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Abstract 

This paper argues that a powerful module compo"itioll facility can ell),il.Ilce t]le a.bility of object 

oriented languages to reuse aud contpose designs, specifications and code. hl addition, several 

flexible ways to produo.' prototypes can be supported, induuhlg symbolic eXf'cutioa of designs. 
rom posing prototype versions of components, and usiug "brti\t·iu" modules. ~luch of this power 
comes from having rnouule expressions, therxies and views as first class citizens: 50me come,; from 

providing both vprtiLal and horizontal composition, and from distinguishing between sorts for values, 
clil.sses for objects, modules for code, ar,d theories as types for modules. New features introduced 
in this paper include dynamiL binding with views, vertical wrappers, support for abstract cla.sses 

and private class inheritance, a,nd the dynamic imegration of components from different libraries. 

Although we Hlu$trate these features using the FOOPS language, "hey could be added to many 
oUler lallguages, and some comparison with other languages is given. 
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1 Introduction 

Although module composition (aJso caJled interconnection) is supported by some object oriented 
languages, it has received less a.ttention than inheritance. However, there have been 60me interesting 

developments in this <lorea, including [23J, [281 and [2J. This paper cla.ims that software design and 
reuse can be further enhanced, and that the object paradigm itself can be enriche:l and clarified, 
b.y providing module expressions, theories and views (these terms aTe expla.ined below), and also 

distinguishing the three levels of sorts for values, classes for objects, and modules for enca.psulation, 

supporting multiple inheritance at each level. We will show that this allows expressing designs and 
high level properties of systems in a ffiDdular way, and allows the parameterisation, composition 

and reuse of designs, specificalions, and code. In addition, we suggest some new features, including 

vertical composition, dynamic binding with views, blocks for modules, and ways tD get abstract 

classes and private class inhli'ritance through our module composition facility. 

Our main programming unit is the module, Wllich allows multiple classes to be declared to­

gether. Our module composition features include renaming, sum, parameterisation, instantiation, 
and importation. These constitute parameterised programming [10], which can be Seli'n as 
fUllct;Ollal programming with modules as valuli's, theories <1..0; types, and module expressions as (func­
tional) programs. Renaming aJlows the sort3, classes, attributes and methods of modules to get 

new names, while sum is a kind of parallel composition of modules that takes account of sharing. 
The interfaces of parameterised modules are defined by theories, which declare both 'YlJtactic and 

semantic properties. Instantiation is specified by a view from an interface theory to an actual 

lIlodule, describing a binding of parts io the theory to parts in the actual module; default views 

can be used to give "'obvious" bindings. A design for a system (or subsystem) is described by a 

module expression, which can be p<i,rameterised, and can be evaluated to produce an executable 
version of the system (some examples are given in Section 3.1). Importation gives multiple in her­

itaucli' at the module level Parameterised programming was first implemented in OEJ [20], has a 

rigu['ous semantics based 011 category theory [6, 13, 1.5), and is a development of ideas in the Clear 

sl-lt'ciftration language [3J. Much of t-he power of parameterised programming comes from treating 
theories and views as first class citizens. For example, it call provide a higher order capability in a 

first order setting, as explained in Section 2.4. 

A major advantage of parameterised programming is its support for design in the samefra.mework 

as specification and coding. Designs are expressed a.s module expressions, and they call be executed 

symbolically if specifications naving a sultable form are available. This gives a convenient form of 
prototyping. Alternatively, prototypes for the modules involved can be composed to give a prototype 

for the system, again by evaluating the module expression for the design. An interesting feature of the 
approach we advocate is its distinction between horizontal and vertical structuring, genericity and 
cOOlpositionality. Vertical structure relates to layers of abstraction, where lower layers implement 

or .support higher layers. Horizontal structure is concerned with module aggregation, enrichment 

and specialisation. Eoth kinds of structure can appear in module expressions, and both ar~ evaluated 
when a module expression is evaluated. We can also support rather efficient prototyping throngh 

built·in modules, which can be composed just like other modules, and give a way to combine 

symbolic execution with aCcess to an underlying implementation language. 

Parameterised programming is considerably more general than the module systems oflanguages 

like Ada, CLU and Modula-3, which provide only limited support for module composilion. I'-or 

example. interfaces can express at most purely syntactic restrictions on actual arguments, cannot 

up horilOlltally struclured, and cannot be reused. But in paramli'terised programming, theories are 

modules which can be generic a.nd can be combined using instantiation, sum, renaming, and impor­
tation. Recent work of Eatory {2, 29] shares many of our coucerns, and in particular diSlinguishes 
between components and "'realms," which correspond to theories in parameterised programming, 
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aJthough without any semantic constraints. Batoey's approach is prima.rily based on vertical pa­

rameterisation, although a limlted form a horizontal parameterisation allows constants and types, 
without any horizontal composition. Another difference is that we alJow non-trivial views, whereas 

Batory's approach only has (implicit) default views. Related work has also been done by Tracz [31], 
whose LlLEANNA system implements the horizontal and vertical composition ideas of LIL [9] for 

the Ada language, using ANNA (22J as its specification language. 
While pa.rameterised programming is not new, some of its appncations to the object paradigm 

presented here are new; for example, we discuss dyna.mic binding with views. the support of abstract 

classes and private class inheritance, and the dynamic integration of components from different 

Ii braries; also, some comparisons with design facilities in other languages are given. 

