PROVING CORRECTNESS OF
REFINEMENT AND IMPLEMENTATION

hy
Grant Malcolm and Joseph A. Goguen

Technical Monograph PRG-114
Novernber 1994

Oxford University Computing Laboratory
Programming Research Group

Wolfson Building

Parks Road

Oxford OX1 3QD

Copyright © 1994 Grant Malcolm and Joseph A. Goguen

Oxford University Computing Laboratory
Programming Research Group

Wolfson Building

Parks Read

Oxford 0X1 3QD

Electronic mail:
Grant Malcolm@comlab.ox.ac.uk
Joseph.Goguen@comlab.ox.ac . uk

Proving Correctness of
Refinement and Implementation

Grant Malcolm
Joseph A. Goguen
Programming Research Group
University of Oxford
Gxdard, UK.

Abstract

The notions of state and ohservable bebaviour are fundamental to many areas of computer
science. Hidden sorted algebra, an extension of many sorted algebra. captures these notions
through hidden sorts and the bebavioural satisfaction of equations. This makes it a powerful
formalisation of ahstract machines, and many results suggest that it is also suitabie for the
semantics of the object paradigm. Another extension of many sorted algebra, namely order
sorted algebra, has proved nseful in system specification and prototyping because of the way
it handles subtypes and errors. The combination of these two algebraic approaches, hidden
order sorted algebra, has also heen proposed as a foundation for ohject paradigm. and has
mnch promise as a foundation for Software Engineering.

This paper extends recent work on hidden order sorted algebra by investigating the re-
finement and implementation of hidden order sorted specificatious. We present definitions of
refinement and implementatiou for such specifications, and techniques for proving that one
specification refines or implements another. It js important that the notions of refinement
and implementation be tractable, in the sense that there are efficient techniques for proving
their correctness. The proof techniques given in this paper lead, we believe, to correctness
proofs that are much simpler than others in the literature. We found that proving refinement
is an effective way to prove implementation correctness. Some examples are given.

Any foundation for the semantics of programming should also support modular specifi-
cations. The ‘institutions’ developed hy Goguen and Burstall are useful for this purpose.
[nstitutions formalise the notion of logical system, and provide an encapsulation property for
specifications: when oue specification is imported into another, properties that hald of that
specification in isolation remain true in its uew context. An important technical resuli of this
paper is that hidder order sorted algebra forms au institution, and therefore supperts tke
modular specification of systems of objects. The paper also includes an exposition of hidden
order sorted algebra, and brief introductions to many sorted algebra, order sorted algehra,
and institutious.

Contents
1 Introduction

2 Hidden order sorted algebra

21 Manysortedalgebra oL oo L
22 Ordersortedalgebra oo
2.3 Imstitutions e e e
24 Hiddensorts e,

241 Hidden sorted algebra

24.2 Hiddenordersertedalgebra
2,5 Horizontal and vertical signature morphisms,

3 Hefinement and Implementation

3.1 Refinement e e e
3.2 Proofsof refinement,
3.3 Implementationo e
3.4 Proofs of partial implementation oL,

4 Example Proofs
4.1 Example: a stack object L Lo
4.2 Example: several stack objects Lo L L L.
4.3 Example: history lookup. L o oL

5 Conclusion

1 INTRODUCTIGON 1

1 Introduction

This papet presents an algebraic account of refinement and implementation that is applica-
ble to a very general notion of abstract machine; in particular, it is applicable 10 the object
paradigm. We define notions of refinement and implementation of epecifications of observed
hebaviours, and develop a proof technique that supports simple and direct proofs of correct-
ness.

A key notion in the object paradigm is that of state: objects have local states that are
observable only through their outputs; that is, objects may be viewed as abstract machines
with hidden local state [17). Accordingly, a correct refinement or implementation of an object
specification need only have the required nsible hehaviour.

Our approach uses hidden order sorted algebra, which can be seen as a formalisation of
the abject paradigm [9, 10, 15]. The advantages of an algebraic approach include a high level
of intellectual rigour, a large bedy of supporting mathematics, and simple, efficient proofs
using equational logic. A wide variety of extensions Lo equational logic have been developed
to treat various programming features while preserviug its essential simplicity. The particular
extension considered in this paper combines order sorted and hidden sorted equational logics.
Order sorted equational logic uses 2 notion of subsort to treat computations that may raise
exceptions or fail to terminate, and hidden sorted logic extends standard equationa! logic
to capture the important distinction between sminulable data types, such as booleans and
integers, and mutable objects. such as program variables and datahase entities. The terms
abstract date type and abstract object closs refer to these two kinds of entity. The former
represeut ‘visible’ data values, while the latter represent data stored in a hidden state. In
hidden sorted equational logic, an equation of hidden sort need not be satisfied in the usual
sense, but only up te observebility, in that only its visible consequences need held. Thus,
hidden sorted logic allows greater freedom in refinements and implementatigns.

The simplicity of the underlying logic is important because we want a tractable approach
in which refinements and implementations are as easily expressed and proved as possible.
Both refinement and implementation involve moving from an abstract specification to a more
concrete specification which displavs the same behaviour. In cur approach, a spedfication
has syntactic and semantic components: the syntactic part declares a number of operations,
which may manipulate either data or object states, while the semantic part consists of a
set of equations wbich describe the bebaviour of the declared operations. In other words, a
specification is a theory. A model of 2 such a specification is something which implements the
declared operations in such a way that the given equations are satisfied {up to observability).
A refinement is expressed by a mapping from the syntax of the abstract specification to the
syntax of the concrete specification; the refinemeut is correct if every model (i.e., implemen-
tation) of the concrete specification gives rise te a model of the abstract specification, We
present a proof technique for showing correctness of refinement, which is based on proving
that tbe equations of the abstract specification are satisfied up to observability in the con-
crete specification. Moreover, our definition of refinement is transitive in the sense that if
specification 5 is refined by Sy and 5; is refined by Si, then S, is refined by S§3: this allows
the familiar process of ‘stepwise refinement’, where a refinement is arrived at via a number
of intermediate specifications, proceeding in small, manageable steps.

Our notion of implementation, on the other hand, is more concrete: we require the coucrete
specification to satisfy (again, up to ohservability) only the ground equations {i.e., equations
with no variables) of the abstract specification. This makes sense if we consider terms built

1 INTRODUCTION 2

from the operations of the ahstract specification to be programs, because we would not expect
programs o contain variables. This definition of implementation would be a specialisation of
the definition of refinement, in the sense that all reachable models of the concrete specification
(i.e., models whose carriers are generated hy the operations of the signature) give rise to
models of the abstract specification. However, we illustrate the power of order sortedness by
defining anotien of ‘lazy’ implementation, wherehy we further require that the error-handling
behaviour of the abstract specification is also captured by the concrete specification. This is
treated indetail in Section 3.3. The proof technique that we give for showing correctness of
refinement also applies to correctness of implementation.

In a model-based approach, like that of Hoare [25], where refinement is a relationship
between particular models, it makes sense to map from the concrete variahles to the abstract
objects that they represemt. However, such an approach has difficulties with the (often)
complex representatious of the concrete program, and the (usually) complex semantics of the
programming language in which it is expressed. Onr approach simp)ifies the first problem
by considering theories for both the concrete and the abstract levels, while the complexity
of the programming langnage semantics becomes a completely separate issue. In particnlar,
our more abstract definition of refinement in terms of specifications and their models allows
the proces of stepwise refinement to begin before any concrete representation for variables
has been chosen. In fact, choosing a concrete representation corresponds to choosing one
particular madel of a specification: it makes sense to delay such a commitment as long as
possible. The correctness of a concrete representation now becomes the problem of showing
it to be a model of the concrete theory, which should be mnch easier than showing that
it satisfies the abstract specification, because of the closer match of representatious. The
perhaps iitially mysterions fact that mappings go in opposite directions for specifications
and modes is explained at a higher level of abstraction by the theory of institutions [13],
which is briefly discussed in Section 2.3. Hence this duality is very natural.

Finally, note that our use of hidden sorts allows some subtle changes of representation
to be proved correct more easily. Indeed, the main motivation for our approach is to make
proofs of correctness just as easy as possible,

This paper is organised as follows. The next section introduces notation for hidden order
sorted specifications, and summarises the main algebraic notions and results used in this pa-
per. Section 3 presents refinements and implementations of hidden order sorted specifications,
and a technique for proving correctness. We believe this technique leads to proofs that are
simpler than those of other approaches. Section 4 gives examples of correctness proofs. In
particular, Section 4,2 applies this technique to the refinement of collections of objects.

Acknowledgements

This paper is dedicated with warm affection to Tony Hoare, whose work on data representation
and on concurrency has been an inspiration to us. We thank him for his encouragement and
questions about the motivation of cur work and its relationship to model-based approaches.
We also thank Rizvan Diaconescu for his many helpful technical comments on this paper.
The research reported in this paper has been supported in part by the Science and Engi-
neering Research Council, the CEC under ESPRIT-2 BRA Working Groups 6071, IS<CORE
(Information Systems COrrectness and REusability) and 6112, COMPASS (COMPrebensive
Algebraic Approach to System Specification and development), Fujitsu Lahoratories Limited,
and a contract under the management of the Information Technology Promotion Agency

2 HIDDEN ORDER SORTED ALGEBRA 3

(IPA), Japan. as part of the Industrial Science and Technology Frontier Program “New Mod-
els for Software Architectures,” sponsared by NEDO (New Energy and Industrial Technology
Development Organization),

2 Hidden order sorted algebra

Many sorted algebra (hereafter, ‘MSA’) was put into a form that is convenient for applications
in Computing Science by Goguen [8} and was further refined by the ADJ group [22]and applied
to abstract data types and other topics. The logie of MSA is first order equational logic, which
provides a simple and familiar technical framework in which intuitions about data types can
be realised. Several variations on the basic framework have been developed, including order
sorted algebra [14] and hidden sorted algebra [10], in order to study such concepts as error
handling and Lidden local state. The following section summarises the main definitions and
results of MSA, while Sections 2.2 and 2.4 describe order sorted specification aund hidden
order sorted specification, respectively. Section 2.5 gives further techuical details necessary
for the defipition of refinement given in Section 3.1.

2.1 Many sorted algebra

An unsorted algebra is a set with ‘structure’ given by some operations and equabions. The
set is referred to as the carrier of the algebra. MSA extends this traditiona! view by letting
an algebra have any number of carriers. For example, what we might call a “list algebra’ is
a quadruple (C,7, &, e), where the carriers are Cg1r and CList, and where 71: Cipr = Clise
is a unary function and @ : CLisyXClist — CLier is an associative binary operation with
neutral element e € O, 5¢; that 15, the following equations are satisfied for all z, 4,2 € CrLige:

r®ydz) = {(T9y)Dz
ez = X

TPhe = x

This specification of list algebras has three components: the carriers, named by the ‘sorts’
Elt and List; the operations n, & and e; and the three equations above. We addres: each of
these aspects in turn,

The notion of sorted set is used to specify the names of the carriers of algebras.

Definition 1 Given a set 5, an S-sorted set is a collection of sets A4, indexed by elements
s € §. All set theoretic operations can be extended to operations on S-sorted sts; for
example, if A and B are S-sorted sets, then A U B s defined by {AUB), = 4,UB,, and
A C B means that A, C B, for each s € S.

An S-sorted function f : A - B is a collection of functions indexed by S such that
fs: A, = B, for each 3 € §. Similarly, an S-sorted relation X from A to B is a collection
of relations indexed by S such that R, is from A, to B, for each s € §. We write the identity
relation on an S-sorted set A4 as idy. O

For example, the carrier of a list algebra is an {Elt,List}-sorted set.

The notion of sorted set is also useful in specifying the names and types of the operations
of algebras. The following definition introduces signatures, which specify the carriers and
operations of algebras; equations are considered from Definition 8 onwards.

2 HIDDEN ORDER SORTED ALGEBRA 4

Definition 2 A many sorted signature is a pair (5,I), where S is a set of sorts and T
is an (S*x§)-sorted set of operation names. Thus, if w € §* and s € § then T, is a set
of pperation names. If ¥ is clear from the context, we sometimes write o : w — s instead of
¢ € T, , to emphasise that o is intended to denote an operation mapping the sorts denoted
by w to the sort denoted by s. Usnally we abbreviate (5,3) to ©. Elements of ¥y, are
referred toas constants of sort s.

An operation can be declared to have more than one type; for example, we might have
¢ € I, ,NI, g where w,s is different from w’, &'. Ir this case, ¢ is said to be overloaded.
]

Signatures provide a uniform notation for specifying the carriers and operations of many
sorted algebras. Later sections consider refining cne specification by another; in order to
compare Iwo spocifications, we use signefure morphisms, which view one algehraic structure
in terms of another.

Definition 3 A signature morphism ¢ : (5,) = (§',Z/) is a pair {f.9), where f: § —
5’ maps sorts in 8 to sorts in S', and ¢ is a collection of functions indexed by §*x & such that
Guw,s : Dy — Srf‘(w),f(s) for each w, s € 8" x 8, where f*(w) denotes f applied componentwise
to the list w; ie, F{]} =[] and f*(sw) = {f(s))(f*(w)). We usually write ¢ iastead of
both f and g, s, so that if € B, ,, then g(a) € E;,(w),é(,). O

A useful example of a signature morphism is the inclusion of one signature in auother: if
8 C &' anrd T C ¥, then there is an iuclusion ¢ : (S, Z) = (§',T).

Signatyres may be thought of as specifying algehras with no eqnations, and so we may
speak of the algebras of a signature. An algebra for a signature % is an S-sorted set with the
structure specified by the operation names of .

Definition 4 For a many sorted signature T, a2 E-algebra A is given hy the following data:
an S-sorted set, nsually denoted A. called the carrier of the algebra; an element A, € A, for
each s €5 and 7 € X} ,; and for each non-empty list w € 5%, and each s € Sand ¢ € T, ,,
an operation Ay : Ay —> A, where if w=s1...9n then Ay, = A% - XAg.

