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Abstract

This thesis is a detailed study of FOOPS, a “wide spectrum” ohject-oriented program-
ming language. FOOPS supports all of the classical features of the object paradigm, includ-
ing classes, overloading. polymorpbism, and multiple class inheritance with overriding and
dynamic binding. However, it goes beyond other object-oriented languages in its facilities
for the specification, composition and reuse of modules, FOOPS is patterned after OBJ, a
functional programming language. and from which it derives several of these facilities.

The type system of FOOPS distinguishes between sorts, which are collections of val-
ues (immutable entities), and classes, which are collections of objects (mutable entities).
Moreover, both of these are different from modules, which may declare together eeveral re-
lated sorts and classes. Inheritance exists for all of these. Sort and class inheritance concern
the hierarchical classification of values and objects; modnle inheritance supports code reuse
by importation.

Theories are sperial kinds of modules that serve to classify other theories and modules
by the syntactic and semantic properties that they satisfy; they are mostly used to constrain
the actual arguments to parameterised modules. So-called views are bindings that express
how a theory is satisfied by anotber theory or module, allowing many-many relationships
between them.

FOOPS is declarative in that it uses axioms to define the properties of functions,
attributes and methads. Also, there is a formal semantics given by a deduction system,
which can be used to prove properties of FOQPS programs.

FOOPS supports design in the same framework as specification and coding. Designs
are given as module expressions, and when they consist of executable modules, can
be composed to produce rapid prototypes. Module expressions can describe both vertical
structure, which relates to implementatior layers, and horizontal structure, which con-
cerns module aggregation and specialisation. Furthermore, built-in modules can be used
to interface other languages, and can also appear in module expressions. Finally, views can
be employed to capture relationships of refinement and evolution of system designs.

This thesis considers the design of FOOPS, explaining all its features and examining
their application to the design and development of object-oriented systems. Also, it de-
scribes a prototype implementation of FOOPS that was bnilt using facilities given by the
implementation of OBJ3, and which supports most features. Moreover, this thesis performs
an in-depth evaluation of FOOPS that focnses on large-grain issues such as the distinction
between classes and modules, module instantiation with views, vertical and horizontal struc-
turing, and integrated support for specification and prototyping; comparisons with many
other languages are given. Additionally, tbis thesis presents a detailed sumtmary of current
work towards a mathematical semantics for FOOPS, inclnding order-sorted algebra, hidden
order-sorted algebra, and the theory of institutions. Examples motivate our discussions
throughout, and an appendix expands some of those that appear in the body of the thesis.
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Chapter 1

Introduction

Complexity [...] seems to be an essenhal property af all
large software sysiems. By essential we meon that we
may master this complessty, but we can never make il go
away.

— Grady Booch

The object paradigm advocates the design and development of systems as structured col-
lections of objects that communicate with each other, have local storage, and persist and
evolve with time. The paradigm represents an evolution and maturation of ideas in pro-
gramming languages, data abstraction, modularity, communication and hierarchical system
organisation. Because system structure is based on the entities heing modelled, it is claimed
that the use of object-oriented technigues leads to systems that are easier to mantain and,
furthermore, that the resulting software is more reusable. The first claim has to do with
the observation that what chapges most in a system are its functions, not the entities it
manipulates; the reusability claim is rooted in the belief that object descriptiops often tran-
scend particular applications. These two promises have aroused much excitement in the
computer industry, which has had difficulty coping with software systems of increasing size
and complexity. In addition, the continuously diminishing cost of hardware, together with
spectacular advances in machine capacity and perfoermance, has placed software issues on
centre stage.

Objects are also natural units of concurrency and distribution. hecause their local storage
and communication aspects directly reflect the dispersal of entities in a system and of
memory iu computers, Moreover, objects are a unifying concept in Computing Science; they
arise in programming languages, datahases, knowledge-representation systems, graphical
user interfaces, machine architectures and in many other places. Finally, the hasic intuition
of software artifacts that correspond to the entities of the application domain appeals to
both software engineers and individuals from other disciplines, and this should improve
their ability to communicate.

The purpose of this thesis is to discuss the design, prototype implementation and prag-
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matics of FOOPS, a wide-spectrum object-oriented language!. FOOPS provides abstract
data types, objects, classes, overloading, poltymorphism, inheritance with overriding, and
many additional facilities that go beyond what other current-generation object-oriented
languages offer, including parameterised modules with semantic interface requircments, a
module interconnection language that can he used to compose modules both vertically and
horizontally, and “mixfix” svntax for functions, ateributes and methods (Section 1.4 ex-
plains all these features). FOOPS is patterned after OBJ [53], a functional specification
language, from which it derives several of these facilities; in fact, FOOPS retains OBJ as a
sublanguage.

FOOPS was first described by Goguen and Meseguer in {48]. On the one hand, it was
recognised that functional programining offered declarativeuess and simplicity of language
design, hut that its lack of a notion of state made very unnarural the specification and
implementation of networks and database systems, for example. On the other hand, object-
oriented programming provided state but lacked declarativeness and formal foundations.
Thus FOOPS used abstract data types as its fouudation, with a formal scmantics based on
algebra and category theory. Mnch influence came from earlier work by the same authors on
order-sorted algebra [49]. a logic of inheritance. and on abstract machines [47]: a more recent
development by Goguen is hidden-sorted algebra, which formally captures basic intnitions
abgut encapsulation and information hiding [39, 43). Furthermore, FOOPS can be seen as
bringing state-of-the-arc maodule technology to object orientation.

In the sections that follow we discuss the object-oriented paradigm in more detail, and
also trace its early influences. We then discuss the reuse of software, followed hy an overview
of the characteristic aspects of FOOPS. To conclude, we examine the contributions of this
thesis and provide an onthne of the chapters to come.

1.1 Object-oriented Systems

Each object in an object-oriented system has a unique identifier and belongs to a class,
where each class is associated with a set of attrihutes and a set of methods. Attributes
access parts of the local storage of the objects of the class, while methods are the operations
that can change the state of objects. A form of information hiding is built into this paradigm,
in that an ohject can only be npdated through the methods associated with its class. This
style of interaction between objects is called message passing, but it is usually no more
than procedure invocation. There is also class inheritance, which refers to the hierarchical
organisation of classes to reflect that objects can simultanesusly belong to several classes
{e.g.. at the same time, a person may he a teunis plaver, a teacher and a mother). When a
class B inherits from a class A, we say that B is a subclass of A and that A is a superclass of
B; moreover, inheritance is a trapsitive relationship, so that if C is a subclass of B, then it is
also a suhclass of A. Multiple inheritance allows a class to have more than one immediate
superclass. A class whose attributes and methods refer to objects of other classes is said

"The acronym stands for Functional aud Object-Oriented Programming System, although we generalty
use it to refer to the language thal it suppored.
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to be their client. For example, a class Queue would be a client of the class of the objects
that queues store.

Class inheritance supports a form of reuse, hecause the attributes and methods as-
sociated with a class incinde those of its superclasses. This gives rise to so-called sub-
class polymorphism, which allows an object of some class to be placed wherever an
object of any of its superclasses is expected, For example, if SquareWindow is a subclass of
RectangularWindow, any software that manipulates rectangular windows can also manipu-
late square windows, twithout any mediaitng conversions or “case” statements. Furthermore,
a subclass may redefine some of the methods it inherits; this may be desirable because
the nature of the class allows them to be more efficiently implemented, or because new
attributes need to be updated. For example, $quareWindow may reimplement the methad
perimeter using the fact that squares have four sides of equal leugth. Then, an application
of method perimeter to au chject bouud to some variable X of class RectangularWindow
will be resolved at run-time, based on the exact class of the object that X refersio: if the
object is of class RectangularWindow, then the original perimeter method will be chosen; if
the object is of class SquareWindow, then the new perimeter method will be selecied. This
mechauism is called dynamic binding.

Subeclass polymorphism and dynamic binding allow for variation in data structures and
algorithms in a way such that software is automatically acoommodated to deal with abjects
of classes derived from existing ones. Said differently, these two mechanisms permit a
reconciliation hetween reusability and extendibility {77], and their combination isone of the
salient features of this paradigm.

Lastly, we note that there exist several variations on the tbeme, such as the replacement
of class inheritance by various forms of inheritance at the level of objects (for example, see
(69, 115]). Other variations oceur in languages which support concurrency.

1.1.1 Origins and Current Research

Object-orientation grew out of Simula-67 [87], a discrete-event simulation language de-
veloped in Norway by Nygaard and Dahl as au extension of Algol-60. Its emphasis on
simulation gave rise to the general idea that software artifacts should directly reflect the
entities beiug modelled. Simula-67 (or Simula, for short) inclnded classes, objects with local
state, dynamic object creation, single inheritance, and redefinition and dynamic binding.
The language also introduced garbage collection and heap allocation. Clearly, Simula was
ahead of its time.

In the late 1960s and early 1970s, the work of Alan Kay and his colleagues at Xerox's
Learning Research Group iu California led to the Smallealk system, which is credited with
much of tbe early popularity of object-orientation. Smalltalk has uever been justalanguage,
but a revolutionary single-user environment. Besides the Simula influence, Smalltalk is a
synthesis of ideas from algebra (sets with associated operations), biology (encapsulated cells
tbat communicate with each otber), operating systems (capabilities), Lisp (simplicity and
declarativeness) and interactive, graphical user interfaces (including the use of the mouse,
pens, and pop-up menus) {26, 63]. Kay's principal objective was personal computing, and
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several prototype machines that ran Smalltalk were then built at Xerox, and they included
the user-interface facilities just meationed.

The late 1970°s saw the advent of “C with classes,” which evolved into C++ [112]. and
of the Smalltalk-76 and Smalltalk-80 systems [56] (there was also Smalltalk-72). C++ and
Smalltalk-80 are currentlty the rost widely used object-oriented languages.

The 1980s and early 1990s have experienced an explosioz in the armonut of research
dedicated to object-oriented systems. There is much interest in linguistic, implementation
and environiment issues, and several design and analysis notations have been proposed (for
example, see [8. 20, 116]). Also, there is & growing community of theoreticians trying to
explain the formal semantics of object-orientation.

1.2 Object-criented Design

Object-oniented design focuses on the data components—the objects—and not on algorith-
mic abstractions or on the functions a system is supposed to perform. There exist various
reasons for this. First, a successful system is soon asked to support further functionality
(11, 24); terefore, if its design was based on functions performed it will probably require
major structural changes. Also. changes in functionality are more common than chauges in
the kind of objects a system manipuiates. In the words of Coad and Yourdon [20, page 29]:

The most stable aspects of a system are 1be classes and objects which strictly
depirt the problem domain aud the system's responsibility witbin that dotnain.
Whether one specifies a very low budget or a very sophisticated system, one
will still have the same basic classes and objects with which to organise the
analysis and uitimately the specification. A more expensive systern might have:
mare attributes for certain objects; more sophisticated services {methods); and,
additional classes and objects. Yet the basic classes and objects in the problem
domain will remain the same.

Meyer (77] gives tbe following examples to illustrate the situation. Imitially, a compiler
is developed to translate one language into another. But later on. it might be modifted
te provide pretty printing, to support a schematic editor, to gatber statistics on common
syntactic errors, to generate different code, and so on. Even though the tasks performed by
the compiler might have cbanged quite dratnatically, the kinds of data it manipulates will
remain more or less intact: tokeus, prammar, syntax trees, etc. Another familiar example
is payroll systems, which are soon called upon to gather employee statistics, compute taxes
and employee benefits, and to interact with various media, while the data items, such
as persons. cheques, and time cards, remain undisturbed. Thus, object-oriented design
attempts to provide a system with “stable intermediate forms” [8] that will make it more
resilient to changes in requirements. Furthermore, because the “user’s view of reality” [60] is
ernbodied in the system’s structure, object-oriented design is closer to a true design method,
which must be repeatable, teachable, and reliable [6].
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This style of software development is in a sense the opposite of the functional decompo-
sition method, a top-down, sequeutial appreach in which one is forced to make (and freeze)
the most important design decisions at the very beginning, exactly when the problem is
least understood [77]. This premature hinding of affairs tends to create inflexible archi-
tectures, and ignores issues of data abstraction and inforipation hiding [8]. Furthermore,
functional decomposition is unpredictable and variable, as it is often unclear whether the
decomposition should be with respect to time order, data flow, access to commeon resources,
contro] flow, etc. [6]; such accidental dependencies also tend to hamper reuse {90]. Jackson
[60, page 370] summarises some of these deficiencies as follows:

Top-down is a reasonahle way of describiug things which are already fully un-
derstood [...] When the developer of a system already has a clear idea of the
completed result in his mind, he can use top-down to describe on paper what
is iu his mind. [But] the method of description is confused with the method of
development. A method of development must allow the designer to solve piob-
iems to which he does uot already know the solution. Top-down development
compels the dewveloper to make the largest and most far-reaching decisions at
the beginning.

Of course, at some point one must establish some sequential constraints; the differeuce is
that with object-orientation they are not a primary concern. On the positive side, we note
that functional decomposition is a well-understood and generally applicable method that
has been widely used.

Booch [8) summarises ohject-oriented development as an iterative and incremental pro-
cess involving the following steps:

{a) Identify the clusses and objects at a given level of abstruction. According to Stroustrup
[111], classes exist at three levels:

(1) application, which includes classes for user-level concepts such as cars, and for
generalisations of these, such as vehicles.

(2) machine, which iucludes classes that model hardware resources (e.g., memory),
and system resources (e.g., input-output [acilities).

(3) implementation, which includes classes for data structures such as lists.
(This separation is not strict, but serves to illustrate the overall situation.)

{b) Ideniify the semantics of these classes and objects. This involves the association of
attributes and methods with classes.

{c) Ideniify the relationships between these classes and objects. This involves the declara-
tion of inheritance relationships, and the design of intesfaces between the objects of
the various classes; this step is the hardest oue.

{d) Implement these classes and objects. This entails decisions of largegrain structure
and organisation, such as gathering related classes into modules.
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We wish to note that while object-oriented design and programming may not constitute
Brooks’ “silver bnllet” [11], it is widely acknowledged that the ebject paradigm advances
the art of software engineering. There is no denying that achieving good designs requires
sound management, experience, good taste, intelligence, aud perhaps even luck [84]. Object-
orientation is an attempt to provide hetter tools for the sorcerers and sorceresses,

1.3 Scftware Reuse

“The most radical possible solution for software is not to constrnct it at all.” With these
words, Brooks (11, page 16] sinmarised his view about the complexity of bnilding software
systems, adding his voice to the increasing number of computer professionals labbying
for more reuse in software construction. Object-orientation has brought reaewed interest.
because cbjects and classes are natural units of reuse®.

The vision of an off-the-shelf components indnstry that would support the building of
new software systems based on standardised components is due to McIlroy and dates back
to 1968 [68]. He also argued for libraries with componeuts that could be customised to fit
particular needs. Twenty-five years later, Mcllroy’s vision still remains largely unrealised
{25, 68, 77].

Besides complexity, there are other natural and economic forces that motivate reuse.
First, acoording to Standish [109] (who cites a study hy Boehm [7]), the cost of software
increases exponentially with its size. Therefore, the presence of a components industry in
which buying a component is cheaper than building it from scratch would reduce software
costs and allow more sophisticated (i.e., larger) systems to be bnilt®. Reuse conld cut down
development time. including testing, and could have a positive impact on maintenance.
Additionally, there are commercial benefits associated with reuse. The most immediate
one is that ideas wonld reach their realisation in software more rapidly. Now that systems
are also being built for innovative and strategic reasons [31], fast delivery is crucial. (This
scenario assumes that a purchased component is reliable, at least in the sense of having
satisfied some form of rigorous testing.)

Second, compamies could use pre-fabricated components to build rapid {(and perhaps
even multiple) prototypes to not only advertise ideas, but also to help capture requiremeants
more effectively [11, 31).

Lastly, the astorishing advances in bardware have made it clear that software is the
major hottleneck.

Today, most successful reuse occurs at the level of subrontines [25, 30]. Examples include
routines from mathematical libraries {most written in FORTRAN), EM ACS functions, and
UNIX shell utilities (which can be easily glued together with “pipes™). Another popular
technique, albeit much less structured, is called “code scavenging™ [68); it refers to program-

*Hawever, this thes:s will argue that nodules, which may declare severa! refated classes, are more appro-
priate units of reuse

3Standish alse notes that Baehm's study predicts that in the coming years there will not be enough
programmers Lo satisfy the demand for software —unless a more efficient approach Lo huilding systems is
adopted.
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mers picking out arbitrary pieces of old software and patching them onto their code. This
is a tedious and difficult activity, especially with regards to searching through old software,
understanding the context of the extracted bits, modifying them, and then debugging the
resulting whale.

The kind of reuse being advocated at present involves not only logical fragments of code,
hut also logical fragments of designs and documentation [30, 38, 50, 68]. Additionally, there
is a need for flexible reconfiguration tools that will allow components to be adapled before
being reused; rapid and multiple prototypes would particularly gain from such facilities.

Apart from these linguistic issues, much difficulty lies in that developing reusable com-
ponents is as much an art as software engineering 33; components should be neither too
specific nor too general. The practice requires a commitment for building reusable parts
[111], and also some way of classifying the components built so that they can lster on be
found by others [94]. Recent success stories seem to indicate that reuse occurs most prof-
itably within narrow domains, such as database and netwark software [4, 19). A further
difficulty is due to the lack of standard interfaces for software components; in hardware
design and in other disciplines, reuse is commonplace because of standardisation [25, 103},

1.4 Aspects of FOOPS

The type system of FOOPS introduced two important distinctions. First, data elements
are not chjects. Data elements are stateless and thus cannot change; examples include
the natural numbers and the colours. Objects have an internal state and persist and
evolve with time; examples include gardens and video screens. When these two concepts
are merged, 25 they are in many ohject-oriented languages, much confusion arises because it
is then possihle, for example, to “send a message” to the colour blue so that it “adds a shade
of yellow” to itself. Clearly, there is no such thing: blue will always be hlue. However, it is
possible to have funetions tbat accept data elements as arguments; for instance, one that
gives as result the colour arising from the comhination of two other colours. Consequently,
in FOOPS data elements are collected into sorts and objects are collected into classes.
Following the AD.J tradition [51] and the work of Goguen and Meseguer, an abstract data
type in FOOPS is a sort together with its set of associated functions. Also, an abstract
object type is a class together with its associated attributes and methaods.

Second, classes are not modules. The modules of FOOPS may declare several related
classes together, and constitute its main programming unit. By contrast, most other object-
oriented languages take as their main programming unit a syntactic construction for the
definition of a single class with its associated atiributes and methods. While this simpli-
fies language design, it is nevertheless a step backwards from the advances introduced by
languages such as Ada [59], Modula [118], OBJ and many others in supporting the more
general construction.

Given the disjunction between sorts and classes in FOOPS, we say that it has a func-
tional level and an object level. Abstract data types exist at the functional lewel; abstract
ohject types exist at the object level. At each level there are two kinds of module, one which
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encapsulates executable code and the otber which declares properties. The [ormer are sim-
ply called modules, or functional modules and object modules when their level needs
to be made explicit; the latter are called theories, or functional theories and object
theories when there is a need to make their level clear.

Theories serve to classify other theories and modules by the syntactic and semantic
properties that they satisfy, and are mostly used in FOOPS to constrain the actual argu-
ments to parameterised modules {see below). They constitute the purely declarative aspect
of FCOPS. So-called views are bindings that express Lhow a theory is satisfied by another
theory or module. This allows the capture of the rather common case in which a theory
is satisfied by more than one modnle, or in which a particular module satisfies a theory in
more than one way. For example, the natural numbers form a partially-ordered set under
either the less-than or the grcater-tban relations; also, the strings over the Roman alphabet
form a partially-ordered set under the usual lexicographical ordering.

FOOQPS also offers (and distinguishes) inheritance for sorts, classes and modules. In-
heritance of sorts and classes has to do with the hierarclical classification of data elements
and objects. For example, the sort Nat of natural numbers inherits, or is a subsort of,
the sort Int of integers, because all natural numbers are also integers; similarly, the class
LandVehicle is a subclass of the class Vehicla. These two kinds of inheritance have a
set-inclusion semantics given by order-sorted and hidden order-sorted algebra, respectively
(39, 43, 49). Module inheritance supports code reuse by importation, This other kind of
inheritance allows old sorts and classes to be imported and enriched with operations de-
rived from the ones originally associated with them. For example, a module that defines
trigonometric functions may be defined by extending a pre-existing module for floatiug-
point numbers with declarations for sine, cosine, ete. Or a generic module that declares
iteration methods over special kinds of data structnres may simply define the new methods
as combinations of already existing methods on these data strnctures. Note that these ex-
amples do not use either class inheritance or clientship, and thns could not be done using
the features that are typically available in languages that identify classes and modules. The
semantics of module inheritance is based on category theory [41].

Both modules and theories nse equations, or axioms, to define the properties of func-
tions, attributes and metheds. FOOPS is a logical language in the sense that its formal
semantics defines a deduction system which can be used to derive new axioms from old
ones; said differently, its deduction system can be used to prove properties about FOOPS
programs. (Much more details about this are given in Chapter 4.)

When axioms have a particular form, they can be regarded as executable code; thus,
one syatactic difference between modules and theories is that axioms declared in modules
are required to have this form. For functional modules, these axioms are interpreted as left-
to-right rewrite rules in the classical term-rewriting sense [67], except that rewriting takes
into acconnt sort orderings or hierarchies, and is called order-sorted term rewriting [44].
For object modules, axioms are in general considered from left to right, but as descriptions
of updates to an implicit object datahase [48]. In FOOPS, however, the notion of “main
program” is absent. Hather, computations are started by supplying terms, or expressions,



to the top level of the system, which evaluates them with respect to the axioms in a given
maodunle.

1.4.1 Parameterised Programming

While much work in object-orientation has concentrated on issues such as low-level type
systems, not enough attention has been devoted to the study of system-level phenomena,
such as overall structure, large-grain properties, sub-component compatibility, variants and
configurations [28, 85), FOOPS addresses these concerns.

FOOPS is equipped with facilities for composing medules, including renaming, sum,
parameterisation, instantiation and importation. These constitute parameterised pro-
gramming [36], which can be seen as functional programming with modules a5 values,
theories as types, and modnle expressions as (functional) programs. Renaming allows the
sorts, classes, attributes and metbods of modules to get new names, while sum is a kind
of parallel composition of modules that takes account of sharing. The interfaces of param-
eterised modules are defined Ly theories. Instantiation is specified by a view from an
interface theory to an actual module, describing a binding of patts in the theory to parts in
the actual module; default views can be used to give “obvious” bindings. Importation
aliews multiple inheritance at the module level. Parameterised programming was first im-
plemented in OBJ [53], has a rigorous semantics based on category theory [29, 39, 41), and
is a development of ideas in the Clear specification language [14]. Much of the power of
parameterised programming comes from treating theories aud views as first class citizens,
For example, it can provide a higher order capability in a first order setting [37, 5D).

A major advantage of parameterised programming s its support for design in the same
framework as specification and coding {50]. Designs are expressed as module expres-
sjons, and they can be executed symbolically if specifications having a suitable form are
available. This gives a convenient form of prototyping. An interesting feature of the ap-
proach we advocate is its distinction between horizontal and vertical structuring, genericity
and compositionality. Vertical structure relates to layers of abstraction, where lower lay-
ers implement or support higher layers. Horizontal structure is concerned with module
aggregation, enrichment and specialisation. Both kinds of structure can appear in module
expressions, and both are evaluated when a module expression is evaluated. There is also
support for rather efficient prototyping through built-in modules, which can be composed
just like other modules, and give a way to combine symbolic execution with acess to an
uzderlying implementation Janguage.

Parameterised programming is considerably more general than the module systems of
languages like Ada, CLU [71] and Modula-3 [83], which provide only limited support for
module composition. For example, interfaces can only express purely syntactic restrictions
on actual arguments, cannot be horizontally structured, and cannot he reused. But in pa-
rameterised programming, theories are modules which can be generic and can be combined
using instantiation, sum, renaming, and importation. Recent work of Batory [3.104] shares
many of our concerns, and in particular distinguishes between components and “realm in-
terfaces,” which correspond to theories in parameterised programming, although without
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any semantic constraints, Batory’s approach is primarily based on vertical parameterisa-
tion, althougb a limited form a horizontal parameterisation allows constants and types,
without any horizontal composition. Ancther difference is that FOOPS allows non-trivial
views, whereas Batory’s approach only has {imphcit) default views. Related work has also
been done by Tracz [114], whose LILEANNA system implements the horizontal and verti-
cal composition ideas of LIL [35] for 1he Ada langnage, using ANNa [73] as its specification

language.

1.5 Contributions of this Thesis

As its title suggests, tbe contributions of this thesis lie mainly in three areas: design,
implementation and evaluation of FOOPS. Because we build upon previous research by
otbers, we here give details of what distingnishes our work.

Our starting point was [48), the first publication on FOOPS, togetber with the work
that led to it, particalarly {36) and [49], We hegan by providing mere precise definitions
for the language features proposed in [48), including object destruction, the interpretation
of groups of axioms that define methods, redefinition and dynamic bindicg, and class and
sort inheritance conflicts and their resolution.

Sorme other features of the language were exteaded. For example, object creation is now
much more flexible (e.g., identifiers need not always be explicitly given), attributes can be
“derived” (i.e., defined in terms of others) and can have multiple arguments, and a method
can return any result, not jnst the same object it modifies.

Furthermore, sotne aspects of the langnage are new or have been reworked from earlier
proposals. For example, we defined the encapsnolation rules of the language and designed
its information hiding mechanism, except for vertical parameterisation, which was added to
FOOPS in joint work with Joseph Goguen [50], nsing ideas from LIL [35]. Madule blocks
had been proposed earlier [55], but we give a more detailed design. Also, abstract classes
are a new feature that we helped to develop. (These last two aspects are also reported in
[501.)

Our prototype implementation of FOOPS builds upon facilities given by the OBJ3
implementation [53]. Early design help was provided by Goguen and by Timothy Winkler
of SRI International, California. This prototype implemeutation has served as the basis
for simulating a concurrent version of FOOPS [9], and to support the implementation of
OO0ZE [1].

This thesis also evalnates FOOPS and compares it with other languages. In addition, jt
provides extended discnssions on the applicability and benefits of parameterised program-
ming (as defined here) for the design and implementation of object-orieuted systems, We
have focused on large-grain issues such as module reuse and composition, and have found
added leverage in several of the aspects mentioned in the previons section, snch as: the
distinctisn between classes and modules, including the different kinds of inheritance; mod-
ule instantiation with views; vertical module parameterisation, which allows fine-tuning the
implementation of modules by supplying different vertical parameters; aund integrated sup-



port for specification and prototyping, including the use of views to express refinement and
evolution relationships between systems defined hy module expressions. Some of this work
was inspired by a paper by Goguen aud Wolfram [54]; we offer a more comprehensive and
io-depth analysis, and include in it the aspects of FOOPS that are new with this thesis.
Also, the comparisons with other languages s new {a small part of it was added to [50]).

Moreover, we feel that we will contribute to the understanding of the semantics of
FOOPS by threading together several separate publications on the subject, from the per-
spective of souneone who is not a theoretician,

Overall, one of the main points of this thesis is that parameterised programming clarifies
and enriches several aspects of the object paradigm. Another mair point is the use of
semantic foundations to explicate, propose and analyse features and applicatious of FOOPS.

1.6 Overview of Subsequent Chapters

The rest of this thesis is organised as follows:

Chapter 2 discusses the form and informal meaning of the declarations that modules en-
capsulate, such as those for sorts, classes, inheritance relationships, axjoms, and soon; it also
describes object creation and destruction. This chapter deals exclusively with executable
modules, although most details carry over to theories.

Chapter 3 explains facilities for composing modules and designing systems, including
theories, views, parameterisation aud module expressious. It also examines abstract classes,
module importation, module hlocks and information hiding capahilities.

Chapter 4 sumrnarises current work towards a mathematical semantics for FOOPS, in-
cluding order-sorted algebra, hidden order-sorted algebra, and the theory of institutions.

Chapter 5 describes a prototype implementation of FOOPS. It supports a majority of the
features discussed in this thesis, and gives ideas on how to implement some which are not
currently available.

Chapter 6 is an evaluation of FOOPS carried out by comparing several of its facilities to
those present in ot her object-orieuted languages, with particular emphasis on comtructs for
programining-in-the-large, Among other aspects, it treats the distinctions between mod-
ules and classes, and examines renaming, parameterised modules and information khiding
capabilities. Around fifteen langnages ave considered, including the major ones in use today.
Chapter 7 concludes this thesis witb a summary of what was achieved and an outline of
areas that remain unexplored.

Appendix A gives the full syntax of FOOPS.
Appendix B provides additional examples.



Chapter 2

Modules

Object orientation comes Lo full fruttion only when com-
ned unth modulerity and strict typing of dote,

— Niklaus Wirth

The main programming nnit of FOOPS is the module, which encapsulates executable code.
This chapter describes the form aud informal meaning of module declarations, including
sorts, classes, functions, attributes, methods and axioms. Alse, we discuss the models of
computation at the functional and object levels of FOOPS. This presentation is based on
Sections 2 and 3 of [95], the reference manual for the language aud our protatype imple-
mentation. The discussion of abstract classes, encapsulation rules, and information hiding
facilities in FOOPS is delayed uuti] the next chapter, as they can only be fully understood
once module inkeritance is explained. Lastly. tke functional sublanguage of FOOPS is a
syntactic variant of OBJ3, and therefore we do not attempt to caver it in as much detail as
other documents (e.g., [53]}; Appendix A gives the exact syntactic correspondence between
the two. Qur main concern is with the object level of FOOPS.

Syntactic descriptions are presented incrementally in syntax boxes, which have the
form

Syntax NN {Name]
texi
[}

where NN is the box number, Name is the name of the syntactic unit being described and
text gives the formal syntax of the unit (and often some Englisb commentary). Syntax
is described in the following extended BNF notation: the symbols { and } are used as
meta-parentheses; the symbol | is used to separate zlternatives; | ard ] pairs enclose op-

tional syntax; {NonT')} is a non-terminal symbol; ... indicates 0 or more repetitions of the
preceding urit; and x denotes x literally. As an application of this notation,
A, A}...

is an idiom used for non-empty lists of A’s separated hy commas.

12
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2.1 Functional-level Modules

A functional module defines one or more abstract data types, which consist of a set of
data elements and operations on them. Data elements (also cailed “values”) are stateless
entities, such as the numbers and the colours. A set of data elements s called a sort, while
operations on data elements are called functions. Sorts may be placed in a partial order,
interpreted as subset inclusicn. This order defines an inberitance hierarchy amoog sorts,
in which a sort A inherits from a sort B if A < B; in this case we say that A is a subsart
of B. A gignature is a group of sort, subsort and function declarations, and an algebra
is a partially-ordered collection of sorts together with interpretations (or definitions) for
each function symbol. A term at the functional level is an expression tbat is built up from
function symbols and from variables denoting data elements. The model of computation
at this level is order-sorted term rewriting, which regards the axioms that define the
properties of functions as left-toright rewrite rules. (Chapter 4 gives formal definitions for
all these concepts; informal definitions will suffice for the purposes of this chapter.) When
nat parameterised, functional modules have this form:

Syntax 2.1 (Unparameterised Functional Modules)

frod (Modld) is
(fModElL} . . .
endf

where { ModId) stands for the name of the module, by convention given in upper case letters.
{fMedElt) stands far the things that may be declared by a functional module, namely sorts,
functions, variables, and axioms. Functional modules may also import other functional
modules. O

2.1.1 Sorts and Subsorts
Sort declarations have the following syntax:
Syntax 2.2 (Sorts)

sorts {SortfdList)

where {SortfdList) is a non-empty list of sort names separated hy blanks; by convention,
sort names are capitalised. Since it may sometimes be more natural to use the singular
rather than the plural, the keyword seort is allowed as a synonym to serts. O

For example, a single sort Nat may be declared like this:
sort Nat .
while to declare together the sorts Nat, Int and Rat we write:

sorts Nat Int Rat .
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Subsort declarations have the following syntax:

Syntax 2.3 (Subsorts)
subsorts {SortList} < {SortList} {< {SoriList)}...

where {SortList) is a non-empty list of sort names, separated by blanks and possibly gnal-
ified {this is explained in Section 2.1.3}. This syntax specifies that the sorts mentioned in
the first list are all subsorts of those in the second list, and so on. The kevword subsort
is allowed as a synonym to subsorts. Also, note tbat the intended meaning is that of
less-than-or-equal, although for typographical convenience the less-than symbol has been
used. O

For instance, we may declare a sort Nat, denoting the natural nhumbers, to be a subsort of
the sort Int, denoting the integers, because all natural numbers are also integers:

subsort Nat < Int

Since the integers are in turn a snbset of the rationals {of sort Rat, say), we could also write:
subsort Nat ¢ Int < Rat

or, similatly,

subsort Int < Rat
subsort Nat < Int

or even,

subsorts Nat Int < Rat .
subsprt Nat < Int

2.1.2 Functions and Terms

When the language of a particular application domain can be readily used in a specification.
programs are easier to read and to write, Towards that end, FOOPS allows each function
to be given a “syntactic form™ that deseribes whether the function is to be referred to in
infix, prefix, postfix, outfix or, in general, mixfix syntax. Also. function names may be
overloaded, in that there can be two or more functions with the same name. These options
require some sophisticated parsing, and a term in FOOPS is considered to be well-formed
if and only if it has a unique least parse. where the ordering is derived from the subsart
relation. The next subsection gives mare details on this.

Syntactic specifications are of two forms. The first is the standard form, which gives
ordinary prefix-with-parenthesis syntax to a function, with arguments separated by commas.
For example, the function cons for prepending an element onto a list is normally written
with this syntax. For a natural number X and a list L of natural numbers, a simple term
involving cons is cons (X,L). In FOOPS, this syntax is declared like this:



fn cons ; Nat List -> List .

Here fn is a keyword and cons is the name, or form, of the function. The bst of sortsbetween
the “:" and the “->" gives the sort of each argument; this list is called the function’s arity.
The sort between the »->" and the “." is called the coarity, or value sort, of the function.
Thbe rank of a function is its arity and coarity taken together; for example, the rank of
tons may be written (Nat List,List}. More formally, standard form syntax is:

Syntax 2.4 (§tandard Form Syntax)

fn (StdOpForm ) : (Sort)... —-> (Sert) .

where {5tdOpForm ) is a string of symbaols that cannot include underbars (i.e., "_"), and
{Sort) is the name of a sort, possibly qualified. O

Constant, or nullary, functions are those whose arity is empty. For instance, the natural
number 0 may be specified as tbe following constant:

fn 0 : -> Nat
and the empty list of sort List as
fn nil : -> List .
With these declarations, the following are well-formed terms:

]

cons(0,cons{Q,nil))

The first term has sort Nat and the second has sort List.
The other syntactic form is the mixfix form. It has this syntax:

Syntax 2.5 (Mixfix Form Syntax)
fn (MizfizOpForm) : (Sort)... -> {Sort)

where (MizfirOpForm ) is like {StdOpForm ) except that underscores are permitted. Under-
scores serve as placehoiders for the arguments to the function, and there must be exactly
as many as there are sorts in its arity, to which they correspond in order. Single underbars
or just blauks are not valid syntactic forms. O

For example, the symbol “+” for infix addition of naturals may be declared ke this:
fn _+_ : Nat Nat -> Nat .

For M and M of sort Nat, N + Mis a well-formed term using this syntax. Also, the successor
function on naturals is usually prefix:

fn aucc_ : Nat -> Nat .

Factorial, on the other hand, is usually postfix:
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fo _! : Nat -> Nat .
These are well-formed terms of sort Nat:

succ 0
{succ succ 0)!

To illustrate outfix syntax, consider a sort Set for sets of natural numbers. Singleton
sets may be syntactically described in this way:

fn {.} : Nat -> Set .
Finally, syntax may be mixfix, as in:
if _then_else_fi : Bocl Nat Nat -> Nat .

where Boel would denote the sort of boolean values. (By the way, Bool is declared in &
medtle called BODL that is automatically imported into every other module; see Section
2.1.5.5 for more details about BOOL.) In the context of these declarations, the following
terms may be formed:

cons(0,nil)
{ euce 0}

When two or more functions have the same rank, they may be declared together, as in:
fns (_+_) (_*_} : Nat Nat -> Nat .

Note here the use of the keyword £ns and that the form of each function has to be enclosed in
parentheses. However, the parentheses may he omitted for constants or when standard-form
syntax is desired:

fns ¢ 1 2 : -> Nat .
fns plus times : Nat Nat -> Nat .

Formally, the syntax is:

Syntax 2.6 (Multiple Function Declarations)

fns {OpForm} (OpForm)... : (Sort)... —>» (Sort) .
where (OpForm) is either {StdOpForm) or {MizfizOpFform). D
Example 2.7 The following is a simple syntactic specification of the hexadecimal numbers:

fmod HEX i=
sorle HexDigit HexNum .
subsort HexDigit < HexNum .
fne 012345678865 : -> HexDigit .
fae ABCDEF : ->» HexDigit .
fn _ . _ : HexDigit HexNum -> HexNum .
endf
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Example terms from HEX are:

1 .56 .4 .2

The first has {lowest) sort HexDigat, while the others have sort HexNum. O

2.1.3 Parsing and Qualification

The flexible syntax of FOOPS offers many opportunities for ambiguity, and somctimes
extra information must be attached to terms. or perhaps extra parentheses added. in order
ta ensure unique PArses.

When [unctions are overloaded. terms may need to be qualified with sort information
to resolve ambiguities. A sort-qualifed term has this syntax:

Syntax 2.8 {Qualification with Sort Names)

({Term)) .{Sortld)
where {Sorild) is the name of a sort. O
For example, if the declarations

sort Nat .
fo 0 : ~> Nat

are added to module HEX. the term 0 is ambiguous (it could be either of sort Nat or of sort
HexDigit). To resolve this ambiguity, we need to specify which zero we are referring to, by
using either (0).Nat or (0).HexDigit.

For a slightly more complicated example, consider these further declarations:

fn _+_ : HexNum HexNum -> HexNum .

fn _+_ : Nat Nat -> Nat .

Theu the parse of @ + 0 is also ambiguous, but this time in more than one way. To resolve
it. we can either qualify the rerm on the outside or qualify one of the zeroes. For example,

(0 + 0).HexNum
and
{0).Nat + O

are hoth unambiguous. As with the second zero in the last term, context information
resolves ambiguitics in many cases. and makes explicil qualifications unnecessary.
Sometimes sort qualification is not enough, becausc two different wodules might intro-
duce sorts with the same name: then. qualification with module uames is required. For
rxample. each of the modules NAT-LIST and CQLOUR-LIST may define both a sort List and
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a constant nil of that sort. To disambignate nil, we need to write either {zil) .NAT-LIST
or {nil) COLQUR-LIST. Sorts may aiso ueed to be qualified; for example, in syntactic spec-
ifications. Formally, qualification with module names has this syntax;

Syntax 2.9 (Qualification with Module Names)

({Term)) .{Mod/d}
{Sarifd}. (Modid)

Note that the second form does not require parentheses. O

However, in cases where a sort and a module have the same name the ambiguity may
persist. On the other hand, if our naming conventions are followed [module names in
upper case, sort names capitalised) this will not be a problem. Qualification with madule
expressions is discussed in Section 3.7.

2.1.3.1 Least Parses

It is possible to have B < A and the functions

fnf: A->A.
fnf : B->B.

This is of course overloading, but of a more subtle kind, as it involves not only names but
also sorts that are related. From the previous discussion we know that a term £{z) for
x of sort B will have sort B, because that is the “least” of the two possible parses. More
specifically, rank (S1 82 ... SN,R1) is less than rank (T1 T2 ... TN,R2) il and only if for i =
1..N, 8i < Ti and R1 < A2; below we also speak of orderings among arities, with a similar
meaning. For unique least parses to exist, a condition on signatures, called “regularity,”
must be obeyed [49]. Regularity depends on a signature being monotonic, which means
that for each pair

fni : S1 52 .., SN -> Rl .
fnf : TL T2 ... TN -> R2 .

if the first arity is less than the second then R1 < R2. For example, the declarations

fnt : AA->B .
finf : BB -> A .

violate monotonicity, because the coarities are related in the opposite direction. A signature
is regular if and only if

# it is monotonic, and

* given a function symbol £ and a lower bound wg for its arity, there is a least arity for
f among those £'s with arity greater tban or equal to wp.
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For example, given B < 4, the declarations

fnf : AB->A.
fnf : BA->B .

violate regularity, because neither rank is less than the other. (A lower bonnd arity here is

{B B).)

2.1.4 Inheritance Diagrams

Let us now consider some geueral examples of multiple inheritance and relate them to the
preceding discussion on parsing. As a graphical aid, we will use diagrams in which an arrow
from X to Y indicates that X is a subsort of Y. The diagram in Figure 2.1 shows three sorts
B. ¢ and D, where D is a subsort of both B and €C; it also shows that each of B and C have a
function f associated with them. This sitvation is erroneous because it violates regularity.
(Hint: take wp = D.)

The diagram in Figure 2.2 shows D itself with an £, This is fine hecause regularity is
obeyed. We call this situation merging.

Finally, the diagram in Figure 2.3 shows a rather common situation: inheritance of
the same sort via distinct pathe. A key question here is whether D is associated with two
functions £, hy virtue of there heiug two paths fromn D to A. As the diagram gives away, in
FOOPS there is only one sort A from which D inberits, and therefore D is associated with
only one f. Another way of viewing this is to consider the transitive closure of the subsort
relation, which gives {(B,A}, {C,A), (D,B), (D,C), (D,A)}, clearly showing that multiple ways
of seeing D as a subsort of & have no effect on the relationship between the two.

2.1.5 Axioms and Evaluation

In the functional levet of FOOPS, an axiom declares that two terms are equal. The terms
iu an axiom are more general than those given above as examples because they may also
involve variables, which can be thought of as placeholders for arhitrary terms of their
declared sort. Terms in axioms are therefore called patterns, ar templates of possible
terms; a term without variahles is called a ground term. For example, given a variable
N of sort Nat and a function pred_ (predecessor) on natural nnmbers, the follbwing is an

axiom:
ax pred succ N = N .

Axioms may also be conditional, meaning that the equality bolds only if a certain condi-
tion, given by a Bool-valued term, is true; furthermore, conditions may involve variables.

By regarding axioms as lefi-to-right rewrite rules, FOOPS takes order-sorted term
rewriting as the model of computation for functional modules. Computations are started
by supplying terms to the top level of the system. They proceed by repeatedly matching
subterms against the left-hand sides of the rewrite rules and then rewriting, or replacing,
the matched subterms with the right-hand side of the corresponding matching rules, until
no more matches are found.
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Figure 2.1: Multiple inheritance of a similar function.
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Figure 2.3: Inheritance via distinct paths.



2.1.5.1 Variables

Variable declarations associate an identifier with a sort, and have this syntax:

Syntax 2.10 (Variables]

var (Varid} : (Sort}
vars {VaridList} : (Sert) .

where (Varid) is the name of the variable, by convention written in upper case, and
{ VaridLast) is a list of {Varid}. O
Example applications of this syntax are

var N : Nat
vare FIRST MID LAST : Nat .

2.1.5.2 Axioms

Unconditional axioms have the following syntax:

Syntax 2.11 (Unconditional Axigms)

ax (Term) = (Term) .
The equal sign separates the left from the right-hand side of the axiom. Tbe sert of the term
on the right-hand side must be less than or equal to the sort of the term on the left-hand
side; otherwise, under certain conditions, retracts might be added to the right-hand side,
as explained in Section 2.1.6. O
Given the variable N above, another example axiom is

ax N+ 0 =N .

Conditional axioms have this syntax:

Syntax 2.12 (Conditional Axioms)
cax {Term} = (Term} if {BoolTerm) .
where (BoolTerm } is a Beol-valued term. O
For example, given variables N and M of sort Nat, and a declaration of the greater-than

function on naturals,

fn _»_ : Nat Nat -» Boel .

the following i 2 couditional axiom:
cax N+ M > N=true if H >0 .

So that an axiom may be interpreted as a rewrite rule, the variables that appear in its
right-hand side and in its condition (if conditional) must be a subset of those that appear
in its left-hand side. Also, the left-hand side of an axiom may not be a single variahle,
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2.1.5.3 Ewvaluating Terms

The following informal definitions will help understand what a computation is in the order-
sorted term rewriting model; formal mathematical definitions are given in Chapter 4. An
assignment is a function o : X -+ T from a set X of variable symbols to a set T of
ground terms over some signatnre; for ¥V € X, a(V) is called the value of ¥ (under a). An
assignment @ : X — T can be extended ta a term-assignment o™ : T(X) — T which takes
terms with variables from X to ground terms, by using a to assign values to each variable;
for a term ¢ € T{X), a*(t) is called the instantiation of ¢ (under a*). A ground term ¢
matches a term p if there exists an assignment 4 such that p instantiated with A yields a
term that is equal to ¢,

Given a set of rewrite rules, a computation starts with a2 term ¢ and proceeds by re-
peatedly searching for 2 rewrite rule whose left-hand side is matched by some subterm s
of ¢, instantiating the right-hand side of the rule with the assignment that generated the
match, and rewriting, or replacing, s in t with the instantjated right-hand side. A condi-
tional rolk has its left-hard side matched similarly, bnt the rewrite takes place oniy if the
instantiated condition evaluates to the constant true. If it does not, the matching process
resumes by considering other rules. A computation terminates {if at all) when there are no
more matches. This entire process is called the evaluation or reduction of i, and if it
terminates, the resulting ground term is called the normal form of {. In general, FOOPS
performs matching modulo associativity and commutativity, using facilities given by OBJ3;
Section 2.1.7 gives details of this.