We illustrate these issues using FOOPS3 [17J, a wide-spectrum object oriented specification 

language with parameterised programming and with an executable sublanguage. FOOPS is built 

upon OBJ [20], a fnnctional specification and program:m.ing language, from which it derives many 

of its features. More information on FOOPS may be found in [17J and [27); the latter describes a 

prototype implementation developed at Oxford. 

2 Modularisation and Parameterisation 

Meyer's comparison of inheritance and composition [23] argued that generidty and inheritance could 
simulate eou:h other, and aJso argued that simulating inheritance by genericity was unsatisfactory, 
because the structnres needed for dynamic binding tend to obstrnct reuse and maintenance. Rosen 

[281 described some difficulties with class inheritance, and advocated an approach using Ada-like 
module composition; he argned that good language design should emphasise either inheritance OT 

composition, but not both. However, we argue that one can have the best of both worlds, and 

that this give. rise to some usefnl new capabilities, including three different levels of inheritance, 

plus theories, views, module blocks, and higher order composition. The following section discusses 

some further capabinties that relate more directly to design, including module expressions, abstract 

das.'>es, vertical composition, built-in modules, and prototyping. 

2.1 Inheritance for Sorts, Classes and Modules 

Our approach distinguishes between sorts, which dassify data used for values, and classes, which 

classify objects; multiple inheritance is supported for both of these. The main difference between 

valnes and ohjects is that values are immutable. whereas objects may be created, updated and 

destroyed; for example, numbers are values but cars are (perhaps better seen as) objects. The 

semantics of sort and class inheritance is based on order sorted algebra [18]. 
The modules that we propose can declare several related classes together. whereas the main pro­

gramming unit of most object oriented languages defines a single class with its associated attributes 

and methods. For example, this capability is needed in the following FOOPS specification, because 
private teachers and independent students each have an attribute that involves the other. 

omod PRIVATE-INSTRUCTION is
 

classes Student Teacher
 

at teachers Student -) SetOfTeachers.
 

at students Teacher -) SetOfStudencs
 

endo 

"The Tlilme FOOPS 15 derived from ~FuncLionill and Object OrienLecl Programming System.~ 



2.2 Tlleorit=s, Views, and Generics J 

Omiued details are indica~ed by " ... ". Here "a't" indicates an attribute declaratIon for tbe class 
foUowing the colon. with tbe kind of data it holds given after the -). The "omod ... endo" syntax 
indicates object-level modules, which can declare both classes and sorts; there are also functional­

level modules in FOOPS, with syntax "fmod ... endf". which can only declare sorts. 

Parallel to the distinction between class and module, we also distinguish hetween. dass inherita.nc.e 

and modlLle inheritance. Class inheritance concerns the hierarchical classification ofobjects; it ha.<: 

a simple set-inclusion semantics based on order sorted algebra. For example, the class LandVGhic.le 
may be a subclass of the class Vehicle, because all land vehicles are vehicles. Module inheritance 

supports code reuse by importation. This kind of inheritance allows old sorts and da.<:!ies to be 
imported and enriched with operations derived from the odginal ones. For example, a module that 

defines trigonometric functions may he defined by ex:tending a pre-existing module for floating­
point numbers with decla.rations for sine, cosine, etc. Or a generic module that declares iteration 

methods over special kinds of data structures may simply define the new methods as ccmbinations of 
alread)' existing methods on these data structures. Note that these example!i do not use either class 
inheritance or clientship. and thus could not be done using the features that are typically available 

ill languages that identify classes and modules. 

2.2 Theories, Views, and Generics 

We use theories to define interfaces: these modul~s declare syntactic and semantic restrictions 
OJ} t.he actual arguments r.hat are aUowed for paramelerised (generic) modules. For example, the 

fol.Iowing object· level theory defines partially ordered sets (in anti-reflexive form): 

oth POSET is 

class Elt . 
at _<_ : Elt Elt -) Bool 

ax E1 < E1 '" false . 

ax E1 < E3 = true if E1 < E2 and E2 < E3 
endoth 

Th'" underbars iu the attribnte name indicate where arguments should be placed. This theory can 
be used to restrict the instantiations of a binary search tree module, as fol.Iows: 

olllod BSEARCH-TREE (X :: POSET] is 

c.lass Tree 

me insert Tree Elt -) Tree . 

endo 

where th~ notation "X :: POSET" indicates that a.n instantiation is valid only jf the formal parameter 

X i~ bound to a module that satisfies the theory POSET; also, '':me'' indicates a method declaration. 
We now define an EMPLOYEE module which will later instantiate BSEARCH-TREE: 

ooood EMPLOYEE is 

class Employee 
a't name Employee -) String 

at number Employe'! -) Nat 

at age Employee -) Nat 

endo 
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(Nat is a sort that denotes the natural nnmbers.) To instantiate BSEARCH-TREE, we need a binding 

or view of some of the parts in EMPLOYEE to those in POSET, such that the axioms of POSIT are 

behaviourally satisfied (in the sense of Section 2.2.1 below) by EMPLOYEE under this binding. 
Clearly we will wa.nt to bind Employee to Elt, but there are several choices for what to bind to 

_<_. The following insta.ntiation chooses to order employees by their e-mployee number: 