Given L-algebras 4 and B, a E-homomorphism h : A = B is an S-sorted function
A — B such that:

® given a constant ¢ € Ij) ., then hy(As) = By
® given a non-empty list w=sl...9n and e € B, ; and ai € A,; fori=1,...,n, then

ha(Aolal,...,an)) = Bo(halal),.... hem(an)).
m]

Thus, an algebra for a signature interprets the sort names as sets and the operation names as
operations, while homomorphisms preserve the structure of the algebra in that they distribute
over the pperations of the algebra.

Given any signature, we can construct an algehra whose carriers are sets of terms built
up from the given operation names viewed as symbols of an alphabet.

Drefinition 5 Given a many sorted signature I, the term algebra Tx% is constructed as
follows. Let UL ha the set of all operation names in ; then Tx is the least $-sorted set of
strings over the alphabet (LE) L {(,)} such that:

2 HIDDEN ORDER SORTED ALGEBRA 5

= for each constant symbal ¢ € Ej;,, the string 0 € (Tp),;
e for earh non-empty list w = sI...sn € 5", and each 0 € Ly 4, and all 1 € (T),; for
i=1,...,mn, the string oitl... tnl € (Tx},.

The special symbols *(” and ')’ are used to emphasise that the carriers of Tx are sets of strings;
from now on we usually write ‘a(t1,... ¢n)" for ‘a(tl...tn)"

We give Ty, the structure of a Z-algehra by interpreting each operation name of £: for each
g€ L. the constant (Tg)‘,r is the string o € (Ty},; for each non-empty list w = sl.. . sp € §*
and operation name ¢ € I, ;, the operation (Tg), : (T&), -* (Tt), maps a tuple of strings

t1,...,tn to the string o{tI,... tn). D

If T coutains no overloaded symbols, theu T« has the special property of being an tnitial
T-algebra.

Definition 6 An initial I-algebra is a T-algebra 4 such that for each T-algebra B there
is exactly one E-hornomorphism 4 — B. O

Proposition 7 If © contains no overloaded operation names, then Ty is an initial Z-algebra.
For any I-algebra A, the unique E-lomomorphism £ : Tz —+ A is defined recursively as
follows:

» for each constant symbol o € E[]‘,‘ let k;{g) = Aqy
« for each non-empiy list w=sl...snande € Zy, and H e (Tg); fore =1,...,n, let

ho(o(t], ... i)} = (Ag)(hat(81), ... hsa(tn)) .
[}

The homomorphism A assigns values in A to E-terms by interpreting the operation nanes
in ¥ as the corresponding operations on A. If ¥ contains overloaded operations, an initial
algebra can still be constructed as a term algebra in which operation names are distinguished
by ‘tagging’ them with their result sorts [14].

Let us now consider algebras with equalions. An equation is usually presented as two terms
(the left- and right-hand sides) which contain variables. For example, one of the equations
for list algebras was (r & y)@z = =& (y&z), where z, y and z are variables that range over
CLyar. Because variables only serve as placeholders for values of the sorts that they range
over, any signature of constant symbols can be used to provide variables.

Definition 8 A ground signature is a signature (5,) such that for allw € 5" and s € S,
if w # [] then =,,, = §, and such that the sets £, , are disjoint; that is, the operation names
of ground signatures are distinct constants. O

We assume disjointness so that distinct variables cannot be identified by signature morphisms
(cf. Proposition 45 below).

Ground signatures are essentially the same thing as disjoint 5-sorted sets, because any
disjoint S-sorted set X can be viewed as a ground signature according to the following equa-
tion:

X, e =]
Kus = { @ otherwise.

2 HIDDEN ORDER SORTED ALGEBRA 6

Moreover, a ground sigrature T can be viewed as the S-sorted set (I ,)s5. This determines
a bijection between ground signatures and S-sorted sets; we sometimes take advantage of this
by treating ground signatures as S-sorted sets.

It is now a simple matter to introduce terms containing variables:

Definition 9 Given a many sorted signature (5, Z) and a ground signature (5, X) such that
¥ and X are disjoint, terms with variables from X are elements of Ty x. The term
algebra Ty,x can be viewed as a Z-algebra if we forget ahout the constants in X; when we
view Thyx as a L-algebra, we write it as Tn(X). O

This prepares us for the following

Definition 10 A T-equation is a triple (X,,7) where (§,X) is a ground signature and !
and r are terms in Tg{X) of the same sort; ie, {,7r € Te({X), forsome s € 5. [X =0, ie,
if I and 7 contain no variables, then we say that the equation is ground. We write equations
in the form (¥X)I=1.

A specification is a triple (5. %, E) where (5,I) is a signature and F is a set of I-
eyuations. We usually abbreviate (5, T, £) to just (Z, E). O

Our noation for equations makes explicit the intended universal quantification over vari-
ables. Wothout this, the usual rules of deduction from uusortes equational logic are unsound,
as shown in [18].

The models of a specification are the I-algebras that satisfy the equations; we now consider
what it means for an algebra to satisfy an equation. The first issue is how fo interpret the left-
and right-hand sides of an equation in an arbitrary E-algebra. A T-algebra is not in general
a (ZUX)-algebra, because we do not know how to interpret the variables in X. However, if
we can assign values to those variables, then we can assign values to terms containing those
variables. That is the main idea of the following result:

Proposition 11 Given a T-algebra 4 and an S-sorted function 8 : X — A (called an
assignment or an interpretation of variables), there is a unique ¥>-homomorphism 2 :
Te(X} = A such that §{i{z)) = 8(z) for all variables T, where ¢ : X — Tx(X) maps z € X,
to the stnng = € Tx{X),. The homomorphism is defined as follows:

e foreach r € X,, let §,(z) = 8,(x); _
e for each constant symbol ¢ €) ,, let B.(a) = As;
w for each non-empty list w=3s1...5m, 0 € Ly .. and ti € Te(X),, fori=1,...,n,let

B,(o(tl, ..., tn)) = Ag(Fa(f1),.... 8. (tn)) .

The following little result is used several times in this paper; its proof is left as an exercise
in initiality.

Lemma 12 Given X-algebras A and B, a E-homomorphism h : A — B, and an assignment
8:X = A, then

{hof) = hof

2 HIDDEN ORDER SORTED ALGEBRA 7

An algebra satisfies a given equation iff the left- and right-hand sides of the equation are
equal under all interpretations of the variables:

Definition 13 A T-algebra A satisfles a T-equation (VX) ! = r iff (1) = 8(r} for all
g: X = A We write A | ¢ to indicate that A satisfies the equation ¢. For a set E of
equations, we write A = E iff A | e for each e € E, and we write E |= ¢ ifl AE F implies
A= e for all L-algebras A.

Given a specification (I, E), a (£, E)-model is 2 T-algebra A such that A F. O

Just as each signature has an initial algebra, each specification has an initial model, The
initial model is constructed from the term algebra by identifying exactly those terms that are
‘equal’ as a consequence of the giver equations.

Each equation gives rise to a relation in the following way:

Definition 14 Given a Z-algehra A and a Y-equation € of the form (¥X) 1 =+ define the
relatiou Ra{e) on A by aRafe) bifa=8{!) and b =8(r) forsome 8 : X — A. O

In other words, a is related to b by Ra(e) iff a is an instance of the left-hand sideand & is an
instance of the right-haud side, under some interpretation of the variables. We will use this
in defining an equivalence relation that contains all the relations derived from the equations
of a specification, and that allows the substitution of equals for equals, This is formalised by
the notion of congruence given below:

Definition 15 Given a L-algebra A, a E-congruence on A is an S-sorted eqnivelence rela-
tion R such that the following substitutivity property holds: forallo € T, ; andz,y € A,
if z Ry y then A,(z) R, A,(y), where if w = s1...5n, then x ¢ A, means r =zl ...zn
with =i € A, and 7 R, y means i Ry pifori=1,...,n.

If E is a set of T-equations and 4 is a E-algebra, then =, g denotes the least T-congruence
on A which contains each equatiou in E; that is, such that Ra{e) C =a x5 for each e ¢ E. We
usually write =g instead of =y . O

Definition 16 Given a L-algebra A and a E-congruence R on A. we construct the S-algebra
A/ R, called the quatient of A by R, as follows:

e for s € 5, let (A/R), = {[a]le € A,}, where [a] is the equivalence class of a under
(i.e., the set of = such that a Rz);

o for each constant symbol o € T, let (4/R), = [A,];

¢ for each non-empty list w = 3l...9n, 0 € Ly ,, and [ef] € (A/R),, fori=1,....n, let

(A/R),([al],....[an]) = [(A/R),(al,... an)] .

The last equation is well-defined by the substitutivity property of the congruence R.
Given a set E of L-equations, we often write A/F instead of A/=4 5. O

By construction, A/E = F; in fact, it is the ‘least’ (%, E)-model which can be constructed
from A, in the sense of the following

Fact 17 Let A bea Z-algebra, let E he a set of T-equations, and let 7: A —+ A/E bhethe -
homomorphism which maps a to [¢]. Then for any (E, £}-model B and any I-homomarphism
h: A — B, there is a unique D-homomorphism h* : A/E — B such that A’ o5 = & (i.e. such
that #°[a] = h{a)). The situation is summarised in the following diagram.

2 HIDDEN ORDER SORTED ALGEBRA 8

The X-congruence =g identifies those terms that are equal as a result of the equations in
E, and allows the construction of an initial model for a given specification, as follows:;

Proposition 18 Given a specification (1.) where I contains no overloaded operations, the
initial (X, E}-model is the quotient term algebra T g. which is the quotient Tn /=g of Ty
by =g. By construction, Tx g satisfies the equations £. O

The above proposition refers to ‘the’ initial {E, E)-model, although a specification may
have more than one initial model. However, any two initial {E, E)-models are isomorphic,
because the unique homomorphisms from each model to the other are inverses. Thus all
initial models are ‘abstractly the same’. ADJ [22] define an abstract data type to he the
collection of initial models of a specification. Such a collection is an equivalence class, since
being isomerphic is an equivalence relation, and this equivalence class may be represented
by Ty g. The importance of initiality is that it explains what 1s the abstract data type of a
specification.

There is a useful relationship between the congruences =4 g and satisfaction of equations:

Proposition 19 Let E be a set of E-equations; then for all £-algebras A we have A &= E iff
EA,E = zdﬂ.
Proof Note that id 4 C =a g holds because =4 g is a congruence. Because id 5 is 2 congru-

ence, it follows from Definition 15 that =4 g C tds il Ra{e) C id4 for all e € E. For any
e € E of the form (VX){=r, we have

Rale} C1da
-~

(V0 : X — A) 8(1) = 8(r)
<«

AEe
Thus Ryle) Cidgiff A=eforalle € E, thatis, f AR E. O
We glso have the following relationship between congruences and e ntailment of equations.

Propaosition 20 £ &= e iff =4,{e) & =a,£ for all E-algebras A
Proof First note that by Proposition 19, E & e is equivalent to

(1) =upCids implies =4} Sids for all E-algebras A

2 HIDDEN ORDER SORTED ALGEBRA 9

This makes the ‘if” direction immediate; we now show the ‘only if’ direction. Suppose E = e:
then because A/E |= E, we have A/F [= e. so by Fact 17 there is a homomorphism nfg .
A/{e} - A/E such that n} o n. = 77g, where i, : A = A/{e} takes a € A to ils equivalence
class modulo =4 ¢}, and 7g : A A/E takes a € A to its equivalence class medulo =4 .
This is summarised in the following diagram.

e
A Af{e}
Tz
e
AJE
Now.
a EA,{e} b
o
7]:(0) = ’72{'5)
=
Me(ne(a}) = g (n(b))
o
ne(e) = ng(h)
o

a=agb

which shows that =4 (o) € a5 as desired. O

2.2 Order sorted algebra

Partial operations and error handling play an important réle in many computer science appli-
cations. A partial operation produces well-defined valnes only on some subsort of its domain.
For example, divisior of nnmbers produces a well-defined value enly when the denominator is
not zero. Order sorted algebra (hereafter, 'OSA’") is a variation on MSA that allows algebras
in which partial operations are treated as total operations on a subdomain, just as division is
total on the subdomain of non-zero numbers. It also provides a model of inheritance that is
useful in formalising the object paradigm. This subsectiou summarises definitions and results
of OSA that are relevant to this paper. A comprehensive survey is given by Goguen and
Diaconescu in [14].

Both OSA and MSA are based on the nation of S-sorted sets, but whereas in MSA S is a
set, in OSA S is a partially ordered set. If S is a set of sort names, the partial order indicates
the subsort relations hetween the carriers of algebras. Given a partially ordered set (S, <),
we refer to < as the subsaort ordering. We sometimes extend this ordering to lists over §
of equal length by sl...sn<sl'. . sn'iff si <si'fori=1,...,n

Definition 21 Given a partial order ($, <), an equivalence class of the transitive symmetric
closure of < is called a connected component, and two elemeats of the same comnected
component are said to be connected. A partial order (5, <) is locally filtered iff ary two
cannected sorts have a common supersort, that is, iff whenever s aud s’ are connected, there
is an 8" such that 5,5’ < 3”. 0O

2 HIDDEN ORDER SORTED ALGEBRA 10

The notion of local filtering is surprisingly powerful, and allows many results of MSA to
extend to OSA [14]. The main difference between MSA and OSA is captured in the following
definition of sorted sets.

Definition 22 An (S, <)-sorted set is an S-sorted set A such that whenever s < s’ then
Ay € Ag. An (8, <)-sorted function f : 4 —+ B is an $-sorted function such that whenever
s < &' then f, C fo. An (5, <)-sorted relation / from A to B is an S-sorted relation such
that if g <5’ and © € A, aud y € B;, then r R, y iff z R, y. We sometimes abbreviate
{8, <)-sorted” to ‘S-sorted’. O

Most definitious of MSA apply, mutalis mutendis', to OSA; the main differences concern
monotonicity.

Definition 23 Ao order sorted signature is a triple (5, <.X) where (5, <} is a locally
filtered partial order and (S, E) is a many sorted signature which satisfies the monotonicity
requirement: ifoc € £,,NE, - and w < v’ then s < 5'. We usually abbreviate (S, <. 2)
to just I,

An order sorted signature morphism ¢ : (5, <, 5} = (§',<',%') is a many sorted
signatnre morphism such that f : (8, <) — {§.<') is monotonic. A signature morphism
@ = (f, g) preserves overloading iff whenever o0 € £, ;N o then gy, , applied to & € Ty 4
gives the same result as g, » applied to ¢ € Ty o, O

A form of monotonicity is also needed for the algebras of an order sorted signature.

