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Introduction 

In these notes we present material designed to support an explanation of h(lw to 
conduct proofs using the deductive system presented in the draft Z Standard. 
This is, of course one of several possible deductive systems for Z. We am to 
presentan account of the variollscomponents of the deductive system, sho'",ing 
how they are used together, and how they pennit the famlal proof of thecrems 
involving sizeable Z spedfications. 

The method of proof is supported by JigsarV, a theorem proving assistant 
into which the deductive system of standard Z has been incorporated. W~fur
thee aim to show how JigsaW's support of the tactic language Angel allows 
proofs to be defined in a more general and reusable way. 

An appendix gives the relevant sections of the current draft standard We 
do not aim to explain every rule, butmerely enough to allow the reader to :read, 
understand, and use the standard's deductive system. Our work on logics for Z 
has been greatly helped by collaboration with Jim Woodcock, and review Irom 
other members of the Z Standards Panel. In particulaT W~ have benefitpd Tom 
the work of Jones (1990) and Harwood (l990J. 

Most of the material used here is derived {rom the project Models, Alglbru, 
and Mechanc1al Support in Z, funded by EPSRC grant number GR/J46630. 
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Part I
 

Motivation, and Simple Proofs 

This first part of the tutorial illustrates the issues arising from conducting proofs 
by means of Spivey's well-known BlrthdayBcx* example. We then introdu<e the 
deductive system used in the standard (a GentzerHtyle sequent calculUE) and 
show how to construct proofs using it. The familiar rules of the propositional 
calculus are given to illustrate the format of rules. 

Having provided a basic minimum of deductive rules, we can develop tac
tks for completing proofs. We show how tactic; in Angel are constructed and 
how to build a general ta<.:tics to simplify propositions and solve tautolDgles. 
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1 Specifications and Proofs 

Most readers will be familiar with Spivey's BirthdayBook specifiGitioo. (Spivey 
1992), andso we use it as a nmnmg eJWnple here. Recall that two setsaregiven, 
denoting the collection of people whose birthdays are to be recorded, ani the 
set of possible birthdays: 

[NAM£,DATE] 

The state of the system is given by a sdtema BirtJuwyBook, which M two 
components: a mapping of names to dates, and a set of those people ""hose 
birthdays are known. These components are linked via an invariant. 

BirthdDyBoot-.,.,::- _
 

known; lP'NAME;
 
birthday: NAME -+1 DATE
 

L known = dam birthday 

Initially, no birthdays are known. 

InitBirthcLJyBook. _ 

BirthdayBook 

known = 0 

We provide an operation to add a birthday to the book '!he operation takes 
as input a person's name and birthday, and suo:eeds providing the name i; not 
already known, updating the state, but produdng no output. 

AddBirthdDy . rClBirthdayBock: 
nDme? : NAME; 
date? : DATE 

...., (name? E known)/\
 
birthday' = birthdiJy u {(name?, cLJte'?)}
 

1.1 Theorems of the Specification 

We define an entailment relation between a specification and a prediGile, to 
mean that the spedfication guarantees the truth of the predicate. 

ASequent comprises a spedfiGition, followed by an assertion sign (the '1Um.

stile'), followed by a predicate: 

SeJjuent ::= Spec I- Pred 

Thus a sequent appears as: 

nit· ·tn" I-P 
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These paragraphs provide a context for the predicate en the right-hand side, 
(for the sequent to be well-fonned, the free variables of Pmust be declared in 
nIt··· tII,.,l and may be considered to be (part of) the spedficatioo in which the 
conjecture is evaluated. 

Any of the paragraphs of the specification can be explidtly included in the 
antecedent as follows: 

If I Il)f, e P (f)IlI f, e P 

VVe can now use this sequent notation to express theorems about the birth
day book. The initial state may be shown to satisfy the state invariant: 

I- 3InitBirthdayBooIc _ true 

The schema AddBirthday entails an update of known as well as of birthday. 

AddBirthday I- known' =known u {name?} 

1.2 Informal Proofs 

Spivey provides an infonnal proof of the theorem about AddBirthday using an 
equational reasoning proof style as follows: 

known' = dombirthday' [invariant after] 

=dom(birthday U {name? f-t date?}) [spec of AddBirthdDy] 

= dombirthday U dom{name? >--t date?} [fact about 'dem'] 
= dom birthday U {name?} [fact about 'dam'] 

=knoum U {name?} [invariant beforeJ 

This proof cogently displays the top level reasoning required to justify the 
theorem. Its clarity and simplidty is based on the fact that it can call on obvi
ous facts about the specification and on general proPf'rties of the dam operator. 
Such appeals to 'obvious' fa<..ts are entirely appropriate when considering such 
a small and well understood example. 

1.3 Why Formalize? 

A proof of a property of a larger and more complt')( specification will not be 
able to appeal so easily to obvious fa<..ts. The larger a proof becomes the more 
the need for formality to provide the necessary assurance of correctness. How
ever, the problem with adopting a fully fonnal approach to proof is that there is 
a large amount of exacting checking that needs to be done. This che<king oorn
prises ensuring that rules are properly applied,the disdlargingof provisos, and 
trivial type checking. Such an overhead quite naturally creates quite a signifi
cant disincentive for anyone to tackle a substantial proof in a fonnal manner. 
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The support that can be provided by I:heorem proving assistants such as 
JigsaW and Isabelle makes the task of lonnal proof much simpler and also in
creases assurance of correctness. In this tutorial we shall present the logic for 
Z that is in the draft standard and show how it is supported in JigsaW. The 
support f()l' proof provided in JigsaW canes in three fonns. Firstly, the simple 
mechanical application of the nJ1es, secondly the automatic discharging of pro
visos, and thirdly the provision of a tactic langt..lage for describing and direlting 
pnx>fs. 

2 Simple Rules And Proofs 

The deductive system we use is a Gentzen-style sequent calculus based on W, 
a logic for Z (Woodcock and Brien 1992), though we use only one consequent. 
The deductive system consists of a number of rules for manipulating sequents, 
and a method of combining rules 10 generate proofs. 

2.1 Rules 

Inference rules will be written as follows: 

Prm1iscs Name
 
Conclusion


Rule :: 

The premises are a (possibly empty) list of sequent:;: 

Premises ::= Sequent . .Sequent 

The conclusion is always a single sequent: 

Condusion ::= Sequent 

2.2 Proofs 

Proofs in the deductive system proceed in the way that is usual for sequent cal
culi: proofs are developed backwords, starting from the sequent which is to be 
proved. A rule is applied, resulting in fresh sequents which must be proved. 
This process continues until there are no more sequents requiring proof, in 
which case the original sequent is now proved. 

Proof Trees A completed proof may thus be represented as a tree, with the 
proved sequent as the nxJt node, and every leaf node containing an empty Jist 
of sequents. 1 An example of such a tree foHows; its contents will be explained 
later_ 

1However, if some of these lists in the Leaves arenon-empty, then the derivation tree is stilluse
ful, although it does not represent a proof. i! represenls a partial proof. 
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... fY E f'[5jt ijer~5","-IQC 
{;r·S 1fiUst'} = f'[S] 
e 
!/ E f'[S] /.Idbniz 

"'0;--;-.".,-;:;::;- gm<ptr-llSnml fy E f'[5]t
0"[XJ:-{I,XlJilL'lt} {;r:5 IfiUst} = l2I[51 
e e 
0"[5] = {I: 5 Iflllse} !/ E {;r: 5 ;fld"l} 

f'[X;:-{I:XIfiUst'H rlDnr I!/E.ii:l[S;f 
~~-/ 

y E er[5] ":5J = {I : 5 IfiUst'} 
e e 
0"[5] ={I:S I JlIlst} !/E{I,SIJgbtJ .. ty : Stfdst" f- Jgbt JaIst--r 

,,[X] :_ {I : X I}lh<'}t ClIl-fllC . f!I" : 5 1ftlJ- f- JilL'It" SConslrDdIllf 

Y E "[51 fy,SljlIk.ity_;r'-fiUst'tlrim
utcomp.l 

YE{;r:Slf~t} i!/ E {;r : 5 I fll1se} f- Jld"l 

"[X]· (I.Xlfalst-}tyE~~5j-f"lst CuI-IDe 

Theorems A sequent is a theorem if there is a completed p1'OCJf for it. The re
lationship between theorems and completed proofs is given as follows: 

The rule r I-- P is sound if and only if the sequent r I-- P is a theorem. 

2.3 Structural Rules 

The first rules that we consider are those that allow us to manipulate the infor
mation wntained in the antecedent_ We shall consider the case where the only 
types of paragraphs in the antecedent are constraint paragraphs_ They are in 
effect simple predicates. 

Assumption The most general way of completing a proof is to arrive at a stage 
where the predicate to be proved is contained in the definition of the spedfica
lion that is being assumed. 

rtp I-- P AssumPred 

Thinning Any theorem that can be proved using some set of axioms can also 
be proved with extra ones added. The first thinning rule states that it is al
ways safe to thin from the Icft of a specification in the antecedent. This repre
sents the fad: that the information is built up incrementally. The second thin
ning rule statcs that a predicate can always be safely removed from the right of 
a specification.2 

rep [f.p
IItr I-- p Thinl no I-- p Thinr 

Shifting The order of the predicates in the antecedent can be shifted 

rIP,lP, l-IP. r R Shift 
rIP,I- - lP.IQ e R 

--;;;;,--'-..-...-.-.,--.. ----;::,------,--;
- ,n"'~dreexu-<llUnditions required for the general paragraph GiISe. 
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r .... p r/-Q
 
fl-PI\Q AndJ
 

rl-pl\Q rl-PI\Q 
~AndE' ~AndEi 

"p "0 
rl-pvQ Or1. r!-pvQOrn 

fl-PvQ rtpl-R rtQ .... R 
rl-R OrE 

'oP rl-p=Q rv> rQ .
"0-- "'pE r .... p=Q l1f1p/ 

r f- faL5e (tilieE rt...,P I-f~ 
r ,-p lIalE~ 

Figure 1: The Propositional Calculus 

2.4 Propositions 

The definition of the boolean algebra using deduction rules is presented i, fig
ure1. 

Proofs of Propositions Using the rules of the propositional calculus, WI can 
construct pI'CX:lfs for propositional tautologies. For example, the commuta'Jvity 
of 1\: 

~lI$f~.Ill< 

P:tQ I- Q ol>:5lm1 IIJI; PtQ I- P lkU'If 

PI\Qf Q ruul-I PAQI-P Glld·t 

PI\QI-QI\P Alld/ 
,,"pI 

-PI\Q~Qi'\P 

2.5 Derived Rules 

Wecan generate derived rules from partial proof trees. Once derived, and ~ven 

a name, a rule can be resued, in different drrumstances. The constructioo of a 
dQrived rule is based on the notion of tree-squashing. 

Tree Squashing Suppose that we have the derivation tree: 

Sil .. Sinr 
5, 5-'-- [R;], 5 

Seq , [R] 
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f!:u=rr-lf=r r >--" =r S!J"Ul"l
rr-r=~RrfI	 f:" rr-v .. T...-sr r- ~= " 

Figure 2: Equality 

where each of the rules Rand R, are sound rules. then the derived rule 

51	 . .. 5j, • •. Silo! 5n [R'] 
Seq 

is also sound. By repeating this application many times a large tree can be com
pressed into a compact rule. A simple example of a derived rule is the cut rule. 

Cut Rule The cut rule is used to stnKture proofs into lemmas: it permits the 
addition of hypotheses to the antecedent; these hypotheses may be discharged 
separately: 

flPf-Q rf-p 
r I- Q Cut 

This rule is derived from the proof-tree that mmbines implication introduc
tion and elimination: 

flPf-Q . I 
rl-p:::}Q Imp rl-p. 

r I- Q Imp£ 

It is the responsibility of the user of the ,-ut rule (and those for implication 
and disjunction elimination) to ensure that the well-typedness of the sequent 
is preserved by the addition of new predicates. New declarations can be cut in 
using an existentially quantified predicate. 

2.6 Equality 

In order to provide a basic language with which to reason, we asswne that there 
ace expressions with an equality relation between them. Equality is a reflexive, 
commutative and transitive relation. These rules are given in figure 2. 

Proofs using Equality The properties of equality can be used to prove that for 
the birthaday boclk in an intialised state, the domain of the birthdDy function is 
empty' 

InitBirthdDyBodc I- dornbirthdDy =0 0 

Having extracted the property of the schema we can complete the prtX:lf as 
follows: 3 

JThe rules for extracting the property of a ..cr.ema will be given Later. 
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.. !known - dam birthdlly f- knoTmI _ dan birthdlly Ref! 