BSEARCH-TREE[view to EMPLOYEE is at E1 ( E2 to number(E1) < number(E2) endv] 

Here the binding of Employee to Elt is determined by a default couvention. Actually, we could 
define an even more powerful default view convlimtion (which is not implemented in FOOPS) that 

would yield the following instantiation 

BSEARCH-TREE[view to EMPLOYEE is at E1 < E2 to name(E1) < name(E2) . endv] 

from the module expression 

BSEARCH-TREE [EMPLOYEE) 

by looking for a.n ordering _ (_ on the sort of the first attribute (Which is name) of the first-declared 
class of EMPLDYEE. Other possibilities include ordering employees by age, and mapping _<_ to dif­

fe-nmt, fomparison attributes (e.g., _>_). 
In addition to the default and "in-liue" views described above. it can be useful to have rensable 

views which are declared at the top level a.nd given explicit names. Two examples are 

view EMPLOYEE-AS-POSET-BY-AGE from POSET to EMPLOYEE is 

class Elt to Employee 

at E1 ( E2 to age(El) ( age(E2) 

endv 

and 

view EMPLOYEE-AS-POSET-BY-NAME from POSET to E~PLOYEE is 
class Elt to ~ployee 

at E1 ( E2 to name(E1) ( name(E2) 

endv 

By the default conventions, the "class" nne could be omitted in both cases. BSEARCH-TREE can be 

instantiated with these views by the following simple module expressions; 

BSEARCH-TREE[E~PLOYEE-AS-POSET-BY-AGE) 

BSEARCH-TREE[EHPLOYEE-AS-POSET-BY-NAHE] 

Views have both a syntactic and a semantic aspect. The syntactic aspect ca.n be given by view 

declarations like those above, or else determined by defanlt. The semantic aspect requires that the 

axioms in the source theory be (behaviourally) satisfied in the target module (which could also be 

a theory) under the interpretat.ion given by the view syntax. We may use the notation 

v: T~M 

to indicate tha.t 'U is a view from theory T to module M. in both the syntactic and the semantic 

i1Sp~cts. 

In addition, t.heories and views ca.n themselves be parameterised. In the case of a theory, this 

may just mean that there are some para.meters that ha.ve nol yet been set, 0(" it may mean some new 
"tructure is being defined over some parameterised given slructure (the former is actually a special 
(·ase of the latter). For example, we may define a para.metric theory of vector spaces over a theory 

of fields. This might have the following outline fonn: 
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fth FIELD is
 

sort Scalar
 
fn 0 -> Scalar
 
fn .+_ Scalar Scalar .> Scalar [assoc, comm. id: 0].
 

endfth 

fth VSP [I' :: FI£LDJ is
 
sort Vector .
 

tn 0 -> Vector
 

fn .+. Vec'tor Vector -> Vector [assoc. comm, id: 0].
 

lIndfth 

Here fn indicates a functioll declaratioll. Also, assoc, comm and id: 0 indicate that the preceding 

operation is associar,ive, commutative. and has identity 0, respectively; from a specificat.ion point. of 

\'jpw, l.Iwtie rali b", considered abbreviations for the corre~pondiug equat.iOLl1:i. 

111 much the saHle way, views can be parameterised. TllU~, a view -vritten with the notation 

"IX •• PI. TIX •• PJ ~ MIX •• PJ 

means that there is a view 

"IN]. TIN] -- MIN] 

for eVer} module N that satisfies the para.meter theory P. 

2.2.1 Verification of Views 

lt would be loo restrictive on programming practice to always rf'qrdre a formal proof that a view 

is legitimate; tberefore a practical implementa.t.ion should only require syntactic validity. However, 

the ability to declare axioms in theories not only helps with documentation and de~ign, it also 

leaves open the possibility of formal verificatiou for critical applications. \Ve could even use a truth 

m;.,nagement system to track tlle soundness of views, which might ra,nge from "mechanically verified" 

t.o "wishful-thinking," as suggested in [.9). 
(;iVell a view from a t.heory T to a module M, the axioms in Tar", interpreted bfhaviolJrally 

lalso caUed obsl:n,;al.lOnally) in M, i.e., they need only appear to be satisfied. For exampif. a modulE! 
implementing stacks may satisfy the equation pop push(X.S) "" S behaviourally withont satisfying 

it literally; in fact, this happens for thE! traditional pointer' array implementation of ~tacks, in which 

"jlLlIk" may be left behind the pointer following a pop. This is illustrated in Figure 2.2.1. where the 

leftmost stack first has a 7 push'ed onto it. and then is pop'ed, yielding a new stack state that is 
different from the origiual state, but is behaviourally equivalent to it. The behavioural s;l.tisfaction 

of a.xioms is used in the next section to explicate the notion of behavioural snbclass. 

