
CATEGORY-BASED SEMANTICS FOR

EQUATIONAL AND CONSTRAINT LOGIC

PROGRAMMING

by

Razvan Diaconescu

Technical Monograph PRG-1l6
ISBN ()'902928-9I-O

July 1994

Oxford University Computing Laboratory
Programming Research Group
Wolfson Building, Parks Road
Oxford OXl 3QD
England

Copyright © 1994 R.<lzvan Diaconescu

Oxford University Computing Laboratory
Programming Research Group
IVolfson Building. Parks Road
Oxford OXl 3QD
8ngland

Electronic mail: diacon~comlab.ox.ac . uk

CATEGORY-BASED SEMANTICS FOR

EQUATIONAL AND CONSTRAINT LOGIC

PROGRAMMING

by

R!izvan Diaconescu

Saini Anne '5 College

July 1994

Submitted in partial fulfillment of the requirements for the

Doctor of Philosophy in Computation

~

Oxford University Computing Laboratory

Programming Research Group

Abstract

This thesis proposes a general framework for equational logic programming, called catf:gory­
based equational logic by placing the general principles underlying the design of the pro­
gramming language Eqlog and formulated by Goguen and Meseguer into an abstract
form. This framework generalises equational deduction to an arbitrary category satisfy­
ing certain natural conditions; completeness is proved under a hypothesis of quantifier
projectivity, using a semantic treatment that regards quantifiers as modcls rather than
variables, and regards valuations as model morprusms rather than functions. This is used
as a basis for a model theoretic category-based approach to a paramodulation-based op­
erationa.l semantics for equational logic programming languages.

Category-based equational logic in conjunction with the theory of institutions is used
to give mathematical fonndations for modularisation in equational logic programming.
We study the soundness and completeness problem for module imports in the coutext of
a category-based semantics for solutions to equational logic programming queries.

Constraint logic programming is integrated into the equational logic programming
paradigm by showing tha.t constraint logics are a particular case of category-based equa­
tionallogic. This follows the methodology of free expansions of models for built-ins along
signature inclusions as sketched by Goguen and Meseguer in their papers on Eqlog. The
mathematical foundations of constraint logic programming are based on a Herbrand The­
orem for constraint logics; this is obtained as an instance of a more general category-based
version of Herbrand's Theorem.

The results in this tbesis apply to equational and constraint logic programming lan­
guages that a.re based on a variety of equational logical systems including many and
order sorted equational logics, Horn clause logic, equational logic modulo a theory, con­
straint logics, and more, as well as any possible combination between them. More impor­
tantly, this thesis gives tbe possibility for developing the equational logic (programming)
paradigm over non-conventional structnres and thus significantly extending it beyond its
tradition.

Acknowledgments

I would like to express my warmest thanks towards my supervisor, Professor Joseph
Goguen, who supported this work in a very special way ranging from moral encourage­
ment to direct technical guidance. His presence can be felt everywhere in this work. Most
importantly, I would like to thank Joseph for offering me his wonderful friendship which
words cannot descri be.

Special thanks go to Professor Burstall and Dr Meseguer for tbeir contrihution to Com­
puting Science, contribution that made this work possible. Professor Cazanescu and Dr
Steranescu unveiled to me the f'legant world of, what I would call now, the Goguen culture
in Computing years before starting my doctoral programme in Oxford. That was in fact
the real beginning of this thesis. With Rod Burstall, Tom Kemp, Hendrik Hilberdink,
and Virgil Cazanescu I had the opportunity to discuss various aspects of my work at
different stages. I also owe a lot to Jocelyn Paine for sharing with me his ~xperience

with conventional logic programming. The final version of the thesis benefited greatly in
terms of presentation from the constructive criticism of my examiners, Dr Lincoln Wallen
and Professor Jean-Pierre Jouannaud.

I would like to make an acknowledgemeut to all those who made my life in England
easier. They include my PRG colleagnes Hendrik, Petros, Jose, Paulo, Lutz, Francisco,
Jason, as well as Asian, Gianluca, Bart, Pera, Pavle with whom I shared the discomfort
of Oxford accommodations at different stages of my stay here. Joseph Goguen's research
group was like a family for me, always ready to offer their precious help. All these years I
felt especially close to my colleagues Hendrik Hilberdink and Petros Stefaneas; we shared
many hopes, and above everything, a helief in a certain life style.

My friendship with Sandu Mateescu, cemented in the Carpathians, was of the greatest
help during the last couple of years. I would also like to thank my parents, Stefan and
Elena, for their love and patience.

Finally, I gratefully acknowledge the financial support from British Telecom, Fujitsu Lab­
oratories Limited, MITJl, International Computers Limited, Sharp, UK Govemment 2 ,

Oxford University, British Council in Bucure~ti, and St. Anne's College Oxford.

IThe Inforrn&Lion Tet;;hnology Promotion Agency, Japan, as part of the R&D of Basic Technology
for Future IndUiltries "New Models for Software Architecture" proje<:t sponsored by NEDO (New Energy
and Industrial Tet;;hnology Development Orgal)i~3tioD).

2Through the ORS eo;:heme.

1 INTRODUCTION

This thesis is mainly about equational logic programming. It helongs to the tradition of
equational and constraint logic programming started by Goguen and Meseguer in their
pioneering work on the programming language Eqlog during the mid-eighties [38, 39].
Eqlog has been implemented in Oxford by the author of this thesis as an extension of
the SRI implementation of OBJ3.3

1.1 The Equational Logic Programming Paradigm

1.1.1 A historical perspective

Equational logic programming can be rega.rded as joining two major culture~ in Com­
puting: algebraic specification and logic programming.

Logic programming began in the early 1970's as a direct outgrowth of earlier work in
automatic theorem proving aud artificial intelligence. The theory of clausal-form [first
ordt'rJ logic, and an importaut theorem hy the logician Jacques Herbrand constituted the
foundation for most activity in theorem proving in the early 1960's. The dj~covery of
resolution - a major step in the mechanization of clausal-form theorem proving - was
due to J. Alan Robinson [81]. In 1972, Robert Kowalski and Alain Colmerauff were led
to the crucial idea that logic could be used as a programming language [95J. A year later
the first Prolog system was implemented. SLD-resolution, which is a refinement of the
resolution principle restricted to Horn clause logic, became the core of the operational
semantics for most of the further logic programming implementations, although logic
programming is hy no means limited to Prolog.

One of the main slogans of logic programming, due to Kowalski, is

Program = Logic + Control

meaning that a prohlem has a declarative side asserting what the prohlem is and what
properties solutions should have, as well as a control side describing how the problem is to
be solved. The ideal of declarative programming in general, and of logic programming in
particular, is that the user should specify the logic compont'nt of the problem, and control
should be ext'rcised as much as possible by the programming system. Unfortunately, the
users of Prolog-like systems still need to supply a lot of control information.

During the 1980's, the constraint programming paradigm gradually grew out of logic
programming (see [59]). This brought a nt'w perspective on logic programming, in which
the concept of unification is geueralised to the concept of constraint solving [16, 151.
However, Lassez showed that constraint logic programming is still part of the logic pro­
gramming paradigm in a fundamental way" [66J.

3 Appendix A gives a brief description of how to Uge ~he Eqlog system; some examples of Eqlog ruIlB

are given in ChElpter 4.
"In ChElpter 6 we show now generali5ed constraint logic: programming can be foundationally regarded

Il8 a particular case of equational logic programming.

3

Algehraic specification is now a particularly mature field of Computing Science, because
of its strong and stable mathematical foundations. The theory of algebraic specification
has been implemented in many computing systems, and is also an important technique
in Software Engineering methodologies.

While the insight that operations should be associated with data representations
seems to have been due to David Parnas [77J, the legendary group ADJ'~ made a decisive
step forward by using initiality (a category-theoretic concept) as a cha.ra.cterisation for
the notion of standard model [44]. Maoy sorted equational logic became the main logjcal
system underlying the theory of algebraic specifications and abstract data types. It
was proved complete by Gogu~u and Meseguer before mid 1980's [37], but because of its
inability to handle erorrs, it was replaced by order sorted equational logic (which is ma.ny
sorted equational logic with subtyping [41J) as the modern logical system nnderlyiug the
theory of algebraic specifications and abstract data types.

The t.heory of algebraic specifications entered a. completely new era with the discovery
of the theory of institutions by Goguen aud Burstall [33], transcending its origins in
equational logic to encompa.ss a wide variety of logic systems, inclnding first order logic,
110m clause logic, higher order logic, infinitary logic, dynamic logic, intuitiouistic logic,
order sorted logic, temporal logic, etc. Today, nearly 15 years after the first insights given
by the work on the specification language Clear [13], the spirit of abstract model theory
(in its iustitutioual form) is a significant part of the culture of algebraic specification.

The language OB,) [46} played a major role iu the development of algebraic spec­
ification and, more generally, of declarative programming. It began as an algebraic
specification language at UCLA about 1976, and has been further developed at SRI In­
ternatioDil.1 aud several other sites as a declarative specification and rapid prototyping
language. Its mathematical semantics is given by order sorted eqnationallogic, and it has
a powerful type system featuring subtypes and overloading. Iu additioJl, OBJ has user
definable abstract data types with user-definable mixfix syntax, and a powerful param­
derised module facility that inclndes views and module expressions. A subset of OBJ
is executable by order sorted rewriting. OBJ has been exteuded towards object-oriented
programming (the language FOOPS [40]), theorem proving (the metalogical framework
theorem prover 20BJ [42]) and logic programming (the langnage Eqlog [38], which is
also further discussed in this thesis).

1.1.2 Equational logic programming

The equational logic programming paradigm unifies logic programming based on Horn
clause logic and equational (i.e.. functional) programming based on equational logic, i.e.,
the logic of substitnting equals for equals. One of the earliest c:-outributions to this field
was [761. As Goguen and Meseguer repeatedly pointed out [38, 39], the best way to
achieve this goal should be to unify the two logics involved. However, because equational
logic is more fundamental than Horn clause logic6

, it is enongh to base the new paradigm
only Of] equational logic. The main difference between equational logic programming
and equational programming lies in the fact that the former deals with the problem of
solving queries. This implies the (somehow subtle) involvement of existentially quantified
sentences, which is explained by Herhrand's Theorem.

~Origiflally Goguen, Tha.tcher, Wagner and Wright.

5Thie will be explained in deta.il in Section 2.3.3.

Such a combination is desirable for both the algehraic specification and the logic pro­
gramming traditions. The query solving capability extends equational programming to a
very powerful paradigm in which a specification is already a program (or at least it is very
close to being a program). This not only enormously simplifies the correctness-verification
problem, but also brings in all the advantages of algebraic specification languages (clarity,
simplicity, reusahility, maintainability, etc).

From the logic programming point of view, this is the best way to integrate [semanticJ
equality into logic programming; a major problem with relational programming, because
many of the compromises of the logic programming ideal found in actual languages (e.g.,
Prolog) have to do with the inability of relational programming to cope with equality.
These compromises created a gap between the original vision of logic programming (i.e.,
programming in logic) and most of the actual implemeutations which are far from baving a
logic-hased semantics. In general, they tend in the direction of imperative programming,
which can be confusing and inefficient [2J. (The argument is that the denotational se­
mantics of imperative programs is complex and complicated, with the ultimate practical
consequence being that the debugging is very hard.)

As Goguen and Meseguer pointed out in the context of tbe programming language
Eqlog [38], tbe equational logic programming paradigm provides as much pradical pro­
gramming power as possible without compromisiog the underlying logic. In fact, equa­
tional logic programming seems to match very well the slogan of logical programming
(i.e., programming rigorously based on a logical system) as formulated in [39J:

Computation is deduction in the underlying institution.

Any of the advantages of Eqlog over Prolog can be regarded as a direct consequence of its
semantical purity, which sharply contrasts with the many extralogical features of Prolog7.
Although "cut" ma.y be the most notorious, <;is" is probably the most outrageous, since it
is an assignment statement with declarative syutax. Thus, real Prolog programs can be
far from having a simple foundation in Horn clause logic. Constraint logic programming
is implemented hy ProloglII in a fixed rather than extensible way, while Eqlog is enough
flexible to be considered as a framework for constraint logic programming 139, 38}. This
means that Eqlog supports constraint solving over any user defined data type. For this
reason we call Eqlog an extensible8 constraint programming language.

In general, the operational semantics of equational logic programming systems is
based on narrowing (which is similar to the resolution used in logic programming). Dif­
ferent rather sophisticated refinements of uarrowing can he in practice as efficient as
Prolog's SLD-resolution, which can even he regarded as a special case of narrowing by
viewing the relation symbols as operations (i.e., functions). Therefore narrowing already
contains the mixture of resolution and narrowing that occurs in the context of the oper­
ational semantics of equational logic programming languages based on Horn dause logic
with equality.

1.2 Contributions of this Thesis

This thesis develops a category-based semantics for equational and constraint logic pro­
grammiog in the style of the language Eqlog, by placing the general principles underlying

'A major advanta.ge of Prolog is its good compiler.

81n [39] Goguen a.nd Meseguer use the terminology "generalised" instead of "extenf>ible".

5

the design of the programming language Eqlog and formulated by Goguen and Mesegller
in [38, 39] into an abstract form. The actual implementation of Eqlog is faithful to this
semantics, and experimentations with the system helped the development of the theory.9

The category-based framework of this thesis gives the possibility to develop equational
logic (programming) Over non-conventional structures. In this way, equational logic pro­
gramming is liberated from the traditional set theoretic point of view. This is similar
to the way functional programming and algebraic specification got their true meaning
and power with cartesian closed categories and institutions, respecti vely. The develop­
ment of equational logic programming over different t.ypes of models and domains (some
of them could have a much richer structure than the usual set theoretic domains) and
might prove very beneficial in terms of unifying eqnationallogic programming with other
programming paradigms. By following the results of this thesis one can easily develop
the equational logic (programming) over continuous lattices insead of sets and functions,
for example. Although the examples we provide in this thesis don't depart fundamentally
from the tradition of equational logic programming as it is today, this framework proved
already to be very effective in integrating equational logic programming with constraint
programming (see Chapter 6).

1.2.1 Beyond conventional "abstract model theory"

The framework underlying this thesis can be characterized as abstract model the071J in
the same spirit as the work by the "Hungarian School'" in late seventies, 10 for example.
is characterized as abstra£t model theory. By abstract model theory (abbreviated AMT)
we mean far more than the respective tradition in logic which abstracts the Tarskian
approach to cover other logical systems II (e.g., [6,5)). Our category-based framework is
very close in spirit to the theory of institutions [33] in the sense that

•	 it abstracts Tarski's classic semantic definition of truth [93], based on a relation of
satisfaction between models and sentences, and

•	 it uses category theory in a very similar manner to achieve generality and simplicity;
in both approaches the models have the abstract structure of a category.

In fact, the theory of institutions was a great SOurce of inspiration for our framework;
we vie..... that theory as fulfilling the original vision of abstract model theory. Two main
differences between our approach and the theory of institutions are:

•	 the concept of satisfaction between models and sentences is significantly less ab­
stract in our approach hecause. although the models are fully ahstracted and the
sentences generalise the traditional notions of equation, the actual satisfaction re­
lation is defined in a way that abstracts exactly tbe traditjonal equational logic
satisfaction between algebras and equations, rather than being an nndefined prim­
itive as in the theory of institutions; and

•	 our framework does not contain a direct mathematical formulation of tbe intuition
that "truth is invariant under change of notation,'" which is somehow central for
the theory of institutions.

9In fact, all codl' preeented 86 examples in the thesis has b~n run under the Eqlog IlYlltem.
1°[1] is a repre8('ntative piece of work of this schooL
liThe goal of rellearch iu this area being to generalise as much of c13B8icaJ first ordl'r model theory as.

possibll'.

6

The second point addresse'l the problem of the technical relationship between ourcategory_
based framework and the theory of institutions. Chapter 512 shows that our framework
can be naturally embedded into the theory of institutions. On the other ba.nd, our
category-based fra.rnework can be internalised in any many sorted liberal inst:tution. 13

1.2.2 Category-based equational logic

One of the main contributions of this thesis is to propose a general framework for the
equational logic programming paradigm called category-based equational logic which
distills the essential ingredients characterising equational logics. Equations, equational
deduction, models (algebras), congruences, satisfaction, et.c. are treated in an arbitrary
category satisfying certain mild conditions which plays the role of the category of models
for the equational logical system. This category of models comes equipped with aforgetful
functor to an [abstractJ category of domains. This encodes the principle that allY model
is an interpretation of a signature14 into a domain which is usually a set, or a collection
of sets in the case of typed logical systems. AU concepts are introduced and results are
proved at tbe highest appropriate level of abstraction. Through a gradual refinement
process (which could be seeu as "climbing down" the abstraction hierarchy) all concepts
(including the rules of inference for category-based equatioual deductiou) can be made
explicit in the concrete cases, while still avoiding all irrelevaut details when focusing on
a particular equational logical system. By taking a semantic perspective on terms as
elements of a carrier of a free model,t5 the quantification of equations is abstracted from
variables to models, as a result, valuations are abstracted from simple assignmruts of the
variables to model morphisms.

The framework of category-based equational logic is used in this thesis to deal with
operational semantics, modularisation and constraint programming for t.he equational
logic programming paradigm. Such a framework must achieve a delicate mlance be.­
tween abstraction and concreteness; this balance makes possible the natural encoding of
all important principles and phenomena related exactly to the eqllationallogic program­
ming paradigm, while still avoiding the details of any parliClilar logical SYSlem. This
explains why the category-based framework of this thesis technically lives on a lower
level of abstraction than the theory of institutions which was designed to be u~ed in the
wider context of declarative programming. The analogy with classical algebra might be
enlightening. Although the mathematical structure underlying modern algebra is that of
a ring, the structure of modulcl6 ig more important for the more specialised area. of linear
algebra. However, there is a close relationship (both technically and in spirit) between
rings and modules, although rings may a150 be fundamental for number theor)', which is
ouly indirectly related to linear algebra. In the same way, iustitutions may be relevant
to an area only remotely related to equational logic programming, such as semantics for
the object pa.radigm [29, 11, 34].

A uniform treatment of the model theory of classical equational logic is now possible
due to the comprehensive development of categorical universal algebra; without any claim
of completeness, I mention the so-called Lawvere algebraic theories, either ill classica.l
form [691 or in monadic form [70J (although neither of these fits order sorted algebra

u..... ,,>­-- uevo~ea ~o modularisation issues.

lJThe precise definition is given in Chapter 5.

HSometimes called language or vocabulary in classical logic I,ex~books.

IS As oPPOlled to to the syn~actic perspective that regards terms aB trct'-Iike syntactic cOllBtructs.

16Not to be confused t.o the Computing concept. or module!

7

nicely), tbe theory of sketches [4], and the recently developed theory of "abstract algebraic
institution~" [89, 91}. However, no uniform proof theory bas previously been developed
for all these equational logics. It could be argued that, at least for computation, the proof
theory is more important than the model theory. In Computing Science model theory is
far mOre important as a methodology or style of thinking tha.n it is in itself. A major
contribution of this thesis is that it lays bare the architecture of equational deduction,
i.e., the conceptual structure that underlies it. Tbe key to the completeness of category­
based equa.tional deduction is to regard the congruence deterrninedon an arbitrary model
A by an arbitrary collection f of [conditionaJj equations in two different ways: as the
collection of all unconditional equations quantified hy A that are syntactically inferred
from r, and as the collection of equations that are a semantic consequence of f. Because
of the semantic treatment of equation and satisfaction, tbere is no distinction between
the congruence determined by r on the free models and on other models. Under some
additional conditions related to the finiteness of the hypotheses of the conditions in f
and to the finiteness of the model operations (both of them encoded in category-theoretic
terms), this congruence can be obtained in an effective way.

A relevant consequence of the completeness results for category-based equational de­
duction i5 a generic Herbrand's Theorem (in two versions) formnlated in the style of
(.'39], i.e., characterising Herbrand models as initial models of the program regarded as
an equational theory. This provides mathematical foundations for the equational logic
programming paradigm in the style of Eqlog [38, 39J. When applied to constraint logics
(in Chapter 6), this gives a version of Herbrand's Theorem for extensible constraint logic
programming. Despite the sophistication of this last result, it is obtained with minimaJ
effort due to the category-based machinery.

1.2.3 Category-based operational Bemantics

Equationa.l deduction bridges the gap between the operationaJ semantics and the model
theory ofequational logic programming; such a reconciliation is essential for understand­
ing the correctness of computer implementations. The completeness and sOlmdness of a
computing system rigorously based on some equational logic depends on the complete­
ness and soundness of the operational semantics with respect to the deduction system
of the equational logic involved, as well as on tbe completeness and soundness of the
equational deduction system with respect to its model theory.

Our category-based framework supports the development of category-based equa­
tional logic into a purely model theoretic approach to the completeness of operational
semantics for various programming paradigms that are based on some form of equational
logic; this result is independent of the particular [equational] logic involved, as opposed
to the combinatorial treatments of the paramodulation-based operational semantics seen
in the literature. We generalise the concept of paramodulation to model theoretic
paramodulation by defining paramodulation as an inference ru Ie with respect to an
arbitrary fixed model. We propose a generic scheme for proving the completeness of the
paramodulation-based operational semantics for equational logic programming. The core
of this scheme is the analysis of the relationship hetween the congruence determined hy
a program r on a model A and the relations indnced on A by tbe operational inference
rUles. This scheme also clarifies the role played by the Theorem of Constants, the Com­
pleteness of Equational Logic, and the Lifting Lemmas in proving the completeness of
operational semantics. In this approach rewriting is defined on algebraic entities that are

8

more a.bstract than terms. This is achieved by isolating the abstract properties of what
are known contexts in tbe standard case of many sorted algebra.

An important class of applications concerns equational deduction modulo a theory.
This arises when some equations in a program are non-orientable, making them useless
as roles (i.e., for rewriting or narrowing). The most notorious cases are associativity (A),
commutativity (C) and their combination (AC). Also, graph rewriting is a particular
case of rewriting modnlo a theory [7J. By taking a semantic perspective on computations
modulo a tbeory we introduce the more abstract concept of paratnodulation modulo
a model morphism and nse it for showing tbat computing in tbe quotient model of
a theory is the same as computing modulo that theory. One conclusion of tb.is thesis
is that there is no fundamental difference between ordinary equational deduction and
eqnational deduction modulo a theory. Based on this level of denotational ~emantics.

Chapter 4 extends this conclusion to the realm of operational semantics.

1.2.4 Modnlarisation and extensible constraint Logic programming

By integrating onr framework and the theory of institutions, we define the mathematical
structnre undf'rlying modularisation for equational logic programming in the style of
OBJ: tbe institution of category-based equational logic supports a general treatment of
the modularisation issues that arf' specific to tbe equational logic programming paradigm,
as well as a category-based semantics for querier> and solution forms in the context of
OBJ-like modularisation.

In the institution of category-based equational logic, the signatures are functors. This
ab3traction of the notion of signa.ture is based upon the fact that in any equational
logic system, a signatme determines a category of models, a category of domains, and a
forgetful functor between them. A morphism of signatures consists of a pair of "reduct"
functors, one on models and the other on domains. Forgetting from models tv domains
commutes with the reduct functors.

The concf'pt of solTItion form is shown to correspond to the Satisfaction Relation in
a special "non-logical" institution. This correspondence is useful for understanding the
soundness aud completeness problem for equational logic programming module importa­
tion in the wider context of institution theory, and thus relating it to the mual logical
concepts of soundness and completeness.17 The solution to this problem is given at the
level of the institution of category-based equational logic.

Finally, the category-based macbiuery is llsed for integrating exteusible constraint
logic programming into the equational logic programming paradigm by defining its un­
derlying logic and regarding it as category-based equational logic in which the models
form a comma category over a. "built-in" model. Tbis idea is based on the insight of
[39J to use free expansions of models of bnilt-ins along signature morphisms. This repre­
sents a significant generalisation of the initial algebra approach from abstract data types
to constraint solving. In this way extensible constraint logic programming becomes a
paradigm based essentially on equational logic. 18 This is a big advantage because exten­
sible constraint logic programming could henefit from the high maturity of the semantics
of equa.tionallogic, and possibly from some implementation tecbniques specific to equa­
tionallogic. At the semantic level, this is already very transparent. It will be interesting

J1Tru9 is an example of the use of ~abstra.ct modl'llheoryM beycnd the realm of logical sY9tem~, and
cf extension of concepts from lcglc to different areas.

I!!More prttisely. OJ! category-based equational logiC:!!.

9

to explore the benefits of such an approach at the level of operational semantics.

1.3 The Structure of the Thesis

After the Introduction and Preliminaries, we devote one chapter to each of the four main
topics. Tbe technical dependencies between chapters are shown in the following diagram:

IPreliminariesI
......... """"'"=

Modularisation,

Extensible constraint
logic programming

1.3.1 Preliminaries

The basic categorical concepts of this work are introduced and the category-based frame­
work of this thesis is introduced. The first section is devoted to various aspects of
categorical relations, wh.ich are at the center of the categorical machinery of this thesis.
The second section discusses finiteness from a categorical angle and applies it to cate­
gorical rt'lations. Equivalence, composition of binary relations, closures of relations and
confluent relations are analysed within this framework.

The la.st section defines the category-based framework underlying this thesis and
gives a list of examples relevant to equational logic programming: many sorted algebra,
order sorted algebra, Horn clause logic (with or without equality), and equational logic
modulo a theory. Each example is presented with a fair amount of detail; we also show
how they formally fit into the category-based framework previously introduced. The
presentation of Horn clause logics contains a body of results shOWing how they can be
technically regarded as ordinary (conditional) equational logics. Constraint logics are
also mentioned, but we devote the whole of Chapter 6 to this example.

1.3.2 Category-based Equational Deduction

The categorical proof theory for equational logics is developed in this chapter. This
begins with a category-based treatment of the concept of congruence. At this level,
tbe finiteness of operators (or predicates) arity is encoded as a category-based finitarity
condition related to congruences. The first section gives a category-based definition of
the uotion of U-rquation and of the satisfaction relation between models and U-equations.
The completeness of category-based equational logics is obtained in the next section, and
Section 3.4 derives a first version of Herbrand's Theorem as its consequence.

The last section explores the consequences of the existence of free models. We get
a more concrete formulation of the completeness of category-based equational deduction
:-;imilar to the classical approaches. At this level we discuss the role played by the Axiom
of Choice and of "finiteness of model operations" for the completeness of category-based

10

equational deduction. This section ends with a "non-empty sorts" version of Herbrand's
Theorem.

1.3.3 Operational Semantics

This chapter begins with a very brief historical perspective on narrowing, followed by a
discussion on the principles underlying our approach on the operational semantics. A
preliminary section defines the category-based context of our treatment of the Dperational
semantics, and approaches the notion of rewnting conte:rt from a category-based angle.
The next section presents the inference rules of the paramodulation-based operational
semantics for equational logic programming and establishes some related notations. Sec­
tion 4.3 is devoted tD the completeness of model theoretic paramodulation~ Secl.ion 4.4 to
paramodulation mDdulo a model morphism, and Sectiou 4.5 to the role of confluence in
establishing the completeness of paramodulation for the case of oriented rules. The the­
ory developed in the first part of this chapter is applied in the next section to proving the
completeness of many sorted narrowiug wheu programs are term rewriting systems, and
it also reviews the cDmpleteness of many sorted basic narrowing assnming the canDnicity
of the rewriting system.

The chapter on operational semantics ends with a section illustrating order sorted
basic narrowing with runs of the Eqlog system. The constructor disciplim is briefly
presented as a control strategy in the context of the Eqlog system.

1.3.4 Modularisation

The chapter begins with a general discussion on the OB.J-like modnlarisationprinciples
(including some history) and its advantages, a description of the soundness and com­
pleteness problems for module imports specific to equational logic programming, and a
discussion on the role of category-based in the treatment of modularisation in equational
logic programming. Section .5.1 presents some basic results in the context of semiexact
institntions including a theorem that is fundamental to the semantics of parameterisation
(i.e .. generic modules) for OBJ-like languages. 19 Section 5.2 provides the bridge between
the theory of institutions and the category-based framework of the thesis, and proves a
genericzo SatisfactiDn Condition in this context. Quantifier translatious appear as free
models along signature morphisms, and sentence translations as universal morphisms
between Kleisli ca.tegories. This provides a basis for the category-based semantics Df

queries and solution forms vet'BUS modularisation developed in the next section, where
the main result is the soundness of any module import and the completeness of persis­
tent module imports. The soundnes." and completeness for equational logic programming
module imports is shown to be an instantiation of the more abstract notion of soundness
and completeness fDr institutions with an entailment relation. This involves an eccentric
institution in which models are queries, seuteuces are substitutions, and signatures are
collections of logic".! variables.

The last section gives a generalisation of the Theorem of Constants within the frame­
work of category-based equational logics.

19Induding Eqlog viewed as a speciRc1l.tion language.

zOFor equational logics.

11

1.3.5 Extensible Constraint Logic Programming

This chapter gives a category-based semantics to extensible constraint logic programming
by embedding constraint logics witbin the framework of category-based equational logics.
It tben use! the machinery of the previous chapters for proving a constraint logic version
of Herbrand's Theorem.

1.4 The Programming Language Eqlog

Eqlog [38] is a programming and specification language being developed by the author at
Oxford University, to combine constraint logic programming witb equational program­
ming. Its default operational semantics is order sorted narrowing21

, but particular cases
can be computed by efficient built in algorithms over suitable data structures, with their
functions and relations, including equality, disequa.lity, and the usual orderings for num­
bers and lists. Initiality in Horn clause logic with equality provides a rigorous semantics
for functional programming, logic programming, and their combination, as well as for
the full power of constraint programming, allowing queries with logical variables over
combinat.:ons of user-defined and built in data types [39].

Eqlog has a powerful type system that allows subtypes, based on order sorted a.Igebra
1411. The method of retracts, a mathematically rigorous form of runtime type checking
and error handling, gives Eqlog a syntactic flexibility comparable to that of untyped
languages, while preserving all the advantages of strong typing [35]. The order Bortedness
of Eqlog not only greatly increases expressivity and the efficiency of unification (see
[74]), but it also provides a rigorous framework for multiple data representations and
automatic coercions among them. Uniform methods of conversion among multiple data
representations are essential for reusing already programmed constraint solvers, because
they will represent data in various ways. Order sorted algebra provides a precise and
systematic equational theory for this, based on initial semantics (see [73J for a detailed
discussion, [35] and 173] for some further examples).

Eqlog also supports loose specifications through its so-called theories, and provides
views for asserting the satisfaction of theories by programs as well as relationships of re­
finementamong specifications and/or programs. This relates directly to Eqlog's powerful
form of modularity, with generic (i.e., parameterised) modules and views, based on the
same principles as the OBJ language (see [38]). Theories specify both syntactic structure
and semantic properties of modules and module interfaces. Modules can be parame­
terised, where actual parameters are JDodules. Modules can also import other modules,
thus supporting multiple inheritance at the modnle level. For parameter instantiation, a
view billds the formal entities in an interface theory to actual entities in a module. Mod­
ule expressions allow complex combinations of already defined modules, including sums,
instantiations and transformations; moreover, evaluating a mudule expression actually
builds a !Ioftware system from the given components. 22 Thus parameterised programming
in Eqlog gives significant support for large programs through module composition, and
[28) shows that it also provides the power of higher order fnnctions. The semantics of
module importation is given by conservative extensions of theories in Horn clause logic
witb equality [39]. The stronger notion of persistent extension underlies geueric modules.

~lSeetlon 4.7 contains Borne ex~mples of order sorted narrowing b~ Eqlog funs.

12Chapler 5 conlains some ~implt' examples of parameterised modules and inBtanliahonB

12

1.4.1 Eqlog as a framework for decision procedures

From the very beginning logic programming was based on first order logic, paying tribute
to its success in the foundations of mathema.tics. Prolog is now the only logic program­
ming language that is quite widely used worldwide. Eqlog not only combines traditional
logic programming with equational programming, it is also an exlensiblt modular con­
straint programming language, which permits user-defined abstract data typez and the
reuse of existing code for constraint solvers for various problems. The [ad that Eqlog
is implemented in Kyoto Common Lisp supports this flexibility, because both Common
Lisp and C programs can ea!>ily be included, and many other languages have translators
into C. Gaussian elimination for systems of linear equations or packages for solving sys­
tems of linear iuequalities are examples of what can be done. Of course, many decidable
problems may uot already have sucb efficient algorithms, but they can still be solved by
tbe general method of uarrowing, which in some cases can be as efficient as computation
in an ordinary functional language.

13

2 PRELIMINARIES

This work assumes some familiarity with the basic notions of universal algebra and cate­
gory theory. We generally nse the same notation and terminology as Mac Lane's standard
category theory textbook [64J, except that the composition of arrows is deno1ed by";'"
and written in the diagrammatic order. Application of functions (functors) to arguments
may be v..itten either normally by using parentheses, or else in the diagrammatic order
without parentheses.

Categories are usually denoted by capital bbold letters; the standard ones usually
have a. name whose first letter is wTitten in capital bbold. For example, the category
of sets and functions is denoted by Set, and the category of categories and functors is
denoted by Cat. The opposite of a category C is denoted by COP; it has the same class of
objects as C, but all arrows are reversed. Functors are usually (but not always!,1 denoted
by caligraphic capital letters, particularly for 'fundor variables' as opposed tD functors
whose action is known. Objects in categories are usually denoted by small or italic capital
letters; the dass of objects of a category C is denoted by IC!. The set of anows in C
having the object a as source and the object b as target is denoted by C(a, b).

2.0.2 Comma categories

Recall from [64] that given two functors C ~ E ? 0, the comma category (C.l..V)
has arrows cC ~ dVas objects and pairs of arrows (f~9) as morphisms, such that

cC~dV

le) j,v
cIC~d'V

commutes. For functors collapsing everything to a constant object (i.e., to an identity
arrow) we use the object itself as notation. For any object e E lEI, the forget:ul functor
(,tE) = (,tiE) -t E i, denoted E,_

2.0.3 Limits and colimits

A diagram in a category C is a functor 1 ~ C. A cone /: d ~ C consists of
an object d E lei (called the apex of the cone) a.nd a Ill-indexed family of arrows

{d ..2!+ C(iH'EIJI such tbat /]; C(u) = /; for any u in l;

j "

C()) C(,) C(i)

~jl

d

15

A limit of C is a minimal cone over C, i.e., a Calif' p: c -+ C such that for any other
cone,; d -+ C there exists a unique arrow f: d -+ c in C such that f; p = ,.

