
THE TIMED FAILURES-STABILITY MODEL FOR
CSP

b}

G.~1. Reed and A.W', Hosro('

Technical Monograph PRG-119
ISB]'; 0-90292R-93-7

Februa.ry 1996

Oxford University Computing Laboratory
Programming Resea.rch Group
\\Tolfsou Building, Parks Road
Oxford OXl 3QD
England

Copyright © 1996 G.M. Reed and A.W. Roscoe

Oxford University Computing Laboratory
Progra.mming Resea.rch Group
Wolfson Building. Parks Road
Oxford OX] 3QD
England

1

The Timed Failures-Stability Model for CSP

G.M. Reed and A.W. Roscoe l

Oxford University Computing Laboratory

Parks Road, Oxford OX 1 3QD, \j.K

ABSTRACT. We present a mathematical model which i!:i the most ab
stract allowing (i) a fully compositional semantics for timed CSP and
(ii) :-l uatural abstraction map into the ;,;tandard failurc!:ijdivergen(;rS
model of untimed esp. We discuss in detail the construction and

properties of this model, and explore the variety of nondeterministic
behaviour it encompasses. We argue that, at least in some sense,
this model is definitive for timed esp.

Introduction

Although widely IDled throughout the world in such critical applicatiClllS as
aviation and nuclear power, real-time proglamming is a poorly undent.ood
discipline. There are severe problems which arise in understanding the be
haviour of real-time sequential code, for example relating to 5chcdulin.g poli
cies. The complexity of these problems will only intensif:y as we increa;;ingly
implement distributed real-time systems with the consequent possibility of
nondetermjnistic behaviour. It is imperative that we begin now to develop
the formal models on which the eventual solutions must be based. The au
thors have been working in this area for several years now, and have devised
a number of related models for Timed esp, a straightforward extension of
Hoare's CSP notation. This paper presents the model which is central to
their work.

ITbe authoI'8 gratefully acknowledge that the work reported III this paper wa", sup
ported by the U.S. Office of Naval Research and the ESPRlT Projects SPEC and REACT.

1

Theories of concurrency can be divided into 'untimed' ones, which ig
nore the precise times at which events occur, concentrating only upon their
relative order, and 'real-time' ones which do record these times. Untimed
theories tend to be simpler to apply and are used when one is not concerned
about the precise timing details of a system (or are leaving these for later)
and when the system does not rely for its correct internal functioning upon
time-dependent features such as timeouts. One of the major contributions
of the esp/ees conceptual model of concurrency, with no shared memory
and handshaken communication, is that it does have a rich and usable un
timed theory and, uutil a few years ago, the literature concentrated on this
side.

Nevertheless there are occasions where timed analysis is necessary, and
so a number of models and methodologies have arisen for dealing with real
time. The authors' philosophy in designing real-time models has always
been that the timed theory should nut be separate from the uutimed onc,
but should be a natural extension of it where there are well-understood
ways of using both theories in the same development. Thus one should be
able to prove properties about the untimed behaviour of a system, and be
able to use this information rigorously when later refining it to meet timing
constraints. Equally, if one is building a large and complex system where
one needs to rely on timing only for the correctness of a few components,
then we should have ways of localising the more complex timed analysis to
t.hose components.

To this end we have developed a number of timed models at different
levels of abstraction in such a way that they and the untimed model"! form
a natural hierarchy, with abstraction maps between them. Aspects of this
work have already been reported and applied in a number of references,
for example ([Re,1990] and [RRS,1991]l. The key to getting the connection
with the untimed models has been our use of the coucept of stability (a form
of observation dual to divergence) together with more obvious ones such as
timed analogues of traces and refusals.

The purpose of this paper is to set down in definitive form the Construc
tion: philosophy and properties of the model that plays the central role in
our theory, the timed failures-stability model. Though relatively complex, it
turns out to be the simplest model which both gives a fully compositional
congruence for Timed esp and which extends the standard untimed fail
ures/divergences model of esp. The model presented here is somewhat more
refined than the earlier version which we presented in [RR,19S7].

2

Having constructed the model we then seek to understand it, and also
the nature of nondetermlnism in real-time concurrency, by carrying out an
in-depth study of the forms of nondeterministic behaviour it predicts

We will show how the model can be used to give semantics to CSP. It
can be argued that it is wrong to settle on a single semantics for a real-time
language such as Timed esp, since to do so constrains the implementor too
much. And it is true that if one were implementing the constructs of esp
there would be a wide range of possible timed behaviours possible, no single
one of which we could say is 'right'. CSP is, however, essentially a theoretical
and specification language rather than one in which implementations are
built directly. Therefore we will argue that it is sensible to have a single
standard semantics for Timed esp with as clean and elegant a semantics as
possible. The timiug details of implementations can then be built up frem
its constituent parts.

Finally, we conclude with a brief survey of the growiug body of work that
is developing around this and our other models. This ilJdudcs extenSil)]lS to
our basic theory, connections with other strn.nds of work such as tenqJUral
logic, the development of methods to make the application of this wurk
easier, and a number of real appncatiolJs.

2	 Time and topology: the construction of the
model

2.1 The syntax of Timed CSP

At this stage it is appropriate to define the language we will use, in order
that we can discuss it properly.

The version of untimed esp we use is essentially that of [BHR,1984],
[BR,1985] and [H,1985]. Additionally we will denote by -l tbe diverging pre>
cess which performs an infinite sequence of internal actions without ~ommu
nicating. Further, we will allow infinite nondeterministic choices n Sand
the biding of infinite sets of events P \ X.

One might think that a wide range of additional operators would be
required to reflect timed behaviour (e.g., timeouts and interrupts). But in
fact, under the standard semantics which we shall see later, it is possible to
produce all of the commonly needed ones as derived operators (i.e., combina
tions of standard ones) if we introduce a single extra primitive: WAIT t for

3

each real number t :;::: 0 is the process which for t units of time engages in no
event visible to the environment and which then becomes able to terminate
successfully. Intuitively, SKIP should coincide with WAIT O. Therefore l for
now at least, we will only add this one constrnct to the untimed language.

In constructing the language, we assume we are given an alphabet 'E
from which all communications are drawn. In the syntax below, a ranges
over Ei X, Y over subsets of 'E; f over the set of functions from 'E to E; and
F over 'appropriate' compositions of our syntactic operators. P(a) denotes
a function from the given X to the space of processes and S ranges over
nonempty subsets of the set of processes. p ranges over process variables
(needed to define recursions).

P;;=	 1- I STOP I SKIP I WAIT t Ia -+ P Ia: X -+ P(a) I

PlOP, IP, n P,I n SIP, II P, IP, x lIy P, i P, III P, I

?I;P,I PIX I r1(p) I f(P) IP II'p·P

Technical notes. In order that the above syntax is properly defined we
need to place a bound on the size of sets over which we allow ourselves to
lake nondeterministic choices. This bound can be any cardinal. We will
find later that we need additional restrictions on the range of the function
P(a) and the members of each infinite Set over which we apply n. These
additional restrictions will be described and disl:ussed later.

2.2 Postulates

Timed CSP inherits more than it~ syntax from the untimed version of the
la.nguage. Our basic understanding of what a. CSP process is stays the
same. It is an entity which communicates in some alphabet of atomic events.
These communications are still thought of as instantaneous: the moment
when an event occurs is the time when the handshake which is 'its essence'
takes place. The fact that each sequential process performing an event
actually takes some time to perform it is reflected in a delay between the
instantaneous occurrence and the time when the sequential process is able
to do anything else. Timed CSP also retains the postulate that any event
that is observable by the environment can only occur when the environment
offers it: a handshake between the process and the environment. This means
that the view the environment has of a process is essentially the same as
that of a another process with which it might be combined in parallel.

4

We now state and discuss a number of assumptions we make which are
specific to the way we view time. Some we wonld regard as obvious and
others as ones which could have been varied. Yet others turn out to be
necessary for subtle reasons we seek to explain.

(I) Continuous time domain. The time domain consists of the nOIL

negative real numbers R+, and there is no lower bound on the time difference
between consecutive observable events. The other plausible general-purpose
time domain would be the natural numbers N (i.e., nonnegative integers).
We choose R + r ather than N because the latter implies a granularity which
might be appropriate in modelling a synchronous system, but we wish to
model processes running Mynchrollously in parallel. Using N in the latter
case would sometimes force lL<; to regard two events as happelling simul
taneously even when they do not, which might lead us into errors when
reasoning about the system where this occurred. It will, neverthelEss, be
necessary to allow several events to happen at the same time since t:lere is
nothing to stop a pair of unsynchronised parallel processes l.:oCllInunicating
f:iinlllltaneously.

We do not specify the units being used to model time: they mi~ht be
nanoseconds, seconds or years so far as the theory is concerned. Huwever
in describing examples it is useful to follow the convention that the time
consumed by the completion of an event as described above is geTleral1y
much less than 1.

(2) A global clock. We assume that all events recorded by procesnes
within the system relate to a coneeptual global clock. This is time as recorded
by some notional environment which interacts with the process and observes
what happens and when. The environment's clock is not available :n a.ny
sense to the processes comprising a network. This single thread of ob5erved
time leads to greater simplicity and abstraction.

When an application reqnires a clock which processes can refer to, then
we must model the clock directly in Timed esp, probably as a process
that runs in parallel with the ones which use it. We might well buill,] some
nondeterminism into the definition of snch a clock to allow for the fact that
it does not keep perfect time, and if there were more than one such clock
then this nondeterminism would allow for them drifting apart.

(3) Realism. We postulate that no process can perform infinitely many
actions in a finite time. It is necessary to build thiB postulate into any
semantics we build for esp. Given the language described above, one would
expect it to be maintained under the condition that any unwinding of a

5

recursion is assumed to take time bounded below by some positive constant
o. It also turns out to be necessary, because of the expressive power of our
model, to impose constraints on the domains of infinitary operators such as
n and a: X -+ P(a). This will be discussed more later.

(4) Hiding and termination. We wish (a -+ P) to denote the process
that is willing at any time to engage in the event a and then to behave like
the process P. Clearly, if P = a ..-) P,we then wish P \ a = -.1. However,
consider P = a -+ STOP (the process that is willing to engage in a at any
time ~ 0 and then to deadlock). What do we wish P \ a to denote?

We have already discussed the principle that, in CSP, observability is
equated with external control. Given the process a -+ P and an environment
eager to perform an a immediately, we would expect that a would indeed
occur at time o. By hiding, we remove control over the event(s) hidden.
Hence, any time a process is willing to engage in a hidden action1 it is
permitted to do so and we would expect the hidden event to occur if no
other event did. Thus, we assume that each hidden event takes place as
soon as such an event becomes possible.

Our intuitive model of hiding is that of placing a given process within a
box in which all the events to be hidden are constantly on offer, and then
concealing all the hidden events within the box from the environment.

In the above example, we would wish:

(a -+ STOP) \ a = WAIT~; STOP

where € is the time (assumed here to be deterministic) for the completion
of the event a.

In order to model this idea of an event occurring as soon as it becomes
available, we will need to record (either explicitly or implicitly) not only
those times at which events are available, but also those at which they ('.an
become available.

Exactly the same argument applies to occurrence of the termination
event ...j in the sequential composition P; Q. The effect of this composi
tion is to make such an event invisible and automatic, exactly as in hiding.
Therefore we make the same assumption, namely that the hidden ...j will
occur and enable Q as soon as it becomes available in P.

(5) Stability and the treatment of divergence. As indicated ear
lier, stability plays the same role in the timed models as its dual, divergence
does in the untimed ones. All behaviours we record in the timed models will

6

come from observations we can make up to some finite time. This means
that they are ve ry different from the two types of observation recorded in
the failures/divergences model for untimed CSP. There, the failure (s, X)
meant that, after the trace s, the process would refuse X even if it were
offered for ever after; s being a divergence means that we can watch the
process performing internal actions, once again for ever. A process becomes
stable when it loses the capacity to make any further progress without mak
iug some external communication. Importantly we can record the time at
which stability occurs.

What does a stable process look like? For cOIlBistency with the untimed
models and in order to be able to make ru:;eful deductions about the be~

haviour of a stable process, we take a rather l'iPvere view. We assume that
once it becomes stable a process' available actions remain constant until
one of them occurs, and furthermore that it::; subs~q\leut behaviour does not
depew] on the time wheu the event occurred. In other words. given the
initially stable process a -+ P, the ways P can bdHwe if we accept a ar time
100 will be exactly the same as those which LOuld have ,tri::;en if a happened
at time 0, only with 100 added on the time wheu everything occurs. (The
effect will be like 'shifting' the behaviours of P by 100 time units.)

This view of a stable process is closely related to t.he principle stated
earlier that no process has access to the global dock of the observer: if P
did in the example above then it could 'know' it was being used at different
absolute times and so behave accordingly. It also means that the activity of
any internal clock which a process may start counts as internal actions.

Notice that if we have observed of a process (a) that it has become stable
and (b) is refusing some set of events, then we know it will refuse tJis set
for ever.

If, informally, we think of a process as having a red light on the side
which stays on as long as the process is making any internal progres~, t.hen
it becomes stable at the time when the light goes out.

The untimed theory takes a very uncharitable view of processes which
could perform an infinite sequence of internal actions. All processes with
this potential immediately were identified with the most nondeterrr:inistic
one, and considered useless. There are two distinct places in which a timed
theory can be less severe. Consider the process

(I'P.C(WAIT x; a -t p)D(WAIT y; b -t STOP)) \ a .

If x < y then (assuming a symmetric implementation of 0) we would expect

7

this process to diverge in the timed theory and offer no communications
to the environment. If, on the other hand, y < x then we would expect
there to be intervals where the event b is enabled and the hidden a is not,
meaning that, if we offer this version of the process a b, then - using timing
information - we can guarantee that it will be accepted eventually. Since
an untimed theory cannot make this type of distinction it has to identify
any potential for an infinite sequence of internal actions with divergence.
But as the above example, as well as various others, show, it is possible and
desirable to distinguish the two when we have time to play with.