It is worth pointing out that under tlJe hidden sorted algebraic semantics proposed in !13, 16], it 
rail he relatively straighT.forword to verify the behavioural satisfaction of equations, using standard 
rechlliques of equational rea.soniug. Of course, such verifications cannot be easy in all rases, and 

indeed, can neces.~arily bl:' really hard in some cases, so t,his claim concerns the ease relati'o'e to other 
way~ to formalise. ~lJch as first order logic. or higher order logic. 
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push(7) pop 
-----? -----?ITEI:::=J ~ ~ 

1 1 1 
Figure 1: Junk after a pop 

2.2.2 Behavioural Subclasses 

We can use theories, views and behavioural satisfaction to explicate the notion of behavioural 8ub­
etas!!: Suppose that we have theories T1 and T2 that define classes C1 and C 2 , respectively. Then 

('2 is a behavioural subclm,8 of C1 iff there is a view from T1 to T2 that maps C1 to C 2 ; recall 
that this means that the axioms in T1 are behaviourally satisfied in T2 _ It then follows that any 

implementation of C 2 (i.e., any model of T2 ) will be able to exhibit all the behaviour required to 

give an implementatioll of C 1> 

2.3 Comparison with Constrained Genericity 

Eiffel's constrained genericity [23] allows a generic cla.ss to be constrained so that certain proper­

ties should be satisfied by actual arguments. This is done using a inheritance relat.iou4 • For example, 

all Eiffel class for binary search trees with the header 

BSEARCH-TREE[X -> POSET] 

indicates thaI valid instantiations must bind X to a subcla.ss of the class POSET. 

Although this is a significant adva.nce in generic classes, it still has some drawbacks for reusabil­

ity. For e.xample, to create a binary search tree for employees, EMPLOYEE must be a subclass of 

POSET. But as we have .seen, employees can be partially ordered in many different ways, e.g., by 
age, name, salary, department number, seniority, rank, employee Humber, etc. These relationships 

could be obtained by creating a new subclass for each one, e.g., EMPLOYEE-AS-POSET-BY-AGE and 

EMPLOYEE-AS-POSET-BY-SALARY, but such an ad hoc use of inheritance would produce an awkward 

plethora of mystifying subclasses. 

This kind of snbclass relationship can also arise at. design time. For example, the Eiffel Libraries 
[:l4] contain a class TRAVERSABLE, and data structures fol' lists aud chains are given as subclasses of 

it. The classes HASHABLE and ADDABLE with their descendants are similar. However, this approach 

1I0t only produces awkward inheritance relations (e.g., consider how many times EMPLOYEE wonld 

liave to inherit POSET). but it also require foreknowledge of all relevant properties and potential uses 

of a software component, which seems unrealistic. 

Structuring by liluaries exacerba.tes this problem. For example, if POSET and BSEARCH-TREE 

helong to library L 1 while EMPLOYEE belongs to library L... t.heu we have two choices if we want 

to have a binary search tree of employees. The first is to change EMPLOYEE so that it is a subclass 

of POSET. This j" not only dangerous because of possible name clashes with entities in POSET, but 

il may even be impossible if the source code of EMPLOYEE is not available. The secoud choice is 
to create a new class that captures the relationship. But a.s discussed above, this can produce a 

proliferation of ad hoc subclasses. 
In summary, class inheritance works best for simple tree (or lattice) structures, bnt in many 

applications. a given class ma.y satisfy many different interfaces. and may satisfy some of these iu 

'lne langUil.gf uee l'~lJ h1l.S a Silllllil.r fil.cility; thi~ is al~o what Cardelli and Wegner [4J call "bounded p~ramelnc 

polymorphism" 
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~everal different ways; furthermore, a given interface may be satisfied by many different classes, 

~ometimes in multiple ways. Moreover, interfaces may have multiple classes a.nd complex properties 

that involve several classes. 
Meyer's comparison of inheritance and composition [23j argued that genericity and inheritance 

could simulate eacb other, and also argued that simulating inheritance by genericity was unsatisfac­

tory, because the structures n~ded for dynamic binding tend to obstruct reuse and maintenance. 
However, the .above difficulties with the use of class inheritance for reusing generic software compo­
neuts suggests reconsidering Meyer's claim that inheritance is more "powerful than genericity; these 
difficulties also motiva.te alternative mechanisms for composing software components. 

Tne problem of viewing modules differently in different contexts is solved by theories and views, 

without requiring any additional special purpose classes or modules. Because the source and target 

of a view are independent of the view itseU, views can express rela.tionships that have not already 
been expressed at design or coding time; this answers the "foreknowledge" problem. More generally, 

views can assert that a given moduLe satisfies many different specifications, or that it satisfies the 
same specifica.tion in different ways; they ca.n also assert that a given specification is satisfied by 

many different modules. Views and theories also solve the library problem, because previously fixed 

illherit.ance relatiollships a.re not ueederl for module composition. Moreover, theories can involve 

multiple cla.sses and complex properties of these classe1>. 

2.4 Module Blocks and Higher Order Composition 

Module blocks allow several modules to be decla.red t.ogether; moreover, blocks can be parame­

Lerised, aud then aU modules in the block have the para.meterisatioll of the block. For example, a 

module HAP that defines a method map over lists could be declared in the same block as the module 

that defines lists: 

block LIST-BLOCK [X :: TRIVC] i.e 

omod LIST is 

class list 

at head: List -) Elt 

endo 

o'th HE is
 

m, m Elt -> Elt
 

endoth
 

omod MAP (H HE] is
 

pr LIST
 

me map List -) List
 

endo
 

endo
 

where the line ··pr LIST ... indicates that module LIST is imported in '·protecting" mode. i.e., is 

~urh that the new axioms do no! change the original meaning of lists. 
The inLE'rface theory TRIVC i1> jns! 

oth TRIVC is
 

class Elt
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endoth 

wb.ich is parl of a standard library Df modules; it defines the trivial interface, whicb requires a single 

class to be given. 