.. tkrwwn _ dombirthday I- dam birthday _ known Symm . 

.. . jknown _ dombirthdayt" _ known I- dam birthdoy lawwn thlnr 

.tknoWfl _ dam birthdayt0 _ known I- dam birt}ulJJy _ " Trans 
... fknown _ dan l1irthdaytknown _ " I- dam bjrthdily _ " Symm 

3 Simple Tactics 

The languages used in theorem-proving assistants to direct pro:>fs are often 
called tactics. 

In order to collect inference rules together into derived rules (proof proce
dures), we employ a simple tactic language which is a subset of the language 
Angel, described by Martin, Gardiner and Woodcock {1996). The chief tactic 
constructions we use at this stage are sequential composition, and parol/el compo
sition. Such tactic combinators are sometimes called tacticals. 

Tactics will be defined by paragraphs with the form 

tacname:= definition 

and may be parametrized. 

In this tutorial, we will frequently give proof trees as well as tactics when 
derived rules are discussed. Tactics may, however, describe proof procedures 
which are too complex (or simply too large) to be presented as trees. 

3.1 Primitive Inference Rules 

Use of primitive inference rules may be indicated by the keyword rule. In the 
account which follows, this will frequently be omitted, for ease of reading. In
stead, we adopt a convention that inference rules are written with an initial cap
italletter, whereas other tactics will be entirely in lower case. 

Examples of primitive inference rules already encountered are AssumPred, 
And!, and Thinr. 

3.2 Sequential Composition 

Sequential composition simply entails applying inference rules (or tactics) one 
after the other: 

simplify-iff ,~IffDef, And! 

Corresponding to the proof tree 

ff-P=>Q n·Q=>p 
f f- P => Q ~ Q => P IffDefAnd! 

ff-P¢>Q 
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3.3 Parallel Composition 

When a pnxJf tree bifurcates, parallel composition allows the application of dif· 
ferent tactics to different portions of the tree. For example, the derived rule of 
Cut above may be represented as a tactic 

cut·wcp'~ UnpEp; UmpI II skip) 

After application of impE, the right·hand branch is left alone (skip is a tactic 
which leaves its goal unchanged), and the left-hand branch has imp! applied to 
it. 

flPf-Q . I 
ff-P""Q ""p ff-P. E 

rl-Q lmp 

l\ote that this parallel combinator is merely a binary operator; in the event 
of multiply branching trees, the tactic structure reflects the structure of the tree. 
For e}(ample, the roles and tactics already given can be used to simplify a con
jurKtion in the antecedent: 

and-nght:= cut·tac(P):
 
(AndEr(Q): AssumPred
 

II 
"hil/2; cu'-tac(Q); (AndEI(P); AssumPred Il/shift2; thinr1)) 

rlPtQ;- R 
thillrl 

Ishift2rt;~;~;:~Q :5::;'~ ~~~::;~~:: 
('ul_IUC(QjrlJ'lI Q r P II Q AssumPreJ rWIJ'IIQf-R '.....".2rw 1\ Q r p AndEr(Q) rtpI\Qtp:-R	 ~"J'
 

clll.r",(P)
 
rtpl\Q~ R 

However, good style will frequently mean that tactics are not presented in 
such a tree-structured way. Many inferences return a pair of goals, one of which 
is a minor condition which is easily dh.patched, the other which represents, in 
some sense, the ongoing 'real' proof. 

For example, in the above proof, after P has been provided by the cut, it 
might be seen as desirable to discharge the goal P 1\ Q I- P, before proceeding 
with the rest of the pnxJf. Hence, an aJternative, more linear structure for the 
tactic is as follows: 4 

and-right:= cut-tac(P);
 
(AndEr(Q); AssumPred II skip);
 
Ishift2; cut-wc(Q);
 
(AndEI(P); AssumPred II slcip);
 
Ishift2; thinrl
 

In this way, many tree-like proofs can be reduced to an e5SentiaJly linear 
{onn (similar to equational.reasoning)-see eqtac in Section 6,3, below. 

~The equtvalenceof these two definitlons can be proved using t:hi' tactic. mlculus of Martin et al. 
(1996). 

12 



3.4 Combining sequential and parallel 

Occasionally it is useful to apply the smne tactic to etlch brandt of a bifurcating 
proof tree. A decorated fann of sequential oomposition ';' is used to accomplish 
this. For example, following simplify·iJf, above, each branch can be further sim
plified using imp!. 

simplify-ifh := IffDef; Andl ; imp! 

Corresponding to the proof tree 

rjPf-Q. nQ" P . 
r~p:::}Q Imp! rl-Q=>p Imp! 

r i-P=>QI\Q=>P Andl 
n- P '" Q IffDef 

3.5 Alternation 

The tactics we have seen so far arc entirely deterministic; each one performs 
exactly one task. In order to write more general proof procedures. additional 
control Slruc:l:ure.s are needed. 

The lactic combinator JI' oornbines tactics in alternation, so that the second 
one is attempted only if the first fails to apply. For example the following taLtiC 
applies any introduction rule which will succeed: 

pmp-left ,= AndII Odr IOrR I impI 

so it is capable of both the following inferences: 

r ~P I' C Q rIP C Q prop-leftreP AQ prop-left rl-p:::}Q 

Altemation is intended to be interpreted in an angelically nondeterministic 
manner." That is, the choice of which rule to apply is not merely govemed by 
which is presently the most useful, but which will be useful later in the proof 
(this will, in general, be acromplished via backtracking). Hence, when prop-left, 
above, is presented with a disjunction, it may chooS£' to eliminate the left or the 
rightdis;unct-the choice of which will depend on whim disjunct is needed for 
the remainder of the proof. This behaviour is characterised by the following 
tactic equivalen<.'e: 

(t l I t2); ts = it ; ts I t~; is 

Such backtracking will sometimes be undesirable (for reasons of effidency, 
or for guaranteeing tennination of recursive tactics) so an operator 'Ctlt' 
written '!', and not to be confused with the logical rut rule-is provided. Bdck
tracking is restricted to the scope of the cut. 6 

v In (DmTast to, say, the ELSE taetic..al of Edinburgh LeE
 
"Hence, for non-'ba(".lctrac.king II and 12, ~(tl , '1) behaves like LCF's tl:C:.i..S?:t~.
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3.6 Pattern Matching 

When parametrised tactics are used, it is frequently useful to have some of the 
parameters extracted from the current goal-this both saves typing and adds 
to the generality of the tactic. For example, the tactics for and-right above must 
know the values of P and Q found in the goal to which they are applied, so that 
they can be rut in at appropriate points. The tacticaln is used to accomplish this. 
The tactic ?re, p • G ~ t(e, p) matches the terms e and p against the current goal, 
acrording to the pattemgiven by G, and then behaves like tactic t, parametrised 
bye and p. Thus, and-right can be made fully general by writing 

am1.t := nT, p,q, r _ (rtp 1\ q I- r) -;
 
cut-roc{p);
 
(AndE,(q): AssumP"d II skip):
 
lshift2; cut-tac(q);
 
(AndE/(p): AssumP"d II skip):
 
Ishift2; !hinrl
 

3.7 Common Derived Tacticals 

l1sing the tacticals above, some mmmon patterns of tactic application can be 
defined as derived tactica!s. 

try I applies t if possible, but succeeds whether t applies or not. 

tn;t:~ '(t Iskip) 

exhaust t applies t as many times as is possible. 

exhaust I :=--= t ; exhaust t Iskip 

rxlwusts generalizes exhaust, by applying it to all of the resulting goals after 
t is applied. 

exhaustst:= t ~exhaustst I skip 

4 A Tactic for Proving Tautologies 

Bycombining the proof roles given so far and the tactica1s described above, we 
can give a tactic which simplifies tenns of the propositional calculus---and dis
durges goals which are tautologies. 

Application of the propositional rules will be governed by a tactic props. 
This is composed using a number of tactics of the fonn t-* and *-t. The fonner 
simplify terms in the consequent; the latter, those in (at the right-hand end of) 
theantecedent. The code for and-t has already been given; the others are similar. 

An exception is the tactic t-Qr, which, rather than applying the Orl roles, im
plements a more obviously constructive role: 

14 



fj~Q>-P 

rl-pvQ t-or 

It is also lUlciear what rules to use Eor not-t and imp-t; we dlc:x>se the foUow
iog: 

rf-pvQ r>-Rvp fjQ>-R. 
rj~pf-Q not-, rjP ~ Q >- R 'mp-t 

There is a danger that not·f and l-or will create cycles, if applied indiscrim
inately. Therefore, props arranges that rwf-t will be applied only if all of the [-. 
have failed (so Q is 'atomic-its outermost connective is not one of the five 
propositional connectives), and after application of tlOt-t: f-<Jr, one of the h 
sua:eeds---thereby ensuring that P is not atomic. 

props :-= !(t4Md' t-not J I-{)r I t-iff I i-imp ,I f·true
 
I(not-' ; t-Qr; (I-not It-imp i I-iff I t-and I t-or).1
 
land-' Ior·t I ;mp-t I iff-I lfal,,-t)
 

By applying this tactk exhaustively, we ensure that the consequent must be 
atomic, and the right-most anteL'edent must be atomic, or the negation of an 
atomkproposition. In this way, an almostnorma( form is achieved. If it denotes 
a tautology, this must be detennined by application of the assumption rules. 

The tactic assum-tac is defined in Section 8.1. Amongst other things, it at
tempts to apply the rule AssumPred; iter4ssum-tac thins the goal repeatedly, ap
plying assum-tac after each thinning. 

iter-assum-tac:= !(assum~ta( I (thinr-tacl; iter-assum-tac)j 

In order to be ready for iter4ssum-tac. the goal in normal form must be mas
saged, to remove any possible negations: all negated terms in the antecedent 
must be brought into the consequent (using 110t-f]' and the resulting disjunc
tions simplified by use of Orfl and Orlr-using the angelic nondeterminism of 
alternation so that whichever disjunct is retained is the one which will match a, 

term in the antecedent, via the assumption rules. 

hyper-not := !(tryhypfTShijt; not-f) 

clever-assum := ex1wusthyper-not;;
 
erhausl(OrT/ I OrTr);
 
(t-true I jter~sum-tQc) 

{typer-not uses a tactic hypfTShijt which brings the leftmost-possible an
tecedent to the right of the antecedent list. Informally, this can be defined as 
follows; a more general version could be defined by pattern-matching. 

hgpersh;ft,~ (/shift12 Ilshiftlll/sh;ftlO I
 

Ishift9 I tsJnjt8 I Ishift7 I/shift6 I
 
tshiftS I/shift4 I ~hift31/shift2)
 

IS 



Over-all, then, the strategy of the tactic will be fust to try and simplify the 
ansequent and the right-most tenn of the antecedent, removing as many as 
possible of the resuJting goals via the a$UIIlption roles. If there are any re
maining goals, we will attempt to re-order the antecedent, and begin to simplify 
again. Re-orderingof the antecedentis conditional on the tenn thus selected not 
being atomic--that is, the shift is made only if it can be followed. by a successful 
application of props. 

m:u,.,,,~ !(hypa>hift; prop»; prop-tIu: 

prop-lac:= !(! e:chaustsprops;
 
!(tryc1ever-6ssum);
 
tryrecuP'5e)
 

Usingprop-wc, then, tautologies can be proved automatically. 

For example, the commutativity of A: 

P f- P =um-lac ~ <l5.<um-'~ 

I'tQ f- Q .....sum-Iac PfQ r" P thinr QfP >- P ilSSum lac Qj.P f- Q thinr 
~ and_I ~ and-I ~ and-t ~ and-I 

PI\Qf-QI\P Andl Ql\l' .... PI\Q Andl 

f-P/\Q~Q/\P Impi I_QI\P~PI\Q lnrpI 

f-P/\Q~Q/\PI\Q/\P~P/\Q AJri1J 
f-PI\Q~QI\P IffDcf 

The commutativity of V is significantly different; it illustrates the use of 
hyper·not. 