Co-cone and colimit are dual to the notions of cone and limit, i.e., their defintion
can be obtained by reversing the arrows iu the- dennit.ion of limits_ This can be visualised
by the following diagram:

Cli) C(") C(i)

~.//

"\1/'

d

Particnlar limits and colimits are obtained by fixing t.he shape of the diagrams, i.e., the
category J. When J is discrete (i.e., it consist.s only of idenLit.y arrows) we get products
and coproducts, respectively. When J consists only of two objects a.nd a parallel pair of
<~rrows between t.hese, we get equalisers and coequalisers, respectively.

A fnnctor 0' ~ 0 creates colimits iff for any colimit D ~ c (of a diagram

J -.E....,. 0 in O}, there exist.s a. colimit. p' in 0' such t.hat. p'U :::: Il.
A category J is filtered iff for any objects i,j EIJI, there is an object kEPI such

that i -t k t-- j.

2.0.4 2-categories

Given two functors S, T: A -t B, a natural transformation T: S --+ T consist.s of an
IAI-indexed family of arroWs in B, {as ~ aT}aEIAI such that for all f in A tbe following
diagram commntes:

a o.S~aT

f) fS))fT
0.' a'S --;;<7 0.'7

As "fnnctor homomorphisms" natural t.ransformations compose point-wise in t.he obvious
way. This is called the vertical composite of nat.ural transformation:

",..
ATB

I.e., a(O";T) = ao; aT. There is another horizon/a/composit.e of natural t.ransformations
TT': S;SJ -t T;7'

5 5'

A	 +T .. B~C,
T T'

and there is an Interchange Lam given three cat.egories and fom natural transformations

",.. "'~
ATB h" C,

the "vert.ical" composites and t.he "horizontal" composites are related by

(0"; T)(oj; T') = (ooJ); (TT').

16

Functors and natural transformations form a 2-category (i.e., Cat is a 2-category).
A 2-category is a class of arrows (called 2-cells) for two different compositions which
together satisfy the Interchange Law, and in which every identity arrow for the first
composite is also an identity for the second composite. The identities fDr th~ vertical
composites are called I-cells, and the identities for the horizontal composites are called
O-cells.

2.1 Categorical Relations

The categorical version of hinary relation plays a central role in this work.

2.1.1 Representations of binary relations

Definition 2.1 Let a be an object of a category X. A binary relation representation

on a is a parallel pair of arrows s, t E X(k, a), denoted ki:4a or just (s, t). 0

Here k plays tbe role of "object of indices" and s, t stand for the projections which
give the left hand side and tbe right hand side of any pair of elements belonging to the
relation. 23

Example 2.2 Let ~ be the usual "less than or equal" relation on the set' or natural
numbers. We can define the set of indices to be ((x, y) I x. yEw and x ::; y}, and let
s, t: k -+ w b", the projections, i.e., s(x, y) ::::: X and t(x, y) = y. 0

Definition 2.3 Let k~a and k' ~ a be binary relation representations on the same
object a. Then (s. t) is included in (S'~ t') (denoted (s, t) <;" \8 ', t'), or just (s, t) ~

(s', i')J iff there is a map h.: k -+ kl between the objects of indices such that 8 = h; Sl

and t = h.; tl. 0

k~a

+/

k'

Fact 2.4 For any category X let X.::t be the category having the same ohjects as X and
pairs of parallel arrows as maps. Let OX be the functor X -+ X.::t douhling each arrow in
X. Then for any object a in X, the inclnsion <;" between binary relation representations
on a is the preorder obtained by coHapsing24 the comma category (ox!a). 0

Definition 2.5 Two relation representations Q and Q' on the same object a are equiv­
alent (denoted Q =" Q', or Q == Q' for shDrt) if and only if Q <; QI and QI <; Q.
D

2:Jfm techuical simplicity, we don't require sand t to be moniC5. In this way, a binarJ relation can
have more than one representation, eoch having different objects of indices. Some of thl'Sl! objects of
india.-s are not necessarily isomorphic; this allows repetiti<llls of ~elements" in a repre':l~ntation of a
relation.

24The elements of the preorder are the objects of the category, and two elements are rela.!{'(\ under the
preorder iff there is an arrow between them.

17

Binary relations are classes of equivalent representations:

Definition 2.6 Let a be an object of a category X. A binary relation on a is an
equivalenct' class of =a. 0

For simplicity, we will often use representations instead of equivalence classes as binary
n>lations. Notice that the concept of inclusion between binary rela.tion representations
can be extt'nded to binary relations proper. We will often write sQt for (s, t) <;; Q, where
Q is a binary relation.

2.1.2 Unions of relations

Definition 2.7 Let {Q'};EI be a family of relations on an object a of a category X.
The union U'E! Q, is the least upper bound of this family with respect to the inclusion
relation. Dually, the intersection n'EI Q, is the greatest lower bound. 0

Lemma 2.8 If X has colirnits, then the uniou UiE! Q, of auy family of binary relations
on an objt'ct a of X exists, and may be constructed as a colimit iu the comma category
(L'>x.fa)

Proof: This follows from Fact 2.4 and from the fact that the forgetful functor (Llx!a) -t

X crea.te5 colimits. 0

Corollary 2.9 If X bas binary coproducts and C'olirnits of filtered preorders, then it has
unions of binary relations.

Proof: By the construction of [small] colirnits from binary coproducts aud colimits of
filtered preorders (see [64]). 0

Fact 2.10 Assume X has coproduds. Let (8;, t,),EI be a family of relations on a E !X!
and let I: a -t b be an arrow in X. Then

(U(s;, I,));! = U(s,;!, t,;!).

'E! 'E!

Proof: Let k be UiE! k"here k, is the object of indices for (s" I,). Then UiE!(S" I,)
can be regarded as the coproduct of (Si' t'}'E! in (Ll)(~a). By the uniersal property of
coproduets, (UiE!(S,.I;));I i9 the coproduct of (s,;!, tj;J)iEl, that is, U'E!(s,;f, t,;1). 0

Definition 2.11 A binary relation Q is atomic iff it does not have any proper subrela.­
tions, i.e., the empty relation and Q are its only subrelatious. 0

In tbe case of [many-sorted) sets. the atomic relations are exactly the oIle-elemeut
relations.

Definition 2.12 A coproduct U'E! k; in a category X is disjoint iff any map I: P -t

UiE! k, can be represented as I = Il.Er I, with I,: Pi -t k; and P = u'eJ Pi· A category
ha.s disjoint coproducts iff it has coproducts and all its coproduets are disjoint. 0

Example 2.13 In Set any function I: p -t I1;El k; can be written as I = ti'E! Ii where
I,: I-I(k;) -t k;. This works because the coprodncts of sets are disjoint unions.

The same situation holds for the case of many-sorted sets and functions. 0

18

Lemma 2.14 Let X be a category with disjoint coproducts. If R ~ U'EI Qi (as binary
relations), then R can be represented as R =U'EI Ri with R, ~ Qi.

Proof: Let R be p ~ a aud k, he the object of indices of Q; for each i E I. Then
the object of indices of UtE! Q, can be taken as IliEl k,. Let I: P ---? IltE! k, be the
map between the indices representing the inclusion R ~ U'El Q,. Then I "" IliEl Ii
with Ii: P, ~ ki and IliEl Pi = p. Define R, to be 0,; S,ji; t) for each i E I, where
{j,: Pi ~ P}'EI are the injections of the coproduct CO-COlle. Now it is easy to see that
R, ~ Q, for each i E I and that R = UiEl Ri • 0

2.1.3 Equivalences

In this subsection we introduce the notion of equivaleuce as a special binar} relation.
The following is a well known categorical definition of equivalence relations:

Definition 2.15 The kernel of an arrow h, denoted kr,(h), is the pullback of h with
itself. A relation (s, t) on a is an equivalence ifT there is a map It such that (s. t) =

ker(h). 0

Fact 2.16 If X has pullbacks, then h, is a functor (a..j..X) ~ (~x.J..a). 0

In ordinary set theory, equivalences are characterised as reflexive, symmetric and
transitive binary relations. The following definition deals with reflexivity, symmetry and
transitivity at the level of categorical binary relations.

Definition 2.17 Let X be a category and consider an object a in X. The diagonal of
a is the relation

D. = UHt, t) It E X(k, aJ)

Then a relation Q on a is reflexive iff D a ~ Q.
(l, r) is symmetric iff (I, r) = (r,l), and
Q is transitive iff (5, u) ~ Q whenever (5, I) ~ Q and (t. II) <; Q for some t. 0

Fact 2.18 Any equivalence is reflexive, symmetric and transitive. 0

Fact 2.19 The symmetric closure of a biniuy relation (t, r) on a exists, and is given by

8ym(l, r) = (I, r) U (r, I).

o

Definition 2.20 A category X has filtered unions of equivalences iff for each object
a the functor ker: (a..j..X) -+ (~x.J..a) preserves filtered colimits. 0

Fact 2.21 The forgetful functor (a..j..X) -+ X creates filtered colimits. 0

19

Example 2.22 The category Se/.s of S-sorted sets and functions has filtered unions
of equivalences. This reduces to the fact that unions of filtered families of equivaJeuce
relations on a. set A are still equivalence relations. Filteredness is essential, as suggested
by the two ei{uiva.lences on {I, 2, 3} generated by {(I, 2)} and, {(2,3)} resp€ctively. Their
union is not an equiva.lence since it is not transitive because it does not contain (1,3).

More formaHy, consider a set A and let p: {A~B'}'E1 --t (A-4B) he a filtered colimit
in (A..l.-Set s). Let K, be the kernel of I; for i E J. By Fact 2.21 p: {B'}'EI --t B is a
filtered colimit in Sets. therefore B is (U;EI B;)j~, where b '"" bl iff band b' get mapped
into the same element by some function in the diagram {B'},E/. The existence of filtered
unions of equiva.lences rneans that ker(J) should be U'E! K;. Then UiEI k. -= {(a, a'l I

3; E III mh that f,(a) ~ f,(a')} and k"UJ = {(a, a') IlIj E IJI,MaJ/- = f,(a'J/-}.
By the definition of......" ke7'(f) ~ UiEI !(,. But U;EI h·, ~ kn(f) siuce each K, ~ ker(J).
o

2.2 Finiteness

This section deals with finiteness. The concept of finiteness is essential for proving the
completeness of equational deduction, and cousequently of the operatjonal semantics.

2.2.1 Finite objects

The link between finiteness and filteredness is now well estahlished in several differeut
branches of mathematics. Altbough it is hard to trace back its origins, we mention the role
played by filteredness in explaining some Birkhoff-tike axiornatisation results in abstract
model theory. Our categorical definition of fiuiteness corresponds to the definition of
"L-small object" in [1] when L is the class of aU directed posets, and it also generalises
the well known notion of a "finite elernent" in a partia.lly ordered set.

Definition 2.23 An object k in a category X is finite iff for any map I: k --t d to
the apex of a colirniting co-cone p: D --t d in X over a filtered diagram D, there exists
i E IDI and a map Ii: k --t D(i) such that f,;p, = I. 0

Example 2.24 In Ser", the finite objects are exactly those S-sorted sets that are finite
on each component in the ordinary sense.

Consider a finite S-sorted set k and a map I: k --t d to the apex of a colimiting
co-cone J.L: D --t d over a filtered diagram D iu Sets.

D(j) D(;)

~d/(

'1/"

k

Due to the nature of colimits ill set theory, d = U]EIDIP)(D{j)). Therefore, for each
element e E d, there exists j such that e E p](D(j)). The same holds for any subset of
d, in particular for /(k). Since d is finite and D is filtered, there exists i E IDI such that
I (k) <; p;(D(i)). Now jt is easy to construct a map Ii: k --t D(i) such that J,; Pi == I.

20

For the converse, assume the hypotheses and suppose k is not finite. Let D be an
w-diagram such that D(j) ~ k and D(j) is strictly included in D(j + 1) for each i E w.
Such a diagram exists because k is not finite. Let I be any right inverse to the inclusion
uJE",D(j) ~ k. Suppose there exists i E w and Ii: k -+ D(i) such that f,;JJ, = f. Let
e be an element in D(i + 1) that doesn't belong to D(i). If I,; JJ, was equal to I, then
e = I(e) = JJi(J,(e» = e, which clashes with the fact that e doesn't belong to D(i). 0

Example 2.25 In a similar manner to the previons example we can easily see that in
the category VectK of vector spaces and linear transformations over some field K, the
finite ohjects are exactly the finite dimensional vector spaces. 0

Lemma 2.26 Suppose X has binary coproduets. Then kIll k2 is finite jf k1 and k2 are
finite.

Proof: Consider a colimiting co-cone JJ: D -+ d over a filtered diagram D iu X. Let
I = !.Ii ,/2]: kill k2 -+ d witb J.; kj ----t d. By tbe finiteness of kl and k2 and because
D is filtered, there is an object j and two maps 9,: ki -+ D(j) (for i = 1.2) such that
g,; JJj = Ii. Define 9 to be [91, 92J: kill k2 -+ D(j). Then 9: JJ, = I. 0

2.2.2 Finiteness for binary relations

Definition 2.27 A binary relation is finite iff at least one of its representations has a
finite object of indices. 0

Faet 2.28 Any finite binary relation on a E IXlls finite as an object of (~)(~ll). 0

The converse doesn't necessarily hold. However, a natural condition on the hase
category ensures that finite binary relations on an object a correspond exactly to the
finite objects in (~x+a). Tbe next definition is adapted from [lJ:

Definition 2.29 The category X is algebroidal iff each of its objects can be presented
as a filtered coJimit, of finite objeds. 0

Both SetS a.nd VeetK are algebroidal categories. In the former case, any S-sorted set
is t.he union of its finite subsets, while in the latter case, each vector space m'er a field
K is the colimit of its finite dimensional subspaces. Another well known example comes
[rom domain theory. A lattice is caHed algebraic iff each of its elements is a directed
union of finite elements.

Faet 2.30 If X has binary coproducts, then for any binary relation Qon a. {Go finite I
Qo <; Qj ;, filtered.

Proof: By Lemma 2.26. 0

Corollary 2.31 If X is algebroidal and has binary coproducts, then for any binary
relation Q on a~

Q = UI Qo finite I Qo <; Qj.

Proof: Let Q be (s, t) with d the object of indice~. Since X is algebroidal, d is the
apex o[a colimiting co-cone JJ: D -+ d of a diagram whose nodes are finite objects in X.
For each node i in D, the binary relation (JJ,; S.JJ'; t) is finite and (8, t) is. thecolimit of
(!J;; S,JJi; l);EIDI in (~)(+a) since the forgetful fundor (~x+a) -+ X creales colimits. By
Lemma 2.8, (s,t) = U;E!DI(JJ,;s,JJ,;t). But

21

U (",; ,<, ",; ,) <:: U{('o"tl) finite I (''0, to) <:: (s, ,)),

'EIDI

Therefore, (5, t) ~ U{ (So, iQ) finite) (.>0. til) <; (,~, t)}. This proves the corollary since the
opposite inclusion is trivial. 0

The following corollary motivates Definition 2.27 and shows that the finite binary
relations on a correspond exactly to finite objects in (~xj.a),

Corollary 2.32 If X is algebroidal and has binary coproducts, then for any object a in
X, any finite object in (~xj.a) is a finite binary relation all a.

Proof: Assume that k i:4 a is finite as an object in (~xj.a). By Corollary 2.31

(s, t) = U{I.:o (~) a finite I (So, 1(;) 0;; \3, t)} and there exists Ieo~) a ~ (... t) finite such
that (s, t) <:: ('0, 'tl), 0

Corollary 2.33 If X is algebroidal and has binary coproducts, then any atomic relation
is finite. 0

2.2.3 Reflexive-transitive closures

Throughout this subsection we assume that the category X is algebroidal and has disjoinfl5

binary coproducts.

Lemma 2.34 A binary relation Q on a is symmetric iff (s, t) ~ Q implies (t,s) ~ Q
for all finite (s, t).

Q is transitive iff for any finite relations (s, t) and (I, Ii), (s. u) ~ Q whenever (s, t) ~

Q and (/'u) <:: Q,

Proof: Let Q be k~a. By Corollary 2.31,

(s, I) = U{ ('0, to) finite I ('0, to) <:: (s, t)),

in such a way that (5. t) could be presented as the colimit of the set in the right-hand side
of the previous equality. From this, we deduce that (1-, s) = U{ (to. So) finite I (So, to) ~

(s, t)). But each finite (t(l,So) is included in (s.!) by bypothesis, therdore (t,s) ~ (a,t).
For the second part of this lemma, consider (5'. £'). (t', u') ~ Q and let {k; ~ khel

bt:> a representation of k as a filtered colimit of finite objects. Let Si = fl,.; Sl, t, = fl,; I'
and u, ::: fl;; u'. Then (s" u,) ~ Q by hypothesis, and because (s, u) = U'EIJI(s;. u,), we
have {s.u) ~ Q. 0

Definition 2.35 Let Q and R be relations on the same object a. Then their composi­
tion is

Qo R ~ U{(s, u) finite I (s, I) <:: Q, (t, u) <:: R for 'ome t},

o

Fact 2.36 Let Q and R be relations on thf' same object a. Then

{(.<, u) finite I (s, t) <:: Q, (t, u) <:: R fo' ,ome t)

251n the sense of Defulition :U2.

22

Lemma 2.37 Fix an object a in X. Tben

1.	 the composition of binary relations is monotonic with respect to the inclusions
between relations,

2.	 the composition of binary relations on a is associative, and

3.	 (Ql U Q2) 0 R = (Q1 0 R) U (Q2 0 R) for any binary relations Ql, Q2, R on a.

Proof: 1. The proof of thi9 falls out directly from tbe defintion of inclusions of cate­
gorical relations.

2.	 Consider Q, R.P binary relations on a. Then

(Q 0 R) oP ~ U{(" v) finite I ("f) C;; Q 0 R,(t, v) C;; P fm some fl.

Because of Fact 2.36, for each (s, t) ~ Q 0 R finite, there exists I' such that ('" v) ~ Q
and (v, I) 0;;;. R. Then

(Q 0 R) 0 P ~ U{(" v) fimte I ("v) C;; Q,(v,f) C;; R.(f, u) C;; P fm wme v, fl.

The same holds for Q 0 (R a Pl. Therefore (Q a H) a P = Qa (R a P).
3. (Ql 0 R)U(~oR) ~ (QI UQ2)oR holds by the monotonicity of 0 with respect to ~.

For the opposite inclusion, consider (s, u) finite such that (s, t) ~ QI U Q2 and (t, 'IL) ~ R
for Same t. Let (5;, t,l ~ Q" (t" 'u,) ~ H, i E {I,2}, such that (8, t) = ('~b tl~'U (s-.t, (2)'

Then ('" v,) C;; Q, 0 R and (" u) ~ ('" v,) U (", u,) C;; (Q, 0 R) U (Q, 0 R). 0

Proposition 2.38 Any relation Q on an object 11 in X has a reflexjve-tran9iti~'e closure
(i.e., the least, reflexive-transitive relation conta.ining Q), namely

Q' = U Q"
"Ew

where Qo = Da and Q,,+l = Q" U Q 0 Q".

Proof: The reflexivity of Q* holds because of Qo. For proving the transitiYity of Q*,
we show first by induction on m E !.J.,' that Q", 0 Qn ~ Q",+n for any Tl E <.:. For the
induction step,

Qm+I a Qn = (Qm U Q a Qm) 0 Qn

Qm c Qn U Q 0 Q", 0 Qn (by lemma 2.37)

t; Qm+n U Q 0 Qm+n

Qm+n+1.

Now consider (s, t), (t, 'IL) ~ Q* finite. Since Q* = U"Ew Q" is a filtered colimit, there
exi9ts m, Tl E ..., such that (s, I) ~ Qn and (t, 'IL) ~ Q",. Therefore (s, 'IL) f Q.,,+n ~ Q*.
By Lemma, 2.34, Q* is transitive.

Let H be any reflexive-transitive relation on a and containing Q. By induction on
n E "'I, Qn ~ R. Therefore Q~ ~ R. 0

23

2.2.4 Confluent relations

In a set theoretic framework, the follo..... ing definition represents an extension of the
ordinary notion of confluence from elements to finite families (or tuples) of elements.
Confluent relations appear in the context of abstract rewriting systems [55].

Definition 2.39 A binary relation Q on an object a of X is confluent iff for any finite
(8, t), (s, t'l ~ Q, there exists u such that (t, ul. (f'. u) ~ Q. 0

2.3 Models and Domains

This thesis takes a top-down approach to equational logics, iu the spirit of abstract model
theory [5, 33], in the sense that all concepts and results are developed at the highest
possible level of abstraction. Ne..... levels of coucreteuess, necessary for some concepts
and results, are obtained by adding ne..... hypotheses to the previous levels. The basic
frameork distills the essential ingredients characterising equational logics.

The semantics of any [equational] logical system is given by its models. In general,
the soundness of the inference rules of a logical system is checked against the models by
using a satisfaction relation between models and seutences (in traditional mathematical
logic this idea was first formalised in [93]). Model mOl'phisms are translations between
models. We assume that models and their morphisms form a category. Inspired by the
theory of institutions [331, equational logics can be "localised" to signatures. A model
is an interpretation of a particular signature into a domain. Therefore any model has
an underlying domain, and moreover, this correspondence should be functorial. Any
t o parallel model morphisms identical a..s maps between the underlying domains are the
same. These hypotheses are formulated ithin the following general assumption:

[BasicFramework]: There is an abstract category of "models" A and a "for­
getful" functor U: A ---+ X to a category of "domains" X that is faithful and
preserves pullbacks.

In practice, the forgetful functor U always has a left adjoint F, which means that for
every;z E IXI (which can be thought as a. domain of variables) there is a "free model" xF,
in the sense that there is a "canonical iuterpretation" Z1/ : x ---+ zFU of "the variables"
into t.he free model satisfying the follo..... ing universal property: for each f: x --+ AU
Int.erpreting variables in a model A, there exists a unique model morphism fl: ;zF ---+ A
extending f, in the sense that XT/;/~U == f.

X "71 z.FU Xf

~~ h
,4U A

Notice that (A,U) can be regarded as a concrete category (in the sense of [58])
over the category of domains. The condition that U preserves pullbacks rela.tes to the
fact that congruences are equivalences; this will become more transparent later. Notice
that U automatically preserves pullbacks whenever it has a left adjoint (see [64]).

The simplicity of this basic framework is an expression of the simplicity of equational
logic in general. This framework supports the interualisation of all concepts and results

24

in equational logic; this internalisation will be called category-based equatiollallogic.
The rest of this section is devoted to the presentation of some major equationa.l logical
systems used in Computing Science within the framework of our geueral assllmption.

2.3.1 Many sorted algebra

1-fany sorted algebra (abbreviated MSA) seems to have beeu first studied by Hi~ins [53J
around 1963, and Benabou [8J gave an elegant category theoretic development around
1968, overcoming some of the technical difficulties16 in [53]. The use of sorted sets (also
called indexed families) for A'fSA was introduced by Goguen in lectures at the llniversity
of Cbicago in 1968, and first appeared in print in [24]. Sorted sets allow il. simpler
notation than alternative approaches, and also allow oVfrloading; however, overloading
on.ly reveals its full potential in order sorted algebra. It was later uoted that using sorts
in automatic theorem proving can be an advantage, because it can greatly reduce the
search space (e.g .. see [97]). The basic definitions for overloaded ~fSA are fluile simple:

Definition 2.40 Given a set S, we let S* denote the set of all finite sequences oielements
from S, and we let Ddenote the empty sequence of elements from S. Given an S-sorted
set A and w:::: St ••• S" E 5*, let AU' = A'1 X .•• X A'n; in particular, let AD = [*}, some
one pointed set.

A signature (5, E) is an S· x S-indexed set E = {Eu..• lw E S*, s E S}: we often
write just!..: instead of (S, !..:). Notice that this definition permits overloa.ding. in that
the sets E UJ ,. need not be disjoint; this can he useful in many applications.

A E-algebra A consists of an S-sorted set A and a function O"A: A'V -;. .4, for each
0" E E"".; the set A. is called the carrier of A of sort s. A E-homomorphisffi from a
E-algebra A to another B ig an S-sorted function f: A -;. B such thatJ7

f(~A(a)) ~ ~B(f(a))

for each a E AW, 0

Let AI9E denote the category with E-algebras as objects and 'E-homom01phisms as
morphisms. There is a forgetful functor U: A/9E -;. SetS from the category of E-algebras
to the category of S-sorted sets which forgets the interpretatious of the operations in 0.
In this example, Algr. is tbe category of models and SetS is the category of domains.

Given a many sorted siguature E, an S-sorted set X will be called a set of variable
symbols if the sets X. are disjoint from each other and from all the sets Ell"'. Given a set
X of variable symbols, we let T£(X) denote the (S-sorted) term algebra witt: operation
symbols from 'E and variable symbols from Xi it is the free ~-algebra gcnerilted by X,
in the sense that if v: X -;. A is an assignment, i.e., a (many sorted) function to a !>
algebra A, then there is a unique extensiou of v to a E-homomorphism vI: Tl(X) -;. A.
In order to ma.ke this construction more precise, we define (TE(X)). to be the least set
of strings of symbols such that

1. Ea,. U X. <:: (TE,.(X)), and

2. 0" E E.I, ..•n,. and I.i E TE... (X) imply tbat the string O"(fL ... , in) is in TJ::,.(X).

2f'These difficultiel are discu68ed in [37], which gives a more technical survey of work in MSA.

3~By f(a) we understand (J((lI), ... ,f{(ln)}here (l =(ai, ... , a,,).

25

The E-structure of TE (X) is the canonical one. (Strictly speaking, the usual term algebra
is not free unless the constant symbols, in 1:0.8 for s E 5, are mutually disjoint; however,
even if tbey are uot disjoint. a dosely related term algebra, with constants anuotated by
their sort, is free.) This construction is a left adjoint to the forgetful functorU: Al~-+

Se/ s .
Also, we let Tr:, denote the initial term 1:-algebra TE (0), recalling that tbis means

tbat tbere is a unique I:-bomomorphism !,.\: Tr:, -+ A for any E-algebra A. Call t E Tr,
a ground ~-term. Given a ground I:-term t, let fA denote the element !A(t) in A. Call
A reachable iff !,.\ is surjective, i.e., iff each element of A is "named" by some ground
term.

2.3.2 Order sorted algebra

The first. paper on order sorted algebra (abbreviated 05.1) [25] says tbat its main mo­
tiation is to provide a bdter way of treating errors in abstract data types;lB another
motivation is that the use of suhsorts can gwatly speed up certain theorem proving prob­
lems [96). OSA adds to MSA a partial ordering on the set. of sorts, whicb is interpreted
a.s inclusion among tbe corresponding carriers; all approaches to OSA share this essential
idea. The ideas in [25] were furtber refined by Goguen and Meseguer, starting around
1983. In [35] t.he basic OSA definitions are presented in a much more general form than
in [41]. and we follow that more geueral approach here.

Definition 2.41 (3:)] An order sorted signature is a triple (5,::;, I:) such that (5,~)

is a many sorted signature and (5, :S;) is a partially ordered gel. An order sorted signature
is monotone iff

a E E W1 ,81 n Eu..p~ and WI :s; 'W2 imply 51 :s; 52.

A (8,:s;,~)-aJgebra is a many sorted (5,1:)-algebra A such that s ::; s' in 5 implies
A. ~ A.,. An order sorted E-algebra A is monotone iff

a E E w)." n 1:w::,,~ and tiJ-j ~ '11'2 and Sl .:s; S2 imply thaf a"".,,· .1"'1 -+ A'J
equals aW::.82: A", -+ A'2 on A wj •

A (8, :S;,E)-homomorphism is a many sorted (5,2:)-homomorphisrn h: .1-+ B sucb
that s:S; s' in 8 implies h8 (u):::: h.,(a) for all u E A,.

A partially ordered set (5, S) is (upward) filtered iff for auy two element.'i 5, s' E 5
Lhere is an element s" E 5 such that s, s' ~ sf!. A partially ordered set 5 is locally
filtered iff each of its connected componentB19 is filtered. An order sorted signature
(8, ~,1:) is locally filtered iff (5, 5) is locally filtered. 0

Notice that there cannot be any overloaded constants if ~ is monotone. Also note that
overloaded OSA is a proper generalisation of MSA, because (overJoaded) MSA is the
special case where the partially ordered set of sorts is discrete; some other approaches do
not have (even ordinary non-overloaded) MSA as a special case.

Given a signature E iu tbe sense of Definition 2.41, the interpretations of an overloaded
operation symbol a E E w"., nE"" ..., in an algebra A need not necessarily agree on elements

"'St"I' 143J for a discussion of lhe difficulties with handling etrors in MSA.
29Gi\'en a poset (S, $). ld == denote the trallilitive and symmet.ric closure of::::;. Then s is an

(.'qmvalence relation whose equivalence das.~ are <:alled t.he cODoected components of (S, ::::;).

26

that belong to the intersection of carriers for 1L1 and ID.2; thus, a strong form of overloading
is supported. For this reasou, in [35] this approach is called overloaded OSA. Note
that Definition 2.41 generalises [41], where both the signatures and algebras are1l.Ssumed
to be monotone. Goguen and Diaconescu introduce in [35] the concept of signature of
non-monotonicities as a mechanism for saying which operation declara.tions should be
considered non-monotonic.

In [41], overloaded OSA is developed with coherent signatures in a way that closely
parallels traditional general algebra: in particular, tbere are order sorted versions of
subalgehra, congruence, term, deduction, initial and free ..2lgebras, completeness, etc.
Regularity guarantees that every order sorted term has a well defined least sort; this can
simplify the implementation of overloaded OSA. Here is the formal definition:

Definition 2.42 An order sorted signature (5, S;, 1:) is regular iff it is monotone, and
given (1 E :Eu'l"l and U\:l .:-:; 'WI, there is a least rank (w, 8) such that 'IL\) S; U' and (J E E UJ , ••

Also (S, S;,:E) is coherent iff it is locally filtered and regular. 0

A weaker condition that is necessary and sufficient for all terms to have a least sort parse
is given in [41J. In essence, the regular OSA of [41J allows "'multiple universe~," one for
each connected component of the sort hierarchy, without bothering whether they overlap.
However, the programme of general algebra can be carried out in much greater generality
than this. In fact, [35] emphasises that overloaded OSA can be developed for arbitrary 10-­
cally filtered signa.tures; in particular, initial algebras exist for signatures that are neither
regular nor monotone. In fact, all the standard results of genera! algebra carry through
for any locally filtered signature, and this extends to signatures of non-monotonicities as
well. An important technical result about the loose semantics of overloaded 05A, which
also extends to non-monotonicities, is that any variety of algebras is equivalent (in the
categorical sense) to a quasi-variety of many sorted algebras. This result implies tbat
overloaded OSA has all the nice mathematical properties of MSA; for example, it can be
used to prove the initia.lity, Birkhoff variety and quasi-variety theorems.

One of the interesting recent developments in the theory of OSA is by Hubert Comon
[1 iJ who showed that OSA specifications can he represented as bottom-up tree automata.
The redundancy of the regularity hypothesis follows easily from this representation too.
Moreover, the representation of OSA specifications as bottom-up tree automata proves
to be very effective as an implementation technique, the regularity condition being re­
dundant at the level of implementation too.

Given an order sorted signature (5 l S;, :E), the :E-algebras and their homomorphisms
form a category Al!l£. This is the category of models for OSA. The domains are the
many sorted sets. We emphasise that the domains for OSA should not have an order
sorted structure. This idea is supported by the way OSA i!i" implemented; at the theory
level. the necessity to work with many sorted domains rather than order sorted domains
will hecome more transparent later. The forgetful functor U: Al!}E -t Set S forgets both
the algebraic and the order sorted structure.

Other approaches to OSA could be treated in a similar manner. For a recent com­
parative survey on different approaches on OSA see [3.5J.

2.3.3 Horn clause logics

The model theory of equational logics bas an algebraic nature due to the absence of
predicates (relational symbols). This is a big advautage over model theories involving

27

relations, siJlre' powerful and elaborate algebraic methods can be used (see [33, 41J for the
semantics of programming languages). However, it is well known that Horn clause logics
(abbreviated HeL), for example, do not lack nice semantical properties like completeness
and the existence of initial models_ Moreover, the way these properties are obtained has
a strong algebraic flavour [39]. This shows that Horn clanse logics somehow have an
algebraic charactf'r.

Theorl:'m 2.43 below describes an embedding of the category of models of any first
order signature as a retract. of thf' category of algebras of the algebraic signature obtained
from the original first order signature hy turning the predicates into operatioJls. The idea
of interpretiug the predicates as 'boolean valu",d' operations is hardly new. It has even
been used for promoting narrowing as an operational semantics for logic programming
[19]. Howeyer, our approach is slightly different, because from the very heginning we
avoid a fulJ boolean structure on the new sort of buth values. Moreover, our approach
emphasises the model theory side (Theorem 2.43). The result is an effective method
for applying algebraic techuiques to a large class of model theoretic prohlems in logic
programnling. For example, the constructiou of initial models, and more generally of
free models of logic program<; [:39], follows immediately from the well known construction
of initial and free algebras (sel:' [41, 45], etc). The same principle applies to free exteusions
along theory morphisms, which w",re suggested in [39] as a semantic basis for constraint
logic programming.

Recall (e.g., from [:J3]) that a (many sorted) first order signature is a triple
(B,~, IT) such that (5, E) is a many sorted signature in the sense of Definition 2.40,
and II is aD 5+-indexed family of set.g of predicate or relation symhols. A mor­
phism U,9,k): (5,E,II) -+ (BI,E/,In between two first order signatures consists of
an equational signature morphism (J,g) together with an 5+-indexed family of maps
k",: II", --t IIJ-t(r~) on prcdicatesymbols. JO A mod~i M ofa first order signature (B, I:, IT)
consigts of a ~-algebra structure in the sense of Definition 2.40, together with an inter­
pretation 1rM ~ M'" for each predicate symbol1r E II", as a relation on the carriers. A
morphism h: M ------+ M I between (S,~, IT)-models M and AP is a I:-homomorpbism
such that. for any predicate symbolrr E IT.I ..••", if mE 1rM then h(m) E 1rM'.

