An Operational Semantics for FOOPS

by

Panlo Horba
Joseph A. Goguen

Technical Monegraph PRG-115

November 1994

Oxford University Compnting Laboratory
Programming Research Group

Wolison Building, Parks Road

Oxford OX13QD

England



Copyright (© 199¢ Paule Borba, Joseph A. Goguen

Oxford Universily Compuling Laboratory
Programming Restearch Group

Wolfson Building, Parks Road

Oxford OGX13QD

England



Contents

i

2

Introduction

Overview of Order Sorted Algebra

2.1 SIBUALITES . . . . it e e e e e e e e e e e e e e e e e e e e e e
2.2 Algebras . . . . . .. e e e e e e e e
2 T = o -
24 Eqnations . . . . .. L e e e e e e e e e
2.5 Order-sorted Equational Deduction . . . . . .« .o
2.6 Theory Presentlabions « .« - v v v v o o i v b e e e e e e e e e e e e e

Overview of FOOPS

3.1 Funetional Level. o . o 0 0 o e e e e e e
3.1 Retracts . .o o 0 i i e e e e e e e e e
32 Object Level . . . L o L e e e e e e e e e e e
321 AXIOMA & i i e e e e e e e e e e e e e
3.2.2 Method Combiners . . . . . . . . . . .. e
3.2.3 Object Creation and Deletion . . . ... . .. . .. Lo,
3.2.0 Other Aspects . . . . L 0L L e e e
3.2.5 Pratected Objects . . . . . . L e e e e,
3.2.6 Aspects of FOOPS Qperational Semanties . . .. . .. .. ... 0. .,

Signaturcs and Specifications

Database States

5.1 Operations on Database States . . . . . . . . .. .. .. .00 e e e
5.1.1 Updating Databases . . . . . . ... . . e e
5.1.2 Adding Objects to Databases . . . . . . ... .. 000 L0 0oL,
51.3 Removing Objecls from Databases . . . .. ... . ... 0.,

Mecthods, Attributes, and Functional Expressions

6.1 Fnnctional EXPressions . . . o . . o o o 0 i e e e e e e e e,
6.2 Attributes . . . . L. L e e e e e e e e
6.2.1 Qualified Notation for Attributes . . . . . . ... .. ... L., .
63 Methods Specified by DMAs . . . . . . .. ... oL,
6.4 Methods Specified by IMAs . . .. . . ... oo
B.5 ATBUMENES « o o v v v v v v v s s b e et e e e e e e e e e
Method Combiners
7.1 Sequential Compeosition. . . . . . . . v .o .o h e e
7.2 Parallel Composition . . . . . . . o e e e e e
7.2.1  “True €Conecurreucy” .« v o v v v v v e e e e e e e e e e
7.3 Nondeterministic Cloice . . . . . . . . . .. .. Lo e e e
T4 Result . . . . _ L
7.5 Conditional . . . . L L e e e e e e e e e e

7.6 Atomic Evaluabion . . . . . . .. . L e e e e e

=

e 2]

10

11

12
12
14
15
16
18
20
21
22
23

26

29
31
31
32
32

33
33
34
35
36
39
40

41
42
43
44
49
51
51



10

11

CONTENTS

7.7  Method Combiner Definition . . . . . . .. ... .. ... ... F O &
Object Creation and Deletion 54
8.1 Object Creation . . . . . . . . . . . i e e e e e e 54
8.2 ObjectDeletion . . . .. ... oL Lo o PR 11
Protecied Objects 55
8.1  Attributes, Functions, and Tdentifiers . . .. . . . .. .. .. .o ..o, 57
52 ALGUIMEDES . . . . L0 Lo e e e e e e e e e e e 57
9.3 Methods . . . . L e e e 58

9.3.! Methods Specified by DMAs . . . . . oo L. L oo 58

9.3.2 Methods Specified by IMAs o0 0 o0 L0 oL 0L e 58
9.1 Object Creation and Deletion .o o 0 L0 v 0 00 0 o0 0oL e 13
9.3 Compartson with Other Approaches . . . . 0 000 00 0oL L. e e 80)
Evaluation in the Background 51
Conclysions 62
11.1 Related Work . . . . . .. . e 63

11.2 Further Research . . . o . L o L o o e e e 64



An Operational Semantics for FOOPS

Paulo Borba® Joseph A. Goguen!

November 1994

Abstract

FOQOPS is a concurrent ohjeci-oriented language. We give a structural operaional se-
mantics for FOOPS, considering features such as classes of objecls with associatedmethods
and atiributes, object identity. dynamic object creation and deletion, overloading, poymorph-
ism, mhertance with overridivg, dyvamic biuding, concurrency, nondeterminisin, aiomic ex-
ecution, evalualion of expressious as background processes, and object protection.

1 Introduction

FOOPS is a concurrent object-ariented specification language with an execntablesuhset [18, 40].
FOOPS includes a functional language derived from OBJ [21], which is a firs order, purely
functional language supporting an algebraic style for the specification, rapid pototyping, and
implententation of abstract data types.

FOOPS extends OBJ by providing a simple declarative style for object-orientel programming
and specification using {couditional) equations. It supports classes of objects with associated
methods and attributes, object identity, dyvamic object creation and deletion. ovirloading, poly-
motrphism, ivheritance with overridiug, dyuamic binding, and many additicnal festures.

llere we consider @ natural exteusion of FOOPS for specifying systems of conwurrent, distrib-
uted. and autonomous objects [12, 35]. Essentially, this extension allows the definition of non
terminating {autonomous) methods, and has explicit construetors (called methoé combiners) for
expTessing concurrency, nondeterminism, atomic execution. and evaluation of method expressions
as background processes. Furthermore, these constructors may be used to defiw more complex
ones. by using the facilities for method combiner definition. Those featnres aw necessary for
modelling processes in a natural way.

This extensian of FOOPS also provides a niechanism for object protection; i general terms,
il’s possible ta specify which objects are allowed ta directly invoke methods of a frotected object.
In fact, this can be used for defining private references (object identifiers}); that is, references that

*Supperted by CAPES, Brazil, Grant 2184-91-8, and the CEC nnder ESPRIT-2 BRA Waking Group 6071,
IS-CORE (Information Systems CQrrectuess and REusability). Electronic mail: Paulo.Borba®prg. oxford. ac.uk.

'Snpperted in part by the Science and Engineering Research Council, the CEC under ESPRIT-2 BRA Working
Groups 6071, IS-CORE (Inforinatien Systems COrrectness and REusability} and 6112, COMPASS (COM Prehens-
ive Algebraic Approach to System Specification and developmenl), Fujitsn Laboratories Limitd, and a contract
under the management of the Information Technology Promation Agency {IPA}, Japan, as part clthe [ndustrial Sci-
ence and Technology Frontier Program “New Models for Soft ware Architectures,” sponsored bs NEDQ {New En-
ergy and Industrial Technelogy Development Organization). Electronic mail: Joseph.Goguen@yrg.oxford.ac.nk.



6 2. OVERVIEW OF ORDER SORTED ALGEBRA

can only be used by a particular object. This mechanism seems to be essential for specilying and
reascning in a ptactical way aboul systems consisting of arbitrary object graphs [26].

All those aspects are considered by the structural operational semantics [39] that we describe
in this paper. However, we concenttate on the object level of FOOPS. An operational semantics
for the luncuioral level may be found elsewhere [28].

Along witb the semantic descriplion, we give comments that clarify many concepts and phe-
nomena related 1o object-ariented languages. In particular, we show hiow the semantics suggests
an appropriate programming style far FOOPS, and indicates how inconsistencies in FOQPS spe-
cifications may be avoided. We also justify tbe semanlics adopted for some constructs, relating
it to allernatives. In special, we discuss the “truly concurreut” anpd interleaving semantics for
parallel composition. It turns out that these approaches are equivalent i the context of FOOPS.
given some nuld assumptions on the notion of eynivaleuce of prograins used for the langnage.

We adopt aspecial approach for inodelling states of Lhe operational semantics Followmg some
ideas {rom [18], we use order sorted theory presentations [19. 1G] to represent states This bas
the advantage of using all the power of the Lheory of ATDs for Jefining operations on states and
reasoning about them. As states are represented by au abstract siructure. the semantics is defined
in a simple way In fact, lots of camplications are avoided aud a concise semantic definition can
be ohtained, although the language support= many fratures. Also, the use of this approach clearly
facilitates the definition of the semantics, since the original FOOPS design used concepts from
order-sorted algebra (O5A) [19].

Thbis text is structured in the following way. First, we give an overview of OSA. Second,
we introduce most aspects of FOOPS. After that, we give the basis for the semantic definition;
we introduce {ormal definilions and operations for FOODPS signalures, specifications, and rnntime
database states. Lastly, we graduaily describe the semantics; we give rules for function, method
and attribnte evaluation. followed hy rules for methad combiner<, creation and deletion of objects,
and a mechanism for object protection.

2 Overview of Order Sorted Algebra

We introduce some notation, definitions and basic results of order-sorfed algebra (OSA). as ori-
ginally presented in [19]. Most of the material in this seclion is copied from [19], [16]. and [15];
here we also introduce some extra notation. This geueral overview of OS A s necessary hecause
it is the mathematical theory supporting FOOPS f{unctional level, aml it is used tc define the
semantics descnybed in this text.

OSA is a mathematical theory snpporting mulliple inheritance, overioading, palyrmorphism.
error handling, partial functions, and multiple represeutanion 1n an algebraic framework The
main idea to solve tbese problems is the definitiou of a partial order on the set of sorts of a
given specification. This is interpreted as subset inclusion u the algebras that are inodels of Lhis
specification. More motivation and the history of OSA cau he found in {19, 16]. Here we directly
introduce the basic concepts.

2.1 Signatures

Signatures indicate the sorts aud operations in a specificalicu This notion is formalized in this
section.



2.2 Algebras 7

The notation of sorted (also called “indexed”) sets greatly facilitates the technicaldevelopment
of O8SA. Guven a “sort set” §, an S-sorted set A is just a family of sets A, for each “sort”
s € 5: we write {4, | 8 € §). Similarly, given S-sorted sets A and B, an S-sorted function
f: A — Bisan S-sorted family f = {f, : A, = B, | 3 € §}. For a fixed 5, cperations on
S-sorted sets are defined componeat-wise. For example, given S-sorted sets A and B, AU B is
defined as (AU B), = A, U H,, lor each s € 5. We write |A| for the distribnted unon of all sets
in A; that is, [4| = |J,c5 A+ Alsa, € € A is an abbreviation for ¢ € |A4].

In order-sorted algebra. S is a partially ordered set, or poset, i.e., there is a bnary relation
< on S that is reflexive. transitive, and antisymmetric. We will ofien use the extension of the
ordering on § to sirings of equal length in 5" by 3;...8, < s]... 8, if g; C 8l for 1 € i < n.
Similarly, < extends to pairs {w.s)in 5" x § by (w, s} £ {w', ¢} iff w < w' and 5 (5"

Definition 2.1 A many-sorted signature is a pair (5,%), where 5 is called thesort set and
T is an & x S-sorted family {£,,. | w € 5 and s € §}. Elements of (the sets ini L are called
operation (or function) symbols, or for short, operations. An order-sorted signature is a
triple (.. <,X) snch that (5,Z) 13 a many-sorled signature and {5, <) is a poset.

An order sorted signature is monotone iff the operations satisfy the following monotomnicity

condition,
€Ty N w2 and wl < w2 imply 31 < s2.

When the sort set § is clear, we write = for (5, £}, and when the posel (5,<) is dear, we write
E for (§,<,Z). When ¢ € 5, we say that ¢ has rank {w,s), arity w, and |valne, resnlt,
or coarity) sort s. A special case is w = A, the empty string; then ¢ € Ly, 5 a constant
symbol of sart 4. Natice that the monotenicity condition excludes overloaded condants, becanse
A= wl = w2 implies 21 € 2. O

Animportant abservation is that the theory of 0SA can be developed without the monotonicity
condition for signatures [16]. In fact, it’s necessary to avoid this condition in «der Lo model
FOOPS database states, as we will see later (see [16] for more motivation for not enforcing the
monctonicity condition).

Given a signatnre (59, <,X), we say that X is a ground signature iff it is frmed only by
distinct constant symbols; that is. X1, N Xye = @ whenever s # &', and Xy, = Punless w = A.
For a siguature T, the notation £(X) abbreviates TU X, if X 1s a gronnd signatne disjoint from
L (i.e.. XN Z = Q). In this case, we may call X a T-variable family.

2.2 Algebras

We now turn to the models that provide actual functions to interpret the operation symbols in a
signature.

Definition 2.2 Let (5,5) be a many-sorted signature. Then an (§.T)-algebra A is a family
{A. | s € 5} of sets called the carriers of A, together with a function 4, : Ay — A, for each
oin Iy, where A, = Ag X -+ X A,y when w = sl...3% and where 4, i5 1 one point set
when w = A Let (5, <,Z) be an order-sorted signature. An (5, <, E)-algebra ira many sotted
(5,T)-algebra A such that 8 < s' implies A, C A,. When the sort set S is ¢lear.{5,I)-algebras
may be called many-sorted I-algebras; similarly, when (5, <) is clear, (5, <,T)-algebras may

be called order-sorted I-algebras.



2. OVERVIEW OF ORDER SORTED ALGEBRA

o

We say that{l is a signature of non-monotonicities for £ 1[ 2 C Z. Then, an order sorted
¥.-algebra A is monotone except on 2

a € Tyl N Tuzep and wl € w2 and s1 € 52 mply Ay . Ay — Ay equals
As  Auz —~ Agzon Ay, unless 0 € Qua gy

An order sorted Z-algebra A is nonotone iff it is monolone excepr on Lhe empty signature. O

Definition 2.3 Let (5,Z) be a many-sorted signature, and let A and B be (5. T)-algebras Then
an (5,Z)-homomorphism A : A — B is an S-sorted function h = {h, : 4, = B, | s € §}
satisfying the fellowing homomorphism condition

(1) hy(AZ*(a)) = B (h,(q)) for cach g € T, ; and a € A,

where hy(a) = (hyfal),.... hyn(an)y when w=s8l...seand a = {el.....an} with ai € d,, for
i=1.....nwhen w# A If w= ) condition (1) specializes Lo

(1) hiA7%) = By

When the sort set § is clear, a {5.X)-homoniorphism may be called a (many-sorted) T-
hiomiomorphisms

Let (5.<,%} be an order-sorted signature. and Jet A and B be order-sorted (5. <, T)-algebras.
Then an (5, <.T)-homomorphism is any (5, E)-homomorphism. If A and B are monotone,
a monotone (5,<,E)-hemomorphism & : 24 — B s an [, Z)-homomorphism satisfving the
following restriction condition:

(2) s< 5" and a € 4, imply Asia) = A la).

When the poset (5, <) is clear, (5.<,Z)-homomorphisms are also called (order-sorted) T-

homomeorphisms. O

2.3 Terms

The algebra whose carrier sets are farnied by the 1crms we can copstruct fram a given signature
% is called the term algebra: it's denoted by 7x. In this sectiou we describe an inductive
construclion defining the term algehra. For an order-sorted signature (5, <,X), the term algebra
is the least [amily {7g,, | # € S} of sets satis(ying she following conditions:

e T,,CTc,lors €S,

o T pCTp,il& <9,

s if 0 €2y, and if ti € Toyy whers w = s1...5n # A then (the string) o(tl...tn) € 7o,
Also,

* forc ey, let Tg: Ty — Ty send 11..... tn to (1he string) e(tl... tn}.



Thus we can write o(il,...,#n) for o(tl...ir). It's now easy Lo check that Ty is an order-sorted
L-algebra. - -

The terms cousidered above are ground terms, in the sense that they involve novariables. In
fact, terms with variables can be seen as a special case of ground terms, by enlargingihe signature
with new constants that correspond Lo variahle symbols. Given an order-sorted signare (.5, <,I)
and a I-variable family A, we can ohtain a new arder-sorted signature {(5,<,Z(X)) and form
me). This can he viewed as an order-sorted T-algebra, by forgetting the constants in X': lel’s
denote this algebra To{ X). This gives the algebra of Z-terms with variables in X

A terin may have many different sorts. In particular, if ¢t € 7x has sort s then italso has sort
8’ for any s' such that 3 < &. A condition on signatures called regularity guarantees that every
term has a wel] defined least sort [19]). Here is the formal definition:

Definition 2.4 An aorder sarted signaiure {5, <,X) is regular ifl it is monolote. and given
& € Zy1.91 and wl < wl. there is 2 least rank {w,s) such that w0 < wand ¢ € T,,. O

So, given a regular order-sarted signature (5,<,E). for any { € Tg there is a least s € 5 such
that £ € Tg,; this is called the least sort of # and it's denoted by L5(1).

In practice, regularily is not a sirong restriction since non regular signatures canbe Lranslaled
iuto regular cnes where the rank of an operatiou 15 considered to be part of its nane.

Considering E-variable families X and ¥, given an S-sorted map a : X — 7y, thereis a
unigue L-homomorphism & : Tex) ~ Tgyy) which substitutes a term a{z) foreach variable
T € X into each term 1 v Tg(x), vieldiug a term &(?) in Teqy) (see [19]). Hence a is called a
substitution and %{!) denotes the application of this substitution to a term . Usually, we use
the alternalive notations

txy — 1,23 — 1), ... .2, — t,) and a(t)

instead of @(t), where |X| = {z,.....2,)} and a{z,) = 1;, for 1 = 1....,n. Moreaver, we omit ihe
pair T; +— 1, whenever {; = I;.

The key for developing OSA without the monotonicity condition for signature: is Lo consider
typed {parsed) terms; that is, terms together with their sort information. We introduce the
term algebra Py of fully parsed terms associated to £. We let Py be the least S-sorted set
such that ¢ € L., and ti € Pg,, for i = 1,...,n, where w = sl...sn, ands < s’ imply
o.ws(fl,... ,tn) € Pg . The definitions introduced so far and the ones to come cin be extended
in an obvious w-z'xy for parsed terms, but for simplicity we ouly consider unparsed te:ms. Moreover,
parsed terms have least sorts even if the related signature is non monotonic or nat regular.

Now, giveu a regular signature &, we can define a parsing function gr : 75 — Pg which
transforms an uptyped term & into a fully typed term ¢’ such that the sort of ¢ is the least sorl of
t. When not confusing, we drop the subscript from p. Here is the formal definiticn-

ploler ... ea)) = cwulpler,. ... en))s

where p(e1,...,en) = pler).....plex), u = LS(0(e1....,ep)), and w is the least stgnence of sorts
of size n such that ¢ € T4 and L5(ey),....LS(e,) < w. It's easy to extend p toequations (see
Section 2.4), set of equations and variable families. Here we omil the details. Alss, for simplicity,
we let unparsed terms be used in places where parsed terms are expected, il the associated
signature is regular. In those cases, we assume that an unparsed term { abbrevistes p(7). In the
same way, au wuparsed equation might be used when a parsed equation is expected.



10 2. QVERVIEW OF ORDER SORTED ALGEBRA

2.4 Equations

In this seciion we give a formal defnition lor equations.

Definition 2.5 For a regular order-sotled signature (5,<.%). 5 E-equation is a triple {1, ¢, ")
where X is a L-variahle family and {,# are in Troxy with LE(H) and LS{t) in the same connected
component of (§.<)* We will use the notation (¥X'} t = 7. When the variable set .X can
be dednced from the context (for example, if X contains just the variables that accur in ¢ and
t'. with sorts that are uniquely delerrnined or have hecn previously declared) we allow it 1o he
omitted?; that is, we allow ubguantified notation for equations. We also say thal an equalwon is
unquantified if .X = §.

