MODULE COMPOSITION AND SYSTEM DESIGN
FOR THE OBJECT PARADIGM

by
Joseph A. Goguen and Adolio Socorro

Technical Monograph PRG-117
January 1995

Oxford University Computing Laboratory
Programming Research Group

Woelfson Building, Parks Road

Oxfera 0OX1 3QD

UK

Oxford University Computing Laboratory
Programming Research Group

Wolfson Building, Parks Road

Oxford 0X1 3QD

UK

Electronic mail: goguen,ajstuk.ac.oxford.comlab

Module Composition and System Design
for the Object Paradigm’

Joseph A. Goguen? and Adolfe Socorro
rogramming Research Group
Oxford University Computing Laboratory

Abstract

This paper argues that a powerful module composition facility can enlance the ability of ohject
oriented langnages to reuse aud compose designs, specifications and code. In addition, several
flexible ways to produce prototypes can be supported, including symbolic execution of designs.
romposing prototype versions of cormponents, and using “built-in” modales. Much of this power
comes from having module expressions, theories and views as first class citizens: some comes from
providing both vertical and herizontal composition. and from distiuguishing between sonts for values,
classes for objects, modules for code, and theories as types for modules. New features introduced
ir this paper include dynamie binding with views, vertical wrappers, support for abstract classes
and privale class inheritance, and the dynamic mtegration of components {rom different libraries.
Although we iflustrate these features using the FOOPS language, they could be added to many
otlier languages, and some comparison with other languages is given.

'The research reported in this paper has beeu supported i part by the Scieuce and Engineering Research Council,
the CEC under ESPRIT-2 BRA Working Groups 6071, 1S-CORE (Infotmalion Systems COrrectness and REusabil-
ity) and 6112, COMPASS {COMPrehensive Algebraic Approach to System Specification and developmant), Fuyiisa
Laberatories Limited, a coniract urder the maragement of the Information Technology Promotion Agency (IFA),
Japan. as part of the tndustrial Science and Technology Frontier Programy “New Models for Software Architectures,”
sponsored by NEDO (New Energy and lndustnal Technology Dlevelopment Orgarization), and a scholarship from the
Economic Development Office of Puerto Rico {for Adolfo Socorra)

2Also with SRI Internatienal, Menlo Park CA 94025 USA; partially writlen while on leave at the Technical Upi-
versity of Nova Scotia, Halilax. with partial support from the Nova Scotia provincial government

Contents
1 Introduction

2 Modularisation and Parameterisation

2.1 Inheritance for Sorts, Classes and Modules,....
2.2 Theories, Views, and Generies L e
221 Verificationof Views L e
2.2.2 Behavioural Subelasses Lo o oo oo oo
2.3 Comparison with Constrained Genericity S
2.4 Module Blocks and Kigher Order Composition

3 Support for Design

3.1 Module Expressions e
3.2 Desigus, Views and Properties. L 0oL o
3.3 Abstract Classes e e
3.4 Vertical Composition oL L
3.5 Prototyping

4 Dynamic Binding with Views
5 Summary and Conclusions

References

-

it = = L R /U N N]

el]

14

14

i8

1 Introduction

Although module composition (also called interconnection) is supported by some object oriented
languages, jt has received tess attention than inheritance, Ilowever, thare have been some interesting
developments in this area, including [23], [28] and [2]. This paper claims ibat software design and
reuse can be further enbanced, and that the object paradigm itself can be enriched and clarified,
bv providing medule expressions, theories and views {these terms are explained below), and also
distinguishing the three levels of sorts for values, elasses for objects, and modules for encapsulation,
supporting multiple inheritance at each level. We will show that this allows expressing designs and
high level properties of systemns in a modular way, and allows the parameterisation, composition
and reuse of designs, specifications, and code. In addition, we suggest some new features, including
vertical composition, dynamic binding with views, blocks for modules, and ways to get abstract
classes and private class inheritance through our medule compesition facility.

Qur main programming unit is the module, which allows multiple classes to be declared to-
gether. Our module composition features include renaming, sum, parameterisation, mstantiation,
and importation. These constitute parameterised programming [10], which cin he seen as
functional prograinming with modules as values, theories as t¥pes, and module expressions as (func-
tional) programs. Renaming allows the sorts, classes, attributes and methods of modules to get
new names, while sum is a kind of parallel composition of modules that takes account of sharing.
The interfaces of parameterised modules are defined by theories, which declare both syntactic and
semantic properties, Instantiation is specified by a view from an interface theory to an actual
module, describing a binding of parts in the theory to parts in the actual module; default views
can be used to give “obvious” bindings. A design for a system {or subsystem) is described by a
module expression, which can he parameterised, and can be evaluated to produce an executable
version of the system (some examples are given in Section 3.1). Importation gives ouitiple inher-
itance at the module level. Parameterised programming was first implemented in OBJ [20], has a
rigurous semantics based on category theory [6, 13, 15]. and is a development of ideasin the Clear
specification language [3]. Much of the power of parameterised programming comes from treating
theories and views as first class citizens, For example, it can provide a higher order capability in a
first order setting, as explained in Section 2.4.

A major advantage of parameterised programming is its support for design in the same framework
as specification and coding. Designs are expressed as module expressions, and they can be executed
symbolically if specifications having a suitable form are available, This gives a convenient form of
protatyping. Alternatively, prototypes for the modules involved can he composed to givea prototype
for the system, again by evaluating the module expression for the design. An interesting feature of the
approach we advocate is its distinction between horizontal and vertical structuring, genericity and
compositionality. Vertical structure relates to layers of abstraction, where lower layers implement
or support higher layers. Horizontal strueture is concerned with module aggregation, earichment
and specialisation. Both kinds of structure can appear in module expressions, and both are evaluated
when a module expression is evaluated. We can also support rather efficient prototypisg throngh
built-in modules, which can be composed just like other modules, and give a way to combine
symbolic execution with access to an underlying implementation language.