The second place where untimed theories are severe on divergence is in
the way they treat processes like .1 n (a -+ P) which can diverge but can
also perform some action - either instead of or interrupting the divergence.
For various technical reasons which we will not repeat here the untitned
theories often do not allow us to reason about these actions or what might
happen after them, because they identify any divergent process with the
most nondeterministic one. As soon a..., a process has the potential to diverge,
these theories treat them as irrecoverably undefined. It will turn out that it
is not necessary to make this type of identification in the timed theory.

In summary, stability will give us the ability to relate the timed the
ory with the untimed one because the untimed theory is really a theory of
non·divergent processes, in the sense that it treats any process which can
perform an infinite sequence of internal actions as useless. The refusals which
the failures/divergences model records are those after stability. The timed
theory should also let us reason about processes which can perform these
sequences of internal actions, because time gives us the ability to analyse
their behaviour with sufficient precbion.

2.3 The metric space approach

In the models for untimed CSP l it is usual to use complete partial orders
with continuous or monotone functions as the ba...,is for defining the meanings
of recursioIlB. Various workers have defined complete metrics over these
and similar models of concurrency, usually based on the number of steps
over which a pair of processes behave indistinguishably. Of course when a
recursion represents a contraction mapping with respect to such a metric, it
has a unique fixed point which must be the same as the one predicted by a
partial order theory. The problem which attaches to this approach is that

8

not all recursions give rise to contraction maps. Consider the recursiOll

P=a-+(P\a)

which fails to be a contraction in the number-of-steps metril.: became the
hiding operator can actually push points further apart by concealing a's
which guard their differences. Indeed, over untimed models this recursion
has as a fixed point any process of the form a -+ Q, for Q a process which
cannot communicate an a until it has the possibility of divergence.

Over the timed models the cpo approach leads immediately to probiems2 .

The most obvlollil of these comes from the need for a lea.<;t or bottom eltrnent.
Experience would suggest that this should be the most nondetermmistic
process, but it turns out that there is no such element in the modds we
use since it would violate the assumption about only finitely many ~\'ents

occurring in a finite time. We will see tater that (). requirement for incnasing
sequences to have least upper bonnds would also eausc pwhlems.

Fortunately the problems which appeared in the untimed models with
the metric approach now disappear. The reason for this is that we now have
a different and more natural criterion for judging the distance between two
processes: the length of time for which they behave indistinguishabl:;.

Consider an implementable operator F acting: on a prol.:ess P. (It IS mn
venient to restrict attention to the case of a unary operator, but of course
the situation is no different in the more general C<1SP..) Provided we assume
that the observable behaviour of F(P) depends ouly On what F can observe
of P (rather than seeing into the structure of P in Home way that tllC en
vironment cannot - an ability which would probably ma.ke t.he definillon of
a denotational semantics based on the observations impOSSible) ,md ',ha.t it
cannot somehow speed up P to observe it faster than we could, thm the
possible behaviours of F(P) up to a given time must only depend un the
behaviours of P up to the same time. This means that, under the metric
based ou the time-of-indistinguishability, every operator will be nOllexpand
ing. Consider the case of the hiding operator which cau~ed us problems
above. Although some of the communications of P are hidden in P \a, t.he
length of time which it takes P to complete them is not: every event which
P \ a performs is attributable to one that P could have performed at Ip.a.'it as

" .
~These problems are not always insuperable. In Ollt' recent ca.se - the infinite timed

failures model [MRS] - the metric space approach was no longer u:iable bllt it prove
possible, with considerahle effort, to get a (non-complete) partial-order based tbeory to
work.

9

Soon. We might christen this healthiness condition of operators as labsence
of clairvoyance'.

As a curiosity, suppose we could build an operator F{P) which speeded
up its argument by a factor of f} > 1. Then, assuming that recursive unfold
ing and the completion of the communication a both take time 6" exactly,
the process

I'p.a -+ F(P)

could perform infinitely many actions in time ¥T.
Given that all operators are nonexpanding, and that we have assumed

earlier that every recursive unfolding takes some time bounded below by
Ii. positive constant D, it turns out that all recursions represent contraction
mappings and so have unique fixed points. For example, the behaviour of
a system up to time n6" will be determined by an n-fold unwinding of the
recursion. (Of course, it may take substantially less unwinding than this for
a given recursionj what we have here is a global upper bound.)

2.4	 Exploring compositionality: in search of the right con
gruence

We have previously mentioned that the model we are developing is rather
complex and the semantics of processes in it can be somewhat intricate.
Before we construct the model it is helpful to review the reasons for this
complexity. Readers who are familiar with the theory of untimed CSP will
know that it is possible to give natural and compositional semantics to it
in reasonably simple models, for example the traces model and the fail
ures/divergences model.

At this point it is worth discussing just what 'compositional' means
in this context. A compositional semantics is one where it is possible to
determine the natural semantic value of any combination, using standard
operators1 of processes from the values of the individual processes. Here,
'natural' might either relate to some operational or other intuition about
what the semantic values 'ought' to be, or more formally could be defined
relative to some operational semantics and an abstraction Illap which tells
us exactly what the semantic values ought to be. A simple example of a
non-compositional semantics for untimed CSP which lies between the two
compositional ones mentioned above would be to model each process by a
set of traces and an indication of which traces it could deadlock on. The

10

two processes

(a --> STOP)" (b --> STOP) and (a --> STOP)O(b --> STOP'

wuuld havc the same value in this semantic modeL hut if we were to mmhiIle
cal.:h process in parallel Ui) with itself. the first would be able to deadlock
on the first step while the other would not. TlJ.us it simply is not p,)ssible
to give an accurate denotational semantics to untirned CSP in this Illodel.
From this simple example (as well as our discussioll later) the reador will
see that finding compositional congruences is not always e~y.

Given the similarities between untimcd CSP (md Timed CSP. one would
expect that they could be modelled by siHlilar cOllgrncnces. In faft this
turns out not to be the casc, as \.....c shall shortly see. Tlw es:,cntial :C;1.son

for this is the same as the theme uuderlying the dbcus~ion of the diffuellces
in thc treatment of internal actions and divf>rgeHu' alJ(lW. TlJis is t.lll!, in a
real-time theory we have to f(~ason about what. a procc.ss will do frorn mo
ment to moment in response to va.rious stimnli. ilwl t.hus have the ability to
resolve a lot of the nondeterminislll that ('annot be avoided when we ddiber
ately abstract away from time in the untimcd uHllleb. When modelli:lg real
time we are always concerned about what a proC(~s~ cau do at <~ pa,rllcular
momcnt, while the uutimed models have t.o be concNlwd about possi)ilities
over :tIl future times.

Before proceediug with this discussion it is lwlpfnl to introduce SJme of
the notation we will he using to describe timed behaviour: the notation of
timed traces.

Notation

A timed event is an ordered pair (t, a): where a is a communication and
t E R + is the time at wml.:h it occurs. The set R + x :B of all timed events
is denoted T:B. The set of all timed traces is

(T~)5 = {s E T~* I if (t, a) pret:edes (tl, a') ill s, then t S tT}.

If S E (T:B)~ l we define #8 to be the length (i.e .. number of event~) of s
and ~(s) to -be the set of communications appearing in 8 (i.~ .. the second
components of all its timed communications). begin(:;) and cnd(s) a.re re
spectively the earliest and latest times of any of the timed events iu s. (For
completeness we define begin(()) = 00 and end(()) = 0.)

11

If X ~ E, s~X is the maximal subsequence w of oS such that E(w) ~ Xi
s \ X = sHE - X). If IE [0,00), sh is the suhsequence of s consisting of
all those events which occur no later than t, while sl~t is the subsequence
containing the events which occur before t. If t E [-begin(s),oo) and oS =
((10, ao), (I" at!, ... , (tn, an)),

s+1 = ((to+l,oo),(t,+I,a,)" . (In + I,,,,,)) .

If 5, t E (TE),<, we define s == t if, and only if, t is a permutation of
s (Le., events that happen at the same time can be re-ordered). We will
regard timed traces which are thus congruent as equivalent, simply different
ways of writing down the same observation.3

If s,w E (TE)<, Tmerge(s,w) is defined to be the set of all traces in
(TE)< obtained by interleaving sand w. Note that this is a far more re·
stricted set than in the untimed case, as the times of events must increase
through the trace. In fact, Tmerge(s, w) only contains more than one ele
ment when sand w record a pair of events at exactly the same time, and
even these two traces will be equivalent U:::).

Given a Timed CSP process P, Troces(P) will denote the set of all timed
traces which are possible for P.

Suppose PI and P2 are both CSP processes that both perform some
number of internal actions before terminating successfully. Perhaps one is
SKIP and the other is (a -+ a --t SKIP) \ a. Now consider the process
(P,;a -; STOP)O(P2 ; b -; STOP).

In the untimed theory we do not know how long PI and P2 take to
run and do not wish to specify this time. Also we do not know whether the
implementation of the 0 operator runs both its arguments at once, gives the
left one priority, or does something else. Thus, in the the untimed theory,
there is absolutely no way we can tell which of a and b becomes available
first. Thus, in calculating the value of

((P,;a -; STOP)O(P2 ;b -; STOP)) \0

3Notice that, given this assumption, the oTder of events in a timed trace ca.tTies no
information that is not also contained in the times of the events. At first sight it might
seem more natural to Tecord process lill;tories as sets of timed events; but the problem
with this is that it is possible in CSP to have a parallel process which performs two copies
of tbe same event at tbe same time. One could use multisets instead, the effect of which
would he the same as OUJ" timed traces under the above congTUence relation. The choice
is very much a matter of taste.

12

the untimed theory cannot exclude the possibility that the b will occur (pre
sumably accepted by the environment at any moment up to the one where
the hidden a becomes available). However, if we now set PI = SKIP and
P2 = WAIT 1 and put a timed semantics on 0 in which its arguments are
allowed to proceed together until a communication takes place~ it b€comes
certain that the a will be available - and hence occur because of our assump
tions about hiding - before b is possible. Thus, in this case, the timed theory
would tell us that b cannot occur. Real-time analysis lets us make precise
assumptions about how long various aspects of CSP will take to execute
and to draw the appropriate conclusions. (Notice the similarity be~ween

tbis example and the one used earlier in the discussion of divergence.)

The above example is actually very telling. We knew tha.t the event
b was not possible because we knew that the process before hiding could
only perform a b after being unable to refuse an u. This suggt'sts that in
order to know what traces are possible in P \ a we need to know something
about the pattern of refusals in P. To confirm this suspicion all we have to
do is consider the same process only with nondeterministic choice replacing
external choice.

((a --> STOP) n (WAIT 1; b --> STOP)) \ a

We can reasonably expect the process before hiding to have exactly the same
timed traces of observa,ble actions as the corresponding part of the original
version. But this one iB not obliged to offer an a before offering a b, and so it
can perform a b even after hiding a. This example means that timed traces
without refusal information cannot give us a compositional congruence.

In the failures/divergences model we only have to give informationabout
what a process can refuse at the end of a trace. This turns out not. to be
sufficient in the real-time case. The reasons for this begin to be apparent
from the arguments in the last paragraph, where we knew b was not possible
because of what was refusable before it happened. In fact this example is not
quite good enough, since we can tell, by looking at what refusals are possible
on the empty trace and the times when b is possible, that the b cannot
occur after hiding. Consider, though, what would happen if we coruposed
the 0 version of the above process (before hiding) nondeterministically with
STOP;

((a --> STOP)D(WAIT 1; b --> STOP)) n STOP

On the empty trace this can refuse anything, and can perform exac~ly the

13

same events, at exactly the same times as

((a -> STOP) n (W:4IT I; b -> STOP)) n STOP

and behave the same way after each such event. Thus in a congruence
based on timed traces and refusals after last communication, we could not
tell these two processes apart. Nevertheless, if we hid a in them, the first
could not perform a b for exactly the same reason as above, while the second
one clearly could. The congruence could not therefore be compositional.

As a further example, consider

P, = ((a --t STOP)D(b --t STOP)) n (a --t c --t STOP)

P, = ((a --t c -> STOP)D(b --t STOP)) n (a --t STOP)

On the basis of their timed traces and refusals after traces, PI and p,},
are indistinguishable - and note that neither uses WAITt or hiding in its
definition. However, let

Q = (WAIT lD(b --t STOP)) ; a --t c --t STOP

Opera.tionally we would expect:

(P, II Q) \ b te (P, Ii Q) \ b

In particular, we would expect (on the assumption that the event a takefl,
or might take, time eto complete):

((I,a)(1 +Cc)) E T7"aces((PtlIQ) \ b) but
((l,a)(1 H,c)) 'Ie Traces((P,IIQ) \ b)

The essential reason for the sorts of behaviour seen in these examples
can be traced to our earlier discussion of the hiding operator. V'tTe said
there that all hidden events take place 'as soon as such an event becomes
possible'. This means that any bphaviour of P in which a hidden event has
been possible for a non-zero titTle does not give rise to any behaviour in
P \ X. In particular, any non~llidden event which is only possible in slIch
circumstances is always, in P \ X. pre-empted by bidden events.

We infer that we need to know what a process can refuse during its trace,
not only after it or upon achieving stability. We will have to know what the
process could refuse at each time during the trace, these refusals poten
tially changing due to internal state changes as well as visible actions. This

14

is a crucial issue in achieving a successful semantics for real-time parallel
languages.

Algebraic properties give a useful test of a mathematical model and the
definition of a semantics over it, whicb is related to the discussion a.bove
and yet, in a sense, more concrete. For our discussion above has been based
on an intuitive feel for how processes ought to behave operationall)'. We
cannot turn this intuition into rigorous mathematical arguments without
defining an operational semantics formally. Though this has now been done
[8], in a way fully congruent with the semantics of tm::; paper, the neces::;ary
arguments are both very complex and are tied to one specific operational
viewpoint.