Order-sorted conditional equalions generalize order—sorted equations in the usual way, i.e.,
they are expressions of the form (VX)) { = 1 i1 . where the condition ' is a finite set nf
unquaniified T-equations involving cnly variables in X {when € = 0, conditional T.equations are
regarded as ordinary S-equations) O

For conciseness. somelimes we use variations on the notatjou lor equations: (X. L r.() stands

for (VX! =rit O (L, r.C) 15 used when X = @: and we write =7 il X = C = §.

2.5 Order-sorted Equational Deduction

This section gives rules of dedyction for O5A with condilional equations. This yields a construe-
tion for initial and free order-sorted algebras as quoticrts of term algebras by the congruence
generated by the rules of deduction {romn given equations. The details can be lound in [19]: hete
we just introduce the rules of deduction.

Given an order-sorted signature (§. <,X) and a set T of couditional £-equations. we consider
racih unconditional equation in [ to be derivable. The lollowing rules allow deriving lurther
{uncondilional) equations:

(1} Reflerivity. Each equation of the form
(VX} =t

is derivable.

(2) Symmetrg. I

vxXye=1
is derivable, then so is
(YXyi' =1t

(3) Transitivaty. If the equations
(WX)t=1 (VXy ' =
are derivable. then so is

(YX) e =t"

(4) Congruence. 1If 8,8 : X — T(Y'} are substitutions such that lor each r € X, the
equation

'Given a posel (5, <€). let 2 denote the frsnsitive and symmetric closure of €  Then = is an equivalence
relation whose equivalence classes are called the connected components of (5, <).
?However, e reader should be aware that satisfaction of an equation depends crucially on its variable set [31].



2.6 Theory Presentations 11

(YY) 8(z) = #'(z)
is decivable, theu given t € Te(X). the equation
(vY) 8(¢) = &(1)

is also derivahle.

[5) Substetutivaty. If
(¥X)yt=0t it C
isin T, and if & : X — Tx(Y) is a substitutiou such that for each w = v in C, the
equation
(YY) 8(u) = 8(v)
is derivable, then so is

(VY 8(1) = 81"

Although these rules are rather compactly formulated, they correspoud exactly to intuitions
that we feel should be expected for equational deduction. Of course, there are nany possible
variations on this rule set; for example, see {41].

Given a set of equations I'. there is a congruence =r relating two terms iff we an prove that
they are equal from the equations in T and applications of the rules above. Furhermore, this
congruence splits the term algebra iulo equivalence classes of terms modulo T'. Bence, given a
term ¢, [t]p deuotes its equivalence class under T, and [[i]|- denotes the representative of this class
{this can always be [reely chosen without problems [20], so we do not give any inor details of ita
definition).

Lasily, note that the concepts introduced here can be easily extended to considerparsed terms.

2.6 Theory Presentations
Specifications are modelled by the concept of theory presentation.

Definition 2.6 An order-sorted theory presentation (hereafter, presentation!is an ordered
4-tuple. (5, <,Z.T). where (5, <,E) is an order-sorted signature and T' is a set of I-equations. O

For a presentation P = (5. <, 8, 1), we let 1 =p ¢, [t]p. and [t]p respectively mean ¢ =p ', [{]r,
and [[t]r. Also, given a signature (S. <,T), we use PU T’ for the presentation {§<, T U T.T).
Now, we exteud the definition of presentation Lo alJlow non-monotonic operaticns.

Definition 2.7 An order-sorted presentation with a signature of non-monotonicities
is an ordered A-tuple, (5, <,X.9,T'), where (5,<,%) is an order-sorted signatur, I' is a set of
parsed L-equations, and ) is a signature of non-monatenicities such that £ — Q it monotone. O
For reasoning aboul this kind of preseutation. we assume default equations relaing monotonic
operalions having the same name and related ranks. This is necessary because pirsed equations
are used (the related operations don't uecessarily agree on the intersection of thar arities). The
default equations are in the form: o.ws(z) = g.w's’(F). for any 0 € T, , Ny p sech that 20 < w'
and o € Q,,,. where X is a Z-variable family, 2z, € X. for i =1 ..k, % stands for;...., 74, and
w= L&8(ry)....,LS(zz). We let T'* be the union of ' with default equations.

Hence, lor a presentation P = (5,<,E,Q,T), we let { =p ¥, [t]p. and [¢]p respectively mean
£ =r- ¥, [t]r+. and [#]r+. Lastly, given a signature {5, <.X”), we use P UL’ for the presentation
(5, <, s uxz.qa.n.



12 3. OVERVIEW OF FOOPS

3 OQOverview of FOOPS

FOOPS extends OBJ with some concepts from object-oriented programming. This motivates two
central design decisions (see [22, 18, 40, 42] for more details about FOOPS design): data elements
are not objects and classes are not modnles,

The first distinction is based on the fact that data eleiments (e.g..natural mumbers) are stateless,
but objects (eg., buffers} have an internal stale that can change witb time. In this way, FOOPS
provides different constructs for defining abstract data types and classes of objects. Consequenily,
there are 1wo constructs for specifying inheritance. In fact, overloading, polymorphism, and
inheritance arealso available for the specification of ADTs, by the definition of subsorts (snbtypes).

The second design decision recognizes tbe necessity 1o have a construction where related
classes and absiracl data types can he defined tagether. In FOOPS, thisis provided by modules,
which are the main programming nnit of the langnzge. This is one of the main aspects of FOOPS
(alse derived from OBIJ); it includes a powerful module interconnection langnage, supporting
parameterized inodnles with seinantic interface requirements. which allows the programming style
known as “Paramelerized Programimning” [10).

Further justification for both decisions is given in [22]. where this approach is compared with
others.

This clear distinction between data elements and objects divides the langnage in vwo parts:
the functional level and the object level. In each level, there are two kinds of modules: one of
thern is nsed io define executable code. and is simply called module: the oLher one, called theory,
is nsed to specify properties ahout the operations of an abstract data type or a class. Essentially,
programs ate written in modules and specifications are wrilten in theories. Furthermore, theories
arte also used 10 specify the syntactic and semantic restrictions that must be satistied by the actual
arguments of a parameterized modale. In order 10 specify how a theory 15 interpreted {satisfied) by
another theory or modnle—necessary, for exatnple, when mstantiating a parameterized module—
the language provides views, which are bindings indicating how the classes, sorts, and operations
symbols of a theory are interpreted in another theary or module.

The acronym FOOPS stands for Functional and Qbject-ariented Programming System, but
we usually vse it for the langnage provided by the system. FOOPS was first presented in {18). but
[40. 42) describes the language in detail. including some ideas about diffetent approaches for its
formal semaniics (reflective semantics based on order-sarted algebra [18. 19}, hidden order-sorted
algebra [11, 17], and sheaf theory [44, 14]).

Here we briefly describe the funcrional level of FQOPS and some of its parameterized pro-
gramming fealures. Following this. we give a detailed description of the objec! level and intuitions
ahout its operational semantics.

3.1 Functional Level

The functional level of FQOPS is a swvntactical variaut of OBJ. At this level it is possible to
define abstract data types, which are sets of data elements together with assoctated operations.
A FOOPS functional module defines one or more abstract data types, where the keywords sort
and fn respectively introduce the name of the set of data elements, and the associated operations
{functions) symbols.

A very simple functional theory is

fth TRIV ia



sort Elt
endfth

It inttodnces the sort E1t, but it has no coustraints about the operations associated to it. Hence,
the only requirement that actual arguments to a module parameterized by TRIV must satisfy is
to have a defined sort.

As an example of a paramelerized functional level module. we consider LIST, defining lists of
elements of a given sort:

tmod LIST[E :: TRIV] ie
pr NAT

This module is parameterized by the sort of the elements in a list (parameter E). In order 1o define
an operation giving the nnmber of elements in a list, we use a built-in module defining natural
numbers: the keyword pr indicales that the module NAT is imported and we don't add or identify
daia elements of the sorts defined in the module.

The following declaration introduces a sort for nonempty lists and another far lists,

sorts NelList List
subsorte Elt < Nelist < List

where elements are considered singleton {nonempty) lists and nonempty lists are, ofcourse, lists,
as indicated by the subsori relationship (<). This is what specifies inheritance at the functional
level: for example, as all elements of E1t are elements of List, all functions associated to List
can also be nsed for the elements of E1t.

The empty list is represented by the constant nil, and _._ denotes the function that concat-
enales two lists.

tn nil : ->» List

tn _._ : List List -> List [assoc id: nill
fn _._ : NelList List -> NeList
fn _._ : NeList NelList -> Nelist
The underscores in _.._ serve as placeholders for the arguments ol this functiou. Hence,
nil . nil
is a well formed term: that js, the application of _._to nil and nil. Note that _._is overloaded,

aund concatenation of nonempty lists resulis in a nonempty list. As indicated by the attributes,
this function is associative (agsoc) and has ail as identity (id: mnil).

Some other funciions are head, which gives the first element of a non empty lisl; tail, which
maps a non empty list Lo one obtained by remeoving its first element; and #_, which gives the
number of elemeuts in a lisi. These are introdnced by the following declarations:

fn head : Nelist =-> Elt
fo tail : Nelist -> List
fn #_ : List -> Nat



14 3. OVERVIEW OF FOOPS

The functionshead and tail are only defined for nonempty lists. This gives the effect of partial
functions. by defining them as total ou specific subsorts restricting their domain.

The meaniug of those functions is given by axioms (equations). In a module defining code,
equations are interpreted as left-to-right rewrite rules. For the example being discussed, the
following equalions are necessary:

var B : Elt

var L : List

ax head(E . L)

ax tail(E . L)

ax # pil = 0 .

ax # (L . E) = &L + 1
endfmod

1 [
e m

The keyword var introduces variables of a given sort, whereas ax precedes an axiom, aud endfmod
iudicates the «nd of a fnnctional module.

Instead of writing Lhe first axiom for #_, we could have written the equivalent couditional
axiom (cx iudicates that the axiom is couditional):

cx #L=20i1if L == nil

where the condition for which the axiom is valid (or may be applied) bllows if. Note that every
modnle in FOOPS automatically imports a built-in modale of booleans containing the usnal
operations, and the overloaded equality (_==_) and iuequality operatiors {_=/=_).

3.1.1 Retracts

An interesting point of FOOPS is how expressions (tesrms) such as head (ta1l(1l)}, for a given
term 1 of sorl NeList (written 1:NelList), are parsed. In fact, tail{1):List, but head requires
an argumeniof sort. HeList. Thus, we should copciude that head(tail(1)) is not a well formed
expression. However, a5 tail(1) may be equal to an element of FeList (when 1 has more than
nne element), FOOPS is flexible enough to allow us write this kind of expression which is actually

parsed as
head{r:List>NeList (tail(1)))

where r:List>NeList is a special fnnctiou, called retract, which lower the sort of an expression
of List to the required subsort BeList. It is defined hy

In r:list>Helist : Ligt -> Helist
var IL : HeList
ax r:liat>NeList (NL) = NL

In this way, an expression formed by the application of a retract is only reduced if the argument
of the retract has the required subsort. Otherwise, the retract remains as an error message,
indicating that the expression is not well parsed. In FOOQPS, retracts are automatically defined
between related sorts, aud inserted in expressions whenever necessary. In a similar way, retlracis
are also available at the object level.



3.2 Object Level 15

3.2 Object Level

At the object level, it is possible to define classes, which are collections of (potential) objects with
same attributes and methods. Aitributes correspond to properties of objects, they represent Lhe
internal state of objects. Methods are operations that objects can perform; they modify the state
of objects. In addition to modifying states, methods may also yield results.

Attributes are atomically evaluated. Methods may be atomically evaluated or no!; invocation
of methods is s¥nchronous and can be understood as remote procedure calls. An object can be
evaluating many non atomic methods at the same time, including different instances of the same
method. Naturally, there are operators for controlling the interference of methods executing in
parallel.

FOOPS has a general computational model where objects are naturally distributed and (in-
ternally) “truly concurrent™ Objects are dynamically created and deleted, and ther are special
operations for performing Lhese aclions. Furthermore, each object has an unique identifier, which
is used by other objects for access. In this way, methods and attributes have at least one object
identifier as arguinent. indicating which method is going to execute the corresponding operation.

An object level module defines one or more classes and related abstract data types. In addition
to that, abstract data types defined in functional modules can be imported by object modules.
This is how the two levels are inlegrated. Let’s consider an object module BUFFER defining a class
of bounded buffers. This module is parameterized by the capacity of buffers {a positive natnral
numbher), specified by the functional requirements theory MAX:

fth MAX is

pr NAT .

fn max : -> NzNat
endfth

where the sort of positive natnral numbers is represented by NzNat {it's defined it NAT). The
module BUFFER is also parameterized by the sort of the elements to be stored in buffers:

omed BUFFER[E :: TRIV, M :: MAX] is
pr LISTLE)

Here Lhe elements of a bnffer are stored in a list; so. it is necessary to import the functional
module LIST, instantiating it with the argument module giving the sort of elements. In this
instantiation, no view is specified since there is a trivial interpretation—the identiity—from the
theory constraining the arguments of LIST (i.e.. TRIV) to the theory constraining E.

The class Buffer of bounded buflers is introduced by the declaration

clase Buffer

Inheritance could also be defined at the object level, by a subclass declaration (similar to
subsort). This implies that any attribnte or method associated to a class is also available to
its subclasses, since objects of a subclass are also objects of an associated superclass.

Attributes are defined as operations from an object identifier Lo a value that denotes a current
property of the related object. Multi-argument attributes have other argnments in sddition to an
identifier; this means that this attribute’s associated property depends on the exira arguments.
Objects of Buffer have the attribute elems, corresponding to the list of elementsin a buffer.



16 3 OVERVIEW OF FOOPS

at elems_ : Buffer -» List [hidden]

As indicated by the declaration [hidden], the atiribute elems is only visible inside BUFFER; 5o,
clients of the objects of Buffer cannot directly look at the elements stored in buffers. Alternatively,
we ¢ould have added the declaration:

hidden elsms. : Buffer -> List
In addition to elems, two miore attribules are associated to Buffer:

at empty?_ : Buffer -> Bool
at full?_ : Buffer -> Bool

The attribute smpty? indicates whether the buffer is empty, whereas full? indicates whether the
bunffer contains the maximum number of elements.

Like attributes, methods are defined as operalions having an object of its ¢lass as parameter.
They might also have some extra parameters. Methods cither evaluate to a special result or to
the identifier of the object that performs it. For objects of Buffer, the #vailable methods are the
following: reset, which removes all elements from a bnfler; get, which removes the first element
of a non empty buffer and gives it as result; put, which inserts an element at the end of a buffer.
il it is not full; and del, which removes tbe first element of a non empty buffer. The following
declaratious introduce those methods:

me reset : Buffer —-> Buffer

me get : Buffer -> Elt

me put : Buffer Elt -> Buffer .
e del : Bufrer -> Buffer [hidden]

The last one s hidden becanse we do not allow clieuts 10 remove an element from a bufler unless
il is golng tobe nsed, what can be done with get.

3.2.1 Axioms

Attributes can be classified as stored or derived. The value of a stored attribute is kept as part
ol the local state of an object. On the other hane, the value of a derived atiribute is not stored
by an object. but can be computed from rthe valnes of other attrihutes. Hence, one must specify
how this is done; in FOOPS, we nsc equations for that. 1f no equation is given for an attribute,
il 3s considered a stored aliribute.

For Buffer, we define elems as a stored attribute. The others are derived; so. we introeduce

the fellowing equations:

wvar B : Buffer .

var E: Elt

ar empty? B = (elems B} == nil
ax foll? B = #(elems B) == max

This indicates that the buffer is empty if the list of the elements stored in it is empty; alsc, the
buffer is full:f the size of its associated list is max.

Equations defining attributes can only contain functions. attribntes, and object identifiers.
This kind of equation is interpreted as left-to-right rewrite rules. bal attribules are atomically
evaluated. without interfereuce from the execution (evatuation) of methods.



3.2 Object Level 17

The behavior of methods can be specified by two different kinds of axioms. A direct method
axiom (DMAY} specifies how a stored attribute is updated by a given method. In fact, a DMA
i5 an equation such that its left band side (LHS) indicates its associated attribnte and methed,
whereas its right hand side (RHS) is an expression specifying the new value for the attribute to
be npdated. For instance, the behavior of reset is given by tbe DMA

ax elems({reset(B)) = nil

which specifies that alter the execution of reset by an object B, the value of elens, for B, is nil.
Further examples of DMAs are

cx elems(put{(B,E)) = (eleme B) . E if not(full? B)
cx elems(del(B)) = tail(elems B) if not{empty? B)

where the metbods are only executed il the (enabling) conditions are satisfied; olherwise, the
evaluation is suspended. The new value [or the specified attribute is computed in terma of the
method arguments and the current attribute values. If there is no axiom specifying the new value
for a stored attribute aflter the execulion of a given method, this method doesn’t update that
attribute. This is called the frame assumption; it avoids writing equations indicatng that some
attributes are not updated.

The evaluation of methods specified by DM As is atomic and yields the identifierof the object
which executes the method; only this objects is modified, and its attributes are updated as
specified. As for attribute equations, the axiom’s RHS and condition must be formed by functions,
attributes, and object identifiers.

Alternatively to DM As, indirect method axioms (IMAs} may be used for defizing methods.
IMAs are equations that specify how a metbod is defined in terms of other operalions; this is
indicated by a method expression, i.e., an expression formed by methods, attributes, functions,
object identifiers, and method combiners (operators on method expressions). Forexample, the
method get is specified by the IMA

acx get(B) = result head(elems B) ; del(B) if not(empty? B)

where resnlt_;_is a metbod combiner which evaluates its first argument (from left to right)
and then evaluates the second one, yielding the value resulting from the evaluation of the first
argument.

Similarly to DM As, no melhod symbol or method combiner is allowed in an IMA’s condition.
IM As are inlerpreted as left-to-right rewrite rules. Whereas the evaluation of the IMA’s condilion
is atomic, the evaluation of the IMA’s RHS is not atomic and may be interfered by the execution
of other metliods. However, alomicity can be achieved by using the atomic evaluation operator
E_], which atomically executes its argument, without interference from the execution of other
methods. We assume that IM As introduced by the keyword acx (or aax) have theit condition and
RHS atomically evaluated. In fact, an IM A in the form

aax m{0} = @
form : C -> €', is an abbreviation for
ax m(0) = [e]

and an IMA like



18 3. OVERVIEW OF FOOPS

acx m{0) = o it ¢
stands for the following declarations:

me m' ; ¢ -> C*
ax m’{(0) = e if ¢
ax @w(0) = [m’(0}]

where m? is anew symbol. This is necessary il an expression has to be evaluated without interfer-
ence from others. Somelimes, non atomic methods are usefud. maiuly when efficiency is essential;
bat they sbouldn’t be arbitrarily nsed becanse it’s very difficult to reason about programs con-
sisting of the parallel execution of many non atomic methods (it’s necessary to reason about all
possible interleaved interferences caused by Lhose methods).

Lastly, we introduce a {(weak) class invariant to Bufter; that is, a condition that must be
satisfied for all objects of the class. independently of their state. In order to express Lhat all
bounded buoflers can have at most max elements, we introduce the declaration

inv #(»lems B) <= max
endomod

In fact, this kmd of invariant is also considered valid if all attributes used in the predicate are not
defined. For example, immediately after an object of Butfer is created, elems has no associated
value (the built-in object creation operation doesn’t initialize atiributes, see Section 3.2.3); even
50, we consider that the invariant is valid in this initial state

After creating a buffer, the only possible operation is reset because @lema is not defined; the
method reset clearly enforres the invariant. since # nil is 0. [\’s also easv 1o check that the
other operaticns related to Buffer preserve this invariant

A stronger kind of invariant requires all attribntes used in the predicate to be defined. (This
can be introduced by the keyword str-inv, instead of inv.} Fer example, the predicate

#(elems B) <= max

isn't a sfronginvariant for Butfer. since the object creation operation doesn’t respect it. In thie
case, we would have to hide this creation operation and intreduce a rustomized operation that
enforces that invariant. Note that in order to check whether a strong in variant is preserved for
an object o, we shonld consider the effect cansed by the deletion of other objects in the system,
since some altribntes of o might be undefined after that.