Parameterised programming is considerably more general than the module systems oflanguages
like Ada, CLU and Modula-3, which provide only limited support for module compoesition. For
example. interfaces can express at most purely syntactic Tesirictions on actual arguments, cannot
be horizontally struclured, and cannot be reused. But in parameterised programming, theories are
modules which can be generic and can be combined using instantiation, sum, renaming, and impor-
tation. Recent work of Batory {2, 29] shares many of our coucerns, and in particular distinguishes
between components and “realms,” which correspond to theories in parameterised programming,

2 2 MODULARISATION AND PARAMETERISATION

although without any semantic constraints. Batory’s approach is primarily based on vertical pa-
rameterisation, although a Limited form a horizontal parameterisation allows constants and types,
without any horizontal composition. Another difference is that we allow non-trivial views, whereas
Batory’s approach only has (implicit) default views. Related work has also been done by Tracz [31],
whose LILEANNA system implements the horizontal and vertical composition ideas of LIL [9] for
the Ada language, using ANNA [22] as jts specification language.

While parameterised programming is not new, some of its applications to the object paradigm
presented here are new; for example, we discuss dynamic binding with views, the support of abstract
classes and private class inheritance, and the dynamic integration of components from different
libraries; also, some comparisons with design facilities in other langnages are given.

We illustrate these issues using FOOPS® [17], a wide-spectrum object oriented specification
language with parameterised programming and with an executable sublanguage. FOOPS is built
upon QBIJ [20], a fnnctional specification and programming language, frotn which it derives many
of its features. More information on FQOPS may be found in [17} and [27]; the latter describes a
prototype implementation developed at Oxford.

2 Modularisation and Parameterisation

Meyer’s comparison of inheritance and composition [23] argued that genericity and inheritance could
simulate each other, and also argued thal simulating inheritance by genericity was unsatisfactory,
because the structnres needed for dynamic binding tend to obstrnct reuse and maintenance. Rosen
[28] described some difficulties with class inheritance, and advocated an approach using Ada-like
module composition; he argned that good language design should emphasise either inheritance or
composition, but not both. However, we argue that one can have the best of both worlds, and
that this gives rise to some usefnl new capabilities, including three different levels of inheritance,
plus theories, views, module blocks, and higher order composition. The following section discusses
some further capabilities that relate more directly to design, including module expressions, abstract
classes, vertical composition, built-in modules, and prototyping.

2.1 Inheritance for Sorts, Classes and Modules

Qur approach distinguishes between sorts, which classify data used for values, and classes, which
classify objects; multiple inheritance is supported for both of these. The main difference between
valnes and ohjects is that values are immutable, whereas objects may be created, updated and
destroyed; for example, numbers are values but cars are {perhaps better seen as) objects. The
semantics of sort and class inheritance is based on order sorted algebra [18].

The modules that we propose can declare several related classes together, whereas the main pro-
gramming unil of most object oriented languages defines a single class with its associated attributes
and methods. For example, this capability is needed in the following FOOPS specification, because
private teachers and independent students each have an attribute that involves the other.

omod PRIVATE-INSTRUCTION is
classes Student Teacher .

at teachers : Student -> SetOfTeachers.
at students : Teacher -> SetDiStudents

endo

*The name FOOPS 15 denived from “Funciional and Object Oriented Programming System.”

2.2 Theories, Views, and Generics 1

Omitted details are indicated by *...”. Here “at” indicates an attribute declaration for the class
following the colon, with the kind of data it holds given after the =>. The “omed...endo” syntax
indicates object-level modules, which can declare both classes and sorts; there are also functional-
level modules in FOOPS, with syntax “fmod. . .endf”, which can only declare sorts.

Parallel to the distinction between class and module, we also distinguish hetween class inheritance
and module inheritance. Class irheritance concerns the hierarchical classification of ebjects; it has
a simple set-inclusion semantics based on order sorted algebra. For example, the class LandVehicle
may be 2 subclass of the class Vehicle, because all land vehicles are vehicles. Module inheritance
supports code reuse by impornation. This kind of inheritance allows old sorts and classes to he
imported and enriched with operations derived from the original ones. For example, 2 module that
defines trigonometric functions may be defined by extending a pre-existing module for floating-
point numbers with declarations for sine, cosive, etc. Or a generic module that declares iteration
methods over special kinds of data structures may simply define the new methods as combinations of
already existing methods on these data structures. Note that these examples do not use either class
inheritance or cliertship, and thus could not be done using the features that are typically available
in languages that identify classes and modules.

2.2 Theories, Views, and Generics

We use theories to define interfaces: these modules declare syntactic and semautic restrictions
on the actual arguments that are allowed for parameterised (generic) modules. For example, the
following object-level theory defines partially ordered sets {in anti-reflexive form):

oth POSET is
¢lass Elt .
at _<_ : Elt Elt -> Bool .
ax E1 < E1 = false .
ax E1 < E3 = true if E1 < E2 and E2 < E3 .

andoth

The underbars in the attribnte name indicate where arguments should be placed. This theory can
be used to restrict the instantiations of a binary search tree module, as follows:

omod BSEARCH-TREE[X :: POSET] is
¢tlaas Tree .
me insert : Tree Elt -> Tree .

endo
where the notation “X :: POSET” indicates that an instantiation is valid only if the formal parameter

X i» bound to a module that satisfies the theory POSET; also, “me” indicates a method declaration.
We now define an EMFLOYEE module which will later instantiate BSEARCH-TREE:

omod EMPLOYEE is
clags Employee .

at name : Employee -> String .
at number : Employes -> Nat
at age : Employee -> Nat

endo

| 2 MODULARISATION AND PARAMETERISATION

(Nat is a sort that denotes the natural nnmbers.) To instantiate BSEARCH-TREE, we need 2 binding
or view of some of the parts in EMPLOYEE to those in POSET, such that the axioms of POSET are
behaviourally satisfied {in the sense of Section 2.2.1 below) by EMPLOYEE under this binding.