An intermediate standpoint i::; to use one's intuition to write down a
number of algebraic identities which are 'clearly true' in ally reas(lnable
implementation and then to usp. these as healthiness criteria for one's :nodel
and semantics. Examples we might use are the distributivity of any operator
that only use.':; (at most) one copy of its arguments over nondetp.rmmi::;tic
choice, for example

PO(Q n R) (PDQ) n (POR)

p;(QnR) (P; QJ n (P; R)

(QnR)\X Q\xnR\X

The argument for tbese is that pnQ is iuteuded to represent a process which
can behave like P or like Q, and that therefore the behaviour::; of (pnQ) \a
(for example) are precisely those pos::;ible for P \ a and those possible fur
Q \ a. Another example would be the 'commutativity' of hiding:

P\X\Y=P\Y\X

which one would expect to hold under most realistic implementations of
hiding. It would probably be impossible to come up with a 'complete' set of
such laws for testing a semantics which was uncontroversial. Indeed to have
a complete set of such laws, in the most obvious sense, would imply that we
had fallen into the same trap of being over-specific that we mentioned a.bove
in connection with a specific operational semantics. Nevertheless, such laws
as these provide a valuable and more tangible supplement to the intuition
used earlier. The failure of such a law or the impossibility of producing a
reasonable semantics in which they hold will tell us that something is wrong.

15

2.5 The Timed Failures-Stahility Model (TMFS)

We are now ready to build a mathematical model based on the intuition
developed in the last few sections. It will model each process by its set of
observable behaviours - timed traces with refusals throughout l up to some
finite time - and will match each with the associated stability time. We will
put a metric on it based on the time for which it is impossible to tell two
processes apart.

The main thing which it remains for us to decide is the way in which
stability values are tied in with the timed tracp,S and timed refusals which
we have already discovered we need.

Consider the processes:

P = WAIT I, a --t STOP

Q = (b --t STOP
o
WAIT I;a --t (WAIT I; STOP))

If we once again assume that 0 runs its arguments in parallel until a
visible action, we see that both can perform the timed trace ((1, a)) but
Q (i) cannot perform the a without having made b available first and (ii)
becomes stable later. If we were to associate stability values with timed
traces alone then we could not tell that the late stability of P n Q on trace
((1,a)) only happens when b is offered first! which would mean that we
would be forced to predict the same late stability on ((1, aJ> for (P n Q) \ b.
But Q\ b cannot perform the event a because it is pre-empted, and it would
follow that

(pn Q) \ b ¥ P\ bnQ\ b

in contradiction to the principle stated earlier. We can deduce from this that
we must associate stability values with trace/timed refusal pairs - namely
the whole observation we are making of a process.

We still have a number of choices: do we record for each trace/refusal
pair the set of all possible observed stabilities for it? And need we record
not only the stability observed at the end of a trace but also those that may
have been observed at intermediate points along the way?

It would be inappropriate only to record the behaviours of a process
which happened to lead to stability in a finite time. Therefore if we were

16

recording all times at which a process could become stable we would also
have to inclnde a special value: say 00, representing the fact that the process
happens not to become stable. This would lead to problems related to our
metric space approach, since one could not tell at any finite time between
the process that could become stable at any natural nnmber time and the
one which could also remain unstable.

Although we are assuming our ability to see !'ltability, it is not something
which an implemented operator will usually need to observe of a process in
order to determine the timed traces or refusals of its result. Provi(kd this
property holds of all operators - and we will a..'\Smue it doe:; - we fortu
nately do not need to know the S(,t of times when a process might bN:ome
stable. lndeed~ we will assnme that the implementation itself htl.'; no wa.y of
observing stability; it is simply a t.ool tbat we use to reason about preccsses
externally_ Another consequem:e of this assumption is that thp. stability of
any construct F(P) at a given time depends only on F and whether P !La,p
pens to be stable at the time which F has observp.d it up to (which, given
ollr earlier assumptions, is no later than the current time). So in particular
the current presence or absence of stability does not depend upon whethet
it happens to have been observed earlier.

The previous two paragraphs together suggest that it i.'\ desirablt' and
sufficient to associate each trace/refusal pair with a single stability time:
the least. npper bound of all the times (including (0) when it might bf'Come
stable, given that the trace and refusal have been observed. This is what
we will do. 4

Notation

The following are some more components from which our model \' III be
built. Stability values are as described above. The time intervals we lise
are finite nonempty, closed at the left and open at the right. Not o:lly do
intervals of this form the most natural ones for partitioning the ir,tcfval
[0,00) = R+, but this shape of interval also t.urns out too be the correct
choice for modelling process behaviour; it reflects the idea that an event
which is offered might be a.c:.:ceptcd immediately, and allows us to wason
correctly about events which happen at the same time.

4 An equivalent approach is to associate ('ach pair v.;th the set of all times after the
end of the trace when inst(l.bili~y might be obst>red. This has been suggested by Blarney
[Bl,lO'O).

17

Notice that although refusal sets may contain infinitely many different
members of ~, they can only change finitely often in a finite time. This is
essentially an assumption that processes and the environment only undergo
finitely many state-changes in a finite time.

n: TSTAB R+U{oo} (Stability values)
I: TINT { [/(1), r(I)) I°:S l(I) < r(I) < oo} (Time Intervals)
T: R:TOK {I x X I I E TINT II X E P(1:)} (Refusal Tokens)
~: RSET {U Z I Z c; RTOK II Z finite} (Refusal Sets)

We define various functions over RSET, to extract the set of communi
cations used l times used, beginning and end, shifting and restriction.

1:(~) {a E 1: 13t. (t,a) EN}
I(N) {t E [0,(0) I 30. (t, a) E ~}

be9in(~) inJ(I(~)), '<I~ ¥ 0
cnd(N) sup(I(~)), '<I~ ¥ 0

be9in(~) 00, for N = 0
end(~) 0, for ~ = 0

'<It ~ -be9in(~), ~ + t {(t'+t,a) 1 (t',a) EN}
'<It E [0, (0), ~~t ~ n ([0, t) x 1:)

'<II c; R+ ~tI ~n(Ix1:)

'<10 E 1:, ~.a {t I (t,a) E~}

Each process will be modelled as a set of triples (s l cr, N), with s E (TI::) -:::,
a E TSTAB and N E RSET. The following functions are natural projec~

tions of such sets and operations to ensure (i) that there is one stability value
for each trace/refusal pair and (ii) that all equivalent traces are treated the
same.

Traces(S) {s 13n, ~. (s, n,N) E S}

Stab(S) {(s, n) I 3~. (s, n,~) E S}

Fail(S) {(s,~) I 3n. (s, n,~) E S)

SUP(S) {(s,n,~) I (s,N) E Fai/(S)

II n = sup{13 I (s, 13,~) E S} }
CL,,(S) {(s,n,~) 13w.(w,n,~) ESlls 3'w}

The evaluation domain TlvfFs

We formally define TMFS to be those subsets S of(T1:)~ xTSTAB x RSET
satisfying:

18

1.	 () E T"aces(S)

2.	 (s.w, N) E Fail(S) => (s, ~fbegin(w)) E Fail(S)

3.	 (s,a,~) E S /\ s '" w => (w,a,~) E S

4.	 t E [0,(0) "'" 3n(t) E NVs E Traces(S).end(s) S; t => #s S; nit)

5	 (s, «, ~), (s, 11.~) E S => a = 11

6. (s, a,~) E S =>	 end(s) S; a

7 ((s, a.~) E S /\	 (s.((t, a)),~) E Fail(S) /\) => (t',a) It~ .	 t > e ~ 0' A t 2:: end(N)

S.	 (8 j a: H) E 5 ::::} if t > 0:, tJ 2:: 0:, a E I: and

11) E (TE):: is such that w = ((t,u).w', then

(s.w,«',~') E S /\ ~ <;; ~'h =>
3/ 2:: (x' + (t' - t) such that
(s.(w + (t' - t)),"I, ~I U~, U (N J + (t' - t))) E S.
where ~I = ~'fa, ~, = la, t') x I:(~' n ((a, t) x I:)),
and ~J ~ ~'1[t, (0).

9.	 (s, a,~) E S /\~' E RSET s\lch that ~' <;; ~

::::} :In':::: osuch tha.t (.~,cl,N') ES

10.	 (s,a,~) E S /\ tl <" /\ t, 2: 0 =>

3~', iJ. ~ <;; ~' /\ (s. iJ, ~') E S /\ f3 2: il t,

(t' S; t, /\ (t',a) It~) => (sk.«t',a)).~'ft') E Fail(S) A

(0	 <t' S;t,/\~3,>0.((t'-"t')x (a}) <;; ~') =>
(slk.(t',a)),N'ft') E Fail(S))

11.	 (s, a,~) E S /\ I E TINT such that I c Ill, (0)

=> (s,a,NU(IxE(~n([a,oo) xE)))) E S)

Although some of these axioms appear complex, each reflects one or more
simple healthiness properties. We will now give au int.uitive explanalion of
each.

1.	 Every process has initially done nothing at all.

2.	 If a process has been observed to communicate s.w while refusing
t'{ then, at the time when the first event of tv occurred, the pair
(s, Nfbegin(w)) had heen ohserved.

19

3.	 'Tta.ces which are equivalent (i.e., are the same except for the per
mutation of events happening at the same times) are interchange
able. Essentially, this postulates that there can be no causal depen
dence between simultaneous events: notice that if a process has trace
((t,a),(t,b)) then this axiom and axiom 2 show it h.. trace ((t,b)).

4. The process cannot perform an infinite number of visible events in a
finite time.

5.	 There is only one stability value for each trace/refusal pair: the least
time by which we can guarantee stability after the given observation.

6.	 The time of stability is not before the end of the trace.

7.	 A ~table process cannot communicate an event which it has been seen
to refnse since stability.

8.	 After stability the same set of events is available at all times. Further
more the behaviour of a process after such an event does not depend
on the exact time at which it was executed. Thus the trace wand the
corresponding part of the refusal may be translated so as to make the
first event of w now occur at time t l

•

The stability value I corresponding to the translated behaviour may,
in general, be greater than the obvious value because the translated
behaviour may in some circumstances be possible for other reasons.
Note, however, that if stability is still inferable in the new behavioUl'
before time e, then the axiom may be used in reverse to translate the
tail of the behaviour so that the beginning of w occms back at t. This,
in combination with axiom 9, can often be used to prove that the I
appearing on the right hand side of axiom 8 does equal a + t' - t.

There is a phenomenon related to this last discussion which it is worth
pointing out. One can think of the way we record stabili ty values as
giving a record of by when, given the timed trace and refusal observed
so far, can we guarantee that the process attains stability. Subcon
sciously one might think that things observed after stability give no
information in this regard, but this would be wrong. It is in fact pos
sible, by making some observation, to realise that the process must
already have been stable for some time. A good example of this is
provided by the process

(WAIT 1; (a -t STOP) n STOP

20

Depending on which nondeterministic choice is made, this process ei
ther will or will not stabilise immediately. But we can unly tell from
refusals that it wa.<; stable at time 0 when (L is refused at tum 1 or
later.

9.	 If a process has been observed to communicate 5 while refusing ~ then
it can communicate the same trace whil,: refusing any subset of H.
This simply reflects the fact that the environment mi,l!,ht offer :t les~

and so have less refused. Howevpr. ln~ca.ll:"f' Je~;; has lwen Ilhsl'l'vcd. the·
stQ.bility value mn. in general: hp p,rcl1tw.

10.	 Given a triple (s.o:,t') and time;; t[< (l a.IHI t2 ?- 0, IlliTe tl.\!<,ts (1

single refusal H' in RSET cuntaining Nand sLability v;llul.' /3 > t: "uch
I.hat (s, ;3. ~') E Fa'il(P) awl ii is consistnlt It! hl'li(~vc t.hUL 1,h(, (finn.el.y
many) changes in the refusals of N' giw colilplde informatioJl about
what the process could have refused lwcause it call accept itll.\'l.hillg:

not iu the refusal set. The events in s and the changes in ~ G..lll be
thought of as the process' state cha.nges. Notice that axiLllll Y t'ljSUreS
that (J ~ a.

The coustruction involving tl and li en~un~s that the' sUlhility v"lue 0

uf (s,o, N) is the supremum of stability Vil,l1WS corresponding 1.0 :>ucb
'complete' behaviours -" or in other word=-; the time of sL1hility is not
iucreased simply though the environment failing to observe what wuuld
have been refused anyway.

The la.-;t clause of the axiom states that, if a.ll event wa.'l not rdusablc
up to a given time t' , theu it wa.-; still possiblt~ at time t'. This means
that we are assuming that any event which wa.s OIL uffer up to a challge
of state is also available at the instant of the st:lte-chang(~. Not,tLQ.t
in the previous clause we state that (.5~t', N'~t') E FcL'il(S) wherea..s in
this last one we vary this to (slh',N'rt') E Fa1.l(S). Of course these
two say the same in the ca.-;e wlJere .~ ha.'i nu event happening at time
t. But if there are one or more. the refu~als at time t l rt'fer to what the
process can do after the event(s) at the giWIl time, while the refusals
just befo7'e t' alluw us to reason about wh:lt it might have done :'.stmd

of them.

This last assumption could be dropped if we wanted to consider opera
tors which could cause a 'clean' withdrawal uf an offer to communicate.
It is included in our presentation because none of the CSP operators

21

can causc such a withdrawal and because we consider it to be a prop
erty which is operationally reasonable. We will also discuss in Section
2.6 below another small modification to this axiom.

The concept of a complete behaviour, introduced here, will be very
important later.

11. Something that is refused at one time on or after stability is refused at
all such times. This axiom says the same about the end of traces that
part of axiom 8 says about other points in them. Notice that these
extra refusals tell us nothing more about stability time.