A set of rewrite rules is said to be terminating when the evaluation of terms terminates.
Also, a set of rewrite rules is called confluent, or Church-Rosser, if whenever a term ¢ can
be rewritten to two different terms ¢ and #;, these two terms can themselves be rewritten
to some term t3. FOOPS does not require that sets of rewrite rnles satisfy either of these
properties (an undccidable task auyway).

A further monotonicity condition exists for algebras, and states the following for each
pair

fon f : 51 82 ... SN -> Rl .
fanf ; T1 T2 ... TN -> R2 .
in which the first rank is less than the second: for arguments of sorts 51 82 ... SN, respec-

tively, the two must give the same result. This phenomenon in which differeut instances of
a functios symbol are related by inheritance such that the result does not depend on the
instance used is known as subsort pelymorphism [49].

Below we give a module that defines lists of colours, in the context of which we will
exemplify evaluations in FOOPS:

fmed LIST-OF-COLOUR is
sorts Colour List .
subsort Colour < List .
protecting NAT .



2.1 Functional-level Modules 23

fns red blue yellow : -> Colour .

fn __ : Colour List -> Liat .
fn length_ : List -> Nat .
var C : Colour . var L : List .

ax length C =1 .
ax length(C L) = 1 + length L .
endf

Colour is declared to be a subsort of List purely for the convenience of having single
colours themselves as lists. The line “protecting NAT .” indicates that the module NAT
should be imported ioto it (this is explained in more detail io the next chapter). NAT
is part of the FOOPS default environment, and declares a sort Nat that represents the
natural numbers plus the nsual operations on them. Nat has a subsort called Zero whose
only element is the constant ¢. and a subsort called NzNat whose elements are the natural
numbers except zero. Note the juxtaposition notation used for comstructing lists, with
syntax __ (two underbars). The first axiom describes the length of single-element lists; the
second axiom defines the length of lists with 2 or more elements in them.

Some evaluations are now in order. The top-level command for evaluating terms in
FOOPS has this syntax:

Syntax 2.13 (Eval)
eval {Term)
[m]
For instance, executing
eval blue .
results in the following output being displayed:

evaluate in LIST-OF-COLOUR : blue
revrites: Q
result Colour: blue

Since blue does not match any left-hand side, no rewrites were possible. But [or length
blue there is one match, and the result of executing

eval length blue .

evaluate in LIST-QF-COLOUR : length blue
rewrites: 1
result NzNat: 1

Also,
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eval length {(red yellow)
gives

evaluate ig LIST-OF-COLOUR : length (red yellow)
rewrites: 3
result NzNat: 2

where {initially) red matches C and yellow matches L in the second axiom.

The axioms of module LIST-0F-COLOUR are confluent because a givea term can only be
matched by one axiom, never by both, as tbeir left-hand sides define mutually exclusive
patterns. The axicms are also terminating.

2.1.5.4 Traces

The trace of an evalnation of a term ¢ is a sequence of terms beginning with ¢ such that
each subsequent term is the result of appiying a rewtite rule to the previous term. For
cxample, assuming a rewrite rule that expresses the result of adding two nutnbers, a trace
of the evaluation of 2 + 3 + 5 is.

2+3+5
5+5
10

As a debugging and teaching aid, pur prototype implementation of FOOPS offers a
facility that allows following its evaluations step by step (this facility is inherited from
OBJ3}. A trace shows, for each matched subterm, the rule being applied, the assignment
that generated the match, and the result of the rewrite.

2.1.5.5 Term Equality and the Module BOOL

FQOPS supports a polymorphic operator for testing the equality of two terms. For a sort
S, it has syntax

fn ==_ : § 5 -> Bool .

It works by first evaluating both terms and then checking if the results are identical (modulo
associativity and commutativity; see Sectior 2.1.7). Therefore, it is only appropriate to use
it il the rewrite rules are terminating and confluent. There is also incquality, with syntax
_=/=_, and if-then-else, with syntax if_then_else_fi. These three functions, along with
the sort Bool, its constants true and false, and the logical functions _and_, _or_ and
_implies_, are part of a module called BOOL that is by defaclt imported into every other
tnodule.
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2,.1.5.6 A Larger Example

This section presents an extended version of LIST-0F-COLOUR to exemplify more features of
FQOPS. The extension includes functions for testing membership in a list and for reversing
a list. The membership test illustrates the use of the equality predicate and of if-then-
else. The reversal Tunction illustrates more sophisticated pattern matching, and employs
this algorithm: split the list in two, Teverse the two parts, and then append the {reversed)
second part onto the (reversed) first part; where to split the list is left to the pattern
matcher. Note also that the append function is generalised, so that its first argument is
a list and not just a single colour; it is also declared to be associative (see Section 2.1.7).
Lastly, we use “~-—>", a command that prints whatever follows it, to document the expected
resnlts. When used without the >, uothing is printed. thus serving as a passive comment.
Both comment farms can also be used inside modules.

fmod LIST-DF-COLOUR is
sorts Colour List .
protecting NAT .
subsort Colour < List .
fns red blue yellow : -> Colour .

fn __ : List List -> List {assoc]
fn length_ : Liat -> Nat .

fn _in_ : Colour List -> Bool .
fo rev : List -> List .

vars C C1 €2 : Colour . wvars [ L1 L2 : List .

ax lepgth C =1 .

ax length(C 1) = 1 + length L .

ax Cl in C2 = C1 == (C2 .

ax C1 in (C2 L) = if €1 == C2 then true else Cl in L fi .
ax rev(C) = C .

ax rev{Ll L2} = rev{L2) rev(L1) .

endf

aval red in (red blue) . ---> should be true

eval red in (blue yellow) . ---> phould be false

eval rev(red blue yellow) . ---> should be (yellow blue red)
eval rev(rev(red blue vellow)) . ---> should be (red blue yellow)

2.1.6 Flexible Typing and Error Handling

Sometimes static type-checking is too restrictive because it rejects expressions that, while
not completely well-formed, could achieve a correct type at run time. On the other hand,
dypamic typing is too liberal, allowing truly nonsensical expressions to go undetected until
run-time, with possibly disastrous consequences. To provide a middle ground, the FOOPS
type checker does as much static typing as possible, but gives “the benefit of the doubt” to
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certain expressions that show the potential of becoming type correct as evaluation proceeds.

The determination of when to do this is based upon the semantics of the subsort relation.
The appreach is this: if a function expects an argument of sort § but is given an argumeut
of sort T, and S < T, then the type-checker inserts a function that will try to lower the
sort of the actual argument to 5. If the argument evaluates to a term of sort 5 (or perhaps
lower), then the fuuction that was inserted will disappear at run-time, and all is fine. If
it daes mnot, the function will not disappear but will instead remain in the expression as
an informative error message. This kind of function is called a retract. In general, there
ig a retract function from a sort T to asort Sif S < Tor if S and T have a common
supersort. This technique naturally supports error detection and recovery, while at the
same time avoiding the complexities associated with partia] fuuctions and the arbitrariness
of the exception-handling mechanisins of some languages.

First asimple example illustrating retracts. Consider the following {incomplete) module:

fmod NUMBERS is
sorts Rat Nat .
subsort Nat < Rat .
fn _/_ : Nat Nat -> Rat .
fa _! : Nat -> Nat

endf

where Nat is iutended to represent the natural numbers and Rat the rationals. For ¥ and M
of sort Nat, an expression such as

(N / M)

does not strictly type-check, because the division function bas value sort Rat but the fac-
torial function expects a Nat. However, certain divisions, such as 4 divided by 2, actuaily
result in a natural number, and thus

(a/ 2!

makes sense. Since Nat < Rat, the FOOPS type checker will insert a retract fuuction in
this expression to try to lower the sort of the result of the division. In this case, the retract
function is named r:Rat>Nat and would be defined by these declarations (although it is
actually buile-in'):

fn r:Rat>Nat : Rat -> Nat
var N : Nat
ax r:Rat>Nat{N) = N .

Note that the axiom says exactly what we want: if the argument is a natural number, then
the retract function disappears. The previous expression would therefore be converted by
the parger to

'In ORBI3, as well as in FOOPS, a built-in feature is one which is automatically provided, defined either
in terms of other features or in terms of the facilities of an underlying implementation language.
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(r:Rat>Hat(4 / 2))!

and its evaluation yields 2.

We now consider how to do error detection and recovery in FOOPS. A familiar bench-
mark is stacks, because they force us to deal with situations such as top(empty) and
pop{empty). In the example that follows, the approach is to restrict the domain of these
functions to the non-empty stacks by defining a subsort NeStack of Stack, and declaring
pueh to have coarity NeStack. This code realises this idea:

fmod STACK-OF-NAT is
sorts Stack NeStack .
subsort NeStack < Stack .
protecting NAT .
fn empty : -»> Stack .
fn push : MNat Stack -> NeStack .
fn top_ : MNeStack -> Nat .
fn pop_ : NeStack -> Stack .
var X : Nat . var 5 : Stack .
ax top push(X,5) = X .
ax pop push(X,5) =5 .

endf

Then, an expression such as top push(5,empty) is well-formed and evaluates to
reeult NzNat: §
but top pop push(1,push(2,empty)) needs a retract, and is converted to
top r:Stack>NeStack(pop push(l,push(2,empty}))}
During its evaluation the retract disappears, and yields
result NzNat: 2 A
On the other hand, top pop push(5,empty) parses as
top r:Stack>NeStack{pop push(5,empty))
but its evaluation cannot make the retract disappear, and gives
result Nat: top r:Stack>NeStack{empty)

The retract then serves as an indication of how and where something went wrong.

There are at least three ways to add error recovery code to this specification. First, top
and pop may be overloaded (to accept arguments of sort Stack), and then axioms of the
follawing form may be declared:

ax top empty = ...
ax pop empty = ...
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Second, retracts can be explicitly used on the left-hand side of axioms. For example:

ax top r:Stack>NeStack(empty) = ...
ax pop r:Stack>NeStack(empty) = ...

{A large example of the use of retracts in this way is given in [42].)

Lastly, [53] presents an approach that involves declaring error snpersorts to contain
messages for exceptioral conditions. In FOOPS, however, error sorts are automaticaily
declared, and named by appending the string “?" to the name of the original sort. For
example, declaring a sort S causes the interpreter to declare a sort 87 with 8 < 87,

2.1.7 Function Properties

It is of great advantage and convenience to be able to declare whether a function has certain
properties, and for a system to directly recognise them, rather than having to encode these
properties as axioms. This section describes three properties that can be given to fnnctions
in FOOPS, namely associativity, commutativity and identities, and their effect on pattern-
matching and rewriting. Some other properties, such as precedence and memoisation, are
discussed in [53]2.

Properties are given a3 part of the syntactic form declaration of a function, hetween the
coarity and the final period, and are enclosed in square brackets. In full, the syntax for
functions with properties is:

Syntax 2.14 (Functions with Properties)

fn (OpForm) : {Sort)... => (Sert) [{Props)]

where (Props} is a list of properties, and (OpForm) is either (StdOpForm} or
{ MizfizOpForm) (as before). The associative property has syntax assoc, the commuta-
tive property has syntax comm, and the identity property has syntax

id: ((Term))

The order in which properties are given is irrelevant. O

For instance, boolean conjunction would be declared to be associative:
fn _and_ : Bool Bool -> Bool [assoc] .

This allows us to write, say, the term

true and falae and true

*That document calls properties “attributes.” We avoid this terminology because “attributes” also has
a technical meaning at the chject level of FOOPS.
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without the parentheses that would otherwise be required to disambiguate its two possible
parses. More important, perhaps, is that the pattern matcher will take this information into
account and ignore parentheses when matching terms that invalve associative functions,
even if we explicitly write the parentheses for readability. The associative property also
affects the eqnality and inequality predicates _==_ and _=/=_, and the system will be able
to determine that, for example,

true and (false and true} == {true and false} and true

is true. The assoc property is only meaningful for a binary function with rack (A B,C}
when C < A and C < B; however, retracts may be inserted if either A < Cor 8 <¢C.

Since Boalean conjunction is also commutative, it would be declared as such with the
comm property:

fn _and_ : Bool Bool -> Bool [asscc comm]
Here the situation is more subtle because the axiom that expresses commutativity, i.e.,
ax Pand Q = Q and P .

causes termination problems when considered as a left-to-right rewrite rule. If instead we
let the pattern matcher of FOOPS take care of this property, the termination problem is
avoided, because it tries all possihle orderings of arguments to commutative functions when
attempting matches. For example, there is no need 10 write two versions of the axiom

ax P and false = false .

hecause the terms true and false and false and true are hoth matched by the left-
hand side of the axiom. In addition, the equality and inequality predicates will also take
commutativity into account, and the system will be ahle to determine that

true and (false and true) == {true and true) and false

is true {(because _and_ is also associative). The comm property is only meaningful for a
binary function whose two arity sorts have a common supersort.

The kind of matching that results when a function is given assaciativity and commuta-
tivity properties is called A /C matching. Although it is an NP-complete prohlem, A/C
matching is highly optimised iu the implementation of FOOPS, using facilities given by
0OBJ3.

Lastly, functions may he given identities. For example, Boolean disjunction has false
as a left and a right identity. Thns, it would he declared like this:

fn _or_ : Bool Bool -> Beool [id: {(false)]
This gives the effects of the axioms

P .
P .

ax false or P
ax P or false
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(Of course, _or_ would also be declared to be associative and commutative.}] More specifi-
cally, a lefi-identity equation is added if the sort of the identity is less than the sort of the
first argument, and a right-identity equation is added if the sort of the identity is less than
the sort of the second argument. See [53] for a presentation of the propositional calculus
that uses all of the above properties.

2.1.8 Order of Evaluation

Rather than adopting a fixed strategy for evaluating the arguments of a function, FOOPS
allows the user to specify the order in which arguments are to be evaluated. Thus, strategies
such as lazy, eager, or any mixture of those, can be specified on a per-function basis. This
flexibility bas wide-ranging applications, Inchiding language specification and operating
system scheduling [46]. To make matters simple for the programmer, FOOPS computes a
default strategy for functions that are not explicitly given one; for most cases of interest, it
is left-to-rght and eager.

The evaluation strategy, or E-strategy, of a function is also given as part of its dec-
laration, in the section for properties. It consists of a list of argument indexes that in the
simplest case gives the order in which arguments should he evahiated; laziness on au argu-
ment is specified by omitting its index from the list. Ap example is if-then-else, declared
like this for some sort 8:

fn if_then_else_fi : Bool 8 8 -» S [strat (1 9)]

The strategy is the parenthesised list given after the keyword strat. It indicates that the
first argument should be evaluated first, followed by rewrites at “the top,”, i.e., involving
if_then_else_fi (indicated by “0"). In other words, the then and else branches are
evaluated lazily.

Section C.5 of 53] presents another example of the use of lazy evaluation, where the
Sieve of Erathostenes is used to find all prime numbers.

2.2 Object-level Madules

An object module defines one or more classes, which are collections of {potential) objects.
The attributes and methods associated with a class give the description of the internal state
of its objects and the operations that can change that state. Objects are created and deleted
dynamically and are accessed with nnique object identifiers that are assigned to them
at the time of creation. In FOOPS objects also persist, meaning that once created they
become part of the environment and remain there until explicitly deleted®. In addition,
metaclasses are provided; these are lists of the current ohjects of a certain class, and
may be used to effect changes on groups of objects of the same class. Furthermore, object
modules may declare abstract data types.

Many of the concepts and mechanisms presented in the previous section also apply to
the object level. First, classes may be organised in inhetitance hierarchies, and when a class

¥ This persistence is per session
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4 inherits from a class B we say that A is a subclass of B. Second, the informal definitions of
signature and algebra carry over as expected to include classes, subclasses, attributes and
methods (but see Chapter 4 for precise definitions). Also, mixfix syntax is available. Terms
at this level may then be constructed using attrihutes, methods, variables and even function
symbols, and the same qualification notation for disambiguating parses at the functional
level may be used. In addition, the concept of a least parse carries over.

A further feature at this level is redefinition, or overriding, by which snbclasses
may Teplace by new ones the definitions of attributes and wmethods associated with their
superclasses. Therefore, subclass relationships cannot be strictly interpreted as inclusions,
although operationally an object of some class B can be placed wherever an object of any
of its superclasses is expected, giving rise to subclass polymorphism. At run time, a
mechanism called dynamic binding selects the most specific version of a method, based
on the class of the object to which the method is applied; similarly for attributes.

Lastly, the model of compntation at this level is a generalised form of term rewriting in
which implicit reference is made to a database of objects. We will use examples to explain
the interpretation of axioms nnder this model.

When not parameterised, object modules have this form:

Syntax 2.15 (Unparameterised Object Modules)

omod {Medld) is
{oModElt). ..

gndo

where {(Modld) stands for the name of the module, by convention given in upper case
letters. {oModEit) stands for the things that may he declared by an object module, which
include classes, attributes, methods and axioms, but alse anything that can be declared by
a functional module. Object modules may alse import other functional or object modules,
0

2.2.1 Classes and Subclasses

Class declarations have the following syntax:

Syntax 2.16 {Classes)

classes (Class/dLtst)

where (ClassIdList } is a non-empty list of class names separated by blanks; by convention.
class names are capitalised. The keyword class is allowed as a synonym to classes. O

Example applications of this syntax are:

class LinkedList .
classes Teacher Student .
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Subclass declarations have the following syntax:
Syntax 2.17 (Subclasses)
subclasses {Classlist) < {ClassList) {< (Classlist}}. .. .

whete {Classlist) is a non-empty list of class names, separated by blanks and pessibly
qualified {this was explained in Section 2.1.3). This syntax speaifies that the classes men-
tioned in the first list are ail subclasses of those in the second list, and so on, The keyword
subclass is allowed as a synonym to subclasses. O

For example, we may declare the folloning subclass relationships:

subclass Teacher < Person .
subclasges Teachinghssistant < Teacher Student < Person

2.2.2  Attributes
The syntax for declaring attributes is similar to that for declaring functions. It is:
Syntax 2.18 (Attributes)

at {OpForm) : (KwmdList) -> {Kind) .

where {OpForm ) is the syntactic form of the attribute (just as for functions), {Kmd) is the
name of a sort or a class (possibly qualified). and {KndLis() is a non-empty list of (Hwnd).
The arity must include at least one class. O

For example, a class Person might have an attribute called age_, declared like this:
ar age_. : Person -> Nat .

Likewise. an attribute called nth-person for a class PersonList may be declared like this:
at nth-person : Personlist Nat -> Person .

Note fram these declarations that an object of class Person has only one age. but that an
object of class PersonLigt can have many values for its nth-person attribute.
Like fns, the keyword ats is used to declare together attributes with the same rank, as

ats (age_) (pumber-of-children_) : Persen -> Nat .

An attribute is always associated with the first class mentioned in its arity. For instance,
if Circle and Square are classes, then

at fits-inside : Circle Square -> Bool .



is regarded as an attribute of objects of class Circle. Attrihytes whase coarity is a sort
are commonly referred to as sort-valued attributes, and those whose coarity is a class
as object-valued ar complex attributes. Au object with complex attributes is called a
complex object.

Attributes are also classified by whether their values are stored or derived. The value
of a stored attribute is explicitly kept in an object and can be directly updated by methods.
The value of a derived attribute s given by an expression that may involve varions function
and attribute symbols, and thus cannot be directly updated; said differently, the value of a
derived attribute is fnnctionally determined from the stored state of the object. (Derived
attributes are analogous to what the database community calls comnputed or virtug! fields.)
t is ofteu clear whether an attribute shounld be stored or derived, but occasionally an
attribute can be either, and the choice is oue of convenience. An example of this would
he an attribute height for a class of balanced binary trees. If stored, the operations that
change tle structure of trees (e.g.. insert) must ensure that the value of height is always
up to date; if derived, this value may be computed on demand by traversing trees from their
root to any leaf, giviug as result the number of wodes visited minus one. Another example
of an attribute requiring a similar decision is ntb-person, which could be computed on
demand or stored in the object for every currently valid iudex.

In FOOPS there is po special syntax for distinguishing stored from derived attribntes.
An attribute is assuined stored unless an axiom that defines its value is given. For instance,
the value of an attribute age_ for persons might be dcfined with an axiom such as

ax age P = year-difference(current—date,birth-date(P))

where current-date would be a built-in nnllary function returning the current date and
birth-date a stored attribute.

For each stored attribute there is a built-in axiom that indicates how to fetch its value
from the database of objects in the FOOPS environmeunt. Axioms for hoth derived and
stored attributes are interpreted operationally as rewrite rules in this extended sense.

Finally, attributes can be declared assaciative bnt not commutative, and can have eval-
uation strategies. See Section 2.2.4 for more details about evaluation order.

2.2.3 Creating Objects

Objects iu FOOPS may he created either dynamically or at module-entry time. For dynamic
creation, FOOPS provides a method that is built-in for every class. For a class C, it is a
staudard-form method called new, € that accepts as arguments a unigue object identifier and
initial values for each of the stored attributes of the object; it gives as result the identifier.
Object identifiers are simple symhols such as Johnny, TheRedArmy and Chapterl. Initial
values for attributes are specified by giving the attribute's syntactic form, thes an equal
sign, and finally the term for the value itself. To illustrate object creation, cousider this
simple module:

omed NAT-LINKABLE is



2.2 Object-level Modules ) 34

class Linkable

protecting NAT .

at value_ : Linkable -> Nat .

at next_ : Linkable -> Linkable .
endo

NAT-LINKABLE defines a citass of nodes similar to those that would be used in a linked
implementation of lists. To create an object of class Linkable, we ¢an execute

eval nev. linkable(SomeLipkable, value_ = 10, next_ = Anotherlipkable)

where SomeLinkable is the (unique) identifier of the new object, and AnotherLinkable is
the identifier uf another object of class Linkable that must have been created previously!.
The semantics of creation calls for attributes 1o be initialised i1 parallel, so that the expres-
sions on the right-hand side of the equal sign cannot refer to the new object’s state.

It is ap error to attempt to create an object whose identifier is not umique within its
class. However, objects of unrelated classes muy have the same identifier, and gnaliication
may be required to resolve ambiguities.

Object creation is very flexible and powerful in FOOPS, as we now illnstrate. First,
there is no fixed order in whick initial values for attrihutes must be given, so that

nev.linkable({SomeLinkable, next_ = AnotherLinkable, value_ = 10)
is the same as
new.lLinkable(SomeLinkable, value_ = 10, next_ = AnotherlLinkable)

Moreaver, object identifiers are optional, and in their absence generated automatically by
the system. For example, it is possible to write

new.Linkable(value_ = 10, next_ = AnotherLinkable)

and let the system choose a unique identifier for the new Linkable cbject; this is useful for
data struyctures in which we do not care about the names of iuternal components.

Finaliy, initialising an attribute is optional. An attribute that is not initialised is assigned
a default velue, which is either given explicitly or else is determined from the environment
isee below for the details). ¥or example. the execution of

eval new.Linkable(value_ = 25} .

will involve assigning a default value to next_. Combining all of these conventions, we see
that

new.Linkable()

*There is a circularity problem here. liow can a Linkabla object be created without there being other
linkables already in existence? Further beiow we show how this is solved.
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is a valid expression in FOOPS. It creates an object of class Linkable which i given a
unique identifier and default values for its attributes.
Formally, the syntax for object creation is:

Syantax 2.19 (Object Creation)

new. {Classfd ) ([{NewObjArgs )|}
where {New(bjArgs ) is defined to be:
{Objectld) {, {(OpForm) = {Term)}}...

a

2.2.3.1 Entry-time Creation

Objects created at module-entry time may serve to denote special situations., in much
the same way that constants are sometimes used at the functional level; for example, the
constant nil is used to denote empey lists. The attributes of these objects may be given
initial values by declariog the appropriate axioms: those attributes not initialised receive
default values, as explained below. The syntax for specifying the identifiers of these objects
is to declare a method without arguments:

Syntax 2.20 (Entry-time Objects}
me {OQby[d) : -> {Clasa) .
where {Ot;fd} is an object identifier, as described earlier. O

(Section 2.2.4 describes how methods with arguments are used for updating objects.)
For example. we may declare a class of stacks and a constant empty to denote empty
stacks, as follows:

omod STACK-OF-NAT is
class Stack .
extending NAT .
fn no-top : ~> Nat? .

at top : Stack -> Nat? [default: (no-top)]
at rest : Stack -> Stack .

at is-empty : Stack -> Bool .

me empty ; -» Stack .

me pop . Stack -> Stack .

me push : Nat Stack -> Stack .

var § : Stack . wvar N : Nat .

--- the next two axioms declare initial values for empty:
ax toplempty) = no-top .

ax rest(empty) = empty .
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ax is-empty(S) = top(S8) == no-top and rest(8) == empty

ax top(pop(S)) = toplrest{S))

ax rest (pop(S)) = rest(rest(S))

ax top(push(N,S)) = N .

ax rest(push(N,S)) = new.Stack(top = top(8), rest = rest(5))
endo

(The line “extending NAT ." declares that NAT is imported in extending mode. The
details of this mode may be ignored here: the next chapter gives more information.)
Two remarks are in order. First, the axiom

ax rest(push{N,S)) = S .

would have been incorrect: it specifies that after a push, the rest of a stack is itself: this
is 50 because § denotes an object identifier and not the state of some stack. The axiom
in the module says that the current state of the stack is copied onto its rest, so that this
circularity problem is avoided; this seems to be a good example of the differeuce between
reference and copy semantics for assignment in programming languages.

Second. terms such as push(5,empty) are valid. However, if empty is npdated its
intended meaning is destroyed. This misuse can he prevented by declaring that empty is
private to STACK-DF-NAT (and indeed rest would need to be private too, so that empty
could not be accessed judirectly either): Section 3.9 describes how to do this.

2.2.3.2 Default Values for Attributes

When an attribute of a new ohject is not initialised it is assigned a default value. There are
two kinds of default value: explicit and implicit. Ezplicit default valnes are those gpecified
as part of an attribute's declaration, in the sectiou for properties, as in:

at age_ : Person -> Nat [defauwlt: (1)]

which indicates that if age_ is not given a value ju a call to new.Person, for example, it
should be set to 1 automatically. The syntax for specifying an explicit default value is:

Syntax 2.21 {Explicit Default Value)

default: ({7erm})
a

If an attribute is not given an initial value in a call to nev or with an axiom (for entry-
time objects) and it does not have an explicit default value, an smphcet default value for it
is determined from the environment. This helps with the creation of objects with compiex
structure, and works as follows. For a sort-valued attribute of sort S, the implicit default
value is the principal constant of 8, which is the first-declared constant of that sort®.

*A more satisfactory definition of principal constants lakes inlo aceount module hierarchjes; it is given
in Section 3.1.1.
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If S does not have a principal constant, the implicit default value for the attribute is an
automatically provided constant called veid-5 of sort 57, the error supersort of §. For
example, in

nev.Linkahle {SomeLinkable, next_ = AnotherLinkable)

attribute value_ is assigned 0, because that is the principal constant of sort Nat in module
NAT {see [95] for a complete list of the priucipal constants of the sorts of modules in the
default environment).

For an object-valued attribute with class C as coarity, the implicit default value is
the first-declared entry-time object of that class. For example, in the context of mod-
ule STACK-OF-NAT, new.Stack() creates an empty stack (as determined by is-empty]); ie.,
is-empty{new.Stack(}) evaluates to true. If such an entry-time object does mot exist,
then the implicit default value is a uew object of ¢lass C whose attributes are all initialised
with defaults. The termination of this recursive strategy can he guaranteed by remembering
the ¢classes that have beeu iustantiated and stopping at the point where the default value for
an attribute requires the instantiatiou of a elass for the second time. Then, that attributc
is assigned an object of class C7, the error superclass of C, whose identifier is void-C. This
object is automatically provided hy FOOPS and is by convention used to denote a null
refercnce. For example, in

nev.Linkahle (SomeLinkahle, value_ = 18)

attribute next_ is assigued void-Linkable. More examples of default value computations
are given in Section 2.2.3.4.

2.2,.3.3 Metaclasses

Sometimes there is a need to define operations that act upon all of the objects ol a certain
class. To facilitate this, every class in FOOPS has an associated “metaclass,” which is a list
of its objects; in fact, object creation and deletion can be seen as methods associated with
metaclasses (deletion is explained in Section 2.2.5). The metaclass of a class C is accessed
with the nullary operation a11-C. The next section and Appendix B provide more details
and examples.

2.2.3.4 An Example

This section further demonstrates the various features presented thus far with two modules
and several evaluations®; also, it shows that objects persist in the FOOPS environment. The
first module declares a class Person and two subclasses of it, Male and Female. Objects
of class Person have two stored attributes, name_ and age_, and one derived attribute,
gender_. Because Male and Female are subclasses of Perscn, their objects also have these
attributes; however, no others are declared for them in particutar. Attribute name_ is given

*These modules appeared originally as examples in [48], but we have changed some of the delails in order
1o use new language leatures.
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an explicit default value but age_ is not. Its default value is implicitly the natural number
0, because that is the principal constant of sort Nat in module NAT.

PERSON imports QID, a functional module provided in the FOOPS default environment.
This module declares a sort named Id whose elements are quoted svmbols, such as “Car
and “Beook. (QID has nothing to do with object identifiers.)

The evaluations are straightforward.

omod PERSON is
classes Person Male Female .
subclasses Male Female < Person .
sort Gender .
fns male female : -> Gender .
pratecting QID .
protecting NAT .
--- stored attributes:
at rame_ : Person -> Id [default: (“NoName)]
at age_ : Person -> Nat .
--- 8 derived attribute:
at gender_ : Person -> Gender .
var F : Female . var M : Male .
ax gender F = female .
ax gender M = male .

ende
eval new.Female(Wilma, name_ = "WilmaPebble, age. = 30}

~==» should be Wilma
eval new.Male(Fred, aname_ = ‘FredFlinstone, age_ = 33)

---> should be Fred
eval pew.Person(Somebody, a2ge_ = 23) . ---> should be Somebody
eval name Somebody . -=-> should be “NoName
eval gender Wilma . —--=> should be female
eval gender Fred . ---> should be male
eval gender Somebody .  ---> should not evaluate any further
---> examine metaclasses
eval all-Person . ---> should be Wilma, Fred, and Somebedy
eval all-Male . --->» should be Fred
eval all-Female . -—-> should be Wilma

The second module declares a class of families and imports module PERSON. Objects
of class Family have two stored attributes, wife_ and busband_, and by their coarities it
is clear that only females can be wives and ouly males can be husbands. There is also a
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derived attribute, name_, defined to be the name of the busbhand.
The evaluations make use of the fact that objects persist in the environment: the objects

created in the context of module PERSON are available when carrying out evaluations in the
context of module FAMILY, because PERSCN is imported into FAMILY.

omed FAMILY is
class Family
protecting PERSON .
~-- stered attributes:
at wife_ : Family -> Female .
at husband_ Family -> Male .
--- a derived attribute:
: Family -> Id .
Family .
ax name F = name husband F .

at name_
var F :

endo

---> the next evaluation uses objects created previously

eval new.Family(TheFlinstones, wife_ = Wilma, husband_ = Fred)

eval name TheFlinstcnes . —--=> should be “FredFlinstone

eval age wife TheFlinstones . —---> should be 30

---> initial values can also be calls tc new:

eval new.Family(TheMunsters,
busband_ = new.Male(Herman, age_ = 42, name_ = “HermanMunster),
wife_ = new.Female{Lily, age_ = 37, name_ = “LilyMunster))

eval age husband TheMunsters . --=> should be 42

eval name wife TheMunsters . ---» should be "LilyMunster

eval name TheMunsters . ==~> should be ‘HermanMuunster

-—-> implicit default values for complex attributes

---> need to be computed next:

eval nev.Family(TheNeighbours)

eval wife TheNeighbours . —-=-> should be scme Female identifier

eval age husband TheNeighbeurs . ---> should be 0

eval name TheNeighbours . ---> should be ‘NcName

--=> ids are alsc optional

eval new.Person(age_ = 20, name_. = “GrandpaMunster)

eval new.Family()

eval new.Person()}
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2.2.4 Methods

Methods (with arguments) are the operatious that chauge the state of objects by assigning
new values to their attributes. In FOOPS, the effect of a method is desceribed declaratively
by axioms. Also, methods may be combined to form method expressions that perform
complex updates on various objects.

The syntax for declaring methods is similar to that for declaring attributes and functions:

Syntax 2,22 {Methods)
me {OpForm} : {KwmdList) -> (Kmd)

where (Hwmd) is the name of a sort or a class {possibly qualified}, and (KindList) is a
non-empty list of {Kwnd}. Tbe arity mnust include at least one class. O

Like attributes, metbods are associated with the first ¢lass mentioned in their arity.
su that for classes NatTree and NatList, the following are methods on ohjeets of class
NatTree:

me insert_in, : Nat NatTree -> NatTree .
me insert-each : NatTree NatList -> NatTree .

The keyword mes may be used to declare together methods with the same rank, as in
mes (insert_in_) (delete_from_) : Nat NatTree -> NatTree

Method axioms can be of two forms. The first is the direct form, which specifies the
attribute to be updated and the value of the attribute after the execution of the method,
For a standard-syntax attribnte a and a standard-syntax method m. the general form of a
direct method axiom (DMA) is:

ax a(m(D,args)) = {Term)

where 0 is a variable that denotes the object that m updates, args stands for the other
arguments to m (if any)” and {Term) canuot contaju any method symbols. The axiom
specifieg that the value of a after the execution of m is equal to the term on the right-hand
side. The term on the right-band side may mention a, so that its new value can be defined in
terms of ita old value. Moreover, wheu a group of DMAs define a method, their right-hand
sides arc evaluated before any attributes are changed.

It is not necessary to give a DMA for each of the object’s attributes. If a DMA s
not given for a particular one, then the atiribute retains its old value. This is termed a
frame assumption. and reduces the number of axioms that must be written, Finally, note
that methods described with DMAs evaluate to the identifier of the object they update.
Therefore, their coarity mwust be the class of this object (otherwise, the left-hand side of the
DMASs would not parse properly).

Let us consider some examples in the context of these declarations:

"To simplilv the cxposition we have assumed that the object Lo update is given as the fiest argument.
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class Pair .
ats fst snd : Pair -> Nat .

which define a class of objects whose state consists of a pair of patural numhers. A methed
that increments attribute £st by a certain amount may be declared like this:

me incr-fst : Pair Nat -> Pair .
Its effect is captured by the following axiom:
ax fat(incr-fat(P,N)) = fst(P) + N .

where P is a variable of class Pair and N is a variahle of sort Nat. These evalvuations jllustrate
how the method works:

eval nev.Pair(p, fst = 0, sad = O}

sval iner-fst(p,5) . ---> should be p
eval fst(p) . ---> should be 5
eval snd(p) . --=> should be O (no change)

The evaluations also show that each DMA is not interpreted directly as a rewrite rule.
The DMAs that describe a method may be thought of as one rewrite rule whose left-hand
side has the method as its top symbol and whese right-hand side gives the updated object.
{Again, this is not term rewriting in the classical sense, but an extension of it that takes
into account an implicit object database.) However, we regard the declarative reading of
individual DMAs as primary.

Now consider a method swap that sets the valué of £st to that of snd and vice versa.
It is defined by these declarations:

me swap @ Pair -» Pair .
ax fst(swap(P)) = snd(P) .
ax end(swap(P))} = fst(P)

Note that the declarativeness of DMAs affords an exceptionally compact description of this
method. Again, evaluations exemplily the situation:

eval nev.Pair(p2, fst = 0, snd = 1)

eval svap(p2) . ---> should be p2
eval fst(p2) . ---> should be 1
eval snd(p2) . ---> should be O
--=> now try a methed expression!
eval swap{incr-fst{p2,1)) . ---> should be p2
aval fst(p2) . —---> should be ¢
eval snd(p2) . =-->» should be 2

A method copy that takes as arguments two pairs and sets the values of the attributes
of the first to be equal to those of the second is defined as follows:
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me copy : Pair Pair -> Pair .
vars P1 P2 : Pair .

ax fst{copy(P1,P2)) = fst{P2)
ax spd(copy(P1,P2)) = snd(P2)

The axioms specify changes to the attrihutes of the ghject denoted by P1, following the
convention stated earlier. Now some evaluations:

eval new.Pair(p3, fst 5, snd = 10)
eval pew.Pair(p4, fst = 7, and = 14)

eval copy(p3,p4) . ---> should be p3

eval fst(p3) . ---> should be 7

eval snd(p3) . ---> should be 14

eval fat(p4) . ---> should be 7 (no change)
eval snd(p4) . ---> should be 14 {no change)

DMAS may also be conditional. Their general form is:
cax a(m{0,args)) = (Term} if {HoolTerm}

where {{fsolTerm} is a Bool-valued term that may not contain any method symbols; ev-
erything else is as before. This axiom says that m makes attribnte a of 0 equal to { Term) if
the condition is satisfied:; otherwise, the attribube is not changed. Also, both (Term) and
{f#o0lTerm ) are evalnated before the execution of the method (in a fashicn similar to that of
mneonditional DMAs, as explained abave). By way of illustration, consider a method called
make-snd-zero on pairs that sets the value of snd to zero if its current value is greater than
ten but docs not change it otherwise. The following deelarations describe this method:

me make-sud-zere : Pair -> Pair .
cax snd{make-snd-zero(P)) = 0 if snd{P) > 10 .

Now some example evaluations:

eval pew.Pair(p5, fat = 5, snd = 10}

eval make-snd-zero(p5) . ---> should be p5

eval snd(p5) . --~> should be 10 (no change)
eval snd(swap(incr-fst(swvap(p5),2))) . ---> should be 12

eval make-snd-zero(ps) . ---> should be p5

eval snd(p8) . =~-—-> should be 0

eval fst(ps) . ---> should be 5 (mo change}

The sccond form of method axiom is the indirect form, which defines a method in
terms of a method expression. For a standard-syntax method m, an indirect method axiom
(IMA) has the following form:

ax m(0,args) = mexpr .
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where 0 is a variable and mexpr is a method expression, which is simply a term that involves
method symbols. Each IMA is interpreted as a rewrite rule, and a method defined in this
way may return any valueS. To facilitate the construction of method expressions. FOOPS
provides a method ezpression combinalor that composes expressions sequentially. This
built-in feature has syntax _; _, so that if mexpr2 and mexpr3 are method expressions, then
the following are also method expressions:

mexpr ; mexpr2
rexpr ; mexprZ ; mexprd

This combinator associates to the left and operates by evaluating its first argument and
then its second argument; it gives as result the evaluation of its second argnment. For
example, assume that a method iner-snd {similar to incr-fst) has been declared. Then a
method iner-both that adds a certain amouut to each component of a pair can be declared
like this:

me incr-both : Pair Nat Nat -> Pair .
ax incr-both{P,N1,N2) = incr-fst{(P,N1) ; incr-snd(P,N2)

where B1 and N2 are variables of sort Nat. Finally, IMAs may also be conditional, with the
following form and usual interpretation as rewrite rules:

cax m{0,args) = mexpr if {BooiTerm) .
As before, the condition may not include any method symbols.
Metbods defined with IMAs are also called derived methods.
2.2.4.1 Order of Evaluation

Method expressions are evaluated bottom-up. This may be understood by examining the
parse tree of a term. For exampie, tbe parse tree of

svap(incr-fst{svap(pl},fst{p2)))

swap
incr-fst

swap fst

pl p2

%Thus, unhke the sityation in some other chbject-oriented languages, in FOOPS there is no need for
“functions” with side eflecta.
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Bottom-up evaluation begins by first evaluating the leaves of the tree and then proceed-
ing upwards recursively, carrying the results obtained in lower levels As methods effect
state changes, each method in a methad expression is (possibly) evaluated in a different
context, Other evaluation strategies, such as top-down or mixed, would not be appropriate
because symbolic method execution does not make sense for objects: a method must have
real arguments before it can produce a real state chauge®. However. the order in which the
arguments to a methad are evalnated is not fixed, and any particular order may be declared
as a property of the method. The syntax for this is similar to that for functions, which was
given in Section 2.1.8; default evaluation orders are also similarly determined.

2.2,5 Deleting Objects

FOOPS provides every class with a method to delete objects: 1t gives as result the void
object assoeiated with the class. For a class C, its syntax is:

me remove_ : G ->» C?
If Blackvells is the identifier of un object of class Bookstore. then
remove Blackwells

vields void-Bookstore. In addition, remeve_ has the effect of replacing cvery occurrence
of the supplied identifier in other {complex) objects with the same void object it returns.
For example, consider a class of persons with an attribute

at spouse : Person -> Person .

and two objects, with identifiers John and Susan, such that John is the spouse of Susan
and vice versa. After executing

remove John

spouse(Susan) vields void-Person.
Finally, entry-time objects cannot be deleted.

2.2,6 Invalid Object Identifiers

It is possible for methods and attributes to remain unevaluated iu an expression if no rewrite
rules apply to them. This might be problematic wheu an attribute or method is supposed
to evaluate to an object identifier to be passed as argument to another atiribute or method.
Then what these would receive would not be a valid object ideutifier. By way of illustration,
consider the following declarations for a class of buffers of fixed size (giveu by the constant
bound):

“However, there exist symbolic exethition systems simular to FOOPS in which method expressions remain
partially unevaluated uniil certain conditions hecome true. For example, see the proposals for object-oriented
concurrent execution in 9] and [76].
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class BoundedBuffer .

at current-size : BoundedBuffer -> Nat .

me put : BoundedBuffer Nat -> BoundedBuffer .
me get : BoundedBuffer -> Nat .

var B ; Buffer . var N : Nat .

cax put(B,N) = ... if current-size{B) < bound .

{The details of the axiom for put are not important here.) Now assume that Buff is the
identifier of a buffer that is full. Since there are no axicms that specify the bebaviour of
put on full buffers, a term such as

put{Buif,5)
will not evaluate any further. If this term happens to be part of a larger term, eg.,
get(put(Buff,5))

then unless the axioms descrihing get explicitly test for this kind of situation (see below?},
the evaluation of the term fails because there is no object with identifier put (Buff,5}.

Since it may be of interest to try to do something about an invalid object identifier,
FOOPS provides every class with a Bool-valued method that tests whether there exists an
object with a certain identifier. For a class C, tts syntax is:

me exists?_ : C -> Bool .

2.2.7 Redefinition and Dynamic Binding

Class inheritance is more flexible when the methods associated with a subclass can rede-
fine, or override, those asspciated with its snperclasses. FOOPS and other object-oriented
languages that support redelinition come equipped with a run-time mechanism that selects
the most specific version of a method, hased on the class of the object to which the method
is applied. This is called dynamic binding. Redefiniticns in FOOPS are given just by
introducing a new syntactic declaration, which must include the redef property. as in

me insert : DoublyLinkedList Elt -> DoublyLinkedList [redef]

where E1t would be the class (or the sort) of the elements stored in the list. Regularity
must of course still be obeyed. so that nnique least parses exist. However, a method and
its redefinition may behave differently. FOOPS also allows attributes to be redefined; the
same syntactic restrictions apply. (Our prototype implementation issues warnings when a
declaration is a redefinition attempt bnt does not include the redef property.)

Next we give a concrete example, in two parts, that involves redefining both attributes
and methods. First, consider a class Linkable of ohjects whose state consists of a natural
numher and a “pointer” to anotber object of class Linkable, as would be used for defining
linked lists:
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omod NAT-LINKABLE is

class Linkable .

protecting NAT .

at value_ : Linkable -> Nat .

at next_ : Linkable -> Linkable .
endo

Module NAT-BILINKABLE below defiues a subclass of Linkable called BiLinkable whose
objects store, in addition, the identifier of a “previous” bilinkable object, as would be used
for defining doubly-linked lists. So that linkables and bilinkables are not mixed inadver-

tently, attribute next_ is redefined:

omod NAT-BILINKABLE is
¢lass Bilinkable .
extending NAT-LINKABLE .
subclass BiLinkable < Linkable .
at next_ ; Bilinkable -> Bilinkable [redef]
at prev_ : Bilinkable -> Bilinkable .
ende

These declarations specify that objects of class Linkable Lave two attributes, value_ and
next_, of coarity Nat and Linkable, respectively, while objects of class Bilinkable lave
three attributes, value_, next_ and prev_, of coarity Nat, Bilinkable and Bilinkable,

regpeetively.

Second, below we provide a version of NAT-LINKABLE that declares three methods, one
ihat replaces the value stored in value_, another that replaces the value stored in next_,

and a third that inserts a linkable in betweeun two others.

omod NAT-LINKABLE is
class Linkable .
protecting NAT .
at value_ : Linkable -> Nat .

at next_ : Linkable -> Linkable .
me replace-value : Linkable Nat -> Linkable .
me replace-next : Linkable Linkable -> Linkable .

me put_between_and_ : Linkable Linkable Linkable —> Linkable .

vars L L1 L2 : Linkable . var X : Nat .

ax value(replace-value(L,X)} = X .

ax next(replace-next(L,L2)) L2 .

ax put L between Li and LZ = replace-next(L1,L) ;
replace-next(L,L2) .

endo

Now follows a corresponding version of NAT-BILINKABLE in which put_betveen_and_
and replace~next are redefined so that prev_ is also updated. Furthermore, note the



inclusion of (auxiliary) methods with a syntax similar to that for assignment in imperative
languages.

omed NAT-BILINKABLE is
class BiLinkable .
extending NAT-LINKABLE .
subclass Bilinkable < Linkable .
at next_ : Bilinkable =-> BiLinkable [redef]
at prev_ : BiLinkable -> Bilinkable .

me neXt_:=_ : BiLinkable BiLinkable -> Bilinkable .
ne prev_:=_ : BiLinkable Bilinkable -> Bilinkable .
me replace-next : BiLinkable BiLinkable -> Bilinkable [redef]
me replace—prev : Bilinkable BiLinkable -> BiLinkable .

me put_between_and_ : BiLinkable Bilinkable BiLimkable
-> Bilinkable [redef}

vars L L1 L2 : Bilinkable .

ax next(pnext L := L2} = L2 .

ax prev(prev L := L2) = L2 .

ax replace-next(L,L2) = prev L2 := L ; (next L := L2)

ax replace-prev(L,L2) = replace-next(L2,L) : L .

ax put L between L1 and L2 = replace-next(L1,L) ;

replace-prev(L,L2) .
endo

Run-time problems of the kind described in the previous section occur if no atioms are
given to specify the behaviour of methods and derived attributes that redefine olhers.