Clearly we will want to bind Employea to E1t, but there are several choices for what to bind to
-<.. The following instantiation chooses to order employees by their employee number:

BSEARCH-TREE[view to EMPLDYEE is at El1 < E2 to number(E1) < number{E2} . endv]

Here the binding of Employee to Elt is determined by a default couvention. Actually, we could
define an even more powerful default view convention (which is not implernented in FOOPS) that
would yield the following instantiation

BSEARCH-TREE[view to EMPLOYEE is at E1 < E2 to nama(E1) < mame(E2) . endv]
from the module expression
BSEARCH-TREE [EMPLOYEE]

by looking for an ordering _<. on the sort of the first attribute (which is name) of the first-declared
class of EMPLDYEE. Other possibilities include ordering employees by age, and mapping _<_ to dif-
ferent comparison attributes (e.g., _>_).

In addition to the default and “in-live” views described above. it can be useful to have rensable
views which are declared at the top level and given explicit names. Two examples are

view ENPLOYEE-AS-POSET-BY-AGE from FOSET to EMPLOYEE isg
class E1t to Employee .
at El < E2 to age(E1) < age(E2)

andyv

and

view EMPLOYEE-AS-POSET-BY-NAME from POSET to EMPLOYEE im
class E1t to Employeo .
at E1 < E2 to name{E1} < name(E2)

andy

By the default conventions, the “class” line could be omitted in both cases. BSEARCH-TREE can be
instantiated with these views by the following simple module expressions:

BSEARCH-TREE [EMPLOYEE-AS-POSET-BY-AGE]
BSEARCH-TREE [EMPLOYEE-AS-POSET-BY-NAME]

Views have both a syntactic and a semantic aspect. The syntactic aspect can be given by view
declarations hike those above, or else determined by defanlt. The semantic aspect requires that the
axioms in the source theory be (behaviouraily) satisfied in the target module {which could also be
a theory) under the interpretation given by Lhe view syntax. e may use the notation

vt T — M

to indicate that v is a view from theory T to module M, in both the syntactic and the semantic
aspects.

In addition, theories and views can themselves be parameterised. In the case of a theory, this
may just rean that there are some parameters that have not yet been set, or it may mean some new
structure is being defined over some parameterised given structure (the former is actually a special
case of the lalter}. For example, we may define a parametric theory of vector spaces over a theory
of fields. This might have the following ocutline forin:

2.2 lheories. Views, and Generies 5

fth FIELD ia
sort Scalar
fa 0 : =» Scalar .
fn _+_ : Scalar Scalar -> Scalar [assoc, comm, id: O].

endfth
fth VSP[F :: FIELD] is
sort Vector .

fn © i ->» Vector
fn _4_ : Vector Vector -> Vector [assoc, comm, id: DJ.

andfth
Here £n indicates a function declaration. Also, assoc, comm and id: 0 indicate that the preceding
operation is associalive, commulative. and has identity 0, respectively; froimn a specification point of

view, Lhese can be considered abbreviations for the correspondiug equations.
lu mauch the same way, views can be paraneterised. Flus, a view written with the notation

X = Pl T[X = P — M[X : P
means that there is a view
o[N): TIN] — MIN]

for every module N thai satisfies the parameter theory P.

2.2,1 Verification of Views

It would be 100 restrictive on programming practice to always reqnire a formal proofthat a view
is legitimate; therefore a practical implementation should only require syntactic validity,. However,
the ability to declare axioms in theories not only helps with documentation and design, it also
leaves open the possibility of formal verificatiou for critical applications. We could evenuse a truth
management system to track the soundness of views, which might range from “mechanpically verified”
1o “wishful-thinking.” as suggesied in [9].

Given a view from a theory T tc a module M, the axioms in T are imerpreted behaviouraliy
lalso called ebservationally) in M, i.e., they need only appesr 10 be satisfied. For example. a module
implementing stacks may satisfy the equation pop push{X,3) = S behaviourally withont satisfving
it literally; in fact, this happens for the traditional pointer-array implementation of stacks, in which
“junk” may be left behind the pointer following a pop. This is illustrated in Figure 2.2.1, where the
leftmost stack first has a 7 push’ed onto it. and then is pop’ed, yielding a new stack state that is
different from the origiual state, but is behaviouraily equivalent to it. The behavioural satisfaction
of axioms is used in the next section to explicate the notior of behavioural snbclass.

It is worth pointing out that under the hidden sorted algebraic semantics proposed in {13, 16], it
ran he relatively straighiforward to verify the behavioural satislaction of equations, using standard
techiiques of equational reasoning. Of course, such verifications cansot be easy in all ases, and
indeed, can necessarily be really hard ir some cases, so this claim concerns the ease relative to other
ways to formalise. such as first order logic, or higher order iogic.

4 2 MODULARISATION AND PARAMETERISATION

(e] P TR P [
T T T

Figure 1: Junk after a pop

2.2.2 Behavioural Subclasses

We can use theories, views and behavioural satisfaction to explicate the notion of behaviournl sub-
class: Suppose that we have theories T} and T; that define classes €y and (3, respectively. Then
(" is a behavioura! subelass of) iff there is a view from T to T, that maps €] to Cy; recall
that this means that the axioms in 77 are behaviourally satisfied in Tz. It then follows that any
implementation of C; (i.e., any madel of T;) will be able to exhibit all the behaviour required to
give an implementation of €.

2.3 Comparison with Constrained Genericity

Eiffel’s constrained genericity [23] allows a generic class to be constrained so that certain proper-
ties should be satisfied by actual arguments. This is done using a inheritance relatiou?. For example,
an Eiffel class for binary search trees with the header

BSEARCH-TREE[X -> POSET]

indicates that valid instantiations must bind X to a subclass of the class POSET.

Although this is a significant advance in generic classes, it still has some drawbacks for reusabil-
ity. For example, to create a binary search tree for employees, EMPLOYEE must be a subclass of
POSET. But as we have seen, employees can be partially ordered in many different ways, e.g., by
age, name, salary, department number, seniority, rank, employee number, etc. These relationships
could be obtained by creating a new subclass for each one, e.g., EHPLOYEE=-AS-POSET-BY-AGE and
EMPLOYEE-AS-POSET-BY -SALARY, but such an ad hoc use of inheritance would produce an awkward
plethora of mystiflying subclasses.