For a first order signat.ure (5, E, IT), let Mods,E,n denote the category of (5,~, D)­
models and their morphisms. We will oftpn write (E,D) for (5, E, II), leaving the sort
set implicit.

Theorem 2.43 Given a many sort,,,,d first order signature (5, I:, rI), consider an algebraic
signature (Sb, Eb U IT b) defined in the following way:

•	 S~ is B plus a new sort b,

• n' is a collection of new operation symbols {;rb 11r E II} such that rr b ED.]b

whenever if is an $l ••• S,,-ary relational symbol, and

•	 Eo is just ~ plus a new constant t of sort b.

Then

1.	 there is a forgetful functor "HE ,IT : AlgEbunb ------+ ModE,n such that for all rr E II,
a E 1r1ll:.n(.4) iff 1r~(a) = t A ,

30HNe f+ is r restricted to non-empty 6trings.

28

2.	 Hr.,n has a left adjoint left inverse31 £1:,n, and

3.	 there is a translation O'1:,n of (E, IT)-Horn clauses to (E b UIIb)-conditional equations
that regards every E-equation ~ a 1:b-equation and maps every atom 1r(s) to the
(1: b U IIb)-equatioD rrb(s) = t, such that for any Horn clause ¢ and any (~b U IIb)_
algebra A,

A FEbunb O'E,n(~) iff HE.n(A) F1:,n $.

Proof: We omit the proof of L For 2.,it is f'Dough to define £E,n on models (its
definition on model morphisms is obtained from the general catf'gorical construction
of left adjoints from universal arrows; see /64]). Thus given any (I:, II}-model A =

((A').ES,(uA)<>EE, (1f A)"'En), we have to build a p:::b U nb)-algebra £E,n(.4) wmch is free
with respect to the forgetful functor 1-£1:,n.

A 1I(£(A))

~h

1I(B)

The carrier of £E,n (A) is the same as the carrier of A, except that a new carrier for the
sort b is defined by

A,={IA}U{«,a)I<EII and al1'<.}.

The interpretations of the E-operation symbols are those of A, and for each 1r E n~J ...~n'

Define

1r~(a)=tA if aE1rA., otherwise 1r~(a)=(1r,a).

Given any (EbU IT b)-algebra B and any (E, Il)-model morphism h: A -t HE,n(B), there
is exactly oDe p.;b U IIb)-morphism hi from £E,n(A) to B extending h (see the above
diagram). Of course, h; = h~ for every s E 5, h~(tA.) 0:: t E • and h~(1r,a) is 1r1(h(a)) for
each a ¢ 1r A.. This means tbat £r.,n(A) is the free (EbUIIb)-algebra over the (1:.IT)-model
A. Notice that 1IE,n(£E,n(A)) = A.

3. This reduces to showing that for any (r: b U IIb)-algebra A, any tuple s of terms
in Tr.(X) and any valuation v: X -t A, vl(s) t; 7fJiE,rdA) iff t'~(7fb(s» = tAo This holds
because t. I(1l'b(s» = 1r~(v~(s». 0

Fad 2.44 HE,n is natural in (1:, II), i.e., H is a natural transformation. 0

Notice that in general the embedding functor £E,n is not natural in (E, II). However,
the naturality of £ caD be obtained by slightly modifying the algebraic signature corre­
sponding to a first order signature (E, IT) whereby iDstead of the new SOrt b we introduce
a new sort b,.. together with a new constant til" for each relation symbol1r. Thoorem 2.43
can be easily translated into this new framework.

31When composition is written in the diagrammatic order. In ca.tegory theory ~xtbook;; where the
eOffip06ition of arrows is wriHen in anti-diagrammatic order, e.g., [64], this j~ referred to 36 a right
inverse.

29

The following result shows that free models in HCL (morp generally, free extensions
along HCL theory morphisms) are in fact free algebra.c; regarded as models through the
forgetful functor H.. This remark includes the import.ant case of Herbrand models, which
are in fact term models with the empty interpretation for the relationa.} symbols.

Corollary 2.45 1. Let (S,I:,II) be a first-order signature and let r be a set of Horn
clauses over this signature. Then for every S-sorted set X, the free model Jfr(X) over
X in the qua.si-variety Modr determined by r is the image of the free (:E b U II b, QT.n(f»)­
algebra o'ler X under the forgetful functor 'fl.

2. Let <1>: (S,~, IT, r) --+ (S', E', Il', r') he a morphism of t.heories in nlany-sorted
Horn clause logic with equality. Then every f-rnodel M has a free extension M' along c)
which call be obtained a.c; the free extension in MSA and translated back to HCL under
'II,

Proof: 1. First. notice that by Theorem 2.43. 'hE,n maps the quasi-variety Algl:;bunb,c>[f)

to Modr a:lld tha.t £l:;,n maps Modr to Algl:;bunb,c>(r)'

AIYEbunb.c>(r) ~ Modr

j J
Sb SSet Sft

Next, the forgetful functor Al9r,bunb,o(rl --+ SetS is right adjoint as the composite of

the right adjoint forgetful functors Al9Ebunb,a(f) 4' Sets· and Set
Sb --+ Sets. The left

Sbadjoint to Set --+ SetS just adds to the S-sorted sets the empty set as the carrier of
sort b.

On the other side of the diagram, the free (:E b U IIb,a(f))-algebra is obtained as
£E.n(MdX)). The conclusion follows from the fact that [E,n;'hE,n = 1.

2. This uses the same argument a." the proof of the previous part of this corollary,
by noticing that 4> induces a. morphism of algebraic t.heories 4>b: (l:b U rrb,or"n(r))---l'
(:EJb u nib, QE',ll,(r')) in the obvious way.

Algl:'bUIJ'b .c>(P)rL- Modp

A'9(4)b1l lMQd(4'l

Al9rtunb .o(r) u-Modr

Thdree extension of M along 4> is the same as 'f{:\:'.n'((£E,n(M))$), where ([r,n(.!\f))'
is the free extension of £l:;,n(M) along c)b. 0

The final remark of this subsection is that given a first order signature (E, IT), the
category of models for HCL can be taken as Al9E~UIJb, and the category of domains
should be taken as Sets. ~'otice that in HeL, unlike MSA, the forgetful functor from the
category of models to the category of domains (i.e., Algrbunb --+ Sets) is not monadic.

,10

2.3.4 Equational logic modulo axioms

Equa.tional deduction modulo a set of axioms (abbreviated ELAt) becomes vital when
dealing with non-oricntable equations in the context of rewriting. A detailed exposition
of the subject is given in [30, 56, 20, 63J. Although in practice non-orientable axioms are
mostly nnconditjonaJ31, there is no theoretical reason to exclude the case of equational
deduction modulo a set of conditional equa.tions.

Definition 2.46 [30J Given a MSA signature (8,1::) and a collection E of I:-equations,
a 1::-terrn modulo E is just an element t of T:::;.E(X) (i.e., the quotient of the term
algebra TE(X) determined by E). 0

Equational deduction modulo E is based on a generalisation of the usual concepts of
MSA to "concepts modulo E", including the inference rules. In order to have a model
theory for equational logic modnlo E, we need an adequate notion of model for this
type of logic. It is therefore natural to consider A/!lr:..E as the category of models for
the equational logic modulo E. This id.ea is consistent with having "'algebras modulo
axioms" as models for ELM. The category of domains is the category SetS of S-sorted
sets and functions. The forgetful functorU: Alf/E,E -+ SetS forgets both the a\:ioms and
the algebraic structure of the algebras.

Example 2.47 The logic of Mosses's unified algebras from [75J can be regarded as equa­
t.ional logic modulo a conditional theory. All unified specifications of a given unified
signature contain a core essentially consisting of Horn clauses. Unified algebras appear
as models of this specification. 0

2.3.5 Summary of Examples

The following table gives a summary of how the logical systems presented above fit
our abstract model theoretic framework. We also inclnde the case of constra.int logics
(abbreviated GL), which will be presented in detail in Chapter 6.

A (cat. of lilodels) x (cat. of domains) U forgets:
MSA
OSA
HCL
ELM

CL

A/g,;
A/g,;

AlgEbunb

Algr.,E
(AtA/g(,))

Sot
SetS
SetS
SetS

SetS'

algebraic structure
algebraic structure + ordu sortedness
algebraic structure + sort b
axioms + algebraic strucbre
comma category structure +
algebraic strncture

It is possible to have any combination of any of these logical systems, such as order
sorted Horn clause logic with eqnality. An interesting case is given by the logic underlying
Eqlog, which combines aJl of the logical systems presented above; in particular, Eqlog's
extensible constraint logic programming also involves CL.

31 An inter~ting example of conditional non-orlenlable axiom is pfOvid{'d by idempotNlc" sometimes
given in it, conditional form: J: + Y ::: J: it I ::: y

31

3 CATEGORY-BASED EQUATIONAL DEDUCTION

In this chapter we develop a categorical proof theory for equational logics and we prove
its completeness with respect to the model theory. The following technical assumption
underlies the whole chapter:

[DeductionFrameworkJ: BasicFramework + the category A of models
has pullbacks and coequalisers.

Thf' proof theory is hased on a categorical abstraction of some basic conctpts which
constitute the very essence of equational logic and nniversal algebra. This includes no­
tions like congruence, term algebra, substitution, equation (represented here as parallel
pairs of arrows, hardly a new idea. see [51, 52]). and satisfactiou. Following the main idea
of [18J, the quantification of equations is abstracted from variables to model~, and as a
result, valuations are abstracted from simple assignments of the variables to model mor~

phisms. This new level of abstraction is hased ou a semantic vif'W of terms as elements
of the carrier of a free modeJ, rather than as tree-like syntactical constrnct.~. The fact
that equational deduction can be fully extended to this level without any fnndamental
difficulty illustrates the precedence of semantics over syntax for equational logics. The
semantic architecture of a particular equationallogie system seems to be the only thing
that really matters for its deductive system. A technical consequence is the possibility
of developing the main core of the equational proof theory without using freerless.

3.1 Congruences

The construction of quotieut models and the formulation of a complete system of inference
rules for category-based equational logics both rely upon a notion of congruence.

Definition 3.1 Let A be an arbitrary model. The binary relation Q on the underlying
domain of A is a congruence iff it is a kernel of a model morphism, i.e .• iff there is
a model morphism ¢ in A such that Q = U(kerO). The quotient of .4 b.\' Q is the
coequaliser of ker¢. Its target model is denoted A/ Q and is also sometimes called the
quotient of A. 0

Fact 3.2 Any model congrnence is a domain equivalence. 0

Lemma 3.3 Let Q == CU be a congruence 0[1 a model A. Then C = ker(co,q(e)).

Proof: C'; ket·(coeq(C)) by the nniversal property of kernels. Let C be ker¢ for
some model morphism ¢. There exists a [unique] h such that coeq(ker¢);h == t/J. But
ker(coeq(kert/J)) <; ker(coeq(kert/Jl; h) and therefore ker(coeq(e)) ~ C = kerQ. 0

The idea of relating congruences to kernels of model morphisms has a long tradition
in general algebra, including MSA and OSA. In the context of Horn clause logics (see
Section 2.3.3), the previous definition gives an appropriate notion of congruence for model
theories with relational symbols [39].

33

Definition 3.4 Let Q be a binary relation on the underlying domain of a model A.
Then the congruence closure of Q is the least rongrueuce on A containing Q; it may
be denoted C(QJ. 0

Definition 3.5 Suppose tbe congrueuce closures of binary relatious exist in A and X
ha..'1 unions of binary relations. Tben the forgetful functor U; A --; X is finitary iff

c(Q) = U{C(QoJ I Qn r; Q finite}

for any model A and any binary relation Q on the underlying domain of A. 0

All forgetful functors from models to domains presented a..'1 examples in Section 2.3
are finitary. This is due to the fact that all operation and relational symbols involved
take only a finite number of arguments, as will be seen in Section 3.5.

3.2 Equations, Queries and Satisfaction

Traditionally, equations are pairs of terms c:onstructed from the symbols of a signature
plus some variables. In the context of many sorted equational logic the importauce of
explicit quantification was emphasized for the first time by Goguen and ~Ieseguer [37].
The survey [62] shows that explicit qunatification adds a key syntactic information in
the case of constraints and ullification. In this way, the quantifier becomes part of the
concept of equation.

Although terms are syntactic constructs, from a model theoretic perspective they are
just elements of the free term model over the set of quantified variables. Any valuation
of the variables into a model extends uniquely to a model morphism evaluating both
sides of the equation. Thus a more semantic treatment of quantification regards quan­
tifiers as models rather than as collet·tions of variables, and regards valuations as model
morphisms rather than as evaluations of variahles iuto models. This has already been
done in [18J in the cont!?xt of many sorted algebra. This non-trivial generalisation of
the notions of sentence and satisfaction in equational logic also supports the extension of
the equational proof theory along the same Jines without any difficulty. Moreover, this
semantic approach to equational logic brings a sense of simplicity and unity to the proof
theory, which has somehow been lost in the more traditional syntactical frameworks.

Definition 3.6 Let A be any model. Then a U-identity on A is a binary relation

k~AU on the und!?rlying domain of A. An ideutity (.::l, t) in A is satisfied in a model
B with respect to a model morphism h; A --; B iff s; hU :::: t; hU. This is denoted
B 1=0 (d)[h].

A U-equation is a universally quantified expression (\I A)(s, t) where A is a model
represl'llting the quantifier and (s.t) is an identity in A. A model B satisfies (\lA)(s.t)
iff B satisfies the identity C~. t) for all model morphisms h: A --; B.

A U-query is an existentially quantified expression (3.4.)(s, t) where A is a model
representing the quantifier and (s, t) is an identity in A. A solution of (3A)(B, t) in a
model B is any model morphism h; A -1- B for '>I.'hich (s, t) is satisfied in B with respect
to h. When B is a free model, h is called an solution form. 0

The notion of U-equation (query) deals with fam·jlies of equations (queries), rather
than single equations (queries), as sentences. This agrees with Rodenburg's work [82)

34

showing that equational logic with conjunction satisfies the Craig Interpolation Property33
whereas normal equational logic does not. Our terminology is influenced by Lassez who
replaced the traditional logic programming terminology of computed answer ii'lJbstitution
by that of solved form [6i]. The modern terminology has the advantage to allow more
flexibility for the representations of solutions (i.e., staying away of from t,he traditional
representations of solution forms as substitutions is very beneficial at the level of oper­
ational semantics) and is also more intuitive (i.e .. solutions in different mOdels can be
obtained by interpreting the solntions forms).

Example 3.7 OSA equations Let (8,~, E) be a coherent (i.e., regular and locally fil­
tered) order sorted signature and let X be an S-sorted set of variables. The collection
of all well-formed E-terms over X, denoted 7i;(X), has a canonical structure a> an order
sorted l:-algebra.

An order- sorted equation ('VX)t =~ t' is an universally quantified pair of terms
having the same sort (i.e., t, I' E ('Tt(X))~). Any parallel pair of many sorted runctions
k --t 'Tt(X) defines a many sorted family of sucb equations.

Given an order sorted l:-algebra A, any valuation v: X --t A of variables X into A
extends uniquely to an order sorted E-morpbism u~: 'TI:(X) --t A giving the denotations
in A for the terms in TE(X). A satisfies tbe identity t =, t' with respect to the valuation
v iff t and t' have the same denotation, i.e., vi:(t) = u~(l'). \Vhen dealing wi1h a many

sorted family of equations k ~ 'Tt(X). the satisfaction of (t. I') by A with respect to
the valuation v means t; t:~U = t'; v~U.

It appears that this definition of order sorted equations is more restrictive than the
one given by Goguen and Meseguer [41]. However, the two can be shown to agree. In [41],
an order sorted equation ('V X)t "= [' is a universally quantified pair of terms having the
least sorts LS(t) and L8(e) in the same connected eomponent. An order sortrd algebra
satisfies t = i' with respect to the valuation v iff v1s(l}(t) = t.'~S(!,,(t'). Let's consider w
a common supersort of both L8(t) and L8(t'). Then for any order sorted algebra A and
any valuation h: X --t A, we have A 1= [= t'[hj iff AFt =,., fl[h.J.

This definition of order sorted equations also holds without assuming coherence of
the signatnre by using annotated terms (or parse trees). 0

Example 3.8 Let l: be an algebraic signature and and let E be a collection of l:­
equations. An equation modulo E [30J, denoted ('VX)f =E t', is a universally quantified
pair of elements in Tt ..£(X) (i.e., t dnd [' are terms modulo E). Any parallel pair of
functions k --t TE.E(X) defines a family of snch equations. A (Y:, E)-algebra satisfies
t =E t' for the valuation t'· X -+ A iff vl(t) = V'(t'). where v~ is the uniqut' extension
of v to a !:-homomorphism Tt,E(X) --t A. 0

Definition 3.9 (VA)(s', t') if (s, t) is aU-conditional equation quantified by the model
A, where (s, L) are the hypotheses of the conditional equation. A model B satisfies
(\fA)(s', t') if (s, t) iff for any morphism h: A -t B, s; hU = t; hU implies 5'; hu = t'; h.U.
o

The following definition is a standard extension of the concept of satisfaction between
models and sentences to satisfaction between sets of senteuces:

Definition 3.10 A set r of equations satisfies the equation e, written r F e, iff any
model satisfYing r also satisfies e. 0

-The Craig Interpolation Property is an important semantic property for logic~l s)'.stem~ [21].

35

3.3 Completeness

Our approach to the completeness of category-based equational deduction foHows the tra­
ditional approach (probably originating with Birkhoff's work on universal algebra [lOll,
in that the central concept is the congruence determined by an arbitrary collection r
of [conditional] equations on an arbitrary model A. The key to the completeness result
is to regard this congruence in two different ways: the first way is as the collection of
unconditional equations qnantified by A that can be syntactically inje7Tedfrom r, wbile
the second is as the collection of unconditional equations quantified by A that are seman­
/.ie conseqtJ.elIClOS of r. Because of the semantic treatment of equation and satisfaction
underlying this work, there is no distinction between the congrnence determined by r
Oil the free models (this case corresponds to the traditional treatments of the complete-­
ness of equational logics) and on oth€r models. This is very important in the context
of the semantics of constnunt logic programming given in Chapter 6, becanse it involves
"built-in models" that are not term models iu general.

The role of (categorical) projectivjty was first point,ed ant in [JSj, and in the presence
of a left adjoint to the forgetful functor from models to domains, it is directly related
t.o a categorical formulation of the Axiom of Choice for domains. Despite the high
level of generality and abstractiou, th", rules of inference for category-based equational
deduction are made gradually more explicit. They can b€ easily recognised even in the
most abstract formulation of completeuess. In the case of conditional category-based
equational deduction, the most syntactic formulation of the completeness result depends
directly on two finiteness conditious. The first one requires that the hypotheses of the
equations should be finite, while the second corre.~ponds in practice to finite arities for
the operator symbols.

Definition 3.11 Let r be a set of conditional equations. A congruence C on A is
dosed under f-substitutivity iff for all (VB)(s', t'l if (s, il in r and any morphism
h: B --; .4, (s; hU, t; hU) ~ C implies (5'; hU, e; hU) ~ C. 0

Proposition 3.12 Let h: A --; M be a model morphism. Then M F r implies kcr(h)
is closed under r-substitutivity.

Proof: Let (VB)(s',t') if (s,t) be a conditional equation in r and let ¢;: B --; A be
<lny model morphism.

B~A~M

Suppa" (';¢iA,t;#') <;; ,,,·(h). Theu ';¢iA;hU = t;¢iA;hU. But 1;h; B --t M and
Mis c!():"ed under f-substitutivity, therefore s';(¢;h)U = t';(¢jh)U. This means that
(";¢iA,t';¢iA) <;; ker(h). 0

Corollary 3.13 Let C be a congruence on a model A. Then AI c F r implies that C
is closed under f-substitutivity. 0

The following definition is a weakening of the traditional concept of projective object
in category theory (see. [64]):

Definition 3.14 An object A in a category C is coequaliser projective iff for a.ny
c:oequaliser e: B --; M in C and for any map 9: A --; M there exists a map f: A --; B
such that Ii e = 9.

36

B~M

"
J ,

1,
A

o

Term models are always coequaliser projective. This will be proved later in connection
with a categorical formulation of the Axiom of Choice for the category of domains (see
Section 3..5..'3).

Proposition 3.15 If aU quantifiers in r are coequaliser projective, then a congruence
C on a model A is closed under f-substitutivity iff Ale F I'.
Proof; Because of Corollary 3.13, we only have to prove that A/ (' F r if C is closed un­
der r-substitntivity. Assume C is dosed under r-suhstitutivity_ Let {VB)(s'. t'; if (s, t)
be any conditional equation in r and Jet h: B ~ AI c be any model morphism. Sup­
pose 8; hU = J j hU. Because B is coequaliser projective, there exists hi: B -t A such
that h';{cot:qC) = h. By Lemma3.a, C = ker(cocqC), therefou.' (s;h'U,t;hIU) ~ CU.
Sin(e C is closed under f-substitutivity, (51; h'U, il ; h'U) t;;;: CU. 5'; hU = t l ; hU follows
immediately from h = hi; (coeqC). 0

Definition 3.16 For any model A, let =t df'note the least congruence on A. clo~ed under
f-substitutivity. 0

Corollary 3.17 Completeness Theorem
If ~~ exists and the quantifiers in fare coequaliser projective. then

1. AI;:.~ is the free f-model over A, and

2. r F (1104)(" t) if!, =t I.

Proof: 1. Let A-4M be a model morphism such that M F r. By Proposition 3.12,
ker(f) is closed under f-subgt.it.uti ... ity. Because =t is the least congruence 0[\ A closed
under f-substitutivity, =t~ ker(f), which means that / equalises =t. We conclude

therf' exists a unique map AI=A4M such that c;f' =/, where e. denotes thecoequliser
-c

coeq(=t)·

cocq;:.~4/
A-- =4

>xv

At

2. From Proposition 3.15 we know t.hat Af,O=f F r. Suppose s =t t and consider

a f-model M and any model morphism A-4M. Bv L there is AI_ A 4Af such that

e;f' = f. s;/U = t;/U since s; eU = l; eU. We thus ·conclude that f ~J'('v'A)(s, t).
Conversely, consider e: A ~ AI;:.~. Since r f= (VA)(s, t), s; e = t; e., therefore

(s.l) <:; ker(e) ==t. 0

37

The following two results provide an inference-based version of the completeness theo­
rem for equational logics. This relies upon a syntactic deduction oriented construction of
=t· In the case of unconditional equations, =~ has a rather simple representation that
shows that any category-based equational deduction is equivalent to a category-based
equational deduction in which all applications of the suhstitutivity rule take place before
any applicafion of the congruence rule.34

Tbese results are obtained under the following technical assumption:

[ConcreteDeductionFramewoLkJ: DedudionFramework + the cate­
gory X of domains has unions of binary relations and w colimits + congruence
closures exist in A.

However, the followiug result doesn't use the existence of w-colimits in the category of
domains:

Proposition 3.18 If f contains only unconditional equations, then =t exists and

=~~ C(U[(,;/U, I;/U) I (\fB)(s, I) E r,/ E A(B,A))).

Proof: C(U[(s;/U, I;/U) I (\fB)(s, t) E f,j E A(B, A))) is dosed unde, r-snbstitutivity
and is a congruence by definition. Consider another congruence C closed nnder f­
substitutivity au the model A. Then

U((s;jU, t;/U) , (\fB)(s, t) E r,/ E A(B, A)) S; C

since (,;jU, ';/U) S; C fm any I\fB)(.;. I) E r and any / E A(B. A). The<efo<e

C(U[(s;/U,I;/U) I (\fB)(s, l) E r.J E A(B, A))) S; C

by taking the congruence closure. 0

When. f coutains proper conditional equations, =~ can be constructed in the limit by
alternating the applications of the rule of congruence and of the rule of snbstitutivity:

Proposition 3.19 Assume ConcreteDeductionFramework. If the forgetful functor
U: A -+ X is finitary and the hypotheses of all conditional eqnations in r are finite, then
the least congruence on A rlosed under f-substitutivity exists.

Proof: Defioe (So, to) to be U[(s;/U, I;/U) I (\fB)(" I) E r.j E A(B, A)), and fm eacb
n E "-'. define

• (52"+11 t~11+1) to be C(S2", 12,,),

and defiue

• (o52n+'l, ~n+2) to be

("o+',"o+,)UU{(s';hU,t';hU) I (\fB)(s'.I') if (s,l) E f,B --"--+ A,(s;hU,I;hU) S;
(o52n+1, t 211 +1)}.

34The rules of congruence and .;;ubstitul.ivity are di5cu~ at the end of this ~ubseetiou.

38

Observe that for each nEw, (8n , tn) ~ (8n+I' 'n+I)' The union ",=p = UnEw(8n, I..) could
be realised as an w-colimit of the inclusion chain {So. fQ) S;;; (s], tr) 0; ... in the comma
category (.Q.x.!.-AU) (the w-completeness of X lifts to the comma category (6.x~AU). We
shall prove that =~ is the least congruence on A closed nnder r-substitutivity. Becanse
U is finitary,

C(=~) =U{C(5, T) I (5, T) c::=~ Boite)

For each finite {S, T) ~=~ there exists nEw such that (5, T) S;;; (Sn, in). Then
C(5, T) ~ C(Sn, in) ~ (SnH' ,n+.) S;;;=~, therefore C(=f) S;;;=p, which means that
=p is a congruence.

For any (ifB)(8' , t') if (s, t) iu f and any model morpbism h: B ---t A, if (8; bU, t; hU)
S;;;=~, then because (s, t) is finite, there exists nEw such that (8; hU, t; hUJ ~ (8", t,,).
By the construction of the cbain {(8". In)}1lE=.'.... , we have (8'; hU, t'; hU} S;;; {sn+" tn+.) ~=r

This shows that =~ is closed under f-substitutivity.
Now consider an arbitrary congruence C on A closed under r-substitutivity. By

induction on n, (8", in) ~ C for all nEw. Therefore =~S;;; C.
From all tbis we couclude tbat =~ is the least congruencf' on A closed under r­

substitutivity. 0

Corollary 3.20 Assuming the ConcreteDeductionFramework. categorY-OOsf'd equa­
tionallogic is complete under the following two inferf'nce rules:

(VA)("t)
[congruence]

(VAle(" I)

(VA)(,; hU, t; hU)
[substitutivity]

(VA*'; hU, t'; hU)

where (if B)(s', if) if (s, t) is in f and h: B -+ A is any model morphism. 0

3.4 Herbrand's Theorem

Herbrand's Tbeorem provides mathematical foundations for logic programmio.g. In this
section we present a version of Herbrand's Theorem in our category-based framework,
based on the categorical cbaracterisation of Herbrand Universes as initial models for
equational logic programs. This idea was first exploited in the context of orde-r sorted
Horn clause logic with eqnality by Goguen and Meseguer [39]. The results in this sub­
section can be seeD as a category-based generalisation of the extension of their resnlts to
equationaJ logics with projective models as quantifiers.

For this section only, we assume that the category A has an initial model; we denote
it by O,q. In the case of many sorted equational logic this i:'l the initial algebra of ground
terms.

Corollary 3.21 Herbrand's Theorem Assumf' the CODcreteDeduetionFramework and
that U is finitary and consider f a collection of conditional equations with finite hypothe­
ses and coequaliser project.ive quantifiers. Then

1. the initial model of r exists, we denote it by Or, and

2. r F (3B)q jff Or F (3B)q foc auy U-query (3B)q aod any model 8.

39

Proof: 1. From Proposition 3.19 and the first part of the Completeness Theorem.
2. Since Or is a r-model, r F (3B)q implies Or F (3B)q. For the converse, suppose

that Or F (3B)q and take any r-model M. Let h: B -+ Or be a solution for (3B)q in
Or· Let!M denote the unique model morphism Or -+ M. Then h;!M is a solution for
(3B)q in M. 0

At the end of the following section we present another version for Herbrand's Theorem
that relies au the present one but provides foundations for solving queries using resolution
and paramodulation-like techniques by directly relating the satisfyability of a query by a
program to the existence of solution forms to the query. This is formulated in a context
corresponding to 'non-empty sorts' in the case of many sorted logics (39J. Tbe next
definition gives a category-based formulation of this condition:

Definition 3.22 The forgetful functor U from the category A of models to the category
X of domaius has non-empty sorts iff for each domain x E IXI there exists at least one
map from x to the domain underlying the initial model 0A' 0

Example 3.23 Consider an algebraic signature (8,2:). The initial algebra for this sig­
nature is TL., i.e., the algebra of grouod terms. There exists at least one S'-sorted function
from any S-sorted X to T,£ iff Tr;,6 =/: 0 for a.ll s E S. A sufficient [but not necessaryJ
condition is that for each sort :3 E S, there is at least ooe constant of that sort, i.e.,
EO,. = 0.0

3.5 Consequences of Freeness

So far, our development. has avoided the use of freeness, corresponding to the existence
of telin models in the particular cases discussed in the preliminary chapter. By using this
concept, we can further explicitate the inference rules for equational deduction hy split~

ting the rule of congruence into equivalence (i.e., reflexivity + symmetry + transitivity)
and closure under operations.

Moreover, by assnming freeness, we relate the projectivity condition on quantifiers
to a condition on the category of domains corresponding to the Axiom of Choice. We
can a.lso see how the finitarity condition on the forgetful functor from models to domains
boils down in practice to the finiteness of the arities of the model operations. Finally, in
the presence of freeness. we can formulate and prove a more computationa.l version for
Herbrand's Theorem.

This section Msumes the forgetful functor U has a left adjoint Y.

3.5.1 The existence of congruence closures

The congruence closure of any binary relation can be construct.ed in two steps strongly
reminiscent of the rules of equivalence (i.e., reflexivity, symmetry and transitivity) and
congruence (i.e.. closure under "model operations") from equational logic [37, 41, 39J.

Proposition 3.24 Let k~AU be a r{"lation on the underlying domain of the model A.
Then the congruence closure of (s, t) exists and it is constructed by the following steps:

• operations: define stt and [I to be the unique extensions of sand t, respectively, to
model morphisms k:F ----i- A, a.nd

40

• equivalence: let (5, T) be the kernel of cocq(sl, tl).

The congruence closure C(s, t) is (5U, TU).

Proof: (5U, TU) is a congruence hy construction as a kernel pair of a mode! morphism.
Now let ¢: A -+ B be any model morphism. We have to prove that (s,t) ~ ker(qiA)
implie' (SU, TU) S; k,,(¢il).

k;F- - - - - - >k,,(,j

x, ,/.. I /T
k:FU	 A

k'/ V'u
/ 61U" ;/~

k : AU B .. ---</>,---­

Then (s,t) f: ker(diA) implies s;¢U = 1;¢U. sl;¢ = t'j¢ because of the univer­
sal property of the free model kF. Then there is a model morphism ¢' such that
coeq(s~, tl); ¢' = ¢. Th.is implies that Sj ¢ = T; rP. which implies (5, T) ~ ker6. 0

The operations step stands for the closure of the original relation (s, t) under the
"model operations". This can be achieved categorically by using the universal propf'rty
of the free model over the indices of the relation. The equivalence step cOITfSponds to
the equivalence generated by the closure under operations. Because this is dDne at the
level of model morphisms, the closure under operations is preserved.

Definition 3.25 Consider a binary relation (s, t) on the undf'rlying domain of a model
A. Then (s, t) is closed under operations iff (.~IU, tlU) ~ (.s, t).

The closure of (s, t) under operations is the least relation dosed under operations
and containing (s, t), and is denoted Op(s, t). 0

Fact 3.26 Let (s, t) be any binary relation on the underlying domain of a model A.
Then its closure under operations exists and is given by (sIU, t~U).

Proof: All we have t.o show is that (.~~U)a, (tJU)I) ~ (sl, tl). This follows from the
co-universal property of the co-unit £. of the adjunction between the category of domains
and the category of models, or more precisely from kF£.; 11 = (vU)~ for any kF ~ A. 0

Example 3.27 Let (5, E) be a many sorted signature and let (s, t) be an S-sorted
binary relation on the carrier of the 5-sorted E-algebra A. Then

•	 (sIU, tlU) is obtained by taking the uuion of the increasing chain of 5-sorted rela­
tions (sn , t n)new, where (SO, to) = (s, t) and (sn+1 , t l1+1) = (s", tn)u{ (0" Afsn), 0" A (t n) I
0" E E}. (0" A(sn), 0"A(t n)) is obtained by relating the results of all the applications of
the operation 0" A to all pairs of elements related by (sn, fn). The union UnEw(sn, tn)
is the same as relating all the results of the applications of all the derived operators
to the pairs of elements related by (s, t).

•	 closing (stu, tUU) under equivalence produces the congruence coequalising the S­
sorted E-morphisms .~I and tl. The congruence is recovered categoricaUy as the
kernel of the coequaliser of s~ and tl.

o

41

The construction of the congruence closure of a. binary relation can also be done in
most cases by swapping the two steps corresponding to the closure under equivalence
and closure under model operations, i.e., closing under equivalence first and under model
operations afterwards. This requires coequalisers in the category of domains. Altbougb
our category-based framework is too ahstract for proving the validity of this alternative
construction of the congruence closure half of it still holds at this level:

Lemma 3.28 Further to the DeduetionFramework assume the category X of domains
has coequalisers. Let (s, t) he a relation on the nnderlying domain of the model A. Then

OpU, I) ~ C(" t)

where (~. i) is thf' f'quivalf'ncf' closnrf' of (s. t), i.f'.. (s. 1) = ker(coeq(s, t)).

Proof: D:y thf' uniwrsal propf'rty of kernf'ls and Proposition :J.24, it is enough to show
that s~; f 11; l': where f is tlw coequaliser of s~ and r~.=0

Tbis follows from the fact that s; l':U = i; eU, which implies that s: eU = t; eU, and
further implies that. s~; f = P; l': using the uniqueness part of the universal property
corresponding to the adjunction determined by U. 0

Definition 3.29 We say that congruences are concrete iff any equivalence closed
under operations is a congruence. 0

Corollary 3.30 If congrnences are concrete, then category-based equational logic is
complete under the following inference rules:

[reflexivityJ
(II A)(" ,)

(IIA)("t)
[symmel'}']

(IIA)(I,')

(IIA)(8, t) (IIA)(t, u)
[transitivityJ

(II"()(,, u)

(IIA)(" t)
[operations]

(IIA)(,'U,t'U)

substitutivity

o

3.5.2 Finitary model operations

In this subsection we show how the finitarity of U (Definition 3.5) reduces in practice to
the finiteness of the model operations. The category-ba<;ed formulation of 'finitary model
operations' is that the forgetful functor U from models to domains preserves filtered
colimits. We need the following technical condition on the category of domains:

[DomainRegularity]: the category of domains X is algebroidal and has col­
imits and filtered unions of equivalences.

