
A TUTORIAL ON PROOF IN STANDARD Z

by

Stephm Brien and Andrev,' Ma.rtin

T€chnicaJ Monograph PRG-120
ISBN 0-902928-94-.\

February 1996

Oxford University Computing Laboratory
Programmi ng Research Group
Wolfson Building, Parks Road
Oxfmd OXl 3QD
England

Copyright © 1996 Stephen Brien and Andrew Martin

Oxford University Computing Laboratory
Programming Research Group
Wolfson Building, Parks Road
Oxford OXl 3QD
England

Z User Meeting '95, Limerick

A Tutorial on Proof in Standard Z

Stephen Brien and Andrew Martin

5th September 1995

Introduction

In these notes we present material designed to support an explanation of h(lw to
conduct proofs using the deductive system presented in the draft Z Standard.
This is, of course one of several possible deductive systems for Z. We am to
presentan account of the variollscomponents of the deductive system, sho'",ing
how they are used together, and how they pennit the famlal proof of thecrems
involving sizeable Z spedfications.

The method of proof is supported by JigsarV, a theorem proving assistant
into which the deductive system of standard Z has been incorporated. W~fur
thee aim to show how JigsaW's support of the tactic language Angel allows
proofs to be defined in a more general and reusable way.

An appendix gives the relevant sections of the current draft standard We
do not aim to explain every rule, butmerely enough to allow the reader to :read,
understand, and use the standard's deductive system. Our work on logics for Z
has been greatly helped by collaboration with Jim Woodcock, and review Irom
other members of the Z Standards Panel. In particulaT W~ have benefitpd Tom
the work of Jones (1990) and Harwood (l990J.

Most of the material used here is derived {rom the project Models, Alglbru,
and Mechanc1al Support in Z, funded by EPSRC grant number GR/J46630.

Contents

I Motivation, and Simple Proofs 3

II Expressions, and the Toolkit 19

III Schemas, and Proofs about Specifications 41

References 55

Appendix 57

1

Part I

Motivation, and Simple Proofs

This first part of the tutorial illustrates the issues arising from conducting proofs
by means of Spivey's well-known BlrthdayBcx* example. We then introdu<e the
deductive system used in the standard (a GentzerHtyle sequent calculUE) and
show how to construct proofs using it. The familiar rules of the propositional
calculus are given to illustrate the format of rules.

Having provided a basic minimum of deductive rules, we can develop tac
tks for completing proofs. We show how tactic; in Angel are constructed and
how to build a general ta<.:tics to simplify propositions and solve tautolDgles.

Contents

1 Specifications and Proofs 5

1.1 Theorems of the Specification 5

1.2 Informal Proofs 6

1.3 Why Formalizt'? . 6

2 Simple Rules And Proofs 7

2.1 Rules . 7

L2 Proofs 7

2.3 Structural Rules 8

2.4 Propositions 9

2.5 Derived Rules 9

2.6 Equality 10

3 Simple Tactics 1\

3.1 Primitive Inference Rules . 11

3.2 Sequential Composition 1\

3.3 Paralll'1 Composition 12

3.4 Combining seqtJential and paTanel . 13

3.5 Alternation 13

3.6 Pattern Matching 14
 ,.3.7 Conunon Derived Tactk.als

• A Tactic for Proving Tautologies "

3

1 Specifications and Proofs

Most readers will be familiar with Spivey's BirthdayBook specifiGitioo. (Spivey
1992), andso we use it as a nmnmg eJWnple here. Recall that two setsaregiven,
denoting the collection of people whose birthdays are to be recorded, ani the
set of possible birthdays:

[NAM£,DATE]

The state of the system is given by a sdtema BirtJuwyBook, which M two
components: a mapping of names to dates, and a set of those people ""hose
birthdays are known. These components are linked via an invariant.

BirthdDyBoot-.,.,::- _

known; lP'NAME;

birthday: NAME -+1 DATE

L known = dam birthday

Initially, no birthdays are known.

InitBirthcLJyBook. _

BirthdayBook

known = 0

We provide an operation to add a birthday to the book '!he operation takes
as input a person's name and birthday, and suo:eeds providing the name i; not
already known, updating the state, but produdng no output.

AddBirthdDy . rClBirthdayBock:
nDme? : NAME;
date? : DATE

...., (name? E known)/\

birthday' = birthdiJy u {(name?, cLJte'?)}

1.1 Theorems of the Specification

We define an entailment relation between a specification and a prediGile, to
mean that the spedfication guarantees the truth of the predicate.

ASequent comprises a spedfiGition, followed by an assertion sign (the '1Um.

stile'), followed by a predicate:

SeJjuent ::= Spec I- Pred

Thus a sequent appears as:

nit· ·tn" I-P

5

These paragraphs provide a context for the predicate en the right-hand side,
(for the sequent to be well-fonned, the free variables of Pmust be declared in
nIt··· tII,.,l and may be considered to be (part of) the spedficatioo in which the
conjecture is evaluated.

Any of the paragraphs of the specification can be explidtly included in the
antecedent as follows:

If I Il)f, e P (f)IlI f, e P

VVe can now use this sequent notation to express theorems about the birth
day book. The initial state may be shown to satisfy the state invariant:

I- 3InitBirthdayBooIc _ true

The schema AddBirthday entails an update of known as well as of birthday.

AddBirthday I- known' =known u {name?}

1.2 Informal Proofs

Spivey provides an infonnal proof of the theorem about AddBirthday using an
equational reasoning proof style as follows:

known' = dombirthday' [invariant after]

=dom(birthday U {name? f-t date?}) [spec of AddBirthdDy]

= dombirthday U dom{name? >--t date?} [fact about 'dem']
= dom birthday U {name?} [fact about 'dam']

=knoum U {name?} [invariant beforeJ

This proof cogently displays the top level reasoning required to justify the
theorem. Its clarity and simplidty is based on the fact that it can call on obvi
ous facts about the specification and on general proPf'rties of the dam operator.
Such appeals to 'obvious' fa<..ts are entirely appropriate when considering such
a small and well understood example.

1.3 Why Formalize?

A proof of a property of a larger and more complt')(specification will not be
able to appeal so easily to obvious fa<..ts. The larger a proof becomes the more
the need for formality to provide the necessary assurance of correctness. How
ever, the problem with adopting a fully fonnal approach to proof is that there is
a large amount of exacting checking that needs to be done. This che<king oorn
prises ensuring that rules are properly applied,the disdlargingof provisos, and
trivial type checking. Such an overhead quite naturally creates quite a signifi
cant disincentive for anyone to tackle a substantial proof in a fonnal manner.

6

The support that can be provided by I:heorem proving assistants such as
JigsaW and Isabelle makes the task of lonnal proof much simpler and also in
creases assurance of correctness. In this tutorial we shall present the logic for
Z that is in the draft standard and show how it is supported in JigsaW. The
support f()l' proof provided in JigsaW canes in three fonns. Firstly, the simple
mechanical application of the nJ1es, secondly the automatic discharging of pro
visos, and thirdly the provision of a tactic langt..lage for describing and direlting
pnx>fs.

2 Simple Rules And Proofs

The deductive system we use is a Gentzen-style sequent calculus based on W,
a logic for Z (Woodcock and Brien 1992), though we use only one consequent.
The deductive system consists of a number of rules for manipulating sequents,
and a method of combining rules 10 generate proofs.

2.1 Rules

Inference rules will be written as follows:

Prm1iscs Name

Conclusion

Rule ::

The premises are a (possibly empty) list of sequent:;:

Premises ::= Sequent . .Sequent

The conclusion is always a single sequent:

Condusion ::= Sequent

2.2 Proofs

Proofs in the deductive system proceed in the way that is usual for sequent cal
culi: proofs are developed backwords, starting from the sequent which is to be
proved. A rule is applied, resulting in fresh sequents which must be proved.
This process continues until there are no more sequents requiring proof, in
which case the original sequent is now proved.

Proof Trees A completed proof may thus be represented as a tree, with the
proved sequent as the nxJt node, and every leaf node containing an empty Jist
of sequents. 1 An example of such a tree foHows; its contents will be explained
later_

1However, if some of these lists in the Leaves arenon-empty, then the derivation tree is stilluse
ful, although it does not represent a proof. i! represenls a partial proof.

7

... fY E f'[5jt ijer~5","-IQC
{;r·S 1fiUst'} = f'[S]
e
!/ E f'[S] /.Idbniz

"'0;--;-.".,-;:;::;- gm<ptr-llSnml fy E f'[5]t
0"[XJ:-{I,XlJilL'lt} {;r:5 IfiUst} = l2I[51
e e
0"[5] = {I: 5 Iflllse} !/ E {;r: 5 ;fld"l}

f'[X;:-{I:XIfiUst'H rlDnr I!/E.ii:l[S;f
~~-/

y E er[5] ":5J = {I : 5 IfiUst'}
e e
0"[5] ={I:S I JlIlst} !/E{I,SIJgbtJ .. ty : Stfdst" f- Jgbt JaIst--r

,,[X] :_ {I : X I}lh<'}t ClIl-fllC . f!I" : 5 1ftlJ- f- JilL'It" SConslrDdIllf

Y E "[51 fy,SljlIk.ity_;r'-fiUst'tlrim
utcomp.l

YE{;r:Slf~t} i!/ E {;r : 5 I fll1se} f- Jld"l

"[X]· (I.Xlfalst-}tyE~~5j-f"lst CuI-IDe

Theorems A sequent is a theorem if there is a completed p1'OCJf for it. The re
lationship between theorems and completed proofs is given as follows:

The rule r I-- P is sound if and only if the sequent r I-- P is a theorem.