Constraints like class invariants are jnst annotations. they have no effect for the semantics of
a FOOPS module. In fact, tley just docunient properties of a given specification. They can be
seen as proof obligatians which, if discharged, might help a lot 1o reason abont specifications.

3.2.2 Method Combiners

In addition lo result_;_ and [_]. FOOPS provides other method combiners: sequential com-
position, ;. (interleaving) parallel composition, _l | _; (extetnal) nonde terminristic choice, [1_;
hackground evalnation, & and conditional, if then_ else _fi.

The semantics of Lthese combiners 15 given later. Here we informally describe some of them;
we suppose the reader has a general intuition about the others, since they are usunally available in

other programming languages.



32 Object Level 19

Result

The resnlt methed combiner (result_;_) fully evaluates its first argument (from left te right)
and then evaluates the second. When hath arguments are fully evaluated, the first one is given as
resnlt.

This operater is mainly useful when an expression should rield a specific value, but this value
has to be evaluated before other operations are executed. For examnple, consider the method get,
defined in Section 3.2.1. Tts behaviour could not he easily expressed without result_;_

Indeed, result_;. can be used to simulate some of the behavicur provided by the retura
sltatement in languages such as C and C++, and special conventiony for variables names in Pascal
and Eiffel for indicaung Lhe value to be relurned by a funciion For nstance, the C+4 code
corresponding to the *FOOPS like” melhod definition

w(0) = e ; £ := £ ; g ; return X
and the Eiffel code corresponding to

m(D) = e ; Result := £ ; g
could be represented in FOOPS by

m(0) = e ; vesult T ; g

where @, ?. and g are method expressions.

Method Combiner Definition

New metbod combiners may be introduced as abbreviations for complex method expressions.
This can be done by equations. For example. the internal rondeterministic chcice operator DOr_
is defined in terms of external clicice by the axiom

ax P Or q = (skip ; P) [] (skip ; Q)

where P and Q are variables, and ekip 1s any functional constant. In this axiom, the arguments ~f
-[1- may be immediately evaluated; so, the external choice will be nondeterministic. As desired
this implies that the internal choice doesn’t depeud whether its arguments are ready for evaluation
ar not.

Evaluation in the Background

Here we introduce a method combiner that resemhbles the UNEX operator & for evaluation of a
program in the dackground. This means that the operator starts the evaluation of an expression
but doesn’t wait until it terminales. Instead, expressions following this operator are evaluated
concurrently to the expression in the backgronnd. Also, the result generated by the expression in
the backgronnd is discarded; this expression is anly executed for its side-effects.

The FOOPS method ¢ombiner _k_ starts the evaluation of its second argument (from lefi to
right} in the background, and then yields its first argument. In facl. the UNIX unary postfix
operator _k may be defined by

ax P & = skip & P



20 3. OVERVIEW OF FOOPS

In FOOPS, P k is a method expression (not a command or program, in UN1X terminology [5]).
s0 it must vield a value; that’s the role of the dummy constant skip in the axiom above.

The main application of tbis operatar is to start the execution of non terminating methods.
For example, f m is non terminating, invoking m like in m{e) ; n(o) is not very useful because
o{e) will never be evalualed. Instead, we can use m(o) & n{o). In this way, the evaluation of
m{o) starts and n(o) 15 concnrrently evaluated.

3.2.3 Object Creation and Deletion

Dynamic object creation and deletion are respectively provided in FOOPS by the following oper-
alors:

® new.C() : -> C,
® new @ C -> C.and
® remove ; C -> C,

for each classC.

For a given class ¢, the operator new.C{) creates an object of € with a nondeterministically
choosén identdfier that is not already being used for anolher object This identifier is given as the
result of the evaluation of the operator.

The operator new creates an object of the same class as tlie object identifier given as argnment,
if this identifier is not assaciated to another object {otherwise, the operation cannot be executed).
This identifier is used for the created object and yielded by the cperator.

The operator remove receives an objecl identifier as argumenr, reinoves its associated object
froms the database state, and vields 1his identifier. If this identifier doesn’t correspond to an object
in the state, the aperation is not evaluated. Contrasting 1o new, the srgument of remove might
be an arbitrary expression. it doesn't have io be an ohject identifier; however, it's supposed to
vield an identifier.

The operators for ohject creation don’t assign imitial values for attributes Hence attributes
should be explicilly sel by special methods, since a non inilialized atiribute cannot ke evaluated.
Automatic initialization 15 not provided here because 1t can be easily simiulated by the operat-
ors introdnced abave together witli method combiners and methods for setting altributes. For
exammple, suppose that a class € has two stored attributes a and a’, and nmethods set-a and
set-a’ for assigning values to those attributes. A creation operation for € Lhat also initializes
those attribnies is given by the method comhiner create, defined by

ax create(D) = [new(0) ; set-a(O,v) ; set-a’(0,v’)]

where 0 is a vanable of class ¢, and v and v* are chosen injtialization walues for the respective
attributes. The atomic evaluation operator guarautees that the created oh ject can only be accessed
alter its attribules are tnitialized. Simiilarly ta new, tiie operalor ersat @ is not executed by an
object; in fact, it should be executed even if its argument is an object identifier that is not in the
state. So, it s modelled as a methad combiner Also, in order to behave properly. create should
only be invoked with an object identifier as argument,

Contrasting to the simplicity of the approach used ahove, it might be problematic to initialize
objects of recursive classes, multi-argnment attributes, and to find default values for attributes



3.2 Objeci Level 21

in general. In fact, it might be the case that some attribules canuotl be automatically initialized.
That's another reason for not trying to automatically initialize attributes.

We can also easily simulate creation operations having attribute initialization values as argu-
ments. For instance, the method combiner

mc createf.,a = _,a' = _) : ¢ 55" =» ¢C

can be ured to create objects of class €, assigning the values received as arguments to the atiributes
aand a’ (respectively assumed 1o be of types S and $*} This is formalized by the folowing axiom-

ax create(D,a = V,a’ = V') =
[new(0) ; set-a(D,V) ; set-a’'(0,V')]

where 0:C, VS5, and V' : 5.

Auto-methods

Auto-methods are automalically invoked in the backgronnd when objects of their worresponding
classes are created. They may be used 1o define imtialization operations for objects, but their main
application is the specification of autoncmons (active) ebjects: that is, objects that antomatically
perform some operations, inslead of waiting for requests from other objecta. In facl, autonomeous
objecis can simulate {non Lerminating} processes in an object-oriented framework.

Here auto-methods can be modeled by standard methods anil the operator for background
evaluation. For this, we have to provide a customized operation for creation of objects, based on
1he pre-defined operation new. Basically, this customized operation should invoke new with (he
related auta-methods as expressions to be evaluated in the background.

For example, suppose that we want to define m, associated to class C, as an auto-method. The
customized creation operation could be defined by

ax create(0) = new(0) & m{0)

where 0 is a variable of class €. This operation creates an object of € with the ideutifier given os
argument and then invokes m. This method may be an initialization operation or a won terminating
method like

ax m(0) = a(0) ; m(0)

In this case, the object behaves as a process which is always executing n.
Clearly, this carresponds to the intuitions about auto-methods discussed above.

3.2.4 Other Aspects

Here we briefly describe some other aspects of FOOPS which are formally specified in other
sections of this text. Details about these aspects can be found in [40].

First, FOOPS uses the convention that method and attribute applicalions ate evaluated
bottom-np. This means that a method or atsribute can only be executed il its arguments are
fully evaluated, i.e.. the arguments cannol conlain any attribute, method, retract, or method
combiner symbol. They must be real values: evaluated functional terms or object identifiers.
Otber evaluation strategies are not appropriate because symbolic method or attribute execution
does not make sense for objects: a method or attribute can only be executed when it has real



22 3. OVERVIEW OF FOOPS

arguments, However, the order in which the argnments of a method or attribute are evaluated is
not fixed. Obeerve that this is a source of nondeterminism, since tbe arguments may be evaluated
in different contexts.

An useful and Hexible way of inheriting properties of a superclass is by redefining some of its
methods and attribuies. [n FOOPS. this is indicated by wriiing [redef] after the declaration
of the new operation symbol and rank (i.e., arguments and resull type). As FOOPS provides
d¥unamic binding, objects of the subclass use the new version of the operation, uuless explicitly
stated that theoriginal version is desired; this can be done using the qualified notation op. €, where
op is the operation name and € is the name of the superclass having the original version, FOOPS
adopis the variant syntaclic rule for redefinitions; this means that the arity of the specialized
version must be swaller or equal Lo the arity of the original version, and the resnlt of the frst
must be greater or eqnal to the result of the second (see [42] for details] A specialized version of
a redefinition of an operation is considerrd to be a redefin:tion as well.

Lastly, objects may be introdnced together with the definition of their associaled class, where
values for their stored atlribntes are specified. These are called specified objects and are par-
ticnlarly useful when defining ¢lasses of recursive dala strocinres such as stacks and linked lists.
Specified objects have the same status as objects created at rnntime; this means that they can be
modified and remnoved.

3.2.5 Proiected Objects

In FOORPS, we can create objects that are protected [rom some other objects, in the sense that a
protected object only execules methods directly invoked by aspecilic and selected group of objects.
Houghly, this corresponds to the behaviour provided by Inding and abstraction mechanisms i
process algebras. where a process might not be allowed 10 access some protected channels.

Object protection facilitates programming and reasoning with references (like object identi-
ficrs, and pointers in procedural languages) by reducing possible interferences to objects; this is
done by restrcting the objects that are allowed to request the execution of methods of a protected
ohject. Also, by having arbitrary interference usually one canuot provide full encapsulation of
complex objects nor the desired system behaviour; so, the system specification should include
explicit. artificial code for avoiding nndesirable interferences. However.it. seems more appropriate
Lo directly support a mechanism for object protection.

For instance. object protection is quile nseful for defining linked lists of cells representing a
sequeuce, beranse the intermediate cells 1n the list shonld only be accessed by their respective
previous cell (26]. In fact, only the first cell in the list should acerpt arbitrary interference. The
intermediate cells shonld be protected. Anather example is a siinple communication protocol,
consisting of \wo agents and a channel used for communication between them. In this case, the
channel should only be accessed by the two agents; it slhiould he protected from othcr objects,
whicb could disrupt the communication The channels are truly encapsulaled only if they are
protected; only in this case the protocol can be seen as a "black box™ and then reused without
restrictions about fbe envitonment where it's going Lo be used.

In particular, one application of object protection is the definition of constant ohjects; that is,
objects that slways in the same state. This can be obtained by creating an object that is protected
from any other object. In this way, constant objects cannot be removed as well. This might be
useful for the definition of recursive data structures like linked lists and stacks. where a constant
object representing the emipty list or stack is nsually necessary.



3.2 Object Level 23

In order to use the mechanism for abject protection, we should indicate which objects are
allowed to directly request the execution of methods associated to a protected object. This is
done at object creation time, by giving a set of object identifiers as argnment to new The empty
set means that the created object cannot exccule any method. Alternatively, any may be given
as argument, meaning that any object can directly invoke methods of the created object.

Specified objects have a defanlt object protection siatns that cannot ¢hange: no object can
invoke metbods of a specified object. Iu fact, specified objects are constant objects.

For supporting object protection, there are special object creation operations:

¢ new.C : Univ -> C, and
¢ new : C Univ -> C,

for a class ¢, where Un1v is the {ype associated to the se1s of gbject ideutifiers given arargument to
the creation operations. In fact, the operators for ohject creation introduced in Section 3.2.3 can
be seen as abbreviations for the operators introdnced in this section. ludeed, new.C() corresponds
to new.C(any), and new(o) is the equivalent of new(o,any).

For indicating the desired protection, the follawing syntactic constructors are available: _++_
{}. and aay, where the first one may be used for adding an element to a set, and the second one
denotes the emply set. For example, the expression o ++ o’ ++ {} denotes the set formed by
the identifiers ¢ and o’

New cobjects may be dynamically added to the group of ehjects that is allowed to invoke
methods of a protected object, if the object that requests this operation is part of this gronp.
For doiug that, there is a special operation: addpr : € Univ -> ¢, for any class C. which adds
the objects specified by its second (from left to right) argnment to the collection of objects that
can invake methods of the object identified by its first argument. The second argument Lo the
operatiou abave should be constructed with the syntax constrnctors nsed for indicating the desired
object protection for the creation operation.

A special case of the mechanism for object protection introduced here is providedby languages
supporting composile objcets (i.e., objects that incorporate others objects. instead ofhaving refer-
ences to them). Composite objects can be modelled in FOOPS by indicating that theincorparated
objects can only be accessed by the object that iucorporates them. Also, the notatian introdnced
in [26] snpports private refetences, which can be nsed by only one object. giving asimilar effect
to composite objects. (Im particular, [26] emphasizes the essential role played by ptivate refer-
ences for assertiug invarianis about object graphs and reasoning abont them.) Our mechanism
for object protection is clearly more general than the mechanism for private references.

3.2.6 Aspects of FOOPS Operational Semautics

Here we informally describe some aspects about FQOPS operational semantics. Operationally, a
system implemented in FOOPS consists of a database containing information aboul the current
objects in the system. This information can be retrieved by the evalnation of attribntes, and
modified by the execution of methods or by Lhe deletion and creation of objects. Modifying this
information changes the database state.

Motivated by [18], here we tepresent a state of the FOQOPS database, for a specification Sp,
by an order-sorted presentation {with a signature of non-monotonicities} formed by the following
components: the definition of the ahstract data types of Sp; functions and sorts contesponding to



24 3. OVERVIEW QF FOOPS

atiributes and classes defined in Sp; constants of the sorts representing classes, denoting objects;
axioms of Sp specifying the meaning of derived attributes: and equatiors establishing the values
af stored attributes for objects in the database. Also, vhe subsort relationships in these theories
reflect the subclass and subsort relationships in Sp. Using this abstract representation for states,
Lypical operations on states are defined in a natural and simple way.

In order tollustrate the contents of a presentation representing a database state, let’s consider
the specification defined by the module BUFFER[YAT,SIX]), where SIX is a functional module
defining a constant max equal to 6. For this specification, part of a possible database state looks
like

fth STATEL ie
ex LIST[NAT]
sort Buffer
fn elens_ : Buffer ->» List
fn empty?. : Buffer -» Bool

var B : Buffer
ax empty? B = (elems B) == nil

wlhere we represeat a presentation with a signature of non-monntonicities with the same syntax
of a FOOPS module (assuming that non-monotonic operations are indicated by the tag [redet],
and unparsed equalions are used when there is no ambiguity). This stale contains the functional
parl of the specification (i.e., LIST[BAT)], a sort correspoading lo the class Buffer. functions
representing atiributes, and their associated axjoms.

In addition to that, Lhe following declarations indicate that the class Buffer has three objects
in this state {identified hy b1. b2, and b3):

fna Bl b2 b3 : => Buffer

ax elemg bl = nil

ax elema b2 = (1 . 2)
endfth

where the equations specify values for their stored attributes. Nate that b3 hasn’t been initialized.

Using this representation, typical operations on states cau be easilv defined. For instauce,
given a database state, attrihutes are evaluated by reducing the corresponding expression in the
module representing the database For example, considering STATEL, the evaluation of

elens (b2} and empty?(b1),

respectively results in 1 . 2 and true, this cau he deduced by equatranal reasomng, lrom the
equations in STATEL.

Method execution changes the state of the database. For rxample. executing put(b1,8} in
STATE! changes the database to the state represeuted hy a presentation in the form

fth STATE2 ia

ax elems bl = &



3.2 Object Leve! 25

ax elems b2 = (1 . 2)
endfth

containing the same information as STATE], excepl that the equation slems bl = nil is replaced
by elems bl = 5.
Also, adding the object b4 to STATE2 results in a state with one more constant of sort Buffar:

fth STATE3 is

ins bl b2 b3 b4 : -> Buffer

ax elsms bl = &

ax elems b2 = (1 . 2}
endfth

On the otler hand, removing the ohject b2 from STATE3 yields a state in che form

fth STATE4 is
fns bl b3 b4 : —> Buffer .
ax elemns bl = 5

endfth

The object and its related equations were removed from the database.

Remembet that the value of a redefined awtribute usually doesn’l agree with the value of its
original version for objects of the subclass. So, the same should he allowed for lhe functions
modelling those attributes in database states. That’s why we nse order-sorted presentalions with
a signatute of non-monotonicities to model datahase states: just order-sorted presentations are
not adequate for doing that in an elegant way. For example, a specification containng

pr BAT

subclaes C < C*

at a : C’ -> Nat

at a : C -> Nat [redet]
var X’ : C*

var X : C .

ax a(x*) =0

ax a(X) =1

should have database stales in Lthe form

ex NAT

subport C < C°

fp a : C* -> Hat

fn a : C -> Bat [reder]
var X' : C*

var X : C

ax a.C*Fat(X’'.C*} = O0.¥at
ax a.CHat{X.C) = 1.Nat



28 4. SIGNATURES AND SPECIFICATIONS

where parsed equations are used to avoid ambiguity. This allows both versions of a to have
different defipilione without generating any inconsistency. On the other hand, il states were
represented by order-sorted presentations without a signature of non-monotonicities, unparsed
equations would be used. being possible to prove that @ is eqnal to 1 vsing the equations defining
a. This is gbvieusly not desirable; it would also mean thar the seniantics of the functional level is
affected by the semantics of the abject level.

4 Signatures and Specifications

A FOOPS module defines a signature and a specification. A FOOPS signature contains a sort
and a class hierarchy, aud naines {together with typing and overriding information) of functions,
methods, and attributes. A FOOPS specification is formed by a signatnre and scme axioms
(equaticons) thal specily properties of the elements of Lhe related signature.

Later, we show that signatures should also provide information about method combiners and
other features supported by FQOPS. Now. we just give a simplfied definition which will he
extended when necessary.

Definition 4.1 A FOOPS signature consists of

1. A “sortset” U/ = §UC, where § has sort names and (" has class names. The sets § and
" are disjoint because a sort and a class cannot have the saine yame. The sort Bool (for
boolean) is in §.

2. A partial order < on {7, which establishes the sort and class hierarchy. Classes and sorts
are notrelated: u <t =z>ueSeteS foranv,ue SUC.

3. A U"xU-sorted family & = FUAUM, whete F, 4. and M respectively contain names for
functions, attributes, and methods. Functions are related to sorts: £, = @ if wu g §*; F
has thestandard boolean operations: attributes bave one class parameter at least: A, = 8,
il w & §* specified objects are related Lo classes: My, = 0, if u € 5; methods have a class
paramewer: My, = @, if w € §*; and there are retracts

T:A>B 1 A -> BE feirgg,

il A =8, where Retr C (FU A). Lasily, a method and an atiribute with related ranks

cannot have the same name, in otder to avoid mixing metheds up with attributes (ie, Jor
any ¢ € Ay, there are no 1w’ and ¢ such that wa < w's’ or w'e’ < wu, aud 0 € M, ).

4 A family B C AU M formed by names of redefined methods and attributes. As specialized
versions of redefined operations are considered to he redefined, if & € R, , N X, and
w'u" < wu then ¢ € Ryt

a

Sometimes, we use L to denote the signature (I, <.L,R}. Furthermore, we rely on the fact
that a FOOPS signature £ can be seen as the order-sorted signature ({7, <,T). In this way, the
notation and concepts related Lo order-sorted signatures (e.g . terms, least sort, equations. etc.)
are available for FOOPS signatures as well.



27

The constraints impcsed on the components of a signature correspoud Lo some of the re-
strictions enforced on FOOPS modules. For instance, as a module defining the sbstract data
type of bocleans is antomatically included in any FOOPS module (for allewing conditional equa-
tions), signatures must have a sort Bool with its associated operationz. Alsc. the reatriction on
R is enforced on the operations of FOOPS modules, in order to avoid the problem discussed at
Section 3.2.4.