42

Proposition 3.31 Under the DeductionFramework and DomainRegularity assump­
tions, U is finitary if the forgetful functor U from models to domains preserves filtered
colimits.

Proof: Let k~AU be an arbitrary hinary relation on the underlying domain of the
model A. Because X is algehroidal, k IS the colimit of a filtered diagram of finite domains
{k'}'€l. Lt't IJ be the colimiting co-cone {ki}'El --+ k and let s, = IJ,; sand t, = lJi; t for
eacb i E IJI.

F preserves colimits because it is a left adjoint, hence IJF is still a colimiting co-cone.
p,F; vI = tI,! for v E is, t} by the nniversal property of k;; TJ, therefore

(s~, tU) = colimiEl(sL t~)

in the comma category (~A..j,.A). Then

C(', I) U(ker(<oe1(", I'))) (by Proposit.ion 3.24)
ker(U(coeq(,', t'))) (U preserves kernels)
ker(U(coeq(<olim;" (,;, t!))))
ker(U(colim,E] «o,q(,,', tl)))) (coeq: (~A..j,.A) --+ (AtA) is left adjoint to

k'r, (A-IA) -t (Ll.A-IA))
kee(colim;EI(U(co,q(,;, t!)))) (U preserves filtered colimits)
eolim;E rker(U(coeq(sf , tf))) (X has filtered unions of equivalences)
colimiE1U(ker(coeq{sl, If))) (U preserves kernels)
colim;EIC{s;, ti) (Proposition 3.24)

This means that C(s, t) = UiEl C{Si' t,), 0

Whenever the domain category X is Sd-based, it has filtered unions of equivalences
(as shown in Example 2.22). This includes all of the examples discussed in Section 2.3.

Corollary 3.32 All of the forgetfUL functors from categories of models to categories of
domains presented in Section 2.3 are finitary.

Proof: All hypotheses of Proposition 3.31 related to the category of domains are triv­
ially fulfilled by Sets. The forgetful functors from ca.tegories of models to categories
of domains preserve filtered colimits because of the finitarity of the model operations.35

When the model operations are finitary, the forgetful functor from model to domains
creates filtered colimits, and creation is a stronger property than preservation. 0

3.5.3 The Axiom of Choice l'~rS'llS projeetivity

We use a form of the Axiom of Choice formulated in our category-based framework for
proving that free models are always coequa.liser projective:

35For t,he case of univeM'lal algebra, see Propooit,ion 2, p 208 in M3.C Lane's category tbl'ory textbook
[64]. For all other cases the proof is very similar.

43

Proposition 3.33 If each coequaliser e in the category of models is a split epi at the
domain level, i.e., if eU has a left inverse, thpn each free model is coequaliser projective.

Proof: Let z E IXI be an arbitrary domain. We have to prove that xF is coequalisN

projective. Let A4B be a model coequaliser and let xF.!!:,.B be any model morphism.

A~B

~lh
xF

Let m be the left inverse to tU and let xF~A be the unique model morphism such that
X"l; h'U = :try; hU; m.

We now show that hi; e = h:

X"l; (hi; e)U	 XT]; h'U;~:U

X"li flU: m; eU (by the definition of hi)

X1J: hU (by the definition of m)

hi; e = h follows because the arrow X1J is univer~al from x to U. 0

In practice, this form of the Axiom of Choice is always satisfied. In all of the examples
previously discussed, model coequalisers are pointwise surjective because they are simply
many sorted functions. The usual formulation of the Axiom of Choice assert,s that for
each element belonging to the image of a function, one can pick an element in the sonrce
that gets mapped into the previous one. In terms of functional composition, thiS is
exactly the same as asserting the existence of a left inverse for any surjection, sometimes
called a choice ju.nction. A special remark is needed for the order sorted case, where the
fact that the forgetful functor forgets the inclusions between the subsort interpretations
is essential.

3.5.4 Herbrand's Theorem revisited

For this paragrapb we further assume that the category A of models has an initial object

°A·
As pointed out by Goguen and Mcseguer [39], there are definite advantages in the

casehen models do not ha.ve empty sorts. In this context, it is possible to have a more
computational version of Herbrand's Theorem. The following reslllt instantiated to the
institution of order sorted Horn clause logic with equality gives Hrrbrand's Theorem for
non-empty sorts as formulated by Goguen and Meseguer in [39].

Theorem 3.34 Herbraud's Theorem Under the ConcreteDeductionFramework and
DomainRegularity assumptions, consider any coiled ion r of conditional equations with
finite bypothesP3 and witb coequaliser projective quantifiers, and any U-query (3B)q
where B is any coequaliser projet:"cive model. Suppose that U preserves filtered colimits
and has non~empty sorts.

Tht'n r F (3B)q iff r F (Vy)q; hU for some domain y E IXI a.nd some model
morphism h: B -+ yF.

Proof: By Herbrand's Theorem 3.21, it is enough to prove that Or F (3B)q iff r F
(Vy)q:hU for 30me domain y E IXI and some model morphism h: B -+ yF.

44

Assume that Or F (3B)q. Let h: B -+ Or he a solution for (3B)q in Or. Consider
Ox the initial domain. Since left adjoint functors preserve colimits, we may assume that
OxF = OA, hence the unique model morphism lOr: Ox:F -+ Or is a coequaliser by virtue
of the constrnction of Or (see Corollary 3.17). Since B is coequaliser projective, there
exists a model morphism ho: B -+ Ox:F such that ~; lor = h. Then r F (\lOx)q; hvU.

B ,. Or

I) ~ I'"~
yF - OxF = 0A,,'

For the converse, assume that r F (\ly)q;jU for some domain y E IXI and some
model morphism f: B -+ yF. Since U has non-empty sorts, there exists a domain map
t1: y -+ OAU. Then j; un; !or is a solution for (3B)q in Or. 0

The model morphism h in this theorem is a solution form for q under f; logic pro­
gramming deals wjth the computation of such morphisms.

45

4 OPERATIONAL SEMANTICS

By the operational semantics of a computing system one usually means a mathematical
definitiou of how programs are executed by the system. For relational programming,
most implementations use SLD-resolution as introduced by Prolog, and for equational
logic programming most implementations use some refinement of narrowing.

Narrowing is a particular case of paramodulation. Paramodulation was first int.ro­
duced as an opera.tioual inference rule in the context of attempts to integrate equality
iuto resolution~based theorem provers [80). Narrowing was introduced by Slagle [86].
Later, narrowing Was used as a basis fOf semantic unification (i.e.. unification modulo
a set of rules) algorithms. Basic narrowing appeared for the first time in Hullot's work
[57]. The completeness result for innermost narrowing in the context of canonical term
rewritiug systems is originally due to Fribourg [22]. Holldobler's thesis [54J gives a sys­
tematic presentation of the current state of art of this field inclnding also interesting
historical references. Our presentation of the completeness of different refinements of
paramodulation is iufluenced by [54J.

E;quatiouallogic programming systems based on Horn clause logic with equality use
a mixture of resolution (applied to relational symbols) and narrowing. However, it is
important to notice that in the COntext of the embedding of Horn clause logics into equa­
tionallogics described in Section 2.3.3, resolution appears as a refinement of narrowing in
the presence of relational symbols.36 This has mainly theoretical implications rather than
practical ones because the use of resolution greatly improves thf' efficiency of the system,
but it is important for an uuiform algebraic treatment of the operational semantics of
equational logic programming languages based on Horn clame logic with equality.

4.0.5 Completeness of Paramodulation: its Architecture

Our approach to the completeness of paramodulation departs fundamentally from pre­
vious treatments in that it is based on model theory rather than on combinatorial tech­
niques involving term manipulations. "Ve generalise the concept of paramodulation to
model theoretic paramodulation by defining paramodulation as an inference rule
with respect to an arbitrary fixed model. The ordinary concept. of paramodulatioll is
recovered as model theoretic paramodulation with respect to the initial algebra for an
algebraic signature. The category-based dimension of our new approach brings out not
only the simplicity of the categorical arguments (vis a vis set theoretical arguments),
but more importantly, it shows that the core of the paramodulation-based operational
semantics for equational logic programming can he developed independently of the de-­
tails of the particular equational logic involved. In this way, the results of this work
can be applied to a variety of equational logic programming systems that are rigorously
based on some version of equational logic and whose operational semantics is based on
some refiuement of paramodulatiou (some form of narrowing, in general). This includes
system based on many sorted or order sorted equational logic, Horn danse logic (with
equality), equational logic modulo axioms, etc. These results might be felevaut even for
coustraint programming since constraiut logic (i.e., the logic underlying constraint logic

J5This is explained in Section 1.2.1 below.

47

programming in the style of Eqlog, see Chapter 6) can he regarded as category-based
equational logic. Another important consequence of the model tbeoretic approach to
paramodulation is a direct treatment of compntations modulo axioms. Tbis is achieved
by considering the paramodulation relation induced by the program on the initial model
of the respective theory. For example, the programming language Eqlog is based on order
sorted Horn clause logic with equality [38, 39J and snpports refutations modulo axioms
(associativity. commutativity, and their comhination).

Tbis chapter proposes a general scheme for tht' treatment of tbe completeness of
paramodulation-ba5ed operational semantics. The core of this scheme is an analysis of
the relationship between =~ (given a program r and a model A, the least cOllgrnence on
A closed under r-substitutivity) and tht' relations induced on .4 by tbe operational in­
ference rules, mainly paramodulation (this relation is denoted as """r. This is technically
connected to the concept of soluiioTi for equational queries througb Theorem of Con­
stants and Completeness of Equational Logic and to the concept of solved form through
Lifting Lemmas. Tbe terminology "solved form" was first introduced by Lassez [67] tiS

a replacement to the traditional logic programming terminology of "computed answer
substitution," The new terminology is more adequate to the modern methods of solving
queries by system transformations rather than resolntion-like techniques (see the survey
[62]). Solution and solved forms art' respectively the semantic and compntational sides
of the same concept. The soundness of the operational semantics means tbat any solved
form is a solution and the completeness means that any solution form is an instantiation
of a solved form':3i In other words, the set of solutions of a query is the same as the set of
solutions of the solved form. The connection to the model theory of equational logic pro­
gramming is done via Herbrand's Theorem; this connects directly to the mathematical
foundations of logic programming.

Herhrand'sl
[Theorem

The concept of
SOLUTION FORM

, I .
for equatlOna queries

TheoremofConstan.ts ,
Completene-ss of EquatIOnal LogIC

/

A?,A
r r

Completene.,. of Lifting
operu.tional .emanti"" Lemm....

The concept j
SOLVED FORM

This flgure visualises the architectnre of the completeness of our approach to
paramodnlation-based operational semantics as discussed abovely, Beca.use of efficiency
concerns, equational logic programming systems actually implement varions refinements
of paramodulatiou ratber than paramodulation itself. Most of these are refinements
of narrowing, and one of the most powt'rful refinements is basic innermost normalised
narrowing [541. The completeness of different narrowing techniques is obtained in the

-'However, "he concept of completenesB is usually taken to subsume souodnetlS.

48

same way as the completeness of plain paramodulation, the ouly differences occurring at
the level of the Lifting Lemmas. As shown in 1,541. the completeness of different narrowing
techniques requires some restrictions on the progra.ms.38

One of the most important properties of programs is conjlufrlce. We show that the
completeness of paramodulation and the transitivity of the paramodulation relation are
technically equivalent. By approaching coufluence from a model theoretic angle, we sbow
that the transitivity of the paramodulatiou relation is in fact equivalent to the confluence
of the program with respect to a. given reachable model. In this way, model ~heoretic

paramodulation is complete for oriented application of rules if and only if tbe program
is confluent.

4.1 Preliminaries

The framework for the categroy-based treatment of operationa.l semantics is the general
framework of category-based equatiouallogic, i.e., a ';forgetfu(" functor U: A -1 X from
a category of models to a category of doarnins. and sati~fyiug the following technical
conditions:

[OperationaIFramework]: DeduetionFramework + DomainRegular­
ity + the forgetful functor U has a left adjoint F and preserves filtered colimits
+ congruences are concrete.

Definition 4.1 A couditional U-rule is an oriented conditional finite U-eqnation with
finite hypotheses, usually written as (VB)/-',,' if (8, t) where (3, t) is called thr hypothe­
ses of the rule and l~r the conclusion (or the head) of the rule. The rule is atomic
if its conclusion (head) is atomic as a binary relation. 0

The quantifier B can in general be any model (see Definition 3.6). However, we restrict
ourselves here to the case of [coequaliserJ projective quantifiers, a conditio[\ strongly
related to the completeness of the equational deduction (see Theorem 3.17). Recall from
Proposition 3.33 that in the presence of a form of the Axiom of Choice, all free models are
[coequaliser] projective. As a matter of notation, whenever a model is freely generated
by a domain x (which in practice will be a colleetiou of variahle symbols), we will write
V;r rather than Vx F; also for valuations we will use maps x ~ AU rather tha.n model
morphisms xF -+ A.

4.1.1 Rewriting contexts

The concept of context plays a primary role in the mathematical formnlation of rewriting
as an inference rule. This paragraph is concerned with the category-based definition
of context. Such a definition is crucial for the category-based treatment of rewriting
because the notion of rewriting context ultimately has an algebraic nature; this makes
the definition of rewriting independent of the tree-like representations of terms. In this
way, rewriting can be defined on algebra.ic eutities that are more ahstract than the terms.

This is achieved by abstracting the properties of contexts known from the standard
case of many-sorted algebra. One of the most important properties is the unary nature
of contexts, i.e., rewriting contexts behave a.o; unary functions. The following recalls the
definition of context in many-sorted algehra;

:ulTT .~-nowever, ln~ restrict, ions are generally met in practice.

49

Definition 4.2 Let E be a many-sorted algebraic signature. Then a rewriting 1:­
context is a ~term with one variable symbol having a single occurrence of that variable
symbol.

Given any I.>a.lgebra A, a rewriting E-context c determines a map CA; A -+ A that
evaluates the context for any given va.lue in A of the variahle symbol of c. This is
represented by the following diagram,

{z}L-,. T"({z})

~l"

A

woere for each a E A, Q.: {z} -+ A satisfies Q.(z) == a. Then C A: A -t A is defined by
c.4(a) = .!il(c) where.Q.i is the unique extension of Q. to a E-homomorphism. 0

Note that in general CA is nol an algebraic homomorphism. However, it is easy to
notice that the rewriting contexts form a monoid nnder the compogition (i.e., by plugging
one context into another), and as shown in the following, the e\'lI.luation of coutexts
commutes witb algebraic homomorphisms:

Proposition 4.3 Let c he any rewriting context in an algebraic gignature E and h; A -t

B be a E-llOmomorphism. Then CA; h == h; CB_

Proof: Uging the notation of Definition 4.2, for each (l E A we have:

(cA;h)(a) h(<<'(c))
C,,-;h)'(c) (by the universal property of T;d{z}))
h(a)'(cJ
cB(h(a))
(h; cB)(a).

o

This last property suggests the natl.lml transformation nature of the rewriting contexts
and motivates the following definition:

Definition 4.4 Let U: A -+ SetS he a forgetful functor from a category A of models.
A U-context is a natural transformation c: U -t U. The composition of U-contexts is
the usual composition of natural transformations. 0

From now on, we will in general USe the more illtuitive notation cArt] instead of t; CA
for thE' evaluation of a context c in a model A. This notation is closer to the usual
notations for contexts in rewriting.

Definition 4.5 A binary relatiou (09, t) on the underlying domain of a model A is dosed
under context evaluation jff (c,ds], cAlt]) 0;;: (5, t) for any context c. The least relation
closed under context evaluations and containing (5, II is called the context closure of
('" t). 0

50

Proposition 4.6 Let (s, f) = {(s;, f,) liE I} be a binary relation on the underlying
domain of a model A. If (5, t) is closed under operatiolls, then it is also closed under
context evaluations.

Proof: Let (5 IU, t~U) be the closure under operations of (5, t) by Fact 3.'26. By hy­
pothesis, (s, t.) = (s#U, tIU). Then for any colltext c

(CAlsl, cAlt])	 (CA Is'Ui, CA[t'UI)

(sIU; C'h tlUj CA)

(cr,-; 5 1U, CIF; t~U) (by the naturality of c)

,::	 (s'U,I'U)

(s, t).

o

An essential property of rewriting contexts in MSA is that the converse of the previous
result holds for transitive relations on reachable algebras:

Proposition 4.7 Let ~ be a many-sorted algebraic signature and A a reachable :E­
algebra. Then a transitive relation on A is closed nnder operations iff it is closed under
rewriting context evaluations.

Proof: Let", be a transitive relation on A. In the virtne of Proposition 4.6, it suffices to
show that is closed under operations if it is closed under rewriting COlltext evaluations.

Let a be an arbitrary operat.ion symbOl in E and let a = (al'" an) '" (bl ... bn) = b.
We have to show that aA(a) ::=. aA(b). For simplicity (and withont restricting generality)
we can assume that n = 2. Becanse A is reachable, there exist t and t' ground terms
such tbat fA = al and t~ =~. Let c[z] = aU,z) and c'[z] = a(z,I') be contexts, with
variable symbol z. Then

aA(a) cA[a,1
CAl!>'] (since !l2 '" ~)

aA(aJ,b,)
c~[al1
c;'lbJi (since al""" bd
aA(b).

Now, aA(a) '" aA(b) becanse of the transitivity of ",.0

This crncial property is central to the category-based definition of the notion of rewrit ­
ing context:

Definition 4.8 Let U: A ----+ X be a forgetful fnnctor from a category of models to a
category of domains. A monoid C of rewriting contexts for U is a submonoid of all
U-contexts su(·h that any transitive relation on a reachable model that is closed under
rewriting context evalnations is also closed under operations. 0

In principle it is possible to have various monoids of rewriting contexts [or a fixed
category of models and category of domains. Some of these could be very different
from from the standard ones, thus generating non-conventional notious of rewriting and
paramodulation.

CoroJlary 4.9 Let C be a fixed monoid of rewriting contexts. An equivalence on A is a
congruence iff it is closed under rewriting context evaluations. 0

51

4.2 Inference Rules

This section presents the inference rules for the operational semantics of equational logic
programming as a refinement of paramodulation. Recall from [541 the notion of occur­
rence in a term. For any term t and any occurrence 'l'r in t, let II". denote the sub term of
t whose root is positioned at 7l", and let t I" denote the term obtained from t replacing
tl.. with s as a subterm in f. An equational goal is a pair (it, (2) of terms. The notion
of occurrence can be extended from terms to goals by regarding any goal (flo (2) as a
term having two subterms t and f', The instantiation of a term by a substitution 9 is
denoted to, and the composition of substitutions is written simply by concatenation and
in diagrammatic order. The empty substitution is denoted {.

The presentation of the rules of inference for the operational semantics of equational
logic programming follows the more classical approacb of computed anwer substitutions
rather than the more modern approach of transformation of system of equations (see
[20]).39 The main reason for this choice is the example nature of this section and also
that this pITsentatiou of the the inference rules for the operational semantics is faitbful
to the current implementation of the Eqlog system.

Definition 4.10 Let E be an algebraic signature and r be a program in E, i.e., a
collection of E-rules. Then the paramodulation rule is

Gu{(t"t,)}
GO U (,0, to) U {((I" t,) I.~,)O}

where (VX)I-~r if (s, t) is a new variant40 of a rule in r, G is a list of goals, and () is
the most general unifier of 1 and {t-" tJ)!n-' A single inference step of this rule is denoted
----+t •p

A rewriting step (denoted ---++R) is a paramodulation step such that the domain
of the substitution 9 doesn't contain auy variable from (1-" t2).

A narrowing step (denoted ---++n) is a paramodulation step such that (t" tz)I.,. is
not a variable. 0

The elimination of trivial goals is done directly through .~yntaetic unification:

Definition 4.11 The reflection rule is:

G U {(t" t,)}

GO

where G is a list of goals and 9 is the most general unifier of tt and t2 . One step of this
rule is denoted -------rl r' 0

By preventing the application of narrowing steps at occurrences iutroduced by the
computed substitution~, tbe search space of the narrowing chains is reduced drastically.
This restriction is called basic narrowing and still preserves the completeness of the
operational semantics when the program is a canonical rewriting system [54]. In order
to be able to write down the rule of basic narrowing as an inference rule without side
conditions, [.54J introduces a new representation for goals consisting of a skeleton part

J~Oliginating from MarteHi and Montanari's work on syntactic unification [71]

400btainoo by renaming all variables in the rule with new names.

52

Uust goals in the ordinary sense, i.e., pairs of terms) and au environment part (the
accumulation of the computed substitutions). By also using the rule of innermost
reflection, it is enough to restrict the application of the narrowing steps to only those
occurrences that are leftmost innermost.

Definition 4.12 A redex in a goal is an occurrence at which a narrowing step could be
applied. An innermost redex is a redex such that there doesn't exist a.ny other redex
below it.

The rule of basic innermost narrowing is:

(GU {(t"t,)},u)

(G U (s, t) U {(t" t,)I.H}'UO)

where 7T is a innermost redex in (tI, t~) for (tla, t2a), {} is the most general llnifier of
((tI,t.!)I.,.)a and I and (VX)I-+r if (s,,-) is a new variant of a clause in f. One step of
this rule is denoted .---+t,,,'

The role of innermost reflection is:

(G U{(I" t,)},u)

(G U {(t" t,)I.~,},uO)

where 7T is a innennost redex in (tI, 0.) for (lla, t'ja) and () is the substitution replacing a
new variable x by «(tI, t2) I.,.)u. One step being denoted as ---tt ir' 0

Let 0 denote the empty list of goals. Recall that a chain of inference steps is called
a refutation if[it ends in o.

Definition 4.13 A substitution {} is an instantiation of another substitution y (written
{} S '1') iff there exists a substitution I such that (J = 'PI' 0

Fact 4.14 The relation ~ on substitutions is a preorder. 0

Definition 4.15 Consider a system of inference rules for equational logic programming
operational semantics. A computed answer substitution41 is the accumulation of the
substitutions computed by a refutation chain. 0

The inference system is sound iff for any list of goals G, any solved form is a solution
form for G, and it is complete iff any solution form for G is au instantiation of some
solved form.

4.2.1 Resolution as a refinement of paramodulation

In this paragraph we show how resolution can be regarded as paramodulation in the
context of the embedding of Horn clause logics iuto equational logics developed in Section
2,3,3,

Definition 4.16 Let (5, L, IT) be a first order siguature a.nd f a collection of (5, E, IT)­
clauses. The resolution rule is

41 ,,_ ,~ •
--a.lle(I --80lvea lotm" in the scheme proposed in the introduction to this chapter.

,53

GU{p(')}

GOU CO

where (VX)p(s) if C is a new variant of a clause in r, p is a relational symbol in IT, and
() is the most gf'neral unifier of pes) and pet). 0

Fact 4.17 By using the transformations described in Section 2.3.3, a resolution step can
be performed by a narrowing step followed by a reflection step.

Proof: Using the notations of the previous definition, the clause (VX)p(s) if C becomes
a. E b U IIb_rule (VX)pb($) --} t if Cb wbere Cb is the transformation of the (E, II)­
condition C into the corresponding set of E6 U fib_equations. This rule can be used for
performing a narrowing step at the topmost symbol of the selected goal from

G' U{(p,(,),t)}

a.nd getting G b() u ebB as a result after eliminating (t, t) by a reflection step. 0

4,3 Model Theoretic Paramodulation

In this section we extend the concept of paramodulation to model theoretic pararnodula­
tion within the framework of category-based equational logic, and study the relationship
between the paramodulation relation induced by a program r on a model A and the
least congruence on A closed under f-substitutivity. Accordingly to the general scheme
proposed in the introduction, this goes at the heart of the category-based treatment
of tbe operational semantics for equational logic programming. The completeness of
paramodnJation is explained by the identity between these two relations. We show that
this identity problem reduces exactly to the transitivity of the paramodulation relation.

For simplicity of notation, we will often omit42 writing the forgetful functor U in case
of domain maps underlying model morphisms, i.e., we write s; h rather than s; hU.

4.3.1 The paramoduJation reJation

This paragraph introduces the concept of model theoretic paramodulation in the form of
a bina.ry relation induced by a given program on an arbitrary model. We assume a fixed
monoid C of rewriting U-contexts.

Definition 4.18 Let f be a collection of conditional U-rllies and consider an arbitrary
model A. Then a binary relation on A is dosed under r -paromoduJation iff for any
rnle (VB)l-+r if (s, t) in r, for any model morphism h: B --t A, and for any rewriting
U-context c,

cd/;hl- b if s;h - ';h 'nd cA[r;hJ - b

for any b in the underlying domain of A.
The least binary relation on A closed under reflexivity, symmetry and f-paramodulation

is denoted as ,...,~. 0

The concept of the least binary reflexive-symmetric relation closed under paramodu­
lation is an algebraic abstraction of the relation on terms induced by paramodulation as
a refutation rwe:

420llly in tbis section and the following one.

54

Fact 4.19 Let Tr, be the initial E-algebra for an algebraic signature E, i.e., the algebra
of ground terms. For any collection r of conditional !:::-rules,

T r
-r"= {(t" t,) I (t" I,)----+>. O)

i.e., the least relation on Tr; closed nnder reflexivity, symmetry and r-paramodulation
consists exactly of those pairs of terms for which there exists a pararnodula!ion and
reflexivity refutation using r. 0

Given a program f we can define the concept of (model theoretic) paramodula­
tion with respect to a model A as an inference rule on A-goals, i.e., symmetrical pairs
of elements from A:

(s; h, t; h) (cAlr; hi, b)
[mtp!

(rA[I; hi, b)

for any rule (V'B)I-tr if (s, t) in f, for any model morphism h: 8 --+ A, and for any
rewriting U-context c. The symmetry axiom is explained by the fact that the goals in
equational logic programming are TlOt oriented, i.e., the position of the sides in a goal
doesD't matter.

Proposition 4.20 For any model A, the least relation on A closed under reflexivity,
symmetry and f-paramodulation exists and is given by

A A.......r= Ur,n

oEw

where ~,o= DAlJ (the diagonal) and

-~.o+,~-~,n U sym(U{(cA[I;hl,b) I (CA[r;h],b),(s;h,t;h) <;;-~.o})

for each nEw.

Proof: The reflexivity of UnE", ~,n is given by t,o. In order to prove its symmetry,

we show by induction on nEw that ~,n is symmetric. We use Lemma 2.34. Consider

(Sl, t') t;; UnE'" "'~,n finite. Since {....... ~,n I nEw} is filtered, there exists n E v.; ~uch that

(S', n t;; t,,,. The rest follows by the induction hypothesis and by the remark that the

union of two symmetric relations is symmetric too.

In order to prove the closure under f-paramoduJation ofUnE'" "-"t,n' consider

(V'B)/--+r if (09, t) E f, h: 8 --+ A a model morphism and C a rewriting context

snch that (s; h, t: h), (CA[rj hj, b) t;; U"Ew ~,,,. Because of the finiteness of bot.h (s; h, ti h)
and (cAIr; hI, b), there exists mEw snch that s; h ~,m t;h and cArr; h] "'~,,,, b. There­
fore, ("A(l; h] "'~.m+l b.

Now, consider any other reflexive-symmetric binary relation Q on A that is closed
under f-paramodulation. By induction on n E I.J.:, ~,nt;; Q. Then U"Ew ~,"~ Q. 0

The intuitive Illeaning of "'·fn is the reflexive-symmetric relation generated by apply­
ing at most n f-paramodulation steps.

The soundness of model theoretic paramodulation is given by the following result.
Any pair of elements that can be refuted through paramodulation, can be proved using
standard equational deduction too.

55

Proposition 4.21 Let r be a collection of conditional U-rules. Theu for any model A,
"'~~=~ .
Proof: Since =~ is closed under reflexivity and symmetry because it is a congruence, aU
we have to show is that it is also closed under f-paramodulation. Let (V'B)/---+r if (s, t)
be any rule in rand h; B --+ A be a model morphism such that s; h =- t; h and such
that cA[r; hI.:::: b for some rewriting context C and some b.

Because =f. is closed under f-substitutivity, we have that I; h == ri h. Because =~ is
closed under operations a.nd hy Proposition 4.6, cAll; h]:::;::; cA[r;hJ. Then cAll; h] =: 6 by
the transitivity of :::;::;~. 0

The completeness of model theoretic paramoduJation is given by the oppotiite inclusion
and works only for the case of reachable models;

Proposition 4."22 Let r be a collection of conditional U-rules and let A be a reachable
model. Then,~ is an equivalence iff,~===r

Proof: Since ==~ is an equivalence and because of Proposition 4.21, we have to show
only that if.....,~ is an equivalence then =~~.....,~.

The clo8Ure of "'~ uuder f-substitutivity is obtained directly from the dosure under
I'-paramodulation for the particular case when the context c is the ideutity, and from
the reflexivity of ",~.

Because A is reachable and.....,t is an equivalence, the closure of.....,~ under operations is
the sarue as its closnre under rewriting context evaluations. The closure under rewriting
context evaluations is showu by proving by induction on nEw that f.,,; UA ~ ~ for
any rewriting context \I.. So consider

(VB)l---+r if {s, t) E f, h: B ---+ A a model morphism and C a rewriting context

such t.hat s; h "'~." t; hand CA["; h] "'~,,, b. By applying the induction hypothesis for n,
we get that UA [cA [r; hJ] ~ tLA [bJ which means that (c; tL)A[r; hJ t UA [b]. Now sinct:' ~
is closed under r-paramodulation, we obtain that (c; tL)A [1; hI "'~ UA [b], meaning that
"A[CA[I;h]] -~ "A[bl. Be.:aw;e

<"+l=-~." U ,ym(U{(cA[I; hI, b) I (CAl,'; hi, b), (d, I;h) c:;-~."})

we can conclude that ~.,,; UA ~t by using Fact 2.10.

Because congruences are CQucrete,~ is n. congruence (which is closed under r­

substitutivityas shown above). Since =~ is the le<C:it congrueuce closed under
r-substitutivity, we have =~~ ~. 0

So, the completeness of model theoretic paramodulation reduces to tbe transitivity
of the paramodulation relation:

Completeness of model theoretic paramodulation = transitivity of the paramod~

ulation relation.

56

4.3.2 Completeness of model theoretic paramodulation

Proposition 4.22 links the completeness of paramodulation to the equivalence property
of the paramodulation relation~. In fact, ~ is always reflexive and symm€tric. In
this way, the transitivity of the pararnodulation relation is technically equivalent to the
completeness of pa.ramodulation.

In this paragraph,? is shown to be t.ransitive when backward applicatioll5 of the
rules in r are allowed. This solution is more on the side of theorem proving rather than
logic programming, but the next section deals with th.is problem in a different way by
relating it to confluence.

Defini tion 4.23 Let r be a collection of conditional U-rules. Let r deuote the collection
of conditional U-rules obtained by reversing the orientation of t.he rules iu r, i.€.,

r= {(\l8)r-+/ if (,,1) I (\l8)I->r if (,,1) E r)

o

Fact 4.24 For any model A and any collection r of conditional U-rules. =~==~uf' 0

For the rest of the section we suppose that all coproducts in the category X of domains
are disjoint.

Proposltion 4.25 Let r be a collection of conditional atomic U-rules. Then for any
model A, ~ur is tra.nsitive.

Proof: Because of Lemma 2.34 it is enough to prove that if (a, b) ~""""~urand (b, d) ~"";uf

then (a, d) f ~uf for a, b. d finite. Since (b, d) is finite, there exists nEw such
that (11, d) ~ ;ur Therefore, we show by induction on nEw that a ""'~f b and

(11, d) f""~f,,, implies a ""':ur d. where a, b, d are finite. For the induction step, assume

that a ~uf b and (b, d) ~""';ur'JI+I' In the virtue of Lemma 2.14 and becaus€ the rules
in r are atomic, we may further Msume that

b = CA [1; hJ for some (VB)l---...+r if (5, t) E r ur, B ~ A and c rewriting context

such that 5; h;ur,n t; hand CArr; hJ;uf,n d. Now, by applying a rUI'-paramodulation

closure step for (V 8)r---...+l if (5, t) (still in r U I') and h, we obtain that cArr; h] :ur
a since ~uF is closed under r u I"-paramodulation. Because atuf c,4[rj h] and
cArr; hJ ~ur,n d, we can apply the induction hypothesis and conclude by a ~"""~uf d. 0

The completeness of mod ",I theoretic paramodulation when backward applications of
rules are alowed is given by the following corollary:

CoroJlary 4.26 Let r be a collection of conditional atomic U-rules. Further a.ssume tha.t
any reflexive-symmetric-transitive relation in the category of domains is an equivalence.
Then for any reachable model A, we have ""~uf==:=-? 0

57

Completeness of many sorted paramodulation. We conclude this section with
an example. We illustrate how the genera.l scheme discussed in the introduction to the
chapter can bt' used in conjuction with the previous results on model theoretic paramod­
ulation to prove the completenf'ss of paramodulation as a refutation procedure in the
case of many sorted algebra.

We fix an algebraic signature 'E.

Corollary 4.27 Let f be a collection of conditional 'E-rules. If r FE (VX)(t" "h.), then
_ rur

there exists a rewriting refutation of (th (2) using f U f, i.e., (tl , t2)--)-+'R o.

Proof: By the Theorem of Constants (5.52),

r hIIlX)(I"I,) iff r h x (110)(1,,1,)

where :Ex is the signature ohtained by adjoining X to 'E as new constants. By the
") T(EXI .Completeness Theorem, (tt. t2 belongs to:=::r ,l.e., the least congruence on Tp:: xl

T
closed under f-substitutivity. By Theorem 4.26, (tt, !'J) belongs to,r~~x)' i.e., the least
reflexive relation on T(l::.d closed under r u r-paramodulation. The rest follows by Fact
4.19. 0

Definition 4.28 For any algebraic signature 'E, let F('E) be the collection of all func­
tional reflexive axioms, i.e" F(L) = {(VIt ... Xn)f(XI ... xn) = f(XI •.. xn) If E I:}.
o

A similar version of the following Lifting Lemma appears in [54):

r
Proposition 4.29 Lifting Lemma Let G be a finite set of goals. If GO----+lo;,r 0 with

ruF(rj
computed answer substitution a, then G---++;,r 0 with computed answer substitution
, such that Oa ::s ,.

r ruF(f)
Proof: We prove by induction on nEw that if GO----+lo;.r 0, tben G -----B;,rO with
, computed answer substitution such that Oa ::s j. For the induction step. there are two
cases: when the first step is a reflection, and when it is a paramodulation.

r
Suppose GO-------Hr GI0'r1---++;~1 0 where G = G I U {(tI.f2)}, tp = mgu(tjO,t20)

and c/ is the answer substitution computed by the last n - 1 refutation steps. Then
'fa'=a.