Definition 24 Given an order sorted signature {5, €,L), an order sarted T-algebra is a
many sorted X-algebra A such that A is au (8, <)-sorted set and A is monotonic, in the
sense that for all 0 € ¥y, NZ0wy fw < w and s £ ¢ then 4, : Ay — A, is equal to
Ag 1 Ay = Ay on Ay

For order sorted Z-algebras A and B, an order sorted “-homomeorphism »: 4 - B
is a many sorted £-homomorphism (f, g) which satisfies the restriction condition: if 3 < &'
then h, = hy|,, where hyj, denotes the restriction of by : Ay — Ber t0 A,. O

The construction of the term algebra is as in MSA, hut requires the carrier of Tx to
be (5, <}-sorted. so that {Tyw); C (Tx), whenever s < &', In general, Tx is not an initjal
T-algebra unless ¥ satisfies a regularity condition [20]:

Definition 25 An order sorted signature ¥ js regular iff for any o € 21,1 51 and anv w0 < wl
there is a least pair (w,s) such that w0 Cwand v € £y, O

The importance of regularity is that terms can be parsed as having a least sort. Goguen and
Diaconescu [14] note that regularity is not essential, in that OSA ¢an be developed in greater
generality uuder the assurnptiou only of local filtering. The construction of an initial algebra
is then more complicated, and we do not give details here, as all the specifications in this
paper are regular.

Unlike in MSA, the left- and right-hand sides of an equation need not have the same sort;
their sorts need only be connected.

**S_wrted” should be changed to (5, <)-sorted’.

2 HIDDEN ORDER SORTED ALGEBRA 11

Definition 26 Given an order sorted signature (.5, <, I}, a X-equation is a triple (X, I, r),
where X is a ground signature disjoint from T with { € Tg(X), and r € Tz(X), for some
connected 5,8’ € 5. We use the notation (VX)l=r. O

The definitions of satisfaction of equations and congruence in OSA are as in MSA, but
with ‘S-sorted’ everywhere changed to ‘(S, <)-sorted’. An order sorted specification is
an order sorted signature together with a set E of Z-equations, and a (T, E)-model is a
T-algebra which satisfies all equations in £. The quotient term algebra Tt g is constructed
as in MSA, dividing by the least {5, <)-sorted E-congruence which extends the equations of
the specification. If the signature is regular, this gives an initial (3, E)-model [20].

We end our summary of OSA with ‘retract specifications’, which allow operations to be
applied to argnments which may lie outside their domain of definition, possibly resulting in
values that are ‘ill-defined’ in the sense that they involve the special retract operations. This
allows order sorted specifications to model partial operations and error-handling (see [20, 14)
for a full treatment}.

Definition 27 Given an order sorted specification P = (S5, <, %, £), we write P® for its
retract extension (5,<,E%, E®), where I® is T extended with a new operation r 4o :
51—52 for each s1,52 € S such that s2 < s1, and E® is E extended with an equation
(VS 1 52) ry1,52(5) = & for each 52 < 51 as above. O

For example, consider a specification which declares a sort ¥at of natural numbers to be
a subsort of Rat, the rationals. This specification would be extented with a retract gperation

TRat MNat ' Rat — Nat
and an equation
(VN i Nat) rpee Nat{N} = N

If this specification also declares an operation f (thiok of factorial) which takes naturals as
arguments, then ¥(6/3) is oot a term of Tx; however, f(rpue Nar(6/3)) is a term of Tte;
moreover, if the specification is such that 8/3 =g 2, then f(rgar,Hae (6/3)} =ge £(2). Thus,
{f we consider the term f(rpat,Nac(6/3)) as a program, then we might say that it produces
a ‘well-defined’ value, £(2), in the-sense that this latter term contains no retracts. On the
other hand, the term £(rpat, bat({5/3)) does not produce a well-defined value, becauseit is not
equal to any term of Ty; that is, every term equal to f{rpat,Nae(5/3)) contains the retract
operation Fpay gat- We refer to such terms as error terms.

We wish the result of adding retracts to be a conservative extension of the given
specification, in the sense that for all 11,12 € ¢, we have t1 =g {2 iff 1 =ge t2, ie., the
new equations added by introducing retracts do not cause distinct terms of T% to become
identified. Goguen and Meseguer [20] give sufficient conditions on specifications for adding
retracts to be conservative. These conditions go beyond the scope of the present paper,
hnt we note that ail of our example specifications are such that their retract extensions are
conservative.

Finally, we note that Definition 27 can be generalised in that every (T, F)-model can be
freely extended to a {Z®, E®)-model. This extension will be used when we define satisfaction
of eqnations in hidden order sorted algebra, and is defined as follows.

2 HIDDEN ORDER SORTED ALGEBRA 12

Definition 28 Let A be a (T, E)-model; the free retract extension of A, denoted A®, is
defined to be the least S-sorted set such that:

(1) A, C A® for each s € S;

(2) o(a) € A? for each ¢ € T2, and a € AF;

(3) o(a)= A,(a) for each o € X, 4 and @ € Ay;

(4) rs1,4(a) = a for each 51,32 such that s2 < sl and a € A0,

A® is given the structure of a Z®-algebra by defining A®(z) = o(z) for each ¢ € 5., and
r € A%, o

For an arbitrary Z-algebra A, A% can he thought of as being built from Tre(A), i.e., terms
with varizhles which are elements of A. and then quotiented hy the equations given in (3)
and (4) of the above definition. Moreover, T = Txe.

Because £ C T2, we can form the reduct A®|g (cf. Section 2.3), and by the ahove
definition we have an iuclusion homomorphism 14 : A <3 A®|g. The freeness of A® is
expressed by the following.

Proposition 29 Let A be a T-algebra. Given a Z®-algebra B and a E-hemomorphism
h: A — Bly, there is a unique E®-homomorphism h® : A% —+ B such that i4; Az = k.

4
A A9|g A°
‘ LB l h
k '
Blx B

Proof The homomorphism k! is defined inductively following Definition 28:

(1) H{a) = hy(a) for a € A,
(2) Ko(a)) = B,(hi(a)) for ¢ € S, and « € AD.

Because B is a T®-algebra, this definition is well-defined with respect to the equations in {3)
and (4) in Definition 28. The unigneness of A can he proved by induction on A®. O

Finally, a property of retract extensjons that we need later on is given in the following,
which follows directly from Definition 28.

Fact 30 Forallo € &2, and all z € A2, if o(z) € A; thenz € Ay. O

2.3 Institutions

[nstitutions were introduced by Goguen and Burstall [13] as an abstract model-theoretic
formalisation of logical systems. An institution consists of notions of signatures, of models, of
sentences (in the case of MSA, sentences are equations), and of satisfaction, with a technical
requirement, called the ‘Satisfaction Condition’, which can be paraphrased as the statement
that ‘truth is invariant under change of notation’. The Satisfaction Condition is essential for
reuse of specifications: it states that all properties that are true of a specification remain true
in the context of another specification which imports that specification.

2 HIDDEN ORDER SORTED ALGEBRA 13

Definition 31 Given signatures T C I* and a £'-algebra 4', we write 4| for A' viewed a3 a
T-algebra by forgetting about all the sorts and operations in £/ that are not in T. Moreover,
given a ©'-bomomorphism b : 4] — A%, we can form the T-homomorphism hly : 4]jg —» Abls
by defining (h|g)y = h, for s € §. More generally, given a signature morphism¢ : £ —» &',
we can define the X-algebra ¢A’, called the reduct of A’ 1o T, by setting ¢A” = A;(-) for
s € 5 and gA, = Ay foree Ly, 0

Similarly, given a T-equatiou e of the form (YX) 1 =7, we define ¢(e) to be the L'-equation
(¥X') (1) = ¢(r}, where X" is the S'-sorted set of variables with X3 ~ ;)= X, for o' € &,
and whbere ¢(!) is the £'(X"’)-term obtained hy repiaciug each operation name ¢ which occurs
il by ¢{o} (in this case, we view & as the unique T-homomorphism from Te{X) to o{ Ty (X));
see Proposition 45 in Subsection 2.5 below).

The Satisfaction Ceondition states that

gA' e A ¢le}

for all signature morphisms ¢ : & — £/, all Z'-algebras A’ aud all T-equations e.

Tbe Satisfaction Condition was shown to hold for MSA in [13], thereby showing that MSA
constitntes an institution, aud Goguen and Meseguer [20] show that OSA is au institution.
Goguea and Diaconescu [15] show that hidden sorted algehra forms au institution, and discuss
tbe significance of this for reusing object specifications and constructing systems of interacting
objects. Section 2.4 shows that hiddeu order sorted algehra also forms an institution.

2.4 Hidden sorts

Hidden sorted algebra (hereafter ‘HSA') was developed as a variation on MSA for objects
with local states [10, 15]. In a hidden sorted specification, the set of sort names is partitioned
into ‘visible’ and ‘hidden’ sorts. Operations which return hidden sorted values corespond
to the internal operations of an ohject, while visible sorted values correspond to an object’s
inputs and outputs. That is, visible sorts represent abstract data types, while hidden sorts
Tepresent abstract cbject classes. Subsection 2.4.1 summarises the basic definitionsof HSA,
and Subsection 2.4.2 combines HSA with OSA to give hidden order sorted algebra {hereafter,
‘HOSA') and proves that HOSA is an institutiou.

2.4.1 Hidden sorted algebra

Signatures in HSA are defined with respect to a fixed universe of data values, which may
be thought of as containing standard abstract data types such as the numbers, Buoieans,
lists, etc. This fixed universe is given by a triple (V, ¥, D} where V is a set of visible sort
names, (V,¥) is a many sorted signature, and I’ is & ¥-algebra such that for each d € D,
with v € V, there is a constant operation ¥ € ¥;, such that Dy, = d.

Definition 32 A hidden sorted signature (over (V,¥, D)} is a pair (H,X) such that
(VUH, L) is 3 many sorted signature with ¥ C T, and such that the following two conditions
hold:

(S1} ifwe V' and v € V, then T, , = Wy;
(82) for each ¢ € L, ,, at most one element of w is in H.

2 HIDDEN ORDER SORTED ALGEBRA 14

The elements of V' are referred to as visible sorts, and elements of A as hidden sorts.

A hidden sorted signature morphism ¢ : (H,) — (H',L’') is a many sorted signature
morphism (VUH, B} — (VUH', ') which is the identity on visible sorts (i.e., $(v) = v for all
v € V) and which maps hidden sorts to hidden sorts (i.e., ¢(h) € H' for all h € H). Moreover,

(M1) ¢(w) =4 for all ¢y € Puy, and
(M2) for any ¢’ € T, ,, if some sort in w is in $(H) then o' = ¢(v) for some o in I.

We often abbreviate (H,E) to .

A hidden sorted X-algebra is an (HUV, X)-algebra A such that 4|y = D; that is, A
interprets the visible sorts and operations in exactly the same way as D.

A hidden sorted specification is a hidden sorted signature together with a set E of
T-equations (in the sense of MSA). O

The HSA definition of satisfaction differs from that of MSA in that only the visible con-
sequences of an equation need hold. The notion of ‘visible consequence’ is made precise by
defining contexzts for terms:

Definition 33 Given a term ¢ € (Tx),, a context for t of sort s’ is a term ¢ € To({z})e
where z is a new variable of sort 3, i.e., a context is just a term which contains a distinguished
variable of the right sort. We write Tg[z] instead of T5({z}}, and if ¢ is a context for ¢, we
write cft] for the result of substituting ¢ for zine. O

A context of visible sort can be considered an experiment which, applied to an object’s
hidden state, gives a visible output. In HSA, two states are distinguished iff they give different
results for some experiment, and an equation is behaviourally satisfied if its left- and right-
hand gides cannot be distinguished by any experiment. The definition of satisfaction uses the
following

Notation 34 For a T-equation e of the form (YX)I = r and a context ¢ € Tg(z]., we write
cle] for the B-equation (YX) cff] = ¢fr]. O

Definition 35 A hidden sorted E-algebra A behaviourally satisfies a T-equation e {indi-
cated A= e) iff A= c[e] for all v € V and ¢ € Tg[z],. Implicitly, the variable z has the same
sort as! and r. For a set F of L-equations, we write AE Effl AE e foralle € E.

A behavioural (I, E)-model is a hidden sorted T-algebra 4 such that A E. O

If an equation has visible sort, then behavioural satisfaction is the same as satisfaction in
MSA, because for ¢ we can always choose the ‘empty context’ = € Txfz],.

The notion of refinement that we use in the following sections is based on the idea that
an object is refined by a behavioural model of its specification. Behavioural satisfaction of
equations in HSA can also be expressed in terms of relations, as follows:

Proposition 36 A E E iff (=4.g)ly, = ida|,, where R|, is the restriction of an S-sorted
relation R to the sorts of V ie., R|,, is the V-sorted relation (Ry)pev -

Proof: Note that ids|,. C (=4,g)|y because =4 g is a congruence, so we need only show
that A |E E if (=a,8)|y C idaly. The ‘if* implication is straightforward; we show the ‘only
if’ implication. We construct a relation R on 4 such that =45 € R and R|, C id4ly so
that (=4 g}|y € ida|y as desired. Note that any context ¢ for ¢ € (T), of sort s gives rise

to an operation A; & A, by composing the interpretations of the operation names in c; let

2 HIDDEN ORDER SORTED ALGEERA 15

us denote this operatiou by ¢*. Now we define the relation R by a Rb iff ¢*{a) = c (b} for
all v € V and ¢ € Tx[z],. 1f a and b are of visible sort. then we can take ¢ to be the empty
context (i.e, ¢ = z), which shows that R|,, C :d4l,. It only remains to show =, g C R It
is straightforward to see that R is a E-congruence. so this inclusion follows by Definition 15
from R(e) C R for each e € E. To show this inclusion, let ¢ € E be an equation of the form
(vX)! = r and suppose that aR(e} b so that a = #(!) and b = §{r) for some #: X — 4. For
any context ¢ of visible sort, we have e*(a) = 8(c[l]) and ¢#{(b) = d(c[r]). If A E E then by
Definjtion 35 we have 4 = (VX cli] = c[r], and therefore ¢*{a) = A(c[l]) = B(elr)) = c{b) so
that ¢ Rb. This shows that R(e) C R and concludes the proof. O

This proposition can be read as saying that E does not identify distinct visible elements of
A, which we might summarise by saying there is no confusson.