2.3 Structural Rules

The first rules that we consider are those that allow us to manipulate the infor
mation wntained in the antecedent_ We shall consider the case where the only
types of paragraphs in the antecedent are constraint paragraphs_ They are in
effect simple predicates.

Assumption The most general way of completing a proof is to arrive at a stage
where the predicate to be proved is contained in the definition of the spedfica
lion that is being assumed.

rtp I-- P AssumPred

Thinning Any theorem that can be proved using some set of axioms can also
be proved with extra ones added. The first thinning rule states that it is al
ways safe to thin from the Icft of a specification in the antecedent. This repre
sents the fad: that the information is built up incrementally. The second thin
ning rule statcs that a predicate can always be safely removed from the right of
a specification.2

rep [f.p
IItr I-- p Thinl no I-- p Thinr

Shifting The order of the predicates in the antecedent can be shifted

rIP,lP, l-IP. r R Shift
rIP,I- - lP.IQ e R

--;;;;,--'-..-...-.-.,--.. ----;::,------,--;
- ,n"'~dreexu-<llUnditions required for the general paragraph GiISe.

8

r p r/-Q

fl-PI\Q AndJ

rl-pl\Q rl-PI\Q
~AndE' ~AndEi

"p "0
rl-pvQ Or1. r!-pvQOrn

fl-PvQ rtpl-R rtQ R
rl-R OrE

'oP rl-p=Q rv> rQ .
"0-- "'pE r p=Q l1f1p/

r f- faL5e (tilieE rt...,P I-f~
r ,-p lIalE~

Figure 1: The Propositional Calculus

2.4 Propositions

The definition of the boolean algebra using deduction rules is presented i, fig
ure1.

Proofs of Propositions Using the rules of the propositional calculus, WI can
construct pI'CX:lfs for propositional tautologies. For example, the commuta'Jvity
of 1\:

~lI$f~.Ill<

P:tQ I- Q ol>:5lm1 IIJI; PtQ I- P lkU'If

PI\Qf Q ruul-I PAQI-P Glld·t

PI\QI-QI\P Alld/
,,"pI

-PI\Q~Qi'\P

2.5 Derived Rules

Wecan generate derived rules from partial proof trees. Once derived, and ~ven

a name, a rule can be resued, in different drrumstances. The constructioo of a
dQrived rule is based on the notion of tree-squashing.

Tree Squashing Suppose that we have the derivation tree:

Sil .. Sinr
5, 5-'-- [R;], 5

Seq , [R]

9

f!:u=rr-lf=r r >--" =r S!J"Ul"l
rr-r=~RrfI	 f:" rr-v .. T...-sr r- ~= "

Figure 2: Equality

where each of the rules Rand R, are sound rules. then the derived rule

51	 . .. 5j, • •. Silo! 5n [R']
Seq

is also sound. By repeating this application many times a large tree can be com
pressed into a compact rule. A simple example of a derived rule is the cut rule.

Cut Rule The cut rule is used to stnKture proofs into lemmas: it permits the
addition of hypotheses to the antecedent; these hypotheses may be discharged
separately:

flPf-Q rf-p
r I- Q Cut

This rule is derived from the proof-tree that mmbines implication introduc
tion and elimination:

flPf-Q . I
rl-p:::}Q Imp rl-p.

r I- Q Imp£

It is the responsibility of the user of the ,-ut rule (and those for implication
and disjunction elimination) to ensure that the well-typedness of the sequent
is preserved by the addition of new predicates. New declarations can be cut in
using an existentially quantified predicate.

2.6 Equality

In order to provide a basic language with which to reason, we asswne that there
ace expressions with an equality relation between them. Equality is a reflexive,
commutative and transitive relation. These rules are given in figure 2.

Proofs using Equality The properties of equality can be used to prove that for
the birthaday boclk in an intialised state, the domain of the birthdDy function is
empty'

InitBirthdDyBodc I- dornbirthdDy =0 0

Having extracted the property of the schema we can complete the prtX:lf as
follows: 3

JThe rules for extracting the property of a ..cr.ema will be given Later.

10

.. !known - dam birthdlly f- knoTmI _ dan birthdlly Ref!

.. tkrwwn _ dombirthday I- dam birthday _ known Symm .

.. . jknown _ dombirthdayt" _ known I- dam birthdoy lawwn thlnr

.tknoWfl _ dam birthdayt0 _ known I- dam birt}ulJJy _ " Trans
... fknown _ dan l1irthdaytknown _ " I- dam bjrthdily _ " Symm

3 Simple Tactics

The languages used in theorem-proving assistants to direct pro:>fs are often
called tactics.

In order to collect inference rules together into derived rules (proof proce
dures), we employ a simple tactic language which is a subset of the language
Angel, described by Martin, Gardiner and Woodcock {1996). The chief tactic
constructions we use at this stage are sequential composition, and parol/el compo
sition. Such tactic combinators are sometimes called tacticals.

Tactics will be defined by paragraphs with the form

tacname:= definition

and may be parametrized.

In this tutorial, we will frequently give proof trees as well as tactics when
derived rules are discussed. Tactics may, however, describe proof procedures
which are too complex (or simply too large) to be presented as trees.

3.1 Primitive Inference Rules

Use of primitive inference rules may be indicated by the keyword rule. In the
account which follows, this will frequently be omitted, for ease of reading. In
stead, we adopt a convention that inference rules are written with an initial cap
italletter, whereas other tactics will be entirely in lower case.

Examples of primitive inference rules already encountered are AssumPred,
And!, and Thinr.

3.2 Sequential Composition

Sequential composition simply entails applying inference rules (or tactics) one
after the other:

simplify-iff ,~IffDef, And!

Corresponding to the proof tree

ff-P=>Q n·Q=>p
f f- P => Q ~ Q => P IffDefAnd!

ff-P¢>Q

11

3.3 Parallel Composition

When a pnxJf tree bifurcates, parallel composition allows the application of dif·
ferent tactics to different portions of the tree. For example, the derived rule of
Cut above may be represented as a tactic

cut·wcp'~ UnpEp; UmpI II skip)

After application of impE, the right·hand branch is left alone (skip is a tactic
which leaves its goal unchanged), and the left-hand branch has imp! applied to
it.

flPf-Q . I
ff-P""Q ""p ff-P. E

rl-Q lmp

l\ote that this parallel combinator is merely a binary operator; in the event
of multiply branching trees, the tactic structure reflects the structure of the tree.
For e}(ample, the roles and tactics already given can be used to simplify a con
jurKtion in the antecedent:

and-nght:= cut·tac(P):

(AndEr(Q): AssumPred

II
"hil/2; cu'-tac(Q); (AndEI(P); AssumPred Il/shift2; thinr1))

rlPtQ;- R
thillrl

Ishift2rt;~;~;:~Q :5::;'~ ~~~::;~~::
('ul_IUC(QjrlJ'lI Q r P II Q AssumPreJ rWIJ'IIQf-R '.....".2rw 1\ Q r p AndEr(Q) rtpI\Qtp:-R	 ~"J'

clll.r",(P)

rtpl\Q~ R

However, good style will frequently mean that tactics are not presented in
such a tree-structured way. Many inferences return a pair of goals, one of which
is a minor condition which is easily dh.patched, the other which represents, in
some sense, the ongoing 'real' proof.

For example, in the above proof, after P has been provided by the cut, it
might be seen as desirable to discharge the goal P 1\ Q I- P, before proceeding
with the rest of the pnxJf. Hence, an aJternative, more linear structure for the
tactic is as follows: 4

and-right:= cut-tac(P);

(AndEr(Q); AssumPred II skip);

Ishift2; cut-wc(Q);

(AndEI(P); AssumPred II slcip);

Ishift2; thinrl

In this way, many tree-like proofs can be reduced to an e5SentiaJly linear
{onn (similar to equational.reasoning)-see eqtac in Section 6,3, below.

~The equtvalenceof these two definitlons can be proved using t:hi' tactic. mlculus of Martin et al.
(1996).

12

3.4 Combining sequential and parallel

Occasionally it is useful to apply the smne tactic to etlch brandt of a bifurcating
proof tree. A decorated fann of sequential oomposition ';' is used to accomplish
this. For example, following simplify·iJf, above, each branch can be further sim
plified using imp!.

simplify-ifh := IffDef; Andl ; imp!

Corresponding to the proof tree

rjPf-Q. nQ" P .
r~p:::}Q Imp! rl-Q=>p Imp!

r i-P=>QI\Q=>P Andl
n- P '" Q IffDef

3.5 Alternation

The tactics we have seen so far arc entirely deterministic; each one performs
exactly one task. In order to write more general proof procedures. additional
control Slruc:l:ure.s are needed.