In some cases, a more general approach is used, by not imposing restrictions on signalures
componenls. So, the sermantics of some constructs is indirectly given, by translation to more
general constructs. As long as this approach doesn’t complicate the semautic definition, we use
it and indicate how the translation can be done. For example, if booleans weren’t assnmed Lo be
in signatures, we would only be able to give the semantics ol equations bhaving a set of pairs of
terms as a condition {following OSA). instead of a boolean expression (as actually supported by
FOOPS). In this case, we would have to specily how the second kind ol equation can be seen as
a particular case of the first.

The generalization mentioned in the example above would slightly complicate the semantics.
Hence, we don't use 11. However, the semantics for gnalification notation for redefined operatious
{1.e.. m.C where m is redefined and € is a class name} is indirectly given and doesn’t aflect the
semantics. Basically, we don't assnme that signatnres include a special (qualified) operation name
for each redefined operation. Instead. we consider that the FOOPS signature correspouding to a

module containing

subclass A < &'
subclase B < B’
eubclass € < C' .

me m ! A" B' -> Q|
mem : AB ->» C [redet]

is the same as the signature associated to a module witli the declarations above plus the following

one:
me m.A* ; A* B’ -» C'

n

which provides a gualified notation {or m. We assume that symbols containing “ " cannot be
used as operation names in FOOPS modnles {unless it corresponds to the qualified notation of
some operation). Hence, this additicnal declaration doesn’t introduce any conflict and m. A* can
be used to access the original version of m.

The same technique can be used to suppert qualified notation for attributes. However, note
that it’s meaningless to ask for the original version of a redefined stored attribute for an object of
the subclass, since it has no assocjated valie (it’s neither direcily stored in the state nor necessarily
equal to the specialized version). The same happens for original versions of derived attributes
defined in terms of redefined stored aktribules. Hence, we don'l need te provide a qualificatiou
notation for ihis kind of attribute.

An obvious motivation against allowing methods and attributes Lo have the same name and
related ranks is that two operalions cannot he distinguished il they have the same name and rauk.
A less obvious motivation is ilinstrated by the following signature:

pr NAT
subclass A < A’



28 4. SIGNATURES AND SPECIFICATIONS

at a : A’ -> Nat
ma 2 @ A -> Nav

In this way, amay be interpreted as a method or as an attribnte, depending on its argument.
Indeed, in some expressions, it might be the case that a is parsed as an attcibule and, after some
argument evaluation, it's parsed as a method. Besides being confusing, this has bad coansequences,
mainly for expressions in the RHS of DMAs and copditions of equations, where no methods are
aliowed. For instance, for a melliod m, the following

var X : a? .
cx m(X) = ... if O <= a(X}

is u valid equation becanse a is parsed as an atiribute in a{X). However, if & is not redefined,
the evaluationof m{o). for o of class 4. requires the evaluation of the coudition 0 <= a(o) which
requires one method invocation, since a is parsed as a method in a(o}. But this is not supported
by FOOPS—there is no reasonable semantics for that. The same problem happens il this confnsion
occurs in the RHS of a DMA, or if an attrihute updated hy a DMA is sometiines parsed as a
methad.

In fact, this prohlem can also happeun with pathological non regular signatures satisfying
the restriction discussed above, bnt not with regnlar signatures (the ones that are of interest for
specifications as we will see later). Also, observe that there is no roufusion belween functions and
mnethods (or attributes) becanse functions ranks are not relalted {by <) to method (or atiribnte)
ranks, since they only have soris.

Lastly, we could have added one more constraini on signatures: an operation shonld only be
in R il it’s overloaded by ancther with a greater rauk. However, hy aualysing the semantic rnles
given here, we conclude that this constraint doesn't affect the semantics; that is, the meaning of
a non overloaded operation is Lhe samc whether it's considered redefined or not Hence, we don’t
intreduce this restriction.

Now, we give a definition of specification.

Definition 4.2 A FOOPS specification is formed by a signatnre  and a set E of E-equations
containing standard eqnations for the boolean operations {as given m [21], for example} and
retract equations r:4>B{X) = X. for any types & and B in the samie connected component of {f
(with respect to <}, and a variable X of least type B. O

Hereafter, we use A to refer to the family of attributes in a specification 5, when 5 is clear
from the context: ctherwise, we nse the notalion A{5). The samc convention is used for the
other compaonents: E, 8§, C, F.elc. Also, FE and AF respectively denote the set of functional
and attribule equations in E. The set of fuuctional equaiions is defined as the largest set of
F-equationsincluded in £, whereas AE is defined as the largest set of F' U A-eqnations inclnded
in E and disjoint from FE.

Lmplicitly, the Jast definition reqnires = to be regnlar. siuce £ cannot be empty and (unparsed)
¢quations only make sense for regnlar signatures (see Section 2.4). As we h ave seen in Section 2.3,
regularity is not a big restriction. Fnrthermore. this guaraniees the least type (parse) for method
expressions; so, we can work with untyped terms without aiubiguity, leadiug Lo a conciser and
simpler semantic description.

Observe Lhat the definition above does unol restrict the form of axioms. However, by the
operational semantics that is described here (as we wili see later}, only DA As and IM As determine
the behaviour of methods; other kinds of method axioms are irrelevant for the semantics



29

It’s also important to note that equations may be non sort {or class) decreasing. This flexibility
is usually desired for specificatious in general. It aflects the semantics because the evaluation of an
expression might then lead 10 an expression of a greater sort. If this happens and the expression is
the argument of an cperation that cannot be applied to an argument of greater sort, the evaluation
will result in a non well formed term. The solution for this problem is given in laler sections,
bnt it basically consists of iuserting retracts (in order to lower the sort of expressions) during the
evaluation of arguments and some pre-defined method combiners

Evenif method and atirtbute equations were sort decreasing, retracts would haveto be in ciuded
n every specification, in order to avoid the problem discussed above. This happens berause
altribnie evalualion is specified 1n terms of an operation whicl gives the representative of an
equivalence class (see Section 2.5); for specifications in general, we cannot guarantee that an
eqnivalence class has a termn wilh a smaller lype than all other terms. Hence, attribute evaluation
might yield a term of greater iype, or even of a non related type

On the other hand, retracts could be avoided if all equations were sort decreasing. For this to
work, represenlatives should be of a least type This would be feasible because we would consider
that functional equations were sort decreasing as well.

Sometimes we use specification (siguature) when we refer to a FOOPS module. In those cases,
we actually mean the specification (signature) corresponding to that module

5 Database States

As discussed in Seclion 3.2.6, a FOOPS database state can be represented by a presentation with
a signature of non-monotonicities. Here we make more precise what are the contents of such a
presentation.

First, we assume that for any specification S there is an associated C-sorted family fg {jnst
I. when not confusing) of disjoint components; that is, £, N J = @, if u # »’. Each component
is formed by symbols which can be used as identifiers of objects of a given class. This fixed
connection between identifiers and classes is necessary becanse we are representing those concepts
in the framework of OSA; so, each symbol should have a fixed, pre-defined rank. From an
implementation point of view, this is essential for static type checking of expressions. Here we
assume thal [ is provided by the FOOPS system.

In order to ensure least parse of terms, we assume that identifiers canuos have the same name
as fuuctional coustants (formally, [f| N Fy, = @, for any & € §). Lastly, the hmily I must
contain the identifiers of the objects specified in §: My, € Fu, for any 4 € C. Hereafter J may
alternatively be seen as an U™ x U-sorted family. by considering that I, = I, for v € €', 2nd

Tou=0forw# dorug¢C.

Definition 5.1 For a specification 5, a database state is a presentation with a signature of
non-moenotonicities, consisting of the following components:

1. A signature (U, <, D), where D = F UA U Id, for some /d C I containing the identifiers of
the objects in this state.

2. A signature 2 = £ N A of non-mouotonicities, containing redefined attributes.

3. A set DE = FE U AE U IdE of parsed [hequations, for some finite set /df of equations
establishing the values for some of the stored attributes of objects in /d. Actually, (D, DE)



30 5. DATABASE STATES

has ta be a conservative extension of (F U fd, FE), in the sense tha¢ the equations in DF
should nol relate functional expressions nor object identifiers that cannot be related by the
equationsin FEZ.

[m]

As in the convention for specifications, we use £}, DE and Id for the correspanding components
of a database state D, when it is clear from the context; otherwise, we use D(D), etc.

Observe that Jd and fdE are the components of the dalabase that can change from one state to
another, by the execution of expressions which may create, remove, or change the state of objects.

Strictly speaking, signatures of presentations representing database states should have a uni-
versal type, iu order to guarantee local filtering—which is necessary to imply that equalicnal
satisflaction is closed under isomorpbism [19). However, auy useful subset of FOOPS shauld in-
clude method combiners, which require the existence of a universal type (see Sectjon 7). Hence,
we assume thal this is provided for any specification. Otherwise. it could be simply added to the
signature of the definiticu above.

The restriction on the equaiions of database states is tmportant to guarantee that constructs
from the object level den’'t interfere with the semantics of the functional level. Otherwise, the
functional theory associaled to states wonld uot be related to the specified functional theory. This
would mean that the results yielded by expressions evalualed in states would not have the same
meaning as the correspondiug elements of the specified functional theory. If those restrictions on
equations capuot be satisfied. the specification waen't have auy associated database state. This
might happen if the eqnations iu AE are contradictary. For insiance, a specification jucluding

pr NAT

class C .

at a : ¢ ->» Nat
var X :- ¢C

ax a{Xx) = 0

ax a(x) =

where a is not redefined, viclates the restriction because the attribute eguations relate two func-
tional expressions (0 and 1) which are not related by NAT (assutniug this is a sperification of
the abstract data type of natural numbers}. {n fact. this specification has no assaciated dalabase
state.

Observe that some attributes may have no associated value jn a particular database state {this
implies that lhey cannot be evaluated). The restrictions on database states don’t prevent this, An
advantage of this flexibility is that new doesn’t have to initialize attributes; as briefly discussed
belore, defaull values for attributes might not even be available for specifications such as

pr HAT

clasgs List

at val_: List -> Nat
at next_: List -> List

*Formally. for a given ([}, DE)-algebra Alg. monotone excepl on §1. there exisis a monotane | £1U7d, FE)algebra
Aly' and an injective (F U fd)-homomorphism from Alg’ te Alg | F.



which specifies a recursive class of linked lists. Also, the operation remove doesn’t need to assign
an od hoc nil ar void value to atlribules containing the identifier of the abject to be removed, in
order to avoid dangling identifiers. Instead, after the execution of Temove, thoze aliributes have
no associated value. For example, the detetion of 12 [rom a siate in the form

ine 11 12 : -> List
ax wval 11 = 4 .
ax next 11 = 12

simply yields a state in the form

fn 11 : -> List .
ax val 11 = 4 .

where the atiribute next 11 is simply not defined.

We let Dg be the family ol all database states for a given specification 5; thatis, the family
of all presentations (with a signature of non-monotonicilies) that satisfy the requirements in
Definition 5.1, for a fixed 5. Note that Dg is not uecessarily the family of all ditabase states
reachable from Lhe initial one by execution of method expressions. Naturally, this family is
coutained in Dj.

Lastly, for a database state T and some ¢ € Tp, we assume that the choice of the representative
Iilp of the equivalence class [f]p is a functional term or an object identifier whenever this is
possible (i.e.. [t]p is in Truss if [Truia| N [tlp # @). We don’t give any more details on Lhe
defiuition of representatives. Instead, we let it be defined when needed.

5.1 Operations on Database States

In addition to the usual operations associated to presentations (e.g., [ |p). some specific opera-
tions on database states (presentations with a signature of non-monotonicities) are necessary fot
defining the operational semantics. Here we introduce them. First, we define an cperation that
updates databases. Later, we give operations for adding and removing objects lrom databases.

5.1.1 Updating Databases

The update of a database D with equatians T' is denoted by P ¢ T. Basically, this operation
adds and removes some equatious from a database. The added equations, denoted by T, establish
“new" values for attributes. The removed equalions are the ones that specify “old” values for Lhe
updated attributes.

First, we define the operation & for overwriting a set of equations by an unquartified, uncon-
ditional equation. Informally, for a sel of equations I’ and an equalion e, ' @ ¢ is aset consisling
of ¢ and all equations in T' whose LHS or RHS is not (syntactically) the same as the LHS of e.
Note that we may refer to the term “eguation” when we actually mean “parsed equation”.

Definition 5.2 The overwriting of a finite set of ©-equations by an ungquantified, unconditional
T-equation is defined by the following equations:



32 5. DATABASE STATES

s 0 (= {(L,r)});
s (Tu{(X.r.r.CN@,ry=Ca (), il = or { =7 otherwise,
s (PU{X VA, ONBUN=TELU{X.F,CO0

for any set of equations ', and any E-equations (X, ¥, 7, (") and (/,7r}. O

Assuming that { is the application of an attribute to argnments, T % ({, r) gives a set of equalions
derived from [ by adding the equation (I,r), and deleting all equaticns sp ecifying the vaiue of the
aliribute dencted by {. .

We need an auxiliary concept in order Lo extend the definition of overwriting for a set of
equations. A set of unquantified, unconditional equalions is called contradictory if it has two
different equations composed by the sanie term. The following definition formalizes this.

Definition 53 A set [' of unguantified, nnconditional S-eqnations is contradictory if it con-
tains two different equations (I, r) and {{'.r') snch that [ =" orl =" DO

Notice that this is a syntactical definition in the sense that a set containing two equatiens with the
same LHS bul different RHS is constdered contradictory, even if the RHS are equivalent (modulo
some equations). The definition ol overwriting is also syutactical in a similar sense. This is
approptiate for our purposes in this text.

Now, we can define overwriting for a set ol equations.

Definition 5.4 Given two finite sets of S-equations I' and ' = {ep,..., e}, for k> 1, ifT'is a
non contradictory set of unquantified, unconditional egnations then the overwriting of I by [,
denoted T' §(*, is defined as T i ey & -~ D ey, Alse, [ £ @ is defined as ['. D

Note that this uniquely defines the overwriting aperation since I'' is non contradictory, so I'fe, Pe;
is the same as T @ e, P e,, for any i, £ k.
Lastly, we introduce the definition that can be used to npdate database states.

DEﬁnition 5.5 The overwriting of a presentation (with a signature of non-monotonicities)
= (5,<,5.Q,T) by a non contradictory finite sel of ungnantified. nnconditional Z-equations
I"‘ denoted P 4 T’, is the presentation (5. <, 5. Q.T$T"). D

5.1.2 Adding Objects to Databases

The operation U adds some operation symbols to the signature of a presen tation (see Section 2.6).
So. it can beused to add objects to a database. withont any initialization. if the symbols represent
chject identifiers. In this way, DU Jd, Jor a [/™ » {/-sorted family 74 of object identifiers, adds
the identifiers in 1d to the database D of a specification §.

5.1.3 Removing Objects from Databases

The operation for removing abjects from databases deletes object identifiers from the signature
of a given presentation. Moreover, the equations formed by terms containing these symhols are
removed as well. This means that all relerences to an object are removed after this abject is
deleted; thar is, the attributes containing these references don't have any associated value in the
resulting dalabase. Here is the formal definition:



33

Definition 5.6 The deletion of a §* x S-sorted family /d of operation symbals from a present-
ation {with a signature of nen-mounotonicities) P = (5,<,Z.0Q.T), represented by P & Id, is the
presentation (5. <, — {4, — [4,T’}, where [’ is the set of all (£ — fd)-equationsin . O

6 Methods, Attributes, and Functional Expressions

Now . we start to describe a structural operalional semantics for the object level of FOQPS. In
this section, we concentrale on the semanlics of functional expressions, methods, aud atiributes.
lu the following sections. we progressively give (he semantics of other language feaures.

llere we use the approach for operational semantics introduced in [38]. We assume some
familiarity with that. The semantics is given by a relation that indicates how anexpression is
evaluated in a datahase state. A pair forined hy a method expression and a datibase stafe is
called 2 roufiguration. 'The relalion specifies the trapsitions from one confignration to another.
according to how au expression is evaluated and how it changes the dalabase; ewch transition
corresponds to a computational step during the evaluation of an expression

Let's formalize those concepts. Furst, for a specification S, we define the famuly Tg = Ty of
wethod expressions {without variables). By the definition of /, T U [ is regnlar whenever © 1=
Regularity of ¥ is guaranteed hy the definilion of specification, This implies the =istence of a
least type (parse) for method expressions. Thal’s why we can nse untyped (unpared) terms to
define the semantics. The typing functions LS and g can be used whenever some type information
1S necessary.

Second, for a specification &, the semantics is given by a transition relation

—5 C Conf(5) x Conf(5)

on configurations, where Conf(5) = Ts x Dg. This telation is inductively defined over the syntax
of method expressions by inference (transition) rules which indicate how we can mfer that lwo
confighiratious are related (i.e., there is a transition from one to the other). assumng that sonie
others are related. Only transitions that can be deduced fram the inference rvies tha we will give
in this text are allewed. In other worls, — ¢ 15 the least relation satisfying these inference rales

Note that thete is no fixed relation between the object identifiers nsed in a metkad eXpressica
and the ones in the database state where the expression is going to be evaluatd. So, even
expressions with identifiers of non-existing objects may be evalnated. Naturally. ths will only be
auccessful if these identifiers are not necessary for the evaluation of the expression

For conciseness, we use -+ for —g, when S is clear from the cantext. Alse, F — P’ stands
for (P, P") € —. where P and P’ are configurations.

6.1 Functional Expressions

The semantics of the functional level of FOOPS is basically given in [9] and [8]. Following
these, we introdnce one rule for evaluating functional expressions. Bnt first, we give the following
notation. for a speaification 5:

o datahase states 7. T € Dg: and

o functionalterms. v; € Tp. for i = 1..k. for sone natnral numhber k. Also, ¥ is a1 abbreviation
for vy, ... . v



34 6. METHODS, ATTRIBUTES, AND FUNCTIONAL EXPRESSIONS

The evalnation of a fenctional expression is performed in one transition and yields the evaluated
form of this expression. This is only done if Lhe expression is not already in its evaluated form.
Here we consider that the evaluated form of a functlional expression is the representative of its
equivalence class with respect to its related functional theory. The Rule Fum (for functional)
formalizes those aspects.

Rule 6.1 {(Fuu) For any f € F,

(f(3). D) — {[f(%)]es. D}
f f9) £ [f(3)]re. O

Frani the rule above, we can observe that a function cannot be evaluated unless its arguments are
functional terms. This restriction is essenlial to ensure that the operational semanlics motivates
a reasonable equality on method expressions; one thai preserves fuuctional equality. In order to
ilustrate the need for this restrictiou, consider the following specification:

pr NAT

fn T : Fat -> HWat
In g : Hat -> Nat
var X : fat

ax (X} = % + X
ax g(X) =2+ X

By equational reasoning, we can prove that f(a) is equal to g{n), for any term » of sort Fat.
Now, sauppose that we extend the above functional specification with

class € .
me m : C -> Nat .

and assume that m has side effects. If Functions can be evaluated with non functional arguments,
usually f(m(e)) won't be equal to g{m{a}), for some o:C. contradicting whal we proved before
about f and g; sc, functional equality is not preserved. This happens becanse f{m(o)) may
be evaluated to m(o) + m(o), whereas g{m(o}) may be evaluated to 2 * m{o). Clearly, the
evalualion of the first resulting expression invokes m twice, whereas the evaluation of the second
invekes m just once. Moreover, the side effects and the generated resnlts may be different, for

each invocalion.

6.2 Attributes

Before giving the semantics ol atiribute evaluatiou, we introduce some not ation. For a specification
S. hereafler consider arbitrary

e sort and class symbols v,u’,u, ul € U, fori = 1..&: and

* object identifiers and evaluated functional Lerms not having retracts: ty € T{F_Resrjui- fOF
i=1.k, where LS{v,) is u,. and », € Tr implies », = [[1,] rE. Also. we let v and v’ be in
{v1... e}, where LS(v) = u.