Q f- Q lW"lUII--lac P _ P .....sllm_1<IC 

Qf-PvQ orn pf-QVP o,n 
~ <lS5lU11.,,,,, ~ h~-nOI ~ lW"lIm-,,,,, ~ h~-nol 

err-I or-I 
~QfPVQ""P ~PtQVPrQ 

P V Qf~ Q 1- P ITrJiIl.S1UJt Q V Pf~ P f- Q rtYgflShiJI 

PVQ>-QVP I~~ QvPr-PvQ t..qr 
f-PVQ~QVP /-Imp f-I\QVPf-PVQ I-U"I'fp 

f-PvQ~QvP , Andl 

f-PVQ~QVPI\QVPf-PvQ fJJDcf 

Of course, some further work is needed here. prop-t4c is dearly not optimal, 
and we should prove that it terminates (easy, with the right bound function) 
and that it solves all tautologies (harder). To see that it is not optimal, consider 
the proof of I-- P V ...... P: 

P L P <lS5lUII-1ac 
~p~h~_no, 

~PI- _ P I_""t 

.... ~PvP l..qr 

~ - P I- P ""1-1 
>- Pv_P I-<Jr 

Choice of the dual version of l-<Jr would have rendered the initial goal immedi
ately irreducible--and QS5um·lac would apply. 
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Part II
 

Expressions, and the Toolkit 

Having used the propositional calculus as a vehicle for iIlustrdting the style of 
proof used and the design of tactics, we are now in a position to consider exten
sions to the language that wiU provide the opportunity to do useful proofs. 

One of the most important activities in proof is that of substitution. So given 
a theory about names and equality we can see how substitution works not only 
for predicates but also for declarations. ntis will allow schemas and other def
initions to be expanded safely. 

With the rules for generic definitions and expression constnJ.cts available to 
us we can prove properties about such objects as the empty set and the domain 
operator. The techniques used here illustrate how gmeral properties Ol the ob
jects defined in the toolkit can be proved using tactics. These tactics can then be 
re-applied whenever it is necessary toappea1 to such properties in other proofs. 

Contents 

5 Paragraphs	 21
 
5.1 Names and Scope	 21
 
5.2 Paragraph Rules .	 22
 
5.3 New Structural Rules	 23
 

• Substitution and Equality 23
 
6.1 Lei'bniz . 24
 

6.2 Leibniz for Paragraphs 25
 
6.3 Equational Reasoning. 25
 

7 Quantification	 2' 
7.1 Renaming	 27
 
7.2 Tactics for Quantifiers.	 28
 

8	 Derived StnJctural Rules 28
 
81 Generaliz.ed Assumption 28
 
8' par-pred-I . 29
 
83 IIp--dcr,s.!11-tac 29
 
84 Apply-inwards 3()
 

• Expressions 31
 
9.1 Expressions in tht"' Consequent . 31
 
n Eqm~ssions in the Antecedent 32
 
9.3 Larger dt"'rivl.'d Expression Rules. 32
 
Y.4 Using The Toolkit 33
 

10 Generics	 37
 
10.1 Properties o( the Empty Set. '" 

19 



5 Paragraphs 

The propositional calcu1uson its own isa barren language. In order to beable to 
use it to ~n about reaJ specifications, it is necessary to introduce expressions 
into the language. The given set declaration and the other means of definition 
provide a way of introducing new names. The membership and equality rela
tions provide a way of writing propositions [rem expressions constructed frool 
these new names. 

5.1 Names and Scope 

We use scope rules to define which names may be referred to at which point. 
The region ofan expression (or even a specification) within which a variable can 
be referred to is called its scope. Z operates a system of nested scopes (Sennett 
1987). 

Each paragraph may use names defined in previous paragraphs and names 
introduced may be used in later paragraphs.When a variable is declared its 
scope extends to the end of the constnJct within which it was declared, e:l(:ept 
for any other sUb-S<..'Opes within which the.same name is re-declared. 

We define the scope rules by giving a definition of the names introduced by 
paragraph5 (alphabet) and the names used in them [free variables). The inter
action between these two definitions defines the scope of variables. 

Free Variables We define two different fr~ variable functions: one for pred
icates, the other for expressions:7 

¢ : E::rpr -+ P Name 
'Ii : Pred -+ PNQm~ 

The definition of these functions is given in the appendix. 

Alphabet The alphabet fun<.tion gives the set of names introduced by a para
graph, or sequence of paragraphs: 

(} : Spec -~ P Name 

The aJphabets of the other simple paragraphs are the sets of names declared. 
The definition of this function for all paragraphs is given in the appendix, 

Scope Term The scope introduction tenn x- U5ed in the rules below isnot part 
of Z proper. It is used to denote the introduction of a new variable:r and noth
ing more. It is a useful device for allowing paragraphs to be manipulated by 

'TWhen the frre variables of schemas are cal(ll\ated, ....e will neoo to be able to distinguish the two 
uses. We shall also calculate the free variables of paragrapm in tile same way. interpreting &en <tS 

expressions or predicates, ~ appropriate. 
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splitting them into ones whim have no free variables and those that have no 
alphabet. The scope paragraph x· has an alphabet conlaining just x: 

ax" = {x} . 

Such a scoping paragraph has no free variables; 

¢x· = " 

Thevalues of the set of free variables for other paragraphs are therefore derived 
from the free variables for their characteristic predicate. 

5.2 Paragraph Rules 

Given Sets A given set is a basic set from which others are constructed in a 
specification. The details of its membership are not given. l! A given set intro
duction provides scoping infonnation only: 

z" r P GiuenProp
[,I rP 

Definitions The definition x := e introduces the new name x 'Whose value is 
equal to the expression e. By using the notation x" to indicate the introduction 
ofl:he scope of the variable x we can explain the two declarations in tenns of an 
introduction of scope and a constraining predicate: 

'1,,1-' = e r P r r wl(,,=e) DefP'op 
rl-" erP 

The second sequent that must be satisfied r r wf(x := e) is a condition that 
the name x is not used as a free variable in the expression e. In the event of such 
a condition not being satisfied, a judidous renaming will be needed to provide 
a meaning. 

Declarations The declaration x : S introduces a new name z w-hose value is 
cootained in the set s. The rule for declaration follows the same structure as 
that for definition: 

rl-"I-' E 5 r P r r wl(, 'e) DecProp 
rl-' " r P 

Well-fonnedness Conditions Any narne introduced which is already part of 
a specification is given a potentially new value. The side conditions on the dec
laration and definition rules given above guarantee that the neW" names intro
duced are not also free variables of the expressions used to define their values. 
The scoping rules make it impossible to have rules that use both the old and new 

8Noll priuri assumptkms are made about any intemal structure which it might have. 1hese set.'i 
canbeempty, finileorinfinite. Any further assumptions mustbemadeexplidt in the5pedfication.. 
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6 

values of the variable in the same scope. This is a very conunon condition, 50 a 
special symbol wi n will ~ used to state that the paragraph II is well fonned; 
its free variables are disjoint from its alphabet: 

wfll ¢} ;I(II) n aiII) ~ " 

5.3 New Structural Rules 

Thinning The three types of declaration paragraph can be removed from the 
right only when the variable they declare is not a free variable of the predica~e 

under consideration. The Thirlr rule given for predicates is expanded to cater 
for the other fonns of paragraph as follows: 

[f--P rf--o:IlnlJP=0 " 
1JftIl I- P 111lr 

Swapping Two paragraphs can be swapped when there is no interaction t:e
tween the names declared and their (ree variables. So the shift rule likewise is 
generalised as follows: 

[L tn l tf:.> I- P fIl-aIl] n4J[2 - 0 [II- f'tr2 n.pn 1 ~ 0 oITI n{}r'.l - 0 Shift 
flt~tnl~p . 

Rule Reversing The annotatioh t t indic.ates that the rule can be applied in 
both directions--------that is, the rule 

n-;p it 
f'l- ~ 

denotes both of the following inference ntIes 

n- 't and f' f- ~ 
r'l-<I> [1-1} 

Substitution and Equality 

Predicates An predicate to ~ evaluated under a substitution is often con
structed during a proof. It usually has a temporary existence and is rarely used 
in spedfications. However, rather than just give substitutioh rules that GU1 be 
used to eliminate aU occurrences of such a tenn, we shall give it a full meaIling 
like all other tenns. 

rt:c:=.el-P 
n-(x"eW it 

Expressions The notation for expression substitution is different to that for 
predicate substitution 50 as to prevent any parsing ambiguities when sdlemas 
are used as expressions and as predicates. The use of this notation can ~ seen 
in the Leibniz role for paragraphs. 
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6.1 Leibniz 

Leibniz' nJ.Ie states that an expression e may be substituted in a predicate P for 
another expression 14, providing that e and II are equal: 

Leibniz'Rule Leibniz' nJ.Ie can be derived from the properties of equality and 
substitution: 

rf--(x:=V~8P rl-e::v 
Leibniz

n-(%>eI0P 

Derivation of Rule We am derive this rule as follows: 

rl-~X:=U)GP 

ftx*tx=ul-P 
rte=u rtx·tx=ete=ul-P 

rtx"'tx-el-P 
rtx:-el-P 

n- (ro-e}8P 

Alternate Versions In practice, a more sophisticate version of the rule is used. 
We nonnaJly find that we want to substitute one expression for another that is 
equal to it. In order to do this we need to construct an imaginary substitution 
instance and apply the rule of leibniz. For example if the predicate P could be 
rewritten as ( x:=e ) I:)P' then we could apply the rule of leibniz to the following 
sequent: 

rte=ul-P 

to give us the following: 

r f- (ro=u 18P' 

and applying the substitution we have the following derived rule: 

no 
rte=ul-P lei/miz 

where for some predicate R and variable x: 

P == (x:=e)8R 

o = (Xo=uI8R 

1his derived rule am be seen in practiL'e in the proof of the property of 
AddBirlhday given earlier: 

... r- dom(bi~ U \l"gmf?dlilf'l)} - blow" U {nill'lVn 
In1oI1i;, 

~nhd"Y' _ bil7/ld4yu {(Il_?,datf?l) I- dombinhd"",,' _ t"""",..J {n"-?} 

24 



6.2 Leibniz for Paragraphs 

We can substitute equals for equals within paragraphs in the anteO':dent, fol· 
lowing the rule of Leibniz. This again is a derived role: 

rt{%:"'tJ~0nr-p rl-e=v 
TI{ z,_" 0 II e P P·lLib 

A useful version of this role for expanding schema definitions can be de
rived using DejProp: 

rep
5 ,~ rts eP %.s<h.kib·l 

In the introduction, we postulated a thoerem about AddBirthdJJy: 

AddBirthday I- known' = knawt'l U {nDme?} 

We can expand the definition of AddBirthdayby applying a tactic constructed 
from S-F..xp followed by thinl (to remove the definition once applied) as follo\\'s: 

amrth~, _"1' ,N: rWlt?:D I "' f-.\:' =ku (_?) 
CAcdd&=_=c,-,-_""",,::::c...=,.,~c,=.==-,c?c,e,",=","',?C'"D"c-.-.7""",-;;,~;CrlC",7'!1C:::cC,:;, "_-,c"={-.=-,CC'n Hdl-lrilH 

6.3 Equational Reasoning 

In order to prove the property of AddBrithday, Spivey uses an equational rea
soning style. He transfonns the left hand side of an equality into the right by 
substituting expressions for other equal expressions. The proof is presented us
ing infonnal justifications about theseequalities. Here we shall follow the equa
tional style, but also provide a framework in which the justifications can be dis· 
charged. 

To ~t up the equational proof in our sequent style we arrange that edch 
step involves the cut of a lemma (generally some equality), and uses leibniz to 
rewrite the current goal according to the equation that has been introduced. 

tl rl-w=r t2 rl-A-D 
r I- u urI- A C cut-tac; leibniz 

r I- A _ B cut-tac; leibniz 

The general tactic In this way, many tree-like proofs can be reduced to anes~ 

sentially linear fonn. Each equational reasoning step is accomplished by a tactic 
eqtac, which cuts in the predicate p, proves it using the supplied tactic t, and uses 
it to rewrite the goal. 

eqtac tp := cut-tacp; (I Illeibniz) 

To make presentation of such trees easier we move the justification into the 
proviso. to produce a more vertical fannat: 
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rf-A-D 
rl-A Cw=x 
rI-A_Bu=tI 

The over-all AddBirthdlly proof can be set up equationally, following the 
structure of Spivey's proof. The lemmas will be discussed below. 

spivey-5 :=eqtilc(lemmJll)
 
(knoum' =dombirthdily');
 

eqliJl:(I=2 )
 
(birthdily' =birthdily u {(name', dille'!)} ); 

eq"'e(l=3) 
(dom(birlhdJly u {(nome? ,date?)}) = 

(dombirthdily) u (dom{(name',dilte')})): 
eqtac(1emma4) 

(dom{(name?,date?)} = {name?}); 
eqtac(lemma5)
 

(dombirthday = known);
 
Refl 

lhis tactic can generate the following tree 

R<fl 
ABf-I;U{n1}=lcu{n? 

domb=k 
All f-l; U {II?} domb U {II?). 

dom{n? H II?} = (II?)
AlII-turn"} dombUdom{II?Hd?} 

domb U {II? ...... II?} = damb U dorn{n? ,--> II?}
All I- J:;.) {II?} domb U {II? ...... II?} 

b' = bU{,.? HiI'>}
ABl-ku(Il?}_domb' 

k' = dom'" 
AJ:ll- kU 1I1 '!}=t' 

7 Quantification 

There are four quantifier roles presented in figure 3. The first n..tle, which gives 
an introduction and elimination procedure for universal quantification, is suf
ficient to define the other three (assuming the de Morgan correspondence be
tween universal and existential quantification). 