The lactic combinator JI' oornbines tactics in alternation, so that the second
one is attempted only if the first fails to apply. For example the following taLtiC
applies any introduction rule which will succeed:

pmp-left ,= AndII Odr IOrR I impI

so it is capable of both the following inferences:

r ~P I' C Q rIP C Q prop-leftreP AQ prop-left rl-p:::}Q

Altemation is intended to be interpreted in an angelically nondeterministic
manner." That is, the choice of which rule to apply is not merely govemed by
which is presently the most useful, but which will be useful later in the proof
(this will, in general, be acromplished via backtracking). Hence, when prop-left,
above, is presented with a disjunction, it may chooS£' to eliminate the left or the
rightdis;unct-the choice of which will depend on whim disjunct is needed for
the remainder of the proof. This behaviour is characterised by the following
tactic equivalen<.'e:

(t l I t2); ts = it ; ts I t~; is

Such backtracking will sometimes be undesirable (for reasons of effidency,
or for guaranteeing tennination of recursive tactics) so an operator 'Ctlt'
written '!', and not to be confused with the logical rut rule-is provided. Bdck
tracking is restricted to the scope of the cut. 6

v In (DmTast to, say, the ELSE taetic..al of Edinburgh LeE

"Hence, for non-'ba(".lctrac.king II and 12, ~(tl , '1) behaves like LCF's tl:C:.i..S?:t~.

13

3.6 Pattern Matching

When parametrised tactics are used, it is frequently useful to have some of the
parameters extracted from the current goal-this both saves typing and adds
to the generality of the tactic. For example, the tactics for and-right above must
know the values of P and Q found in the goal to which they are applied, so that
they can be rut in at appropriate points. The tacticaln is used to accomplish this.
The tactic ?re, p • G ~ t(e, p) matches the terms e and p against the current goal,
acrording to the pattemgiven by G, and then behaves like tactic t, parametrised
bye and p. Thus, and-right can be made fully general by writing

am1.t := nT, p,q, r _ (rtp 1\ q I- r) -;

cut-roc{p);

(AndE,(q): AssumP"d II skip):

lshift2; cut-tac(q);

(AndE/(p): AssumP"d II skip):

Ishift2; !hinrl

3.7 Common Derived Tacticals

l1sing the tacticals above, some mmmon patterns of tactic application can be
defined as derived tactica!s.

try I applies t if possible, but succeeds whether t applies or not.

tn;t:~ '(t Iskip)

exhaust t applies t as many times as is possible.

exhaust I :=--= t ; exhaust t Iskip

rxlwusts generalizes exhaust, by applying it to all of the resulting goals after
t is applied.

exhaustst:= t ~exhaustst I skip

4 A Tactic for Proving Tautologies

Bycombining the proof roles given so far and the tactica1s described above, we
can give a tactic which simplifies tenns of the propositional calculus---and dis
durges goals which are tautologies.

Application of the propositional rules will be governed by a tactic props.
This is composed using a number of tactics of the fonn t-* and *-t. The fonner
simplify terms in the consequent; the latter, those in (at the right-hand end of)
theantecedent. The code for and-t has already been given; the others are similar.

An exception is the tactic t-Qr, which, rather than applying the Orl roles, im
plements a more obviously constructive role:

14

fj~Q>-P

rl-pvQ t-or

It is also lUlciear what rules to use Eor not-t and imp-t; we dlc:x>se the foUow
iog:

rf-pvQ r>-Rvp fjQ>-R.
rj~pf-Q not-, rjP ~ Q >- R 'mp-t

There is a danger that not·f and l-or will create cycles, if applied indiscrim
inately. Therefore, props arranges that rwf-t will be applied only if all of the [-.
have failed (so Q is 'atomic-its outermost connective is not one of the five
propositional connectives), and after application of tlOt-t: f-<Jr, one of the h
sua:eeds---thereby ensuring that P is not atomic.

props :-= !(t4Md' t-not J I-{)r I t-iff I i-imp ,I f·true

I(not-' ; t-Qr; (I-not It-imp i I-iff I t-and I t-or).1

land-' Ior·t I ;mp-t I iff-I lfal,,-t)

By applying this tactk exhaustively, we ensure that the consequent must be
atomic, and the right-most anteL'edent must be atomic, or the negation of an
atomkproposition. In this way, an almostnorma(form is achieved. If it denotes
a tautology, this must be detennined by application of the assumption rules.

The tactic assum-tac is defined in Section 8.1. Amongst other things, it at
tempts to apply the rule AssumPred; iter4ssum-tac thins the goal repeatedly, ap
plying assum-tac after each thinning.

iter-assum-tac:= !(assum~ta(I (thinr-tacl; iter-assum-tac)j

In order to be ready for iter4ssum-tac. the goal in normal form must be mas
saged, to remove any possible negations: all negated terms in the antecedent
must be brought into the consequent (using 110t-f]' and the resulting disjunc
tions simplified by use of Orfl and Orlr-using the angelic nondeterminism of
alternation so that whichever disjunct is retained is the one which will match a,

term in the antecedent, via the assumption rules.

hyper-not := !(tryhypfTShijt; not-f)

clever-assum := ex1wusthyper-not;;

erhausl(OrT/ I OrTr);

(t-true I jter~sum-tQc)

{typer-not uses a tactic hypfTShijt which brings the leftmost-possible an
tecedent to the right of the antecedent list. Informally, this can be defined as
follows; a more general version could be defined by pattern-matching.

hgpersh;ft,~ (/shift12 Ilshiftlll/sh;ftlO I

Ishift9 I tsJnjt8 I Ishift7 I/shift6 I

tshiftS I/shift4 I ~hift31/shift2)

IS

Over-all, then, the strategy of the tactic will be fust to try and simplify the
ansequent and the right-most tenn of the antecedent, removing as many as
possible of the resuJting goals via the a$UIIlption roles. If there are any re
maining goals, we will attempt to re-order the antecedent, and begin to simplify
again. Re-orderingof the antecedentis conditional on the tenn thus selected not
being atomic--that is, the shift is made only if it can be followed. by a successful
application of props.

m:u,.,,,~ !(hypa>hift; prop»; prop-tIu:

prop-lac:= !(! e:chaustsprops;

!(tryc1ever-6ssum);

tryrecuP'5e)

Usingprop-wc, then, tautologies can be proved automatically.

For example, the commutativity of A:

P f- P =um-lac ~ <l5.<um-'~

I'tQ f- Qsum-Iac PfQ r" P thinr QfP >- P ilSSum lac Qj.P f- Q thinr
~ and_I ~ and-I ~ and-t ~ and-I

PI\Qf-QI\P Andl Ql\l' PI\Q Andl

f-P/\Q~Q/\P Impi I_QI\P~PI\Q lnrpI

f-P/\Q~Q/\PI\Q/\P~P/\Q AJri1J
f-PI\Q~QI\P IffDcf

The commutativity of V is significantly different; it illustrates the use of
hyper·not.

Q f- Q lW"lUII--lac P _ Psllm_1<IC

Qf-PvQ orn pf-QVP o,n
~ <lS5lU11.,,,,, ~ h~-nOI ~ lW"lIm-,,,,, ~ h~-nol

err-I or-I
~QfPVQ""P ~PtQVPrQ

P V Qf~ Q 1- P ITrJiIl.S1UJt Q V Pf~ P f- Q rtYgflShiJI

PVQ>-QVP I~~ QvPr-PvQ t..qr
f-PVQ~QVP /-Imp f-I\QVPf-PVQ I-U"I'fp

f-PvQ~QvP , Andl

f-PVQ~QVPI\QVPf-PvQ fJJDcf

Of course, some further work is needed here. prop-t4c is dearly not optimal,
and we should prove that it terminates (easy, with the right bound function)
and that it solves all tautologies (harder). To see that it is not optimal, consider
the proof of I-- P V P:

P L P <lS5lUII-1ac
~p~h~_no,

~PI- _ P I_""t

.... ~PvP l..qr

~ - P I- P ""1-1
>- Pv_P I-<Jr

Choice of the dual version of l-<Jr would have rendered the initial goal immedi
ately irreducible--and QS5um·lac would apply.

16

,
 5

u

8

u

~ 'C

t"] i:'
~

L
..

~
~ 1

'0 '" li
~

Q
.

J! ,r ~
~ ~ • ~ ., §
~ ~-~

~ " 0"

.

o

~
:1:",

Part II

Expressions, and the Toolkit

Having used the propositional calculus as a vehicle for iIlustrdting the style of
proof used and the design of tactics, we are now in a position to consider exten
sions to the language that wiU provide the opportunity to do useful proofs.

One of the most important activities in proof is that of substitution. So given
a theory about names and equality we can see how substitution works not only
for predicates but also for declarations. ntis will allow schemas and other def
initions to be expanded safely.