6.2 Attributles a5

We write “fully evaluated term®” to refer to object identifiers and evaluated [unctional terms not
having retracts.

For simplicity, we consider that the first argument (from left to right) of an attribute or method
is the identifier of the object that will perform the associated operalion. As we haven’t imposed
a corresponding restriction on signatures, we shouvld show how the semantics of the more general
case is derived from the semantics which assumes that simplificatior. But this can be easily done
{by changing the position of parameters, for instance), so we omit the details.

Aitributes can only be evaluated il its associated object exists; so the first argnment of the
attribute should be the identifier of an object in the database state being used for evaluation.
Also, tbe other atguinents must be fully evaluated before evaluation. This evaluation is atomic,
only reads the database used for evaluation (so, the state does nol change), and yields the value
of that attribute in this particular state. This value is determined by Lhe equations m that state.
The evaluation is ouly possible if the altribute has an associated value in that state; otherwise,
the evaluation is suspended. For example, non initialized attribules cannot be evaluated. The
Rule Att {for altribute) formalizes those aspects.

Rule 6.2 (Att) For any ¢ € A,

{a(©), DY — ([n())Jpur. D)
if a(%) € Tryguz, v € 7d(D), and [e(#)]pur is in Pryrgp)- O

The first conditiou guarantees that a{#) is an attribute application; note that ¢ € Aisnot enough
Lo guaraniee that, since o might belong Lo M as well. The second condition assures Lhat the
attrihute’s associated object exists. The Jast condition checks if the atiribute has an associated
value in the database. As we nse DUT {instead of T) in [Iﬂ(!-')l]ﬂuj, we can evaluate the attribute
expression even if 1t contains identifiers of objects not in the database. However, if this is the
case, the evaluation is only performed if these identifiers are irrelevant to determive the value
associated to that attribute.

By the conventiou introduced iu Section 2.3, {le{#)]lpus stands for [p(a(2}} i, since D is a
presentation with a signature of non-wonotouicities. As p gives the least parse of an expression
and the equations in T are parsed, only the mosi specific equations {Lhe ones assaciated to a
particular Lype of an operatiou) of P are used Lo define the value of a(%). This means that this
attribute is dynamically bound to the specialized version of its associated operation; on the other
hand, attributes used in aitribute equations are statically bound. In fact, using ihe theory of OSA
in this way, we can only obtaiu a partial form of dynamic binding for derived attribules, whereas
we can get a full form of dynamic binding for stored attributes.

6.2.1 Qualified Notation for Atirihutes

In Section 4. we have discussed a Lechnique 1o support qualified notation lor redefined attributes.
Now, we give its setnantics, by showing whalt's the specification correspondiug to a FOOPS module
bhaving redefiued attributes. Basically, the specification should contain all declarations [rom the
module plus the operations providiug the qualified notation, and one equation for each redefined
attribute. These equations stipulate thar a given qualified atiribute is equal to the relsted original
one. Far instance, a module with the following declarations



36 6. METHGDS ATTRIBUTES, AND FUNCTIONAL EXPRESSIONS

pr WAT .

subclaas & < &'

at a : i’ -> Hat

at a : i -> Wat [redet]

is Lranslated to a specification containing the declarznans above plus the following:

at a.i’ - &' -> Hat
var X : &’
ax a.a’(X) = a(X)

Because theequation ahove is parsed as
ax a.h' A'Nat(X.4’) = a.A'Hat(X.4’)

we have that a.4? is actually equal to the original version of a as desired

6.3 Methods Specified by DMAs

In order to define the semantics of method evaluation. we introduce some new notalion. Given a
specification 5§, we assume atbitrary

¢ S-varible family X such that [X| = {21,...,00}, w € LS(x;), and z; = z, mmplies
v, =, for t.j=1..k

e expressions formed by functions, attzibutes, variables, and 1dentifiers of specified cbjects®:
9:h, € Truaoimnn(x): and

¢ method symbol m' € {m.LS(21),m}. for some m € M not in the form symbol.class-nante.

As any specfication contains the sort Bool. hereafter we write (Y.X] / = r it ¢ instead of
(YX)l=rit {(c.true‘]}.

for any tern ¢ (as above) of sort Bool Alsc, © abbreviates ry.....7%, and § is a sequence of
variables frem X. Lastly, we write (¥ — 7} for {3 — ry....,2¢ + o)
Now, wegive a formal definition of DMA.

Definition 6.1 For a specification 5, a DMA is 2 T-equation in the form
(VXY a{m{E),g) =g it c

where m is a method: m(F) € Tys(x): Lhe result of m helongs to its associated class: L§(m{i)) =
LS5{z1); and @ is an attribute a(z,.§) € Tyx)- [f ¥ is the empty sequence Lhen a{m({#).3)
stands for aim(z)). O

The evaliation of a method specified by DM As is atomic and yields the 1dentifier of Lhe object
that executes this methed; this object must be in the stare where the method is evaluated Some
of the attributes of this object are updateidl The resulting database state is the overwrniting of
the previous stale by equalions specifying those updates. The LHS and RIIS of these equations

{Non comslunt method symbols are neither allowed in conditions nor in the RHS of DMAs,



6.3 Methods Specified by DMAs 37

respectively correspond to the updated attribute and its new value. These equations are derived
from the DM As related to the inethod (as required by tbe frame assumption).

However, only the related DM As witk the following properties are considered for evaluation:
the DM A’s condition, when instantiated with the method arguments, is valid in the current state;
the DM A’sinstantiated HS must be defined in the current state; and the DM A is either associated
to the class indicated by tbe qualified notation, or to a class greater or equal to ¥ and smaller or
equal to u', whete u is the class associated to the version of the method being evaluated, and o'
is the leasl class (greater or equal to u) redefining this method (if there is no snch u', any related
DMA may he used). Lastly, the method is anly evaluated if there are some alttibutes to update
and the updates are not contradictory; otherwise, it’s snspended.

All the aspects discussed above are considered by the following rule.

Rule 6.3 (DMA) For any m € M. Jet [ be the set of all equations in the form
a(r, 3 — ) = [9( — ¥)]pos
such that £ has a DM A in the form
YX)alm(i). )=y it g

true belongs to [¢( — ¥)]pur; [9(E — N)lpur is in Pryiypys and m’ = m and m € Ryr e, for
some y, ... U4y < @', imply that L5(zy) is smaller than or equal to the least class greater than
or equal to u; such that m is redefined.

If vy € [d(D) and I' is a non empty and non contradictory set, then

(m'(#), Dy — (n, D &)
s

Remembher that the operation & overwrites a database state (see Section 5.1.1).

DMAs can only specify a determiuistic hehaviour for methads. 5o, note that if there are
contradictory {or even redundant} DMAs iu E, their associated methad cannol be executed
hecause its specified beliaviour is cousidered nconsisteul; the evaluation is suspended. Obviocusly,
this should be averded. In the rule above, this is reflected by requiring T to be non tontradictary.
Similasly, suppose Lhat two versions of a method are defined, but the specialized version is not
considered a redefinition. In this case. following the last rule, equations from bath definitions may
be nsed to evaluate the specialized version. So, unless hoth versions specify the same updates,
they are considered inconsistent; again, T' will be coutradictory and consequently the method
wan'l be execnted,

The equations defining the versions of a redefined method associated la a class and a corres-
ponding subclass do not necessarily have to agree on the beliaviour that they specily. Indeed,
usually they don't. Thus, ouly the most specialized inethod equations can be used for execution.
This cortesponds to the semantics of dynamic hindiug. Thal’s why the resiriction on LS5{x) is
necessary in Rule DMA. Also, if a qualified uotation is used, observe that the indicated class
must he the sanie as the leasl class of 1), by the restrictions on m’; so. only equanons associated
to the indicated class ¢an be used for evaluation.

Rule DMA makes clear thal the adoption of the variaut syntactic rule (which is implied by
regularity) for redefinitions may cause some anomalies which require atteution and should be
avaided. For instance, consider the following specification



38 6. METHODS, ATTRIBUTES, AND FUNCTIONAL EXPRESSIONS

pPr BAT .

subclass & < &’
subeclass B < B’
me m ; L’ B’ -> A7
me m ;: i B -> A [redet]
at a : L1’ -> Nat .
var X’ %

var Y’ B?

var X : A

var Y : B

ax a(m(l’,¥*)) = ---
ax a{m(X,Y)) = ..

where m is redefined in a valid way. Observe thal the expression m(a,b’). for a:A and b’ :B"’.
caunot be evaluated using the DMA associated to the specific version of m hecause the class of B’
is not a sub:lass of the class of Y. Also. the DM A telated Lo the original version cannol be nsed
for evaluation because it’s not the most specialized one (i.e., the class of X* is not the same as the
class of a}). This situation should be aveidad Lecanse although m(a,b* ) is a valid expression, it
cannot be eraluated; it will be suspended forever.

From the definition of &, we conclude that this operation might not preserve the propecties
of database states if its arguments don’t satisfy sonie conditions. If this is the case in the use
of & in thelast rule, no trausition is possible (because the resnit of & is nat a valid database
state). This means that the method cannot be executed. So, this circumstance shonld also be
avoided. In general, this might happen if the stale has an equation speeifying an attribute value
and this eqiation is not removed when that attribute is npdated. For instance, this happens if a
DMA specifies an npdate [or a derived attribute. In this case, the state resulting from the update
is a presenation containing two equations deterhiining two values for the same attribute (one
corresponding to the origina) derived attributle equation and another associated to the update). If
these valuesare not equal (with respect to the related fnnctional theory), the resulting presentation
is not a valid database state, since it relates two expressions which are not related by the associated
functional taeory.

A similsr problem occurs when a stared attribnte is redefiued by a derived one. In fact. a
method asseciated to the superclass might try to update the redefined. derived attrihute. But we
have already discussed that derived atlribnies should not he updated. Far example, consider the
specificatio

pr BAT .

subclas C < G

me ® ; C!' -> G

at a : C* -> Nat

at a : C -» Rat [rede?]
var £ C*

var Y c

ax a(a(X}) =t

ax a(Y) = 0

where m isnot redefined. Note that the original version of a is a stored attribule. whereas the
specialized version of a is a derived attribute. Thus, the execution of m (o), for some o:C, adds



6.4 Methods Specified by IMAs a9

the equation
a.CHat(o.C) = 1.Mat

to tbe database. Buy this conficts with the equation
a.CHat(Y.C) = 0. MWat

which must be in any state [il belongs to AE). This would viclate the restriction on states hecause
we would then be able to prove that 0 equals 1 from the equations in the resulting slate.

Here we do not give a complete semantics for updating of inulti-argument stored aitributes. In
fact, this cannot be done in a simple and abstracl way if presentations are used to model database
states. So. we just give the semantics of DM As specilying the npdate ol only one atiribute, as in

axr a{m(0,XI),X} = e,

where evaluating m(o, x) only updates the artribute a{o,x). That’s why in the last rule we
requite the variables in §# to be in z. This implies that afler instantiation, the LHS, RHS, and
rondition don't have any variables. So, the resulting RIS and condition can be evaluated, and
the instantiated LHS specifies the value of only oune attribute

[t's difficuit to give the semantics of DM As snch s

ax a{m{0),k} = e,

where the execution of mCe) should npdate all atiributes ae,x), for any x:X. In order to consider
this kind of DM As, statea would have to keep a history of updates for each multi-argument stored
atiribute. This is needed becanse snch updates might not completely invalidate the previous ones,
since each update may determine values for an arbitrary range of attributes. The value associated
to a specific attribute could then be compnted by checking what’s the last update thal determines
it. This approach could be represented in our model for states. However, it tnrns aut to be very
detailed.

6.4 Methods Specified by IMAs

In this section we give the semantics of methods specified by IMAs. First, we give a formal
definition for IMA.

Definition 6.2 For a specification 5, an IMA is a E-equation in the form
(YX) ml[Z) = expr it c

where 71 is 2 method (i.e , m{t) € Tlf(.!x‘}] and erpr is a method expression with variables from
X: ezxpr € TE(_‘—)A ]

The execution of a tmethod specified by an IMA corresponds to the evaluation of this IMA’s
RHS (instantiated with the method atguments), even if the metbod’s associated objecl is not in the
database used for evaluation (methods specified in this way are seen as abbreviations for complex
expressions) Of course. Lhe evaluation can only happen if the IMA’s condition (instantiated
with arguments) is satisfied in the state where the method is going to be evalualed; otherwise
the evaluation is suspended. Also. similarly to DM As, only specialized IMAs should be used for
evgiuation. The following rule considers those aspects,



40 6. METHODS, ATTRIBUTES, AND FUNCTIONAL EXPRESSIONS

Rule 6.4 (IMA) For any m € M, if the IMA
(YX) m(z) = exprit ¢

is in E; true € [¢(F «— #)]por: and m’ = m and m € R, .. for some t,....un < u'. imply
that L5(£1)13 smaller than or equal to the least class greater than or equal to iy such that m is
redefined, then

{m'(¥), D) — (erpr(z — ), D)
o

Because of dynamic binding. only the most specialized IN A= can he used for evaluation. ('en-
trasting to DMAs (see comments foilowing Rnle 6.3), if two or more LA As that don't agree on
the specified hehaviour are used to define the same method, this method has a nondetermin-
istic behavicnr. Similarly, if two versions of a method are defined, but the specialized version
is not considered a redefinition. the 1M As related to both versions may be used to evaluate the
specialized version, which will probably be nondeterministic.

Lastly, observe that the same anomalies associated Lo mmethods defined by DMAs, due to the
adoption of the variant syntactic rule for redefinitions. might also happen lor methods specified
by IMAs (sce Section 5.3 for details).

6.5 Arguments

From the transition rules given so far, it can be abserved that the least sort of an expression
is always in the same connected component of {7 (with respect 10 <) as the least gort of the
result yielded by the evaluation of this expression. However, the least sort of this resnlt might
be greater, smaller or even not relaled (by <) to the least sort of that expression. This is dne
to the flexibility of the FOOPS type systemn. For instance, this happens because axioms are not
necessarily sort decreasing, like 1o

sorte L B C
subgort 4 < C
subsort B < C
clasg D .

at a :D -> &
var X : D .
ax a(l} = e

where @ is a constant of sort B. So, the evaluation of a(e), for 0:D, gives e. Bul Lhis resulting
expression has least sort B, whereas a(e) has least sort A, which 1s not related o B.
Another example where this inay happen is

subclais C < C?
subsorts 4 < &'
at a : C' ->» A
at a : C -> 4
var X ¢?

axr a(ll = o .



41

where o is n constant of sort A* and a is uot redefined {(there are no special eqnations for the
specialized version of a). Hence, a{o). for o:C, has least sort &, but evaluates Lo » which has
lenst sort K’, greater than A.

This fact has to be consideted wben evaluating acguments because an operation may not be
defined for the type of the result of the evalnation of one of its arguments. In this case, a retract
should be introduced Lo give the right Lype (o the result,

In order o produce results of interest, retracts should be evenivally eliminated {evaluated).
Otherwise, operations might block or return exceptional retracted valnes. This can be avoided
if the relracts in axioms cen be eventunally eliminated (a non sort decreasing axiom may be
considered a sort decreasing axiom, by inserting an adequate retract to its RHS). A fnactional
retract can be eliminated if its argnment is evalnated to an element that is equal (with respect
to the associated functional theory) 1o au element of the desired sort. Similarly, an object level
retract is eliminated if its arguinent evaluates to an object wlentifier of the desired class.

Now we introduce the Rule Arg for argument evaluation. Hereafter, we consider arbitrary
method expressious without variables: e, f e, el € Tg, for i = 1 .. k.

Rule 6.5 (Arg) Forany 1€ {I,...,k} and op € (FUAUM),q such that L5(e;).. . L5(e) < w,

(e D) — (e, D)

(op(et1y. -sere-. . ei), DY — (ople],...,T(e).. .., e}), D'}

where ¢ = ¢, if j # 4, for j = 1 .. &; and 7ie]) = e} if LS(e]) € LS{e), otherwise r(el) =
rru>ule)), where n’ = L5(el) and n = L5(e,}. ©

Notice that there is no fixed order to evaluate arguments; the order is nondeterminisiically chosen.
In fact, the result of the evaluation of the expression may be nendeterministic, if some arguments
have side effects. Furthermore, the evaluation of one argument might be interleaved with the
evaluation of the others. However, from the semantic point of view, a step (tramsition) in Lhe
evalualion of one argument cannot happen at the same time as a slep in the evalnation of another
argument. This could be supported by a “truly conenrreat” semanties. In fact, in Section 7.2.1,
we argue that the viable approaches for a “truly concurrent” semantics for FOOPS turn ont to
be equivalent to Lhe interleaviug semantics which we adopt liere.

7 Method Combiners

Now. we show how the semantics given in the previous section can be modified and extended to
support method combiners. It's simpler to directly give the semantics of each FOOPS predefined
method combiner independently, iustead of trying to specify some of Lhem in terms of others.
Here we introduce transition rules giving Lthe semantics of each combirer. Lastly. we give one rule
which specifies how new combiuers. defined in terms of the predefined ones, are evalnated.
Method combiners are conceptually different from methods and attribntes. Indeed. they don’t
correspond to operations related to objects. Hence, they have a special semantics. Amoag other
particularities, they offer some control over the order of evaluation of their argnments, and they
vield results depending whether some particnlar arguments are fnlly evalnated Similarly to
methods, method combiners are neither allowed in the RHS of DM As nor in condilions.



42 7. METHOD COMBINERS

I order togive Lthe semantics of method combiners, we assume that signatures contain one more
component: ¥C C £, formed by method combiners names. Moreover, we cousider that method
combiners are not mixed up (in the sense of Definition 4.1) with functions, methods, or attributes.
The following operations, which are in M, represent the predefined inethod combiners:

. _: 0T ->T;

o I, 0J_ vy ->u

® result_;_ : UT -> U

& if_then_else_fi : TUU -> U; and
e [ U0 >Ww

for any typesT, Ue /.

For supporting the paraliel composition aud choice of method expressious having unrelated
types, we coasider that a universal type Univ is in I/, This 1ype includes any class ar sort. That
is, # < Upir, for any w € /. However. Univ is neither a class uor a sorl. In this way, an
expressiomr s |{ 1 is well farined, even if the sarts of @ and T are not related. This is possible
because _||_can be parsed with the type "Univ Univ -> Univ".

Now. weproceed to give the semanlics of methed combiners

7.1 Sequential Composition

The argument on the left of the sequential compasition operator (—;_) has to be fully evaluated
before the evaluation of the other argument starts. Rule Seq (for sequential) is used for evaluaticn
of the left argument and it indicates that transitions from this argument provokes transitions from
a sequential composition:
Rule 7.1 (Seq)

(e. D) — (', T)

(e £, D) — (s f. D)

a

When the left argument is fully evaluated. there is a transition to start the evalnation of the
argument on the right, as indicated by Rule SeqE (for sequential composition elimination):

Rule 7.2 (SeqE)

{(vie, D) — (e, D)

Here we adopt a “wailing semantics™ for method expressions; that is, if a metbod cannot be
executed in a database state (because no axiom specifying its behavior has a valid conditian) then
the objectrequiring the corresponding service (the client) has to “wait™ until the service can be



7.2 Parallel Composition 43

providedA However, notice Lhat this does not necessarily mean that tbe client will be blocked,
since it may be execyting other tasks coucurrently.

In tbe last rule, tbe adoption of the “waiting semantics” is reflected by ensuring that the
right argument of the sequential compasition operator is only executed when the left one is fully
evaluated. This is also reflected in the rules for other method combiners in the following sections.
In order to capture a *non waiting semanties”, the evaluation of f should start as soon as e
cannot be evaluated. Thus, if a service is not available, the client doesn’t wait and proceeds to
the execution of the next service.