There exists tpl = mgu(th t2) and a unique substitution (such that Otp = tplC We can
do a reflection step G-------H- G'tp'. Since (G'If'IK = G'O;;;, by the induction hypothesis,

rUF(rl
r

there is	 Glrpl ----t---+;,r 0 with)1 the computed answer substitution such that (a l ::s
ruF(r),I. Th{'f{'fore. there exists a refutation G------H;,r 0 with) = 'PI,I computed anSWPf

substitution and such that

(J(J =	 Otpa'

If"(a'

::s tp',",
58

r r
Now, suppose that GO---++p (G8!"'+-r)ip---+t;:;:1 0 where (VX)I-4T if (s,t) is a.

new variant of a cla.use in rand rp = mgu(GOj .. , 1) for some occurrence 11" in GO.
First, assume that 11" is a basic oCCurence (i.e., not introduced by 0). In this case,

GOI ... = (GI ...)O. Since the variables of the selected clause don't clash with the logical
Y<l.riables, ip is the most general unifier of (GI".)O and /9. Let ip' be the most general
unifier of G!.. and 1. Then there exists a unique (such that Orp = rp/(. We have that

r
G-----H p (GI:..._r) and that (GI1fH)r.,O'K---++;:;:1 o. By applying the same argument
as in the previous case when the first refutation step was a reflection, we deduce the
existence of a computed answer substitution I such that 0(1 ~).

The last case occurs when 1T is not a basic occnrenc€. Then 11" = 11"]71"2 where GI",
is a variable. Let J-l be tbe substitution 0 restricted only to the variable G!lIl' Then

F{r)
o= ~ + 01 where dQm~ n dom£)' = 0. Then G-----++; G~------++p (GJ-lI"'+-r)r.p. Because
of the renaming of the variables we may also assume that domrp n domO' = 0. Then

r
we have that J-l~1 = (~+ Ol)r.p = Or.p, which implies that (G~I"-f-r)lf'O'-------H;.-;1 0
because (G~f:rrH)r.p()' = (GOI1l"H)r.p. By the induction hypothesis there exists a refutation

F(r)ur
(GJ-lI" r},p ~;,r 0 with " computed answer substitution such that ()I(7' s: "/ where

r
(f' is tbe substitution computed by the refutation (GOl ll r)r.p-------++ ;:;.1 D. Then I =: ~lf'7'

and by a similar argument as in the previous cases we can prove tha.t 0(7 s: 1'- 0

Corollary 4.30 Let r be a collection of conditional .E-rutes. Then the refuta.tion pro-­
cednre througb reflexivity and paramodulation via r u r u prE) is complete. 0

4.4 Paramodulation modulo a Model Morphism

This section proposes an abstract treatment for computations modulo axioms. Each the­
ory determines a quotienting morphism for each model A (see Theorem 3.17) constructing
the free model over A satisfying that theory. This quotienting can be considered as the
model theoretic expression of the (logical) theory. In this way, the study of computations
modulo a model morphism generalises the study of computations modulo axioms. We
study the relationship between provability by paramodulation in a model and provability
by paramodulation in the quotient model. A standard exa.mple is given by the quotient
of an initial model (i.e., model of ground terms) modulo ax..ioms. 4J

The following result shows that any model morphism preserves provability under
paramodulation:

Proposition 4.31 Let r be a collection of conditional U-rules and f: A, A' be an
arbitrary model morphism. Then

----~; I ;;----{

Proof: It is enough to show by induction on nEw that

A'----t,n''/e-r,n

For the induction step consider

4~Section 4.5.3 elaborat.es on this e:<ample.

59

(VB)/-tr if (5, t) E r, h: B -t A a model morphism and c a rewriting context

such that (s;h, t; h.), (cA[r; hl, b) ~ t,n' By induction hypothesis,

(s; h;l, t; h;f), (cA[r; h;/]' b;f) <;;-t:" , Hence (cAli; hI. b);1 = (cA[I; h;/], b;1) <;;~r"+"

which proves that{n+l;j ~"""f.'''+J' 0

The equality

...... ~;j =...... ~'

doesn't hold in general because in its present form it dismisses the role played in proofs
by the quotienting. A way to integrate the quotienting into the proof theory is given by
introducing a new inference rule:

Definition 4.32 Let:J be the least reflexive-symmetric relation closed under
f-paramodulation and und{'r

Q
[mod~

ker(J) 0 Q 0 k<r(f)

where Q is any binary relation on the underlying domain of A. 0

Fact 4.33 The relation ;J exists and can be obtained in the manner of Proposition
4.20 by an alternation of f-paramodulation steps with modr. 0

Proposition 4.34 Let 1: A -t AI be a model morphism and f be a collection of
conditional U-rules. Then

...... ~J;f ~"'rA'

Proof: By similarity to the proof of Proposition 4.31. 0

The following theorem is the main result of this section:

Theorem 4.35 Let 1: A -+ A' he a coequaliser in the category of models and r be a
collection of conditional U-rules. Then

~;J;1 ="'{ .

Proof: By Proposition 4.34 it is ('Dough to prove the inclusion "'rC;; ~J;1. We show
by induction on n E ~' that

~f.',;C;;...... ;.f:1.

For n=-O it is enough to prove that DA,u = DA1J ;f, since DAlJ ~ ker(J). The
inclusion DAti ;1 C;; DA,u is obvious. Consider (5', 5') ~ DA,u. Because jU is split-epi,
there exists s such that s:1 = 5'. Hence (8,s);f = (5 1,S') and DA,u C;; D.4l.J:1·

For the induction step, consider CA,[l; h1 t,,+, b' with

('9'8)/-+r if (5, t) E f, h. 1: B -t A' a model morphism and C a rewriting context

60

such that (8; h', t; hi), (cA,[r; h'l, b') ~t:n'

Because B is coequaliser projective, there exists h: B -+ A such that h;f hi and b

such that b; f = b'.

B-~ ... A

~lf
A'

cA,[I; h1 ~ eA' II; h;fl
l; h;f; CA'

l; h; CAif
cA[I;h];j.

(naturalityof c)

Similarly CA,[r;h'] = cAJr;h];f. By the induction hypothesis (s;h,I.;h);f,(cA[r;h],b);f
~ ~,J;1. Because,....,~ is closed under tbe rule modf, (s;h,ljh),(cA[r;h],b) ~ ~J.
Because ,..,.~J is closed under r-paramodulation , we have (C,4[/; h), b) ~""'F,j. Hence
cA,[/;h'l ~ cA[/;hIJ ,,_~,f;j. 0

Model theoretic paramodulatiou together with modf define the concept of paramod­
ulation modulo a model morphism. The previous theorem shows that

Paramodulation modulo a model morphism = paramodulation in the quotient
model.

As already mentioned, paramodulation modulo axioms can he regarded as: a varticular
case of para.modulation modulo a model morphism. Actually, by taking the semantic
approach on equational theories expressed by Definition 3.6, these two notions appear
to be two sides of the same concept. This point of view is supported by regarding the
kernel of a model morphism a:; a theory, or better as the consequences of a theory in the
source of the model morphism.

4.5 Confluence

Using the rules of a program a:; Don-oriented equations cau lead to very inefficient search
within the space of paramodulation chains. A first crucial point in reducing t.he size of
the space of inference chains is to mak.e use of the orientation of the rules. This also adds
direction to the refutation, bringing it closer to the true meaning of cQmputojwn. The
completeness of paramodulation with oriented rules depends essentially on the ronfluence
of the program. This section explains the relationship between the transiti'iity of the
para.modulatioD relation determined by a program r on a model A and the cOllfluence of
r as a collection of [oriented] rules.

Confluence (also called the Church-Rosser property44) is central to the theory of
rewriting. Confluence and termination are essential properties of rewriting systems as
models of computation. Conflnent and terminating rewriting systems can be used as
decision procedures for equality (see [30]). Our concept of confluence for a program
generalises tbe traditional one in the sense that it depends ou a given model rather than
being fixed (to the model of ground terms).

'"MOre preciselY, Church-Rossoer and confluence are different prope-rtles t.hat can be easily proved
equivalent in most cases. Hawever, there are some situatians when there- i5 a subtle difference betwe('n
theae two properties (~ [20]).

61

4.5.1 Model theoretic rewriting

Any program determines a rewriting relation on the underlying domain of any model:

Definition 4.36 Let r he a collection of conditional U-rules. Then a binary relation»
on a model A is closed under r-rewriting iff for any rule (VB)/----+r if C~, t) in r and for
any morphism h: B --+ A,

cA[/;hJ»CA[1';hJ if s;h,.....~t;h

for any rewritingU-context c. The least relation on A closed under reflexivity. transitivity
and r-rewriting is denoted a.'l »~. 0

Fact 4.37 Let r be a collection of conditional U-rules. For any model A, »~ exist.s a.nd
is given by

»~= (p~r whee. p~ ~ U{(CA [I; hI, qlr; hD I ."h ~~ t; h),

i.e., »: is ~he transit.ive-reflexive closure of the least relation dosed under r-rewriting.
o

In Definition 4.36, h plays ~he role of the matcher for the left-hand side of a rule to
an element of the algebra. For example, in the case of the ORJ system, the algebra A
is the initial algebra of ground terms (or the initial algebra of a theory for the case of
rewriting modulo axioms). In this case, h matches the left-hand side of a rule in the
program with a subterm of the term to be rewritten. But the rewriting is done only after
the system proves the validity of the hypotheses instantiated by the matcher h. The
a.lgebraic formulation of this last condition is given by Sj h ,.....~ t; h, since -# contains
exactly all identities in II that can be proved from r by paramodulation.

The following result shows that the rewriting relation is preserved under model mor­
phisms:

Proposition 4.38 Let r be a collection of conditional U-rules. For any model morphism

I' A -t A'

'>-4;f ~ »t' .

Proof: Consider

(VB)/-tr if (5, t) E r. h: B ----1 A a model morphism and c a rewriting context

such that s; h -~ tj h. By Proposition 4.31, s; h;f "'f t; h;f. hence cAll; hJ;f =
'A,p:h:!l »r CA'lr; h;/J = q[r;"I;I. 0

Definition 4.39 Let r be a collection of conditional U-rules and I: A -+ A' be a model
morphism. The binary relation» on A is closed under r-rewriting modulo 1 iff for
any rule (V8)I-tr if (s, t)

cAll; hJ» cA[r; hJ iff s; h ,....~J t; h.

The least relation on A closed under reflexivity, transitivity, r-rewriting modulo I, and
modf is denoted »~J. 0

62

The following result is in the spirit of Section 4.4 and it shows tbat rewriting modulo
a model morphism45 is the same as rewriting in the quotient model.

Theorem 4.40 Let r be a collection of conditional U-rules and f be a coequaliser in
the category of models. Then

»~J;f c==:»t .

Proof: By similarity to the proof of Theorem 4.35 and by using this theorem for
,,-,~J;f =,,-{. 0

4.5.2 Transitivity vrrsU-$ confluence

For this section we assume the category X of domains has disjoint coproduets (see Defi­
nition 2.12).

Lemma 4.41 Let r he a collection of conditional atomic U-rules and A be any model.
For any a, h, h' finite, if a»~ band b,..,.~ b' , then a "-~ b'.

Proof: If a »~ b, then because (a. b) is finite and by Fact 4.37 and Proposhion 2.38,
there exists nEw such that (a,b) <; (p~)". We prove by induction on nEw that
if (a, b) <; (p~)" and b ,,-t b' , then a ,,-t b'. For the induction step, suppose that
(a,b) <; (pt)"+l. By Lemma 2.14 we may assume that (a,b) <; pt 0 (pt)n' In the
virtue of Fact 2.36, we may further assume that there exists d such that (a, d) ~ pt and
(d. b) <; (pt)". By Lemma 2.14 and hecause of the atomicity of the rules in r, we may
assume that

a:cA[I;h] with (cA[r;h],b)C;(p~)" and ,;h-~';h

for some rule (VB)I~r if (s,t) iu r, for some model morphism h: B -+ A and for some
rewritingU-context c, and snch that b,....t b'. By the induction hypothesis, c,dr;hj ""t b'.
Because "-t is closed under r-paramodnlation, a ""'t b' . 0

The following result describes the paramodulation relation "-'t as the "set" of pairs
of elements that can be rewritten to the same "element". This intuition cons~jtutes the
basis for usiug term rewriting systems as a decision procedure for equality.

Proposition 4.42 Let f be a collection of conditional atomic U-rules. Then for any
model A

"-~= U{(a, a'l finite I a »t d and a'»~ d for some d}.

Proof: We first show by induction on n E u.' that

,..,.t,S U{(a, 0 ') finite I a »~ d and a' »F d for some d}

For the induction step, let's suppose that a "'"+1 b with

a=cA[I;h} for some (VB)l--trif(s,t)Ef,h: B...-4A and c rewriting context

4SOr modulo axioms; see lhe discussion ending Section 4.4.

63

such that s;h{n I; hand cArr; h] ~." b. By the induction hypothesis, CArr; hJ :;}> d
and b» d forsomedbecause (cA[r;h],b) is finite and {(a,a') finite I a» d,a' :;}> d}
is filtered (by using Lemma 2.26). Because 8; h ,....,~ t; h, we also have that cAll; h] :;}> d.
Then (a, b) ~ U{{a, a') I a 2.:'f. d and a':;}>~ d for some d}.

For the opposite inclusion, we apply Lemma 4.41. Consider a, a l finite such that
a :;}>~ d and a':;}>~ d for some d. Then a ,....,~ d and, consequently, a,.....t al 0•

Definition 4.43 Consider a model A and r a collection of conditional U-rules. r is
A-confluent iff the rewriting relation :;}>~ is confluent. 0

The notion of A-confluence represents a generalisation of the traditional notions of
confluence in the theory of term rewriting systems. 46 The simplest and best known one
corresponds to the case when A is the [initial] algebra of ground terms Tr; for an MSA
signatnre E. In Section 4.5.3 we explain the relationship between A-confluence and the
notion of confluence modulo an equivalence as presented iu [55, 61, 20, 30].

The followiug establishes tbe crucial link between the confluence of r and the transi­
tivity of the paramodulation relation induced by r:

Proposition 4.44 Consider a model A and r a collection of conditional atomic U-rules.
Then r is A-confluent iff,....,t is transitive.

Proof: Assume r is .4-confluent and cousider a b ,..., c finite. In the virtue of
Proposition 4.42, there exists d: d' such that a :;}> d, b :;}> d, b :;}> d' and c :;}> d'. By
the confluence of ». tbere exists d" such that d» d" and d' »d". Thus, a» d" and
C :;}> d". By applying again Proposition 4.42, a ,...., c.

For the converse, let's assume that ,....,t is transitive and consider a » b and a » c
with a,b,c finite. By Lemma 4.41, a '" b and a""" c. Therefore, b,..... c, and b» d,
c :;}> d for some d by Proposition 4.42. 0

The following corollary shows that in the case of confluence, the refutation procednre
using paramodulation and reflexivity is complete for oriented rules. In the presence of
confluence the application of the rules in r (i.e., tbe backward application of the rules in
r) is no longer necessary.

Corollary 4.45 Let A be a reachahle model and r be a collection of A-confluent con­
ditional atomic U-rules. Furt.her assume that any reflexive-symmetric-transitive relation
in the category of domains is an equivalence. Then,f==~.

Proof: By applying Proposition 4.22. 0

Through the Lifting Lemma 4.29 we can apply the previous result to the case of
paramodulat.ion in MSA:

Corollary 4.46 Let E be an algebraic signature. If r is a confluent collection of con­
ditional E-rules, then the refutation procedure through reflexivity and paramodulation
using r U F(E) is complete. 0

45SU> [30] for a derailed exposition of the concept of confluence for t,erm rewriting systems. Other
important surn'ya IHI.' [20, 56}.

64

4.5.3 Confluence modulo a Model Morphism

In this section we argue that the notion of A-confluence (Definition 4.43) correspond!>
to confluence of rewriting on equivalence classes in the case of a quotienting morphism
defined by a theory.

The notion of rewriting on the congruence classes (called class-rewriting in the
smvey [20]) was introduced by Lankford and Ballantyne [65J for penlltdaliue congruences,
that is congruences for which each congruence clas!> is finite. For example, associativity
and/or commutativity gives rise to pennutative congruences.

Let E be an algebriac signature and let E be a coUeetion of E-equations. In the
context of the definitions introduced by Section 4.4, let A be the algebra of ground terms
TEl A' be the initial :1:, E-algebra Tr..E, and f; TE -+ Tr:,.E be the quotienting morphism.
Rewriting (paramodulation) modulo f I!> the same as rewriting (paramodulation) modulo
E. Given a collection r of conditional E-rules, class-rewriting relation defined by r and
E (deuoted r /E in [20, 61 J is »Jl;,I. By Theorem 4.40 we have the following:

Corollary 4.47 A term rewriting system r is confluent modulo axioms E iff it. is TE,E­
confluent. 0

The term rewriting literature contains several paper!> [55, 61] and surveys [56, 20J
studyign alternative notions of confluence modulo axioms and their relatiomhip with
confluence of rewriting on congruence classes.

4.6 Narrowing in MSA

This section is entirely devoted to the application of the general theory developed in
Sections 4.3 and 4.5 to the particular CMe of many sorted narrowing including some of its
refinements. Although all results of this section had been established hefore, the way they
fall as a direct consequence of the general category-based results on the completeness of
pa.ramodulation is new and can be taken as an example for applying the theory developed
in Sections 4.3 and 4.5 to other cases of interest.

The structure of this section is influenced by the gradual development of the com­
pleteness results for different refinements of narrowing given in [54]. We fix an MSA
signature E. The role of the model A is now played by the (initial] algebra of the ground
terms.

Definition 4.48 A E-rule (VX)J-+r if ($, t) is a rewrite rule iff var41 (r) U mr(s, t) ~
var(l) = X. It is collapse free4B iff J is not a variable. 0

The main difference between rewrite rule!> and oriented equations (or simply rules)
is that in the case of the former the system doesn't have to "invent" values for the
variables that might occur in the right band side or in the condition of a rule but not in
its left hand side. This makes rewriting systems appropriate for computations by giving
direction to rewriting. An important consequence is the fact that the presence of the
functional reflexive axioms is no longer necessary;

4.78y var(t) we mean the st't of all variable!; occurring in the term I. More formally, {'llr(t) i, the least.
set X such that t E TI;(X) (9('(' [30]).

48An interesting discu!lSion on lhe role played by this concept for the completeness of paramodulation
can be found in [54].

65

rUP(rj
Lemma 4.49 Let r be a rewriting system and G be a list of goals. Tben G ------++R0

implies tbat G~R o.

Proof: Any application of a paramodulation step with a clause from F(r) would pro­
duce a non-empty answer substitution, therefore they are not used in tbe refutation.
o

The application of Corollary 4.45 requires a new version of Lifting Lemma adequate
to the new context. Recall (see [30], for example) that a term t is said to be in norma)
form when no rewriting can be applied to l anymore. A substitution is said to be in
normal form iff all its terms are in normal form.

Proposition 4.50 Lifting Lemma Let r be a collaptle free rewriting system and B be
r r

a substitut.ion in normal form. If GB-------H}j 0 then G--+-t~,~ 0 with the compnted
answer substitution ~ stKh that 0 S; ~.

Proof: We prove this tifting lemma by induction on nEw.
The fiHt case occurs when the first step of tbe refutation chain is the removal of

an identit~· to ::::: eo with (fl' lJ) E G. Let If be tbe most. general unifier of t l and
t1 • Then t.here exists 0' such that i.pO' = O. 01 is in normal form since 0 is in normal

r
form. HG = G' U {(ll,t2)}, then since (G'tp)O'-------Hn-1 0, the induction hypothesis

r
implies that G\Q-------+t~;l 0 with the compuf,ed answer substitution~' such that 0' S; ~'.

But G----++~ G1tp with tp the computed answer substitution. The answer substitntion
r

computed by the refutation G-------»~,~ 0 is i.p(/ ~ "PO' = O.
The secoud case occurs when the first step of the refutation is a proper rewriting step.

Then G6-------+t R GOI,r+-~"" U (8, t)..p for ('I7'X)l-+r if (8, t) a new va,riant of a clause in r
and II' = GOI•.

•	 0 in normal form implies that (GO)I". ::::: (GI".)8, i.e" 'iT is a basic occurence,

• r collapse free implies t.hat GI". is not a variable, and

•	 domi.p n domO::::: 0 implies the existence of B' in normal form such that "P'O' = 0 + If
where 1" ~ mgu(l,GI.). Thi, works hecamel(O+'P1 ~ II' ~ (GI.)O ~ (GI.)(8+'P)·
0' is in normal form because both 0 and 'f are in normal form.

Then G-------»" GI".+-~",,' U(s. t)tp' and (GI".+-~I'" U (09, t)ip')OI ::::: GB!fr-t-r", U(8, t)'P-------+t'R-1

o. Now, we can apply the induction hypothesis in the same manner with the former
case (when the first refutation step was a reflection) and deduce the conclusion of this
lemma. 0

Corollary 4.51 Let r be a confluent collapse free rewriting sy"tenl. The refutation
procedure through reflexivity and narrowing is complet.e. 0

4.6.1 Canonical term rewriting systems

This paragraph reviews the completeness of basic iunermost narrowing from [54J. This
works under the further assumption of the termination of the term rewriting system
involved. A rewriting system that is both conllueut and terminating is called canonical.

66

The completeness of hasic innermost narrowing is ohtained directly from Corollary
4.51 via the folJowing4.9:

Proposition 4.52 [54] Let r be a canonical collapse free term rewriting system and G
r r

be a list of goals. Then G-----H; r 0 implies that (G, t:)-----H;.n;r 0 with the same
computed answer substitution. ' , ,

r
Sketch of Proof: When the substitution 9 is in normal form, in G9-----++"R 0 rewriting
is applied only at basic occurrences. The canonicity of r implies the we can select a
chain of innermost rewrites. Innermost reflection is needed to move to redeces ahove
an innermost redex with respect to -----HR because innermost redeces with respect to
-----++n might not correspond to innermost redeces with respect to -----++R. 0

Basic innermost narrowing can be combined with rewriting on the goals. As discussed
iu [54], this can be very beneficial in cutting off non-terminating narrowing c~aJns. In
some cases it also adds to the efficieucy of the computation. The completeness of basic
innermost narrowing combined with rewriting follows directly from Corollary 4.51 via
the following:

Proposition 4.53 [54] Let r be a canonical collapse free term rewriting system and let
r r

G be a list of goals. If G-----++~ r 0 then (G, f)-----++it r H,.r 0 with the same computed
answer substitution and narrowi'ng applied only to nor~;alised goals. 0

4.7 Computing in Eqlog

The Oxford prototype implementation of Eqlog is an extf'nsion of the OBJ3 system
(developed at SRI International; its user manual is [46]). The Eqlog system adds an im­
plementation of order sorted basic leftmost innermost narrowing. The current goal to be
processed is selected to be the leftmost one from the goal list. The goals are represented
in the manner of Definition 4.12, i.e., having a skeleton part and an environment part
representing the accumulation of the computed answer substitutions. The main narrow­
ing loop implements a depth-first search on the space of all narrowing chains regarded
as a search tree.

4.7.1 OS unification in Eqlog

The implementation of uuification follows the order sorted version of Martelli-Montanari
algorithm described in [74]. It is known (see [74]) that an order sorted unification prob­
lem may fail because of the sort structure. In some cases, this can dramati(ally speed
up the whole computation hecause most of the computation time is spent on failing uni­
fications. au the other hand, a successfnl unification problem might have a finite most
general solution set (Bee [74, 27]) rather than a. single most general unifier. However, t.he
following property of GSA signatures assures the existence of a most general unifier for
any successful unification prohlem:

Definition 4.54 A monotonic OSA signature (8,:S, E) is coregular (called unita.ry in
[74]) iff

49Ueing the environment-skeleton repreflentation of goals described in Section 4.2.

67

1.	 for any two sorts .'I, .'I' E 5 there is at most one maximal common subsort, and

2.	 for any operator symbol (1 E 1: and any sort .'i E S, the set {w E S· ! (1 E
:E ... ", aud s' ~ s} has at most one maximal element.

o

Although the Eqlog system assnmes that all signatures of modules are coregular,50 it
also has a facility for showing the eventual non-coregnlarities of a signature of the cnrrent
module. One types

set show noncoreg on

to turn it on and,

set shOll noncoreg off

to turn it off.

4.7.2 Examples with narrowing

Consider the following module defining an ADT of lists over a set of elements (represented
here by the sort Elt). The non-empty lists form a subsort NList of the sort of all lists
(i.e., List). The empty list and the usual list selectors have the same name as their
Lisp counterparts, while the constructor function (cons in Lisp) is simply denoted by
concatenation. ill order to get a purely logical inference procedure for this example we
have to use an ADT definition for the natural numbers rather than import them <UI

built-ins. ll The function giving the length of a list is denoted by •.
0, s, nil, and _ are declared as constrnctors.

obj LIST is
sorts Elt Nat NList List
subsort NList < List
op 0 -) Nat [cons]
op s : Na.t -) Nat [cons]
op a : -) El t .

op nil : -) List [cons]
op __ : El t List -) NList [CODS]

op car : NList -) El t .
op cdr : NList -) List
op'_ List -) Nat .
varE:Elt.
var L : List .
eq carCE L) = E
eq cd.rCE L) '" L
eq'nilaO.
eq 'CE L) =sC. L)

endo

50Experiments made in Oxford showed that the vast majority of OBJ modull"6 are coregula.r.
5lrhe Eqlog system inherits the built-in natural numbers from thl' OBJ system.

68

By typing

set shov narrowing on .

tbe user can set> the actual inference steps performed by the Eqlog system which alterna.tes
reflection a.nd basic leftmost innermost uarrowing steps. Successful reflection steps are
omitted. Tbe meaning of all fields is obvious except for next-position, which refers
to tht> occurrence at which the redex of the uext. uarrowing step has to be found. This
occurrence is a list of uaturaJ numbers representing the path to the redex witbin tbe tree
underlying the term jf the search process backtracks, otberwise is still unknown.

For example, the query

find Lst List such that • Lst s(s(O)) ; car(Lst) a .

produces the following output:

#•••••••#••••# •••••••••••••••••, ••••#•••••

solve in 1. :

car(Lst) '" a

Lst '" s(s(O))

reflection failed

depth in the narroving chain:

current goal list (skeleton):

E_978 '" a

• Lst '" s(s(O))

current ansver substitution:

E_978: Elt -> UNBOUND

L_977: List -> UNBOUND

Lst: NList -> E_978 L_977

next-position: unknovn

depth in the narroving chain: 2
current goal list (skeleton):

.(. L_983) = .(s(O»

current ansver substitution:

E_984: Elt -> a

E_978: Elt -> a

L_977: List -> L_983

Lat: NList -> a L_983

next-position: unknovn

reflection failed

depth in the narroving chain: 3

current goal list (skeleton):

s(O) = .(.(0»

current ansver substitution:

69

E_984: Elt -) a

L_983: List -) ni I

E_978: Elt -) a

L_977: L1st -) nil

Lst: NList -) a nil

next-position: unknown

reflection failed

constructor clash

depth in the narrowing chain: 3

current goal list (skeleton):

sese. L_989)) = s(s(O))

current ~swer substitut10n:

E_984: Elt -) a

L_983: List -) E_990 L_989

E_978: Elt -) a

E_990: Elt -) UNBOUND

L_977: ~ist -) E_990 L_989

Lst: NList -) a (E_990 L_989)

L_989: List -) UNBOUND

next-position: unknown

reflection failed

depth in the narrowing chain: 4

current goal list (skeleton):

s(s(O» = ,(stoll

current answer substitution:

E_984: Elt -) a

L_983: List -) E_990 nil

E_978: Elt -) a

E_990: Elt -) UNBOUND

L_977: List -) E_990 nil

Lst: NList -) a (E_990 nil)

L_989: L1st -) nil

next-position: unknown

A solution is:

Lst: NList -) a (E_990 nil)

This example also shows how the sorts of the logical variables are dynamically changed
during the computation process. The Eqlog system accepts a certain class of badly typed
terms in queries which are treated by using tbe method of retracts,5'2 but this is hidden
to tbe user. In our example, accordingly to the original declaration of the type of the
logiral .-ariable Lst, the term car(Lst) is not well typed because car is defined only on

~11nheri~ed from th(' OBJ3 system; for a detailed discussion on retract.s and th('ir semantics see [35J.

70

the subsort NList of the non-empty lists. However, during the computation process the
order sorted unifica.tion function changes the sort of Lst to NList. This could be easily
noticed in the first narrowing step performed hy the system, and also shows up in the
final result.

4.7.3 Constructor discipline

Consider the following query:

find Lst : NList such tha.t , Lst = 0

Because the rule' nil = 0 wonld never be selected due to the type constraint on Lst,
the system proceeds into endless applications of the rule' (E L) =. s (. L).

However, such a situation could be easily avoided by noticing that there is no possible
refutation from goals of the form s (...) =. O. Th.is suggests a constructor discipline
as a way to stop non-terminating computations and also a.'l a way to reduce the search
within the space of narrowing chains. Although the constructor discipline i~ used in
equational logic programming as a control facility (tl~ programmer has the full option
to declare some operations a.s constructors), the concept of constructor has a precise
mathematical meaning at the level of algebraic specifications. In [731, Meseguer and
Goguen showed that only order sorted algebra solves the constructor-selector prohlem.

Definition 4.55 [30J A ~ubsignature 0 0:;:: I: is a subsignature of constructors for
a specification (I:, E) iff Tr"E rn is a reachable fl-algebra. A subBignature of unique
constructors is a subsignature of constructors 0 such that Tr..E is the initial (i.e., ground
terms) O-algebra. 0

The main principle underlying any constructor discipline for equational logic pro­
gramming can be concisely formulated as follows:

Constructors cannot be narrowed.

The Eqlog system implements this principle in two different ways.53 The first one
occurs when the topmost operators of the sides of a goal are different comlructors.i'.i4.
In this ca.se, since it is impossible to develop the narrowing chain into a refutation, the
computation backtracks55. The second way to apply the constructor discipline is to
banish from narrowing the positions where the corresponding operator is a constructor.
The main consequence in this case is to speed up of the computation of innermost redeces.

53Mitny other implementations of narrowing embed some sort of constructor discipline, llotably the
ALF liylitem [491.

54Actually, the Eqlog system implement>! a stronger version of this: before a narrowing Slep is per­
formed, the liYlil.em tries to find the outermost occurrence at which the corresponding operatora are
different conlitructOJ'B, and such that aU outer positions are occupied by comitructors withIn both !:jjdes
of I,he goaL If liuch 8. position is found, then the computation backtu.cks without trying to perform the
narrowing step.

551n the preVlons example of an Eqlog run, this corresponds to the message constructor clasb.

71

5 MODULARISATION

A promising approach to developing large and complex systems (which may be software,
bacdware, or both) is to start from a description of the system as an interconnection of
some specification modules. This permits the verification of many properties to be carried
out at the level of design rather than code, and thus should improve reliability. With
suitable mechanical support, it might also improve the efficiency of the development
process. In addition, it promotes reuse, because some modules may be taken directly
from a library, or else may be modifications of library modules. For this rea-wn, many
modern programming and specification languages support some form of modularisation,
and most mathematical results about modules have appeared in the context of formal
software engineering, particularly specification languages. There has been much recent
interest in module composition systems under the name of "'megaprogramming" [98. 94].

Modularisation for equational logic programming has been studied less. Two basic
problems are the soundness and com.pleteness of the translation of queries and their solu­
tions along module imports. It is important to notice that in ELP the notion of module
is very similar to that in equational (i.e., functional) programming56 and, although eaC"h
query is related to a certain module, the query is not part of the module. Given a module

import P ~ pi (technically regarded as a morphism of theories), 1/J is sound iff for an.y
query q in P, any of its solntions is translated to an solution of 1/J(q). The completeness
of 4) means that any solution of tI,(q) corresponds to a solution of q.57 Our notion of
module import is not restricted only to inclusion of theories, a module import could be
any morphism of theories. In this context, we prove the soundness property for arbitl.'"ary
module imports.

A particularly important relation between theories is that of conservative extension,
which says that any model of a subtheory can be expanded to a model of the supertheory.
This semantic property can be important for the reuse of modules. Other semantic
properties of extensious arise in connection with parameterised (i.e., generic) modules.
The completeness property is proven to hold for the case of essentially persist~,nt module
imports. 58

The theory of institutions [33] provides an abstract mathematical formulation of the
concept of 'logical system' very adequate for the study of modularisation in declarative
programming languages rigorously based on logical systems. In order to use the ma­
chinery provided by the theory of institutions to modularisation problems specifiC" to
equational logic programming, we have to integrate the framework of category-based
equational logics with institutious. The institution of category-based equational logics
provides the most abstract framework which is still concrete enough to deal with con­
cepts like queries and solutions. The primary mathematical structure in this approach
is the notion of Kleisli category. Translations of queries along module imports appear
as functors hetween Klejsh categories. The more general case of qua.ntifier~ as models
(rather than collections of variables) reyeals that the translations of the quanlifiers along

~~.., - -, .,--.ror example, ~nere are only very sma.ll diferences between Eqlog and OBJ modul~.

57Section 5.3.2 shows how soundness and completen~ of module imports relat~ to t~e traditional
concept of soundness a.nd comple~eness for logical syst.ems.

MA property stronger than conservative extension.

73

module imports are simply free constructions.
The institution of ca.tegory-based equational logics is abstract enongh to encode equa­

tional logic programming modules as siguatures and module imports as morphisms of sig­
natures. This different level of use of tbe institution of category-based eqllationallogics
is the basis for a category-based semantics for equatiooallogic programming queries and
solutions. The institution of category-based equational logics also supports a category­
based version of tbe Theorem of Constants. We place tbis result here exactly because of
its counection to the basic mathematical structmes of tbis chapter, although in principle
it is not relatt'd to modularisation issues. The model-theoretic dimension of am more
general version of the Theorem of Constants is also related to the so-called "method of
diagrillIls" frorn classical first-order model theory.

