. FOOPS also allows attributes to be redefined; the

same syntactic restrictions appl:y. (Our prototype implementation issues warnings when a

declaration is a redefinition attempt bnt does not include the redef property.)

Next we give a concrete example, in two parts, that involves redefining both attributes

and methods. First, consider a class Linkable of objects whose state consists of a natural

numher and a "pointer" to anotber object of class Linkable, as would be used for defining

linked lists:

--------2.2 Object-level Moccd"":ole,,s'--- _ 46

omod NAT-LINKABLE is

class Linlo;able .

protecting NAT .

at value_ Linkable -> Nat .

at next_ : Linkable -> Linkable

endo

Module NAT-BILINKABLE below defiues a subclass of Linkable GlUed BiLinkable whose

objects store. in addition, the identifier of a "previous" bilinkahle object.. as would b{! used

for defining doubly-link('u lists. So that Iinkables 8Jld bilinkables are !lot mixed inadver

tpntly, attribute next_ is redefined:

omod NAT-BILINKABLE i:>

claBs BiLinkable .

extending NAT-LINKABLE

subclass BiLinkable < Linkable

at next_ BiLinkable -) BiLinkable [redef] .

at prsv_ : BiLinkable -) BiLinkable

endo

These declarations specify that objects of class Linkable have two attributes, value_ and

next_, of coarity Nat and Linkable, respecti\'ely, while objects of class Bibnkable have

three attributes, value_, ne%t_ and prev_, of coarity Nat, BiLinkable and BiLinkable,

respeetively.

Second, below we provide a versiou of NAT-LINKABLE that declares three methods, one

that replaces the value stored in value_, another that replaces the value stored in next_,

and a third that inserts a linkable in betweeu two others_

omod NAT-LINKABLE is

class Linkable

protecting NAT

at value_ : Linkable -) Nat .

at next_ Linkable -> Linkable

me replace-value Linkable Nat -) Linkable

me replace-next Linkable Linkable -) Linlo;able

me put_betYeen_and_ Linkable Linkable Linkable -) Linkable .

vaxs L Ll L2 : Linkable var X Nat.

ax value(replace-value(L,X)) = X

ax next(replace-next(L.L2)) = L2

ax put L betYeen L1 and L2 = replace-next(Ll,L)

replace-next(L,L2)

endo

Now follows a corresponding version of NAT-BILINKABLE in which put_betveen_and_

and replace-next are redefinro so that prev_ is also updat.ed. Furthermore, note the

inclusion of (auxiliary) methods with a syntax similar to that for assignment in imperative

language's,

omod NAT-BILINKABLE is

class BiLinkable

extending NAT-LINKABLE

subclass BiLinkable < Linkable

at next BiLinkable -> BiLinkable [redefJ

at prev_ : BiLinkable -> BiLinkable

me next_:=_ BiLinkable BiLinkable -> BiLinkable

me prev_:::_ BiLinkable BiLinkable -> BiLinkable

me replace-next BiLinkable BiLinkable -> BiLinkable [redef]

me replace-prey BiLinkable BiLinkable -> BiLinkable

me put_between_and_ BiLinkable BiLinkable BiLlnkabla

-> BiLinkable [redefJ

vars L Ll L2 : BiLinkable .

ax next(next L := L2) = L2

ax prav(prev L :~ L2) = L2 .

ax replace-next(L,L2) = prey L2 := L ; (next L ',= L2) .

ax replace-prev(L,L2) = replace-next(L2,L) ; L

ax put L betveen Ll and L2 = replace-next(Ll,L)

replace-prev(L,L2)

endo

Run-time problems of the kind descri.hed in the previous SKtion occur if no axioms are

given to specify the behaviour of methods and derived attributes that redefine others.

A further possibility in Faaps is for a derived attribute to be redefined into a stored

one, This gives more flexibility to subclasses in choosing whether something that was

previously computed on demand can {lOW be stored and updated when appropriate. Note

that the opposite should not be allowed: an inherited method could att.empt \0 direct.ly

update an attribute whose value was no longer stored.

2.2.7.1 Accessing Original Versions

The redefinition of a derived at.t.ribute or a met.hod may acce.."S the original version by using a

qualification notation similar to that. for disambiguating parses (presented in Section 2.1.3).

For instance, a method dabi t on bank accounts (of class Acct) might be redefined for

minimum-balance accounts (of class HBAcct), so that those withdrawals that 'would leave

the balance below the required minimum are not accepted. The axiom for the I~definition

would be something like this:

ax debit(A,AMOUNT) =	 (debit(A,AHOUNT)).Acct

if balance(A) - AMOUNT >K minbalance(A) .

where A is a V'<.Uiable of class HBAcct.

2.2 Object-level Modules __~__ 48

2.2.7.2 Discussion

While FOOPS adopts aBO-called ··variallt" syntact.ic restriction on redefinitions (1.('., that

signatures remain regular), this choice is not innocuous for type safety, in the following
.__ense. Consider, for example, the method replace-next above. A call to it for an object

of class BiLinkable selects the redefinition. But what if dynamically its second argument
happeu3 to be of class Linkable'? The FOOPS approach is to insert a retract at 1"1m time

on the serund argument. On th{' other hand, langnages without retracts take this to be a

fatal run-time type error. An example is Eiffel [78J, although a recent proposal sugge.""ts
that system-level validity checks can signal the potential OCfUrrence of this kind of error.

An alternative syntactic restrictioll that does not entail retract.s or possible type errors
is called "<:ontra-variant," and is different in that the new arity must be greater than the

old arity except on the argument position that determines the class of the attribute or
method. For example, the redefinition of replace-next for bilinkables would be in...alid

under contra-variance because the second argnment goes in the opposite direction. FOOPS
adopt.s variaoce for two reasons. First, it appears to captnre the more common situation

in practice [23, 78). Second, it obeys the algehraic semantics of FOOPS. We only know
of one language that adopts contra·...ariance: Trellis [102J; maoy others require that arities

and coarities be equal except on the argument position that determines the cla.."s of the
attribute or method, and this is also safc lO . See Section 6.4 for more information ahout

redefinition facilities in other languages.

2.2.8 Inheritance Diagrams

The diagrams of Section 2.1.4 generalise to the object level by considering sorts to be classes
and functions to be either attributes or methods. Furthermore, note that it is possible for

a method to be a merge and a redetinition at the same time (in fact, merging for attributes
<lnd methods implies redefinition). One additional diagranl exists at the object level, and

is shown in Figure 2.4. In it a, method mof class A is redefined for objects of dass c. This
creates an ambiguity whenever m is applied to an object of class D, and which cannot be

solved simply by qnalification. This is because in a context expecting an object of cla.~s A,
an object of class D can be placed, but jf m is applied to this object, which of the two m's

should he chosen? It. is not appropriate to require SOUle form of qualification there, as (for

example) such contexts may exist in code that does not pertain the designer of D. (With
modUle importation, inheritance hierarchies may indude classes from different modules; in
fact, this is the typical case. See the next chapter.) Also. the qualification notation that

would be needed appears to be excessively complex, as it would need to he applicahle for
all such possible D's. Nevertheless, the worse prohlf"ill is that it contradicts the goal of
incremental software development.. Therefore, this situation is an error in FOOPS, and
some corrective action is rf"quired. The simplest option would be to merge min D. Howe....er,
if this is not appropriate then it might be possible to rename one of the m's. The next

chapter explains bov.' this call be done.

/A".OA->A
B "
,,/ .-+ e [redef)" e .·e

D

Figure 2.4: ConflictiJlg redefinition in multiple inheritance.

2,3 Summary

This chapter has provided a detailed presentation of the main programming unit ofFOOPS,

the module. We explained the syntax and (informal) meaning of sorts and classes, aDd of
functions, attributes, methods and axioms. Vle also gave an intuitive description of the

models of computation at the functional and object levels of FOOPS, both of which are
based on term rewriting. Several small examples illustrated the features of the language;

more substantial examples are given in the next chapter and in one of the appendices.
FOOPS provides snpport for an the basic concepts of object-orientation; moreover, it

di1itinguishes betweenalues and objects and hetwe€n modules and classes. and supports

overloading and mixfix syntax. for operations. Also, object creation is very flexible and
convenient for initialising objects with complex structure.

ThiE chapter's contributions to the development of FOOPS inelude derived and ffiulti
argument attributes, explicit defaults, optional unique identifiers for objects, and in general,

the detailed explication of the language features. Furthermore, based on the semantics of
the language, we examined sort and class inheritance situations and conflicts, whicb is

something that bad not been done before.
The features of FOOPS presented here <U'e further enbanced for large-grain programming

and design by the facilities introduced in the next chapter, sucb as theories, views, module

hierarchies, generic modules with semantic interfaces, and an information hiding mechanism.

Chapter 3

Module Reuse and
Interconnection

Tht' cn!Jifieer" may dt:Cldc to copy as many Beemmgly good.
features as he can from ex;stin9 dCS·lgll.~ that hal,t succcss

jull:l/ Imthsl.ool1. the force,s oj man and nature. but Ill. may

also de.cide to ,mprolJf upon those aspects of pnor' desIgns

that appear to be wantIng.

- - Henry Petroski

Parameterised programming [35, 36] is a design techniquE' whose aim is to increase tbe

reusability, reliability and understandability of software modules by providing facilities fOr

• organising modules into hierarchies;

• declaring module properties;

• specifying how a module satisfies some properties;

• parameterising modules in order to broaden their domain of applicability;

• renaming module features so that modules call be a.UapLed to new cOntexts;

• di8tinguishing between vertical and horizoIltal structuring;

• specifying module interCOllnections wilb semantic interfaces; and,

• composing modules to create new modules or actual systems.

This chapter describes the realisatiou of tLe above facilities in FOOPS and their aI>-'
plication to (object-oriented) software design. We also discuss the capture of higher-order
capabilities in a first-order setting, rules of encapsulation, and information hiding mecha
njsms. Additionally, several e"ample; demonstrate the advautages of distinguishing between
class and module inheritance (but Chapter 6 gives a more detailed discussion). As in the

50

3.1 Module Hierar.~c":,h":,;",':...' _	 51

previous cha.pter, we include simplified syntactic descriptions; the full syntax for the lan

guage appears in Appendix A. We believe that the combinfltion of all these facilities for

large-grain programming generalises-and in several ways clarifies-----existing approaches to

object-oriented programming and design.

3.1 Module Hierarchies

~'Iodules in FOOPS can import other module:3, and this gives rise to a kind of multiple

inheritance at the module level that is quit.e different from sort or class inheritance. In

simple terms, module importation is the inclusion of thE" declarations of one modult~ into

another. However, FOOPS provides four kinds of module importation modes for declaring

how a module respects the semantics of the modules it imports. Th('ir synta.x is

Syntax 3.1 (Moduk Importation Modes)

{protecting I extending I using I including} (ModId)

Tbese mories can be abbre"iateri to pr, ex, us and J.nc, respE'ctivel.y. 0

The importation mode of a module H' in a module H is

•	 protecting jf H neither adds new item." to nor identifies items of sorts or classes from

H';

•	 extending if Mdoes not. identify items of sorts or classes from HI; or,

•	 using or including otherwise.

Examples with numbers are usually the best for illustrating these modes. COU.'3ider the

natural numbers in Peano notation:

fmod PE.ANO is

sort Nat .

tn 0 -> Nat

fn , Nat -> Nat

fn _+_ Nat Nat -> Nat [id: (0) assoc comml .

fn _._ Nat Nat -> Nat [J.d: (~ 0) assoc comm]

'lars M N

ax (5 N)

ax 0 >IE N

ax (5 N)

.ndf

...

...

Nat

(5 M)

o
(8 1'1)

5

s

5 (N

(N +

+ H)

H + (N • H))

Now this module:

3.1 Module Hierarcbies _ 52

fmod PEAND-DMEGA is

ex PWD

tn omega -) Nat

endf

It extends PEAND because the constant omega is a new element of sort Nat. This other

module also extends PEAND:

fmod PEAND-EXTRA is

ex PEAND .
tn times-2 ; Nat -) Nat .

endf

bC!cau.o;e terms such as t imes-2 (s s 0) denote new natural numbers (from the point of view

of PEA-NO). However, the next module protects PEAND because it gives times-2 a definition

in terms of old elements of sort Nat:

fmod PEAND-EXTRA2 is

pr PEAND

fn times-2 : Nat -) Nat

var N Nat.

ax times-2(N) == 15 sO. N

endf

Therefore. in this module a. term such (1.'; times-2(!; s 0) does not. denote a new natural

llUmber a.~ it is equal to IS S S 15 O. A module that simply u~es the "services" of allother

protects it too; for example:

fmod PEANO-LIST is

sort List .

pr PEANO .

fn nil -) List

fn COIlS : List Nat -) List .

end!

The naturals modulo N can be defilled by importing ?EANO and adding an axiom that

equates 0 to N. For N = S 15 0, we have:

fmod PEANO-MOD2 is

using PEAND .

axssO=O

endf

The mode is using because 0 and 5 s 0 were not previously eqllal or identified.

Finally, the including mode is only for importing theories, and will be discussed in the

secti.ons that follow.

3.1 Module Hierarchies 53

Of course, importation modes cannot be automatically checked Cor correctness; their
purpose is to document the way in which modules are used.

A further way of extending a module is to declare new subsortB or suhclasses. because
then- values and objects (respectively) can also be seen as belonging to their supersorts and

superclasses. The following example illustrates this.

Example 3.2 Module ACCT below declares a class Acct of bank accounts, with a.ttributes
bal_ (for balance) and hist_ (for transaction history) and methods debi t and credit for

the usual operation" on accounts. Tbe module HIST declares the sort of tbe transaction
histories, which are lists of 2-tuples whose first component is a date and whose second

component is an amount of money (of sort Honey). Lists use juxtapo~ition syntax (i.e., __)

for append and the function hd to select the first element of a list: 2-tuples are constructed
with syntax « _ ; _ ». Module HIST is exteuded by ACCT because of the declaration

of the function insufunds_, which is used. in transaction historie8 to indicate withdrawal

attempts that an account could not support. Module NOW declares a class of obje(ts ","ith an

attribute that stores a date; in particular, it declares an object with identifier Today which
is used to hold the current date. (~Iodules HIST and NOW are given in Appendix B.)

omod ACCT is

class Acct

ex HIST

pr NOW

at bal_ ; Acct -> Honey [default: (0)] .

at hlst_ : Acct -> Hist .

var A : Acct. vax H : Honey .
me credit : Acct Honey -> Acct .
ax bal credit(A,H) ; bal A + M
ax hist credit(A,H) ; « date(Today) H » hist A .

fn insufunds_ : Honey -> Honey?

me debit: Acct Honey -> Acct .

cax bal debit(A,H) "" bal A - H if H <: bal A
cax hist debit(A,H) = « date(Today) - H » hist A if M <= bal A
cax hist debit(A.H) = « date(Today) insufunds(H) » hist A

ifH>baIA.

endo

Next, module CHACCT extends ACCT by declaring a subclass ChAcct of Acct. Cheque

accounts have an additioual attribute for recording the cheque8 written; the sort of this

attribute comes f;rom module CHIST (which is also given in Appendix B). Cheque histories
are lists of triples with each entry containing a cheque number, a date and an amount; 1._

is the selector function for the first component of a triple (whose sort is 3Tuple) Because
cheque accouuts are accounts not a.vailable from ACCT, CHACCT extends it.

omod CHACCT is

3.1 Module Hierarchies 54

class ChAcct .
ex ACCT _

subclass ChAcct < Acct .

pr CHIST .

at chist_ ChAcct -> Chist

vax C : ChAcct. vax CH Chist var M : Money

vax 3TUP ; 3Tuple

--- an auxiliary to compute the next check number

tn nextchk_ : Chist -> Nat .

ax nextchk CH = if CH ~= emptyChist then 1 else 1 + 1* hd CH fi

--- an auxiliary to add a new entry to the cheque history

me app-chist ChAcct 3Tuple -> ChAcet

ax chist app-chist(C.3TUP) ~ 3TUP (chist C)

fn badch_ : Money -> Honey? .

rne vritechk ; ChAcct Money -> ChAcct .

cax vritechk(C.M) = app-chist(C,« nextchk chist C ;
date(Today) ; badch(M) »)

ifM>balC.

cax ~ritechk(C.M) =
debit(C.M); app-chist(C.« nextchk chist C ; date(Today) M »)

if M <= bal C .

endo

D

It is useful to document the cOntext of a module by drawing a graph that shows all

of the modules on which it relies. The following picture gives the context for CIiACCT (and

also for ACCT) 1;

CHACCT

// ~~
ACCT CHIST

// '-'- /
/ .~ /

HIST NOW

~1/
BOOL

Here. an arrow from B to A indicates that B is imported by A.),. salient characteristic of

the above kind of module importation is that it is cumulative (also callf>d transitive); for

example, CHACCT also import.s BOOL, HIST and NOW, although indirectly. Fllrthermore, it is

important that modules that are multiply imported are shared; for example, AceT includes

•Ac~uaJl.y, the context of CBACCTould abo include all the other submodules or KIST, CHISr and wav.

3.2 Theories 55

only one copy of the booleans, even though it imports 800L indirectly via tv.u different
submodules. Later we present facilities that allow modules to import others prh'a.tely, thus

hlocking transitivity.

To allow for the graceful integration of modules that might be developed independently,
FOOPS associates with each sort, class. fnnction, attribute and method the module which

declares it. For example, the full name of class Acct is Acct.ACCT, as discmsed in the
previous chapter. When modules are imported in protecting or extending roode, tbeir
features retain this association with their module of origin. However. certain situations call

for the textual copy of the features of one module into anotber, and this is provided in
FOOPS by the using mode of importation. (This should not really be surprising, becausp

using makes no guarantees about preserving the semantics of imported modules.) Several

other applications of using will be discussed in later sections. Here we just note that for
executable modules, protecting and extending are the most common importatiou modes.

3.1.1 Principal Constants

In Section 2.2.3.2 we explained the role of principal constants and entry-time objects in the
computation of default values for object attributes. In tbe presence of module inheritance,

the principal constant of a sort in a module H is the first declared constant of that sort

in H. If no constants are declared in H, t.hen the principal constant is the first declared
constant of that sort in the module from which H gets that sort, and so on recursively. The

determination of which entry-time object to use as default for an attribute is similar.

3.2 Theories

At both the functional and the object levels, FQOPS provides special kinds of modules called
theories whose purpose is to declare syntactic and sema.ntic properties to be satisfied by

other modules. The structure of theories is the same as for the other kind of module that we

have been using, in that they may declare sorts, classes, functions and so on; also, theories
can import other modules and can be parameterised, as will be discussed further below.

Theories constitute tbe purely declarative side of FOOPS, and support high~level design

and specification.
Because they classify other theories and modules by the properties that they satisfy,

theories can be seen as types [39]. This view extends the previous notions of "types as sets"
and "types as algebras" because theories are types that range over modules and that exist

only at system or module design time.
In addition, as theories are not meant for specifying executable code, tbe form of their

axioms is not restricted as for executable modules (see sections 2.1.5, 2.2.2 and 2.2.4).
Moreover, it is not sensible to distingnisb between stored and derived attributes. In the

following, we will use "module" to refer to both theories and executable modules.
Syntactically, functional theories are declared with the keyword pair fth. endfth

and object theories with the pa.ir oth endoth:

3.2 Theories 56

Syntax 3.3 (Theories)

fth (Modld) is (fModElt} endfth

oth (ModId) is (oModElt) endoth

o

The simplest theories in FOOPS declare It. single sort or class:

fth TRIV is

sort El t

endtth

oth TRIVe is

class e

endotb

Doth of these theories are automaticaUy available in FOOPS.

The following theory describes partially ordered sets (or posets), in anti-reflexive form:

fth POSET is

sort Elt

10 _<_ Elt Elt -> Bool .

van X Y ZEIt

ax X < X c false

ax X < Y implies not Y < X = true

ax (X < Y and Y < Z) implies (X < Z) ~ true .

endftb

For theories, the only importation modes that make sense are using and including,

because theories do not refer to any fixed number of items or elements of sorts or classes,

but to any module that satisfies tbeir axioms and that provides the syntactic structure
they declare. The next theory defines totally ordered sets, or posets in which every pair of

distiner elements is related; it imports POSET:

fth TOSET is

using POSET

vare X Y : Elt
cax X < Y or Y < X 2 true if X =/= Y

endftb

The difference between these importation modes is that using copies text but including
does not, which is useful for situations in which subtheories need to be shared. The next
section provides a full example.

On the other hand, if some theory T is to require the inclusion of an "uncorrupted"
version of the natural numbers, for example, it would import NAT in protecting mode:

3.3 Abstract Classes 57

oth T is

pr NAT

endoth

Because NAT is not. a theory, modules satisfying T must provide the natural numbers as

specified by NAT. Incidentally, 800L is also automatically imported into every theory (in

prot.ectiug mode).
A~ a final example, the purpose of theory ITER-ACTIONS given further below is to declare

the uanable parts of an iteratiou construct such a..~ the while loop, which (in general) has

the following form:

zmtialisalion;

while test do

some-action

endwhile;

wrapup;

The text in italics denotes the variahle parts; we will consider them to be methods. This

example concerns loops over data structures, so each of these methods will have two argu

ments, one for the data structure and one for any other input. The theory is:

oth ITER-ACTIONS is
claBse15 C In Out

me init C In -> C

me action C In -> C

me wrapup C In -> Out

me teat C In -> Bool

endoth

The class Out denotes the result of the iteration. In the next section we use this theory
to specify while loops in FOOPS.

3.3 Abstract Classes

Abstract classes function like templates for classes, in that they declare sorne methods

and attributes that. must be defined in their subclasses, and may also introduce some new
methods defined in terms of these given ones. For example, in Eiffel [77J, a class declared

as ahstract ("deferred") can have methods that do not have executable code; in C++ and
Ada 9X [2], a class is abstract if any of its methods is not defined. Abstract classes are

used for high level design. Thl)' are not generic, and are not meant to be instantiated, but
rather to have their deferred methods and attributes defined in different ways by different

subclasses.

3.3 Abstract Classes 58

In parameterised programming. we can provide this capability by defining an abstract

class in a theory, and tben importing that theory into executable modules, where it is

enriched with subclasses t.hat. providp executable defillitions for deferred methods The

advantage of this is that it does not require any new language features. For example, we

could have begun specifying the bank accounts example above with an abstract class theory

that capture6 the basic propert.ies of accounts:

oth ACCT is

class Account

pr HONEY

at balance Account -> Money

me debit Account Money -) Account

me credit Account Money -> Account

me transfer_from_to_ Money Account Account -> Account

vars A A- Account. var H Honey

ax transfer H from A to A- : debit(A,M)j credit(A' ,M)

endoth

~ote t.hat debit and credit are declared hut not defined, while the tran;;fer method is

defined using them.

The following modules defi1le two different subclasses of Account, where each would

provide executable definitions fOr debit and credit:

omod SAVINGS-ACCT is

class SavAccount

including ACCT .

subclass SavAccount < Account

at interest-rate : SavAccount -) Float

me dehit SavAccount Money -> SavAccount

me credit SavAccount Money -> SavAccount

axioms for debit and credit and other declarations

endo

omod CHEQUE-ACCT is

class ChAccount

including ACCT .

subclase ChAccount < Account .

me debit : ChAccount Honey -) ChAccount .

me credit : ChAccount Money -> ChAccount

axioms for debit and cred1t and other declarations

endo

Note the USe of the inclUding mode of importation. becausf' we do not want a different

copy of ACCOUNT in each the last two modules; otherwise, SavAccount and ChAccount would

not have a common superc1ass (SavAccount would be a subcla-c;.s of Account. SAVINGS-ACCT

and ChAccount a subclass of Account. CHEQUE-ACCT).

Sinn> class Account is abstract. it will have no objects that do not belong to a proper

subclass; i.E'., objects of cla.ss Account cannot be created directly. This is a nat.ural con

sequence of the semalltics of theories. Also, it is required that axioms of theories used for

declaring abstract classes have an executable form.

3.4 Parameterised Modules

Besides their use for high-level specification, theories are also Hsed t.o declare int.erface re

quirements for parameterised (or generic) modules. A parameterised module has cer

tain parts that are fixed and certain others that are variable. and these others are specified

by the formal parameters of the module. which themselves denote modules. Parameteri

sation is a way of capturing commonality and foctoriug nut, change, and allows modules to

be specialised by providing different sC'ts of actual parameters: because of this, parameter

isation is said to broaden the domain of applicability of a module [114J.
Because modules iu FOOPS are generic over other modules, module instantiation (also

called actualisation) combines not just one sort, class or operation, but logically related

groups of tbese, yielding a kind of higher-order composition at the module level. Subsequent

sections provide further discussion aod examples regarding this aspect of FOOPS. In this

section we are concE'rned with how to specify generic modules.

The following simple module for lists is generic over the kind of clempnts the.\' hold:

fmod LIST[X ;: TRIV] is

sort List .

protecting NAT

fn nil : -) List

fn __ : Elt List -> List

fn length_ List -> Nat

var E : Elt. var L : List

ax length nil = 0

ax length(E L) = 1 + length L

endf

Thp text between LIST and is is called the module's interface, and indicates that valid

actual arguments for LIST are modules that satisfy the theory TRIV, i.e .. any module with

at. least one sort; X is a variable as in ordiuary programming notation (recall the analogy

between theories and types).

Generic modules can of coursp have more than one parameter:

omod PAIR[X TRIV. Y TRrV] is

class Pair

at fst Pair -> Elt.X

at snd_ Pair -> Elt.Y

3.4 Parameterised Modules 60

at equal : Pair Pair -> 8001
me replace-fst : Pair Blt.X -> Pair
me repla~e-shd : Pair Elt.Y -> Pair
vars P P2 : Pair var Vi Elt.X vax V2 Elt.Y
ax equal(P,P2) ~ fst P s= fst P2 and snd P == sod P2
ax fat replace-fat(P,Vi) = Vi
ax snd replace-sndCP,V2) = V2

e~o

ParameterisPd modules include the theories over which they are generic; thus, their

contexts are similar to those shown previously. For example. this is PAIR's context:

/
PAIR

~'"
X::TRIV Y::TRIV

~ //
BOOL

It is import.ant that the two requirement theories are distinguished, because otherwise they

would be shared, and this would not allow for pairs with different kinds of components.

However, we will omit the qualification used in the above diagram when there is no room

for confusion.

The theory ITER-ACTIONS of Section 3.2 can be used to specify the interface for a module

that defines while loops:

omod WHILE[X :: ITER-ACTIONS] is
mes while while-continue C In -) Out
vax E C vax I In
ax whileCE,I) = initCE,I); while-continue(E,I)
ax while-continue(E,I) =

if test(E,I) then
actionCE,I); while-continue(E,I)

else
vrapup(E,n

fi

endo

An actual argument to WHILE must provide at least all the functionality declared by

ITER-ACTIONS. This module exemplifies one difference between class a.nd module inheri

tance, because of the derivPd methods it declares; if modules were classes, WHILE would be

a class and the two methods would be associated with this new class.

Theories can also be generic, as jlJustrated in the following example.

3,5 Views and Instantiation

Example 3.4 The parameterised theory PW-E,NGINE declares a class PWEngine of "password

generators" and is generic over total ordprs. A password generator is an object which
stores passwords generated by one of its methods. The axiom says that passwords must

be generated in increasing order, which guarantees that tbey are always unique. Note the
form of the axiom, which does not specify an executable pattern as defined in the previous

chapter; rather, it just declares a property that any implementation must satisfy.

ot:h PW-ENGINE[X :: TOSET] is

class PWEngine
at: value ; P'ilEngine -) EIt:

me make-py : P'ilEngine -> PWEngine

vu P : PWEngine
ax valueCP) < value(make-pw(P») = t:rue

endot:h

o

The full syntax of parameterised modules is the following:

Syntax 3.5 {Parameterised Modules)

tmod (ModId) (Modlnter"jl1.ce) is (fModElt) endt

fth (ModId) (ModInterjace) is (fModElt) endtth

omod (Modld)(ModInterjace) is (oModElt) endo
oth (Modld)(ModInterjace) is (oModElt) endoth

(ModInterjace) ..

[[(ModId) ... (ModExp) {. (ModId) ... " (ModExp») ...]]

where l,ModExp) denotes module cxpn:SSlOns, which include module instantiations and names

of non-generic modules; the sections that follow will present other kinds of module expres

sions that build upon these. 0

3.5 Views and Instantiation

Perhaps the most important feature of the module system of FOOPS is the view, which
is nsed to express how a module satisfies a theory. A view is a binding of the it.ems in a

module to the items in a theory, such that the theory's axioms are behavioumlly satisfied
by the module, in the sense of Section 3.5.2 bplow. The most immediate application of

views is to instantiate generic modules, but they can also be used to express relationships

of refinement between modules.
In general, there may be more than one view between a theory and a module, because

modules may satisfy theories in multiple ways; also, a module may simultaneously satisfy

various tbeories. This extends the capabilities of most other languages for associating

3.5 Views and Instantiation	 62

interfaces (also called "specifications") with aetnal modules (also called "bodies"); Chapter

6 provides the details of this comparison.

An explicit view has a name, designates its source theory and its target modulp,

and supplies a mapping that covers every sort, class, fnnction, attribute and method in its

sourcp. For example, there is alway::, a view from TRIV to any non-empt.y module, such as

BOOL:

view BOOL-IS-TRIV from TRIV to BOOL is

sort Elt to Bool .

endv

The naturals under less~than form a poset, thus

view Vi from POSET to NAT is

sort El t to Nat

fn _<_ to _<_

endv

The naturals under greater-than also form a poset:

view V2 trom POSET to NAT is

Bort £1 t to Nat

tn < to)

endv

To reduce t('diousness and capture "obvious" mappings, FOOPS offers a set of conven

tions by which views can be abbreviated. These are:

(1)	 Any sort or class pair x to x call be omitted.

(2)	 A sort or class pair x to y can be omitted if x and yare both principal sorts or

principal dasses2 .

(3)	 Any function, attrihule, or method pair 0 to 0 can be omitted if, under the view,

the rank of the first is the same as the rank of the sffond.

For example, because Nat is the principal sort of NAT, Vi and V2 may be abbreviated to

view Vi trom POSET to NAT is

fn _<_ to _<_

endv

view V2 from POSEr to NAT is

tn < to)

endv

'ThO' principal sort of a module IS the !in;l sort that ii. melltioD!,; the principaJ ('.laM of a module is the
firsl class that it. mO'ntioll$.

3.5 Views and Instantiation 63

Moreover, because of (3), Vl can be rednced to a sG-called default or null view, which

has an empty body:

vielO' Vl from POSET to NAT is

endv

It is also possible to map functions, attributcs and methods to expressions, providing a

very flexible capability. For example, the naturals nnder "divides but not equal" also form

a poset, but NAT does not declare a single function that tests for bot.h of these properties.
Howe~'er, such a function can be construclerl as paIt of the view:

view NATD from POSET to NAT is

sort Elt to Nat
VaTS El E2 : Elt

fn El < E2 to (El divides E2 and El =/= E2)

endv

This example shows that views can declare variables that take their values in sort.s of the

source theory. Note also the implicit mapping of these variables into vaIiables of the same

name and corrcspondiug sort in the target module: in El < E2 the variables are of sort
Elt, wbile in (El divides E2 and El =/= E2) they are of sort Nat. Views can declare

class variables in a similar fashion.
Perhaps unexpectedly, bank accounts can be .seen as implement.ing connters, which we

define as follows:

oth COUNTER is

class Counter

pr NAT
at value Counter -> Nat ,

mes inc dec Counter -> Counter

var C : Counter
ax value(inc(C)) = s value(C)
ax value(dec(C)) = if value(C) == 0 then 0 else P value(C) fi

ax value(dec(inc(C))) = value(C)

endoth

Observe that the last axiom, which expresses a fundamental property of counters, would

not be valid in an executable module: it is neither a direct. method axiom or &[1 indireet
method axiom. Here is t.he view:

view ACCT-IS-COUNTER from COUNTER to ACCT is

var C Counter
at value to bal_
me inc (C) to credit(C,l)
me dec(C) to debit(C.l)

endv

3.5 Views and Instantiatiun 64

It is interesting t.o note that iftht> axiom v;"lue(dec (inc(C))) :: value (C) was changed

to dec(inc(C)) "" C, then ACCT would not satisfy it. because debit and credit update

not only balances but also transaction histories. In other words, a credit followed by a debit

would leave an acrount's balance ullchanged, but its transaction history is different from

the original one. See Section 3..).2 for more on the satisfaction of axioms.

We also draw context graphs for views. which we denote with labelled dashed arrows

from the source to the target of the view. For example.

TRIV - _BaJl~::- g;-:.T~J~ ... BDOL

In future diagrams. we will omit the label wbf'never it is not rOllfusiug.

There cau also be views between parameterised mod Illes, or paralneterised views.

For example, consider the followin!; theory for "container·' data structures. Among others.

it specifies operations for inserting and deleting elements. and for te~ting the pre"'ence of an

element in a container

oth CONTAlNER[X TRIV] is

cl;"ss Container

pr NAT

at size Container -> Nat

;"t member Container Elt -> Bool

;"t empty Container -> Bool

mes insert delete Container Elt -> Container

v;"r C : Container vars E E' Elt

ax sizs(insert(C.E)) :: size(C) ~ 1

ax member(insert(C,E),E')

if E :::: E' then

true

else if empty(C) then

false

else

member(C,E')

fi fi
ax size(delete(C,E)) =

if member(C.E) then p size(C) else size(C) fi .

ax member(delete(C,E),E') = member(C,E')

ax empty(C) = (size(C) == 0)

ax member(new.Container(),E) :: false.

ax size(new.Cont;"1ner()) :: 0

endoth

Observe that the theory i8 not. a full implementation because it says nothing about how

containers store their elements. Therefore, well-known data structures such as lists, bags,

trees, and hash tables satisfy this theory; howevt'r, sets do not satisfy it because Inserts do

not always increase the size of a set.

Now assume that we have (say) a module LINKED-LIST that implements a class List

of linked lists, and that is also generic over TRIV. A view from CONTAINER to LINKED-LIST

would need to be parameterised:

viev LINKED-LIST-AS-CONTAINER[X TRIV]

from CONTAINER[X] to LINKED-LIST[X] is

class Container to List

at size to length

at insert to cons .

endv

The view says that for any module X that sati.~fiE's TRIV. there is a view from CONTAINER to

LINKED-LIST.

The full syntax ofview~ is thE' following:

Syntax 3.6 (Views)

viev (Modld)(Modlnterface) from (ModE:tpr') to (ModExpr) is

(V1ewElt) .

endv

(ViewElt) :::: sort (Sort) to (Sort) . I class (elas.s) to (ClassRef)

[fn I at I m. J (OpExpr) to (Ten") . I

fn (En) to (Fn) . I m. (Moth) to (Me/h) I

at (AUr) to (AUr) I (oVarDed).. I (fVarDecl).

where (Sort) and (Class) denote possihly qualified sorts and classes; similarly. ~n). {Attr)
and t.;Jeth) dellote possibly qualified functions, attribut.es and methods. (OpExpr) is a

(Term) consisting of a single operation applied to variables, and ifVarDecf) and :0 VarDed;
are variable decla.l·atl0ns as given inside modules. 0

3.5,1 Module Instantiation

Parameterist'd modules canuot be used by themselves; rather, they need to be instantiated

beforehand. Instantiation is r.he process by which actual parameters are bound to the

formal parameters of a generic module and a new module is created. Tbis binding is

spt'cified by supplying appropriate views from each formal parameter to its corIe$ponding

actual parameter. Instant.iations can occur wherever modules are expected; for example, a<;

targets of views.

One form of instantiation consists of giving view names. For example, the generic list

module of the previous section cau be instantiated to give lists of boolt'an values, as follows:

LIST[BOOL-IS-TRIV]

• •

3.5 Views and Instantiation 66

However, views not prl"viously dl"fined can be givl"ll "on the fly," as in

LIST[vie~ to NAT is sort Elt to Nat . endv]

Note that this kind of view does not requirl" a name nor does it need to mention its SOUIce,

because it is implicit from the parameterised module. Furthermore, therl" is a convention

for specifying default views on the fly, and it consists of simply gh'ing the name of t,he target
module, For example, the default view from TRIV to NAT is implicit in

LIST[NAT]

The contexts of instantiations inclnde views, as in the following graph:

TRIV-LI,ST
,

NAT--LIST[NAT)

The \'iew from LIST to LIST [NAT] maps the TRIV part of LIST to the NAT part of LIST [NAT),
using the view already provided; tlIe other parts of the two modules are mapped with default

conventions. Lastly, observe that module importations can be seen as (default) views that

describe inclusions
FOOPS also supports multi-l~vel instantiation, so that an actual argument to a

generic module can itself be an instantiated gpneric. For example, the following generates

a class of pa..irs whose first component is a boolean-aIne and whose seconr! component is a

list of natural numbers:

PAIR[BOOL-IS-TRIV,LIST[NAT]]

Note that there are two implicit views here: one from TRIV to NAT, and another from

Y: :TRIV to LIST[NAT) (wlIich maps Elt to List), The context of the abovp instantiation

is

x; :TRIV PAIR Y: :TRIV, , , ,
•
,

•
,

•BOOL-PAIR[BOOL,LIST[NAT)) +--- LIST [NAT] -NAT
• •, ,, ,

LIST--TRIV

Views can also be deduced from module ell"ments. For example, the dl"fault view from

TRIV t.o NAT is implicit in t,he following instantiation:

omod NAT-LIST is
pr NAT.
pr LIST [Nat)

endo

3.5 Views and Instantiation 67

Or, more economically,

omod NAT-LIST is

pr LIST[(Nat) . NAT]

endo

This kind of instantiation is particularly useful when the desired default mapping is not

between principal sorts (or classes). For example, sort NzNat of NAT is not principal, but

the implicit view in this instantiation is between Elt and NzNat:

LIST [(NzNat) .NAT]

As a further example of this fadlity, consider this instantiation of the generic theory of

Example 3.4 (page 61):

Example 3.7 A default view from TOSET to NAT is generated using the function _<_ of

NAT:

oth NAT-PW-GEN is

us PW-ENGINE[(_<_).NAT]

endoth

This password engine theory is used as part of a specification of resource managers that is

given in Appendix B, and in which resources are locked and freed with passwords. Addi

tionally, that appendix includes quite sopb..isticated instantiations of module WHILE and of

other related modules that capture various kinds of iterators. 0

A generic module can instantiate other generic modules using some of its own parame

ters. For example, a module for binary search trees could be specified as follows:

omod BSEARCH-TREE[X :: POSET] is

class Tree

pr LIST[XJ

endo

Note that there is an implicit default view from TRIV (the interface theory of LIST)

to POSET in the protecting declaration. Then, an instantiation of BSEARCH-TREE, say

BSEARCH-TREE[NAT], can be seen as instantiating LIST by composing the view from TRIV

to POSET with the view from POSET to NAT, which yields a view from TRIV to NAT. View

composition is well-defined (see Chapter 4), and corresponds to the composition of graph

arrows; for example, the dotted arrow below indicates the preceding composed view:

TRIV - - .. POSET, .,,
NAT

3.5 Views and Instantiation 68

Alternatirely, LIST[X] can be seen as creating a new LIST module whose interface ttwory

is POSEr rather than the original TRIV. The above diagram is also suggestive of another

application of views: refinemeut. This is discussed in Sertiou 3.10.