This kind of snbelass relationship can also arise at design time. For example, the Eiffel Libraries
[24] contain a class TRAVERSABLE, and data structures for lists aud chains are given as subclasses of
it. The classes HASHABLE and ADDABLE with their descendants are similar. However, this approach
not only produces awkward inheritance relations (e.g., consider how many times EMPLOYEE wonld
have to inherit POSET). but it also require foreknowledge of all relevant properties and potential uses
of a software component, which seems unrealistic.

Structuring by liliraries exacerbates this problem. For example, if POSET and BSEARCH-TREE
belong Lo library L, while EKPLOYEE belongs to library L. theu we have two choices if we want
1o have a binary search iree of empioyees. The first is to change EKPLOYEE so that it is a subclass
of POSET. This is not only dangerous because of possible name clashes with entities in POSET, but
it may even be impossible if the source code of EMPLOYEE is not available. The secoud choice is
to create a new class that captures the relationship. But as discussed above, this can produce a
proliferation of ad hoc subclasses.

In sumunary, class inheritance works best for simple tree (or latlice) structures, bnt in many
applications. a given class may satisflv many different interfaces. and may satisly some of these ju

"The language Dee [21] has a simlar facility; this is also what Cardelli and Wegner [4] call *bounded parametnc
pelymorphism »

2.4 Module Blocks and ligher Order Cumposition

several different ways; furthermore, a given interface may be satisfied by many different classes,
sometines in multiple ways. Moreover, interfaces may have multiple classes and complex properties
that involve several classes.

Meyer’s comparison of inheritance and composition [23] argued that genericity and inheritance
could simulate each other, and also argued that simulating inkeritance by genericity was unsatisfac-
tory, because the structures needed for dynamic binding tend to obstruct reuse and maintenance.
However, the above difficulties with the use of class inheritance for reusing generic software compo-
neuts suggests reconsidering Meyer’s claim that inheritance is more powerful than genericity; these
difficulties also motivate alternative mechanisms for composing software compenents.

The problem of viewing modules differently in different contexts is solved by thecries and views,
without requiring any additional special purpese classes or modules. Because the source and target
of a view are independent of the view itsell, views can express relationships that have not already
heen expressed at design or coding time; this answers the “foreknowledge” probiem. More generally,
views can assert that a given module satisfies many different specifications, or that it satisfies the
same specification in different ways; they can also assert that a given specification is satisfied by
many different modules. Views and theories also solve the library problem, because previously fixed
inheritance relatiouships are not needed for module composition. Moreover, thecries can involve
multiple classes and complex properties of these classes.

2.4 Module Blocks and Higher Order Composition

Module blocks allow several modules to be declared together; maoreover, blocks can be parame-
Lerised, and then all modules in the block have the parameterisation of the block. For example, a
module MAP that defines a inethod map over lists could be declared ir the same block as the module
that defines lists:

block LIST-BLOCKI[X :: TRIVC] is
omod LIST is
clags List
at head : List -> Elt

endo
oth ME is

me m ; Elt -> Elt
andoth

omod MAP[M :: ME] is
pr LIST
me map @ List -> List
endo
endo
where the line “pr LIST .” indicates that module LIST is imported in “protecting” mode, ie., is

such that the new axioms do not change the original meaning of lists.
The interface theory TRIVC is just

oth TRIVC is
class Elt

b 3 SUPPORT FOR DESIGN

endoth

which is part of a standard library of modules; it defines the trivial interface, whicb requires a single
class to be given.

Also, the theory ME declares the interface for MAP, which requires one unary method m on EIt’s,
and map applies m to each element of its argument. Because the block is parameterised by TRIVC, so
are all its modules; of course, 2 module inside a parameterised block can still be parameterised over
other theories, as is MAP. Instantiating LIST-BLOCK, e.g., as LEST-BLOCK {NAT], also instantiates all
of its modules: one for lists of natural numbers, another that provides a generic map method over
those lists, and a third that defines the interface to that generic. Blocks may not be nested.

A significant aspect of blocks® is that private items can be used in subsequent modules within
a block, bui not outside of it. I the above example, this allows map to be implemented using
any aspect of the LIST module, rather than just its public ones, as would be reqnired if LIST were
outside of MAP's block. Higher order operations (as in Smalltalk) can achieve some of the same
functionalily. But such an approach is small-grained, whereas parameterised programming is large-
graiuved, because it encapsulates operations and properties with the data that they manipulate, and
abstracts over complete modules, and even blocks of modules. Moreover, our proposed module
features arefirst order, and thus simpler to reason about (see [11} and [16] for further discussion
of this issue). Of course, blocks are also useful for organising large specifications, especially if they
have significant parts that are similarly parameterised.

3 Support for Design

This section shows hew a single object oriented language can support tle madular expression of
system designs and high level properties, as well as the modular composition and reuse of designs,
specifications and code, plus prototyping by symbolic evaiuation, and more efficient prototyping by
vertical composition or built-in inodules, At each level of abstraction, relationships of refinement
and evolution can be recorded by giving suitahle views and theories. This gives a very rich arnd
convenient ervironment for system development.

3.1 Module Expressions

A module expression specifies the design of a system {or subsystem) in terms of already given
components. We have already seen some generic module instantiations, which are a simple special
kind of module expression. Two further operations used to form module expressions are renaming
and sum,

Renaming permits module entities to be given new names, which makes it easier to adapt modules
Lo uew contexts. For example. il a binary search tree will store indices from a database, it is more
natural to call the class Index rather than Tree. This is accomplished using the ~*” operator, as in

BSEARCH-TREE [STRING-AS-POSET] = (class Tres to Index}

which instanuates BSEARCH-TREE and renames the class Tree; here STRING-AS-POSET is a view of
strings (the lndex’s keys) as posets. Methods can also be renamed. as in

BSEARCH-TREE[STRING-AS-POSET] » {(class Trae to Index, me insert to add-key)

*0ur current pratotype implementation of FOOPS does noL yet support module blocks.