Also, lll~ theory ME declares the interface for MAP, which requires one unary method III on Elt's, 

and map applies III to each element of its argument. Because the block is parameterised by TRIVC. so 
are all its modules; of cours,,", a module inside a parameterised block (an stiU bE:' parameterised over 

other theories, as is MAP. Insta..otiating LIST-BLOCK, e.g., as LIST-BLOCK [NAT], also instantiates all 
of its modules: one for lists of natural numbers, another that provides a generic map method over 
those lists, and a third that defines the interface to that generic. Blocks may not be nested. 

A significant aspect of blocks5 is that private items can be used in subsequent modulli!s within 

a. block, but not outside of it. In the above example, this allows map to be implemented using 

any aspect of the LIST module, rather than just its public ones, as would be reqnired if LIST were 

outside of KAP's block. Higher order operations (as in Smalltalk) can achieve some of the same 

functionality. But such an approach is small-grained, whereas parameterised programming is large­

graiued, beca.use it encapsula.tes operations and properties with the data that they manipulate, and 

abstracts over complete modules, and even blocks of modules. Moreover, our proposed module 

features are first order, and thus simpler to reason about. (see [11] and [16] for furtlIer discussion 

of this issuej. Of course, blocks are also useful for organisi{lg large specifications, esp~ial.ly if they 

have significant parts tiiat are similarly parameterised. 

3 Support for Design 

This sectiOlI shows how a single object oriented language can support t ue modular expression of 

system designs and high level properties, as well as the modular composition and reuse of designs, 

~pecifications and code, plus prototyping by symbolic evaluation, and more efficient prototyping by 

vertical composition or built-in module~. At each level of abstraction, relationships of refinement 

dnd evolution can be recorded by giving sui lab Ie views and theories. This gives a Very rich and 

cOllvellient €llvironment for system development.. 

3.1 Module Expressions 

A module expression spl.!eifies lhl.! design of a system (or subsystem) in terms of already given 

components. We have already seen some generic module instantiations, which are a simple special 

kind of module expression. Two further operations used t,o form module expression5 are renaming 

aHd sum. 

Renaming permits module entities to be given {le..... names, which makes it easier to adapt modules 

to uew contexts. For example. if a binary search trf::'f:' will store indices from a database, it is more 

Ildtural to call ~hl.! class Index rather tha.n Tree. This i,; accomplished using the "." operator, as in 

BSEARCH-TREE[STRING-AS-POSET] • (class Tree to Index) 

which iustallllate5 BSEARCH-TREE and renames the class Tree; here STRING-AS-POSET is a view of 

~lrings (t.he ihdex's keys) as posets. !'I:lethods can aiso be renamed. as in 

BSEARCH-TREE[STRING-AS-POSET] • (class Tree to Index, me insert to add-key) 

SOur curren! prototype implemeuta.lion of FOOPS does not }'e~ supporl module blocklil. 
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Renamiug is not available in Srnalha.lk or C++, but it i5 in Eiff"el, although there it j13 tied 

to class inheritance, so that features of clients cannot be renamed, and nl?ither can classes. Ada 

supports renaming, but not as part of a "package expression" sublanguage. 

Sum. denoted "+" , com hines thp contents of modules. taking 5haring into aCCOl.llll. For example, 
in LIST(ACCT] + SAVINGS-ACCT + CHEqUE-ACCT there is only one copy of ACCT. 

More complex module expressions may use multi-level instantiation, default views, renamings 
and 5Um. for example, the following module expression describes a parsing stack and a block­
structured symbol table: 

STACK[LIST[TOKEN] • (class Lis1; 1;0 SEntEnce)] +
 

STACK (TABLE [TUPLE [STRING. TYPE]
 
•	 (class Tupla 1;0 VariablE!, 

a1; fst to name, a1; snd to type)] 
• (class TablE to Scope)] 

• (class Stack to SymbolTable) 

"'"itb the makEl com mand, module expn~ssions are "evaluated" (or "executed") to construct new 
named modules, a.s ill 

make PARSER is
 

" the previous module expression ...
 

endm
 

It \s the possibility of actually building (i.e., composing) syst.ems that distingnishes module 

expression evaluatiou from so-called "module interconnectioll languages," which merely provide 

descriptions of the structure of s)'stems. Module composition greatly enhances the ability to reU6e 
software. The semantics of module expression evaluation is based on the ca.tegory theoretic concept 

of colimit, as described for example in [13] and (15). 
Some readers may consider the use of module expressions with theories and views too verbose. 

However, a single module instanti<l.tion can compose many different functions all at once. For 
example, a generic complex arithmetic module CPJ;A can be easily instantiated with any of several 
real arithmetic modules as actual parameter: 

single precision re,als, CPXA.[SP~REALJ, 

• double precision reals. CPU [DP-REAl.] -' or 

rnultiple precision re,als, CPU [MP-REAL], 

Each instailliation involves substituting dozens of functiolls into dozens of other functions. Further­

Inore, [I1J suggests all abbreviated notation that is very similar to that of higher order fllnctional 

prop;ramwlng, for those cases where one re<Llly is just composing functions. 