The varLous forms of instantiation have the following syntax:

Syntax 3.8 (Instantiation with Explicit Views)

(Mcdld) [(Vld) {,(Vld)} ..]

where (VlrJ) is the name of a view. 0

Syntax 3.9 (Instantiation with On-the-fly Views)

(Mo<ld) [(V"wA,g) {, (l/"wA,.,,)} . .. J

(Vl,fUJArg) viell to (ModE;e:p) is (VJelJJE/I.} .. eDdv

o

Syntax 3.10 (Instantiation with Default Views)

(M<>!Id) [(A,g) {, (A,g)) ...]

(Aryl;:'" (ModId) ! sort (Sort) I class (Class)

fn (Fn) I at (AUr) I me (Meth)

where sort, class, etc. arE' used for disamhiguation, if necessary. 0

Note tna.t it is possible for a multi-argument instantiation to combine various kinds of

views.

3.5.2 Verification of Views

Up to noll' we have ignored the semantic aspect of views, and just used them to describe

syntactic correspondences. \Ve believe that it would be too restrictive all programming

practice 1.0 always require a formal proof that a view is legitimate: therefore a practical im

plementation should only require syntactic validity. However. the ability to declare axioms

in theori<,,:: not only helps wit.h documentation and design. it also leaves open the pOlisibil

ity of formal verification for critical applications. We could even use a truth management

system to track the soundness of views, which might range from "mechanically verified" t.o

"wishful-thinking," as suggested in [35).

Given a view from (! theory T to a module At, the axioms in T are interpreted be·

hatJlOllmll~ (also called obsen.!atwnally) in JI, i.e.. they need only appear to be satisfil'd.

For example, a module implementing litackli may satisfy the equation pop push(X,S) '" S
bphaviourJ1ly without satisfying it. literally. In fad, this happens for the traditional pointf'r

array implementation of stacks. ill which "junk" may be left behind the painter following a

pop. Because this junk is not reachable anymore, it does not affect the behaviour of stacks.
This is illustrated in Figure 3.1, where the left.most stack first has a 7 push'ed onto it, and
then is pop'ed, yielding a !Jew stack state that i:- different from the original state. but which

is behaviourally equivalent to it.

push(7) pop

~ ----? [iJi1iLJ ----? [iJi1iLJ
t t t

Figure 3.1: Junk after a pop.

3.6 Module Blocks and Higher-Order Composition

Module blocks allow several modules to be declared together; moreover. blocks can be

parameterised, and then aU modules in the block have tbe parameterisation of the block
(in <iOdition to their own), For example, a module MAP that defines a method map over lists

could be declared in the same block as the module that defines lists:

block LIST-BLQCK(X TRIVC) is
omod LIST is

class List.

at head ; List -> Elt

Elndo

oth ME is

me m : Elt -> Elt

endoth

omod MAP [M :: ME) is

pr LIST

me map : List. -> List

endo

endo

The theory ME declares the interface for MAP, which requires one unary method m on
Elt's, aud map applies m to each element of its argument. Because the block is param

eterised by TRIVC, so are all its modules; additionally, a module inside a parameterised
block can be parameterised over other theories, as is MAP. Instantiating LIST-BLOCK, e.g.,

~Module Expressions 70

as LIST-BLOCK[NAT], also instantiates all of its modules: one for lists of natural Dumbers,

another that provides a generic map method owr thoSoe lists, and a third that defines the
interface to that generic, Blocks may not be nested.

A sigrnficant aspect of blocks is that private items can be nsed in subsequent modules
within 11 block, but not ontside of it. In the above example, this allows map to be imple

mented using any aspect of the LIST module, rather thl1n just its public features, as wonld
be required if LIST wen' outside ofKAP's block (information hiding capabilities ar(' explained

in Section 3.9). Blocks are also useful for organisiTI,!!; large specificat.ions, especially if they
have siguificant parts that are similarly parameterised.

Higher order operations (as in Smalltalk) can achieve some of the same fUllctionality
as modules t.hat are generic over operatious (snch as MAP). However, such an approach i8
small-gntiued, whereas parameterised programmiug is large· grained, because it. encapsulates

operations and properties with the data that they manipulate, and abstracts ol:er complete

modules, and eveu blocks of modules. Moreover, the featnres of parameterised programming
are first order, and thus simpler to rea.<;on about (.~ee [37] and [43] for further discussion of

thi6 issue),

3.7 Module Expressions

A module expression specifies the design of a system (or subsystem) in terms of alrf.'ad.r
given compouents. \\Te have aln·ady seen some generic module inst<lutiations, which are

a simple special kind of modul(' expression. Two fllrther operations used to form module

expressions are renaming and sum.
Renaming permits module entities to be given new names, which makes it ea.sier to

adapt modules to new contexts. For example, if a binary search tree will stOff' indices from
a dat&ba.~e. it is more natural to t'aU the class Index rather than Tree This is accomplished

using t.he "*" operator, as in

BSEARCH-TREE[STRING-AS-POSET] * (clas5 Tree to Index)

which instantiates BSEAR.CH-TREE and renaUles th(' class Tree; bere STRING-AS-POSET is a
view of strings (the index's keys) n.~ posets. Metbods can also be renamed, as in

BSEARCH·TREE[STRING-AS-POSET)
• (class Tree to Index, me insert to add-key)

It is possible that complex module expressions lead to the composition of renamings.
For example, the previous module expression is equivalent to this one, which splits the

renam ings in two:

(BSEARCH-TREE[STRING-AS-PDSET) * (class Tree to Index))
* (me ibsert to add-key)

Also, tbe module expression

(BSEARCH-TREE[STRING-AS-POSET] * (class Tree to Index»)

* (class Index to Tree)

is the same as

BSEARCH-!REE[STRING-AS-POSET]

because the renaming:,; in the first expressiou cancel each other. (A more realistic example

of renaming composition appears in Section 6.3.) However, after simplification, renam

ings generate new modules, so that NAT * (sort Nat to Number) and NAT are different

Olodules, and thus the sorts Nat and Number are not related, for example.

Sum, denoted "+", combines the contents of modules, taking sharing into accollnt, as
we illustrate next.

Example 3.11 This example extcnds Example 3.2 (pagc 5:J) by spe('ifying savings armunts

and so-called "now" ilccouuts, which provide both savings and cheque facilities. It use~

multiple inheritance for classes and modules, and module sum.

omod SAVACCT is

class SavAcct

extending ACCT

subclass SavAcct < Acct

sort Rate

subsort Float < Rate

--- sort Float (for floating point numbers) comes from HIST

at rate : SavAcct -) Rate

var S : SavAcct

me pay-interest-to_ SavAcct -) SavAcct

ax pay-interest-to S ~ credit(S,rate S * bal S)

endo

omod NOWACCT is

class NovAcct

extending CHACCT + SAVACCT .

subclass NovAcct < ChAcct SavAcct

endo

Note that A.CCT, imported through hath CHACCT and SAVACCT, is considered as shared 3 •

Another way of seeing ,,+., is as creating a new module that imports each of its arguments.

o
3The readeI may be wondering why we cledued Rate to be a supersort of Float. The reason can

be diiKovered by examining tbe typing of the last axiom tog",ther with the definition or Mouy given in
AppendiJ!: B.

3.7 Module Expressions 72

More complex module expressions may use nmlti-level instantiation, default views, rf'

namings and sum. For example, the following module expression describes a parsing stack
and a block-structured symbol table:

STACK[LIST[TOKEN] * (class List to Sentence)] +

STACK[TABLE[TUPLE[STRING,TYPE)

• (class Tuple to Variable,

at fst to name, at snd to type)]

(class Table to Scope)]

• (class Stack to SymbolTable)

v.ntb the make command. modnle expresiiions are "evaluated" (or "t:xecuted") t.o COI1

st.ruct new named modules, as in

make PARSER is

the previous module expression

,n""
It is the possibility of aetually building (Le., composing) systems that distinguishes mod

ule expression evaluation from go-called "module interconnection languages," which merely

provide descriptions of the :"tructure of systems. 110duJe composition gn'atly euhances the

ability to reuse software.
The use of module expressions with theories and views may sometimes seem too verbose.

However, a single module ins:tantiation can compose many different functions all at once.

For example, a generic complex arithmetic module CPU can be efL'lily lnstantiated with any
of sewral real arithmetic modules a.'i actual parameter [37):

• single precision reals, CPU [SP-REAL],

• double precision reals, CPXA [DP-REAL]. or

• multiple precision reals, CPU DiP-REAL].

Each instantiation involves substituting dozens of functioJlfl into dozens of other functions.
Furthermore, (37] suggest.s an abbreviated notation that is very similar to that of higher

order functional programming, for those ca.'ies where one really is jnst composing functions
(this notation uses the facHities described in Section 3.5.1),

ModulI' expressions can be used for qualification in the same way that module identifiers

have been used up to now. For example:

Tree.(BSEARCH-TREE[STRING-AS-PDSET] * (me insert to add-key))

Finally, we giv(' the formal syntax for renaming alld sum:

Syntax 3.12 (Renaming)

(ModExp) • ({RenameElt) {, (RenameElt)} ...)

(RenameElt) :;= sort (Sort) to (Sorlld} I class (Class! to (Classld) I
fn (Fn) to (OpForm) I at (AU.,.) to {OpForm) I
me {Meth} to (OpF0r;tn)

o

Syntax 3.13 (Sum)

(ModExp) + (ModExp I {+ (ModExp)).

o

3.8 Encapsulation Rules

Now that most aspects of the module system of FOOPS have been presented, we digress to
describe the encapsulation rules of the language. Encapsulation is the process of packaging

information, and has to do with boundaries of definition. The encapsulation rules of the
object kvel of FOOPS estahlish where the attributes and methods of a class can be declared

and where their axioms can be given, and ha....e the effect of localising the description of
ohjects and their potential states: we believe that this makes programs ea.<;ier to understand

and to maintain. The nIles are as follows:

(1)	 Except for those which are inherited, the stored attributes of a class must be declared

in the same module as the class is.

(2)	 rf A is a superdass of 8, this relationship can be declared only in the same module as

8 is.

(3) A direct	 method axiom (see Section 2.2.4) for a method m of class C is valid only if
both m and C are declared in the same module, and if it appears in that module.

(4)	 An indirect method axiom for a method m is valid only jf it appears in the same

module that declares m. Similarly, an axiom for a derived attribute a is valid only if
it appears in the same module that dec1areg a.

(5)	 Redefinitions of attributes and methods may be declar~d only in the same module as
the class they a.re associated with.

(I) and (2) prevent a class from "acquiring" stored attributes in other modules; this also
seems to simplify implementation aspects by allowing a modular approach to cod~ genera

tion and storage allocation. A salient consequence of (2) is that when a theory is used to
restrict the parameters to a generic module, the body of the generic may not declare any
of the theory's classes as suhclasses of any others; however, any of the theory's classes can

be snperclasses of any cla."5f'.s that the generic module declarf'.s.

.1~,Yf'ItiC'al Struc~uring and In[orfIli'ltion Hidillg _ 74

\3) prevents specifying dLl'ect updates to the attributes of an object elf ('lass C in it moduk
other thar that in which C is declared. (3) and 1-1). tngdht>r, forbid scattering; the ddiuitioJl

of a method or dt'riYed atLribnte across variolls modules. But note that tllt'y allow derivrd
attributes and methods to he declarf'd in any moduh'

(5) l"6triCtS rf'definitions to appear togf'ther with rile class rhat declares them

Be{'ause of the nature of functional-lewl programs. thE-n' (j.l'l' 110 corrt'sponding l"ules for

sorts. eXl'('pt tho,:,e implicit in the i1l1portarioll modes of modules. \Ve say more about thi>;

in the IH'XC section.

3.9 Vertical Structuring and Information Hiding

The preceding sedions have illustrated how FDOPS ~upports Iwnzontal df'sign activities.

Horizontal strllcturing is concerned with morlnle aggregatioll, t'nrichmeJlt ,1Ild specialisation.
On t.h(' o~lL('r haud, vertIcal structuring is concerned with the irnpll>meutation of luodules.

and thus with information hiding. A clear distinebort betwP-cll these two activities helps

~eparate design concerns from implementation concerns, and is hetter ab Ie to document the

structure and dependencies in a software sy,~tem [35. 50].

110re formally. information hiding is the proCf'SS of making certain pieces of information
inaccessible. The term "information hiding" was coinf'd by Paruils [89] to refer to the hid!tlg

of the "de'ign details" of a module, i.e., those aspects which are purely implementational or

accidental and that do not affect the module's int.erface. The proper use of an information
hiding merhanism can have a positive impact On maintenance. because internal changes

to a module many times do not affect its clients; information hiding also allows for the
design of modules tbat can be substituted in place of others, which in FOOPS can he

rigorouslyexpres!;ed with views (sec also Section 3.10) Example applicatiolls of information

hiding include hiding auxiliary operi1.tions in t.he definition of an ab~tract data type, and

associating protection information with files in UI\JIX, whereby the contents of a flIe can
be made read"only, executable-only or even invisible. for instance, to certain users of the
system; the latter example also shows that informatiou may sometimes be hidden in different

degrees. [nformation hiding often appears under the headings "scoping" or "Visibility" in

the literature, and we also lise tbis terminology.
In FOOPS modnles are the main unit.s of scope. which means that. the visibility decla

rations of a module affect only other modules, Tbis not only simplifies type checking, but
is also in concert with the notion that if two features are declared together it is because
they are closely related. Additionally, restricting visibility to apply a.t the class or at the

object }('vr!, as done in several other object-oriented langnages, seerns overly conservative
and is perhaps the reason why (at the same time) some of these languages provide special

features for overcoming this limitation (see Chapter 6).
In FOOPS a module can declare tbat sorts and classes are private to it, i.e.. invisi

ble to other modules. Functions can also be private, and attributes and methods can be
either pri\'ate or subclass-pn!Jtlte, which is a particularly useful modI;' for de-signing cla.",s

hierarchies. Private module importation blocks the t.ransitive visibility of module features.

3.9 Vertical Structuring and Information Hiding	 75

In addition, verticality and module inheritance can together support so-called "private"
or "implement.ation" class inheritance as a special case. Furthermore, a generic module
can have vertical parameterg, such that instantiations automatically hide the corresponding

actuals; this facility can be beneficial for library design and use.

3.9.1 Attribute and Method Visibility

The attributes and methods of a class C in a module H can have one of three visibility

levels:

•	 public, or visible in all modules that import H;

•	 private, or visihle only in H; and,

•	 5ubclass-private, or visible in all modules that import Hand that declare Sllbclasses
of C, bnt only when applied to objects of those subclasses.

The purpose of the last. level is to allow suhclasses of C in other modules to have special

access to some of its attributes and methods. By heing only applicable to snbclassobjects,
it prevents modules that import M from declaring "dummy" subclasses of C just lo be able

to apply C's subclass-private attributes and methods to C objects. For an ex.ample of the

need for this kind of visibility, consider the class inheritance diagram in Figure 3.2. A point
is something that has a value, a hounded point restricts t.he value to a certain range, a

history point remembers all its previous values, and a bounded history point combines the
last two.

Suppose that we want to display the vdlue of a point on the screen, and that we define a

method display that first clears the screen and tben prints the point's value. For bounded

points, we also want to print the allowable range, so the display method of BoundedPoint

first calls display. Point and then prints the range; similarly for history point,s. Now,
ideally, the display method of BHPoint would be defined as the sequential compasition of
the display methods of its immediate superclasses. But this would be incorrect, not ouly

hecause the point's value would be displayed twice, but also because both methods clear

the screen! A solution is to declare suhclass-private methods called (say) display-aux

in each class, to print only the additional information; their level of visibility indicates

their limited purpose. Then, the (public) display methods would each clear the screen and
invoke the appropriate display-aux methods. This example4 generalises to any such kinds

of "diamond" hierarchies in which certain initialisation actions are multiply inherited as

part of methods. In addition, it illustrate-s one difficulty in designing reusable software and.
in particular, getting inheritance hierarchies to adequately support future functionality.

Levels of visibility are declared as properties, as in

at contents : Set -) Liet [private] .

me display-aux : BoundedPoint -) BoundedPoint [subclase-privateJ

4Wf!- have co~tructed this f!-Jlamplf" by combining eJlamplftl in [107] and [1 t lj.

3.9 Vertical Structurjng and Information Hiding	 '6

Point

/'/'~ ~~,
BoundedPoint HistoryPoint

~.

.".
BHPoint

Figurc :1.2: A hierarchy of points.

The default level is public.
The following is a consequence of the abo\"!:; dcfinitions: a derived attribnte a of some

class C cannot be defined in terms of the ~ubclass-pnvate att.ribntes of C if a 'l.lld C are

declared in differcnt modules. Methods are similarly restricted.

The syntax of private and subclass-private declarations makes it clear that attributes
and methods may only be privatised iu the module that declares them. One reason for this is

tha.t a.llowing otherwise would give a way to break the conceptnalnnity of modnles. Another
reason arises after examining the meaning of multiplc modnle importations if this were

allowed. For example. assume a parameterised module LIST with a public method callPd
reverse, and a paramdcriscd modnle QUEUE that imports LIST but privatises reverse.

The following are the possible scenarios if both QUEUE and LIST are directly imported into
some other module (e.g., with "pr QUEUE[X] + LIST[XJ .'"):

(I)	 thcre are two reverses: reverse. QUEUE and reverSe. LIST, where the formel' is private

but the latter is public;

(2)	 reverse is private; and,

(3)	 reverse is pnblic.

(1) is overly complex. (2) implies that oue module may ;;truncate" another, and that-in

this example-the full definition of lists could not be (transitiV<'ly) used anymore, or at
least not at the same timc as that of qnenes. Therefore, the only reao;onable option is (3).

Consequently, this makes the privatisation of reverse futile, because it may be uncovered

by the explicit importation of module LIST. However, a module can be imported vertically.
which privlltises all its features at the same time. Also. "vertical wrapping" supports further

flexibility. These aspects cu·e discus~C'd in Section 3.9.4.
Finall)', an attribnte or method redefinition is not allowed to be less visible than what

it redefines. This would givc rise t.o so-called non-cumulative interfaces, where not all
the attributes and methods associated with a. cla..<Js are also associated with its subclasses.

We uelieve that non-eumnlative interfaces are indicative of poorly designed inheritance
hierarchies, and make objects look different at diHerent levels of ahstraction. Moreover.
non-cumnlative interfaces create dynamic binding problems [23]. For example, assume that

a class A has a pu blic method m which is redefined and declared private for objects of a

subclass B. Then, a call meX.) for X a variahle of class A would type check properly everywhere.

However, if X is at run-time bOllItd to an object of class B, then the call becomes Invalid, as

m is private for ohjects of class B If tbe intcnt is simply to use :"ome of the implementation

aspects of A, then vertical wrapping is the answer.

3.9.2 Function Visibility

Functions can also be public or private, but there is no option that corresponds tombdass

private. This is so because this kind of privacy does not introduce further flexibility: func

tional programming with pattern-matching is based on a destruct/construct model that

precludes the use of inherited functions. For example, the following axiom for 2-tuples,

ax 1'" « X ; y » = X

would not be appropriate for 3-tnples, whleh ''''Quid not match the left-hand side; they would

require new selector axioms. Tbis othcr axiom would also DOt be useful for 3-tuples:

a.x rotate «X y» = « Y ; X »

uot only because of the left-hand side, hut also because rotate evaluates to a 2-tuple. In
this style, coustructors are always visihle, and thus representation. In the object-oriented

style, state is hidden behind identifiers, and no "information loss" is incurred from using

inherited attributes and methods.

3.9.3 Sort and Class Visibility

Classes and sorts can also be declared public or private, with the same meaning as above.

For example,

sort Status [private]

class Node [private]

AllY functions, attributes and methods whose rank includes a private sort or clil.9s are au

tomatically private. Also, a.ny sort that inherits from a private one is also private: similarly

for classes. This follows from their set-inclusion semantics.

For reasons similar to thooe given in Section 3.9.1. a sort or c1a.':is cau he declared private

only iu the module that. iutrodnces it.

3.9.4 Vertical Module Importation

Modnle importations also come in two varieties, puhlic and private. When a module is

imported publically (the default), its features retain their level of visihility, so that its

public and subcla.."ls-privat.c features are passed along transitively. On the other hand,

private module importation is a vertical activity in that this transitivity is blocked for all

the module's features; it can be seen as the conversion of all public and subclil.9s-priv3te

features into private ones. Here are two examples:

3.9 Vertical Structuring alld Information Hiding 78

pr LrST[NAT] [private]

ex 2TUPLE[BOOL,BOOL] • (sort 2Tuple to Signal) [private]

Verticality and the textual-copy semantics of the using modI' of importation give rise
to a technique called vertical wrapping [50]. Hen> some module Mthat is almost what we

want is imported into a "wrapper" module \I, from which all the functionality that we want
is re-exported, but possibly slightly modified from that provided by J1. This is achieved with

a special syntax that allows using to redeclare visibility levels. For example.

omod \I is

using LIST[NAT) • (class List to Set,

private reverse, subclass-private head)

endo

makes rnechod reverse private and attribute head subclass-private. Thus, the using mode

can be seen as implementing a highly stylised editor, in that the text of the module is
copied, hut possibly after instantiation, renaming and visibility redeclaratioDs. Note tbat

the cumulativeness restrictions of Section 3.9.1 must still be obeyed.

Finall)., some languages support private subcla.ss relationships, by 'Which (for example)
B can inherit from A but in a way that forbids placing objects of class B where objects of

class A are expected. The purpose of this is simply to allow objects of class B to have access
to some (or all) of the internal functionality provided for objects of cl~ Ai or, as Meyer

[77] puts it, "to reuse a good implementation." In FOOPS, there is no direct support for
this. but the using mode of importation can provide a similar effect as a special case, as

illustrated above. In C++ [111], for instance, this example would have been constructed

by declaring List to be a "private" superclass of Set. This flexibility of FOOPS illustrates
another henefit of distinguishing between class and module inheritance: there is no need

for dubious variants of cla.'is inheritallce to provide the above functionality. In our opinion,
cln.o;;s inheritance should be llsed for the hier;,.rchical classification of objects, and not to

support The reuse of code, which i& the concern of module inheritance.

3.9,5 Vertical Parameterisation

Modules can also be parameterised with vertical interfaces, snch that vertical actuals are
automatically hidden in instantiations. This provides the ability to define modules that

are generic over their internal features. For example, we can declare module SET to have a
horizontal parameter for the elements of sets, and a vertical parameter for the underlying

implementation of sets:

omod SET[X :: TRIV]{REP :; CONTAINER[X]} is

class Set .

at contents Set -) Container

me insert Set Elt -) Set '

ax insert{S.X) = ~f member(contents(S) ,X) then

3.9 vertical Structuring and Information Hiding 79

endo

Note first that vertical parameters are specified in curly brackets immediately after
the horizontal ones. (The theory CONTAINER was given on page 64.) Also, note how

the horizontal parameter instantiates t.he vertical one. Using t.he parameterised view

LINKED-LIST-AS-CONTAINER (given on page 65), we can inst.antiate SET as follows:

SET[NAT){LINKED-LIST-AS-CONTAINER[NAT)}

Modules that import instantiations of SET will not have acct>.ss to any code associated

with the vertical act ual, although all (public) features of the horizontal actual will be visible

as usual. This is actually stronger than just hiding tbose operations of sets whose rank
mentions any of the features of the vertical actual.

Because CONTAINER is fairly general. we could easily get different implementations of
sets simply by providing different vertical actuals. Besides lists, we could also use trees

and hash tables, for example. And the multiple implementations that are possible for all of
these data structures translate into further implementation options for sets. Thu~, vertical

parameterisation provides a mechanism for generalisiug and fine-tuning library modules. For
some sophisticated examples of this kind of lay-ering see [4], in which the author:; describe

how vertical parameterisation idea.<; can be used for generating multiple implementations of

database systems and communication protocols. The novelty here lies in the provision of

an integrated lingois tic mechanism.
The vertical importation of modules is commonplace, but this kind of vertical param

eterisation and instantiation appearn not to have been exploited in object-orientation, in

which there is a tendency to force everything into some kind of cla.<;s inheritance relationship.

The context for SET is:

SET

/

CONTAINER

~'"
TRIV

In particular, it shows t.hat there is only one copy of TRIV in SET.

3.9.6 Views

All of the previous facilities are available for theories, too. Because a generic modnle may in

its body declare a class that inherits from one that comes from a theory, all of the subclass
private features of parameter theories are available in the generic's body, in the same way as
the subclass-private features of imported modules are. Therefore, while there is no need for

views to map the private features of their source, they must map the subclass-private ones.

3.9 Vertical Structuring and Information Hiding 80

A restriction, though, is that if x to y is a view element and x is public. then y must also

be public Otherwise, views could reveal some of the secret functionality of target modtdes.
There is a subtle point regarding the verificatiou of views: to check that axioms hold in

the target, all the features of the source need to be mapped. For example, if in

"" feX) • geheX» .

h is the only private feature and no mapping is provided for it, then there is no way to verify

whether this axiom holds in the target module. ThiEl situation is actually not that surprising:

in general, it is impossible to fully understand the semantics of a module without e.'Camining
its internal features, See [29J for related discussion of this issue in abstract model-theoretic

terms.

3.9.7 Type Checking

Then> are three salient aspects to t.ype-checking this information hiding mechanism. First,
a private feature of an imported module never clashes with a 10caUy declared feature. This

seems almost too trivial to mention, but in C++, for example, scoping is considered last

when parsing expressions, so that clashes with "invisihle" features are possible.
Second, the fact that the attributes and methods inherited by a class retain their origiual

rank means that certain expressions that could scope correctly at run-time are statically
rejected. For example, consider these module.'>:

omod A is

class C

me m ; C -> C [subclass-private] .

endo

omod B is

class C2

ex A •

subclass C2 < C .

endo

In B, the expression m(m(X» for Xof class C2 would lIot type check. This is because in that
module mrau only be applied to objects of class C2, but there is no guarantee that the outer
m in the e\(pression will indeed be applied to an object of c!a.<;s C2. However, the expression

mOO; m(X) would type check correctly.
Finally, it is possible for constants to escape visibility checks. For exa.mple, consider

fmod H is

lSort S

fn f S -> S .

3.10 System Design and ProtDt.vping 81

in c -> S [private]

var X S

ax i (X) =: c

.nM

While it seems easy to reject this text because of the rigbt-hand side of the axiom, it is

in general impossiBle to determine whether a certain constant will be the result of some

function application. Therefore, visibility declarations for constants C(l.D only be partially

enforced.

3.9.8 A Note on Language Design

It is interesting that for languages which do not identify classes with modules, a subclass

cannot he safety allowed access t.o all that which its superclasses have access t,o (when

declared in separate modules). Consider this fragment:

omod H is

class C

class Helper [private]

me m C Helper -> C

endo

Full access would mean thai subclasses of C in other modules could use Helper. But this

would aJso permit other modules to access Helper by simply declaring "dummy" ~ubclasses

of C, resulting in a dear violation of visibility. This is iu part due to module-level scoping

and to there being no boundaries between the declarations of one class and the declarations

of auother inside modules. When classes are modules, it is very simple to control this and

give subclasses access to everything associated with t·heir superclasses. Certainly, though,

this is not always desirable and it is important to have a me(l.DS for coutrolling it [107J.
Sections G.2 and 6.6 provide further discussion of this issue.

3.10 System Design and Prototyping

Given a system design in the form of a module expression, properties of that system can be

expressed by giving views from il. theory to the result of the module expression. Conversely,

a view can establish the adequacy of an implementation for some specification that is given

in terms of theories. If a module expression includes only executable modules, then it

can be symbolically executed, as described in the previous chapter. This provides a rapid

prototyping capability that we have been able to experiment with in our current FOOPS

implementation.

A second approach is more straightforward: simply write the design of a system as a

module expression (or a collection of module expressions defining the system, subsystems,

etc.), and then either supply standard Hbrary modules, or else write rapid prototypes for

3.10 System Design and Prot~typjng 82

each bottom level component. It is worth noting how vertical composiUou can playa role
in this. If gome library module is close to but not actuaJly identical with what is needed,
then tbe library module could be vertically imported into a newTapper.. module that

provide~ the necessary new functionality, building on top of the old one.
Another approach uses built-in modules to encapsulate code written in one or mare

implementation languages. This can prm'ide access to libraries in other languages, give high

level structure to old code, amI iuterfac<' with Jow level facilitie£ such as operating system
routines. Built-in modules'ere developed for OBl [52], wbere they were used to implement

standard data types, such as naturaJ numbers and Booleans. III FOOPS, built-in modules
implement both standard data types aud standard classes, such as arrays, and it is not

difficult to write new ones5 . Chapter 5 describes how 0813's built-in modules were used

to develop our protot.ype implemeutation of FOOPS.
Each of these approacbes can benefit from the fine-tuning capability of vertical param

eterisaticJll, becau.se it. allows replacing uuderlying implemeutation layers with new ones, so

that. one call configure new prototypes with varyiug levels of performancl::' and reSOurce use.

Further design support is provided by viev.·s, which as hinted p&rEer in this cbapter,
can be usrd to describe refinement relatiouships. For example, as we mentioned above, a

design might begin with a module expression haviug certain theories in it. so that it is uot
H'<llly executable: call it Do. A more developed versiou of Do might replace some of those

theories with executable modules, or might replace some of the already executable modules
with more effieipnt versions. Then this relat.ionship hetween Do and the uew version, call

it Db can be rigorously capt.ured with a view Do ..:+ Di that would provide mappiugs for
t,he replateG modules but which would be default for [he others. This process could span

many steps, tbus Do ~ DI ~ .. ~ D 'l , where each arrow would denote a different view.

Therefore, views can be used to express the evolutwn of designs. Furthermore, ooe could
envIsage riews that included further information. suth as annotations for design decisions,

;;0 that, for example, there would be a sy~tematic way of documenting the history of a
system design.

Thus. we have that a single object oriented language can gUpport the modular expres
sion of system designs and bigh level properties. as well as the modular composition and
reuse of drsigns, specifications and code, plus protot.yping by symbolic evaluatiou, and more

efficient prototyping by vertical composition or built-iu modules. At each level of ahstrac

tion. relationships of refinement and evolution can be recorded by giving suitable Vlp.ws and

theories. This gives a very rith environment for system development.
Related discussions of the need for facilities of this kind in compu ter languages may

he found in [28. 85] and [38/: the latter suggests a methodology called "hyperprogram
ming" for integrating the entire life cyde through parameterised programming, including

requirements, design, specificatiou. coding, maintenance, documentatioD, and version and
coufiguration management

5The huolt-in modulI'S of FOOl'S can lise both Lisp dud C code. b"r"use Faa PS is implemented in
KYQto Common LISp...... hich IS b1l,;,c<! all C. We ackuo"dedg<) that supporting other languages for built-ins
would be llI11ch more dllnclllt, evpn though it Is vrr.y appealmg [8B).

3.11 Summary

This chapter has presented in detail the facilities for reusing and interconnecting modules

in FOOPS. which include module bieraz-chies, blocks, theories, views, horizontal and ver
bca! parameterisation, r€'naming, sum, and module expressions. Parameterised modules

in FOOPS use theories to specify syntactic and semantics properties expected of actual
arguments, and ca.n distinguish and document both aggregat.ion and implementation de

pendencies. The purpOSe of this rigorous approach to module jolerfacl'S should be obvious:

to increase the reliability of module interconnections and \.0 make explicit the requirements
for reusing parameterised modules. We have also discussed how these facilities SUppaH

further functionality, such a.s abstrad classes, "private'· class inheritance, and higller-order

composition in a first-order setting. Thl"! integration of all of the above provide a powerful

environment for designing systems.
The contributions of this chapter to the development of FOOPS include the provision

of abstract classes, module bloch, encapsulation rules, and information hiding and ver

tical structuring facilities. ~foreo"er, we have argued that by combiuing views. module
inherital1ce, and vertical structuring, FOOPS genera.lises orthodox approaches to object

orientation, in which classes and class inheritanC"P lU"e the principal mechanisms for design
iug, describing and puttinJ!; together software architectures. Also, we hope to haye shown

that the object-oriented paradigm requires and admits extensions such as those provided by
parameterised programming. Chapter 6 will contribnte further analysis of this by ~omparing

FOOPS with other languages.

Chapter 4

Formal Semantics

To .~ee u!hat is Ijfrrtrul m what ~s partIcular and what .s

permanent in what IS tnmsJtory is the aIm of sCIentific

thought.

- Alfred North Whitehead

This chapter provides a detailed overview of work towards a matbematical formalisation
of the FOOPS language. Both syntax and f'emantics are fundamental for formalising pro

gramming and specification langnages: syntax because we manipulate t.exts, diagra.ms. and
other such descriptions; semantics because it COncerns the models of t.hose descriptions and
how they are affected when the de.<;criptiolls ar~ modified. Therefore. the link betwpen these

two aspects needs to be made clear and explicit l
.

This presentation is divided in three parts. The first part explains the semantics of

the functional level of FOOPS. Being a syntactic variant of OBJ, at this level denotational
semantics is given by order-sorted algebras [49J, while operational semantics is given by

(order~sorted) term rev.rriting [44]. The second part discnsses the semantics of the object
le'..el of FOOPS, Denotationally, a generalisation of order-sorted algebra called hidden

sorted algebra is adopted [39, 43]; this algebraic formalism takes into account that objects
have internal states by generalising the satisfaction relation between sentences and models

(algebras). Operationally, a form of reflection iu which object level programs are reduced to
functional level progralO.5 formalises object creation and dest.ruction, aud method ('valuation

[48J, The third part examines the semantics of paramet.erised programming. This semantics
is grounded in the theory of institutions. which formalises the notion of "logical system"
and offers a logic-independent framework for expressing how smaller specifications can be

combined to form larger ones {41J. The connection with FOOPS iEi that both Order-Sorted
Conditional Equational Logic (the logic of the functional level) and Hidden Order-Sorted
Conditional Equational Logic (the logic of the object level) are institution'>,

We note, however, that while the semantics of the functional level of FOOPS is fully de

veloped, v;ork to provide a complete formal characterisation of its object level still continues.

IFolJowing this diScIIs"lon, tne rea.dl'r IS 1)"'11' 11'11'3.1"" tnat "''' u5e tne wma -semantlC5·· to releT to l)otn
aspectll.

4.1 FUnctional-level Semantics 85

Tbe opprational semantics of the object level provides a foundation, but the denotational

semantics ueeds to be extended to capture object identifiers and creation. This is not an
open problem particular to FOOPS, but a research topic being actively pursued in the

formal methods community.
The simplicity of equational logic. and the amount of theory and mechanical support

available for equational reasoning. is the justification for an algebraic approach to the se
mantics of FOOPS. Other logical systems can provide further expressiveness; however, the

research programme begun by Goguen in 1978 [34J bas shown that a large amount of COUl

puting science can be done with equational logic and efforts snch as the present one attempt

to further understand its applicability. (See [49] for more discussion about this.)

The contribution of this chapter is that it threads together the mOBt recent work on
providing a mathematical foundation for POOPS, and can be seen as a high· level but

detailed summary of tbe publications cited above. We assume some ba.':iic knowledge of

category theory [93J (mostly for Section 4.3).

4.1 Functional-level Semantics

The following sections introduce the basic concepts of order-sorted algebra, order-sorted

conditional equational logic and term rewriting. In summary, the semantics of an fmod is
an initial algebra in the category of order-sorted algebras that satisfy its equations, while

the semantics of an fth is any algebra in this category; term rewriting is an implementation

of order-sorted equationaJ deduction.

4.1.1 Order-Sorted Algebra

Order-sorted algebra (hereafter, OSA) constitutes an algebraic model theory and relies on

tbe notions of order-sorted signature, algebra, specification and satisfaction. It provides a
semantic domain for functional-level modules in FOOPS by interpreting a module as an

order-sorted specification.

4.1.1.1 Signature

An order-sorted signature is characterised by a partially ordered set 2 of sorts S specifying

a subsort relation.

Definition 4.1 An order-sorted signature is a triple (5,:S, l:), where S is the sort seL

(S,:S) is a poset, and l: is an S· x S-sorted family P:.."s I w E S· and 5 E S}. such that
the following ttlonotonicity condition is satisfied:

if (J E I:w1 .SJ n E"'2,S2 and WI :S 'W2 then 51 5. tJ2

where WI .:S W2 refers to the point-wise comparison of strings of sorts using the s: provided

with the signature. 0

~ A pMliAlly ordered *t, or poset, is a !let A provided with a reflexive, 1l.Iltisymmetric and transitive
relation $.

4.1 Functional-level Semantics	 86

Elements in the sets of E are called operati.on symbols, or more briefly, operators.
For a E "Etc,S, we call ('W.5) its rank, wits arity and 05 its sort (or 'value sort or coarity).
When w =..\, the empty string in S· , a is called a constant operator or simply a constant

The monotonicity condition on the operators aJlows the trea.tment of partial functions and
determines the form of polymorphic operations. Note that it implies tbat constants cannot

be overloaded (because WI = W2 entails both .'11 ~ '~2 and 052 5" .'11, and therefore .'11 = .'12)'

In a FOOPS module the elements of an order-sorted signature can be immediatedly
recognised. Indeed. the syntax of FOOPS makes explicit the hinding between the langnage

features and their algebraic counterparts.

Example 4.2 In t.he following FOOPS module specifying llsts of Nat, sorts defines the
set S of sorts, subsort defines thp partial ordering on 5, each fn introducES all operator

symbol with its corresponding rank, and NeList is tlle sort of non-empty lists:

fmod LIST-OF-NAT is

sorte Nat List NeList
Imbsort NeList < List

fn	 0 -> Nat

fn	 5_ Nat -> Nat
fn nil -> List
fn	 cone List Nat -> NeList

endf

o

Morphisms play an essential role in the' formalisation of parameterised programming.
For example. morphlsms between signatures describe notational changes (when bijective).

Definition 4.3 An order-sorted signature morphism ¢ : (S, E) ----1- (5', E') is a pair

(J,g) consisting of

1. a. map 1 :5 -t 5' of sorts, and

2.	 an S' x 5-indexed family of maps 9w,s ElL.,J -t E,"(w),f{s) on operation symbols,
where r :S· -t 5'. is the extension of 1 to strings3,

such that if .'11:::; S2 then l(s1):$. 1(.'12) for 51, .'12 E 5. We may write ¢(8) for 1(05), ¢(w) for

r(w), and ¢(o') for 9w.,(O') when a E Ew.s. 0

Signatures and signature morpbisms form a category.

JThis "xteOBion is defined as follows: !"t),) =),and !"(ws) = r(w)/(s). tor", E S' alld s E S.

4.1.1.2 Regularity

In general, polymorphic operators bave more than one sort. In the Ca.'ie of sub,ort poly
morphism, their sorts are related through the sort hierarchy. Indeed, we may have more

general situations in the case of ad hoc polymorphism, i.e., when the same operation symbol
is used for semantically unrelated operations; for example, _+_ is often used to denote both

addition of natural numbers and disjunction of boolean values. Unfortunately, ambiguity

can arise, a.'i shown in the following example:

Example 4.4

fmod NON-REG is
sorts 51 52 53 54 55 56

subsorts 51 < 53 52 < 54

fn a -> S1

fn b -> S2

fn f 51 S4 -> 55

fn f 53 S2 -> 56

endf

Ambiguity arises in parsing expressions where f is applied to values of sorts 51 and 52,
respect.ively. In fact both operator~ can be used, but they lead to different value sorts. Note

that the monotonicity condition is satisfied as the two arities are not comparable in the sort

ordering. 0

In general, this kind of ambiguity can be removed by restricting to signatures which are
"regular." Regularity guarantees the existence of a least sort for each term (see Section

2.1.3), which in the presence of overloading guarantees a nnique (least) parse.