Free Variables Quantified predicates introduce a new scope. In the universal 
quantification \/x : s • P, the scope for the variable x is the predicate P, so if 
x is a free variable of the predicate P, it is captured. The free variables of the 
quantification are calculated as follows: 

-liVx".P = ¢s u (-liP I {xl) 

The free variables of the other quantifiers are calculated in the same way, and 
the definitions of them are given in the appendix. 
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rtx:sl-P t~ r ... 3Z:5.P rt .. :&tp"Q &isrs[Czll<1>Q) 
~,"" __ ~n reQ 

r~",.. :s.P r,.tES r,.(z:=tIP rl--rEs 

rl-lx: t~P AUc rI-3;r:s.P Eristsr 

Figure 3: The Quantifier Rules 

Substitution The result of applying a substitution to a quantified predicate 
depends on whether the substitution can be perfonned without capture, and 
whether the variable being replaced is bound by the quantifier. 

The only occurrences of the variable r that may be substituted are the free 
cxrurrences. So if a component of the substitution is bound by the quantifier, 
then only the free variables of that component in the declarations will change. 

iy:=vHVy:s-P) == VY;1y:=vklS.P 

(.,=v f(Vy ".P) ;=	 Vy: I x,=v )8S' (x,=v IP 
wherey rt ¢ v. 

7.1 Renaming 

In the textual evaluation of the substitution ( r:",e Wthe free variables of estand 
in danger of being bound in P. So the substitution rules have a side condition 
to prevent variable capture. \'Vhen a dash OCCUJ'S, renaming can take place to 
avoid unwanted variable capture. 

In the predicate "Ix : 5 • P the variable x is said to be bound. This name is 
not significant and can be systematically replaced in the predicate without any 
change in meaning. It acts as a place holder. Syntactic renaming is safe only 
when it does not capture any new free variables. 

/-"Iy:s.{r;=y~P 

f-V"s'(y:=riP H 

/-Vy:s-(r:=yW 
y:stx,=yf-P 

r:sty:",xf-P 

r"f-(y=riP 
/-"Ir:s_(y:=x)P 

So for y rt ~p we have 

"Ix: 5 _ P == "Iy : s. ~ x:", y W 

Similar rules apply for set comprehension and existential quantification. 
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7.2 Tactics for Quantifiers 

When a universal quantifier is enroWltered in the antecedent, can be removed 
by supplying a binding which is suitable to spedalize it for the task at hand. 

aU-tb;= 1rS,p,q. "IS. P f- q-+ 

cut-lac(b E 5); (,kip 11"Jlljt2;
 

cut-tac(b 0p); (AILES; ileT-QSsum-Ulc II skip))
 

bESt1iS.Pf-'ltS.p <lSSllI'I'I-llIC bESt1iS.pl-bES ;1,.._"",-1« 

bESt1iS.pf-b0p AUE eESt'ts.p~;;:'pf-q 
'>'S.p'rbfS bESt1iS.pl-q alt·l"" 
-~'----'-'-'---------;:vosc.Cp:-;-cc,,---------'-''-'-'-'-'-'-''-'--'-cui_I'" 

For symmetry, '-Gil is defined (as AllI). Likewise, we define existS-I, which 
simply converts the quantified predicate into a schema paragraph and predi
cate: 

exists-!:= 11" S,p,q. 3S. P J- q-t
 

ExistsESp; (assum-tac II skip)
 

=0----:--=-;;-- assum-tflc
3S_pI-3S.p s+pJ-q. 

3S pJ-q EXlstsEe 

A tactic t-exists can be defined (using ExistsI) in a way analogous to all-I
i.e. it takes as a parameter a binding which is to be used to provide a witness 
for the existential quantification. Frequently, however (especially when the rule 
of set rornprehension is used---see below), the 'one-point' rule is useful in this 
situation: 

t-onept:=1fS,e,x _I- 3S _e =x-+ 

Existsl( x ,~e l; (subS/-lac; &fIII'kip) 

--Refl 
I- e = e subst-lac I '5 

I- {x: e ~ 0 (e - x) I- X:= e 1 E Exists! 
I- 35. e x 

8 Derived Structural Rules 

8.1 Generalized Assumption 

The new sorts of paragraphs introduced in Section 5 give rise to some additional 
assumption nLIes. By the use of the sroping tenn, these can be derived rules, but 
they are presented as primitive in the appendix. 

2B 



x :_ e I- x _ e AssumDejin(wf(x := e)) 

. __ Assuml),d(wf(x, 5)) S I- S Sd1emaAss(wf(S)) 

(In the last ruJe, the schema is playing the role of a predicate in the conse
quent, and a declaration in the antecedent. Schemas will be di.'iCUSSed more 
fully in Sections 11-13). These assumption rules are collected together into the 
tactic assum-tac 

assum·tac := AssumPred IAssumDefin IAssumded ISdumaAss 

We have already seen the definition of jter-45sum~tac, which thins the goal 
repeatedly, applying assum-laC after each thinning (see Section 4). 

8.2 par-pred-t 

It is sometimes desirable to e)j:ract the predicate component of a paragraph 
without splitting it into a scoping tenn/predicate pair.9 The tactic par~preti-t 

uses the assumption rules to copy the paragraph as a predicate. 

par-pred-t := (71" X ,e, Q • x := e I- Q -+ cut-Iac{x = e) I 
1rx,e,Q. x: e I- Q-+ cut-tac(x E e) I 
1T S. S f- Q -+ cut-tac(S)); 

(assum-tac II skip) 

An example of the application of par-praM: 

rtx:etrEel-P 
rtx :e I- P par-pred-t 

8.3 up-down-tac 

Many of the rules for expressions carry the t~ annotation. Whilst the down
wards instance of the rule is not ge.nerally useful in its own right (as it creates 
complex terms from simpler ones), it can be used to apply a similar inferenrein 
the antecedent. As this will be a common pattern of TEasoning, we have a ta.1ic 
up-down·ttU, which ao:omplishes this. 

For example, for the inference rule 

rf-p
noW 

9OneexampJe. is when the paragraph dedares a schema. By splitting it up, we loose the ability 
10 a1culale the srnema's alphabet. 
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may be applied on the left as follows: 

- - QS,um-ttzc rIP f- R drop-,nil rj~Q~jR=f-"'R assun1-tacrtQf-Q, rtQIPf-R OJ'I' 

rjQf-p rjQf-PVR OrEPR 

rjQ f- R 

The tactic up-down-blc detennines the parameters for OrE by pattem-matdUng. 
so that we have: 

rtQf-Rr I- P tl.r ftpl- R up-down-tJu::rrf-Q' 

1his means can be used to define some tactics which operate on tenns in the 
antecedent Again, their application will frequently be combined with simple 
proposition/predicate calculus rules. Moreover, it is often valuable to be able 
to apply the antecedent tactics in a single step to declarations and definitions. 
as well as membership and equality predicates. Therefore many tactics are pre
ceded by an optionalpar-pred-I, which oonverts paragraphs to predicates where 
necessary. 

8.4 Apply-inwards 

We have given various rules which act on the antecedent, but in general they 
work only on the leftmost paragraph of the antecedent. The rule of shift can be 
use to reorder the tenns in the antecedent, butoften it is useful to leave the order 
lUlchanged, applying a rule or lactic to one of the intemal paragraphs. 

One way to acoomplish this is to make use of a number of reversible rules 
which take ante<..-edent paragraphs, and make them into part of the oonsequent. 
We have already enoolmtered these rules: 

rtSf-P rjb f- P rIP f- Q t'.IffJ 
r f- VS. P [jAIIl f I- b 8 P i l.UseBind 

rf-p~ Q 

Tactics can be used to apply whichever of these rules is applicable, to move 
terms from left to right, or right to left. 

left-right ,= AIIl i IUse8jnd i ~ffJ i 

right-left ,= AIIl ~ jUse8jnil ~ jlffJ ~ 

By repeatedly applying these rules, we may apply a chosen tactic arbitrarily 
far inside an antecedent. 

apply-inwards n t := repent-lac n left-nght ; t ; repenl-blc n right-left 

We will generally denote apply-inwards n I by.r,;'l I, omitting the n when just 
one inwards movement is needed. For example, 
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rt"x: t.x E stTtUI- P 
rtt E P slTlu f- P '2'(up-4oum-/Qc Po""""".) 

9 Expressions 

In Z, we are able to discuss a varietyof expressions-sets, cartesian products, la
belled products (schema bindings), and functions. Inferenreroles are provided 
to pennit these expressions to be simplified, and expressed in tenns of one an
other. The basic roles are given in the appendix. 

In general, however, those basic roles make steps whidl are unnecessarily 
small, so here we discuss some tactics offering derived rules which are mere 
generallv useful. 

9.1 Expressions in the Consequent 

Set Comprehension The rule for set comprehension l.'Cnverts a comprehen
sion into an existential quantification. In the event that the comprehension de
claresexactly one variable, theone-point rule can be used to simplify the result
ing predicate. 

t-setcomp:= Setcomp; t-one-pt 

I- x ES I-- {y:",x I (~p t-setcomp 
f-.E{yosIP'y) 

Powerset lhc powerset rule will always be followed immediately by All!. 

t-powersel :== Powerset xi AIlI 

x:el--xEu 
I- e E lP' u l-pQU.lt?TSet 

Prodmem 

t-pmdmem:= Prodmem; exhaustsAndl 

l-u.1Es] t-u.nEsrr I-prodmem 
l-uESt X ··· xs" 

We will use a large number of such derived rules, without giving aU thedef
initions. 
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9.2 Expressions in the Antecedent 

Whilst the roles for expressions are all expressed using tenns in the consequent, 
the tactic l.lp-down-lJu. previously presented can be used to apply then equally 
well in the antecedent. 

Set Comprehension Set comprehension in the antecedent GUt be followed by 
erists-t, to remove the existential quantifier. 

"'comp-' ,= !(skip I1""-1"<'1-');
 
up-down-tac Setcomp; exists-t
 

qSle~uf-P q,,{S.ullSle=uI-P
- sercomp-t setcomp-l

neE{S.ulf-P and also rte,{s.u}f-P 

9.3 Larger derived Expression Rules 

Singleton in powerset 

sing-power ;== t-powerset; extmem-t; l-Ieibniz; thinr-tiU2 

l-aEA
 

Xl: {a}txl =41 1-0 EA
 

Xl: {a}t:el := a I- Xl E A
 

xl:{a}l-xlEA
 
f-{a)EPA
 

Tuple in Product 

ol1esel:= 1TQ,b,A.1- (a,b).] E A ........
 

cut-taclla,b).1 =a); (t-tuplee<ju, Refl 

Ilx~gen-t-leibniz: thinr-tac 1) 

- thinr 
-- Refl I- a E A I-leibniz 
1-0 =Q t-tupleequ (a b).I-a I- (a,b).l EA cut-tac 

I- (a,b).] a b) 1 'E A
 
I- (a, .•
 

tuple-in-prod := t-prodmem; (onesel Illwosel) 

I- b E B twosel 
l- a E A anesel I- (a,b).2 E B t-prodmem f- la,b).1 E A B
 

I-- (a,b) E A x
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Singleton in Power Product 

pair-pow-prod-mem ;::::- sing-power; tuple~in-prod 

f-aEA I-bEB 
I- (a,b) E A x B tuplf-in_prod 

f- ((a,b)) E II'(A x H) ,ing-p"""" 

9.4 Using 'The Toolkit 

9.4.1 Related Definitions 

\Vhenever a predicate appears in the consequent requiring the proof that a ~r
tain term belongs to a partial function space, we will generally need to invoke 
the definition of partial functions. 

p/Ul1-is-ref-flnd-jun;-= t-leibniz;; J-Selcomp; SchemaM&n; 5ubst-tac; t-and; 

(BindProd; subst·tac; thinr-tacl II thinr.ta(2) 

t- X Elf: '( .... ~'I""~' '.'(: Yl_!l~ ,Y. 

~r <; X ~ Y {XI,.I;!l Ef 1\ (x1,.1;2) EfO=>Yl =Y~} . 
pfun·'l- rrl-~nd'fun 

X ..... y= If:X'''')'1 ""Xl :X; .1;1,.112' )'. 