The soundness and completeuess problem for tra.nslations of qneries and tbeir soIn­
tions along module imports is sbowu to be an instantiation of the souodness and com­
pleteness at the level of institutions with an entailment system. This fact resorts to a
special and rather eccentric institution having collections of logical variables as signa­
hIres, queries as models, and substitutions as ~entences. A suhstitution IS an answer
for a query iff the query sat.isfies the substitution. The only inference rule definiug the
entailment relation encodes the translation of substitlltions along modnle imports.

5.0.4 Some History

The earliest work on software modules with which we are familiar is by Parna.s [77,
78, 79J. Program modules differ from earlier program strncturiog mechanisms such as
subrolltines, procedures and blocks, iu that they may inclnde a number of procedme and
data definitions, may be parameterised, may import other modules, and may hide cert.ain
elements. A major motivation for modules in this sense is to facilitate the modification
of software, by localizing the representation of data and the operations that depend upon
it; thjs is called information hiding. Such modnles support software reuse becanse they
can be specified, verified, and compiled separately. Note that this notion of modnle is
essentially syntactic: it concerns texts that describe systems.

The earliest work that we know on specificatioo modules is by Goguen and Bur­
stall, for their specification language Clear [12, 13], the ::;emantics of which is based on
iostitutions."g This approach to modules has been applied to various logic-based lan­
guages, particularly OBJ [46], Eqlog [38], FOOPS [40, 47J (which combjoes the fundional
and object paradigms), and FOoplog [40] (which combines fnnctional, logic and object
paradigms); it could also be applied to any pure logic-based programming language, such
as (puTe) Lisp and (pure) Prolog. In 126], this is even extended to imperative program­
ming. The module system of (Standard) ML [50J has also been strongly influenced by
this work 00 Clear.

Clear introduced the ideas that a specification module determines a theory, .and that
such theories can be put together using colimits; these ideas have their origin in some
earlier work by Goguen on General Systems Theory [23, 36J. Clear provided operations for
summing, renaming, extending, hiding, importing and (in the case of generics) applyiug
theories. Theories in turn denote classes of models. The earliest work that we know
giving a calculus of modules is also due to Goguen and Bnrstall [31]. Building on Clear,
they studied laws for horizontal structuring relationships, and t'ert-ical impLementing (also
called "refinement"') relationships, concluding that the axioms of a Z-category should be

5~Ot,h~r early work on modules for specifkation languages was by Liskov all the language CLU [3J.

74

satisfied.5O Some general laws for the module operatious of Clear appear in [23], and
others occur in the proofs in [13]. Some recent results on the formal properties of module
composition over institutions appear in [29].

The module algebra of Bergstra, Heering and Klint [9] attempts to capture the hori­
zontal structure of modules with equations among certain basic operations on modules,
including sum, renaming, and information hiding. These equations, together with con­
structors for signatures and sentences, give a many sorted equational presentation, about
which some interesting results can be proved, including a normal form theorem. Un­
fortunately, this work has first order logic built into its choice of the constructors for
signatures and sentences. However, Bergstra d al. abstract some interesting general
principles from this special case. [21) develops a module algebra in the context of the
theory of institutions. In [21J it is shown that all reMonable institutions support certain
simple operations on theories; what properties ensure that these operations have various
desirable properties is also explored. A new categorical axiomatisation of the notion of
inclusion permits simple definitions for these operations on theories.

Much iutcresting work using institntions has been done by Tarlecki [89, 9D, 91, 92J
and by Sannella and Tarlecki [83, 84. 85J.

5.1 Institutions and Modularisation

Institutions a.re much more abstract than Tarski's model theory, and they al:=o add an­
other basic ingredient, namely signatures and the possibility of translating sentences and
models from one signature to another. A special CiUie of this translation may be familiar
from first order model theory: if E -t ~' is an inclusion of :first order signature;;, and if
M is a E'-model, then we can form M tI:, called the reduct of .!if to~. Similarly, if E

is a E-sentenee, then we can always view it iUi a ~'-.sentence (but there is no standard
notation for this). The key axiom, called the Satisfaction Condition, says thaI truth is
invariant rmder change 0/ notation, which is surely a very bMic intuition for traditional
logic.

Definition 5.1 An institution S) = (Sign, Sen, MOD. F) consists of

1. a category SigTl, whose objects are called signatures,

2.	 a functor Sen: Sign --;. Set, giving for ea.ch signature a set whose elements are
called sentences over that signatnre,

3.	 a functor MOD: Sign op --;. Cat giving for each signature E a category whcse objects
are called E-models. and whose arrows are called 'E-(model) morphisms, and

4.	 a relation FI: ~ IMoD(E)1 x Sen(E) for each E E ISignl, called E-satisfaction,

such that for each morphism ¢: E -t E1 jn Sign, the Satisfaction Condition

M' FE' Sen(.p)('j if! MOD(¢)(M'j h'

holds for each M 1 E IMoD(E1)1 and e E Sen(E). 0

6°This ill consistent with the fact that HI our category~b~ sernanli'S for queries and .'()!utiOIlS, the
ca.~egory of module!l and module importB comes equipped with a 2-cat.egorical stru.;lure illduced by l,he
2-categorical slructure of the category-h~ equational signalures.

75

We will often denote the reduct functor Moo(4)) by -r¢, and the sentence translations
Sen(,p) simply by ,p(_) or even _,po

All logics presented in Section 2.3 are institutions. Ouce a logic is proved to be
an institution, OBJ-like modularisation principles can be applied to any progra.rmning
langnage rigorously ba5ed on that logic. [21 J contains a series of results obtained at
the level of institution theory and supporting OBJ-like protecting modnle imports and
parameterised (generic) programming.

Definition 5.2 A theory (I:, E) in an institution ,:} =: (Sign, Sen, Moo, F) cousists of

• a signature E, and

• a set E of E-sentences closed under semantical deduction, i.e., e E E if E FE (yl

A theory morphism 4>: (E, E), 0::1
, g) is just a morphism of signatnre9 ¢: ~ -t !:;/

such that Sen(¢)(E) ~ g. Let Th('Zf) denote the subca.tegory of theories iu G'. 0

The principle of "initial algehra semantics" is formalised at the le\'el of institutions
(see [33]) by the concept of liberality:

Definition 5.3 Let'~::: (Sign.Sen.MoD,F) be an institution. A theory morphism if)

is liberal iff the reduct functor MoO(4)) has a left-adjoint.
The institution 'Zf is liberal iff all theory morphisms in T h('Zf) are liberal. 0

In general, equational logics tend to be Iiheral, while first order logics are not liberaL
In [89], Tarlecki relates the liberality of an institution to the qnasi-variety property which
must be fulfIlled by the class of models of any theory in that institution, meaning that
the modeb of any theory must. be dosed under products a.lld submodels.6~

5.1.1 Exactness

An important model theoretic property of many logical syste1ns is that finite colimits
are preserved by the model fnnctor. Thus, if we combine some theories T, in a diagram
1': I ~ Th(,;)) baving colimit (i.e., result of combination) C, tht'll the denotations of
the 1', and C behave in tbe way one would hope: MOD(C) is the limit of the diagram
1'; MOD'P: J -t Cat. In particular (and a.ssnming that the categories of .B-models are
concrete), our intuition wonld lead us to hope that a model of T1$ 1'2 (the co-product)
would consist of a pair of models. one of 1'1 and the other of T~; i.e., we intnitively expect
MOD{T1 $ 1'2) to be Moo(Td x Moo(12). The situation is similar for a pushout of
theory morphisms To, T1 and To -t 1'1. which for simplicity we assume a.re theory
inclusions, so that To is shared between T j and T'l: we expect that a model of 1'1 $To 1'2
(the pushout) can be constructed from a pair of models, oue of T1 and the other of
T2 , by identifying their reducts to To; that is, we expect ;\10D(T 1 EeTo T2) to be the
plillback of MOD(T1), MOD(To) and MOD(1'2) ~ Moo(To). This property, 't"hich we
call aaetness, seems to have first arisen in [8-5], and is also used in the pioneering work
of Tarlecki [(1) on abstra.ct algebraic institutions, and of Meseguer [72] Oil categorical
logics63 .

:--:--.--.-:-:---.--=-­
~] ~[eaning that M FJ::; e for any E·modd M that sati..,nes all sentence!< in E.
~~I[\ the case of the usual logical systems, this corresponds exactly Lo the power of Horn clause

axiomatisations.
6~\1~gller [72J introduced the term exactness, but used it for the concept that we call 5emiexact.nes."i

here

76

Definition 5.4 An institntion is exact iff the model functor MOD: Sign ~ Cat"P
preserves finite colimits, and is semiexact iff MOD preserves pushouts. 0

Although many sorted logics tend to be exact, tbeir unsorted v.ariants tend to be
only semiexaet. In particular, the model functor does not preserve coproducts for either
unsorted first ordt>r logic or unsorted equational logic. This is undesirable from tbe point
of view of modularisation. Combining this with the well known fact that the coproduct
of unsorted terminating term rewriting systems need not be terminating, although it is
terminating in the many sorted case, we might conclude that unsorted logics are unnatural
for many applications in Computing Science.

It is not hard to see that any chartered institution is exact.54 Charters were introduced
by Goguen and Burstall [32J as a general way to produce institutions. The basic intuition
is that the syntax of a logical system is an initial algebra. Because it appears that
most institntions of interest in Computing Science can be chartered, it follows that most
institutions of interest in Computing are exact. In particular, both many sortt><1 first
order logic and many sorted eqnational logic are exact. On the other hand, unsorted
equational logic is not exact.

Notice that, for any institntioll ~, the model functor Iv10D extends to Th(iJ), by
mapping a theory (~. E) to the full subcategory MOD(E, E) of MOD(E) formed by the
E-models that satisfy E. The following result shows that One can lift exactness from
signatures to theories, so that exactness depends only on the behavior of signatures,
and is independent of what happens with sentences. Semiexactness for theories plays
an important role in the "categorical logics" described by Meseguer in [72). In [21J it is
shown that this follows from the corresponding property for signatures:

Proposition 5.5 If an institution is semiexact, then MOD: Th --+ Cat Op preserves
pushouts.

Proof: Let rPl: (E', E') --+ (E l , E1) and ¢'J: (E'. E') --+ (I:2'~) be morphisms of
theories and let ¢'t: (E'J'~) --+ (E, E) and ¢~: (El,Ed --+ (E, E) be their pushout.
Recall from [33] that (¢~,¢~) is the pflshout of (¢1l¢'J) in Sign and E is the deductive
do,n,e of ¢;(Ed U ¢;(£,).

(E" E;)

y ~
(E',E') (E,E)

~ /
(E" Eo)

Let M1 be a E,-model of El and M2 a Ermodel of ~ such that M1r<p, = M2 r<P1;

now let M' denote this E'-model. Then by the Satisfaction Condition, M' sa.tisfies E'.
By semiexactDess and the constrnction of pullbacks in Cat, there is a I:-model M such
that Mt<p; = M1 and Mld>~ = M2• By the Satisfaction Condition again, M sa.tisfies the
translations of both E1 and ~, and thus satisfies E. We have now shown that any pair of

64UtlilJg the facts that MOD is 2-repre5enta.ble (or chartered inslilutions, and thal 2-representable
fundol'S prCflerve colimits.

77

models (Mt , M2) with M1 E IMoo(~" Edl and M1 E IMoo(E·1 , &)1 and M11 <1>1 = M2 (","

determines a (l:, E)-model At.
Conversely, any (E, E)-model M is determined in this way by its translations M1 =

All<1>; and M2 = AI t",; which, by the Satisfaction Condition, satisfy E1 and &, respec­
tively.

Becanse the models of a theory form a full snbcategory of the models of its signature,
we can extend this argument to model morphisms. Therefore, -14>;: Moo(E, E) ~

Moo(2:j, E1) and -t<l>;: Moo(2:,E) -t Moo(2:2 ,&) are the pullhack of -tq»:
Moo(E I , E,) --+ Moo(E' . E') and -I¢l: Moo(:E2, £'),) ~ Moo(:E',E'). 0

A proof of the following result was sketched in [85J and given in [21J:

Corollary 5.6 If an institution is exact, then ~...loD: Th -~ Cai QP preserves finite col­
imits.

Proof: By exactness, Moo maps the initial object of Sign to the terminal (singleton)
category. Because the only model of this category satisfies the empty theory (i.e .. the
tautologies over t.he initial signature) we conclude that the model functor maps the
initial theory to the terminal category. Now we are done, because all finite colimits can
be constructed from pushouts and an initial object. 0

5.1.2 Parametric modules and views

Definition 5.7 A theory morphism ¢: P -t T is conservative iff for any model M E
IMoo(P)I there exists a model N E 1~....loo(T) I such that N Iq> = M. 0

Persistence is a stronger notion than conservative extension, and is important for the
semantics of parameterised data types (e.g., see [33]).

Definition 5.8 A theory morphism ¢: P ~ Tis peCl'iistent Iff its associated reduct
functor -t ~: Moo(T) -t MOD(P) has a left adjoiut such that each component of the
unit of the adjunction is an equality. 0

Fact 5.9 A persistent theory morphism is conservative. 0

Example 5.10 Consider the following cla.~sical example of generic lists over elements of
monoids. The monoid operations are abstract and they can be used as generic operatious
for compntations invo[ying all elements of a list.

th MON" is

sort Hon
op e -> Hon
op _*_ : Hon Mon -> Hon [assoc] .

var x : Hon .
Elqe*x:x
eqx*e=x

endth

78

th LIST" [X :: HON] is
sort List
subsort Hon < List
op	 __ ; List List -) List [assoc]
op nil : -) List
op • : List -> Mon

vars L L' : List

eq L nil '" L .
eq nil L '" L .
eq '(nil) ... e .
eq .(L V) •• (L) • '(L') .

endtb

The module LIsn imports the module HON without introducing any nf'welements
or identifying any old elements, This means that the module import HON '--; LIST.. is
persistent. This is so hecause for any monoid M the free LIST"-model over Jf consists
of lists with elements from M and its reduct to HON gives exactly the original monoid M.
o

The following result (from [21]) is related to the semantics of applying a generic mod­
ule to an actuaL parameter module using a "'view, ,. as proposed in Clear and implemented
in OBJ3 and Eqlog:

Proposition 5.11 Given a semiexaet institution with pushouts of signatures, let (1/, !p')
be the pushout of theory morphisms ¢: P -+ T and If!: P -+ P'. Then:

1.	 If the functor -t¢: MOD(T) ---7 MOD(P) has a left inverse ¢$: MOD(P) -+
MOD(T), then there is a left inverse ¢" of -t¢' such that the following diagram
commutes:

MOD(P) L MDD(T)

-t.! !--t.,
MOD(P') ----.- MOD(T'),

2.	 ¢' is persistent if ¢ is persistent.

Proof: To show the first assertion, pick an arbitrary model N' of p', Then 1\- == N' rof is
a model of P by the Satisfaction Condition. Let M be ¢'(N). Then M t¢ = iV ' r¥' = N.
By Propositiou 5.5, there is a model M' of T' such that M't4" = M and M'i¢' = N'.
The mapping N' H M' defines the functor ¢,$ on objects, and its definition on arrows
is similar. Next, ¢iI preserves identities because 1M'14" = ¢1$(lH,)t"" and IM,t~, ;;:;:
¢"(lH') I¢' for any P'-model N' , By Proposition 5.5, 1M , = ¢I$(lN'). The samf argument
gives the preservation of composition by ¢'S,

For the second assertion, we will show that ¢'s is left-adjoint to _I¢' if ¢s is left.-adjoint
to -t¢, that is (using the above notations), M' is a free T'-model over N' if M is a free
T-model over N. Pick an arbitrary T'-model M{ and an arbitrary model morphism

79

h: lV'..---.t M:r¢,. We have to prove that there is a unique model morphism M: M'..---.t .W{
such that h~ i¢' ::::. h. Notice that by Proposition 5.5, any h~: M I ..---.t M{ is uniquely
determined by its reduets h = hlt¢,: N' --+ Jf{I¢>' and / = hii.;,'; M..---.t A/;t.;,' and by
the condition ht~, =Ji¢.

,'ll'=M'i"" N~M'.

~ 1"1. ~ III.
M;I>;>' (M:J.,lt,

Now let f be the unique model morphism JI --+ lv/(t~, such that h r!/J = f I'" (since M
is free over N). Then the morphism h~: M' --+ At; determined by (/' h) is the desired
extension of h to a model morphism At' --+ M{. 0

Example 5.12 Based on Example ,"dO, consider the following specification of lists:

th List is
sorts Elt List
subsort Elt (List
op empty -) List
op ap~d : List List -) List [as soc]

var L : List
eq append(L , empty) '" L
eq append(empty • L) ~ L

endth

The operation append is associative and has the empty list as an identity. In this way,
List is a refinement of the theory of monoids. There is a view from HON to List:

view list from MON to Llst is
sort MOD to List
op C*_) to append
op e to empty .

endv

The instantia.tion LIST*[list] of the generic module LIsn via list is the pushout of
MON 4 LIST. with list. 1u this example, the operation # appends all lists from a list
of lists. By the previOl..\s theorem. LIST. [1 istJ protects List. This fact can be checked
directly as well. 0

In this example, LIST.[!ist] is a simple module expression involving essentially
only one instantiation of a generic module. The evaluation of this module expression
was obtained as a pushout in the category of theories. In the case of more complicated
module expresslonsM the evaluation is done by taking the colimit of the corresponding
diagram in the category of theories.

65possibly invoLving cornbiualions belween various kinds of modnJe imports a.nd instantiations of
generic mooules via views.

80

5.2 Satisfaction Condition for Category-based Equational Logic

In order to apply the theory of institutions to our framework, we have to answer the
following questions:

1.	 What is a morph.ism of signatures in the case of category-based equational logics?

2.	 What are the translations of models and sentences along signature morphisms, and,
in particular, what is the translation of the quantifiers along signature morphisms?

3.	 Does the satisfaction relation b",tween models and sentences in category-based equa­
tionallogics given by Definition 3.6 verif:y the Satisfaction Condition?

The answers to these questions would be helped by taking a closer look at the typical
case of many sorted equational logic:

Definition 5.13 A signature morphism 1: (S,E) ----t (BI,E') in MSA is a pair (1,9)
consisting of a map f : 5 ----t 5' Oil sorts and an S* x S-indexed family of maps gU,3 :

Bu,. ----t EJa/ ulJ(3) on operator symbols. 0

Example 5.14 rP of the previous definitIon determmes a forgetful functor A/g(¢) .
A/!/r,' -+ Alflr- on models and another forgetful functor Setf . SetS' -+ SetS on domaills
~otice the commutativity of the following diagram:

A/!/r,'l£..- SetS'

AIY(¢)! !setJ

A/f}E ---i!...- SetS

where U and U are the corresponding forgE'tfuJ functors from many sorted algebras to
many sorted Sets. 0

To resume, any signature morphism determines a pair of forgetful functors, one on
models (Alg(¢) in thl? previous example), and Due on domains (Set f in the previous ex­
ample). Each of them has a left adjoint, meaning that any model has a free extension
along a signature morphism (while free extensions along theory morphisms is problem­
atic in many logical systems, most of them still support frl?l? extensions along signature
morphisms; a typical example being first order logic). Finally, forgetting model structure
first along a signature morphism and afterwards to domains is the same as forgetting to
domains first and domain structure afterwards.

All these ideas are formalised by the following definition:
/

Definition 5.15 A category-based equational signature is a functor U: A -+ X. A
morphism of category-based equational signatures is a coupll? (,\..f,-D): U ----t U'
of functors such that MjU = U'; V and V has a left adjoint.

A' -l:f.- X'

MI Iv
A---.!!..-X

o

81

Notice that consequently tD DefinitiDn 5.3, a mDrphism Df categDry-based equatiDnal
signatures is liberal iff M has a left adjoint.

The fDUDwing a.rray shows hDw some cDncepts from many sorted equational logic are
reHected at the level category-based eqnationallogics:

MSA I category - hased equational logics
sign-ature functor

(5,E) U, A --; X
5 X
E A

¢= (f,g) (M,P)
f P
g M

Sell TJ

E-eq~~i~~ IZ;-eqnation

5.2.1 Many-sorted institutions

This section introduces a dass of institutions fDr which the signature morphisms can
be regarded as morphisms of category-hased equational signatures. In this was, these
institutions admit an internalisation of category-based equational logic.

In any institution that has "sorted" signatures, the category of domains for a theory
is in fact t.he category of models for the simple signature containing only the '·sorts"
of the signature of the theory. Assuming a certain degree of liberality of the respective
institution, the forgetfnl functor from the category of the models of the theory to the
category of the domains has a left-adjoint. The following definition makes the notion of
sorted signature precise and is generic for all examplet! of Section 2.3:

Definition 5.16 A many-sorted institution is a tuple ~ = (Sign, Sort, MOD, Sen, F)
such tha~

• (Sign, MOD, Sen, F) is an inst.itution,

• Sort: Sign -lo Set is a functor that has a left-adjoint left-inverse Q, and

• G is liberal on signature rnorphisms.

A domain in 'J it! a model for a ~ignature of the form Q(S) for 5 an arbitrary set. 0

Now, we are in the situa.tion to internalise the category-based equational logics in
many-sorted institutions:

Proposition 5.17 Let:,) == (Sign, S ort, ~10D, Sen, F) be a many sorted institution with
f: the co-unit of the persistent adjnnction Q --i Sort; Set ---->.. Sign.

Any signature morphism ~: E -lo E1 determines a liberal morphism of category-based
equa.tional signatures

(MOD(<I>), MDD(Q(S 0",<1»)), U" --; U",

82

where Ur. = MOD(£I:) is the forgetful functor form the category Moo(E) of E-models to
the category of domains Moo(Q(Sart:E)) for any signature ~ of '3".

Proof: Any 1iignature morphism 4>: ~ -t r;' induces a translation of sorts
S ort(~): S ort:E -t S ortE' which determines a domain reduct functor ?\.·tOD(Q(Sart~)) :
Moo(Q(SortE')) ----+ MOD(Q(Sort:E)) having a left adjoint Q(Sort~Jll; in the virtue of
the liberality of the institution ~ on signature morphisms. MOD(<P) has a left adjoint by
the liherality of 1Il.

MOD(l;) MOD(O} MOD(l;')

MOD(~dl ' IMOD(er:,)
1..1oD(Q(Sorl~))

MOD(Q(SDrll;)) _ MOD(Q(SDrl2:'))
~(Sort~)'

The diagram commutes on right adjoints hecause of the naturality of €, i.e., £1;; ~

Q(Sarl.4»;£I;', and by tbe application of the model functor to this identity. 0

The liberality condition of D('finition 5.16 is avery mild rendition in practice. Even
instituions notorious for not being liheral, like first order logic. are stillliheral on signature
morphisms.

Corollary 5.18 The signature morphisms in 1-JSA, OSA, HeL, ELM are morphisms of
category-ba..<;ed l;'quational signatures.

Proof: In all cases this holds by the liberality of the repsl;'etive insdtituion all signature
morphisms. A special mention is necessary for ELM. In this institution the signature
morphisms are MSA theory morphisms, and we use the liberality of the institution of
MSA.O

5.2.2	 Sentence translations along morphisms of category-based equational
signatures

Before defining the translations of equations along morphisms of category-hased equa­
tional signaturl;'s, we have another look at the example of many sorted equational logic:

Example 5,19 Each function f: 5 ~ 5' tramlates any 5-11orted set X iJlto the 5 1­

sortl;'d set X- by taking the [pointwise) left Kan f'xtension of f along X:

X~": =	 II X. for any sort 8' E 5'.
J(.)=~'

5 -----.L.. 5' S'

Ix­~
St/ Set

Any MSA signature morphism ¢ = (f ,g): (5,:E) -t (5'. ~') defines an S-sorted map
¢-" TE(X) --> TdX'n"

X-~U(TdX))

~ j.,'u=,:,
U(TdX'n,)

83

First., note that X ~ U(TE'(X-) t<;6) because if x E Xs then :r: E Xns) and X/(.l <;;
TE,(X-)J(S) = (Tl:I(X"') r,p).; let j: X -+ U(T£,(X"') l,p) denote this inclusion. Then we
simply define ¢x = j~, where J~ is the unique extension of j to a ~-homomorphisIIl

TE(X) -+ TdX-)r,p. Any ~-equation (VX)(.s,t) is translated to the E'-equation
(VX-)(¢x(l),¢x(r)). 0

Notice that. in the previous example, the term algebra T£I(X"') is exactly the free
~xtension of TEiX) along ¢. From this. we may conclude that:

Translations of quantifiers are free extensions along signature morphisms.

This generalisation also covers the case when qnautifiers are not fret' models. The trans­
lation of equations along signature morphisms in MSA is a particular case of the following
abstract definition:

Definition 5.20 Let (}v'{, D) be a liberal morphism of category-based equational signa­

tures (A ~ X) -+ (A' -~ X'). Then the U-equation (VA)(s. t) is translated to the
U'-equatioD (VAu)(s*, t*).

k ke kiD

,I I,·v
AU~AS1MU = AUU'D

where _$ denotes the left adjoint to D, _$I denotes the left adjoint to ..\.-1, a a.nd 9 denote
the units (]f the adjunetions det('rmined by J\.1 and D, and s' and t* denote the unique
"extensions" of 1; AaU and r; AaU to maps in X'.

Similarly, aU-query (3A)(s, t) is translated to the U'-query (3A U)(s*, to). 0

Since translations of quantifiers along liberal signature morphisms are free expan­
sions of models and coequaliser projectivity is a property of the quantifiers essential for
the completeness of the deduction system, we need to investigate the preservation of
coequali5er projectivity under free expansions of models. The following lemma66 gives a
sufficient condition for the preservation of coeqnaliser projeetivity uuder free expansions;

Lemma 5.21 Let N; A ---? 8 be a left adjoint t.o a coeqnaliser preserving functor
.\.1; 8 -1' A. Then N preserves coequaliser projectivl;' objects.

Proof; Consider A E IAI a coequaliser projective ohject. We have to prove that AN is
coequaliser projective in B.

B' ..V(~BJI/ B'~B

~r,"i ~ I'M
A~ANM AN

Let f; B' ---? B be a coequaliser 8, and take an arbitrary h; AN ----+ B. Because eM is a
coequaliser in A (by hypothesis), tbere exists h'; A ---? B'M such that h'; eM = A'7; h..\.-1,

MIt is used only in Chapter 6 in th.. context of the category-based s..mant.ics for constraint lOgiC
programming.

84

where A1'/: A --t ANM is the universal arrow from A to M. Let h.'I: AN --t B' be the
unique map such tha.t 041'/; h'J~\.1 == h'. Then

Ary; (h"; elM ~	 Ary; h")vbM

h'ifM

A1'/; h,Vi (by definition of hi)

By the universa.l property of 041'/ we have that h'l ; e == h.. 0

Kleisli translations In this paragraph we study the particular case when the sen­
tences, either equa.tions or queries, are quantified by "variables". This techniciJly cor­
responds to the existence of "term'" models, i.e., the existence of left adjoin!s to the
forgetful functors from models to domains.

In this case, the tra.nslation described by Definition 5.20 could be charaClerised as
a morphism (i.e., functor) of Kleisli categories satisfying a certa.in universal property.
This result together with the Satisfaction Condition for category-based equatiollallogics
constitute the technical basis for the development of the category-based semantics of
equational logic programming queries and their solutions in the context of modularisation
in the style of Eqlog.

By using the same notat.ions as in Definition 5.20, further assume that U and U' ha""'e
left adjoints F and, F' respectively, with 1'/ and E: and, 1'/' and £' respectively, the units
and the co-units of the respective adjunctions. Fix a doma..iu :r E lXI_ We may assume
that (xF}sS ==: (xl)F' in the virtue of the general principle of composition of adjunct ions.

Filet 5.22 The diagram of Definition 5.20 defining tbe translations of equations and
queries reads as:

k HI k'D

,j j,""
xFU ",Fa1,(xF)"'..·\..1U = x$F'UD

D

Lemma 5.23 There exists a unique natural transformation ~f: D; F --t F ' :M such that
TtV =D1'/;1U. Moreover, ME: =U'1;eIM and Fa. == 8Fi_'1_

Proof: The natural transformation') is nniquely defined by the formula r(D = D1'/;-'U
by using the universal property of the unit 1'/.

Now, by the triangular laws for adjunctions, we have [j'VTf; ..\.1eU ~ MUry; Mdl =
IM;lh and by the previous formula and the triangular laws for adjunctioTis we have
[j''Dr,iU'1U;E:'MU == U'1'/I1>i c:'U'D = lu';v = 1M ;", Then U'Dr,; ,'IA£U =
U1Vr,;UI1U; c:'MU. By the universal property of the unit Tf, we deduce M£ ::: U11; £'M.

,,0 zS.,'v
x --x'D-xlF1U'D

,",j j•• v, II
xF ---;!:;,,,.$D-r1'-.r'F'MU

,,(J;n..r .r "" ",'..,u

For the last identity, fix x E IXI. Then

85

X71; xOFU; xS1l) X(); .E'V71; xSil) (by the naturality of 71)
xO; xS71'V (by the Definition of 1)
T71; xFaU (as unit of the composite of adjunctions

in two different ways)

By the nniversal property of X71 we deduce tbat .EDF; xli = IFa. 0

Corollary 5.24 When the category-based equational signatures have left adjoint, we
can define the translation of sentences along morphisms of category-based equational
signatures that are not necessarily liberal.

Proof: By replacing Fn from Fact 5.22 with OF;_sT 0

In order to give the universal characterization of this translation as a morphism of
Kteisli categories we have to resort to the (rather sophisticated) theory of monads in
2-categories developed by Street in [88J:

Definition 5.25 Let C be <1, 2-category.

A monad (X, S) consists of an object X, a. I-cell X ~ X and a pair of 2-cells I ~
5, S; S ~ S (called the unit and the multiplication) satisfying tbe commutative
diagrams

S~SS£S 55S -"'-+ 55

,51 I,'J/5 55 ---".. 5

A monad functor (U,eb); (X,S) --+ (Y. T) consists of a I-cell X ~ Y aud a

2-cell U; T ~ 5; U satisfying the commuta.tive diagrams

UT UTT~5UT-"'-55U

U"l~ u"1 I,u
U -----;;ii SU UT , 5U

A monad functor transformation ([/,¢) ~-+ (U',¢') is a 2-cell U ~ U'satis­
fying the r.ommutative diagram

UT....2.I..U'T

,) I·'

5[f---SU'SO

The 2-calegory Mnd(C) has monads as objects. monad functors as I-cells, and monad
functor transformations as 2-cells. 0

Definition 5.26 For any 2-category C, let C" denote the 2-category obtained from C
hy reversing aU I-cells (so that C~(x,y) = C(y,x)). Mnd(C")" bas the monads of Cas
objects, monad opfunctors of C a3 I-cells and monad opfunctor transformations
<'IS 2-ceUs. 0

86

0

Theorem 5.27 (from [88]) In a 2-category C suppose (X, T> and (XI, T I) are monads.
Any adjunction H --i D; X ->. X' sets up a natural bijection between the monad functors
(D, ,): (X', T') -+ (X, T) and the mon,d opfunctocs (H, 0): (X, T) -+ (X', T')

Also, any category-based equational signature canonically determines a monat!. How­
ever, category-based equational signatures are more general than monads because some
adjunctions fail to be monadic. As already mentioned, an important class of examples
in this sense is given hy the order sorted theories.

Definition 5.28 CategorY-based equational signatures form a 2-category EqSig such
that

• objects are category-based eqnational signatures,

•	 I-cells are morpbisms of category-based equational signatures, and

•	 2-celis ((1. T); (.M. D) ----t (M '.1Y) are pairs of natural transformations tJ: M --+
M ', T: V ----t 1Y such that (1U = UJT.

o

Corollary 5.29 There exists a forgetfu12-functor ..\.1nd: EqS,g- ----t Mnd(Cal) which
determines (by Theorem 5.27) a canonical 2-functor Mndop: Eq5ig --1 Mnd(Cat-)*
mapping morphisms of category-based eqnational tiignatnres to monad opfuncrors.

Proof: M Tld maps a category-hased eqnational signature U: A ----t X to its at ­
tached monan (X, T) of Cat, morphism!> of equational logics (M. V) to monad functors
(V, ,U): (XI, T) -t (X, T) (') defined by Lemma 5.23) and maps 2-cells ((1, T) to monad
functor transformations T. Straightforward calculations assure the correctness of these
definitions.

Mndop maps morpbisms of category-based equational signatures (M, V) to the monad
opfunctors (_'. 0): (X, T) --+ (X', T) corresponding to t.he monad functor (V, ,U), where
_' is the left-adjoint to 'D. 0

Recall (from [64]) that any monad (X, T) in Cal determines a Kleisli category XT

having the same objects as X but "substitutions" as arroWs, i.e.,

XT(r, y) = {hb I h E X(r, yT))

The composition of arrows in XT is given by n~; h'" ==: (h; hiT: ZJl)':

::r~yT~zTT~zT

When the monad is determined by a category-based signature U, the Kleisli category XT

is in fact the substit-ution .system determined by U. In this case, a simple calcnlation shows
that the composition in XT corresponds exactly to the composition of substitutions:

x -----!:.. yFU ~ zFU

"1~

y

8i

Wrren there is no danger of confusion we identify X(x, yFU) with XT(x, y) via the
bijection _b.

Following [88], for any 2-category C, there i:s dU "'inclusion" 2-functor Ince: C ~

Mrzd(C) mapping each object X to the trivial monad (X, 1). The weH-known construc­
tion of the Eilf'nberg-Moore algebras categories appears a right 2-adjoint to IncCat [88).
Tbe following definition is the basis in [88] for recovering the theory of monadicity in the
abstract framework of an arbitrary 2-category C:

Definition 5.30 The 2-category C admits construction of algebras iff Incc has a
right 2-adjoint. 0

Theorem 5.31 (from [88J) Cat" admits construction of algebras. The left 2-adjoint to
IucCat _: Caljo Mud(Cnt"r is the K}eisJi construction, which evaluated at (X,7) is
XT and the unit (JT,W): (X, T)jo (X T , I) is given by

•	 JT: X ~ XT with xlr:::: x for any x E IXj, and flT:::: (/; X'tl)' for any f E X(.r, x').

and

•	 w: T;JT.......jo JT with Iw :::: (L:T)' for any x E IXI·

(X,T)~(XT,I)

~ !,u}
XT

j<
(Y, I) Y

o

From Theorem 5.31 and Coroilary .'3.29 we deduce the main result of this paragraph:

Corollary 5.32 For any mOTphi~m of category-based equational signatures

(A1, D): (A ~ X)jo (A' !!4 X') there exists a unique functor K.:: XT --t XT, such
that

•	 JT; K. = _$; Jr', and

•	 (l£T)'K == (xa)", where 0: Ti-$ --t _1;JT' is the natural transformation part of
Mndop(M, V).