With the rules for generic definitions and expression constnJ.cts available to
us we can prove properties about such objects as the empty set and the domain
operator. The techniques used here illustrate how gmeral properties Ol the ob
jects defined in the toolkit can be proved using tactics. These tactics can then be
re-applied whenever it is necessary toappea1 to such properties in other proofs.

Contents

5 Paragraphs	 21

5.1 Names and Scope	 21

5.2 Paragraph Rules .	 22

5.3 New Structural Rules	 23

• Substitution and Equality 23

6.1 Lei'bniz . 24

6.2 Leibniz for Paragraphs 25

6.3 Equational Reasoning. 25

7 Quantification	 2'
7.1 Renaming	 27

7.2 Tactics for Quantifiers.	 28

8	 Derived StnJctural Rules 28

81 Generaliz.ed Assumption 28

8' par-pred-I . 29

83 IIp--dcr,s.!11-tac 29

84 Apply-inwards 3()

• Expressions 31

9.1 Expressions in tht"' Consequent . 31

n Eqm~ssions in the Antecedent 32

9.3 Larger dt"'rivl.'d Expression Rules. 32

Y.4 Using The Toolkit 33

10 Generics	 37

10.1 Properties o(the Empty Set. '"

19

5 Paragraphs

The propositional calcu1uson its own isa barren language. In order to beable to
use it to ~n about reaJ specifications, it is necessary to introduce expressions
into the language. The given set declaration and the other means of definition
provide a way of introducing new names. The membership and equality rela
tions provide a way of writing propositions [rem expressions constructed frool
these new names.

5.1 Names and Scope

We use scope rules to define which names may be referred to at which point.
The region ofan expression (or even a specification) within which a variable can
be referred to is called its scope. Z operates a system of nested scopes (Sennett
1987).

Each paragraph may use names defined in previous paragraphs and names
introduced may be used in later paragraphs.When a variable is declared its
scope extends to the end of the constnJct within which it was declared, e:l(:ept
for any other sUb-S<..'Opes within which the.same name is re-declared.

We define the scope rules by giving a definition of the names introduced by
paragraph5 (alphabet) and the names used in them [free variables). The inter
action between these two definitions defines the scope of variables.

Free Variables We define two different fr~ variable functions: one for pred
icates, the other for expressions:7

¢ : E::rpr -+ P Name
'Ii : Pred -+ PNQm~

The definition of these functions is given in the appendix.

Alphabet The alphabet fun<.tion gives the set of names introduced by a para
graph, or sequence of paragraphs:

(} : Spec -~ P Name

The aJphabets of the other simple paragraphs are the sets of names declared.
The definition of this function for all paragraphs is given in the appendix,

Scope Term The scope introduction tenn x- U5ed in the rules below isnot part
of Z proper. It is used to denote the introduction of a new variable:r and noth
ing more. It is a useful device for allowing paragraphs to be manipulated by

'TWhen the frre variables of schemas are cal(ll\ated,e will neoo to be able to distinguish the two
uses. We shall also calculate the free variables of paragrapm in tile same way. interpreting &en <tS

expressions or predicates, ~ appropriate.

21

splitting them into ones whim have no free variables and those that have no
alphabet. The scope paragraph x· has an alphabet conlaining just x:

ax" = {x} .

Such a scoping paragraph has no free variables;

¢x· = "

Thevalues of the set of free variables for other paragraphs are therefore derived
from the free variables for their characteristic predicate.

5.2 Paragraph Rules

Given Sets A given set is a basic set from which others are constructed in a
specification. The details of its membership are not given. l! A given set intro
duction provides scoping infonnation only:

z" r P GiuenProp
[,I rP

Definitions The definition x := e introduces the new name x 'Whose value is
equal to the expression e. By using the notation x" to indicate the introduction
ofl:he scope of the variable x we can explain the two declarations in tenns of an
introduction of scope and a constraining predicate:

'1,,1-' = e r P r r wl(,,=e) DefP'op
rl-" erP

The second sequent that must be satisfied r r wf(x := e) is a condition that
the name x is not used as a free variable in the expression e. In the event of such
a condition not being satisfied, a judidous renaming will be needed to provide
a meaning.

Declarations The declaration x : S introduces a new name z w-hose value is
cootained in the set s. The rule for declaration follows the same structure as
that for definition:

rl-"I-' E 5 r P r r wl(, 'e) DecProp
rl-' " r P

Well-fonnedness Conditions Any narne introduced which is already part of
a specification is given a potentially new value. The side conditions on the dec
laration and definition rules given above guarantee that the neW" names intro
duced are not also free variables of the expressions used to define their values.
The scoping rules make it impossible to have rules that use both the old and new

8Noll priuri assumptkms are made about any intemal structure which it might have. 1hese set.'i
canbeempty, finileorinfinite. Any further assumptions mustbemadeexplidt in the5pedfication..

22

6

values of the variable in the same scope. This is a very conunon condition, 50 a
special symbol wi n will ~ used to state that the paragraph II is well fonned;
its free variables are disjoint from its alphabet:

wfll ¢} ;I(II) n aiII) ~ "

5.3 New Structural Rules

Thinning The three types of declaration paragraph can be removed from the
right only when the variable they declare is not a free variable of the predica~e

under consideration. The Thirlr rule given for predicates is expanded to cater
for the other fonns of paragraph as follows:

[f--P rf--o:IlnlJP=0 "
1JftIl I- P 111lr

Swapping Two paragraphs can be swapped when there is no interaction t:e
tween the names declared and their (ree variables. So the shift rule likewise is
generalised as follows:

[L tn l tf:.> I- P fIl-aIl] n4J[2 - 0 [II- f'tr2 n.pn 1 ~ 0 oITI n{}r'.l - 0 Shift
flt~tnl~p .

Rule Reversing The annotatioh t t indic.ates that the rule can be applied in
both directions--------that is, the rule

n-;p it
f'l- ~

denotes both of the following inference ntIes

n- 't and f' f- ~
r'l-<I> [1-1}

Substitution and Equality

Predicates An predicate to ~ evaluated under a substitution is often con
structed during a proof. It usually has a temporary existence and is rarely used
in spedfications. However, rather than just give substitutioh rules that GU1 be
used to eliminate aU occurrences of such a tenn, we shall give it a full meaIling
like all other tenns.

rt:c:=.el-P
n-(x"eW it

Expressions The notation for expression substitution is different to that for
predicate substitution 50 as to prevent any parsing ambiguities when sdlemas
are used as expressions and as predicates. The use of this notation can ~ seen
in the Leibniz role for paragraphs.

23

6.1 Leibniz

Leibniz' nJ.Ie states that an expression e may be substituted in a predicate P for
another expression 14, providing that e and II are equal:

Leibniz'Rule Leibniz' nJ.Ie can be derived from the properties of equality and
substitution:

rf--(x:=V~8P rl-e::v
Leibniz

n-(%>eI0P

Derivation of Rule We am derive this rule as follows:

rl-~X:=U)GP

ftx*tx=ul-P
rte=u rtx·tx=ete=ul-P

rtx"'tx-el-P
rtx:-el-P

n- (ro-e}8P

Alternate Versions In practice, a more sophisticate version of the rule is used.
We nonnaJly find that we want to substitute one expression for another that is
equal to it. In order to do this we need to construct an imaginary substitution
instance and apply the rule of leibniz. For example if the predicate P could be
rewritten as (x:=e) I:)P' then we could apply the rule of leibniz to the following
sequent:

rte=ul-P

to give us the following:

r f- (ro=u 18P'

and applying the substitution we have the following derived rule:

no
rte=ul-P lei/miz

where for some predicate R and variable x:

P == (x:=e)8R

o = (Xo=uI8R

1his derived rule am be seen in practiL'e in the proof of the property of
AddBirlhday given earlier:

... r- dom(bi~ U \l"gmf?dlilf'l)} - blow" U {nill'lVn
In1oI1i;,

~nhd"Y' _ bil7/ld4yu {(Il_?,datf?l) I- dombinhd"",,' _ t"""",..J {n"-?}

24

6.2 Leibniz for Paragraphs

We can substitute equals for equals within paragraphs in the anteO':dent, fol·
lowing the rule of Leibniz. This again is a derived role:

rt{%:"'tJ~0nr-p rl-e=v
TI{ z,_" 0 II e P P·lLib

A useful version of this role for expanding schema definitions can be de
rived using DejProp:

rep
5 ,~ rts eP %.s<h.kib·l

In the introduction, we postulated a thoerem about AddBirthdJJy:

AddBirthday I- known' = knawt'l U {nDme?}

We can expand the definition of AddBirthdayby applying a tactic constructed
from S-F..xp followed by thinl (to remove the definition once applied) as follo\\'s:

amrth~, _"1' ,N: rWlt?:D I "' f-.\:' =ku (_?)
CAcdd&=_=c,-,-_""",,::::c...=,.,~c,=.==-,c?c,e,",=","',?C'"D"c-.-.7""",-;;,~;CrlC",7'!1C:::cC,:;, "_-,c"={-.=-,CC'n Hdl-lrilH

6.3 Equational Reasoning

In order to prove the property of AddBrithday, Spivey uses an equational rea
soning style. He transfonns the left hand side of an equality into the right by
substituting expressions for other equal expressions. The proof is presented us
ing infonnal justifications about theseequalities. Here we shall follow the equa
tional style, but also provide a framework in which the justifications can be dis·
charged.