3.2 Desigus, Views and Properties g

Renamijug is not available in Smalltalk or C++, but it is in Eiffel, although there it is tied
to class inhetitance, so that features of clients cannot be renamed, and neither can classes. Ada
supports renaming, but not as part of a “package expression” sublanguage.

Sum. denoted “+", combines the contents of modules, taking sharing into account. For example,
in LIST(ACCT] + SAVINGS-ACCT + CHEQUE-ACCT there is only one copy of ACCT.

More complex module expressions may use multi-level instantiation, default views, renamings
apd sum. For example, the following :nodule expression describes a parsing statk and a hlock-
structured symbol table:

STACK[LIST[TOKEN] *+ (class List to Sentenca}] +
STACK[TABLE [TUPLE[STRING,TYPE)
+ (claas Tuple to Variable,
at fst to name, at snd to type)]
* (class Table to Scope}]
» (class Stack to SymbolTable)

With the make command, module expressions are “evaluated” (or “executed”) to construct new

named modules, as in

make PARSER is
.. tha previous module aexprassion ...
endm

It is the possibility of actually building (ie., composing) systems that distingnishes module
expression evaluatiou from so-called “module interconnection languages,” which merely provide
descriptions of the structure of systems. Module composition greatly enhances the ability to reuse
software. The semantics of module expression evaluation is based on the category theoretic concept
of colimit, as described for example in [13] and [15].

Some readers may consider the use of module expressions with theories and views too verbose.
However, a single module instantiation can compose many different functions al] at once. For
example, a generic complex arithmetic madule CPXA can be easily instantjated with any of several
real arithmetic modules as actual parameter:

« single precision reals, CPXA[SP~REAL],
» double precision reals, CPX4 [DP-REAL], or

» multiple precision reals, CPXA[KP-REAL].

Eacl instantiation involves substituting dozens of functions into dozens of other functions. Further-
mote, [11] suggests an abbreviated notation that is very similar to that of higher order functional
programuning, for those cases where one really is just composing functions.

3.2 Designs, Views and Properties

(iiven a system design in the form of a module expression, properties of that system can be expressed
by giviug views from a theory to the result of the moduie expression. Of course, this alse applies to
subsystems, which may themselves be parameterised. Thus, module expressions, views and theories
can together provide a convenient way of describing and reusing high level system designs.

The following FOOPS code specifies a parameterised module BOX®, whose parameters are rate
and maxV, each constrained by axiorms to be a positive floating point number; the module SIGNAL
defines its interface, by declaring these operations as constants.

“The name 15 meant Lo suggeal the Kind of “black box™ that mighL appear in a signal processing system,

Ity 3 SUPPORT FOR DESIGN

fth SIGNAL is
pr FLOAT .
fn rate : —-> Float
fn naxV : -> Float
ax rate » 0 = true
ax paxV > 0 = truse
endfth

omod B0X[S1,52 :: SIGNAL] is
endo
Now we can define and name a generic architecture {i.e., parameterised design), with

make S¥S1[X :: SIGNAL] is BOX([X,T1} + BOX[X,T2] endm

The keyword pair maka. . .endm indicates that this system is to be actually composed, not merely
defined. Itsaame is SYS1, and its parameter is as given by SIGNAL. The SY31 architecture has two
BOX modules, each with X as its first argument, and with some other alteady defined subsystem (T1
and T2, respectively) as its second argument.

Properties (or constraints} at the system level can be treated essentially the same way as prop-
erties at the module level. [n particular, the assertion that some properties hold of some system is
often most tonveniently expressed by giviug a view from an appropriate theory to the system. For
example, if the theory T contains constraints about stability and accuracy, and if M is some system
that should satisfy those constraints, then this can be expressed by giving a view

v:T— M.

In this way, the assertions become reusable. Exactly the same techniques could be used for verifying
such an assertion as for verifying that a given actual module M satisfies the interface theory T of
a generic medule P; the view v simply expresses the binding of the actual syntactic parts of ¥ to
the formal enes in T, and the axioms in T must be (behaviourally) satisfied for the corresponding

entities in M.
The system SYS1 is more interesting, because it has interface parameters for which the constraints
niay be satisied by some values, but not by others. For example, if T is defined by

fth T is

fn a ; ->» Float

fn b : -» Float

ax a *b <= 2 % pi = true .
endfth

then
v: T — SYS1[A]

may lead to satisfaction of the constraint in T for some values of rate and maxV, and not for others.
For some applications, it might be useful to use a consiraint solving system to determine the values
of these parameters for which v really is a view.

Parametericed module expressions and the make stalement give a convenient way to support
implementation families in the sense of Parnas [26].

3.3 Abstract Classes i1

3.3 Abstract Classes

Several object oriented languages provide support for so-called abstract classes. These function
like templates for classes, in that they declare some methods and attributes that must be defined
in their subclasses, and may also introduce some new nmiethods defined in terms of these given ones.
For example, in Eiffel [23], a class declared as abstract (“deferred”) can bave methods that do not
have executable code; in C++4 and Ada 9X (1}, a class is abstract if any of its methods is not
defined. Abstract classes are used for high level design. They are not generic, and are not meant to
be instantiated, but rather to have their deferred methods and attributes defined in different ways
by different subclasses.

Parameterised programming can provide this capability by definiug an abstract class as a theory,
and then importing that theory into executable modules where it is enriched with subclasses that
provide execurable definitions for the deferred methods. The advantage of this is that it does not
require any new language features. Let us illustrate this with several kinds of bank account, starting
with ar abstract class theory that captures the basic properties of accounts:

oth ACCT is
class Account
pr MONEY .
at balance : Account -> Money .
me debit : Account Money -> Account .
me credit : Account Money -> Account .

me transfer_from_to. : Mcney Account Account -> Account
ax transfer M from 4 to A’ = debit(A,M); credit{A’,M)
endoth

The module MONEY is imnported in a way that “protects” data of sort (not class) Money, i.e., in a
way that does not affect the meaning of money. Note that debit and credit are declared but not
defined, while the transfer method is defined using them.