It is worth noting that with these definitions, HSA forms an institution, s shown in
[15]; this also follows from the corresponding result for hidden order serted aliebra given
below. The fact that HSA is au institution implies that inheritance and encapsulation of
HSA modules beliave in a coherent way: if a specification S is included in ancther, then
things that are true of S in isclation remain true in the context of the signature iu which §
is included. In terms of objects, this means that the behaviour of an chject is preserved if
that object is included in a system of other objects. {See [15] for a more detailed discussion
of these issnes, with some examples.)

2.4.2 Hidden order sorted algebra

We now give the hidden sorted version of OSA, assuming a fixed universe (V, <, ¥, D) of data
values; this differs from the HSA case in that {V, <, ¥} is an order sorted signature and D is
an order sorted algebra.

Definition 37 An HOSA signature is a triple {H, <, 1) such that (VUA, <,E) isan order
sorted signature where the subsort ordering < does not relate any visible sort to any hidden
sort, and such that (H, £) is a hidden sorted signature.

An HOSA signature morphism ¢ : (H,<,E) — (4, </, ¥') is hoth an order sorted
signatyre morphism {(VUH, <, £} =+ (VUH', </, £') and a hidden sorted sighature morphism
(H,Z) = (H', L'} which satisfies the following additional requirements:

(El) for any ¢’ € L, ,, if some sort in w is in ¢(H) then there is a uuique o in T with
a' = olo):
(E2) if ¢(A) < h" then there is a unique ' € H such that ¢{h") = k" aud h < I'.
Au HOSA EZ-algebra is an order sorted E-algebra which is also a hidden sorted E-
algebra. An HOSA specification is a quadruple (H, <, L, E) where (H, <, T) is an HOSA
signature and E is a set of Z-equations (in the sense of OSA). O

As in HSA, satisfaction of egnations in HOSA only requires that the visible consequences
of an equation hold, and in this case the notion of visible consequence is defined in terms of
contexts that contain retracts.

Definition 38 An HOSA E.algebra A behaviourally satisfies a S-equation e iff A% |= c[e]
for all v € V and ¢ € Tre[z],. We write A [E ¢ to indicate that 4 behaviourally satisfies e,
and A [F to indicate that A behaviourally satisfies each equation in £. A behavioural
(Z, F)-model is an HOSA Z-algebra A such that A behaviourally satisfies E. O

2 HIDDEN ORDER SORTED ALGEBRA 16

Analogously to Proposition 36, we have the following reformulation of hehavioural satisfaction
in terms of Z-congruences.

Proposition 39 An HOSA L-algebra A behaviourally satisfies E iff the free retract extension
of A has no confusion in the sense of Proposition 36, i.e., (=40)|y = id 48ly. O

The proof is similar to that of Proposition 36. As stated in the following theorem, this
definition of satisfaction makes HOSA into an institution. The institution of hidden order
sorted algebra presented here is different from that giveu by Burstall and Diaconescn [3],
because they define satisfaction using a retract extension that interprets operations strictly,
i.e., if a retract is applied to something that does not belong to the carrier of the subsort, then
the result is ‘undefined' {a distinguished value denoted 1), and all operations of the retract
extension are strict in that they take L to 1.
Lemmas 42 and 43 below prove the following Satisfaction Condition for HOSA:

Theorem 40 The Satisfaction Candition holds for HOSA, i.e.,
¢AEce iff A Eo ¢e)

for all HOSA signature morphisms ¢ : £ — X', hidden order sorted E'-algebras 4, and
T-equations €. O

The proof of this theorem is given hy Lemmas 42 and 43 helow. For the purposes of these
two lemmas we assume given such a ¢ and A, and a Y-equation ¢ of the form (VX}I=r.
However, first we need the following

Lemma 41 (¢A)® = ¢®4%.
Skelch of proof: The conditions (E1) and (E2) of Definition 37 allow the construction of a
T® homemorphism g : ¢®A® — (#A4)? which is the inverse of il : (¢4)® = ¢®A®, induced
by i : ¢4 — (¢®A®)|z. The morphism g is defined inductively on (¢® A®), = AF,,:

« for z € Ayny, let g(z) = x;

s foro’ € E:a,¢(h)’ by (E1) there is a unique ¢ in £ with ¢’ = ¢{e); then for y € AY let

gle'(y)) = alg(y));
« for o(R) < h", by (E2) there is a unique &’ such that ¢{k’) = h"', so for y € AF,, let

giramyae @) = ran(gly).
Conditions {E1) and (E2) of Definition 37 are necessary to make g a £®-homomorphism. For
example, (E1) ensures that o is uniquely chosen in the following calculation, which shows
that gis a X-homomorphism.

g({8®A®),(x))
9(AZ {2))
g(¢po{z))

= {(ED)) }
a(g(z))

CEVCIE)

2 HIDDEN ORDER S5CORTED ALGEBRA 17

Similarly, {E2) can be used to show that g distributes over retract operations, and is therefore
a L% -homomorphism. O

Lemma 42 If A =5 ¢ then A Ex ¢(e).

Proof: Assnme ¢A Er ¢ so that ¢pA® |=ye cle] for all £®-caontexts ¢; we have to show that
A® ge cd(e)] for all Z'®-contexts c¢. If ¢ is a 'P-context, then by properties (S2) and
(M?2) of Definition 32, ¢[z] = ¢1[¢®{c2)[2]} for some Z'®-context ¢; and T®-context co, so that
¢A® s c2fe]. Now we can reason as follows:

¢A® F=pe cole]

o { Lemma 41 }
¢7A4° =50 cofe]

“ { Satisfaction Condition for 0S4 }
4% e 6%(cale])

had
A% Epe ¢¥{ca)|#le)]

=

A® Ere c¢le)]
o

Lemma 43 If A =5 ¢(e) then ¢4 5 e.

Proof: Assume that A E ¢(e) so that A® g c[¢(e)] for all Z¥-contexts ¢. i ¢ is any
T8.context then ¢{c)? is a ©'®-context, and so we have

A%y 9%(e)[¢e)]

and we reason further as follows:

A% =pe ¢2(c)[d(e)]

L
A® Fye ¢6%(cle])

o { Satisfaction Condition for OSA }
%A% Eya le]

< { Lemma 41 }

$4° o cle]

These two lemmas establish the Satisfaction Condition for HOSA. In fact, with a lictle
more work {showing functoriality of the construetions for equations and algebras with respect
to signatures) we can show that HOSA forms an iastitution.

2.5 Horizontal and vertical signature morphisms

Signature morphisms perform two distinct roles. One rile is to express the importation of one
spetification into another or the passing of specifications as parameters; this is often referred
to as horizonfal composifien (12, 28], and pertaius to the modular structure of a system spec-
ification at a given level of abstraction. For instance, in the example of Subsection 4.1 below,

2 HIDDEN ORDER SORTED ALGEBRA 18

a specification of the natural nurnbers is imported into a specification of stacks. It is desirable
that such importation take place within an institution, for then the Satisfaction Condition
guarantees that the inclusion morphism from the one signature to the other preserves prop-
erties of the imported module [13, 5]. The definitions of HOSA signature morphism in the
previous subsection capture such encapsulation properties, so that when a specification of a
class of objects is imported into a larger specification, the properties of the imported object
classes are preserved [15].

The other rdle performed by signature morphisms is to compare two different specifica-
tions. Thisis referred to as verttcal composition, and pertains to relationships between layers
in a hierarchical system structure. Iu particular, a vertical signature morphism might express
the fact that one specification in some system is refined by another specification, in the sense
of Section 3.1 helow. In such a case, we would not expect that signature morphisms encap-
sulate object class specifications, but rather expect that signature morpbisms preserve the
bebaviour of object classes, in a sense that will be made precise in Definition 50 below. In this
case, signature morphisms describe how the sorts and operations of the abstract specification
are to be realised in the more concrete one. The following definition makes this precise:

Definition 44 Let (H,<,X) and (H', <, ") be two HOSA specifications over (V, <, ¥, D).
A vertical signature morphism ¢ : (H, £,T) - (H', <, ') is an OSA signature morphism
(VUH, <,2) = (VUH', €', £ which maps hidden sorts to hidden sorts and is the identity
on (V,<,¥). 0

3 =

That is, we no longer require conditions (E1} and (E2) of Definition 37.

A vertical signature morphism alse provides a translation from terms to terms. In the case
of a refinement, this states how programs of the abstract specification are to be ‘compiled’
into more concrete programs of the concrete specification. Often the ahstract signature is
contained in the concrete, that is, all the sorts and operations of the abstract specification
are availahle in the concrete one, in which case all terrns over the abstract signature are also
terms aver the concrete signature. Hawever, non-inclusion translations are sometimes usefyl
(see Subsection 4.1). The following states how an arhitrary (vertical) signature morphism
extends to a translatian of terms:

Proposition 45 Any OSA signature morphism ¢ = (f,) : © = X' that preserves overload-
ing can be extended to a function ¢ with ¢, : (Tx), = (To)yy,) for all s € S, defined as
follows:

e for each constant symhol o € 3y . let ¢,(0) = glo);
e for each non-empty sort list w=51...sn, 0 € By, and ti € (Te)psfori=1,...,n, let

Pala(tl,... in)) = (g(g))(ﬁf’al(f]),- < gaafin)) .

In fact, ¢ is a T-homomorphism Ty = ¢(Tx:). If f is an inclusion of § into S’ then ¢ is
an S-sorted function Tx — Ty and if £ € ¥’ then ¢ is the unique inclusion homomorphism
Ty, —+ Ty, so that all terms of Tx, are also terms of Ty..

Moreover, I3 extends to I;JJ@ : TS@ - th(-‘, b}‘ setting g@{r_,l‘_,g) = TI(JI)J(J'Z)' Fina.lly,
given any ground signature X of variable symbols, ¢ extends to ¢, : Te{X), = Tg/ (X'}
for each s € §, where X, = {x € X, | f(s) = 5'}; thus, ¢ may change the sort but not the
name of a variable. Note that because all the variables of X are distinict (cf. Definition 8), ¢
cannot identify distinct variables. O

2 HIDDEN ORDER SORTED ALGEBRA 19

Our definition of refinement in the following section is phrased in terms of vertical signature
morphisms. Because these need not satisfy conditions (E1) and (E2) of Definition 37. we
canuot use any of the results of Section 2.4.2. However, given a vertical signature morphism
¢:¥ 5 T and a T-algebra 4, we can establish a useful relation between ($A)® and ¢® A%,
using the homoinorphism i : (@A)® — #® A%,

Lemma 46 For all = € (¢A)¥, we have i’(I) € Ay HE o € Ay,
Proof The 'if’ direction is straightforward, because if £ € 4,,) then #{z) = z. To see the
‘only if’ direction, an inductive argument can be sketched as follows. Let z € (¢4)¥ be suck
that #(z} € Au(,)- By Definition 27, either = € (¢4}, i.e., T € Ay, as desired, or £ is of the
form o(y) for some o € £Z, and y € (#4)€. n this case i*(z) = a(i*(y)), and by Fact 30 we
get #¥(y) € Ag(w), 50 that by tbe induction hypothesis y € Ay, and therefore

#la) = o) = oly) = =
and 50 z € Ay, as desired. O
As a consequence, we have
Lemma 47 i* is injective.
Proof An inductive argument can be sketched as follows. Let z,y € (#A)¥ and suppose
that #(x) = i'{y). If either one of z or y is in Ay, then so is the other, and we have
z = i#(z) = i¥(y) = y. If neither = nor y are in Ay, then both must have the same

outermost symbol, eg., z = oir') and y = o(y'), in which case #(z) = F(y"); by the
induction hypothesis it follows that 2’ = ¢/, sothat z =y. D

Now we can obtain our relationship between {¢A)® and ¢©4%:

Proposition 48 For all £%-equations ¢, if $¥A® | e then (¢4)° e

Proof Suppose that ¢®A® | e, where ¢ is of the form (VX)I=r, and let 8: X = ($A4)2.
Ther we have ¥ 0 8 : X — ¢®A®, and because ¢® A® satisfies e we have

(o)1) = (B O)(r)
and therefore, by Lemma 12
#(8(1)) = ¢ (6(r)
0, by Lemma 47, (1) = 8(r), which shows that {$4)® |= ¢ as desired. O

The above proposition is used in Section 3.2 to give a sufficient condition for correctness
of refinement. An interesting corollary is that one half of the Satisfaction Condition holds for
vertical signature morphisms.

Coroliary 49 For all vertical signature morphisms ¢ : £ — I, all HOSA Z'algebras A, and
all E-equations e,

AEw ¢(e) implies gAEze.

Proof

3 REFINEMENT AND IMPLEMENTATION 20

SAEr ¢
>
(Yo € Ten[z)s) (6 A)® Ex cfe]
= { Proposition 48 }
{¥r € Tga[z]s) ¢® A% k=g cle]
o { Satisfaction Conditian for 0SA }
(Ve € Trelz]lu) A% Ex (68} [¢(e)]
=
(¥ € Twe[2]y) A® Ex c[(e)]
s

AEp dle)

D

3 Refinement and Implementation

This section defines refinement and implementation for hidden order sorted specifications,
and presents a proof technique for proving correctness of refinement which leads to simple
correctness proofs. The proof techniqne is also applicable to proofs of correctness of imple-
mentation.

For the emainder of this section, we fix a universe of visible data values (V, <, ¥, D)
and two HOSA specifications, A = (HA,<4,L4,EA) and C = (HC, <¢, EC, EC), where
A is for ‘abstract’ and C is for ‘concrete’, plus a vertical signature morphism ¢ : £4 —
EC which preserves overloading. In many examples of refinement and implementation, the
morphism ¢is an inclusion of sighatures, so that all of the sorts and operations in the abstract
apecification are also available in the concrete specification. However, there is no need for
2uch a restriction on ¢, and indeed it is sometimes useful to allow refinements that do not
use signature inclusions; an example of this is given in Section 4.1.