To ~t up the equational proof in our sequent style we arrange that edch
step involves the cut of a lemma (generally some equality), and uses leibniz to
rewrite the current goal according to the equation that has been introduced.

tl rl-w=r t2 rl-A-D
r I- u urI- A C cut-tac; leibniz

r I- A _ B cut-tac; leibniz

The general tactic In this way, many tree-like proofs can be reduced to anes~

sentially linear fonn. Each equational reasoning step is accomplished by a tactic
eqtac, which cuts in the predicate p, proves it using the supplied tactic t, and uses
it to rewrite the goal.

eqtac tp := cut-tacp; (I Illeibniz)

To make presentation of such trees easier we move the justification into the
proviso. to produce a more vertical fannat:

2S

rf-A-D
rl-A Cw=x
rI-A_Bu=tI

The over-all AddBirthdlly proof can be set up equationally, following the
structure of Spivey's proof. The lemmas will be discussed below.

spivey-5 :=eqtilc(lemmJll)

(knoum' =dombirthdily');

eqliJl:(I=2)

(birthdily' =birthdily u {(name', dille'!)});

eq"'e(l=3)
(dom(birlhdJly u {(nome? ,date?)}) =

(dombirthdily) u (dom{(name',dilte')})):
eqtac(1emma4)

(dom{(name?,date?)} = {name?});
eqtac(lemma5)

(dombirthday = known);

Refl

lhis tactic can generate the following tree

R<fl
ABf-I;U{n1}=lcu{n?

domb=k
All f-l; U {II?} domb U {II?).

dom{n? H II?} = (II?)
AlII-turn"} dombUdom{II?Hd?}

domb U {II? II?} = damb U dorn{n? ,--> II?}
All I- J:;.) {II?} domb U {II? II?}

b' = bU{,.? HiI'>}
ABl-ku(Il?}_domb'

k' = dom'"
AJ:ll- kU 1I1 '!}=t'

7 Quantification

There are four quantifier roles presented in figure 3. The first n..tle, which gives
an introduction and elimination procedure for universal quantification, is suf
ficient to define the other three (assuming the de Morgan correspondence be
tween universal and existential quantification).

Free Variables Quantified predicates introduce a new scope. In the universal
quantification \/x : s • P, the scope for the variable x is the predicate P, so if
x is a free variable of the predicate P, it is captured. The free variables of the
quantification are calculated as follows:

-liVx".P = ¢s u (-liP I {xl)

The free variables of the other quantifiers are calculated in the same way, and
the definitions of them are given in the appendix.

26

rtx:sl-P t~ r ... 3Z:5.P rt .. :&tp"Q &isrs[Czll<1>Q)
~,"" __ ~n reQ

r~",.. :s.P r,.tES r,.(z:=tIP rl--rEs

rl-lx: t~P AUc rI-3;r:s.P Eristsr

Figure 3: The Quantifier Rules

Substitution The result of applying a substitution to a quantified predicate
depends on whether the substitution can be perfonned without capture, and
whether the variable being replaced is bound by the quantifier.

The only occurrences of the variable r that may be substituted are the free
cxrurrences. So if a component of the substitution is bound by the quantifier,
then only the free variables of that component in the declarations will change.

iy:=vHVy:s-P) == VY;1y:=vklS.P

(.,=v f(Vy ".P) ;=	 Vy: I x,=v)8S' (x,=v IP
wherey rt ¢ v.

7.1 Renaming

In the textual evaluation of the substitution (r:",e Wthe free variables of estand
in danger of being bound in P. So the substitution rules have a side condition
to prevent variable capture. \'Vhen a dash OCCUJ'S, renaming can take place to
avoid unwanted variable capture.

In the predicate "Ix : 5 • P the variable x is said to be bound. This name is
not significant and can be systematically replaced in the predicate without any
change in meaning. It acts as a place holder. Syntactic renaming is safe only
when it does not capture any new free variables.

/-"Iy:s.{r;=y~P

f-V"s'(y:=riP H

/-Vy:s-(r:=yW
y:stx,=yf-P

r:sty:",xf-P

r"f-(y=riP
/-"Ir:s_(y:=x)P

So for y rt ~p we have

"Ix: 5 _ P == "Iy : s. ~ x:", y W

Similar rules apply for set comprehension and existential quantification.

27

7.2 Tactics for Quantifiers

When a universal quantifier is enroWltered in the antecedent, can be removed
by supplying a binding which is suitable to spedalize it for the task at hand.

aU-tb;= 1rS,p,q. "IS. P f- q-+

cut-lac(b E 5); (,kip 11"Jlljt2;

cut-tac(b 0p); (AILES; ileT-QSsum-Ulc II skip))

bESt1iS.Pf-'ltS.p <lSSllI'I'I-llIC bESt1iS.pl-bES ;1,.._"",-1«

bESt1iS.pf-b0p AUE eESt'ts.p~;;:'pf-q
'>'S.p'rbfS bESt1iS.pl-q alt·l""
-~'----'-'-'---------;:vosc.Cp:-;-cc,,---------'-''-'-'-'-'-'-''-'--'-cui_I'"

For symmetry, '-Gil is defined (as AllI). Likewise, we define existS-I, which
simply converts the quantified predicate into a schema paragraph and predi
cate:

exists-!:= 11" S,p,q. 3S. P J- q-t

ExistsESp; (assum-tac II skip)

=0----:--=-;;-- assum-tflc
3S_pI-3S.p s+pJ-q.

3S pJ-q EXlstsEe

A tactic t-exists can be defined (using ExistsI) in a way analogous to all-I
i.e. it takes as a parameter a binding which is to be used to provide a witness
for the existential quantification. Frequently, however (especially when the rule
of set rornprehension is used---see below), the 'one-point' rule is useful in this
situation:

t-onept:=1fS,e,x _I- 3S _e =x-+

Existsl(x ,~e l; (subS/-lac; &fIII'kip)

--Refl
I- e = e subst-lac I '5

I- {x: e ~ 0 (e - x) I- X:= e 1 E Exists!
I- 35. e x

8 Derived Structural Rules

8.1 Generalized Assumption

The new sorts of paragraphs introduced in Section 5 give rise to some additional
assumption nLIes. By the use of the sroping tenn, these can be derived rules, but
they are presented as primitive in the appendix.

2B

x :_ e I- x _ e AssumDejin(wf(x := e))

. __ Assuml),d(wf(x, 5)) S I- S Sd1emaAss(wf(S))

(In the last ruJe, the schema is playing the role of a predicate in the conse
quent, and a declaration in the antecedent. Schemas will be di.'iCUSSed more
fully in Sections 11-13). These assumption rules are collected together into the
tactic assum-tac

assum·tac := AssumPred IAssumDefin IAssumded ISdumaAss

We have already seen the definition of jter-45sum~tac, which thins the goal
repeatedly, applying assum-laC after each thinning (see Section 4).

8.2 par-pred-t

It is sometimes desirable to e)j:ract the predicate component of a paragraph
without splitting it into a scoping tenn/predicate pair.9 The tactic par~preti-t

uses the assumption rules to copy the paragraph as a predicate.

par-pred-t := (71" X ,e, Q • x := e I- Q -+ cut-Iac{x = e) I
1rx,e,Q. x: e I- Q-+ cut-tac(x E e) I
1T S. S f- Q -+ cut-tac(S));

(assum-tac II skip)

An example of the application of par-praM:

rtx:etrEel-P
rtx :e I- P par-pred-t

8.3 up-down-tac

Many of the rules for expressions carry the t~ annotation. Whilst the down
wards instance of the rule is not ge.nerally useful in its own right (as it creates
complex terms from simpler ones), it can be used to apply a similar inferenrein
the antecedent. As this will be a common pattern of TEasoning, we have a ta.1ic
up-down·ttU, which ao:omplishes this.

For example, for the inference rule

rf-p
noW

9OneexampJe. is when the paragraph dedares a schema. By splitting it up, we loose the ability
10 a1culale the srnema's alphabet.

29

may be applied on the left as follows:

- - QS,um-ttzc rIP f- R drop-,nil rj~Q~jR=f-"'R assun1-tacrtQf-Q, rtQIPf-R OJ'I'

rjQf-p rjQf-PVR OrEPR

rjQ f- R

The tactic up-down-blc detennines the parameters for OrE by pattem-matdUng.
so that we have:

rtQf-Rr I- P tl.r ftpl- R up-down-tJu::rrf-Q'

1his means can be used to define some tactics which operate on tenns in the
antecedent Again, their application will frequently be combined with simple
proposition/predicate calculus rules. Moreover, it is often valuable to be able
to apply the antecedent tactics in a single step to declarations and definitions.
as well as membership and equality predicates. Therefore many tactics are pre
ceded by an optionalpar-pred-I, which oonverts paragraphs to predicates where
necessary.