The following modnles define two different subclasses of Account, each providing an executable
definition for debit and credit:

omod SAVINGS-ACCT is
class Saviccount .
inc ACCT .
subclass SavAccount < Acceunt
at interest-rate : SavAccount -> Float .
me debit : Savaccount Money -> SavAccount
ma credit ! SayAccount Money -> SavAccount .
. axioms for debit and credit and other declaratiomns ...

endo

omod CHEQUE-ACCT is
class ChAccount
inc ACCT .
subelass ChAccount < Account .
me debit : ChAccount Money ->» ChAccount .
me credit : ChAccount Money -> ChAccount |
. axioms for debit and credit and other declarations ...

endo

12 3 SUPPORT FOR DESIGN

The kine “inc ACCT ." above indicates an “including” importation of the theory ACCT; it allows
imported dasses to serve as the base for new subclagses. In a system tbat combines the modules
LIST[ACCT], SAVINGS-ACCT and CHEQUE-ACCT, list objects may hold both savings and checking
accounts. But since class Account js abstract, it will have no objects that do not belong to a
proper subdass. (The current prototype implementation of FOOPS provides only partial support
for abstract classes.)

3.4 Vertical Composition

The instantiations and views given above illustrate horizontal compeosition, which concerns mod-
nles at thesame level of abstraction. We also recommend vertical composition, which concerns
the implementation of modules. Here one may think of “abstract machines” that depend upon lower
level abstract machines; in general, there can be an n-level hierarchy, with machines at level i de-
pending onmachines at level 1~ 1, for § < 1 < n. For example, a class for sets may be implemented
using any cass whose objects behave like lists. To express this example in FOOPS?, we would first
give a theory describing lists:

oth LIST[X :: TRIVC] is
class List
at head : List =» Elt .
me iasert : List Elt -> List .

endoth
which is {horizontally) parameterised by the elements to be stored in lists, The module SET invo]ves

one horizontal interface and one vertical interface. The horizontal interface is for elements, while
the vertical mterface is for the data structure used to represent lists:

omod SETLX :: TRIVCI{REP :: LIST[X]} is

ando
Here we indicate the vertical interface using “set brackets,” as opposed to the “square brackets”
used for horzontal interfaces: the meaning is that REP can only be bound to modules that satisfly
the properties specified in the theory LIST, instantiated with the horizontal parameter X. This kind
of parametersation allows us to obtain several different implementations of sets by simply varying
the vertical actual parameter that is given as argument 1o SET.
If LIST-HACK satisfies LIST, then the following is a legal instantiation of SET,

SET [EMPLOYEE] {LIST~HACK-AS-LIST[EMPLOYEE]}

where LIST-HACK-AS-LIST is a parameterised view from LIST 1o LIST-HACK. Note that the vertical
instantiation uses a default view from TRIVC to EMPLOYEE that maps E1t to Empleoyese.

Vertical and horizontal composition have different semantics; having both helps with separating
design concerns from implementation concerns, and with documenting the structure and dependen-
cies of a software system. One important semantic difference is that horizontal modnle inheritance

T Although vertical camposition was in the design ol LIL (from 1983), it was not included in the original design of
FOOPS; however, we naw intend to add it to FOOPS. The idea comes lrom some eatlier work with Rod Burstall on
a system called CAT [i4]

3.5 Prowetyping 13

is cumulative (i.e., transitive), while vertical module inheritance is not. For example, a module that
uses an instantiatiou of SET parameterised as above, will not have access to the code associated with
the vertical actual, although all (public) features of the horizontal actual will be visible to it. This is
actually stronger than just hiding those operations of sets whose rank mentions any of the features
of the vertical actual.

This regime of vertical visibility, together with a further modnie import mode in FOOPS, sup-
ports useful technique that we will call vertical wrapping. Here some module ¥ that is almost
what we want for some application is vertically imported into a “wrapper” module ¥, from which
the functionality that we really want is re-exported, possibly slightly modified from that provided
by M; for example, it may bave a different syntax, some new operations defined in terms of the im-
ported ones, and some operations may be hidden. The “using” import mode provides a capability
for copying and modifying the text of the imported module, through instantiation, renaming and
visibility redeclarations. In particular, vertical wrapping can provide so-called “private” or “imple-
mentation” inheritance [21, 30] as 2 special case, This allows a class B to inherit from a class 4 in
a way that forbids placing B objects where A objects are expecied; it is solely a way to reuse code.
Vertical wrapping can achieve this by importing the module that eclares 4 and then renaming 4
to B {and possibly renaming other features and altering visiLility). as in

u

omod W is
using M * (class A to B, private ...}
sndo

The wrapper module could also add more attributes and methods to B if desired, This flexibility
illustrates another benefit of distingnishing between class and module inkeritance, that there is no
need for dubious variants of inheritance to provide the above functionality. In our opinion, class
inheritance should be nsed for the hierarchical classification of objects, and no! to support the reuse
of code.

3.5 Prototyping

N a system has been specified using equations that have a certain (not very restrictive) form, then
the specification can be symbolically execnted using term rewriting in much the same way that OBJ
does (7, 20]. This provides a rapid prototyping capability that we have found useful in experiments
with our current FOOPS implementation.

A second approach is more straightforward: simply write the design of a system as a module
expression (or a systern of module expressions defining the system, subsystems, etc.), and then either
supply standard library modules, or else write rapid prototypes for each bottom level component,
It is worth noting how vertical composition can play a réle in this. If some kibrary module is close to
but not actually identical with what is needed, then the library module could be vertically imported
into a new wrapper module that provides the necessary new functionality, buiiding on top of the
old one (as described in Section 3.4).

Aunother approach uses built-in modules to encapsulate code written in one or more implemen-
tation languages. This can provide access to libraries in other languages, give high level structure
to old code, and interface with low level facilities such as operating system calls. Built-in modules
were developed for OBJ [26]. where they implement standard data types. such as natural numbers
and Booleans®, In FOOPS, built-in modules implement both standard data types and standard
classes. In both OBJ and FOOPS, it is not difficult to write new built-in modules to ptovide new

*These built-in modules can use Lisp and C code, because both FOOPS and OB} are implemented in Kyoto
Common Lisp, which is based on C.