3.2 Designs, Views and Properties 

(~iVell a system design in the form of a module expression. properties of that system can be expressed 
by giviug views from a theory to the result of the module expression. Of course, this also applies to 
subsys1.ems, which may themselves be parameterised. Thus, module expressions, views and theories 

call togetber provide a convenient way of describing and reusing high level system designs. 
The following FOOPS code specifies a. varameterised module BOX6, whose parameter; afe rate 

alia lllaxV, each constrained by axioms to be a positive floating point number; the module SIGNAL 

defines its interface, by declaring t.hese operations as constants. 

-lilt n.une l5 mea.nl tu ~\lgg",~l Ihe kind of ubJa."k bo:<" iha.l mighl app","-I ill a 5Igna.\ proce.s..'lin,; s'fslem. 
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f th SIGUL is
 
pr FLOAT
 

fn rate -) Float
 
fn MSV -> Float
 

ax rate ) 0 :: true
 

a:J: lIli!lJ:V ) 0 = true
 

endf'th
 

omod B01[Sl,S2 ;; SIGNAL) is 

endo 

Now we can define and name a. generic architecture (i.e., parameterised design), with 

make SrSl [X :: SIGNAL] is BOl[I, TtJ .. BOX[X ,T2J endm 

The keyword pair make ... endm. indicates that this system is to be actually composed, not merely 

defined. It:; 'lame is SYS1, and its parameter is as given by SIGNAL. The SYSl a.rchitecture ha.'5 two 

BOX rnoduh~~, each with X as its first argument, and with some other already defined subsystem (Tl 

and T2, resp~ctivel)') as its second argumenl. 

Proper tits (or constraints) at the system level can be treated essentially the same way as prop­

erties at thnnodule level. [n particular, the assertion that some properties hold of some system is 
often most tonven.iently expressed by giviug a. view from an appropriate theory to the system. For 

example, if the theory T contains constraints about stability and accuracy, and jf M is some system 
that should satisfy those constraints, then this can be expressed by giving a view 

v:T--+M. 

In this way, the assertions become reusable. Exactly th.e same techniques could be used for verifying 

:;uch an assellion as for verifying that a given actual module M satisfies the interface theory T of 

a generic module P; the view v simply expresses the binding of the actual syntactic parts of Mto 

the formal olles in T, and the axioms in T musl be (behaviouralJy) satisfied for the corresponding 
entities in M. 

The system SYSl is more interesting, because it has interface parameters for which. the constraints 
[Hay be satis~ed by some values, but not by others. For example, if T is defined by 

fth T is 

in a -) Float 

in b -) Float 

ax a • ~ <= 2 • pi true 
endIth 

then 

v: T ---. SYS1[A] 

may lead to sa.tisfaction of the constraint in T for some values of rate and muV. and not for others. 

For some applications, it might be useful to use a constraint solving system to determine the values 

of these parameters for which v realJy is a. view. 
Parameterised module expressions and the make statement give a convenient way to support 

implementation families in the sense of Parnas [26]. 
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3.3 Abstract Classes 

Several object oriented la.nguages provide support for so-called abstract classes. These function 
like templatei; for classes, in that they declare some methods and attributes that must be defined 
in their subclasses, ana may ah;o introduce .some new methods defined in terms of the5e given ones. 
For example, in Eiffel [23j, a class declared a.s abstract ("deferred") can bave methods that do not 

have executable code; in C++ and Ada 9X [IJ, a class: is abstract jf any of its met nods is not 
defined. Abstract classes are used for high level design, They are not generic, and are not meant to 

be instantiated, but rather to have their deferred methods and attributes defined in different ways 

by different subclasses. 
Parameterised programming can provide this capability by definiug an abstract class as a theory, 

and then importing that theory into executable modules where it is enricned with subclasses that 
provide executable definitions for the deferred methods. The adva.nlage of this is that it does not 

require any new langua.ge features. Let us illustrate this with several kinds of bank account, starting 
with an abstract class theory that capturl>.s the basic properties of accounts: 

oth ACCT is 

class Accoun1; 

pr MONEY 
at balance Account -) Honey 

me debit Account Money -> Account . 

me credit Account Honey -> Account . 

me transfer_from_to_ : Honey Account Account -> Account 

ax trans! er H from A to A' : debit(A.M); credit(A' ,H) . 

endoth 

The module HOflEY is imported in a way that "protects" data of sort (not class) Honey, i.e., in a 

way that does not a.ffect the meaning of money. Note that debit and cndit are declared but not 

defined, while the transfer method is defined using them. 
The following modnles define two different subclasses of Account, each providing an executable 

definition for debit and credi1:: 

omod SAVINGS-ACCT is 

clasa SavAccount 

inc ACCT 
subclass SavAccount < Account . 

at interest-ra1;e : SavAccount -> Float 
me debit SavAccount Honey -> SavAccount 

me credit SavAccount Honey -> SavAccount 

axioms for debit ;md cn;ldit and other declarations 
endo 

omod CHEQUE-ACCT is 

claas ChAccount 

inc ACCT 
subclass ChAccount < Account . 

me debit ; ChAccount Money -> ChAccount 

me credit ChAccount Honey -> ChAccount 

axioms for debit ;md credit and other declarations 

endo 
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The line "inc "CCT ." above indicates an "'including" importation of the theory ACC!; it allows 
imported classes to serve a.s the b~e for new subcl~ses. In a system that combines the modules 

LIST(ACCT], SAVINGS-ACCT and CHEQUE-ACCT, list objects may hold both savings and checking 

accounts. But since class Account is abstract, it will have no objects that do not belong to a 

proper 6ubdass. (The current prototype implementation of FOOPS provides only partial support 

for abstract classes.) 