8.4 Apply-inwards

We have given various rules which act on the antecedent, but in general they
work only on the leftmost paragraph of the antecedent. The rule of shift can be
use to reorder the tenns in the antecedent, butoften it is useful to leave the order
lUlchanged, applying a rule or lactic to one of the intemal paragraphs.

One way to acoomplish this is to make use of a number of reversible rules
which take ante<..-edent paragraphs, and make them into part of the oonsequent.
We have already enoolmtered these rules:

rtSf-P rjb f- P rIP f- Q t'.IffJ
r f- VS. P [jAIIl f I- b 8 P i l.UseBind

rf-p~ Q

Tactics can be used to apply whichever of these rules is applicable, to move
terms from left to right, or right to left.

left-right ,= AIIl i IUse8jnd i ~ffJ i

right-left ,= AIIl ~ jUse8jnil ~ jlffJ ~

By repeatedly applying these rules, we may apply a chosen tactic arbitrarily
far inside an antecedent.

apply-inwards n t := repent-lac n left-nght ; t ; repenl-blc n right-left

We will generally denote apply-inwards n I by.r,;'l I, omitting the n when just
one inwards movement is needed. For example,

30

rt"x: t.x E stTtUI- P
rtt E P slTlu f- P '2'(up-4oum-/Qc Po""""".)

9 Expressions

In Z, we are able to discuss a varietyof expressions-sets, cartesian products, la
belled products (schema bindings), and functions. Inferenreroles are provided
to pennit these expressions to be simplified, and expressed in tenns of one an
other. The basic roles are given in the appendix.

In general, however, those basic roles make steps whidl are unnecessarily
small, so here we discuss some tactics offering derived rules which are mere
generallv useful.

9.1 Expressions in the Consequent

Set Comprehension The rule for set comprehension l.'Cnverts a comprehen
sion into an existential quantification. In the event that the comprehension de
claresexactly one variable, theone-point rule can be used to simplify the result
ing predicate.

t-setcomp:= Setcomp; t-one-pt

I- x ES I-- {y:",x I (~p t-setcomp
f-.E{yosIP'y)

Powerset lhc powerset rule will always be followed immediately by All!.

t-powersel :== Powerset xi AIlI

x:el--xEu
I- e E lP' u l-pQU.lt?TSet

Prodmem

t-pmdmem:= Prodmem; exhaustsAndl

l-u.1Es] t-u.nEsrr I-prodmem
l-uESt X ··· xs"

We will use a large number of such derived rules, without giving aU thedef
initions.

31

9.2 Expressions in the Antecedent

Whilst the roles for expressions are all expressed using tenns in the consequent,
the tactic l.lp-down-lJu. previously presented can be used to apply then equally
well in the antecedent.

Set Comprehension Set comprehension in the antecedent GUt be followed by
erists-t, to remove the existential quantifier.

"'comp-' ,= !(skip I1""-1"<'1-');

up-down-tac Setcomp; exists-t

qSle~uf-P q,,{S.ullSle=uI-P
- sercomp-t setcomp-l

neE{S.ulf-P and also rte,{s.u}f-P

9.3 Larger derived Expression Rules

Singleton in powerset

sing-power ;== t-powerset; extmem-t; l-Ieibniz; thinr-tiU2

l-aEA

Xl: {a}txl =41 1-0 EA

Xl: {a}t:el := a I- Xl E A

xl:{a}l-xlEA

f-{a)EPA

Tuple in Product

ol1esel:= 1TQ,b,A.1- (a,b).] E A

cut-taclla,b).1 =a); (t-tuplee<ju, Refl

Ilx~gen-t-leibniz: thinr-tac 1)

- thinr
-- Refl I- a E A I-leibniz
1-0 =Q t-tupleequ (a b).I-a I- (a,b).l EA cut-tac

I- (a,b).] a b) 1 'E A

I- (a, .•

tuple-in-prod := t-prodmem; (onesel Illwosel)

I- b E B twosel
l- a E A anesel I- (a,b).2 E B t-prodmem f- la,b).1 E A B

I-- (a,b) E A x

32

Singleton in Power Product

pair-pow-prod-mem ;::::- sing-power; tuple~in-prod

f-aEA I-bEB
I- (a,b) E A x B tuplf-in_prod

f- ((a,b)) E II'(A x H) ,ing-p""""

9.4 Using 'The Toolkit

9.4.1 Related Definitions

\Vhenever a predicate appears in the consequent requiring the proof that a ~r
tain term belongs to a partial function space, we will generally need to invoke
the definition of partial functions.

p/Ul1-is-ref-flnd-jun;-= t-leibniz;; J-Selcomp; SchemaM&n; 5ubst-tac; t-and;

(BindProd; subst·tac; thinr-tacl II thinr.ta(2)

t- X Elf: '(.... ~'I""~' '.'(: Yl_!l~ ,Y.

~r <; X ~ Y {XI,.I;!l Ef 1\ (x1,.1;2) EfO=>Yl =Y~} .
pfun·'l- rrl-~nd'fun

X y= If:X'''')'1 ""Xl :X; .1;1,.112')'.

(Xl_.\I,) Ef 1\ (xl._~') Ef 0=> 1;, = 1121

OlE }'

Likewise, membership of a r'i'lation spac.'e can be reduced to membership of
the powerset of a cartesian product.

rel.is-pcrwer;= t-leibniz; thinr-tilcl

f- r E II'(X x Y) .
--;:::-;;-7;:--;---'-=--;;--:0 rE.'1-IS-power

X ~ ~ Y - l?(X)(Y,i I- :t EX H Y

9.4.2 Harwood's Theorem

In order to illustrate the use of some of these rules aooutexpressions, we present
a proof of a simple property derived from the toolkit definitions. It has been
called 'HarwcOO's Theorem'.

dom{(a,b)) = {a}

To make this amenable to proof, we state it, suitably quantified, together
wiU, the relevant definitions, in a sequent:

33

NAME ... DATE =Il'(NAME x DATEJI
VR: NAME +-+ DATE. domR =

{x, ,NAME; y ,DATE I (x"y) E R. x,)

"
 Vg, NAME; b, DATE. dom((a,b)} = {g}

The first step in the proof is to strip off the quantifier, and since this produces
a declaration in the antecedent, the next stage is to extract the predicate content
of that declaration.

unqWJTJtify:= t-Q1/: sand-t; biTldprodp; apply-inwrmis(l)bindprodp

Giving

NAME +-+ DATE = P NAME x DATEt

'r/R: NAME +-+ DATE. domR =

{x, ,NAME; y ,DATE I ('J,y) E R. x, II

g ,NAMEAb ,DATEI

a ENAMEl

b EDATE

"dom {(a,b)) ~ {g}

Next, the definition of dam must be specialized for this particular instance
it is brought to the right-hand end of the antecedent, and then all-t is applied.

instDntWle-<lejini'wn ,~/shift4; gll-'(R ,= {(a,b)) f

This gives two subgoals: one to prove that the supplied singleton is indeed
a relation; the other to use the property of the definition to prove the main goal.

NAME ... DATE ~ Il'NAME x DATEI

a ,NAMEAb,DATEI

a ENAMEl

b EDATE!

VR : NAME HDATE. domR =

{X3 : NAME; !J : DATE I (X3,Y) E R. X3}

"{R,~ {(a,b)} f E [R, NAME ... DATE]

34

NAME ... DATE ~ P NAME x DATEj
• ,NAMEAb ,DATEj
• ENAMEj
b EDATEj
i R ,= {(a,b)} I E [R , NAME DATEJj
VR: NAME HDATE. domR ==

(x" NAME, y' DATE I (x"y) E R ox,}!
(R ,= {(a,b)))0 domR =

{XJ : NAME; !J: DATE I (X3,Y) E R .xJ}
f
dom {(a, b)) =(.)

Fi.rst Subgoal The first 5ubgoal is approached by rewriting the ronseqUenI: us
ing the rule schema binding membership, discarding the definition of dem, and
rewriting using the definition of H.

binding-suits-ded:= BindProd; subsf.tac; thinr-tacl;

Ishift4; :.c-gen-t-leibniz; thinr-tacl

a ,NAMEAb,DATEj
a E NAMEt
bE DATE
f
({a,b)} E P(NAME x DATE)

lIDs is finally completed by appealing to the tactic pair-pow-prod.mem de
fined above, followed by iter-assu.m-tQc.

Second Subgoal First, the substitution introd:uced by all-t must be made, and
then the transitivity rule used to rewrite the consequent. The inforrnatioo about
dom can then be thinned.

use·instl:lntiatian ;= subst-tlJc: trans-tac; thinr-tac3

., NAME Ab, DATEj

• ENAMEj

bE DATE

f
(.) = (x, ,NAME, Y ,DATE I (x"y) E «.,b)) • x,)

The resulting goal is an equality. To prove that the two tentlS are equal, we
use the role of extension, modified by a tactic to remove the quantification, giv
ing two subgoals.