()y.",)
M"dop(1II ~ {X, Ti ~(XT, I)

,\..f>1dQ}' (M;D)""l (_I ,0) 1(.(,])

-,V1ndop(U') := (X'. T'~./T"j) (XTI, 1)

o

By spelling out the two properties of K we get exactly the translation described by the
vf>rsion of Definition 5.20 presented at the beginning of this paragraph (see Fact 5,22).

88

5.2.3 The Satisfaction Condition

The following result can be regarded as a generic proof of the Satisfaction Condition for
any equational logic. All examples in Section 2.3 generate [equational) institutions by
following the same pattern. The equational version of this theorem can be extended to
conditional equations without any problem.

Theorem 5.33 Let (M, D) be a liberal morphism of category-based equational signa­

tures (A ~ X) --+ (A' ~ XI). Then for any model B E IA'I and for any sentence
(AA)("t), w;th A E {\I,3},

E FU' (AA"j(,., to) iff EM FU (AA)(s, I)

Proof: The right	 adjoint ...1.1 determines a natural bijection A(A, B..\..-1) ~ AI(A'S, B)

mapping each model morphism A-'; BM to the model morphism ASs -,; B such that h =

AajhM.

A~A$S..'1.1

~!'M

8M

For each v: Ie --+ AU, we have:

kO; (v'; hU')V	 leO; v*D; hU'D

v; AaU; hU'D (by Definition 5.20)

v; Aal/;hMU

vjhU

Therefore,

B pu' (VAU)(s*, t*) iff s*; hU' = t*; hu' for all AS~';'B
iff <9; (s"; W')D = kO; (t"; W')D

iff s; hU = t; hU	 for all A~BM
if! 8M FU (\lA)(s, t)

A similar argument works for the case of queries. 0

In the case when the sentences are quantified by variables, rather than models, we
have the following corollary:

Corollary 5.34 Let (J\tf, D) be a morphism of category-based equational signatures

(A ~ X) ---1 (AI ~ XI) such that :F and P are left adjoints to U and U I
, respectively.

Then for any model B E !A'I and for any sent.ence (>'x)(s, t), with>' E {V,3} and or a
domain in X,

E FU' (Ax')(>", ,0) if! EM FU (Ax)(s, t)

Proof: By using the last equation Lemma 5.23, the existence of a left adjoint at M is
no longer necessary. 0

89

The fact that EqSig comes naturally equipped with a 2-categorical structure reinforces
the argument of Goguen and Burstall [32] that the signatures of any chartable institution
form a 2-category. The presentation of the sentence functor as a Kleisli translation
projects a new light on the duality between syntax and semantics in category based
equational logic: t.he sentence functor is a model functor when reversing the i-cells in
Cat!

5.3 Queries and Solutions versus Modularisation

In this section we give a categorical semantics for equational logic programming queries
and their solutions in the context of modularisation in the style of the programming
language Eqlog, and we discuss the crucial problem of the :ioundness and completen~s

for module imports. We take here the point of view of [21] that modnles are presentations
(theories) and that module imporLs are morphisms of presentations (theories). In [39],
Goguen and Meseguer give a denotational sema.ntics for equational logic programming
based on initial algebra semantics. Due to the presence of logical variables, t he denotation
of an equational logic programming module is given by an adjunction rather than an
initial model. This is in fact the adjunction determined by the forgetful functor from
the category of models of the given module to the category of domains representing the
mathematical structure for the collections of logical variables. This idea exploits the fact
t.hat the notion of category-based equational signature is abstract enough to contain the
concept of equational logic programming module in the manner described in Section 2.3.4.
The principle underlying our category-based semantics for equational logic programming
queries and their solutions is formulated as

The denotation of modules is abstracted to category-based equational signatures
that have left adjoints.

Definitic)O 5.35 Let P be an equa.tionallogic programming module. Its denotation
[P] is the forgetful functor [P]: MOD(P) -+ DOM(P) from the category of its models,
MOD(PJ, to the category of its domains, DOM(P).

The denotation of a module import. P ~ P' is a morphism of category-based eqna­
tional signatures [4)]: [P] -+ [Pi]. 0

Definition 5.36 A query for the equational logic programming module P is a [P]­
query. A solution for a query q = (38)(t1 , t2) in a P-model A is a morphism h: B --t A
'nch that t,; hlPJ = I,; h!Pj.

Lei, P ~ pi be a module import. The translation of queries along 'I/J (i.e., from P­
queries to Pi-queries) is given by the translation along the morphism of category~bac;ed

eQuat.ional signatures [JjJ] accordingly to Definition 5.20Y 0

The iuterpretation of the Satisfaction Condition (Theorem 5.33) in this context is
that for any P-query q, any module import v': P -+ pi, and any P'-model A, there is a
canonical one-one correspondence hetw€'€n the solutions of q4) in A and the solntions of
q ill AM, where M is the model reduct component of ['0].

61We denote thi& translation by -1/;.

90

5.3.1 The institution of queries and substitutions

Computations in equational logic programming systems produce answers to queries in
form of substitutions. As known, solutions for queries can be regarded as unifiers. The
next fact is consistent to Goguen's approach on unifiers as co-cones in Kleisli categories
as expressed in [27]:

Fact 5.37 Let q = (3X)(t l , t~) be a query for the program P whose quantification is
given by variables, i.e., X E IDO\f(P)I. A solution form for q is a co-cone for the
parallel pair (tL f~) in DOM(P)Tp, where Tp is the monad determined by the [rjght~

adjoint] forgetful functor [P]: MOD(P) --+ DOM(P). 0

The relationship between queries and substitutions can be formalised as a Satisfaction
Relation in a particular institution in which queries play the role of models and substi ­
tntions play the role of sentences. The Source of a certain substitution has to match
the quantifier of a certain query in the ~ame way the sentencps and models of logical
systems have to be based within the same language (i.e., signature). This suggests that
the signatures for the institution of queries as models and of substitutions as ~entences

should be given by collections of [logical) variables.

Definition 5.38 Assume a fixed module P. We define an institution ':Sp consisting of
the following data:

• Sign	 = DOM(P)~,68 i.e., signatures are domains and signature morphisms are
substitutions,

•	 MOD(X) = {(3X)(t., t,) II" t, in Tp(X)} [0; each domain X in DOM(P), whe'e
Tp is the monad determined by the right adjoint forgetful functor [P]' Each. map f"
in DOM(P)~ (X, XI) = DOM(P)Tp(X',X) determines a reduct functor MOD(J):
MODIX') -t MOD(X) such that

MOD(J)(q'} = q';f'

for any query q' in MOD(XI),69

•	 Srn(X) = ({~,8) I P -.; pi,S is a PI-substitution of the logical variables Xl/J}.
Each mapfb in DOM(P)~(X,X') determines a sentence translation Sen(/): Sen(X) --+
Sen(X'} by

Sen(J)(w. s) ~ (,p,f0; s')

for any P'-substitution s and any module import 1/', and

• q \=x (t/;, s) iff 8 is a solution form for the query qt/;.

o

68Th", opposite of the Kleisli category DOM(P)Tp'
6gThis translation corresponds to a translation of the logical variahles of a query. Thl~ might also

include identifications of vari"bles.

91

Proposition 5.39 Given any module P, the previous construction ':Sp defines an insti­
tution.

Proof: All we have to prove is the Satisfaction Condition for tbe institution "lp. Con­

sider a domain map X' .4 Tp(X), an arbitrary P-query ql = (3X'){tI, t2), and an
arbitrary sentence (l/J,5) E St'Tl(X). Then

q' Fox' (I,,f~; ,')	 ;ff t1w; (J1/1; s~)~ = t~f/J; (J¢; sl)1 (by Definition 5.38)
;ff tl1/1;f~f/J; s~ = t·i4'.;f~1/1; sl
iff (I,;I'),p; s' = (',;f'),'; s' (by Cowllary 5.32)
;ff q';I' Fox (<P,sl (by Definition 5.38)

o

5.3.2 Soundness and completeness for module imports

Definition 5.40 Let w: P -t pi be a module import. 1/1 is sound iff for any P-query
q and any solution form s for q, s1/1 is a solutiou form for qIl'.

1/1 is complete iff for any P-query q and any solution form S' for qt/; there exists a
solution form s for q such that 51 = st/;. 0

A sound and complete module import P -) pi projects the solution forms, i.e., any
P-query has the same solutions in pI as in P.

Fact 5.41 The composition of sound/complete module imports is sound/complete. 0

There is a strong flavour of conceptual similarity between the soundness and com­
pleteness for module imports and the soundness and completeness for logical systems. In
fact, both of them are instantiations of the category-based formulation of the concepts
of soundness and at the level of institutions, as shown by the following result:

Proposition 5.42 In the institution rzl'p introduced by Definition 5.38, consider the
entailmen.t relation f- x (parameterised by signatures, i.e., P-domainsfo defined by the
following inference rule encoding the translation of solution forms along imports of P:

(1" ,)
P~P':

(,p, s,p)

Consider an arbitrary P-query q = (3X)(tJ, t'1). Let q~ denote the set of aLJ consequences
of q of the form (l p ,s), i.e., the set of all solution forms for q. Then

1. q* f- x (1/1,s) implies q FX (f/J,s) for all s iff1/> is sound. and

2. q FX ("p,s) implies q* f- x (w,s) for all s iff 1/.' is complete.

Proof: The correctuess of the definition of the entailment relation can be easily verified
by checking all conditions from the definition of an entailment system (see [21] or [72]).

The proof of this proposition is essentially based on the observation that q* f- X (t/J, s)
means that there exists SO a P-substitution that is a solution form for q and such that
s :::: 8o"p. Tbe rest is given by Definition 5.40. 0

""See [21,72] for the definition or entailmenl. relations in institutions.

92

Definition 5.43 A morphism of category-based equational signatures (M, D): (A -!!....:;.
X) --t (A' ~ X') is essentially persil!ltent iff it is liberal and the adjunct ions corre­
sponding to both M and D are persistent.

A module import T/; is essentially persistent iff its denotation hll] is an e;sentially
persistent morphism of category- based equational signatures. 0

When domains are many sorted sets, tbe pers:i~tency of the adjunction on domains
corresponds exactly to the injectivity on sorts of the module import; this relates to
Goguen-Meseguer use of persistency in tbe context of protecting e:rten8ions for built-ins
;n Eqlog [391.

Lemma 5.44 Let (M, D): (A ..!:!....o; X) ----+ (A' ~ XI) be an essentially persistent
morphism of category-based equational signatures. Consider q a U-query. Then:

• _$ embeds: X as a fnll subcategory of XI, and

• qhas exactly the same solution forms In X as q,

where q denotes the U'-query obtained by translating q along (M, D).

Proof: For any query q and model A denote its solutions in the model A by So/(q, A).
The image of _' in X' is a fuB subcategory as a consequence of the persistency of the
adjunction determined by D. Since _$ is also injective on objects. it embeds X as a full
subcategory of X'. For the rest of the proof we identify X with the image of _I.

Let F and F I be left adjoints to U and U I
, respectively. For any y E lXI,ehave:

Sol(q, y:F) - Sol(q, (y:F)"M) (pers;,tenry)
Sol(q, (yF)ss) (Theorem 5.33, Satisfaction Condition for queries)
Sole q, yFI

) (composition of adjoints)

The conclusion of the lemma follows now by applying Corollary 5.34. 0

Theorem 5.45 Completeness Let P ~ p' be a module import. Then

1. T/; is sound, and

2. T/; is complete whenever it is essentially persistent.

Proof: Let q be a query in P.
1. Assume s is a solution form for q. Then SO coequalises qO, where qO is the parallel

pair of arrows in the Kleisli category DOM(P)Tp corresponding to the P-qner~· q, and s~

is the arrow iu DOM(P)Tp corresponding to the substitution s.
By Corollary 5.32, [T/;] determines a functor x:.: DOM(P)Tp --t DOM(PIJTp,' This

means that (sT/;)O = ix:. coequalises (qt/Jl = qbx:., whicb means that 8tf' is an solution
form for qtf'.

2. By applying the previous lemma to the case of tbe essentially persistent morphism
of category-based equational signatures [tf']: [P] --t [Pi]. 0

Example 5.46 Consider the generic module L1ST+ from Example 5.10. l'otice that
HON <.......t LIst. is an essentially persistent module import. Tbe query

93

select LIST•.

find X Y : Hon such that X • Y ::: Y • X .

has exa.ctly the same solution forms in HON as in LIST•. 0

The lack of persistency might destroy the completeness of module imports as in the
following:

Example 5.47 Consider the follO\ving theories:

th SOURCE is
sorts Sl 82
op a -) Sl
op b -) S2
op f Sl -) S2

endth

th TARGET 15

sort S .
op a' : -) S •
op b' -) S •

op f : 8 -) S

eq f(b') = b'
endth

and the following view:

view V from SOURCE to TARGET is
sort Sl to S . sort S2 to S .
op a to a~

op bto b'
op f to f .

endv

The TARGET-query

find X S such that f(X) ::: b'

has a solution form (i.e., X: S-)b~) although the SOURCE-query

select SOURCE .

find X : Sl such that feX) ::: b

does not ha.ve any solution form. 0

94

5.4 Theorem of Constants

Theorem of Constants supports the treatment of universally quantified variables as tem­
porary constants [30J. Although such treat.ments are used on a large scale in the context
of term rewriting, the importance of a ma.thematical result providing foundations to
equational theorem proving using ground rewriting was empha.<;ised for the first time in
the context of the OBJ system [30J. A similar application appeared in Chapler 4 (see
Corollary 4.27) when dealing with the lifting of the completeness of pararnodulation from
the case of ground terms to the case of terms with variables.

The classical formulation of the Theorem of Constants establishes an equivalence
between (\fX}(s, t) being a consequence of a theory r in a signature E, and (\10)(5, t)
being a consequence of r in the larger signature Ex which is obtained by adjoining the
variables X to E as new constants.

5.4.1 The level of institutions

The Theorem of Constants admits a category-based version at the level of th", t,heory of
institutions which captures the essence of the model theoretic phenomenon underlying
it, This is based on the internalisation of the notion of universal sentence (i.e., univer~

sal quantified formula) in any institution by following a category-based formulation of
universal quantification. 71

Definition 5.48 Let S == (Sign,:VIoD, Sen, F) be any institution. (Vt)p'IS a :)-universal
E-sentence if

• E~E' is any signature morphism, and

• p is a I;'-sen tence.

A E-model M satisfies (\I~)p iff all its expansions to a I;'-model satisfy p. i.e.. Af' FE' p
for all M' with Mfr. == .M. 0

The main idea here is that t.he symbols from E' that. are not in E play the role of
the va.riables. The previous definition includes also the case of second order universal
quantification corresponding to the situation when some symbols from E' - E are function
or relation symbols. The classical situation of first order universal quantification occurs
when all symbols from E' - E are constants.

The Theorem of Constants admits the followiug generic institutional version:

Theorem 5.49 For any set r of E-sentences,

r FE (V,)p Hf ,(r) FE' P

Proof:

MOD(r) FE (V,)p ;1[
;1[

{N INi, E IMoD(r)l) FE' p
!VIOD(Lr) FE' p (by the Sat. Condo in CJ).

o
7lThis Wall first introduced by Barwise and laler used by Tarlecki in the context of "abstract algebraic

institutions" [91J.

95

Apart. of applications to second order logic and category-based equationa.! logic (next
section), this abstra.ct version of Theorem of Constants can be applied to hidden sorted
logics, thus giving support to proofs for the object paradigm [:34) based on ground rewrit­
ing.

5.4.2 The le'vel of category-based equational logic

The pre",,'ious generic version of the Theorem of Constants can be instantiated to the
institution of category-based equational logics. When (V'A)(s, t) is an equation having
a model as a quantifier, the expanded signature E,t is obtained by adjoining the whole
model A to E. This is reminiscent of the so-cll,lled method of diagrams in classical model
theory [14], and is naturally encoded at the ca,tegoricallevel by using comma categories
[89,9l],

If A is a category of models and A is any model, a morphism A .--+ B interpret.s the
elements of A as new constants in B. The evaluation of the model operations on these
constants respects the model structure of A. The inclusion of signat mes E <---j. E A is
defined at the level of category-based equa,tional signatures as follows:

Lemma 5.50 Let U: A ---+ X be a category-hased equational signature such that A
has binary coproducts. For auy model A ill A, (AA' Ix): U ---+ UA = AAiU is a liberal
morphism of category-based equational signatures.

A~(A.jJ\)

uj !u,
X~X

Proof: All we have to prove is that AA has a left adjoiut. This is iu fad (All-): A ---+

(A.l.A) mapping any model B to A 2:4 AilE (j are the co-cone arrows of the coproduct
of B and A). The unit of this adjunction at B is JB' 0

The rollowing corollary sbows that the translation of sentences along the "inclusion"
U ---+ UA corresponds in fact simply to the addition of the quantifiers to the signature. For
this reason, and in the spirit of the traditiou, we regard any U-equation as a, UA-equation
without any further uew notations.

Corollary 5.51 Let U: A ---+ X be a category-based equational signature such that the
category of models A has binary coproducts and let A he any model in A. Then the trans­
lation of a. U-equation (VB)(s, t) along (AA, lx) is the u.4.-equation (Vj,t)(siiBU, t;jBU),
where J are t.he co-cane arrows of the coproduct of B and A.

k

,j
kI,

BU H BU

I'BU

(B U A)U ~ (A-"~B U A)U,

o

96

Corollary 5.52 Theorem of Constants Let r be a collection of conditional U-equations.
Then,

r FU (IIA)(s, I) iff r FUA (III A)(" I)

Proof: We have to show only that the sa.tisfaction relation between models and universal
sentences defined internally (Definition 5.48 applied to the morphism of category-based
equational signatures, (AA, Ix) is the same as the satisfaction relation between models

and abstract equations from Definitiou 3.6, i.e., for any k ~ AU and any model J[E IAI,

M Fu (II(AA, Ix))p iff M FU (IIA)(" /), where p = (1I1 A)(" I)

This redum to show that h FU, (1I1 A)(5, I) for all A·'HI E II ALA)I iff M Fu 1\I.4)(s, I}.

This holds since for any A~M, h FU.4 (1f1..t)(s, t) iff "~; flU = l; hU. 0

Note that 1.4 is the initial object of (A~A). In the traditional MSA version of the
Theorem of Constants, the interpretation of the variablt's (1..<; new temporary constants
empties the quantifier. In a more model-theoretic setup this would corres-pond to a
quantification by a model of ground terms, categorically characterised by their initiality
property.

97

6 EXTENSIBLE CONSTRAINT LOGIC PROGRAMMING

Constraint programming has been recently emerging as a powerful programming paradigm
and it has attracted much research interest over the past decade. !-.1athematicalProgram­
ming, Symbolic Computation, Artificial Intelligence, Program Verification and Compu­
tational Geometry are examples of application areas for constraint programming. In
general, constraint logic programming replaces unification with constraint solving over

computational domains. Constraint solving techniques have been incorporated in many
programming systems: eLP [.59], ProloglII [15], a.nd Mathematica afe the best known
examples. The computational domains include linear arithmetic, boolean algebra, lists,
finite sets. Conventiollallogic programming (i.e., Prolog) can be regarded as constraint
programming over term models (i.e., Herbrand universes). In general, the actual con­
straint programming systems allow constraint solving for a fixed collection of data types
or computational damains. 72 As already mentioned in the Introduction, constraint pro­
gramming allowing constraints over any data type will be called extensible.

In [59], Jaffa.r and Lassez propose a scbeme for constraint logic programming based
on embedding constraint systems into Horn clause logic by axiomatising computational
domains by Horu clauses. In [87], Smolka propose a completely different framework for
constraint logic programming by regarding programs as collections of definitif!fis of new
constraints extending the underlying constraint system.

This chapter deals only with the model theoretic semantics of constraiut logic pro­
gramming, we don't address any is.9ues directly related to the computation level of con­
straiut solving. Our approach to constraint programming departs fundamentally from
the previous ones; our semantics for extensible con~traint logic programming follows the
principles undlC'rlying the model theory for constraint logic programming proposed by
Goguen and Meseguer in the context of the language Eqlog [39J and is essentially based
on a version of Herbrand's Theorem for constraint logic, i.e., the logic underJ)ing exten­
gible constraint logic programming. Similarly to tbe approach proposed hy Jaffar and
Lassez, both constraint relations and programs are [collections of] sentences within the
same logical system (in thlC' sense of institutions rather than of deduction systems). How­
ever, constraint logics are much more general than Horn clause logic. In fact, the com­
putation domain is a primitive in our approach anti plays a central role in the definition
of constraint logic, rather than being axiomatised in an already defined logic (i.e., Horn
clause logic) like in CLP. When regarded as a model in constraint logic, thlC' computation
domain appears as the initial model. This is mathematically linked to the semantics of
DBJ-like module systems, the fundamental idea being to regard the models ofextensible
constraint logic programming as expansions of an appropriate built-in modd A along a
signature inclusion L: EYE', where ~ is the signat ure of built-in sorts. operations and
relation symbols, and I:' adds new "logical" symbols. In practice, the constraint rela­
tions (i.e., logical relations that one wishes to impose on a set of potential solutions) are
limited to sets of atomic sentences involving both :E-symbols and f'lements of the built-in
model A. However, at the theory level tbere is no reason to rest.rict the shape of con­
straint relations only to atomic formulae. The models for constraint logic programming

72A computational domain can b", regarded as a model (not llcc~arj!y the standard one) for a certain
data lype specification.

99

appear as expansious of the built-in model to the larger signature I:' and any morphism
of constraint models has to preserve the huilt-ins. Therefore, the constraint models form
a, ca.tegory wbich can be formally defined as the comma category (A..l..Moo(L)).

Example 6.1 Cousider the example of a specification of the Euclidean plane as a vector
space over the real numbers.

obj R2 is

pr FLOAT. (sort Float to Real)

sort Vect

op 0 : -> Vect
op <_._> : Real Real -> Vect
op _+_ Vect Vect -> Vect
op - Vect -> Vect .
op * : Real Vect -> Vect

l b lvars a b a k : Real
eqO=<O 0>
eq (a b > + (a' , b' > '" < a + a b + b' >
eqk*<a b>=<k*a k*b>.
eq <a b>z<-a -b>

endo

The signature E of built-in sorts, operation and relation symbols contains one sort Real
for the reaJ numbers togetber with the usual ring operatiou symbols and a relation symbol
<. The built-in model is just the usual ring of real uumbers (denoted as R) with <
interpreted as the usual 'strictly less than' predicate. Tbe signature E' of the module R2
introduces a new operation symbol (• > for representing the points of the Euclidean
plaut' as tuples of real numbers, and overloads the ring operations by organising tbe
Euclidean plane as a vector space over the real numbers. The axioms express the basic
fact tbat tbe evaluation of the ring operations on vectors is done component-wise.

A standard model for this specification, denoted by R2 is given by the cartesian
representation of tbe points of the Euclidean plane, i.e., any point is represented as the
tuple of its coordinates. Anotber model for R2 interprets the sort Vect as the set of real
numbers, the ring opt'rations on Vect as ordinary operations on numbers, and < • > as
addition of uumbers. Let's denote this model hy R+. 0

6.1 Generalised Polynomials and Constraint Satisfaction

It is important to have a formal definitiou for coustraint sentences, constraint models,
and a satisfaction relation between them. This would define a logic underlying constraint
logic programming; we call this constraint logic. A fundamental principle in this logic
is tbr preservation of the built-ins.

Consistently to our previous notations, let AU denote the free expansion of the built­
in model A along the inclusion [of the signature of the built-ins] L: E ----? E'. Also, let F'
be iI. left a.djoint to the forgetful functor U': MOD(E') ----? DOM(E').13 The role played

7JFrom the cat.egory of tht> models of the SIgnature E' [0 the cat.egory or the domains or E'.

100

by the terms in ordinary logic is played by generalised polynomial574 in constraint logk.
Generalised polynomials are term-like structures involving both operator symbols and
elements of tbe built-in model. Generalised polynomials can be regarded as elements of
models in the same way as ordinary terms are regarded as elements of [free] models as a
basis for a sema.ntical aproach to the concept of sentence and satisfaction in equational
logic.

Given a domain x (i.e., a collection of variables in practice), the E'-model of the
polynomials over ::r. iB llSUaly denoted as A[xJ. This is in fact the coproduct A" U x:F'
between ASS and the free E'-model x:F'. When E = E' are uw,orted algebraic signatures,
this is a well known construction in universal algebra [48J. However, the best known
example still comes from linear algebra:

Example 6.2 Let .K be a set of variables. R[X] is the ring of polynomials over X and
with real numbers M coefficients. In this example, the signature E of built-ins is a ring
signature, and E' doesn't add any new symbols, thus E = E'. The model of the built-ins
is R, the usual ring of real numbers. 0

The universal property of the models of generalised polynomials allow a more general
definition tbat extends the concept of generalised polynomial to the semantic case when
models play the role of the collections of variables and model.morphisms paly the role of
the valuation maps.

Definition 6.3 Let B be any E'-model. The model of generalised polynomials
over B is the coproduct AUU B, and it is denoted as A[BJ. 0

6.1.1 Internal constraint logic

Constraint logic can be defined internally to category-based equational logic. 'This means
that the signature of buit-ins E is abstracted to a category-based equational signature
U, E' to U', and the inclusion t: E -+ E' to a morphism of category-based equational
signatures U -+ U'. In this way, the extensible constraint programming paradigm is
accomodated by any logical system that is a category-based equationallogie.

Definition 6.4 Let (M, V): (A~X) -+ (A'.!:!'~X') be any liberal morphism (>fcategory­
based equational signatures. Fix any model A E IAI (playing the role of t.he model of the
built-ins).

A constraint model is a model in A' whose reduct to the signature of built-ins
contains an image of A, i.e., a map c: A -+ CM with C E IAl A model morphism
h: c ~ cl is a map C -+ C1 in A' such that

A ------=.. C;\1(

'>xJ'M
C'M

commutes.
A constraint identity in B E IA/I is a binary relation k~(A[BJ)U" An identity

(5,t) in B is satisfied in a model A~C:\I(with respect to amodelmorphismj= B ----t C

''''The ordmltry polynomials (rom linear algl'bra are an instantiatioll of this notion. The word gener·
allsed plays here the same role as the word gefll'Tnl plays in the so-called ~gelleral algebra ~

101

iff s; [f, clJU' = t; [j. ellU', where cl is the unique 'extension' of e to a model morphism
An; ---)0 C.

ASI .."v1 An~AuUB~B

1~ ~jv~
A~C ..,lv1 c

This definition extends to constraint equations, queries and their satisfaction
by constraint models in thlC' same manner as Definition 3.6. 0

Example 6.5 An example. of a constraint equation in the context of Example 6.1 IS

open

V'ars X Y Real

eq < 3.14 * X , Y) + - < Y , 3.14 • X) =- 0 .

close

Notice that although this equatioll is nol satisfied by the standard model R2
, the con­

straint model R+ does satisfy it. 0

Example 6.6 Another example of a constraint sentence in the same context is that of
a query:

find X Y Z : Real such that

3*<X,Y)::z<Y,Z>

2.79 * X + Y < Z = true

Finding a solution to this query in the standard model R~ reduces by the application of
a rewrite step followed by a simplification step to finding a solution for the system of
linear inequalities:

find X Y Z Real such that

3 • X = Y

3 • Y = Z

2.79 * X + Y < Z = true .

o

The. crucial technical idea of our approach on the semantics of constraint logic pro­
gramming is to fit constraint logic into category- based equational logic. While this simply
cannot be achieved within the usual concrete algebraic or model theoretic approaches (no
notion. of algehraic signature being abstract enough for this purpose). it works at our level
of abstraction. We consider this as a good example of the benefits the use of abstract
model theoret.ic mdhodology15 could bring to Computing Science. This idea is resumed
by t.he following slogan and fonnally formulated by the next definition:

Constraint logic = equational logic in a special category-based equational signa­
ture.

TOlD the sense of category-based equational logic

102

Definition 6.7 Let (M, V): (A~X) -+ (A'~X') be a liberal morphism of category­
based equational signatures. Then any model A E IAI determines a forgetful functor
U~: (A~M) -+ X'. sucb that UA= M A; U' , where M A is the forgetful functor (.4~M) -+
A'.

A~A'~(AiM)

lu lu' IUA
X~X'=X'

o

In this way the constraint logic introduced by Definition 6.4 is the category-based
equational logic determined by the forgetful functor UA. The correctness of this definition
relies on tbe following fact:

Fact 6.8 IfU' is faithful and preserves pullbacks, then U~ is faithful preserves pullbacks.

Proof: M preserves pullbacks as a right adjoint. By using this fact, it is straighforward
to show that the forgetful functor M A : (A~M) -+ A' creates pullbacks, thus it preserves
them too. U~ preserves pullbacks as a composite of two pullback preserving functors.

U~ is faithful as a composite of two faithful functors, since the forgetful functor
MA' (AiM) --; A' i, faithful. 0

Proposition 6.9 Let (M, V): (A~X) -+ (A'~Xf) be a liberal morphism of category­
based equational signatures. Then for any model A E IAI

1. there is an isomorphism of categories (A~M) 2:' (ASS~A')i

2. if A' has binary coproducts , then M A has a left adjoint; and

3. the forgetful functor MA creates filtered colimits.

Proof: 1. Because _" is a left adjoint to M.
2. Because the forgetful functor (C ~A') -+ A' ha.s a left adjoint for any C E IA'I

(since A' has binary coproducts, see also the proof of Lemma 5.50) and by l.
3. We first show that for any model C E IA'I. the forgetful functor (C~A') -+ A'

creates filtered colim..its. Then we consider C = AU and apply l.
Let {OJ hef be a filtered diagram in (C~A'). The forgetful functor (C~A') ---t A' maps

this diagram into a. filtered diagram {A,hef in A'. Consider p: A -+ D a C'olimit of this
diagram in A'. We define g: C -+ D as aj; p, for i E Ill; the correctness of this definition
is ensured by the fact that 0;; p; = aj; Pj for all i,j E III because of the filteredness of I.

'\;;(

E

Now, we show that p is a colimiting co-coue 0 -+ g iu (C~A'). Consider another
co-cone 1': 0 -+ k in (C~A'), where k: C -+ E. l' is also a co-cone A -+ E in A'. By

103

the universal property of JJ as a colimiting CO-COlle in A', there exists a unique arrow
(): D ----+ E such that JJ;O = I in A'. All it remains to be sbown is that () is a map 9 ----+ k.
But gj () = ai;jl,; 0 for some i E 11,1. Since JJi; () = Ii we deduce that g; () = k. 0

6.2	 Berbrand's Theorem for Extensible Constraint Logic Pro­
gramming

Herbrand's Theorem for constraint logic provides mathematical foundations for the con­
cept of constraint solving. Our approacb is to ins\.allciate thl" category-based version of
Herbrand's Theorem 3.21 to the particular case of constraint logic viewed as category­
based eqnationaJ logic determined by the forgetful fnnctor UAof Definition 6.4.

Theorem 6.10 Let (M, 'D): (A~X) -+ (A/~-+X') be a liberal morphism of category­
hased equatiollaJ signatures. Fix any model A E IAI. Assnme DomainRegularity and
DeductionFtamework for U', and that U has a left-adjoint :P and preserves filtered
colimits.

Consider a. collection f of conrlitional constraint equations with finite hypotheses and
with coequaliser projective quantifiers, and a U'-constraint query (3B)q with B is a
coequaliser projective model. Then

1.	 there exists the initial f-constraint model Or;

2.	 r F (3B)q iff Or F (JB)q; and

3.	 if A' has non-empty sorts, then r F (3B)Q iff r 1== (\;fY)Q; [h,jAU] for some domain
Y E IX'I and some model morphism h: B -+ A[yl·

Proof: The basis of this proof is to regard the constraint sentences (either equations
or queries) as ordinary U~-sl'utences (in the seuse of Definition 3.6). Any quantifier B
of a. constraint sentence appears as AI};jAuM in the role of the quantifier for the corre­
sponding UA-sentence. The ca.tl'gory or constraint models is (AJ,.M) and the satisfaction
relation betwr>en constraint models and constraint sentences reduces to category-based
equational satisfaction.

A~ Ass.Vf~f(BUA$S)M

Notice that
p

•	 U~ has a left-adjoint which is the composite of two left adjoints Xl -------t AI ------t

(AJ.-M) (see 2. of Proposition 6.9),

• U~ preserves filtered coJimits as a composite of two filtered preserving functors (see
3. of Proposition 6.9). and

• (A..!-M)	 has initial models, i.e., A ~ (Au..j..A') (see 1. of Proposition 6.9) and since
the forgetful functor (ASi..j..A I

) -+ A' creates limits.

The last general remark is that if B is a coequaliser projective model in A', then
A,/:jAuM is coequaliser projective in (A.!-M). This bolds because A'1;jA,M is free over
B with respect to the forgetful functor M A and because left adjoints to coequaliser
preserving functors preserve the coequaliser projectivity (see Lemma 5.21).

104

1.-2. The congruence closures exist in (A../..M) by Proposition 3.28 because U~ has a
left-adjoint. UA is finitary by Proposition 3.31 and because it preserves filtered colimits.
By applying Corollary 3.21 to r viewed as a collection of conditional U~~equations, we
obtain the existence of the initial r-model in the category of constraint models and that
r F (3B)q Hf Or F (3B)q.