Note 1. In both axioms 7 and 8, we carefully distinguish (via t' and
t) between events at stability and events after stability. This is a necessary
distinction. For example, the process P = (a --+ STOPD WAIT l)i b --t

STOP will, in the standard semantics, become stable on the pair ((), [0, 1) x
(E -(a})) at time 1; however ((1, a)) E Traces(P) but 'It > 1,((t,a)) ~

Traces(P). Events which are possible at the very moment of stability might,
as in this example, result from alternatives to the stable behaviour rather
than from the behaviour itself. This possibility of nondeter min ism at the
point of stability will cause U5 various difficulties later.

Note 2. The axioms above are (when taken together) strictly stronger
than those we have presented in earlier papers, in the sense that they restrict
further the class of processes. The difference between this set and the axioms
of [RR,19S7] is that axiom 10 above has replaced both axioms 4 (which it
obvioU.':lly strengthens) and 11 of the earlier paper. A discussion of this point
and ofour reasons for strengthening of the axioms will be found in section 2.6
below. The numbering of the axioms has also changed from earlier papers.

The complete metric on T Mps

As described earlier, the metric on our model will be based on the length of
time for which it is impossible to tell a pair of processes apart. To define
it we need a function which gives a standard representation of a process'
bebaviour up to time t. If S <; (TE):: x TSTAB x RSET and t E [0,00).
we define

S(t) =	 ({s,a,~) E S I a < t /\ end(~) < t}
U{(s, oo,~) I end(s) < t /\ end(~) < t /\ 3a ~ t. (.s, a,~) E S}.

22

Set) has a representative of each timed failure (s)~) which ends before t.
Where the stability value is also less than t l it is included, and otherwise it
is repla.ced by the standard value 00. It is worth noting that any pa.ir SI
and S2 of distinct sets of triples satisfying axiom 5 have a time t such that
S,(t) ¥ S,(t): if Fai/(S,) and Fail(S,) were unequal then we need only pick
t aft~r the end of some element of the symmetric difference. If (Sl D:, N) E SI
and (s, f3l N) E S2 where a =I 13, then t can be any time greater than both
end(N) and the lesser of a and 13 (which must be finite).

The complete metric on 1'MFs is now defiued:

d(S"S,) ~ inJ(r' I S,(t) = S,(I.)}

Given the observation we made above about being able to distinguIsh 51
and 52, it is easy to show that this function defines an ultrametric, namely
a metric satisfying the :;trong triangle inequality

d(P,R):s max{d(P,Q),d(Q,R)).

The completeness of this metric can be demonstrated as follows. Fint, the
set of all 5 ~ (T~)~ X l'STAB x R5ET satisfying axiom 5 alone is a
complete metric space under this metric: if Sn is a Cauchy sequence we
know that, for each t, there is n = net) with m 2: n implying Sn(t) = Sm(t),
it is easy to see that the limH of the sequence Sn is the set of all triples
(slD:,N) with a < 00 contained in any such 5n(t)(t) pins all those of the
form (s, 00, N) contained in all Sn(t)(t) for sufficiently large t. Second, the
set of all S is this space satisfying axiom 9 is closed withiu this space, since
any failure of this axiom becomes apparent in a finite time (i.e., if S fails
it, then there is a time t such that 5 1(t) = S(t) implies S fails it), which
means that the set of all 5 not satisfying it is closed. Finally: within lhe set
of all sets satisfying 5 and 9, the set of all 5 satisfying anyone of the other
axioms is closed. Since the intersection of closed sets is dosed, the model
1'MFs is thus a closed (and hence complete) subset of a complete metric
space.

2.6 More properties of the model

The most subtle - and most powerful - of our a.xioms is axiom 10. This
says that each observed behaviour of a process can be interpreted in terms

23

of some 'complete' description of how it might behave. If we define a t2

complete behaviour5 to be one satisfying the conditiolli> Oil the right hand
side of the implication, then this axiom together with axiom 9 says that the
stability value associated with any timed failure (8,~) is the supremum of all
those associated with its t-complete extensions (i.e., t-complete behaviours
with the same timed trace, and larger timed refusal). Recall axiom 11 of
[RR,1987],

(s.w, a,~) E S II ~' E RSET is such that end(s) <:; begin(~') II
end(W) <:; begin(w) II (\/(t, a) E W. (s.((t, a)), ~~t) ¥ Fail(S))

=> (s.w,a, ~ U W) E S

Tbis says that that, if the timed failure (s.w,~) is observable, and if N'
contains events between the end of s and the beginning of w which were im
possible) then the process would also have refused NI if the environment had
offered it. Since this mu.st be true in every rnn of the procpss which exhibits
(s.w,N), no further information about stability is gained from observing the
refusal of N' , so the observed stability time is the same. (Note axiom 9.)

It is a consequence of our new axioms. Assuming the conditions on
the left-hand-side then, if t > end(s.w, N U NI

), obviously any t-complete
extension (s.w, W) of (s.w, N) must have W :2 N U N/, which mean.s (by
axiom 9) that (s.w, N U NI

) E Fail (S). It is then easy to see that any
complete extension of (s.w, N) is one of (s.w, NUW), and vice-versa. The sup
property of stability values discussed above then ensures that the stability
values associated with (s.w, N) and (s.w, N) are the same.

For reasons discussed earlier we have not based our fixed point theory
on a partial order_Nevertheless there are other reasons for wanting to
have an order over TMFS based (as with many of the orders over un timed
CSP) on the notion of uondeterminism: P l;;:; Q should mean that Q is more
predictable than P - any observation of Q could be taken for one of P. Such
an order will turn out to be useful for understanding the structure of our
model, understanding the way it treats nondeterminism, and for developing
a notion of refinement. Recalling that the t.riple (s, 0, N) llleans that tbe
timed failure (s, N) can be observed and tha.t 0 is the supremum of the
resulting sta.bility values (i.e .. any stability value less-than-or equal to 0:

might OCCur)l the order is best defined a.s follows. P [;;;; Q if and only if

\/(s, a,~) E Q. 3a' 2: a.(s, cJ,~) E P

~Depending on the circumstances, we will refer both to timed failures (II, N) of P and
triples (II, o:,~) E P as i-complete behaviours if they satisfy this condition.

24

or, in other words, if every member of Fail(Q) is in Fail(P) but with a
possibly greater associated stability value.

We have already observed that the partial order cannot have a least
element because of axiom 4 - the least one could have no bound on the
number of events which can occur up to time t. It also fails to be dosed
under the limits of increasing sequences. In the case of E infinite this i.E easy
to demonstrate, using the same examples which work for untimed CSP with
unbounded nondeterminism, for example

Pn =n{m -t STOP I TIl 2: TIl}

is a sequence of processes, ordered under ~, with no upper bound - any
upper bound could neither communicate nor refuse the whole of E in con
tradictiou to the axioms.

It also fails to be closed under limits when E is finite, though here the
examples are a little more subtle and rely upon time·specific argumellts. It
turns out that no upper bound of certain sequences of well· formed processes
can satisfy axiom 10, either because they must have a.ll infinite number of
state-changes or because they fail to leave events available at the instant
when they are withdrawn. As an example of the first, suppoSP. Qn is the
process that makes the event a available during the intervals [Oll - 2- 1],

[1-2-2,1-2-31",., [1_2-2nll_22n+lj and refuses it in t.he appropriate half
open iutervals interleaving and following these. Let Pn = n {Qm 1m '2': n}.
A little thought will reveal that any upper bound of the ordered seqllence
Pn would be obliged to change state infinitely often in the time interval [0, 1]
(when no comIllunication has taken place) and that there is no I-complete
extension of the timed failure (0,0).

One could plausibly argue for a strengthening of axiom 10 that \IIould
ban this counterexample. One of the things this axiom does is to lSsert
that, at least as far as one can detect in some sense, processes only change
state finitely often in a finite time. When we asserted in axiom 4 that
processes could only communicate finitely often in a finite time it was done
by postulating the existence, for each process, of a uniform bound fmction
n(t) on the number of events the process could perform up to time~. We
could have taken this approach with axiom 10 and also postulated thaI each
of the t-complete behaviours for a process has its number of state-ctanges
bounded by n{t) (using the process l bound function from axiom 4) The
reader should be able to see that this would ban the processes Pn of the
previous paragraph, since the number of sta.te-changes they make up to

25

time 1 is not bounded (though, for any nondeterministic choice they might
make, it is finite).

The strengthening of axiom 10 would, huwever, neither solve the in
completeness problem with infinite alphabets, and nor wOllld it remove the
following example. Let t n be any strictly increasing sequence converging
to 1 from below, and let Qn ~ ((0 -+ STOP)O WAlT tn); STOP. Under
the standard semantics, the process Qn offers a until time tn, whereupon
the WAIT tn process terminates and removes the possibility of the a. If a
is offered at exactly tn, it may occur or may not - the 0 operator has to
arbitrate between two events which become ready simultaneously. This is
precisely the situation covered by our discussion of part of axiom 10 - events
which are offered are still possible at the instant from which they are rcfus
able when withdrawn. Now cOlLSider the processes Pn = n {Qm I m ~ n}.
Pn may withdraw the offer of an a at any sufficiently large tm., but nute that
it cannot communicate a at time 1. It is however obliged to offer a up tu
tn, and as n increases this value increases to 1. Any upper bound would be
obliged to offer a up to time 1 without the possibility of performing it at
time 1, in violation of the same a.9pect of axiom 10.

Infinite complete behaviours

Axiom 10 gave us the notion of a t-complete behaviour. This gives us a
'convincing explanation' of how a process might have behaved up to time
t, and the axiom tells us that we can find one of these extending any given
timed failure (8, N) with a stability value as close as we please to that asso
ciated with (8, N). In technical manipulations we will be doing later it will
be useful to be able to extend this to an infinite complete behaviour, which
gives us a convincing explanation of how the process might behave over all
time. This will be a triple (8, n, W), where 8 is still a finite timed trace,
n E R+ U{oo}, but now N is allowed to extend to infinity: it is a set of pairs
(t, a) such that each of its restrictions wh is in RSET (i.e., it only changes
finitely often in a finite time). Informally this triple means that the process
might be observed to perform the trace 8 and be observed though all time
to refuse N*, and that given this we know that it hecame stable at time n
at the latest. Such a triple (or, where appropriate, the pair (8, N*)) can be
said to be a complete infinite behaviour of a process P if (s, Nh) E Fail(P)
for all t, n = in/{n' I (8,n',Wh) E P} and the same conditions applied as

26

for a t-complete behaviour, namely

(t,a) 'it w ~ (sk((t,a)), Wh) E Fail(P)

for each t E [0,00) and a E E, and

(~3, > O.(t - "t) x {al ~ W) ~ (sl~t.((t,a)), W~t) E Fail(P)

when t E (0,00) and a E E.

This gives an obvious extension to all time of what axiom 10 provides
us with up to any finite time - a plausible explanation of the state-changes
the process went through ill getting to the trace oS and those which might
happen after the end of 5 au th~ assumption that no event subsequently
occurs. The following l~mma shows that these always exist, and that it is
(as we might have hoped) consistent to believe that a ~table process does
nut change state.

Lemma 1 If P E TMFs, (.'J,Q.N) E P, and t < Q then there is an
infinite complete behaviour (5, j3, W) of P such that N ~ Wand t < f3 '5:. 0'.

F\lrthermore, if f3 < 00, we can assume

Wt[{J, (0) ~ [ii, (0) x E(Wt[{J, (0))

Proof We will first give one construction that works for the main state
ment above in all cases, and then give a different one which works for the
second statement in its restricted case. Pick a value t' such that t < t l < 0:.

Starting with ({3o, No) = (a, N), we use a.'<iom 10 iteratively, on the nth it
eration starting from (8, (311-1, NlI -d with t2 = e and tl = T + n where
T = end(5, l't), thereby obtaining (05. tJ'I' Nn). Necessarily, the PTI form a (not
necessarily strictly) decreasing sequence of wl.1ues hetween t f and n, and
N'I c;: Nn+l for all n. And (s,(3l1'l'tn) is a (T + n)-complete behaviour for
H > O. Now, set

=

tl' = tl1t[O,T+l)U U tlnt[T+n-l,T+n)

1I=:l

Notice that, by construction, each W~t for t E [0,00) belongs to RSET.
Since l't c;: W·~T + n ~ l'tTl , it follows (using axiom 9) that there is sorne 'YTI

with (3n '5:. 'YTI ~ Q such that (s,'Yn, W~T + n) E P. Clearly the 'YTI form
a decreasing sequence with a limit (3. satisfying t < t' '5:. P* '5:. a. Claim
(8)3*, W) is a complete infinite behaviour of P.

27

If(t,a} ~ W, then choose n = 1 ift < T+l or otherwise let n be such that
T+n-l ~ t < T+n. By definition of N*, we then know that (t, a) ~ Hn and
hence (sk((t,a)), ~nh) E Fail(P). Since wh c:: ~n~t it follows by axiom 9
that (sk((t,a)),Wh) E Fail(P). 1ft> 0 and ~3< > O.(t- <,t) x {aJ c:: W
we choose n = 1 ift ~ T+l and otherwise n is snch that T+n-l < t ~ Tn. A
similar argument to the above then shows that (sh.((t, a)), Nn~t} and hence
(slh.((t, a)), Wh) belong to Fail(P). This completes the proof of the first
statement.

Suppose (s, W) is a t-complete behaviour of P and that (s,/3, HI~t) E P
for some 13 < t. Let A = E(H't[/1, t)). If a ~ A we know by completeness of
(s,~') that (s.((t,a)),W~t) E Fail(P). Axiom ~ (with w ~ ((t,a))) then tells
11S that, for all t' E Ill, ee), (6.((t', a)), W~llU[3, t') x A) E Fail(P). It follows
ea..<;ily that, for all til < t l

, the failure (s, NI~r3 U [/i, t!) x A) is tll-cOlllplete.
Axiom 11 tells us, that for t l

~ t, the stability valne associated with this
failure is 13. It follows that (s,/1,HI~j3U [,8,00) x A) is a complete infinite
behaviour of P.