The first alternative was chosen becaure it gives a usefnl synchrenization mechanism between
clients and servers. This would have to he simulated by some form of “busy waiting”, if the
non wailing semantics were used. Usualily, this simulation carmplicales the code and it’s quite
mefficient. Ou the other hand, the “uon waiting” behaviour can always be uaturally and efficiently
simulated in terms of the “wailing” behaviour. For example, suppose thal the operation put inserts
an element in a buffer anly when the bufler is not full. Thus, adding the axiom

ax put(B,H) = B if full?(B)

releases the client if the buffer is fuil; the client doesn’t need to wait for a place in the buffer,

Furtbermore, the “nou waiting semantics” approach is not uniform, since in this case the left
argument of .;. may be discarded (when its corresponding service cannot be provided), but the
argument of an operation has to be eventually evaluated, For example,

put(b,5) ; put(b,4)
evaluates to put(b,4) in a state where the buffer b is full. On the other hand, no transition 1s
possible from put(put(t,5),4) in the same state.

7.2 Parallel Composition

Here we give an interleaving semantics for paralle]l compositior. So. transitions from the ar-
guments of a parallel composition operator are interleaved and they canse Lrausitions from the
parallel composition, as shown by the Rnle ParL (for porallel comnposition Jeft argument evalu-
ation)
Rule 7.3 {(ParL)

(e, Dy — (¢!, D'}

(el f. Py — (1] f. D)

a
and the symmetric ParR (for parallel composition right argument evalnation):

Rule 7.4 (ParR)
D)= {1 D)
(el £.DYy— (et ', D)




44 7. METHOD COMBINERS

Also, the arguments of a parallel compasition operalor can be eliminated when they are folly eval-
uated. This isspecified by the Rules ParLE {for parallel composition left argument ¢limination)

Rule 7.5 (ParLE)

{vile. D)y — {e, D)
O

and ParRE (for parallel camposition right argnment eliminatiot):

Rule 7.6 (ParRE) -

{el) v, D) = (. D)

7.2.1 =“True Concurrency”

The juterleaving semantics doesn’t consider the behavionr caused by simnltaneous iransitions
from the arguments of the parallel composition operatar. This behaviour is usually considesed by
a “truly conrnrrent” semantics. In fact, “true concurrency” seems maore natural than interleaving,
since objects might be part of a distributed system (where expressions might be simultaneously
evalualed). Aence, let’s consider the introduction of the “truly concurrent™ parallel compesition
combiner: _/|I_ : U U -> U, for any VE U.

First, remember that an attribute cannot he both read and writien at the same time because
of physical imitations. So, simultaneons transitions from the arguments of a “truly concurrent”
operator are only possible if the attributes accessed (i.e. read and/or written) in one transition
are differenl from the attributes written in the other. Alsa, if an ohject is removed ot created in
one transition, it cannot be accessed, reinoved, or created by a simnlianeous transition.

Some ofthose constraints cannot be elegantly expressed here hecanse they rely on information
that is abstracted by our framework. (For example, there’s no simple procednre for determining
what altributes are tead during a given Lranmsition. since the evaluation of attributes is specified
in terms of lhe representative of an equivalence class modulo equations.) Hence, instead of using
the constraints above for defining a rule considering simultaneous evaluation of arguments, we use
a weaker condition: the updates made by one transition don’t interfere with the updates made by
a simultaneous transition. Formally, if

{e. D) — (¢, DY (1) aud (f, D) — (f', D3} (2)

then

{e, Dy} — {e'. I"} and (f. D) — (f. D")‘

It’s easy to verily that this is implied by the constraints mentioned at the beginning of this
section. Fust, observe that Py and 1) can be respectively reptesented in the forms

PSROUNOET and DS RO'UNC T,

for some R0, NO, T, RO', NO’ and 'Y, indicating the changes made by € and f, where RONNQO =
@ and RO'NNO' = . So, if the transitions 1 and 2 are possible then {f, D;) leads to

{(ff.DyeRO'UNC & T,



7.2 Parsllel Composition 45

since the stronger condition assures that the first step in the evaluation of f doesn’l access the
changes made by the first step in the evaluation of e. A similar reasoning can be used to show
that {e, Pz} leads to

(¢, D S ROUNOST).

Lastly, it remains to check that the stronger condition imples that Dy 2 RO'UNO'E T’ is the
same as 17, @ ROUNO @& T This can be easily done: we omit the details.

Now we give the semantics of _{|1_ nsing the weaker condition. Basically, .11 is defined
by the rules for interleaving, replacing _l11_ by _[( | |., plus Rule TCPar {([or fruly concurrent
parallel composition).

Rule 7.7 (TCPar)
(e, D) = (€, Da).4L D) — {1, D),
{f.D) = (f'y Da).{e. Dy} — {. D)

eI DYy — (11T

o

In faci, the weaker condition used above allows more iransitions than expected for a “truly
concurreut” operator However, this turns out to be enough [or our purposes here: we are
interested iu proving that the interleaving and the “trnly concurrent™ aperators are equivalent
(with respect Lo some mild notion of observalion equivalence) in our framework; basically, we
want to show that the extra rule for simultaneons evaluation of arguments is redundant. So, if
we prove that this is the case considering the rule above, jt follows that this is also the case if we
consider a rule with a stronger premuse Tlus equivalence is what should be expected since it’s
desirable to specify systems of distributed objerts without worrying whether computalions are
being carried out simultaneously.

Here we suppose that Lhe nolion of eqnivalence that we are interested doesn’t distinguish a
coufiguratiou " having the Lransitions

C — O — (

from a coafiguralion C” having the transitions

s ¥

U
2+

- — C; —_—
where (] and C7} are respectively (observation) equivalent to 'y and C'z; and any other Lransition
from C’ is matciied, in a similar way, hy some traasitions from €, and vice versa.

This is a quite mild assumpltion on equivalences over configurations. Roughly, il says that a
configuration that can lead to a resulting confignration in either one or two transilions is equi-
valent to a configuration which can reach an eqnivalent resnliing confignration in two equivalent
transitions. This should be valid for most reasonable and interesting observation equivalences be-
cause the configurations reached from C and C are equivalent, and any sequence of observations
that can be made on the intermediate states reached hy one of the configurations corresponds to
a possible sequence of observations from the othet.



46 7. METHOD COMBINERS

We lei = denote the equivalence on configurations that we are interested. Thus the following
theorem establishes the equivalence of the two operators for parallel com position.

Theorem 7.1 For any database state Dand method expressions e and f,
(el /D)= {elll f, ). (w)

Proof: We split the proof in three cases. First, we consider that both ¢ and f are fully evaluated.
In this case, the possible transitions [rom (e i | f, D} aud {e | 1| f, D} are justified by Rules 7.5,
7.6, and the corresponding ones to _| | |

{ell f, D) {el11 f, D)
N Y
(e, D) D) (e. D) (f- D)
From these diagrams, we can conclude that {¢ |1 f, D} is equivalent to (e 11| f. D), siuce the

transitions from the first (1 and 2) ate maiclhed by the transitions from the second (3 aud 4). in
the sense that they lead to equivalent configurations {as = is an equivalence, it is reflexive).
Now we assume that f is fully evaluated but ¢ is not. Thus, we have the following possible

transitions:

(el) f. D) {elll f, D}
N
1 2 / \
{e. D} (eIl f. Dy) {e. I f, D)
whenever (¢, D) — {¢’, D1). This is justified by Rules 7.3. 7.6. and the corresponding ones to
i11. In thediagrams above, (ransitions 1 and 3 cleatly match. In the meaniime. lel’s assume that
(" 11 f. Dy = (e [1{ f, Dy). (€)

So, we can mfer that transitions 2 and 4 maich, what proves w for this case

We canuse a similar reasoning if e is fully evaluated hut f is not.

Lastly, il neither € nor f is fullv evaluated, the possible transitious from hoth configurations
(as defined by Rules 7.3, 7.4, the corresponding ones te _11]_. and Rule 7.7) are the following:

(ell £, D)

(' 1) f1. DY



7.2 Paralle! Composition 47

and

" 11 f, Dy 7 {e))) f', Dg)

Y ¥ +~

(e /DY

whenever (e, D) — {e', Dy} and (f, P} — {f’. DP2). By Rule 7 7, transition 7 is only possible if
{f- Dyt — (f', D'} and (e, D) — {¢. T'): this justifies transitions 3. 4, 8, and 9. Trausitions !
and 2 respectively match 5 and 6 if we assume that

{11 D= (e 111 £, Dy) ()

and

(F“f’.pg)z(f‘“!f'. T’g) (h)

Also, by Lhe assumption we made aboul &, transitiou 7 (together with trausition j followed hy
8) is matched by tranaitiou 1 followed by 3. Tlus proves w for this case.

Now, we have only to check propositions £,1, and k. They can be informally justified by a
similar Teasoning as tiie one used for w. However, Lhis can only be formally verified ([ we are
able to use the formal definition of &= with aun associated proof technique. For example, this may
be done using the notion of equivalence given in [3] wilh its related proof technique; we omit the
details here. O

From this theorem and assuming that =15 preserved hy _| | _, we can guarantee that an expres-
sion uot containing _11 |_ is equivaleut to an expression obtained from the first by substituling
11 _for _I |- Similarly, | [ |. cau be replaced by _| |_. Hence, we conclude that there is no need
to introduce the operatar _I1]: it 16 semautically equivaleut to _| 1 - and has a mote complicaled
semantic definition. The extra rule for .1 || is redundani.

Furthermore, the theorem ahove indicates that the implementation of mtetleaving may be
“truly concurrent”, in the sense that two expressions might be simultaneously evalualed, given
some mild couditions. Fortunately, as we have shown, this doesn’t generate any behaviour that
cannot be observed fram the interfeaviug of the evaluation of the two expressions

As mentioned befare. simultaneous transitions are ouly possible if the altribules accessed in
one transition are diferent from the altributes written in the other. This is a realistic restriction
if attiibutes are directly implemeuted in terms of memory cells and transitions correspond to the
execution of atomic trausactions, which imply that attributes might be blacked, However, this
restriction conld be relaxed if the implementation provides a copy of each attribute: that is, one
copy for reading (access) and another for writing (access). The reading copy could he nsed by
mauy clients at the same time, whereas the write copy conld be blocked by only one client at
a given time. In this case, a complex mechanism is tecessary to keep the consistency between
the two copies. On the other hand, the readiug copy may be read at the same time that the
writing copy is beiug updated. Also, considering thal an atomi¢ transaction wenld only hlock




48 7. METHOD COMBINERS

the attribules that might be updated, a transaction could write to an attribute being read by a
simultaneous transaction.

Clearly, this approach doesn’t seem to be practical. 1t's likely that the efficiency gain obtained
with the simultanecus exeeution is not worth because of the burden related to the mauagement
of copies and extra memory space necessary to keep a topy of each attribute. Despite this,
disregarding implementation issues, we supecficially explore the consequences of this approach,
from the semantic point of view.

Firsl, let’s assume that the operator _//_ : U U ~> U, for any U € I/, is defined by rules like
the ones related to -l |- plus one rule that allows simultaneons transitions whenever the atiributes
written in one transition are different from the attributes written in the otber, Also, an object
removed or created in one transition cannol be accessed, removed, or created in a simultaneous
transition. (So. the only difference between _I |- and _//_is that the second allows attributes
read in one transition to be written in a simultaveous transition.) As in the definition of _J | I,
sotne of the conditions necessary to formalize a rule considering simultaneous transition cannot
be elegantly expressed in our framework. However. we can still argue that _//_is not equivalent
to intetleaving. This means that Lhe extra behavionr assotiated to _/ /- cannct be expressed by
the interleaving of two transitions.

First, consider the following specilication defining a class of memory cells for storing natural

numbers
pr NT
clags Cell
at v : Cell =-> Jat
me _:=_ : Cell Hat -> Cell
me _.=_ : Cell Cell -> Cell

vars C C* : Cell

var I : Nat .

az v(¢ = M) = ¥ .
ax v¥(C := C') = y(C*)

where each object of Cell has an attribute v (for walue) which stores 2 natural number, and two
methods for changing the cantents of a cell.
Now suppose that X and ¥ are identifiers of cells; the evaluation of the expression

P =Y /7Y =X

in a database slate I where v{X) = © and v(¥) = 1 is illustrated by cthe diagram in Figure 1,
where D) and T*; are respectively the states

D v(X) = 1and DEw(Y) = 0.

Note that transition 5 wouldn’t be possible if _I | [_{or .| 1_) were used instead of _//_. As can be
seen, iL's not equivalent to 1 followed by 3. or 2 followed by 4. This show s that the two operalors
are not equivalent, siuce the resulting states are clearly not (ocbservation) equivalent.

The operators are not equivalent, but there are weaker relations amon g the different operators
for parallelism. For example, the expression analysed above is eqnivalent to

= w(Y) || Y := v(X)and X := w(¥) ||| Y = w(X).



7.3 Nondeterminstic Choice 49

(X /7 ¥ = 4, D) (X ;=¥ // v ,D)
3 5 4
/ \x
X /7Y DY) = 1) (X /7Y DD = 0)

(X // ¥ . DEv(x) = 1.5%lY) = 0)

Figure 1: Transitions generated by X 1= Y // ¥ := X,

since v{X) and v(Y) have 1o be evaluated before the assignment can be execnted (Lhis is nol
alomically done). Also, we can say that & // T is tefined by e (|| t (or @ |i £). for any
expressions 4 and t. because any beliaviour observed from the evaluation of the first can also be
observed from the evalu ation of the second (bat not the other way around).

Lastly, it's important to observe that the new operator is sensitive to the gronp ol attributes
updated by its arguments. For example. consider the following ohservation equivalent expressions:

[¥X:=%¥; ¥ :=Y Jand X := Y,

Also, we have that ¥ := X is equivalent to ¥ := X. Now note that the expression
MY :=x /7 % := ¥

is not equivalent lo
()Y =X // [ X =7 ;¥ :=27¢7]

since the (sub)expressionsof 1 can he executed at the same time {Lhey write Lo different attributes).
whereas this is not possible for 2 (hoth arguments spdate Y). In fact, expression | might behave
in a way that cannot be simulated by 2.

From the previous example, we conclude that it is not possible to find a reasonable notion
of equivalence that 15 preserved by this operator. This essentially means that ///. cannot be
used for compositional software development. So, 1it’s not very useful in practice That's another
reason for choosing an interleaving semantics for FOOPS parallel composition.

7.3 Nondeterministic Choice

The choice operator (-] ) nondeterministically chooses one of its argrments for evalnation. Using
process algebra’s terminology (see [24, 32. 23]). here we opt for an erternal choice operator rather
than an mternal choice operator. In fact, the latter can he simply defined in terms of the former
[see Section 3.2.2)



30 7. METHOD COMBINERS

Essentially, the nondeterminism of an external choice is partly resalved by the environment
where Lhe choice is evaluated. In fact. an argumcnt may only he chosen if it can be evaluated in
the current environment, or if it's already fully evaluated. If both arguments may be chosen. the
operator autonomously (internally) resolves Lhe nondeterminism.

Transitions from the choice between two expressions correspond Lo transitions from one of the
expressions. This is specified by the Rule ChoiceL (for choice left argument evaluation)

Rule 7.8 (ChoiceL:)
{e. Dy — (¢, DY

(01 £. D) = (¢, D)
a
and the similar ChoiceR (for choice right argument evaluation)
Rule 7.9 {ChoiceR)
(. DY — (.
(el f.0)—{f. 1)

[m]

Moreover, a fully evaluated argument may be chosen by the choice without changing the datahase.
This is expressed hy the Rule ChoiceLE (for choice left argument elimination)

Rule 7.10 (ChoiceLE)

{(vT1e. D) — {o. D)
a

and the symmetric ChoiceRE (for chotce rigth argument eliminalion)

Rule 7.11 (ChoiceRE)

(e, D — (v, P)

It might be difficuli 1o efficientls implement the kind of choice disrussed here because it tries
to “guess” whetler an argument can be evaluated or not. This contrasts with an internal choice
operatar, which can be simply and efficiently implemented. Also, the internal choice is likely
to be niore useful in FOQPS specifications. However, we have adopted an external choice for
two main reasons. First. it's more fundamental and can be ased to define internal chaice in a
very simple way. Second, choice is usually used in FOOPS as an abstraction tool for writing
specifications (when it’s desirable ta abstract ftem the reasons which determine one behaviour or
another). rather than as an operator to construct implementations (as usually necessary in process
algebras).



7.4 Result a1

7.4 Result

As probably expecied, the rules giving the semantics of the result method combiner should be
similar to tbe rules for sequential compesition. This is confirmed by the Rule ResultL for
evaluation of the left argument of the result combiner.

Rule 7.12 (ResultL)

(6. D) — (', )

{result e ; f, D) — (result ¢ ; f, D)
m]

When the jeft argument. is fully evaiuated, the evaluation of the right one may start. But contrast-
ing with sequential conposition, the left argument. is not eliminated. Those aspects are described
hy the Rule ResultRR (for reswlt right argument evaluation):

Rule 7.13 (Resultlt)

(6. D) = (e, D)

{result v; e, D} - {result v ; ¢, T}
m]

Finally, when both arguments are fully evalualed. the left one is given as result, asindicated by
Rule ResultE (for resul? eiimination):

Rule 7.14 {ResultE)

(Iesult vy, 'D) — (?_“ D}
[w)

7.5 Conditional

Besides conditional axioms, FOOPS has a method combiner that aay be used for apecifying
conditional behaviour. In flact, this combiner provides a more general mechanism than conditionai
axioms because its condition may be an arbitrary method expression, whereas the Jatter cannot
have condilions containing method symbols or method combiners.

First, the conditional method combiner (if _then.elgse_fi) fully evaluates its condition. After
that, based on the result, one of the alternatives is choosen. The Rule IfCond specifies the
evaluation of the condition:

Rule 7.15 (IfCcnd) For 2ny ¢, ¢’ € Tr,

{¢, D) — {c!, T¥)

{if ¢ then € else f fi. P} — (if ' then ¢ else f 1i. D)



52 7. METHOD COMBINERS

When the condition is [ully evaluated, the first alternative is given as result, if the condition
is true. as indicated by Rule HCondT:

Rule 7.16 (IfCondT) If ¥ =gg true then

(if v then e slsa [ 1i, D) — (. DY
m}
If the condition is {alse, the conditional yields the second alternative:

Rule 7.17 (fCondF) If v = pf false then

{if v then e else f i, T — (f. TN

1t might seen that this method combiner could be equivalently defined as a function, in terms
af equalions at FOOPS functicual level. However, remember that lunctions can only be evaluated
if their arguments are fuuctional terms or object identifiers, This implies that Lthe alternatives of
a conditional would have to be evaluated before one of them is choosen. In general. that’s not the
desired behaviour because the evaluation of the alternatives might change the state.

7.8  Atomic Evaluation

Intuitively, the atomic evaluation of an expression corresponds to its evaluation in only one step
(transition). In fact, this means that the attributes accessed by aun expression beiug atomically
evaluated cannot be modified by other expressions being concurtently evaluated. Atomic evalu-
ation might is necessary when an expression has to be evaluated without interference from others;
that’s why FOOPS provides the atomic evaluation eperator ([]). Following those intuitions, we
introduce the next rule:

Rule 7.18 {(Atomic)
(e, D)=~ {0, D"

(L), D) — (v, D'}
where —° denoles the transitive, reflexive closure of —%. D

Observe that the atomic evaluation ouly succeeds if the related expression can be Inlly evaluated.
This corresponds to the semantics of atomic transactions iu database systems, where the (act
that the expression cannot be lully evaluated is considered a failure. Usually, alter a failure,
transactions recover the state previous to the begiuuiug of the transaction: that's why tbere iz no
transition if the expression cannot be fully evalualed.