(Xl_.\I,) Ef 1\ (xl._~') Ef 0=> 1;, = 1121 

OlE ...... }' 

Likewise, membership of a r'i'lation spac.'e can be reduced to membership of 
the powerset of a cartesian product. 

rel.is-pcrwer;= t-leibniz; thinr-tilcl 

f- r E II'(X x Y) . 
--;:::-;;-7;:--;---'-=--;;--:0 rE.'1-IS-power

X ~ ~ Y - l?(X )( Y,i I- :t EX H Y 

9.4.2 Harwood's Theorem 

In order to illustrate the use of some of these rules aooutexpressions, we present 
a proof of a simple property derived from the toolkit definitions. It has been 
called 'HarwcOO's Theorem'. 

dom{(a,b)) = {a} 

To make this amenable to proof, we state it, suitably quantified, together 
wiU, the relevant definitions, in a sequent: 
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NAME ... DATE =Il'(NAME x DATEJI 
VR: NAME +-+ DATE. domR = 

{x, ,NAME; y ,DATE I (x"y) E R. x,) 

"
 Vg, NAME; b, DATE. dom((a,b)} = {g} 

The first step in the proof is to strip off the quantifier, and since this produces 
a declaration in the antecedent, the next stage is to extract the predicate content 
of that declaration. 

unqWJTJtify:= t-Q1/: sand-t; biTldprodp; apply-inwrmis(l)bindprodp 

Giving 

NAME +-+ DATE = P NAME x DATEt
 
'r/R: NAME +-+ DATE. domR =
 

{x, ,NAME; y ,DATE I ('J,y) E R. x, II
 
g ,NAMEAb ,DATEI
 
a ENAMEl
 
b EDATE
 

"dom {(a,b)) ~ {g} 

Next, the definition of dam must be specialized for this particular instance
it is brought to the right-hand end of the antecedent, and then all-t is applied. 

instDntWle-<lejini'wn ,~/shift4; gll-'(R ,= {(a,b)) f 

This gives two subgoals: one to prove that the supplied singleton is indeed 
a relation; the other to use the property of the definition to prove the main goal. 

NAME ... DATE ~ Il'NAME x DATEI
 
a ,NAMEAb,DATEI
 
a ENAMEl
 
b EDATE!
 
VR : NAME HDATE. domR =
 

{X3 : NAME; !J : DATE I (X3,Y) E R. X3} 

"{R,~ {(a,b)} f E [R, NAME ... DATE] 
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NAME ... DATE ~ P NAME x DATEj 
• ,NAMEAb ,DATEj 
• ENAMEj
b EDATEj
i R ,= {(a,b)} I E [R , NAME .... DATEJj 
VR: NAME HDATE. domR == 

(x" NAME, y' DATE I (x"y) E R ox,}! 
(R ,= {(a,b)) )0 domR = 

{XJ : NAME; !J: DATE I (X3,Y) E R .xJ} 
f
dom {(a, b)) =(.) 

Fi.rst Subgoal The first 5ubgoal is approached by rewriting the ronseqUenI: us
ing the rule schema binding membership, discarding the definition of dem, and 
rewriting using the definition of H. 

binding-suits-ded:= BindProd; subsf.tac; thinr-tacl;
 

Ishift4; :.c-gen-t-leibniz; thinr-tacl
 

a ,NAMEAb,DATEj 
a E NAMEt 
bE DATE 
f
({a,b)} E P(NAME x DATE) 

lIDs is finally completed by appealing to the tactic pair-pow-prod.mem de
fined above, followed by iter-assu.m-tQc. 

Second Subgoal First, the substitution introd:uced by all-t must be made, and 
then the transitivity rule used to rewrite the consequent. The inforrnatioo about 
dom can then be thinned. 

use·instl:lntiatian ;= subst-tlJc: trans-tac; thinr-tac3 

., NAME Ab, DATEj 

• ENAMEj
 
bE DATE
 
f
(.) = (x, ,NAME, Y ,DATE I (x"y) E «.,b)) • x,)
 

The resulting goal is an equality. To prove that the two tentlS are equal, we 
use the role of extension, modified by a tactic to remove the quantification, giv
ing two subgoals. 
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x;sl-xEt x;tl-xEs t-set.eq 
f- s t 

a, NAME "b ,DATEj
 
a E NAMEt
 
bE DATEj
 
x , {aJ
 
f-
XE (x, ,NAME; Y ,DATE I (X"y)E {(a,b)}u,j 

Q ; NAME 1\ b : DATEt
 
Q E NAMEt
 
bE DATEj
 
x, {x, ,NAME, Y ,DATE I (x"y) E {(a,b)} • x,j
 
f-
x E {aJ 

Simplification of the first of these subgoals entails rewriting the singleton ex
presison in the antecedent, and using this to simplify the comprehension in the 
consequent, before applying the rule of set comprehension. After this, a sim
pIeapplication of the one-point rule does not suffice, since a value must also be 
supplied for y. Once again, this gives two goals; one to prove that the supplied 
binding belongs to the schema part of the set comprehension, the other to us
ing that binding to simplify the comprehension. These are readily discharged; 
one by substitution and reflection; the other by schema membership, schema 
conjunction, and extension. 

singleton-mem-t;= par-pred-t; extmem-t; x-gen-t-ldbniz;
 

thinr-Jac2; x-t-setcomp;
 

(subs/-lac; RefIll skip);
 

t-schmem; (t-sandl1 ; lter-assum-tac
 

lit-atmem; Refl)
 

x-t-setcomp;= Setcomp: t-e:tists( X3 ;= a,y:= b) 

The final remaining goal is solved by a broadly symmetric tactic. Exten
sion membership is applied in the mnsequent, and set comprehension in the 
antecedent. Rules for tuple selection and equality complete the proof. 

t-singleton-mem:= t-atmem; setcomp-t; trons-tac; thinr-toel;
 

drop-snd; drop-snd; sconstrddo.g-,; extmem-t;
 

up-doum-wcTupleSel: and-t; thinr-taCl:
 

t1Tlns-tac; t-tupleequ; Refl
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Collecting these parts together, then, we have 

hJlrwood-tac;= lJnqu4ntift.lj instllnl1Qte-dejinition; 

(binding-slJits-4ecl; pair.pow.prod-mem; iter-<lsslJm-1IJc 

f1use-mstanl1Qtion; t-sdeq; 

(singleton-mem-t II t-singleton-mem)) 

10 Generics 

The uses of toolkit definitions given above have overlooked. the fact that the 
usual definitions are stated using generics, not with ready-supplied parameters 
suitable to the problem at hand. 

In order to specialize a generic abbreviation for a particular instantiation, we 
usc the rule GenSpec. 

rjx[y) ,-,f- (y ,= u) 0' E v GenSper 
rjx[y] ,-, f- xlu] E v 

A similar me is provided for generic paragraphs (see the appendix), but its 
use entails slightly more work if the paragraph does not uniquely define the 
names it introduces. 

Using this rule, we can define a tactic which implements a version of the 
assumption rules for generic terms. 

genspeC..Q55um:= 1l"n,X, t,e,u • "[Xj := t I-- n[t'J = U---j. 

clJl~tac(n(e] E {z; l?u \ z = u}); 

(Gen5pec; l-setcomp: t-schemamem; l-<lmJ 

(t-bindprod; t-powerset; assum-tlJc 

II,ubs'-fJIC RefI) 

setcomp-l; tnlns-tac; thinr-Iacl: 

SQmstrDdlJgj symm; assum-Iac) 

This tactic gives the following proof tree, provided (X ;=0 e ) stand uare 
identical. 

4S$!Dn-I'" 
",,{X:-'IO/'-zEII I_~ R4I 
~ I x :_, • G I E PII . f- II _ I x: ,~o I 

f- I IZ :-l"l( :_e ~ 0' i E[:e: Pill t-1ll1ld"rud f- i i1:'" IX :_~) 0' ~0{II _1) SliM! 
'-/Uld S¥"'": 1IS~1I11l-/""

f-((1:_ll\: eIQ'~E[l::PIIJI\(~' z~0(11 z) tt : Putt = II f- u= Z Se-"lrl)dIIg; S¥"'" 
f- (1:_ (X:_ ~ }Ql f E ]1' PII III-IJ t_sdI_ 

l_~" j.z:Plljl II-II Z II"IlrTJ-f<IC; lhi,,~ 
f-(X: '.0'<:::{I,PIII" II} . tl : PII /1 - ufll !,] : '- "[~J u ~Uff'llp-Iems/,«: Jubs,
,,:Xj:_ I f- ,*; E {I: PII! 1 _II} ·tll[..J€'{I:Plllz u}f-"[rj \I CII'-'<IC 

,,[X] :=I'-II:~! =11 
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10.1 Properties of the Empty Set 

In Powerset The empty set belongs to the powerset of its generic parameter: 
0[S] E IF S. To prove this, first we specialize the instance of the empty set in the 
coosequent, then apply the powerset ru.le. This gives us Y E {x : S I false) as 
an antecedent; by set comprehension and schema construction this simplifies 
to (inter alia) false as an antecedent. Thus the goal is proved. 

empty-in-power:= GenSpec; subst-ttu: ; t~powen:;et; 

setcomp-t; thinr-tUJ::l; SConstrDdag ;Jalse~t 

ty: {x; s Ifalse-x)t3x: s I false .Y =xtx" :stjulse f--- yES 

.. . !y, {X" Ifalse ox}tox' 5 ljillse 0 Y -xjx 5 Ifalse f- yES 
... ty: {x: s Ifalse .x}t3x: s lIaise. y::::: x:j:x. s Ita/set!!::::: x I- yES 

... !y, {x ,5 ljillseox} f-yE 5 

.. ,I- Vy: {x' s Ifalse • xl. yES 

... r{x:slfalse-x}ELt"S 
"'[X] ,~ {x ,X Ifalse 0 x} f- {X ,~s I" {x ,x Ifalse 0 xl E P 5 

0[XI ,- {x, X Ifalse ox) f- 0[5] E Il'S 

Empty set has no members: y E 0 I- false. To prove this, we expand the defi
nition of 0 using a cut, usinggenspoc-assum to discharge the resulting goal. 

in-empty-t := cut-tac(y E {x : 5 IJalse});
 

(rut-tac(0[S] ~ {x 5 ifalse));
 

(tltinr-tacl ;genspec-assum
 

IIsymm-t; t-/dbniz; thinr-1QCl; assum-Iac) 

IISl.'tcomp-l; thinT-tacI; SConstrDdag ;false-t) 

iler_,um-tiJC 
+y E 0[5]1

{.r:s IJrilit} =0IS', 

Y E fl'[SI 1-1,;1",;: 

-::-::--:_--:--:--: gmf",c~<um ~!i E 0[Sll.
 
"'[X; :_{.r. X ,f<Jls~} {.r: S If~lst} = 0'[5:
 
r 

"[5] ={r: 5 If..lse} !I E {.r: 5 Iflllst) 
I/Unr S!P'lnl-1 

2;1(~ :={r: X /"lsd: . til E 0[S:: 

!I E "'t51 0[51 = {.r: 5 ,j3lst} 

r 
.,"S:=!r:S'f.mt-j yElLS filLst) 

CUI-I"" -~==~~ joJ><., 
",[XI:= (x: X I[«!self ... t~ : StftJ1s~ f- !w.,t SCoJlstrDdug 

t!l:SI!ul.~<--!"~ . 
+.'1 : 5 : fG4~ty r !<l1u lJmrr 

!I E 0[S) 

yE{r:Slflllsc } ;yE{z:SI/.,J,stIf-/<ilie StUomp-j 

"[Xl: {:r' X IfilLstliY E 0[511- f~ cul-liIC 
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This iem:m.a offers an altemative proof of the previous one--expand the 
powerset first. and then do the generic instantiation in the antecedent. This 
turns out to take many more steps. 