Suppose that the stability value /3* produced by the first part of this
result was finite. This must have been because one of the seqnence III
which converged down to it was finite. Clearly there then exists n sneh that
In < T + n. Thus the preconditions of the previolls paragraph arc ~atisfied

by the failure (s, H*~T + n + 1), t = T + nand /3 = In' The couclusions of
that paragraph then give exactly what is required for the second part of the
lemma. 0

One immediate corollary of this result is that, for any (s, 0', H) E P, a
is the supremum of all the stability values a* associated with the complete
infinite extensions of (s, 0', H).

2.7 A study of nondeterminism in TA1FS

Nondeterminism is a well-known consequence of concurrency. In this ~ectioJl

we will use the tightly-defined model we have created to study just how. and
in what forms, nondeterminism appears in real-time concurrent systems.
We will find that the subtleties of real-time behaviour - in particula.r issues
relating to instants when a. process can arbitrate between some internal
action and an external communication - make it a rather harder subject
than for untimed CSP.

One of the features of all the widely used models of nntirned CSP is the
way in which any process P can be identified with the set of all deterministic,

28

or sometimes pre-deterministic processes processes Q which 'implement' it.
namely P ~ Q. (Where the general nondeterministic choice operator 1: was
defined, this 'identification' simply amounted to saying that the set Imp(P)
of implementations was nonempty and nimp{P) = P.)

A deterministic process was there one which never had the choice of ac
cepting or refusing any action, which was equivalent to being maximal in the
partial order. In the models with divergence this notion had to be weakened
to say that a pre-deterministic process was one which was deterministic un·
til it diverged. Blarney [Bl,1990J has written 011 this phenomenon and has
argued that, since the correct structure of deterministic or pre-deterministic
pro~esses is generally easier to establish aud justify than that of general
ones, we can say that the axiomll of a CSP model arc CfJnlplete if we have
such a property. The rationale behind this term is that, given WI:' blOW

what the set of 'deterministic' ones is, and what the definition of general
nondeterministic composition is, we can tell eX<.Lctly which objedll are the
uoudeterministic compositions of sets of 'deterministic' ones. Thus Blarney
calls a. set of axioms sound if they allow all such objects, and complete if
they allow no others.

Certainly this form of completeness gives powerful evidcuc(' that the way
the axioms extend the notion of (prfO!}-deterministic processes to nondet.er
ministic ones is correct. It also gives us a much gre<Lter level of undmstanding
of how the model fits together and how it treats nondeteuninism.

A taxonomy of nondeterminism

We will find in this section that it is not altogether straightforward to con·
struct an appropriate notion corresponding to deterministic processes and
which is sufficient to give us a completeness result. The resulting investiga
tions will, however, give us a much deeper understanding of the model and
of the varieties of nondeterrninism it encompasses.

Fully predictable deterministic processes are sufficient for CfJmp!eteness
in models of untimed CSP. Essentially thill is because it turns out that,
given any behaviour of such a process (even though that process might be
genuinely nondeterministic) it is alway,:; possible to find a complete deter
ministic process which 'sits inside' the given one and which exhibits the given
behaviour. Things turn out not to be quite as simple in the case of real-time
esp. The following list enumerates various types of 'unpredictability' which
cannot, for one reason or another, be factored out in this way.

29

1.	 Tbefirst is connected with axiom 10. which specifies that a withdrawu
event is still possible at the instant of withdrawal. This is a form
of DDndeterminism which we are specifying must be present in auy
process which can retract an offer of communication - and we could
not llOpe to get a completeness result of the type above unless the class
of 'deterministic' processes contained retracting ones.

2.	 Th€ second concerns processes which have an event possible at an
isolated time, for example

(a --+ STOPDb --+ STOP) \ b

which, in the standard semantics, can do a at time 0 but at no other.
Since all refusals are over intervals, there is nu process which can offer
sud a point event without also being; a.ble tu refuse it if offered. We
might term such an isolated event ll. transient event. No fully pre
dicta.ble implementation of the above process would be able to com
municate an a.

3. Tra.nsient events	 can manifest themselves in another, yet more subtle,
form at the very moment when a process is becoming stable. Up to
the time when a process stabilises, our axioms allow it, for example,
to make a single event available continuously but have its subsequent
beha.viour vary quite arbitrarily depending on when the event happeus.
Provided that each of t.hese different behaviours is deterministic then
the whole process is. However, once it ha..<; stabilised, axiom 8 tells
us that the process' subsequent behaviour does not depend on when
the event did. The problem with an event happening at the instant
of stability is that it might be an alternative to stability rather than a
manifestation of the stable configuration.

This sit'lation is actually rather similar to the one which led us to
posmlate that events are still possible at the moment when they are
witlldrawn, in that at the moment when a process would otherwise
become stable it may be possible fur it to do something else. TLe
following example illustrates this. Consider the process

((a --+ STOP)DSKIP); (a --+ a --+ STOP)

In (he standard semantics, the first a is possible 'transiently' at time
0; otherwise the SKIP terminates immediately and the second a is

30

aLc;o available at time 0, with the process being stable at once. The
result of all this is that if an a is accepted at time 0 we cannot be
sure whether or not the second will OCCUr, while if we wait beyond
this time we can be sure it will. Any predictable (even modulo the
questions above) implementation of this process is forced, by axiom 8,
to make the second a available following one at time O. It follows that
it cannot refuse a after the time taken to complete the first. Therefore
the behaviour subsequent to the 'transient' a is never reflected by any
such implementation. It should be clear that we could have varied
the above example so that the different behaviour introduced by the
transient was delayed an arbitrary number of communications beyond
it, or could have been of a different sort such as a larger stability time.

In summary, when an event happens at a time after stability the same
subsequent behaviours are possible at whatever times the event hap
pens at or after stability. But subseqnent behaviours which are enabled
when an event happens at stability need not manifest themselve" when
the same event happens after it. This type of transient is more subtle
than the last because they are not apparent when they happen, only
in the effects they leave behind.

4.	 A final source of difficulties ca.n be found in axiom 3. Recall that this
states tha.t events which happen at the same time can be re-ordered
in a trace without changing behaviour. While one order in which a set
of simultaneous events occurs may be totally consistent with what is
refusable on the traces where they happen, this need not be the case
with another ordering. This can either be because the occurrence of
one event in the set coincides with the disabling of another, or (and
this causes more problems) with the enabling of another. We will see
examples of these phenomena later.

There is a sense in which difficulties 1 and 4 are more perva.<:iive than
2 and 3. If we had a notion of 'implementation' which did not allow the
forms of nondeterminism which arise under these headings, there would be
processes with no implementations at all. This is not the case with the
transient events of 2 and 3, which arise as alternatives 'grafted on' to other
wise well-behaved processes. One consequence of this is that forms 1 and 4
must be allowed throughout an implementation, while, if we are seeking an
implementation of a process P which manifests one of P's behaviours (8, N),
it is reasonable to restrict its transient events to ones in s.

31

Quasi-deterministic processes

To approach the definition we need fur a completeness result, we will start
out wi~h one that is too strong for all the reasons set out above. Wt~ define
a fully deterministic process to be one for which we can always teU whether
a given (instantaneous) offer of an event will be accepted. Namely, for all
timed traces 8, t :2: end(s) and a E E, we never both have s.{(t,a)) E
Tmces(Pj and (I,a) E N for which (s,N) E Fail(P), This definition ignores
stability values, though for some purposes one might wish to strengthen it
accordingly.

To deal with the first, and part of the fourth, problem mentioned above
we must allow an event to occur if the process was unable to refuse it in
some half-open iuterval ending at the given time. We can define a process
to be quasi-deterministic if, <lnd only if, uuder the ~ame circumstallceR as
above. we never both have s.((t, a)) E Traces(P) and that there exists f. > 0
with

(s',[max{O,t-fj,I+,) x {a}) E Fail(P)

If P has just started (Le., t = 0), theu it cannot both accept and reject a
at time t. Otherwise, it must not accept a jf it is able to reject it in some
interval up to and including the the current time t.

Ifwe had just wished to deal with problem 1 then we would have altered
the above definition to

(s, [maxi end(s),t - fj, 1+ ,) x {a}) E Fail(P)

The difference between these appears in a process which has just been offer
ing an event a, but has started to refuse it at the same moment when it has
accepted an event b (there being no reason why a and b must be different).
Axiom 10 does not force the process to be able to accept a at the same time
as b - after all they may have been offered as alternatives. However there are
circumstances where we would expect an a to be possible, and can deduce
this from axiom 3. Consider, for example, the process

(((a --; STOP)O WAIT 1); STOP) III (b --; STOP)

which is forced. by axiom 10, to have the trace ((l,a),(1.b)) and hence. by
axiom 3, has the trace ((1, b), (1, a)). The second and stronger definition
above would have disallowed the a after the bl whereas the first allows it. A
subtle variation on this example appears if a and b are replaced by the same
event.

32

This stilI dof''s not deal with the second and third problems discussed
above of transient events. In dealing with these there are two things to
notice. Firstly, a given recorded trace might have a number of transients in
it. Thus we need to allow for at least any finite number of tranaients being
possible for a given process. Second, it is quite possible for a transient of
either sort to appear after the process has previously been stable (i.e., on a
proper prefix of the current trace), as occurs in the process

a -+ (0 -+ STOPDb -+ STOP) \ Q

Since we know that the behaviour of a stable process does not depend on the
time at which the next event happens (axiom 8), it follows that if a transient
is possible at some later time if the next event happens at one time then
it must also be possible at suitably shifted later times when the next event
occurs at some other time. Of course this means that sometimes, though in
rather special circumstances, a process must have an uncountable infinity
of transients if it has one. Given this discussion and the existence of the 'at
stability' type of transient it is obviously important for us to understand the
nature of stability in the class of quasi-deterministic processes. It will also
allow us to find an appropriate strengthening of the definition to deal with
stability.

The following result shows that quasi-deterministic processes actually
have much in common with the detenninistic and pre-detenninistic processes
of untimed esp.
Lemma 2 Suppose P E TMFS is quasi-deterministic. Then

1.	 If (s, 0·, N") is a compJete infinite extension of (s, 0), for S E Traces(P),
then (8, N) E Fail(P) if and only if N <; N" (for all N E RSET).

2.	 The complete infinite extension (s, 0·, N*) of any (s, 0, N) E P is
unique.

3.	 If (s, cr, N,) and (s, a', N1
) are both in P then cr = a'.

4.	 P is the only quasi-deterministic process with its trace/stability set
Stab(P).

5.	 If Q ~ P then Q is quasi-deterministic.

6.	 Over quasi-deterministic processes, the inequality in axiom 8 becomes
an equality (i.e., the stability value of the shifted behaviour is also

33

shifted by the same amount) provided that the time t f is strictly greater
than a.

Proof Suppose 5 is any trace of P, and that (8, a, W) is a complete infinite
extension of the timed failure (s,0). Now suppose (s~t, N) E Fail(P) is
such that end(N) S. t). Claim that N <;;; W. If not, there would be times
tl < t2 < t such that no event of 8 occurs in [tl. t2] and an event a such that
[t"t,)x {aj <;;Nand [t),t,) x {ajnN' =0. For alit, < t' <I, there thus
existsf with (8~tl, [t' -f,t' +f) x {a}) E Fail(P) though the completeness
of (8,ll:",W) ensures that 8~tl.((t',a)} E Tt·aces(P). This contradicts our
assumption of quasi-determinacy, and so the claim is established, proving
part 1.

Part 2 follows easily from part 1, since if (s, aI, NI) and (5, Q'2, N2) were
different complete extensioIlB of (s, N) (and hence of (s, 0)) there would be a
time t such that either NI~t g N2 or N2~t g Nj . \Ve know that the stability
value associated with any failnre of the form (s, N) is the supremum of those
associa.ted with its complete infinite extensions. It follows that that stability
value lS the one belonging to the only complete infinite extemion. Since this
complete infinite extension is common to all failures (s, W) with the given
trace, we have proved part 3.

In order to prove part 4 it is enough, by part 3, to prove that if P
and Q arc quasi-deterministic aud TTaces(P) = Tmccs(Q) then Fail(P) =

Fail(Q). If not then, without loss of generality we may assume that there
is (sY) E Fail(P) hut not in Fail(Q). Since", E Traces(Q) we can extend
(8,0) to a (unique) complete infinite extension (s. W). Necessarily, as in the
proof of part 1, there are times tl < t2 such that no event of 8 occurs in
It), t,] and an event a snch that It"~ t,) x {aj <;; N and It"~ I,) x {aj n N' ~ 0.
For all t) < t' < t, there thus exist" with (sh" It' -E, t' +E) x {aj) E Fail(P)
though the completeness of (s, W) ensures that .~I\h.((t\ a» E T'f'aces(Q) =

Traces(P). Thus part 4 is proved.

The proof of part 5 is completely elementary. It is worth noting that
quasi-deterministic processes are not maximal under the order. In general
we can I improve' a quasi-deterministic process P either by decreasing its
stability values or by exploiting the fact that we took the definition above
which was weaker on what could happen at the same time as another event.

Axiom 8 says that, if (5, n, N) E P and if t > n, t 2: end(N) (so that
by tirne t we can be sure the process has been stable since time a, then
any behaviour of P starting from t can be shifted back to any time t 2: t.

34

If t l > a and we could, in fact, have deduced that the process had been
stable since a at time t', then the same axiom can be used to shift the
behaviour back the other way; since the inequality then works both ways
between the shifted stability values, the shift must be exact. Since, by part
3, stability values in quasi-deterministic processes depend only on the trace,
this deduction can always he made for them. 0

Part 4 is obviously very like the result which says that, in untimed CSP, a
deterministic process is determined by its set of traces or a predeterministic
process is determined by its sets of traces and divergences. Olle significant
difference is that, in the timed ca.<;e, by no means every plausible set of traces
gives rise to a quasi-deterministic process. An example of this is provided
by the traces of tile process we used to illustrate the first type of transient
above.