35

x;sl-xEt x;tl-xEs t-set.eq
f- s t

a, NAME "b ,DATEj

a E NAMEt

bE DATEj

x , {aJ

f-
XE (x, ,NAME; Y ,DATE I (X"y)E {(a,b)}u,j

Q ; NAME 1\ b : DATEt

Q E NAMEt

bE DATEj

x, {x, ,NAME, Y ,DATE I (x"y) E {(a,b)} • x,j

f-
x E {aJ

Simplification of the first of these subgoals entails rewriting the singleton ex
presison in the antecedent, and using this to simplify the comprehension in the
consequent, before applying the rule of set comprehension. After this, a sim
pIeapplication of the one-point rule does not suffice, since a value must also be
supplied for y. Once again, this gives two goals; one to prove that the supplied
binding belongs to the schema part of the set comprehension, the other to us
ing that binding to simplify the comprehension. These are readily discharged;
one by substitution and reflection; the other by schema membership, schema
conjunction, and extension.

singleton-mem-t;= par-pred-t; extmem-t; x-gen-t-ldbniz;

thinr-Jac2; x-t-setcomp;

(subs/-lac; RefIll skip);

t-schmem; (t-sandl1 ; lter-assum-tac

lit-atmem; Refl)

x-t-setcomp;= Setcomp: t-e:tists(X3 ;= a,y:= b)

The final remaining goal is solved by a broadly symmetric tactic. Exten
sion membership is applied in the mnsequent, and set comprehension in the
antecedent. Rules for tuple selection and equality complete the proof.

t-singleton-mem:= t-atmem; setcomp-t; trons-tac; thinr-toel;

drop-snd; drop-snd; sconstrddo.g-,; extmem-t;

up-doum-wcTupleSel: and-t; thinr-taCl:

t1Tlns-tac; t-tupleequ; Refl

36

Collecting these parts together, then, we have

hJlrwood-tac;= lJnqu4ntift.lj instllnl1Qte-dejinition;

(binding-slJits-4ecl; pair.pow.prod-mem; iter-<lsslJm-1IJc

f1use-mstanl1Qtion; t-sdeq;

(singleton-mem-t II t-singleton-mem))

10 Generics

The uses of toolkit definitions given above have overlooked. the fact that the
usual definitions are stated using generics, not with ready-supplied parameters
suitable to the problem at hand.

In order to specialize a generic abbreviation for a particular instantiation, we
usc the rule GenSpec.

rjx[y) ,-,f- (y ,= u) 0' E v GenSper
rjx[y] ,-, f- xlu] E v

A similar me is provided for generic paragraphs (see the appendix), but its
use entails slightly more work if the paragraph does not uniquely define the
names it introduces.

Using this rule, we can define a tactic which implements a version of the
assumption rules for generic terms.

genspeC..Q55um:= 1l"n,X, t,e,u • "[Xj := t I-- n[t'J = U---j.

clJl~tac(n(e] E {z; l?u \ z = u});

(Gen5pec; l-setcomp: t-schemamem; l-<lmJ

(t-bindprod; t-powerset; assum-tlJc

II,ubs'-fJIC RefI)

setcomp-l; tnlns-tac; thinr-Iacl:

SQmstrDdlJgj symm; assum-Iac)

This tactic gives the following proof tree, provided (X ;=0 e) stand uare
identical.

4S$!Dn-I'"
",,{X:-'IO/'-zEII I_~ R4I
~ I x :_, • G I E PII . f- II _ I x: ,~o I

f- I IZ :-l"l(:_e ~ 0' i E[:e: Pill t-1ll1ld"rud f- i i1:'" IX :_~) 0' ~0{II _1) SliM!
'-/Uld S¥"'": 1IS~1I11l-/""

f-((1:_ll\: eIQ'~E[l::PIIJI\(~' z~0(11 z) tt : Putt = II f- u= Z Se-"lrl)dIIg; S¥"'"
f- (1:_ (X:_ ~ }Ql f E]1' PII III-IJ t_sdI_

l_~" j.z:Plljl II-II Z II"IlrTJ-f<IC; lhi,,~
f-(X: '.0'<:::{I,PIII" II} . tl : PII /1 - ufll !,] : '- "[~J u ~Uff'llp-Iems/,«: Jubs,
,,:Xj:_ I f- ,*; E {I: PII! 1 _II} ·tll[..J€'{I:Plllz u}f-"[rj \I CII'-'<IC

,,[X] :=I'-II:~! =11

37

10.1 Properties of the Empty Set

In Powerset The empty set belongs to the powerset of its generic parameter:
0[S] E IF S. To prove this, first we specialize the instance of the empty set in the
coosequent, then apply the powerset ru.le. This gives us Y E {x : S I false) as
an antecedent; by set comprehension and schema construction this simplifies
to (inter alia) false as an antecedent. Thus the goal is proved.

empty-in-power:= GenSpec; subst-ttu: ; t~powen:;et;

setcomp-t; thinr-tUJ::l; SConstrDdag ;Jalse~t

ty: {x; s Ifalse-x)t3x: s I false .Y =xtx" :stjulse f--- yES

.. . !y, {X" Ifalse ox}tox' 5 ljillse 0 Y -xjx 5 Ifalse f- yES
... ty: {x: s Ifalse .x}t3x: s lIaise. y::::: x:j:x. s Ita/set!!::::: x I- yES

... !y, {x ,5 ljillseox} f-yE 5

.. ,I- Vy: {x' s Ifalse • xl. yES

... r{x:slfalse-x}ELt"S
"'[X] ,~ {x ,X Ifalse 0 x} f- {X ,~s I" {x ,x Ifalse 0 xl E P 5

0[XI ,- {x, X Ifalse ox) f- 0[5] E Il'S

Empty set has no members: y E 0 I- false. To prove this, we expand the defi
nition of 0 using a cut, usinggenspoc-assum to discharge the resulting goal.

in-empty-t := cut-tac(y E {x : 5 IJalse});

(rut-tac(0[S] ~ {x 5 ifalse));

(tltinr-tacl ;genspec-assum

IIsymm-t; t-/dbniz; thinr-1QCl; assum-Iac)

IISl.'tcomp-l; thinT-tacI; SConstrDdag ;false-t)

iler_,um-tiJC
+y E 0[5]1

{.r:s IJrilit} =0IS',

Y E fl'[SI 1-1,;1",;:

-::-::--:_--:--:--: gmf",c~<um ~!i E 0[Sll.

"'[X; :_{.r. X ,f<Jls~} {.r: S If~lst} = 0'[5:

r

"[5] ={r: 5 If..lse} !I E {.r: 5 Iflllst)
I/Unr S!P'lnl-1

2;1(~ :={r: X /"lsd: . til E 0[S::

!I E "'t51 0[51 = {.r: 5 ,j3lst}

r
.,"S:=!r:S'f.mt-j yElLS filLst)

CUI-I"" -~==~~ joJ><.,
",[XI:= (x: X I[«!self ... t~ : StftJ1s~ f- !w.,t SCoJlstrDdug

t!l:SI!ul.~<--!"~ .
+.'1 : 5 : fG4~ty r !<l1u lJmrr

!I E 0[S)

yE{r:Slflllsc } ;yE{z:SI/.,J,stIf-/<ilie StUomp-j

"[Xl: {:r' X IfilLstliY E 0[511- f~ cul-liIC

38

This iem:m.a offers an altemative proof of the previous one--expand the
powerset first. and then do the generic instantiation in the antecedent. This
turns out to take many more steps.

When a specialized version of the generic definition is already available, the
pf(X)f of this lemma can be considexably simplified.

in.empty-tt '.= leibniz-I; setcomp-t; Ihinr-tdcl; SCcmstrDdilg; jalse-t

-,-".,-,.-;--.,..---::=.."--.,,.,.-;:.,---,--.,,-----;;:;.,-;---;---;-""' false-t
{x , 5 Iftdse ox) _ "[5113x , 5 IJalse 0 Y -'Ix ' Stfalse ~ false
+:--,,+i:-=--,:'i---::"",,';-::--,;-;'7:=-,-"-7:--';7z"-,-'-,= SConstrDdag{x,S IJalse 0 x} _ ,,{SIj3x ,5 Ifalse 0 y - xix,S Ifa'se ~ false "

=-S-"":""-':'-':,--"-'-:;;cid"'E""'.-i::E':"":-!-:=~.-i::i:':o:::'-'-":';-'i= thmr
{, x--,,'S,-,-,Ifi",a'"sec-e-,,-x!c}"-_",,[,,-SI,,,I,,3_X,,'"S"'{Jac--elsec<0,,-Y-,-;-;'-;lxc,c-'5--,,1Ja","lse-,l;cy;--_x_~_fi,-a-,-,'se- setcamp-t

{x, S IJalse ox) - "[S]jy E {x, 5 Ifa'se ox} ~Ja'se "
'---':';;,,--;-'-;"':2'--~:_::_S;;;-;-7C'--'--- leibmz-t

,,[5) _ {x ,5 IJalse 0 xJty E "ISJ ~ Jalse

The Empty set is a partial function 0 E S -# T. The proof of this lemma
appeals to some of the simpler lemmas already proven.

empty-in-pfun := pfun-is-ret-and-jun;

(ret-is-power; t-bindprod; empty-in-power II empty-is-fun)

-------- emp/!J-in-powtr

,,[x.)'):= (x : X IJ~lsr)

e
o:s x T) E P(S x T) l-bindprod

zlx.y]:={%:x IJ.)
-------------crrrpty-is-ftm
,,[X, YJ := {.r 'x I ji:ll$t}t

c~~J~:=--,,"~[S--,,'~T~1',--,E~~~_"".~(S--,,'~T-,-)) td_il_powrr 5HT=IJ>(SxT)
zlx. r; := {% , X 1~}1 e
S<-JT=IP(SxT) 1t%,:S;¥I,¥2: T •

(Zj,Y,) E z!S x TJA

e

",1f'-":==-:"c[S=-:'~Tcl-"--"E-,~,-,,'s--"H~T1"-:_-,--::-::,-,,,- I='",''e",~12E~·c[=s~'~T1c~",-,'"'_~-"'""'-'-} pfun-il-rr/.rmd-JIl1l

"IX, ~1 ,- {% : X Iflllst}t
5 ... T=P(5 x T)t
.s -4 T= {f:5 T I ":l:1 :s: y,.!l2' T.