A further possibility in FOOPS is for a derived attribute {0 be redefined into a stored
one. This gives more flexibility to subclasses in choosing whether something that was
previously computed on demand can now be stored and updated when appropriate. Note
that the opposite should not be allowed: an inherited method could attempt 10 directly
update an attribute whose value was no longer stored.

2.2.7.1 Accessing Original Versions

The redefinition of a derived attribute or a metbod may access the original versiop by using a
qualification notation similar to that for disambiguating parses (presented in Section 2.1.3).
For instance, a method debit on bank accounts (of class Acct) might be redefined for
mimmum-balance accounts (of class MBAcct), so that those withdrawals that would leave
the balance below the reguired minimum are not accepted. The axiom for the redefinition
would be something like this:

ax debit{A,AMOUNT) = (debit(A,AMOUNT)).Acct
if balance{A) - AMOUNT >= minbalance(A) .

where A is a variable of class MBAcct.
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2,2,7.2 Discussion

While FOOPS adopts a so-called “variant” syntactic restriction on redefinitions (i.c., that
signatures remain regular), this cheice is not innocuous for type safety, in the following
wense. Consider, for example, the method replace-next above. A call to it for an object
of class Bilinkable selects the redefipition. But what if dynamically its second argument
happeus to be of class Linkable? The FOOPS approach is to insert a retract at run lime
oxn the second argument. On the other hand, langnages without retracts take this to be a
fatal run-time type error. An example is Eiffel [78], although a recent proposal suggests
that system-level validity checks can signal the potential occurrence of this kind of error.

An alternative syntactic restriction that does not entail retracts or possible type errors
1s called “contra-variant,” and is different in that the new arity must be greater than the
old arity except om the argument position that determines the class of the attribute or
method. For example, the redefinition of replace-next for bilinkables would be invalid
under contra-variance because the secand argnment goes in the epposite direction. FOOPS
adopts variance for two reasons. First, it appears to captrre the more cornmon situation
in practice {23, 78]. Second, it obeys the algebraic semantics of FOOPS. We only koow
of one language that adapts contra-variance: Trellis [L02}; many others require that arities
and coarities be equal except on the argument position that determines the class of the
attribute or method, and this is also safe!?. See Section 6.4 for more information ahout
redefinition facilities in other languages.

2.2.8 Inheritance Diagrams

The diagrams of Section 2.1.4 generalise to the object level by considering sorts to be classes
and functions to be either attributes or methods. Furthermore, note that it is possible for
a methed to be a merge and a redefinition at the same time (in fact, merging for attributes
and methods implies redefinitionj. One additional diagram exists at the object level, and
is shown in Figure 2.4. In it a method m of class 4 is redefined for ehjects of class C. This
creates an ambiguity whenever m is applied to an object of ¢lass D, and which cannot be
solved simply by gaalification. This is because in a context expecting an object of class &,
an object of class D can be placed, but if m is applied to this object, which of the two m's
should he chosen? It is not appropriate to require some form of qualification there, as {for
example) such contexts may exist in code that does not pertain the designer of D. (With
module importation, inheritance hierarchies may include classes from different modules; in
fact, this (s the typical case. See the next chapter.) Also. the qualification notation that
would be needed appears to be excessively complex, as it would need to he applicable for
all such possible D’s. Nevertieless, the worse prohlemn is that it contradicts the goal of
incremental software development. Therefore, this situation is an error in FOOPS, and
some corrective action is required. The simplest option would be to merge m in D. However,
if this is not appropriate then it might be possible to rename one of the m's. The next
chapter explains how this can be done.

!®This option is compatible with the algebraic semantics of FOOPS
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Figure 2.4: Conflicting redefinition in muitiple inheritance.

2.3 Summary

This chapter has provided a detailed presentation of the main programming unit of FOOPS,
the module. We explained the syntax and (informal) meaning of sorts and classes, apnd of
functions, attributes, methods and axioms. We also gave an intuitive description of the
models of computation at the functional and ohject levels of FOOPS, both of which are
based on term rewriting. Several small examples illustrated the features of the langunage;
more substantial examples are given in the next chapter and in one of the appendices.

FOOPS provides snpport for all the basic concepts of object-orientation; moreover, it
distinguishes between values and objects and hetween modules and classes, and supports
overloading and mixfix syntax for operations. Also, object creation is very flexible and
convenient for initialising objects with complex structure.

This chapter’s contributions to the development of FOOPS inelude derived and multi-
argument attributes, explicit defaults, optional unique identifiers for objects, and in general,
the detailed explication of the language features. Furthermore, based on the semantics of
the language, we examined sort and class inheritance situations and cooflicts, which is
something that had not been done before.

The features of FOOPS presented here are further enhanced for lerge-grein programming
and design by the facilities introduced in the next chapter, such as theories, views, module
hierarchies, generic modules with semantic interfaces, and an information hiding mechanism.



Chapter 3

Module Reuse and
Interconnection

The engineer may dectde fo copy as many seetungly good
feaiures as he can from ezisting designs that have success-
fully wunthstood the forces of man and nature, but he may
alse decide to smprove upon those aspects of prior deswms
that appear to be wanting.

-— Henry Pectroski

Parameterised programming (35, 36] is a design techniqne whose aim is to increase the
reusability, reliability and understandability of software modules by providing faciiities for

e organising modules into hierarchies;

e declaring module properties;

e specifying liow a module satisiies some properties;

e parameterising modules in order to broaden their domain of applicability;

¢ renaming module features so that modules can be adapted to new contexts;
¢ distinguishing between vertical and horizontal structuring;

e specifying moedule interconnections witb semantic interfaces; and,

¢ composing modules to create new modules or actual systems.

‘This chapter describes the realisation of the above facilities in FOOPS and their ap-
plication to (object-oriented) software design. We algo discuss the capture of higher-order
capabilities in a first~order setting, rules of encapsulation, and information hiding mecha-
nisms. Additionally, several examples demonstrate the advautages of distinguishing between
class and module inheritance (but Chapter 6 gives a more detailed discussion}). As in the

30
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previous chapter, we include simplified syntactic descriptions; the full syntax for the lan-
guage appears in Appendix A. We believe that the combination of all these facilities for
large-grain programining generalises—and in several ways clarifies—existing approaches to
object-eriented programming and design.

3.1 Module Hierarchies

Modules in FOOPS can import other modules, and this gives rise to 2 kind of multiple
inheritance at the module level that is quite different from sort or class inhertance. In
simple terms, module importation is the inclusion of the declarations of one module inte
another. However, FOOPS provides four kinds of module importation modes for declaring
how & module respects the semantics of the modules it imports. Their syntax is

Syntax 3.1 (Module Importation Modes)

{protecting | extending | using | including} {Modld}
Tbese modes can be abbreviated to pr, ex, us and anc, respectively. O

The importation mode of 4 module M’ in a module M is

e protecting if M neither adds new iterns to nor identifies items of sorls or classes from
M';

s extending if M does not identify items of sorts or classes from M'; or,

® using or including otherwise.

Examples with numbers are usually the best for illustrating these medes. Cousider the
natural numbers in Peano notation:

fmod FEANQ is
sort Nat
fn Q0 : -> Nat
fn s_ : Nat -> Nat .
fn _+_ : Nat Nat -> Nat [id: (0) assoc cemm]
fn _*_ : Nat Nat -> Nat (1d: (s O} asscc comn]

vars M N : Nat

ax (s N) + (s M) = s 5 (N + M)

ax 0 = N =10 .

ax (s N) * (s M) =8 (N+ M+ (N *x M)
endf

Now this module:
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imod PEANO-OMEGA is
ox PEANO .
fn omega : -> Nat .
endf

[t extends PEANO because the constant omega is a new element of sort Nat. This other
module also extends PEAND:

fmod PEANO-EXTRA is

ex PEANQ .

fn times-2 : Nat =-> Nat
endf

bhocause terms such as times-2(s s 0) denote new natural numbers {from the point of view
of PEANQ). However, the next module protects PEANO because it gives times-2 a definition
in terms ¢f old elements of sort Nat:

fmod PEANO-EXTRAZ is
pr FEANO .
fn times-2 : Nat -> Nat
var N : Nat
ax times-2(N) = s 8 0 * N .
endf

Therefore, in this madule a term such as times-2(s s 0} does not denote a new natural
number as jt is equal to s 5 5 5 0. A module that simply uses the “services” of another
protects it too; for example:

fmod PEAND-LIST is

sort List

pr PEANO .

fn nil : -> List

fn cons : Liat Nat -> List .
endf

The naturals modulo ¥ can be defined by importing PEAND aud adding an axiom that
equates 0 to N, For N = s s 0, we have:

fmod PEANO-MOD2 is

uaing PEANOD .
ax s 8 0 =0 .
endf

The mode is using because 0 and s s ¢ were not previously equal or identified.
Finally, the including mode is only for importing theories, and will be discussed in the
sections that follow.
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Of course, importation modes cannot be automatically checked for correctness; their
purpose is to document the way in which modules are used.

A further way of extending a module is to declare new subsorts or suhclasses. because
their values and objects (respectively) can also be seen as belonging to their supersorts and
superclasses. The following example illustrates this.

Example 3.2 Module ACCT below declares a class Acct of bank accounts, with attributes
bal_ (for balance) and hist_ {for transaction history} and methods debit and credit for
the usnal operations on accounts, Tbe module HIST declares the sort of tbe transaction
histories, which are lists of 2-tuples whose first component is a date and whose second
component is an amount of money (of sort Honey). Lists use juxtaposition syntax (i.e., __}
for append and the function hd to select the first element of a list: 2-tuples are constructed
; — »». Module HIST is exteuded by ACCT because of the declaration
which is used in transaction histories to indicate withdrawal

with syntax <<
of the function insufunds_,
attempts that an account could not support. Module NOW declares a class of objects with an
attribute that stores a date; in particular, it declares an object with identifier Teday which

is used to hold the current date. (Alodules HIST and NDW are given in Appendix B.)

omod ACCT is
class Acct
ex HIST .
pr NOW .
at bal_ : Acct -> Monmey [default: (0}]
at hist_ : Acct ->» Hist .
var A : Acct . var M : Momey .
me credit : Acct Memey -> Agct .
ax bal credit(A,M) = bal A + M .
ax hist credit(A,M) = << date(Today) ; M >> hist 4 .

in insufunds_ : Money -> Money? .
me debit : Acct Momey -> Acct
cax bal debit(A,M) = bal A - M if M <= bal A .
cax hist debit(A,M) = << date(Today) ; - M >> hist & if M <= bal A .
cax hist debit(A,M) = << date(Today} ; insufunds(M) >> hist &
if M > bal A .
endo

Next, module CHACCT extends ACCT hy declaring a subclass Chicct of Acct. Cheque
accounts have an additioual attribute for recording the cheques written; the sort of this
attribute comes from module CHIST (which i3 also given in Appendix B). Cheque histories
are lists of triples with each entry containing a cheque number, a date and an amount; 1% _
is the selector function for the first component of a triple (whose sort is 3Tuple). Because
cheque accouuts are accounts not available from ACCT, CHACCT extends it.

omed CHACCT is
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clags ChAcct .
ex ACCT .
subclass ChAcct < Acct
pr GRIST .
at chist_ : ChAcct -> Chist .
var ¢ : ChAcct . var CH : Chist . wvar M : Momey .
var 3TUP : 3Tuple .
--- an auxiliary to compute the next check number
fn nextchk_ : Chist -> Nat .
ax mextchk CH = if CH == emptyChist then 1 else L + 1% hd CH fi
--- an anxiliary to add a nev entry to the cheque history
me app-chist : ChAcct 3Tuple -> ChAcct .
ax chist app-chist{C,3TUP) = 3TUP (chist C)
fn badch_ : Money -> Money? .
me writechk : ChAcct Momey -> ChAcct .
cax writechk(C,M) = app-chist(C,<< nextchk chiet T ;
date{Today) ; badch(M) >>)
if ¥ > bal C .
cax Writechk(C,H) =
debit (C,M}; app-chist(C,<< nextchk chist C ; date(Today) ; M >3}
if ¥ <= bal C .
endo

It is useful to document the context of a module by drawing a graph that shows all
of the modules on which it relies. The following picture gives the context for CHACCT (and
also for ACCT):

CHACCT
ed

ACCT CHIST
A

e ~
HIST/ \.\'DH /
/

\

Here, an arrow from B to A indicates that 8 is imported by 4. A salient characteristic of
the above kind of module importation is that it is cumulative {also called transitive); for
example, CHACCT also imports BOOL, HIST and XOW, although indirectly. Furthermore, it is
important that modules that are multiply imported are shared; for example, ACCT includes

BOGL

' Actually, the context of CBACCT would also include all the other submodules of RIST, CHIST and NaV.
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only one copy of the booleans, even though it imports BOOL indirectly via two different
submodules. Later we present facilities that allow modules to import others privately, thus
blocking transitivity.

To allow for the graceful integration of modules that might be developed independently,
FOOPS associates with each sort, class, fnnction, attribute and method the module which
declares it. For example, the full name of class Acct is Acet.ACCT, as discussed in the
previous chapter. When modules are imported in protecting or extending tnode, tbeir
features retain this association with their module of origin. However. certain situations call
for the textual copy of the features of one module inte anotber, and this is provided in
FOOPS by the using mode of importation. (This should not teally be surprising, because
using makes no guarantees about preserving the semantics of imported modules.) Several
other applications of using will be discussed in [ater sections. Here we just note that for
executable modules. protecting and extending are the most common importatiou modes.

3.1.1 Principal Constants

In Section 2.2.3.2 we explained the role of principal constants and entry-time ohjects in the
computation of default values for object attributes. In the presence of module inheritance,
the principal constant of a sort in a medule M is the first declared constant of that sort
in M. If no constants are declared in M, then the principal constant is the first declared
constant of that sort ino the module from which M gets that sort, and so on recumively. The
determination of which entry-time object to use as default for an attribute is similar.

3.2 Theories

At both the functional and the object levels, FOOPS provides special kinds of modules called
theories whose purpase is to declare syntactic and semantic properties to be satisGed by
other modules. The structure of theories is the same as for the other kind of module that we
have been using, in that they may declare sorts, classes, functions and so on; alse, theories
can import other modules and can be parameterised, as will be discussed further below.
Theories constitute the purely declarative side of FOOPS, and support high-level design
and specification.

Because they classify other theories and modules by the properties that they satisfy,
thearies can be seen as types [39]. This view extends the previous notions of “types as sets”
and “types as algebras” because theories are types that range over modules and that exist
only at system or module design time.

In addition, as theories are not meant for specifying executable code, tbe form of their
axioms is not restricted as for executable modules (see sections 2.1.5, 2.2.2 and 2.2.4).
Moreover, it is not sensible to distingnisb between stored and derived attributes. In the
following, we will use “module” to rcfer to both theories and executable modules.

Syntactically, functional theories are declared with the keyword pair £fth ... endfth
and object theories with the pair oth ... endoth:
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Syatax 3.3 (Theories)

fth (Msdld) ie (fModElt)... endfth
oth {Modid) is (eModEit)... endoth

)

The simplest theories in FOOPS declare 2 single sort or class:

fth TRIV is
sort Elt
endfth

oth TRIVC is
clase C ,
endoth

Doth of these theories are automatically available in FOOPS.
The following theory describes partially ordered sets (or pesets), in anti-reflexive form:

fth POSET is

sort Elt .

fn _<_ : Elt Elt -> Hool .

vars X Y Z : Elt .

ax X < X = false .

ax X < Y implies not ¥ < X = true .

ax (X < ¥ and Y < Z) implies (X < Z) = true .
endfth

For theories, the only importation modes that make sense are using and including,
because theories do not refer to any fixed number of items or elements of sorts or classes,
but tg any module that satisfies their axioms and that provides the syntactic structure
they declare. The next theory defines totally ordered sets, or posets in which every pair of
distinct elements is related; it imports PDSET:

fth TOSET is

using POSET .

vars X ¥ : Elt .

cax X <Y or ¥ < X = true if X =/= Y .
endfth

The difference between these importation modes is that using copies text but including
does not, which is useful for situations in which subtheories need to be shared. The next
section provides a full example.

On the other hand, if some theory T is to require the inclusion of an “uncorrupted”
version of the natural numbers, for example, it would import NAT in protecting mode:
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oth T is
pr NAT .
endoth
Because NAT is not a theary, modules satisfying T must provide the natural mumbers as
specified by NAT. Incidentally, BUOL is also antomatically imported into every theary (in
protecting mode).
As a final example, the purpose of theory ITER-ACTIONS given further below is to declare

the varable parts of an iteratiou construct such as the while loop, which {in general) has
the following form:

watialisalion
while test do

some-action
endwhile;
wrapup;

The text in italics denotes the variahle parts; we will consider them to be methads. This
example concerns loops over data structures, so each of these methods will bave two argu-
ments, one for the data structure and one for any other input. The theory is:

oth ITER-ACTIGNS is
classes € In Out .
me init ; CIn->»C .
me action : C In ~> C .
me wrapup : C In -> Out .
me test : C In -> Bool .
endoth

The class Out denotes the result of the iteration. In the next section we use this theory
to specify while loops in FOOPS.

3.3 Abstract Classes

Abstract classes function like templates for classes, in that they declare some methods
and attributes that must be defined in their subclasses, and may also introduce some new
methods defined in terms of these given coes. For example, in Eiffel [77], a class declared
as ahstract (“deferred”) can bave methods that do not have executable code; in C++ and
Ada 9X [2], a class is abstract if any of its methods is not defined. Abstract classes are
used for high level design. They are not generic, and are not meant to be instantiated, but
rather to have their deferred methods and attributes defired in different ways by different
subclasses,
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In parameterised programming, we can provide this capability by defining ar abstract
class in a theory, and then importing that theory into executable modules, where it is
enriched with subclasses that provide executable definitions for deferred methods. The
advantage of this is that it does not vequirc any new language features. For example, we
could have begun specifying the bank accounts example above with an abstract class theory
that captures the basic properties of accounts:

oth ACCT is

class Account .

pr MONEY .

at balance : Account -> Money .

me debit : Account Money —> Account .

me credit : Account Money -> Account

me transfer_from_to_ : Momey Account Account -> Account

vars A A" : Account . wvar M : Money .

ax transfer M from A to A” = debit(A,M); credit(A,M)
endoth

Note that debit and credit are declared but not defined, while the transfer method is
defined using them.

The following modules define two different subclasses of Account, where each would
provide executable definitions for debit and cradit:

omod SAVINGS-ACCT is
clags SavAccount
including ACCT .
subclass SavAccount < Account .
at interest-rate : SavAccount -> Float
me dehit : SavAccount Money -> SavAccount .
me credit : SavAccount Momey -> SavAccount .
. axioms for debit and credit and other declarations ...

endo

omod CHEQWE-ACCT is

class ChAccount .

including ACCT .

subclase ChAccount < Account .

me debit : ChAccount Monmey -> ChAccount .

me credit : ChAccount Mcney -> ChAccount .

. axioms for debit and credit and other declarations ...

endo

Note the use of the including mode of importation. because we da not want a different
copy of ACCQUNT in each the last two modules; otherwise, SavAccount and ChAccount would



not have a commen superclass (SavAccount would be a subclass of Account . SAVINGS-ACCT
and ChAccount a subclass of Account . CHEQUE-ACCT).

Since class Account is abstract. it will have no chjects that do not belong to a proper
subclass; i.e., objects of class Account cannot be created directly. This is a natural con-
sequence of the semautics of theories. Also, it is required that axioms of theories used for
declaring abstract classes have an executable form.

3.4 Parameterised Modules

Besides their use for high-level specification, theories are also used to declare interface re-
quirements for parameterised (or generic) modules. A parameterised module has cer-
tain parts that are fixed and certain others that are variable. and these others are specified
by the formal parameters of the module. which Lhemselves denote modules. Parameteri-
sation is a way of capturing commonality and factoring nut change, and allows modules to
be specialised by providing different sets of actual parameters: because of this, parameter-
isation is said to broaden the domain of applicability of a module [114].

Because modules in FOOPS are generic over other modules, module instantiation (also
called actualisation) combines not just one sort, class or operation, but logically related
groups of tbese, vielding a kind of higher-order composition at the module level. Suhsequent
sections provide further discussion and examples regarding this aspect of FOOPS. In this
section we are concerned with how to specify generic modules.

The following simple module for lists is generic over the kind of clements they hold:

fmod LIST[X :: TRIV] is
sort List
protecting NAT .

fn nil : -> List

fn __ : Elt List =-> List .
fn length_ : List —> Nat .
var E : E1t . var L : List .

ax length nil = 0 .
ax length(E L) = 1 + length L .
endf

The text between LIST and is is called the module’s interface, and indicates that valid
actual arguments for LIST are modules that satisfy the theory TRIV, i.e.. any module with
at least one sort; X is a variable as in ordiuary programming notation (recall the analogy
between theories and types).

Generic modules can of course have more than one parameter:

omod PAIR[X :: TRIV, Y :: TRIV] is
¢lass Pair .
at fst_ : Pair -> Elt.X .
at snd_ : Pair -> Elt.Y .
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at equal : Pair Pair -> Beol .

me replace~fst : Pair Elt.¥ =-> Pair .

me replace-snd : Pair Elt.Y -» Pair .

vara P P2 : Pair . var vl : Elt. X . wvar V2 : Elt.Y .
ax equal(P,P2) = fst F == fst P2 and snd P == snd P2 .
ax fat replace-fst(P,V1) = V1 |

ax snd replace-snd(P,V2) = V2 .

endo

Parameterised modules inclnde the theories over which they are generic; thus, their
contexts are similar to those shown previously. For example. this is FAIR’s context:

PAIR
™.
X::TRIV Y::TRIV
BODL

It is important that the two requirement theories are distingulshed, because otherwise they
would be shared, and this would not allow for pairs with different kinds of components.
However, we will omit the qualification used in the above diagram when there is no room
for confusion.

The theory ITER-ACTIONS of Section 3.2 can be used to specify the interface for a module
that defines while loops :

omod WHILE[X :: ITER-ACTIONS] is
mes while while-centinue : C In -> Qut .
var E : C. wvar I : In .
ax while(E,I)} = init(E,I}; vhile-continue(E,I)
ax while-continue(E,I) =
if test(E,I) then
action(E,I); vhile-continue(E,I)
else
wrapup(E,I)
fi .
endo

An actual argument to WHILE must provide at least all the functionality declared by
ITER-ACTIONS. This module exemplifies cne difference between class and module inheri-
tance, because of the derived methods it declares; if modules were classes, WHILE would be
a class and the two methods would be associated with this new class.

Theories can alsc be generic, as illustrated in the following example.
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Example 3.4 The parameterised theory PW-ENGINE declares a class PWEngine of “password
generators® and is generic over total orders. A password generator is an object which
stores passwords generated by one of its methods. The axiom says that passwords must
be generated in increasing order, which guarantees that they are always unique. Note the
form of the axiom, which does not specify an executable pattern as defined in the previous
chapter; rather, it just declares a property that any implementation must satisfy.

oth PW-ENGINE(X :: TOSET] is

class PWEngine .

at value : PWEngine -> Elt .

me meke-pw : PWEngine -> PWEngine .

var P : PWEngine .

ax value(P) < value{make-pw(P)) = true .
endoth

o
The full syntax of parameterised modules is the following:

Syntax 3.5 {Parameterised Modules)

tmod {(Modld)(ModInterface) is (fModEilt}... endf
fth {Modld){ModInierface} is (fModEit)... endfth

omod {Medld}{ Modlnlerface} is {oModBlt)... endo
oth (Modid){Modinterface} is (oModElt)... endoth

{Modinterface) ::=
[ [ {Modld)... +: (McdEzp) {, (Modld)... :: (ModExp)}... ] ]

where (ModExp) denotes module cxpressions, which include module instantiations and names
of non-generic modules; the sections that follow will present other kinds of module expres-
sions that build upon these. O

3.5 Views and Instantiation

Perhaps the most important feature of the module system of FOOPS is the view, which
is nsed to express how a module satisfies a theory. A view is a binding of the ltems in a
module to the items in a theory, such that the theory’s axioms are behaviourally satisfied
by the module, in the sense of Section 3.5.2 below. The most immediate application of
views is to instantiate generic modules, but they can also be used to express relationships
of refinement between modules.

In general, there may be more than one view between a theory and a module, because
modules may satisfy theories in multiple ways; also, a module may simultaneously satisfy
varipus theories. This extends the capabilities of most other languages for associating



3.5 Views aud Instantiation 62

interfaces (also called “specifications”) with actnal modules {also called “bodies”); Chapter
6 provides the details of this comparison.

An explicit view has a name, designates its source thecry and its target module,
and supplies a mapping that covers every sort, class, fonction, attribute and method in its
source. For example, there is alwavs a4 view from TRIV to any non-empty module, such as
BODL:

view BOOL-IS-TRIV from TRIV te BOOL is
sort Elt to Bool .
endv

The naturals under less-than form a paset, thus

view ¥1 from POSET teo NAT is
sort Elt to Natg
fn _<_ to _<_

endv
The naturals under greater-than also form a poset:

view V2 from POSET to NAT is
sort Elt to Nat
fn _<_ to _>_ .

endv

‘To reduce tediousress and capture “obvious" mappings, FOOPS offers a set of conver-
ticns by which views can be abbreviated. These are:

(1) Any sort or class pair x to x can be omitted.
(2) A sort or class pair x to y can be omitted if x and y are both principal sorts or
principal classes?.

(3) Any function, attrihute, or method pair ¢ to ¢ can be omitted if, under the view,
the rank of the first is the same as the rank of the secand.

For example, because Nat is the principal sort of NAT, V1 and V2 may be abbreviated to

view V1 from POSET to NAT is
fn _<_ to _<_
endv

viev V2 from POSET to NAT is
fn _<_ to _>_

endv

*The principal sort of a module 15 the first sort that il mentions; the principal class of a module is the
first class that it meations.
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Moreover, because of (3), V1 can be rednced to a so-called default or null view, which
has an empty body:

view V1 from POSET to NAT is
endv

It is also possible to map functions, attributes and methods to expressions, providing a
very flexible capability. For example, the naturals nnder “divides but not equal” alse form
a poset, but NAT does not declare a single function that tests for both of these praperties.
However, such a function vao be constructed as part of the view:

view NATD from POSET to NAT is

sort Elt to Nat

vars E1 E2 : Elt

fn E1 < E2 to (El divides E2 and Ei =/= E2)
endv

This example shows that views can declare variables that take their values in scrts of the
source theory. Note also the implicit mapping of these variables into variables of the same
name and correspondiug sort in the target module: in E1 < E2 the variables are of sort
Elt, whbile in (E1 divides E2 and Eil =/= E2) they are of sort Nat. Views can declare
class variables in a similar fashion.

Perhaps unexpectedly, bank accounts can be seen as implementing connters, which we
define as follows:

oth COUNTER is
class Counter .
pr NAT .
at value : Counter -» Nat .
mes inc dec : Counter -> Counter .
var C : Counter .

ax value(ine(C}) = s value(C)
ax value(dec(C)) = if value{C} == 0 then O else p value(C) fi .
ax value(dec(inc(C))) = value(C)

endoth

Observe that the last axiom, which expresses a fundamental property of counters, would
not be valid in an executable module: it is neither a direct method axiom or an indireet
method axiom. Here is the view:

view ACCT-IS-COUNTER irom COUNTER to ACCT is
var C : Counter .
at value to bal_ .
me inc(C) to credit(C,1)
me dec(C) to debit(C,1)
endv
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It is interesting to note that if the axiom value(dec(inc(C}}) = value(C} was changed
to dec{inc(C)) = C, then ACCT would not satisfy it. because debit and credit update
not only balances but also transaction histories. In other words, a credit followed by a debit
would leave an account’s balance unchanged, but its transaction history is different from
the original one. See Section 3.5.2 for more on the satisfaction of axioms.

We also draw context graphs for views, which we denote with labelled dashed arrows
from the source to the target of the view. For example.

In future diagrams. we will omit the label wbenever it is not confusiug.

There cau also be views between paratneterised modules, or parameterised views.
For example. consider the following theory for “container™ data structurcs. Among others.
it specifies operations for inserting and deleting elements. and for testing the presence of an
elemnent in a container

oth CONTAINER[X :: TRIV] is
class Container
pr NAT .
at size : Container -> Nat
at member : Containsr Elt -> Bool .
at empty : Contaimer -> Bool
mes insert delete : Contaiper Elt -> Container .
var C : Container . vara E E” : Elt
ax siza{insert(C,E)) = size(C) + |
ax member(insert(C,E),E") =
if E == E” then
true
else if empty(C) then
false
else
member(C,E*}
fi fi
ax size(delete(C,E)) =
if member(C,E) then p size(C} else size(C) fi .
ax member(delete(C,E),E") = member(C,E")
ax empty{C) = {size(C) == O}
ax member (new.Container(),E) = false .
ax size(new.Container()) =0 .
endoth

Observe that the theory is not a full iinplementation because it says nothing about how
containers store their elements. Therefore, well-known data structures such as lists, bags,



trees, and hash tables satisfy this theory; however, sets do not satisfy it becanse mserts do
not always increase the size of a set.

Now assume that we have {say) a module LINKED-LIST that implements a class List
of linked lists, and that is also generic over TRIV. A view {rom CONTAINER to LINKED-LIST
would need to be parameterised:

view LINXKED-LIST-AS-CONTATMER[X :: TRIV]
from CONTAINER{X] to LINKED-LIST[X] is
class Container to List .
at size to length .
at insert to cons .

endv

The view says that for any module X that satisfies TRIV. there is a view from CONTAINER to
LINKED-LIST
The full syntax of views is the following:

Syntax 3.6 {Views)

view {Modld ){ModInterface) from (MedErpr) to (ModEzpr) is
{ViewEit) ...
endy

{ViewElt) ::= sort {Sort) to {Sort) . | class {Class) to {ClassRef) . |
[ fn | at | me | (OpEzpr} to (Term) . |
fn (Fr) to {(Fr) . | me {Mcth) to {Meth) . |
at (Attr) to (Aur} . | (eVarDecd}... | (fVarDecl)...

where {Sorty and (Class) denote possiblv qualified sorts and classes; similarly. {Fr). {(At¢r)
and {Meth) deuote possibly qualified functions, attributes and methods. (OpErpr} is =
{Term) consisting of a single operation applied to variables, and {fVoerDecl) and pVarDecl)
are variable declarations as given inside modules. O

3.5.1 Module Instantiation

Parameterised modules canuot be used by themselves; rather, they need to be instantiated
beforehand. Instantiation is the process by which actual parameters are bound to the
formal parameters of a generic module and a new module is created. This binding is
specified by supplying appropriate views from each formal parameter to its corresponding
actual parameter. Instantiations can occur wherever modules are expected; for example, as
targets of views.

One form of instantiaticn consists of giving view names. For example, the generic list
module of the previous section cau be instantiated to give lists of boolean values, as follows:

LIST[BOOL-IS-TRIV]
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However, views not previcusly defined can be given “on the fly,” as in
LIST[view to NAT is sort Elt to Nat . endv]

Note that this kind of view does not require a name nor does it peed to mention its source,
because it is implicit from the parameterised module. Furthermore, there is a convention
for specifying default views on the fly, and it consists of simply giving the name of the target
module. For example, the defanlt view from TRIV to NAT is implicit in

LIST[NaT]

The contexts of instantiations inclnde views. as in the following graph:

TRIY ——— LIST

Y ¥
NAT —— LIST[NAT]

The view from LIST to LIST [NAT] maps the TRIV part of LIST to the NAT part of LIST[NAT],
using the view already provided; the other parts of the two modules are mapped with default
conventions. Lastly, observe that modale importations can be seen as (default} views that
describe inclusions.

FOOPS also supports multi-level instantiation, so that an actual argument to a
generic module can itself be an instantiated generic. For example, the following generates
a class of pairs whose first component is a boolean valne and whose second eomponent is a
list of natnral numbers:

PAIR[BOOL-I1S-TRIV,LIST[NATI]

Nate that there are two implicit views here: one from TRIV to NAT, and another from
Y::TRIV to LISTINAT] {which maps Elt to List), The context of the above instantiation

18

X :TRIV PAIR —Y::TRIV
| i
| 1 I
¥ ¥ T
BOOL ———PAIR[BOOL,LIST(NAT]) «— LIST[NAT] ~—— N.}T
A
| 1
1 |
LIST-——THIV

Yiews can also be deduced from module elements. For example, the default view from
TRIV to NAT is implicit in the following instantiation:

omod NAT-LIST is
pr NAT .
pr LIST[Nat)
endo
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Or, more economically,

omod NAT-LIST is
pr LIST[(Nat).NAT]
endo

This kind of instantiation is particularly useful when the desired default mapping is not
between principal sorts {(or classes). For example, sort NzNat of NAT is not principal, but
the implicit view in this instantiation is between E1t and NzNat:

LIST[(NzNat) .NAT]

As a further example of this facility, consider this instantiation of the generic theory of
Example 3.4 {page 61):

Example 3.7 A default view from TOSET to NAT is generated using the function _<_ of
NAT:

oth NAT-PW-GEN is
us PW-ENGINE[{_<_).NAT] .
endoth

This password engine theory is used as part of a specification of resource managers that is
given in Appendix B, and in which resources are locked and freed with passwords. Addi-
tionally, that appendix includes quite sophisticated instantiations of module WHILE and of
other related modules that capture various kinds of iterators. O

A generic medule can instantiate other generic modules using some of its own parame-
ters. For example, a module for binary search trees could be specified as follows:

omod BSEARCH-TREE[X :: POSET] is
class Tree
pr LISTIX]

endo

Note that there is an implicit default view from TRIV (the interface theory of LIST)
to POSET in the protecting declaration. Then, an instantiation of BSEARCH-TREE, say
BSEARCH-TREE(NAT], can be seen as instantiating LIST by compasing the view from TRIV
to POSET with the view from POSET to NAT, which yields a view from TRIV to NAT. View
composition is well-defined (see Chapter 4), and corresponds to the composition of graph
arrows; for example, the dotted arrow below indicates the preceding composed view:

TRIV- - -P(]f't:ET

1
N |
NAT
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Alternatively, LIST[X] can be seen as creating a new LIST module whose interface theory
is PDSET rather than the original TRIV. The above diagram is also suggestive of another
application of views: refinemeut. This is dizscussed in Sectiou 3.10.

The various forins of iustantiation have the following syntax:

Syntax 3.8 (Instantiation with Exphlicit Views)

(Modldy T{VId) [ {VId)}...]

where (VIl} Is the name of a view. O

Syntax 3.9 (Instantiation with On-the-fly Views)

(MOd.’d) f{ ViewArg) {, ('Er":emArg}}___]

{ViewArg} ::= viev to (ModEyp) is (ViewEil}. .. endv

]

Syntax 3,10 (Instantiation with Default Views)
(Modld) [{Arg} {, (Arg)}...]

{Arg) ::= {Modld) | sort (Sort) | class {Class} |
fo (Fr) | at {Atir}) | me (Meth)

where sort, class, etc. are used for disambiguation, if necessary. O

Note that it is possible for a multi-argument instantiation to combine varions kinds of

views,

3.5.2 Verification of Views

Up to now we have ignored the semantic aspect of views, and just used then to describe
syntactic vorrespondences. We believe that it would be too restrictive on programming
practice lo always require a formal proof that a view is legitimate: therefore a practical im-
plementation should only require syntactic validity. However. the ability to declare axioms
in theorie not only helps with documentation and design. it also leaves open the possibil-
ity of formal verification for critical applications. We could even use a truth management
system totrack the soundness of views, which might range from “mechanically verified” to
“wishful-thinking," as suggested in [35].

Given a view from # theory T to a rmodule M, the axioms in T are interpreted be-
haviourally {also called observahionally) in A, ie.. they need only appear to be satisficd.
For example, a module implementing stacks may satisfy the equation pop push(X,S8) = S
behaviounlly without satisfying it literally. In {act, this happens for the traditional pointer-
array implementation of stacks. in which *jurk” may be left behind the pointer following a



pop. Because this junk is not reachable anymore, it does not affect the behaviour of stacks.
This is illustrated in Figure 3.1, where the leftmost stack first has a 7 push’ed onto it, and
then is pop’ed, yielding a new stack state that is different from the originai state. but which
is behaviourally equivalent to it.

el = RhI ]
! T i

Figure 3.1: Junk after a pop.

3.6 Module Blocks and Higher-Order Composition

Module blocks allow several modules to be declared together; moreover, blocks can be
parameterised, and then all modules in the block have tbe parameterisation of the block
{in addition to their own). For example, a module MAP that defines a method map over lists
could be declared in the same block as the module that defines lists:

block LIST-BLOCKI[X :: TRIVC] is
omad LIST is
class List .
at head : List -> Elt .

endo

oth ME is
me m : Elt => Elt .
endoth

omod MAP[M :: ME] is
pr LIST .
me map : List -> List .

endo
endo

The theory ME declares the interface for MAP, which requires one unary method m on
Elt’s, aud map applies m to each element of its argument. Because the block is param-
eterised by TRIVC, so are all its modules; additionally, a module inside a parameterised
black can be parameterised over other theories, as is MAP. Instantiating LIST-BLOCK, e.g.,
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as LIST-BLOCK[NAT], also instantiates all of its modules: one for hists of natural pumbers,
anather that provides a generic map method over those lists, and a third that defines the
interface to that generic. Biocks may not be nested.

A significant aspect of blocks is that private items can be nsed in subsequent modules
within a block, but not ontside of it. In the above example, this allows map to be imple-
mented using any aspect of the LIST module, rather than just its public features, as wonld
be required if LIST were outside of MAP’s block (information hiding capabilities are explained
in Section 3.9). Blocks are also useful for organising large specifications, especially if they
have siguificant parts that are similarly parameterised.

Higher order operations (as in Smalltalk) can achieve some of the same functionality
as modules that are generic over operatious (such as MAP). However, such an approach iz
small-grained, whereas parameterised programmiug is large-grained, because it encapsulates
vperations and properties with the data that they manipulate, and abstracts over complete
modules, and eveu blocks of modules. Moreover, the featnres of parameterised programming
are first order, and thus simpler to reason about {see [37] and [43] for further discussion of

this issue).

3.7 Module Expressions

A module expression specifies the design of a systermn {or subsystem) in terms of already
given compouents. We have aiready seen some geueric module instautiations, which are
4 simple special kind of module expression. Two fnrtber operations used to form module
expressians are renaming and sum.

Renaming permits module entities to be given new names, which makes it easier to
adapt modules to new contexts. For example, if a binary search tree will store indices from
a database. it is more natural to rall the class Index rather than Tree. This is accomplished
using the “*™ operator, as in

BSEARCH-TREE[STRING-AS-PUSET] = {class Tree to Index}

which instantiates BSEARCH-TREE and renames the class Tree; here STRING-AS-FOSET is a
view of strings (the index’s keys) a3 posets. Methods can also be renamed, as in

BSEARCH~-TREE [STRING-AS-POSET]
* {class Tree to Index, me insert to add-key}

It is possihle that complex module expressions lead to the composition of renamings.
For example, the previous module expression is equivalent te this ome, which splits the
renamings in two:

(BSEARCH-TREE[STRING-AS-PDSET] * (class Tree to lndex)>
* (me insert to add-key)

Also, the module expression



(BSEARCH-TREE [STRING-AS-POSET] * {class Tree toc Index))
* (class Index to Tree)

is the same as
BSEARCH-TREE [ STRING-AS-POSET]

because the renamings in the first expressiou cancel each ather. (A more realistic example
of renaming composition appeats in Section 6.3.) However, after simplificaticn, renam-
ings generate new modules, so that NAT * (soxt Nat to Number) and NAT are different
modules, and thus the sorts Nat and Number are not related, for example.

Sum, denoted “+", combines the contents of modules, taking sharing into account, as
we illusirate next.

Example 3.11 This example extends Example 3.2 (page 53) by specifying savingsaccounts
and so-called "now™ accouuts, which provide both savings and cheque facilities. It uses
multiple inheritance for classes and modules, and module sum.

omod SAVACCT is
class SavAcct .
extending ACCT .
subclass Savhcct < Acct
sort Rate
subsort Float < Rate .
-—- sort Float (for floating peint numbers) comes from HIST
at rate_ : 3Savhcct - Rate
var 5 : Savicct .
me pay-interest-to_ : SavhAcct -> SavhAcct .
ax pay-interest-to § = credit(S,rate § * bal §)

endo

amod NOWACCT is
class NowAcct
extending CHACCT + SAVACCT .
subclass NowhAcct < ChAcct SavAcct .
endo

Note that ACCT, imported through hoth CHACCT and SAVACCT, is considered as shared®.
Another way of seeing “+” is as creating a new module that imports each of its arguments.
a

3The reader may be wondering why we declared Rate to be a supersort of Float. The reason can
be discovered by examining tbe typing of Lhe last axiom together with the definition of Money given in
Appendix B.
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More complex module expressions may use mnlii-level instantiation, default views, re-
namings and sum. For example, the following module expression describes a parsing stack
and a block-structured symbol table:

STACK[LIST[TOKEN] * (class List to Sentence)] +
STACK [TABLE [TUPLE[STRING, TYPE]
* (class Tuple to Variable,
at fst to name, at snd to type)]
s+ (class Table to Scope))
¢ (class Stack to SymbolTable)

With the make command. modnle expressions are “cvaluated” (or “executed”) to con-
struct new nained modules, a5 in

make PARSER is
. the previous module expression ...
endm

It is the possibility of aetually building (i.e., composing) systems that distinguishes mod-
ule expression evaluation from #o-called “module interconnection ianguages,” which merely
provide descriptions of the structure of systems. Module compaosition greatly euhances the
ability to reuse software.

The use of module expressions with theories and views may sometimes seem too verbose.
However, a single module instantiation cas compose many different functions all at once.
For example, a generic complex arithmetic module CPXA can be easily instantiated with any
of several real arithmetic modules as actual parameter [37]:

s single precision reals, CPXA(SP-REAL],
¢ double precision reals, CPXA [DP-REALJ. or
o multiple precision reals, CPXA[MP-REAL].

Each instantiation involves substituting dozens of functions into dazens of ather functions.
Furthermore, {37] suggests an abbreviated notation that is very similar to that of higher
order functional programming. for those cases where one really is jnst composing functions
(this notation uses the facilities described in Section 3.5.1}).

Module expressions can be used for gualification in the same way that module idectifiers
have been used up to now. For example:

Tree. (BSEARCH-TREE [STRING-AS-PDSET] * {me insert to add-Xkey)}
Finally, we give the formal syntax for renaming and sum:

Syntax 3.12 (Renaming)



{ModEzp) + {{RenameEll} |, {RenameEil)}...)
{Renameplt) ::= sort {Sort) to (Sorlld) | class (Class} to (Classid} |

fn {Fn} to {OpFerm) | at {Atir} to {OpForm} |
we {Meth} to {Opfogn)

Syntax 3.13 (Sum)

{ModExzp) + (ModEzp) {+ {(ModEzp)}...

a

3.8 Encapsulation Rules

Now that most aspects of the module system of FOOPS have been presented, we digress to
deseribe the encapsulation rules of the language. Encapsulation is the process of packaging
information, and has to do with boundaries of definition. The encapsulation rules of the
ohject level of FOOPS estahlish where the attributes and methods of a class can be dectared
and where their axioms can be given, and have the effect of localising the description of
ohjects and their potential states: we believe that this makes programs easier to understand
and to maintain. The rules are as follows:

{1} Except for those which are inherited, the stored attributes of a class must be declared
in the same module as the class is.

(2) Tf A is a superclass of B, this relationship can be declared only in the same moduie as
B is.

{(3) A direct method axiomn {see Section 2.2.4) for a methad m of class C is valid only if
both m and C are declared in the same module, and if it appears in that medule.

{4) An indirect method axiom for a method m is valid only if it appears in the same
module that declares m. Similarly, an axiom for a derived attribute a is valid only if
it appears in the same module that declares a.

{5) Redefinitions of attributes and methods may be declared only in the same module as
the class they are associated with.

{1) and (2) prevent a class from “acquiring” stored attributes in other modules; this also
seems to simplify implementation aspects by allowing a modular approach to code genera-
tion and storage allocation. A salient consequence of (2) is that when a theory is used to
restrict the parameters to a generic module, the body of the generic may not declare any
of the theory’s classes as suhclasses of any others; however, any of the theory's classes can
be snperclasses of any classes that the generic module declares.
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(3} prevents specifying direct updates ta the attributes of an object of class € in a module
other thar that in which € is declarcd. {3} and (4). rogether, forbid scattering the definition
of a method or derived atlribnte across varions modules. But note that they allow derived
attributes and ruethods to be declared in any module.