When a specialized version of the generic definition is already available, the 
pf(X)f of this lemma can be considexably simplified. 

in.empty-tt '.= leibniz-I; setcomp-t; Ihinr-tdcl; SCcmstrDdilg; jalse-t 

-,-".,-,.-;--.,..---::=.."--.,,.,.-;:.,---,--.,,-----;;:;.,-;---;---;-""' false-t
{x , 5 Iftdse ox) _ "[5113x , 5 IJalse 0 Y -'Ix ' Stfalse ~ false
+:--,,+i:-=--,:'i---::"",,';-::--,;-;'7:=-,-"-7:--';7z"-,-'-,= SConstrDdag{x,S IJalse 0 x} _ ,,{SIj3x ,5 Ifalse 0 y - xix,S Ifa'se ~ false " 

=-S-"":""-':'-':,--"-'-:;;cid"'E""'.-i::E':"":-!-:=~.-i::i:':o:::'-'-":';-'i= thmr
{, x--,,'S,-,-,Ifi",a'"sec-e-,,-x!c}"-_",,[,,-SI,,,I,,3_X,,'"S"'{Jac--elsec<0,,-Y-,-;-;'-;lxc,c-'5--,,1Ja","lse-,l;cy;--_x_~_fi,-a-,-,'se- setcamp-t

{x, S IJalse ox) - "[S]jy E {x, 5 Ifa'se ox} ~Ja'se " 
'---':';;,,--;-'-;"':2'--~:_::_S;;;-;-7C'--'--- leibmz-t

,,[5) _ {x ,5 IJalse 0 xJty E "ISJ ~ Jalse 

The Empty set is a partial function 0 E S -# T. The proof of this lemma 
appeals to some of the simpler lemmas already proven. 

empty-in-pfun := pfun-is-ret-and-jun; 

(ret-is-power; t-bindprod; empty-in-power II empty-is-fun) 

-------- emp/!J-in-powtr
 
,,[x.)'):= (x : X IJ~lsr)
 

e 
o:s x T) E P(S x T) l-bindprod 

zlx.y]:={%:x IJ.) 
-------------crrrpty-is-ftm 
,,[X, YJ := {.r 'x I ji:ll$t}t 

c~~J~:=--,,"~[S--,,'~T~1',--,E~~~_"".~(S--,,'~T-,-)) td_il_powrr 5HT=IJ>(SxT) 
zlx. r; := {% , X 1~}1 e 
S<-JT=IP(SxT) 1t%,:S;¥I,¥2: T • 

(Zj,Y,) E z!S x TJA 

e 

",1f'-":==-:"c[S=-:'~Tcl-"--"E-,~,-,,'s--"H~T1"-:_-,--::-::,-,,,- I='",''e",~12E~·c[=s~'~T1c~",-,'"'_~-"'""'-'-} pfun-il-rr/.rmd-JIl1l 

"IX, ~1 ,- {% : X Iflllst}t 
5 ... T=P(5 x T)t 
.s -4 T= {f:5 .... T I ":l:1 :s: y,.!l2' T. 

(.:,.¥,) ErA 

(%I.¥2}EJ~Yj=!J2} 

0[5xTJE5-<+T 

An additionallernma is needed, to show that has the hmctional property 
given in the partial hmction definition. 
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emp.y-is-fun ,~cu'-lac("[S x 1] ~ {x , S x T Ijillse));
 

(thinr-tael ;genspec-f2SSllmll
 
t-alI; I-imp; and-I; 

lshift4 ; lshift2; 

feibniz-t ; setcomp-t; fhinr-tocl; 

SQm",Ddag ;jillse-t) 

The domain of the empty function is the empty set: 0 =dom 0. 

emp.y-dom ,~	 Ishift4; all-.( R ,~ "[NAME x DATE] ~;
 

(BindProd; subst-tac; Ishift4;
 

I-leibniz ; thinr-tac2; empty-in-power
 

subst-lac; trans-lac; t-seteq; 

(drop-snd ; drop-snd; drop-snd; 

dec-in-t ; in-empty-t-NAME 

IIsetcomp-t; 

thinr-tacl ; SConslrDdtlg; 

fshijt3; thinr-tacl ;jalseE; 

J}othinr-tac4; (n-empty-I)) 

Discovering how empty-dam works, and improving on its structure, is left as an 
exercise for the reJJder. 



Part 111 

Schemas, and 
Proofs about Specifications 

For lh~ purposes of constructing proofs about 'real' Z specifications, we must 
be able to use the sc.hema cala.J1us and to be able to expand schema definitions. 
This means that we must have ways of oonsideri.ng schemasas expressions and 
as predicates, as well as declarations. 

The schernaca1rulus has evolved from a partk.u1ar view of the semantics of 
schemas. Rather than considering the view of schemas as expressions, havi'lg a 
type and a valueas a set of bindings, these operations have been defined using a 
view based on signatures and properties. Such a view is somewhere in between 
an expression and a predicate. 

1his final part of the tutoriaJ gives a comprehensive definition of schwas 
and uses these rules in constructing the proofs of the two theorems about the 
birthday book set out in part one. 
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11 Schema Declarations 

Sdtemas are used as declarations in many places within a specification. Some 
of these occurrences are not immediately obvious. So we begin by looking at 
the three ways in which a schema as a declaration can arise. 

The purpose of a declaration is to introduce new names and to give them 
values. So from a schema declaration we must be able to extract its property. 
This extraction process allows us to reason about the values of the variables. 
However due to the encapsulation of names by schemas, great rnre must be 
taken when calrulating the side conditions. 

11.1 Instances of Schema Declarations 

A schema can be used to introduce its component names whose values satisfy 
its property. When used in a sequent a schema declaration appears in the an
tecedent as follows: 

151·· ~ 

ThiS fc-.alure of schemas is used in three different ways: as a schema-text, a 
~ma-inclusion, or as an axiomatic definition. 

Axiomatic Definition An axiomatic definition is a particular piece of S}TItax 

used to introduce new names into a specification. For example the following 
definition 

I :':~ z -

introduces two nurnbersr and y and states that they are not equal. The schema 
x, y : Z I x :f y contains the same infonnation and could just as welJ have been 
used to introduce the two names: 

x,y,Z I.iy 

So, for any schema we can introduce its component names together with its 
property simply by stating it as a declaration. In the notation used in the an
tecedentof a sequent we would write the following: 

... tx,y' Z I. iyl .. · f- ... 

Schema Inclusion The typical example of a sdlema indusion is found in def
initions of more oomplex schemas. In the birthday book example, the schema 
AddBirthday is defined in tenns of MJirthdayBoc* and other variables: 
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AddBirthdoy _ 

!>BirthdayBcd;
 
TUl~? ; NAME;
 
oote? ; DATE
 

---, (name? E known)1\
 
birthday' = birthday U {(""""",dale?)}
 

This paragraph romprises a definition of a schema name AddBirthdtJy using a 
schema constructed from an indusion. We would write it in the sequent nota
tioo as follows: 

~rlll<l<lJi&ri:; 

AiJdBirlhdll.II:= 1IJl1lV? ,NAMe ~ r_? '''~'"'' ]
[ II bi.r~'=bi~u{("~?,dmt?)}daltO, ,DArT. 

This is a schema composition of the form \5 I PJ where the schema 5 is included 
in the schema, together with the predicate P. 

The rule SchConstrPar allows us to split a schema-eonstruction into its 
schema inclusion and predkate making them into a schema declaration and a 
constraint paragraph: 

S:j:P I- Q SchConstrPar 
SIPf-Q 

Schema Text A schema text is used in quantified predicates such as "IS. P. 
The rule AI/I 

rjSf-P 
rf-Vs.p HAI/l 

deromposes a universal quantification by generating a schema declaration and 
a simpler predicate. 

The rules for set comprehension and definite description give us quantified 
predicates that are also proved usingAlU. Thus this is a very common route for 
introducing schema declarations into the antecedent of a sequent. 

Bindings The generalisation of the meaning of paragraphs to encompass arbi
trary schemas can be repeated for substitutions. A substitution { x :==e ~ is a par
tiCIIlar form of a binding. We can use the same techniques for taking a schema 
and making it a declaration and give a substitution semantics for any binding 
or appropriately typed expression. 

11.2 Properties of Schema Declarations 

Given a schema declaration in the antecedent of a sequent, we can aJso assume 
its property. We use square brackds to indicate that we are interpreting it as a 
schema predicate: 
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a(S I P) as 

Q-o =: as 
o:50T as U aT 

aVS.r aT \ as 
Q: 3S. T aT \ as 

Figure 4: The Alphabets of Schemas 

f15j[S] f- P SchPrap(wfS) 
fjSf-P 

Since the alphabet of a schema S is dependent on its definition, we cannal use 
the 5(.Uping variable tedmique in this C.a.'ie. 

In order to take sequents of this fonn any further, we must look at schemas 
as predicates. 

11.3 Alphabet 

The alphabet of a schema declaration is dependent on the context in which it 
is calculated. The alphabet schema reference can be calculated only when the 
signature of the schema has been discovered. The disc..'Overy process follows ~ 

definition of the schema reference using the following rule: 

q:s:= TI-- oS == aT 

The alphabets of composite schemas are defined in tenns of the alphabt'ts of 
their 5ub-schemas. The rules for this calrulation are given in figure 4. 

11.4 Free Variables and Substitution 

The free variables of a schema declaration are the same as the free variables of 
the schema as an expression. 

The substitution rules for schema declarations are the same as for schema 
expressions. 

12 Schema Predicates 

Schema predicates are just a special fonn of predicate. When treated as pred
icates, sdtemas behave in exactly the same way as ordinary predicates. It is, 
however, important to distinguish the two forms of connectives. Though they 
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I" f-l', E~III···lIl'. Elo 

rf- :1, :~l; ···;.rw :lo; ,""""""'" 

r f- ~ [5j i J-SNoIl' r f- [5] II [T] t.!SAnd1' 
r - [~5] r-[51\T' 

r f- [5) V [T] t,t.Sorp r ~ 15) ""' [T] i -!.SimPI' 
r>-!5vT! r r- [5,,", 1] 

rl- r51~ '11 r ~ 5 II p. i,/.SdlrmrlM....pr r:" ~ ~j tiS}!!p r - [S PI 

r, -:5. T r-'o's·lr 
. . iJ.,5T1lsIJp(<J1.,oS= 0) r~:'r/s.~ ilSAllp(oTn,).'i=Z)r-.3S.T] 

Figure 5: The Schema Predicate Calculus 

look. the same the propositional and &Chema connectives operate in subtly dif
ferent ways. For all well formed instances of &Chemas, there is no difference. 

We first look at what it means to view a schema as a predicate, and then look 
at the laws governing the &Chema mnnectives. 

12.1 Interpretation 

The simple schema 

x:s 

can be said to be true whenever the variable x has a value which is a member 
of the the set s. This mndition can be expressed as follows: 

[l-xEs tl(wfx:s) 
~., , 

This more general case of the schema 5 raises some problems. What does it 
mean to say that 5 is true? 

12.2 Definition of Schema Connectives 

When we consider the &Chema operators corresponding to predicates, they have 
the same properties as ordinary predicates. The sdlema mnstruction 5 IP can 
(when viewed as a predicate) be considered to be a conjunction of a &Chema 
predicate and an ordinary predicate. The rules illustrating these properties are 
given in figure 5. 
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Simplifying, Schema Predicates Just: like the for the predicate aLIcu.1us, we 
can develop a tactic for simplifying sdlema predicate fonnuJae. Since we will 
want it to work for sdlerna predicates in both the antecedent and the conse
quent we make use of the reversible IUies and generate two-sided tactics: 

saM-P ;= up-4oom-",cSAndp 

bindprod-p:= up-down-tJlcBindProdp 

smem-p :=:: up-doum-tJlcSdlmtaMemp 

We can examine how these IUies are used to simplify the property of theex
panded Birthday sdlema: 

k ElPN tbEN ...... D tk::::odomb f- P . 
k E • N j Ib ; N -.> DJ I k _ dorn b f- P ;:mdprod-p 

[k ;"Nj j~;N-.>D] lk~domb f- P 'bmdprod-p 

[k ;PNjA[b;N-.>DJ lk~dornb f- P ~nd-' 
- s-and-p

1Ie,I'N;b;N-.>D] jk~domb f- P . 
lie ;I' N; b ; N -.> D] Ak ~ dorn b f- P and-I 
~'-';;~T:;;-'--:;=;C;-;"-':";::::;':;'-;'---;, smem-p
IIe;PN;b;N-.>Dlk~dornb] f- P 

The tactic sCh_pred_1 10 follows the pattern in this simplification by splitting 
the schema predicate into a conjunction of schema predicates, and then sepa
rates them and repeats the process on both of the sub-expressions: 

sch-p"d-t;= '«bindprod-p I smem-p I sand-p [skip); 

(and-t, roch-pred-'; sch-p~-' [ skip) 

Iskip) 

12.3 Schema Predicate Substitution 

The free variables of a schema as a predicate are generated from two sources. 
The first is the free variables of the schema as an expression. The second source 
is the alphabet of the schema. These component names are newly introduced 
by the schema. So we have the following equality: 

~S= ¢SuoS 

The additional free variables in a schema predicate result in a different sub
stitution. Not only can the expression level variables be substituted. but also 
the component variables. Sometimes they can be the same names. 1ltis can 
cause some complications for the quantified smemas. The substitution rules 
for schema predicates are given in figure 6. 