3.4 Vertical Composition 

The instantiations and views given above illustrate horizontal composition, which concerns mod­

ules at thesa.me level of abstraction. We also recommend vertical cOInposition, which concerns 

the implemmtation oC modules. Here one may think of "abstract machines" that depend upon lower 
level abstra.r:t machines; in general, there can be an n-Ievel hierarchy, with machines at level i de­

pending on machines at level i - 1, for 0 < 1 ~ n. For example, a class for Bets may be implemented 
using any class whose objects behave like lists. To express this example in FOOPS1, we would first 

give a. theory describing lists: 

o'th LIST[X TRIVC) is 

class List 

at head List -> Elt 

me i:lsert List Elt -> List 

ax 

endoth 

which is (hmizontally) parameterised by the elements to be stored in lists. The module SET involves 
one horizontaJ. interface and one vertical interface. The horizontal interface is for elements, while 

the vertical interfa.ce is for the data structure used to represent lists: 

omod SET [X :: TRIVC]{REP :: LIST[X]} is 

ando 

Here we indicate the vertical interface using "set brackets," ~ opposed to the "square brackets" 
used for horiwmaJ. interfaces: the meaning is tlLat REP can only be bound to modules that satisfy 

the propertie;; specified in the theory LIST, instantiated with the horizontal parameter X. This kind 

of pararneterisation allows us to obtain several different implementations of sets by simply varying 
the vertical actual parameter tbat is given as argument to SET. 

H L1ST-HACK satisfies LIST. then the following is a legal instantiation of SET, 

SET[EKFLOYEE]{LIST-HACK~AS-LIST[EHPLOYEEJ} 

where LIST-HACK-AS-LIST is a parameterised vie...... from LIST to LIST-HACK. Note that the vertical 

instantiation uses a default view from TRIVC to EMPLOYEE that maps Elt to Employee. 

Vertical and horizontal composition have different semantics; having both helps with separating 

design conceTrlS from implementation concerns, and with documenting the structure and dependen­
cies of a soft.ware system. One important semantic difference is that horizontal modnle inheritance 

7Although Y!Jtic-~ c-omposilion was in the deaign o( LlL (from 1983), it was nol. included in the original d~n of 
rOOPS; howelu, Wf now intend to add it to roops. The idea. c-ometi (rorn BOrne eulier work with Rod BurstaJI on 
a. system c-alled CAT [UI 
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is cumulative (i.e., transitive), while vertical module inheritance is noL For example, a module that 
uses an instantiatiou of SET parameterised as above, will not have access to the code a.ssociated wita 
the vertical actual, although all (public) features of the horizontal actual will be "Visible to it. This is 
actually stronger than just hiding those operations of sets whose rank mentions any of the features 
of tae vertical actual. 

Thjs regime of vertical visibility, together with a further mOdnJe import mode in FOOPS, sup­
ports a useful technique that we will call vertical wrapping. Here some module" that is almost 
what we want for Borne application is vertically imported into a "'wrapper" module w, from which 
the functionality that we really wanl is re-exported, possibly slightly modified from that provided 
by H; for example, it may bave a different sYlltax. some new operations defilled in terms of the im­
ported ones, an.d some operations may be hidden. The ~ulSing" import mode provides a capability 
for copying and modifying the text of the imported module. through instantiation, renaming and 
visibility redeclarations. In particular, vertical wrapping can provide 50-called "private" or "imple­
mentation" inheritance [21,30] as a special case. This allows a class B to inherit from a class A in 
a way that forbids placing B object.s where A objects aTe expected; it is solely a way to reuse code. 
Vertical wrapping can achieve this by importing the module that ueclares A and then renaming A. 

to B (and p05sibly renaming other features and altering visihility). as in 

olDod W is
 
using H * (class A to B, private ... )
 

endo
 

The wrapper module could also add more attributes a.nd methods to B if desired. This flexihility 
iUustrates another benefit of distingnishing between class and module inheritance, that there is no 
Heed fOr dubious variants of inheritance to provide tIle above functionality. In Our opinion, class 
ill!leritance should be nsed for the hierarchical classification of objects, and no! to support the reuse 
of code. 

3.5 Prototyping 

Jf a system has been specified using equa.tions that have a certain (not very restrkti"Ve) form, then 
the specification can be symbolically execnted using term rewriting in much tIle same way that OBJ 

does [7,20]. This provides a rapid prototyping capability that we have found useful in experiments 
wilh our currellt FOOPS implementation. 

.'\. second approach is more straightforward: simply write the design of a system as a module 
expression (or a .>ystem of module expressions defining the system. subsystems, etc.), and then either 
supply standard library modules, or else write rapid prototypes for each bottom level component. 
It is worth noting how vertical composition can playa role in tltis. If some library module is close to 
hut not actually identical with what is needed, then the library module could be vertically imported 
into a new wrapper module that provides the necessary new functionality, building on top of the 
old one (as described in Section 3.4). 