(5) restricts redefinitions to appear together with the class that declares them

Because of the nature of functional-level programs. there are uo corresponding rules for
sorts. exeept those implicit in the inportarion modes of modules. We say more about this
m the nexc section.

3.9 Vertical Structuring and Information Hiding

The preceding sections have illustrated how FOOPS supports Aorizontal design activities.
Horizontal structuring is concerned with morlnle aggregation, enrichment and specialisarion.
On the orher hand, verfical structuring is concerned with the implemeutation of wodules.
and thus with information hiding. A clear distinction betwecn these two activities helps
separate design concerns from implementation concerns, and is better able to document the
structure 2nd dependencies in a software system [35, 50).

More lormally. information hiding is the process of making certain picees of information
inaccessible. The term “information hiding” was coined by Paruas [89] to refer to the hiding
of the “design details” of a module. i.e., those aspects which are purely implementational or
accidental and that do not affect the module’s interface. The proper use of an information
hiding mechanism can have a positive impact on maintenauce, because internal changes
to a module many times do not affect its clients; information hiding also allows for the
design of modules that can be substituted in place of others, which in FOOPS can he
rigorously expressed with views (see also Section 3.10) Example applicatious of information
hiding include hiding auxiliary operatiogs in the definition of an abstract data type, and
associating protection information with files in UNIX, whereby the contents of a file can
be madc read-only, executable-only or even invisible. for instance, to certain users of the
system; the latter example aiso shows that informatiou may sometimes be hidden in different
degrees. [nformation hiding often appears under the headings “scoping™ or “visibility” in
the literature, and we also use this terminology.

In FOOPS modnles are the main units of scope. which means that. the visibility decla-
rations of a module affect only other modules. This not only simplifies type checking, but
is also in concert with the notion that if two features are declared together it is because
they are closely related. Additionally, restricting visibility to apply at the class or at the
abject level, as done in several other ohject-oriented langnages, seeins overly conservative
and is perhaps the reason why {at the same time) some of these languages provide special
features for overcoming this limitation (see Chapter 6).

In FOOPS a module can declare that sorts and classes are private to it, i.e., invisi-
ble to other modules. Functions ¢an also be private, and attributes and methods can be
cither private or subclass-prrvate, which is a particularly useful mode for designing class
hierarchies. Private module importation blocks the transitive visibility of module features.
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In addition, verticality and module inheritance can together support so-called "private”
or “implementation” class inheritance as a special case. Furthermore, a generic module
can have vertical parameters, such that instantiations automatically hide the corresponding
actuals; this facility can be beneficial for library design and use.

3.9.1 Attribute and Method Visibility

The attributes and methods of a class ¢ in a module M can have one of three visibility
levels:

» public, or visible in all modules that import M;
s private, or visihle only in M; and,

» subclass-private, or visible in all medules that import M and that declare subclasses
of C, but only when applied to objects of those subclasses.

The purpose of the last level is to allow suhclasses of C in other modules to have special
access to some of its attributes and methods. By heing only applicable to subclass objects,
it prevents modules that import ¥ from declaring “dummy” subclasses of C just lo be able
to apply C’s subclass-private attributes and methods to C objects. For an example of the
peed for this kind of visibility, consider the class inheritance diagram in Figure 3.2, A point
is something that has a value, a hounded point restricts the value to a certain range, a
history point remembers all its previous values, and a bounded history point combines the
last two.

Suppose that we want to display the value of a point on the screen, and that we define a
method display that first clears the screen and then prints the point's value. For bounded
points, we also want to print the allowable range, so the display method of BoundedPoint
first calls display.Point and then prints the range; similarly for history points. Now,
ideally, the display method of BEPoint would be defined as the sequential composition of
the digplay methods of its immediate superclasses. But this would be incorrect, not ouly
hecause the point’s value would be displayed twice, but also becanse both methods clear
the screen! A solution is to declare suhclass-private methods called {say) display-aux
in each class, to print only the additional information; their level of visibility indicates
their limited purpose. Then, the (pubiic) display methods would each clear the screen and
invoke the appropriate display-aux methods. This example? generalises to any such kinds
of “diamond” hierarchies in which certain initialisation actions are multiply inherited as
part of methods. In addition, it illustrates one difficulty in designing reusable sofiware and.
in particular, getting inheritance hierarchies to adequately support future functionality.

Levels of visibility are declared as properties, as in

at contents : Set -> List [privatae]
me display-aux : BoundedPoint -> BoundedPoint [subclase-private] .

*We have conatructed this example by combining examples in [107] and [111].
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Figure 3.2: A hierarchy of points.

The delault level is public.

The following is a consequence of the above definitions: a derived attribnte a of some
class C cannot be defined in terms of the subclass-private attribntes of C if a and C are
declared in different modules, Methuds are similarly restricted.

The syntax of private and subclass-private declarations makes it clear that attributes
and methods may only be privatised iu the module that declares them. One reason for this is
that allowing otherwise would give a way to break the conceptual unity of modnles. Another
reason arises after examining the meaning of multiple modnle importations if this were
allowed. For example. assume a paratoeterised module LIST with a public method called
reverse, and a parametcrised module QUEUE that imports LIST but privatises reverse.
The following are the possible scenarios if both QUEUE and LIST are directly imported into
some other module (e.g., with “pr QUEUE[X] + LIST[X] ."):

{1) there are two reverses: reverse.QUEUE and reverse .LIST, where the former is private
but the latter is public;

(2) reverse is private; and,
{3} reverse is pnblic.

{1} is overly complex. (2} implies that ouc modulc may “truncate” another, and that—in
this example—the [ull definition of lists could not be (transitively} used anymore, or at
least not at the same time as that of gnenes. Therefore, the only reasonable option is {3).
Consequerntly, this makes the privatisation of reverse futile, because it may be uncovered
by the explicit importation of module LIST. However, a2 module can be imported vertically.
which privatises all its features at tle same time. Also, “vertical wrapping” supports further
flexibility. These aspects ave discussed in Section 3.9.4.

Finally, an attribnte or method redefinition is not allowed to be less visible than what
it redefines. This would give rise to so-called non-cumulative interfaces, where not all
the attributes and methods associated with a class are also associated with its subclasses.
We lelieve that non-eumnlative interfaces are indicative of peorly designed inheritance
hierarchies, and make objects look different at different levels of ahstraction. Moreover,
non-cumulative interfaces create dynamic binding problems [23]. For example, assume that



a class A has a public method m which is redefined and declared private for ohjects of a
subclass B, Then, 2 call m(}) for X a variahle of class A would type check properly everywhere.
Howover, if X is 2t run-time bonnd to an object of class B, then the call hecomes valid, as
m is private for ohjects of class B If the intent is simply to use some of the implementation
aspects of A, then vertical wrapping is the answer.

3.9.2 Function Visibility

Functions can alse be public or private, but there is no option that corresponds to subclass-
private. This is so because this kind of privacy does not introduce further flexibility: func-
tional programming with pattern-matching is based on a destruct/construct model that
precludes the use of inherited functions. For example, the following axiom for 2-tuples,

ax 1 << X ; Y>> =X .

would not be appropriate for 3-tnples, which would not match the left-hand side; they would
require new selector axioms. This other axiom would also not be useful for 3-tuples:

ax rotate << X ; ¥ »> = << ¥ ; X >

uot only because of the loft-hand side, hut also because rotate evaluates to a 2-tuple. In
this style, constructors are always visihle, and thus representation. In the chject-oriented
style, state is hidden behind identifiers, and no “information loss” is incurred from using
inherited attributes and methods.

3.9.3 Sort and Class Visibility

Classes and sorts can also be declared public or private, with the same meaning as above.
For example,

sort Status [private)
claes Node [private]

Any functions, attributes and methods whose rank includes a private sort or class are au-
tomatically private. Also, any sort that inherits from a private one is also private: similarly
for classes, This follows from their set-inclusion semantics.

For reasons similar to those given in Section 3.9.1. a sort or class cau he declared private
only tu the module that jutrodunces it.

3.9.4 Vertical Module Importation

Module importations also come in two varieties, puhlic and private. When a module is
imported publically (the default), its features retain their level of visihility, so that its
public and subclass-private features are passed along transitively. On the other hand,
private module importation is a vertical activity in that this transitivity is blocked for all
the module's features; it can be seen as the conversion of all public and subclass-private
features into private ones. Here are two examples:
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pr LISTINAT] [private]
ex 2TUPLE[BOOL,BCOL] * (sort 2Tuple to Signal} [private]

Verticality and the textual-copy semantics of the using mode of importation give rise
to a technique called vertical wrapping [50]. Here some module M that is almost what we
want is imported into a “wrapper” module W, from which all the functionality that we want
is re-exported, but possibly slightly modified from that provided by M. This is achieved with
a special syntax that allows using to redeclare visibility levels. For example,

omod W ia
usipg LIST[NAT] » (class List te Set,
privata reverse, subclass-private head)
endo

makes method reversge privale and attribute head subclass-private. Thus, the using mode
can be seen as implementing a highly stylised editor, in that the text of the module is
copied, hut possibly after instantiation, renaming and visibility redeclarations. Note tbat
the cumnlativeness restrictions of Section 3.9.1 must still be obeyed.

Finally, some languages support private subclass relationships, by which (for example)
B can inkerit from A but in a way that forbids placing objects of class B where objects of
class A are expected. The purpose of this is simply to allow objects of class B to have access
to some (or ali) of the internal functionality provided for objects of class 4; or, as Meyer
[77] puts it, “to reuse a good implementation.” In FOOPS, there is no direct support for
this. but the using mode of importation can provide a similar effect as a special case, as
illusirated above. In C++ [111], for instance, this example would have been constructed
by declaring List to be a “private” superclass of Set. This flexibility of FOOPS illustrates
another henefit of distinguishing between class and module inheritance: there is no need
for dubious variants of class inheritance to provide the above functionality. In our opinion,
class inheritance should be used for the hierarchical classification of objects, and not to
support the reuse of code, which is the concern of module inheritance.

3.9.5 Vertical Parameterisation

Madules can also be parameterised with vertical interfaces, snch that vertical actuals are
automatically hidden in instantiations. This provides the ability to define modules that
are generic over their internal features. Far example, we can declare module SET to have a
horizontal parameter for the elements of sets, and a vertical parameter for the underlying
irmplementation of sets:

omod SET[X :: TRIVI{REP :: CCNTAINER[X}} ia

class Set .
at contents : Set -> Container .
me insert : Set Elt -> Set .

ax insert(S,X) = 1f momber{contents(S),X) then ...
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endo

Note first that wvertical parameters are specified in curly brackets immediately after
the horizontal ones. {The theory CONTAINER was given on page 64.) Also, note how
the horizontal parameter instantiates the vertical one. Using the parameterised view
LINKED-LIST-AS-CONTAINER {given on page 65), we can instantiate SET as follows:

SET[NAT]{LINKED-LIST-AS-CONTAINER [NAT]}

Modules that import instantiations of SET will not have access to any code associated
with the vertical actual, although all (public) features of the horizontal actual will be visible
as usual. This is actually stronger than just hiding tbose operations of sets whase rank
mentions any of the features of the vertical actual.

Because CONTAINER is fairly general. we could easily get different implementations of
sets simply by providing different vertical actuals. Besides lists, we could also use trees
and hash tables, for example. And the multiple implementations that are possible for all of
these data structures translate into further implementation options for sets. Thus, vertical
parameterisation provides a mechanism for generalisiug and fine-tuning library modules. For
some sophisticated examples of this kind of layering see [4], in which the anthors describe
how vertical parameterisation ideas can be used for generating rnultiple implementations of
database sygtems and communication protocols. The novelty here lies in the provision of
an integrated linguistic mechanism.

The vertical importation of modules is commonplace, but this kind of verticsl param-
cterisation and instantiation appears not to have been exploited in object-orientation, in
which there is a tendency to force everything into some kind of class inheritance relationship.

The context for SET is:

SET

CONTAINER

TRIV

In particular, it shows that there is only one copy of TRIV in SET.

3.9.6 Views

All of the previous facilities are available for theories, too. Because a generic modnle may in
its body declare a class that inherits from one that comes from a theory, all of the subclass-
private features of parameter theories are available in the generic’s body, in the same way as
the subclass-private features of imported modules are. Therefore, while there is no need for
views to map the private features of their source, they must map the subclass-private ones.
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A restriction, though, is that if x to y is a view element and x is public, then y must also
be public. Otherwise, views could reveal some of the secret {functionality of target modules.

There i3 a subtle point regarding the verificatiou of views: to check that axiowms hold in
the target, all the features of the source need to be mapped. For example, if in

ax £(X) = g(h(X))

h is the only private feature and no mapping is provided for it, then there is no way to verify
whether this axiom holds in the target module. This situation is actually not that surprising:
in general, it is impossible to fully understand the semantics of a module without examining
its internal features. See [29] for related discussion of this issue in abstract model-theoretic
terms.

3.9.7 Type Checking

There are three salient aspects to type-checking this information hiding mechanism. First,
a private feature of an imported module never clashes with a locaily declared feature. This
seems almost too trivial to mention, but in C++, for example, scoping is cousidered last
when parsing expressions, so that clashes with “invisible™ features are possible.

Second, the fact that the attributes and methods inherited by a class retain their original
rank means that certain expressions that could scope correctly at run-time are statically
rejected. For example, consider these modules:

omod A is
class ¢ .
mem : C -> C [subclass-private]

endo

omoed B is
class C2 .
ex A .

subclass C2 < C .

endo

in B, the expression m(m{X)} for X of class C2 would not type check. This is because in that
tnodule » can only be applied to objects of class C2, but there is no guarantee that the outer
m in the expression will indeed be apphed to an object of class C2. Hawever. the expression
m{X); m{X) would type check correctly.

Finally, it is possible for constants to escape visibility checks. For example, consider

fomed M is
sort §
fof : 5 ->5 .
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fo ¢ : -> S [private] .

var X : §
ax f(X) = c .
endf

While it seemns easy to reject this text because of the right-hand side of the axiom, it is
in genera] impossible to determine whether a certain constant will be the result of some
function application. Therefore, visibility declarations for constants can oaly be partially
enforced.

3.9.8 A Note on Language Design

It is jnteresting that for languages which do not identify classes with modules, a subclass
cannot he safely allowed access to all that which its superclasses have access to (when
declared in separate modules). Consider this fragment:

omod M is
class C .
class Helper [private]
me m : C Helper -> C .

endo

Full access would rnean that subclasses of C in other modules could use Helper. But this
would also permit other modules to access Helper by simply declaring “dummy” subclasses
of C, resulting in a clear violation of visibility. This is ju part due to module-level scoping
and to there being no boundaries between the declarations of one class and the declarations
of auother inside modules. When classes are modules, it is very simple to control this and
give subclasses access to everything associated with their superciasses. Certainly, though.
this is not always desirable and it is important to have a means for coutrolling it [107].
Sections (.2 and 6.6 provide further discussion of this issue.

3.10 System Design and Prototyping

Given a system design in the form of a module expression, properties of that system can be
expressed by giving views from a theory to the result of the module expression. Conversely,
a view can establish the adequacy of an implementation for some specification that is given
in terms of theories. If a module expression includes only executable modules, then it
can be symbolically executed, as described in the previous chapter. This provides a rapid
prototyping capability that we have been able te experiment with in our current FOQPS
implementation.

A second approach is more straightforward: simply write the design of a system as a
module expression (or a collection of module expressions defining the system, suhsystems,
etc.), and then either supply standard Library modules, or else write rapid prototypes for
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each bottom level component. It is worth noting how vertical compositicu can play a role
in this. If some library module is close to but not actually identical with what is needed,
then the Library module could be vertically imported into a new “wrapper” module that
provides the necessary new functionality, building on top of the old one.

Another approach uses built-in modules to encapsulate code written in one or more
implementation languages. This can provide access to libraries in sther languages, give high
level structure to cld code, and interface with low level facilities such as operating system
routines, Built-in modules were developed for OBJ [52], where they were used to implement
standard data types, such as natural numbers and Booleans. In FOOPS, built-in modules
implement both standard data types aud standard classes, such as arrays, and jt js not
difficult to write new ones®. Chapter 5 describes how OBJ3’s built-in modules were used
to develop our prototype implemeutation of FOOPS.

Each of these approaches can benefit from the fine-tuning capability of vertical param-
cterisation, because it allows replacing uuderlying impleineutation Jayers with new ones, so
that one can configure new prototypes with varyiug levels of performance and resource use.

Further design support is provided by views, which as hinted earlier in this chapter,
can be used to descrihe refinement relatiouships. For example, as we mentioned above, a
design might begin with a module expression haviug certain theories in it. so that it is uot
really exccutable: call it Dp. A more developed version of Dp might replace some of those
theories with executable modules, or might replace some of the already executable modules
with more effieient versions, Then this relationship hetween Dy and the uew version, cail
it Dy, can be rigorously captured with a view Dp -+ D; that would provide mappiugs for
the replaced modules but which would be default for the others. This process could span
many steps, thus Do 2 Dy 3 ... 23 D, where each arrow would denote a different view.
Therefore, views can be used to express the evolution of designs. Furthermore, one could
envisage views that included further information. such as annotations for design decisions,
so that, for examplc, there would be a systematic way of documenting the history of a
system design.

Thus. we have that a single object oriented language can support the modular expres-
sion of svstem designs and high level properties. as well as the modular composition and
reuse of designs, specifications and cede, plus prototyping by symbolic evaluation, and more
efficient prototyping by vertical composition or built-iu modules. At each level of abstrac-
tion. relationships of refinement and evolution can be recorded by giving suitable views and
theories. This gives a very rich environment for system development.,

Related discussions of the need for facilities of this kind in computer languages may
be found in [28. 85] and [38]: the latter suggests a methodology called “hyperprogram-
ming” for integrating the entire life cycle through parameterised programmirg, including
requirements, design, specificatiou. coding, maintenance, documentation, and version and
coufiguration management.

5The bult-in modules of FOOPS can nse both Lisp aud C code, bicause FOOPS is implemented
Kyoto Common Lasp. which 1s based on C. We ackunwledge that supporting other languages [or built-ina
would be much more dillicnlt, even though it 15 vrry appealing [B8].



3.11 Summary

This chapter has presented in detail the facilities for reusing and interconnecting modules
in FOOPS. which include module bierarchies, blocks, theories, views, borizontal and ver-
tical parameterisation, renaming, sum, and module expressions. Parameterised modules
in FOOPS use theories to specify syntactic and semantics properties expected of actual
arguments, and can distinguish and document both aggregation and implementation de-
pendencies. The purpose of this rigorous approach to module interfaces should be obvious:
to increase the reliability of module interconnections and 1o make explicit the requirements
for reusing parameterised modules. We have also discussed how these facilities support
further functicnality, such as abstract classes, “private” class inheritance, and higher-arder
composition in a first-order setting. The integration of all of the above provide a powerful
environment for designing systems.

The contributions of this chuapter to the development of FOOPS include the provision
of abstract classes, module blocks, encapsulation rules, and information hiding and ver-
tical structuring faciiities. Moreover, we have argued tliat by combining views. module
inheritance, and vertical structuring, FOOPS generalises orthodox approaches to object-
orientation, in which classes and class inheritance are the principal mechanisms for design-
ing. describing and putting together software architectures. Also, we hope to have shown
that the object-oriented paradigm requires and admits extensions such as those provided by
parameterised programming. Chapter 6 will contribnte further analysis of this by compariug
FOOPS with other languages.



Chapter 4

Formal Semantics

To see what is general 1 what 15 particular and what s
pertianent in what 15 transitory is the am of scienbific
thought.

— Alfred North Whitehead

This chapter provides a detailed overview of work towards a matbematical formalisation
of the FOOPS language. Both syntax and semantics are fundamental for formalising pro-
gramming and specification languages: syntax becanse we manipulate texts, diagrams. and
other such descriptions; semantics because it concerns the models of those descriptions and
Low they are affected when the descriptions are modified. Therefore. the link between these
two aspects needs to be made clear and explicit!.

This presentation js divided in three parts. The first part explains the semantics of
the functional level of FOOPS. Being a syntactic variant of OBJ, at this level denotational
semantics is given by order-sorted algebras [49], while operational semantics is given by
(order-sorted) term rewriting [44]. The second part discnsses the semantics of the object
level of FOOPS. Denactationally, a generalisation of order-sorted algebra called Lidden-
sorted algebra is adopted {39, 43); this algebraic formalism takes into account that objects
have internal states by generalising the satisfaction relation between sentences and models
{algebras). Operationally, a form of reflection in which object level programs are reduced to
functional level programs formalises object creation and destruction. aud method evaluation
[48]. The third part examines the semantics of parameterised programming. This semantics
is grounded in the theory of institntions. which formalises the notion of “logical system”
and offers a logic-independent framework for expressing how smaller specifications can be
comnbined to form larger ones [41]. The connection with FOOPS is that hath Order-Sorted
Conditional Equational Logic (the logic of the functional level) and Hidden Order-Sorted
Conditional Equational Logic {the logic of the object level) are institutions.

We note, however, that while the semantics of the functional level of FOOPS is fully de-
veloped, work to provide a complete formal characterisation of its object level still continues.

IFollowing this discussion, the reader is now aware that we use the word “semantics” to refer to both
asperts.
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Tbe cperational semantics of the object level provides a foundation. but the denotational
semantics ueeds to be extended to capture object identifiers and creation. This is not an
open problem particular to FOOPS, but a research topic being actively pursued in the
formal methods community.

The simplicity of equational logic, and the amocunt of theory and mechanical support
available for equational reasoning. is the justification for an algebraic appreach to the se-
mantics of FOOPS. Other logical systems can provide further expressiveness; however, the
research programme begun by Goguen in 1378 [34] bas shown that a Jarge amount of com-
puting science can be done with equational logic and efforts snch as the present one attempt
to further understand its applicability. (See [49] for more discussion about this.}

The contribution of this chapter is that it threads together the most recent work on
providing a mathematical foundation for FOOPS, and can be seen as a high-level but
detailed summary of tbe publications cited above. We assume some basic knowledge of
category theory (93} (mostly for Section 4.3).

4.1 Functional-level Semantics

The following sections introduce the basic concepts of order-sorted algebra, order-sorted
conditional equational logic and term rewriting. In summary, the semantics of an fmod is
an initial algebra in the category of order-sorted algebras that satisfy its equations, while
the semantics of an £th is any algebra in this category; term rewriting is an implementation
of order-sorted equational deduction.

4.1.1 Order-Sorted Algebra

Order-sorted algebra (hereafter, OSA) constitutes an algebraic mode] theory and relies on
tbe notions of order-sorted signature, algebra, specification and satisfaction. It provides a
semantic domain for functional-level modules in FOOPS by interpreting a module as an
order-sorted specification.

4.1.1.1 Signature

An order-sorted signature is characterised by a partially ordered set? of sorts S specifying
a subsort relation.

Definition 4.1 An order-sorted signature is a triple {5, <, %), where S is the sort set.
(5,<) is a poset, and L is an §* x S-sorted family {Z,, | w € §* and s € §}. such that
the following monotonicity condition is satisfied:

if o € Ty sy NEuy s, and wy < wy then 51 € 42

where w; < wq refers to the point-wise comparison of strings of sorts using the < provided
with the signature. O

#A partially ordered set, or poset, is a set A provided with a reflexive, antisymmetcic and transitive
relation <.
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Elements in the sets of ¥ are called operation symbols, or more briefly, operators.
For a € £,,, we call {w.s) its rank, w its arity and s its sort (or value sort or coarity).
When w = A, the empty string in 5*, ¢ is called a constant operator or simply a constant.
The monotonicity corditivn on the operators allows the treatment of partial functions and
determines the form of polymorphic operations. Note that it implies that constants canuot
be averloaded (because w; = w- entails both 53 € 5; and s, < 31, and therefore s; = s3).

In a FOOPS module the elements of an order-sorted signature can be immedjatedly
recognised. Indeed. the syntax of FOOPS makes explicit the binding between the langnage
features and their algebraic counterparts,

Example 4.2 In the following FOOPS modile specifying lists of Nat, sorts defines the
set § of sorts, submsort defines the partial ordering on 5, each fn introduces an operator
symbo] with its corresponding rank, and NeList is the sort of non-empty lists:

fmod LIST-OF-MAT is
sorta Nat List Nelist .
subsort Nelist < Liast .

in Q : => Nat .

fn s_ : Nat -> Nat .

fn pil : -> List

fn cons : List NWat -» Nelist .
endf

Morphisms play an essential role in the formalisation of parameterised programming.
For example, morphisms between signatures describe notational changes {when bijective).

Definition 4.3 An order-sorted signature morphism ¢ : (5,5} — ($, ") is a pair
{/.g) consisting of

1. amap f: 5 =+ 5§ of sorts, and

2. an 5° x S-indexed family of maps gy @ Dy, = E'f.(w}‘f(,) on operation symbols,
where f*: 5* - §" is the extension of f to strings?,

such that if s; < 32 then f{s)} < f(sy) for 51,82 € 5. We may write ¢(s) for f(s), ¢(w) for
J7(w), and ¢(s) for gy 4(c) when 0 €T, 5. O

Signatures and signature morpbisms form a category.

?This extension is defined as follows: f"(A} = A and f"(ws) = f~{(w)f(s). for v € §” and s € S.



4.1.1.2 Regularity

In general, pelymorphic operators bave more than one sort. In the case of subsort poly-
morphism, their sorts are related through the sort hierarchy. Indeed, we may bave mare
general situations in the case of ad hoc polymorphisn, i.e., when the same operation symbal
is used for semantically unrelated operations; for example, _+_ is often used to denote both
addition of natuyral numbers and disjunction of boolean values. Unfortunately, ambiguity
can arise, as shown in the following example:

Example 4.4

frod NON-REG is
sorts S1 S2 S3 54 55 36 .
subscrts S1 < 83 52 < S4 .

fn a : ->» 51 .

fn b : => S2 .

fon t @ 51 54 ->» 55 .
fan £ : 83 82 -> 86 .
endf

Ambiguity arises in parsing expressions where £ is applied to values of sorts S1 and S2,
respectively. In fact both operators can be used, but they lead to different value sorts. Note
that the monotonicity condition is satisfied as the two arities are not comparable in the sort
ordering. 0

In general, this kind of ambiguity can be removed by restricting to signatures which are
“regular.” Regularity guarantees the existence of a least sort for each term (see Section
2.1.3), which in the presence of overloading guarantees a nnigue (least) parse,

Definition 4.5 An order-sorted signature (5, <,T) is regular iff for each ¢ € &, ,, and
each wy < w, there is a unique least element in the set {{w,s) |wy Swand ¢ €E,,}. O

The signature in the previcus example fails to be regular: for wy = 51 S2 the set of
ranks {{S1 54.85), (33 S2,36}} does not admit a least element. (See Section 2.1.3 for more
motivation and examples of this situation.}

In the following we restrict ourselves to signatures which are regular, although all results
generalise without difficulty [42].

4.1.1.3 Algebras

An order-sorted algebra provides sets of values (called “carriers”) for the sorts of an order-
sorted signature and a function for each operation symbol. Inclusion on the carrier sets
reflects the sort ordering, and function agreement on domain intersection reflects operator
monotonicity. Thus, algebrag are models.
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Definition 4.6 Let (8,<,%Z) be a regular order-sorted signature. Then an (5, <, 5)-
algebra A is an S-sorted family {A; | 3 € §} of sets called the carriers of A, together with
a function 4, : Ay, = A; foreach o € By, for Ay = A, X, .. x4, whenw =s;.. s, and
where A, is a singleton set when w = A, such that the [ollowing monotonicity conditions
are satisfied:

1. if s< s in § then A4, C Ay; and,
2. if 0 € By sy N Buysy and wn < wy then Ay 0 Ay, = A, equals A, 1 Ay, = Ay, on
|

4,

When (5, <) is clear, we simply write T for {5, <, %), Note that when ¢ € T, ,, 4, can
be considered as an element of A,.

Example 4.7 A possible algebra A [or LIST-0F-NAT has as carrier sets the natural numbers
in the usual aotation (with succ the operation of successor). non-empty lists of naturals
(with - the infix operation of concatenation) and all lists of natural numbers {(with ¢ the
empty list):

Ava=1{0,1,2,...}

Apeiest ={€-3-10-20-6, £-2-4,...}

Apst = ANeLast U {\“:}

Ap=0€ Ang

As. = succ : Ana 2 Ana

Ant =€ € Apaat

Acons = 1 ALt ANar = Anesist

We will use OSAlgy to denote the category of all E-algebras, with its arrows being
E-algebra homomorphisms as defiued further below.
4.1.1.4 Terms

A term js an expression constructed by the recursive application of the operaters of a
signature, starting from its constants:

Definition 4.8 Given a regular ordet-sorted signatnre I, its terms are the elements of
the sets of an S-sorted family {Tg . | 3 € 8}, where:

1L EA,; C TE,J; E\nd,

2. ifoc B, where w =81...8, ¥ A, and t, € Tx,;, fore = 1,..., n, then (the striug)
alt.... tn) € Tx .
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The constants of a siguature play the rele of generators of the terms in the sense that
every term is built starting from them. Indeed, if there are no constants in the signature,
the sets of terms are empty.

4.1.1.5 The Term Algebra

The terms of an order-sorted signuature define an algebra, called the term algebra.

Definition 4.9 Given a regular order-sorted signature T, the order-sorted E-term alge-
hra is the least family {Tt , | s € S} of sets of terms such that:

1. if s’ € s then Tg o © T

2 if o € Ty, where w = 5y...5, # A then T, : Tg, = T, sends §h....,2, to
a(t),.. . ln), where t; € Te o fori=1,...,n

m}

Example 4.10 The term algebra Tr for LIST-OF-NAT has these carrier sets:

TeNa=1{0,8 0,8 30, ...}
Te Nefast = {cons{nil,0), cons(cons(nil,s 0),s a = 0), ...}
TE.Lwt = TE,NeLut U {Ilil}

The function T,_ maps the term t of Tt yar to the term s t of Tk wat, while Tpn, maps
the terms t1 € 7% r.¢ and t2 € T o, to the term cons(t1,t2) of Tr nverus- O

Given a regular order-sorted signature 3, the term algebra Tt has a property, called
initiality, which allows us to cousider it as the most representative algebra in OSAlgy..
Initiality is defined in terms of the relatious between the X-algebras of OSAlge. A 3-
algebra [ is initial in OSAlg. if and only if there exists a unique homomorphism from I
to any other algebra. All initial algebras on a signature are isomorphic, or the same up to
a family of hijections between their carrier sets.

A homomorphism hetweeu two order-sorted algebras is a sorted family of mappings
between their carrier sets that preserves the algebraic structure, in the sense that they
distribnte through the operations of the algebras and respect carrier set inclusion.

Definition 4.11 Let © be a regular order-sorted signature and let 4 and B be Z-algebras.
A T-homomorphism k : 4 — B is an S-sorted family {h, : A, =+ B, | s € 5} of functions
such that:

1. if @ € Iy 4 then hy{A;) = By,

2. g € By, with w = sy,...,9, # A then h(As{a}) = Bg(hy{a)) for each a =
81,...,8, € Ay, and ki (a) = (hsl(ﬂl)n---‘hs"(an))§ and,
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3. ifs< & in (8,<) then A,(a) = hy(a) for each a € 4,.

]

Definition 4.12 Given auy algebra A in OSAlgg, the unique homomorphism !: Ty = A
is defined as follows:

1. if o € &y 4 then '(T,) = Ay

2 if 0 € By, with w = 87,...,8, F A, then L(T,(t)) = Agz(L(t)) for each t =
Py tn € Ty and L {t) = {!,,(f]),.-.,!sﬂ(t,‘)).

a

For example, the unique homomorphism between Ty and the algebra A4 in Example 4.7
maps Q to0, il to £, cons to +, cons{nil,0) to ¢- 0, etc.

4.1.1.6 Equations

An equation? expresses equality betweeu two terms. As terms are sorted, and can have more
than one sort through the sort hierarchy, not every pair of terms can form an order-sorted
equation. OSA allows a quite general form of equatiou not requiring the same least sort for
the terms involved, but more loosely, that their sorts lie in the same connected component
of the parlial ordering on sorts.

Definition 4.13 Given a poset (S, <), let = denote the transitive and symmetric closure
of <. Then = is an equivalence relation whase equivalence classes are called the connected
components of {§,<). O

Terms which include variables are used in equations. Terms without wvariables are called
ground terms. A variable set X is an S-sorted family {X, | s € 5} of disjoint sets. Terms
with variables can be seen as a special case of ground terms by eniarging the signature with
new constants that correspond to the variables; ie., X, C (Tg), for s € 5. We will use
Tx(x) to denote a family of terms with variables taken from X.

Definition 4.14 Given aregular order-sorted signature ¥, a T-equation is a triple (X, ¢, '}
where X is a variable set, £ and t’ are in Tyx, and the least sorts of £ and ¢ are iu the
same connected component of (S, <), O

Variahles in equations are universaily quantified and an alternative notation that we
use for equations is (VX) ¢t = /. In addition, equations can be conditiopal, with form
{VX) t = ¢ if C, where the condition C is a finite set of unquantified Z-equations with
variables in X.

We use equations to express expected properties. We could, for instance, enrich
LIST-DF-NAT with operators to allow access to the head or the tail of a list:

9We use “equation” rather than “axiom” to follow the literature on semantics.
eq



Example 4.15 Suppose the following operator declarations are added to LIST-0F-NAT:

fn hd : NeList -> Nat .
fn tl : NeList -> List .

Their expected properties can now be stated with equations as follows:

var L : List . wvar N : Nat .
ax hd{cons{(L,N)} = N .
ax tl(cens(L,N)} =L .

corresponding to tbe intuition that the head of a list is the last element added, while jts
tail is the list itself without the head. O

This gives rise to the foliowing:

Definition 4.16 Given a regular order-sorted signature T and a set of Z-equations E, the
pair (T, E) is an order-sorted E-presentation (also called ©-specification). D

A module at the fuoctional level of FOOPS defines an order-sorted presentation. Note
also that an order-sorted signature can be considered as an order-sorted presentation that
has an empty set of equations.

4.1.1.7 Satisfaction

Given a signature I, order-sorted satisfaction expresses when a E-algebra satisfies a -
equation. Intuitively, a T-algebra satisfies a E-equation iff the two terms of the X-equation
are always assigried the same element of the algebra.

In order to formalise this intuition, we need a precise definition of the notion of assign-
ment of an element of an algebra to a term. Given a signature I, a term in a Z-equation
contains variables from a sorted family X. Earlier we mentioned that variables in X con-
stitute an enlarged signature (X ) where the elements of X represent constants. We can
alse build the term algebra Txxy on £(X) in the same way as on E. Indeed, Ty xy is also
a Z-algebra. In particular, it is the Z-algebra freely generated from X. Freeness plays a
central role in the netion of satisfaction, A E-term with variables in X is interpreted in a
Y-algebra A by assigning values in A to the variables in the term, and extending such an
assignment to the whole term. An assignment is then a mapping from X to A. The exten-
sion of such and assignment is a homomorphism between Tr ) and A and its existence and
uniqueness are guaranteed by the freeness of Tyoxy. (See [49] and Section 434 for more
about freeness.)

Definition 4.17 Given a signature I, a variable set X and a Z-algebra A, the unique
homomorphism a” : Tg(xy — A extending the assigmnent & : X — A, i3 defined as follows:

1. if z € X, then a}(z) = qa(z);

2. if ¢ € By, then a}(T,) = Ag; and,
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3. if o€ E,, with w = 81,...,50n # A, then a*(T,(1)) = A{al(t)) for each t =
to. oty € Tew and agy(f) = (a5, (1), ... a5, (ta))-

m]

Example 4.18 Consider the algebra A of Example 4.7. Snppose we want to assign a valne
in A to the term cona{nil,N). Note that N has sort Nat. We can choose, for instance, to
assign the value 3 to the variable N. Considering that ¢ is the function of A representing
the operator nil, and that - corresponds to cons, under this assignment the corresponding
value for cons(nil Ny is<-3. O

In general, different assignments to the variables of a term yield different assignments to
the term. A L-equation is satisfied in a E-algebra if and only if we can assign the same value
of the algebra to the terms of the equation, for each possible assignment to their variables.
As terms may have more than one sort, assignments are always applied in the least sort of
the terms. In the following definition L5(1} denotes the least sort of the term t.

Definition 4.19 An order-sorted T-algebra A satisfies a I-equation (vX) ¢ = ¢ iff
s (t) = 0} ¢ry(t)) I A for every assignmenta: X —+ 4. O

The notion of satisfaction extends to sets of equations and to conditional equations. In
the Iatter the terms of an equation (V.X) ¢ = ¢’ if C must have the same value in the algebra
for all assignments that satisfy €. Satisfaction also extends to L-gpecifications:

Definition 4.20 Given an order-sorted specification {, E), an order-sorted X-algebra A
satisfies (&, E) iff it satisfies each equation in E. In this case we say that A is a (X, E}-
algebra. O

OSAlgy, ; denotes the category of L-algehras that satisfy (£, E); its arrows are homo-
morphisms between the algebras. There is also a category of presentations in which arrows
are signature morphisms with the condition that equational satisfaction is preserved:

Definition 4.21 Given order-sorted presentations (L, E} and (', E'). an order-sorted sig-
nature morphism ®: L —+ ¥’ is a morphism ¢: (£, E) — (X', E") iff

M' |y E' implies (M) Ex E
for all E'-algebras M', where the reduct (') of M' to £ is M’ viewed as a L-algebra. D

4.1.1.8 Initiality

Initiality extends to the class of order-sorted algebras which satisfy an order-sorted presen-
tation. Two properties characterise the initial algebra of an order-sorted presentation:

e every element of the (carriers of the) algebra can be named using the operators of the
specification, i.e., there is no junk in the algebra;



4.1 Functional-level Semantics ) 93

e all ground equations which are satisfied jn the algebra can be derived from the equa-
tions in the specification, i.e., unequal terms are not confused in the algebra.

The initial algebra of an order-sorted specification is related to the term algebra and,
indeed, coincides with it when the set of equations is empty. The initial algebra of an
order-sorted specification is a quotient algebra of the term aigebra. This means that terms
of the term algebra are considered to be the same in the initial algebra when they are made
equivalent by the equations. To make this precise, we need some auxiliary definitions,

A Z-equation induces a relation on each L-algebra:

Definition 4.22 Given an order-sorted signature £ and a E-algebra B, a T-equation e =
{X,t,t') defines a relation R, ou B as follows:

bR iff 3z : X — B such that b = g*{t) and ¥ = a*(t")

Note that R, is an S-sorted family {R., | ¢ € S5} of relations and that R., C R, ,
when s € " in §. If E is a set of equations, Rg denotes the least relation which contains
R foreache € F.

Example 4.23 For the term algebra Ty for LIST-0F=NAT, the equation
hd(cons(L,N}) = N

defines, for all possible assignments to the variables L and N, a relation on Tx ya which, for
example, relates hd{cons{nil,s 0)) and s 0. O

For our pnrposes, this relation is not enough. We require that the relation is also a
congruence with respect to the operations and the inclusion hierarchies of the carriers of
the algebra:

Definition 4.24 Given an order-sorted signature T and a Z-algehra B, a T-congruence
is a L-equivalence relation R such that:

1l ifoe £, and b, b’ € By then bRY implies B,(4) R B, (V), where w = s;,... s,
bRY = b1 Ry, b),. .., bu R, ), and b, 8] € B, ; and,

2 ifs<s and b, ¥ € B, then bR,V ilf bR.V.

a

If e is an equation, we use =, to denote the least E-congruence induced by R.. By
extension, if F i3 a set of equations we denote =g the least E-congruence induced by Rg.

Example 4.25 The relation of the previous example extends to a congruence which, for
example, relates cons(nil,hd{cons(nil,s 0))) and cons(nil,s 0}. D
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We would expect the initial algebra for an order-sarted specification (X%, E) to be a quo-
tient of the term algebra 7%, obtained by identifying the terms related by the congruence =g
generated on Ty, from the equations of the specification. However, due to sort hierarchies,
we need to consider situations where equations relate terms across a connected component
of the poset of sorts. For instance, we would expect the terms t1{cona (cons(nil,0),0))
and cons{nil,0) to be equivalent with respect to both Lis{ and NeList, hut =g relates
thern only with respect to List. To this end, we will define a new congruence. derived from
=pg. on all terms with sorts in the same connected component. We present the subcase
when posets and order-sorted signatures are locally filtered [49]:

Definition 4.26 A poset (S, <) is filtered iff for any two elements s, s’ € S there is an
element 8" € S such that 8,4’ < 5. A poset is locally filtered iff each of its connected
components is filtered. An order-sorted signature (S5, <, Z) is locally flltered iff (5.<) is
locally filtered. O

Given a locally filtered order-sorted signature (S, €, 2, for each connected component
C of (5, <) we may define a congruence =¢ on Toc = U,ec Tk s as follows:

t=ct if 3s€C suchthat t=g,t.

‘We car now define an initial algebra for (X, E} as a quotient algebra of the term algebra
Tr; under the congruences =¢ generated for each connected component C. Let Tt g denote
such an algebra. In the following definition [f] denotes the equivalence class of #:

Definition 4.27 Given a locally filtered order-sorted specification (£, E'), the algebra Tx ¢
is defineq as follows:

1. if C 15 a connected component of {5, <) and s € C, then the carrier set Tx g, is the
quotient of Ty, by =¢;

2 if o€ By, then Ty g5 = [7¢]; and,

3. ifoeLysthen Topo(lti], ..., Ba]} = [Teltr,. .. B}l forw =0y, an #£ A ¢, €Ty,
and i, € Te g, fori=1,...,n.

As all the initial algebras of a specification (£, E) are isomorpbic, we can consider them
as abstractly the same and choose Ty g as their representative. We can therefore refer to
it simply as the initial algebra of the specification.

Example 4.28 The initial algebra of LIST-DF-NAT has tbe following carrier sets:

(To.g)wat = {[0, hd(cons(nil,0)),...], [s 0, hd(cons{nil,s 0)),...},...}
(Tr.e)NeList = {[cons(nil,0)], (cons(cons(ril,s 0),s 5 5 0)], ...}
(Teplrise = (Te)werssr U {[nil, t1{eons{nil, )], ...)
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By this construction, we may formalise an abstract data type as a class of isomorphic
initial algebras. Because a module at the functional level of FOOPS specifies an abstract
data type it may be assigned as semantics the initial algebra of this specification. Addi-
tionally, this choice of the representative of the class of initial algebras allows us to apply
term rewriting techniques to the specification, giving a form of computation for FOOPS
programs (see sections 4.1.3 and 4.2.2).

0SA also provides a semantics for theories at the functional level of FOOPS. Because a
theory has the same syntactic structure as a module, it can also be seen as representing an
order-sorted specification (E, E'}). However its semantics is loose, in the sense that we take
as its denotation the whole category O8Algy, p of algebras satisfying (I, E}, not jusi those
algebras which are initial in OSAlgy g. This gives an account of the fact that a theory
specifies module properties and not executable code.

4.1.2 Order-Sorted Conditional Equational Logic

The notions of order-sorted equation and order-sorted satisfaction introduced in the previous
sections support equational deduction. Order-Sorted Conditional Equational Logic is a
logic for equality having order-sorted signatures ag vocabulary and order-sorted conditional
equations as sentences. Equational deduction allows new equations to be derived from old
oues by applying rules which express the properties of substituting equals for equals. In
particular, they express that equality

 is reflerive: anything is equal to itself;

is symmelric: if £ is equal to t' then t' is equal to t;

is fransittve: if ¢ is equal to ¢’ and ' is equal to t" then ¢ is equal to ¢

*

is a congruence with respect to term substiulion: substituting equal expressions into
the same expression yields equal expressions; and,

has the property of substitutivily: applying the same substitution to equal expressions
yields equal expressions.

Given an order-sorted specification (E, EY, the equations of E' together with these rules
define a deduction system in which these equations represent the axioms (or assnmptions).
This deduction system allows new equations to be deduced; the least set of equations
deducible from E is called the deductive closure of F and is denoted E®. A derivation
of an equation e from E is then a proof that e belongs to E* and is represented by the
sequence of rule applications which actually deduce e from E. If ¢ is deducible from E then
we write E F e,

%In general, a logice! system can have many different and equivalent variants of its rules of deduction,
and the use of a particular one is a matter of convemence.
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Given an erder-sorted specification {5, £, [49] proves that such a deduction system is
sound and complete for deriving all equations which hold in OSAlgy, ¢ If au equation
e {not helonging to E) is satisfied by each algebra in OSAlgy g, then we write E =5, e.
Soundness says that truth is preserved in ail algebras of OSAlgy, , i.e., that if an equation
is deducible from E then it is satisfied by each algebra in OSAlgy g

Ete implies EfExe.

Completeness says that cvery equation which is true io all algebras of OSAlgy  can be
deduced from E using the deduction system:

EEre implies Etre.

The importance of these properties is that they allow us to establish wkether an equation
is true i all algebras by manipulating Qnitary syntactic objects (the X-equations}, while
the notion of satisfaction requires manipulations of possibly non-finitary semantic objects
(tbe algebras in OSAlgy g). This means that deduction represents a model of computa-
tion for the fuuctional level of FOOPS and provides an operationai semantics through its
specialisation to term rewriting.