Definition 4.5 An order-sorted signature (3,5, l:) is regular iff for each a E EWl'~l and

each WQ S WI there is a unique least element in the set {(1o, s) I 100 5 wand a E EUJ ,.}. 0

The signature in the previous example fails to be regular: for 100 = 51 52 the set of

ranks {(51 54.55), (53 52, 56)} does not admit a least element. (See Section 2.1.3 for morc
motivation and examples of tb..i.s situation.)

In the following we I'€strict ourselves to signatures which are regular, although all results
generalise without difficulty [42J.

4.1.1.3 Algebras

An order-sorted algebra provides sets of values (called "carriers") for the sorts of an order
sorted signature and a function for each operation symbol. Inclusion on the carrier sets

refllXts the sort ordering, and function agreement on domain intersection refllXtS operator
monotonicity. Thus, algebras are models.

4.1 Functional-level Semantics	 88

Definition 4.6 Let (S, $., E) be a regular order-sorted signature. Then an (5, $., !:)

algebra Ais an 5-sorted family {As I 8 E S} of sets called the carriers of A, together with
a function Au : A w -+ A, for each 17 E Eu:", for Au: c-= A S1 X .. x A'n when w Sl' .'In and0=

where A w is a singleton set when W = >., such that the following monotonicity conditions

are satisfied:

1.	 if.'l s: .'1/ in 5 tben As <;::; As!; and,

2.	 if 17 E EW1,SI n E'lt.z,sz and WI '$ W2 then Au: ·4. w1 -+ A., equals A cr : AU!2 -+ A.7 on

AWl'

o

When (5, $) is clear, we simply write L for (5, $, ~). Note that when cr E ~),," Au can

be considered as an element of As.

Example 4.7 A possible algebra A for LIST-OF-NAT has as carrier sets the natural numbers

in the ll.'iual notation (with stice the operation of successor). non-empty lists of naturals
(with the infix operation of concatenation) and aU lists of natural numbers (with E. the

empty list):

A."f,u = {0,1,2, ... }

AN.Ltd = {c· 3 . 10 . 20· 6, £. 2 . 4, ... }

A Lut = ANeLul U {c}

A o =:: 0 E AN",

A s_= stice: ANal -+ ANa.l

Anti = E: E AL1S1

Ac<>~, = . : ALlStAN<l.L -+ AN.List

o

'Ve will use OSAlg~ to denote the category of all !:-algebras, with its arrO\1;g being
E-algebra homomorphisms as defiued further below.

4.1.1.4 Terms

A term is an expression constructed by the recursive application of the operators of a

signature, starting from its constants:

Definition 4.8 Given a regular order-sorted signatnre L, its terms are the elements of

the sets of an 5-sorted famHy {TE,s 18 E S}, where:

1.	 2:)". ~ T~,s; and,

2.	 if cr E E..... s, where 'UJ = 81 .• Sn ¥: >., and t, E TE,s, for't = 1, ... , n, then (the striug)

l7(ll,'" ,t,,) E TE,•.

4.1 Functional-level Semantic.s

o

The com;tants of a siguature play thp roll" of generators of the terms in the >ense that

every term is built starting from them. Indeed, if there are no constants in t.hp signature,

the sets of terms are empty.

4.1.1.5 The Term Algebra

The terms of an order-sorted siguature define an algebra, called the term algebra.

Definition 4.9 Given a regular order-sorted signature !::, the order-sort.ed E-term alge

hra is the lea..'lt fa.mily {TE" I 8 E S} of sets of terms such that:

1.	 if s' .:0:; s then Tr:.,.' c;:; Tr:.,,;

2.	 if a E 2::u',,, where w = '~l' . Sn ¥- A, then Tu Tr:..w --t Tr:,s sends i 1...• , i." to

a(tl, .. "tn), where t; E Tr:., .• , for i = 1, ... ,n.

o

Example 4,10 The term algebra Tr;; for LIST-Of-NAT has these carrier sets:

Tr.,Nal = {O, s 0,5 5 0, ... }

TE.NeLut = {cons{nil.O), coos(coos(nil,s O),s s sO), ... }

TE,Ll8t = Tr.,NeLut u {nil}

The function T,_ maps the term t of Tr:.,Nat to the term IS t of Tr;,Nah while Tc....~ maps

the terms tl E Tr:.,Lut and t2 E Tr:.,Nat to the term cons(tl,t2) of Tr:.,NeLut. 0

Given a regular order-sorted signature E, the term algebra TE ha..c; a proptrty, called

initiality, which allows us to cousider it as the most representative algebra in OSAIgr;.

Initiality is defined in terms of the relatious between the E-algebra.5 of OSAlgr:.. A E

algebra I is initial in OSAlgr:. if and only if there exi5ts a unique homomorphISm from I
to any other algebra. All initial algebra..c; on a signat.ure are isomorphic, or the slime up to

a family of hijections between their carrier sets.

A homomorphism hetweeu two order-sortpd algebras is a sorted family of mappings

between their carrier set$ that preserves the algebraic structure, in the sense that they

distribnte through the operations of the algehra..'l and respect carrier set inclusion.

Definition 4.11 Let!:: be a regular order-sorted signature and let A and B be E-algebras.

A E-homomorphism h : A --+ B is an S-sorted family {h. : A, --+ B~ I S E S} of functions

such that:

1.	 if a E E~,~ then hg(Aa) = Ba;

2.	 if a E !::w,$ with 111 = Sl,'" ,.'In ¥- A, then h.(Au(a)) = Ba(hw(a)) for each a

aj" .. ,an E AU' and h",{a) = {h.!(ad, ... ,h,.,,(a,,)); and,

4.1 Functional-level Semantics	 90

3.	 if s S. 51 in (S,:S) then h,(a) = h,,(a) for each a E As.

o

Definition 4.12 Given any algebra A in OSAlg:<;, the unique homomorphism! : Tr: --t A

is defined as follows:

1.	 if IJ E EA,s then !s(T,,) = A,,;

2.	 if IJ E Ew,s with 1V = 81 r"" 5 n f- A, then !s(T".(t)) A.,.(!w(t)) for each t
h, .. , in E Tr:.w and !".(t) = (!S1 (til, .. , !Sn (in))'

o

For example, the unique homomorphism between T-r. and the algebra A in Example 4.7
maps 0 toO, nil to!, cons to', con5(oi1,O) to [·0, etc.

4.1.1.6 Equations

An equation 4 expresses equality betweeu two terms. As terms are sorted. anrl can have morr

than one sort through the sort hierarchy, not every pair of terms can form an order-sorted

equation. OSA allows a quite general form of equatiou not requiring the same lea.'it sort for
the terms involved, but more loosely, that their sorts lie in the same con nected component

of the parLial ordering on sorts.

Definition 4.13 Given a poset (S. .$), let =0 denote the transitive and symmetric closure
of:S. Then =is an equivalence relation hose equivalence classr-.$ are falled the connected

components of (S, s). 0

Terms which include ,rariables are used in equations. Terms without variables are called
ground terms. A variable set X is an S-sorted family {X. Is E S} of disjoint sets. Terms

with variables can be seen as a special case of ground terms by enlarging the signature with

new constants that correspond to the variables; i.e., X. 0;::; (TI;). for !J E S. We will use

T1:(x) to denote a family of terms with \'ariables taken from X.

Definition 4.14 Given a regular order-sorted signature E, a E-equation is a triple (X, t, t')
where X is a variable set, t and i' are in Tr:(xj and the least sorts of t and t' are iu the
same connected component of (S, .$l. 0

Variables in equations are universally quantified aod an alternative notation that we

use for equations is (V'X) t = t'. In addition, equations call be conditional, with form
(VX) t = tl if C, where the condition C is a finite set of un quantified E-equations with
variables in X.

We use equations to express expected properties. \Ve could, for iru;tance, enrich
LIST-OF-NAT with operators to allow access to the head Or the tail of a list:

4,..-We U"'" -equatIon" rather than U axlOm" to {ollow the litt:rature on sl'ma.ntics.

Example 4.15 Suppose the following operator declarations are added to LIST-Of-NAT:

fn hd NeList -) Nat

fn tl NeLis't -) List

Their expected properties can now be stated with equations as follows:

var L : List var N Nat

ax hd(cons(L,N)) ~ N

ax tl(cons(L,N)) = L

corresponding to tbe intuition that the head of a list is the last element added, while it,s

tail is the list itself without the head. 0

This gives rise to the following:

Definition 4.16 Given a regular order-sorted signature E and a set of E-equatiol1S E, the

pair (1:, E) is a.n order-sorted E-presentation (also ("'...ailed E-specification). 0

A module a.t the functional level of FOOPS definf'.s an order-sorted presentation. Note

also that an order-sorted sip;nature can be considered as an order-sorted presentation that

has an empty set of equations.

4.1.1.7 Satisfaction

Given a signature 1:, order-sorted satisfaction expresses when a E-algebra satisfies a E

equation. Intuitively, a E-algebra satisfies a E-equation iff the two terms of the :E-equation

are always asslgned the same element of the algebra.

In order to formalise this intuition, we need a precise definition of the notion of assign

ment of an element of an algebra to a term. Given a signature E, a term in a r-equation

contains variables from a sorted family X. Earlier we mentioned that variables in X con

stitute an enlarged signature ~(X) where the elements of X represent constanLs. We can

also build the term algebra TE(x} on E(X) in the same way as on E. Indeed, Tl:(x) is also

a E-algebra, In particular, it is the :E-algebra freely generated from X. Freeness plays a

central role in the notion of satisfaction. A E-term with variables in X is interpreted in a

E-algebra A by assigning values in A to the variables in the term, and extending such an

assignment to the whole term. Au assignment is then a mapping from X to A. The exten

sion of such and assignment is a homomorphism between TE(x) and A and its existence and

uniqueness are guaranteed by the freeness of TE(x). (See [49] and Section 4.3,4 for more

about freeness.)

Definition 4.17 Gi....en a signature E, a variable set X and a 1:-algebra A, the unique

homomorphism 0* : Tz(x) -+ A extending the assignment 0: X -+ A, is defined as follows:

1. if x E X, then o;(x) = a~(I);

2. if a E E)", then a:(Tu) = Au; and,

4.1 Functional-level Semantics	 92=-

3.	 if (1 E LlII ,t with W = Sl, ... ,Sn ¥ >., then Q.·(T,,-(t)) A,,-(a:"(t)) for each t

tl,'" ,tn E Tr::,l11 and a;"(t) =-0 (a;l (til, ... ,a;" (tn)).

o

Example 4.18 Consider the algebra A of Example 4.7. Snppose we want to assign a value
io A to the term cODa(nil,N). Note that N has sort Nat. We tan choose, for instance, to

assign the value 3 to the variable N. Considering that e. is the function of A representing
the operator nil, and that· corresponds to cons, under this assignment the corresponding

value for cons(nil,N) is C' 3.0

In general, different assignments to the variables of a term yield different assignments to

the term. A E-equation is satisfied in a E-algebra if and only if we can assign the same value

of the algebra to the terms of the equation, for each possible assignment to their variables.

As terms may have more than one sort, assignments are always applied in the least sort of
the terms. In the following definition LS(t) denotes the least sort of the term t.

Definition 4.19 An order-sorted ~-algebra A satisfies a E-equation (VX) t - t' iff

Qis(q(t) = aLS(t'j(t') in A for every il.'lsignment a: X -t A. 0

The notion of satisfaction extends to sets of equations and to conditional equations. In

the latter the terms of an equation (VX) t = t l if C must have the same value in the algebra

for all assignments that satisfy C. Satisfaction also extends to 1:-specifications:

Definition 4.20 Gi'l/en an order-sorted specification (E, E), an order-sorted E-algebra A

satisfies IE, E) iff it satisfies each equation in E. In this case we say that A is a (L E)
algebra. 0

OSAIgr::,E denotes the category of E-algehras that satisfy (E, E); its arrows are homo
morphisms between the algebras. There is also a category of presentations in which arrows

are signature morphisms witb the condition that equational satisfaction is preserved:

Definition 4.21 Given order-sorted presentatiollii (1:, E) and (E', E I
). an order-sorted sig

nature morphism <Il: E -t E' is a morphism <l>: (E, E) -t (EI
, E') iff

M' Fl::' E' implies <Il(M ') FE E

for all E'-algebras M I , where the reduct w(M') of At' to E is M' viewed as a E-algebra. 0

4.1.1.8 Initiality

Initiality extends to the class of order-sorted algebras which satisfy an order-SOrted presen
tation. Two properties characterise the initial algebra of an order-sorted presentation:

•	 every element of the (carriers of the) algebra Ca.n be named using the operators of the
specification, i.e., there is no Junk in the algebra;

4.1 FUnctional-level Semantics	 93

•	 all ground equations which are satisfied in the algebra can be derived from the equa

tions in the specification, Le., unequal terms are not confused in the algebra.

The initial algebra of an order-sorted specification is related to the term algebra and,
indeed, coincides with it when the set of equations is empty. The initial algebra of an

order-sorted specification is a quotient algebra of the term algebra. This means tha.t terms

of the term algebra are considered to be the same in the initial algebra when they are made
equivalent by the equations. To make this precise, we need some auxiliary definitions.

A ~:-equation induces a relation on each E-algebra:

Definition 4.22 Given an order-sorted signature E and a E-algebra B, a :E-equation e =

(X, t, n defines a relatiou R~ au B as follows:

bReb' iff 3a: X -1 B such that b = a·(t) and b' = a·(t')

o

Note that R e is an S-sorted family {Re" I s E S} of relations and that I4.1 ~ Re,,1

wheu s :5 5' in S. If E is a set of equations, RE denotes t.he least relation which contains

He for each e E E.

Example 4.23 For the term algebra Tr; for LIST-OF-NAT, the equation

hd(ccns(L,N)) : N

defines, for all possible assignments to the variables Land N, a relation on Tr;.Nnl which, for

example, relates hd(cons(nil,s 0)) and s O. 0

For our pnrposes, this relation is not enough. We require that the relation is also a

congruence with respect to the operatioUl3 and the inclusion hierarchies of the carriers of

the algebra:

Definition 4.24 Given an order-sorted signature:E and a E-algehra B, a E-congruence

is a :E-equivalence relation R such that:

1.	 if ~ E E"." and b, b' E Bw tben bRb' implies B,,(bj R B,,(b'), where 'W = 81,'" .!ln,

bRbl = b1R'lb'I" ., bnR'nb~ and b"b; E B,,; and,

2.	 if.!l:5 Sl and b, b' E B, then bR,bl iff bR,lb'.

o

If e is an equation, we use =e to denote the least E-congruence induced by Re . By

extension, if E is a set of equations we denote =E: the least E-congruence induced by RE:.

EXEUnple 4.25 The relation of the pre.... ious example extends to a congruence which, for
example, relates cons(nil,hd(ccns(nil,s 0))) and cons (nil ,15 0). 0

4.1 FunctjonaJ~JeveJ Semantics	 94

We would expect the initial algebra for an order~sortedspecification (~, E) to be a quo-

tient of the term algebra Tr:, obtained by identifying the terms related by the congruence =E
generated 00 Tr; from the equations of the specification. Hov.-ever, due to sort hierarchie5,

we need wconsider situations where equations relate term5 across a connected component

of the poset of sorts. For instance, we would expect the terms t 1(cons (cons (nil, 0) ,0))

and cons(nil.O) to be equivalent with rl'spect to both List and NeLlst, but =E relates

them only with respect to L~st. 'lb this end, v.re will define a new congruence, derived from

=E, on all terms with sorts in the same connected component. \\'e present the subcase

when posets and order-sortl'd signatures are locally filterl'd [491:

Definition 4.26 A poset (5,~) is filtered iff for allY two elements 8,13' E 5 tbere is an

element 8
11 E 5 such that 8,8' $. i l

. A poset is locally filtered iff each of its connected

components is filtered. An order-sorted signature (5, S, E) is locally filtered iff (5.~) is

locally filtered. 0

Given a locally filtered order-sorted signature (5, S, E), for each coIlnected component

C of (5,~) we may define a congruence =c on TE,c = U'l:C Tr,. as follows:

t =C t' iff 38 E C such that t =E,. t'.
We can now define an ioitial algebra for (E, E} as a quotient algebra of the term algebra

TE under the congruences =c generated for each connected component C. Let Tr:,E denote

such an algebra. In the following definition [t] denotes the equivalence class of t:

Definition 4.27 Given a locally filtered oroer-sorted specification (E, E), the algebra TE,E

is deft ned as follows:

1.	 if C IS a connected component of (5, S) and:; E C, tben the carrier set TE,E .• is the

quotient of TE,ll by =c;

2.	 if a E E.\,. then TI;,E,l7 = [TO']; and,

3.	 if a E Ew,s then TE,E,u([tl], .. , [tn]) = [Tu(tl, . .. ,tn)] for w = s I· . '~n ¥- A, t, E Tr:,s,
and [til E Tr;,E,j. for i = 1, .. , n,

o

As all the initial algebras of a specification (E, E) are isomorpbic. we can consider tbem

as abstractly the same and choose Tr:,E as theIr representative. 'ATe can tberefore refer to

it simply as the initial algebra of the specification.

Example 4.28 The initial algebra of LtST-OF-NAT has tbe following carrier Sl'ts:

(TI;,£JNat = ([o, hd(cons(nil,O),.,.], [s 0, hd(cons(nil,s 0)),], ... }

(Tr: .•dNeList = {[cons(nil,O)J, (cons(cons(nil,s 0) ,s s sO)), }

(Tr,E)Ud = (TI;)NeL,sl U {[nil, tl (cons(nil, 0))], ... J

4.1 Functional-level Semantics	 95

o

By this construction, we may formalise an abstract data type as a class of isomorphic
initial algebras. Because a. module at the functional level of FOOPS specifies an abstract
data type it may be assigned as semantics the initial algebra of thJs specification. Addi
tionally, this choice of the representative of the class of initial algebras allows lli to apply
term rewriting techniques to the specification, giving a form of computation for FOOPS

programs (see sections 4.1.3 and 4.2.2).
OSA also provides a semantics for theories at the functional level of FOOPS. Because a

theory has the same syntactic structure as a module, it can also be seen as representing an
order-sorted specification (E, E). However its semantics is loose, in the sense that we take
as its denotation the whole category OSAlg1:.E of algebras satisfying (E, E), not just those
algebras which are initial in OSAlgE.E ' This gives an account of the fact that a theory
specifies module properties and not executable code.

4.1.2 Order-Sorted Conditional Equational Logic

The notions oforder-sorted equation and order-sorted satisfaction introduced in the previous
sections support equational deduction. Order-Sorted Conditional Equational Logic is a
logic for equality having order-sorted signatures as vocabulary and order-sorted conditional
equations as sentences. Equational deduction allows new equations to be derived from old
ones by applying rules which express the properties of substituting equals for equals, In
particular, they express that equality

• is reflexive: anythJng is equal to itself;

•	 is symmetric: if t is equal to t' then t' is equal to t;

•	 is transitIVe: jf t is equal to t' and et is equal to til then t is equal to et';

•	 is a congruence w'ith respect to term s1Jbsttiulion: substituting equal expressions into
the same expression yields equal expressions; and,

•	 has the property of substit1Jtivity: applying the same substitution to equal expressions
yields equal expressions.

Given an order-sorted specification (E, E), the equations of E together with these rules
define a deduction system in which these equations represent the axioms (or a.c:;surnptions)5,
This deduction system allows new equations to be deduced; the least set of equations
deducible from E is called the deductive c10sure of E and is denoted E·, A derivation
of an equation e from E is then a proof that e belongs to e- and is represented by the
sequence of rule applications which actually deduce e from E. If e is deducible from E then
we write E I- e.

Sin general, a logicl'J.l system can hav" many differellt and equivalelll variant.!! of its rule> of deductiou,
and the use of a particulM one is a matter of COllvenllmc"·

4.1 .f\lnctional-level Semantics 96

Given an order-sorted spedfication (E, E), [49J proves that such a deduction system is

sound and complete for deriving all equations which hold in OSAlgE,E' If an equation
e (not belonging to E) is satisfied by each algebra in OSAlgr:,E, then we write E FE e.

Soundness says that truth is preserved in ,lll algebras of OSAlgE.E , i.e" that jf an equation
is deducible from E then it is satisfied by each algebra in OSAlgE,E:

E 1- e implies E FE e.

Completeness says that every equation which is true in all algebras of OSAlgE.E can be
deduced from E using t.he deduction system:

E FE e implies E 1- e.

The importance of ~hese properties is that they allow us to establish whether an equation
is true in all algehras by manipulating finitary .:syntacti<: objects (the E-equations), while

the notion of satisfaction requires manipulations of possibly non-finitary semantic objects

(the algebras in OSAIgE,E)' This means that deduction represents a model of computa
tion for the fuuctionallevel of FOOPS and provides an operational semantics through its
specialisation to term rewriting.

Finally, the proof of completeness in [49} assumes coherent signatures. A signature is
coherent if it is regular and locally filtered. For coherent signatures, satisfaction is closed

under isomorphism, meaning that isomorphic algebras satisfy the same set of equations,

One benefit of requiring signatures to be coherent is a greater simplicity and flexibility in
tbe treatment of equality, since we can always assume that the two terms of an equation

have the s..tme sort by appealing to a common supersort.

4.1.3 Term Rewriting

Order-sorted term rewriting [40, 44, 66] is a form of equational deduction that provides a
model of computation for the functionallevcl of FOOPS, and thus an operational semantics.

Given a signature E, sentences for term rewriting are ~-equations subjected to the

restrict.ion that yariables in right-hand sides must also be preseut in left-hand sides. More

explicitly, an equation (VX) tt = t 2 must be such that var(t2) ~ var(tl) = X, where l'ar(t)
denotes the variables in t. Such equations are interpreted as rules for term rewriting and
hence arc called ~-rewrite rules. A ~-rewrite system is a set of :E-rewrite fules.

The basic aspects of term rewriting were introduced in Chapter 2. In what follows we
give more formal definitions. A term t E TE(x) can be viewed as a Labelled tree, or a
partial function from the naturals t.o E(X) which gi,'es a subterm of t when pwvided with

an index. We then use tIL' to indicate the sub term of 1 at index v; also, we nse t[l' +- t ']

to denote the result of replacing the sub term of t indicated by v with the term t'. A
substitution is an assignment X ---+ TE(y), If () is an assignment, theu whenever t' = O(t)
we say th:Lt t' is an instance of t and that () is a match from t to t'_ We can now define
tbe following:

4.1 FunctionaJ-Jevel Semantics 97

Definition 4.29 A one-step rewrite using an equation (\iX) t = t/ in E IS a triple
{Y,lo,tt} with a match B: X -io TE(y) from a term t to a subterm B(t) of to at index 'V

such that t1 = to[v f- 9(t')]. A one-step rewrite using a set E of equations defines a binary

relation .bE on TI:(l')' Whenever to.bE tt we say that to rewrites to t 1 in one step. 0

Term rewriting is obtained by repeated application of one-step rewrites. The corre

sponding relation on TE is the transitive reflexive closure of .bE and is denoted by ~E; we
call it the term reW"riting relation. The following property holds:

t ~E e implies E I-- (170) t = t'

It says that two terms related in the term rewriting relation constitute an equation which is

deducible from E. All this generalises to the case where the equations in E are conditioual

(see [49] for the details).
A term that cannot be further rewritten is a normal form under E. If t ,;E t' aud

r is a normal form, t' is called a normal form of t. Using term rewriting as a model of
computation, normal forms can be considered as the results of computations.

The above only explains many-sorted term rewriting. Order-sorted term rewriting is

more general in that matching takes the sort hierarchy into account. For it to be safe,
however, there need to be restrictions on the form of rewrite rules so that a rewrite is

always sort-decreasiug; this is guaranteed by requiring the least sort of the right-hand side

of a rewrite rnle to be $. the least sort of the left-hand side. This avoids, for example,

re-writing a term !(g(x)), where f expects an argument of sort S, to a term fey) using a
rule g{x) = y in which S < LS(y); the prohlem is that fey) is an ill-formed tenn.

A rewrite system is terminating if and only if there is no infinite sequence tl ,t2, ts, ..

such that t 1 obe t2 .bE t3 J:.-E . But even when every rewrite sequence is finite, the

normal form of a term might not be unique. A rewrite system is confluent (or Church
Rosser) if and only if t ~E tl and t. ";"E t2 imply the existence of a term t' such that

t1 ~E t/ and t2 =*E t'. This property is depicted in the following diagram:

/t~
tl t2

:""
t'
/

A rewrite system is canonical if it is terminating and confluent. In the following, we

will use [tJ to denote the unique normal form of t. For E a canonical system, the following
property holds:

E f- (V0) t ~ t' iff [t] ~ [t').

Hence, for canonical systems, we have an easy way of deciding when an equation is true:
rewrite its terms and compare their normal forms. Moreover, when a set of equations forms
a canonical rewriting system the operational and denotational semantics of the runctional

4.2 Object-level Semantics 98

level of FOOPS agree, in the sense tbat tbe normal forms of the terms constitute an initial
algebra.

Tbere is also term rewriting modulo associativity and commutativity [40). ~lany

commonly used operators have these properties and it is convenient to lea~ tbe system

to deal witb them. Furthermore, equations for associativity and commutativity destroy
the property of termination of a rewrite system. Term rewriting mod ulo associativity and

commutativity allows tbese properties to be considered as built-In to tbe rev..-rite sy~tem.

This is achieved by

• considering terms as equivalent when they differ only in their parenthesisation and in

the order of their factors; and by

• applying rewriting to equivalence classes of terms.

Term rewriting modulo associativity and commutativity is a particular case of the more
general term rewriting modulo a set of equations F. All constructions and results of term

rewriting generalise to this case by considering the equivalence classes of terms under the
least congruence =F on terms generated from F. In particular, the property of confluence

of a rewrite system is defined 'lJp to term equivalence in the sense that different rewrites
of equivalent terms must be reducible to equivalent terms, as depicted in tbe following

diagram:

t "E:F tl

/~
tl~ /'2

fa =F ta'

As an aside, note that because an equivaleoC€ class of terms can be infinite, the imple

mentation of OBJ3 (on which FOOPS relies) uses a particular term a.s a representative of
its equivalence class and applies term rewriting to it.

4.2 Object-level Semantics

In this section we describe the state of research towards providing a formal semantics for
FOOPS. The operational semautics is based on a weak form of reB.ection [48] in which
the current state of objects (the object "databa...;e") is encoded as a term in the functional
level of FOOPS, and where methods are functions whieh take a database as argument and

produce a new one: this reduces all computation to the functional leveL Denotationally, an
extension of OSA called bidden-sorted algebra is used [39]. However. this approach is still
under development and canllot yet explain all of the features of tbe language.

4.2 Object-level Semantics	 99

4.2.1 Hidden-Sorted Algebra

Hidden-wrted algebra (HSA, hereafter) is a generalisation of GSA which formally captures
the notion of object state and the basic information hidiug concepts of the object paradigm.

Its central tenet is that the states of objects are to be treated observat-ionally with respect

to properties: in HSA, two Mobject states" are equivalent if they give rllie to the same
behaviour, not just ifthey hold the same exact data. Therefore, HSA generalises satisfaction

for order-sorted algehras.

This algebraic approach originated with the work of Goguen and Meseguer cm abstract

machin~ [471. and is also influenced by t.he work of Reichel [96, 97J. The most recent
expositions are by Goguen [39], Goguen and Diaconescu [43], and Goguen and Kemp [45].

While HSA represents significant progress towards a formal denotational semanties for

object orientation, it has not yet been developed to explain object creation and destruction
(including identifiers). Becanse of this, this section uses the notation of the functional level

of FOOPS, but its 8cmantics will be given by HSA and not by GSA.
Informally, HSA: fixes a subalgehra D of data values, which would typically include the

natural numbers and the booleans, for example; modeLs states with hidden sons; model5
data with vuible .sorts; models attributes with visible-valued functiOllB of exactly one hidden

sort.ed argument; and models methods with hidden-valued functiOllB of exactly one hidden

mrted argument.

4.2.1.1 Signature

TlIe following definition formalises the previous informal disc\lssion:

Definition 4.30 A hidden-sorted signature consists of

L	 a set S of sorts,

2.	 a subset V ~ S of visible sort.s, where H = S - V is called the set of hidden sorts,

3.	 an S-sort,ed signature r:,

4.	 a V -sorted subsignature 1IJ ~ l: called the data signature, and

5.	 a 1IJ-algebra D, caUed the data algebra,

such that

1.	 for each d E D~ with v E \/ there is some lJ-' E 1IJ '\,v such that 'l/J is interpreted as d in

D; for simplicity, we can assume that Dv ~ W'\,~ for each v E V,

2.	 each (1 E Ew.~ with UI E V* and .s E V lies in 1IJ".,s, and

3.	 each (J E E w ,,. has at most one element of w iu H.

4.2 Objet:t-level Semantks 100

\Vhenever w E S· contains a hidden sort, we call a E E"". a method if s E H or an
attribute if s E V. The first condition says that all data values are named by Constants in

':II. The second condition expresses the data "protection" requirement that E cannot add

new operations on the data values of ':II. And the final condition says that attribntes and

methods act on the states of single objects.

A hidden-sorted specification is a tuple (5, E, V, ':II, D, E), where (5, E, V, -w,D) is a

hidden-sorted signature and E is a set of I:-equations; we may abbreviate this to (E, D, E)
or ~ven just to (E, E), if tbe context permits. 0

Example 4.31 Here we give a simple spE'Cification of stack objects; it assume<; an error

constant err of sort Nat6•

fmod STACK is

sort Stack

pr DATA .

tn empty -> Stack

fn top_ Stack -> Nat

fn pop_ Stack -> Stack

fn push Stack Nat -> Stack

Val' S : Stack var N Nat

ax top empty = err

ax pop empty = empty

ax top pusb(S,N) = N

u pop pusheS .N) = S

end!

Here we take Stack to be a hidden sort that denotes the state of stack objects. The constant

empty represents the initial state of a stack, pop~ and push are methods, and top_ is an

attribute.

Module DATA is for the data values used in STACK; in this ca.<;e, only the natural numbers

with the additional COnstant err are needed. The signature of DATA is given by 'Ii in the

preceding definition, with D some initial model for it. 0

4.2.1.2 Models and Satisfaction

As already mentioned, the crucial a.<;pect ofHSA is its definition of satisfaction of an equation

by an algebra, because it takes into account that objects have internal states, in the sense

that only their observable properties are important. The above specification of stacks is

interesting for this reason, because certain implementations, such as the one that uses an

array and a pointer, do not satisfy the equation

ax pop push(S,X) ~ S

6,\ more sophi!lticaLro delluition of slach would model the p...-tiality of top and pop ith mbsorL~. as
illustrated in Chapter 2, but ,....., choo5O.' a simpl"'r one her.. for exp05itory purposes.

4.2 Objec[-Je..-el Semantics 101

bterally, although they might do so behaviourally. In tbe example diagram in Figure 4.1,
the pop leaves "garbage" behind. but since this garbage is not obsl'rvable through any

attribute, it does not affect the behaviour of tbe stade Therefore, Wl' say t.hat the array
pointer implementation behaviourally satisfies the above equation.

pushCl) pop
[~I!]31 ... I -----? -----?~ ~

t t t

Figure 4.1: Junk after a pop.

The formal definition of behavioural satisfaction gi\'en next uses "contexts,· which are

terms of visible sort with a single free variable of hidden sort. Tbe idea is that if, for each
context, the same result is observed when the variable is substituted for botb terms of an

equation, then the equation is satisfied. The following are two example contexts for STA.CK,

with the free variable denoted by z:

top(z)

top(pop(z))

Definition 4.32 Given a hidden-sorted siguature (5,"E, V, \[I, D) and an 5-sorted set X of

variable symbols, then a "E-context is a visible sorted ~-term baving a single occurrence
of a new variable symbol z. Call such a context appropriate for a term t iff the sort of t

matches the sort of z.
A ~-algebra A behaviourally satisfies a E-equation (liX) t = e iff A satisfies each

equation (liX) c(z t- t) = c(z of- n where c is an appropriate E-cont.ext and \- denotes

substitution; in this case, Wl' may write .A FE (liX) t = t',
Similarly, A behaviourally satisfies a conditional equation e of the form

(liX)t=tl ift l =t;, ... ,tm =t~

iff for every assignment (J; X ---+ A, we have

e'(e(z +- 'I) ~ e'le(z +- t'l)

for all appropriat.e contexts c whenever, for j = 1, , .. , m,

O·(c}(z t- i))) = O·(cJ(z of- t~))

for all appropriate contexts cJ • As with llnconditionall'quatiot\s. we write A Fr e. 0

In particular, note that for visiblf'--sorted equations behavioural sa.tisfaction reduces to or

dinary satisfaction. Thp next step is t.o make the notion of model precise:

4.2 Object~level Semantics 102

Definition 4.33 Given a hidden-sorted presentation (5,~, V, "I!,D,E), then a model of
that presentation is a E-algebra A such that

1. the restriction of A to "I!, written AI'I" is isomorphic to D, and

2. each e E E is bebaviourally satisfied.

A mood of (5,~, ~", "I!,D,E) is also called a (5,E, V, Ii',D, E)-algebra, or a (~,D,E)

algebra. A E-a1g('bra that satisfie:e: just the first condition is caJ.led a (5, E, V; JlI, D)~aJ.gehra,

or a (E, D)-algebra. or simply a hidden-sorted algebra. 0

Note t.hat the intended models are Dot initial as in the functional level; rather. intended

modpls are loose, so that any algebra that satisfies the ahove conditions for a given presen

tation is an acceptable model.

4.2.1.3 Extension to Order-Sortedness

The foregoing definitiollB have aU been for the many-sorted case, We next generalise them to

the order-sorted case. The principal aspect is that visible Md hidden SOrts form mutually
exclusive inheritance hierarchies, such that a visible and a hidden sort are never related

under the 50rt ordering.

Definition 4.34 Given an order-sorted signature W.:S., "I!) with a set V of visible sorts and
an order-sorted "I!-algebra D, then (5,:S., r:, V,!{I, D) is a hidden order-sorted signature

if (V, S, Ii') <; (5,:5:, E) as order-sorted signatures. and (5,~, V, "I! , D) is a hidden many
sorted signature, such that no visible sort is related (by S) to any hidden sort. 0

Definition 4.35 A hidden order-sorted specification is a tuple (S,::5, E, V,!{I, D, E)
where (5, 5, E, V, "I! , D) is a hidden order-sorted signature and E i8 a set of !:-equations.

We may abbreviate this to jl.L'it (1:, D, E), as in the many-sorted case. 0

Definition 4.36 A hidden order-sorted (5,::s,~, ~,.-. JlI, D)-algebra is an order-sorted
(5,::S, E)-algebra A that is also a hidden many-sorted (1:, D)-algebra. 0

4.2.1.4 Morphisms

As mentioned previously, morphisms playa. central role in the formalisation of parameterised
programming.

Definition 4.37 A homomorphism of hidden order-sorted algebras h; M --t M I is a
homomorphism of order-sorted algebras that is also a homomorphism of hidden many-sorted
algebras. 0

Definition 4.38 Given hidden order-sorted signatures E and EI
, then a hidden order

sorted signature morphism ~; E --+ E' is an order~sorted signature morphism oIl =

(1,9): 1: --+ E I such that:

1. j(v) =lJ for eachvEV;

2. g(,p) ~,p for each ,p E ~;

3. f(H) ~ HI (where H' = 51 - V and 51 is the sort set of EI
);

4. if a' E I:~I,~, and some sort in Wi lies in f(H), then a' = g(a) for some () E E; and

5. for any hidden sorts h, hi, if f(h) < f(hl
) then h < hi,

For the many-sorted case, the last condition is omitted. 0

Thp first thrpe conditions say that hiddpD-sorted signature morphism!> presen-e visibility

and invisibility for both sorts and operations, while the fourth and fifth conditions express

the Ellcapsulahon of classes and subclasses, in the sense that no Dew methods or attributes

can he defined on any imported class7
, and that any subclass relation betweeIl images of

hidden sorts comes from a rl'lation between their sources. A morphism of modules, i.e" of

hidden-sorted specifications. llIust satisfy an additionaJ condition:

Definition 4.39 Given hidden-sorted specifications (E,D,E) and (E',D,Ej, then a

hidden-sorted signature morphism ell: (E,D) -+ (E',D) is a morphism 4': (1:,D,E)--+
(~',D,E') ;!f

M ' pg, E I implies lIl(M') FE E

for all EI-algehras M I
, where the reduct elI(M') of M ' to E is M' viewed a." a. E-algebra. 0

Note that the previous definition covers only the many-sorted casP. The definition for

the order-sorted case is given in \13], and relies on machinery whose complexity lies outside

the scope of this chapter.
With these definitions, we can form categories of signatures, algebras and presentat.ions

analogous to those of the previous sectioD.

4.2.1.5 Hidden Order-Sorted Conditional Equational Logic

The definition of Hidden Order-Sorted Conditional Equational Logic is similar to that of
Order-Sorted Conditional EqnationaJ Logic. The vocabulary of this logic is given by hidden

sorted signatures and its sentences are hidden-sorted conditional equations:; satisfaction is
behavioural. No rules of deduction have been developed for this logic8 , but verification

techniques are discussed in [43J, based on work reported in [13]. They involve producing

an ordinary order-sorted algebra from a hidden·sorted algebra, and using induction over
all possible contexts to prove hidden-sorted equations; the advantage is that then ordinary

deduction can be used,

A'S WIll be explained in the next section, module importatIOn IS formalised ill terms of (indwsion)
morphisms.

~ According to the theory of institutIOns, rules of deduction are not ne<::e:'l"Iary for a system to qualify as
a logic. The satisflldlOn relation;" more important.

4.2 Objf'Ct-level Semantics	 104

4.2.2 Reflection

In this section we show how to encode the object modules of FOOPS as programs in its

functionallevPl, thereby reducing all computation to tbis]pveL In addition to summarising

(48], we show how to encode dynamic binding by collapsing all of the different versious of

all operation into one, and give a deduction rule for sequential composition. For a different

but related approach to this operational semantics see [9J.

4.2.2.1 The Functional Level of FOOPS as a FOOPS Prognun

Let FL be the functional sub-language of FOOPS. and let FLAT-FL be a sub--language of

FL that does not support module importation nor parameterisation; any FL program can

be convert.ed to an FLAT-FL program by simply copying modules inside each other. In
FL we can define the syntax of FLAT-FL programs by giviug the appropriate declarations

for sorts, subsorts, functions, axioms, terms and so on, along with their constructors, and

then supplying a sort FlatFl with constrnctor fmod. For example, (part of) a module for

Ilatural numbers could then be eucoded as thp following term of sort FlatFl:

fmod(NAT,	 sorts(N~t),

fne«O -) Nat),(+ ; Nat Nat -) N~t)).

axs(+(O,N) : N))

For a complpte description of FLAT-FL, we need axioms to describe the behaviour of eval

to compute normal forms; it would accept as arguments a term of sort FlatFl and a term

to normalise. But notice tbat the description of FLAT-FL programs is simply a module in

FL, and therefore could be included as part of the FL library. Then, we do not really need

to provide a definition of eval for FLAT-FL programs, as we could use the eval already

available in the FL system.

This semantics uses FLAT-FL programs to describe states of the FOOPS database.

Here is where the reflection comes in: the underlying equational logic will change with

computations, to reflect how the database evolves as methods act upon objects. This is

achieved by encoding the database as an FlatFl term, and encoding methods as functions

on databases.