It is interesting what part 6 does not say - it does not say that the
inequality of axiom 8 becomes an equality for t' = a. This is because the
definition of quasi~deterministicprocesses allows a limited form of the 'at
stability' type of transient discussed earlier. Consider, for example, the
process

(a -t .l)OSKIP); (a -t STOP)

which, under the standard semantics is immediately stable and offers a,
after which it can do nothing. If the a occurs at time t > 0 the subsequent
stability time varies linearly with t. But an initial transieut destroys this
relationship for t = O.

2.7.1 Adding transients to quasi-deterministic processes

We are now going to tackle the question of how one might add a transient
event (and its subsequent consequences) to a qnasi-deterministic process
P. Lemma 2 and the above discussion give us a clear indication of how to
deduce, once we have been told to place a transient at one point (a particular
time in the closed interval between the end of a trace s and the stability
time associated with s), where else it must be pOSSible because of earlier
stability. (We can ignore refusal information because of what we know from
the lemma.)

Suppose s = v.((t, a)}.w, t > a where a is the stability time associated

with v and t! ~ Ct. Then we will write st-,t1V.((t',a)).(w + (t' - t)) (=::- s')
and observe that any transient added after s must be added after Sl. shifted

35

through e- t. (The time of the ~hiftecl transient is guaranteed to be in ran~p.

by axiom 8.) If t' > t, we will write 881~' and obsene that if .';1 ~-.!..-..1,i2
then (i) 52 4 181 and (ii) (by Lemma 2 (6)) the stability times of all traces
beyond the shifted event in 51 and 52 are also shifted by precisely the same

amount t. Sincc, if 5 1:bl s'l' til(' first shifted event of 51 occurs strictly later

than a.ny predece~sor. if s'l ~ <~l then there is s~ ~ 52 sneh that 8'1oblS!2'

\-VI;! can form transitive doslUes of these relations to take aCLOnnt of the
fact that several events ill a trace might happeil after stability. uddin.t:', if~

the re-ordering congruenr.e. as follows:

• If s ~ 51 then.~ u..~' IllHI ., kt/

t I' I~t'
• If 8====}lS' and ,,'-----:.::/' dll'n S~.'/'

• If 8~lSI ;"\.1\(} sibs", Then s~ .~I/.

·* and ~ are the smallf'st n-,iatious consistent with thp. ~:ibon".

Both these rdations are tHlnsit.ive (adding the times) and reflexive (with

time 0). We also have that ~.J~SI implies 5 d.<; and that, in this case,'

t,he order in which the various shifts are carried out to ge t from 5 to 5' is

irrelevant. In relation [,0 ~, it is easy to see that if ~k.s-' then the groups of
simultaneous events ill .'; n~main together in s' and kcep their relative order
except that some might be amlilgamated (in a process which ('an become

stable instantly after some communication)' and that if B~S' then the
integrity and order of these groups is preserved completely.

Suppose P is a qua.<;i-deterministic process, that .<; is one of its traccs wit.h
associated stability valnc n, a E ~ and t E [t>nd(s), 0:]. Let us consider what
the version of P would look like which had the additional (and nondetermin
istic) possibility of communicating the initial events of a process Q at time
t, and then continuing to behave tike q. For variollli reasons it appears to
be su6cient to consider only ca.'-ies where no events have happened already
in s a~ time t, namely \",hen .~ = I.) or t > end(c"). The various varieties ot
transient which might coincide with events at the end of s either cannot ari~e

at all because of the a...xiollls. become duplicated by stability so that they
are not transients at all, or can he dealt with by including the events of s
with which they coindde as transients as well (essentially by absorbing part
of Pinto Q). SO let Q be any element of T MFS which can communicate at

36

time O. We can construct the element of TMFs which behaves as indicated
above:

SUP(PU {(s'.w + I' + 1,0" + I' + t, (N'h + I') U (N" + t' + t)) I
(s', W) E Fail(P) 1\ s=&.s' 1\ (w,o", N") E Q 1\ begin(w) = 0))

We can denote this combination by p.!.4Q.

Instant enabling

In our definition of quasi-determinism we only claimed to have dealt with
one aspect of the difficulties arising from axiom 3. The concept of one event
instantly enabling another, so that a process becomes unable to refuse one
event because it has performed another Cit the same time, is another source
of problems relating to the interplay of that axiom with the others. At first
sight it is difficult to see how one might realise such a situation, especially if
we assume that all events take non·zero time to complete. It is interesting
to note that axioms 2 and 3 together state that if two events are possible
at one time then either may appear without the other - meaning that any
absolute causal dependence between two simultaneous events is impossible.
But in fact it turns out that we call get close enough to this instant enabling
to have problems with our definition of quasi-determinism.

Consider the process

P = ((a -> STOP III b -, STOP)OSKIP); STOP

Here, the occurrence of either a. or b at time 0 instantly enables the other, in
the sense that the process cannot then refuse the other event - even though
the original process could refuse both events at time 0 (and all later times)
on the empty trace. Though the a or b which appear here are transients
(of the first type discussed earlier) this is not the case if we offer the choice
between this way of offering a and another:

PO(a --> C --> STOP)Ol-

Here, things become rather difficult to disentangle. It gets worse ifwereplace
P by the process Q which works in essentially the same way except that it
cannot perform an a after time 0:

Q = ((((a --+ STOP)OSKIP); STOP) III b --> STOPJOSKIP); STOP

37

The process
R = QO(a --. c --. STOPjO-L

cannot refuse a on its first step but may, when it performs (0. a). instantly
lose the ability to refuse b6 . If, on the other hand, it performs (0, b) then it
can 8.Ild must instantly begin refusing a. Thus the trace {(O, a), (0, b)) is very
much allowed by our definition of quasi-determinacy, while the equivalent
trace ((0, b), (0, a)) is not. We probably would not wa.ut to consider R qua.."i
deterministic, since it lias a definite choice of what to do at time O. Con~ider,

however, the process which behaves like R except that when (0, a) OCCurs it
must pick the Q behaviour rather than the one with the following c. This
is an clement of TMFS (though ~eemingly not one expressible iu Timed
CSP under its standard semantics) which would have no quasi-deterministic
implementations under the current definition. The most troublesome trace
any implementation must have is ((0, b)), since it is both refusable and carries
with it no explanation of why it is there (i.e., the forceable event (0, a)).

Rather than attempt to get around this technical difficulty, we choo~e to
simply note it and necessarily restrict the set of processes which can expect
to be determined by their implementations. Define a process to be !l'ee of
instant enabling if, whenever t' > t and (s{(t,a)), No) is t'-complete, then
there is E > 0 and l{' ~ l{ such that (s, l{') is (t + E)-(~umplete. This simply
means that any events which might become enabled (i.e., umefusable in a
complete behaviour) instantly after a could have become enabled at that
moment event if a had not occurred. Thus there is no causal relationship
between the occurrence of a and the enabling of other events. Clearly the
various examples in the discussion above fail to have this property.

It is interesting to note that, while 'instant enabling' seemingly describes
the behaviour of the examples discussed above on an abstract level - the
communication of a at time 0 instantly enables b -- in fact the CSP defined
examples worked by a preventing an internal action that would have stopped
the b from being enabled. Although, on the surface, this might seem a V(~ry

fine distinction it is in fact significant when we come to consider stability.
For in the mechanism which we described second there is the implication
that 1 when the enabling a occnrred, the process had not already become
stable. There is no such implication with the simple idea of instant enabling
- as might for example appear in the prefixing operation a ~ P, were it

°The purpose of the c in the definition of R is to enBure that we cannot ignore that it
might lose the ability to refuse b - since along with this it also loses the ability to perform
c later

38

definable for actions a that take no time and P which can communicate at
time O.

In fact, our axioms prohibit instant enabling after stability as is shown by
the followi~ argument. Suppose (s.((t, a)), H) is f-complete, where t! > t,
that (8, 0, N~t) E P for 0 < t but that there is no W <; N and f > 0 with
(sYl (t + ,)-complete. If (t,b) rt. N then (s.((t,a), (t,b)),Nft) E Fail(P)
and hence, by axiolllil 2 and 3, (s.((t, b)), Nft) E Fail(P). Axiom 7 then tells
us that (t',b) f1. N for any 0 ~ t < t. In other words'

{b I (t,b) E N};2 ~(Nt[(>.t))

By the structure of RSET we then know that there is t > 0 such that

Nt!t, t + ,) ;2 It, t +,) X (~(Nt[Q, t)))

But exactly the same arguments and constructions used in the proof of
Lemma 1 show that, for any t' 2 t the triple (s, Q, Nftu ([t, t') x ~(NiIN, t)))
is a t'-complete behaviour of P. This is exactly what we require to establish
OUI claim.

Towards a completeness theorem

So far in this section we have presented a taxonomy of nondetenninism in
our mo~eI, the class of quasi-deterministic processes which are perhaps those
most analogous to the pre-deterministic ones of untimed esp, an operator
for introducing transient events into them, and discussed the phenomenon of
instant enabling. In this final subsection we bring all of these things together
by conjecturing a completeness theorem of the type discussed earlier, and
by providing some evidence for this conjecture.

Define the class of almost deterministic processes to be the smallest one
which contains the quasi~deterministic ones and which, whenever P is quasi
deterministic, Q is almost deterministic with communications at lime 0,

(5, a) E Stab(P} and t E [end(sL a]' P~Q is almost deterministic. In
other words an almost deterministic process is quasi-deterministic except
for a finite number of occasioll5 where transients are possible, which are
arranged in a single unbranching sequence. We will take these as the class
of processes which will form the basis of our completeness conjecture.7

'If desired, this class could probably be tightened somewhat. For example one could
attempt to restrict the class of transients introduced to the two specific classes identified
earlier.

39

We define an implementation of P E TMps to be any almost determin
istic Q such that P !; Q. Let imp(P) be the set of all its implementations.

We have already said that the general nondeterministic construct n s
would he allowed, subject to restrictions, for nonempty sets 5 of processes.
In order to discuss completeness we need its definition and details of the
restrictions. The nondeterministic composition of a set of processes can
behave like anyone of them - therefore the set of its observable behaviours
should be the union of those of the processes over which we are taking the
choice. Since, in T MF8, we associate with each timed failure (8, N) only one
stability value - the supremum of those times at which stability can actnally
occur - we form nS as follows for a nonempty subset S of T MFS:

ns= SUPlUS)

where the SUP operatOl' is as defined earlier. The restriction we need derives
from axiom 4: if the elements of S have functions n(t) bounding the numbers
of events up to given times which are llot bounded by some fixed function.
then nS would violate t.he axiom. Hence we assume that there is a fixed
function n·(t) such that, for each PES. the number of events up to t in P
is bounded hy n*(t). The n operator can only be used in such cases.

Notice that the functions n(t) which exist for P by a.xiom 4 also work
for every Q E imp(P), so that providing nn.p(P) is nonernpty, the nonde~

termiuistic composition n (imp(P)) is well·defined. We can thus state our
conjecture:

Conjecture If PETMFS is free of instant enabling, then imp(P) is
noneillply and n (imp(P)) = P. 0

If S is a set of processes Q such that P ~ Q (for fixed P), then it is easy
to show that P ~ n s. In Ol'der to prove the mnjecturcd result it would
thus be sufficient to find, for each (.,';, Q, N) E P and t < 0:, an element Q of
imp(P) which contains (.5, tl, N) for some .B > t.

We expect the proof of this conjecture to consist of a cunstructiou of
these Q's. Such a construction will necessarily b(' detailed and require careful
checking of the axioms. In its essence we expect it to revolve around manip
ulations of complete infinite behaviour~ of the types construcced in Lemma
1. Starting with a complete infiuite extension of the target behaviour, we
would pad thi~ out to a complete description of what the implementation
Q could do after every timed trace and, where this is necessary detail (after
at-sta.bility transients), timed refusal. The only events of Q which could be
transients would be ones of the target behaviour.

40

The following result will probably be important in this construction since
it says that, if in the complete infinite behaviour (s.w, H·) the first events of
w apparently occurred at or before stability (because (s, 0, N·~(begin(w))) E

P where begin(w) S a), then we can extend the initial segment of the
behaviour to infinity in such a way that we can still believe this. The
importance of this is that events which happen after stability need to be
treated differently from ones which happen at or before it.

Lemma 3 Suppose that (s, 0, H) E P is t-complete where end(s) ~ t ::; Q.

Then it has a complete infinite extension (s, {3l W) with t ~ f3 S a and
wh ~ Nk
Proof First suppose t < a. Then, by Lemma 1, there is a complete infinite
extension (s, a', N') of (s, N) such that t < a'. Let W ~ Nt[O, t) u N't[t, 00).
The same arguments which were applied in the proof of Lemma 1 show that
there is j3 such that (8,,6,W) js a complete infinite behaviour of P. Axiom
9 (applied to the finite restrictions of Wand N·) shows that a' ~ j3 :s; 0, as
required.

More care is required when t = o. We know that there is a sequence of
complete infinite extensions (s, On, Nn) of (s, H) such that an is an increasing
sequence converging on 0: from below. If any of them equal a then the same
construction used in the last paragraph applies, so we could assume that all
O'n are strictly less than Q. We can also assume, thanks to the second part
of Lemma 1, that the Hn are all constant after the point of stability. If we
set H~I = H~a U Nnt[a, 00), it is easy to see that there is some {3n E [an, oj
such that (s,.Bn,H~) is a complete infinite behaviour. Now let

N' ~ n{N~ I n E N) .

Clearly W ~Q = H~Q, H ~ Wand W is constant after o. (The fact that all the
H~p and hence, N·, are constant after a, is necessary to ensure that N'" has the
finite variability property -- N·~t E RSET - we require of complete infinite
behaviours.) If we can show that (8, W) isa complete infinite behaviour
then, since H ;;;; W ~ Nn , its associated stability value must be o.

Completeness up to time 0 is a straightforward consequence of the a
completeness of (s, H). Beyond 0 it follows because, iftl

~ a and (e, a) ~ N·,
there is some n with (tl,a) ~ H~. We then know that (s.(t',a)),N~~f) be
longs to Fail(P) by completeness of (s, H~), and hence so does (s.«(t', a)), N·h')
by axiom 9.