This approach is really useful for database svstems. but it might be quite inefficient from the
implementation point of view. So, if efficiency is essenlial, the atomic evaluation operator should
only be nsed for expressions that cau be fully evaluated in the contexts where Lhey are used.

*We omit the obvious rules necessary for defining —*.



7.7 Method Combiner Drefinition 53

If the evaluation of the expression to be atomically evaluvated doesn't terminate, the atomic
expression doesn't tlerminate as well in fact, it behaves as a divergenat process (infinite loop) that
doesn’t modify the state, since the updales made by an atomic expression are only visible afier
its evaluation (intermediate states reached during the evalnatiou of an atomic expression cannot
be ocbserved}. The following rule reflects those comments:

Rule 7.19 (Diverge) If {e, ) is nou terminating,

(Lel, P} — {L€1, D)

[m)

where

Definition 7.1 A renfiguralion is terminating if there 1s no infinite sequeuce of —-transitions
from i1 O

From the rule above, we conclude thal practical applications should not nse the alomic evalu-
ation operalor far expressions whose evalnation, in the contexts where they are used, might not
tetminate.

7.7 Method Combiner Definition

During evaluation, method combiners defined by the user are simply replaced by the expression
that they abbreviate. as described hy Rule MCDef [for method combiner definition):

Rule 7.20 (MCDef) For any me € MC and erpr € 7oy, if she axiom
(YX) me(2) = ezpr

is in Eand me(7) € 7:\1(.)[)()-

(TJ?(‘(E’]. D} — (_E:pr‘(i — E. 'D)
where & stands for ey, ...,e;, and LS{e,) € £LS(x;), lori=1., k. Q

As can be seen from the rule ahove, the arguments of a method combiner don't have to be fully
evaluated before the combiner is replaced by the expression that it abbreviates. lu particular, they
might contain method and method combiner symbols. This is necessary for most applications. In
this way. conditional axioms rannot be used to define methed combiners, since arguments would
have ta be evalyaled before the evaluation of the condition.

Observe that mntroducing more than one axiom for the same method combiner gives a non-
deterministic behaviour for it, since all axioms can be applied. In particular, adding rules for a
predefined method combiner might completely change its behavicour. In fact, this cannot be done
in FOOPS modules.



54 8 OBJECT CREATION AND DELETION

8 Object Creation and Deletion

Dynamic object crealion and deletiou are respectively provided in FOOPS by the operators new
and remove. In tbis section, we describe the semantics of both operators. First, we consider object
creation. Later, we introduce object deletion. These operators are modelled as method combiners
because they are associated to classes, not to objecis; that 1s, their corresponding operations are
nat performed by nobjects. Hereafter we consider that signatnres coutaiu the followiug special

combiners:
& new.C() : => C.
e new ! C -> C, and
+ remove : C -> C,

for each class ¢ € €. {This extends the definition of siguature, in the same way as done in
Section 7.) Observe that the class name is used Lo form the operation nmame of the first creation
operation: tlus is important to indicate the class of the objects Lo be created. A class name is
not necessary to distingnish the diflerent versions of the other ¢reation operaliou because this
information 1s already provided by the class of ils argument (identifiers have a fixed aud pre-
defined class; see Section 5).

8.1 Object Creation

For a given class C, the cperator new.C() creates an ohject of C having an identifier nondetermin-
1stically cheosen from I, but that 1s not already being nsed for another object. This identifier is
given as the result of the evaluation of the operator, as specified by the next rule:

Rule 8.1 (Creation) For any class ¢ € (" and any identifier v € Iz not associated to an object
in D (ie. v ¢ 1d(D)),

{new.C), D} — (v. DL

where 17 is a T7* x U-sorted family containing v only: that is, Vig = {v} aud Vo = @ if w# A
or » F¢. 0

Remember that the operation U adds objects to a dalabase siate, according to the identifiers given
as arguments, without setting their attributes (see Section 5.1.2}).

Nole that the creation operation ditectly introduces unhounded nondeterminism to FOOPS.if
the fanily [ of object identifiers is forined by infinite sets. In this case, infinitely many identifiers
may he choosen for creating an object.

The operator new creates an object of the same class as the identifier given as argument, if
this identifier is not already associated to another ohject (otherwise, the cperation cannot be
executed). This identifier is used for the created object and vielded by the operater. These
aspects are formalized by Rule CreationId (for object creafron with :dentifier):

Rule 8.2 (Creationld) For any class ¢ € (" and auy identifier v € Iz uot associated to an object
in D (re., v ¢ Id(D))},

{new(v), P} — (v. DUV}

where V is a I/™ x {/-sorted family containing v only, as defined in Rule 8.1. D



8.2 Object Deletion 55

From this rule, we conclude that in order to create an aobject of a given ¢lass, we have 1o know
what ideutifiers are related to this ¢lass. Only these identifiers may be nsed for creating and
accessing objects of this class. ln practice, this is not a big restriction. For example, each family
in { can be choosen {by the FOOPS system) to contain only names prefixed by the name of the
class associated to the family. So. we can easily krow what are the identifiers associated to a
given class.

Observe that the operators for object creation don’t assign initial valnes for attnbutes.

8.2 Object Deletion

The operater remove receives an object identifier as argument, removes its associated object from
the database state, and yields this identifier. 1f this identifier doesn't correspond to an object in
the state, the aoperation 1s suspended. The following rule formalize those aspects:

Rule 8.3 (Deletion) For any class € € C' and auy identifier v € fg associated to an object in D
(ie.. v € Id(D)).

{remove(v), D} — {v, POV}
where V is a U™ X {/-sorted family containing  only. as in Rule 81 G

Remember that the operalion < removes fram a given database state all references to a particular
object (see Section 5.1.3). This is necessary to avoid dangling identifiers. This operalion might
seem extremely centralized and inefficient, contrasting with the notion of distributed objects: bni.
in fact, it can be implemented in an efficient and decentralized way.

As the argument of remove doesn't have to be an object identifier, we need one more rnle
(DeletionArg, for evaluation of the argument of the delefion operation) indicating how the
argnment should be evalnated

Rule 8.4 (DeletionA rg)

(e. D) — {¢'. D)

{remove(e), DY — {remove(e’}, D)

9 Protected Objects

In this section we give the semantics of abject protection. An informal deseription of this mech-
anism was given in Section 3.2.5. First. we assume that signatures have the combiner addpr for
changing the protection status of objects, and new object creation operations:

s addpr : € Univ -> C,
® new.C : Univ —> C, and

e new : C Univ -> C,



56 9. PROTECTED OBJECTS

for each class ¢ € €. Also, the following combiners shenld be in signatures, for representing the
abject permisgion given as argnment Lo new:

® _++_: Univ Univ -> Univ,

¢ {} : -> Univ, and

¢ any : -> Univ.

Using those combiners we can create terms in the following forms: any. {}, and o ++ &, which
respectively denote the set of all identifiers, the empty set, and the set containing the identifier o
and the identifiers in the set denoted by 5. where 3 is a term in one of the forms shown above.
Only terms in those forms denote an object permission.

Second. we have to modify the strucinre of configurations to incorporale information abont
object permission. For a specification &, this information 15 represented by a finite mapping
|relerred as the permussion mepping), helonging to Perm(85) = |Ig| — Plig|, which maps an
object identifier o 10 the set of idenlifiers of the ohjecis that can directly invoke methods associated
to 0. S0, we let confignrations be represented by the elements of

PrCoaf(8) = Tg x Perm (&) X Dg.

We drop the snbseripts when not confusing. and we write {e, {p,D)) for (e,2,D) € PrConf(5).
For convenience, the elements of Perm(5) x Ds may also be called database states {containing
object permission information).

We define the semantics of FOOPS with ohject protection following the same approach used in
Section 6. Basically, for a specification &, we introdnce the relation —5C PrConf{S)x PrConf(5)
(i’s defined by the rales given in Lhe previous sections—excep! Ruoles 6.3, 6.4,8.1, 8.2, and 8.3—
and some extra rnles to follow, assnming Lhat

¢ database stales have some extra information: that is, the variables D and D’ range over
Perm{S) x Dg, rather than over Dg;

e the operations on Dg are composed with the projections and constructors associated to
Perm(5) x Dg (let ¢ and db respectively give permission mappings and database slates)
For example, for P € Perm(S) x Dy, we now assume that P4 [ stands for

(o(D).db{(T) 1 )

{similarly for U and =), and [e}p is an abbreviation for He]]db{p) {similarly for [e]p and
14(Dy).

Note that the rnles introdnced in previons sections are still meaningful alter the modification on
Ihe structure of states. since we have also inodified the operations nsed to access slates to consider
the new strnctnre.

In order to indicate the objecl reqnesting a particnlar service, we introduce the method com-
biner _!_ : T Y -> T, for any types T, U € /. The second argument of this operator is the
identifer of the object reqnesting the evaluation of the first argnment. The second argument of
_!_and a permission mapping are enongh Lo give the semnautics of object protection, by modifying
some of the transition rules mtrodnced in previous sections (Rules 6.3. 6.4, 8.1, 8.2, and 8.3} and
inclnding mew ones.

First we specily how _!_is propagated 1o subexpressions. This is necessary because a method
can only be evaluated if there is an indication of the object which invoked it. For this, we have
o add some new rules. Hereafter, we consider an atbitrary object identifier o € 1.



9.1 Attributes, Functions. and Identifiers 57

9.1 Attributes, Functions, and Identifiers

The evaluation of attributes, functions, and ohject ideutifiers doesn’s update objecis; hence. it
doesn’t depend on the mechanism for object protection, as formalized by the following rule:

Rule 9.1 (PrE) For any € & Tpaaui.

(e1o0,D}y — (e, D)

o

9.2 Arguments

The next rule shows how the inechanisin for object protection is propagated to the arguments of
methods, il they do not already have it. In the following rules assume that k& > 1.

Rule 9.2 (PrM) For any m € M, , such that L5(e1),.... L5{ex) S w. il ¢, forsomel < i < k,
is not in the form € ' f then

(m(e) t 0, D) = (m(i t o) t 0. T
where ¢ ! ostands for €1 ! 0,...,¢4 ' 0 O

The evaluation of method coinbiners is independent of the mechanism for object protection.
Combiners just propagate this mechanism, if necessary, as specified by the next tworules:

Rule 9.3 (PrMCP) For any me £ M, such that L5(e1),...,LS{ec) € w, ile,, [or some
1 <1<k, ienot in the form e ! f then

{me(&} ! 0, D) — (mc(E ! 0). D)
a0
Hawever, if the arguments already have Lhe mechanism, it’s not propagated, as formalized by 1he
following rule.

Rule 9.4 (PrMC) For auy mc € MOy, such that L5(e),.... LSTex) < wlalle.for 7= 1. .k,
are in the form e ¥ f Lhen

(melz) ' o, D) —~ {me(2), )

Now we give a rule [or argument evalnation of expressions formed by the method combiner
1

Rule 9.5 (PrArg) Foranyi € {1.... ,k}and op € (FUAUM)y ysuch that LS(e)) .. L8[ s} <
o,

{e. D) — (e}, T)

{op(ers--hey o) Yo D) — (op(ei....,f(ef),....ei} te, T

where Eg = g;,if ) # i, for j = 1..k; and r(el) = €, il LS(€]) < LS(¢;); othawise, T(el} =
riu’>u(e]), where v’ = LS(e]) and u = LS(g;). Q



58 9. PROTECTED OBJECTS

Note that the original rule for argument evaluation is not replaced by tbe abave rule, sipce it’s
stil] useful for evaluation of the arguments of attributes, for example.

9.3 Methods

Now we introduce new rules for metliod evalualion. Those are small modifications of the rules in
Seclions 6.3, 6.4, and 6.5. Here the behaviour of a method depends on the object that requested
il. The method might be executed or suspended, depending whether the invocation is allowed by
the object protection mechanism. For a given state D, only the objects in g{ D}(v) can directly
invoke methods of v {when v is not in the domain of g{ D), g{D)(v) denotes the empty set).

9.3.1 Methods Specified by DMAs
First we consider the evaluation of metlods specified by DM As.
Rule 9.6 (PrDMA) For any m € 3 let T be the set of all equations
a(v1, )7 — v) = [o(F — t)]pui
such thar £ hasa DMA in the form
(YX)a{miz),§) =g 11 ¢;

true belougs to [c(F — #)]pur: [e(F — ©)pus is in Prypepy; and m’ = m and m € Ry ., for
sone ¥1,...., < ®, imply that L5(z|) is smaller than or eqnal to the least class greater than

or equal to uy such that n is redefined.
v, € Id(D), 0 € p(D)(%), and T is a non empty and nan contradiciory set then

(M) 1 0. D) = {u, DAT)
O

9.3.2 Methods Specified by IM As

Similarly to what was done in the last section, we modify the rule for evaluation of methods
specified by IMAs. Note that the execution of a nelhod m specified by an IMA sometimes
requires the invocation of methods assocjated to other objeciy; those methods are directly invoked
by the object that performs m.

Rule 8.7 (PrIM A ) For any m € A 1f the IMA
(VXY m(Z) = ezpr if ¢
isin E. trua € [¢(f — ©))pus; ™ = moand m € R, . for some uy....,u, < @', imply that

L.5(zq) is smaller than or egual to the least class greater than or equal to ) such that m is
redefined; and o € p{1){wv;) then

{(m'(5)1 0, D) — {erpr(F — £) ! 1y, D)
a

Contrasting to the original rule for evaluation of methods specified by IM As. the rule above
introduces a transition that is dependent on the slate; that is. the transition is only possible il the

object prolection is not violated.



9.4 Object Creation and Deletion 59

9.4 Object Creation and Deletion

Lastly, we modify Lhe rules for object creation and deletion. Basically, tbe only difference from
the creation opetrations introduced in this section and the operations introduced in Section R is
that the former set Lhe object permission.

First we have to define Lthe function set for mapping Lhe exira argument of naw to Lhe set of

identifiers that it represents:

set({}) =@

set{any) = |I|
sct{e++ [y = {eluser(f), ifecT
set(f),ife gl

Nole that the arguments of _+4_ that are not object identifiers are discarded by sel.
The following rules describe the scmantics of the operations for object creation. where

= {v e~ s} denates (p(D) = {v e s}, dB(D}.

for any database state D, v € 7. and s < [{] the operation for mapping overwriting is represented
by 5. Also, we assume that € is a term specifying an object permission, as described above. Any
object is allowed to invoke the ereation operations; that is. those operations don't depend on the
mechanism for chjeet protection, as indicated by the following rule:

Rule 9.8 (PrCreation) For any class ¢ € ', and any ideuiifier v € fg not assgriated to an
object in D (ie, v & Jd(D)),

(new.Cle) 1 0, D) — (v, DUV & {v— set{e)}}

where V is a U™ x [7-sorted family containing v only: that is, Vig= {v} and Viu =0 if w £ A
aru#gc. O

and

Rule 9.9 (PrCreationId) For any class € € (' and any identifier # € Iz not associated fo an
object in T (ie., v & id(T)},

(new(v,e) ' 0, D) — (v, DUV & {vr— sel(e)})

where ¥ is a family containing v only, as n Rule 98. O

From those rules, we can see that by defaull an ob)ect doesn't have permisston ic invoke its own
methods. If this is desired, as usually the case, this has to be specified at object ¢reation time,
by making sure that v is in sef(r),

We modily the sermantics of remove in such a way thal a deletion operation can only be
petformed if the ohjeet which asked for it is able 10 invoke methods of the object to be removed.
Here is the new rule:



60 9. PROTECTED OBJECTS

Rule 9.10 (PrDeletion) For any class ¢ € C and any identifier v € J¢ associated to an object
in T (i.e., v € 1d{D)), if 0 € p(D){v) then

(remave{z) ! 0, D) = (0. DSV & {v — 0})

where V 18 a family containing v only, as in Rule .8. O

Note that the object protection information associated to an object is reset after its deletion.
Lastly, we define the semantics of the addpr (_,_) operator, which was informally described in
Section 3 2.5.

Rule 9.11 (PrAdd) For any ohject vin D (ie., v € Jd{iTh), if 0 € p{D}(2) then

{addpr(v,e) ! 6. D) — {v, D& {v — sel(e) U p{D}(v)}}

a

9.5 Comparison with Other Approaches

Now we comment on some alternatives to the approach for object protection that we have used
here. First, we consider the introduction of roef objects, as in C++ and Eiffel. Basically, only root
ohjects may he interfered in an arbitrary way; interference in uon root objects is derived from
interference in root objects. In FOOPS without ohject protection, any object is a root object.
Usually. there is more than one root object m a distributed system, but only one in a sequential
systen.

This mechanism only protects non root objects from arbitrary interference. In fact, we have
to check if the interference propagated by root objects doesn’t viclate the protection rules that
we want to enforece for mon root objects. In geaeral, this might generate complicated proof
obligations. Moreover, this only assures protection for a sysfem in isolation, il doesn't guarantee
protection if this system is included as part of a larger systein, where more root ohjects might be
available and additional propagated interference might accur. Clearly, this is not appropriate for
a compositional developmenl methed.

In order to achieve compositionality with this approach it would be necessary to verify that
the objects that should be protected cannol he accessed by new objects in s larger system. This
can be enforced by making sure that the ideutifiers of the prorected objecis aren't yielded by
any operation that may be invoked hy objects in the larger system. Again, this might lead to
complicated proof obligatious In fact. it seems simpler to support a mechanism that directly
enforces object protection, rather than writing soine specific code for guaranteeing that, and
discharging complicaled proof obligations.

As briefly discussed before. the second alternative for object protection is the snpport for
private references [26]. However, it’s not appropriate in general. In fact, this is a particular case
of our mechanism for object protection. Considering the exainples given in Section 3.2.5, private
references are appropriate for modelling linked lists {since an intermediate cell should only be
accessed by its precedeut in the sequence); however. private refetences are too restrictive for
modelling the communication protocol (siuce the channel should be protected, but shared by both
agents) Hence, it seems useful to have a more general mechanism for object protection.



61

Another general approach for object proteclion was independently introdneed by Hogg [25].
In our approach, one explicitly resiricts the group of objects that can directly invoke methods of
a protected object. In Hogg's approach, one explicitly indicate a so called bridge object, defining
an associaied group of protecied objects {ssfand); then any direct access Lo a protected object
(an object in an island) must be indirecily derived from an access te an associated bridge object.
There ate subtle diflerences between the two approaches. Whereas Hogg's approach seems more
abslract, it seems that a finer level of protection can be specified by onr approach. Infact, more
experiments would be necessary to give ns more copfidence that Hogg's approach shouldn’t be
supported by FOOPS.

10 Evaluation in the Background

in order to give the semantics of k. we use another structnre for represenling configurations.
Now we consider that configurations also conlain some information aboul the eapressions Feing
evaluated in the background. Tlis reflects the conceptual distinction between both kinds of
evaluation. Hereaflter, for a specification ¥, configurations are represented by elemems of

BgConf(5) = Ts x Ts X Perm(S) x Dy,

where the first component of snch a tupie i8 the “main™ expression, the second is the expression
in the backgronnd, and the last two correspond to the database state with object permission. We
write {e, f, (¢,D)} or {e, (f,0.D)} for (&, [, 0. D) € BgConf(3).

We fellow a similar approach to the one used in Section 9. Firat we define the relation
«—sC BgConf(S) X BgCoaf(8) by the rules used for the definitien of —g in the last section,
assuming that

# — is replaced by <, in all rnles;
+ dalabase states also contain information aboul expressions being evalnated in the hark-

ground; that 1s. the varialles T and D' range over pairs of method expressions and database
states with permission information (i.e., P, D' € Tg X Perm(3) x I’5), and

& the operations on database slates are composed with the projecticns aud construcLors as-
sociated to Ty X Perm(5) x Dg (lel p, &g and db respeclively give permission mappings,
background expressions, and database stales). For example. for D € T = Perm(5) x Dg,
we now assume that P & [ stands for

(bgt D). oD, db(D) & T)
{similarly for U and 2), and [e]n abbreviates [elap) (similarly for [elp and (7)), Lastly,
P @ {ve s} means (bg(T), o(D) & {v— s}, ab(DY)

But we also need to introdnce one rule indicating how . is evalvated. Essentially, &_starts the
evalualion of its second argument in parallel with the current background expression. The first
argument is then given as result, as indicated hy Rule BgOp {for background sperator):

Rule 10.1 (BgOp) Forany b € Tx and P € Perm(5) x Ds,

(e fL0,Py— e, fI1b P}



62 1. CONCLUSIONS

Naturally, we assume that _8_. : U T -> Uisin MC,forany T, VEU.