14 5 SUMMARY AND CONCLUSIONS

functionality; for example, the 20BJ meta-logical theorem proving system has been built on top of
QOBJ3 in this way [19].

4 Dynamic Binding with Views

We can usea view from T} to Tz at run Hme to solve what we call the hierarchy infegration problemn.
We first explain the problem with an example. Suppose a module FIGURE declares an abstract
class Figure that is used by various modules in some window system, and that we now wish to
use this system in conjunction with another system that has a module BLDB declaring a class Blob
that satisfies the properties needed for being a Figure. Bul before we could use blobs as figures
in the window system, we would need to add the subclass declaration to the BLDB module. This
situation isdifferent from the library probiem mentioned in Section 2.3, because here the inheritance
relationship is necessary.

We suggest the following solution: If some method expects a figure and is given a blob, there is
no problem if Blob is already a subclass of Figure. Otherwise, look for a view that says how blobs
can be seen as figures. This view should be supplied once when the BLOP system is integrated with
the FIGURE system, using a syntax like the following:

dviev from FIGURE to BLOB is
<lass Figure to Blob .
me display to shovw .
enddv
This “dynamic” view declares the intended way of viewing Blob's as Figures’s. Note that this
approach dees not require changing the BLOB module. For example, if f is a variable of class Figure
which refers at run time to an object of class Blob, then the call display{#) results in show(f)
being called. This indirection is similar 10 that which occurs for ordinary dynamic biuding. We are
currently examining how to integrate dynamic hinding with views in our prototype implementation
of FOOPS.

Another way to approach hierarchy integration is through reflection and metaclasses. Here, the
view from FIGURE to BLOB could be added to the melaclass for BLOB, for example by sending a
message or executing an assert command. The dynamic effect would be the same as that described
above. However, the semantics seems more problematic, especiaily if one is trying to maintaim an
algebraic foundation.

Vertical wrapping and dynamic binding with views are related to the “adapters” and “wrappers”
of [8]. Adapters take an old class and produce a new one that provides a different interface. Wrappers
add properties to objects (e.g., a border to an existing window object) or classes (just Lke mix-ine}.
Vertical wrapping can be seen as providing linguistic support for some of these activities, but perhaps
in a more general way because of features such as module expressions and the separation between

class and module inheritance. However, FOQQPS does not support adding properties dynamically to
objects. Dynamic binding with views is unlike adapters in that it does not involve any new classes.

5 Summary and Conclusions

This paper has argued that a sufficiently powerful module composition facility can significantly
enhance the ability of the object paradigm to support the reuse of designs, specifications and code.
Major features include module expressions for vertical and horizontal composition of parameterised
modules with semantic interfaces, views for binding such interfaces to actual modules, and theories

15

for describing the interfaces. This approach allows a single module to have several interfaces, and a
single interface to be used for several different modules. Renaming, built-in modules, module blocks,
and dynamic binding with views all further enhance the flexibility of reuse and rapid prototyping,
which can be supported in several different styles, including the symbolic execution of suitable
specifications.

We also argued for distinguishing between sorts for valnes, classes for objects, and modules for
code, with a different notion of inheritance at each level. In addition, we noted tkat behavioural
subclasses arise in a natural way through views because of their semantic basis in behavioural
satisfaction, we showed how higher order capabhilities can be obtained within a first order setting,
and how vertical composition supports some useful ways to contral visibility, incuding “vertical
wrappers.”

Our prototype implementation of FOOPS supports many of the features described in this paper,
while others are currently being considered for implementation. We expect that verticality, module
blocks and abstract ¢lasses could be implemented straightforwardly by building on facilities already
in FOOPS. On the other hand, dynamic views would require more effort.

We note that most of the features discussed have an algebraic semantics, This has the advantage
that reasoning about them can be relatively effective because of the efficient algorithms that are
available for many problems in equational logic.

We suggest that the object community may not have paid sufficient attention to large-grain
phenomena such as generic architectures (i.e., designs) for large systems, the global properties of such
designs, the compatibility of snb-components, the integration of these capabilities with configuration
and version management, and the recording of design and historical information. Related discussions
may be fouud in {5, 25] and {12]; the latter suggests a methodology called “hyperprogramming” for
integrating the entire life cycle thrangh parameterised programming, including requirements, design,
specification, coding, maintenance, documentation, and version and configuration management. We
suggest that adding features like those discussed in this paper to existing chject oriented languages,
even those that identify classes and modules, could enhance their capabilities for design and reuse.

Acknowledgements

We thank Panlo Borba, Jason Brown, Professor Ralph Johnson and Augusto Sampaio for useful
discussions about the materjal preseuted here, and for their comments on earlier draftsof this paper,

16 REFERENCES

References

[1) Sohn Barnes. Introducing Ada 9X. Technical report, Intermetrics Inc., February 1993.
Ada 9X Project Report.

(2] Don Batory, Vivek Singhal, and Jeff Thomas. Scalable software libraries. In Proceedings
of the ACM Symposium on the Foundation of Software Engineering, 1993 {to appear).

{3] Rod Burstall and Joseph Goguen. The semnantics of Clear, a specification langnage, In
Dines Bjorner, editor, Proceedings, 1978 Copenhagen Winter School on Abstract Soft-
ware Spectfication, pages 202-332. Springer, 1980. Lecture Notes in Compuler Science,
Volume 86; based on unpnblished notes handed out at the Symposium on Algebra and
Applications, Stefan Banach Center, Warsaw, Poland, 1978,

(4] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-
morphism. Computing Surveys, 17(4), December 1985.

. Peter Deutsch. Posted comments. i newsgroup comp.object, May .
[5) L. P D h. Posted USENET b May 1992

{6] Razvan Diaconescu. Joseph Goguen, and Petros Stefaneas. Logical support for modu-
larisation. In Gerard Huet and Gordon Plotkin, editors, Logical Environments, pages
33-130. Cambridge, 1993. Proceedings of a Workshop held in Edinburgh, Scotland, May
1991.