We have thus shown that (s, Q, W) is a complete infinite behaviour of P,
which completes the proof. 0

41

3 The semantics of Timed CSP

One might argue that Timed CSP should be supplied with a number of dif
ferent semantics which differ in how the various operators deal with time.
Thus ,m implementor would not be forced to give all constructs exactly the
same ~iming characteristics. He could reason about processes in his imple·
mentation by giving a semantics for Timed CSP which accurately reflected
how it worked.

If ~here is a fallacy here it is that CSP and Timed CSP are not usnally
thougllt of CUi languages which are directly implemented in tllP usual sense.
They arc used to specify intended behaviour, or to reason about implemen
tatiolls at a level a little more abstract than code. We feel that it is better
to hme a standard semantics for Timed CSP in which the great majority of
reasoning is done. This has the obvious advantage of not hUNing to param
eterise every result about the lanp;uage with the semantics used to prove it,
and th.at each term in Timed CSP will have the same meauing to everybody.
We imagine that it will also be rathcr easier for someone working with an
implementor to follow the principles set out below than to construct his own
semantics for Timed CSp·- an activity that would carry an extensive burden
of proof to ensure it wa.."l a reasonable onc.

In constructing the standard semantit:s we shouJd aim for a combination
of elegance - maintaining a.."l many of the appealing algebraic properties of
the u:ttimed semantics as possible - with expressive power. For provided
we can express a wide range of behaviours in our language l it sbould be
possible to capture the essence of the majority of implementations by repre~

sentiug whatever constructs they contain as hybrids of several Timed CSP
constructs.

Without further ado we willilow define the standard semantic function
[T: TCSP --> TMFS'

[T[J.I = {(().oo,N) IN E RSET)

[TISTOPI = {((), 0, N) IN E RSET}

[T[SKIPI ~ {to, oy) I v' ~ E(N)) U

{(((t, v'»), t, N, uN,) I I ~ 0 i\ (I(N,) <; [0, I) i\
v'~ E(NJl) i\ I(N,) <; [1,(0))

[TIWAIT II = {((), t, N) INn ([t, (0) x {v')) = 0)
u {(((I', v'J), I', N, UN, u N3) I I' :0: t i\ I(N,) <; [0, t)

i\ (I(N,) <; It, t') i\ v' ~ E(N,» i\ I(N,) <; [t',oo»)

42

[ria -+ P) =	 (((),o,~) I a If E(~)) u
{(((t, a)).(s+(i+6)), 0+t+6, ~l U~2UW3+(i+o))) I
i ~ 0/\ (I(~l) <; [0, t) /\ a If E(~il) !II(~2) <; It, t H)
/\ (5, 0, ~3) E [riP]}

[r!a : A -+ pea)) = (((), o,~) I A n E(~) ~ 0} u
{(((t, a)).(s+ (i+O)), o+t+o, ~I U~2 U (~3 +(i +0))) I
a E A /\ i ~ °/\ (I(~,) <; [0, i) /\ A n E(~il = 0) /\
I(~2) <; [t, i + 0) /\ (s. ct. ~3) E [rIP(a)!}

ErlPOQJ = SUP({(0, max (ctp, 0Q),~) I ((), op,~) E EdP!
/\ ((), 0Q,~) E [dQ!}
U Irs, o,~) Is'" 0 /\ (s, ct,~) E [dP! U [rIQ!
/\ (O,~fbegin(s)) E Fai/([r!P!) nFail(EdQJ)})

[rIP n Q] = SUP([rIP! U [rIQ!)

[TillS] = ,2'UP(U S) (S '" 0)

[rIPIIQI =SUP({(s,max{op,oQ),~pu~Q)I
(5, op, ~p) E [riP] /\ (5, 0Q, ~Q) E [rlQ]})

[riP xllyQ] = SUP({(s, max{op, oQ}, ~p U ~Q U ~z) I
3(.,p, op, ~p) E ErIP], (sQ, 0Q, ~Q) E ErIQ!

with E(~p) <; X and E(~Q) <; Y 'uch that

5 E (spxIlY5Q) /\ E(~z) <; (E - (X UY))})

where v xllyw =

(5E(TE)~ls~(XUY)=s /\ sfx=u/\sfY~",)

[riP III QJ = SUP({(5, maxiOp, 0Q}'~) I 3(u, Op,~) E Er[P]
/\ (v, 0Q,~) E [rIQ! such that s E Tmerge(u, u)))

[r1P:Q! = CLe;(SUP({(s,o,~) I ../ If E(s) /\ VI E TINT
(5, 0, ~ U (I x (../))) E [riP!)
U {(s.(w + i), a + i, ~I U (~, + i)) I ../ If BCe)
/\ end(~il S i

/\ (5. ((t, "/)), ~l U ([0, i) x (../})) E Fail([rIPJ)
/\ ("1,0, ~2) E [dQJ)))

[riP \XJ ~ SUP({5 \ X,iJ,~) I 30 ~ iJ ~ end(s).
(5,0, ~ U ([0, max{iJ, end(~)}) x X)) E [riP]})

[rl/-I(P)! ~ {(s,o,~) I (f(5),O,/(~)) E [riP!}

[rl/(PJI=SUP({(f(s),o,~)I (S,O,/-l(~)) E [riP!})

43

[T~p.F(p)] = The unique fixed point of the contraction mapping
6(Q) ~ C(WAIT 0; QJ, where C is the mapping on
T M F 5 represented by F.

We now discuss the construction of the above semantics and the assump
tions that are implicit in them. Where we discuss the difficulty or otherwise
of implementing a particular operator: the reader should bear in mind that
CSP is not primarily intended as an implementable language and that it
deliberately (in the untimed version as well) contains a number of features
which are useful in specification and reasoning but are impractical to im
piemeat. Part of the idea here is that one should be able to use the full
langua.ge at the specification stage, but be forced to be more selective when
we refine our specification to an eventual implementation. Thus, in prac
tice, while we are likely to be concerned that some subset of the language
(possibly an occam-like one) accurately reflects an implementation, we are
unlikely to have this worry about the whole language.

•	 ~ote that .1 and STOP have exactly the same traces and refusals,
but that, while STOP become::; ~table immediately, .1 never becomes
stable. These definitions will almost certainly remain unaltered in all
semantics for Timed CSP.

• SKIP	 is immediately stable, and is willing to terminate at any time.
In practice a process will probably be lswitched off' as soon a..<; it termi
nates, which corresponds in a sense to the a..<;sumption in the ~emantics

that SKIP is stable as soon as it terminates. In another sense it makes
~his decision on stability relatively unimportant.

•	 WAIT t behaves like SKIP except that it only becomes stable and able
to terminate at time t.

• The prefixing	 constructs a --t P and a. A --t P are both assumed
~o take no time to set up (they are immediately stable and willing
lo commit themselves to communicate) and furthermore assume that
each event takes exactly the same deterministic time J > ato complete.
Notice that a typical history of one of these processes has three phases,
reflected in the refusal component written ~l U lXz U N3 + (t + J), the
first when the initial event(s) are on offer, the second when ~uch an
event has occurred and is being completed, and the final one beiug a
behaviour of P or a P(a) shifted by an appropriate delay. One will

44

frequently want to change some of the assumptions made here, and we
will discuss this issue later.

•	 The external choice operator described here runs its two arguments
together - at their natural speeds - until the environment accepts a
choice from one of them, which commits the choice. Thus the process
can, on the empty trace, only refuse sets offered by both its argu
ments and becomes stable when both its arguments do. If the first
timed event chosen was possible for both, then the choice may sub
sequently behave like either - this potential ambiguity explains the
use of the SUP operator. We have assumed that the operator has
taken DO time to set up, has the reSOurces to run its arguments in
parallel, and does not delay in transmitting their communications to
the environment. It seems unlikely that, except perhaps in the case of
self-timed circuitry, one would normally expect to implement an unre
stricted operator with these characteristics. Either one would severely
restrict the class of processes to which 0 can be applied (note the re
mark about implementing only subsets above), or change one or more
of these assumptions.

We need to place a restriction on the applicability of the general pre
fixing operator a : A -+ P(a) when a is infinite. For it would not in
general be true that if all the ET[P(a)] belonged to TMF8 then gO does
ET[a : A --+ P(a)]. Specifically we have to assume that the functions
n(t) which exist for all the £yIP(a)] by axiom four are bounded above
by some function m(t). This excludes examples such as

n: N -+ Pn+1

where Pn = (a -+ STOP) III ... III (a -+ STOP) (n copies).

•	 The two nondeterministic choice operators nand n can behave like
any of their arguments. The reason for the SUP operators is again the
ambiguity this causes. Since these operators are unlikely to play much
of a direct part in an implementation, there are really no operational
assumptions here.

As in the case of general choice, we have to restrict the application of
n to sets of processes where the munber of events possible up to any
given time is uniformly bounded, once again to protect axiom ??

•	 The two synchronised parallel operators !J and x lIy are closely related.
The first expects its arguments to synchronise on all communications,

45

which weans that it can always refuse any communication that either
refuses. The second constrains its arguments only to communicate
in the sets X and Y respectively, and makes thew synchronise on all
communications in XnY. The resulting process can thus always refuse
anyl,hing outside X nY, can refuse aliything; in X that its left-hand
argument can, and can refuse anything in }' that its right-hand oue
call. Notice that II means the same C15 LII~:;. Oll(' itgain we an' a..'isuming
thaI the (lpt~ratioll takes no time to set up. and we are assuming that
there are f:nongh resources to rUli eCich a,rgumellt at its natural spc('d·
i.e" this is an operator which runs its arguments genuinely in parallel
rather than timeslicing them on a single processor.

•	 The interleaving ptu:a.llel operator II also run...; its argnments at tlwir
natllral speeds with no setup time. This tinw, howev8r, there is no
symhronisation between tbe processes.

•	 ThE sequential composition of two proccl>ses behaves like the first them
unt..! it terminates (by commnnicating- J) awl then starts up the R(:('

and. In this semantics we ,LSsurnc thCit this op{'rp.tioll takes no time to

tiet 1p and, more controversially, t.hat the hand-over happens inst.an(·]y.

Tht first component of the de1:inition t.akes account of the behaviours
of P in P; Q which have not t~rminated, hav(~ not been prepared to
terninate so far l a.nd have the ability to refuse to terminate inde1:i
nitdy. These are behaviours of P; Q. The rea.<;on why this part of the
definition includes the condition that the process should cuntinue to
be a.ble to terminate is to get tlw stability value right: if we had a be
haviour of the form (s. a. N) with (s. Nu[O. end!.,. N)) x { J}) E Fall(P).
theJ. we would know that (8.l{) E FUt/{ P: Q) but, siuce it i1:i pos1:iible
th;l~ J might become available before sta.bility, the stability y,due
a might actually be an over-e:o;timate of th,tt of the failure ill P: Q.
There are two points one should note about this, first that if the fail
ure (8, l{) is excluded from this clause because of this indefinite refusal
req1irernent, then it will be included in the second component with
(W'~2) = ((),0). Secondly, if a process is st.able and refl1sing..,l, thcn
it ;rill go on refusing it.

The second component deals with the case where P has terminated
ane Q has started. Note that P lflust have refused to terminate np to
the moment when it did, The SUP operator is once again present to
deal with ambiguity in the ways in which failures can be put together.

46

We need the CL~ operator to deal with a slightly uncomfortable side
effect of our assumption that the hand-over takes no time. For it is
possible in our model that P might terminate at the same moment as
it is performing some communication, a say, and that Q might itself
communicate, say b the same moment when it is started up. The net
effect is that P; Q might perform two communications, one from each
argument, at the same time. In order to satisfy axiom? we must
include the trace with them reordered with b before a .

•	 The definition of the hiding operator is one of the shortest - in con
trast to the usual situation with untimed CSP - and yet it is actually
extremely subtle. The ideas behind the hiding definition are similar
in some ways to those behind sequential composition, where the first
V is a hidden event. Recall the postulate made earlier that hidden
events happen a.'l soon as they can. This means that any behaviour
of P which could not have been extended though its length by the
refusal of the whole of X cannot be a behaviour P within P \ Xl since
P would actually have accepted such an event, on offer (;ontinuollsly
from the environment l and so not have reached this point. We have
the same problem as in sequential composition with processes which
are unable to continue refusing X untH they are stable. This is the
reason for using end(s) :::; {3:::; 0 with

(s, a, ~ U ([0, max{iJ, end(~)}) x X) E orlPI

Consider, for example, the process

(-LOb -+ STOP) \ (b)

which becomes stable at time 0, even though (..lOb --+ STOP) never
becomes stable on the empty trace. The (s \ X, {3, X) recorded in the
definition are just timed failures of P\ X together with a time 13 which
the process can reach without previously having become stable, (Note
that, in the case where P becomes stable still refusing all of X, {3
might be less than end(~).)

We are again assuming that the hiding operator requires no time to
set up and imposes no time overhead on the running of a process.

•	 The inverse image of a process P under a function f can perform an
event a whenever P could have performed f(a). The important points

47

to note about this operator are that there IIlc'ly be several different
events mapping to the same image f(a), but that each behaviour of
f-lIP) results from a unique one of P.

•	 On the other had the direct image operator can perform f (a) whenever
P could have performed a. This is. in some sense, a more obvious
relationship between events but. in the C<l.c;e where f is not injective,
can map many behaviours of P onto a. siugle one of f(P). Note that
f(?) can only refuse an event,.. ",,'hlm all of the events which map to II
under f are refused. Again the ambiguity requires the use of the SUP
operators.