Another approach uses bui.lt-in modules to encapsulate code written in one or more implemen­
tation languages. This can provide access to libraries in other languages, give high level structure 
to old code, and interface with low level facilities such as operating system calls. Built-in modules 
Were developed for OBJ [:20J. where they implement standard data types. such as natural. numbers 
and Booleanss . In FOOPS, built-in modules implement both standard data types and 5tandard 
classes. In both OBJ and FOOPS. it is 1I0t difficult to write llew built-in modules to provide new 

~Thest' blJiJ~-Jn module' c~n 1I:;e Lisp ;u\d C code, beC:~lI:;e bo~h FOOPS a.nd OBJ are implemented in Kyoto 
C'ommOl' Lisp. which i, based OlL C. 
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functionality; for example, the 20BJ meta-logical theorem proving system has been built on top of 
OBJ3 in this way [19]. 

4 Dynamic Binding with Views 

We can use a view from T 1 to T2 at nm time to solve what we call the hiernrchy integration problem. 
We first explain the problem with an example. Suppose a module FIGURE decla.res an a.bstract 
class Figure that is used by various modules in some window system, and that we now wish to 

use this system in conjunction with another system that has a modulI' BLOB declaring a, class Blob 

that satisfies the properties needed for being a Figure. But before we could use blobs as figures 
in the window system, we would need to add the subclass declaration to the BLOB module. This 

situation j~different from the library problem mentioned in Section 2.3, because here the inhl'rltancl' 

relationship is necessary. 

We suUest the following solution: If some method expects a figure and is given a blob, there is 

no problem if Blob is already a subclass of Figure. Otherwise, look for a view that says how blobs 
can be seen as figures. This view should be supplied once when the BLOB system is integrated with 

the FIGURE system, using a ~Yl\ta.x Ijke the following: 

dviev from FIGURE to BLOB is 

class Figure to Blob 
me display to shall 

enddv 

This "dynamic" view declares the intended way of viewing Blob's as Figures's. Note that this 
approach does not require changing the BLOB module. For example, if f is a variable of class Figure 

which refers at run time to an object of class Blob, then the call display(t) results in shov(f) 

being caJled. This indirection is similar to that which occurs for ordinary dynamic binding. 'We are 
currently e.~a.mining how to integrate dynamic binding with views iu our prototype implementation 

of FOOPS. 
Another way to approach hierarchy integration is through reflectiou and metaclasses. Here, the 

view from FIGURE to BLOB could be added to the metaclass for BLOB, for example by sending a 

message or executing an assert command. The dynamic effect would be the same as that described 

above. However, the semantics Sei'ffiS more problematic, especially if one is trying to maintaiu an 

algebraic foundation. 

Vertical wrapping and dyna.rnir binding with views are related to the "adapters" and "wrappers" 

of [8J. Adapters take an old class and produce a new one that provides a different interface. Wrappers 

add pwperties to objects (e.g., a border to an existiug window object) or classes (just Ijke mix-inti). 
Vertical wra.pping can be seen as providing linguistic support for some of these activities, but perhaps 

in a more general way because of features such as module expressions a.nd the separation between 

da.<>s and module inheritance. However, FOOPS does not support adding properties dynamically to 

objects. Dynamic binding with view~ is unlike adapters in that it does not involve any new c1a.sses. 

5 Summary and Conclusions 

This paper has argued that a sufficiently powerful module composltlon faciUty can significantly 
enhance the a.bility of the object paradigm to support the reuse of designs, specifications and code. 
Major featUles include module expressions for vertical and horizontal composition of parameterised 

moduJes with semantic interfaces, views for binding such interfaces to actual modules, and theories 
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for describing the interfaces. This approach allows a single module to have several. interfaces, and a 
single interface to be used (or severa.l different modules. Renaming, built-in modulfll, module blocks, 
a.nd dynamic binding with views all further enha.nce the flexibility of reuse and rapid proto typing, 
which can be supported in several different styles, including the symbolic execution of suitable 

sp€cifications. 
We also argued for distinguishing between sorts for valnes, classes for objects, and modules for 

code, with a different notion of inheritance at each leveL In addition, we noted that behavioural 
subclasses arise in a. natural way through views because of their semantic basis in behavioural 
satisfaction, we showed how higher order capab.ilities can he obtained within a first order setting. 
and how vertica.l composition supports some useful ways to control Visibility, including "vertical 
wrappers." 

Our prototype implementation of FOOPS supports many of the features described in this paper, 
while others are currently being considered for implementation. We expect that verticality. module 
blocks and abstract classes could be implemented straightforwardly by building on facilities a.lready 
in FOOPS. On the other hand, dynamic views would require more effort. 

We note that most of the features discussed have a.n algebraic semantics. This hu the advantage 
that rea..sou..ing about them can be relatively effective beca.use of the efficient algorhhms that are 
available for many problems in equational logic. 

We suggest that the object community may not have pa.id sufficient attentio:n to large-grain 
phenomena such a::; generic architecture~ (i.e., designs) for large systems, the global properties of such 
designs, the compatibility of snb-componenls, the integration ofthese capabilities with configuration 
and version management. and the recording of design and historical information. Related disCllssions 
lUay be {ouud in [5,25] alld {12]; the latter suggests a methodology called "hyperprogramming" for 

integrating the entire Ufe cycle throngh parameterised programming, including requirements, design, 
specification, coding, maintenance, documentation, and version and confignration management. We 
suggest that adding features like those discussed in this paper to existing object oriented languages, 
e\'en those that identify classes and modules, could enhance their capabilities for design and reuse. 
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