3.1 Refinement

Refinement is the process of moving from one specification to another, more concrete, specifi-
cation which displays the same behaviour. The phrase ‘more concrete’ is generally understood
to refer to aspecification which can, in some sense, be more efficiently or more directly imple-
mented. The requirement that the concrete specification display the same behaviour means
that all medels of the concrete specification are implementations, i.e., models, of the original,
‘abstract’ specification.

The stendard definition of refinement of algebraic specifications, whether in MSA, OSA
or HSA [21, 28, 24], is this: for every model M of the concrete specification C, the reduct
AM is a model of the abstract specification 4. We define refinement of HOSA specifications
in the same way.

Definition 50 A is refined by C iff for all HOSA C-models M, the reduct ¢M is a HOSA
A-model. O

If we ignore, for the moment, the hidden sortedness of A and , thia means that for every
EC-algebra M, if M | EC then ¢M & EA; or equivalently, by the Satisfaction Condition
for OBA, M | #(FA). If ¢ is an inclusion of signatures, the latter formula is the same

3 REFINEMENT AND IMPLEMENTATION 21

as M k= EA, so that ‘C refines A’ means that all models of C are models of 4. However,
because ¢ is a vertical signature morphism and not an HOSA signature morphism, this line of
reasoning; in particular the appeal to to the Satisfaction Coadition, is not valid. Nevertheless,
the main point is that ‘A is refined by " means that all models of C give rise to models of
A by reduct along ¢.

The following subsection investigates ways of proving refinement, and develops a proof
technique which is exemplified in Subsections 4.1 and 4.2.

3.2 Proofs of refinement

Henniker [24] proposes a technique for proving correctness of refinement for H3A specifications
which 13 based on showing that all visible consequences of the equations of the abstract
specification are satisfied by the concrete specification. The notion of visible consequence is
defined in terms of contexts, and Henniker's proof techunique is based on induction over the
size of contexts. Such induction proofs are often surprisingly complicated (ef. the statement
in [7) that ‘putting context induction into practise was less straightforward than expected’),
so we seek both to extend Henniker’s results to the order sorted case, and to simplify the
inductive proofs. A useful hint as to how this can be achieved is obtained from the work
of Schoett [29], which is concerned with data representation rather than refinement, and is
set in the context of partial algebras rather than OSA. Schoett shows correctness of data
representations by constructing congruence relations between the carriers of medels, with the
idea that these congruences relate behaviourally equivalent values.

In this sectior we present a variety of ways of proving correctness of refinement. First,
we extend Henniker's techrique to the order sorted case, to give a proof technique based on
showing that visible consequences of the equations of the ahstract specification ate satisfied in
the concrete specification. Then we generalise this by considering arbitrary congruence rela-
tions which relate the left- and right-hand sides of the equations of the abstract specification.
Finally, we consider splitting the signature of the abstract specification into ‘gererators’ and
‘derived functions’; this gives rise to a proof technique which can greatly simplify proofs of
refinement.

For the purposes of this subsection, we suppose a fixed pair of HOSA specifications 4

and C and a vertical signature morphism ¢ : £4 =+ ¥C as above. We also use the following
abbreviations:
Notation 51 We write TA for the carvier of the term algebra T4 TA® for that of Tr 40 (cf.
Definition 27); TA[z] for the contexta in Tx (2] and TA®[z] for T2 (2] (cf. Definition 33),
and similtarly for C; and we write ¢ for ¢ : TA = TC as well as for ¢® : TA® o TC® (f.
Proposition 45). We also write SA for VUHA and SC for VUHC. O

First of all, we want to reduce correctness of refinement to showing that the visible con-
sequences of the equations ip EA are consequences of EC. We require the following lemma.
Lemma 52 For all HOSA specifications Sp = (H,%,5, E) and all HOSA Sp-algebras M
and all visible E®-equations e, if E® |= ¢ then M® |- e,

Proof Suppose M is an HOSA Sp-algebra, so that by Proposition 39 we have

(2) (=mepe)ly Cidye .

Suppose also that E?® &= e 50 that hy Proposition 20 and the fact that = e pae i3 a congruence,
we have

3 REFINEMENT AND IMPLEMENTATION 22

{3) Ryole)C=psps

We need to show that =ne e} © 1dpre; becanse ud yya IS & congruence, it is sufficient to show
that Rpye(e) C idps. If x Ryge{e)y then by {3) we have x=ye gey, and becanse ¢ is of
visible sort, sotoo are z and y, so (2) gives r1d ys y as desired. O

This allows us to reduce proofs of refinement to showing that the concrete specification
satisfies all visible consequences of the equations in the abstract specification.

Theorem 53 A is refined by € if EC® = $%(ce]) for all ¢ € EA and visible contexts
c € TA®[z].

Proof Suppose that EC® |= ¢®(c[e]) for all e € BA and visible contexts ¢ € TA®([z], and let
M be a HOSA € model. Then for any e € EA,

MEEe
-«

{vc € TA®[z],) (¢M)® |=cle]
< { Propusition 48 }

(Vc € TA®[z],) @ M® |= c[e]
o

(e € TA®[z),) M® k= ¢8{cle])
= { Lemma 52 }
(V¢ € TA®[z],) EC® = ¢9(c[e])

which showsthat ¢M is a HOSA A-model as desired. O

This theorem states that A is refined by C if the left- and right-hand sides of each equation
in EA are related by =g in all visible EA®-contexts. We can generalise this to a requirement
that the left- and right-hard sides are related by a certain kind of congruence relation.

Definition 54 Let ¢ : = — £', and let R be an equivalence relation on some X'-algebra M’.
We say that R is a g¥-congruence iff for all o € T, ; and all 2,y € ‘;(w), if r Ry then
My (Z) RMy,(y). O

We also require the following notations.

Definition 55 If R is a relation on M’ and f: M — M’, then we write R/ for the relation
on M suchthat z RSy iff f{z) R f{y). O

Definition 56 If R is a relation on TC® and X is a set of SC-sorted variables, then we write
R(X) for the relation on TC#(X) such that

tR(XYE f (V6:X — TC®) B(t) RE) .

Now we can generalise Theorem 53 by allowing the left- and right-hand sides of each of
the abstrart equations to be related by a ¢Z-congruence whose restriction to visible sorts
implies equality.

Theorem 57 A is refined by C if there exists a ¢TA®-congruence R on TC® such that
I R(X)? r for all equations (YX)!=r in £4A% and such that Rly C =gce. D

3 REFINEMENT AND IMPLEMENTATION 23

The proof of this theorem requires tbe following version of soundness for OSA [20), which
says that all models of a specification satisfy an equation if the initial model satisfies it.

Lemma 58 Foralt!,r € Te{X) and sets E of X-equations, if | =g(X) rthea F |= (YX)l =r.
]

Proof of Theorem 57 Let R be a ¢TA®-congruence satisfying the above conditions. By
Theorem 53 it suffices to show that EC® k= ¢%{cle]) for each € € EA and c € TC®[2],. Let
€ € £A be of the form (YX)I=r. Then

! R(XY r
< { Definition 55 }
o(l) RIX) é(r)
= { R is a ¢TA®-congruence }
(Ve € TA%(a),) ¢9(0)I6(0] RIX) 62(c) o)
= { Hlv € =g¢e } B ~
(Ve € TA®[z],) o®()B(¢(1))] =gga (X) ¢5(c)(B(8(r))]
= [Lemma 58 }

(Ve € TA®[z),) EC® k= ¢®(cle])

An obvious candidate for the relation R of this theorem is bebavioural equivalence,
which is defined as follows:

Definition 59 For t,#' € TC?, let ¢ ~ t' iff $@(c)[t] =pee ¢%{c)[t'] forall v € V and
c€ TA®{z],. O

This relation clearly satisfies the conditions of Theorem 57. However, using this can still
lead to complicated proofs by context induction. A simpler proof method is obtained by
splitting the signature of A® in two: suppose that £A® = G U D. (The letters stand for
‘Generators’ and ‘Defined functions' to suggest the decomposition that we have in mird;
however, the only assumption we make about GG and D is that their union is equal to £A®.)
Typically, in proving that an equation is behaviourally satisfied, we wish to show that it
holds in contexis made from defined functions only. This agrees with the intuition behind
behavioural equivalence, that two terrs are behaviourally equivalent if the same visible infor-
mation can he extracted from each of them. Extracting information corresponds to applying
a defined function, whereas constructors may be thought of as adding new information. This
gives a notion of behavioural equivalence that is easier to check: two terms are behaviourally
equivalent iff they give the same result in all visible contexts built from the operations of D.

Definition 60 For t,t' € TC®, we definet — ¢ ifl $2(c)[t] =gp2 9% (c}['] forall v € V and
cE TD[Z].,. 0O

A useful consequence of this definition is that terms of hidden sort are behaviourally equivalent
iff tkeir images under each operation of D are behaviourally equivalent. This is used in
Subsections 4.1 and 4.2, in examples where all derived functions are unary, an assumption
that allows us to state the property concisely:

Proposition 61 If ail the operations of D have only one argument, then for h € HA and
t,t' e TCP, we have t — 1" iff (¢0)(f) — (po)(t') for each r € SAand o € Dy, O

3 REFINEMENT AND IMPLEMENTATION 24

The relation ~ is an equivalence relation, it contains =g.e, and its restriction to visible
sorts implies equality; moreover, — is a ¢[)-congruence, so to use Proposition 57, we need
only show thatit is also a ¢G-congruence. ln fact, there is a nice relationship between our
two notions of behavioural equivalence: from £} € £4%, it follows that ~ € ~; moreover, if
~ is also a ¢G-congruence then the following proposition shows that — C ~, and so — = ~.

Proposition 62 If - is a ¢G-congruence then - = ~,

Proof: We have already noted that ~— 2 ~, so it suffices to show that — C ~. Now -
is a @D-congruence, so if it is also a #G-congruence, then because £A®? = GuUD,itisa
oL A®-congruence. So:

t ¥
= { — is a pEAZ-congruence }

(¥ € V)(Vc € TA®L:2),) @(o)[t] — olc){t)
= {~lvC=gco }

(e € V)(¥c € TA%[z],) ¢(o)lt] =gee dlolt)
“ { Definition 59 }

falh

Theorem 57 and Proposition 62 together give the following suffcient condition for refine-
ment;

Proposition 63 A is refined by C if { —({X)® r for each (¥X)} =7 in E4 and if — is a
@G-congruence. 0

The importance of this result is that it greatly simplifies correctness proofs. With this
Proposition. the correctness of a refinement is shown by proving that - is a ¢G-congruence,
and that the equations of the abstract specification are satisfied in the concrete specification
in all D-contexts. This latter proof obligation can be shown by induction on the structure
of D-contexts; because D is a subsignature of %, there will he fewer cases to consider in
the indnction steps. This is illustrated in the example proof in Section 4.1 below. In fact,
sometimes it completely eliminates the need for an inductive proof altogether! Section 4.3
gives an example of a refinement where tlere is essentially only one D-context, and the proof
can proceed by simple equational reasouing (the example is takeu from Henniker [24], but
there the correctness proof uses a rather complicated inductiou on T-contexts).

3.3 Implementation

Our notion of refinement is hased on the idea that the concrete specification should display
the same visible behaviour as the abstract one; that is, the reduct of any model of the
concrete specification behaviourally satisfies all the equations of the abstract specification.
1f we regard terms over the abstract siguature as programs that the concrete specification
should implement, then we need consider only terms without variables: that is, our notion of
behaviour is given hy the ground equations of the abstract theory. If we ignore hidden and
order sortedness, then we might say that A4 is implemented by C iff all ground equalities of
A, when translated by &, also hold in C; ie.,

3 REFINEMENT AND IMPLEMENTATION 25

(4) ty =g4 t2 implies () =pc ¢(tz) forall 2;,ta € TA.

This is enly a partial definition of correct implementation (see Definition 67 below); in fact,
this definition is sometimes referred to as ‘simulation’ [27]. The intuitive meaning of (4) can
be seen by coasidering ¢; to be a program that gives a result ¢; in the abstract specification;
then the translation of ¢, should give the corresponding result in the implementation. More
formally, {4) states that the ¢-translations of the ground consequences of the equations in EA
are entailed by EC. This is equivalent to requiring the ¢-translations of ground instances of
the equations in EA to be entailed by EC, i.e., that

(3) o{8(1)) =gc ¢(8(r)) foreach (VX)}/=r¢c EAandeach 6: XTA .

To see that (4) implies (5), note that for any equation (VX)!{ = r in EA and any assignment
&: X TA, we have 8({) =ga 8(r), from which by (4) we conclude that $(H1)) =g S(8(r)) as
desired. To see the converse implication, note that {4) may he reformulated as =54 C (=g¢)%,
and this follows by definition of =g4 (Definition 15) from

R(e} C (=gc)® foreach e € EA.

To show this, let e € EA be an equation of the form (VX)I = r, and suppose that aR(e) b,
so that @ = (1) and & = 8(r) for some 6 : X~ TA. By (5) we have ¢(a)=gc (), ie.,
a{=gc)* b as desired.

Although (4} and (3) are equivalent, the formulation in (5) is generally essier to prove, in
that one need only show that ground instances of each of the equations in FA are satisfied in
the concrete specification, rather than considering all consequences of these equations.

If we take hidden sortedness into account, we need only consider equalities of visible sort,
so that the requirement (4) for implementation becomes

(6) ty =ga 12 implies (i) =gc #(t2) forall v €V and #;,t2 € T4, .

This is the definition giver by Henniker [24], though only for the case that ¢ is a signature in-
clusion, Henuniker also proposes an inductive method for proving implementation correctness,
by restating this condition in terms of behavicural equivalence, which is defined as follows:

Definition 64 ¢,# € TC are A-behavicurally equivalent, written t~4 ¢, ififor allv € V'
and ¢ € TA[z],, we have ¢le)[t] =gc #(c)[t']. Implicitly, if the variable z has sort s, then ¢
and ¢’ have sort ¢1(s). We will generally omit the subscript 4 on ~4. O

We can use the notion of behavioural equivalence to reformulate (6) in terms of ground
equalities of arbitrary sort:

Proposition 65 (6) is equivalent to
(N t1 =pa tz implies (1)~ @(tz) forall s€ SA and t1,t2 € T4, .