•	 All the operators above are nonexpanding in t.b.e metric ~pac(' (for
the reasons discussed earlier). Thus any function we call define by
combining them is a.lso nonexpanding. It follow:-i that. when conJposed
wit.b. the contraction mapping sending C2 to W.4IT J; Q, it gives a
comractiou and hence has i'l. unique fixed poiut. \Ve should note tlmt.
the recursive coustruct is itself nOllexpanding, since if F(P, Q) is a
con~ractiou in its first argument and llonexpallding in its second then
Il.P.F(P, Q), mnsidered as a function of Q, is also noncxpanding. (The
prOJf of this may be fouud, for example. in [Ro,1982].) The assumption
implicit in the definition given here is that makiug a recur~ive call takes
time 0 deterministically. This is another assumption that one might
very will wish to alter, and which will be discllssed later.

It E often useful to use several, or even in.finite vectors of. processes
deflned by mutual recursion. We have Hot iucluded th.is possibility
explicitly in our syntax simply be<.:ause it is hard to give H reasonably
concise, but sufficiently geueral, des<.:ription of their syntax. Never
theless it is easy to give semantics to mutual re<.:ursions (and actually
rather more important to than in the untimed cases where, without
details of timing, one can simulate arbitrary mutual recursions as sin
gle ones). Given a mutual recursive definition of the form E <:= F(EL
where E is a vector of process variables and F represents the same
type of vector of process terms involving them, the standard seman
tics would associate E with the unique fixed point of th.e contraction
mapping on the product space whose A~component is the semantic
mapping associated with the A-component of F. except that o-delay is
put on each recursive call of any PIJ. as above. Of course this would be
subject to alteration of assumptions about timing just as in the single

48

recursion case.

Broadly speaking, the standard semantics assume that the completion of
all events and the unwinding of any recursion take the same non·zero time 0,
and that otherwise each of the operators (i) consumes no time itself and (ii)
trea.ts its operands: at each moment, like the corresponding untimed CSP
operator treat its 'in the large'. Each of the operators preserves the axioms
ofT'\.[Fs, and is monotone with respect to the nondeterminism order~. In
relation to the various discussions we had earlier when constructing TMf'S,

we should perhaps now note the way in which the hiding operator essentially
uses the fact that refusals are recorded throughout a trace. The reader
might wish now to go back and re-examine some of the earlier examples in
the context of the semantics we have now defined.

Algebraic properties

The algebraic prope..rties of untimed CSP are well-understood and have been
used both to characterise the sema.ntics of the language and as a tool in the
practical use of the notation. Indeed, many other theories of untimed con
currency have been presented chiefly through an algebraic semantics. The
central feature in the algebraic semantics of untimed CSP is a semantic·
characterising nonnal form into which every finite program can be trans
formed. The normal form is constructed using only the two types of choice
operator (0 and n) together with prefixing and .1, thus every process is
equivalent to one with no parallelism in it

As we shall see shortly, Timed esp, nnder its standard semantics, in
herits many algebraic laws from untimed esp. It is, however, not possible
to devise a normal form which in any way resembles the untimed oue, and
in our experience to date algebraic laws have not been nearly so useful prac
tically as before. Both of these have their roots in the fact tha.t our timed
equivalence distinguishes many more processes than the untimed ones, most
particularly in the sense that it records the exact times at which events
happen. This means that there are many less pairs of processes which can
be proved equivalent. The most striking example of this comes when we
consider a process such as (u --t STOP) III (b --t STOP), which can commu
nicate a and b arbitrarily close together in time, or even at the same time.
The only way one can write a process which can communicate two events
simultaneously (or even two events separated by less than 0) is by using one

49

of the parallel operators. This means that no normal form can be created
from the non-parallel operators of the language.

Compatibility with the Laws of [BR,1985]

The 31 laws of [BR,1985] are a reasonable test for compatibility of our
model with the existing untimed CSP theory.

All but 4 of the 31 laws of [BR,19S5] hold in tbe the timed failures
stability model.

These are:

P II STOP	 STOP ifPI1

1- if P = 1

(0--; P) III (0 --; Q) (0 --; (P III (b --; Q)))O(o --; ((0 --; P) III Q))

(0 --; P) \b	 (a--;P\o) if 0 I 0

P\b if a = b

The failure of the first and third laws simply reflects the passage of time
(for example, WAITn II STOP = WAIT n; STOP). The failure of the
second law reflects our use of the delay constant b to implelnent our view of
realism: two process in parallel can run faster than a sequential process.

Finally, as discovered by Steve Schneider, the timed failures-stability
model also fails the law P n (QOR) = (P n Q)O(P n R).

For example,

(0 --; STOP) n ((b --; STOP)O(c --; STOP))

f.
((0 --; STOP) n (b --; STOP))O((o --; STOP) n (c --> STOP))

Clearly, (((I, b)), [0, I) x (c}) is in the failures of the second process but
not ill the failures of the first. Observe that indeed the two proce~ses are op~

erationally different in this respect, since as noted, timed state is determined
by pa.st refusal behaviour as well as futme.

50

Laws of Timed CSP

poP~P

PDQ ~ QoP
Po(QoR) ~ (PoQ)oR

Po(Q n R) ~ (PDQ) n (PoR)
PoSTOP ~ P

(a -+ (P n Q)) ~ (a -+ P) n (a -+ Q)
(n -+ P)o(a -+ Q) ~ (a -+ P) n (a -+ Q)

pnp~p

pnQ~Qnp

P n (Q n R) ~ (P,~ Q) n R
PIIQ~QIIP

P II (Q !I R) ~ (P II Q) II R
P II (Q n R) ~ (P II Q) n (P II R)

(n --l P) II (b -+ Q) ~ STOP if a ¥ b
= (u -+ (P II Q))if u ~ b

pIIIQ=QIIIP
(P III Q) IIIR = pili (QIIIR)
pili (Q n R) ~ (P III Q) n (P ill R)

P; (Q; R) = (P; Q); R
STOPIIIQ= Q

SKIP;Q=Q
STOP; Q ~ STOP

P; (Qn R) = (P;Q) n (Q;R)
(P n Q); R = (P; R) n IQ; R)
la -+ P);Q = (a -+ (P;Q)) if a ¥ V

(P \ X) \ y = (P \ Y) \ X
(P \ X) \ X = P \ X
(P n Q) \ a = (P \ a) n (Q \ a)

WAIT 0 SKIP
WAIT tl; WAIT t, WAIT (tl + t,)

(WAIT tl II WAIT t,)
(WA IT t1111 WAIT t,); P

WAIT max{tl, t,}
WAIT min{tj, t,}; P

(WAIT toa -+ P) \a WAIT o;P\a t> 0
« WAIT toa -+ SKIP); P) \ a WAIT 0; P \ a t> 0

«WAIT toa -+ STOP);P) \a WAIT 0; STOP t> 0

51

4 Conclusions

In this paper we have simultaneously provided a study of the detailed struc
ture of our model T Mps and of the types of Tloudeterminism which it can
model. We provided individual explanations of its var~ous axioms and also
showed how these axioms fit together by proving a series of lemma.':i and
other useful results ahout the model. We defined just w hat it means to be a
semantics for Timed CSP over TMps. Finally, we conjectured a 'complete
ness' result which would allow liB to argue that, at least in some sense, oue
axioms were definitive.

We hope that the rather detailed work in this paper will provide useful
insight, and a source of potential hard cases, to those engaged in more
practical work using Timed CSP.

We conclude by giving a brief survey of the literature of Timed esp
which defines the current state of the subject. The Timed Stability Model
for CSP was given in [RR,1986). The overall hierarchy of models wus de
scribed in [Re,1988] and [Re,l990]. Proof systems derived from the semantic
models and operators were described in [S,1990], [DS,1990], and [D,1991].
In [.1 ,1992J it was shown how a temporal. logic compatible with timed esp
can be developed. An operational semantics for Timed esp was given in [S].
The extremely useful technique of t?:mewise. n:[mcment for lifting process de
velopments and specifications from the untimed failures/divergence model
to the timed models is described in [S,1990]. The addition of probability
and priority to Timed CSP was accomplished in [L,1993J and [L,1995]. Tlie
extension to models of infinite timed behaviours was done in [MRS,199S].
Significant case-studies in the application of Timed CSP can be found in
tbe above references, as well as in [J,19g9], [KR,93], [8c,1990], [St,1990),
[Su,1991], and [W,1991].

There are by now dozens of other papers on Timed esp. A useful
oveniew of work at Oxford on Timed esp is given in [DJRRRS,1992] and
[DS,1995].

We have not attempted here a comparison with related work on temporal
reasoning in the literature; such comparisons can be found in the references
abo,., particularly in [Re,1988]' [5,1990), [D,1991], [J,1992], and [L,1993].
However, we do note that early independent work on timed versions of CSP
mallie found in [Jo,1982], [K5ROAK,1985], [Z,1986]' and [BO,1987]

52

5

Acknowledgements

We are very grateful to all those working in Oxford on Timed CSP for
their help and enthusiasm. In particular, Steve Schneider has been of great
assistance while we have been writing this paper. We also acknowledge the
interaction with OUI coileagues in the ESPRIT SPEC and REACT Projects.

References

[BG,1987] A. Boucher and R Gerth, A timed failures model for extended
communicating sequential proeesses, ICALP'87, Springer LNCS.

[BI,1990] S.R. Blamey, The soundness and completeness of axioms jar CSP

processes, Topology, Category Theory and Computer Science, (Oxford Uni

versity Press, 1990).. C.M. Reed, A.W. Roscoe, R.F. Wachter, editors.

[BHR,1984] S.D. Brookes, CAR Hoare and A.W- Roscoe, A thea,.,} of
eommunicating sequential processes, JACM 31 (1894), 560-599.

[BR,19851 S.D. Brookes and A.W. Roscoe, An improved failures model for

communicating processes, Proceedings of the Pittsburgh Seminar on Con

currency, Springer LNCS 197 (1985).

[D,1991], J.W. Davies, Specification and Proof in Real-Time Systems, Ox
ford University D.Phil thesis 1991.

[DJRRRS,1992] J.W. Davies, D.M. Jackson, G M. Reed, J.N. Reed, A.W.

Roscoe, and S.A.Schneider, Timed esp, theon} and practiee, 1991 REX

conference in Mock, the Netherlands, LNCS 600 (1992).

[DS,1990] J.W. Davies and S.A. Schneider, Faetorising proofs in Ttmed esp,

Proceedings of the Fifth Workshop on the Mathematical Foundations of

Programming Language Semantics (April, 1989), LNCS 442 (1990), 129

159.

[DS,1995) J.W. Davies and S.A. Schneider, A brief history of Timed esp,

Theoretical Computer Science 138, 243-273.

[H,1985J C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall

International, 1985.

[J,1989] D.M. Jackson, The specification of aircraft engine cOfltrol software

using Timed esp, Oxford University M.Sc. dissertation, 1989.

(J,1992] D.M. Jackson, Logical verification ofre-active software systems, Ox

ford University D.Phil thesis 1992.

53

[Jo,1982] G. Jones, A timed model for communicating processes, Oxford
University D.Phil thesis 1982.

[KR,n91] A. Kay and J.N. Reed, A Rely and Guarantee method for Timed
esp, IEEE Transactions for Software Engineering, 1993.

[KSRGAK,1985] R. Koymans, R.K. Shyamasuudar, W.P. de Roever, R.
Gertband S. Arun-Kumar, CompositiOnal semantics fo'r real-time distributeel
complJting, Faculteit del' \Viskllnde en NatllUfwetenschappen, Katholieke
Universiteit, Nijmegeu, technical report 68, 1985.

[L,1993] G. Lowe, Probabilities (md Prior'dies in Timed esp, Oxford Ulli
versitj D.Phil. thesis 1993.

[L,1995] G. Lowe, Probabilisltc and priortlled models of Timed esp, Theo

retical Computer Science 1:38, 315-353.

[MRS.l995] M.\V. 1I.,1islo\'c, A.W. Roscoe, and S.A. Schneider, Fixr:d pomls
w,ith()'lt completeness, Th{'oretical Computer Science 138, 273-:n5.

lRe,H8S] G.M. Reed, A uniform mathematical theory for 1'{;al-bme (Iis
tributed computing, Oxford University D.Phil thesis 1988.

[Re,1990] G.M. Reed, A hierarchy of madeh for 'real-time distributed comput
ing, Proceedings of the Fifth ~'orkshop all the Mathematical Foundations of
Programming Language Semantics (April,1989). LNCS 442 (1990),80-128.

[Ro,1982] A.W. Roscoe. it mathem.atical theory of communieating pmr:f:ss~s,

Oxford University D.PhiJ. thesis 1982.

[RR,19S6] G.M. Reed and A.W. Roscoe, A timed model Jar communieatinq

sequerltwl processes, Proceedings of ICALP'86, Springer LNCS 226 (1986),

:314-323; Theoretical Computer Science 58, 249-26l.

[RR,19S7] G.M. Reed and A.W. Roscoe, Metne space.'J as models for rcal

time concurrency, Proceedings of the Third Workshop on the Mathematical

Foundations of Programming Language Semantics (April, 1987), LNCS 298

(1988), 331-343.

[RRS,l991] G. M. Reed, A. W. Roscoe, and S. A. Schneider, CSP and Time

wise Hefinement, BCS-FACS Refinement Workshop (CambridgE'. 1991), LNCS

(1991).

[S,19~OJ S.A. Schneider, Correctness und communtcation in real-ttme sys

tems. Oxford University D.Phil. thesis 1990.

[S] S.A. Schneider, An operational semantics for Timed esp, Information
and Computation, to appear.

54

(Sc,1990J B. Scattergood, An application of Timed CSP to robot cnntral
software, Oxford University MSc dissertation 1990.

[St,1990J R. Stamper, The specificatton of AGV cont1'Ol softwm'e using Timed

esp, Oxford University MSc dissertation 1990.

(Su,1991] S. SuperviJIe, Specifying complex systems with Timed CSP: a de
composition and specification of a telephone exchange system which has a
central controller, M.Sc thesis, Oxford University 1991.

[W,1991j A.R. Wallace, A TCSP casc study of a flexible manufadu1'ing sys
tem, M.Sc thesis, Oxford University 1991.

[Z,1986J A.E. Zwarico, A formal model of real-t-ime computing, University of

Pennsylvania technical report (1986).

55