OVV\ie (I('roonstrate a simplilied larue that only considen thno-e types of constmetor: thl:5e that 
ga'lerate predicate conjundioI\:!i. 
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b0[S IP) - b0SAb0P 

b 01~SI 

b0[So1] 

b0[YS.1] 

-

-

-

--b 0S 

b8Sob8'T 

'Vb 0 S.b!,:.} T 

a(boS) n (¢b o TUab) ~ 0 

b0[3S.1] - 3b 0 S.b0T 

a(boS) n (¢br-l TUQb) ==: .0 

Figure 6: Substitution into Schema Predicates 

13 Schema Expressions 

A more complete definition of schernas is obtained from looking at them as ex
pressions. These schema expressions are sets of bindings. We characterise these 
sets by defining the property of membership. So each rule considers what it 
means for a binding to be in a particular schema construction. The rules for 
schema expressions arc given in figure 7. 

Schema Expression Substitution The difference in free variables for sdlemas 
as expressions and as predicates means that there are two types of substitution 
that must be considered. Substitution into schema expressions is a homomor
phism. The rules for sdlema expression substitution are given in figure 8. 

14 Specification-Level Proofs 

Wecan now revisit the proofs presented at the beginning of the tutorial. 
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r r ...... , E'I 1\ .. 1\11..1. E'" 
r 1- .. E [X, .,; •.. ; x.:.l.1 ,

r 1-!l0SA!l0T SAJtdrJ---.b0S t~d("'S)
 
I' J-- b Ie-'S rI-6E(.~i\n U(wfS,.,T)
 

Tl-be5v/10T rl-b8S=:-60T 51",p 
r:--b E (SVT) UScJr(wfSvT} fI-6c(S=1) H(wf.<;=:-T} 

r I- b 8 5 0- 6 G T HSl./f{wIS "'" T) r I- b E 5 A 6 0 P t jSdI:mwzMO'l 
r~6 EO I~","T) fI-6c[Sl P ) 

SAU 
fl-'iS.6~';T

,CC---7""'C':;'~8='CT~ t.jS£Iisls(<1> T'l (ob '--' o~) = l"l) HI<t>Tn 
fl-bE::JS.T rI-6E'iS.r 

lab ,J as) ""~) 

Figure 7~ The S•.hema Expression Calculus 

6 0 [5 I PI - [b 0 5 16 0P] 

whmabnaS= 0 

6 0 [5 I PI - [boSIPJ 
whenabn~P CaS 

6, [-,,51 - 1--/1 0 51 

6 o lS o IJ - [boSoboIJ
 
b 0 [VS.1] - [\Ib o S.b o 1]
 
6 0 [35.1] - [3b 0 S.b 0 71
 

Figure 8: Substitution into SChema FXpres.sions 
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14.1 Theorem about AddBirthday 

Section 6.3 demonstrated how the proof given by Spiveycan be setup as a tactic 
over the inference rules presented here. 

spivey-5 ==eqlD.c(lemmal) 

(known' = dombirthday'); 

eqlac(lemmu2) 

(birthday' =birthday u {(1UJmc? ,date'!)}); 

eqtlU(lemrtUl3) 

(dom(birthdayu {(name?, date?)}) = 

(dam birlhdilyj U (dam{l""me? ,dilte?)))), 

eqtoc(/emma1) 

(dom((""me",dil"'I)) = {""me?}), 

etltac (lemma5) 

(dom birthday = kmm.mJ; 
Refl 

\n order to complete the proof, we must simply demonstrate that the five 
lemmas used above follow from the definition of AddBirthday. 

AddBirthday I- known' =dom birthday'
 

i\ddBirthday r /Jirlll{wy' = birthday U {(name?, date?)}
 

AddBirthday r dom(birthday U {(name?, date?)}) =
 
(dombirthday) U (dom{(name?,date?)})
 

AddBirtlulay I- dom{(name?,dall.'?)} = {name?}
 

AddBirthday I-- dom birthday::; known
 

Several of the lemmas arise directly from the definitions in the antecedent. 
'[he tactic gen-expand expands schema definitions as far as possible, It works on 
goals such as 

5] := Tt
 
5, ,~ [5, IPll
 
5, ,~ [5,; S2Jl
 
5J rQ 

in which 53 is rewritten to give 

TtplT'tp. r Q 

etc (Here PI is the predicate which results from replacing all those variables in 
P which belong to the alphabet of T by their primed versions.) 

First, the schema expressions are expanded, acoording to their definitions; 
thm any resulting decorated schemas are rewritten so that only variable names 
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c 

are derorated; a predicate copy of the schema is made, and then it is simplified 
into t-separated components. 

gen-expand:= !(exhaust leilmiz-t; tryd«(}'Iflte~left); ptlr.pred-t; sch-pred-t 

When gm-e:rptmd is applied to our initial goal, or one of the lemmas which 
remains to be proved, the result is as follows: 

*'-: PNAME AIJi~, NAJrU. -"I DA.n l.i:lloq", '" damlJi~1\ 

b;IouIn' : PNAME 1\ l1i11hd"!/ ; NAME -"I DATI:" I blow,,' = dom 1Ji~'1\ 

1W'fIe? ,NAME A dlUt? DA.TE I 
~ {n_? E 1::nowlr1 l\"i1'fItd~' == u(bir/hdq. {(_?,dlIi~?)jH 

k"",,", E IPNAMEt 
1!inJ,dti.!I E NAME -"I DATCj 

kmr.un = dOIIl"i1'fltd~t 

k1fw.... ' E IF" NAMq 
IJirtfuW!I' E NAME -"I DATEj 

krlmm' = dQllll!inlldti.y' ~ 

"""",? E NA'IoI£t 

dlIi~? E OAITt 

~ (_" E kn""'''l: 
l!irdldt>y' = .j11!ir/kdt>y,{("..,.,~?,diIJ~?)J) 

c 

-Q'----,---=--------:-__--:----,------ gm-apald 
BiriJl4"!1Book := [brow" : lI'NAME; bir/kdt>y: NAME -"I DATE 11"01",, =dom N,lhdti.ylt 
~i~Bool: ,= [BIr/kdti.!lB«>I:, (Birth.</g!lBrok)'H 
AildBi~ ,= l~ir//Idg!l8oDl:; ....me'I: NAME; tkJit? ; DATE I 

~ ("""I<'? E bli;lum) 1\ ";r/~' '" bir/M,,!/ u {("amt?,d.t~?)}H 

AddBir/M"!I 

o 

Having done this, in order to discharge a goal which appears somewhere in 
the schema antecedent, we need simply the tactic is.Jcnoum: 

is.Jcn(}um := gen-expand; ifer-os5um-toc 

Simple Lemmas Therefore, the tactics to prove some of the lemmas arc now 
entirely trivial. 

lemmal:= is.Jcnown 

remma2 := is.Jcnown 

lemma5:= is.Jcnoum 

Lemmas that use the toolkit The remaining two lemmas rely on properties 
of the toolkit definitions, some of which were proved earlier. Since a common 
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form for these lemmas arising from the toolkit is f- "I S • P, we provide a tactical 
toolkit, which takes three argwnents-the tactic used to prove the Ienuna., the 
predicate which. is the lemma, and a binding showing how the quantification 
is ro be specialized in this case---and returns (assuming the tactic suo:eeds] the 
requirement to show that the binding belongs to the schema in the quantifier 
(i.e. that it has the right type). 

This last requirement is generally <-'Overed by the tactie is-known-type, which 
takes this resulting goal, simplifies it, and applies is-known where possible. 

is-known-type:== (Sand IBindProd ISchemaMem);
 

t-ilnd; !(subsl-lac; is-known I subst-lac)
 

Lemma 4 The fourth lenuna uses the so-called 'Harwood's Theorem'; 

Va ,A, b,Bodcm((a,bJ} ~ {a) 

This has been proved elsewhere, by hilrwood-Iac. 

lemma4:= loolkit(harwood-tac) 

iVa' NAME, b ,DATE 0 dom{(a,b)} = {a}) 

i a:= name?,b:= dille? ,; 

is-known-type 

AddBirl1Jdl2g I- (u; ~?,": dUlt? ~ E;u: NAAIE;": DATE] .~~;;;;;~:;';g~~~+~~;!~~~~~'=~§is-tn<r~,"_ry~ 
AddBirtlllkllJ I- dom[IIl_?,dlllt?l} {II<t111t'?} looikilllrll",.oood-J<I<·). 

LeJl\ma 3 The third lemma depends on the 'toolkit' lemma 

"Ij:g: NAME -+1 DATE. dom(/ ug) = dom! U domg 

which will be proved by dom-cup-lemma - omitted. In this instance, the toolkit 
tactic produces the subgoal 

AddBirthdily 
f
it ,= birtl,day,g'~ {(name?,date'J) I E if,g' NAME -,; DATE] 

which simplifies-via the first part of is-known-type-to 

AddBirthday f- birthday E NAME -++ DATE 

AddBirthday 1-- {(name'?, date'?) E NAME --+t DATE 

The first of these is discharged immediately by is-known; the second requires 
more work-----making use of the tactics relating parbal functions, relations, sin
gleton pairs, powersets, etc., in Section 9, above. 
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use-dol11Cllp ;= dcm-cup-lemmil 

Iem""a,~ loolJcit(use.Jom<up) 

(V/,g ,NAME ... DATE. doml/ug) ~ 

dom/udomg) 
(f'~ birtM>y,g,~ {Iname?,"'''')} .; 

is-bu>wn-type; nil-jim 

nd-fun ;~ /shift7; /shiftS; pfun-iHd..nil-fun; 

(rel-is-power; pair-pow-prod-mem; 

(thinr; is-knoum) 

II 
W-4l11; t-imp; aM-t; e:r.tmem-t; twpJesel-t;
 

thinr-tac2; e:r.tmem-t; twplesel-t;
 

RefI))
 

Of course, this proof has been arranged for readability. It is very tar from 
being an effident proof---expanding AddBirthday separately for each lemma is 
very costly. Conversely, part of the power of Z is in the ability it gives the user 
to wrap up iruonnation in a schema-and experience shows that with proofs 
involving sizeable specifications it is most important not to expand schema def
initions fully until the information they contain is needed. 

14_2 Initialization Theorem 

The tactic that follows is perhaps a more honest 'first-oJr proof of the initializa
tion theorem.. It begins by providing a witness for the existential quantifiet-the 
empty function birlJu1Jzy and empty set known. Using this binding. it is easy to 
discharge the original goal; the new goal is to prove that this binding does in
deed belong to InitBirthdayBook. 

nus is dooe by replacing InitBirthdoyBocic by its definition [using Leilmiz). 
The predicate part of InitBirthdtzyBook is then quickly solved by Refi. The re
maining goal is further expanded by use of the definition of Birthday-which 
was included by InitBirthday/Jod(. After making all the resulting substitutions. 
and applying t-and several times, we are left to demonstrate three properties of 
the empty set; the.se were proved in Section 9. 
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init-t4c:= t-exists(known := .0[NAM£),birthday:= .0 [NAME x DATE) ~; 

(subst-uu:; I-Irue II skip); 

t-Zerlmiz ; SchBindMem; 

subst-tac ; t-and; 

(skip II Refl) 

thinr-tac2; t-Ieibniz; 

thinr-tac2; J-and; 

(I-<lnd II skip); 

((emply-in-power Ii wply-in-pfun) II empty-dom) 

ignoring the :minor subgoals, then, the tactic above produces a proof with 
lhi~outline form: 

- ?,[NAMEJ E ~~AME f-iM-pIl'll' r- rz;NAME )< DATE: E NAJ.LE _> DATE t-ilhl'fu" ~ "'iNA),{£] _ dom rz!NAME ~ DAT£'. e-dom 
I-~nd 

I1indknOtlln:= ""[NMf£],birlhda.If:= "'[NAME~· DATE]0 

[mlJlj'" : IPNAME; birlhdag, NAME ..... DATE I knOtlill = dom birthdgy] 
--,--,---'---------'---,--,----'-------"- I-ldbrre
 
[JjrlNJayBook := [biD"''' . ?SMfE: I,irthdag, NAME --+ DArt krrO'~", = <.lom "'-rtJrrk1!1
 

c
 
i kuolllll;= O[NAME].birlhday ;= "[NAME x DATE' 0 BirThdoyBld./\
 

_0"IN_AME_"J_=_o"IN_A_M_E,,1 I-!rib"iz
 

Birthda!lBook := ~""lIm : PNAAIE; birthdgy : NAME --+ DATI knrrrJm = dllm birThday);
 

IniIBirlhday&d::= [BjrThd"VBook I knmml = 0[NAftf£:;
 
C
 

Iknou,,, ,= .e[NAMEi,/7irtNJ.a.y "" o [NAME " DATE; EInilB'nfIQiyI.lool:
-,--,--:c-,-'--,-'--::-::-'---,--'--,---::--::-,--=-=,-'-'--,--,--,--,-,- /-UlJiI> 
BjrthdayBoot:= :J;:nOtlln: PNAME; lJirt!vlll!J' NAME -~ DATf" I k"rrrJ'" _ dom birthday; I 

lrrilBirlhda!l&d; ,:% [Birrl1day&d: I kllwm = 0[NAMEj] 

c 
31rriIB..lkday&d: .lrllf 
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A Deductive System from Draft Z Standard 

A.I Free variables and alphabet. 