4.2.2.2 Representing the Database

Now we show how a POOPS database can be described as a set of axioms written in FLAT

FL. First, we convert all class aud subclass dedarations to sOrt and subsort declarations,

aud all attribute declarations to functions (methods are left out for the moment). At any

particular instance, all object identifiers are simply constants of the appropriate sort, and

all attributes are just functions on these identifiers. To illustrate, we will use the classes

Acct and SavAcct of examplps 3.2 and 3.11 (sep pages 53 and ill. After

~val nev.Acct(JohnAcct, ba1_ .. 500, hist_ emptyHist)

eval nev.SavAcct(HarySavAcct, bal_ = 750,

hist_ ~ emptyHist. rats_ .05) .

the FOOPS database (as a term of sort FlatFl) would be

fmod FOOPS-DB is

in JohnAcct -) Acct .

in KarySavAcct -) SavAcct

ax bal JohnAcct = 500

ax hist JohnAcct ... emptyHist
ax bal MarySavAcct ... 750

ax hist HarySavAcct = emptyHist

ax rate HarySavAcct = .05

endf

where" ... " stands for all the sort and function declarations as explained above.

Since there is an ordpr-sorteu algpbra a.<;sociated with p"pry FLAT-FL program, and
every state of a FOOPS daLabasp can be described as an FLAT-FL program, ev€ry FOOPS

database has an associated order-sorted algpbra. In the above state of the database, the

algebra has a carrier Acct with element JohnAcct and fuuctioIDl bal_ and hist_, and a
carrier SavAcct with element HarySavAcct and functions bal_, hist_ and rate_; also

included are the carriers and functions associated ~ith imported sorts such as Money and

Hist. Hence models: every FOOPS database has as model an initial algebra.

4.2.2.3 Evaluating Method Expressions

Methods are encoded as functions on FlatFl terms, such that they take a FOOPS database

and produce a new, "updated" database. For example, the expression

credit(JohnAcct, 100)

would replace the axioms

ax bal JohnAcct 500

ax hist JohnAcct emptyHist

with the moms

ax bal JohnAcct = 600

ax hist J ohnAc ct «d 100 »

where d would be the current date. This operational semantics views credit, as well as all

other methods, as "edit" functions on terms of sort FlatFl.

Methods new. Acct and remove would work as expected, by adding or removing con
stants of the appropriate sort. Creationould also need to take care of the appropriate

initialisatioIDl (including defaults), and remmal of subtracting the axioms associated with
its argument.

For every complex method expression, such as

4.2 Object-level Semantics 106

transfer 100 from credit(JohnAcct,50) to debit(HarySavA~~t.125)

there is a parse tree, where method invocations in nodes take the database from one state to
another, and therefore each node is possibly evaluated in a different state. The evaluation is

bottom-up, but there is no fixed evaluation order horizontally, as methods may be annotated
with evaltl:ltion strategies fOr their arguments. Then, as the nodes in the tree are evaluated,

database states are propagated upward. Denotationally, for each node in this tree tbere is

a correspoo.ding initial algebra.

Let us DOW cleacly outline the steps to carry out thp transformation of a FOOPS program

P. We begin by defining A, the FL module containing all functional level definitions in P.
Then we edend A. to include ali classes, subclasses and attributes in P, duly converted to

sorts, subsorts and [unctions, respectively. "VVe call this module Do,p, the initial database
of P. As was explained earlier, A and Do.p can be defined as terms of sort FlatFl. Now

we can define a module pi as an extension of the FL module for FLAT-FL programs, and
include in it the methods of P as the appropriate functions ou FlatFl terms (for parsing,
pi will also need to include a copy of the declarations of D o.p). Theu pI is used to compute

new databases, beginning with Do,p.

4.2.2.4 Dynamic Binding

The machinery described above provides a simple way of handliug dynamically bound meth

ods: use tbe database to check tIle sort of the object identifier, and make all the methods
he conditional on this check. Those mpthods not redefined in aU subclasses would need a

disjunction of predicates to indicate that they applied to objects of more than one class

An alternative approach would involve changing the way rewrite rules are matched, as
illustrated in our prototype implementation of FOOPS (see Chapter 5).

4.2.2,5 Rules of deduction

Deduction in FOOPS is viewed as computation iu an equational logic whose axioms (i.e.,

the database) change as expn>ssions are evalua.ted. Below we present the rules of deduction
via a relation ---+p on pairs (e, D), where P is a. FOOPS program, e a method expression

and D is a reachable database described as an FlatFl term (i.p., reachable from the initial
database associated with Pl. For notation, let A be the specification of all the functional

level components in P, el, ... ,en method expressions, Vl, ... ,"Un functional level values, m
a method symbol, I a function symbol, and 0 either a method or a function symbol. The
rules are (dropping P as a SUbscript):

(1) (o(et, ... ,en),D) ----+ (O(VI.· .,vn),Dn),where

(el' D) ---+ (t'l, D t)

('2,D,) -> (v"D,)

(e",Dn _,) -> ("",Dn)

(2) (f(11" ... , Un), D} --t (v, D), where 11 is the normal form of f(V\, ... ,1'n) u::.der AuD.

(3) (m(Vl,"" Vk), D) --t (v,D'), where D1 is the normal form of m(Vl"'" lin, D), and
m is the corresponding fnnction on FlatFl ~erms defined in P'.

Finally, we give the deduction rule for evaluating tbe bnilt-in sequential composition oper

ator:

(e];ez,D) -----+ (V\iez,Dd -----1 (e'l,Dd

where (el,D) -----1 (v],D1)·

4.3 Semantics of Parameterised Programming

A semantics for parameterised programming in FOOPS is given in ~he framework of ~he the

ory of institutions, which formally captures the notion of "logical system" [41]. Institutions
demonstrate that the most important aspect of specification and large-grain programming

namely, combining components to form larger ones----<:an be formalised independently of the

underlying logical system of a particnlar langnage. By showing that a logical system is

all institution, a number of important results regarding this and other ~pect~ apply au
tomatically, thus simplifying the t~k of giving a formal semantics to a langmge. 80th

Order-Sorted Conditional Equational Logic and Hidden Order-Sorted ConditiDnal Equa

tional Logic are institutions [13, 41, 43]. Various other logical systems have be('D shown to

be institutions, including First. Order Logic and Horn Clause Logic [41].

In tbis section we define institntions and show how module reuse and interconnection in

FOOPS are thus formalised. We a.'3Sume knowledge of some basic category theory, including

functors and colimits. As for notation, we nse boldface for the name of cat.egories, ICI for
the objects of category C. lA to denote identity at A, E- to denote t.he closure of a set of

sentences E. and jig to denote the composition of arrows f and g, in diagrammatic order.

This pre.sentation is b~ed on [39,41].

4.3.1 Institutions

The essence of an institution is the relationship between syntax (i.e., sentences and signa
tures) and semantics (i.e., models). This relationship is embodied in the so-called Sa.tis

faction Condition. which states that a cbange in syntax induces a correspondin~ cha.nge in
semantics, such that trul.h IS mvanant under change of notatIOn. An institutioll consists of

•	 a collection of signatures and signature morpbisms. sucb that for each signature E

there is

•	 a collection of E-sentences,

•	 a collection of E-models, and

•	 a satisfaction relation of E-sentences by E-models,

4.3 Semantics of Parameterised Programming	 108

such that when a signature changes (by a signature morphism), satisfaction of sentences by

models changes consistently. Here is the formal definition:

Deflnition 4.40 An institution I consists of

1.	 a category Sign, whose objects are called signatures,

2.	 a functor Sen: Sign -+ Set, giving for each signatllIe a set whose elements are called

sentences over that. signature,

:3.	 a functor Mod: Sign -+ Cat Op giving for each signature 1: a category wbose objects

are called ~::-models, and whose arrows are called L:-(model) morphisms, and

4. a relation FE s:;: IMod(I:ll x Sen(I:) for each L: E ISign!, called L-satisfaction,

such that for each morphism rp: E --t E' in Sign, the Satisfaction Condition

m' h' 5,"(¢)(,) iff Mod(¢)(m') Fe ,
holds for ea.c.h m' E IMod(E'li and each e E Sen(I:). \Ve will drop the signature subscripts

on	 the satisfaction relation when it is not confusing. 0

The following picture9 may help visualise the above relationships: '"
 Set

Sign F<:

Mod Cat"P

E Mod(E) FE 5,".(1:)

¢j MOd(¢)! j Sen(¢)

~' Mod(1:') h' Sen(~')

In the ensuing exposition, we assume a fixed but arbitrary institution I.

Fact 4.41 Order-Sorted Conditional Equational Logic is an institution [41], We will denote

this institution by 05£, 0

Fact 4,42 Hidden Order-Sorted Conditional Equational Logic is an institution [13]. Wp
will denote this institution by 11.5£, 0

The proofs of many of t.he facts and theorems that follow depend crucially on the
Satisfaction Condition.

OWe thil.lLk the authors of [41J fOT letting us horrow lhe LTEX code for this picture.

4.3 Semantics._of Parameterised ProgramII~ng 109

4.3.2 Theories

Definition 4.43 A theory is a presentation (E, E) such that E is closed. Wr: may also

call (E, E) a E-theory. 0

Given a theory T = (E. E) and a E-model M, we say that M satisfies T iff M F P
for each PEE, written }oJ F E; we write A! F T whenever M satisfies T. Therefore, a

E-theory classifies E-models hy whether {)f not they satisfy it. In particular. if we let E*
be the collection of all E-models that sat.isfy each sentence in E, t.hen we have tha.t E* is a

full subcategory of Mod(E).

Definition 4.44 The denotation T* of a E-theory T is the set of models that satisfy it:

T" ~ (M I M F T)

o

Definition 4.45 The theory M* of a E-model At is the set of all the sentences it satisfies:

M' ~ {E I M F E)

o

For example, for the FOOPS theory TRIV,

fth TRIV is

sort E1t

endfth

TRIV* = Set, the category of all sets. (Here and onwards, we use typewriter mode for

module names and italics for the associated theories, so that TRIV is the theory of module

TRIV.) For the theory

fth MONOID is

sort E1t
fn e -) Elt

fn __ : El"t E1t -) Elt

vars ABC : E1t .

axA e""A

axe A=A

ax A (B· C) '" (A B)· C .

enMth

MONOI D* = Monoid. the category of all monoids.

4.3 Semantics of Parameterised Programming ____110

4.3.3 Dependent Theories

Relationships between theories will help describe phenomena such as module inheritance

and parameterisation.

Definition 4.46 A view or theory morphism is a siguature morphism ¢ ("£,E) 4

(E' J E') sllch that PEE implies ¢(P) E E-. This defines a category of theories oyer an

institution. 0

Definition 4.47 A subtheory i$ a view (1:,E) 4 (E',E') where E ~ E ' and E S;;; E'. 0

The following is entailed by the definition of theory morphism:

Fact 4.48 ¢: (E,E) ----4 (1:',E') i$ a theory morphism iff M' F= E' implies M' F &(E) for
all E' model, M'. Here ¢(E) ~ (¢(P) I PEE). 0

The practical consequence of the last fact is that to check whether a !'ignature morphism is
a theory morphism there is no need to compute closures (which might be infinite).

Definition 4.49 The denotation of a theory morphism.p T ----4 T' is its reduct or
forgetful functor 1>" : T'" ----4 T", which sends a T'·model M' to the T-model Mod(¢)(M')
and sends a T'-model morphism 1': M' ----4 N' to ¢*U') = Mod(¢){j') : Mod(¢)(Af') --lo

Mod(¢)(N'). 0

For exa.mple, TR/V is a subtheory of every theory with at least one sort, and thus

TRIV ~ MONOID. This induces a forgetful functor from Monoid to Set that sends a
monoid t.o its underlying set.. In particular, there is a subtheory relation between the theory

of a generic module and the theory of its parameters. For example,

fmod B-SEARCH-TREE[X POSET] is

80rt Tree .

endf

is associated with a theory B-SEARCH-TREE which includes POSET. It.s denotation is

a forgetful functor from B-Search-Tree to Poset.

4.3.4 Constraints

A coustraiut is a special kind of sentence that expresses things such as illitiality requirements
on models, or that a model is freely generated by another. In this sense, for example,
constraints help characterise the various modes of module inheritance in FOOPS, including

parameterisation. The notion of freeness is essential here, and we begin with its definition:

Definition 4.50 Given a theory morphism ¢ : T --lo T' \ let ¢" : T'* --lo T" he its forgetful
functor, and let M be a T-model. Then a T'-model Al' is free over M (with respeet to

1>") iff there is some morphism 1 : M ---+ ¢*CM') such that given any other T'-model N' and
morphism f : M --lo ¢"(N'), there is a unique T'-model morphism h:]I.-f' -t N 1 such that

-i; ¢* (h) =f. The following diagrams illustrate this (the triangle commutes):

4.3 Semantics of Parameteri!l.ed Programming _____111

M 9'(M') M'

~ A jh
.'(N') N'

o

Intuitively, AI' is the "hest" T'-model that extends M along ¢. (Moreovt'r, free models

are unique up to isomorphism.) A common example of this situation is a fret' al~ebra over

some set X of variables.

Definition 4.51 An institution is liberal iff for every theory morphism r/> : T -+ T' and

T-model A!- there is a T'-model M' such that M' is free over At with respect to ¢*. 0

Fact 4.52 OSL is a liberal institution. 0

Fact 4.53 tiS£- is not a liberal institntion [45]. 0

Definition 4.54 Given a theory morphism 1> : T --+ T', the function M J-t M' for M E T*

and AP E -r*, where M 1 is free over M with respect to ¢*, extends uniquely to a functor,

denoted ¢s : T* -)0- T 1*, and called a free functor. 0

In the following, without loss of generality, Wf> will use the notation ¢$(M) even if the

institution involved is not liberal.

To explain parameterisation we need a way to state that a model is free over pari of a

theory. In particular, we want models of generic modules to be free over the parameters.

The next definition formalises this.

Definition 4.55 Given a theory morphism ¢ : T ~ T' and a T'-modt'l ltJ1
, we say that M '

is ¢-free iff .p$(¢*(M')) is free o·,.'f>r ¢*(.\.[I) and the morphism l¢'(M') : ¢S(¢*(M')) --+ M '
is an isomorphism. 0

Now the defiuition of the uew kind of sentence:

Definition 4.56 Given a signature E, a I:-constraint is a pair (¢ : T --+ T', 0 : Sign(T') --+
E) where T and T' are theories and Sign(T') is the signature of T 1 • Given a B-model Al
and a I:-constraint c == (r/J : T ~ T', 0 : Sign(T1

) --+ I:). we say that M satisfies c iff O(M)
satisfies T' and is ¢-free. The ~'-tran8Iation of a constraint c == (r/J,8) is the constraint

(.,0; ,p), denoted ',p(o), 0

The next fact establishes that. constraints can be treated like regular sentf>nces:

Fact 4.57 Given an institution I, a new institution C(I) is obtained from I as follows:

its signatures are those of I, and its sentt'nces are those of I plus the constraints as new

sentences, with satisfaction and translation as in the previous definition. 0

4.3 Semantics of Parameterised Programming 112

Some examples at the functional level of FOOPS mjght help deu-ify matters. An fmod

dedaration indicates that only initial motlels are accepted. This is captured hy a constraint

in which the SOUIce of the theory morphism is the empty theory 0 (which has only one model
willi 110 sorts or operations)lO. Constraints of this kind arp ~alJed initiaJity cOll$traints.
For example, the equations of the theory of

fmed NAT is

sort Nat

f' 0 -) Nat

in 13_ Nat -> Nat
fn _+_ Nat Nat -> Nat [c:omm]

vars M N Nat

axO+N=N

ax .s If + N =" B (M + N)

encif

include the constraint (1J : 0 ---) NAT, 11:), which says that any model of N A.T must be free
over the empty throry.

Parameterised thoories hm'e as their denotation a forgetful functor to the class of models

of the parameter. For example,

fth VECTOR[X :: FIELD] is

sort Vec:tor .

endfth

has as its denotation the functor F* VECTOR* ---) FIELD*. Note here that no con
straints are necessary: any model that satisfies the equations of VECTOR (which includes
F18LD) is accepted.

On the other hand, for parameterised (executable) modules the intention is that their
models be free over the parameters; i.e., the rest is to be interpreted initially. For example,
the theory of

fmod LIST(X TRIV] il!i

sort List

endi

will also include the constraint (¢ TRIV Yo LIST,lS'9n(LISTj)' which says that any
model of LIST must be free over T RIV. Hereafter, we will call the theory of either geuerk
(including those at the object level) a parameterised theory.

lOTo see ~hi$, substitute 0 fOT M in the dIagram of Definition 4..50.

4.3 Semantics of Parameterised Programming 113

4.3.5 Instantiation

The semantics of instantiating generics is based on the categorical concept of pushout

(colimit). It originated with Clear [14), based on idea.., in (33].

Definition 4.58 Given a parameterised theory F : T --+ T' and a view v : T ~ A of an
"actual" theory A as an "instance" of T, the result of "applying" F to v is the pushout

diagram shown below. The pushout object is T'[v], and its denotation is (T1[v])*. The
morphisms F' and ti are derived from F and 'V, respectively.

r--L-j:

A~T'[V]

o

Example 4.59 Consider the generic module LIST above. Assuming a view v from TRIV
to fI,~AT, W~ derive the pushout diagram below, where the F in the previous definition is

the inclusion TRIV '----t LIST:

Tr---L- Ll~~
NAT ------;;;- LlST[v]

o

But these constructions are only significant if colimits always exist for the institutions

of interest.

Fact. 4.60 OS£. and 7-lS£ have finite colimits for all diagrams over the category of theories.
o

4.3.6 Module Hierarchies

The semantics of module importation is simply an application of the concepts that we have

del.·eloped so far, and is based on subtheories and on coustraints to characteri~ the mode
of importation. For example, the tbeory of module BOOL includes the initialit) constraint

(4J 0 --+ BOOL,ISig ,,(BOOL))' Importing a module in protecting mode means that its
denotation is preserved; i.e., all its properties must be satisfied by models of the importing

module. The constraiJlts of the imported modules net'd to have their signatures translated
in order for this to make sense. For example, importing BOOL into STACK,

4.3 Semantics of Parame"terised Programming	 114

fmod STACK [X TRIV] is

sort Stack.

pI" BOOL

endf

means that STACK includes all of the declarations and equations of BOOL, and in par

ticular these constraints:

•	 (¢: TRIV Y STACK,l S,gn(STACKj)' which says that a model of STACK must
freely extend T RJV; alld,

•	 (6: 0 -t BaaL, e: Sign(BOOL) --+ Sign(STACK)). whicb says that the reduct of

a STACA model At to BaaL must be an initial model.

Note how BOOL's constraint was translated to fit its new context. Observe also that by
requiring initiality of the reduct, we obtain t.be so-called "no junk, no confusion" property.

The remaining two importation modes, extending aDd using, can be explained by relax
ing the interpretation of constraints to allow arrows that are not bijective for the morpbism
¢$(<p·(M')) --+ AI' (see Definition 4.50). For extending, the arrow is relaxed to injectiveness

("no confllSion"): for using, any arrow is acceptable.

4.3.7 Module Expressions

The semantics of the rest of the module expression language of FOOPS also falls out of the

above presentation. A renaming is just a bijective morphism in the category of signatures.
Sums are colimits, such that modules imported multiply are shared; this is a natural con

sequence of inclusions. For example, the sum NAT + BaaL has only one copy of BaaL, even
though in roops BaaL would be automatically imported into NAT. The following diagram,

in which arrows a.re theory inclusions, may help visualise this:

NAT + BOOL

~
NAT

/~
BOOL

The denotation of the sum is (NAT + BOOL)·, where NAT + BOOL is the colimit
of the diagram. Given that pUf;bouts explain instantiation, we have that colimits explain

module expressions in general. Finally, note the correspondence of these diagrams to those
[or contexts given in Chapter 3.

4.4 Summary 115

4.4 Sumrn.ary

This chapter introduced the basic a.~pects of order-sorted algebra. hidden urder-sorted alge

bra and institutions, which. together with order-sorted term rewriting. provide a semantic

foundation for FOOPS. Further work remains for hidden order-sorted algebra, SQ that fea
tures such as object creation, object deletion and method redefinition an' formally captured.

Additionally, tile information hidinl!; facilities of FOOPS need to be formalised; research re
ported in [29] could provide a lltading point in this direction.

Chapter 5

Implementation

The reward of effort ~3 nol only the tloal but also the strug
gle itself.

- Fortune cookie

OUf prototype implementation of FOOPS is a translator using OBJ3+ as its target language.
OBJ3+ is OBJ3 [53J extended with data structures for manipnlating persistent entities;

subsequently, we may also refer to thes£' structure:'! with their stored state a... the FOOPS

database. Access to the FOOPS database from a.n OBJ3+ program is possible by using

built-in axiorIlll, a special kind of axiom provided by OBJ3, having the following syntax:

bq (Term) (Li'p)
cbq (Tenn) (L~sp) if {Tenn}

where (LIsp) is any expression in Kyoto Common Lisp. How these axioms are implemented
as rewrite rules will be explained with examples in this chapter. (There can also be built-in

sorts aud one other kind of bldlt-in axlom, but this prototype does uot employ either.)

In general, the translator works by converting class declarations to sort declarations, and

attribute and method declarations to function declarations; also, some syntactic conversions

are performed (see the chart in Appendix A). Direct method axioms are translated into

built-in auoms whose right-hand sides invoke operations that update the FOOPS databMe;

axioms forderived attributes and methods can be interpreted directly as rewrite rules. Also,

built-in axioms are generated to fdch the valne ofstorpd attributes. To implement dynamic

binding, 'we made a small change to OB.13+ 's term rewriting engine.

The system architecture in terms of data flow is shown in Figme 5.1. From a FOOPS

t.ext, the translator generates an OBJ3 text. and this is evalnated by the OBJ3 interpreter,

which interacts with the object database. The box labelled "FOOPS PRELUDE" stands for

some object level modules that are automatically available, like those for lists and sets; sim

ilarly for the box labelled "OBJ3 PRELUDE", but at the functional level The box labeUed

"RESULT EXPRESSIONS·' is for the output of the interpreter. OBJ3+ comprises the

boxes labelled "OBJ3 INTERPRETER", "OBJ3 PRELUDE", and "FOOPS DATABASE".

116

5.1 ,It"fodules	 117

To give a very rough indicatiou of the effort involved in creating this implementation, the
size of the code added to OBJ3 is about 10,000 lines.

This prototype implementation supports most of the features of FOOPS. Missing are
vertical structuring faciHtles and module blocks. Minor omissions and special cases are
carefully documented in [95], thp reference manual for tbe system.

This chapter describes the information stored for each module, bow classes are trans
lated and the information stored for each one, the repre.sentation of objects and how creation

and destruction are implemented, the gpneratlon of attribute and method axioms, the im

plementation of redefinitions aud of dynamic binding, and how theories, views and module

expressions are processed (on top of any processing done by 08J3+). We also provide ideas
for improving this prototype implementation and for realising some of the features that it
does not currently support.

5.1 Modules

Tbe translator keeps information about object-level modules in the module table. Each

entry in this table consists of:

•	 a pointer to an 08J3+ module structure, which is a record that bolds information
about a module's Borts, variables, axioms, etc.; and,

,.	 a list of the classes that a module declares. Each element in this list is a reference to

allother table that stores informatiou about classes (see below).

Information regarding functional-level modules is not recorded in this table, as all that

FOOPS needs to know about them 1S stored in OBJ3+·s data structures.

5.2 Sorts and Classes

Sort declarations in FOOPS do not require translation, but support for error supersorts,

voids and default values for attributes requires that some extra declarations be included for

each sort. For a sort S, these are:

sort S?

subsort S < S?
op Yoid-S : -> S?

op S-pc -> S
bq S-pc : (get-principal-constant (term$sort self)) .

where get-principal-constant is an internal routine that returns a term whose top sym

bol is the principal constant of a given sort, in tbis case the sort of the term stored in
variable self'. This ,,-ariable is automatically provided by OBJ3, and during evaluation its

value is always the term on the h,£t-hand side of tbe rule being applied. Consequently. the

. -op·· IS VI:IJ,j'S synl;U for r'lnctlQII d<."Clar3tlO1I5

5.2 Sorts and Classes 118

FOOPS

PRELUDE
FOOPS

SOURCE CODE ~
L _______

POOPS

TRANSLATOR

~
OBJ3

SOURCE CODE

,
OBJ3

PRELUDE OB33+

'\OBJ3 ------ FOOPS
INTERPRETER DATABASE)

"

RESULT

EXPRESSIONS

Figure 5.1: Data~8ow diagram of the FOOPS system.

5.2 Sorcs and Classes	 119

evaluation of tbe term S-pc yields the principal constant of sort S (of course, S-pc is not

considered). Tbe translator uses tbis operation to implement object creation.

Classes are mapped onto sorts, and in addition to declarations similar to tbe above, the

translator generates several others. For a class C, the following operators are automatically

generated:

•	 invent-C-id, which creates a unique object identifier for an object of class C;

•	 make-C-id, which takes a string and makes it into an object identifier;

•	 make-C-object, which creates an object of class C and assigns defaults to all of its

attribntes;

•	 remove, which destroys objects;

•	 exists, which tests for tbe prpspnce of objects; and,

•	 all-C, wbich creates a list of all tbe objects of class C.

Only the last tbree of tbese operators are accessible to users of FOOPS. Also generated is

the sequential composition opprator. It is defined by the following declarations:

op _ ; _ : Universal Univeraal

-) Universal [strat (1 2 0) gather (E e)J .

vars M H' Universal

eq H ; H' w

where Universal is a built-in supersort of all sort32 . The items in brackets that follow the

operator's signature specify its eVIl/ulllwn strategy and its gathenng pattern, rl'-spectively.

The first, IStrat (1 2 0), gives the order ill which argnments to it are to be evaluatpd; in

this case, it specifies left-to-rigbt e....-aluation. gather (E e) is more complicated to explain

and we refer (hose interested in its details to [53J; here it will snffice to say that it specifies

that the operator is left associative. The effect of the above declarations is that expressions

s'J.ch as El ; E2 are evaluated 3.<; follows: first, EI is evaluated; then. E2 is evaluated; and

finally, the entire expression is rewritten to whatever E2 evaluated to.

5.2.1 The elas, Table

Information about classes is kept in tbe class table. Eacb entry in this table corn>sponds

to a class, and contains the following information:

•	 the name of the sort to which tbe class is mapped, In OBJ3+, sorts are represented

internally as record structures with information about their name, module of origin,

etc,

2"eq~ and "ceq~ is OBJ3 synt;u; for uncondItional and conditional ;u;ioms,

5.3 Objects	 120

•	 the attribute.s associated with the class. These are split into thre€ lists: the stored
attrihutes, the derived attribntes, and the undefined attributes. The stored attributes
is a list of pairs, with first component an OBJ3+ operator structure (which stores the

name, rank, etc. of an operator) and second component a term structure (i.e., an
expression). which holds the default value (if any) fOr the attribute. The derived
and undefined attributes are simply lists of operator structures. This Ia.<;t kind of

attribute only exists internally, and the list represents those attributes whicb, in the
midst of processing an object module, are not yet known to be eit.her stored or derived

(because this classification is determined by the wayan attribute is nsed, as explained

in Spctiol] 2.2.2).

•	 the methods associated ith the dass. They are stored as a list of 08J3+ operator

structures, and are used for type checking axioms.

•	 the attrihutes and the methods that the class redefines. Both are lists of operator
structures. The attribut,es are used to determine the strncture of objects and for type

checking axioms. The methods are only used for type checking axioms.

•	 the set-C operator. For a class C, this is a bnilt-in operator for updating objects of
cla.'3$ C (Section 5.5 (lescribes it ill detail).

•	 the list of identifiers of the objects of tbe class. This list is used by all-C to compute

metaclasses.

For each class, this table does not contain any data related to its superclasses, except that
set-C ml1lit account for inherited stored attributes; not copying ally other information about

supercIasses saves spilce and simplifies modnle instantiations and renamings (see Section
5.7). A class inheritance hierarchy is not explicitly kept hy the translator hecause this is

already done in 08J3+ for sorts, and classes are mapped onto sorts; i.e., the translator

simply interfaces the underlying OBJ3+ implementation of the sort inheritance hierarchy.
However, the dass table helps prevent Ilsers from merging the sort and c!a.,>s hierarchies.

5.3 Objects

Object identifiers are represented as nullary operators in 08J3. The state of an object is

a list of pairs, with first component the string name of an attribnte and second compollent
the attribute's current value. This information is st.ored in the object table, which is a

hash table indexed by object identifiers. For example, in the context of

class Pair

ats (fst_) (snd_) Pair -> Nat .

the entry for an ohject with identifier P, attribute fst_ equal to °and attribute snd_ equal
t.o 1 is something of the form (P,((fst_,O), (snd_, 1))).

5.3 Objects 121

5.3.1 Object Creation

Given the flexibility for creating objects in FOOPS, their implementation L<; quile involved
First, because the creation method ha.<; optional arguments and does not restrain their

positions, it cannot be directly mapped onto 0311 operator in OBJ3+. Also, evaluating an
invocation of this method may require tbe creation of many object.s and the assignment of

default values to attribntes. To parse a call to ne\/', a small recursive descent parser was
built, and it. is used to proCE'SS tbe right-hand side of axioms and the arguments to eval

commands. Our approach to the translation of new is to conwrt a call to it to a call to the
appropriate set-C operator. For examplE'. in the context of

class ColourPair

sort Colour

fns red blue -> Colonr

ats (fst_) Csnd_) ColourPair -> Colour

the term

new, ColourPairCP, fst_ blue)

is translated to

set-ColourPair(make-ColourPair-idC'P),blue,Colour-pc)

where the operatiou make-ColourPair-id interns P as an object identifier of da-;s
ColourPair and the nullary operator Colour-pc retrievcs the principal constant of sort

Colour; 'P is OBJ3+'s notation for a string consisting of character p. Interning a string as

an objeet identifier amounts to making its contents into a uullary operator of the appropri
ate sort and entering it into the object and dass tabl{>sj the first step will later on permit

the proper parsing (by 08J3+) of expressions involving identifiers. For example, after the

above expression is ('valuated, OBJ3+ will be able to parse terms snch as £5't P.

Principal constant!'> are not directly inserted in the call to set-C becanse they may
change depending on module importations. For example, if the above creation expression is

given on t.he right-hand side of mme axiom in a modnle with no principal constant of sort
Colour, and t.his module is later extended by some other module t.hat declares a constant. X

of sort Colour, then X is the default for snd_ in the context of this other module. Explicit
defanlt expressions, however, are always insertE'd directly in calls t.o set-C.

When new is invoked but an identifier is not provided, the se't-C expression wiU involve

the operation invent-C-id to generate and int{>rn a fresh object identifier. For example,

new.ColourPair(fst_ = red, snd_ = blue)

translates to

set-ColourPair(invent-ColourPair-id,red.blue)

5.3 Objects ______~ ____=1:22

A fresh idmtiner is not inserted directly because in geoeral it would not be correct to do

so. For instaace, if the previous crl:'ation expression appears in the right-hand side of SOme

axiom, and this axiom is used repeatedly for rewriting terms, then all its uses after the first

one would result in errors regarding the uniqueness of object identifiers.

To explain the computation of defaults for complex attributes, consider the following

fragment:

omod CAR is

classes Car Motor

sort Colour

at colour Car -) Colour

at motor Car -) Motor .

endo

An t'xpression such as

new. Car (TheHachine, colonr : red)

translates to

set-Cax(make-Car-id('TheHachine),red,make-Hotor-object('Car))

in which the operation make-Motor-object creates an object of elMs Motor and a.<lsigns

defaults to all of its attributes. The argument 'Car is used to help detect cycles and avoid

infinite loops, as was explained in Chaptpr 2.

5.3.2 Entry-time Objects

Thp declaratiOll of an entry-time object is translated into an operator declaration in OBJ3+;

also, the identifier is inserted into the object table and ioto its class' entry in the class table.

Each axiom that gives an initial value to an attribute of an entry-time object is interpreted

,1.'l an update to the corresponding object. However, this implementation does not compute

defaults for those attributes which are not initialised (but this would be easy to add-the

underlying machinery required is already there).

5.3.3 Object DestI'uction

The destruction of an object (with the remove method) requires npdates to various internal

data structures. The Dullary operator that corresponds to the object's identifier must be

rpmoved from the current module, from OBJ3+'s parsing dictionaries, and from the class'

entry in the class table. Moreover, the object must be removpd from the object table.

The present implementation of remove creates dangling references, because other objects

may still refer to ao object that has bet>n destroyed. This means that something must be
done whpll such locations are de-rpferenced and about the possibility of dangling references

5 4 Attribute AXiol"":,,' _ 123

bping "Ilndangled." a situation thal would arise if Ihp identifier of a deleted object CGlllri b'·
r('u"ed. The fir."t concern i5 addrl's,,('d in the Ilext se1:tion. The reuse of idelltifil'rs i;:; anTtcd

by asing thf' deleted object table. whjf'h stan's the identifier~ of the object~ t.hat hin'p
heen remo\·ed. Therefore, object creatiO!1 also ('mails verifying tbat identifiers tll"e uniqu('

over this table too.

5.4 Attribute Axioms

Axioms for deri\"cd attributes do lJol n'quire translation: they are directJy exe(·u[.able.
However. for pach st.ored a"Ctributp, a bHilt-in axiom that ql1eries the FOOPS d,:naba.se for

its \'il.Jue is generated. Because whelher all attributE;' i;; stored or derived depenus 011 hmv it.

is used in axioms, this generation does not tilke place until all the axioms declared ill t lie
module hitw been analysed. For a SIOr(·r! atlnblltr :'>uch as

at length ; List -> tJat

the furresponding built-in axiom is

[get-attr] beq lengthCL) '" Cget-attribute-value L 'length)

The bracketed stdng "get-attr" that precedes the aKiom is its label This is a feature of

OI)J3+ that the translator employs to facilitate mQdule expression evaluation, whlc.h ma.y
require that some of these axioms be regenerated (t,his is explained further below). The

right-hand side of the axiom is a call to the FOOPS database routine get-attribute-value,

of two arguments: an object identifier and the name of an attribute. It retrieves t.he

corresponding object from the object tablp and from it the named attributp's value: in this
case, 'length is Lisp'E' notation for symbol length. If get-attribute-value cannot find

all object with the given idf'ntifier. its stopE' the evaluation process and display, an error
message. A sequential name sparch is ns{'d to extract the \~alue of an attribute from an

object.
The generation of axioms of this kind may call for new variables to be declared. If a

variable of the required sort is available iu thl;' module, then it is used: otberwise, one is

created.
[u a rewrite that involves a built-in axiom, the variables on the right-hand side of the

axiom are bound to the mternal representation of the matched \'a!ues of corresponding
variables on its left-ha.nd side. For instauce, in a rewrite of the term

length(X)

the first argument to get-attribute-value will be a Lisp data structure that represents

the term X, and which therefore carries sort information, etc.

5.4.1 Dangling References

Since FOOPS supports explicit object destruction, its storage system must deal with dan
gling references. To iUustrate how they are handled, we WilllL..e the specification shown in

Figure 5.2.

5.5 Method Axioms 124

omod PERSON is
class Person
prote ct ing NAME
at name Person -> Name
at spouse_ : Person -> Person
me marry_and_ : Person Person -> Person .

endo

Figure 5.2: A partial specification of a class of persons.

Assume that two objects of class Person, with identifiers David and Agnes, are married,
and thus David's spouse attribute stores Agnes and vice versa. Now consider the following

evaluations:

eval remove Agnes

eval spouse David

After the first eval, Agnes is a dangling reference, because the object associated with it

has been removed but David still refers to it. Therefore, the result of the secoud evaluation
should be void-Person (as explained in Chapter 2). To accomplish this, the axiom gener

ated for stored complex attrihutes is slightly different from the one shown previously. For

spouse, it is:

[get-attrJ beq spouse P = (get-complex-attribute-value P 'spouse_)

where the database routine get-complex-attribute-value works as follows. If the object

identifier stored by the given attribute is in the object table, then it it' returned; oth
erwise, the corresponding Yoid-C is returned. For the latter case, it may be necessary

to "wrap~ the void in a retract so that the attribute's coarity is respected (recall that

ODJ3 inserts retracts only during parsing). The evaluation of spouse David thus yields
r: Person?>Person(void-Person), as desired.

5.5 Method Axioms

While indirect method axioms can be executed verbatim. the DMAs that define a method

are groupPd and con....erted into a single axiom whose right-hand side interfaces the FOOPS
database. Since DMAs need not be given in any particular order, the generation of this
axiom occurs only when an entire module has heen analysed.

The grouping of DMAs is done using the method axiom table (MAT). Each entry in
this table indicates how a method updates attributes. Specifically. each entry stores:

• a method pattern that is common to a group of DMAs. For example, for the DMAs

ax a(m(X» exprl
ax b(m(X» .. expr2 ife

5.5 Method Axioms 125

omod PAIR is
class Pair
pr ~AT .
ats Cfst_) Csnd_) Pair -) Nat
me incr-fst Pair -) Pair
me swap Pair -) Pair
me make-and-zero Pair -) Pair
vax P Pair vaxs Nl N2 : Nat
ax fst incr-fst(P) = fstCP) + 1
ax fst swapCP) = sndCP) .
ax snd swapCP) fst(P)g .
cax snd make-snd-zeroCP) = 0 if sndCP)) 0 .

endo

Figur€ :j.3: A specification of a class of pairs of llatura! numbers.

it is the tf:'rm m(X); and

a lifit of updates, each of hich is a pair with first componp.nt an attribute name and

second component another pair: a term t.hat represents a new value for the attribute

and the condition under which this value is to be assigned to the attribute. For

unC'onditional DMAs, the condition is recorded as true. By way of illustration, the
above DMAs would be stored in the MAT as something of the form

(m(X), ((,a, ((expr),true))), ('b,((expr2,C)))))

The MAT is implemented as a hash tahle, with its key being the method pattern.

Once all of the DMAs in a module have been analysed, an axiom is generated for each

entry in the MAT. For a mf'thod associated with a class C, the right-hand side of the

axiom is a call to the custom-built operator set-C, which updates all of t.he attributes of an
object. To exemplify this process, consider the specification of pairs in Figure 5.3. Operator

set-Pair is defined by the following dedarations:

op set-Pair : Pair Nat Nat -) Pair

[set] beq set-PairCP,~1.N2) = C1et CCobjaddr Cget-object-address P)))
(write-attribute objaddr ~fst_ Ni)

(write-attribute objaddr 'snd_ N2)
p)

In the axiom, the FOOPS databa."if' routine get-object-address accepts as <U'gument an

object identifier and returns a pointer to its entry tn the object table. With this pointer, an
attribute name and a value, write-attribute updates the object's state with this value.

If get-object-addreas cannot find the object, it stops the evaluation process and displays
an error message. Note that the left-hand side of the axiom must not repeat variables,

5.6 Class Inheritance and Redefinitions ________--:126

because otherwise it would not provide matches unless all variables with the same name

could be hound to the same term.

Next we show the resulting axioms for thE' methods in Figure 5.3. The axiom for

incr-fst is

eq incr-fst(P) set-Pair(P.fst(P) + 1.snd(P»

The one for s..:ap is

eq 5~ap(P) = set-Pair(P,snd(P).tst(P)

Finally, the axiom for make-snd-zero is

eq make-snrl-zero(P) = set-Pair(P,fst(P),

if snd(P) > 10 then 0 else snd(P) ti)

This scheme is simple bnt may lnvolV(' unnecessary updates to attributes which do not.

change, such as fst_ in the last axiom; see Sflction 5.8 for :oOlne idea.~ on how to improve

upon thj~.