Finally, the proof of completeness in [49] assumes coherent signatures. A signature is
coherent if it is regular and locally filtered. For coherent signatures, satisfaction is closed
under isomorphism, meaning that isomorphic algebras satisfy the same set of equations,
One bencfit of requiring signatures to be coherent is a greater simplicity and flexibility in
tbe treatment of equality, since we can always assume that the two terms of an equation
have the same sort by appealing to a common supersort,

4.1.3 Term Rewriting

Order-sotted term rewriting [40, 44, 66} is a form of equational deduction that provides a
model of computation for the functional level of FOOPS, and thus an operational semantics.
Given a signature 1, sentences for term rewriting are Z-equations subjected to the
restriction that variables in right-hand sides must alsc be preseut in left-hand sides. More
explicitly, an equation (VX)) ¢, = ¢7 must be such that var(tz) C var{t;) = X, where var(1)
denotes the variables in t. Such equations are interpreted as rules for term rewriting and
hence arc called Z-rewrite rules. A E-rewrite system is a set of Z-rewrite rules.

The basic aspects of term rewriting were introduced in Chapter 2. In what follows we
give more formal definitions. A term t € Ty can be viewed as a labelled tree, or a
partial function from the naturals to £(X) which gives a subterm of ¢ when provided with
an index. We then use t/v to indicate the snbterm of t at index v; alsa, we nse tv + ']
to denote the result of replacing the subterm of ¢ indicated by v with the term t'. A
substitution is an assignment X — Txqyy. If 0 is an assignment, theu whenever ¢ = £(t)
we say that ¢’ is an instance of ¢ and that & is a match from ¢ to . We can now define
tbe following:
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Definition 4.29 A one-siep rewrite using an equation (vX) ¢ = t' in E 15 a triple
(Y,tg,t,) with a match 8 : X' — Ty(y) from a term ¢ to a subterm 8(t) of ¢ at index »
such that 1) = tg{v + B(t')]. A one-step rewrite using a set E of equations defines a binary
relation =1>E on Ty(vy Whenever 1, =1>5 t; we say that iy rewrites to ¢y in one step. O

Term rewriting is obtained by repeated application of one-step rewrites. The corre-
sponding relation on Ty is the transitive reflexive closure of 2 ¢ and is denoted by S5; we
call it the term rewriting relation. The following property holds:

t=pt implies EF (v@) t =+

Tt says that two terms related in the term rewriting relation constitute an equation which is
deducible from E. All this generalises to the case where the equations in E are conditional
(see [49] for the details).

A term that cannot be further rewritten is a normal form under E. If t 3z ' aud
t' is a normal form, #' is called a normal form of {. Using term rewriting as a model of
computation, normal forms can be considered as the results of computations.

The above only explains many-sorted term rewriting. Order-sorted term rewriting is
more general in that matching takes the sort hierarchy into account. For it to be safe,
however, there need to be restrictions on the form of rewrite rules so that a rewrite is
always sort-decreasing: this is guaranteed by requiring the least sort of the right-hand side
of a rewrite role to be < the least sort of the left-hand side. This avoids, for example,
rewriting a term f(g(x)), where f expects an argument of sort S, to a term f(y} using a
rule g{x} = y in which § < LS(y); the prohlem is that f(y) is an ill-formed term.

A rewrite system is terminating if and only if there is no infinite sequence 1,43, 83, . .
such that ¢; é-;.; ta =]>-E s =1>E ... . But even when every rewrite sequence is finite, the
normal form of a term might not be unique. A rewrite system is confluent (e Church-
Rosser) if and only if t ¢ #; and ¢ =g ¢t imply the existence of a term ¥ such that
t; =g ¢ and & =g ¢. This property is depicted in the following diagram:

i / \t
NS

A rewrite system is canonical if it is terminating and confluent. In the following, we
will use [t] to denote the unique normal form of ¢. For E a canonical system, the following
property holds:

E-®) =+ o [f]=1[t])

Hence, for canonical systems, we have an easy way of deciding when an equation is true:
rewrite its terms and compaze their normal forms. Moreover, when a set of equations forms
a canonical rewriting system the operational and denotational semantics of the functional
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leval of FOOPS agree, in the sense that the normal forms of the terms constitute an initial
algebra.

There is also term rewriting modulo associativity and commutativity [40]. Many
commonly used operators have these properties and it is convenient to leave the system
to deal with them. Furthermore, equations for associativity and commutativity destroy
the property of termination of a rewrite system. Term rewriting modulo associativity and
commutativity allows these properties to be considered as built-n to the rewrite system.
This is ackieved by

» considering terms as equivalent when they differ only in their pareuthesisation and in
the order of their factors; and by

¢ applying rewriting to equivalence classes of terins.

Term rewriting modulo associativity and commutativity is a particular case of the more
general term rewriting modulo a set of equations F. All constructions and results of term
rewriting generalise to this case hy considering the equivalence classes of terms under the
least congruence =g on terms generated from F. In particular, the property of confluence
of a rewrite system is defined up to term equivalence in the sense that different rewrites
of equivalent terms must be reducible to equivalent terms, as depicted in the following
diagram:

t—Ftl

AN
S

b3 =pty

As an aside, note that because an equivalence class of terms can be infinite, the imple-
mentation of OBJ3 (on which FOOPS relies) uses a particular term as a representative of
its equivalence class and applies term rewriting to it.

4.2 Object-level Semantics

In this section we describe the state of research towards providing a formal semantics for
FOOFS. The operational semautics is based on 2 weak form of reflection [48] in which
the current state of objects (the object “database™} is encoded as a term in the functional
level of FOOPS, and where methods are functions whieh take a database as argument and
produce a new one: this reduces all computation to the functional level. Denotationally, an
extension of OSA called hidden-sorted algebra is used [39]. However. this approach is still
under development and cannot yet explain all of the features of the language.
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4.2.1 Hidden-Sorted Algebra

Hidden-sorted algebra (HSA, hereafter) is a generalisation of OSA which formally captures
the notion of object state and the basic information hidiug concepts of the object paradigm.
Its central tenet is that the states of objects are to be treated observationally with respect
to properties: in HSA, two “object states” are equivalent if they give rise to the same
behaviour, not just if they hold the same exact data. Therefore, HSA generalises satisfaction
for order-sorted algebras.

This algebraic approach originated with the work of Goguen and Meseguer on abstract
machines [47]. and is also influenced by the work of Reichel [96, 97]. The most recent
expositions are by Goguen [39], Goguen and Diaconescu [43], and Goguen and Kemp [45).

While HSA represents significant progress towards a formal denotational semanties for
object orientation, it has not yet been developed to explain object creation and destruction
{(including identifiers). Becanse of this, this section uses the notation of the functional levet
of FOOPS, but its semantics wili be given by HSA and not by OSA.

Informally, HSA: fixes a subalgehra D of data values, which would typically include the
natural numbers and the booleans, for example; models states with hidden sords; models
data with wisible soris; models attributes with visible-valued functions of exactly one hidden-
sorted argument; and models methods with hidden-valued functions of exactly one hidden-
sorted argument.

4.2.1.1 Signature
The following definition formalises the previous informal discussion:
Definition 4.30 A hidden-sorted signature consists of
1. a set § of sorts,
2. a subset ¥V C § of visible sorts, where H = § — V is called the set of hidden sorts,
3. an S-sorted signature I,
4. a V-sorted subsignature ¥ € ¥ called the data signeture, and
5. a ¥-algebra £}, called the data algebra,

such that

1. for each d € D, with v € ¥ there is some 3 € ¥}, such that ¢ is interpreted as d in
D; for simplicity, we can assume that D, C ¥, , for each v € V,

2. each ¢ € ¥y, with w € V* and s € V lies in ¥, 5, and

3. cach o € Ty, ; has at most one element of w iu H,
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Whenever w € 5* contains a hidden sort, we call ¢ € £, a method if s € H or an
attributeif s € V. The first condition says that all data values are named by constants in
¥. The second condition expresses the data “protection” requirement that & cannot add
new operations on the data values of ¥. And the final condition says that attribotes and
methods act on the states of single objects.

A hidden-sorted specification is a tuple {5, Z,V, ¥, D £}, where (5,5, V, ¥, D) isa
hidden-sorled signature and E is a set of Z-equations; we may abbreviate this to (E, D, E)
or even just to (I, E}, if the context permits. 0

Example 4.31 Here we give 3 simple specification of stack objects; it assumes an error
constant, err of sort Nat®.

fmod STACK is

sort Stack .

pr DATA .

fn empty : -> Stack .

fn top_ : Stack -> Nat

fn pop_ : Stack ~> Stack .

fn pusk : Stack Nat -> Stack .
var § : Stack . var N : Nat .
ax top empty = err .
ax pop empty = empty .
ax top push(5,N) = N .
ax pop push(5,N) = 5 .

endf

Here we take Stack to be a hidden sort that denotes the state of stack objects. The constant
empty represents the initial state of a stack, pop. and push are methods, and top_ is an
attribute.

Module DATA is for the data values used in STACK; in this case, only the natural numbers
with the additional constant err are needed. The signature of DATA is given by ¥ in the
preceding definition, with D some initial model for it. O

4.2.1.2 Models and Satisfaction

As already mentioned, Lhe crucial aspect of HSA is its definition of satisfaction of an equation
by an algebra, because it takes into account that objects bave internal states, in the sense
that only their observable properties are important. The above specification of stacks is
interesting for this reason, because certain implementations, such as the one that uses an
array aad a pointer, do oot satisfy the equation

ax pop push(5,X) = § .

©A moare sophisticated definition of stacks would model the partiality of top and pop with subsorts, as
illustrated in Chapter 2, but we choose a simpler one here for expository purposes.
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hterally, although they might do so behaviournlly. In tbe example diagram in Figure 4.1,
the pop leaves “garbage” behind. but since this garbage is not observable through any
attribute, it does not affect the behaviour of tbe stack. Therefore, we say that the array-
pointer implementation behaviourally satisfies the above equation.

BE DR 0 b R N S R
r r i

Figure 4.1: Junk after a pop.

Thke forinal definition of behavioural satisfaction given next uses “contexts,” which are
terms of visible sort with a single free variable of hidden sort. The idea is that if, for each
context, the same result i6 observed when the variable is substituted for botb terms of an
equation, then the equation is satisfied. The following are two example contexts for STACK,
with the free variable denoted by z:

top(z)
top(pop(z})

Definition 4.32 Given a hidden-sorted signature {5,%,V, ¥, D) and an S-sorted set X of
variable symbols, then a I-context s a visible sorted E-term baving a single occurrence
of a new variable symbol z. Call such a context appropriate for a term ¢ iff the sort of ¢
matches the sort of z.

A D-algebra A behaviourally satisfies a Z-equation (¥X) t = t' iff 4 satisfies each
equation (VX) c(z + t) = c(z « ") where c is an appropriate Z-context and « denotes
substitution; in this case, we may write A =& (vX) t =¢'.

Similarly, A behaviourally satisfies a conditional equation e of the form

WX)t=tift, =t} .ty =t
iff for every assignment 8: X — A, we have
8*(c(z «—t)) =6*(c{z « 1))
for all appropriate contexts ¢ whenever, for j=1,...,m,
8" (c;{z & 1,)) = 0°(c, (= + £)))
for all appropriate contexts ¢,. As with unconditional equations. we write A =2 e. O

In particular, note that for visible-sorted equations behavioural satisfaction reduces to or-
dinary satisfaction. The next step is to make the notion of model precise:
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Definition 4,33 Given a hidden-sorted presentation (5, L, V¥, D E), then a model of
that presentation is a L-algebra 4 such that

1. the restriction of A to ¥, written A|g, is lsomorphic to D, and
2. each ¢ € E is bebaviourally satisfed.

A model of (8,Z,V, ¥, D, F) is also called a (S, T, V, ¥, D, Fj-algebra, or a (T, D, E)-
algebra. A T-algebra that satisfies just the first condition is called a (5, 3, V, ¥, D]-algehra,
or a (X, D}-algebra, or simply a hidden-sorted algebra. O

Note that the intended models are not initial as in the functional level; rather, intended
models are loose, so that any algebra that satisfies the ahove conditions for a given presen-
tation is an acceptable model.

4.2.1.3 Extension to Order-Sortedness

The foregoing definitions have ail been for the many-sorted case. We next generalise them to
the order-sorted case. The principal aspect is that visible and hidden sorts form mutually
exclusive inheritance hierarchies, such that a visible and a hidden sort are never related
under the sort ordering.

Definition 4.34 Given an order-sorted signature (¥, <, ¥) with a set V" of visible sorts and
an order-sorted ¥-algebra IJ, then (5, <,E.V, ¥, D) is a hidden order-sorted signature
if (V,<,¥9) C (5,€,L) as order-sorted signatures, and (5,Z,V, ¥, D) is a hidden many-
sorted signature, such that no visible sort is related (by <} to any hidden sort. O

Definition 4.35 A hidden order-sorted specification is a tuple (S5,<,Z,V, ¥, D, F)
where {S,<, I, V, ¥, D) is a hidden order-sorted signature and ¥ is a set of T-equations.
We may abbreviate this to just (I, D, E}, as in the many-sorted case. O

Definition 4.36 A hidden order-sorted (5, <,5, V., ¥, D)-algebra is an order-sorted
(S, €, E)-algebra A that is also a hidden many-sorted (X, D}-algebra. &

4.2.1.4 Morphisms

As mentioned previously, morphisms play a central role in the formalisation of parameterised
programming.

Definition 4.37 A homomorphism of hidden order-sorted algebras h: M = M’ is a
homomorphism of order-sorted algebras that is aiso a homomorphism of hidden many-sorted
algebras. O

Definition 4.38 Given hidden order-sorted signatures L and L', then a hidden order-
sorted signature morphism ¢: & — I’ is an order-sorted signature morphism $ =
(fig): £ T such that:



1. fiv}y=wfor eachv eV,

2 g(¢)=vy for each p € ¥,

3. f(H)C H' (where H' = 5" -V and 8’ is the sort set of &');

4. if ' € T, » and some sort in w’ lies in f(H), then ¢’ = g(o) for some ¢ € T; and
5. for any hidden sorts &', if f(h) < f(4') then h < K'.

For the many-sorted case, the last condition is omitted. O

The first three conditions say that hidden-sorted signature morphisms preserve visibility
and iavisibility for both sorts and operations, while the fourth and fifth conditions express
the encapsulafton of classes and subclasses, in the sense that no new methods or attributes
can he defined on any imported class’, and that any subclass relation between images of
hidden sorts comes from a relation between their sources. A morpbisin of modules, i.e., of
hidden-sorted specifications. must satisfy an additional condition:

Definition 4.39 Given hidden-sorted specifications (¥, D, E) and (¥',1, F), then a
hidden-sorted signature morphism ®: {E,D} — (¥, ) is a morphism ¢: (L. D, E) —
(=, D, E') i

M' =8 F implies #(M") =2 E
for all &'-algebras M’, where the reduct (M} of M’ t0 E is M’ viewed as a E-algebra. O

Note that the previous definition covers only the many-sorted case. The definition for
the order-sorted case is given in [13], and relies on machinery whose complexity lies outside
the scope of this chapter.

With these definitions, we can form categories of signatures, algebras and presentations
analogous to those of the previous section.

4.2.1.5 Hidden Qrder-Sorted Conditional Equational Logic

The definition of Hidden Order-Sorted Conditional Equational Logic is similar to that of
Order-Sorted Conditional Eqnational Logic. The vocabulary of this logic is given by hidden-
sorted signatures and its sentences are hidden-sorted conditional equations; satisfaction is
behavioural. No rules of deduction have been developed for this logic®, but verification
techniques are discussed in [43], based on work reported in {13]. They involve producing
an ordinary order-sorted algebra from a hidden-sorted algebra, and using indvetion aver
all possihle contexts to prove hidden-sorted equations; the advantage is that then ordinary
deduction can be used.

"As will be explained in the next section, module impeortation 15 formalised in terms of (in¢lusion)
morphisms.

8According to the theory of institutions, rules of deduction are not necessary for a system to qualify as
a logic. The satisfaction relation is more important.
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4.2.2 TReflection

In this section we show how to encode the object modules of FOOPS as programs in its
functional level, thereby reducing all computation to tbis level. In addition to summarisiong
[48], we show how to encode dynamic binding by collapsing all of the different versious of
an operation into one, and give a deduction rule for sequential composition. For a different
but related approach to this operational semantics see [9].

4.2.2.1 The Functional Level of FOOPS as a FOOPS Program

Let FL be the functional sub-language of FOOPS, and let FLAT-FL be a sub-language of
FL that does not support module importation nor parameterisation; any FL program can
be converted to an FLAT-FL program by simply copying modules inside each other. In
FL we can define the syntax of FLAT-FL programs by giviug the appropriate declarations
for sorts, subsorts, functions, axioms, terms and so on, along with their constructors, and
then supplying a sort FlatF1 with constrnetor fmed. For example, (part of) a module for
natural numbers could then be eucoded as the following term of sort FlatFl;

fmod(NAT, sorts(Nat),
fne((0 : -> Nat),{(+ : Nat Nat -> Nat)),
axa(+(0,N) = N))

For a complete descripticn of FLAT-FL, we need axioms to describe the behaviour of eval
to compute normal forms; it would accept as arguments a term of sort FlatFl and a term
to normalise. But notice that the description of FLAT-FL programs is simply a module in
FL, and therefore could be included as part of the FL library. Then, we do not really need
to provide a definition of eval for FLAT-FL programs, as we could use the eval already
available in the FL system.

This semantics uses FLAT-FL programs to describe states of the FOOPS database.
Here is where the reflection comes in: the underlying equational logic will change with
cotnputations, to reflect how the database evolves as methods act upon objects. This is
achieved by encoding the database as an FlatFl term, and encoding methods as functions
on databases.

4.2.2.2 Representing the Database

Now we show how a FOOPS database can be described as a set of axioms written in FLAT-
FL. First, we convert all class aud snbclass declarations to sort and subsort declarations,
and all attribute declarations to functions (methods are left out for the moment). At any
particular instance, all object identifiers are simply constants of the appropriate sort, and
all attributes are just functions oo these identifiers. To illustrate, we will use the classes
Acct and Savhcet of examples 3.2 and 3.11 (see pages 53 and 71). After

eval new.Acct (JohnAcct, bal_ = 500, hist_ = emptyHist) .
eval new.SavAcct (MarySavicet, bal_ = 750,

hist_ = emptyHist, rate_ .05}



the FOOPS database (as a term of sort FlatFl) would be

fmod FOOPS-DE is

fn JohnhAcect ; -> Acct .
fn MarySavAcet @ -> SavAcct .
ax bal JohmAcct = EOO .
ax hist JohnAcct = emptyHist .
ax bal MarySavAcct = 750 .
ax bist MarySavAcct = emptyHist .
ax .05 .
endf

rate MarySavAcct

n

where “..." stands for all the sort and function declarations as explained above.

Since there 1s an order-sorted algebra associated with every FLAT-FL program, and
every state of a FOOPS database can be described as an FLAT-FL program, every FQOPS
database has an associated order-sorted algebra. In the above state of the database, the
algebra has a carrier Acct with element Johnacct and functions bal_ and hist_, and a
carrier SavAcct with element MarySavAcct and functions bal_, hist_ and rate_; also
included are the carriers and functions associated with imported sorts such as Money and
Hist. Hence models: every FOOPS database has as model an initial algebra.

4.2.2.3 Ewvaluating Method Expressions

Methods are encoded as functions on FlatFl terms, such that they take a FOOFPS database
and produce a new, “updated™ database. For example, the expression

credit(JohnAcet, 100}

would replace the axioms

ax bal Johnlcct 500
ax hist JohmAcct = emptyHist

with the axioms

ax bal JohnAcct 600
ax hist Johnicet = << d ; 100 >>

where d would be the current date. This operational semantics views credit, as well as all
other methods, as “edit” functions on terms of sort FlatFl,

Methods new. Acet and remove would work as expected, by adding or removing con-
stants of the appropriate sort. Creation would also need to take care of the sppropriate
initialisations (including defauits), and removal of subtracting the axioms associated with
its argument.

For every complex method expression, such as
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transfer 100 from credit(JohnAcet,5¢) te debit{MarySavicct,125)

there ix a parse tree, where method invocations in nodes take the database from one state to
another, and therefore each node is possibly evaluated in a different state. The evaluation is
bottom-up, but there is no fixed evaluation order horizontally, as methods may be annotated
with evaluation strategies for their arguments. Then, as the nodes in the tree are evaluated,
database states are propagated upward. Denotationally, for each node in this tree tbhere is
a correspoading initial algebra.

Let us now clearly outline the steps to carry out the transformation of a FOOPS program
P. We begin by defining A, the FL. module containing all functional level definitions in P.
Then we extend A to include ali classes, subclasses and attributes in P, duly converted to
sorts, Subsorts and [unctions, respectively. We call this module Da p, the initial database
of P. As was explained earlier, 4 and Dy p can be defined as terms of sort FlatFl. Now
we can define a module P’ as an extension of the FL module for FLAT-FL programs, and
include in it the methods of P as the appropriate functions ou FlatF1 terms (for parsing,
P’ will also need to include a copy of the declarations of Iy »j. Then P’ is used to compute
new databases, beginning with Do p.

4.2,2.4 Dynamic Binding

The machinery described above provides a simple way of handliug dynamically bound meth-
ods: use the database to check the sort of the object identifier, and make all the methods
be conditional on this check, Those methods not redefined in all subclasses would need a
disjuncticn of predicates to indicate that they applied to objects of more than one class.
An alternstive approach would involve changing the way rewrite rules are matched, as
illustrateqd in our prototype implementation of FOOPS (see Chapter 5).

4.2.2,5 Rules of deduction

Deduction in FOOPS is viewed as computation iu an equational logic whose axiowns {i.c.,
the database) change as expressions are evaluated. Below we present the rules of deduction
via a relation —p on pairs {¢, D}, where P is a FOOPS program, e a method expression
and 7 is a reachable database described as an FiatFl term {i.e., reachable from the initial
database associated with P). For notation, let 4 be the specification of all the fuoctional
level components in P, e1,...,e, method expressious, v1,...,v, functional level values, m
a method symbol, [ a function symbol, and ¢ either a method or a function symbol. The
rules are (dropping £ as a subscript):

(1) (oler,. . yen), DY — {olvy....,vp), Dy), where

{en, DY — (o, D0}
{e2, D) — {w, D)

(ern Dn—l) — ("-"na Dn)



@) {f(e1,....vn), DY —+ (v, D), where v is the normal form of f(w,... vy} uzder AUD.

(3} {miv,... we), Dy — (v, D'}, where I)' is the normal form of m{w,,..., v, D}, and
m is the corresponding fnnction on FlatF1 terms defined in P'.

Finally, we give the deduction rule for evaluating the bnilt-in sequential composition oper-
ator:

{er;eq, D} — (visea, D) — (en, Dy)

where {e1, Y — (v, D}

4.3 Semantics of Parameterised Programming

A semantics for parameterised programming in FOOPS is given in the framework of the the-
ory of institutions, which formally captures the notion of “logical system” [41]. Institutions
demonstrate that the most important aspect of specification and large-grain programming—
namely, combining components to form larger ones—can be formalised independently of the
underlying logical system of a particnlar langnage. By showing that a logical system is
an institution, a number of important results regarding this and other aspects apply au-
tomatically, thus simplifying the task of giving a formal semantics to a language. Both
Order-Sorted Conditional Equational Logic and Hidden Order-Sorted Conditional Equa-
tional Logic are institutions [13, 41, 43]. Various other logical systems ltave been shown ta
be institutions, inciuding First Order Logic and Horn Clause Logic [41].

In this section we define institntions and show how module reuse and interconnection in
FOOPS are thus formalised. We assume knowledge of some basic category theory, including
functors and colimits. As for notation, we nse boldface for the name of categories, |C| for
the objects of category C. 14 to dencte identity at A, E*® to denote the closure of a set of
sentences E, and f; g to denote the compasition of arrows f and g, in diagrammatic order.
This presentation is based on [39, 41].

4.3.1 Institutions

The essence of an institution is the relationship between syntax {i.e., sentences and signa-
tures) and semantics {i.e., models). This relationship is embodied in the so-called Satis-
faction Condition, which states that a change in syntax induces a corresponding change in
semantics, such that truth ts invariant under change of notatton. An institutior consists of

* a collection of signatures and signature morphisms. such that for each signature T
there is

* a collection of I-sentences,
* 3 collection of I-models, and

» a satisfaction relation of I-sentences by E-models,
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such that when a signature changes {by a signature morphism), satisfaction of sentences by
models changes consistentiy. Here is the formal definition:

Definition 4.40 An institution 7 consists of
1. a category Sign, whose objects are called signatures,

2. afunctor Sen: Sign — Set, giving for each signature a set whose elements are called
sentences over that signature,

3. a functor Mod: Sign —+ Cat® giving for each signature ¥ a category wbose objects
are called Z-models, and whose arrows are called T-(model) morphisms, and

4. arelation Ex C [Mod(Z)] x Sen(L) for each E € |Sign(, called T-satisfaction,
such that for each morphism ¢: £ — £’ in Sign, the Satisfaction Condition
m' =y Sealg)(e) if Mod(o)m') EFre

holds for each m’ € |Mod(Z’}| and eack e € Sen(L}. We will drop the signature subscripts
on the satisfaction relation when it is oot confusing. O

The following picture’ may help visualise the above relationships:

Sen Set
Sign =
Ml)d Catup

b Med(E) Ex  Sen(D)
¢j Med(e) l Sen(¢)
= Mod(E) Exr  Sen(T)

In the ensuing exposition, we assume a fixed but arbitrary institution Z.

Fact 4.41 Order-Sorted Conditional Equational Logic is an institution [41]. We will denote
this institution by OSL. O

Fact 4.42 Hidden Order-Sorted Conditienal Equational Logic is an institution [13]. We
will denote this institution by HSL. D

The proofs of many of the facts and theorems that follow depend crucially on the
Satisfaction Condition,

®We thank the authors of [41] for letting us horrow the LTEX code for this picture.
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4.3.2 Theories

Definition 4.43 A theory is a presentation (I, E) such that E is closed. We may also
call (£, E) a E-theory. O

Given a theory T = (£, E} and a E-model M, we say that M satisfies Tif M = P
for each P € E, written M | E; we write M = T whenever M satisfies T. Therefore, a
T-theory classifies ¥-models hy whether or not they satisfy it. In particular, if we let E*
be the collection of all £-mmodels that satisfy each sentence in E, then we have that E* is a
full subcategory of Mod(Z).

Definition 4.44 The denotation 7™ of a Z-theory T is the set of models that satisfy it:
T ={M|MET}

O

Definition 4.45 The theory M™ of a ¥-model M is the set of all the sentepces it satisfies:
M'={E | MEE)

]

For example, for the FOOPS theory TRIV,

fth TRIV is
sort Elt
endfth

TRIV* = Set, the category of all sets. (Here and onwards, we use typewriter mode for
module names and italics for the associated theories, so that TRIV is the theory of module
TRIV.) For the theory

fth MONDID is

sort Elt
fn e : -> Elt .
fn _._ : Elt Elt -» Elt .

vars A B C : Elt .

ax A - e = A .

ax e - A= A .

ax A - (B -C) =(A-B}-C.
endfth

MONQID* = Monoid, the category of all monoids.
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4.3.3 Dependent Theories

Relationships hetween theories will help describe phenomena such as module inheritance
and parameterisation.

Definition 4.46 A view or theory morphism is a siguature merphism ¢ : {E, ) —
(%', E") such that P € E implies ¢{P} € E'*. This defines a category of theories over an
institution. O

Definition 4.47 A subtheory is a view (£, E} — (£, E"Y where EC ¥ and EC E'. O
The following is entailed hy the definiticn of theory morphism:

Fact 4.48 ¢ : (£, E) = (X', E') is a theory morphisin iff M' |= E' implies M’ |= g(E) for
all ¥/ models M'. Here $(E) = {¢(P) | P€ E}. D

The practical consequence of the last fact is that to check whether a signature morphisim is
a theory morphism there is no need to compute closures (which might be infinite}.

Definition 4.49 The denotation of a theory morphism ¢ : T — T' i5 its reduct or
forgetful functor ¢* : T™* — T*, which sends a T'-model M’ to the T-madel Mod(¢)(M")
and sends a T'-model morphism f/ : M' — N to ¢*(f') = Mod{¢){f) : Mod(g){M') —
Mod(g)(¥"). O

For example, TRIV is a subtheory of every theory with at least one sort, and thus
TRIV C MONOID. This induces a forgetful functor from Monoid to Set that sends a
monoid toits underlying set. In particular, there is a subtheory relation between the theory
of a generic module and the theory of its parameters. For example,

fmod B-SEARCH-TREE[X :: POSET] is
sort Tree .

endf

is associated with a theory B-SEARCH-TREE which includes POSET . Its denotation is
a forgetful functor from B-Search-Tree (¢ Poset.

4.3.4 Constraints

A coustraiut is a special kind of senience that expresses things such as initiality requirernents
on models, or that a model is freely generated by another. In this sense, for example,
constraints help characterise the various modes of module inheritance in FOOPE, including
parameterisation. The uotion of freeness is essential here, and we begin with its definition:

Definition 4.50 Given a theory morphism ¢ : T — T7, let ¢* : T'* = T* ke its forgetful
functor, and let M be a T-model. Thea a T'-model M’ is free over M (with respeet to
¢*) iff there is some morphism 1 : M — ¢*(M’) such that given any other T'-model N' and
morphism f : M — ¢*(N'), there is a unique T'-model morphism h : M* —+ N’ such that
i ¢*(h) = f. The following diagrams illustrate this (the triangle commutes):
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M— o" (M) M
Gﬁt N.' hq

a

Intuitively, M’ is the “hest” T'-model that extends M along ¢. (Moreover, free tadels
are umique up to isomorphism.) A common example of this situation is a Iree algebra over
some set X of variables.

Definition 4.51 An institution is Hberal iff for every theory morphism ¢ : T = T’ and
T-model M, there is a T"-model M’ such that M’ is free over M with respect to ¢*. O

Fact 4.52 OSL is a liberal institution. O
Fact 4.53 H 5L is not a liberal institntion [45]. O

Definition 4.54 Given a theory morphism ¢ : T — T", the function M — M' for M € T*
and M' € T', where M’ is free over M with respect to ¢*, extends uniquely toa functor,
denated ¢% : T* — 7", and called a free functor. O

In the following, without loss of generality, we will use the notation ¢*(M) even if the
institution involved is not liberal.

To explain parameterisation we need a way to state that a model is free over part of a
theory. In particular, we want models of generic modules to be free over the parameters.
The next definition formalises this,

Definition 4.55 Given a theory morphism ¢ : T — T and a T"-model M’, we say that A’
is ¢-free iff o (" (M")) is free over ¢*(M’) and the morphism ya;ppy : Sl (M) = M
1% an isomorphism. O

Now the definition of the uew kind of sentence:

Definition 4.56 Given asignature X, a L-constraiat isa pair (¢ : T —+ T, 8 : Sign(T") —
I) where T and T’ are theories and Sign(T”) is the signature of 7¥. Given a T-model M
and a Y-constraint c= (¢ : T - T7,0 : Sign{T') = I). we say that M satisfies c ifl ¢(M)
satisfies 7" and is ¢ free. The y-translation of a constraint ¢ = (¢, 8} is the constraint

{¢,8; ¢}, denoted +(c). O
The next fact establishes that constraints can be treated like regular sentences:

Fact 4.57 Given an institution Z, a new institution C(I} is obtained from I as follows:
its signatures are those of 7, and its sentences are those of 7 plus the constraints as new
sentences, with satisfaction and translation as in the previous definition. O
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Some examples at the functional level of FQOPS might help clarily matters. An fmod
declaration indicates that only initial models are accepted. This is captured hy a constraint
in which the source of the theory morphisin is the empty theory § (which has only one model
witll no sorts or operations}!1%. Constraints of this kind are called initiality constraints.
For example, the equations of the theory of

fmod NAT ia
sort Nat .
fn 0 : -> Nat .
fne. : Nat -> Nat .
fn _+_ : Nat Nat -> Mat [comm]
vare M N : Nat .
ax 0 + N=N ,
axrg M+ N = slM+N} .
endf

include the constraint {¢ : @ & NAT, Ly}, which says that any model of N AT must be free
over the empty theory.

Parameterised theories have as their denotation a forgetful functor to the class of models
of the parameter. For example,

fth VECTOR[X :: FIELD] is
gort Vector .

endfth
has as its denotation the functor F* : VECTOQR®* — FIELD*. Note here that no con-
straints are necessary: any model that satisfies the equations of VECTOR (which includes
F1ELDY) is accepted.
On the other hand, for parameterised (exccutable) modules the intention is that their

models be free over the parameters; i.e., the rest is to be interpreted initially. For example,
the theory of

fmod LISTIX :: TRIV] is
sort Liet .

endf

will also include the constraint (¢ : TRIV < LIST lggnrrsT)). which says that any
model of LI ST must be free over TRIV. Hereafter, we will call the theory of either generic
{including those at the object level) a parameterised theory.

107G see this, substitute @ for A in the diagram of Definition 4.50.
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4.3.5 Instantiation

The semantics of instantiating generics is based on the categorical concept of pushout
{eolimit). [t originated with Clear [14], based on ideas in [33].

Definition 4.58 Given a parameterised theory F': T — T and a view v : T =+ A of an
“actual” theary A as an “instance” of T, the result of “applying” F to v is the pushout
diagram shown below. The pushout object is T[v], and its denotation is (T'[])*. The
morphisms F¥ and v' are derived from F and w, respectively.

F

[u]
Example 4.59 Consider the generic module LIST above. Assuming a view v from TRIV

to WAT, we derive the pushout diagram below, where the F' in the previous definition is
the inclusion TRI'V <« LIST:

F

TRIV LIST
NAT—F LIST[x]

a

But these constructions are only significant if colimits always exist for the institutions
of interest.

Fact 4.60 OS8£ and HSL have finite colimits for all diagrams over the category of theories,
]

4.3.6 Module Hierarchies

The semantics of module importation is simply an application of the concepts that we have
developed so far, and is based on subtheories and on coustraints to characterise the maode
of importation. For example, the tbeory of module BOOL includes the initiality constraint
{9 : @ = BOOL, 15;npoor))- Importing a module in protecting mode means that its
denotation is preserved; i.e., all its properties must be satisfied by models of theimporting
module. The constraints of the imported modules need to have their signatures translated
in order for this to make sense. For example, importing BOOL into STACK,
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fmod STACK[X :: TRIV] is
sort Stack .
pr BOOL .

endf

teans that STACK includes all of the declarations and equations of BOOL, and in par-
ticular these constraints:

o (¢ :TRIV < STACK, 15,40 sTack)). which says that a model of STACK must
freely extend THIV; aud,

¢ (0:0 -+ BOOL,8: Sign(BOOL) = Sign(STACK)). whicb says that the reduct of
a STACK model M to BOOL must be an initial model.

Note how BOOL's constraint was translated to fit its new context. Observe also that by
requiring initiality of the reduct. we obtain the so-called *no junk, no confusion” property.

The remaining two importation modes, extending and using, can he explained by relax-
ing the interpretation of constraints to allow arrows that are not bijective for the morpbism
¥ ¢* (M')) = M’ (see Definition 4.50}. For extending, the arrow is relaxed to injectiveness
{*no confusian™): for using, any arrow is acceptable.

4.3.7 Module Expressions

The semantics of the rest of the module expression language of FOOPS also falls out of the
above presentation. A renaming is just a bijective morphism in the category of signatures.
Sums are colimits, such that modules imported multiply are shared; this is 2 natural con-
sequence of inclusions. For example, the sum NAT + BOOL has only one copy of BOOL, even
though in FOOPS BOOL would be automatically imported into NAT. The following diagram,
in which arrows are theory inclusions, may help visualise this:

NAT + BOOL

NAT
/

/
BOOL

The denotation of the sum is {NAT + BOOGLY', where NAT + BOOL is the colimit
of the diagram. Given that pushouts explain instantiation, we have that colimits explain
module expressions in general. Finally, note the correspondence of these diagrams to those
for contexts given in Chapter 3.
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4.4 Summary

This chapter introduced the basic aspects of order-sorted algebra, hidden urder-sorted alge-
bra and institutions, which. together with order-sorted term rewriting. provide a semantic
foundation for FOOPS. Further work remains for hidden order-sorted algebra, so that fea-
tures such as object creation, object deletion and method redefinition are formally captured.
Additionally, the information hiding facilities of FOODPS need to be formalised; research re-
ported in [29] could provide a starting point in this direction.



Chapter 5

Implementation

The reward of effort w3 not only the goal but also the sirug-
gle itself.

— Fortune cookie

Our prototype implementation of FOOPS is a translator using OBJ3+ as its target language.
OBJ3+ is OBJ3 [53) extended with data structnres for manipnlating persistent entities;
subsequently, we may also refer to these structures with their stored state as the FOOPS
database. Access to the FOOPS database from an OBJ3+ program is possible by using
buiit-in axioms, a special kind of axiom provided by OBJ3, having the following syntax:

bq (Term) = {Lisp} .
cbq (Term) = {Lisp) it {Term} .

where {Lisp) is any expression in Kyoto Common Lisp. How these axioms are implemented
as rewrite rules will be explained with examples in this chapter. (There can also be built-iny
sorts aud one other kind of built-in axiom, but this prototype does ot employ either.)

In general, the translator works by converting class declarations to sort, declarations, and
attribute and method declarations to function deciarations; also, some syntactic conversions
are performed (see the chart in Appendix A). Direct method axioms are translated into
built-in awems whose right-hand sides invoke operations that update the FOOPS database;
axioms for derived attributes and methods can be interpreted directly as rewrite rules. Alsa,
built-in axioms are generated to fetch the valne of stored attributes. To implement dynamic
binding, we made a small change te OBJ3+'s term rewriting engine.

The system architecture in terms of data flow is shown in Figure 5.1. From a FOOPS
text, the translator generates an OBJ3 text. and this is evalnated by the OBJ3 interpreter,
which interacts with the object database. The box labelled “FOOPS PRELUDE™ stands for
some object level modules that are automatically available, like those for lists and sets; sim-
ilarly for the box labelled “OBJ3 PRELUDE", but at the functional level. The box labelled
“RESULT EXPRESSIONS” is for the output of the interpreter. OBJ3+ comprises the
boxes labelled “OBJ3 INTERPRETER”, “OBJ3 PRELUDE", ard “FOOPS DATABASE™.
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To give a very rough indication of the effort involved in creating this implementation, the
size of the code added to OBJ3 is about 10,000 lines.

This prototype implementation supports most of the features of FOOPS. Miesing are
vertical structuring facilities and module blocks. Minor omissions and special cases are
carefully documented in [95], the reference manual for the system.

This chapter describes the informaticn stared for each module, bow classes are trans-
lated and the information stored for each one, the representation of objects and how creation
and destruction are implemented, the generation of attribute and method axioms, the im-
plementation of redefinitions aud of dynamic binding, and how theories, views and module
expressions are processed (on top of any processing done by OBI3+). We also provide ideas
for improving this prototype implementation and for realising some of the features that it
does not currently support.

5.1 Modules

Thbe translator keeps information about object-level modules in the module table. Each
entry in this table consists of:

» a poiuter to an OBJ3+ module structure, which is a record that bolds information
abecut a module’s sorts, variables, axioms, etc.; and,

» a list of the classes that a module declares. Each element in this list is a reference to
another table that stores information about classes (see below).

Information regarding functional-level modules is not recorded in this table, as all that
FOOPS needs to know about them is stored in OBJ3+'s data structures.

5.2 Sorts and Classes

Sort declarations in FOOPS do not require translation, but support for error supersorts,
voids and default values for attributes requires that some extra declarations be included for
each sort. For a sort §, these are:

sort S7 .

subsort 5 < S7? .

op veid-8 : -> 87 .

op 8-pc : -*» § .

bq S5-pc = (get-principal-constant (term$sort self))

where get-principal-constant is an internal routine that returns a term whose top sym-
bol is the principal constant of a given sort, in tbis case the sort of the term stored in
variable self!. This variable is automatically provided by OBJ3, and during evaluation its
value is always the term on the left-hand side of tbe rule being applied. Conseguently. the

'-gp” is OBJ3's syntax for function declarations,
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evaluation of the term S-pc yields the principal constant of sort 8 (of course, $-pc is not
considered). The translator uses this operation to implement object creation.

Classes are mapped onto sorts, and in addition to declarations similar to tbe above, the
translator generates several others, For a class C, the following cperators are automatically
generated:

s invent-C-id, which creates a unique object identifier for an ohject of class C;
¢ make-C-id, which takes a string and makes it into an object identifier;

e make-C-object, which creates an object of class C and assigns defaults to all of its
attribntes;

» remove, which destroys objects:
« exists, which tests for the presence of objects; and,
¢ all-C which creates a list of all the objects of class €.

Only the last three of these operators are accessible to users of FOOPS, Also generated is
the sequential composition operator. It is defined by the following declarations:

op _ ;i - : Universal Univeraal

-> Universal [strat (1 2 0} gather (E e}]
varg M M° : Universal .
eq M ; M° = ¥°

where Universal is a built-in supersort of alt sorts?. The items in brackets that follow the
operator’s signature specify its evaluation straleqy and its gatherng paitern, respectively.
The first, strat (1 2 0}, gives the order in which argnments to it are to be evaluated; in
this case, it specifies left-to-right evaluation. gather (E e) is more complicated to explain
and we refer those interested in its details to [53]; here it will snffice to say that it specifies
that the operator is left associative. The effect of the above declarations is that expressions
sich as E1 ; E2 are evaluated as follows: first, E1 is evaluated; then. E2 is evaluated; and
finaily, the entire expression is rewritten to whatever E2 evaluated to.

5.2.1 The Class Table

Information abont classes is kept in the class table. Each entry in this table corresponds
to a class, and contains the following information:

¢ the name of the gort to which the class is mapped. In OBJ3+, sorts are represented
internally as record structures with information about their name, module of origin,
etc.

?“aq” and “ceq” is OBJ3 syntax for unconditional and conditional axioms.
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¢ the attributes associated with the class. These are sphit into three lists: the stored
attributes, the derived attribntes, and the undehned attributes. The stored attributes
is a list of pairs, with first component an OBJ3+ operator structure {which stores the
name, rank, etc. of an operator} and second compouent a term structure (i.e., an
expression). which kolds the default value (if any) for the attribute. The derived
and undefined attributes are simply lists of operator structures. This last kind of
attribute only exists internally, and the list represents those attributes which, in the
nidst of processing an object module, are not yet known to be either stored or derived
{because this ciassification is deterniined by the way an attribute is nsed, as explained
in Section 2.2.2).

the methods associated with the class. They are stored as a list of OBJ3+ operator
structures, and are used for type checking axioms.

the attributes and the methods that the class redefines. Both are lists of operator
structures. The attributes are used to determine the strncture of objects and for type
checking axioms. The methods are only used for type checking axioms,

the set-C operator. For a class €, this is a bnilt-in operator for updating objects of
class C (Section 5.5 describes it in detail).

the list of identifiers of the objects of the class. This list is used by all-C to compute
metaclasses.

For each class, this table does not contain any data related to its superclasses, except that
set-C must account for inherited stored attributes; not copying any other information about
superclasses saves space and simplifies modale instantiations and renamings {see Section
5.7). A class inheritance hierarchy is not explicitly kept hy the translator hecause this is
already done in QBJ3+ for sorts, and classes are mapped onto sorts; i.e., the translator
simply interfaces the underlying OBJ3+ implementation of the sort inheritance hierarchy.
However, the class table helps prevent users from merging the sort and class hierarchies.

5.3 Objects

Object identifiers are represented as nullary operators in OBJ3. The state of an object is
a list of pairs, with first component the string name of an attribnte and second compozent
the attribute's current valye. This information is stored in the object table, which is a
hash table indexed by object identifiers. For exampie, in the context of

class Pair .
atg (fst_) {(snd_) :@ Pair -> Nat .

the entry for an cbject with identifier P, attribute £st_ equal to 0 and attribute snd_ equal
to 1 is something of the form {P, {{fst_,0}, {smd_, 1)}}.
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5.3.1 Object Creation

Given the flexibility for creating objects in FOOPS, their implementation is quite involved.
First, because the creation method has optional arguments and does not restrain their
positions, it cannot be directly mapped onto an operator in OBJ3+. Also. evaluating an
invocation of this method may require the creation of many objects and the assignment of
default values to attributes. To parse a call to new, a small recursive descent parser was
built, and it js used to process the right-hand side of axioms and the arguments to eval
commands. Our approach to the translation of new is to convert a call to it to acall to the
appropriate set-C operator. For ¢xample. in the context of

class ColourPair .

sort Colour

fns red blue : -> Colonr .

ats (fst_) (=nd.) : ColourPair -> Colour .

the term
new.ColourPair(P, fst_ = blue)

is translated to
set-ColourPair{make-ColourPair-id{"P),blue,Colour-pc)

where the operation make-ColourPair-id interns P as an object identifier of class
ColourPair and the nullary operator Colour-pc retrieves the principal eonstant of sort
Colour; "P is OBJ3+’s notation for a string consisting of character P. Interning a string as
an object identifier amounts to making its contents into a uullary operator of the appropri-
ate sort and entering it into the object and clasa tables; the first step will later on permit
the proper parsing (by OBJ3+) of expressions invelving identifiers. For example, after the
ahove expression is evaluated, OBJ3+ will be able to parse terms snck as fst P.

Principal constants are not directly inserted in the call to set~C becanse they may
change depending on module importations. For example, if the above creation expression is
given on the right-hand side of rome axiom in a modnle with no principal constant of sort
Colour, and this tmodule is later extended by some other module that declares a constant X
of sort Colour, then X is the default for snd_ in the context of this other medule. Explicit
defanlt expressions, however, are always inserted directly in calls to set-C.