Proof: To show that (6) implies (7), let #; =g 4 t; for some s € 5S4 and #1,¢; € TA,, and let
v €V and ¢ € TA[z],. We have d[t1]) =g4 c[ts], and because both terms are of visible sort, (6)
gives ¢lcft1]} =gc 9(clta]), ie., #c)[d(t1)] =pc $(c)[#(t2)], which shows that (11} ~ H(t2)
as desired. To show that (7) implies (6), let t; =g 4 t2 for some v € V and #y,t: € TA,. By
(7) we have ¢(t1) ~ ¢{ty}. Both terms are of visible sort, so taking ¢ to be the empty context,
(i.e., c = z), Definition 64 gives ¢{é1) =gc ¢{t2) as desired. O

3 REFINEMENT AND IMPLEMENTATION 26

Once again, this condition for implementation can be reformulated in terms of the ground
instances of each equation in EA. In particular, Henniker shows that (6), and therefore (7),
is equivalent to:

(8) #(B(1)) ~¢(8(r)) foreach (¥X)i=rec EA and 6:X—TA,

Proposition 66 (7} is equivalent to (8).

Proaf: That (7) implies (8) is straightforward: for any equation (YX)! = r in F4 and any
: X—TA we have 8(1) =ga {r), whence hy (7) we have ¢(8()) ~ ¢(f(r)) as desired. To
show the converse implication, note that {7) can be reformulated as = g4 € ~®, which follows
from R{e) € ~*for all ¢ € EA. To show this. let e be of the form (VX)! = r, and let a R{e) b so
that a = §(I) apd b = &(r} for some 8 : X—TA. By (8) we get $(a) = pl8(1)) ~ 6(B(r)) = o(b)
as desired. O

The equivalence of {4) and (5} is mirrored in that of (7) and (8). Both (5) and {8) have a
form that simplifies the proof obligations. Henniker [24] investigates proofs of (3} by a form
of induction an the size of contexts ¢ € TA[z],; however, such proofs can be very complicated.

The situation is more complex for HOSA because the definition of implementation has
to consider the well-definedness of terms, which may amount to termination of programs.
Schoett [29] defines implementation for partial algebras, and gives a necessary and sufficient
condition in terms of a congruence between models of the abstract and concrete specifications.
Schoett’s definition is stronger than that given below: he restricts attention to terms all
of whose subterms are equal to a well-defined value {in our setting this means that they
contain no retract operations). For example, consider an ahstract specification of stacks with
operatious tep, pop, empty and push (as in Section 4.1 below), where top and pap both
require a nos-empty stack as argument, and suppose further that the specification contains
the equation

(¥X :¥at,S : Stack) top push(X,5) = X .

The term top push(0, pop empty) can he viewed in two different ways: it either gives the
value 0, orelse it is an error term. The first is a lazy evaluation view of error-handling,
where terms with error subterms can still bave well-defined values; the second view, which is
implicit in Schoett’s definition, corresponds to call-by-value, where any term with an undefiped
subterm is itself undefined. In Schoett’s call-by-value approach, correct implementations of
stacks may allow top push(Q, pop empty) to take any value at all. We consider ‘lazy’
implementation important because many programming languages either have lazy evaluation
or else facilities for error handling. Moreover, we can handle the strict view by adding some
‘error equations’, which identify some error terms, as discussed by Goguen and Diaconescu
in [14),

Our definition of implementation in HOSA is that ¢ implements A iff whenever a visible
sorted term ¢t of TA® is not an error term (i.e., is equal to a term ¢ of TA4), then the ¢
translation of t is equal to the ¢-translation of ¢' in TC.

Definition 67 An HOSA spectfication C is a partial behavioural implementation of
an HOSA specification A via the vertical signature morphism ¢ (we write ¢ : A T C) if
t =gae ! imphes @(f) =gps o) for all v € V, [€ TA? and ¢ € TA,. We say that C
behaviourally implements A iff the above implication is an equivalence. O

3 REFINEMENT AND IMPLEMENTATION 27

This definition of partial implementation geperalises (6) to the hidden order sorted case.
The difference between partial implementation and implementation is that in the latter the
mapping ¢ from TA® to TC®, or mere properly from Tgae gae to Toos gos, is injective
on the visible sorts in the sense that it doesn’t confuse distinct data values. Consequently,
‘trivial’ implementations, in which all equations are satisfied by identifying some or even all
data values, are allowed for partial behavioural implementations, but not for behavioural
implementations proper. In the following. we concentrate on proofs of partial implementa-
tion, i.e., on showing that visible terms equal in the ahstract specification are equal in the
concrete. Additional techmiques are required for showing correctness of 'total’ behavioural
implementation.

The notion of partial behavioural implementation is also significant at the level of algebras
of a specification: if ¢ : A C C, then for any C-algebra M and any ground TA-equation e
such that FA = e, we have ¢M Ee.

3.4 Proofs of partial implementation

In this subsection we formnlate a sufficient condition for partial behavioural implementation

. which simphfies the proof obligations in the same way that (5) and (8) simplify (4} and (7).
Mouch of the technical development In this section is analogous to that of Sectinn 3.2 above.
The main differences are that in this section we are concerned with ground equations rather
than with arbitrary equations, and we treat error terms in a ‘lazy’ way. A sufficient condition
for cortrectness of partial implementation is given iu Corollary 73 below. Instances of this
corollary may be proved by induction on contexts; the technique presented in Section 3.2,
of splitting the abstract signature into generators and derived functions, can be adapted to
proofs of partial implementation. This proof technigue is presnted in Proposition 76, which
correspounds to Proposition 63 in Section 3.2.

One way to show that C is a partial behavioural implementation of A is to construct an
intermediate relation R op TC®-terms such that: (a) if t =g, t' then the ¢-translations
of t and 1’ are related by R; and (b) the restriction of R to visible sorted ¢-translations is
contained in =goe. Such a relation bridges the gap between the antecedent and consequent
in the definition of partial bebavioura! implementation (Defimition 67). If R* is also a £A4%-
congruence, then {a) holds iff R? extends the ground instances of the equations in £A®. This
is the intuition behind Proposition 68 below, which is our main technical result. Its statement
uses the following:

Proposition 68 If there exists an equivalence relation R on TC® such that R® is a £AS-
congruence and

(9) (1) R® B(r) foreach (¥X)I=r £ EA® and 8: X—+TA%

(10) if L R%Y theu ¢ft) =gcw (') forall ve V¢t € TA% and ¢ € T4,,

then ¢: AC C.

Proof: Therelation =g4e is by definition the least TA®-congruence satisfying (9),50 =g 48 C
B* Toshow that ¢: A C C, fixve V.t € TAS, ¢ € TA,, if t =ge t' then because
=gao C R?, we have t R® I, and since ¢ and ¢’ are of visihle sort, (10) gives ¢{t) =geo ('}
as desired. O

A weaker, but very nseful version of this result is obtained by sfrengthening (9):

3 REFINEMENT AND IMPLEMENTATION 28

Propasition 69 For any relation B on TC®. candition (9) of Proposition 68 follows from

(11} =gca C R,
{12) () BR° 8(r) foreach (VX)I=rc EA and #: X—TA%®.

Proof: EA® consists of EA plus equations of the form (¥S : s2) ry142(8) = S. By
construction, EC® contains the equation (¥5' @ ¢(s2)) ryiayepn{S) = S'; so for any

0 (S}=TA%, we have B(B(ru,alS))) = rofuryon ($F(S) =gce G(B(S)). Therefore
by (11}, #(r,1 5(S)) R® §(5), and combining this with (12) gives (9). O

The weakening of Proposition 68 by replacing {9) with (11} and (12} is useful becanse with
(11). in proving that two terms are related hy R we may freely rewrite those terms using the
equations of EC¥; morcover, the example relations R that we use below satisfy (11), so that
in proving partial implementation, we may concentrate on proving (12), ignoring the retract
cquations.

To use these results, we need a suitable relation R. A likely candidate is behavioural
cquivalence, which we could define as in Definition 64; but the followicg relation is more
general:

Definition 70 For t,¢ € TC?, equivalence up to definition, denoted ¢ == ¢, means that
t=pre 2l 84 =ECo " forall # € TC. O

Note that ift.t' € TC. thent =t iff t =pcs 1.

Definition 71 For any relation R on TC®, behavioural R-equivalence. denoted ﬁ, is
defined for t.¢ € TC® by t R ¥ iff ¢(c)[f] R ${e)[t'] for all v € V and ¢ € TA®[:],. D

Two natural choices for R in this definition are =gge and 2. The first is sufBicient for the
examples given below, but the second is more general. Each choice satisfies condition {11}:

Proposition 72 When R is =gce or =, then =gee € R

Proof: When R is =pew, the result is immediate. For the case that R is ~, let ¢t =pcet';
for any context ¢ we have ¢(c}[t] =pce ¢(c)[t']. so for any £ € TC we have ¢(c)t] =gee " iff
elo)[t) =gce . That is, ¢le)[t] = d(c)[t']. and so t R E.

We note that behavioural =pcs-equivalence is the same as =g.e for visible sorts. because
if ¢ and ¢ are of visible sort, then we may take ¢ to be the empty context, that is, ¢ = z, so
that t =EcE t'.

In the sequel, we use only behavioural ~-equivalence. which we denote =, and refer to
simply as behavioural equivalence ie.,

(13) t=t i (Vv e V)(¥Vee TARID)Y ¢(o)[t] = #{c)[t] -

However, Lhe results of this soction can equally well be developed for bebavioural =g q-
equivalence.

Becawse = satisfies all requirements of Proposition 68 except (9), we obtain the following
from Propositions 69 and 72:

3 REFINEMENT AND IMPLEMENTATION 29

Corollary 73 1If all rquations of EA are behaviourally satisfied by C, ie., if 8(1) =* &(r) for
each (VX)i=r in EA and 8: X—TA% then ¢: AC C.

Proof: We need to show that = satisfies all requirements of Propositian 68 except {9). It is
straightforward to show that = is an equivalence relation and that =% is a EA-congruence;
the only remaining requirement is (10), i.e.,

if =%t then ¢(t) =gce #(') forall veV, ¢t € TA® and ¢ € T4,

Suppose ¢(t) =2 $(t'); since bath terms are aof visible gort, we may choose the empty context
¢ = z in {13) to obtain @(t) =~ $(t'). Because ' € TA, we have ¢(t') € TC,, and by
Definition 70 we get ¢(t) =ga0 o(t") i B(t') =gge ¢{F), s0 that ¢{t)=pge ¢(t') as desired,
]

This result can still lead to complicated prools by context induction, but we can apply the
proof technique of Section 3.2 of splitting the abstract signature into generators and derived
functions: snppose that SA® = G U D) (again, there are no further assnmptians about 7 and
D}. We define hehavioural equivalence nnder D-contexts as follows.

Definition 74 For t,t' € TC®, we define t — t' iff ¢(c))t] ~ (c){t'] forall v € V and
CcE Tp[zl..- [}
The relation — is an equivalence relation, it contains =g,e, and its restriction ¢ visible sorts
is the same as behavioural equivalence; mareover, corresponding to Proposition 62 we have
the following

Proposition 75 — = = if t — t' implies (¢&)(t) — {¢&){t') for al & € G, and ¢,#' €

©
TC - ()
Proof: We have already noted that — 2 =2, so it suffices to show that — C ==. Now —% is a
D-congruence, so if it is also a G-congruence (as stated in the condition above). then because
LA® = GuD,itis a SA®-congruence. So:

t—t!
= { —? is a congruence }

(Vo € V)(¥e € TA®[:1,) $(o)ft]) — é(e)[t)
= {~wg=}

(Vu € V){¥c € TA[e]y) $(o)[f] == ¢()jt']
- {03}

tath

Corollary 73 and Proposition 75 together give the following sufficient condition for partial
implementation:

Proposition 76 If 8({) —° f{r) for each (vX)i=r in EA and 8 : X=TA®, and if t — ¢
imptlies (¢ a}{t) -~ (¢o)(t') for all & € Gu, and t.t' € TC?.(then ¢: ACC. D

w)?

The main differences with Proposition 63 for refinement are our use of behavioural equiv-
alence up to termination, and the fact that this proposition considers only ground instances
of equations.

4 EXAMPLE PROOFS 30

4 Example Proofs

This section uses the results of Section 3.2 to prove the correctness of a number of examples
of refinement,

4.1 Example: a stack object

In our first example, the abstract specification defines a sort of stacks; a subsort relation
makes operations top and pop defined only on non-empty stacks. The concrete specification
refines stacks by arrays and pointers. This example, adapted from [9], is well-known, but we
present it here to demonstrate that the proof we give is every bit as trivial as one could hope.
The example also demonstrates refinement for the order sortcd case, and a refinement that

does not use a straightforward inclnsion of signatures.
The OBJ code which defines the abstract specification of stacks is given in the following
two modules:

obj NAT is obj STACK is pr NAT .

sort Nat . classes NeStack Stack .

op 0 :~> Nat . subclass NeStack < Stack .

op 8 : Nat -> Nat . op empty :@ -> Stack .

op p: Nat -» Nat . op push : Nat Stack -> NeStack .

var N : Nat . op top_ ! NeStack -> Stack .

eq p(0) = 0. op pop_ : NeStack -> Stack .

eq p((N)) = N . var S : Stack . var I : Nat ,
endo eq top push(I,5} = I .

eq pop push(I,$) = 5 .
endo

The OBJ keyword sort precedes the declaration of a (visible) sort name, while for the
purposes of this paper, we adapt staudard OBJ notation to let class{es} declare a hidden
sort name or names. The kevword op precedes the declaration of an operation name; these
declarations define the signature of the module. Equations are preceded by the keyword
eq; Lhese and the signature constitute the specification of the module. The keyword pr (for
‘protecting’} indicates that one module inberits the declarations of another; thus the module
STACK contains all the declarations of the module NAT.