Therule above finally defines =—_. However, note that this relation only considers the evaluation
of the main expression. We still have to specify how the expression in the background is evaluated;
this is done by the relation —5C BgConf(5)x BgConf(S), defined by the following rule {BgEval,
for background evafuation). A background expression is evaluated just as il it were a main
expression, and any additional background expression resulting from this evaiuation will also be
evaluated in the background.

Rule 10.2 {BgEval) For any b € T, P € Perm{8) X Dg, and a fully evaluated expression
skip,

(b, axip. P) — {f, ['. P")
{e. b, P)— le, ¥, P"

where b is f, if /" = skip; otherwise, & is f 1| f. O

The transitions specified by — are called “internal transitions™. They change the state without
evalualing the nmyain expression, which is what can be abserved by an (external) user of a FOOPS
system.

Finally, the semantics of FOOPS with evaluation of expressions in the background is given by
the union of the relations —5 and —5. We use —g C BgConf(5) x BgClenf(5) to denote this
union; we omit the obvious rules defining it

Using twe different relations to define —g might seem unnecessarily complicated. But this
clearly separates transitions caused by the main expression from transitious generated by the
expression in the background. This simplifies the definition of certain operators that should not
consider internal transitions. For example, this is the case of [.] and _{1. Usiug only oue
relation complicates the semantic definition. In fact, contrasting to what has been done here, it
wouldn't be possible to define — using some of the rules intreduced in the previous sections.

i1 Conclusions

We have described a structural operational semantics for the object level of FQOPS, consider-
ing features such as: classes of objects with associated metbods and attributes, object identity,
dynamic object creation and deletion, overloading, polymorphism, iuheritance with overriding,
concurrency, nondeterminism, atomic execulion, evaluation of expressious as backgrouud pro-
cesses. auto-methods, non terminating methods, and a mechanism for object protection.

‘We have concentrated on the object level of FOOPS. The semnantics of other aspects, like the
functional level and the module system, are discussed elsewhere [40, 28). Here we only consider
the semantics of “Aat” specifications; that is, specifications without module importation or generic
parameters.

The usnal features of object-oriented languages were explained in detaj), in a simple and
abstract way, by using a special approach for modelling states of the operational semantics. This
approach uses all the power of the theory of ATDs for defining operations on states and reasoning
about them; in particular, the semantics of inheritance, and evaluaticn and dyuamic binding of
stored attributes is direclly provided by OSA. It then becomes simple 1o define the basic operations

“Nole thal ~~ 5 is overloaded in this text.



11,1  Related Work 63

on slates. In fact, lots of complicalions were avoided, a concise semantic definition could be
obtained and many concepts. usuallyv confusing in other frameworks, were clarified. Indeed, this
approach seems appropriate to define the operatioual semantics of other object-ortiented languages
as well,

We have also justified the semantics of some consiructs comparing to alternatives approaches.
Perhaps snrprising is the comparison between “true concurrency” and interleaving We have
argued that these approaches are equivaleut in the context of FOOPS, giveu some mild assump-
Lions on the votion of equivalence of programs adeopted for the language. This has the mteresting
consequence that we can use the simpler interleaving model for reasoning about true concurrency.
That's what should be expected since it’s desirable to specify systems of distribuled objects
withont worrying whether other computations are Leing carried out simultanecusly. This result
could probably be gencralized for other concurrent abject-orientied langnages.

Along with the sermantic description. we have clarified many concepts and phenomena related
to object-oriented languages. In particular. the definition of the aperaiional semautics raised the
following techrical points ahout FOOPS:

¢ Lhere must be syntactical constraints en axiem conditions and DM As RHS;

s the object creation cperations shouldn’t have arguments for automatic initializetion of at-
tribntes: and

® invariants are just annotations:

We have also briefly discussed how the semantics suggests an appropriate programming style for
FOOPS, and how to avoid fatrodrcing inconsistencies in specifications.

The semantics described in this text is part of a formal definition of FOOPS. So. it’s usefui
as a formal basis for deriving implementations and toals for FOOPS (see [2] for the details on
the derivation of a symbolic simulator for FOOQPS}. In addition, because of Lhe simplicity !
the semantie definition, the operational semantics establishes a franework 16 suppourt the formal
development of distributed software 1n an objeci-oricnted language In lact. it has been nsed to
define a notion of refinement for FOOFS programs and specifications. togeth-r with an aseoctated
proof technique which seems Lo be appropriate for mnany applicatons [I] The semantics is also
useful for reasoning about general properties of FODPS programs.

11.1 Related Work

Mast of the FOQFS features considered here are not considered by other alternatives for the
semantics of FOOPS, like the refective semantics [18] and the sheaf semantics (44, 28, 4]. Iu
fact, we are not aware of a formal semantics fur a language intcgrating all those features. In
particular, we haven’t seen any proposal similar to the mechanism for object protecuon described
here. Moreover, it seerms that the semantics of evaluation in the background and atomic evaluation
for a concurrent language hasn't been formalized hefore.

The basic idea about FOOPS reflective semantics, as described 1n [18], 15 to represent FOOFS
progtams and database states as abstract data types {ADTs) in such a way that the queries and
modifications to the database are encoded as functions of these data types. Essentially, this
defines an operational semantics for FOOPS using the functional part of the language, which has
a denotational semantics based on order-sorted algebra [[9] and an operational semantics given by
order-sorted rewriting [28]. In other words, this can be seen as providing a simulator for FOQPS



64 11. CONCLUSIONS

written in OBJ. Using this approach, reasoning about FOOPS programs is essentially reduced to
order-sorted deduction [19], where part of the equational theory, given by the information stored
n the database, changes with time. Comparing with FOOPS reflective semantics, in this text
we use a maore abstract approach [39], which is also more appropriate for giving the semantics of
concurrency, nondeterminism, and other aspects of FOOPS uot discussed in [18].

The most complete work on a sheaf theoretic semantics for FOQPS is [4]. In this work, culy
a subset of FOOQPS is considered; in particnlar, inheritance, dynamic binding, and atomicity are
not considered. 1n fact, contrasting to tbe semantics presented here, it seems that the semantics
of the alomicity operator cannot be given in a simple and abstract way using tbe approach of [4],
Also, Lhe semantic description using sheafl theory is much longer than an equivalent operalional
semantics description. The advantage of using sheaf theory for defining the semantic of FOOQPS
seems to be the rich mathematical structure associated Lo sheafs; however, it’s not clear yel how
this can be used.

A lot of effort has been done in order to give semantics for object-oriented langnages [1,
6, 30,7, 43, 8, 13, 27]. Most of the work in this area uses mathematical models based on set
theary [7]. melric spaces [1], category theory [30, 8], and hidden order-sorted algebra [13]. The
exceptions are [6], which defines an assertional style proof system, and [43, 27|, which give the
semantics in terms of a process algebra based on an operstional semantics [33]. By contrast, the
work developed here is based on the simple frameworks of stenctural operational semantics [39]
and OSA [19]. Similar approaches using some of those franeworks are used in works on process
algebras [32, 36], imperative languages [37], and a general aotation for giving Lhe semantics of
programming languages [34}.

Because of the details associaled to the semanlics of object identification, and the lack of
a fnlly abstract mathematical model for interleaving, operational sernaniics seems to be quite
adequate for specifying the semantics of a language like FOOPS. In fact, this can be easily and
concisely done, heing still possible Lo reason abont the semantics in an pragmatical way. Also,
giving the semantics of FQOPS in terms of a process algebra is not worth, since it doesn't seem
to be possible to use the algebra to reason abont the semantics and programs; for that purpose,
one has actually to use the (operational) semantics associated to the process algebra (see [27]).

11.2 Further Research

The language and semantics described here could be extended and revised in the following aspects:

¢ In addition to DM As and IMAs, it would he interesting to consider the effects of other kinds
of axiems; this might be useful for specifications in general.

® Perhaps it would be more appropriate to nnderstand DMA and IMA condilions as pre-
condifions {the meaning of an operation is undefined for a particular state if its unique related
axiom has a pre-condilion that is not valid in that state), rather than as enabling conditions
{an operation blocks in a stale where its unique related axiom enabliug condition is not
valid); this would provide a higher degree of nnderspecification to FOOPS specifications.

® Dynamic binding of derived attributes could be provided by adding a specific rule for evalu-
ation of derived attributes. similar to the rule for evalnation of methods specified by IMAs:
however, note that attributes should be atomically evaluated.

e A complete semantics for updating of multi-argumnent stored attriburtes should be developed.



REFERENCES 65

¢ The mechanism [or object protection could be extended; also, its suitability and expressive-
ness should be better explored by using it iu practice.

¢ Thedevelopment of large applications might suggest the addition of some application specific
method combiners to the language.

e It might be worth tunvestigaiing the eonsequences of adopting a more restricted computa-
tioual model for FOOPS; for example, this could be achieved by allowing only one method
to be executed in an object at a given time.

Acknowledgements

I hanks to Sieve Schneider and Grant blalcoln for giving mauy suggestions which helped 1o
simplify the semantics deseribed here. The authers are grateful Lo Steve Schneider and A dolfo
Socorro for carefully reading and correcling an ecarly version of this text The first authaer also
had the apporiunity to discuss 1 detail some of the aspects presented bere with Grit Denker and
Prof. Hans Dieter Ehrich. during an enjoyable visut to Braunschweig. supported by the IS-CORF
project. Special thanks go to José Meseguer and Razvan Diaconescu for most of the texr in
Section 2. which was copied from [19], [16], and [15].

References

[1] Pierre Amenca and J.J M. M. Rutten. A parallel object-oriefnted language: Design and
semantic foundations, Technical Report CS-R8953, Centre for Mathematics and Computer
Science. 1989.

Paulo Borba. A symbolic simulator for FOQOPS. Technical report, Oxford University, Com-
puting Laboratory, Programming Research Group, May 1995. To appear.

=)

Paulo Borba and Joseph Goguen. Refinement of earcurrent object-oziented programs Tech-
nical Report PRG-TR-17-94, Oxford University, Computing Laheralory, Programming Re-
search Group, November 1944, To appear in the proceedings of the BCS/FACS workshop

(3

on formal aspecta of object-oriented prograuiming, London, December 1993,

4] Corina Cirstea. A distributed semanties for FOOPS. To appear, 1995 Oxford University.
Computing Laboratery, Programming Research Group.

[5] Stephen Coffin. UNIY System V, Release 4, the Complele Reference. Osborne/McGraw-Hill,
1991,

(6] Frank de Boer. Reusoming chout dynamically evolving process siruclures —A proof theory
Jor the paraliel obpect-orrented languange POOL, PhD thesis, Vrije Universiteit. Amsterdam,
1991.

David Duke and Roger Duke. Tawards a semantics for Ohject-Z. In Dines Bjorner, C.A R.
Hoare. and Hans Lrangmaack, editors, Proceedings, VDM '90; VDM ond Z— Formal Methods
in Software Development, pages 242-282. Springer-Verlag, 1990, Lecture Notes in Computer
Science, Volume 428,

(7




66

(8]

l9

[10]

[11]

2]

(14]

[13]

(18]

[19]

(20]

REFERENCES

Hans-Dieter Ehrich, Joseph Goguen, and Amilcar Sernadas. A categorial theory of objects
a8 observed processes. In J.W, de Bakker, Willem P. de Roever, and Gregorz Rozenberg,
editors, Foundations ¢f Object Ortented Languages. pages 203-228. Springer-Verlag, 1991.
Lecture Notes in Computer Science, Volune 489; Proceedings, REX/FOOL Worksbopfi,
Noordwijkerhout, the Netherlauds, May/June 1990.

Joseph Goguen. Order sorted ajgebra. Technical Report 14, UCLA Computer Science
Department, 1978. Semantics and Theory of Computation Series.

Joseph Goguen. Parameterized programming. Transaclions on Soflware Engineering, SE—
10(5):528-543, Septemnber 1984,

Joseph Goguen. An algebraic approach to refinement. In Dines Bjorner. C A.R. Hoare,
and Hans Langmaack, editors, Preceedings, VDM '80: VDM and Z— Formal Methods in
Seftware Development, pages 12-28. Springer-Verlag. 1990. Leclure Notes in Computer
Science, Volume 428.

Joseph Goguen. Hyperprogramming: A forinal approach Lo software envitonments. In
Praceedings, Symposinm on Formal Approaches lo Software Environment Technelagy. Joint
System Development Corporation, Tokyo, Japan, January 1990,

Joseph Goguen. Types as theories. In George Michael Reed, Andrew William Roscoe,
and Ralph F. Wachter, editors, Tepolegy and Category Theary in Computer Science, pages
357-390. Oxford, 1991,

Joseph Goguen. Sheal semantics for concurrent interacting objects. Mathemalicol Struclyres
tn Compuier Science, 11:159-191, 1992,

Joseph Goguen. Theorem Proving and Algebra. to appear.

loseph Gogueu and R&zvan Diaconescu. An Oxford survey of order sorted algehra. AMath-
ematical Struclures in Compuler Science, to appear.

Joseph Gaguen and Grant Malcolm. Proof of correctuess of object representations, In A.W.
Roscoe, editor, A Classical Mind: essays dedicated te C.A.R, Hoare. Prentice Hall, 1954.

Joseph Goguen aud José Meseguer. Unifying functional, ohject-oriented and relational pro-
gramming, with logical semantics. In Bruce Shriver and Peter Wegner, editors, Research
Directions an Gdject-Oriented Programmming, pages ¢17-477. MIT, 1987.

Joseph Goguen aud José Meseguer. Order-sorted algebra I: Equalional deduction for multiple
inheritance, overloading, exceptions and partial operations. Theorefical Compuler Science,
2(105}, 1992

Jogeph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to the
specification, correctness and implementatioo of abstract data types. Technical Report RC
6487, IBM T.J. Watsou Research Center, Qctober 1976. In Current Trends in Programming
Methodology, IV, Raymond Yeh. editor, Prentice-Hall, [978, pages 80-149.



[2]

(22

—_

[29)

(30]

(31]

(32)

[33]

(34]

(351

Joseph Goguen and Timothy Winkler. Introducing OBJ3. Technical Report SR1-CSL-
88-9, SRI International, Computer Science Lab, August 1988. Revised version ic appear
with additional authors José Meseguer, Kokichi Fntatsugi and Jean-Pierre Jonannaud, in
Applications of Algebrdrc Specaficalion usimg OBJ. edited by Joseph Goguen.

Joseph Goguen and David Wolfram. On types and FOOPS. In Robert Meersman, William
Kent, and Samit Khosla. editors, Object Oriented [atabases: Analysis, Destgn and Construc-
{ron, pages 1-22. North Holland, 1991, Proceedings,1FIP T2 Conference, Windermere, UK,
2-6 July 1960.

Matthew Hennessy. Algcbraic Theory of Processes. The MIT Press, 1955,
C.A.R. Hoare. Comwnunicaling Sequenttal Processes. Prentice Hall, 1985,
John Hogg. Islands: Aliasing protection in object-orivnted langnages. In f34), 1991,

Cliff Joues. An object-based design method for concurrent programs. Techmral Report
UMCS-62-12-1, Department of Computer Science, University of Mauchester, 1952

CIiff Jones. Process-algebraic foundations for an object-based design notation Technical
Report UMCS-93-10-1, Department of Computer Science, University of Manchester, 1993,

Claude Kirchner, Hélene Kirchuer, and José Meseguer. Operational semantics of OBJ3. In
T. Lepistd and Aarturo Salomaa, editors, Proceedings, 15th Inlernafional Colloguium on
Awutomnata, Languages and Programmeng, Tampere, Finland, July 11-15, 1988 pages 287
301, Springer-Verlag, 1988, Leeture Notes in Compuler Science, Yolume 317.

Grant Malecolm, A sheafl semantics for FOQPS. To appear, 1985. Oxford University, Com-
puting Laboratery, Programruiug Rescarch Group.

José Meseguer. A logical theory of concurrent cbjects. In Proccedings of ECQOOP-OOPSLAGS
Conferernce on Objeci Urtenied Programming, pages 101-115. ACM. 1890

José Meseguer aud Joseph Goguen. Initiality, induction and computability In Maurice Nivat
and John Reynolds, editors, Algebraic Methods in Semantics. pages 459-541 Cambridge,
1985.

Robin Milner. Commarication and Concurrency. Prentice Hall. 1989,

Robin Milner, Joachim Parrow, aud David Walker. A calenlus of mobile processes. Technical
Report ECS-LFCS-89-85, 86, Laboratory for Foundations of Computer Science, Edinburgh
University, 1989.

Peter Moases. Action Semantics. Tracils in Theoretical Computer Science. Cambridge Uni-
versily Preas, 1992

Ellen Munthe-Kaas, Joseph Goguen, and José Meseguer, Method expressions and default
values for object-valued attributes. SRI International. Computer Science Lab 1989.



68

[36]

1351
(39}

{40

[41

—

[42]

[43]

[44]

REFERENCES

Elie Najm and Jean-Beraard Stefani. Object-hased concurrency: a process calculns analysis.
In S. Abramsky and TS.E. Maibaum, editors, TAPSOFT'91, Theory and Practice of Sofi-
ware Developmeni, volume 494 (1) of Leciure Notes ;n Computer Scrence, pages 359-380.
Springer-Verlag, 1991.

Pawel Paczkowksi. Annotated Transition Systems for Vertfying Concurrent Programs. PhD
thesis, University of Edinburgh, Apnl 1991

Andreas Paepcke, editor. OOPSLA47'9: ACM, ACM Press, Navember 1901,

Gordon Plotkin. A strnctural approach to operational semantics. Technical Report DAIM]
FN-19, Computer Science Department, Aarlius Univetsity, Septe mber 1981.

Lucia Rapanotti and Adolfo Scocorro. Introducing FOOPS. Technical report. Oxford Uni-
versity, Computing Laboratory, Programming Research Group. November 1992, PRG-TR-
18-92.

Gert Smolka, Werner Nutt, Joseph Gognen. and José Meseguer. Order-sorted equaticnal
computation. In Maurice Nivat and Hassau Ait-Kaci. editors, Resolution of Equetions in
Algedrase Stryctures, bolume 2. Rewrifing Technigues, pages 299-3G7. Acaderic, 1989.
Preliminary version in Proceedings, Colloquiutn on the Resolution of Equations in Algeb-
raic Structures, held in Lakeway, Texas, May 1987, and SEKI Report SR-87-14, Universitat
Kaisersiautern, December 1987.

Adolfo Socorro. Design, fmplementation, and Kvaluatton of a Declorative Object Ortented
Language. PhD thesis, Oxford University, Computing Laboratory, Programming Research
Group, 1993,

David Walker. m-Calculns semantics of objecl-oriented programming ianguages In TACS 91
- Praceedings of the inlernational Conference on Theoretical Aspects of Computer Science,
volume 526 of Lecture Notes an Computer Science, pages 532-547. Springer-Verlag, 1991,

David Wolfram and Joseph Gognen A sheaf semantics for FOOPS expressions. In Mario
Tokara, Oacar Nierstrasz, and Peter Wegner, editors, Obyeci-Based Concerrent Computation,
pages 81-98. Springer-Verlag, 1992, Proceedings, ECOOP’91 Workshop, Geneva, July 1991.