5.6 Class Inheritance and Redefinitions

Chaptcr 2 described several situations in which a class definition can be erroneou,;; becanse

of inheritance clashes. Detecting this kind of crror involve..s traversing the class inheritance

hierarchy"nd simultaneously accessing r.he class t.able to fetch information about attribntes

and methods. An analogous algorithm is used to check whl'ther an att.ribute or method

redefines another.

When an attribute or a method is a redefinition, adherence to various rules must be

ascertained. These rules are:

•	 encapsulation rule: an attribute a may be redefined by an attribute a ' assoc.:iated

with class C providl?d at and C are declared in the same module; similarly for methods.

(See Section 3.8.)

•	 varianee rule: 8.'i described in Section 2.2.7.

•	 attribute-redefinition rule: a derived attribute a may be redefined by an attribute

at that can be either st.ored or derived; but if a is a stored attribute then a ' lllUSt. also

be a stored attributc. (See Section 2.2.7.)

A limitation of this prototype implementation is that the attribute-redefinition rnle is

checked at declaration time and not after an attribute is fixed as either stored or derived.

Therefore, the translator rejects the following fragment:

classes A B

Sl.lbclaBS B < A .

at a A -) A

at a B -) B [redef]

5.7 Theories, Vie'WS and Module Expressions 127

because tbe validity of the redefinition requires knowing whether the attributes are stored

or derived.

5.6.1 Dynamic Binding

The implementation of dynamic binding required a small adaptation of OB.J3'~ rev-Titing

engine. First, OBJ3 does order-sorted matching and rewriting. This means that when

~ea.rching for axioms to rewrite a term with. the engine will consider as candidates all those

whose left-hand side matches the terrn, modulo any subsort relationships Fer example,

given the declarations

sorts C D

subsort D < C

op f C -> C

op f D -> D

op 2 -> D

var Xc C vax Xd D

eq f (Xc) = EXP1

eq f (Xd) = EXP2

to rpwrite f (z) the engine considers both axioms a'l equally good candida.tes. F'or object

orientpd dynamic binding, howevl'r, we are only intert'~ted iu the exact sort matches; for

C'xarnple, if f was a method redefilwrl for objects of class D, then the firi'lt axiom should

not be considen'u in the evaluation of f(z). Above, only the Sf>cond axiom provides an

exact match for the f associated with D. This simple exact-matching schclllc works properly

because ORT3's parser always assigns the lowest possibk sort to an expres."ion, and at every

step in the rewriting process it lll;\kcs Sllr~ that this remains the case. For instance, assume

a further operat.or g C -> C, and tb~ ;:Ll(iom

ax g(Xc) = HIe)

The parser will assign sort. C to both terms in this ohiom, After rewriting g(y) to fey)

for some y of .~ort D, the engine wUl immediately re·par~e iCy) (and assign it sort D),

thus allowing t.he second axiom to be considered as <l randidate for rewriting this term,

as desired for FOOPS. Because dyuamic binding only exists at the object If'vcl of FOOPS.

exact matching is exclusively done for OperilJOrS that correspond to attrihutes and methods.

5.7 Theories, Views and Module Expressions

Given that it is meaningless to ct(>,ate objects of cl.asses declared in theories, aud because

axioms declared in theories may hav,," free form, ohject-level theories require much less pro-

cessing by the translator. Basic<\lIy, all that is Tlceded is to record the theory in the module

table, to record the classes, attrihutes and methods in the class table (to use for certain

consistency I..:h(>(:ks; see below) and to include the declarat.ion of the sequential composition

operator.

5.8 Further Work	 128

Rl'uamings and instantiations require similar processing by the translator. First, recall

that modules Mand M • (sort S to S') are semantically different, and that LIST[X

TRIV] and LIST (NAT] are alsodilIerent. OBJ3 evaluates M • (sort S to S') by making

a copy of H but recreating all of its elements so as to reflect the reuamings. LIST (N.A.T] is

also a. copy of LIST [X :: TRIV] but with recreatious being dictated by the default view

from TRIV to NAT, which ma.ps Elt to Nat. Additionally, the other declarations ofN.A.T must

be included in the result,

This creation of modules throllgh mappings requires that tlJe module and dass tables of

the translator be extended with new entril'S that correspond to the nl'W modUles. Further

more, some extra processing of renamings and instantiations is necessary. This is because

thc name of several of the operators automatically generated by the translator are derived

from the name of the sort or dass that they are associated with; for example, void-C and

all-C nero to he renamed if C is renamed. Also, several of the axioms that the translator

generates need to be recreated.]n particular, the built-in axioms for set-C and for fetch

ing attribute values in the FOOPS database need to have their right-band sides recreated

whenever a.ttributes are renamed. This recreation is simplified by the labels attached to

these axioms, and which free the translator from having to examine the structure of each

a."iom to determine whether it needs regeneration.

Two fllfther constructs remain: sum and make. Because in OBJ3 importing A + B is

thc same as importing .A. and B independently, the POOPS translator does nothing extra for

sums. For make. on the other hand, it needs to determine whether the module expression

results in a. functional or in an ohject.level module. This is acbieved with some simple

·'type" inference: if any of the modules involved is an object module, then so is the result;

otherwise, the result is a functional module.

Lastly, various consistency checks are required for semantic validity. For example, a

view may not map a sort to a class, nor an attribute to a method, and a fUllCtional-level

module mllY not import object-level modules. However, our prototype implementation does

not attempt to verify auy of these conditions.

5.8 Further Work

The quality of this prototype implementation of FOOPS can be enha.nced in several ways.

We consider the most worthwhile to be:

•	 type-checking views a.nd module importations, as described mthe previous section;

and.

•	 detl:'Cting run~time violations to variance (discussed in Chapter 2).

As regards to efficicncy, our personal experience is that the translation and interpretation

of POOPS code compares favourably to that of OBJ3+ code. Since POOPS is built on top

of OBJ3, the best way to make this prototype implementation more efficient is to make

OBJ3 more efficient; particular areas to focus on are OBJ3's rewrite cngine and its module

expression evaluator (a notahly slow component). Nevertheless, various aspects of this

5.8 Further \\tork	 129

prototype implementation could be optimised. The most promising ones seem to be the

translation of D~1As and access to objects.

It is not difficult to see how to optimise tbe translation of DMAs' use the FOOPS

database routine write-attribute to update the attributes affected by a method, and

translate in line rather than to a call to set-C (see Section 5.5). This would not only

economise updates to attribut.es whose value does not change, but would also save looking

up this value in the first plac(;. However, it would slightly slow do\Vu the evaluation of

module expressions, because metllOd axiom'! would then require a regcnerat.ion similar to

that now done for each set-C axiom.

A different storage layout for objects could sp('('d lip access to attributes. What may

appear to be a simple implementation aspect is nc,t so because of features sucb as multiple

inheritance [22, 105). Our implementation stores attribute names along with their values in

each object. Connor et. al [22) suggest that this could be improved b.y associating a table

of (attribute-name,offset-into-obJect) pairs with each cla-ss, and having each object point to

its corresponding table. This table could be a linkeu list or, if the number of attributes is
large, a hash tahle. As a further improvement, attribute names can be hashed onto integers,

saving some space. However, neit.her of these. schemes admits overloaded attribute names.

We also note that the distinction between values and objects in roops is itself an
"implementation optimisation," a direct benefit of its semantics. Languages that consider

everything to be an object often take advantage of this distinction as part of a compiler

optimisation phase (e.g., Eiffel [77J and Gemstone [75]), and then only for built-in types;

user-declared types are always regarded as defining objects.

Lastly, we provide ideas for implementing two features that this prototype does not

support:

•	 vertical parameterisation: The implementation of vertical parameterisation could

be achieved by mapping vertical interfaces to horizontal ones. For example,

omod SET [X :: TRIV]{REP :; CONTAINER[X]} is

endo

would be translated to

omod SET[X :: TRIV, REP;: CONTAINER[X]] is

endo

Instantiations would n('('d to b(' mapped similarly. Furthermore, the visibility restric

tions associated with vertical composition must be checked.

•	 abstract classes: Our implementation "almost" supports abstract c1assrs, a-s they

are based on t beories and their importatiou. Two crucial aspects of abstract classes are

that they cannot be instantiated, and that axioms must define executable patterlls. As

5.9 Summary and Conclusions	 130

noted above, the first aspect is already present in tbe implementation. The second only
requires that the form of axioms be verified by the same machinery that establishes
whether an axiom declared in an executable module is valid.

•	 module blocks: These should also be relatively easy to implement given all of the

facilities already present in the language.

5.9 Summary and Conclusions

This chapter ha.<; given a fairly detailed overvie..... of a prototype implementation of a trans
lator for FOOPS. As its target language, this translator uses OB.13+, an extension of 08J3

that includes data structures for managing persistent entities. These data structmes and
those internal to the translator were explained, as were also the most important translation

schemes. strategies and trade-otfs. Furthermore, we provided ideas on how [Q implement

some of the features of FOOPS not covered by Ont prototype implementation, and on how
to enhance the implementation of some existing features.

The development of this prototype has been of great help witb design matters in FOOPS.

An implementation forces one to be \'ery specific about details, which in tum lead to insights
about the language itself and the varions design alternatives. Also, the availability of a

sufficiently sophisticated tool for testing complex examples is invaluable, especially for a

language such as FOOPS, which includes many novel features. Finally, we were fortunate
to have available the implementation of 08J3 to build upon.

Chapter 6

Evaluation and Comparison
with other Languages

Even though mil~t programming language~ technically have

the 5ame r.:zpres~jve POW€f', differences amo1\g lan,quages

can signijicanl./y affect their practical uttMy.

- ~ary Shaw

This chapter aims to provide an evaluation of FOOPS by comparing it to other object

oriented. programming languages. In previous chapters we have offered some discussion as
to wbat we believe distinguishes FOOPS; here we provide a more in-depth analysis and

reBect upon tbe design decisions tbat characterise various language efforts.

We investigate modelling facilities and mechanisms for reuse, including values, objects,

classes, modules, inheritance, information hiding, genericity and reuaming. We also attend
to tbp process of software design and developmcnt, and in particular to any languc.ge features

that seem to facilitate lor hinder) it. Our intention is not to select a "best" language-no
language has yet proven optimal for all programming tasks-but to discuss those features

which in onr opinjon are important for large-grain programming.
While aronnd fifteen languages are mentioned in this survey, closer attention is paid to

Ada 9X, C++, Eiffel, Oberon-2 and Smalltalk-80:
Ada 9X [2] is the officiaJ object-oriented extension of Ada. As its predece&<;Or, it was

designed by committee. In Ada 9X classes are declared as special kinds of rt'Cords, and

subclasses arc record extensions. It supports modules, and is strongly typed.

C++ [111] is probably the most widespread object-oriented language, mainly because
of its Hnk to C and therefore to UNIX. Its chief designer was Bjarne Stroustrup of AT&T,

and C++ was influenced by Simula, CLU, Ada and ML. It enhances C by providing higher
level structuring facilities (snch as classes) and by being more strict about typing. However,
C+ + retains the spirit of C-style programming, which is very low level, but nevertheless

suited for systems programming.
EHfel [77, 78J was designed by Bertrand Meyer of Interactive Software Engineering, and

contra.'its with C+ + by incorporating ideas from formal methods, such as invariants and pre

131

6.1 Objects and ValUE'!> 132

and post-conditions. Also, it has full static typing. Eiffel is probably tbe fastest emerging

object-oriented language.
Oberon-2 [81, 82] is the invention of Professor Niklaus Wirtb, and descends from

Modula-2. \Vhile Oheron-2 is not as well known as the other languages, we study it because
(like Ada 9X) it does not identify modules with cla.o:;ses. Oberon-2 is st.rongly typed.

Smalltalk-80 [56] is t.he latest version of the widely-used language which sparked object
orientation. Smalltalk-80 is perhaps most noted for its graphical programming environment

and for its uniformity: everything is an object (including classes). It supports a free, typeless
style of programming similar t.o that of Lisp. In what follows. we will just call it Smalltalk.

6.1 Objects and Values

The distinction between objects and values is fundamental in FOOPS [54J, but largely ig
nored in other ohject-oriented programming languages. Given that these two kind~ of 8utity

have completely different semantics, we are iu agreement with !l.1acLennan [74] that much
confusion can be avoided if they are kept separate in a language. In fact, we believe that

the distinction clarifies many situations aud examples. Furthermore, optimising compilers
caD take advantage of it. We begin by defining what values and objects are.

The main characteristics of values are that they are atemporal, immutable and referen

tially tranoparent. In more concrete terms, a value is never created or destroyed, it simply
exists; a value is staLeless, so it can never change or be changed; and expressions involving

only value<> give the same result regardless of context. A value is an ideal entity. The prime
example ofa collection of values is the set of numbers, including constants such as the com
plex number i. Other examples include the colours and matbematical cotllitructiotlli such

as categories and graphs (see [53J for an encoding of the former in OBJ3). Most languages
support enumerated types, which denote finite sets of values, but not as generally as might

be wished; often, these types cannot be organised in inheritance hierarchies.
Objects, on the other hand, are entities that are created, destroyed, aud that change.

In addition, they can be shared, ill the seuse that two objects sharing a third oue see any
changes IillI.de to it. In this regard, it seell1S t.hat misunderstanding is due to identifying

a value with the st.orage location that holds it; what can be "shared" is the location,
not the value itself]. Furthermore, the uniqueness of an object is externally determined;
for example, by assigning a unique identifier to it. More important, however, is that the

principal motivation for having objects-and this goes hack to Simula-is to simulate real
world processes, such as the behaviour of nuclear reactors.

Some object-oriented languages distinguish hetwecn an object structure and a pointer
to it, and this is one way that s()-called complex and composite objects can arise. A
complex object is onE' that refers to another object; far example, an employee object
with an attribute that stores the identity of the employee's manager. A composite object

is one tha.t incorporates another; for examplp, a car has doors and not just references to
them, which would (potentially) allow for them to he shared with other cars. In turn,

6.1 Objects and Valnes 133

these language.'> also have different semantics for assignments between objf'ct structures

and pointers to them. Th(· two kinds of assignmcnts are respectively called projective
aud polymorphic. A projective assignment is one in which Some strncture is forgotten.
such as when a..<;signing a triple indexed by componputs :t. 'J and 7; to a tuple vaIiabl~

indexed by x and y, where the z component is left ont. A polymorphic assignment
manipulate:3 pointers, such tiJat there is no information loss. (As usual, the validity of these

assignments depends on therf' being an appropriate relationship --commonly inheritance-

between the underlying typp:- of the two entities.) Note the impact upon dynamIC binding,
which crucially depends on polymorpbic assignment.

Next we examine how various languages treat objects and values.

6.1.1 C++

c++ supports both object strudures and pointers to them, alld by default variables and

attributes store structures. If the target of an assignment is a slructure, the assignment. is

projective: if the target is a poiucer. the assignment IS polymorphic. The only Slipport for
values is the enumerated type: the different kinds of numbers are built-in.

6.1.2 Eiffel

By default, variables and attributE's in Eiffel store references to objects. However. so called

"expanded clasfoies" are available, and as [,he name suggests, objerts of these cla..~ses are ex
panded in place, i.e., never rf'ferred to, Thus they give rise to composite objects. According

[0 [73], the main reason for including expanded rlas.ses in Eiffelas to givp m(lre natural
support for cla.-;ses such at; BOOl and INTEGER; in other word~, from our point Df view, to

snpport values. However, the definition of an expanded class i~ tltill made in tNms of object

concepts such as. attributes and methods and, in fact, Eiffel arryway giv€:3 special treatment
to objects of clas~w!;' BOOl flnd INTEGER: true and false are predefined keywords and 1,

2, 3, are antomatically recognised as integers. In opposition to otber languages that

distinguish object structures from pointers to them, Eiffel forbids projective CL.%ignments,
so that X := V is valid only if X and V are of the same exact cla.ss.

A further feature in Eiffel if' the unique attribute, which is used to declare dass-wide

constants and (especially) to make up for the lack of enumerated types aud values. For

example,

Red, Blue, Yellow INTEGER is unique;

declares thr~ unique attributes, Red, Blue and Yellow, which are automatically assigned

increasing and distinct integers. This seems a very roundabout way to specify constants,
especially because access to them can only be achieved indirectly through objects. (This
iEsue is also related to thp distinction between classe.s and modules, to be discus..~ in the

next section.) Lastly, we note the specification of complex numbers given in [77], in which
the constant i is represented as a (constant) fnnction on a complex number. To access i,

then, an object of class COMPLEX is needed, say X, so that the value of i is given by the
expression X.i, which ;seems counter-intuitive.

6.1 Objects and Values 134

6.1.3 Oberon-2

Oberon-2 also omits enumerated types, and builds in the numbers and the booleans. ft

distinguisnes between object structures and pointers to them, but the way this is dOne is

similar to Pascal and may seem verbose to some. For example,

TYP£
Node: POINTER TO NodeDesc;

NodeDesc = RECORD END;

(Compare this to C++'s asterisk notation: NodeDesc'" would denote a type whose elements

are pointers to elements of NOdeDesc, and would be equivalent to the above definition of

Node.) jl..Iany other object-oriented languages default to pointers, which appear to be more

common. Projective assignment is allowed.

6.1.4 Smalltalk

In Smalltalk, all types are classes and all references to objects are via pointers. 800L,

INTEGER. etc. are clBsSl"S that receive special treatment; for example, their instauces are

fixed.

6.1.5 FOOPS

Values in FOOPS are user-definable, and this eliminates the need for special built-in support

for them; this is a consequence of the language reflecting its nnderiying semantics. Addi

tionally, FOOPS supports inheritance at both the level of values and the level of objects

(i.e., for sorts and classes), and this further enhances expressive power. However, F'OOPS

does not provide for composite objects. although complex objects can be defined.

6.1.6 Conclusions

The main benefit of identifying vahles and objccts is uniformity and economy of coost.ructs.

However, it seems to us that separating them so as to respect their distinct semantics is

more valuable. For example, there is no need for awkward classes such as BOOL and INTEGER

(in Eiffel and Smalltalk, for example), which do not really define objccts, and it allows us to

maintain a dear dist.inction between attributes, functions and methods: attrihutes describe

object storage, functions are as in mathematics. /:I.1ld methods update objects. Moreover,

users can declare their own values, and can organise them in inh.eritance hierarchies. The

example of a. class of complex numbers that a.ppears in several introductory hooks on object

oriented programming (64, 77, IllJ is a telling example of a common misundersta.nding; a

mathematician would be shocked to read about creating and destroying complex numbers!

A further advantage of this separation is that it benefits code optimisation, because

knowing that something is a value can be used to save space and pointer dereferences. For

example, the Gemstone [75J compiler has an optimisation step based on this (for numbers

and booleans), and [78] suggests similar optimisations for unique attributes in Eiffel. In

6.2 Classes and l\1odules 135

omod PRIVATE-INSTRUCTION is
classes Student Teacher

at teachers Student -> SetOfTeachers
at students Teacher -> SetOfStudents

endm

Figure 6,1: Classes with mutually recursive definitions.

FOOPS, this kind of optimisation can be driven by program texts, aud need not be based

on some specially-treated clasSeb.

Finally, the ability to define composite obj('rt~ would increase the expressiv~ power of
FOOPS; thil' needs further consideration.

6.2 Classes and Modules

Another fundamcntal distinction that FOOPS makes is between classes and modules. In

FOOPS, the main unit of encapsulation and scope is the module, wbich can declare several
classes aud their associated attributes and methods. Most other object-oriented languages

.pqual,(' modules with da<;ses, so that there is exactly onc class per module. While this

view pre~ents certain henefits, tbe followiug argues that there are compelling reasons for

distinguishing behveen classcs and modules.
First, it is possible to package togcther classes that mutually refer to each other, as

in the example in Figure (J 1, or as in the morc subtle example in Figure 6.2. It is very

nB-tural to allow for this kind of logical relationship to be captured directly and reflt.'cted

in the physical structure of the system; iu both examples, neither class could be used in
isolation. This distinction also appe<l.rs to simplify compiler design; for example, Meyer

[i7] reports significant initial difficulties implementing mutually recursive cla..c;s definitions

in Eiffel's compilcr, and that the resulting algoritbm was surprisingly complex. Also, note
that using some kind of "forward" deelaratiOIl synta.x to overcome this is not a modular

solution.
Second. it is common for sub-system requirements to iudicate that several classes are

ueeded. In FOOPS, the<lry modnles express requirements. For example, this theory specifies

the concept of a graph, which includes vertices and edges, among other things:

oth GRAPH is

classes Graph Vl;'rtex Edge
ats source tazr,et Edge -> Vertex

me is-incideI!'" Graph Vertex Edge -> Bool
me make-edge : Graph Vertex Vertex -> Edge

endoth

6.2 Classes and Modules 136

omod SALES-PEOPLE is
classes SalesPerson Sale~Hanager

ex MANAGER
subclass SalesPerson < Employee
subclass SalesHanager < SalesPerson Manager
at manager : SalesPerson -) SalesManager

endo

Figure 6.2: CLasses SalesPerson and SalesManager need each other.

Aud the following theory is used further below as the interface for a module that implements
....hile loops: C is the class of tbe structure to be iterated over. and classes In and Out are

for the input and output of the iteration:

oth ITER-ACTIONS is
classes C In Out

me init C In -) C

mll action C In -) C

mll wrapup C In -) Out

me test C In -) Bool

endoth

(This tbeory also appeared in Se<:tion 3.2.) Without modules, these examples would be

much more verbose and less naturaL
Third, because the main unit of scope in FOOPS is the module, there is no need for

special features that declare that one class can access the intprnals of another. Such features.

whicb arp present in EifIel and C++, lead to wbat Szyperski [113J calls "spaghetti scoping;"

furthermore, tbey increase the coupling between software components (15]. With modules,
no such ad hoc visibility features are reqnirPd: if two classes are closely related tbey can

be packaged together into one nnit. This is particularly ,p!evant for so-called local classes.
(See Section 6.6 for further discnssion of scoping.)

Next, the distinction between class and module relationships permits declaring derived
operations and mnemonics for constants. Derived operations (i.e., those defined in terms
of otbers/are necessary for the devplopment of components sncb as math packages, where

the relationship with the original numeric types is neither inheritance nor clientshipj in
the follOWing example, adapted from [100J, the modulp FLOAT is extended with further

trigonometric functions:

:fmod TRIG-FUNCTIONS is
pr FLOAT
:fn tan Float -> Float
:fn cot Float -) Float
fn sec Float -> Float

6.2 Classes and Modules 137

omod VHILE(X :: ITER-ACTIONS) is
tbe next t~o metbods are derived

mes wbile wbile-continue : C In -) Out
var E C var I : In
ax hile(E,I) = init(E,I); ...hile-continue(E,l)
ax bile-continue(E,I) ::

if test(E,I) then
action(E,I); ~bile-continue(E,I)

else
wrapup(E, I)

fi .
endo

Figure 6.3: A generic definition of ~bile loops.

fn cosec Float -) Float

axioms

endf

In conjunction with generic moduJes, derived operations can also be used to specify general

classes of iterators m-er data structures, as Figure 6.3 illustrates. Wirth [117J mak~ the more

general comment that derived operatious are desirable because it is impossible to predict

all of the useful operations associated with a certain type, and because changing the source

codl' that declares the type would most likely require recompiling its clients; moreover, such

a change might even be impossible to effect if the source code is not available. Another case

in point here arises from our experience with Common Lisp; it is customary to find useful,

new ways to manipulate lists, even though Common Lisp comes equipped with an extensive

library of list functions. A further application of modul~ regards the packaging of sets of

related constants, as the modules in Figures 6.4 aud 6.5 show (these are also adapted from

[100]). As hefore, the relationship with the original numeric types is neither inheritance nor

clieutship.
An alternative way to defiue iterators is usffi in the Eiffel Libraries (79]. III FOOPS,

for example, this technique would be realised by having module WHILE declare a new class

called While as client of the data structure to be iterated O\-er, and have the iteration meth

ods (Le., action, test, ctc.) be associated with this new class. The flexibility t.hat this

allows is that particular iterations could be defined by subcJassing While and oW'rriding its

iteration methods; moreover, its suhclasses could declare attributes for temporary storage.

This approach actually highlights another advantage of the distinction betvreen classes and

modules, because these subclasses would mostly arise as auxiliaries to other classes need

ing looping constructs to define their methods. With modules, these iterator classes are

naturally defined as local classes.

Also, separating class and module inheritance leads uaturally to features such as "pri

vate" or "'implementation" class inheritance [111J. With this kind of inheritance, a cla..~

6.2 Classes and Modules 138

fmod ISO is
pr NAT
let NUL "" 0 let SOH"" 1 let STX '" 2 . let ETX = 3

let EaT = 4 let ENQ = 5 let ACK = 6 let BEL = 7

lel: BS =. 10 let HT '" 11 lel: LF =. 12 let VT '= 13

let FF =. 14 let CR = 15 let SO =. 16 let S1 =17

let OLE = 20 lel: OCl =. 21 let OC2 = 22 let OC3 '= 23

let DC4 '= 24 let NAK =. 25 let SYN = 26 let ETB = 27

lel: CAN"" 30 let EM '= 31 let SUB =. 32 let ESC = 33

let FS = 34 let GS = 35 let RS = 36 let US = 37

let SP = 40 let DEL = 177

eDd!

Figure 6.4: Mnemonics for the ISO control codes.

fmod MATH-CONSTANTS is
pr FLOAT
let e '" 2.7182
let golden-ratio 1.6180

let loge 10 2.3025
let log10e 0.4342

let sqrt-of-2 1.4142
let sqrt-o!-10 3.1622

endf

Figure 6,5: Some common mathematic-al const-ants.

6.2 Classes and Modules 139

B can inherit frOnI a class A but in a way that forbids placing objects of class B where
objects of class A are expected. The purpose of thLe, is simply to allow objects of class B

to have access to some (or all) of the internal functionality provided for object~ of class A.

In FOOPS, there is no direct support for this. bnt the using mode of module importation
can provide a similar effect ~ a special case (:-ee Chapter 3). To us. it seems dubious to so

radically adapt class inheritance to support a feature that is more appropriately supported

by module inheritance. which deals with code reUEe.
Finally, at present it b; simpler for compilers to optimise code when there are no private

declarations involved. That modules allow for scoping units larger than classes then·fore

has implementation advantages too. Nonetheless, \\'C note that recent work attempts to

close this performance gap (see, [or example, [21,58]).

6.2.1 Other Languages

Except for Oberon-2, Modula~3 [83] and Ada 9X. all tbe other languages that we are aware

of identify modules with classes. Olle that stauds out as slightly different is C++, which
allov..'s scoping to occur at both the level of dasses and the level of files. Still. C++ files

are not really modules as in FOOrS and the others, because while files may have private
classes, the features of these classes. are not freely <l.f'Cessihle to othl'r classes ill the same

file: furthermore. there i;:, uo notion of parameterisation at the file level. C++ aho supports

nested classes, which are class definitions given inside others. This still does not quite
correspond to modules, because the enclosing classes 00 not havp futi acce:;:; to the featurf's
of the nested ones (and vice versa). Also, nested dassel' would be Ilnnect"ssary if C++ had

modules. because they could then be declared locally.

6.2.2 Summary and Conclusions

We have compared two notions of encapsulation and scope in object-oril'nted languagl's

that can pa(:kage together several classes, and in languages that allow exactly Olle class

declaration. \Ve noted that tbe latter notion allows class relatiollships to be more precisely
controlled, but that the former notiOlI (modules) appears to be more convenient with regards

to logical and ph)"~ical encapsulation, as well as with regards (.0 some forms of scoping .
..-\lso, we discussed how differentiating mooule importation from class relatioru>hips gives

rise to derived operations, permits the orderly declaration of mnemonics for constants. and

naturally supports private class inberitance. A further advantage of modules is that a
renaming mechanism can allow dac;ses to be given new names (see the next section).

\Vhile the above provides a strong case for differentiating between modules and classes,

the modules-as-cla...<;ses notion aJso has some advantages. The most important one seems
to be that visibility relationships between objects of different dasst>s can be more precLc;ely

controlled (Section 6.6 gives more details about this), lind that it is possiblt> to allow a class
to make its definition fully visible to its subclasses (this was discussed in Sl'ctioI'l 3.9). But
these reasons do not s{'€m sufficient to identify the two concepts. and probably there are

ways to achieve these advantag<'S, if they are needed, without the ad hoc modes of class

6.3 Renaming 14.0

inheritance and scoping that we will later on examine.

Conseqnently, there seems to he sufficient motivation, with regards to both clarity of

concepts and functionality, for considering classes as collections of ohjects and class inher

itance as '" mechanism for the hierarchical classification of these, and to distinguish th.ese

concepts from modules (which can declare many classes) and from module inheritance,

which COllcerns code reuSE' and large-grain structuring.

6.3 Renaming

Renaming is a mechanism that attempts to make component reuse more flexible by allowing

features such as attrihutes, methods and classes to be given new names. Not many langnages

provide support for renaming; in fact, it appears that by far the most sophisticated renaming

mechanisms are those of Eiffel and FOOPS. This section will thus concentrate on comparing

these two,

We will examine what each language allows to he renamed, the relationship between

new and old names, and the impact npon readability and reuse of the renaming mechanism

that is provided.

6.3.1 Eiffel

The renaming mechanism of Eiffel allows classes to give new names to in herited attributes,

functions and methods. Except for a special situation discussed below, a rename introduces

a kind ofalias, in the following sense. Consider a class DRIVER with an attribute called tvs

(for traffic violations)2. A client of this class could declare a method m that takes a driver

object as its argument3 , and in its body ask for the driver's tvs:

m(d DRIVER) is

do

d.tvs

end;

Subsequently, we may declare a subclass of DRIVER caIted BRITISH-DRIVER that renames

tva:

clasa BRITISH-DRIVER is

inherit

DRIVER rename tva to br_tvs

<nd

~This eumple is ~apted from [77/.
:lIn EilJel. all in !ll'vera! other obj~d-oriented programming lallgua.ge~, methods receive the ohject they

op.m.te on all an implicit ll.I"gllment. Therefore, It really has two acguments, but we adopt Eiffel's terminology
for the present discu8llion.

6.3 Renaming 141

end;

This means that BRITISH-DRIVER objects cannot be dm;ctlll asked for their tva, becausf'

BRITISH-DRIVER calls that attribute by another name. For example,

bd : BRITISH-DRIVER;

! !bd; create an object and attach it to variable bd

bd tvs ... ; error!

bd br_tvs .. ok!

However, (l. BR!T! SH-DRIVER object could be an argument to method m, where asking for its

tvs is fine, as in that context it is viewed as a DRIVER. There, the expression d. tvs refers

to attribute br_tvs for objects of class BRITISH-DRIVER.

We now extend this example to illustrate bow renamings are not treated as aliases when

a class inherits from two otbers, each of which has a feature that renames the same one.

Consider the class FRENCH-DRIVER, which is similar to BRITISH-DRIVER:

class FRENCH-DRIVER 1S

inherit

DRIVER rename tvs to fr_tvs

end

end;

and the class FR-BR-DRIVER that inherits from both FRENCH-DRIVER and BRITISH-DRIvER:

class FR-BR-DRIVER is

inherit

FRENCH-DRIVER end;

BRITISH-DRIVER end

end;

In this case, Eiffel considers fr_tvs and br_tvs as two different attributes ofFR-BR-DRIVER,

even though they rename the same attribute of DRIVER. (But as will be seen in more detail

in Section 6.4, FR-BR-DRIVER has only one copy of those attributes and method.; of DRIVER

that were not renamed.)

This new class would introduce a conflict in method m, because for FR-BR-DRIVER objects

the expression d.tvs is now ambiguous: does it refer to fr_tva or to br_tvs? Therefore,

the Eiff"el compiler rejects the above definition of FR-BR-DRIVER. To make it valid, a select

clause can be used to indicate how to solve the ambiguity. For example,

class FR-BR-DRIVER is

inheri't

FRENCH-DRIVER end;

BRITISH-DRIVER

6.3 Renaming 142

select fr_tvs

ond

end;

This version of FR-BR-DRIVER specifies that in m (and in any other similar functions and

metbods that manipulate drivers) the expression d. tvoS refers to attribute fr_tvs whenever

d is bound to an object of class FR-BR-DRIVER.

To summarise, hen single inheritance is used, rena.ming is analogous to introducing

aliases. But for situations in which there is multiple inheritance with a common superclass,

and a feature of that class is renamed, the mechanism generates new, independent features.

One unfortunate consequence of this kind of renaming is that it can make programs

harder to read, as a feature can have different names in different contexts. For example,

consider the class hierarchy in Figure 6.6, here the x's are (say) methods, and the arrows

labelled with "." indicate renamings. Now consider the following methods p and q declared

in a client of A and a client of B, respectively:

class CLIENT-DF-A is

feature

p(a : A) is

do

a.x;

ond

end;

class CLIENT-OF-B is

feature

q(b : B) is

local

ell. : CLIENT-OF-A;

do

b.x'; ca.pCb);

ond

end;

If method q is invoked with an object of class Cas argument, then to trace what the program

does one must be aware of all the previous names that the x" method had (and similarly

for any other features that were renamed). For example, in the context of the initial call

to q, the object of class C had a method called x". However, in the context of q itself,

this metbod is known as x'. And finally, in the context of method p (which q invokes), x"

6.3 Renaming 143

A x

r J.
B ~

1 ~
C x"

FigurIC 6.6: Renaming along a class hierarchy.

is kuO\",n as x. Thus. tracing ralls to methods may demand lliimeSpace conversions nndpr

Eilfel's approach to renaming. We suspPd. t.hat this also forces the run-time system to keep

track of all the previous namps of an object's features.

6.3.2 FOOPS

In FOOPS the renaming nwchanism works at t.he level of modules, and this allows classes

(and sorts) to be renamed 1·00, 1t also permits fmther precision of names for "xpression~

such as

STACK(LIST[TUPLECSYMBOL,SYMBOL]]]

because the class Stack of STACK can be renamed to something more meaningful; in this

case we mean to refer to block-structured symbol tables, and instead we could have written

STACK[LIST[TUPLE[SYMBOL,SYMBOL))) * (class Stack to SymbolTablel

In Eiffel. om' 'I\'oliid have to write the entire expre..<;sion every time a referf~nce was made

to the class of a symbol table, because classes cannot be given new namps; or perhaps

inheritance could be u!>ed to create a Ilf'W cla..% name, bnt this seems ad hoc. It should be

observed that in FOOPS the above expression would denote a module name. so we could

st,ilI not avoid it unless a make was used, for example. The point is tbat this is more fiexihle

because it occurs at a higher level of ahstraction.

The mo!>t significant differeuce between the two approaches, however, is that ill FOOPS
renaming is au operation that takes a module and generates a new one, and not a way of

introducing aliases or duplicating particular functiom, attribntes or methods. Therefore,

the classes Stack and SymbolTable from the above module expressions (respectively) are

not related. This distinction I;omes from the semant,ics of module renaming: the" operator

is int,erpreted as a morphism in the category of signatures, as explained in Chapter 4.

This approach avoids the abo\'{' difficulties of renaming-by-aJiases, and seems to be

flexible enough to captnre other common situations. For example, a module that implements

a map method on lists is more readable if the sonrce and t.arget classes are given mnemonic

names:

6.3 Renaming 144

otb /ffi is

classes C n

me m C -> D

endo

omod MAP [X ME) is

pr LIST[C] $ (class List to SourceList)

pr LIST[D] $ (class List to TargetList)

me map SourceList -> TargetList

endo

(Without renaming, the two list classes would have to he differentiated with qualificatioIlB,

i,e" List,LIST[C] and List,LIST[D].) However, this setup does not appear to be appro

priate fora potential client of MAP dealing with lists of (say) employees ohtained from

LIST[EHPLOYEE] * (class List to EmployeeList)

because 311 instantiation such as

MAP[viev to EMPLOYEE is

class C to Employee

class D to String

me m to name

endv]

generates a method map with iuterface

me map SourceList -> TargetList

Consequelltly, for an object el of class EmployeeList the expres.<;ion map(el) does not type

check, Furtunately, the same rFnaming mechanism allows f".AP to he tailored to the above

situation by applying renaming to it:

KAP[viev to EMPLOYEE is

class C to Employee

class n to String

me m to name

!lndv]

* (class SourceList to EmployeeList)

Then the resulting method map is

me map : EmployeeList -> TargetList

as required. In sum, the compositional nature of morphisrns-and thus renamings-allowed

MAP to he adapted properly. Still, we note that this approach can become tedious when

6.3 Renaming 145

many features are renamed at the same time, or when different mod ules need to be adapted

in different ways to fit a given context.
Finally, observe that the renaming mC'Chanism of FOOPS gives the drivers' example a

different "topology,'· because the resulting module inheritance diagram is

DRIVER • (at. to fr _tvs) DRIVER. (at. tvs to br_tvs)"'S

1 1
FRENCH-DRIVER BRITISH-DRIVER

~~
FR-BR-DRIVER

and not as in EiffeL where DRIVER is (partially) "shared" by FRENCH-DRIVER and

BRITISH-DRIVER. This m("ans that those features of drivers that are not ren~med, such
as eyesigh1:, for example, are in FOOPS "duplicated" in FR-SR-DRIVER. To prevent this,

those f\;'atures that should not appea.r twice need to be promoted to a sub-module of DRIVER,

which would then be shared. For the present example this seems appropriate, because it

highlights that a higher-level abstraction &uch as PERSON might bc mis&ing. On the other

hand, FR-BR-DRIVER would no longer be reJat\;'d to DRIVER, and this mayor may not bt·
desirable. 'Are wj]l have more to say about this iu the next 5ection.

6.3.3 Other Languages

\Ve are awar\;, of only one other langnage with support for renaming: Ada. Its renaming

mechanism introdu<:e.s true aliases, ill the sense that if some context n~namcs f to g, both
are valid names in that context. Becal1se Ada &upports modules in a way similar to FOOPS,

types can also be renamed (and thus "\lasses" in Ada 9X). A further difference with FOOPS
is that Ada renamings are not part of a module (or ··package··) expression subl~lJguage.

6.3.4 Summary and Conclusions

\\'(, have compared m'o sophisticated approache:i to renaming in object-oriented program

ming languages, t.hose of Eiffel and FOOPS. Eiffel"fi approach is based on a forIllof aliasing,

although for Illultiple inherit,ance with rommon superclasscs renaming actually duplicates
features. The approach of FOOPS is that renaming is an operator that generates new mod

ules, and thus avoids a readability problem associated with the aliases approa.ch However,
this seems to be the cost of rE'naming within a class iIllleritance hierarchy. In FOOPS, a
module cannot inherit another and at the same time rename some of its features Tl1e mod

ule that is inherited is actually that which the renaming geuerated; for certain situations,
this might prove inappropriate, as the next, section discusses. Also, observe that renaming

in Eiffel is ti('d to class inheritance. and that classes cannot be renamed as in FDOPS.

I

6.4 C18.iS Inheritance 146

LANGUAGES THAT SUPPORT

ONLY SINGLE INHERITANCE

Ada 9X

Modula-3 I'

Oberon-2

Objective-C

Object-PasC'o.! \

Simula

Smalltalk

I

LANGUAGES-THAT SUPPORT1
1-'1ULTIPLE INHERITANCE

C++
CLOS I

Eiffel
FOOPS
LOOPS

I

T,el1i,
TROLL

1

I

Figure 6.7: Support for class inheritance inarious languages.