‘We let the fixed universe of data values be given by the module NAT, together with its
standard interpretation as w, the naturals. (Technically, we require that the signatnre of
NAT be extended with a constant for each nataral number in w, ¢f. the comments preceding
Definition 32. This means that NAT should be extended with an infinite number of constants
1, 2, ete.) Thus, in the above specification the visible sort is Nat and the hidden sorts are
NeStack and Stack.

In order to demonstrate the use of signature morphisms in refinement, we give a concrete
refinement of stacks using arrays and poiuters that does not distinguish a subsort of nop-empty
stacks. The OBJ code for the concrete specification is given below:

ob; ARR is pr NAT .
class Arr .
op w©wil : -> Arr .
op put : Nat Arr Nat -> Arr .
op _[_.]1 : Arr Nat -> Nat .
var I M N @ Nat . var A : Arr .

4 EXAMPLE PROOFS 31

eq nillN] = 0.
eq put{I,A,M)IN] = if M == N then I elase A[N] fi .
ondc

abj STACK is pr ARR .
class Stack .
op <<_;_»» : Nat Arr -> Stack .
op 1st_ : Stack -> Nat .
op 2nd. : Stack -> Arr .
op empty : -> Stack .
op push : Kat Stack -> Stack .
op top. @ Stack -> Nat .
op pop. @ Stack -> Stack .
var I N : Nat . var 5 : Stack . var A : Arr .

eq lst << N ; A>» = N .

eq 2nd << N ; A» = A

eq empty = << 0 ; nil >> .

eq push(I,5) = << a(lat S} ; put(I, 2nd 5, s(ist 8)) >> .,
eq top 8 < (2nd §)[1st 5]

eq pop 5 = << pllat 5) ; 2pd § > .

endo

The signature morphism ¢ from the abstract to the concrete specification maps bath
NeStack and Stack to the single sort Stack, aud leaves the names of the operations un-
changed. Note that the types of the operations are changed, because ¢ identifies NeStack
and Stack. Specifically, ¢ is defined as follows.

Nat +— Nat
Stack, NeStack Stack
empty : -> Stack
push : Nat Stack -> Stack
top : Stack -> Nat

empty : —> Stack

push : Nat Stack -> NeStack
top : NeStack -» Nat

pop : NeStack -> Stack +— pop ! Stack -> Stack

1111t

If we let £.4 denote the signature of the abstract module, then A% also contains the retract
operation

X NeStack,Stack : Stack -> NeStack .

Because ¢ identifies Stack and NeStack, this operation is mapped to (cf. Proposition 45) the
operation

¥ Stack,Stack : Stack -> Stack .
But by Definition 27, the retract extension of the concrete specification includes the equation
(VS : Sta‘:k) rStacl,Stnck(S) =5,

which means that Tstaek,staex is the identity function in the concrete specification, so we
may safely ignore retracts in what follows. Moreover, because the names of the operations
are unchanged by this mapping, we can denote the ¢-translation of a term hy the term itself.

We now prove the correctness of this refinement of STACK, where the set of visible sorts is
{Nat}. For G, the set of generators, we take {empty, push}; for D, the set of defined functions,

4 EXAMPLE PROOFS 32

we take {top,pop|. By Proposition 63. there are two proof obligations. The first is that the
left- and right-hand sides of each equation are related by —.

(14) top push(I,5) — I
(15) pop pusk(I,5) — 8

The second proof obligation is that — is preserved by the operations of G. Since empty is a
constant and — is reflexive, we need only consider push:

(16) x1 —x2? and si-- 52 imply push{xl, si) — push(x2,s2)

Requirement (14) is trivial, because the left-hand side is equal, in the coucrete specification,
to I. To show {15} and (16). we use the following lemma, which states that valnes oo the
‘wrong side’ of the pointer can be ignored.

Lemma 77 << 15t s ; put(x,2nd s,n) >> — 5 if for all i > 0 it is not the case that
P(ist s} =gce o (ie, ifn > 1st s).

Proof: To show that ihs — rhs, it is sufficient to show that c[lhs] =pce c[rhs] for all contexts
¢ built from tep and pop. Such contexts are necessarily of the form top pop' z, where pop’
denotes ¢ applications of pop. We proceed by induction on 4. For the basis we have {writing
=" for *= pee)

top << 1st 5 ; put{x,2nd s,n) >

put (x,2nd s,m) [1st 8]
= {o>1st s}
(2nd s)[1st s]
top s
For the induction step,

top pop’ pop << 1st s ; put(x,2ad s,n) >> = top pop® pop s
top pop* << p(ist s) ; put(x,2nd s,n) >>= top pop’ pop &

top pop' << 1st pop s ; put(x,Zad pop s,n} »> = top pop' pop &
= { mduction hypothesis }
{¥j 2 0) =(p’(1st pop s)=n)
¥y 2 0) ~{p’(1st 5} =nm)
a

This lelnna is the heart of the correctness proof; the remaining proof obligations are straight-
forward. To show (15}

pop push(I,5}-§

& { reduce icft-hand side }
<< {5t § ; put(I, 2nd S, s(ist §)) >> — 8§
& { Lemma 77 }

true

4 EXAMPLE PROOFS 33

Similarly, {16) is demonstrated as follows:

push(xl,sl)—push(x2,s2}

= { Proposition 61 }
top push(xl,sl)-—top push(x2,82) A
pep push{xl,s1)-pop push(x2,s2)

< { top push(X,5) reducesto X }
x1--x2 A pop push(xl,sl)—pop push(x2,s52)
= { (15) }

x1-x2 A §1—52

This concludes the proof of refinement. Lemma 77, which relates pop push(I,5) to S,
is the only part of the proof that is not extremely trivial: the remainder of the proof ¢consists
of rewriting terms by using the equations of the concrete specification; this can easily be done
using a system like OBJ3 {23].

4.2 Example: several stack objects

Hidden sorted specification is well suited to the object paradigm because objects may be
thought of as automata with hidden local states, whose behaviour is observable only through
their visible inputs and outputs. The object oriented language FOOPS [19] distinguishes
between sorts and classes: the former refer to abstract data types; the latter to abstract
object classes. Thus, a FOOPS specification distinguishes between hidden sorts for classes,
and visible data sorts. A class of objects is specified by declaring some mefheds, operations
that modify the state of an object, and some attributes, which give access to parts of an
vhject’s state. A method is typically defined by equations which state how that method
modifies an object’s attributes. Our proof technique s particularly useful in this context
because the operations in a FOOPS specification are divided into methods and attributes,
which correspond to generators and defined functions. In the following example, we do not
give all formal details, but rather the broad outlines of the proof. In particular, we do not
consider order sortedness.

The abstract specification {adapted from [19]) describes a class Stackvar of stack vari-
ables. The signature comprises that of NAT, as in the previous subsection, the class Stackvar,
and the following operations:

me push : Nat Stackvar -> Stackvar .
me pop : Stackvar -> Stackvar .

at top : Stackvar -> Nat .

at rest : Stackvar -> Stackvar .

The FOOPS keyword ‘me’ declares a method; ‘at’ an attribute. The attribute reat is intended
to represent the ‘tail’ of a stack variable. Note that this attribute bas object values: one may
think of stack variables as linked lists, whose state consists of a natural nember (its top), and
a pointer to another stack variable (its rest).

The methods pusk and pop are defined by the following equations, where N s a variable
ranging over Nat, and SV is a variable ranging over Stackvar:

top pop SV = top rest 5V .
rest pop SV = rest rest SV .

4 EXAMPLE PROOFS 34

top push(N,5V) = N .
rest push(N,SV) = 5V !

The postfix gperation ! in the last equation is a polymorphic operation that exists for all
FOOPS classes. Its operational semantics is that SV ! creates a copy of the ohject SV that
has the same attribntes. That is, for any attribute a and object o, we have

a(o ') = a(e)

We shaw that this specification is refined by a concrete specification which uses the ab-
stract data type of stacks as defined in the previous subsection (though, for the sake of
simplicity, we ignore its order sorted aspects). The concrete specification cornprises the class
name Stackvar, and two operations, one which assigns a value to a stack variable, and one
which gives the value held by a stack variable:

me :=_ : Stackvar Stack -> Stackvar .

at wval_ : Stackvar -> Stack .

The assignment method {:=} is defined by the following equation, where SV is a variable
ranging over Stackvar, and S is a variable ranging over the sort Stack:

val (¥ :=5) = § .

Thns stack variables in the concrete specification may be thought of as cells which hold values
of sort Stack.

The refinement of the methods push and pop, and attrihutes top and rest, is given by
the following equations.

push(¥,5¥} = &SV := push(N, val SV} .
pop ¥ = SV := pop val SV .

top 5V = top val SV .

rest SY = 5V) := pop val SV .

The operations push, etc., in the right-hand sides of these equations are the operations from
STACK. Thelast equation perhaps requires some explanation. In the abstract specification,
the attribute rest returns an object that is different from its argument (hence ‘!’), with value
the ‘tail’ of its argument {(hence ‘pop”).

The visible equations of the abstract specification hold in the concrete as a result of these
equations, se a proof of refinement need only consider the hidden equations:

rest pop S¥Y = rest rest SV .
rest push(N,3¥) = 3V !

Woe use Proposition 63, with G = {push.pop} and D = {top.rest}. This division is
natural, because ¢ contains all the methods of the abstract specification, and I all the
attributes. The proof obligations are:

(17) rest pop SV - rest rest SV

(18) rest push(N,5¥) — 58V !

{(19) S¥1 — SV2 = push(N,SV1) — push{N.5v2)
{20} 5V1 - 5V2 = pop 5V1 - pop 5V2

We use the following lemma:

Lemma 78 If val 5V1 = val SV2 then SV1 — SV2.

Proof; To show that SVL — §V2, it suffices to show that ([SV1] = ¢[SV2] for all visible contexts
¢ built from top and rest. Such contexts are necessarily of the form top rest! z for some
i € w, We proceed by indnction on i, For the basis, we have:

top SV1 = top SV2
g

top val SV1 = top val SV2
=

val 8V1 = val SV2

For the induction step,

top rest’ rest 5Vl = top rest’ rest SV2

o
top restf (8V1! := pop val SV1) = top rest’ {SV2! := pop val 5V2)
= { induction hypothesis }
val (8V1! := pop val SV1} = val(5V2' := pop val SVZ)
=3
pop val SV1 = pop val SV2
<=

val 8V1 = val SV2

Now (17) and (18) are easy consequences. To show (19) we calculate as follows:

push (N, SV1) — push(N.5V2)
= { Proposition 61 }
top push(N,SV1) - top push(¥,8VZ) A
rest push(N,5V1} - rest push(N,5V2)
< { first conjunct trivial, definition of push }
rest (SV1 := push(N, val SVi)) -—
rest (SV2 := push(N, val SV2))
& { definition of rest }
(8Vi:= push(N,val SV1))! .= val SVI
(8V2:= push(N,val SV2})! := val SV2
= { see below }
5v1 - 5VZ

The last step uses the fact that S¥ := val SV° -~ SV~ which is a consequence of Lemma 78
and the transitivity of —.
Finally, (20) is demonstrated by the following calculation.

pop SV1—pop 5V2

= { Proposition 61 }

top pop SVi--top pop SV2 A rest pop SVi--rest pop SV2
= { visible equations hold; (17) }

top rest S¥1l--top rest SV2 A rest rest SVi—reast rest 5V2
<= { - isa D-congruence }

SV1-—-SV2

4 EXAMPLE PROGFS 36

We conclude that the refinement is cotrect.

4.3 Example: history lookup

This example is based on Henniker |24). where the correctness proof is performed by context
induction. Our proof does not need induction at all.
The abstract specification defines & class of abstract machines:

obj STATE is pr NAT .
pr QID .
class State .
op init : -> State .
op update : Id Nat State -> State .
op lockup : Id State -> Nat .
vars X ¥ : Id .
vars M N : Nat .
vars § : State
eq lookup(X,init) = 0 .
eq lookup(X, update(Y,N,$)) = if eq(X,Y) then N else lookup(X,5) fi
aq update(X, M, update(Y,N,5)) = if eq{(X,Y) then update(X,M,5)
else update(Y,N,update(X ,M,5)} fi .
endo

where QID is a module which defines a sort Id of identifiers: we assume that tbis has an
equality predicate eq. Henniker [24] proves that this specification is correctly refined by an
abstract machine that keeps a history of all updates: this abstract machine therefore does not
satisfy the third equation of the above specification, although it does behavionrally satisfy it.

However, the third equation of this specification is superfluous, because any algebra which
satisfies the first two equations (which are of visihle sort) will necessarily behaviourally satisfy
the third equation. Formally. we have E = ¢, where E is the set consisting of the first two
cquations, and e is the third equation; in other words, all bebavioural E-models behaviourally
satisfy e. We can prove that E &= e using the proof technique of Section 3.2, because what
we are proving is that the specification STATE is refined by STATE®, where STATE" is STATE
minus the third equation.

To show the correctness of this refinement, let & = {init,update} and D = {lockup}.
We must show that all equations of the abstract specification are related by -, and that
— is a G-congruence. QObviously, the frst two equations of STATE hold in STATE-, and are
therefore related by - ; as for the third equation, note that the only D-contexts are of the
torm lookup(V, z) for some identifier V. Therefore we need only show that for ali identifiers
Vv, the following equation holds in STATE

(VX ¥, M N S

lookup(V, update{X, M, update(Y,N,5)}) =

lookup(V, if eq(X,Y) then wupdate(X,M,S)
else update(Y,N,update(X,M,5)) £i).

This can be shown by case analysis on the equality of X, Y and V. For example, f V=X =¥
then

5 CONCLUSION a7

lockup(V, update(X, M, update(Y,N,S}))
s H
lookup{(V, update(X,M,5))
lookup(V, if eq(X,Y) then update(X,M.5)
olse update(Y,N,update(X,N.5)) fi)

and if ¥ =X # Y then

lookup (V, update(X, M, update(Y,N,5)))

M

lookup{V, update(X,M,5))

lookup(V, update(Y,N,update(X,M,8)))

lookup(V, if eq(X,Y) then update(X,M,S)
else vpdate(Y,N,update(X,H.5)) fi).