A.I.t Parclgraphs 

,,[x] o 

"P 'liP 

¢S See below 

¢Ix '5) ¢; 

ol>coe) 1" 
¢([x]S) <is I (x) 

¢(xIY] ,oe) 

,,(n, tn,) ""¢II1 U (¢II~ \ and 

~nix] {x) 
uP ~ 0 

05 = Seebelow 
~o(x: s) {x} 

~(t(r :=e) {x} 
~o([x]S) oS 

~o(xIY]=e) {x} 
~a(TI I tII:,d ani U alI2 
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A.1.4 Expressions 

fix) {x} 

¢(x lelJ {xl u ¢< 

¢(i) '" ¢(z) '" t;){el> ... ,en} ¢(edu··· U 6(enJ 

¢{S oe) ¢SU(¢< I oS) 

¢(l!' s) ¢(s) 

¢(el ... . ,en) ¢(e,)u .. u¢(e,) 

¢(5j x ". x sn) ¢(s,)U . U¢(,,) 

¢(e.l) ¢(e) 

Q!xl:=e\,. ,xn:=en ) ¢(et} U "u m(en ) 

9(05) O}S 

¢(h) ¢(b) 

¢ife) ¢!U¢e 

¢(~S oe) ¢Suo}(e, IDS) 

¢(if P thenel else e2 ti) 4>P U OCl U ¢e2 

¢(b"") ¢II U (d>e lob) 
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A.2 Substitution 

A.2.1 Predicates 

bs(e==u) 

b 0 (e E s) 

b 0 t::nJe 

b G false 

b8~P 

b8(P~Q) 

b8(PvQ) 
b(:J(P~Q) 

b8(P¢>,>Q) 

When nb n <,}PsaS: 

b0VS.P 

b':.,3S.P 
bC;j3 1 S.P 

=: 

== 
== 
:= 

'" 

'" 

'" 
:= 

== 

== 
== 
=: 

boe::bou 

b 0 e E b Co S 

true 

false 

~b8P 

b8P~b8Q 

b8Pvb c,Q 
b~.P~bS'Q 

bSP<::;>bsQ 

VbsS.? 
3bCS.P 
3 I bOS.1' 

When nb n as n i}P= .0 and as n ¢XJ=flJ; 

b0VS.P =- Vb2S.bS'P 

b03S.P == 3b85.bl~P 

b031 SeP == 31 b0S-b0P 
WhenabnaS = 0: 

b8S '" [boS] 
When wfb: 

bGS '" bO[b,S] 

{y,"vfG((Y·""iSP) '" (Y'"(Y'"v!,"!· P 

Ix,"v I 0 (IY"" I,P) '" IY," i""v l'cv I C· ({x '" v I c PI 
wherey f/. r!Jv 
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A.2.3 Expressions 

box 

(b,x::e)ox 

\b,x,=e'0Y 

b 0 x[yJ 
b 0 j 

b 0Z
 

b o {el,· •. ,e,,}
 

"When ab n ~~aS:
 

be {soe}
 

bolllSee)
 

VVhen ab n oS n ~=: 

b 0 {soe} 

b o (IlSee) 

boPS 

be;. {(el' "'le,,)) 

bO(SIX' 'X511 ) 

b o (e.i) 

bO{xI::el, .. ·,xII::e,,~ 

WhenabnaS =:.0 

b 0 BS 

When ab =: 0'5 

boBS 

bI 0 b.x 

b,(je) 

b (ifPC:hencl elsee:;! fil 

bI0 (bclC ) 

{x,=v'",({x=ul8<) 
{y,=v l,,,,({x,=u 18<) 

:= x when x 'f- ab 

:= e 

" (b~0e 

" 
:= j 

== Z 

== {b Q el, ... ,b 0 c,,} 

" {bGSoe)
 

::::;: J,b 0 S.e
 

.0 and as n ¢b=0:
 

_ {bGS ob8e}
 

:= /-tbQSeboe
 

== lP'b 0 s
 

== (bOel,' .,boell )
 

== b 0 s I X···xb s 5,r
 

== (boe).i
 

== ~xl:=b0el, ... ,x,,:=boell)
 

== 8b 9 S 

== b 

== (b i 0 b)..r 

" (b,fI(b 0 e) 

:= ifb(~lPthenb,,-.eIelseb Oe2 

== 
" (,,=(x,=Vl~,u~ce 

" (x,={y=v ~Ou .,0, 
((Y=v l'~) 

whenx 'f- ¢U. 
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A.2.4 Schema expressions 

b 0 [xl, ... x,,:sl == 
When obnoS:::" 

~b, [S! PI 
When ab n otP<;;oS 

b 0 [5 IP] 

b 0{-8) 
boISI-T] ~ 

be [SvTj ;= 

b,IS*T] ;= 

b,[S<>Tj 
b,[S[1] ~ 

b 0 SI!x" ... ,x,1 
bo[~So1] 
b,[35oTj 

~b o [3 1 S e TJ 
b 0 [5[x,fy" ... ,x,,!Y,1l 

b 0 [5:1] ;= 

b 0 [5'] 

[xl" .x" :b 0 s] 

[b05/ b oP] 

[b05/ p] 

[--b051 
[boS I- boT] 

[b8S V b'c1] 

/b05 => b81] 
[boS <> b81] 

[b,S[b o 1] 

(b 8 S)I[x" .. ,x,J 
[~b85 ob8TI 
[3bGS 0 b81] 

[3} b0S e b:::.Il 

[b 0 S[x,fy, • ... X, !Y,II 
[b0 S :: b 0Il 
[(b 0 5)'1 
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A3 Inference rules 

A,3.1 Structural rules 

Assumption rules 

rtF I- p AssumPred 

rtx := e r- x = e AssumDefin (wf(x:= e)) 

I'tx :S I- xEs AssumDed (wf(x : 5J) 

rts!- s SchemaAss (oS n ¢S = 0) 

Paragraph and thinning rules 

PARf- Q . 
PIR f- Q t~edQmJ 

rl5lP f- Q HSch17ed
 
rl5l PI Q
 

TI--P 
Thinl

TIlr f- P
 

rf-p
 
71tinr (an n rpP = 12')rtnl--p 

Tt tT2 tnl-p SI1ift( aT2 n ¢JD =l2l) 
T 1 tntr2 1--p ann"f2 = 0 

A.3.2 Equality and substitution 

fief!r I-e =f 

TI--u=e 
Symm

TI--e=u 

rtu=el--v=e 
Trans

rtu_el-v_u 

rib f-p
 
r I- b 8 P t .!VseBind
 

ftb I-- u :: e 
t!EquBind(abn<,bu =@)

TI--u-bce 
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A.3.3 ProposiUonal calculus 

n- pre Q And! 
rl-PAQ 

r r P /\ Q AndEr 
rl-p 

r I- P A Q AndEl
 
r I- Q
 

rl-p 
rl-pvQ OrIr 

rl-Q 
Or11rl-pvQ 

re pvQ rlPl-R rtQeR 
OrErl-R 

rlP >- Q 
imp1

rf-p~Q 

rl-p rl-p",Q. E 
rrQ trnp 

r I- false fa/seE 
p-p 

n., P I- false
 
r I- p notE
 

r I- P ~ false HnotDcf
 
r f- ~ P
 

_, ,_, __ """"" fals<Dcf 

trueDcfr I- P ==> tnIe 

reP ~ Q " Q ", P tJ.jffDcf
 
P>-P¢>Q
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A3.4 Quantifier roles 

rts f- P
 
rf-Vs.p ijAW
 

Tf-TlS.P Tf-bES AilE
 
rf-b0P
 

rf-.0P rf-bES E' I
 
Tf-3S.P rfSts
 

r f- .3 S • p rtstp f- Q EristsE
 
rf-Q
 

Tf-.3S.P/\SOMETHING IU 'L't.j,. mq rlSts 
Tf-.3] S. P 

A.3.5 Expression rules 

Sets 

rj[xJTf- {(x ,-s h T. y) E ll'e tlGenMemlY E aT,wfT) 
rt[x]T f- y[,[ E e 

r f- (Tlx:s.x E 1) /\ (Tlx: t.x E s) t..LSeteq(r rt rj£, u¢t) 
T f- s t 

Tf-v-el v ... vv=en tJErtmem
 
Tf-vE {ej,. ,en}
 

Tf-.3S.e-u
 
rf-eE{S.u} t..LSetcomp(¢e(1oS=0)
 

Tf-Tlr:t.xEs tlPowerset(rrt¢.6:)
 
T f-l E Ps
 

Cartesian products 

Tf-v-e' 
rf- (- I ,Tupleequ(lsiSn)
 

1) - el,'.' ,en)"
 

rf-u.lESj/\ ... /\u.nEsn tlProdmem
 
r f- u E Sl x· . X Sn
 

Tf-u - (el, ,en) tJ.Tuplesel
 
rf-u.l=e,/\ /\u.n en
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Labelled products 

BindEqu (1 .'S i :s n)
rf-(Xl :=el, ... ,X,,:=e,,)..xi e; 

r I- y.x 1 - f.'t 1\ /\ U.xll = f.'" tJ.BindSel 
rI--Y-(Xt:-el, ,X,,: ell~ 

ftbl-x =b.:c BindMem(xEob,wfb) 

Schema. _ r ~ 5 ThetaEqu
.t" 1\···l\e.:t"_x,,rl-e..l't J OS 

r I- e ~ 

I- ( Xl :=21, . ··,:In :=x" ) E S i J,BindSdr (oS=-.. {Xl, ... ,X }) 
tl

~S 

Description 

r ~ (e, u) Ef A Vy 'f • (y.l ~ e)=>(y.2 ~ ey) t.IYunctApp LV ~ ¢e u 4>1) 
r I- u. Ie 

r I-e E S 

rf- ,x~elsP
 

rty ,. ~ l,,~y IsP=> y =e DefnDesa
 
r r e _ J.l.X : siP
 

fI-P-::::>et-el\---,P=>e2 e 
r I- if P then el else e2 fi = e t J,lfThenElse 

r I- u = (x :- U t 0 e
 
rlx ,~ u f- " = e t.lUsedef (x ~ <1>")
 

A.3.6 Schema calculus 

r I- U E [XL :51; ... ; Xli: s,,] UBindProd
 
rl-u-Xt ES1A •.. /\U..t" Es"
 

rlbESAbOP 
r f- • E [5 1 P] t .LSd1emaMem 

rl-bCOjS
n-. E 5 t.lSdlBindMem (wfS) 
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r	 f- b 8 [b 0 Sj jjS<hBindMem' (wfb)
 
rf-bES
 

r	 f- ~ b '8S U5Na' (wfS) 
rf-bE~S 

r 'r b 85 "b 8 T jj,SAIld (wfS" T) 
r f- bE (S "T) 

rf-b8Svb8T jj,Sor(wfSvT) 
rf-bE(SVT) 

r I- b '2 S => b \0, T 
r f- bE (S => T) jj,Slmp (wfS => T) 

r f- b 8S '" b ,,~ r jjSlff (wfS '" T) 
r f- b E (S '" T) 

TI-3S.b\:-,T 
r I-b E 3S: T tlSExists(¢Tn (abUnS) 0= 121) 

rl-\iS.bGT 
r	 f-b E YS. T jjSA[[(¢Tn(abUnS) = 0) 

r f- 3 1 5. b 0 T
 
r I- b E 3 5 • T tlSUniqExiSls (1JT n (ob uoS) = 121)
 

j 

TI-bE 3x l :51; .. -: Xn:Sn·S lJSf-lide 
r f- bE S\[Xll" .,Xn] 

rf-bE(S"T)\[xl,.' ,x,J jj,SProj(nS\nT={x,.".,x,,)) 
rf-bESrT 

SOMETHING j JSCamp 
r	 I- S1iT 

SOMETHING j JSDecar 
r f- 5" 
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