6.4 Class Inheritance

This section compares thp mechani1illls for class inheritance and redefinit.ion iu several lan

gnages. Class inheritance is a cla~siliC'ation t.uol, but it is also used as a mechanism for cude
rense. Redefinition allows subclasses to override some of what they inherit. thus reconciling

reusability with extendibility. We begin by detailing the kind of inheritance supported,
then we explain the way redefinition and dynamic binding operate, and finally we discnss
inheritauc!" conflicts and their resolution. This last topic is very important because of its

implications for reusing uld classes.

6.4.1 Kinds of Inheritance

A basic question concerning elMs inheritance is whether a dass can inherit from more than
one other rIass. \Vhile some might expect that at this level of maturity all object-oriented

languages would support mnltiplp inheritance, this is not so. as Figure 6.7 illustrates. Note
t.hat of the languages that do not identify modnles with classes the only one that supports

multiple inheritance is FOOPS.

6.4.2 Redefinition and Dynamic Binding

There are many aspects to a redefinition facili.ty in an object-oriented language; we sum

marLse those that we deem most important in Figure 6.8. The purpose of the first column
of the table is self-explanatory, and we use the terminology of each language. Ada 9X,
Modula-3 and Oberon-2 use "procedures" for what we call "melhods." In C++. attributes

are called "data members" and methods are called "member functions;" there can alBo be
fnnctions that are not "rnpmbers," and these are similar to derived operations.

The second column asks whether a subclass can always redefine what it inherits. In

C++. a member function can only be redefined if it was declared "virtuaL" This approach
is motivated by efficiency reasons; the extensibility associated with object.-oriented software
wonld call for all member functions to be virtual by defanlt (61. 99J (but there is some
disagreement regarding this). In Eiffel, the reverse occms: redefinition is allowed provided

6.4 Inberitance 147

Ad.. 9;>1:

W','
c .. n be

r ..<ldlned?
p<o"du •• ,

C ..n
.. l.,."Y.

,,,d..fI,, ..?
Y••

7::~ ,.
Cotnp..t;b;I,,)'

fixed

Can ace....
odgi".. l.?
Which?
y .. / ..II

rn~r"-~n..?

N/A

Corn~"ied

" ..nd?
y,

CH

Eiff.. l

FOOPS

fu"",o~'

"'.,fo.
& mOO

n'. k me.

,f ",",~J

,r no'

ho••"...
No

Y••

Yeo

find

.."....,
\'....1

y •• ; ..11
(wj.el"et)

Ve. "I

Y

" d<ler«d... Y"

Modula_3
Ob.. ,on_;1

",,'hod.
>"o«du,.s

y"
if '>.p._
b~y"d

Y..
Y.

fix.d
fixed

y ••/o.Il
Yo./

,m""d,.."

,,'fA
NjA

y,
N,

S"""JJh.lk

nelh.

,m,h..d,

..,.& me'

Y..

•..
y,

N•

b, nan>_

cootr"·V"fiMC<

Y<of
;"""0<1,,,-, •

Yeo "II

NIA

Y..

:<'

y"
J

Figure G."': Comparison of redefinition facilities.

the aftribute, function or Illl'titod was not originally rl~;;ignated 3.<; "frozen." Ir. Oberon-2,

·'type-bound" procedures are illlalogues to member [nuctions in C++~ those wbch are not

type-bound are simliar to derJwd operatiolli:'.
Til(' third column a..-,ks whetht'r the new veniiou of an operation needs to be tagged in

some way. For example, in FOOPS, redefinitions must include redef as a propert.y. We

think that requiring a tag make." programs easier to read and can avoid unintended dashes

or redefinitions.
The next column compares the syntactic reqnirements on the new version. The difference

between vari;wt and contra-variant compatibility was di.,cussed in Section 2.2,7; Trellis

[65, 102] is the only language that we know of which has a contra-variant compatibility

rule. Fixed compatihilit.y means that no difference in rank is allowed except at the argument

position for the object which is t.o be npdated or queried. These coucepts do Ul)t apply to
untyped languages; therefore. Smalltalk only requires that the new and old versions have

the same name.
The fifth column indicates whether a redefinition can access auy of the previous versions

of what it redefines. Here "all" meanS that it can refer to aU of them, while "Immediate"
means that it can only access that (or those. if merging is allowed; see below) which it

directly redefines. Note the entry for Eiffel, which specifies that select must be used in

order to access previous versions. This is because in Eiffel if a class B wishes to inherit a
class A and redefiTle One of it.s methods, say m. and at the same time refer to the original m,

then it must inherit A twice and rename one of the m's, so that they become t",'O different

methods; then the IIew m can refer to the old onp but using a different name; this requires
non-cumulative interfaces (see Section 3.9). Thus, an ambiguity similar to t.hat discussed
in the section on rena.ming occurs, and B is required to select between the new m and the

old, rpDamed version. Most other languages in the table provide some kind of qualification

notation for referring to original versions.
We also not.e tha.t Snyder [106] warns about the pot.ential problems of allowing a class

to refer explicitly to its non-immediatp superclasses. He argues that if a class C if, allowed to
do this and then one of its immediate superclasses decides to cbange its own superdasses,
then C can become invalid, even if its superclasses continne to provide the same attributes

6.4 Class Inherjtance 148

and methods. But this only applies to situations iu which dass inheritance is used for

implementation reasons and not for classification. When the purpose is to classify, the

knowledge t.hat a suhclass relation exists is used throughout a whole system; a piece of

code that works for a dass C also works for any of its subc1115ses.

The sixth column refers to whether a class can have a feature that redefines two or more

others (from different, immediate superdasses) at the same time. In Eiffel, two methods

or functions can ouly he merged if they are both deferred, or not implemented by their

classes. To get around this, a facility called undefinition can be ILsed to make a method

or function deferred. The need for such a facility is not clear to us, and nnfortnnately [78]

does not provide (in OUI' opinion) sufficipnt motivation for it.

Finally, the last column askshether a method (or function or pro(,l'dure or derived

attribute, depending on the language) can be redefined into an attribute. In Eiffel, only

functions can be redefined into attributes. III FOOPS, the only pos!libility is for derived

attribut~ to be redefined into stored attributes.

6.4.3 Inheritance Conflicts

This sec~ion discusses various kinds of iuheritance conflicts aud compares how some lan

guages approach tbeir' resolution; studying this gives us a way to clearly understand the

inheritance mechanism of a language.
For single inheritance, the only possihle conflict OCCUI'S when a class declares a featUI'e

with thl'same name as one it inherits. In typeless langnagp.s snch as Smalltalk this is

considered redefinition, as was explained above. For typed languages, the rank of the

feature must also be taken into acconnt, and the validity of the new declaration depends

on whether the two ranks are related. We say that rank (51 52 ... 8R_J., SlI) is related

t.o rank (T1 T2 ... TN_1, TN> if and only if for i = 1 .. N, either Si ~ Ti or Ti ~ 5i. (Note

that both variance and contra-variance are special cases of relatedness.) If they are related,

then the new feature is considered a redefinition attempt. If they are not related, then it

depends on whether the lauguage permits overloaded names; for example, Ada 9X, C++
and FOOPS do hut EifIe! aud Oberon-2 do not.

For multiple inheritance there are several other mare complex cases to consider, We

will examine these others and their resolution by studying four inheritance diagrams. The

first j~ given in Figure 6.9, and depicts a class D that inherits a feature called a directly

from classes B and C. 10 Ejffel, overloading is not permitted, and so one of the a's must be

renamed, or they could be merged if their ranks are compatible. In FOOPS, if having both

a's in D violates regularity then it is an error, and to solve it renaming or merging must bl'

used; hov.l'ver, renaming would be quite dangerous, as it gem'rates new modules, and tbUB

new classes, C++ permits both a's to be inherited and leaves it up to D and its clients

to resolve any ambiguities. This, hO'\lrever, is not ,,-ery convenient as they both now have

longer names (in C++ notation, 8; ; a and C: :a)j but as C++ does not support renaming,

qualification is more reasonable than having to change either 8 or C, which is not always

possible and might wreck other classes.

Tbe diagram in Figure 6.10 illustrates a common sitllation: iuheriting a. feature from

a B c a

"" ./
/

D

Figure 6.9: Inheritance of similar feature from different parents.

/ "
/

A

."
a

B C

"'/
D

Figure 6.10: Inheritance Yia distinct paths.

the same cla..;;s via distinct p3ths. III both Eiffel and FOOPS, 0 is associated with only one
a. In C++, the number of a's in D depends on whether 8 and C declared that t.hey were

inheriting A "virtually." If they both did, then there is only one a in D. If at least one did

not, then there are two a's in D. and as indicated above qualifications must be provided r.o
distinguish t1p two. This state of affairs in C++ ha.,> been criticised (for example, see [61]),

because it is believed that it should he the business of t.he dl'signer of 0 to choose whether

it inherits the features of Aonce or twice, not the business of thp designers of 8 and C, who
cannot be expected to predict aU their possible subcla.c;ses.

Figure 6.11 shows a diagram in which Band C both inherit from A but where C renames

a to c. In Eiffel this is fine provided D selects either a or c. In FOOPS, the diagram would
be different because renaming generates new modules. Figure 6.12 gives the corresponding

pict.ure in FOOPS at the module level (assuming a is an attribute).

Finally, Figure 6.13 presents a diagram similar to that in Figure 6.11. but now Creripfines

/"
A a

"\/ "c ,
B"'. ·D /
;1

Figure 6.11: Conflicting rename in multiple inheritance.

6.4 Class Inheritance 150

A A.(atatoc)

1 1
B~ /,0

~,,/
D

Figure 6.12: Multiple inheritance rename ill FOOPS.

A a

B/ '"
 " / 0 a Iredefj

D

Figure 6.13: Conflicting redefinition in multiple inheritance.

a. Iu C++, the ambiguity in D is solved by so-called "domination," whereby, for classes 21

and 22 that declare (or redefine) some member function f, 21::f is chosen over 22:: f if

and only if 21 is a subclass of 22. For the present case, this means that if d is bound to

an object of class D, then d. a refers to e's version of a. If B had also redefined a, then D

is invalid, beca\L'ie there is no way in C++ to choose between the two a's. For Eiffel and

FOOPS, OIl the other hand, the situation is erroneous regardless of whether B also redefines

a. As helore, Eiffel requires either renaming olle of the a's and then selecting, or nndefining

both and then merging. In FOOPS. either merging or renaming would do; but it is possible

that neither option is suitable, and one of the original classes will need modification, which

might proye undesirahle.

A further issue t.hat affects conflict resolution is the visibility of a feature. That is,

whether a priva.te feature of a superclass can clash with a feature in any of its subclasses.

This will he discussed in Section 6.6.

Linearisation. There is a completply different approach to conflict resolution for multiple

inheritance that is adopted by some object-oriented extensions of Lisp, such as CLOS [32)
and its predecessors LOOPS [110] and Flavors [80J. In these languages, a class hiprarchy

graph is converted to a single inheritance chain, and then conflicts are dealt with in that

setting.

For more d~cussiDn ahout conflict resolution S€'f' also [1061.

6.5 Genericity 151

6.4.4 Summary and Conclusions

We have compared class inheritance and redefinition in several ohject-oriented languages.

Concerning redefinition, POOPS matches favourably with the others; in fact, FOOPS and

Eiffel were fonnd to be thp most flexihle in this aspect. Regarding inheritance, we noted

that among the languages that do not identify modules and classes FOOPS is the only one

that provides multiple inheritance. We also discussed several kinds of multiple inheritance

conflicts and how languages snch as C++, Eiffel and roops deal with them. Here we

found Eiffel and FOOPS agreeing most of the time on what is a conflict; key distinctions

between the two included that only roops supports overloading, and that renaming, a

common way to resolve conflicts, has a different meaning in each. Of the two, Eiffel offers

the most sophisticated facilities for deriving suhclasses. Also, it may he that in FOOPS

some conflicts can only be resolved in ways that reqnire modifying the original classes, which

is not always possible or dcsirablp. C++ seemed to be less straightforwardith respect

to multiple inheritance, possibly because of its emphasis on efficiency (see [111]), which

(among other things) might have eliminated the option of having a renaming facility that

could be used to simplify eonflict resolntion.

Lastly, it appears obvious that while multiple inheritance is a powerful classification

tool, it is much harder to design, understand and implement than single inheritance. For

these reasons. it has bren omitted from several object-oriented languages.

6.5 Generieity

Genericity is an abstraction mechanism for capturing commonality, and the instantiation

of generic classes or modules is a powerful way to reuse specifications and code. Here

arises another point of comparison between encapsulation units: with generic modules,

reuse occnrs in larger stpps than with generic classes. In the comparison and evaluation

that follows, one of om main concerns is support for expressing requirements on actual

argnments to generic classes or modules, facilities for structuring these requirements, and

instantiation mechanisms. We also discuss conpling and higher-order operatiolli.

6.5.1 Ada and Ada 9X

Genericity in Ada occurs at the level of modules (called "packages") and requirements on

actual arguments can only be syntactic. These requirements are not themselves expressed

using modnles. but given as prpfixes to generic modules, as in

generic

typeElt;

wi th funct ion "<" (X. 'f : E1t) return Boolean is <> j

pa.ckage B-SEARCH-TREE is

end B-SEARCH-TREE;

6.5 Generidty 152

which say, that valid arguments for instantiating B-SEARCH-TREE are a type and an ordering
function on elements of that type. In Ada, procedures can also be generic over types and

other procedures, and Ada 9X extends Ada with higber~order procedures.
Ada does not allow multi-level module inst_antiation, as in B-SEARCH-TR.E'.E[LIST(NAT]],

but Ada 9X provides some support for this, although still not iu its fully general form.

6.5.2 C++

Classes in C++ can be generic over strings, constants, functions and other classes. How

ever, it is not possible to expreSS things such as the syntactic requirement that a certain
actual argument class must provide some member function f. Also, there are no means for

expressing semantic requirements on actual acguments. C++ supports higher-order oper
ations through 50-called "fundion pointers." As mentioned pre\'iously, "modules" (files)

cannot be generic. Multi-level instantiation is provided.

6.5.3 CLU

The language CLU was the first to implemeut generic modules [70, IlJ. The modUles of
CLU, called "clusters," are identified with types and can be generic in a way similar to

packages in Ada. (In fact, CLU influenced the design of Ada.) Multi-level instantiatiou is
possible.

6.5.4 Eiffel

EifIel [78] has an interesting feature called constrained generieity, which allows a generic

class to specify that certain properties should be satisfied by actual arg;ument/:l, through the
existence of a suitable inheritance relation. For example, an Eiffel class for biuary search

trees with the header

B-S£ARCH-TREE [X -> POSET]

indicates that valid instantiations must bind X to a subclass of POSET (partially ordered
sets)4. Further semantic requirements may be expressed in Eiffel nsing its assertions facility,

which permits attaching pre- aud post-conditions to fuuctions and methods, aud invariants
to classes.

In Eiffel, if Cl is a. subclass of C, then piC'! is automatically a subclass of P(C]. No other
language that we are aware of is like this. Multi-level instantiation is supported.

6.5.5 ML

While ML (92] is not a.n object-oriented language, its module system is quite powerful and
deserves mention. (In fact, :.,fL's module system was inspired by the module facilities of

the specification language Clear, from which OBJ and FOOPS derive some of theirs.) The

'Uee [571 has is ~imiJar facillty. Also. this is·hat Cardelli and Wegner 1171 call ~bollllded parameuic
polymorphi.l;m.~

6.5 Genericity 153

"siF;llatures" of ML are I;:imiw to the theories of FOOPS, except that they may only declare

syntactic information. For example, the following signature declares a type T Wilh a binary

function called less:

signature POSE'T

sig

type T

val less: T * T -> bool

end;

1-1L's "structures" correspond to non-gem'ric modules in FOOPS, while "functors" are

generi{' structures. Both need to always be a<;soriated with a signature, giving way to a

many-one relationship. For the binary search trees example above, we would £rst declare

the signature. i.E'.,

signature B-SEARCH-TREE

sig

end;

and then the fUllctor:

functor B-Search-Tree (structure Elt: POSET) B-SEARCH-TREE

struct

end;

In cOlltra<;t with FOOPS. ML does not have views. Rather, st.ructures are used to provide

the bindings necessary to make other st.ructures match signatures. For example, the type

lnt is built-in in 1·1L. To instantiate B-Search-Tree with integers, we need to declare a

structure \vith signature POSET SUcll that T is "bound" to int and leas is -bound" to

the desired ordering. The following structure nssociates less with the built-in less-than

function on integp.fs:

structure IntPoset; POSET z

struct

type T = int;

val less: int. int -> bool =- op <
end;

An instantiation then proceeds as expected:

structure IntTree = B-Search-Tree(structure Elt z IntPoset);

It would have been possible to creati' the structure on the fiy, as in

6.5 Generidty 154

structure IntTree •

B-Search-TreeCstruct

type T : intj

val less: int * int -> bool = 0P <
end);

ML's signatures can be generic, but this is not declared with the expected synta....

For example, the following signature for priority queues is satisfied hy ally structure that

includes a substructure with signature POSET (for the elements of queues):

signature PQUEUE ::I'

Big

structure Poset: POSET

end;

An interesting feature of :ML's module system is sharing cOIlBtraints, by which it may

be required that certain substructures or types of aetnal arguments to functors be the same.

An example given in /92J illustrates this with a functor that takes as parameters a priority

queue and an indexed table, and which requires that the type of the queue's elements is the

same as the type of the table's key. Thus:

functor SharFUN(structure Pqueue: PQUEUE and Table: TABLE

sharing type Pqueue.Poset.T = Table.key)

struct

end;

In FOOPS, we would have specified this sit nation by making PQUEUE and TABLE generic, such

that the sbaring would be implicit by instantiating both with similar arguments. However,

ML's facility covers situations in which one did not anticipate that a theory was better

rendered as generic.

Lastly, there is the language Extended ML [101) which enriches ML with non-executable

axioms that may be used for documentation and perhaps to snpport formal development

(in much the same way as axioms are used in FOOPS theories). Axioms may also be

declared inside structures and functors, to indicate intermediate development stages; that

is, a structure or functor is execmable only if it does not include any axioms.

6.5.6 Modula-3

Every module in Modula-3 has an "interface," which declares syntactic properties jI6]. The

association between modules and interfaces is one-many, but fixed (Le., a new interface for

a module cannot be introduced without changing the module).

Both modules and interfaces can be generic_ However, parameters are only implicitly

restricted. For example, in

6.5 Gen{'r";c~;~<y,- _ 155

generic interface STACK(Elem);

type Stack;

procedure pushes Stack;:X Elem.Item);

end STACK.

Elem is just the name of some interface that must provide a type called Item; but one

can only know this requirement by examining the generic's body. Instantiations require

idf'ntities on names; i.e.) a valid argument to STACK must provide a type called Item (a..<; in
T\fL). Therefore. to create an interface for (say) stacks of integers we need an imerrnediate

step to bind Item:

interface INT;

type Item = INTEGER;

end INT.

interface INT-STACK STACK(INT)

end INT-STAGK.

~,rulti-level instantiation using STACK is not really possible because of the Lindings re
quired for type Item. For example, to create an interface for stacks of stacks of integers,

INT-STACK must be changed to include a binding for type Item:

interface INT-STACK = STACK(INT);

type Item = Stack;

end INT-STAGK.

interface STACK-STACK-INT = STACK(INT-STACK)

end STACK-STACK-INT.

Alt{'rnatively. a completely new interface could have been declared.

6.5.7 Oberon-2

Oberon-2 does not support generic module~ or classes, unr higher-order operatior,s.

6.5.8 P++

Each component in P++ {104] is associated with one "realm." Realm interfaces correspond
to theories in parameterised programming, although without any semantic constraints.

Also. there are no views. so techniques such as those of ML need to be used for bind
ings. This language is primarily based on vertical parameterisation, although a limited
form of horizontal parameterisation allows constants and types, without any horizontal

composition.

6.5 Generkity 156

6.5.9 SmalltaJk

Smalltalk does not support generic classes, but higher-order methods help provide some of

the missing functionality. For example, the above B-SEARCH-TREE class can be implemented
in Smalltalk as SortedCo11ection is iu the Smalltalk library: the comparison method is

given as an argument to the method that creates bInary searcb trees, each of which would
store it in an attribute. In this sense. generic class instantiation in C++ and Eiffel (for

example) would be equivalent to object creatiou in SmalltaUi..

6.5.10 FOOPS

In FOOPS, theory modules are used to specify syntactic aud semantic requiremeuts on

actual arguments to geueric modules, and vit>ws e."'press bow actuals satisfy theories. The
ories can be generic and can be combined with SUlli and can have their features renamed

with ".", as they aTP bona fide modules. FOOPS modules can also be generic over vertical
components. Here we would also like to mention closely related work by Tracz [114], whose

LILEANNA system implemeuts the horizontal and vertical composition ideas of LIL [35]

for the Ada language, using ANl'\A {n] as its specification language.

6.5.11 Comparison with Constrained Genericity

Although Eiffel's constraiued geuericity is a significant advance in generic classes, it still has

some drawbacks for reusability. For example, to create a binary search tree for employees,
EMPLOYEE must be a subclass of POSET. But employees can be partially ordered in many

different ways. e.g., by age, name, salary, department number, seniority, rank, employee
number. etc. These relationships could be obtained by creating a new subclass for each
one, e.g., EJ1PLOYEE-AS-POSET-BY-AGE and EJ1PLOYEE-AS-POSET-BY-SALARY, but this ad

hoc use ofinberitance would produce an awkward plethora of mystifying subclasses.

Another way to specify such relationships is to do liD at design time. For ex.ample, the
Eiffel Libraries [79} contaiu a class TRAVERSABLE, and data structures for lists and chains

are given as subclasses of it. The classes HASHABLE and ADDABLE with their descendants
are similar. However, this approach not only produces awkward inheritance relations (e.g.,

consider how many times EJ1PLDYEE would have to inherit POSET) , but it also requires

foreknowledge of all relevant properties and potential uses of a software component, which
seems unrealistic.

Structuring by libraries exacerbates this problem. For elCaJIlple, if POSET and

B-SEARCH·TREE belong to library L j aud EJ1PLOYEE to library L'l' and we want to have a
binaxy-search tree of employees, then we have two choices. The first is t.o change EMPLOYEE
so that it is a subclass of POSET. Thi.'l is not only dangerous because of possible name clashes
with entities in POSET. but it may even be impossibLe if the source code of EMPLOYEE is not

available. The second choice is to create a new class that captures the relationship, but as
discussed above, this leads to a proliferation of ad hoc subclasses.

In summary, class inheritance works best for simple tree (Dr lattice) structur<lS, but in
many applications, a given cla'>S may satisfy many different interfaces. and may satisfy some

of these in several different wayo;; furthermore, a given interface may be satisfie\l by many

different classes, sometimes in mnltiple wa)'s. \foreover, interfaces may have multiple classes
and complex properties that involve several classes. See also [3] for some discussion about

why class inheritance is inappropriate for large-scale software reuse; in particular, they

have found that generic modules are more powerful in that they induce less relationships
among compouents and reduce the total numher of components required to build similar

abstractions.
1.leyer's pioneering conJparison of inheritance and composition [77] argued that generic

ity and inheritance could simnlate each other, and also <lrgued that simulating inheritance

hy genericity was unsatisfactory, because thc structures needed for dynamic binding tend
to obstruct reuse and maintenance. However. the abovp difficulties with the use of class

inheritance for reusing of generic software components snggests reconsidering Meyer\; claim

that inheritance is more powerful than genericity: these difficult ips aL'lO motivate the inves

tigatioIl of alternative mechanism.:; for composing software components. It may S('elD that
FOOPS solved some of these problem~ before they were widely discussed!

In FOOPS, the problcm of vipwing mod Illes differently in different contexts is solved
by theories and views, without requiring any additional special-purpose classes or modules.

Because the source and target of a view are independent of the view itself, views can express

relationships that have not already been expressed at design or coding time; this answers
t.he "forcknowledge" problem. \1ore generally, views can assert that a given module satisfies

many different. specifications, or that it satisfies the same specification in different ways; they

can also 3.'.,sert that. a given specification is satisfied by many different modules. Views and

theories aL'lO solve the library prohlcm, hccause previously fixed inheritance relationships
<Lre not needed for module composition. Moreover, theories can involve multiple classes and

complcx properties of these classes.
Rosen [98] also indicates some difficulties wit h class inheritance, and advocates an ap

proach inspired by Ada that emphasises composition; he also argues that good lauguage
design should emphasise either inheritance or (modnle) composition, but not bot.b. How

ever, we think that one call have the best of both worlds, and that this gives rist> to some

useful new capabilities, i::lnch as those provided by parameterised programming.

6.5,12 Comparison with Higher-Order Capabilities

An alternative framework (such as Srnalltalk's) might use higber-order operatioIls to achieve

some of the fnnct.ionality of instantiation by views in parameterised programming. How
ever, the difference between these two approaches can be seen as t.he difference between

programming-in-l.he-8IDall and programming-in-the-large. In parameterised programming
operations are considered in association with the kind of dat.a they manipulate. not. in is0
lation; and by allowing abstraction over entire logical units (including module blocks), it
realises large-grain composition. Additionally, theories and views support further design

activities and give rise to other useful ff.'atures, as discuS$ed in Chapter 3; see also Section

6.7 below.
Moreover, abbreviations snggested in [37] approximate the more economical notation of

6.6 Information Hiding 158

higher-order operations in simple situa.tions, and the fea.tures of FOOPS are first-order, and

thus simpler to reasou about. (See [37J for fnrther discussion of these issues.)
Finallr. in parameterised programming several semantic checks can be carried ont at the

module composition level, which is more abstract. for example, no errors due to pointers to
operations being nil can occur (as is possible in Lisp and in Smalltalk). Also, we consider

it valuable that the semantics of compositious can be documented.

6.5.13 Summary and Conclusions

'Ve h'l.Ve discussed mechauisms for declaring and instantiatiug generic components iu several

languages. Along with FOOPS, the most powerful sc-em to be Eiffel, ML, Modula-3 and
P++, but, note that Eiffel's main programming unit is the clash aud that ML is uot an
object-oriented language. They all provide some form of reusable construct for specifying

requirements on arguments, but only Eiffel, FOOPS and Modula-3 can express requirements
with compouents that can be composed in the same manner as the generic components that

use them (ML's signatures cannot. be composed). However, v·re sbowed that Eiffel's binding
mechanism is much less general than the views of FOOPS.

Views are also absent froill the other lauguages, and many use mod ules to create bind
ings, such that all "views" are default. We believe that the advantage of views lies in that

tbere is no ueed for modules whose purpose is to provide bindings and not to capture useful
data Or algorithmic abstractions, that views are self documenting, and that views also serve

to express and record refinement and evolution relationships, as discussed in Chapter 3.
We also considered higher-order capabilities, conclnding that parameterised program

miug already provides similar funct.ionality. Np.vertheless, we note that the appeal of higher
order operations is difficult to match, perhaps because they seem more economic in terms

of uotation.
Vertical parameterisation is a further aspect of generic modules, but we defer its discus

siOn to tht next section,

6.6 Information Hiding

An information hiding meclmnism is one of the most complex language a.<ipects to design.
The design space is enormous, and the trade-offs difficult to measure. This section examines

a variety of approaches to hiding (and sbaring) information in object-oriented languages.
Languages diHer as to what can be hidden; the options include attributes, methods,

da.<ises and inheritance relationships. There are also degrees of hiding. For example, same

entity migbt be declared visible to some classes but not to othem, or might be visible in a
special mode; for instance, an attribute could be invisible, read-only, or read/write.

There are basically two ways to describe visibility. The first is to separate the specifi
cation (or interface) of a class or module from its full implemelltation (also called "body").
The second is to have just one text that is annotated with visibility information, as in
FOOPS.

6.6 Information Hj.~d~;n~g,-- _ [59

FinaJly, an information hiding mechanism must also be analysed from a typf'·checking

and securityiewpoint, so as to assess the confidence it gi....es designers that visibility dec
larations are respected or not easily circumvented.

6,6,1 Ada and Ada 9X

Packages are Ada's main meebanism for encapsulating a set of related variables, routines
(procedur~ and functions) and types; they are also the main unit of scop<'. Packages have

two parts: a specification and a body. The specjficat~on lists the types and routines that arc
visible to dients of the package, and [,his information is snfficient for clients to be compiled.

The body of the package gives the implementation of the items listed in the specification
part. With this separation. a very straightforward form of information hiding is achieved

by omiting from the specification any auxiliaries that me solely needed for implementation

purpose::;. These would be declared in the body of the package, and available only there.

Ada, however, provid<,s an intermediate level between visible and invisible types. For

this pnrpose, it allows package specifications to he divided into public aud private sections.
All that is mentioned in the public section is visible to clients, even, for example. the fields

of a record type declared there. However, the representation of a type may be made invisible

to clients by placing it in the private section of the specification. Such types are of two
kinds, private and limited private. and must be so labelled in the public section of the

specification. The reason why th<: representation of these types must be in the specification

is purely implementational: the compiler needs the information in order to allocate space
for variables and parameters of these types in clients of the package.

The difference betweell private and limiteJ prl\'atc types is the following. With pri

vate typf:S, the operations assignment. equality, and inequality are automatically visible to
clients of the package. in addition to any others mentioned in the public section uf the spec

ification. Types that are limited private, hy contrast, only have visible those operations in

t.he public section; a.:;~ignmcnt, equality, and ineqnality are automatically hidden to clients;
furthermore, not ('ven the body of t be package has access to built-in equality and inequality

predicates on elem('nts of these types. Types that are limited private are 1\seful for defining

data strl1ctnres that, for example. oilly tag deleted elements, aud theS<' mnst be ignored
when testing for equality (the built-in literal equalhy would not be appropriate) Note also

that types defined in terms of limited private types are automatically limited privat,{'.
Ada 9X provid.es tagged records ("classes") to snpport single class inheritance. As

with plain records, it is not possible to hide just some fields: either all are read/write, or

none is visible.
A further feature in the new Ada is the child unit. which allows a set of related packages

to be hierarchically organiseJ. A child unit is also a package, but with declaratiuns stating

its connection to another package (its "parenC). It seems that one of the mo;;t rdevant
aspects of this n<'w feature regards visibility: a child unit has full access to the private

entities of its par('ut. According to Barnes [2]. one of the principal motivations for child
units was for subdas~es declared in them to h,we full visibility of the declarations associated
with superclasses in their parents. However, w<' believe that this gives too much frf'edom,

6,6 Information Hjdj,n~g _ 160

as it permits unre5tricted manipulation of objects of inherited classes. As will be seen

below, other object-oriented languages allow a subclass to sbare the implementations of its
superdasscs, but not to apply private operations to objects of those classes, (This was also

discussed in Section 3.9.)

6.6.2 C++

A class definition in C++ is dhtided into interface and implemelltation parts, allowing

other clients and subclasses to be compiled independently of the implementation part, The
interface of a class declares its attribntes (called "data members") and methods (called

"member functions") and whether they are public. protected or private, Puhli(' means

visible to clients and subclasses; protected means visible only to snbclasses (but can only

be applied to objects of snbclass(.>g; d. Ada): and private means not visible to any other
client or subclass. Visibility restrictions do not apply between objects of the same class,
which are free to access each others' internals. Members are private by default, and public

data members are reOO/"''Tite.
The implementation part of a cla.%' in C++ is not encapsulated, as is the interface.

The implementation of a member function is provided by prefixing the cla'CIS name to the
method's header and giving its body, and it does not have to be placed anywhere in partic

ular. As in Ada, tbe interfa<:e/body separation is not as flexible as might be desired. For

example. if after describing an interface the need arises for an extra member to help imple

ment a member function, then the interface mnst be changed to inclnde the new member.
In fact, this is more restrictive tban in Ada, for there a body can include a procedure that

was not even mentioned in the interfoce, and wbich belongs to the same scope.
Class inheritance in C++ can also be public, protected or private. If class B pnblicly

inherits from class A. then an object of B can be placed anywhere an object of A is expected.

If protected, this can only happen within the definition of B and its subclasses. And if
private, it call only happen within tbe definition of B itself. When inheritance is public, the

subclass cannot restrict the visibility of any member more than its parents do.

Qne salient characteristic of C++'s private members is that they caD clW3h with members
in subclasses. For example. if class A bas a private member function m and a subclass B
of A declares a member function m too, then the application of m to objects of class B will

be ambiguous. This seems counter-intuitive, and as first indicated (in general) by Snyder
[l06], it means that changes to the private part of a class can invalidate its subclasses.

A cl3.% can declare that other classes and functions are its friends, and these have
unrestricted access to its private and protected members; also revealed to friends are any

inheritance relationships. As in real life. friendship is neither inherited nor transitive.
As mentioned in Section 6.2, classes can he nested within each other, but no special

scoping rules apply between them (nnless friends); that is, they act as clients of each other.
However, a class can declare whether its nested classes are public, protected Or private.

It was also mentioned previously that in C++ files can also hide information: entities
declared ~static~ are not visible in any other files. Moreover. it is common practice in
the C/C++ community to bave "header" files, which act as interface descriptions to files.

6.6 Information Hiding ____~ JI61

However, this is only a couvention.
Finally, we uote that the pointer-level programming facilities of C++ allow certain

visibility "restrictions" to be side-stepped. This is because objects are simply regions of

storage which can be indirectly manipulated with appropriate hackery [12, 99, ill). Thus,
C++'s type-checker verifies access, uot visibility. (This has much to do with C's "unsafl'"

programming facilities and tactics having migrated to C++.)

6.6.3 Eiffel

Dnlik!' iu the previous languages, there is no separation of specification and implfmentation

for Eiffel c1a.."ses. Dc.<;igners annotal!' class texts to declare which methods are private and

which are public. This only affects clients, though, becausc subclasses can access everything

they inherit (but again, only to be applied to objects of their owu). Public attributes are
read-only. as they can only be direct Iy updated by methods associated with their own class.

Communication between objects of the same class call only occur through public a.ttributes
and ml'thods (d. C++). Iuherited methods and attributes are private by default, possibly

becallSe Eiffel does not require a subclass to export at least thl' same features as each of its

superclasscs do.
A facility called selective exports allows fine-grain control over visibility by specifying

that some features are available only to certain classes. A feature selecth-ely exported

to a class C is by default selectively exported to subclasses of C, but not to C's clients.

(Note here the difference with friendship in C++, which is not inherited.) Eiffel is like this
because of its view that a class should have available the same feat.ures used to implem!'nt

its superclasses.

6.6.4 Oberon-2

Oberon-2 modules also come in oue piece, and visibility restrictioILS are giwn with anno

tations. As in Ada, the main unit of Bcope is the module, and thus types may also be
hidden. Entities are private by default, and records ("classes") can specify whether fields

are invisible, read-only or read/write. (Note how this is more flexible than in Ada.) Private
entities are never visible outside the module that declares them, and they never clash with

entities in other modules. A recent proposal hy Nigro l8G] to extend the information hiding

facilities of Oberon-2 suffers from the same disadvantages as Ada 9X's child units.

6.6.5 Smalltalk

In Smalltatk., information hidiug is not under the programmer's control. Clients of a class
have access to all of its methods, but never direct access to attributes. Subclasses, on the

other hand, have full access to inherited features. Communication between objects of the
same class can only be achieved through methods.

6.6 Information Wding 162

6.6.6 FOOPS

Except when theories describe generic-module interfaces, FOOPS modules come in one piece
and Inay be annotated with visihility information. The main unit of scope is the module, and

classes and sorts can he private to their module or visible in importing modules. Attributes
and methods can be private, subclass-private or public. If private, they are only visible in
the module that declares them. If subclass-private, they are only visible in modules that

declare subcla.<;ses (and then only if applied to ohjects of these cla.<;ses). And if pnblic (the
default) the}' are visible everywhere. Functions, on the other hand, can only be private or

public. Furthermore, private features uever clash with others in other modules. The only

possible visibility difference between a class and its superc1asses is that a redefinition can be
more visible than what it redefines. FOOPS also supports vertical module parameterisation.

and module blocks for larger scoping units.

6.6.7 Summary and Conclusions

This section has surveyed the iuformation hiding facilities of various languages. Because

information hiding is snch a difficult aspect, the wealth of features and approaches is not
surprising With regards to units of scope, there are three broad kinds of language: those

with module scope in which many classes have fnll access to each others' features (Ada 9X,
Oberon-2, FOOPS); those with class scope in which objects of the same class have full access

to each others' internaL"i (C++): and those with object scope in which objects communicate
with others via visible operations (Eiffel, Smalltalk). Some of those in the last two categories

provide special facilities for classes to reveal otherwise private information to certain classl"s;

namely, C++'s friends and Eiffel's selective exports. Wbile this gives designers fine-grain
control, it also creates so-called "spaghetti scoping" [113J, which seems to indicate that

a higher-ievel scoping unit might be missing (eg., modules). Additionally, these facilit.ies
increase the coupling between software components [15J.

Of t.ht' languages surveyed, C++ is the only one that directly supports hiding inheritance
relationships, and in various dl"grees. (A similar but more restricted capability is fonnd in

the language Dee [57].) In FOOPS, there ma mOre satisfactory way of achieving some5 of
C++'s functionality with the using importation mode, as discllssed in Chapter 3.

The separation of specifications and implementations in Ada 9X and C++ was shown

not to be as convenient as One might wish, because specifications also need to mention
private information, which in theory does not belong there. This separation also entails
duplicating declarations, which requires more work from both programmers and compilers,

especially in ascertaining that the two parts are in agreement [117]. While this has been
considered important for allowing separate compilation and thus more effective far software

development in teams, it is possible for tools to generate "specifications" from single texts.
For example, the Eiffel system has facilities for this; furthermore, compilers can do it auto
matically 157]. Hov.'ever, there remains a tension between abstract interfaces and the ability
to obtain efficient implementations; see [21, I11J for furtber discussion about this.

6. 7 System Design and DeveJopm"e~n~t _ _ 163

Eiffel was the only surveyed langnage to permit a subclass to provide fewer public
attribntes and methods than its superclasses. In Section 3.9 we mentioned that ttlis creates

problems for dynamic binding and that it makes objects look different at different levels of
(class) abstraction. However, we notp that Eiffel's argument is tbat this prevents constant

rearrangements of inherit.ance hierarchies when more subclasses need to be accommoda.ted,
and that it is feasible to implement an incremental type checker that verifies dynamic

binding safety [78].
FOOPS and P++ appear to be the only languages that support the explicit vertical

parameterisation of components. Some languages allow actual parameters to generic mod
nles to be hidden after instantiation, by simply omitting their elements from the module's

interface (e.g., this is possible in Modula-3 and :ML). The difference is then with regards to

how things look in the end (Le., with the implicit documentation from the genetic's header).
Also. this technique might incur in the problems about partial visibility of features that was

discnssed in Section 3.9. In several other languages all actual parameters are always visible

from instantiations; Ada and Eiffpl are t,o examples.
Lastly, among languages with modules FOOPS offers the most flexible facilitie3 without

compromising the encapsulation of data in objects.

6.7 System Design and Development

The pnrpose of programming language notations is to support the design and development

of systems that simpnfy or enbance some task. In order for this to happen, some systematic
method is reqnired [8, 77J. Obviously, the languages we have discussed here support object

oriented design and programming <IS summarised in Chapter 1. But some languages are

hetter than others in supporting both activities. We think that Eiffel and FOOPS go beyond
other ohject-oriented langnages is this aspect.

Eiffel allows methods and functions to have pre- and post-conditions, and invariants can
he attacbed to classes; all of these are executable, and compiler settings determine whether

they are tested at run-time. Also, Eiffel's compiler automatically ANDs the invariant of a

class with those of its superclasses, and similarly combines t.he pre- and post~conditions of
methods and functions with those of their redefinitions. These capabilities, together with

Eiffel's exception~handling mechanism, constitute a design technique called programming

by contract.
FOOPS provides theories and views to express relationships of refinement and evolution

at differpnt levels of design and programming abstraction, as was discussed in Chapter 3.