3. Since A' has non-empty sorts, for any domain y E IX'I, there exists at least one
arrow y -+ OA.,U', where OA.' is the initial model in A'. Therefore, there exists at least
one arrow y -+ A"U' = (Ary)l/A' This meaDS that (A../..M) has non-empty sorts. Now,
Herbrand's Theorem for non-empty sorts 3.34 applies for r viewed as a collection of
conditional U~-equations. 0

In pra.ctice, it rarely happens that the sentences in r involve the built-in model
A. Usually, the sentences in r don't involve any elements of the built-in model (i.e., r
contains only E'~sentences, if using the notations from the discussion opening this section)
and only the queries appear as full constraint sentences involving elements from the built­
in model. In this case, the initial constraint model Or has a simpler representation as a
quotient of the free expansion of the built-in model.

In our category-based framework, the U'-sentences play the role of the E'-iItmtences,
and they can be canonically viewed as constra.int sentences (i.e., U~-sentences) via the
translation along the morphism of category-based equational signatures (M A, Ix,): U' --+
UA (see Definition 5.20).

Proposition 6.11 Assuming the hypotheses of the previous theorem, suppcre that r
contains only U'-equations. Then the initial constraint model Or is isomorphic to the

canonical map!r = A ~ A$lJM ~ (ASl/=:r)M, where =r is the least congruence on
A" dosed under r-substitutivity.

Proof: We will show that 1r satisfies the initiality property in the full subcategory of
(A../..M) of al! models satisfying r, where r is the translation of r along (MA,lx').

Let J: A -+ CM be any constraint model satisfying r. By the Satisfaction Condition
(Theorem 5.33), this is equivalent to C Fr. All we have to prove is that there exists a.
unique arrow]l: A"I=r -+ C such that !r;j~M "= J.

A~ A"M ~(A"I=,)M

~jr~
eM

By the universal property of the free extension Ary along M, there exists a unique
map t: All -+ C such that Ary;J'M = J. By the universal property of e (Theorem
3.17), there exists a unique map]I: Ani=r --+ C such that ei]l = 1'. 0

In the case of order sorted Horn clause logic with equality, Goguen and Meseguer
have proved in [39] the existence of initial constraint models for the particular case of r
containing only E'-sentences. This result crucial for the semantics of extensible contraint
logic programming in Eqlog can obtained as an instantiation of our previous results.

As pointed out by Goguen and Meseguer in [39], the notion of protecting ezpansion
gives tbe right semantic condition for built-ins. This means that Or must protect the
built-in model A, i.e., that Or is an isomorphism A :;:: (A"/Er)M, where =r is the

105

least congruence on AU closed under f-substitutivity. In the context of order sorted
Horn clause logic with equality, Goguen and Meseguer [39] give a set of conditions that
guarantee protection but impose some restrictions on the sentences in r. However, these
restrictions are almost always met in practice. We mention their result:

Proposition 6.12 Let (S,:::;.~, II) '--+ (S',:::;, ~',II') be an inclusion of order sorted first
order signature.:; and r be an order sorted Horn clause logic with equality specification
in (S,:::;, ~, IT) such that:

(1)	 s E S' - S for any operator symbol (1' E ~~",., - ~T.l"."1

(2)	 if s E Sand s' E S' and 51 :::; 5, then s' E Sand,5' :::; s in S,

(3) for 7f predicate symbol, if ii" E II", and 1i E II~" th~n 7f E Il w ', and

(4)	 f doesn't involve operation symbols from ~'- ~ and contains only clauses whose
heads are all predicatf' symbols from II' - II.

Then for any (S,:::;, 'S, Il)-model 11, itsfree extension to (t, f-model is an isomorphism, 0

106

7 CONCLUSIONS AND FUTURE WORK

This thesis developed a category-based semantics for equational and constraint logic
programming that is based on the concept of category-based equational logic. We showed
how this general framework can be successfully applied to topics like equational proof
theory, paramoduJation-based operational semantics, modularisation in equational logic
programming, and extensible constraint logic programming.

An abstract version of Herbrand's Theorem was derived as a consequence of the
completeness result for the category-based equational deduction. This not only pro­
vides mathematical foundations for the equational logic programming paradigm, but
also constitutes a basis for the full illtegratioIl of constraint logic programming into this
programming paradigm.

We developed a. model theoretic approuh to the completenpss of the operational
semantics of equational logic programming languages based on the analysis of the rela­
tionship between the congruence and the paramodulatiou relation induced by a program
on a given model. ,,"'e showed that this approach covers the case of computations modulo
a set of axioms naturally, in the sense that no special treatment is necessary anymore
for this case. However, the full implications of this approach to the case of computations
modulo a set of axioms still remain to be discovered. One particular way would be to lift
the treatment of narrowing and its refinement at the same level of abstraction to that of
paramodulation.

The concept of category-hased equational signature morphism has been successfully
nsed for setting np the mathematical strnctures underlying thp fundamental rnodularisa­
tion problems specific to eqnationallogic programming. Also, category-based equational
signatnre morphisms, proved to be central for the category-based semantics ofextensiblp
constraint logic programming. Based on this semantics, further work can he done to
develop theories and technologies for extensible modular constraint programming. The
principles underlying Eqlog module system should provide a good basis for developing
a technology for combinig decision procedures. A concrete operational semantics will
define a control strategy for combining various efficient decision procedures for specific
problems, with narrowing and resolution as a general inference mechanism. This will in­
volve backtracking, the introduction of symbolic variables (i.e., deferred constants), the
compntation of symbohc solutions, and symbolic simplification (e.g., see [68, 60J for the
case of linear arithmetic constraints). A promising approach is given by the category­
based approach to the paramodulation-based operational semantics for equational logic
programming developed in Chapter 4. Since constraint logic can be regarded as a par­
ticular case of category-based equational logic, we expect to obtain some rele....a.nt results
by applying that theory.

One of the most important further research directions is to apply the category-based
results of this work for developing equational logic programming over non-conventional
structures. This might provide the right framework for integrating equational and con­
straint logic programming with other programming paradigms. especially higher-order
programming, object-orieutation, or concurrency.

On the implementation side, much work has to be done for building an efficient Eqlog
compiler that will support extensible modular constraint solving. The actual Eqlog pro­
totype implementation is an extension of the 08J3 system that implements leftmost
innermost order sorted basic narrowing with constructor discipline, and it can he 5UC­

107

ct'ssfully used for experimentations with t.he opl"rational semantics.

Finally, we can conclude that the framework of category-based equational logic can
be regarded as a mathematical structure that is fundameutal to the equational logic
programming pafildigm. We have seen how a wide spectrum of problems in this area can
be successfuUy solved within this framework, and I hope that the theory developed here
ca.n be used for sDlving ma.ny other problems raised by such a dynamic field as equatioual
logic programming is toda.y,

lOB

A Running Eqlog

This appendix gives a brief presentation of all necessary information for rUlilling the
Oxford implementation of Eqlog. It is assumed the reader bas some familiarity with the
user manual for the OBJ3 system [46J.

The way to input Eqlog files is similar to tbat of the OBJ3 system. The name of
Eqlog files must end in .eql. OBJ files can be also loaded, but only by using their full
name (i.e., including. abJ). Each time an Eqlog module is loaded or selected, the system
computes a couple of hash tables used by the order sorted unification function.16

Eqlog syntax (in BNF notation) for solving queries is a'l follows:

(Solve) ::= find (LogicVarsDtclar) 5uch that (queries)

(Logic VarsDeclar) : '" (Varld) ... (Sort) [, (Var/d) .. ,(Sort)I ..

(queri,,) ,,= (Term) = (TfTm) [; (Term) = (Term) I...

Eqlog modules are the same as the OBJ modules except that the shape of ~he hy­
potheses part of an cla.use is restricted to

(1m") (TfTm) [and (Term) (Term)] ...

(Vur/d} and (Sort) stand for the OBJ syntactical entities of variable identifiers aud
sorts, while (Toln) stands for the OBJ terms. The BNF definition for all OBJ syntac­
tical entities can be found in the OBJ manual [46J.

Operator declarations in Eqlog admit cons as an attribute meaning that the corre­
sponding operator is regarded as a constructor.

76Iu the case of big modules, the computation of these hash tables could be quite time consuming!

109

[1]	 Hajnal Andreka and Istva.n Nemeti. A general axiomatizability theorem f(}rmulated
in terms af cone-injective subcategories. In B. Csakany, E. Fried, and E.T. Schmidt,
editors, Universal Algebra, pages 13-35. ;\"orth-Holland, 1981. Colloquia Mathemat­
ics Societas Janos Bolyai, 29.

[2J	 John Backus. Can programming be liberated from the von Neumann style? Com­
mTmica.tions of the Association for Compu.ting Machinery, 21(8):613-641. 1978.

[3]	 d aI. Barbara Liskav. CLU RefennIT Manual. Springer-Verlag, 1981.

[4J	 Michael Barr and Charles Wells. 'Toposes, Triples and Theones. Springer, 1984.
Grundlehren der mat.hematischen Wissenschafter, Volume 278.

15)	 Jon Barwise. Axioms far abstract mouel theory. Annals of Mathematical Logic,
U21-265, 1974.

[6J	 Jon Barwise and Solomon Feferman. Modd- Theoretic Logics. Springer, 1985.

[7J	 M. Ba.uderon and Bruno Courcelle. Graph expressions and graph rewritings. Math.
Systems Theory, 20. 1987.

[8J	 Jean Benabau. Structures algebrique~ dans les categories. Cahiers de Topologie d
Geometrie DijJerentiel, 10:1-126, 1968.

19J	 Jan Bergstra, Jan Heering, and Paul Klint. Module algebra. Journal of the Associ­
ation for Computing Machinery, 37(2):335-372, 1990.

[10]	 Garrett BirkhofI. On the structure of abstract algebras. Proceedings of the Cambridge
Philosophieal Society, 31:433-454, 1935.

[I i]	 Rod BurstalJ and Razvan Diaconescu. Hiding and beha.viour: an institutional ap­
proach. In A. William Roscoe, editor, .4 Classical Jfind: Essays in Honour of
C.A.R. Hoare, pages 75-92. Prentice-HalL 1994. Also Technical Report ECS-LFCS­
8892-2,53, Laboratory for Foundations of Computer Science, University of Edin­
burgb, 1992.

[12]	 Rod Burstall and Joseph Goguen. Putting theories together to make specifications.
Iu Raj Reddy, editor, Proceedings, Fifth International Jomt Conference 071 Artificial
Intelligence, pages 1045-10,58. Department of Computer Scienee, Carnegie-Mellon
University, 1977.

[13J	 Rod Burstall a.nd Joseph Goguen. The semantics of Clear, a speeification language.
In Dines Bjorner, editor, Proceedings, 1979 Copenhagen Winter School tlrJ Abslract
Software Specification, pages 292-332. Springer, 1980. Lecture Notes in Computer
Science, Volume 86; based on unpublished notes handed out at the Symposium on
Algebra and Applications, Stefan Banach Center, Warsaw, Poland, 1978

!I4j C.C.Chang and H.J.Keisler. Model Theory. North Holland, Amsterdam. 1973.

[15J	 Alain Colmerauer. An introduction to PrologIII. Technical report, Groope Intelli­
gence ArtificieUe. Faculte de Sciences de Luminy.

III

[Hi]	 Alain Colmerauer. Prolog II. Manuel de reference et modele theorique. Technical
report, GIA Lumin}', Marseille, 1982.

[17]	 Hubert Comun. Equational formulas in order-sorted algebras. In Proceedmgs,
ICALP '90, Warwick, 1990. Springer Verlag.

[I8]	 Virgil Cazanescu. Local equational logic. In Zoltan Esik, editor, Proceedings, 9th
International Conference on. Fundamenial$ of Computation Theory FCT'93, pages
162-170. Spriuger-Verlag, 1993. Lecture Notes in Computer Science, Volume 710.

[19]	 Nachum Dershowitz. Computing with rewrite rules. Technical Report ATR­
83(8478)-1, The Aerospace Corp., 1983.

[20]	 Nachum Dershowitz and Jean-Pierre Jouannaud. R.ewriting systems. III Jan van
Leeuwen, editor, Handbook of Theoretical Computer Sc:ence, Volume B: Form.al
Methods and Semantics. pages 243-320. North-Holland, 1990.

[21]	 Razvan Diaconescu, Joseph Gogueu, and Petros Stefaneas. Logical support for
modularisation. In Gerard Huet and Gordon Plotkin, editors, Logical Environments,
pages 83-130. Cambridge, 1993. Proceedings of a Workshop held in Edinburgh,
Scotlarld, May 1991.

[22]	 Lauren! Fribourg. SLOG: A logic programming language interpreter based on clau~al

superposition and rewriting. In Proceedings, SLP ;85, pages 172-185. 198.5.

[23]	 Joseph Goguen. Categorical foundations for general systems theory. In F. Pichler
and R. Trappl, editors, Advancc$ in Cybernetics and Systems Resea1'ch, pages 121­
130. Trauscripta Books, 1973.

[24]	 Joseph Goguen. Semautics of computation. In Ernest G. Manes, editor, Proceedings,
Fir$/ IntErnational Symposium on Category Theory Applied to Computation and
Conlrol, pages 234-249. Uuiversity of Massachusetts at Amherst, 1974. Also in
Ledure Notes in Computer Science, Volume 25, Springer, 1975, pages 151-163.

[25]	 Joseph Gogueu. Order sorted algebra. Technical Report 14, UCLA Computer Sci­
ence Departmeut, 1978. Semantics a.nd Theory of Computation Series.

[26]	 Joseph Goguen. Reusing and interconnecting software components. Computer,
19(2):16-28, Februa.ry 1986. Reprinted in Tutorial: Software Reusability, Peter Free­
man, editor, IEEE Computer Society, 198i, pages 251-263, and in Domain Anolysis
and Softwaff Systems Modelling, Rubeu Prieto-Diaz arId Guillermo Arango, editors,
IEEE Computer Society, 1991, page-s 125-137.

[27]	 Joseph Gogueu. What is unificatiou? A categorical view of subBtitution, equa­
tion and solutiou. In Maurice Nivat and HassarI Alt-Kaci, editor~, Resolution of
Equations in Algebraic Structures, Volume 1: Algebraic Techniques, pages 217-261.
Academic, 1989. Also Report SRI-CSL-88-2R2, SRI International, Computer Sci­
ence Lab, August 1988.

[28J	 Joseph Goguen. Higher-order functions considered unnecessary for higher-order pro­
gramming. Iu David Turner, editor, Research Topics in Function.al Programming,

112

pages 309-352. Addison Wesley, 1990. University of Texas at Austin Year of Pro­
gramming Series; preliminary version in SRI Technical Report SRI-CSL-88-1, Jan­
uary 1988.

[29]	 Joseph Goguen. Types as theories. In George Michael Reed, Andrew William
Roscoe, and Ralph F. Wachter, editors, Topology and Category Theory in Computer
Science, pages 357-390. Oxford. 1991. Proceedings of a Conference held at Oxford,
June 1989.

[30J	 Joseph Goguen. Theorem Proving and AlgelJra. MIT,1994.

[31J	 Joseph Goguen and Rod Burstall. CAT, a system for the structured elaboration of
correct programs from structured specifications. Technical Report Report CSL-1l8,
SRI Computer Science Lab, October 1980.

[32]	 Joseph Goguen and Rod Burstall. A study in the foundations of programming
methodology: Specifications. institutions, charters and parchments. In David Pitt,
Samson Abrarnsky, Axel Poigne, and David Rydeheard, editors, ProceediFlgs, (.'on­
Jerence on Category Theory and Computer Programming, pages 313-333 Springer,
1986. Lecture Not.es iu Computer Science, Volume 240; also, Report CSLI-86-54,
Center for the Study of Language and Information, Stanford University, June 1986.

[33]	 Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci­
fication aud programming. Journal of the Association Jor Computing Jfachinery,
39(1):95-146, January 1992. Draft appears as Report ECS-LFCS-90-106, Computer
Science Department, University of Edinburgh, January 1990; an early ancestor is
"Iutroducing Institutions," in Proceedings, Logics oj Programming Workshop, Ed­
ward Clarke and Dexter Kozen, Eds., Springer Lecture Notes in Computer Science,
Volume 164, pages 221-256, 1984.

134]	 Joseph Goguen and lU.zvan Diaconescu. Towards an algehraic semantics for the
object paradigm. In Proceedings, Tenth Workshop on Abstract Data Typea, volume
785 of Leeture Notes in Compul,er Science. Springer, 1994.

[35]	 Joseph Goguen and lU.zvan Diaconescu. An Oxford survey of order sorted algebra.
Mathematical Strudures in Computer Science, 4, to appear 1994.

[36]	 Joseph Goguen and Susanna Ginali. A categorical approach to geneTal systems
tbeory. In George Klir, editor, Applied General Systems Research, pages 257-270.
Plenum, 1978.

[37]	 Joseph Goguen and Jose Meseguer. Completeness of many-sorted equational logic.
Houston Journal oj Mathematics, 11(3):307-334, 1985. Preliminary versions have
a.ppeared in: SIGPLAN NDtices. July 1981, Volume 16, Number 7, pages 24-37; SRI
Computer Science Lab, Report CSL-135, May 1982; and Report CSLI-84-15, Center
for the Study of Language and Information, Stanford University, September 1984.

[38]	 Joseph Goguen and Jose Meseguer. EqJog: Equality, types, and generic modules for
logic programming. In Douglas DeGroot and Gary Lindstrom, editors, Logic Pro­
gramming: Functions, Relations and Equations, pages 295-363. Prentice-Hall, 1986.
An earlier version appears in Journal oj Logic Programming, Volume L Number 2,
pages 179-210, September 1984.

113

[39]	 Joseph Goguen and Jose Meseguer. Models and equality for logical programming.
In Hartmut Ehrig, Giorgio Levi, Robert Kowalski, and Ugo Montanari, editors, Pro­
ceedings, 1987 TAPSOFT, pagf'S 1-22. Springer, 1987. Lecture Notes in Computer
Science, Volume 250.

[40J	 Joseph Goguen and Jose Meseguer. Unifying functional, object-oriented and rela­
tional programming, with logical semantics. In Brnce Shriver and Peter Weguer,
editors, Research Directions in Object-Orien.ted Programming, pages 417-477. MIT,
1987. Preliminary version in SIGPLAN Notices, Volume 21, Number 10, pages
153-162, October 1986.

[11J	 Joseph Goguen and Jose Meseguer. Order-sorted algebra 1: Equatioual deduction
for multiple inheritance, overloading, exceptions and partial operations. Theoreli~

cal Computer Science, 105(2):217-273, 1992. Also Programming Research Group
Technical Monograph PRG--80, Oxford University, December 1989, and Technical
Report SRI-CSL-89-10, SRI InternationaL Computer Science Lab, July 1989; origi­
nally given as lecture at Seminar on Types, Carnegie-Mellon University, June 1983;
many draft versions exist, from as early as 1985.

[42J	 Joseph Goguen, Andrew Stevens, Keith Hobley, and Hendrik Hilberdink. 20BJ,
a metalogical framework based on equational logic. Philosophical Transaetions of
thc Royal Society, Series A, 339:69-86, 1992. Also in Mechanized Reasoning and
Hardware Design, edited by C.A.R. Hoare and M.J.C. Gordon, Prentice-Hall, 1992,
pages 69-86.

[43]	 Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types. Technical
Report RC 6487, IBM T.J. Watson Researcb Center, October 1976. In Currmt
Trends in Programming Methodology, IV, Raymond Yeh, editor, Prentice-Hall, 1978,
pages 80-149.

[44J	 Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Abstract data
types as initial algebras and the correctness of data representations. In Alan Klinger,
editor, Computer Graphics. Pattern Recognition and Data Structure, pages 89-93.
IEEE, 1975.

[45]	 Joseph Goguen, James Tha.tcher, Eric Wagner, and Jesse Wright. Initial algebra
semantics and continuous algebraB. Journal of the Association for Computing Ma­
chinery, 24(1):68-95, Jannary 1977. An early version is "'Initial Algebra Semantics",
with James Thatcher, IBM T.J. Watson Research Center, Report RC 486.5, May
1974.

[46j	 Joseph Goguen, Timothy Winkler, Jose Meseguer, Kokichi Futatsugi, and Jean­
Pierrt':' Jouannaud. Introducing OBJ. In Joseph Goguen, editor, Algebraic Specifi~

cation with OBJ: An Introduction with Case Studies. Cambridge, to appear 1994.
Also to appear as Technical Report from SRI International.

147J	 Joseph Goguen and David Wolfram. On types and FOOPS. In Robert Meersman,
William Kent, and Samit Khosla, editors, Object Oriented Databn..ses: Analy.)i..~,

Design and Construction, pages 1-22. North Holland, 1991. Proceedings, IFIP TC2
Conference, Windermere, UK, 2-6 July 1990.

114

[48]	 George Gratzer. Universal Algebra. Springer, 1979.

[49]	 Michael Hanus. Compiling logic programs with equality. In Proe. Int. Workshop
on Programming Language Implementation and Logic Programming, pages 387-40l.
Springer LNCS 456, 1990.

[50]	 Robert Harper, David MacQneen, and Robin Milner. Standard ML. Technical
Report ECS-LFCS-86-2, Department of Compnter Science, University of Edinburgh,
1986.

[51]	 William S. Hatcher. Quasiprimitivecategories. Math. Ann., (190):93-96.1970.

[52]	 H.Herrlich and C.M.Ringel. Identities in categories. Can. Math. B1,J,lf., (15):297-299,
1972.

[53)	 Phillip J. Higgins. Algebras with a scheme of operators. Mathematische Nachrichten,
27:115-132, 1963.

[54]	 Steffen Hoildobler. Foundations of equational logic programming. In Ltclure Notes
in Artijiciallntelfigenee, nnmber 353. Springer Verlag, 1988.

[55}	 Gerard Hnet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the Association for Computing Machinery, 27(4):797-­
821, 1980. Preliminary version in Proceedings, 18th lEEE Symposium on Founda­
tions of Computer Science, IEEE, 1977, pages 30-45.

[56J	 Gerard Huet and Derek Oppen. Equations and rewrite rules: A survey. In Ron Book,
editor, Formal Language Theory: Perspectives and Open Problems, pages 349-405.
Academic, 1980.

[57]	 Jean~Marie Hullot. Canonical forms and nnification. In Wolfgang Bibel and Robert
Kowalski, editors, P,'oceedings, 5th Conference on Automat-ed Deduction, pages 318­
334. Springer, 1980. Lecture Notes in Computer Science, Volume 87.

[58]	 H.Herrlich J.Adamek and G.Strecker. Abstract and ConcretE Categories. John Wiley
& Sons, 1990.

[59J	 Joxa.n Jaffar and Jean-Louis Lassez. Constraint logic programming. In 14th ACM
SymposiUm. on the Principles of Programming lang1Lage,~, pages 11l-119. 1987.

[60]	 K. McAloon Jean-Louis Lassez a.nd T. Huynh. Simplification a.nd elimination of
redundant linear arithmetic constraints. Technical report, IBM Thomas J. Watson
Research Center.

[6lJ	 Jean-Pierre Jouannaud and Helene Kirchner. Completion of a set of rules modulo
a set of equations. Proceedings, 11th Symposium on Principles of Programming
Languages, 1984. In SIAM Journal of Computing.

[62]	 Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras:
A role-based survey of unification. In Jean-Louis Lassez and Gordon Plotkin, editors,
Computational Logic: Essays in Honor of Alan Robirnlon. MIT-Press, 1991.

115

[63]	 Jan Willem Klop. Term rewriting systems: from Church-Rosser to Knuth-Bendix
anG beyond. In Samson Abrarnsky, Dov Gabbay, and Tom Maibaum, editors, Hand­
bo()k of Logic in Computer Science. Oxford, 1992.

[64]	 Sa:Inders Mac Lane. Cal.egories for the Working Mathematician. Springer, 1971.

[65]	 D.S. Lankford and A.M. Ballantyne. Decision procedures for simple equatioual
theories with permuta.tive axioms: Complete sets of permutalive reductions. Tech­
nical Report ATP-37. Dept. of Mathematics and Computer Science, Voiv. of Texas,
Austin, 1977.

[66J	 Jean-Louis Lassez. From LP to LP: Programming with Constraints. Techuical
report, fBM T.J. Watson Regearch Center.

[67]	 Jean-Louis Lassez, Michael Maher, and Kimbal Marriott. Unification revisited. In
Jack Minker, editor, Foundations of Deductive Databases and Logic Progmmming,
pages 587-625. Morgan Kaufmann, 1988.

[68J	 Jean-Louis Lassez and Michael J. Maher. On Fourier's algorithm for linear arith­
metic constraints. Technical report, IBM Thomas J. Watson Research Center.

[691	 F. William Lawvere. Functorial semantics of algebraic theories. Proceedings, ll/a­
tional Academy of Scimcet', U.S.A., 50:869-872, 1963. Summary of Ph.D. Thesis,
Columbia Universit.y.

[70]	 Ernest Manes. Algebraic Theories. Springer, 1976. Graduate Texts in Mathematics,
Volume 26.

[71]	 Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACAf
Transactions on Programming Languages and Systcm.s, 4:258-282, 1982.

[72]	 Jose Meseguer. General logics. In H.-D. Ebbinghaus et 0.1., editors, Proceedings,
Logic Colloquium, 1987, pages 275-329. North-Holland, 1989.

[73J	 Jose Meseguer and Joseph Goguen. Order-sorted algebra solves the constructor selec­
tor, multiple representation and coercion problems. Informalion and Computation,
103(1),114-158, March 1993.

[74]	 .Jose Meseguer, Joseph Goguen, and Gert Smolka.. Order-sorted unification. Journal
of Symbolic Computation, 8:383-413,1989. Preliminary version appeared as Report
CSLI-87-86, Center for lhe Study of Language and Information, Stanford University,
March 1987.

[75]	 Peter Mosses. Unified algebras and institutions. In Proceedingij, Fourth Annual
Confenncf: on Logic in Compu.ter Science, pages 304-312. IEEE, 1989.

[76]	 :Michael J. O'Donnell. Computing in systems described by equations. In Lee/ure
.r.,'ote~ in Computer Science, volume 58. Springer, 1977.

[77J	 David Parnas. Information distribution aspects of design methodology. Information
Processing '72,71:339-344, 1972. Proceedings of 1972 IFIP Congress.

116

[78J	 David Pa.roas. On the criteria to be used in decomposing systems into modules.
Communication8 of the Association for Computing Machinery, 15: 1053-1058, 1972.

[79]	 David Paroas. A technique for software module specification. Communications of
the Association for Computing Machinery, 15:330-336, 1972.

[80]	 G.A. Robinson and 1. Was. Pararnodulation a.nd theorem proving in first order
theories with equality. [n .~fachine intelligence, number 4. 1969.

[81J	 J. Alan Robinson. A machine-oriented logic based on the resolution principle. Jour­
nal of the Association for Computing Mach£nery, 12:23--41, 1965.

182]	 Pieter Hendrik Rodenburg. A simple algebraic proof of the equa.tional iIlterpolation
theorem. Algebra Univcrsalis, 28:48-·51, 1991.

[83]	 Donald Sannella and Andrzej Tarlccki. Extended ML: an institution independent
framework for formal program development. In David Pitt. Samson Abra.msky, Axel
Poigne, and David Rydeheard, editors, Proceedings, Summer Workshop 011 Category
Theory and Computer Programming, pages 364-389. Springer, 1986. Lecture Notes
in Computer Science, Volume 240.

[841	 Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic
specification. Journal of Computer and System Science, 34:150-178, 1987. Earlier
version in Procecdings, Colloquium on Trees in Algebra and Programming, Lecture
Not.es in Computer Science, Volume 185, Springer, 1985.

[85]	 Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.
information and Control, 76:165-210, 1988. Earlier version in Proceedmgs, inter­
national Sympo8ium on the Semantics of Data Types, Lecture Notes in Computer
Science, Volume 173, Springer, 198.5.

[86]	 J.R. Slagle. Automatic theorem proving in theories with simplifiers, commutativity
and associativity. Journal of ACM, 21:622-642, 1974.

[87]	 Gert Smolka. Logic Programming over Polymorphically Order-Sorted Type8. PhD
thesis, University of Kaiserslautern, 1989. FB Informatik.

[88]	 Ross Street. The formal theory of monads. Jour. of Pure and Applitd Algebra,
(2),149-169, 1972.

[89]	 Andrzej Tarlecki. Free constructions in algebraic institutions. In M.P. Chytil aud
V. Koubek, editors, Proceedings, International Symposium on Mathematical Foun­
dation8 of Computer Science, pages 526-534. Springer, 1984. Lecture Notes in Com­
puter Science, Volume 176; extended version. University of Edinburgh, Computer
Science Department, Report CSR-149-83, and revised version 'On the existence of
Free Models in Abstract Algebraic Institutions', September 1984.

[90J	 Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David Pitt,
Sa.mson Ahrarnsky, Axel Poigne, and David Rydeheard, editors, Proceedings, Sum­
mer Workshop on Category Theory and Computer Programming. pagel 334-360.
Springer, 1986. Lectnre Notes in Compnter Science, Volume 240.

117

[91]	 Andrzej Tarlecki. On the existence of free models in abstract a,lgebraic institutions.
Theort.tical Computer Seience, 37:269-304, 1986. Preliminary version, University of
Edinburgh, Computer Science Department, Report CSR-165-84, 1984.

[92]	 Andrzej Tarlecki. Quasj~va.rieties in abstract algebraic institutions. Journal of Com­
pUler and System Sciences, 33(3):333-360, 1986. Original version, University of
Edinburgb, Report CSR-173-84.

[93]	 Alfred Tarski. The semantic conception of truth. Philos. Phenomenological ReseaJoch,
4: 13-47, 1944.

[94J	 Will Tracz. Parameterized programming in LILEANNA. In Proceedings, Second Tn­
temutional Workshop on Softwan: Reuse, March 1993. Lucca, Italy.

[95J	 Maa,rt.in H. van Emden and Robert Kowalski. The semantics of predicate logic as
a programming language. Journal of the. Association fOI' Computing Machinery,
23(4):733-742, 1976.

[96J	 Christoph Walther. A mechanical solution of Schubert's steamroller problem by
many·sorted resolution. Artificial Tntelligencer, 26(2):217-214, 198,).

[97]	 Christopb Waltber. Many-sorted inferences in automatf'd thf'orem proving. In Sods
and Types in Artificial Tntelligence, pages 18-48. Springf'r, 1990. Lecture Notes in
Artificial Intelligence, Volume 418.

[98J	 Cia Wiederhold, Peter Wegner, and Stefano Ceri. Toward megaprogramming. Com­
munications of the ACM, 35(11):89-99, 1992.

118

1 INTRODUCTION 3

1.1 The Equational Logic Programming Paradigm 3

1.1.1 A historical perspective. 3

1.1.2 Equational logic programming. 4

1.2 Contributions of this Thesis 5

1.2.1 Beyond conventional "abstract model theory" 6

1.2.2 Cat.egory-based equational logic 7

1.2.3 Category-based operational semantics. 8

1.2.4 Modularisation and ext.ensible constraint logic programming 9

1.3 The Structure of the Thesis . . 10

1.3.1 Preliminaries 10

1.3.2 Category-based Equational Deuuction 10

1.3.3 Operational Semantics 11

1.3.4 \1odularisation 11

1.3.5 Extensible Constraint Logic Programming 12

1.4 The Programming Language Eqlog 12

1.4.1 Eqlog as a framework for decision procednres 13

2 PRELIMINARIES 15

2.0.2 Comma categories 15

2.0.3 Limits and colimits 15

2.0.4 2-categories 16

2.1 Categorical Relations. 17

2.1.1 Representations of binary relations 17

2.1.2 Unions of relations 18

2.1.3 Equivalences. 19

2.2 Finiteness 20

2.2.1 Finite objects 20

2.2.2 Finiteness for binary relations 21

2.2.3 Reflexive-transitive closures 22

2.2.4 Confluent relations 24

2.3 Models and Domains 24

2.3.1 Many sorted algebra 25

2.3.2 Order sorted algebra 26

2.3.3 Horn clause logics. 27

2.3.4 Equational logic modulo axioms 31

2.3.5 Summary of Examples 31

3 CATEGORY-BASED EQUATIONAL DEDUCTION 33

3.1 Congruences ... 33

3.2 Equations, Queries and Satisfaction 34

3.3 Completeness . 36

3.4 Herbrand's Theorem 39

3.5 Consequences of Freeness. 40

3.5.1 The existence of congruence closures 40

3.5.2 Finitary model operations 42

119

3.5.3 The Axiom of Choice versus projectivity 43
3.5.4 Herbrand's Theorem revisited 44

4 OPERATIONAL SEMANTICS 47
4.0.5 Completeness of Pararnodulation: its Architecture.

4.1	 Preliminaries .
4.1.1	 Rewriting contexts ..

4.2	 Inference Rules ..
4.2.1	 Resolution as a refinement of pararnodulation

4.3	 Model Theoretic Paramodulation
4.3.1	 The pararnodulation relation.
4.3.2	 Completeness of model theoretic paramodulation

4.4	 Paramodulation modulo a Model Morphism
4.5	 Confluence ..

4..5.1 Model theoretic rewriting

4.5.2	 Transitivity versus confluence
4.5.3	 Confluence modulo a Model Morphism

4.6	 NMrowing in MSA
4.6.1	 Canonical term rewriting systems

4.7	 Computing in Eqlog
4.7.1	 OS unification in Eqlog ..
4.7.2	 Examples with narrowing
4.7.3	 Constructor discipline

5 MODVLARISATION

5.0.4 Some History .

.5.1 Institutions and Modularisation

5.1.1	 Exactness . . .
5.1.2	 Parametric modules and views.

5.2	 Satisfaction Condition for Category-based Equational Logic.
,5.2.1 Many-sorted institutions ..
5.2.2	 Sentence translations along morphisrns of category-based

tional signatures
5.2.3	 The Satisfaction Condition

5.3	 Queries and Solutions verst's Modularisation
5.3.1 The institution of queries and substitutions
.5.3.2 Souudness and completeness for module imports

5.4	 Theorem of Constants .
5.4.1	 The level of institutions .
5.4.2	 The level of category-based equational logic

6 EXTENSIBLE CONSTRAINT LOGIC PROGRAMMING

6.1	 Generalised Polynomials and Constraint Satisfaction
6.1.1	 Internal constraint logic

6.2 Herbrand's Theorem for Extensible Constraint Logic Programming

7 CONCLUSIONS AND FUTURE WORK

A Running Eqlog

47
49
49
52
53
.54
54
57
59
61
62
63
65
65
66
67
67
68
71

73
74
75
76
78
81
82

equa­
83
89
90
91
92
95
95
96

99
100
101
104

107

109

120