When new is invoked but an identifier is not provided, the set-C expression will involve
the operation invent=-C-id to generate and intern a fresh object identifier. For example,

new.ColourPair{fst_ = red, snd_ = blue)
translates to

set-ColourPair(invent-ColourPair-id,red,blue)
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A fresh identifier is not inserted directly because in general it would not be correct to do
s0. For instance, if the previous creation expression appears in the right-hand side of some
axiom, and this axiom is used repeatedly for rewriting teras, then all its wses after the first
one wonld result in errors regarding the uniqueness of object identifiers.

To explain the computation of defaults for complex attributes, consider the following
fragment:

omod CAR is
classes Car Motor .
sort Colour .

at colpyr : Car -> Colour .
at motor : Car -> Motor .

endo
An expression such as
new.Car (TheMachine, colionr = red)
translates to
set-Car (make-Car-id( TheMachine) ,red,make-Motor-object( "Car))

in which the eperation make-Motor-object creates an object of class Motor and assigns
defaults to all of its attributes. The argument “Car is used to help detect cycles and avoid
infinite loops, as was explained in Chapter 2.

5.3.2 Entry-time Objects

The declaration of an entry-time object is translated into an operator declaration ia OBJ3+;
also, the identifier is inserted into the object table and into jts class' entry in the class table.
Each axiom that gives an initial value to an attribute of anr entry-time ob ject is interpreted
a3 an update to the corresponding object. However, this implementation does not compute
defaults for those attributes which are not initialised (but this would be easy to add—the
underlying mackinery required is already there).

5.3.3 Object Destruction

The destruction of an object (with the remove method) requires npdates to various internal
data stroctures. The nullary operator that corresponds to the object’s identifier must be
removed from the current medule, from OBJ3+’s parsing dictionaries, and from the class’
entry in the class table. Mareover, the object must be removed from the object table.
The present implementation of remove creates dangling references, because other objects
may still refer to an object that has been destroyed. This means that something must be
done when such locations are de-referenced and about the possibility of d angling references
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being “undangled.” a sitvation that would anse if the identifier of a deleted object could be
reused. The first concern is addressed in the next section. The reuse of identifiers is averted
by nsing the deleted object table. which stores the identifiers of the objects that have
Iscen removed. Therefore, object creation aiso entails verifying that identifiers e unique
over this table too.

5.4 Attribute Axioms

Axioms for derived attributes do wel require translation: they are directly execulable,
However, for each stored attribute, a built-in axiom that queries the FOOPS database for
its value is generated. Because whether an attribute is stored or derived depends on how it
15 used in axioms, this generation does not take place until all the axioms deelared iu the
rmodule have been analysed. For a stored attrnbote such as

at length : List -> Nat
the curresponding built-in axiom is
[get-attr] beq length{lL) = (get-attribute-value L “length)

The bracketed string “get-attr” that precedes the axiom Is its label. This is a leature of
OBJI3+ that the translator employs to facilitate module expression evaluation, which may
require that some of these axioms he regenerated {this is explained turther below). The
right-hand side of the axiomis a call to the FOOPS database routine get-attribute-value,
of lwo urguments: an object identifier and the name of an attribute. It retrieves the
corresponding object from the object table and from it the named attribute's value; in this
cuse, “length is Lisp’s notation for symbol length. If get-attribute-value tannat find
an object with the given identifier. its stops the evaluation process and dispiays an error
message. A sequential name search is nsed to extract the value of an attribute from au
object.

The generation of axioms of this kind may call for new variables to be declared. If a
variable of the required sort is available 1u the module, then it is used: otherwise, one is
created.

[u a rewrite that involves a huilt-in axiom. the variables on the right-hand side of the
axiom are bound to the snlernal representation of the matched values of coresponding
variables on its left-hand side. For instauce, in a rewrite of the term

length(X)

the first argument to get-attribute-value will be a Lisp data structure that represents
the term X, and which thercfore carries sort information, etc.

5.4.1 Dangling References

Since FOOPS supports explicit object destruction, its storage system must deal with dan-
gling references. To illustrate how they are handled, we will use the specification shown in
Figure 5.2.
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@
@

omod PERSON is
class Person .
protactirg NAME .

at name_ : Pergon -> Name

at spouse_ : Person -> Person .

me marry_and_ : Person Person =-> Person .
endo

Figure 5.2: A partial specification of a class of persons.

Assume that two objects of class Peraon, with identifiers David and Agnes, are married,
and thus David’s spouse attribute stores Agnes and vice versa. Now consider the following
evaluations:

eval remove Agnes .
eval spouse David .

After the first eval, Agnes is a dangling reference, because the object associated with it
has been removed but David still refers to it. Therefore, the result of the secoud evaluation
should be void-Peraoen (as explained in Chapter 2}. To accomplish this, the axiom genet-
ated for stored complex attrihutes is slightly different from the one shown previously. For
spouse, i is:

[get-attr] beq spouse P = (get-complex-attribute-value P “spouse_ )

where the database routine get-complex-attribute-value works as follows, If the object
identifter stored by the given attribute i3 in the object table, then it is veturned; oth-
erwise, the corresponding void-C is returned. For the latter case, it may be hecessary
to *wrap” the void in a retract so that the attribute’s coarity is respected (recall that
OBJ3 inserts rvetracts only during parsing). The evaluation of spouse David thus yields
r:Person?Person{void-Person), as desired.

5.5 Method Axioms

While indirect method axioms can be executed verbatim. the DMAs that define a method
are grouped and converted into a single axiom whose right-hand side interfaces the FOOPS
database. Since DMAs need not be given in any particular ozder, the generation of this
axiom occurs only when an entire module bas heen analysed.

The grouping of DM As is done using the method axiom table (MAT). Each entry in
this table indicates how a method updates attributes. Specifically. each entry stores:

* a method pattern that is common to a group of DMAs. For example, for the DMAs

ax a{m{X)) = expri .
ax b(m(X}) = expr2 1if C .
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omod PAIR ie
class Pair .
pr NAT .
ats {fst_) (snd_) : Pair -> Nat
me incr-fst : Pair —> Pair .

mée EwAp : Pair -> Pair .
me make-sod-zero : Pair -» Pair .
var P : Pair . wvars N1 K2 : Nat .

ax fst incr-fst{P) = fst(P) + 1 .

ax fst swap(P) = snd{(P)

ax sod swap(P) = fst(P) .

cax snd make-snd-zero(P) = 0 if snd{P) > 0 .
endo

Figure 3.3: A specification of a class of pairs of natura! numbers.

it is the term m(X); and

s a list of updates, each of which is a pair with first component an attribute name and
second component anothber pair: a term that represents a new value for the attribute
and the condition under whick this value is to be assigned to the attribute. For
unconditional DMAs, the condition is recorded as true. By way of illustration, the
above DMAs would be stored in the MAT as something of the form

{m(x), (("a.({expri.true}]), {"b,({expr2.C)}})

The MAT is implemented as a hash tahle, with its key being the method pattern.

Once all of the DMAs in a module have been analysed, an axiom ia generated for each
entry in the MAT. For a method associated with a class C, the right-hand side of the
axiomn is a call to the custom-built operator set-C, which updates all of the attributea of an
object. To exemplify this process, copsider the specification of pairs in Figure 5.3. Operator
set-Pair is defined by the following declarations:

op set-Pair : Pair Nat Nat -> Pair ,

[set] beq set-Pair(P,N1,N2) = (let ({objaddr (get-object-address F)})
(write-attribute objaddr “fst_ K1)
(vrite-attribute objaddr ‘snd_ N2}
P)

In the axiom, the FOOPS database routine get-object-address accepts as argument an
object identifier and returns a pointer to its entry in the object table, With this pointer, an
attribute name and a value, vrite-attribute updates the object’s state with this value.
If get-object-address cannot find the object, it stops the evaluation process and displays
an error message. Note that the left-hand side of the axiom must not repeat variables,
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because otherwise it would not provide matches unless all variables with the same name
rould be hound to the same term.

Next we show the resulting axioms for the methods in Figure 5.3. The axiom for
incr-fstis

eq incr-fst{P) = set-Pair(P,fst(P) + 1,snd{P))
The one for swap is

eq svap(P} = set-Pair(P,snd(P},fst{(P)) .
Finally, the axiom for make-snd-zero is

eq make-snd-zerc{P) = set-Pair(P,fst(P),
if snd(P) > 10 then 0 else snd{P) fi)

This scheme is simple but may involve unnecessary updates to attributes which do not
change, such as £st_ in the last axiom; see Section 5.8 for some ideas on how to improve
upon this.

5.6 Class Inheritance and Redefinitions

Chapter 2 described several situations in which a class definition can be erroneous becanse
of inheritance clashes, Detecting this kind of error invoives traversing the class inheritance
hicrarchy and simultanecusly accessing the class table to fetch information about attribntes
and methods. An analogous algorithm is used tc check whether an attribute or method
redefines another.

When an attribute or a method is a redefinition, adherence to various rules must be
ascertained. These rules are:

s encapsulation rule: an attribute a may be redefined by an attribute a’ gssociated
with class € provided a’ and C are declared in the same module; similarly for methods.
{See Section 3.8.)

« varianee rule; as described in Section 2.2.7.

a attribute-redefinition rule: a derived attribute a may e redefined by an attribute
a’ that can be either stored or derived; but if a is a stored attribute then a’ must also
be astored attribute. (See Section 2.2.7.}

A limitatien of this prototype implementation is that the attribute-redefinition rnle is
checked at declaration time and not after an attribute is fixed as either stored or derived.
Therefore, the translator rejects the following fragment:

classes A B .
subclage B < 4 .

at a: A > A .

at a : B -> B [redef]
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because the validity of the redefinition requires knowing whether the attributes are stored
or derived.

5.6.1 Dynamic Binding

The implementation of dynamic binding required a small adaptation of OBJ3'%s rewriting
engine. First, OBJ3 does order-sorted matching and rewriting. This means that when
searching for axioms to rewrite a term with. the engine will consider as candidates all those
whose left-hand side matches the term. modulo any subsort relattonships. Fer example,
given the declarations

sorts € D .

subsort b < C ,
opf : C-» C .
apf : D ->D .

opz : ->D
var ¢ : € . wvar Xd : D .
aq f(Xc) = EXP1 .

eq f(Xd} = EXP2 .

to rewrite f (z) the engine considers both axioms ay equally good candidates. For object-
oriented dynamic binding, however, we are only interested iu the eract sort matches; for
oxample, if £ was a method redefined for objects of class D, then the first axiom should
not be considered in the evaluation of £{z). Above, ouly the second axiom provides an
exact match for the f associated with D. This simple exact-matching schemc works properly
because OB.J3s parser always assigns the lowest possible sort to an expression, and at every
step in the rewriting process it makes sure that this remains the case. For instance, assume
a further operator g : C —> C, and the axiom

ax g(Xc) = £{Xc)

The parser will assign sort © to both terms in this axiom, After rewriting g{v) to £(y)
for some y of sort D, the engine will immediately re-parse £{y) (and assign it sort D),
thus allowing the second axiom to be considered as a candidate for rewriting this term,
as desired for FOOPS. Because dynamic binding only exists at the object level of FOOPS,
exact matching is exclusively done for operators that correspond to attributes and methods.

5.7 Theories, Views and Module Expressions

Given that it is meaningless to create objects of classes declared in theories, and because
axioms declared in theories may have free form, chject-level theories require much less pro-
cessing by the translator. Basically, all that is needed is to record the theory in the module
table, to record the classes, attrihutes and methods in the class table (to use lor certain
consistency checks; see below) and to include the declaration of the sequential composition
operator.
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Renamings and instantiations require similar processing by the translator. First, recall
that modules ¥ and ¥ #» (sort $ to $°) are semantically different, and that LIST[X ::
TRIV] and LIST(NAT] are also different. OBJ3 evaluates M # (sort 5 to §°) by making
a copy of ¥ but recreating all of its clemnents so as to reflect the revamings. LIST[NAT] is
also a copy of LIST[X :: TRIV] but with recreatious being dictated by the default view
from TRIVto NAT, which maps ELt to Nat. Additionally, the ather declarations of NAT must
be included in the result.

This creation of modules through mappings requires that tlie module and class tahles of
the translator be extended with new entries that correspond to the new modules. Further-
more, some extra processing of renamings and instantiations is necessary. This is because
the name of several! of the operators automatically generated by the translator are derived
from the pame of the sort or class that thev are associated with; for example, void-C and
all-C need to be renamed if € is renamed. Also, several of the axioms that the translator
generates need to be recreated. In particular, the built-in axioms for set-C and for fetch-
ing attribute values in the FOOPS database need to have their right-band sides recreated
whenever attributes are renamed. This recreation s simplified by the labels attached to
these axioms, and which free the transiator from having to examine the structure of each
axiom to determine whether it needs regeneration.

Two further constructs remain: sum and make. Because in OBJ3 importing & + B is
the same as importing A and B independently, the FOOPS translator does nothing extra for
sums. For make, on the other hand, it needs to determine whether the module expression
results in a functional or in an ohject-level module. This is acbieved with some simple
“type” inference: if any of the modules involved is an object module, then so is the result;
otherwise, the result is a functional module.

Lastly, various consistency checks are required for semantic validity. For example, 2
view may not map a sort to a class, nor an attribute to a method, and a functional-level
module may not import object-ievel modules. However, our prototype implementation does
not attempt to verify auy of these conditions.

5.8 Further Work

The quality of this prototype implementation of FOOPS can be enhanced in several ways.
We consider the most warthwhile to be:

» typechecking views and module importations, as described m the previous section;
and.

e detecting run-time violations to variance {discussed in Chapter 2).

As regards to efficicncy, our personal experience is that the translation and interpretation
of FOOPS code compares favourably to that of OBJ3+ code. Since FOOPS is built oo top
of OBJ3, the best way to make this prototype implementation more efficient is to make
OBJ3 more efficient; particular areas to focus on are OBJ3's rewrite eagine and its module
expression evaluator {a notahly slow component}. Nevertheless, various aspects of this
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prototype implementation could be optimised. The most promising ones seem to he the
translation of DM As and access to objects. '

It is not difficult to see how tc optimise tbe translation of DMAs use the FOOPS
database routine write-attribute to update the atiributes affected by a method, and
translate inline rather than to a call to set-C (see Section 5.3). This would not anly
economise updates to attributes whose value does not change, but would also save looking
up this value in the first placc. However, it would slightly siow dowu the evalyation of
module expressions, because method axioms would then reguire a regeneration similar to
that now done for each set-C axiom.

A different storage layout for objects could speed up access to attributes. What mav
appear to be a simple implementation aspect is not so because of features such as multiple
inkeritance [22, 105). Our implementation stores attribute names along with their values in
each ohject. Conmnor et. al [22] suggest that this could be improved by associating a table
of (attribute-name,offset-info-obyect) pairs with each class, and having each object point to
its corresponding table. This table could be a linked list or, if the number of attributes is
large, a hash tahle. As a further improvement, attribute names can be hashed onto integers,
saving some space. However, neither of these schemes admits overloaded attribute names.

We also note that the distinction between values and objects in FOOPS Is itself an
“implementation optimisation,” a direct benefit of its semantics. Languages that consider
everything to be an object often take advantage of this distinction as part of a compiler
optimisation phase (e.g., Eiffel [77] and Gemstone [75)), and then only for built-in types;
user-declared types are always regarded as defining objects.

Lastly, we provide ideas for implementing two features that this prototype does not
SUpport:

e vertical parameterisation: The implementation of vertical parameterisation could
be achieved by mapping vertical interfaces to horizontal ones. For example,

omod SETIX :: TRIVI{REP :: CONTAINER[X]} is

endo
would be translated to

omad SET[X :: TRIV, REP :: CONTAIKER[X]] is

endo

Instantiations would need to be mapped similarly. Furthermore, the visibility restric-
tions associated with vertical composition must be checked.

« abstract classes: Our implementation “almost” supports abstract classes, as they
are based on tbeories and their importatiou. Two crucial aspects of abstract classes are
that they cannot be instantiated, and that axioms must define executable patterns. As
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noted above, the first aspect is already present in the implementation. The second only
requires that the form of axioms be verified by the same machinery that establishes
whether an axiom declared in an executable module is valid.

« module blocks: These should also be relatively easy to implement given all of the
facilities already present in the language.

5.9 Summary and Conclusions

This chapter has given a fairly detailed overview of a prototype implementation of a trans-
lator for FOOPS. As its target language, this translator uses OBJ3+, an extension of OBJ3
that includes data structures for managing persistent entities. These data structures and
those internal to the transtator were explained, as were also the most important translation
schemes, strategies and trade-offs. Furthermore, we provided ideas on how to implement
some of the features of FOOPS not covered by onr prototype implementation, and on how
to enhance the implementation of some existing features.

The development of this prototype has been of great help witb design matters in FOOPS.
An implementation forces one to be very specific about detaiis, which in turn lead to insights
about the language itsell and the varions design alternatives. Also, the availability of a
sufficieatly sophisticated tool for testing complex exampies is invaluable, especially for a
language such as FOOPS, which includes many novel features, Finally, we were fortunate
to have awilable the implementation of OBJ3 to build upon.



Chapter 6

Evaluation and Comparison
with other Languages

Buen though most pregramming languages techmeally have
the same expressive power, differences among {anguages
cen significantly affect their practical uhiliy.

— Mary Shaw

Thiz chapter aims to provide an evaluation of FOOPS by comparing it to other object-
oriented programmming languages. [n previous chapters we have offered some discussion as
to what we believe distingnishes FOOPS; here we provide a more in-depth analysis and
reflect upon the design decisions tbat characterise various language efforts.

We investigate modelling facilities and mechanisms for reuse, inclnding values, objects,
classes, modules, inheritance, information hiding, genericity and reuaming. We also attend
to the process of software design and development, and in particular to any langnage features
that seem to facilitate (or hinder) it. Our intention is not o select a “best” langnage—no
language has yet proven optimal for all programming tasks—but to discuss those features
which in onr opinion are important for large-grain programming.

While aronnd fifteen languages are mentioned in this survey, closer attention is paid to
Ada 9X, C++, Eiffel, Oberon-2 and Small{alk-80:

Ada 9X [2] is the officia) object-criented extension of Ada. As its predecessor, it was
designed by committee. In Ada 9X classes are declared as special kinds of records, and
subelasses are record extensions. It supperts modules, and is strongly typed.

C++ [111] is probably the most widespread object-oriented language, mainly because
of its Hink to C and therefore to UNIX. Its chief designer was Bjarne Stroustrup of AT& T,
and C++ was infiuenced by Simula, CLU, Ada and ML. [t enhances C by providing higher-
level structuring facilities (snch as classes) and by being more strict about typing. However,
C++ retains the spirit of C-style programming, which is very low level, but nevertheless
suited for systems programming.

Eiffel [77, 78] was designed by Bertrand Meyer of Interactive Software Engineering, and
contrasts with C+ + by incorporating ideas from formal methods, such as invariants and pre-
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and post-couditions. Also, it has full static typing. Eiffel is probahly the fastest emerging
object-oriented language.

Oberon-2 [81, 82] is the invention of Professor Niklans Wirth, and descends from
Modula-2. While Oheron-2 is not as well known as the other languages, we study it because
(like Ada 9X} it does not identify modules with classes. Oberon-2 is strongly typed.

Smalltalk-80 [56] is the latest version of the widely-used language which sparked ohject-
orientation. Smalltalk-80 is perhaps most noted for its graphical programining environment
and for its uniformity: everything is an object (including classes). It supports a free, typeless
style of pmgramming similar to that of Lisp. In what follows. we will just call it Smalltalk.

6.1 Objects and Values

The distinction between objects and values is fundamental in FOOPS [54], but largely ig-
nored in other ohject-oriented programming languages. Given that these two kinds of eutity
have completely different semantics, we are iu agreement with MacLennan [74] that much
confusion can be avoided if they are kept separate in a language. In fact, we believe that
the distinction clarifies many situations aud examples. Furthermore, optimising compilers
can take advantage of it. We begin by defining what values and objects are.

The main characteristics of values are that they are atemporal, immutable and referen-
tially transparent. In mere concrete terms, a value is never created or destroyed, it simply
exists; a value is stateless, so it can never rhange or be changed; and expressions involving
only values give the same result regardless of context. A value is an ideal entity. The prime
example of a collection of values is the set of numbers. including constants such as the com-
plex number i. Other examples include the colours and mathematical constructions such
as categories and graphs (see [53] for an encoding of the former in OBJ3). Most languages
support enumerated types, which denote finite sets of values, but not as generally as might
be wished; often, these types cannot be organised in inheritance hierarchies.

Objects, on the other hand, are entities that are created, destroyed, aud that change.
In addition, they can be shared, in the seuse that two objects sharing a third oue see any
changes made to it. In this regard, it seems that misunderstanding is due to identifying
a value with the storage lacation that holds it; what can be “shared” is the location,
not the value itself’. Furthermore, the unigueness of an object is extermally determined;
for example, by assigning a unique identifier to it. More important, however, is that the
principal motivation for having objects—and this goes hack to Simula—is to simulate real-
world processes, such as the behaviour of nuclear reactors.

Some object-oriented languages distinguish hetween an object structure and a pointer
to it, and this is one way that so-called complex and composite objects can arise. A
complex object is one that refers to another object; for example, an employee object
with an attribute that stores the identity af the employee's manager. A composite object
is one that incorperates another; for example, a car has doors and not just references to
them, which would (potentially) allow for them to he shared with other cars. In turn,

! Perhaps this is also due to computera only being able to deal with objects; values must be faked.
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these languages also have different semantics for assignments hetween object structures
and pointers to them. The two kinds of assignmcents are respectively called projective
awd polymorphic. A projective assignrnent is one in which some stracture is forgotten.
such as when assigning a triple indexed by components x. y and z to a tuple variable
indexed by z and y, where the » compenent is left ont. A polymorphic assignment
manipulates pointers, such that there is no information loss. (As usual, the validity of these
assignments depends on there being an appropriate relationship —-commonly inkeritance—
between the underlying types of the two entities.} Note the impact upon dynamy binding,
which cruclally depends on polymorpbic assignment.
Next we examine how various languages treat objects and valges.

6.1.1 C++

C++ supports both object structures and pointers to them, and by default variables and
attributes store structures. If the target of an assignment is a structure, the assgnment is
projective: if the target is a poiuter. the assignment 15 polymorphic. The only support for
values is the enumerated type; the different kinds of numbers are built-in.

6.1.2 Eiffel

By default, variables and attributes in Eiffel store references 1o objects. However. ao called
“expanded classes” are available, and as the name supggests, objects of these classes are ex-
panded in place, i.e., never referred to. Thus they give rise to composite objects. According
o [78]. the main reason for including expanded classes in Eiffel was to give more natural
support for classes such as BOOL and INTEGER; in other words, from our point of view, to
snpport values. However, the definition of an expanded class is 2till made in terms of object
concepts such as attributes and methods and, in fact, Eiffel anyway gives special treatment
to objects of classes BOOL and INTEGER: true and false are predefined keywords and 1,
2, 3, ... are antomatically recognised as integers. In opposition to other languages that
distinguish object structnres from pointers to them, Eiffel forbids projective asignments,
so that X := Y is valid only if X and Y are of the same exact class.

A further feature in Eiffe] is the unique attribute, which is used to declare class-wide
constants and (especialiy) to make up for the lack of enumerated types aud values. For
example,

Red, Blue, Yellow : INTEGER is unique;

declares three unique attributes, Red, Blue and Yellow, which are automatically assigned
increasing and distinct integers. This seems a very roundabout way to specify constants,
especially because access to them can only be achieved indirectly through objects. (This
issue is also related to the distinction between classes and modules, to be discussed in the
next section.) Lastly, we note the specification of complex numbers given in [77), in which
the constant i is represented as a {constant) fnnction on a complex number. To access i,
then, an object of class COMPLEX is needed, say X, so that the value of 1 is given by the
expression X.i, which seems counter-intuitive.
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6.1.3 QOberon-2

Oberon-2 alsc omits enumerated types, and builds in the numbers and the booleans. ft
distinguishes between object structures and pointers to them, but the way this is done is
similar to Pascal and may seem verbose to some. For example,

TYPE
Vode = POINTER TO NodeDesc;
NodeDesc = RECDRD ... END;

(Compare this to C-++’s asterisk notation: NodeDesc#* would denote a ty pe whose elements
are pointers to elements of NodeDesc, and would be equivalent to the above definition of
Node.) Many other object-oriented languages default to pointers, which appear to be more
common. Projective assignment is allowed.

6.1.4 Smalltalk

Jo Smalltalk, all types are classes and all references to objects are via pointers. BOOL,
INTEGER, ete. are classes that receive special treatment; for example, their instauces are

fixed.

6.1.5 FOOPS

Values in FOOPS are user-definable, and this eliminates the need for special built-in support
for them; this is a consequence of the language reflecting its nnderiying semantics. Addi-
tionally, FOOPS supports inheritance at both the level of values and the level of objects
{i.e., for sorts and classes), and this further enhances expressive power. However, FOOPS
does pot provide for composite objects. although complex objects can be defined,

6.1.6 Conclusions

The main benefit of identifying values and objects is uniformity and economy of constructs.
However, it seems to us that separating them so as to respect their distinct semantics is
more valuable. For example, there is no need for awkward classes such as BOOL and INTEGER
{in Eiffel and Smalltalk, for example), which do not really define objects, ard it allows us to
maintaln 4 clear distinction between attributes, functions and methods: attrihutes describe
object storage, functions are as in mathematics, and methods update objects. Moreover,
users can declare their own values, and can organise them in inheritance hierarchies. The
example of a class of complex numbers that appears in several introductory hooks on object-
oriented programming [§4, 77, 111] s a telling example of a common misunderstanding; a
mathematician would be shocked to read about creating and destroying complex nurobers!

A further advantage of this separation is that it benefits code optimisation, because
knowing that something is a value can be used to save space and pointer dereferences. For
example, the Gemstone [75] compiler has an optimisation step based on this (for numbers
and booleans), and [78) suggests similar optimisations for unique attributes in Eiffel. In



6.2 Classes and Modules 135

omod PRIVATE-INSTRUCTION is
classes Studeat Teacher .

at teachers : Student -> Set0fTeachers .
at students : Teacher ~> SetDfStudents .

endm
Figure 6.1: Classes with mutually recursive definitions.

FOOPS, this kind of optimisation can be driven by program texts, aud need not be based
on some specially-treated classes.

Finally. the ability to define composite objects would increase the expressive power of
FOOPS; this ueeds further consideration.

6.2 Classes and Modules

Another {undanental distinction that FOOPS makes is between classes and modules. In
FOOPS, the rmain unit of encapsulation and scope is the module, which can declare several
classes aud their associated attributes and methods. Most other object-oriented languages
equate modules with classes, so that there is exactly one class per module. While this
view presents certain henefits, the followiug argues that there are compelling reasons {or
distinguishing hetween classes and modules.

First, it is possihle to package together classes thal mutuvally refer to each other, as
in the example in Figure 6 1, or as in the more subtle example in Figure 6.2. Tt is very
natural to allow for this kind of logical relationship to be captured directly and reflected
in the physical structure of the system; iu both examples, neither class could be used in
isolation. This distinction also appears to simplify compiler design; for example, Meyer
{77] reports significant initial difficulties implementing mutually recursive class definitions
in Eiffel’s compiler, and that the resulting algorithm was surprisingly complex. Also, note
that using some kind of “forward” deelaration syntax to overcome this is not a modular
solution.

Second. 1t is common for sub-system requirements to iudicate that several classes are
ueeded. In FOOPS, theory modnles express requirements. For example, this theory specifies
the concept of a graph, which includes vertices and edges, among other things:

oth GRAPH is
classes Graph Vertex Edge .
ats source tamret : Edge -> Vertex .
me is-incidep'. : Graph Vertex Edge -> Bool
me make-edge : Graph Vertex Vertex -> Edge

endoth
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ocmod SALES-PEOPLE is
classes SalesPerscn SalesManager .
ex MANAGER .
subclass SalesPerson < Employee .
subclass SalesManager < SalesPerson Manager .
at manager : SalesPerson -> SalesManager .

endo
Figure 6.2: Classes SalesPerson and SalesManager need each other.

And the following theory is used further below as the interface for a module that implements
while loops: C is the class of the structure to be iterated over, and classes 1n agd Out are
for the inpnt and outpnt of the iteration:

otk ITER-ACTIONS is
classes C In (ut .
me init : CIn->GC .
mé action : C Im -> C .
me wrapup : C In -> Qut .
me test ;: C In -» Bool .
endoth

(This theory also appeared in Section 3.2.) Without modules, these examples would be
much more verbose and less natural.

Third, because the main unit of scope in FOOPS is the module, there is no need for
special features that declare that one class can access the internals of another. Such features.
which are present in Eiffel and C++, lead to what Szyperski [113] calls “spaghetti scopizg;”
furthermore, they increase the coupling between software components [15]. With modules,
no such ad hoe vigibility featnres are reqnired: if two classes are closely related they can
be packaged together intc ome nnit. This is particularly relevant for so-called local classes,
(See Section 6.6 for further discnssion of scoping.)

Next, the distinction between class and module relationships permits declering derived
operations and mnemonics for canstants. Derived operations {i.e., those defined in terms
of others) are necessary for the development of compeunents snch as math packages, where
the relationship with the original numeric types is neither inberitance nor clientship; in
the following example, adapted from [100], the module FLOAT is extended with further
trigonometric functions:

fwmod TRIG-FUNCTIONS is

pr FLDAT .
fa tan : Float -> Float .
fn cot : Float ->» Float .

fn gec t Float -» Float .
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omod WHILE[X :: ITER-ACTIONS] is
——— the next tuo methods are derived
mes while while-continue : € In => Qut .
var E: C. wvar I : In .
ax while(E,I) = init(E,I); while-continue(E,1)
ax while-continue(E,I) =
if test(E,I) then
action(E,I); while-continue(E,I)
else
vrapup(E,I}
fi .
ende

Figure 6.3: A generic definition of vhile loops.

fn cosec : Fleat -> Float .
. axioms ...
endf

In conjunction with generic modules, derived operations can also be used to specify general
classes of iterators over data structures, as Figure 6.3 illustrates. Wirth |117] make the more
general comment that derived operatious are desirable hecause it is impossible to predict
all of the useful operations associated with a certain type. and because changing the source
code that declares the type would most likely require recompiling its clients; moreover, such
a change might even be impossible to effect if the source code is not available. Another case
in point here arises from our experience with Common Lisp: it is customary to find useful,
new ways to manipulate lists, even though Common Lisp comes equipped with an extensive
library of list functions. A further application of modules regards the packaging of sets of
related constants, as the modules in Figures 6.4 aud 6.5 show (these are also adapted from
[100]). As hefore, the relationship with the original numeric types is neither inheritanee nor
clieutship.

An alternative way to defiue iterators is used in the FEiffel Libraries (79]. In FOOPS,
for example, this technique would be realised by having module WHILE declare a new class
called While as client of the data structure to be iterated over, and have the iteration meth-
ods (ie., action, test, etc.] be associated with this new class. The flexibility that this
allows is that particular iterations could be defined by subclassing While and overriding its
iteration methods; moreover, its suhclasses could declare attributes for temporary storage.
This approach actually highlights another advantage of the distinction between classes and
modules, because these subclasses would mostly arise as auxiliaries to other classes need-
ing looping constructs to define their methods. With modules, these iterator classes are
naturally defined as local classes.

Also, separating class and module inheritance leads uaturally to features such as “pri-
vate" or “implementation” class inheritance [111]. With this kind of inheritance, a class
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fwod ISD is
pr NAT .
let NUL =
let EQT =
let BS =
let FF =
let DLE =
let DC4 =
let CAN =
let F§ =
let SP =

endf

10 .
14 .
20 .
24 .
30 .
34 .
40 .

let SOH =1 . let
let EN§ = 5 . let
let HT = 11 . let
let CR = 15 . let
let DC1 = 21 . let
jet NAK = 25 . let
let EM = 31 . let
let G = 35 . let
iet DEL = 177 .

STX = 2 .
ACK = 6 .
LF =12 .
80 =
DC2 =
SYN =
SUB =
RS =36 .

16 .
22 .
26 .
32 .

let
let
let
let
let
let
let
let

Figure 6.4: Mnemonics for the ISO control codes.

fmod MATH-CONSTANTS is
pr FLOAT .

let
let
let
let
let
let
endf

e
golden-ratio
logel0
logiOe
sqri-of-2
sqrt-of-10

2.7182 .
1.6180 .
2.3025 .
0.4342
1.4142 .

= 3.1622 .

Figure 6.5: Some common tnathematical constants.

ETX
BEL
vT
sI
DC3
ETB
ESC
us
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B can inherit from a class & but in a way that forbids placing objects of class B where
objects of class A are expected. The purpose of this is simply to allow objects of class B
to have access to some (or all) of the internal functionabty provided for objects of class A.
In FOOPS, there is no direct support for this. but the using mode of module importation
can provide a similar effect as a special case (see Chapter 3). To us. it seems dubious to so
radically adapt class inheritance to support a feature that is more appropriately supported
by module inheritance. which deals with code reuse.

Finally, at present it is simpler for compilers to optimise code when there are no private
declarations invelved. That modules allow for scoping units larger than classes therefore
has implementation advantages too. Nonetheless, we note that recent work attempts to
close this performance gap (see, for example, [21, 58]).

6.2.1 Other Languages

Except for Oberon-2, Modula-3 [§3] and Ada 9X. all the other languages that we are aware
of identify modules with classes. One that stauds out as slightly different is C++, which
allows scoping to occur at both the level of classes and the level of files. Still. C++ files
are not really modules as in FOOPS and the others, because while files may have private
classes, the features of these classes are not freely arcessible to other classes in the same
file: furthermore, there is uo notion of parameterisation at the file level. C++ als supports
nested classes, which are class definitions given inside others. This still does not quite
correspond to modules, becanse the enclosing classes do not have full access to the features
of the nested ones (and vice versa). Also, nested classes would be unnecessary il C++ had
modules, because they could then be declared locally.

6.2.2 Summary and Conclusions

We have compared two notions of excapsulation and scope in object-orjented languages
that can package together several classes, and in languages that allow exactly one class
declaration. We noted that tbe latter notion allows class relationships to be more precisely
controlled, but that the former notion (modules) appears to be more convenient with regards
to logical and physical encapsulation, as well as with regards to some forma of scoping,.
Also, we discussed how differentiating module importation from class relationships gives
rise to derived apcrations, permits tlie orderly declatation of mnemonics for constants, and
naturally supports private class inberitance. A further advantage of modules is that a
renaming mechanism can allow classes to be given new names (see the next section).
While the above provides a strong case for differentiating between modules and classes,
the modules-as-classes notion also has some advantages. The most important one seemns
to be that visibility relationships between objects of different classes can be more precisely
controlled {Section 6.6 gives more details about this}, and that it is possible to allow a class
to make its definition fully visible to its subclasses (this was discussed in Section 3.9). But
these reasons do not seem sufficient to identify the two concepts, and probably there are
ways to achieve these advantages, if they are needed, without the ad hoc modes of class
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inheritance and scoping that we will later on examine,

Conseqnently, there seems to he sufficient motivetion, with regards to both clarity of
coneepts and functionality, for considering classes as collections of ohjects and class inher-
itance as a mechanism for the hierarchical classification of these, and to distinguish these
concepts from modules (which can declare many classes) and from module inheritance,
which concerns code reuse and large-grain structuring.

6.3 Renaming

Renaming is a mechanism that attempts to make component reuse more flexible by allowing
features such as attributes, methods and classes to be given new names. Not many langnages
provide support for renaming; in fact, it appears that by far the most sophisticated renaming
mechanisms are those of Eiffel and FOOPS. This section will thus concentrate on comparing
these two.

We will examine what each language allows to he renamed, the relationship between
new and old names, and the impact npon readability and reuse of the renaming inechanism
that is provided.

6.3.1 Eiffel

The renaming mechanism of Eiffe] allows classes to give new names to inherited atiributes,
functions and methods. Except for a special situation discussed below, a rename introduces
a kind of alias, in the following sense. Consider a class DRIVER with an attribute called tvs
(for traffic violations)?. A client of this class could declare a method m that takes a driver
object as its argument®, and in its body ask for the driver’s tvs:

m(d : DRIVER) is
do

d.tvs
end;

Subsequently, we may declare a snbclass of DRIVER called BRITISH-DRIVER that renames
tvs:

class BRITISH-DRIVER is
inherit
DRIVER remame tvs to br_tvs
end

*This exemple is adapted from [77].

*In Eiffel, as in several other object-oriented programming languages, methods receive the ohject they
operate on as an jmplicit argument. Therefore, m teally hag two arguments, but we adopt Eiffel's terminology
for the present discussion.
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end;

This means that BRITISH-DRIVER objects cannot be directly asked for their tvs, because
BRITISH-DRIVER calls that attribute by another name. For example,

bd : BRITISH-PRIVER;

tbd; -- create an cbject and attach it to variable bd
. bd.tvs ...; -- error!
. bd.br_tvs ...; -- ck!

However, a BRITI SH-DRIVER object could be an argument to method m, where asking for its
tvs is fine, as in that context it is viewed as a DRIVER. There, the expression d.tvs refers
to attribute br_twvs for objects of class BRITISH-DRIVER.

We now extend this example to illustrate bow renamings are not treated as aliases when
a class inherits from two otbers, each of which has a feature that renames the same one.
Consider the class FRENCH-DRIVER, which is similar to BRITISH-DRIVER:

class FRENCH-DRIVER 1s
inherit
DRIVER rename tvs to fr_tvs
end

end;
and the class FR-BR-DRIVER that inherits from both FRENCH-DRIVER and BRITISH-DRIVER:

class FR-BR-DRIVER is
inherit
FRENCH-DRIVER end;
BRITISH~-DRIVER end

end;

In this case, Eiffel considers fr_tvs and br_tvs as two different attributes of FR-8R-DRIVER,
even though they rename the same attribute of DRIVER. (But as will be seen in more detail
in Section 6.4, FR~BR-DRIVER has only one copy of those attributes and methods of DRIVER
that were not renamed.)

This new class would introduce a conflict in method m, because for FR-BR-DRIVER objects
the expression d.tvs is now ambiguous: does it refer to frtvs or to br_tvs? Therefore,
the Eiffel compiler rejects the above definition of FR-BR-DRIVER. To make it vahd, a select
clause can be used to indicate how to solve the ambiguity. For example,

class FR-BR-DRIVER is
inherit
FRENCH~DRIVER end;
BRITISH-DRIVER
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salect fr_tvs
end

end;
This version of FR-BR-DRIVER specifies that in mw (and in any other similar functions and
metbods that manipulate drivers) the expression d.tvs refers to attribute fr_tvs whenever
4 is bound to an object of class FR-BR-DRIVER.

To summarise, when single inheritance is used, renaming is analogous to irtroducing
aliases. But for situations in which there is multiple inheritance with a common superclass,
and a feature of that class is renamed, the ruechanism generates new, independent features.

One unfortunate consequence of this kind of renaming is that it can make programs
harder to reac, as a feature can have different names in different contexts. For example,
consider the class hierarchy in Figure 6.6, where the z’s are {say) methods, and the arrows
labelled witk “s” indicate renamings. Now consider the following methods p and q declared
in a client of A and a client of B, respectively:

class CLIENT-0F-A is
feature
pla : A) is
da

a.x;

end
end;

class CLIENT-0F-B is
feature
glb : 8) is
local
ca : CLIENT-QOF-4;
da

b.x'; ca.p(b);

end
end;

If method q is invoked with an object of class € as argument, then to trace what the program
does one must be aware of all the previous names that the x” method had (and similarly
for any other features that were renamed). For example, in the context of the initial call
to q, the object of class C had a method called x”. However, in the context of q itself,
this method is known as x’. And finally, in the context of method p (which g invokes}, x
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Figurc 6.6: Renaming along a class hierarchy.

is known as x. Thus. tracing calls to methods may demand namespace conversions nnder
Eiffel’s approach to renaming. We suspect that this alse forces the run-time system to keep
track of all the previous natmes of an object’s features.

6.3.2 FOOPS

In FOOPS the renaming mechanism works at the level of modules, and this allows classes
{and sorts) ta be renamed too. It also permits fnrther precision of names for expressions

such as
STACK (LISTLTUPLE [SYMBOL,SYMBOL]]]

because the class Stack of STACK can be renamed to something more meaningful; in this
case we mean to refer 1o block-structured symbol tables, and instead we could have written

STACK[LIST [TUPLE[SYMBOL,SYMBOL1]] * (class Stack to SymbolTable)

In Eiffel. one wonld have to write the entire expression every time a reference was made
to the class of a symbal table, because classes cannat be given new names; or perhaps
inheritance could be used to create a new class name, bot this seems ad hoc. It shouid be
observed that in FOOPS the above expression would denote a module name. so we could
still not avoid it unless a make was used, for ecxample. The point is that this is more flexihle
because it occurs at a higher level of abstraction.

The most significant differeuce between the two approaches, however, is that in FOOPS
renaming is au operation that takes a module and generates a new one, and not a way of
introducing aliases or duplicating particular functions, attribntes or methods. Therefore,
the classes Stack and SymbolTable from the above module expressions (respectively) are
not related. This distinction comes from the semantics of module renaming: the * operatoc
is interpreted as a morphisin in the category of signatures, as explained in Chapter 4.

This approach avoids the above difficulties of renaming-by-aliases, and seems to be
flexible enough to captnre other cormmon situations. For example, a module that implements
a map method on lists is more readable if the sonrce and target classes are given mnemonic
names:
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oth ME is
classes C D .
mem: C ->D .
endo

omod MAP(X :: ME] is
pr LIST(C] = (class List to Sourcelist)
pr LIST{D] * (class List to Targetlist)
me map : Sourcelist -> Targetlist .

endo

{Without renaming, the two list classes would have to he differentiated with qualifications,
i.e., List.LIST(C] and List.LIST{D].) However, this setup does not appear to be appro-
priate fora potcntial client of MAP dealing with lists of {say) employees obtained from

LIST(EMPLOYEE] * (class List to EmployeeList)
because ad instantiation such as

MAP([view to EMPLOYEE is
clase € to Empleyee .
claes D to String .
me m to name .

endv)

generates a method map with iuterface
me map : Sourcelist -> Targetlist .

Conscguently, for an object el of class EmployeeList the expression map (el) does not type
check. Fortunately, the same renaming mechanism allows MAP to be tailored to tbe above
situation by applying renaming to it:

MAP(view to EMPLOYEE is
class ¢ to Empioyee .
¢clasa D to String .
me m to name .
sndv]
* {class Sourcelist to EmployeelList)

Then the resulting method map is
me map : EmployeelList -> Targetlist .

as required. Ju sum, the compasitional nature of morphisms—and thus renamings—allowed
MAP to he adapted properly. Still, we note that this approack can become tedious when
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many features are renamed at the same time, or when different modules need to be adapted
in different ways to fit a given context.

Finally, observe that the renaming mechanism of FOOPS gives the drivers example a
different “topology.” because the resulting module inheritance diagram is

DRIVER * (at tva to fr_tvs) DRIVER *= (at tvs to br_tvs)

FRENCH-DRIVER BRITISH-DRIVER

FR-BR-DRIVER

and not as in Eiffel. where DRIVER is (partially) “shared” by FRENCH-DRIVER and
BRITISH-DRIVER. This means that those features of drivers that are not rensmed, such
as eyesight, for example, are in FQOPS “duplicated” in FR-BR-DRIVER. To prevent this,
those features that should not appear twice need to be promoted to a sub-moduleof DRIVER,
which would then be shared. For the present example this seems appropriate. because it
highlights that a higher-level abstraction such as PERSON might bc missing. On the other
hand, FR-BR-DRIVER would no longer be related to DRIVER, and this may or may not be
desirable. We will have more to say about this 1 the next section.

6.3.3 Other Languages

We are aware of only one other langnage with support for renaming: Ada. Its renaming
mechamism introd uces true aliases, in the sense that if some context renames f to g, both
are valid names in that context. Because Ada supports modules in a way similar ta FOOPS,
types can also be renamed (and thus “classes” in Ada 9X). A further difference with FOOPS
is that Ada renamings are not part of a module {or “package”) expression sublinguage.

6.3.4 Summary and Conclusions

We have compared two sophisticated approaches to renaming in object-oriented program-
ming languages, those of Eiffel and FOOPS. Eiffel's approach is based on a formof aliasing,
althougli for multiple inheritance with rommon superclasses renaming actually duplicates
features. The approach of FOOPS is that renaming is an operator that generates new mod-
ules, and thus avoids a readability prablem associated with the aliases approach However,
this seems to be the cost of renaming within a class inheritance hierarchy. In FOOPS, a
module cannot inherit ancther and at the same time rename some of its features The mod-
ule that 15 inherited is actually that which the renaming geuerated; for certain situations,
this might prove inappropriate, as the next section discusses, Also, observe that renaming
in Eiffel is tied to class inheritance. and that classes cannot be repamed as in FOOPS.
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L ANGUAGES THAT SUPPORT LANGUAGES THAT SUPPORT |
ONLY SINGLE [NHERITANCE MULTIPLE INHERITANCE
Ada 9X ‘ C++
Modula-3 CLGS
Oberon-2 Eiffel
Objective-C ‘ FOOPS
Object-Pascal LOOPS
Simula Trellis
Smalltalk TROLL
|

Fignre 6.7: Support for class inheritance in various languages.