This approach generalises others based on classes and class inheritance. because it works at
the level of systems (modules), and because a view is a completely general mapping between

independent modules. It is also valuable that executable and non-executable spl'Cifications
can be mixed in the same language, that there exists support for various kinds of vertical

activities, and that module expressions to describe system designs are provided.
While FOOPS does not offer the pre- and post-condition support of Eiffel, pre-conditions

conld he provided by generalising "sort constraints" [42]; it may also be possiblE' to include

6.8 Summary 164

class invariants in FOOPS by generalising "sort assertions" [42]; botb of these aspects re

quire funher research. Note, on the otber hand, that theories and views serve to specify
syntactic and semantic properties of modules, and thus on groups of classes, which is some

thing not found (in its full generality) in any other object-oriented language.
A further promising line of research in object-oriented design is exemplified by tbe

"roles" of TROLL [62J and the "predicate classes" of Cecil [18J. by which an object may
belong to different classes at different times based on some conditions or explicitly induced

situations (see also [119J). For example, an instance of a class Tree may be regarded as an
instance of a class BalancedTree whenever it satisfies the balanced predicate au trees; Or

a person ~bat finds a job becomes an employee, tben perhaps a manager, and so on. In fact,

this kind of modelling was one of the motivations for the sort assertions facility mentioned
above; Se\2 also [50] for some ideas on how to capture this using views dynamically.

Languages such as Ada 9X, C++, Modula-3 and Oberon-2, which descend from older

imperative languages, are much less uniform than Eiffel. Srnalltalk and FOOPS in their
support for the object paradigm. From a theoretical viewpoint, they carry excess baggage;

for example, records tbat are not tagged (Ada 9X), "structs" (C++), global data, and in
general, they provide different syntax for expressions involving entities of class types versus

those involving entities of "non-class" types. A cOnsequence of this i6 that software devel

opment with these languages does not naturally lead to object-oriented archite<:tures, as
systems ca.n be built using either functional or object-oriented decomposition. Because the

latter is believed superior, having language support for hath seems unnecessary. Further
more, it is becoming increasiugly common for a language to be recommended aud used for
both design and programming. and sometimes even for analysis; in fact, software shops that

concentrate on one or two languages will usually desigu and develop with them. It thus

seems advantageous to have "clean" object-oriented languages. Nevertheless, from a prac
tical viev;point, it is desirable that languages evolve such that existing systelllB built using

earlier versions of the language can be combined with those built witb revamped versions;
to a large ext.ent, this is true for Ada 9X and C++, for example.

A good language and development environment depends on many things: documenta
tion, dehugging facilities, schematic editors, code browsers, compilers, component library

and retrieval system, portability, wide applicability, veudor support, integration with other
tools (such as operating systems), etc. But while these aspects providf' significant leverage,
the success of a large soft'o'i'are project unfortunately binges upou less tangible phenomena:

the complexity of tbe problem domain; tbe fidelity of the requirements document; the effec
tiveness of communication between the people involved; and the care put into analysing the
social COnlext into which the resulting system will be integrated. (These issues lie beyond

tbe scope of this tbesis; see [8, 10, 20, 27, 111) for more information and discussion.)

6.8 Summary

This chapter has sllrveyed and analysed the aspects of object-oriented programming lan

guages that we consider the most important for capturing abstractions and facilitating

6.8 Summary 165

software reuse, and has compared them to those present in FOOPS. We began by looking

at values and objects, and concluded that it is beneficial for both to be first-class citizens in a
language; similarly, we argued that separating the notion of class from the notion of module
offered several important advantages. Next we discussed renaming facilities. FOOPS and

Eiffel were compared directly as they are the most advanced in this regard. FOOPS showed
advantages in code readability and in fulowing not only attributes, functions and meth

ods but also classes to be renamed; EiHel excelled accordingly in providing a sophisticated
mechanism for manipulating class texts when a class inherit1l from another.

Class inheritance and redefinitions were then examined, and here language details were

found to vary idely; no language was a clearly superior to others but those with multiple
inheritance appear to be more flexible for dl'sign (although 1lingle inheritaIlce is a simpler

concept); also. FOOPS is the only language that separates modules from classes and that
includes multiple class inheritance. Support for genericity was considered next, and we
found FOOPS to be more powerful than other languages due to its theories a.nd views;

various other laDguages offer higher-order functions and methods to achieve some (but not

all) of the same functionality. Vertical parameterisation was another aspect that distin
guished FOOPS. We thell procef'ded to information hiding, and here also language details

vary widely; C++ was notable for themious ways in whieh inheritance relationships can
he concealed. However, we have argued in severfu places aga.inst the tendency of trying to

make structuring mechanisms for programming-in-the-large fit into some form of class in
heritance relationship. Among the languages with modules, FOOPS offers the most flexible

informalion hiding facilities.
Finally, we discussed aspects of system design and development and support for inte

grating design and programming activities; again, the theories and views of FOOPS appear
to provided added flexibility (this was more fully discussed in Chapter 3). We also ar

gued that languages that provide first-class support for both object-oriented and functional

decomposition are less lliliform and perhaps more confusing. To conclude, we noted that
although language issues an' ,'ery important, the success of a large software projret depends

on many factors other than the particuLar programming language used.

Chapter 7

Summary and Further Work

I dT"r!ad success. To have succeeded IS to have fin~shed one'~

bWlnc.'!s on earth, like the male spider, who is killed by the

female the moment he has .lUcceeded in his courtship. I like

a .'ltate of contmual becoming, with a goal in front and not

behmd.

- George Bernard Shaw

This thesis gives a detailed study of FOOPS, a wide-spectrum object-oriented langnage.
We began by providing pragmatic and economic motivations for the object paradigm and

for software reuse, and discussed bow FOOPS represents an effort to extend the featmes of

object-orientation with novel sopport for the reuse and compositioll (also called intercon
nection) of modules.

We then described the internal structure of modules, inclnding sort arid class declara
tions; functions, attributes and methods; inheritance of sorts and of classes; and redefinition
and dynamic binding for class inheritance. Of particular interest here were the declarative

~tyle of specification, which involves the U6e of axioms to express the properties of functions,
attributes and methods, and the support for object creation, especially the mechanism for

determining and assigning default valnes to attributes.
Third, we examined the capabilities of FOOPS for the reuse and interconnection of

modules. An important aspect of FOOPS is its support for desigu in the same framework

as specification and coding. Module expressions represent designs, and when they consist
of executable modules only, can be symbolically evaluated to produce a prototype for the
system. The key features here are theories, which are modules that declare properties, and
views, which are bindings that express how modules satisfy theories; views permit many

maoy relationships between theories and modules. In addition, modules can be composed
both horil.Ontally and vertically, allowing designs to be structured in both directions at
the same time: horizontally to express module aggregations and specialisations, and verti

cally to describe layers of abstraction (or stacks of abstract machines). We also discussed
information hiding facilities, support for capturing refinement and evolutions relationships
between BystelIl:l, and built-in modules, which cau be used to interface code written in other

166

languages, and in a way that connects seamlessly with code written in FOOPS1. Several

examples motivated our discussions; more appear in an appendix.
Next, we supplied a fairly in-depth view of current work towards a semantics for FOOPS,

including order-sorted algebra, a logic of inheritance; hidden order-sorted algebra, which
formalisl"s basic intuitions about information hiding and the encapsulation of ohject states;

and the theory of institutions. which provides a framework that formally captures features
for putting modules together. but which is independent of the logic used for the declarations

that modules encapsulate.
In addition, we examined the prototype implementation of FOOPS that we built using

facilities given by t he implementation of OBJ3. It supports most of t.he features of FOOPS
described bere; a not.able exception is vertical paramcterisation. We discussed its overall

design, and also translation and data structure decisions. Furthermore, we suggested how
to improve certain aspects and how to implement some of those features not currently

available.
Also, we evaluated FOOPS by comparing it with several other languages. We con

centrated on support for large-grain issues such as system design and module reuse and
composition. We considered the distinctions between sorts, classes and modules, mecha

nisms for renaming module features, facilities for class inheritance and redefinition, generic

modules and their iustantiation, and information hiding capahilities. We concluded that
what distinguishes FOOPS from other languages, and what gives it most of its po~....er,

are the separation of modules from classes, including the different kinds of inheritance for
each, and its first-class support for theories and views, not only for parametfrising and

instantiating modnles, hut also for high-level design aud for recording design and histori

cal information. Additionally, it is important that modules can have horizontal as well as

vertical parameters.
Even though this thesis has focused on practical aspects, the formal semantic; for many

of the facilities of FOOPS has bc€n a valuable tool for us throughout the development of
this thesis. We used it to uncover and explain the details of several featurE'S, to propose

new features and applications, to guide our prototype implementation, and to conduct the

evaluation and comparison.
It se€mB to us that the object community may not have paid sufficient attention to

larg<.>-grain phenomena such as generic architectures (i.e., designs) for large systems, the
global properties of snch designs, the compatibility of sub-components, the integration of

these capabilities with configuration and version management, and the recording of system
development information. We suggest that adding features like those discussed in this thesis

to existiug object oriented languages, even to those that identify classes and modules, could

enhance their capabilities for design and reUse.

,~ • 0-l,Jurrenuy, onlY r..yoto Common Li5p and, to a certain extent, C C<Ul be used quite naturally. Illterra<::illg
other 12l.tlguages requires milch more effort.

7.1 Furtber Work 168

1.1 Further Work

There are various directions that seem worth pursuing from the basis provided by this

th~sis. First, we would like to exteud our prototype implementation of FOOPS with the
informatiou hiding facilities that we have proposed.

Secolld, we would like to undertake more comprehensive case studies, to gain a deeper
understanding of the language. A method or guidl>lines for designing systl'ms with FOOPS
would be i(desirable output of this process. To provide some graphical support, perhaps

some existing object-oriented design notation (such as Booch's [S]) could be extended to
take into consideration aspl'cts ~uch as tlleories, views, module l'xpressions, and vertical
and horizuntal interfaces.

Also, there are extensions to FOOPS that se('m to bl' wanting. For example, "let"

expressions for declaring local variables in axioms, and user-defined object creation methods
that override the automatiLally provided ones. Also, a notation for pattern-matching objects

and succinctly describing updates to them, such as that proposed by Ml'seguer for his

language Maude [76], could reduce the amount of text in mauy of the FOOPS modules that
we have written [IDS].

A further project is a mOre detailed comparison of programs at the object level ofFOOPS
with those at its functional level. In sectious 2.2.3 and 3.9 we discussed some characteristic
distinctions in thp form of axioms, hut therl' seem to be some interesting lessons to be

learned from doing this more thoroughly.
Finally, we would also like to study how a program could manage different implemen

tations of objects of the same class. As a start, we believe that it is reasonable to consider
that the expressions

SET(HAT]iHY-LIST-HACK}

and

SET [NAT) {HY-OTHER-LIST-HACK}

are- equivalent, even thougb they give rise to Set classes with different implementations,

because the external behaviour of their objects is indistinguisbable. It should therefore be

possible to interchange them, in the sense of identifyiug the two classes. The implementation
of this appears to be straightforward; its semantics needs to be more carefully considered,

and we suspect that behavioural satisfactiOn and the model-theory work reported in [29}

CDuld be Ielevant to this problem.

Appendix A

Formal Syntax for FOOPS

All you hat'e to do IS close your eyes and walt for the symbols.

-- Tennessee Williams

This appendix gives a syntax for FOOPS, in five sub-sections. The first describes lexical

analysis very briefly; the second presents the syntax for the functional sub-language of
FOOPS; the third describes tbe syntax of the object-oriented sub-language of FOOPS; the

fourth gives the syntax for views and module expressions; and the last subsection gives the

syntax for the top-level of FOQPS. Each subsection builds upon the previous one. Syntax
is described in the extended BNF notation given on page 12; in addition, we use --- to

indicate comments in the syntactic description (as opposed to comments in FOOPS code).
As mentioned earlier, the functional level of FOOPS is a syntactic variant of OBJ3. For

easy cross-reference, tbe table below gives tbe actual syntactic correspondence:

OBlS Syntax FOOPS Syntax
obj fmod
endobj endfrnod
theory ftheory
endtheory endftheory
eq ax
oeq ,ax
beq bax
cbeq 'bax
op fn
ops fns
ev lisp
red eval

A.I Lexical Analysis

Tokens are sequences of characters delimited by blanks. The characters "(", "r, and ","
~ always treated as single character symbols, while tabs and returns are equivalent to

169

A.2 Functional-level Afodules	 170

blanks (except inside comments). In many contexts, "[". "J", and " " are also treated as
single character symbols (e.g., in terms).

A.2 Functional-level Modules

(fMod} ::= fmod (Modlnterjace) is {(jModEllj I (Budtins)} ... endfmod

(fTheory) ::= fth (Modlnterjace) is (jModElt) ... endfth

(Modlnterjace) ::= (ModId)
[[(MadId)... (ModErp) {, (ModId) " (ModExp)} ...) J

I "{" (ModId) ... " (ModExp) {. (ModId) ,,(ModExp») .. ")"]

(JModE/I) ,,
{extending ,I including I protect.ing} (ModExp) [[private]]

using (ModExp) [{ Overrides}]
[\lith (ModExp) [(Otlem'dcs)] {and (ModExp) [(Otierrides)]} ... J

ddine (SortId) is (M{JdExp) [[private]] !
sort (SortJd) (SortJd) ... [[private]] . I
principal-sort (Sort) [[private]} . i
subsort (Sort) (Sort) ... < (Sort) (Sort). {< (Sorl) {Sort) .. .} I
fn (OpFocm) , (Sort)... -> (Sort) [[(JPropLi,t) J I . I
fno (OpForm) (OpForm)... , (Sort) ... -> (Sort) [[(JPropLi,') J] . I
fn-ae; (OpForm) : (Sort) ... -) (Sort) for (Term)

if (Term) I [(JPropLi,t.) J] . I
let (Sym) I ' (Sort)) • (Term) . I
var (VarId) (VorId) ... , (Sort) . I
ax (Term)' (Term) . I
cax (Term) :: (Term) if (Term) .
(Muc)
the definition of (Muc) appear9 in Section A.S

(JPropL,,,) ". (JProp) (JProp) ...

(jProp)	 ::= {assoc I comm I {id: I idr:} (Term) I idem! memo I
strat ((Int) (Int) ...) I prec (Nat) I gather ({e lEI &} ...) I
private I polymorphic (Lisp) I intrinsic}

(BuiUins) ::
bSen (Sort/d) (LIsp) . I
bq (Term) • (Li'p) I bax (Term) • (Li,p) . I
cbq (Term) .. (Lisp) if (Term) . I cbax (Term) = (L~sp) if (Term) .

A.3 Object-level Modules 171

(ModId) --- simple identifier, by convention all caps

(Son/d) --- simple identifier, by convention capitalised

(VarId) --- simple identifier, typically capitalised

(OpNam,) 00· (Sym) {"_" I " " I (Sym)}.

(Sym) --- any symbol (blank delimi ted)

(OpFoNn) 00= (OpNam,) I ((OpNam,»)

(Sort) ,,= (Sortld) I (Sm'l1d)·IQual)

(Qual) ,,= (ModId) I ((ModExp»)

(Lisp) --- a Kyoto COllllllon Lisp expression

--- the defini~ion of (Overndes) is given in the folloving section

--- equivalent fonns --

endf = endfmod endv = veiv

fth = ftheory endfth = endftheory

dfn = define us = using

ex = extending pr protecting:II

sort = sorts subsort = subsorts

psort = principal-sort var • vars

assoc = associative comm = commutative

id: = identity: idr: = identity-rules:

idem = idempotent prec = precedence

gather • gathering strat = strategy

poly ~ polymorphic

A.3 Object-level Modules

(oMod) ::= omod (ModInterjace) is {(oModElt) I (Bulltins)} ... endomod

(oTheory) ::= o~b (Mod/ntcrjace) is (oModEU) ... endoth

(Kind) 00= (Sort) I (Cia,,)

(oModElt) ,,= (fModElt) I
define (Class/d) is (ModExp) [[private]] . I
class (ClassId) (Cla.ss/d}... I
principal-class (Class) I
subclass (Class) (Class)... ((Class) (Class) .

{< (C/'m) (Clo,,)).

A.3 Object-level Modules	 172

me (OpFamo) (Kind) ... -> (Kind) [[(aPropL;,')]] . I

mea (OpFonn) (OpForm). : (Kmd). -> (Kmd) [[(oProp)]

at (OpFamo) (Kond) .. -> (Kond) [[(aPropL;,l)] I . I

ats (OpForm) (OpForm} ... : (Kmd) -> (Kmd) [[(oPTopL1St)]

var (VaTld) (VaT/d). (Class)

attributee and methods must mention at least one

class in their arities (except for methods vith null

aritiee, in vhich caee the coarity mNst be a class)

(oPropLts!) :;= {oProp) (oProp).

(oProp)	 .; =. {as soc I idem I strat ((Int) (In!} ...) I prec (Nat) I
gather ({Ii! I Ell} ...) I polymorphic (L1Sp) I intrinsic I
rli!def I default: ((Term)) I {private I subclass-private}}

"default:" option only applies to attributli!s

(Class/d) --- simple identifier. by convention capitalised

(Cia,,) ., = (Cla"Id) I (Cla"Id). (Qaal)

<Overrides) : ..

[[private (KindRej) (KindRef) ... •]

[subclase-private (OpRej) (OpRej) ... •]

[publi' (KindR,f) (KindR,f)· .. 1]

for functional modulee, the first tvo options are not valid

thli! definition of (OpRef) appears tovards the end of the next section

object creation --

(N,wObI) ,,= ne•. (Cla"Id)<[(N,wOb.7A'Y')])

(N,wObJA'Y') ,,- (ObjatId) {. (AlirInil)} ...

(AttrInd) .:= (OpNllme) =. (Tenn)

(NewObj) can be put anyvhere a {Term) is

expected, except on the left-hand sides of axioms

(Objectld) --- eimple identifier

--- equivalent forms --

A.4 Vjews and Module Expressions	 173

dfn '" define endo =. endomod

oth =. otheory endoth ~ endotheory

class = classes subclass z subclasses

pelass ~ principal-class subclass-private'" sc-private

A.4 Views and Module Expressions

The syntax for module expressions and views is similar for the functional and t.he object

levels. There is an important semantic restriction, however. in that views may not map
modules (or module elements] from one level to the other. But in order to avoid repetition

we glance over this rest.riction in the BNF specification given below.

--- vievs --

(View) ::'" view (ModId) from (ModExp) to (ModExp) is (ViewElt) ... endv

(VlewElt) ::'" lSort (SorlRef) to (SortRef) I class (ClassReJ) to (Cla~sRef) . \

fo (OpExp,') to (Tenn) I to (FnRen to (FnRen ' I
me (MethRen to (MethRen I at (AttrRen to (AttrRen I
(oVarDecl). _. I IJVarDecl) ...

priority given to (OpExpr) case

vars are declared vith sorts or classes from source of viev (a theory)

terms --

(Term) ,,- (Mixfix) I (VarId) I «Term» I
(OpName) «Term) (, (Term)} .. ,) I «Term),(OpQuol)

--- precedence and gathering rules used to eliminate ambiguity

(OpQual) ". (Sod) I (Cia,,) I (ModId) I (ModExp)

(Mlxfix) --- mixfix operation applied to arguments

--- module expressions --.

(ModExp) ,,- (ModId) I (ModId) is (ModExpRename) I
(ModExpRename) + (ModExp) I (ModExpRename)

(ModExpRename)	 :: '" (ModExpImt) [• ({RenameElt) {. (RenameElt)} ...) 1

(ModExplnst) :: ""	 (ParnmModExp) (HorParnms) (VerlParums) I
(ParnmModExp) {(HorParums) I (VertParnms)}

«ModExp »

174 A.S The Top Level

(HoePornm.,) 00= [(Mg) {. (Aeg)}]
(VatPornm,) 00' "{" (A'Y) {, (Mg)} ")"

(PommModExp) ,,= (Mod/d) I «ModId) • «R,n.m,Elt) (. (R,nam,Elt)) .. . »

(RenameElt) ::'" sort (SortReJ) to (Sort/d) I class (ClassRej) to (Class/d) I
tn (FnR,J) to (OpFocm) I" (AtteR,/) to (OpFocm) I
me (MethRef) to (OpForm)

(Aeg) ". (Vi,wA'Y) I (ModErp) I
(So,./Rej) I sort (SortRej) ! (ClassRej) f class (ClassRef)
(FnR,J) I tn (FnR,j) I (AtteR,J) I at (Att,R,J) I

(MdhR,J) I me (MethR,J)

may need to precede (FnRej) by "fn". for example, to distinguish

from the general case (i,e., from a module name)

(ViewArg) ::"" view [from (ModExp)] to (ModExp) is (VlewEU) ... endv

(Sm'IR,/) ,,= (Soc!) I «Sm'l))
(ClassRej) :;:: (Class)) ({ Class)
(FnR,J) ,,= (FnSp",) I «FnSp,,» I «(FnSpec».(OpQuol»

(At/eR,/) ,,= (AtteSp,,) ! «AtteSpce» I «(AtteSpcc».(OpQual»
(MethReJ) ,,= (MethSp,,) I «M,'hSp,,» I «(Meth8p,,» .(OpQu.I)J
--- in views, (op).(H) must be enclosed in parenthesis, i.e. «op).(H»

(OpR,J) ,,- (FnR,J) I (AUeR,J) I (MethRcJ)

(FnSpcc) ,,= (OpNom,) I (OpNome) ,(Son/d). -> (Sod/d)

(AttrSpec) :::: (OpName) ! (OpName) : (Kind/d) -> (Kmd/d)
(McthSpa) . ,= (OpNom,) I (OpNam,) , (Kind/d) ... -> (Kindld)

(Kindld) ,,= (Saetld) I (Gla"/d)
(OpExpr) --- a (Term) that is a single operation applied to variables

A.5 The Top Level

(FOOPS-Top) ". {(JMod) I (fThcocy) I (aMod) I (oThoocy) I
(View) I (Make) I (Evaluation) \
input (FileName) I quit I eof I

start (Term) . I start-term. (Term) I
open [(ModExp)] . I openr [(ModExp)] I close I

(Oth,eTop)}...

(Make) ::s make (Modlnterjace) is (ModExp) endm

A.5 The Top Level 175

(EvaluatIOn) ::"" eval [in (ModExp)] (Tenn) .

(App/y) ,,
apply { reduc't ion I red I print I retr

-retr vith lSort (Sort) I
(Ru/eSW) [with (Va,ld) • (Tenn) (, (Va,Id) • (Te.m)) ...])

(at I within}

(Selector) { of {Selector) }

(Ru/eSpec) ,,- [-IIModId).(Ruldd) I [-].(Ru/dd)
(Ru/dd) ,,- (Natuml) I lId)

(Selector) :: = that I top I
((Natum/) ... J I

[(Natum/) { (Natum/) I] I
"{" (Natural) {, (Na/ural)} ... "}"

note that II 0" is a valid selector

(Oth"Top) ,,- (Eva/Loop) I (Command,) I call-that (Id) [(ModId)] I
test evaluation [in (ModExp) : J (Tenn) expect: (Tenn) I (Mzsc)

(Eva/Loop) ,,- oval-loop {. I (ModId)} ((T"m) .} ...

(Commands) ::== cd (Sym) I pwd I Is I
do (DoOphon) I
select [(ModExp)]
set (SetOpllon) . I

show [(ShowOption)]
in select, can use "open" to refer to the open module

(DoOptlOn) ::= clear memo I gc I save (Sym) ... I restore {Sym} ... I?

(SetOphon) ::= {abbrev quaIs I all eqns I all rules I blips \

clear memo I gc ehow I include BOOL I obj2 I
print vi'th parens I reduce conditions I show retracts I
show var sorte I stats I trace I trace whole} (Polanty)

I ?

(Polarity) := on I off

(ShowOphon) ::

A.5 The Top Level 176

{abbrev r all I eqs I mod I nallle I OplS I params I principal-sort

rules I select I sign I sorts 1 subs I vars}
[IParomS"",) I (SubmodSpecil [(ModExp)] I

[alll modes I modules I pending \ op (OpRef) I rule (RuleSpee)

sort (SortRef) I term I that I time I verbose I (ModExp) I

(PllfTlmSpec.) I (SubmodSp(x) I ?

can Ilse "open" to refer to the open module

(ParamSp.o.c.) ::: paraIll (Natura/Number)

(SubmodSpee) ::'" sub (NaturalNumberj

(Mise) '" lisp (Lisp) I lisp-quiet (Lisp) I parse (Term) . I (Commmt)

(Comment) :: (Rest-oJ-line) I> (Rest-oJ-/me) I
...... C(Text-with-balancrd-parentheses))

(Rest-oJ-line) --- the remaining text of the current line

--- equivalent forms --

el = eval-loop in '" input q '" quit •••

Appendix B

More Examples

The more, the me1TIer.

- Author unknown

This appendix provides more details and further illustration of examples given in Chapter

3. First, we show the auxiliary modules of t.he bank accounts example, and also give a
module that defines minimum balance accounts. In addition, we include examples involving

computations with metacla.'ises. Second, we complete the generic resource manager example.
Finally, we give some example uses of the generic WHILE module.

All of these examples fun on the prototype implementation of FOOPS that we have

built.

B.1 Bank Accounts

First we preS{'ut <LlL'Ciliary modules that define money, dat.es and transaction histories. The

functional module HONEY is:

fmod HONEY is

sort Honey.

pr FLOAT .

subsort Float < Honey

endf

These two modules define the basics of dates:

fmod MQNnI is

sort Month.

ops Jan Feb Mar Apr May Jun -) Month

ops Jul Aug Sep Oct Nov Dec -) Month

op next : Month -) Month

ax next Jan = Feb ax next Feb = Mar

177

81 Bank Accounts 178

ax next Mar "" Apr ax next Apr"" Hay

ax next Hay '" Jun ax next Jun '" Jul

ax next Jul '" Aug ax next Aug "" Sep

ax next Sep '" Oct ax next Oct = Nov
ax next Nov = Dec ax next Dec = Jan

pI NAT .

op ;ldaye_ : Honth -) Nat

ax #days Jan = 31 ax #days Feb • 28

ax #days Mar = 31 ax 'days Apr = 30

a:x :tdays Hay'" 31 ax 'days Jun = 30

ax #days Jul '" 31 ax 'days Aug'" 31

ax #days Sep = 30 ax #day.e Oct '" 31

ax 'days Nov = 30 ax 'days Dec = 31

endf

fmod DATE is

.Gort Date .

pI MONTH .

op C - _- _] NzNat Honth NzNat -) Date .

op next_ : Date -) Date .

op day_ : Date -> NzNat .

op month_ : Date -> Honth

op year_ : Date -) NzNat .

var DT : Date

var D NzNat

Var H : Honth

var Y : NzNat

ax day [D-H-YJ =D.

ax month [D - H - YJ '" H

ax year [0 - H - YJ = Y

cax next Dr (1 ~ day DT) - (month DT) - (year DT)]
if day Dr < 'days (month Dr) .

en next Dr = (1 - (next month DT) - (year DT)]
if month DT -/= Dec and day DT ~~ #days (month DT)

cax next DT = [1 - (next month DT) - (1 + year DT)]
if month DT .= Dec and day DT == 31 .

endo

B.1 Bank Accounts 179

Module NOW declares a class of objects with one attribute, which gives a date. It also

declares an entry-time object to hold the current date.

omod NDW is

class Da.y

pr DATE .

at date Day -> Date

me Today : -> Day

me next Day -> Day

var D : Day .

ax date(neltt(D)) • next date(D)

ax date(Today) = [23 - Aug - 1993]

endo

The transaction history of an account is a list of 2-tuples whose first component is a

date and wlJ05e second component is an amount of money. Module 2nJPLE is 1:

fmod 2nJPLE [Cl :: TRIV. C2 :: TRIV) is

sort 2Tuple .

in «_;_» ; E1t.Cl E1t.C2 -> 2Tup1e

in 1_ 2Tuple -> Elt.Cl

fn 2* 2Tuple -> E1t. C2 .

var el Elt.Cl

var e2 Elt.C2

ax h « el ; e2 » = el

ax 2. « el ; e2 » = e2

endo

Module LIST is:

imod LIST[X :: TRIV) is

sorts List NeList .

subsort NeList < List

!D. nil -) List

fn __ : Elt List -) NeLiBt

in hd : NeList -) Elt .

fn tl : NeList -> List .

var E : Elt. var L : List

ax hd(E L) = E

ax tHE L) = L

endo

Combining all of the abo"-e modules, we get transaction histories:

lThis lQodul@ iB pact 01 the dl'fi'l.nll l'nVlronmenl. for our prototype impl@m@Qtatlon, which aJBO includes
modules for 3-, 1LIld 4-tuples.

B.1 Ba.nk Accounts 180

tmod HIST is

define Hist is LIST[2TUPLE[DATE.MONEY]]

(sort NeList to NeHist,

fn nil to emptyHist)

endf

(A define declaIation renames the principal SOrt or class of the module expression to the

sort or class given.)

Next the definition of cheque histories:

fmod CHIST is

define Chist is LIST[3TUPLE [NAT ,DATE ,MONEY))

• (sort NeList to NeChist,

fn nil to emptyChist)

endf

Lastly. we define minimum balauce savings accounts. These accounts have a minimum

halance requirement that must be respected by debits. Therefore the debit method is

redefined:

omod MBSAVACCT is

class MBSavAcet

ex SAVACCr

subclass MBSavAcet < SavAcet

at minbal_ MBSavAcet -) Money

vax MBSA MBSavAcet var M : Money.

me debit MBSavAcct Money -) MBSavAect [redefJ

eiU bal debit(MBSA,M) '" bal MBSA - M

if minbal MBSA <'" bal MBSA - M

Cal: hist debit (MBSA, M) '" « date (Today) ; - M » hist MESA

if minbal MBSA <'" bal MESA - Ii

eM hist debit(MBSA,M) '" «date(Today) insufunds(M)>> hist I1BSA

if minbal MESA > bal MESA - M

endo

B.1.1 Computing with Metaclasses

This section defines a parametcrised module that is generic O\·er a binary met.hod m. and

which defines a method iter that applies m to each existing object of the class of m.

Subsequently, this module is instantial!'d twice to define the methods i ter-eredit and

iter-debit, which change all of the currcllt objects of class Aect by applying credi t and

debit, respe(tively to each ohjrct. First. the theory for thf" binary method:

oth ME is

class C . sort Param

me m : C Param -) C .

endoth

Second, the paramctcrised module that defines the itera.tion. A metadass is defined as

an instance of a class called IdList, which is declared in the built-in module OBl-IDLIST.

This class has two associated attrihutes, hd~ and tL, which help define the iteration.

omod ITER [M :: HE] is

pr OBJ-IDLIST

me iter : IdList Param -) IdList .

var X : C var P : Param var L IdList

ax iter(L.P) =- it L =-= nil then

nil

else
m(hd(L) ,P); iter(tl(L) ,P)

fi

endo

The next two make comma.nds instantiate ITER by viewing iter as debit and as credit,

respectively.

make ITER-CREDIT is

ITER[viev to ACcr is

c lalls C to Acct

sort Param to Honey

me m to credit

endv] • (me iter to iter-credit)

.n<lm

make ITER-DEBIT is

ITER [view to ACCT is

class C to Acct

eort Param to Honey

me m to debit

endv] • (me iter to iter-debit)

.n<lm

This make just combines the two previous modul~·

make lTER-ACCT is ITER-CREDIT + ITER-DEBIT . endm

Now some example evaluations:

8.2 A Resource Manager 182

eval new.Acct(A. bal_ 100)

eval new. Acct (B. bal • 50)

eval iter-credi t (all-Acct .100)

eval bal A ---:> should be 200

eval bal B. ---> should be 150

eval iter-debit (all-Acct ,25)

eval bal A ---> should be 175

eval hal B ---> should be 125

B.2 A Resource Manager

For t.he specification of the resource manager, we begin by specifying password engines:

objects of one attribute, the value of which is to be used as a password. An engine needs
to support one method to geuerate new passwords. A requirement on this method is that

the password it generates must be diffl?rent from tbose that it had generated previously.
This may be accomplished in at least two ways. One is to remember all previolls paBswords

and ensure that new ones are not in this set. Tbe other, which is the option that we have

chosen, is to require that the set of possible passwords form a total order, so that a new
password may be generated simply hy remembering the last one and choosing as the next

password a "greater" one. The theory of strict total orders and tbe object-level theory that
expresses the uniqueness of passwords were given in Chapter 3 (see pages 56 and 61).

A model of the total order theory is tbe natural numbers. They can be llsed to define
the actual engines as a class in whicb each object stores a natural number that can only be

replaced by a larger one, regardless of the initial value stored.

omod NAT-NUKBER-PW-ENGINE is

class PiiEngine

pr NAT. (sort Nat to Passlol'ord)

at value PWEngine -:> Password [default: (0)] .

me make-pw : PWEngine -> PilEngine

vax P : PWEngine .

ax value(make-plol'(P») = value(P) + 1

endo

We may assert the validity of this implementation with a view, which in this case happens
to be empty:

viall IS-PWE from PIi'-ENGINE[NAT • (sort Nat to Passlol'ord)]

to NAT-NUHBER-PW-ENGINE is

endv

B.2 A Resource Manager 183

The class of resource managers may now be defined. It is given in a generic module
of one parameter, the kind of resource to be managed. A manager stores the current set
of free resources, the current set of locked resources, a password engine and a status code
that describes the outcome of the last request or release. The request method returns a
password to the desired resource if it is free; otherwise, void-Password is returned. The
release method frees the resource associated with the password it receives as parameter.
The auxiliary modules SET and MAP are shown further below.

omod RESOURCE-MANAGER[RSC TRIV • (sort Elt to Resource)] is
class ResourceHgr .
sort MgrStatus
fns granted released unavailable unknown -) HgrStatus .
pr SET[RSC] • (class Set to Resources)
pr NAT-NU1{BER-PW-ENGINE
pr MAP[Passvord.RSC]. --- association betveen locked resources

--- and passwords

at free-resources ResourceHgr -) Resources
at locked-reeources ResourceMgr -) Hap

at pw-engine ResourceHgr -) PWEngine

--- status of last request or release
at status ResourceHgr -) HgrStatus

var P Passvord
var R Resource
var lUI ResourceMgr

methods to toggle the status attribute
mes granted released ResourceHgr -) ResourceMgr

mes unavailable unkDollD. ResourceHgr -) ResourceMgr
ax status(granted(RH)) = granted
ax status(released(RH)) = released
ax status(unavailable(RM)) = unavailable
ax status(unknovn(RH)) = unknolJD.

--- auxiliary to place a nev passvord in the engine,

--- and then return it

me make-pv ResourceHgr -) Password

ax make-pv(RH) = make-pv(pw-engine(RM))i value(pv-engine(RH))

--- is this resource free?

me is-free ResourceHgr Resource -) Bool

ax is-free(RH,R) = member(free-resources(RH),R)

--- is this resource locked?

B.2 A Resource Manager 184

me is-locked : ResourceMgr Resource -) Bool

ax is-locked(RM,R) = i~-data(locked-resources(RM),R)

is this a resource the manager knows of?

me ls-resource ResourceHgr Resource -) Bool

ax ls-resource(RM,R) = is-free(RH,R) or is-locked(RH,R)

--- accept a new resource if it is not a repeat

me add-resource : ResourceMgr Resource -) ResourceHgr

ax add-resource(RH,R) = insert(free-resources(RH).R); RM

returns a password to the resource if it is free;

otherwise retUrns void-Password; sets the status
attribute accordingly

me request ResourceHgr Resource -) Password? .

ax request(RH.R) =

if is-free(RK,R) then

delete(free-resources(RK),R);
make-pw(RK);

ineert(locked-resources(RK),value(pv-engine(RM).R);

granted(RH); value(pw-engine(RH»)
else if is-resource(RK,R) then

unavailable(RH); void-Password

else

unknovn(RM); void-Password

fi fi

if there is a resource locked with the given passvQrd

then unlock it and insert it into the free-resource pool;

otherwise do nothing;

also, set the status attribute accordingly

me release : ResourceHgr Password -) ResourceMgr

ax release(RH,P) =

if is-key(locked-resources(RH),P) then

insert (free-resources (RH),

get-data(locked-resources(RM),P»);
delete(locked-resources(RH).P);
released(RH)

else

unknovn(RH)

fi

endo

B.2 A Resource Manager 185

By defining a module that declares various resources, such as:

fmod RESOURCES is

sort Resource

fns diskA diskB diskC -) Resource

fns printerA printerB -) Resource

.ndt

we may instantiate the resource manager module, like this:

make TEST-RESOURCE-HGR is RESOURCE-MANAGER(RESOURCES] endm

Then, the following evaluation creates a resource manager with an its internal state

initialised:

eval new.ResourceMgr(Mgr)

And these other evaluatious show the defaults that were computed:

eval empty(free-resources(Hgr» ---) should be true

eval empty(locked-resources(Mgr» ---) should be true

eval value(pw-engine(Hgr» ---) should be a

B.2.! Auxiliaries

Tbe first auxiliary module specifies sP.ts by interfacing the underlying Lisp system. We will
not explain this in any more detail; it is just an application of a facility described in {53]'

and aL<;o discussed in Chapter 3. The module after that defines sets at the object level by
using this initial description. There, each ~et is associated with a "cursor"' that may be

used for iterating over its element.s.

this routine prints sets with the usual curly-bracket notation

lisp-quiet

(defun set$print (s)

(prine "")
(dotimes (i (length IS.»

(when « a i) (princ "."»

(print$check)

(term-$print (elt IS. i»

)

(princ "")
)

fmod BUILT-IN-SET[X TRIV] is

--- built-in sorts are defined using lisp

bsart BISet «lambda (x) nil) (lambda (x) (break»

186 B. 2 A Resource Manager

set$print (lambda (x) t» .

pr NAT

f.D make-set -) BISet
fn iDsert : BISet Elt -) BISet
fn delete : BISet Elt -) BISet
--- cardinality
fn nb-elts : BISet -) Nat
--- membership test
fn member BISet Elt -) Bool
--- emptynees
fn empty : BISet -) Bool .
--- iteration help
fn ith : BISet Nat -) Elt
fn position: BISet Elt -) Nat
var S BISet. var E : Elt var NZ : NzNat
bq make-set s (progn nil) .
beq insert(S.E) = (term$make_built~in_constant (term$sort ~elf)

(adjoin E (term$built_in_value S) :test #~term$similar2) .
beq delete(S.E) ~ (term$make_built_io_constant (term$sort self)

(remove-if #~(lambda (x) (term$eimilar2 x E»
(term$built_in_value S»)

bq nb-elts (S) • (length S)

beq member(S.E) •

(obj_BOOL$coerce_to_Bool

(find-if #~(lambda (x) (term$similar2 x E»

(term$built_in_value e»)

al empty{S) • nb-elte(S) == 0 .

cbeq ith(S.NZ) • (elt (term$built_iD_value S)

(1- (te~$built_in_valueNZ»))

if NZ <3 Db-elts(S) .

cbeq position(S.E) "'"

(term$make_built_in_coDetant (term$sort self)

(1+ (position-if "(lambda (x) (term$similar2 x E)

(term$built_in_value S))

if member(S .E) .

cbeq position(S,E) o if not member(S.E)

endf

omod SET[X :: TRIVJ ie

class Set

pr BUILT-IN-SET[X]

B.2 A Resource M:a:n:ag""e~r _ 187

--- aids for iterating over

--- cursor: index of current element

at current: Set -) Nat [default; (0)]

--- place cursor on firet element

me start : Set -) Set

--- move cursor to next element

me forth Set -) Set .