[7] Kokicli Futatsugi, Joseph Gognen. Jean-Pierre Jouannaud, and José Meseguer. Princi-
ples of OBJ2. 1n Brian Reid, editor, Proceedings, Twelfth ACM Symposwrm on Principles
of Progrumrning Languages, pages 52-66. Association for Computing Machinery, 1985.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Viissides. A catalog of object-
oriented design patterns. Technical report, Taligent Corporation, Cupertino, California,
1903.

[9] Joseph Goguen, Reusing and interconnecting software components. Computer, 19(2}:16~
28, February 1986. Reprinted in Tulorial: Software Reusability, Peter Freeman, editor,
[EEE Computer Society, 1987, pages 251-263. and in Domain Analysis end Software
Systerns Modeliing, Ruhén Prieto-Diaz and Guillermo Arango, editors, IEEE Computer
Society, 1991, pages 125-137.

[10] Joseph Goguen. Principles of parameterized programming. In Ted Biggerstall and Alan
Perlis, editors, Seftware Reusability, Volurne [: Concepls and Modcls, pages 159-225.
Addison Wesley, 1989.

[11] Joseph Goguen. Higler-order functions considered unnecessary for higher-order pro-
gramming. [n David Turner, editor. Research Topics in Functional Programming, pages
309-352. Addison Wesley, 1990. University of Texas at Austin Year of Programming
Series; preliminary version in SRI Technical Report SRI-CSL-88-1, January 1988.

[42] loseph Goguen. Hyperprogramming: A formal approach to software environmeuts. In
Proceedings, Symposium on Farmal Approaches to Seftware Environment Technology.
Joint System Development Corporatior, Tokyo, Japan, Jannary 1990,

[13] Joseph Goguen. Types as theories. In George Michael Reed, Andrew William Roscoe,
and Ralph F. Wachter, editors, Topology and Category Theory in Computer Science,
pages 357-390. Oxford, 1991. Proceedings of a Conference held at Oxford, June 1989.

REFERENCES 17

(14]

[15]

[16]

[18)

(9]

f201

(21]

[22]

l23]

[24]

Jogeph Goguen and Rod Bnrstall. CAT, a system for the structured elaboration of
correct programs from structured specifications. Technjcal Report Report CSL-114, SRI
Computer Science Lab, October 1980,

Joseph Goguen and Rod Bursiall. Tnstitutions: Abstract model theory for specification
and programming. Journal of the Association for Camputing Machinery, 39(1):95-146,
January 1992. Draft appears as Report ECS-LFCS-90-106, Computet Science Depart-
ment, University of Edinburgh, January 1990; an early ancestor is “Introducing Insti-
tutions,” in Proceedings, Logics of Programming Workshop, Edward Clarke and Dexter
Kozen, Eds., Springer Lecture Notes in Computer Science, Volume 164, pages 221-258,
1984.

Joseph Goguen and Razvan Diaconesen. Towards an algebraic semantics for the object
paradigm. In Proceedings, Tenth Workshop on Abstract Data Types. Springer, 10 appear
1993.

Joseph Goguen and José Meseguer. Unifying functional, object-oriented and selational
programming, with logical semantics. In Bruce Shriver and Peter Wegner, editors, Re-
search Direclions in Object-Oriented Programming, pages 417-477. MIT, 1987. Prelim-
inary version in SIGPLAN Notices, Volume 21, Number 10, pages 153-162, October
1986.

Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theorelical Computer
Science, 105(2):217-273, 19892, Also, Programming Research Group Technical Mono-
graph PRG-80, Oxford University, December 1989, and Technical Report SRI-CSL-89-
10, SRI International, Computer Science Lab, July 1989; originally given as Jecture at
Semninar ore Types, Carnegie- Mellon University, June 1983; many drafi versions exist,
{rom as early as 1985.

Joseph Goguen, Andrew Stevens, Keith Hobley, and Hendrik Hilberdink. 20BJ, a met-
alogical framework based on equational logic. Philosophical Transactions of the Royal
Society, Series A, 339:69-86, 1992. Also in Mechanized Reasoning and Hardware Design,
edited by C.A.R. Hoare and M.J.C. Gordon, Prentice-Hall, 1992, pages 69-86.

Joseph Goguen. Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Plerre
Jouannaud. Introducing OBJ. In Joseph Goguen, editor, Applications of Algebraic
Specification using OBJ. Cambridge, to appear 1903, Also to appear as Technical Report
from SR1 International,

Peter Grogono. Issues in the design of an object-oriented programming language, Struc-
tured Programming, 12:1-15, 1991.

David Luckhasm, Friedrick von Henke, Bernd Krieg-Brickner, and Olaf Owe. ANNA: A
Language for Annotating Ada Programs. Springer, 1987. Lecture Notes in Computer
Science, Volume 260.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 1083,

Bertrand Meyer and Jean-Marc Nerson. Eiffel: The libraries. Technical report, Interac-
tive Software Engineering, October 1990. Report TR-EI-7/LL

REFERENCES

[25] Oscar M. Nierstrasz. A survey of object-oriented concepts. In Won Kim and Frederick
Lochovski, editors, Object-Oriented Concepts and Applications. Addison-Wesley, 1988.

[26] David Parnas. A technique for software module specification. Corntnunications of the
Association for Computing Machinery, 15:330-336, 1972.

[27] Lucia Rapanotti and Adolfo Socorro. Introducing FOOPS. Technical report, Program-
ming Research Group, Oxford University, 1992.

[28]). P. Rosen. What orientation should Ada objects take? Communications of the ACM,
35(11):71-76, November 1992.

[29] Vivek Singhal and Don Batory. P++: A language for large-scale reusable software
components. Technical report, University of Texas at Austin, 1993 (to appear).

[30] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, second edition,
199].

[31] Will Tracz. Parameterized programming in LILEAXNA. In Proceedings, Second Interna-
tional Workshop on Software Reuse, March 1993. Lucca, Italy. To appear.