6.4 Class Inheritance

This section compares the mechanisms for class inheritance and redefinition iu several lan-
gnages. Class inheritance is a classilication tool, but it is also used as & mechanism for code
rense. Redefinition allows subclasses to override some of what they inherit. thus reconciling
reusability with extendibility. We begin by detailing the kind of inheritance supported,
then we explain the way redefinition and dynamic binding operate, and finally we discnss
inheritance conflicts and their resolution. This last topic is very important because of its
implications for reusing uld classes.

6.4.1 Kinds of Inheritance

A basic question concerning class inheritance is whether a class can inherit from more than
one other class. While some might expect that at this level of maturity all object-oriented
languages would support mnltiple inheritance, this is not so, as Figure 6.7 illustrates. Note
that of the languages that do not identify modules with classes the only one that supports
muitiple inheritance is FOOPS.

6.4.2 HRedefinition and Dynamic Binding

There are many aspects to a redefinition facility in an object-oriented language; we sum-
marise those that we deemn most important in Figure 6.8. The purpose of the first column
of the table is self-explanatory, and we use the terminology of each languapge. Ada 9X,
Modula-3 and Obercn-2 use “procedures™ for what we call “methods.” In C++, attributes
are called “data members” and methods are called “member functions;” there can also be
[nnctions that are not “members,” and these are similar to derived operations.

The second column asks whether a subclass can always redefine what it inherits. In
C++, a member function can only be redefined if it was declared “virtual.” This approach
is motivated by efficiency reasons; the extensibility associated with object-oriented software
wonld cal for all member functions to be virtual by defanlt [61, 99] (but there is some
disagreement regarding this). In Eiflel, the reverse occars: redefinition is allowed provided
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Figure (.8: Comparison of redefinition facilities.

the attribute, function or method was not originally designated as “frozen.” Ir Oberoun-2,
“type-bound” procedures are analogues to member fnuctions in C++: those wkich are not
type-bound are similar to derrved operations.

The third column asks whether the new versiou of an operation needs to be tagged in
some way. For example, in FOOPS, redefinitions must include redef as a property. We
think that requiring a tag makes programs easier to read and can avoid unintended clashes
or redefinitions.

The next column compares the syntactic reqnirements on the new version. The difference
between variant and contra-variant compatibility was discussed in Section 2.27; Trellis
[65, 102] is the only language that we know of which has a contra-variant compatibility
rule. Fixed compatibility means that no difference in rank is allowed except at the argument
position for the object which is to be npdated or queried. These coucepts do wt apply to
untyped languages; therefore. Smalltalk only requires that the new and old versiona have
the same name.

The fifth column indicates whether a tedefinition can access any of the previous versions
of what it redefines. Here “all” means that it can refer to all of them, while “immediate”
means that it can only access that {or those. if merging is allowed; see below) which it
directly redefines. Note the entry for Eiffel, which specifies that select must be used in
order to access previous versions. This is because in Eiffel if a class B wishes lo inherit a
class A and redefine one of its methods, say m. and at the same time refer to the original m,
then it must inherit A twice and rename one of the m's, so that they become two diffcrent
methods; then the new m can refer to the old one but using a different name; this requires
non-cumulative interfaces (see Section 3.9). Thus, an ambiguity similar to that discussed
in the section on renaming occurs, and B is required to select between the newn and the
old, renamed version. Most other languages in the table provide some kind of qualification
notation for referring to original versions.

We also note that Soyder [106) warns about the potential problems of allowing a class
to refer explicitly toits non-immediate superclasses. He argues that if a class C ks allowed to
do this and then one of its immediate superclasses decides to change its own superclasses,
then C can become invalid, even if its superclasses continne to provide the same attribotes
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and methods. But this only applies to situations iu which class inheritance is used for
implementation reasons and not for classification. When the purpose is to classify, the
knowledge that a subclass relation exists is used throughout a whole system: a piece of
code that works for a ciass C also works for any of its subclasses.

The sixth column refers to whether a class can have a feature that redefines two or more
others (fom different, immediate superclasses) at the same time. In Eiffel, two 1nethods
or functions can ouly be merged if they are both deferred, or not implemented by their
classes. To get around this, a facility calied undefinition can be used to make a method
or function deferred. The need for such a facility is not clear to us, and nnfortnnately [78]
does not provide {in our opiuion} suffictent motivation for it.

Finally, the last column asks whether a method (or function or procedure or derived
attribute, depending on the language) can le redefined into an attribute. In Eiffel, only
functions can be redefined into attributes. In FQOPS, the only possibility is for derived
attributes to be redefined into stored attributes.

6.4.3 Inheritance Conflicts

This section discusses various kinds of iuheritance conflicts aud compares how some lan-
guages approach tbeir resolution; studying this gives us a way to clearly understand the
inheritance mechanism of a language.

For gingle inheritance, the only possible conflict occurs when a class declares a feature
with the same name as one it inherits. In typeless langnages snch as Smalltalk this is
considered redefinition, as was explained above. For typed languages, the rank of the
feature must also be taken into account, and the validity of the new declaration depends
on whether the two ranks are related, We say that rank (§; Sz ... Sy—1,%k) is related
to rank (T3 Ty .. Tw—1,Ty) if and only if for i = 1..N, either 8 < T; or Ts £8§;. (Note
that both variance and contra-variance are special cases of relatedness.) If they are related,
then the new feature is considered a redefinition attempt. If they are not related, then it
depends on whether the lauguage permits overloaded nanes; for example, Ada 9X, C4++
and FOQPS do hut Eiffel aud Oberon-2 do not.

For multiple inheritance there are several other more complex cases to consider. We
will examine these others and their resolution by studying four inhkeritance diagrams. The
first is given in Figure 6.9, and depicts a class D that inherits a feature called a directly
from classes B and C. In Eiffel, overloading is not permitted, and so one of the a’s must be
renamed, or they could be merged if their ranks are compatiblie. In FOOPS, if havirg both
a's in D viclates regularity tken it is an error, and to solve it renaming or merging must be
used; however, renaming would be quite dangerous, as it generates new modules, and thus
new classes. C+4+ permits both a’s to be inherited and leaves it up to D and its clients
to resolve any ambiguities. This. however, is not very convenient as they both now have
longer names (in C++ notation, B: :a and C: :a); but as C++ does not support renaming,
qualification is more reasonable than having to change either B or ¢, which is not always
possible and might wreck other classes,

The diagram in Figure 6.10 illustrates 2 common situation: inheriting a feature from



Figure 6.9: Inheritance of similar feature from different parents.
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Figure 6.10- Inheritance via distinct paths.

the same class via distinct paths. In both Eiffel and FOOPS, D is associated with only one
a. In C++, the number of a's in D depends on whether B and C declared that they were
inheriting A “virtually.,” If they both did, then there is only one a in D. If at least one did
not, then there are two a’s in D. and as indicated above qualifications must be provided to
distinguish the two. This state of affairs in C++ has heen criticised (for example, see [61]),
because it is believed that it should he the husiness of the designer of D to choose whether
it inherits the features of A once or twice, oot the business of the desiguers of Band C, who
cannot be expected to predict all their possible subclasses.

Figure 6.11 shows & diagram in which B and C both inherit from A hut whers C renames
a to c. In Eiffel this is fine provided D selects either a or ¢. In FOOPS, the diagram would
be different because renaming generates new modules. Figure 6.12 gives the corresponding
picture in FOOPS at the module level (assuming a is an attribute).

Finally, Figure 6.13 presents a diagram similar to that in Figure 6.11. but now C redefines

N
B/ \'C c
N
D

Figure 6.11: Conflicting rename in multiple inheritance.
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A * (at a to ¢)
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Figure 6.12: Multiple inheritance rename in FOOPS.
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Figure 6.13: Conflicting redefinition in multiple inheritance.

a [redef]

a. Iu C++, the ambiguity in D is solved by so-called “domination,” whereby, for classes Z1
and Z2 that declare {or redefine) some member function £, Z1::f is chosen over Z2::f if
and only il 21 is a subclass of Z2. For the preseat case, this means that if d is bound to
an object of class D, then d. a refers to C’s version of a. If B had also redefined a, then D
is iuvalid, because there is no way in C++ to choose between the two a's. For Eiffel and
FOOPS, on the other hand, the situation is erroneous regardless of whether B also redefines
a. As belore, Eiffel! requires either renaming one of the a's and then selecting, or nndefining
both and then merging. In FOOPS. either merging or renaming would do; but it is possible
that neither option is suitable, and one of the original classes will need modification, whick
might prove undesirahle.

A further issue that affects conflict resolution is the visibiity of a feature. That is,
whether a private feature of a superclass can clash with a feature in any of its subclasses.
This will he discussed iz Section 6.6.

Linearisation. There is 2 completely different approach to conflict resolution for mulitiple
inheritanee that is adopted by some object-oriented extensions of Lisp, such as CLOS [32]
and its predecessors LOOPS [110] and Flavors [80]. [n these languages, a class hierarchy
graph is converted to a single inheritance chain, and then conflicts are dealt with in that
setting.

For more discussion ahout conflict resolution see also [106].
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6.4.4 Summary and Conclusions

We have compared class inheritance and redefinition in several ohject-oriented languages.
Concerning redefinition, FOOPS matches favourably with the others; in fact, FOOPS and
Eiffe] were fonnd to be the most flexihle in this aspect. Regarding inheritance, we noted
that among the languages that do not identify modules and classes FOOPS is the only one
that provides multiple inheritance, We also discussed several kinds of multiple inheritance
conflicts and how languages snch as C++, Eiffel and FOOPS deal with them. Here we
found Eiffe] and FOQOPS agreeing most of the time on what is a conflict; key distinctions
between the two included that only FOOPS supports overloading, and that renaming, a
common way to resoive conflicts, has a different meaning in each. Of the two, Fiffe] ofers
the most sophisticated facilities for deriving suhclasses. Also, it may he that in FOOPS
some conflicts can only be resolved in ways that reqnire modifying the original clagses, which
is not always possible or desirable. C++ seemed to be less straightforward with respect
to multiple inheritance, possibly because of its emphasis on efficiency (see [LLI]), which
(among other things} might have climinated the option of having a renaming facility that
could be used to sirmplify conflict resolntion.

Lastly, it appears obvious that while multiple inheritance is a powerful classification
tool, it is much harder to design, understand and implement, thao single inheritance. For
these reasons. it has been omitted from several object-oriented languages.

6.5 Genericity

Genericity is an abstraction mechanism for capturing commonality, and the instantiation
of generic classes or modules is a powerful way to reuse specifications and code. Here
arises another point of comparison between encapsulation units: with generic modules,
reuse occnis in larger steps thaon with generic classes. In the comparison and evaluation
that follows, one of onr main concerns is support for expressing requirements on actual
argnments to generic classes or modnles, facilities for structuring these requirements, and
instantiation mechanisms. We also discuss conpliog and higher-order operations.

6.5.1 Ada and Ada 9X

QGenericity in Ada occurs at the level of modules (called *packages™} and requirements on
actual arguments can only be syntactic. These requirements are not themselves expressed
using modnles. but given as prefixes to generic modules, as in

generic

type Elt;

with function "<" (X, Y : Elt) return Boolean is <>;
package B-SEARCH-TREE is

end B-SEARCH-TREE;
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which says that valid arguments for instantiating B-SEARCH-TREE are a ty pe and an ordering
function on elements of that type. In Ada, procedures can also be generic over types and
other procedures, and Ada 9X extends Ada with higber-order procedures.

Ada does not allow multi-level module instantiation, as in B-SEARCH-TREE[LIST{NAT]],
but Ada 9X provides some support for this, although still not iy its fully general form.

6.5.2 C++

Classes in C++ can be generic over strings, constants, functions and other classes. How-
ever, it is not possible to express things such as the syntactic requirement that a certain
actual argument class must provide some member function f. Also, there are no means for
expressing semantic requirements on actual arguments. C++ supports higher-order oper-
ations through so-called “function pointers.” As mentioned previously, “modules” (files)
cannot be generic. Multi-level instantiation is provided.

6.5.3 CLU

The language CLU was the first to implemeut generic modules |70, 71]. The modules of
CLU, called “clusters,” are identified with types and can be generic in a way similar to
packages in Ada. (In fact, CLU influenced the design of Ada.) Multi-level instantiatiou is
possible.

6.5.4 Eiffel

Eiflel [78] kas an interesting feature called constrained genericity, which allows a generic
class to specify that certain properties should be satisfied by actual arguments, through the
existence of & suitable inheritance relation. For example, an Eiffel class for binary search
trees with the header

B-SEARCH-TREE [X -> POSET)

indicates that valid instantiations must bind X to a subclass of POSET (partially ordered
sets)?. Further semantic requirements may be expressed in Fiffel nsing its assertions facility,
which petmits attaching pre- aud post-conditions to fuuctions and methods, aud invariants
to classes.

In Eiffel, if ¢’ is a subclass of C, then P[C'] is automatically a subclass of P[C). No other
language that we are aware of is like this. Multi-level instantiation is supported.

6.5.5 ML

While ML [92] is not an object-oriented language, its module system is quite powerful and
deserves mention. {(In fact, ML's module system was inspired by the module facilities of
the specification language Clear, from which OBJ and FOOPS derive some of theirs.) The

“Dee [57] has a similar facihity. Also. this is what Cardelli and Wegner [17] call “bounded parametric
polymorphism.”
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“signatures” of ML are similar to the theories of FOOPS, except that they mayv only declare
syntactic information. For example, the following signature declares a type T with & binary
function called leas:

signature POSET =

sig

type T

val less: T * T -> boel
end;

ML's “structures” correspond to non-generic modules in FOOPS, while “functors™ are
generic structures. Both nced to always be associated with a signature, giving way to a
many-one relationship. For the binary search trees example above, we would first declare
the signature. i.e.,

signature B-SEARCH-TREE =
sig

end;

and then the functor:

functor B-Search-Tree (structure Elt; POUSET) : B~SEARCH-TREE =
struct

end;

In contrast with FOOPS. ML does not have views. Rather, structures are used to provide
the bindings necessary to make other structures match signatures. For example, the type
10t is built-in in ML. To instantiate B-Search-Tree with integers, we need to declare a
structure with signature POSET such that T is “bound” to int and leas is -bound” to
the desired ordering. The following structure associates less with the built-in less-than
function on integers:

structure IntPoset: POSET =

struct

type T = int;

val less: int * int -> bool = op <
end;

An instantiation then proceeds as expected:
structure IntTree = B-Search-Tree(structure Elt = IntPoset);

It would have been possible to create the structure on the fly, as in
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structure IntTree =
B-Search-Tree(atruct
type T = int;
val less: int * iat -> bool = op <
end);

ML’s signatures can be generic, but this is not declared with the expected syntax.
For example, the following signature for priority queues is satisfied hy auy structure that
includes a substructure with signature POSET (for the elements of queues):

signature PQUEUE =
sig
structure Poset: POSET

end;

An interesting feature of ML's module system is sharing constraints, by which it may
be required that certain substructures or types of actnal arguments to functors be the same.
An example given in [92] illustrates this with a functor that takes as parameters a priority
queue and an indexed table, and which requires that the type of the queue’s elements is the
same as the type of the table's key. Thus:

functor SharFUN(structure Pqueue: PQUEUE and Table: TABLE
sharing type Pqueue.Posat.T = Table.key) =
struct

end;

In FOOPS, we would have specified this sitnation by making PQUEUE and TABLE generic, such
that the sharing would be implicit by instantiating both with similar arguments. However,
ML’s facility covers situations in which one did not anticipate that a theory was better
rendered as generic.

Lastly, there is the language Extended ML {101) which enriches ML with non-executable
axioms that may be used for docnmentation and perbaps to snpport formal development
{(in much the same way as axioms are used in FOQPS theories). Axioms may also be
declared inside structures and functors, to indicate intermediate development stages; that
is, a structure or functor is executable only if it does not include any axioms.

6.5.6 Modula-3

Every module in Modula-3 has an “interface,” which declares syntactic properties [16]. The
association between modules and interfaces is one-many, but fixed (i.e., & new interface for
a module cannot be introduced without changiog the module).

Both modules and interfaces can be generic. However, parameters are only implicitly
restricted. For example, in
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generic interface STACK(Elem);
type Stack;
procedure push(s : Stack; x : Elem.Item);

end STACK.

Elem is just the name of some interface that must provide a type called Item; but one
can only know this requirement by examining the gemeric’s body. Instantiations require
identities on vames; i.e., 4 valid argument to STACK must provide a type called [tem {as in
ML). Therefore. to create an interface for (say) stacks of integers we need an intermediate
step to bind Item:

interface INT;
type Item = INTEGER;
end INT.

interface INT-STACK = STACK(INT)
end INT-STACK.

Multi-level instantiation using STACK is not really possible because of che bindings re-
quired for type Item For example, to create an interface for stacks of stacks of integers,
INT-STACK must be changed to include a binding for type Item:

interface INT-STACK = STACK(INT};
type Item = Stack;
end INT-STACK.

interface STACK-STACK-INT = STACK(INT-STACK)
end STACK-STACK-INT.

Alternatively. a completely new interface could have been declared.

6.5.7 Oberon-2

Oberon-2 does not support generic modules or classes, uor higher-order operations.

6.5.8 P++

Each component in P++ {104] is associated with one “realm.” Realm interfaces correspond
to theories in parameterised programming, although without any semantic constraints,
Also, there are no views. so techniques such as those of ML need to be used for bind-
ings. This language is primarily based on vertical parameterisation, although a limited
form of horizontal parameterisation allows constants and types, without any horizontal
composition,
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6.5.9 Smalltalk

Smalltalk does not support generic classes, but higher-order methods help provide some of
the missing functionality. For example, the above B-SEARCH-TREE class can be implemented
in Smalltalk as SortedCollection is iu the Smalltalk library: the cemparison method is
given as an argument to the method that creates binary search trees, each of which would
store it in an attribute. In this sense. generic class instantiation in C4++ and Eiffel {for
example) would be equivalent to object creatiou in Smalltalk.

6.5.10 FOOPS

In FOOPS, theory modules are used to specify syntactic aud semantic requiremeuts on
actual arguments to geueric modules, and views express bow actuals satisfy theories. The-
ories can be generic and can be combined with sum and can have their features renamed
with “®” as they are bona fide modules. FOOPS modules can also be generic over vertical
components. Here we would also like to mention closely related work by Tracz [114], whose
LILEANNA system implemeuts the horizontal and vertical composition ideas of LIL [33]
for the Ada language, using ANNA [73] as its specification language.

6.5.11 Comparisen with Constrained Genericity

Although Eiffel’s constraiued geuericity 1s a significant advance in generic classes, it still has
some drawbacks for reusability. For example, to create a binary search tree for employees,
EMPLOYEE must be a subclass of PASET. But employees can be partiatly ordered in many
different ways, e.g., by age, name, salary, department number, seniority, rank, employee
number, etc. These relationships conld be obtained by creating a new subclass for each
one, e.g., EMPLOYEE-AS-POSET-BY-AGE and EMPLOYEE-AS-PGSET-BY-SALARY, but this ad
koc use of inheritance wonld produce an awkward plethora of mystifying subclasses.

Anotker way to specify such relationships is to do so at design time. For example, the
Eiffe! Libraries [79] contaiu a class TRAVERSABLE, and data structures for lists and chains
are given as subclasses of it. The classes HASHABLE and ADDABLE with their descendants
are similar. However, this approach not only produces awkward inheritance relations (e.g.,
consider how many times EMPLOYEE would have to inherit FOSET), but it also requires
foreknowledge of all relevant properties and potential uses of a software component, which
seems unrealistic.

Structuring by libraries exacerbates this problem. For example, if POSET and
B-SEARCH-TREE belong to lihrary L; aud EMPLOYEE to library Lz, and we want to have a
binary-search tree of employces, then we have two choices. The first is to change EMPLDYEE
so that it is a subclass of POSET. This is not only dangercus because of possible name clashes
with entities in POSET. but it may even be impossible if the source code of EMPLOYEE is not
available. The second choice is to create a new class that captures the reiationship, but as
discussed above, this leads to a proliferation of ad hoc subclasses.

In summary, class inheritance works best for simple tree {or lattice) structures, but in
many applications, a given class may satisfy many different interfaces, and may satisfy some



of these in several different ways; furthermare, a given interface may be satisfied by many
different clagses, sometimes in mnltiple ways. Moreover, interfaces may have multiple classes
and complex properties that involve several classes. See also [3] for some discussion about
why class inheritance is inappropriate for large-scale software reuse; in particular, they
have found that generic modules are more powerful in that they induce less relationships
among compouents and reduce the total numher of components required to build similar
abstractions.

Meyer’s pioneering coniparison of inheritance and composition [77] argued that generic-
ity and inheritance conld simnlate each other, and also argued that simulating inheritance
hy genericity was ubnsatisfactory, because the structures needed for dynamic binding tend
to obstruct reuse and maintenance. However, the above difficulties with the use of class
inheritance for reusing of generic software components snggests reconsidering Meyer’s claim
that inheritance is more powerful than genericity: these difficulties also motivate the inves
tigation of alternative mechanisms for composing software components. It may seein that
FOOPS solved some of these prohlems before they were widely discussed!

In FOOPS, the problen of viewing modules differently in different contexts is solved
by theories and views, without requiring any additional special-purpose classes or modules.
Becanse the sonree and target of a view are independent of the view itself, views can express
relationships that have not already been expressed at design or coding time; this answers
the “forcknowledge” problem. More generally, views can assert that a given module satisfies
many different. specifications, or that it satisfies the same specification in different ways; they
can also agsert that a given specification is satisfied by many different modules. Yiews and
theories also solve the library prohlem, hecause previously fixed inheritance relationships
are not needed for module composition. Moreover, theories can involve multiple elasses and
complex properties of these classes.

Rosen (98] also indicates some difficulties with class inheritance, and advocates an ap-
proach inspired by Ada that emphasises composition; he also argues that good language
design shonld emphasise either inheritance or {modnle) composition, but not both. How-
ever, we think that one can have the best of both worlds, and that this gives rise to some
useful new capabilities, snch as those provided by parameterised programming.

6.5.12 Comparison with Higher-Order Capabilities

An alternative iramework (such as Smalltalk’s) might use higher-order operations to achieve
some of the functionality of instantiation by views in parameterised programming. How-
ever, the difference Letween these two approaches can be seen as the diflerence between
programiming-in-the-small and programming-in-the-large. In parameterised programming
operations are considered in association with the kind of data they manipulate. not in iso-
lation; and by allowing abstraction over entire logical units (including module blocks), it
realises large-grain composition. Additionally, theories and views support further design
activities and give rise to other useful features, as discussed in Chapter 3; see also Section
6.7 below.

Moreover, abbreviations snggested in [37] appraximate the more economical notation of
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higher-order operations in simple situations, and the features of FOOPS are first-order, and
thus simpler to reasou about. (See [37) for fnrther discussion of these issues.)

Finally. in parameterised programming several semantic checks can be carried ont at the
module composition level, which is more abstract. For example, no errors due to pointers to
operations being nil can occur (as is possible in Lisp and in Smalltalk). Also, we consider
it valuable that the sernantics of compositious can be documentad.

6.5.13 Summary and Conclusions

We have discussed mechauisms for declaring and instantiatiug generic components lu several
languages. Along with FOOPS, the most powerful scem to be Eiffel, ML, Modnla-3 and
P++, but note that Eiffel's main programming uoit is the class aud that ML is uot an
object-oriented language. They all provide sume form of reusable construct for speeifying
requirements on arguments, but only Eiffei, FOOPS and Modula-3 can express requirements
with compouents that can be composed in the same manner as the generic components thag
use them (ML's signatures cannot be composed). However, we sbowed that Eiffel's binding
mechanism is much less general than the views of FOOPS.

Views are also absent froin the other languages, and many use modules to create bind-
ings, such that all “views” are default. We believe that the advantage of views lies in that
there is no need for 1odules whose purpose is to provide bindings and not to capture useful
data or algorithmic abstractions, that views are self documenting, and that views also serve
to express and record refinement and evolution relationships, as discussed in Chapter 3.

We also considered higher-order capabilities, conclnding that parameterised program-
ming already provides similar furctionality. Nevertheless, we note that the appeal of highet-
order operations is difficult to match, perhaps because they seem more economic in terms
of votation.

Vertical parameterisation is a further aspect of generic modules, but we defer its discus-
sion to the next section.

6.6 Information Hiding

An information hiding mechanism is one of the most complex language aspects to design.
The design space is enormous, and the trade-offs difficult to measure. This section examines
a variety of approaches to hiding (and sharing) infermation in cbject-oriented languages.

Languages differ as to what can be hidden; the optiorns include attributes, methods,
classes and inheritance relationships. There are also degrees of hiding. For exampie, some
entity might be declared visible to some classes but not to others, or might be visible in a
special mode; for instance, an attribute could be invisible, read-only, or read/write.

There are basically two ways to describe visibility, The first is to separate the specifi-
cation (or interface} of a class or module from its full implementation (also called “body™).
The second is to have just one text that is annotated with visibility information, as in
FOOPS.
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Finally. an information hiding mechanism must also be analysed from a type-checking
and security viewpoint, so as to assess the confidence it gives designers that visbility dec-
larations are respected or not easily circumvented.

6.6.1 Ada and Ada 9X

Packages are Ada’s main nmecbanism for encapsulating a set of related variables, routines
(procedures and functions) and tvpes; they are also the main unit of scope. Packages have
two parts: a specification and a body. The specification lists the types and routines that are
visible to clients of the package, and this information is snfficient for clients to be compiled.
The body of the package gives the implementation of the items listed in the specification
part. With this separation. a very straightforward form of information hiding is achieved
by omiting from the specification any auxiliaries that are solely needed for implementation
purposes. These would be declared in the body of the package, and available only there.

Ada, however, provides an intermediate level between visible and invisible types. For
this purpose, it allows package specifications to he divided into public aud private sections.
All that is mentioned in the public section is visible to clients, even, for example. the fields
of a record type declared there. However, the representation of a type may be made invisible
to clients by placing it in the private section of the specification. Such types are of two
kinds, private and limited private. and must be so labelled in the public section of the
specification. The reason why the representation of these types must be in the specification
is purely implementational: the compiler needs the information in order to allocate space
for variables and parameters of these types in clients of the package.

The difference between private and Hmited private types is the following. With pri-
vate types, the operations assignment, equality, and inequality are automatically visible to
clients of the package. in addirion to any others mentioned in the public section of the spec-
ification. Types that are limited private. hy contrast, only have visible those operations in
the public section; assignment, equality, and inegnality are automatically hidden to clients;
furthermore, not even the body of tbe package has access to built-in equality and inequality
predicates on elements of these types. Types that are limited private are nseful for defining
data structnres that, for example. only tag deleted elements, aud these must be ignored
when testing for equality (the built-in literal equality would not be appropriate} Note also
that types defined in terms of limited private types are automatically limited private.

Ada 9X provides tagged records (“classes”) to support single class inheritance. As
with plain records, it is not possible te hide just some felds: either all are read/write, or
none is visible.

A further featurc in the new Ada is the child unit. which allows a set of related packages
to be hierarchically organised. A child unit is also a package, but with declarations stating
its connection to another package (its ~parent™). It seems that one of the most relevant
aspects of this new feature regards visibility: a child unit has full access to the private
entities of its parent. According to Barnes [2]. one of the principal motivations for child
units was for subclasses declared in them to have full visibility of the deciarations associated
with superclasses in their parents. However, we believe that this gives too much freedom,
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as it permits unrestricted manipulation of objects of inherited classes. As will be seen
below, other object-oriented languages allow a subclass to share the implementations of its
superclasses, but not to 2pply private operations to objects of those classes. (This was also
discussed in Section 3.9.)

6.6.2 C++

A class definition in C++ is divided into interface and irmplementation parts, allowing
other clients and subclasses to be compiled independently of the implementation part. The
interface of a class declares its attribntes (called “data members”) and methods (called
“member functions”} and whether they arve public, protected or private. Public means
visible to clients and subclasses; protected means visible only to snbclasses (but can only
be applied to objects of subclasses; cf. Ada): and private means not visihle to any other
client or subclass. Visihility restrictions do not apply between objects of the same class,
which are free to access each others’ internals. Mambers are private by default, and public
data members are read/write.

The implementation part of a class in C++ is not encapsulated, as is the interface.
The implementation of a member function is provided by prefixing the class name to the
method’s header and giving its body, and it does not have to he placed anywhere in partic-
ular. Asin Ada, tbe interface/body separation is not as flexible as might be desired. For
example, if after describing an interface the need arises for an extra member to help imple-
ment a member function, then the interface must be changed to inclnde the new member.
In fact, this is more restrictive tban in Ada, for there a body can include a procedure that
was rot even mentioned in the interface, and wbich belongs to the same scope.

Class inheritance in C++ can also be public, protected or private. If class B pnblicly
inherits from class A, then an object of B car be placed anywhere an object of A is expected.
If protected, this can only happen within the debnition of B and its subclasses. And if
private, it can only happen within the definition of B itself. When inheritance is public, the
subclass cannot restrict the visibility of any member more tban its parents do.

One salient characteristic of C+-+'s private members is that they can clash with members
in subclasses. For example. if class A bas a private member function m and a subclass B
of A declares a member functicn m too, then the application of m to objects of class B will
be ambiguaus. This seems counter-intuitive, and as first indicated (in general) by Suyder
[106], it means that changes to the private part of a class can invalidate its subclasses.

A class can declare that other classes and functions are its friends, and these have
unrestricted access to its private and protected members; also revealed to friends are any
inheritance relationships. As in real life, frierrdship is neither inherited nor transitive.

As mentioned in Section 6.2, classes can he nested within each other, but no special
scoping rules apply between them (nnless friends); that is, they act as clients of cach other.
However, a class can declare whether its nested classes are public, protected or private.

It wag also mentioned previously that in C++ files can aiso hide information: entities
declared -static” are not visible in any other files. Moreover. it is common practice in
the C/C++ community to bave “header” files, which act as interface descriptions to files.
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However, this is only a touvention.

Finally, we uote that the pointer-level programming facilities of C++ allow certain
visibility “restrictions” to be side-stepped. This is because abjects are simply regions of
storage which can be indirectly manipulated with appropriate hackery [12, 99, 111}. Thus,
C++’s type-checker verifies access, not visibility. (This bas much to do with C's “unsafe”
programming facilities and tactics having migrated to C++.)

6.6.3 Eiffel

Unlike ju the previous languages, there is no separation of specification and implementation
for Eiffel classes. Designers annotate class texts to declare which methods are private and
which are public, This only affects clients, though, because subclasses can access everything
they inherit (but again, ouly to be applied to objects of their owu}. Publie attributes are
read-only, as they can only be directly updated by methods associated with their ewn class.
Communication between objects of the same class can only occur through publicattributes
and methods {cf. C++). luberited methods and attributes are private by defaull, possibly
because Eiflel does not require a subclass to export at least the same features as each of its
superclasses do.

A facility called selective exports allows fine-grain control over visibility by specifying
that some features are available only to certain classes. A feature selectively exported
to a class C is by default selectively exported to subclasses of C, but not to C's clients.
(Note here the difference with friendship in C++, which is not inherited.} Eiflelis like this
becanse of its view that a class should have available the same features used to implement
its superclasses.

6.6.4 Oberon-2

QOberon-2 modules also come in oue piece, and visibility restrictions are given %ith anno-
tations. As in Ada, the main unit of scope is the module, and thus types may also be
hidden. Entities are private by default, and records (“classes”) can specify whether fields
are invisible, read-only or read/write. (Note how this is more flexible than in Ada) Private
eptities are never visible outside the module that declares them, and they never clash with
entities in other modules. A recent proposal hy Nigro [86] to extend the information hiding
facilities of Oberon-2 suffers from the same disadvantages as Ada 9X’s child units.

6.6.5 Smalltalk

In Smalltalk, information hidiug is not under the programmer’s control. Clients of a class
have access to all of its methods, but never direct access to attributes. Subclasses, on the
other hand, have full access to inherited features. Communication between objects of the
same class can only be achieved through methods.
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6.6.6 FOOPS

Except when theories describe generic-module interfaces, FOOPS modules come in one piece
and may be annotated with visihility information. The main unit of scope is the module, and
classes and sorts can he private to their medule or visible in importing modules. Attributes
and methods can be private, subclass-private of public. If private, they are only visible in
the module that declares them. If subclass-private, they are only visible in modules that
declare subclasses {and then only if applied to ohjects of these classes). And if pnblic (the
default} they are visible everywhere. Functions, on the other hand, can only be private or
public. Furthermore, private features uever clash with others in other modules. The oaly
possible visibility difference between a class and its superciasses is that a redefinition can be
more visible than what it redefines. FOOPS also supports vertical module parameterisation.
and module blocks for larger scoping units.

6.6.7 Summary and Conclusions

This section has surveyed the information hiding facilities of various languages. Because
information hiding is snch a difficult aspect, the wealth of features and approaches is not
surprising With regards to units of scope, there are three broad kinds of language: those
with module scope in which many classes have fnll access to each others’ features (Ada 9X,
Oberon-2, FOOPS); those with class scope in which objects of the same clase have full access
to each others’ internals (C++}; and those with object scope in which objects communicate
with others via visible operations (Eiffel, Smalltalk). Some of those in the last two categories
provide special facilities for classes to reveal otherwise private information to certain classes;
namely, C++’s friends and Eiffel's selective exports. While this gives designers fine-grain
control, it also creates so-called “spaghetti scoping” {113], which seems to indicate that
a higher-ievel scoping unit might be missing (e g., modules). Additionally, these facilities
increase the coupling between software components [15).

Of the languages surveyed, C++ is the only one that directly supports hiding inheritance
relationships, and in various degrees. (A similar but more restricted capability is fonnd in
the language Dee [57].) In FOOPS, there is a more satisfactory way of achieving some® of
C++’s functionality with the using importation made, as discussed in Chapter 3.

The scparation of specifications and implementations in Ada 9X and C++ was shown
not to be as convenient as one might wish, because specifications also need to mention
private inbormation, which in theory does not belong there. This separation also entails
duplicating declarations, which requires more work from hoth programmers and compilers,
especially in ascertaining that the two parts are in agreement [117]. While this has been
considered important for allowing separate compilation and thus more effective for software
development in teams, it is possible for tools to generate “specifications” from single texts.
For example, the Eiffel system has facilities for this, furthermore, compilers can do it auto-
matically [37]. However, there remains a tension between abstract interfaces and the ability
to ebtain efficient implementations; see [21, 111] for further discussion about this.

°It is nol possible to simulate protected inhetitance in FQOPS.
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6.7 System Design and Development

Eiffel was the only surveyed langnage to permit a subclass to provide fewer public
attribntes and methods than its superclasses. In Section 3.9 we mentioned tbat this creates
problems for dynamic binding and that it makes objects look different at different levels of
{class) abstraction. However, we note that Eiffel's argument is tbat this prevents constant
rearrangements of inheritance hierarchies when more subclasses need to be accommodated,
and that it is feasible to implement an incremental type checker that verifies dynamic
binding safety [78].

FOOPS and P++ appear to be the only languages that support the explicit vertical
parameterisation of components. Some languages allow actual parameters to gereric mod-
nles to be hidden after instantiation, by simply omitting their elements from the module's
interface (e.g., this is possible in Modula-3 and ML), The difference is then with regards to
how things look in the end {i.e., with the implicit documentation from the genetics header).
Also, this technique might incur in the problems about partial visibility of features that was
discnssed in Section 3.9. In several other languages all actual parameters are always visible
from instantiaticns; Ada and Eiffel are two examples.

Lastly, among languages with modules FOOPS offers the most flexible facilities without
compromising the encapsulation of data in objects.

6.7 System Design and Development

The pnrpose of programming language notations is to support the design and development
of systems that simphfy or enbance some task, In order for this to happen, some systematic
methad is reqnired [8, 77). Qbviously, the languages we have discussed here support object-
oriented design and programming as summarised in Chapter 1. But some languages are
hetter than others in supporting both activities. We think that Eiffel and FOOPS go beyond
other ohject-oriented langnages is this aspect.

Eiffel allows methods and functions to have pre- and post-conditions, and invariants can
he attached to classes; all of these are executable, and compiler settings determise whether
they are tested at run-time. Also, Eiffel’s compiler automatically ANDs the invariant of a
class with those of its superclasses. and similarly combines the pre- and post-conditions of
methods and functions with those of their redefinitions. These capabilities, together with
Eiffel's exception- handling mechanism, constitute a design technigue called prograrnming
by contract.

FOOQPS provides theories and views to express relationships of refinement and evolution
at different levels of design and programming abstraction, as was discussed in Chapter 3.
This approach generalises others based on classes and class inheritance. because it works at
the level of systems (modules), and because a view is a completely general mapping between
independent modules. It is also valuable that executable and non-executable specifications
can be mixed in the same language, that there exists support for various kinds of vertical
activities, and that module expressions to describe system designs are provided.

While FOOPS does not offer the pre- and post-condition support of Eiffel, preconditions
conld he provided by generalising “sort constraints™ [42]; it may also be possible to include
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class invariants iu FOOPS hy generalising “sort assertions” {42]; both of these aspects re-
quire further research. Note, on the other hand, that theories and views serve to specify
syntactic and semartic properties of modules, and thus on groups of classes, which is some-
thing not found (in its full geverality} in any other object-oriented language.

A further promising line of research in object-oriented design is exemplified by the
“roles” of TROLL [62] and the “predicate classes” of Cecil [18]. by which an ebject may
belong to different classes at different times hased on some conditions or explicitly induced
situations (see also [119]). For example, an instance of a class Tree may be regarded as an
instance of a class BalancedTree whenever it satisfies the balanced predicate ou trees; or
a person that finds a job becomes an employee, then perhaps a manager, and so on. In fact,
this kind of modelling was one of the motivations for the sort assertions facility mentioned
above; see also (50] for some ideas on how to capture this using views dynamically.

Languages such as Ada 9X, C++, Modula-3 and Oheron-2, which descend from older
imperative Janguages, are much less uniform than Eiffel, Smalltalk and FOOPS in their
support for the ohject paradigm. From a theoretical viewpoint, they carry excess baggage;
for example, records that are not tagged (Ada 9X), “structs” (C-++), global data, and in
general, they provide differeut syntax for expressions involving entities of class types versus
those involving entities of “non-class” types. A consequence of this is that software devel-
opment with these languages does not naeturelly lead to object-oriented architectures, as
systems can be built using either functional or object-orieated decomposition. Because the
latter is believed superior, having language support for hoth seems unnecessary. Further-
more, it is becoming increasiugly common for a language to he recommended aud used for
both design and programming, and sometimes even for analysis; in fact, software shops that
concentrate on one or two languages will usually desigu and develop with them. It thus
seems advantageous to have “clean” object-oriented lauguages. Nevertheless, from a prac-
tical viewpoint, it is desirable that languages evolve such that existing systems built using
carlier versions of the language can be combined with those built with revamped versions;
to a large extent, this is true for Ada 9X and C++, for example.

A pood language and development environment depends on many things: documenta-
tion, debugging facilities, schematic editors, code browsers, compilers, component library
and retrieval system, portability, wide applicability, veuder support, integration with other
tools (such as operating systems), et¢. But while these aspects provide significant leverage,
the success of a large software project unfortunately hirges upou less tangible phencmena:
the complexity of the problem domain; the fidelity of the requirements document; the effec-
tiveness of communication hetween the people involved; and the care put into analysing the
social context into which the resulting system will be integrated. (These issues lie beyond
the scope of this thesis; see [8, 10, 20, 27, 111] for more information and discussion.)

6.8 Summary

This chapter has surveved and analysed the aspects of ohject-oriented programming lan-
guages that we consider the most important for capturing abstractions and facilitating
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software reuse, and has compared them to those present in FOOPS. We began by looking
at values and objects, and concluded that it is beneficial for both to be first-class dtizens in a
language; similarly, we argued that separating the notion of class from the notior of maodule
offered several im portant advantages. Next we discussed renaming facilities. FOOPS and
Eiffel were compared directly as they are the most advanced in this regard. FOOPS showed
advantages in code readability and in allowing not only attributes, functions and meth-
ods but also classes to be renamed; Eiffel excelled accordingly in providing a sophisticated
mechanism for manipulating class texts when a class inherits from another.

Class inheritance and redefinitions were then examined, and bere language details were
found to vary widely; no language was a clearly superior to others but those with multiple
inheritance appear to be moare flexible for design (although single inheritance is a simpler
concept); also, FOOPS is the only language that separates modules frem classes and that
includes multiple class inheritance. Support for genericity was considered nexl, and we
found FOOPS to be more powerful than other languages due to its theories and views;
various other languages offer higher-order functions and methods to achieve some (but not
all) of the same functicnality. Vertical parameterisation was another aspect that distin-
guished FOOPS. We then praceeded to information hiding, and here also language details
vary widely; C++ was notabie for the varions ways in which inheritance relationships can
he concealed. However, we have argued in several places against the tendency of trying to
make structuring mechanisms for pregramming-in-the-large fit into some form of class in-
heritance relationship. Aniong the languages with modules, FOOPS offers the most flexible
information hiding facilities.

Finally, we discussed aspects of system design and development and suppert for inte-
grating design and programming activities; again, the theorics and views of FOOPS appear
to provided added fexibility (this was more fully discussed in Chapter 3). We also ar-
gued that languages that provide first-class support for both object-criented and functional
decomposition are less uniform and perhaps more confusing. To conclude, we noted that
although language issues are very important, the success of a large seftware project depends
on many factors other than the particular programming language used.



Chapter 7

Summary and Further Work

I dread success. To have succeeded 13 Lo have finished one’s
business on earth, Lke the male spider, wha is killed by the
Semale the moement he has succeeded in his courtship. T like
a state of continual becoming, with a goal i front end not
behind,

— George Bernard Shaw

This thesis gives a detailed study of FOOPS, a wide-spectrum object-oriented langnage.
We began by providing pragmatic and economic motivations for the object paradigm and
for software reuse, and discussed how FOOPS represents an effort to extend the featnres of
object-orientation with novel snpport for the reuse and compositiou {also called intercon-
nection) of modules.

We then described the internal structure of modules, inclnding sort and class declara-
tions; functions, attributes and methods; inheritance of sorts and of ¢lasses; and redefinition
and dynamic binding for class inheritance. Of particnlar interest here were the declarative
style of specification, which invalves the use of axioms to express the properties of functions,
attributes and methods, and the support for object creation, especially the mechanism for
determining and assigning default valnes to attributes,

Third, we examined the capabilities of FOOPS for the reuse and interconnection of
madules. An important aspect of FOOPS is its support for desigu in the same framework
as specification and coding. Module expressions represent designs, and when they consist
of executable modules only, can be symbolically evaluated to prodnce a prototype for the
system. The key features here are theories, which are modules that declare properties, and
views, which are bindings that express how modnles satisfy theories; views permit many-
many relationships between theories and modules. In addition, modules can be composed
both horzontally and vertically, allowing desighs to be structured in both directions at
the same time: horizontally to express module aggregations and specialisations, and verti-
cally to describe layers of abstraction {or stacks of abstract machines). We also discussed
information hiding facilities, support for capturing refinement and evolutions relationships
between systems, and built-in modules, which cau be used to interface code written in other
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languages, and in a way that connects seamlessly with code written in FOOPS!. Several
examples motivated our discussions; more appear in an appendix.

Next, we supplied a fairly in-depth view of current work towards a semantics for FOOPS,
including order-sorted algebra, a logic of inheritance; hidden order-sorted algebra, which
formalises basic intuitions about information hiding and the encapsulation of ohject states;
and the theory of institutions, which provides a framework that formally captures features
for putting modules together. but which is independent of the logic used for the declarations
that modules encapsulate.

In addition, we examined the prototype implementation of FOOPS that we built using
facilities given by the implementation of OBJ3. It supports most of the features of FOOPS
described here; a notable exception is vertical paramecterisation. We discussed its overall
design, and also translation and data structnre decisions. Furthermore, we suggested how
to improve certain aspects and how to implement some of those features not currently
available.

Also, we evaluated FOOPS by comparing it with several other languages. We con-
centrated on support for large-grain issues such as system design and module reuse and
composition. We considered the distinctions between sorts, classes and modules, mecha-
niems for renaming module features, facilities for class inheritance and redefinition, generic
modules and their justantiation, and information hiding capahilities. We concluded that
what distinguishes FOOPS from other languages, and what gives it most of its power,
are the separation of modules from classes, including the different kinds of inheritance for
each, and its first-class support for theories and views, not only for parameterising and
instantiating modnles, hut also for high-level design aud for recording design and histori-
cal information. Additionally, it is important that modules can have horizontal as wel} as
vertical parameters,

Even though this thesis has focused on practical aspects, the formal semantics for many
of the facilities of FOOPS has been a valuable tool for us throughout the development of
this thesis. We used it to uncover and explain the details of several features, Lo propose
new features and applications, to guide our prototype implementation, and to cenduct the
evaluation and comparison.

It seems to us that the object community may not have paid sufficient altention to
large-grain phenotnena such as generic architectures (ie., designs) for large systems, the
global properties of snch designs, the compatibility of sub-compounents, the integration of
these capabilities with configuration and version management, and the recording of system
development information. We suggest that adding features like those discussed in this thesis
to existiug object oriented languages, even to those that identify classes and modules, could
enhance their capabilities for design and reuse.

lCm-renl.]).-, only Kyoto Common Lisp and, ta a certain extent, C car be used quite naturally. Tnterfacing
other languages requires moch more effort.
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7.1 Further Work

There are various directions that seem worth pursuing from the basis provided by this
thesis. First, we would like to exteud our prototype implementation of FOOPS with the
information hiding facilities that we have preposed.