--- value of current element

at value : Set -) Elt?

--- i5 cursor out of bounds?

at finished Set -) Bool

at contents: Set -) BISet [default: (make-$et)] .

me insert : Set Elt -) Set

me delete : Set Elt -) Set

--- cardinality

at nb-elts : Set -) Nat

--- membership test

at member ; Set Elt -) Bool .

--- emptyneaa

at empty : Set -) Bool

var S Set. vax E Elt

cax content5(insert(S,E» "" insert(contents(S) ,E) it not member(S.E)

cax contents(insert(S.E) '" contents(S) if member(S,E) .

ax contents(delete(S.E» '" delete(contents(S).E)

ax current (delete (S, E» =

if position(contents(SJ.E))= current(S) then

current (S)

elISe

p current (S)

fi

ax nb-elts(S) nb-elts(contents(S»

ax member(S.E) memher(contente(S) ,E)

ax empty (S) empty(contents(S» .

ax fini5hed(S) current(S)) nb-elts(S)

ax value(S) '" if fini5hed(S) then

void-Elt

elee

ith(contents(S).current(S»

fi

ax current(start(S» • 1

ax current(forth(S» - current(S) + 1 .

B.2 A Resource Manager 188

endo

Module HULTI -MAP declares a dass of objects whose state is a set of pairs, where the

first component of the pair is called its key and the second component is called its data.
Keys may he associated with more than one data. (See page 59 for the definition of pairs.)

omod MULTI-MAP(KEY TRIV. (sort Elt to Key),
DATA TRIV • (sort Elt to Data)] is

class IlUltimap
ex SET[PAIR[KEY,DATA] • (at fst_ to key, at snd_ to data,

me replace-fst to replace-key,
me replace-snd to replace-data)]

• (me insert to set-insert)
subclass Hultimap < Set .

pr SET[KEY] • (elass Set to KeySet)
pr SET(DATA] • (class Set to DataSet)

v= H Hultimap
var K Key . vax D : Data
var DS : DataSet vax KS : KeySet

number of elements vith given key
me count-key : Multimap Key -> Nat .
me count-key2 Hultimap Key -> Nat [private]
ax count-key(M,K) - eount-key2(start(H),K)
ax count-key2(H,K) s

if finished(H) then
o

else if key(value(H) :~ K then
1 + eount-key2(forth(H),K)

else
count-key2(forth(M),K)

ti ti .

nwnber of elements vith given data
me count-data Multimap Data -> Nat .
me eount-data2 Hultimap Data -> Nat [private]
ax count-data(H,D) : count-data2(start(M),D)
ax eount-data2(H,D) =

if finished(M) then
o

else if data(value(H)) == D then

B.2 A Resource Manager 189

1 -+ count-data2CforthCH) ,D)

else

co~t-data2(forth(M),D)

fi fi

is there an element with the given key?

me is-key MUltimap Key -) Bool .

ax is-key(M,K) = count-key(M,K)) 0

--- is there an element with the g~ven data?

me is-data : MUltimap Data -) Bool

ax is-data(M ,D) '" count-data(M,D)) 0

--- test for presence of a given (key,data) palr

me member Multimap Key Data -) Bool .

me member2 : Multimap Key Data -) Bool [private]

ax member(M,K,O) = member2(start(M),K,D)

ax member2CH,K,O) '"

if finished(H) then

false
else if key(valueCM)) X and data(valueCM)) D then

true
slse

member2Cforth(M),K,D)
fi fi

nothing happens for duplicate pairs

me insert Multimap Key Data -) Hultimap

ax insert(M,K,O) '"

if memberCM,X,D) then

M

else

set-insert(H,new Pair(key = K, data'" D))

fi

me keyset Multimap -) KeySet

me keyset2 MUltimap KeySet -) KeySet [private]

ax keyset(M) = keyset2(start(H) ,new KeySet())

ax keyset2(M,KS) =

if finished(H) then

KS

elas

B.2 A ,R(murce Manager 190

insert(KS,key(value(HJ))j

keyset2(forth(H),KS)

Ii

me dataset: Multimap -) DataSet

me dataset2 : Hultimap DataSet -) DataSet [private]

ax dataset(H) ,. dataset2(start(M).new DataSetO)

ax dataset2(H,DS) =

if finished(H) then

DS

else

insert(DS.data(value(H)J)j

dataset2(forth(H).DS)

fi

remove all entries with the given key

no e11 eet if 110 su<;:h key

me delete : Hultimap Key -) Hultimap

me delete2 : Hultimap Key -) Hultimap [Frivate]

~ delete(H,K) = delete2(start(H).K)

ax delete2(M,IO '"

if finished(H) then

M
else if key(value(H)) ~= K then

delete(H,value(H)); delete:2(H,K)

else
delete2(fortb(H),K)

fi fi .

endo

Finally, module HAP declares a subcla.'ls of Hultimap ill which keys are unique. This requires

the redefinition of method insert.

omod HiP [KEY :: TRIV. (sort Elt to Key),

DATA :: TRIV • (sort Elt to Data)) is

elaslI Hap

ex HULTI-HAP [KEY ,DATA]

subclass Hap < Hl.lltimap

var H : Hap . var K Key var D : Data

return data with the given key

B.3 Iterators	 191

me get-data : Map Key -> Data?

me get-data2 : Hap Key -> Data? [private]

ax get-data(M.K) '" get-data2(start(H) ,K)

ax get-data2(M,K) '"

if finil5hed(H) then

void-Data

else i£ key(value(H)) == K then

data(valueCH))

else

get-data2(forth(M) ,K)

fi fi .

--- redefinition: don't alloy tvo element5 vith the same key

me insert : Map Key Data -> Map [redef]

ax in5ert(M,K.D) =

if is-key(H,K) then

H
else

set-insert (M, nev .Pair (key K, data D))
fi

endo

B.3 Iterators

We restrict our a.ttention to linear iteration, and in particular t.o linear itHation over

traversable structures. Linear iteration is that in which the loop proceeds over the struc~

ture in one direction only. A traversabte structure is one that may be loopf'd over with

a cursor. alld t.hat suppOrtS the following operations:

•	 item, which returns the value of the itl'm where the cursor i~ at;

•	 start, which places that cursor on the first element;

•	 forth, which moves the cursor to the next element: and.

•	 finished, which tf'Sts whether the cursor is on any item. It is used as a termination

test.

The particular kind of linear iteration that we consider is the while loop. which (in
general) has the form of this Pascal-like fragmt'nt:

Jmtlallsa/lon;

while test do

B.3 Iterators 192

some- Ilctlon

endwhile;

wropup;

For traversa.ble structures (or lraversables, for short), the above fragment specialises to the

following OIle:

mitialLmtlon; .5tart i

while Dot (finished) and test do

some-action; forth

endwhile;

wrapup;

Ot.her forms of it.eration, such as tl\''Q-way traversals, and other kinds of loop :'ltructure, such

a,s repeat-until, follow a similac pattern.

To realise these kinds of iteration WI:' llSe the following setup. Theory ITER-ACTIONS (see

page 57) describes a class with the metbods init, action, test and lJrapup. It serves to

express the minimal requirements on actual arguments to the parameterised module WHILE

(see page 60), which declares a method .,bile tbat is defined in terms of these other meth

ods. Theory TRAVERSABLE describes traversable structures, and is extended by theory

TRAVERSABLE-lHTH-ACTIONS, wbich describes a class of traversable structures which a.l.so

has metbods that correspond to init, action, etc. This theory is in turn used to de

scribe t.beinr.erface to module TRAV-WHILE, which specialises method while for traversable

structures

oth rRAVERSABLE(X TRIV) is

class C .

me item_ C -> Elt?

me start_ C -> C

me forth_ C -> C

me finilShed_ C -> Bool

endoth

--- "using TRAVERSABLE (X] " would be ideal, but

--- this importation mode is not yet illlplemented in

--- FOOPS (but OBJ3 supports it)

oth TRAVERSABLE-WITH-ACTIONS(X TRIV] is

class C .

sorts In Out

me i tem_ C -> Elt?

me start C -> C

me forth_ C -> C

me finished_ C -> Bool

me init C In -> C

B.3 Iterators 193

me action C In -) C

me test C In -) Baal

me wrapup C In -) Out .

endoth

Module TRAV-WHILE is defined as a parameterised module of two arguments. The first is

for the kind of dat.a stored in the traversable structure, and the second is for the structure

itself. The body of TRAV-WHILE is an instantiation of WHILE, and a view describes the

binding from the elements ITER-ACTIONS (the interface theory of'iffiILE) to the elements

TRAVERSABLE-W"ITH-ACTIONS. This view adds-in the code to move along the traversable

structure:

make TRAV-WHILE[DATA TRIV, X :: TRAVERSABLE-WITH-ACTIONS[DATA]] is

W"HILE[vie'W to X is

class C 'to C

sort In. to In.

s art Out to Out

var E : C var I : In

me init(E,1) to init(E,I); start(E)

me action.(E,I) to action(E,I) ; fortb(E)

me test(E,I) to if n.ot finisbed(E)

then test(E,I)

else false

fi
me wrapup(E,I) to vrapup(E,I)

endv]

endm

The resulting axioms that describe methods while and while-cont in.ue are t.hen:

ax while(E,I) = starteE); init(E,I); while-continue(E,I)

ax while-contin.ue(E,I) =

if (if not finisbed(E) then te~t(E,I) else false fi) then

action(E,I); forth(E); wbile-con.tinue(E,I)

else

wrapup (E. 1)

fi

lncidentally, we could have relied on default-view conventions and omitted the.."e view ele

ments:

class C to C .

~ort In to In .

sort Out to Out .

me vrapup(E.I) to wrapup(E,I) .

B.3 Iterntors 194

Now a simple instantiation. First we present the basic parts of a library module that
implements linked lists {its full definition is available with the implementation of the sys

tem).

omod LINKED-LIST[X :: TRIV) is

class List .

pr LINKABLE[X] --- private

pr INT .

at nb-elts_ List -:> Nat [default: (0))

_.- first element at position 1

at position_ : List -> Nat [default: (0)]

--- identity method

me id List -> List

--- value of element at cursor position

at item_ : List -> Elt?

--- is list empty?

at empty_ : List -> Bool

--- is cursor off right edge?

at offright_ List -> Bool .

--- is cursor off left edge?

at off left list -> Bool .

at fJ.oJ.shed List -> Bool

--- does element i exist?

at valid-position; List Nat -> Bool

--- removes all elements

me clear : List -:> List .

--- change value of element at cursor position

me replace-value : List Elt -> List

_.- move cursor to first element; no effect if list is empty

me start List ~> List

move cursor off left edge; private

me go-offleft_ List -:> List .

--- move cursor off right edge; private

me go-offright_ : List -> List .

--- move cursor to next element

me forth_ List -) List

insert an element to the right of cursor position.

Do npt move cursor. Position does not change.

if list is empty, it is left offleft

if li~t is offleft, element is inserted at the beginning

if li6t is offright, element is inserted at the tail

me insert-right: List Elt -) Liat .

insert an element to the left of cursor position.

Do npt move cursor. Position increases by 1.

if list is empty, it is left offleft

if list is offleft, element is inserted at the beginning

if list 15 offright, element is inserted at the tail

me insert-left: List Elt -) List

endo

The following make generates a (module that includes a) method for clearing a list and

inserting into it a value a certain number of times. The value and the number of times is

given in a pair.

make INIT-LIST[X :: TRIV] is

WHILE[view to LINKED-LIST[X] +

PAIR[X,NAT] • (at fst to value, at snd to length) is

class C to List

class In to Pair

class Out to List

var L ; C var I In.

me init(L,1) to clear(L)

me action(L.I) to insert-right(L,value(I))

me test([" I) to nb-elts(L) < length(I)

me wrapup (L, 1) to id(L) .

endv]

• (me while to init-list)

endm

The initialisation is to clear the list, the action is an insert, the test checks the number of

elements in the list, and the wrapup just returns the list2. An example use of the method

would be init-li~tC1,p), where 1 is a list and p a pair with the required values for its

components. Note that this instantiation of WHILE is multilevel (i.e., of the form F[G[H] +

P[H,RJ])

Now an example that involves copying lists with the following methods:

~The cu.rrent implement;,.tlOll docs not aJlow the target of 'll'Tll.PUP to simply be L, as would be desired.

B.3 Iterators 196

• copy 11 to l:;j, which clears [2 and thpn copies the contents of I, onto it, and

• make-copy(l), which creatE''s a new list whose elements are the same as thosp of I.

Module COPY-LIST below instantiates TRAV-WHILE by providing a view from

TRAVERSABLE-WITH-ACTIONS to module LIST. The fact that there is a default view from

TRAVERSABLE (a subtheory of TRAVERSABLE-WITH-ACTIONS) to LIST helps here, as we are

able to omit from the view elements such as

me start (L) to start (L)

The module i~:

omod COPY-LIST[X :: TRIV] is

pI TRAV-WHILE(X,

view to LINKED-LIST[X] is

class C to List

class In to List .

class Out to List

var L C var I In

me init(L,I) to start(clear(I)); L

me actionCL,I) to insert-right(I,item(L));

forth(I); L

me test(L,I) to true

me vrapup(L,I) to id(L)

endv]

* (me while to copy_to_. me while-continue to continue-copy_to_)

m~ make-copy : List -> List

vax L Lhit

ax make-copy(L) = copy L to new.List()

endo

In particular, observp that we use the extra parameters t.o init, action, etc. to carry

around the target list. Also, note how make-copy uses copy_to_ and object creation to

generate a fresh copy of its argument.

Finally, the example below is derived from one that appears in [78], pages 174-177. It
consists of adding the speed of the first n particles in a list. The top-level method is:

add-speeds(l,n).

This example follows a pattern similar to the previous Ollp, and again lhe extra input

argument to init, action, etc. serves to carry around temporary data. For this, module
TRIPLE is used:

First we need definitions for speed and particles.

B.3 Iterators	 197

make SPEED is FLOAT * (sort Float to Speed) .ndm

omod PARTICLE is
class Part icle
pr	 FLOAT + SPEED
at	 mass : Particle -) Float
at	 speed : Part icle -) Speed
at	 positively_charged Particle -) 8001 .

etc

endo

Below we usc 3-tuples for storing the number of clements examined so far (counted),
the nnmber of particles to be examined (threshold), and the accumulated result (sum).

omod TRIPLE[X :: TRIV, Y :: TRIV, Z TRIV] is
class Triple
ex	 PAIR [X , Yl
subclass Triple (Pair
at	 trd_ : Triple -) Elt.Z
vars T T2 : Triple var V : Elt.Z .
at	 equal : Triple Triple -) 8001 [redef]
ax	 equalCT,T2) = fst T == fst T2 and

snd T == snd T2 and
trd T == trd T2

me	 replace-trd : Triple Elt.Z -) Triple
~	 trd replace-trd(T,V) = V

ell.do

omod PARTICLE-SPEEDS is

pr TRAV-WHILE [PARTICLE ,

view to LINKED-LIST[PARTICLE]

+ TRIPLE[IKT,INT,SPEED]

*	 (at fst_ to counted,
me replace-fst to set-counted,
at snd_ to threshold,
me replace-snd to set-threshold,
at trd_ to sum,
me replace-trd to set-sum) is

class C to List
class In to Triple
sort Elt to Particle
sort Elt? to Particle?
sort Out to Speed

B.3 Iterators 198

varL:C. var T In

me init(L,T) to set-sum(T,O); set-counted(T,O); L .
me action(L,T) to set-sum(T,sum(T) T speed(item(L)));

set-counted(T,counted(T) + 1); L

me test(L,T) to threshold(T) > counted(T) .
me vrapup(L,T) to sum(T)

endv]

me add-speeds List Nat -> Speed

var L : List var N : Nat .
ax add-speeds(L,N) = vhile(L,nev.Triple(threshold = K)

endo

It seems interesting that this way of structur-ing iter-aCors differs from Meyer's in that.
we avoid the \lse of constrained genericity_ Section 6.5 discussed the advantages of modules

being generic D,·er theories and instantiated with views.
Finally, we note that it would also be possible to have module WHILE declare a new dass

called While as client. of the data structure to be iterated over, and have the iteration meth

OrlR be associated with this new class. (Incidentally, While would be a natural candidate
for an abstract class.) The flexibility that. this allows is that particular iterations could be

detined by subclassing While and overriding its iteration methods; moreover, its subclasses
could declare attributes for tempor-ary stomge. This alternative approach exemplifies an

other achantage of the distinction between classes and modules, because these subclasses
would arise mostly as auxiliaries to other classes (our experiments confirm this).

Bibliography

What ~ so wounde.rful about great literatuTe t.'l (hat it trans

Jonna i.he man who reads d towards the. condition of the
man who wrote, and bnng5 to birth in lJ.'j a/.oio the creative
impulse.

-	 E.M. Forster

Note: references [5J, [72J and [911 are not cit.ed in the text.

[1]	 Antonio Alencar. OOZE: An Object Oriented Z Environment. PhD thesis, Oxford
Universit:y, 1994 (to appear).

[2]	 John Barnes. Introducing Ada 9X. Technical report, Interrnetrics, Inc., February

1993. Ada 9X Project Report.

[3]	 Don Batory, Vivek Singhal, and Jeff Thomas. Scalable Software Libraries. In Pro

ceedmgs oj the ACM SymposllIm on the FoundatlOn of Software Engineeriflg, 1993 (to

appear).

[4)	 Don S. Batory and Sean O'r..falley. The Design and Implementation of Hierarchi

cal Software Systems with Reusable Components. ACM Tran5act!OnS on Software

Engmeenng and Methodology, 1(4):355-398, October 1992.

[5}	 Edward Berard. Abstraction, Encapsulation, and Information Hiding. USENET

newsgroup comp.object. November 1991

[6]	 Glenn Bergland. A Guided Tour of Programming Methodologies. Computer,

14(10):13-37, October 1981

[7]	 Barr)! W. Boehm. SoJtwa7"'E ETlglneenng Economics. Prentice-Hall, 1981.

[8]	 Grady Booch. Object Oriented DesigTl, with ApplicatwTls. Benjamin/Cummings, 1991.

[9)	 Paulo Borba. A Proof System for FOOPS, 1993. Programming Research Group,
University of Oxford.

1~9

Bibliography	 200

[10]	 Frederick P. Brooks. The Mythlrol Man-Month: Essays on Software Engmeering.

Adclison-Wesley, 1975.

[11]	 Frederick P. Brooks. No Silver Bullet: Essence and Accidents of Software Engineering.
Computer, 20(4):10-19, April 1987,

[12]	 Timothy Budd, An Introduetwn to Object-Oriented Programming. Addison-Wesley,

1991.

113]	 Rod Burstall and Razvan Diaconescu. Hiding and Behaviour: an Institutional Ap

prol\Ch. Technical Report ECS-LFCS-8892-253, Lahoratory Eor Foundations of Com

puter Science, University of Edinburgh, 1992.

[14]	 Rod Burstall and Joseph Goguen, The Semantics of Clear, a Specification Language.
In Dines Bj0rner, editor, Proceedmgj of the 1979 Copenhagen Winter School tin Ah

.9tmct Software SpeCljication, pages 292-332. Springer-Verlag, 1980. Leetnre Notes in

Computer Science, Volume 86.

[15]	 Frank W. CalliBs. A Comparison of Module Constructs in Programming Languages.
ACM SIGPLAN Nol.1ce8, 26(1):38-46, January 1991.

[16]	 Lues Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and
Greg NeL"On, Modula-3 Language Definition. ACM SIGPLAN Nohces, 27(8):15-42,

August 1992.

[17]	 Luca Cardelli and Peter Wegnpr, On Understanding Types, Data Abstraction, and

Polymorphism. ACM Computing SurtJeys, 17(4):471-522, December 1985.

[18]	 Craig Chambers. Predicate Classes. In Proceedings of the European Conference on
Object-Onented Programming, Kaisersla'utern, Germany, 1993. To appear.

(19J	 J. C. Cleaveland. Building an Application Generator. IEEE Software, 5(4):25-33,

July 1988.

[20]	 Peter Coad and Edward Yourdon, ObJect-Onented AnalY8ts. Yourdon Press, 1991.

[21J	 Christian S, Coli berg. Flexible Enropsu/ahon. PhD thesis, Lund Ulliversity, SWl:'den,

1992.

[22J	 RC.H. COllnor, A. Dearle, R. Morrison, and A.L. Brown. An Ohject Addrl'S5ing

Mechanism for Statically Typed Languages with Mnltiple Inhl:'ritance. In Proceedings
of the Object-Oriented Progrnmming Systems, Languages and Appl!rntlons Confer
ence, Orlando, Florida, pages 279-285, 1989.

[23]	 William R. Cook. A Proposal for making Eilfel Type-safe. Computer Journal,
32(4),305-311, 1989.

[241	 Fernando J. Corbato. On Building Systl:'ms That Will Fail. Communirnt'ions of the
ACM, 34(9):72-81, September 1991. 'lUring Award Lecture.

201 Bibliography

[251	 Brad J. Cox and Andrew J. Novobilski. Object-Oriented Progmmming: An Evolu
tionary Approach. Addison-V-lesley, 1991.

[26]	 Clive Da.vidson. Tbe man who made computers personal. New Scientist, pages 32-35,

19 June 1993.

\27]	 Peter J. Denning. Beyond Formalism. Arne-ncan Scientist, 79(1):8-10, January
February 1991.

[28]	 L. Peter Deutsch. Posted comments. USENET newsgroup comp.object, May 1992.

[29]	 Ril.zvan Diacone:;cu, Joseph Goguen, and Petros Stefaneas. Logical Suppmt for Mod
ularisa.tion_ In Gordon Plotkin and Gerard Huet, editors. Proceedings of the Workshop

on Types and Loglwl Frameworks, Edmburgh, Scotland. Cambridge University Press,
1992.

[30J	 Liesbeth Dusink. fntroduction to Re-use. In Liesbeth Dusiuk and Patrick Hall,
editors, Proceedmgs of the Software Re-ll.se- Workshop, Utrecht, The Netherlands 1989,

Workshops in Computing, pages 1-6. Springer-Verlag, 1991.

[31]	 Guy Fitzgerald. Implications of Strategic Information Technology for Requimments
Engineering. Lecture given at Oxford University, England, 14 May 1992.

[32J	 Richard Gabriel, Jon L. White, and Daniel G. Bobrow. CLOS: Integrating Object
Oriented and Functional Programming. Communications of the ACM, 34(9):29-38,

September 1991.

[33]	 Joseph Goguen. Mathematical Representation of Hierarchically Organized Systems.
In E. Attinger, editor, Global Systems Dynamics, pages 112-128. S. Karger, 1971.

[34J	 Joseph Goguen. Order Sorted Algebra. Technical Report 14, UCLA ComplJter Science
Department, 1978. Semantics and Theory of Computation Series.

[35J	 .Joseph Goguen. Reusing and Interconnecting Software Components. Computer,

19(2):16--28, February 1986.

[36)	 Joseph Goguen. Principles of Parameterized Programming. In Ted Biggerstaff and
Alan Pedis, editon, Software Rell.sabtldy, Volume I: Concepts and Models, pages 159

225. Addison-Wesley, 1989.

[37J	 Joseph Goguen. Higher-Order Functions Considered Unnecessary for Higher-Order
Programming. In David Thrner, editor, Rfsearch Topics m Functional Progmmmmg,

pages 309--351, Addison-Wesley, 1990.

[381	 Joseph Goguen. Hyperprogramming: A Formal Approach to Software Environments.
In Proceedin9s of the Symposlll.m on Formal Approoches to Software Erwironment
Technology. Joint System Development Corporation. Tokyo, Japan, 1990.

j9jbliography	 202

[39)	 Joseph Goguen. Types as Theories. In George Michael Reed, Andrew William Roscoe,
and Ralph F. Wachter, editors, Topology and Category Theory In Computer Seience,

pages 357-390. Oxford University Press, 1991.

['to]	 Joseph Goguen. Theorem Proving and Algebra. M.LT. Press, to appear.

[41]	 Joseph Goguen and Rod Burstall. Institutions: Abstract Model Theory for Specifi

cation and Programming. Journal of the ACM, 39(1):95-146, January 1992.

[42J	 Joseph Goguen and Razvan DiacOlle5CU. A Survey of Order Sorted Algebra. To appear
in Bulletin of the European ASJociahon for Theorchcal Computer SC1cnce, 1993.

[43J	 Joseph Goguen and Razvan Diaconescu. Towards an Algebraic Semantics for the
Object Paradigm. In Proceedings, Tenth Workshop on Ablltmd Data Types. Springer,

to appear 1993.

[44]	 Joseph Goguen, Jean-Pierre Jouannaud, and Jose Meseguer. Operational Semantics

of Order-Sorted Algebra. In W. Brauer, editor, ProceedIngs, 1985 InternatIonal Con

ference on Automata, Languages and Progmmming. Springer-Verlag. 1985. Lecture
Notes in Computer Science, Volume 194.

[45]	 Joseph Goguen and Tom l(emp. A Hidden Herbrand Theorem, 1993. Submitted to

special issue of Theoretical Computer Seience, edited by Andrew William Roscoe and
Michael W. Mislove.

146]	 Joseph Goguen, Claude Kirchner, and Jose Meseguer. Concurrent Term Rewriting as
a Model of Computation. In Joseph H. Fasel and Robert M. Keller, editors, Gmph

Reduction, Lecture Notes m Computer SC1ence, No. 279, pages 53-93. Springer-Verlag,

1986.

[47]	 Joseph Goguen and Jose Meseguer. Universal Realization, Persistent Interconnection

and Implementation of Abstract Modules. In M. Nielsen and E.M. Schmidt, editors,
Proceedings, 9th Intemattonal Conference on Automata, Languages and Program

min9, pages 265-281. Springer, 1982. Lecture Notes in Computer Science, Volume

140.

[48]	 Joseph Goguen and Jose Meseguer. Unifying Functional, Object-Oriented and Re
lational Programming with Logical Semantics. In Rellwreh Du"'€chons in Ob]ed

Oriented Progmmming, pages 417--477. M.LT. Press, 1987.

[49J	 Joseph Goguen and Jose Meseguer. Order-Sorted Algebra 1: Equational Deduction

for Multiple Inheritance, Overloading, Exceptions and Partial Operations. Thooretical

Computer Snence, 105(2):217-273, 1992.

[50J	 JOS€ph Goguen and Adolfo Socorro. Module Composition and System Design for the
Object Paradigm. Joumal of Objec.t-Onenled Programmiflg, August 1994 (to appear).

BibJjography	 203

[51J	 Joseph Goguen, James Thatcher, and Eric Wagner. An Initial Algebra Approach to
the Specification, Correctness and Implementation of Abstract Data Types. Technical
Report RC 6487, IBM T.J. Watson Research Center, October 1976. In Current Trends

In Pr'ogromming Methodology, IV, Raymond Yeh, editor, Prentice-Hall, 1978, pages

80-149

[52J	 Joseph Goguen and Timothy Winkler. Introducing OBJ3. Technical report, Computer

Science Laboratory, SRI International, August 1988. SRI·CSL-88--9.

(53J	 Joseph Goguen, Timothy Winkler, Jose Meseguer, Kokichi Futatsugi, and Jean-Pierre
Jouannand. Iut.roducing DBJ, Technical report, SRI International, 1993. To appear.

[54]	 Joseph Goguen and David Wolfram. On Types and FOOPS. In Robert Meersman,

William Kent, and Samit Khosla, editors, Proceedmgs of the IFfP TC2 Working
Conference on Database Semanhcs: Object.-Onented Databases: Analysis, Design and

ConstryJction. Wmdermere, Umted Klrlgdom, July 1990.

[55]	 Joseph A. Goguen. :-.1odular Algebraic Specification of Some Basic Geom~trica1 Con

structions. Artificial Intell1gence, 37:123-153, 1988.

[56]	 Adele Gold berg and David Robson. Smalltalk~80: The Language. Addi'On-Wesley,

1989.

[57]	 Peter Grogona, Issues ill the Design of an Object-Oriented Programming Language,

Structured Programming, 12:1-15, 1991.

{58]	 Urs Holzle, Craig Chambers, and David Ungar, Optimizing Dynamically-Typed
Objeet·Oriented Languages with Polymorphic Inline Caches. Proceedmgs of the Eu

r'opeatl Conference on Object-Oriented Programming, Geneva, SWllzerland. July 1991.

Lecture Notes in Compnter Science 512.

159]	 Jean D. Ichbiah. Rationale for the De<>ign of the Ada Programming Language. ACM
SIGPLAN Notiees, 14(6), Juue 1979.

[60]	 Michael A. Jackson. Syst.em Development. Prentice-Hall International, Hl83.

[61]	 Ian Joyner. A Criticism of C++. Journal of Object-Oriented Programmmg, 1993. To

appear.

[62]	 Ralf Jnngclau5, Gunter Saake, Thon;ten Hartmann, and Cristina Sernadas. Object
Oriented Specification of Information Syst.ems: The TROLL Language. Technical

report, Technische Universitiit Braunschweig, December 1991. Report 91-04,

[63]	 Alan C, Kay. The Early History of SmalltalJ<. In Histor'y of Programmmg Languages

Conferener. (HOPL-II), 1993. ACM SIGPLAN Notices, 28(3):69-95, Martb.

[64]	 Setrag Khoshafian and RazU1ik Abnous. Object Onenlahon: Concepts, Languages,
Daf,abases, User' Interfaces. John Wiley and Sons, 1990.

Bibliography	 204

[65]	 Michael Kilian. 'Trellis: Turning Designs Into Programs. Commumcations of the

ACM, 33(9):65-67, September 1990.

166J	 Claude Kirchner, Helene Kirchner, and Jose Meseguer. Operational Semantics of

OBJ3. Technical report, CIUN, France, August 1988. Rapport CRIN 87-R-87.

[67]	 Jan Willem Klop. Term Rewriting Systems; From Church-Rosser To Kouth·Bendix
and Beyond. Technical report, Centre for Mathematics and Computer Science, Ams

terdam, The Netherlands, 1990. Report CS-R90l3.

[68]	 Charles W. Krueger. Software Reuse. ACM Comput'ing Survey.s, 24(2);131-183, June

1992.

[69]	 Henry Lieberman. Using Prototypical Objects to Implement Shared Behaviour in
Object-Oriented Systems. In Proceedings of the Object-Oriented Prvqramming Sy.s

/.erTli, Languaqe.<1 and Applications Conference, Port.land, Oreqon, pages 11-22, 1986.

[70]	 Barbara Liskov. A Histor}' of CLU. In Hi.story of Programmin.Q Language.s Conference

(HOPL-II),1993. ACM SICPLAN Nottce.s, 28(3):133-147, March.

[71]	 Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert
ScheiBer, and Alan Snyder. CLU Reference Manual. Lecture Notes in Computer

Science, Volume 114. Springer-Verlag. 1981.

172J	 Barbara H. Liskov. A Design Methodology for Reliable Software Systems. In Proceed

ing.s of the Fall Joint Computer Conference 41, Part 1, 1972. Also in Peter Freeman

and Anthony Wasserman, editors, TUtorial on Software Design Techniques, pages

53-61, IEEE Computer Society, 1977.

[73J	 David C. Luckham, Friedrich W. von Henke, Bernd Krieg-Bruckner, and Olaf Owe.
ANNA: A Language for Annotatmg Ada Programs. Springer-Verlag, 1987. Lecture

Notes in Computer Science, Volume 260.

[74]	 B. J. MacLennan. Values and Objects in Programming Languages. A CM SICPLAN

Nollce.s, 17(12):70--79, December 1982

/75J	 David Maier, Jacob Stein, Allen Otis, and Alan Purdy. Development of an Object
Oriented DBMS. In Proceedlt1.Qs of the Object-Oriented Programmmg Systems, Lan

guages and Appltcahon.s Conference, Portland, Oregon, 1986,

[76]	 Jose Meseguer. A Logical Tbeory of Concurrent Objects. In Proceedings of the Joint

OOPSLA/ECOOP Confen:nce, Ottawa, Canada, pages 101-115, 1990.

[77]	 Bertrand Meyer. Objec/.-oriented Software Construction. Prentice-Hall, 1988.

[78J	 Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992.

[79]	 Bertrand Meyer and Jean-Marc Nerson. Eiffel: The Libraries. 'Ttthnical report,
Interactive Software Engineering, October 1990. Report TR~EI-7ILl.

Bibliography	 205

[80]	 David A. Moon. Object-Oriented Programming with Flavors. In Proceedmgs of

the ObJect- Onented Programmmg Systems, Languages and Applications Conference,
Portland, Oregon, pages 1--8, 1986.

(81J	 Hanspeter MOssenh6ek. Object-Oriented Programming in Oberon-2. Technical report.,
Institut fUr Computersysteme, ETH Ziirich, 1992.

[82J	 Hanspeter Mossenoock and Niklaus Wirth. The Programming Language Oberon-2.

Technical report, Institut fiir Complltersysteme, ETH ZUrich, March 1992.

[83J	 Greg Nelson, editor. Systems Progrummmg In Modula-3. Prentice-Hall, 1991.

184]	 Peter G. Neumann. The Role of Software Engineering. Commumcations of the ACM,

:~6(5):114, May 1993.

[85J	 Oscar \>1. Nierstrasz. A Smvey of Object-Oriented Concepts. In WOD. Kim and

Frederick Lochovski, editors, Object· Oriented Concepts and Applicat!o1U. Addison

Wesley, 1988.

[86\	 Libera Nigro. On the Type Extensions of Oberon-2. ACM SIGPLAN Nohces,
28(2):41--44, February 1993.

[87J	 Kristen Nygaard and Ole-JDhan Dahl. The Development Df the Simula Languages.
In Htsl.ory of Programming Languages Confen~.nce (HOPL-I), 1978. ACM SIGPLAN

Notices, 13(8):245-272, August.

[88J	 Critical Research Direct.iDns in Programming Languages. Report on a workshDp spon~

sored by the U.S. Office of Nayal Research in Miami Beach, Florida. ACM SIGPLAN

Noilces, 24(11):10--25, November 1989.

[89J	 David L. Parnas. Information Distribution Aspects Df Software :Methodology. Tech
nical repDrt, Carnegie-Mellon University, February 1971.

[90]	 David L. Parnas. On the Criteria To Be Used in DecompDsing Systems into MDdules.
Communications of the ACM, 15(12):220-225, December 1972.

[91J	 D3vid 1. Parnas, A Technique fDr Software Module Specification with Examples.

Communications of the ACM, 15(5):330-336, May 1972.

[92J	 Lawrence C. Paulson. ML for I.he Workmg Progmmmer. Cambridge University Press,
1991.

[93J	 Benjamin Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.

[94J	 Ruben Prieto-Diaz and Peter Freeman. Classifying Software fDr Reusability. IEEE
Software, 4(1):6-16, January 1987.

1951	 Lucia Rapanotti and AdolfD Socorro. Introducing FOOPS. Technical report, Oxford

University Computing LaboratDry, November 1992. PRG-TR-28-92.

Bib~iogTapby	 206

[96]	 Horst Reichel. Behavioural Equivalence - A Unifying Concept for Initial and Fi

nal Specifications. In Proeeedings, Third Hungan"an Computer Seience Conference.

Akademiai Kiado, 1981. Budapest.

[97)	 Horst ReicheL Behavioural Validity of Conditional Equations in Abstract Data Types.

In Cantnbutions to Geneml Algebra J. Teubner, 1985. Proceedings of the Vienna
Conference, June 21-24, 1984.

[98]	 J. P. Rosen. What Orientation Should Ada Objects Take? Communications of the

ACM, 35(11):71-76, ;-';overnber 1992.

[99]	 Markku Sakkinen. The Darker Side of C++ ReviSited. Structured Programming,

13:155-177, 1992.

[100]	 Arthur Sale, Modula-2: D:sclplme and Deslgn. Addison-Wesley, 1986.

1101]	 Donald Sannella and Andrzej Tarlecki. Extended ML: Past, Present and Future. In
H. Ehrig, K. P. Jantke, F. Orejas, and H. Reichel, editors, Proceedings of the 7th In

ternational Workshop on SperijicatJon of Absl.ruet Data Types, Wuslerhausen/D<J:5se,

Germany, pages 297-322, 1990. Lecture Notes in Computer Science, Volume 534.

[102]	 Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpot. An

Introduction to Trellis/Owl. ln Proceedmgs of the Objeet-Ol"iented Progmmming Sys

tems, Languages and Appbcatwns Conference, Portland, Oregon, pages 9-16, 1986.

[103] Mary Shaw.	 Abstraction Techniques in Modern Programming Languages. IEEE

Softwar'e, 1(4):10-26, October 1984.

[104]	 Vivek Singhal and Don Batory. P++: A Language for Large-Scale Reu::lab1e Software

Components. Technical report. University of Texas at Austin. 1993 (to appear).

[105J	 Alan Snyder. CommonObjects: An Overview. ACM SIGPLAN Notiees, 21(10):19-28,

1986.

[106J	 Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Lan

guages. In Proceedmgs of the Object-Oriented Programming Systems, Languages and

ApplJcatwns Conference. Porlland, Oregon. pages 38-45, 1986.

1107]	 Alan Snyder. Inheritancl' and the Development of Encapsulated Software Compo
nents. In Research Dlrerltons in Ob]ect-Onented Progmmmmg, pages 165-188. M.lT,
Press, 1987.

[108J	 Adolfo Socorro. Pattern Matching for Objects in FOOPS. Programming Researeh
Group, Oxford University Computing Laboratory, May 199L

[109]	 Thomas A. Standish. An Essay on Software Reuse. IEEE 1hmsaetions on Software

Engineering, 10(5):494-497, September 1984,

[110]	 Mark Stefik and Daniel G. Bobrow. Object-Oriented Programming: Themes and
Varia.tions. The Al Magazine, 6(4}:4Q-62, 1986.

[111]	 Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, second edi

tion, 1991.

[H2]	 Bjarne Stroustrup. A History of C++: 19i9-199l. In Htstory of Progmmming Lan
guages Conference (HOPL-II), 1993. ACM SIGPLAN Not1ces, 28(3):271-298, March.

[113J	 Clemens A. Szyperski. Import is Not Inheritance: Why We Need both Modules and

Classes. Proceedings of the European Conference on ObJect-Oriented Programming,

pagps 19-32, 1992.

[114]	 William Joseph Tracz. Formal SpecIfication of ParnmetenzM Prvgmms in

LILEANNA. PhD thesis, Stanford University, 1993 (to appear).

[115]	 David Ungar and Randall B. Smith. Self: The Power of Simplicity. In Proaedmgs 0/
the Object-Oriented Progrummmg Systems, Languages and Applications Crmference.,

Orlando, Florida, pages 227-242, 1987.

[116]	 Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designi'ilJ Object
Oriented Software. Pre.ntice-Hall, 1990.

[117}	 Nicklaus Wirth. From Modula to Oberon. Software-Pmchce and Experience,

18(7),661-67D, July 1988.

[118J	 Niklaus Wirth. Modula: A Language for Modular Multi~programming. Software

Practice and Experience, 7(1):3-35, 1977.

[119J	 Stanley Zdonik. Can Objects Change Types? Can Type Objects Change? In Pro

ceedings 0/ the Workshop on Database Progrnmmmg Language.s. RoscojJ, Fimstere,
France, 1987.