The case where V 7 X is similar.
Finally, to show that - is a G-congruence, we need only show the following implicatioa
for all states S1 and S2: if

lookup(V, S1) = loockup(V, 82
for all v, then
lookup(V, update(X,N,51}) = lookup(V, update(X,N,52))

for alt ¥,X and N. This is straightforward to show by case analysis on eq(X,V).

Note that in this example we do not need induction on contexts; because the set I
of derived functions contains no ‘recursive’ operations (i.e., operations which take states to
states), unlike the stack examples above, we need show satisfaction of the abstract equations
in only a finite aumber of contexts built from D, which leads to very simple preots.

5 Conclusion

We have given definitions of refinement and implementation for hidden order sorted specifi-
cations, and a technique for proving correctness of refinement which is based on splitting the
abstract signature into generators and derived functions. This technique leads to proofs based
on equational logic which seem much simpler than other correctness proofs in the literature.
Moreover, we have shown that this technique also applies to proofs of correctness of partial
implementations. Our approach applies directly to the object paradigm by associating visible
sorts with data types, and hidden sorts with object classes. The proof technique is being
implernented in the mechanised theorem prover 20BJ [21, 30].

As noted in Section 3.1, our definition of reficement generalises that of Henniker [24]
to the order sorted case. Henniker proposes a form of context induction as a technique for
proving correctness of refinements; the proof technique we develop in Section 3.2, based on
splitting a signature intc generators and derived functions, seems to simplify such proofs
by reducing the number of case analyses in induction steps. Moreover, as is clear from the
example in Section 4.3, induction on contexts is only necessary when an object has attributes
{i.e., derived functions) of hidden sort, such as pep in the stack example. If there are no

5 CONCLUSION 38

attributes of hidden sart, then the number of contexts is essentially the same as the number
of attributes, and bebavioural satisfaction can be proved very simply.

The proof technique of Proposition 63 first appeared in [16]. A recent technical report
by Bidoit apd Henniker [1) uses a similar approach to provide a technigue for proving he-
havioural satisfaction of equations in many sorted algebra. In particular, they are interested
in identifying sets of contexts which are sufficient to establish behavioural equivalence, in the
sense that if efi] = ¢[r] for all ¢ in a given set of contexts then ! and r are behaviourally
equivalent. They use a notion of ‘Observability Kernel’, a finitary first order formula which,
in the terminology of our Proposition 63, states the following: behavioural D-equivalence is
equal to behavioural equivalence if hehavioural D-equivalence is a ¢G-congruence, particular
rase where o is the identity signature morphism, where [contains all operations in ¥ which
take a hidden sort to a visihle sort, and G contains all operations taking hidden sorts to
hidden sorts. For example, this very special case handles the division into generators and
derived functions used in the example of Section 4.3, but is not appropriate for either of the
other examples we give. Bidoit and Henniker develop some general sufficiency results for sets
of contexts to prove behavioural equivalence, but we believe that in most applications, such
sets of contexts will be those arising from subsignatures of generators and derived functions.

The main difference between our definitions of implementation and refinement is that
refinement requires all models of the concrete specificatiaon to give rise to models of the ahstract
specification, while implementation simply requires all ground equations of the abstract theory
to be satished, up to observability and termination, in the concrete theory. The notion
of implementation, whose definition depends on the notion of term, and in particular on
the notion of error term, is therefore less abstract and less easily understood than that of
refinement. In general, it is more difficult to prove the correctness of an implementation than
a refinement, since proving equivalence up to termination may be very complex. However,
the notion of refinement seems sufficiently powerful for most examples that arise in computer
science: we did not succeed in finding a convincing example of an implementation that was
not actually a refinement.

Our use of hidden order sorted algehra leads to an abstract treatment of states of ob-
jects, and to a similarly abstract treatment of object refinement. Although our use of vertical
signature morphisms means that refinements are not, in general, expressed by theory mor-
phisms, our definition of refinement nevertheless exploits the duality between theories and
models that is captured by the theory of institutions. In particular, because refinements in our
approach are expressed by hehaviour-preserving vertical signature morphisms, a refinement
simply translates the syntax of the abstract theory into the syutax of the concrete theory,
thus avoiding the possibly messy details of how states are represented. Inm particular, we do
not rely upou a mapping from the concrete representation to the abstract representation, as
do many other approaches, e.g., (25, 2. 6, 4]. This can be a significant simplification.

Que issue not addressed in this paper is concurrency. Hidden sorted specifications can
be thought of as specifying systems of concurrent, interacting objects. Qur approach to
refinement is obviously applicable to serial evaluation by term rewriting {as in OBJ), but
less obviously to concurrent models of computation. Goguen and Diaconescu [15] give a
construction for the concurrent interconnection of a collection of objects, and show how such
interconnections can be enriched with interactions between component objects. We hope to
develop asheaf theoretic semantics for FOOPS objects (as in [11]} which addresaes such issues
and extends our notion of refinement to concurrent, interacting systems.

Another issue not addressed is that of ‘bounded refinements’ [26, 27]. where some kind

REFERENCES 39

of size restriction is imposed on the concrete object. For example, stacks might be refined
by stacks of a fixed maximum depth. In such cases, the concrete specification raises errars
where the abstract does not, which is exactly the opposite of our definition of refinement,
which allows the corcrete specification to haandle errors raised by the abstract ore. It would
be interesting to investigate whether our approach could be adapted to cover bounded refine-
ments, for example hy using sort constraints [31] to treat the case where au error is raised by
a bound beiug exceeded, in much the same way that Karnin and Archer [26] use preconditions
to specify when a hound will not be exceeded.

A final area worth further investigation is the relationship between vertical and horizontal
structuring operations. This issne was raised in an abstract way by Goguen and Burstall
in [12}, who pointed out the desirability of a 2-dimensional category structure, and it has
been further investigated by Sannella and Tarlecki [28], Ehrig [6] and others, for a variety of
different notions of refinement. QOur definition of refinement is transitive in the sense that if
1 : 8§ — S is a refinement and ¢y : S3 —+ 53 is another, then so is ¢1;do: 57 — 83, e,
refinement is compositional. We intend to explore our defirition of refinement in relation to
some of the other ‘Laws of Software Engineering’ mentioned in [12],

References

[1] Mickel Bidoit and Roif Henniker. Proving behavionral theorems with standard first-order
logic. Technical Report LIENS-94-11, Laboratoire d'Informatique de I'Ecole Normale
Supérieure, September 1994.

(2] D. Bjorner and CIiff Jones. Formal Specification and Software Development. Prentice-
Hall loternational, 1982,

[3] Rod Burstall and Razvan Diaconescn. Hiding and behaviour: an institutional approach.
In A. W. Roscoe, editor, A Classical Mind: essays dedicaled to C.A.R. Hoare. Prentice-
Hall International, 1994.

[4] José Felix Costa, Amilcar Sernadas, and Cristina Sernadas. Inductive objects. INESC,
Lisbon, 1992.

[5] Rizvan Diaconescn, Joseph Goguen, and Petros Stefaneas. Logical suppert for mod-

ularisation. In Gerard Huet and Gordon Plotkin, editors, Logical Enwronments, pages

83-130. Cambridge, 1993. Proceedings of a Workshop held in Edinburgh, Scotland, May

1981.

Hartmut Ehrig, Hans-Jorg Kreowski, Bernd Mahr, and Peter Padawitz. Algebraic im-

plementation of abstract data types. Theoretical Computer Science, 20:209-263, 1983.

Marie-Claude Gaudel and I, Privara. Context induction: an exercise. Techknical Report

687, LRI, Univ. Paris Sud, 1991.

Joseph Goguen. Semantics of computation. In Ernest G. Manes, editor, Proceedings,

First International Sympesium on Category Theory Applied to Computation and Contrel,

pages 234-249. University of Massachusetts at Amherst, 1974. Also in Lecture Notes in

Computer Science, Volume 25, Springer, 1973, pages 151-163.

[9] Joseph Goguen. An algebraic approach to refinement. In Dines Bjorner, C.A.R. Hoare,
and Hans Langmaack, editors, Proeeedings. VOM'90: VDM and Z - Formal Methods n
Software Development, pages 12-28. Springer, 1990. Lecture Notes in Computer Science,
Volume 428.

[6

[7

(8

REFERENCES 40

(10|

1]

(12

(13]

™
L

19

20]

[21]

Joseph Goguen. Types as theories. In George Michael Reed, Andrew William Roscoe,
and Ralph F. Wachter, editors, Tepelogy and Cafegory Theory in Computer Science,
pages 357-390. Oxford, 1991. Proceedings of a Confereuce held at Oxford, June 1989.
Joseph Goguen. Sheaf semantics for concurrent interacting objects. Mathematical Struc-
tures i Computer Science, 11:159-191, 1992. Given as lecture at Engeler Festschrift,
Ziirich, 7 March 1989, and at U.K.-Japan Symposium cn Concurrency, Oxford, Septem-
ber 1989; draft as Report CSLI-91-155, Center for the Study of Language and Inferma-
tion, Stanford University, June 1991.

Joseph Goguen and Rod Burstall. CAT, a system for the structured elaboration of
correct programs from structured specifications. Technical Report Report CSL-118, SRI
Computer Science Lab, October 1980,

Joseph Goguen and Rod Burstall. Institutions: Abstract model tbeory for specification
and programming. Journal of the Association for Computing Maechincry, 39(1):95-146,
January 1992. Draft appears as Report ECS-LFCS-90-106, Computer Science Depart-
ment, University of Edinburgh, January 1990; an eariy ancestor is “Introducing Insti-
tutious,” in Proceedings, Logics of Programming Workshop, Edward Clarke and Dexter
Kozen, Eds., Springer Lecture Notes in Computer Science, Volume 164, pages 221-256,
1984.

Joseph Goguer and Rizvan Diaconescu. An Oxford survey of order sorted algebra.
Methematical Structures in Computer Science, 4, 1994,

Joseph Goguen and Rizvan Diaconescu. Towards an algebraic semantics for the object
paradigm. Iu Hartmut Ehrig and Fernande Orejas, editors, Recent Trends sn Data Type
Specification. Springer-Verlag Lecture Notes in Computer Science 785, 1994

Joseph Goguen and Grant Malcolm. Proof of correctness of object representations. In
A. W. Roscoe, editor, 4 Classical Mind: essays dedicated to C.A.R. Hoare, chapter 8,
pages 119-142. Prentice-Hall International, 1994.

Joseph Gognen and José Meseguer. Universal realization, persistent interconnection
and implementatiou of abstract modules. In M. Nielseu and E.M. Schmidt, editors,
Proceedings, 9th Intcrnational Conference on Aulomete. Languages and Programming,
pages 265-281. Springer, 1982. Lecture Notes in Computer Science, Volume 140.
Joseph Goguen and José Meseguer. Completeness of many-sorted equational logic. Hous-
ton Journel of Mathematics, 11{3):307-334, 1985. Preliminary versions have appeared
in: SIGPLAN Notices, July 1981, Volume 16, Number 7, pages 24-37; SRI Computer
Scieuce Lab, Report CSL-135, May 1982; aud Report CSLL-84-15, Center for the Study
of Language and Informatien, Stanford University, Septemher 1984.

Joseph Goguen and José Meseguer. Unifying functional, object-oriented and relational
programming. with logical semantics. In Bruce Shriver and Peter Wegner, editors, He-
search Directions in Obyect-Orented Programming, pages 417-477. MIT, 1987.

Joseph Goguen and José Meseguer. Order-sorted algebra I Equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theoretical Computer
Science, 105(2):217-273. 1992.

Joseph Goguen, Andrew Stevens, Keith Hobley. and Hendrik Hilberdink. 20BJ, a met-
alogical framework based on equational logic. Philosophical Transactions of the Royal
Soctely, Series A, 339:69-86, 1992, Also in Mechanized Reasoning and Hardware Design,
edited by C.A.R. Hoare and M.J.C. Gordon, Prentice-Hall, 1992. pages §9-86.

Joseph Goguen, James Thatcher, and Eric Waguer. An initial algebra approach to the
specification, correctness and implementation of abstract data types. Technical Report

REFERENCES a1

(29]

[24]

[25]

(26]

[27)

(28]
[20]

[30]

31]

RC 6487, IBM T.J. Watson Research Center, October 1976. In Current Trends in Pro-
gramming Methodology, /V, Raymond Yeh, editor, Prentice-Hall, 1878, pages 80-149,
Joseph Goguen, Timothy Winkler, Jos¢ Meseguer, Kokichi Futatsugi, and Jean-Pierre
Jovannaud. Introducing OBJ. In Joseph Goguen, editor, Algebraic Specification with
0BJ: An Introduction with Case Studies. Cambridge, to appear 1994. Also to appear as
Technieal Report from SRI Tnternational.

Rolf Henniker. Context induction: a proof principle for behavioural abstractions.
In A. Miola, editor, Design and Implementation of Symbolic Compulation Systems.
Springer-Verlag Lecture Notes in Computer Science 429, 1990.

C.AR. Hoare. Proof of correctness of data representations. Acta Jnformatiea, 1:271-283,
1972.

Samuel Kamin and Myla Archer. Partial implementations of abstract data types: a
disseuting view on errots. In Giles Kahu, David MacQueen, and Gordon Plotkin, editors,
Semantics of Daia Types. Spriuger-Verlag Lecture Notes in Computer Science 173, 1984.
Fernando Orejas, Marisa Navarro, and Ana Sinchez. Implementation and behavioural
equivalence: a survey. In M. Bidoit and C. Choppy, editors, Recent Trends sn Data Type
Speetfication. Springer-Verlag Lecture Notes in Computer Science 655, 1993.

Donald Sannclla and Andrzej Tarlecki. Toward formal development of programs from
algebraic specifications. Acts Informatien, 25:233-281, 1988.

Oliver Schoett. Behavioural correctness of data representations. Seienee of Computer
Programming, 14:43 57, 1990.

Andrew Stevens and Joseph Goguen. Mechanised theorem provipg with 20BJ: A tutorial
iutroduction, Technical report, Programming Research Group, Unijvenity of Oxford,
1993.

Han Yan. Theory and fmplementation of Sort Cansirants for Order Sorted Algebra.
PhD thesis, Programming Research Group, Oxford University, to appear 1994.