Secoud, we would like to undertake more comprehensive case studies, to gain a deeper
understanding of the language. A method or guidelines for designing systems with FOOPS
would be a desirable output of this process. To provide some graphical suppoert, perhaps
some existing object-oriented design notation (such as Booch’s [8]) could be extended to
take into consideration aspects such as theories, views, module expressions, and vertical
and horizontal interfaces.

Also, there are extensions to FOOPS that seem to be wanting. For example, “let”
expressions for declaring local variables in axioms, and user-defined object creation methods
that override the automatically provided ones. Also, & notation for pattern-matching objects
and succinctly describing updates to them, such as that proposed by Meseguer for his
language Maude |[76], could reduce the amount of text in mauy of the FOOPS modules that
we have written [108].

A further project is a more detailed comparison of programs at the ob ject level of FOOPS
with those at its functional level. In sectious 2.2.3 and 3.9 we discussed some characteristic
distinctions in the form of axioms, hut there seem to be some interesting lessons to be
lcarned from doing this more thoreughly.

Finally, we would alse like to study how a program could manage different implemen-
tations of objects of the same class, As a start, we believe that it is reasonable to consider
that the expressions

SET(NAT] {MY-LIST-HACK}
and
SET[NAT){MY-OTHER-LIST-HACK}

are equivaent, even though they give rise to Set classes with different implementations,
because the external behaviour of their ohjects is indistinguisbable. It should therefore be
possible to interchange them, in the sense of identifyiug the two classes. The implementation
of this appears 1o be straightforward; its semantics needs to be more carefully considered,
and we suspect that behavipural satisfaction and the model-theory work reported in [29]
could be relevant to this problem.




Appendix A

Formal Syntax for FOOPS

All you have to do 15 close your eyes and watt for the symbols.

-— Tennessee Williams

This appendix gives a syntax for FOOPS, in five sub-sections. The first describes lexical
analysis very briefly; the second presents the syntax for the functional sub-language of
FOOPS; the third describes tbe syntax of the object-oriented sub-language of FOOPS; the
fourth gives the syntax for views and module expressions; and the last subsection gives the
syntax for the top-level of FOOPS. Each subsection builds upon the previous cze. Syntax
is described in the extended BNF notation given on page 12; in addition, we use ——- to
indicate comments in the syntactic description (as opposed to comments in FOOPS code).

As mentioned earlier, the functional level of FOOPS is a syntactic variant of OBJ3. For
easy cross-reference, tbe table below gives the actual syntactic correspondence:

OBJ3 Syntazx | FOOPS Syntar
obj fmod
endebj endfmod
theory itheory
endtheory endftheory
eq ax

ceq cax

beq bax

cbeq cbax

op in

ops fns

ev lisp

red eval

A.1 Lexical Analysis

Tokens are sequences of characters delimited by blanks. The characters “(”, *)°, and 7~
are always treated as single character symbols, while tabs and returns are equivalent to
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blanks (except inside comments). In many contexts, “[”, “17, and “_" are also treated as
single character symbels {(e.g., in terms).

A.2 Functional-level Modules
(fMod} ::= fmed {Modinterface) is {{fModElt) | (Buitins}}... endfmod
{fTheory) ::= fth (ModInterfece} iz {(fModEll}... endfth

{ModInterface} ::= (Modld)

[ [ {Moadfd)... :: (ModEJ:p} {, {Modld)... :: (MadE:cp)} 1]
[{" (Modld)... :: (ModEzp) {, (Modld)... :: (ModEzp)}... "}" ]
{fModElt) ::=

{extending | including | protecting} (ModEzp) [[private]] . |
using (ModExp) [{Overrides))

[with (ModErp} [{Overrides}] {and {ModEzp) [{Overrides)]}...] .
define (Sortid) is (MadEzp) ([private]] . |
sort (Sortid) {Sortid)... [[privatel] . |
principal-sert {Sort) [[pri.vate]] <

subsort (Sort} {Sort)... < (Seri} {Sort}... {< {Sort} {Sort}...}... . |
fn (OpForm) : {(Sort}... —> (Sert) [ [ (fPrepListy 1] . |

fns (OpFform} (OpForm)... @ {Sort}... —> {Sart) [ [ (fPropList} 1] . |
fn-as {OpForm) : {Sort)... -> (Sort}) for (Term}

if {Term) [ [ {fPropList} 1] .|
let (Sym) [ : {Sort) ] = {Term) . |
var {Varfd) {Varld)... : (Sort) . |
(Term) = {Term) . |
cax {Term) = (Term) if {Term) . |
{ Msc)

-—— the definition of {Misc) appears in Sectiom A.5

ax

{fPropList) ::= (fProp) {fProp}...

(fProp) ::= {assoc | comm | {id: | idr:} (Term) | idem | memo |
strat ({Int) (Mmt)...) | prec (Nat) | gather ({e | E| &}...) |
private | polymorphic (Lisp) | intrinsic}

{Builtins) ::=
bacrt {Sortld) {Lisp} . |
bq {Term) = (Lisp) . | bax (Term} = {Lisp) . |
cbq {(Term} = {Lisp} if (Term)} . | cbax (Term} = {Lisp} if (Term) .
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{(Modld} --- =imple identifier, by convention all caps
{Sortld) --- simple identifier, by convention capitalised
{Varld} --- simple identifier, typically capitalised
(OpName) ::= (Sym) {"." | * v | {Sym)}...

(§ym) --- any symbol (blank delimited)
{OpForm) ::= (OpName) | ({OpName))
{Sort)  ::= (Sorild) | (Sortid}.{Qual)
{Qual}y ::= {Modld} | ({ModEzp)}

(Lisp) ——~ a Kyoto Common Lisp expression

--- the definition of {Overrides) is given in the following section

~-- equivalent forms ---

endf = endfmod endv = weiv

fth = ftheory endfth = endftheory
dfn = define us = using

ex = extending Pr = protecting

50Tt = sSorts subsort = subsorts
paort = principal-sort var - vars

agsoc = asgociative comm = commutative

id: = identity: idr: = identity-rules:
idem = idempotent prec = precedence
gather = gathering strat = atrategy

pely = polymorphic

A.3 Object-level Modules

{oMod) ::= omod (ModInterface} is {{eModEll) | (Buliins}}... endomod
{oTheory) ::= oth (ModMmterface) is {oModEll)... endoth
{Kind) ::= {Sort) | {Class}

{oModElt) ::= (fModEl) |
define (Classld} is {ModExp} [[privatel] . |
class (Classfd) (Classid}. .. . |
principal-class (Class) . |
subelass {Class) {Class)... ¢ (Class) {Class)...
{< {Class} {Class)...}... . |
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me {OpForm) : {Kind}... -> (Kind) { [ {oPropList} 1] . |
mes {OpForm) (OpFormy. .. : {Kind)... > (Kmd) [ [ {oProp) ] ] . |
at {OpForm) : (Hwnd)... => (Kwmd} [ [ {oProplist) 1] . |
ats {OpForm} (OpForm)... : (Kind) -> {(Kmd) [ [ (oPropLast) 1] . |
var {Varld) {Varid)... : (Class) .

--- attributee and methods must mention at least one

—-—- class in their arities (except for metheds with nnil

-=-= aritiee, in which caee the c¢oarity must be a clasas)

{oPropLut) ::= (oProp) (eProp}...

{0Prop) ::= {assoc | idem | strat {{Int} {Int)...) | prec {Nat) |
gather {{e | E | k}...) | polymerpkic (Lisp) | intrinsic |
redef | default: ({Term}) | {private | subclass-private}}

~-== "default:* option only applies to attributes

(Classid) -=- simple identifier, by convention capitalised
(Class) ::= (Classld) | (Classld}. (Qual)

{Overrides} ::=
[ |private {KindRef) {KindRef)... ,]

[subclase-private (OpRef) {OpRef)... ]

[public (KindRef) (KindRef)...! ]
--~ for functional modulee, the first two options are not valid
--- the definition of {OpRef) appears tovards the end of the next section
--- object creation ---
{(NewOl) ::= nev.{Class/d){[{NewOlyArgs)]}
{NewOlArgs) ::= (Objectld) {, {Attrinit}}...

{Attrinst} ::= (OpName) = (Term}

-== {NewObj} can be put anywhere a {7erm) ia
--- expected, except on the left-hand sides of axicms

{Objectld) --- eimple identifier

~-- equivalent forms ---
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dfn = define endo = endomed

oth = otheory endoth = endotheory

¢laes = classes subclass = subclasses

pclass = principal-class subclass-private = sc-private

A.4 Views and Module Expressions

The syntax for module expressions and views is similar for the functional and the object
levels. There is an important semantic restriction, however. in that views may not map
medules (or module elements) from one level to the other. But in order to avoid repetition
we glance over this restriction in the BNF specification given below.

--- views ---
{View) ::= view (Mod/d) from (ModEzp} to (ModEzp) is (ViewEli)... endv
{ViewElt) ::= sort (SortRef) to {SortRef} . | class {ClassRef) to {ClassRef} . |
fo (OpErpr) to (Term) . | fn (FnRef) to (FnRef) . |
we (MethRef) to (MethRef) | at {AtirRef) to {A&rRef} |
{oVarDecl)... | {fVarDecl)...

—--- priority given to {UpErpr) case
--- vars are declared with sorts or classes from source of view (a theory)

--= terms —--
(Term) ::= (Mizfiz) | {Varld) | {{Term}) |
(OpName) ({Term) {, {Term)}...) | ({(Term}).{OpQual)
--- precedence and gathering rules used to eliminate ambiguity
{OpQual} ::= (Sort) | {Class) | {Modld) | {(ModEzp}
{Mizfiz) --- mixfix operation applied to arguments

--- medule expressions ---

(ModEzp) ::= {Modid} | (Medld} is {ModEzpRename) |
{ModExpRename} + (ModEzp) | {ModEzpRename)

{(ModEzpRename) ::= (ModErpinst) [ * ({(RenameBlt) {, (RenameEli}}...) ]
{ModEzplnst) ::= (ParamModEzp) {HorParems) {VertPargms) |

{ParamModEzp} {{HorParams} | (VertParams}} |
({ModEzp))
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{HorParams) ::= [ (Arg) {, {Arg}}... ]
{ VertParams) ::= “{" {Arg) {. {drg}}... "}"

{ParamModEzp) ::= {Modld} | ({ModId} » ({RenameElt) {, (RenameEl)}...))

{Renameflt) ::= sort {SortRHef} to {Sortld) | class (ClussRef) to (Classid) |
fn (FnRef) to {OpForm) | at (AtirRef) ta (OpForm)} |
me {MethRef} to (OpForm}

(Arg) ::= {Viewdrg) | (ModEzp} |

{Sortitef} | sort (SortRef) | (ClassRef) | class {ClassRef} |

{FrRef) | fn (FnRef) | {AtirRef} | at (AttrRef} |

{MethRef} | me (MethRef}
—--- may need to pracede (FnHef) by "fn", for example, to distinguish
--- from the general case (i.e., from a module name)

{ViewArg) ::= view | from (MedErp) ] to (ModEzp} is (ViewFEit}... endv

{SortRef) ::= {Sort) | ({Sert))

(ClassRef) ::= {Class} | ({Class))

{FnRef} i:= {(FnSpec) | ({(FrSpec)) | (({FnSpec)).(OpQual))
{AttrRef) ::= {AtérSpec) | ({AttrSpee}) | (({AttrSpec}).{OpQual))
{(MethRef) ::= {MethSpec) | ({MethSpec)) | ({{MethSpec)) .{OpQunl))

-== in views, {op).(M) must be enclosed in parenthesis, i.e. ((op).(M))
{OpRef) ::= {FnRef} | (AllrRef}) | {McthRef}

{FnSpec) ::= (OpName) | (OpName) : (Sortid)... -> (Sortld}

{AttrSpec) ::= (OpName)} | (OpName) : (Kindld) -> (Kwmdld}

(MethSpec) := (OpName) | {(OpName) : (Kindld)... -> {(KindId)
{Kindidy ::= (Sortld} | (Classld)

{OpEzpr) =—- a (Term) that is a single operation applied to variables

A.5 The Top Level

(FOOPS-Top} ::= {{/Mod) | {[Theory) | (oMod) | {aTheory) |
{View) | {Make} | (Evaluation) |
input {FileName} | quit | eof |

start {Term) . | start-term (Term} . |
open [{ModBzp}] . | openr [{(ModEzp}] . | close |
{OtherTop)}. ..

{Make} ;= make (ModInterface) is {ModErp}) endm
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(Evaluation) ::= eval [ in (ModEzp) : | {Term) .

{Apply) ::=
apply { reduction | red | print | retr |
-retr with sort (Ser!) |
(RuleSpec) [ with (VarJd) = {Term} { , {Varld) = {Term) }... |}
{ at | within }
{Selector) { of (Selectory } ... .

{RuleSpec) ::= [-|{ModId}.(Ruleld} | [-].{Ruleld)
(Ruleld) ::= (Natural) | {Id}

{Selector} ::= that | top |

({Netural). . .) |

[ {Natural} { .. (Natural) ] 1 |

" {Natural) {, {Natural}}... "}"
~-= note that "()” is a valid selector

(OtherTop) ::= (Fusiloop} | {(Commands) | call-that (fd) [ (ModId) 1 . |
test evaluation [ in {MadEzp) : ]| {Term) expect: {Term) . | (Misc)

(Evalloop) ::= eval-loop {. | (Modld)} [{Term) .}...

{Commands) ::= cd (Sym) | pwd | 1s |
da (DoOphion) . |
select [{ModEzp)] . |
set (SetOplion) . |
show [(ShowOption)] .
=== in select, can use "open" to refer to the open medule

{DeOptton} ::= clear memo | gc | save {Sym}... | restore {Sym)... | ?
(SetOption) ::= [abbrev quals | all equs | all rules | blips |
clear memo | gc show | include BQOL | obj2 |
print with parena | reduce conditions | shew retracts |
show var sorte | stats | trace | trace whole} {Polarity)
| 2

{(Polarity} ::= on | off

{ShowOption) ::=
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{abbrev | all | eqs | mod | name | ope | params | principal-sort |
rules | select | sign | sorts | Bubs | vars}
|(PeremSpec) | {SubmodSpec )| [{ModEzp)l |
[all] modes | modules | pending | op {OpRef} | rule (RuleSpec) |
sort {SortRef) | term | that | time | verbase | (ModEzp) |
{PammSpec) | {SubmodSpec) | 7
=== can use "open" to refer to the cpen medule

{ParamSpec) ::= param {NoturglNumber)
{Submodipec} :.= sub  (Nalura/Number)

{Misc) ::= lisp (Lisp} | lisp-quiet (Lisp) | parse (Term} . | {Comment}
{Comment) ::= *wx (Rest-of-line) | x#s> (Rest-of-hine) |

w4 ({ Text-unth-balanced-parentheses})
{Rest-of-ine) --- the remaining text of the current line

--- equivalent forxms ---

el = eval-loop in = input q = quit MRE T -



Appendix B

More Examples

The more, the terrer.

— Author unkrown

This appendix provides more details and further illustration of examples given in Chapter
3. First, we show the auxiliary modules of the bank accounts example, and also give a
maodule that defines minimurn balance accounts. In addition, we include examples involving
computations with metaclasses. Second, we complete the generic resource manager example.
Finally, we give some example uses of the generic WHILE module.

All of these examples run on the prototype implementation of FOOPS that we have
built.

B.1 Bank Accounts

First we present auxiliary modules that define money, dates and transaction histories. The
functional module MONEY is:

fmod MOREY is

sort Money .

pr FLOAT .

subsort Float < Momney .
endf

These two modules define the basics of dates:

fmod MONTH is
sort Month .
ops Jan Feb Mar Apr May Jun : -> Menth .
ops Jul Aug Sep Oct Nov Dec : -> Momth .
op next_ : Month -> Month .
a¥ pext Jan = Feb . a¥ pnext Feb = Mar .

177
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ax next Mar = Apr .
ax mext May = Jun .
ax next Jul = Aug .
ax next Sep = Oct .
ax next Kov = Dec .
pr NAT .
op #days_ : Month
ax #days Jan =
ax #days Mar =
ax #days May =
ax #days Jul =
ax #days Sep =
ax #days Nov =

endf

fmod DATE is
sort Date .
pr MONTH .
ep (_-_-_]
cp next_ :
op day_ :
op month_ :
op year_ @
var DT : Date .
var D : NzNat .
var M : Month .
var Y : NzNat

31 .
31 .
31 .
31 .
30 .
30 .

BEEESR

-> Nat

A

. NzNat Honth
Date -> Date .
Date -> NzNat .
Date -> Month .
Date -> NzNat .

ax day [D - M - Y] =D .

next Apr = May .
next Jun = Jul .
next Aug = Sep .
next Oct = Nov .
next Dec = Jan .
#days Feb = 28 .
#days Apr = 30
f#days Jun = 30
#days Ang =
#days Oct = 31 .
#days Dec = 31
NzNat -> Date .

ax month [D - M - ¥] = M .

ax year [D - M~ Y] =Y,

cax next DT =
if day DT <

cax next DT =
if menth DT

cax next DT =
if month DT

endo

{(1 + day DT) - {month DT) ~ (year DT)]

#days (month DT)

(1 ~ (next month DT) - (year DT))
=/= Dec and day DT == #days (month DT)

[1 - (next month DT} - (1 + year DT)]

== Dec and day DT == 31 ,

31 .
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Module NOW declares a class of objects with one attribute, which gives a date. It also
declares an entry-time object to hold the current date.

omod NDW ie

class Day .

pr DATE

at date : Day -> Date .

me Today : -> Day .

me next : Day -> Day .

var D : Day .

ax date(mext(D)} = mext date(D)

ax date(Today) = [ 23 - Aug - 1993 ]
ends

The tramsaction history of an account is a list of 2-tuples whose first component is a
date and whose second component is an amount of money. Module 2TUPLE is &

fmod 2TUPLE([C1 :: TRIV, C2 :: TRIV] is
sort 2Tuple .
fn <<_;_»> : Elt.C1 Elt.C2 -> 2Tuple .
fn is_ : 2Tuple -> E1t.Ci .
fn 2%_ : 2Tuple -> Elt.C2 .
var el : Elt.Ct .
var e2 : Elt.C2 .

ax 1* << el ; e2 >> = el .
ax 2+ << el ; e2 »> = e2 .

endo

Module LIST is:

fmod LIST[X :: TRIV] is
sorta List NeLiat .
subsort Nelist < List .
fo nil : -> List ,
fo _ _ : Elt List -> NelList .
fn hd _ : Nelist -> Elt .
fn t1 _ : NeList -> Liat .

var £ : E1t . wvar L : List .
ax hd(E L) = E .

ax t1(EL) =L .

endo

Combining all of the above modules, we get transaction histories:

'This module ia part of the defanlt environment for our prototype implementation, which also includes
modules for 3, and 4-tuples.
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fmed HIST is
define Hist is LIST[2TUPLE[DATE,MOKEY]]
« (sort NeList to NeHist,
fn nil to emptyHist)
endf

{A define declaration renames the priacipal sort or class of the module expression to the
sort or clas given.)
Next the definition of cheque histories:

fmod CHIST is
define Chist is LIST[3TUPLE[NAT,DATE,MONEY]]
« {sort NelList to KeChist,
fn nil to emptyChist)
endf

Lastly. we defire minimum balauce savings accounts. These accounts have a mininum
balance requirement that mmust be respected by debits. Therefore the debit method is
redefined:

omod MBSAVACCT is
class MBSavAcct
ex SAVACCT .
subclass MBSavicct < SavAcct .
at minbal_ : MBSavAcct -> Monmey .
var MBSA : MBSavAect . var M : Momey .
me debit : MBSavAcct Money -> MBSavAcct [redef]
cax bal debit(MBSA,M) = bal MBSA - M
if minbal MBSA <= bal MBSA - M .
cax hist debit(MBSA,M) = << date(Today) ; - M >> hist MBSA
if minbal MBSA <= bal MBSA - M .
cax kist debit(MBSA,M) = << date(Today) ; insufunds(M) >> hist MBSA
if minbal MBSA > bal MBSA - M .
endo

B.1.1 Computing with Metaclasses

This section defines a parameterised module that is generic ever a binary method m, and
which defines a method iter that applies m to each existing object of the class of n.
Subsequently, this module is instantiated twice to define the methods iter-credit and
iter-debit, which change all of the current objects of class Acct by applying credit and
debit, respectively. to each object. First, the theory for the binary method:

oth ME is



clasas ¢ . sort Param .
me m : C Param -> C ,
endoth

Second, the pararmeterised module that defines the iteration. A metaclass 5 defined as
an instance of a class called IdList, which is declared in the built-in module 0BJ~IDLIST.
This class has two associated attrihutes, hd_ and t1_, which help define the iteration.

omod ITER[M :: ME] is
pr OBJ-IDLIST .
me iter : IdList Param -> IdList .

var X : € . var P : Param . var L : IdList .
ax iter{L,P) = if L == nil then
nil
else

m{hd (L) ,P); iter{tl(L),P)
£i .
endo

The next two make commands instantiate ITER by viewing iter as debit and as credit,
respectively.

make [TER-CREDIT is
ITER{view ta ACCT is
class C to Acct .
gort Param to Meomney .
me m to credit
endv] * (me iter to iter-credit)
endm

make ITER-DEBIT is
ITER[view to ACCT is
class C to Acct
eort Param to Money .
me m to debit .
endv] * {me iter to iter-debit)
endn

This make just combines the two previous modules:
make ITER-ACCT is ITER~CREDIT + ITER-DEBIT . endm

Now some example evaluations:
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eval pevw.Acct(A, bal_ = 100) .
eval new.Acct(B, bal_ = 5Q)

eval iter-credit(all~Acct, 100)
eval bal A . ---> should be 200
eval bal B . ---> should be 150

eval iter-debit{all-Acct,25) .
eval bal A . ---> should be 175
eval bal B . —--> sghould be 12&

B.2 A Resource Manager

For the specification of the resource manager, we begin by specifying password engines:
abjects of one attribute, the value of which is to be used as a password. An engine needs
to support one methad to geuerate new passwords. A requiretnent on this method is that
the password it generates must be different from tbose that it had generated previously.
This may be accomplished in at least two ways. One is to remember all previous passwords
and ensure that new ones are not in this set. The other, which is the option that we have
chosen, is to require that the set of possible passwords form a total order, so that a new
password may be generated simply hy remembering the last one and choosing as the next
password a “grealer” one. The theory of strict total orders and the object-level theory that
expresses the uniqueness of passwords were given in Chapter 3 (see pages 56 and 61).

A model of the total order theory is the natural numbers. They can be used to define
the actual engines as a class in which each object stores a natural number that can only be
replaced by a larger one, regardless of the initial valye stored.

omod NAT-NUMBER-PW-ENGINE is
cless PWEngine .
pr NAT # (sort Nat to Password)
at value : PWEngine -> Passwvord [default: ()]
me make-pw : PWEngine -> PWEngine .
var P : PWEngine .
ax value({maka~pw(P)) = value(P} + 1 .
ende

We may assert the validity of this implementation with a view, which in this case happens
to be empty:

viey IS-PWE from PW-ENGINE[NAT = (sort Nat to Password)]
to NAT-NUMBER-PW-ENGINE is

endv
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The class of resource managers may now be defined. It is given in a generic module
of one parameter, the kind of resource to be managed. A manager stores the current get
of free resources, the current set of locked resources, a password engine and a status code
that deseribes the outcome of the last request or release. The request method returns a
password to the desired resource if it is free; otherwise, void-Password is returned. The
release method frees the resource associated with the password it receives as parameter.
The auxiliary mod ules SET and MAP are shown further below.

omod RESQURCE-MANAGER[RSC :: TRIV # (sort Elt to Resource)] is
c¢lass ResourceMgr .
sort MgrStatus .
fns granted released unavailable unknown : -> MgrStatus .
pr SET[RSC] » {class Set to Resources)
pr NAT-NUMBER-PW-ENGINE .
pr MAP[Passvord,RSC] . --- association betveen locked resources
~--- and passwords

at free-resources : ResourceMgr -> Resources .
at locked-reeources : ResourceMgr -> Map .

at pw-engine : ResourceMgr -> PWEngine .
~-— agtatus of last request or release

at status : ResourceMgr -»> HgrStatus .
var P : Password .

var B : Resource .
var R¥ : ResourceMgr .

--- methods tc toggle the status attribute

mes granted released 1 ResourceMgr -> ResourceMgr .
mes unavailable unkpown : ResourceMgr -> ResocurceMgr .
ax status (granted(RM)) = granted .

ax status (released(RM)) = released .

ax status (unavailable(AM)} = unavailable .

ax status{unknown{RN)) = unkoown .

--- auxiliary to place a newv password in the engine,

--- and then return it

me make-pw : ResourceMgr -> Password .

ax make-pw(RM) = make-pw(pw-engine(AM))}; value{pw-engine(RM)) .

--- iz this resource frea?
me is-free : ResourceMgr Resource -> Bool .

ax is-free(RM,R) = member (free-resources(RM),R)

--- is this rescurce locked?
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me is-locked : ResourceMgr Resource -> Bool .
ax is-locked(RM,R) = is-data{locked-resources(RM},R)

-=-- is this a resource the manager knows of?
me 1s-resource : ResourceMpgr Resource -> Bool .
ax is-resource(AM,R) = is—free(RM,R) or is-locked(HM,R)

--- accept a new resource if it is not a repeat
me add-rescurce : ResourceMgr Resource -> ResourceMgr
ax add-resource(RM,R)} = insert(free-resources(RM),R); RM .

=--- returns a password to the resource if it is free;
--- otherwise returns void-Password; sets the statue
--- attribute accordingly
me request : ResourceMgr Rescurce -> Password? .
ax request{fM,R} =
Af is-free(HM,R) then
delete(free-resources (AM) 1) ;
make-pw{RM);
insert (locked-rescurces(AM) ,value {pu-engine (RM)},R);
granted(RM); value(pw-engine{RM})
else if is-resource(AM,R) then
unavailable(BM); void-Password
else
unknown(RM); void-Password
fi fi

--- if there is a rescurce locked with the given password
=== then unlock it and insert it into the free-resource pool;
~-- otherwise do nothing;
~-- also, set the status attribute accordingly
me releame : ResourceMgr Passvord -> ResourceMgr .
aX release(RM,P} =
if is-key{locked-resources(RM),P) then
insert{free-resources(RM),
get-data(locked-resources{RM),P));
delete(locked-resources(RM),P);
released(RM)
else
unkrown {RM)
fi .
endo
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By defining a module that declares varions resources, such as:

fmod RESOURCES is
sort Resource .
fns diskA diskB diskC : -> Resource .
fns printerA printerB : -> Resource .
endf

we may instantiate the resouree manager module, like this:
make TEST-RESOURCE-MGR is RESOURCE-MANAGER[RESOURCES] . endm

Then, the following evaluation creates a resource manager with all its internal state
initialised:

eval new.RescurceMgr(Mgr} .

And these other evaluatious show the defaulis that were computed:

eval empty{free-resources(Mgr)) . ---> should be true
eval empty(locked-rescurces(Mgr)) . ---> should be true
aval value(pw-engine(Mgr)) . —-—-> ghould be 0

B.2.1 Auxiliaries

Thbe first auxiliary module specifies sets by interfacing the underlying Lisp system. We will
not explain this in any more detail; it is just an application of a facility described in [53],
and also discussed in Chapter 3. The module after that defines sets at the object level by
using this initial description. There, each set is associated with a “cursor” that may be
used for iterating over its elements.

--- this routine prints sets with the usual curly-bracket notation
lisp-quiet
(defun set$print (s)
(princ "")
(dotimee (i (lemgth s))
(vhen (< 0 i) (princ “,"))
(print$check)
(term$print {elt s i))
)
(princ "%)

}

fmod BUILT-IN-SET[X :: TRIV] is
--- built-in sorts are defined using lisp
beort BISet ((lambda (x} nil) {(lambda {x) (break))
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set$print (lambda (x) t))
pr NAT .
fn make-set : -> BISet .
fn insert : BISet Elt -> BISet .
fn delete : BISet Elt -» BISet .
--- cardinality
fg nb-elts : BISet -> Nat .
--- membership test
fn member : BlSet Elt -> Bool .
—-- eMptyness
fo empty : BISet -> Bool .
--- iteration help
fn ith : BISet Nat -> Elt .
fn positien : BISet Elt -> Nat .
var § : BISet . wvar E : Elt . war NZ : NzNat .
bq make-set = (progn nil)
beq insert(S,E)} = (term$make_built_in_constant (term$sort selif)
(adjoin E (term$built_in_value 5) :test # term$similar2})
beq delete{S,E) = (term$make_built_in_constant (termPsort self)
{remove-if #°(lambda (x) (term$similar2 x E))
(term$built_in_value §5)))
bq nb-elta(S) = {length )
beg member(5,E) =
{abj_BO0OL$coerce_to_Bool
(tind-if #°(lambda (x) (term$similar2 x E))
(term$built_in_value 5)))
ar empty(S) = nb-elts(S) ==
cheq ith(S,NZ) = (elt {term$built_in_value S)
(t- (termgbuilt_in_value NZ)))
if NZ <= pb-elts(8)
chbeq position(8,E} =
(term$make_built_in_constant (term$sort self)
(1+ (position-if #-(lambda {(x} (term$similar2 x E))
(term$built_in_value S))))
if member({S,E)
tbeq position(S,E) = ¢ if not member(S,E) .

endf

omed SET[X :: TRIV] is

class Set .
pr BUILT-IN-SETIX] .
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--— aids for iteratipg over

-—- cursor: index of current element
at current : Set -> Nat [default: (0)]
~-- place cursor on firet element
me start : Set -> Set

--— move cursor to next element

me forth : Set -> Set .

--- vyalue of current element

at value : Set -> E1t7 .

--— is curser ocut of bounds?

at finished : Set -> Bool .

at contents : Set -> BISet [default: (make-set)]
me insert : Set Elt -> Set .
me delete : Set Elt -> Set
-—- cardinality
at nb-elts : Set -> Nat
--- membership test
at member : Set Elt -> Bool .
-—-=~ emptynesas
at empty : Set —-> Bool
var 8 : Set . var E : Elt
cax contents(insert{5,E)) = insert(contents(S),E) if not member(S,E)
cax contents(insert(5,E)) = contents{(S) if member(S,E
ax contents{delete{3,E)} = delete(contents(8),E}
ax current (delete(S,E)) =

if position(contents{S},E) >= current{(S) then

current (5)
else

p current(S)

fi .

ax nb-elts(%) = ob-elts{contents($))
ax member {5,E) = memher(contente(S),E} .
ax empty(S) = empty{contents(5))

ax fipnished(S) = current(S8) > nh-elts(S)
ax value(S) = if finished(S) then

veid-Elt
elae

ith{contents(S),current{S))
fi
current (start(S)) = 1 .
current (forth(S)} = curreat(S) + 1

85
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endo

Module MULTI-MAP declares a class of objects whose state is a set of pairs, where the
first component of the pair is called its key and the second component is called its data.
Keys may be associated with more than one data. (See page 59 for the definition of pairs.}

omad MULTI-MAP{KEY :: TRIV * (sort Elt to Key},
DATA :: TRIV * (sort Elt to Data)] is

class Hultimap .

ex SET[PATR[KEY,DATA] * (at fst_ to key, at snd_ to data,
me replace-fst to replace-key,
me replace-snd to replace-data)l

* (ne insert to set-insert) .
subclass Multimap < Set .

Pr SETIKEY] * (class Set to KeySet)
pr SET(DATA] =» (class Set to DataSet) .

var M : Multimap .
var K ; Key . var D : Data .
var DS : DataSet . var K5 : KeySet .

--- number of elemente with given key
me count-key : Multimap Key ~> Nat .
meé comt-key2 : Multimap Key -> Nat [private]
ax comt-key(M,K) = count-key2{start(M),.K) .
ax count-key2(M,K) =
if finished(M} then
1]
else if key{value{(M}) == K then
1 + count-key2{forth{M),K)
elae
count-key2(forth(M),K)
fi fi1 .

—--= number of elements with given data
me count-data . Multimap Data -> Nat .
me count-data2 : Multimap Data -> Nat [private]
ax count-data(M,D) = count-data2(start(M)},D) .
ax count-data2(M,D) =

if finished(M) then

o
else if data(value(M)) == D then
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1 + count-dataz(forth(M),D)
else

count-data2(forth(M},D}
fi fi

--- is there an element with the given key?
me is-key : Multimap Key -> Bool .
ax is-key(M,K) = count-key{M,K) > 0 .

--- is there an element with the given data?
me is-data : Multimap Data -> Bool .
ax is-data(M,D) = count-data(M,D) » ¢ .

--- test for presence of a given (key,data) pair
me member : Multimap Key Data -> Bool .
me member2 : Multimap Key Data -> Bool [private]
ax member{M,K,D) = member2(start{M),K,D)
ax memberz(M,K,D) =
if finighed(M) then
false

else if key{value(M)} == X and data{value{M)) == D then

true
slae
member2(forth(M).K,D)
fi fi

--- nothing happens for duplicate pairs
me insert : Multimap Key Data =-> Multimap .
ax insert(M,K,D) =
if member(M,X,D) then
M
else
set-insert(M,nev.Pair{key = K, data = D))
fi

me keyset : Multimap -> KeySet .
keyset2 : Multimap KeySet -> KeySet [private]
keyset (M) = keyset2(start(M),nev.KeySet{)) .
keyset2(M,KS) =
if fipished(M) then
K5
elss

E& 2

189
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insert(KS ,key(valua(M)));
keyset2 (forth(M),KS)
fi .

me dateget : Multimap -> DataSet .
me datsset2 : Multimap DataSet -> DataSet [private]
ax dataset(M) = dataset2(start(M),new DataSet()) .
ax dataset2(M,DS) =
if finished (M) then
Ds
alse
insert{DS,datal{value(M)));
dataset2(forth(M),DS)
fi .

—-=-- repove all entries with the given key
-=~ no effect if uo such key
me delete : Multimap Key -> Multimap .
me delete2 : Multimap Key -> Multimap [private]
ax delete(M,K) = delete2{start(M},K) .
ax delste2(M,K)} =
if finished(M) then
M
else if key(value(M)) == K then
delete(M,value(M)); delete2(M,K)
else
delate2 (forth(M) K}
fi fi .
endo

Finally, module MAP declares a subclass of Multimap in which keys are unique. This requires
the redefinition of method insert.

omod MAP[KEY :: TRIV » {sort Elt to Key),
DATA :: TRIV * (sort Elt to Data)] is
claee Map .
ex MULTI-MAP[KEY,DATA] .
subclass Map < Multimap .

var N : Map . var K : Key . var D : Data .

--- return data with the given key
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me get-data : Map Key -> Data? .
me get-data2 : Map Key -> Data? [private]
ax get-data(M,K) = get-data2(start(M).K)
ax get-data2 (M,K) =
if finished(M) then
void-Data
else if key(value(M)) == K then
data{value(¥))
else
get—-data2{forth{(M} ,K)
fi fi

--- redefinition: don’t allew two elements with the same key
me insert : Map Key Data -> Map [redef]
ax imsert(M,K.D) =
if is-key(M,K) then
H
else
set—insert (M,nev.Pair(key = K, data = D)}
fi

endo

B.3 Iterators

We restrict our attention te linear iteration, and in particular to linear iteration over
traversable structures. Linear iteration is that in which the loop proceeds aver the struc-
ture in one direction only. A traversable structure is one that may be looped over with
a cursor. aud that supports the following operations:

e item, which returns the value of the item where the cursor is at;
e atart, which places that cursor on the first element;
s forth, which moves the cursor to the next element; and.

o finished, which tests whether the cursor is on any item. It is used as a termination
test.

The particular kind of linear iteration that we consider is the while loop. which (in
general) has the form of this Pascal-like fragment:

mittalisation;
while fest do
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some-action
endwhile;
wrepup;

For traversable structures {or \raversables, for short), the above fragment specialises to the
following cne:

inttiglisabion; start;

while pot{finished) and test do
some-action; forth

endwhile;

wrapup;

Other forms of iteration, such as two-way traversals, and other kinds of loop structure, such
a5 repeat-until, follow a similar pattern.

To realse these kinds of iteration we use the following setup. Theory ITER-ACTIONS (see
page 57) describes a class with the methods init, action, test and wrapup. [t serves to
express the minimal requirements on actual arguments to the parameterised module WHILE
{see page 60), which declares a method while that is defined in terms of these other meth-
ods. Theory TRAVERSABLE describes traversable structures, and is extended by theory
TRAVERSABLE-WITH~ACTIONS, which describes a class of traversable structures which also
has methsds that correspond to init, actien, etc. This theory is in turh vsed to de-
scribe the interface to module TRAV-WHILE, whick specialises method while for traversahle
structures.

oth TRAVERSABLE(X :: TRIV] is

class C .

me item_ : ¢ -> Elt? .

me start_ : C ->» C .

me foerth, : C -> € .

me finished_ : € ->» Bool .
endoth

-—- "uging TRAVERSABLE[X]" would be ideal, but
--- this importation mode is not yet implemented in
-—~ FOOPS (but OBJ3 supports it)
oth TRAVERSABLE-WITH-ACTIONS[X :: TRIV] is
class C .
sorts In Out .

me item_ : C -» Elt? .
me sStart_ : C-=>»C .
me forth_ :C=>»C .
me finished_ : C -> Bool .
me init :CIn->C.
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me actiom : CIn->»0C .

ma test : C In -> Bool .

me wrapup : C In -> Qut
endoth

Module TRAV-WHILE is defined as a parameterised module of two arguments. The first is
for the kind of data stored in the traversable structure, and the second is for the structure
itself. The body of TRAV-WHILE is an instantiation of WHILE, and a view describes the
binding from the elements ITER-ACTIONS (the interface theory of WHILE) to the elemnents
TRAVERSABLE-WITH-ACTIONS. This view adds-in the code to move along the traversable

structure:

make TRAV-WHILE([DATA :: TRIV, X :: TRAVERSABLE-WITH-ACTIONS[DATA]D is
WHILE[view to X is
clasg C to C .
sort In to In .
sort Out to Cut .
var E : C . var I : In .
me init{E,I) to init(E,I); start(E)
me action(E,I) to action(E,I)} ; forth(E} .
me test(E,I) to if not finished(E)
then test(E,I)
else false
fi .
me wrapup(E,I) to wrapup(E,I)
endv]
endm

The resulting axioms that describe methods while and while-continue are then:

ax while(E,I) = start{E); init(E,I); while-continue{E,I) .
ax while-continue(E,I) =
if (if not finished(E) then test(E,I) else false fi) then
action(E,I); forth(E); while~continue(E,I)
else
wrapup(E, I}
fi

Incidentally, we could have relied on defauit-view conventions and omitted these view ele-

ments:

class C to C .
sort In to In .
sort Out to Out .
me wrapup(E,I) to wrapup(E,I) .
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Now a simple instantiation. First we present the basic parts of a library module that
implements linked lists {its full definition is available with the implementation of the sys-
tem).

omed LINKED-LIST[X :: TRIV] is

class List .

pr LINKABLE[X] . -—— private

gr INT .

at nb-elte_ : List => Nat [default; (0)]

--- first element at position 1
at pesitien_ : List -> Nat [default: (0))

-—- identity methed
me id : List -> List .

--- value of element at cursor positicn
at item_ : List -> Elt? .

~-- is list empty?

at empty_ : List -> Beol .

-—- is cursor off right edge?

at offright_ : List -> Bool .

--- is cursor off left edge?

at offleft_ : List -> Bool .

at finished_ : List -> Bool .

--- does element i exist?
at valid-position : List Nat -> Bool .

=== rempves all elements
me ¢lear : List -» List .

—--- change value of element at curscr position
me replace-value : List Elt -> List

--- move cursor to first element; no effect if list is empty
me start_ @ List -> List .

--- move cursor off left edge; private
me go—offleft_ : List ~> List .
--- move cursor off right edge; private
me go-offright_: List -> List .



-—- move cursor to next element
me forth_ : List -> List .

--- insert am element to the right of cursor positionm.

--- Do oot move cursor. Position does not change.

~== if 1list is empty, it is left offleft

-—- if list is offleft, element is inserted at the beginning
--~ if list is offright, element is inserted at the tail

me insert-right : List Elt -3 List .

--- insert an element to the left of cursor position.
--= Do not move cursor. Pesiticn increases by 1.
--- if list is empty, it is left offleft
--- if list is offleft, element is inmerted at the beginning
--- if list is coffright, elemsnt is inserted at the tail
me insert—left : List Elt -> List
endo

The following make generates a (module that includes a} method for clearing a list and
inserting into it a value a certain pumber of times. The value and the number of times is

given in a pair.

make INIT-LIST[X :: TRIV] is
WHILE{view to LINKED-LIST[X] +
PAIR[X,NAT] * (at fst_ to value, at snd_ to length) is
class C to List .
¢lags In to Pair .
class Qut to List .
var L : C . var I : In .
me init{L,I) to clear{L)
me action(L,I) to insert-right(L,value(I)}
me test{L,I) to mb-elts(L) < length(I)
me wrapup(L,I) to id(L)
endv]
* (me while to init-list)
endm

The initialisation is to clear the list, the action is an insert, the test checks the mumber of
elements in the list, and the wrapup just returns the list2, An example use of the method
would be init-list(1l,p), where 1 is a list and p a pair with the required values for its
components. Note that this instantiation of WHILE is multilevel (i.e., of the form F[G(H] +
P[H,AI]).

Now an example that involves copying lists with the following methods:

IThe current implementation does not allow the target of wrapup to simply be L, as would be desired.
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» copy {; to Iz, which clears I and then copies the contents of {; onto it, and

¢ make-copy(l), which creates a new list whase elements are the same as those of I.

Module COPY-LIST below instantiates TRAV-WHILE by providing a view from
TRAVERSABLE-WITH-ACTIONS to module LIST. The fact that there is a default view from
TRAVERSABLE {a subtheory of TRAVERSABLE-WITH-ACTIONS) to LIST helps here, as we are
able to omit from the view elements such as

me start(L) to start(L} .

The module is:

omod COPY-LIST[X :: TRIV] is
pr TRAV-WHILE[X,

view to LINKED-LIST[X] is
class C  to List .
class In to List .
class Qut to List .
var L : C. wvar I : In .
me init{L,I) to start{clear(I)); L .
me action(L,I) to insert-right{I,item(L));

forth(I); L

me test{L,I} to true .
me wrapup{L,I} to id(L}

endv]

* {me while to copy_to_, me while-continue to continue-copy_to_)

me make-copy : List -> List .

var L : List .

ax make-copy(L) = copy L to new.List()
endo

In particular, observe that we use the extra parameters fo init, action, etc. to carry
around the target list. Also, nole how make-copy uses copy to_ and object creation to
generate a fresh copy of its argument.

Finally, the example below is derived from one that appears in [78], pages 174-177. It
consists of adding the speed of the first n particles in a list. The top-level method is:

add-speeds(!,n).

This example follows a pattern similar to the previous ouwe, and again the extra input
argument to init, action, etc. serves to carry around temporary data. For this, module
TRIPLE is used:

First we need definitions for speed and particles.
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make SPEED is FLOAT * (sort Float to Speed) . endm

omod PARTICLE is
class Particle .
pr FLDAT + SPEED
at mass : Particle -> Float .
at speed : Particle -> Speed .
at positively_charged : Particle -> Bogl .
--- ete.

endo

Below we use 3-tuples for storing the number of clements examined so far {counted),
the nnmber of particles to be examined (threshold), and the accumulated result {zum).

omod TRIPLE[X :: TRIV, Y :: TRIVY, 2 :: TRIV] is
class Triple .
ex PAIR[X,Y]
subclass Triple < Pair .
at trd_ : Triple -> Elt.Z .
vars T T2 : Triple . wvar V : Elt.Z .
at equal : Triple Triple -> Bool [redef]
ax equal(T,T2) = fst T == fst T2 and
snd T == snd T2 and
trd T == txd T2 .
me replace-trd : Triple El1t.Z -> Triple
ax trd replace-trd{T,V) =V .
endo

omod PARTICLE-SPEEDS is
pr TRAV-WHILE[PARTICLE,
view to LINKED-LIST{PARTICLE]
+ TRIPLELINT,INT,SPEED]
* (at fst_ to counted,
me replace-fst to set-counted,
at snd_ to threshold,
me replace-snd to set-threshold,
at trd_ to sum,
me replace-trd to set-sum) is
class ¢ to List
class In to Triple .
sort Elt to Particle
sort E1t? to Particle?
sort Out to Speed .
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var L : C . wvar T : In .
me init(L,T) to set-sum(T,0); set-counted(T,0); L .
me action(L,T) to set-sum{T,sum(T) + speed(item(L)));
set—counted{T,counted(T) + 1); L .
me test(L,T) to threshold(T) > counted(T)
me wrapup(L.T) to sum(T) .
endyv]

me add-epeeds : List Hat -> Speed .

var [ : List . var N : NHat .
ax add-speeds (L,N) = while(L,new.Triple{threshold = N)})
endo

It seems interesting that this way of structuring iterators differs from Meyer’s in that
we avoid the use of constrained genericity. Section 6.5 discussed the ad vantages of modules
being generic over theories and instantiated with views.

Fiuvally, we note that it would also be possible to have module WHILE declare a new c¢lass
called While as client of the data structure to be iterated over, and have the iteration metlh-
ads be associated with this new class. (Incidentally, While would be a natural candidate
for an abstract class.) The flexibility that this allows is that particular iterations could be
defined by subclassing While and overriding its iteration methods; moreover, its subclasses
could declare attributes for temporary storage. This alternative approach exemplifies an-
other advantage of the distinction between classes and modules, because these subclasses
would arise mostly as auxiliaries to other classes [our experiments confirm this).
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