(.:,.¥,) ErA

(%I.¥2}EJ~Yj=!J2}

0[5xTJE5-<+T

An additionallernma is needed, to show that has the hmctional property
given in the partial hmction definition.

39

emp.y-is-fun ,~cu'-lac("[S x 1] ~ {x , S x T Ijillse));

(thinr-tael ;genspec-f2SSllmll

t-alI; I-imp; and-I;

lshift4 ; lshift2;

feibniz-t ; setcomp-t; fhinr-tocl;

SQm",Ddag ;jillse-t)

The domain of the empty function is the empty set: 0 =dom 0.

emp.y-dom ,~	 Ishift4; all-.(R ,~ "[NAME x DATE] ~;

(BindProd; subst-tac; Ishift4;

I-leibniz ; thinr-tac2; empty-in-power

subst-lac; trans-lac; t-seteq;

(drop-snd ; drop-snd; drop-snd;

dec-in-t ; in-empty-t-NAME

IIsetcomp-t;

thinr-tacl ; SConslrDdtlg;

fshijt3; thinr-tacl ;jalseE;

J}othinr-tac4; (n-empty-I))

Discovering how empty-dam works, and improving on its structure, is left as an
exercise for the reJJder.

Part 111

Schemas, and
Proofs about Specifications

For lh~ purposes of constructing proofs about 'real' Z specifications, we must
be able to use the sc.hema cala.J1us and to be able to expand schema definitions.
This means that we must have ways of oonsideri.ng schemasas expressions and
as predicates, as well as declarations.

The schernaca1rulus has evolved from a partk.u1ar view of the semantics of
schemas. Rather than considering the view of schemas as expressions, havi'lg a
type and a valueas a set of bindings, these operations have been defined using a
view based on signatures and properties. Such a view is somewhere in between
an expression and a predicate.

1his final part of the tutoriaJ gives a comprehensive definition of schwas
and uses these rules in constructing the proofs of the two theorems about the
birthday book set out in part one.

Contents

11 Schema Declarations 4'
11.1 lnstances of Schema Declarations 43
11.2 Properties of Schema Declarations 44

11.3 AJ phabet . 45

11.4 Free Variables and Substitution 45

12 Schema Predicates 45

12.1 Interpretation 46
12.2 Definiti01l of Schema Connectives 46

12.3 Schema Pre-dicate Substitution 47

13 Schema ~S6ion5 ...
14 Specification-Level Proofs 48

14.1 TheoremaboutAddBirthday 5()

14.2 Initiallzation Theorem S3

41

11 Schema Declarations

Sdtemas are used as declarations in many places within a specification. Some
of these occurrences are not immediately obvious. So we begin by looking at
the three ways in which a schema as a declaration can arise.

The purpose of a declaration is to introduce new names and to give them
values. So from a schema declaration we must be able to extract its property.
This extraction process allows us to reason about the values of the variables.
However due to the encapsulation of names by schemas, great rnre must be
taken when calrulating the side conditions.

11.1 Instances of Schema Declarations

A schema can be used to introduce its component names whose values satisfy
its property. When used in a sequent a schema declaration appears in the an
tecedent as follows:

151·· ~

ThiS fc-.alure of schemas is used in three different ways: as a schema-text, a
~ma-inclusion, or as an axiomatic definition.

Axiomatic Definition An axiomatic definition is a particular piece of S}TItax

used to introduce new names into a specification. For example the following
definition

I :':~ z -

introduces two nurnbersr and y and states that they are not equal. The schema
x, y : Z I x :f y contains the same infonnation and could just as welJ have been
used to introduce the two names:

x,y,Z I.iy

So, for any schema we can introduce its component names together with its
property simply by stating it as a declaration. In the notation used in the an
tecedentof a sequent we would write the following:

... tx,y' Z I. iyl .. · f- ...

Schema Inclusion The typical example of a sdlema indusion is found in def
initions of more oomplex schemas. In the birthday book example, the schema
AddBirthday is defined in tenns of MJirthdayBoc* and other variables:

43

AddBirthdoy _

!>BirthdayBcd;

TUl~? ; NAME;

oote? ; DATE

---, (name? E known)1\

birthday' = birthday U {(""""",dale?)}

This paragraph romprises a definition of a schema name AddBirthdtJy using a
schema constructed from an indusion. We would write it in the sequent nota
tioo as follows:

~rlll<l<lJi&ri:;

AiJdBirlhdll.II:= 1IJl1lV? ,NAMe ~ r_? '''~'"'']
[II bi.r~'=bi~u{("~?,dmt?)}daltO, ,DArT.

This is a schema composition of the form \5 I PJ where the schema 5 is included
in the schema, together with the predicate P.

The rule SchConstrPar allows us to split a schema-eonstruction into its
schema inclusion and predkate making them into a schema declaration and a
constraint paragraph:

S:j:P I- Q SchConstrPar
SIPf-Q

Schema Text A schema text is used in quantified predicates such as "IS. P.
The rule AI/I

rjSf-P
rf-Vs.p HAI/l

deromposes a universal quantification by generating a schema declaration and
a simpler predicate.

The rules for set comprehension and definite description give us quantified
predicates that are also proved usingAlU. Thus this is a very common route for
introducing schema declarations into the antecedent of a sequent.

Bindings The generalisation of the meaning of paragraphs to encompass arbi
trary schemas can be repeated for substitutions. A substitution { x :==e ~ is a par
tiCIIlar form of a binding. We can use the same techniques for taking a schema
and making it a declaration and give a substitution semantics for any binding
or appropriately typed expression.

11.2 Properties of Schema Declarations

Given a schema declaration in the antecedent of a sequent, we can aJso assume
its property. We use square brackds to indicate that we are interpreting it as a
schema predicate:

44

a(S I P) as

Q-o =: as
o:50T as U aT

aVS.r aT \ as
Q: 3S. T aT \ as

Figure 4: The Alphabets of Schemas

f15j[S] f- P SchPrap(wfS)
fjSf-P

Since the alphabet of a schema S is dependent on its definition, we cannal use
the 5(.Uping variable tedmique in this C.a.'ie.

In order to take sequents of this fonn any further, we must look at schemas
as predicates.

11.3 Alphabet

The alphabet of a schema declaration is dependent on the context in which it
is calculated. The alphabet schema reference can be calculated only when the
signature of the schema has been discovered. The disc..'Overy process follows ~

definition of the schema reference using the following rule:

q:s:= TI-- oS == aT

The alphabets of composite schemas are defined in tenns of the alphabt'ts of
their 5ub-schemas. The rules for this calrulation are given in figure 4.

11.4 Free Variables and Substitution

The free variables of a schema declaration are the same as the free variables of
the schema as an expression.

The substitution rules for schema declarations are the same as for schema
expressions.

12 Schema Predicates

Schema predicates are just a special fonn of predicate. When treated as pred
icates, sdtemas behave in exactly the same way as ordinary predicates. It is,
however, important to distinguish the two forms of connectives. Though they

45

I" f-l', E~III···lIl'. Elo

rf- :1, :~l; ···;.rw :lo; ,""""""'"

r f- ~ [5j i J-SNoIl' r f- [5] II [T] t.!SAnd1'
r - [~5] r-[51\T'

r f- [5) V [T] t,t.Sorp r ~ 15) ""' [T] i -!.SimPI'
r>-!5vT! r r- [5,,", 1]

rl- r51~ '11 r ~ 5 II p. i,/.SdlrmrlM....pr r:" ~ ~j tiS}!!p r - [S PI

r, -:5. T r-'o's·lr
. . iJ.,5T1lsIJp(<J1.,oS= 0) r~:'r/s.~ ilSAllp(oTn,).'i=Z)r-.3S.T]

Figure 5: The Schema Predicate Calculus

look. the same the propositional and &Chema connectives operate in subtly dif
ferent ways. For all well formed instances of &Chemas, there is no difference.

We first look at what it means to view a schema as a predicate, and then look
at the laws governing the &Chema mnnectives.

12.1 Interpretation

The simple schema

x:s

can be said to be true whenever the variable x has a value which is a member
of the the set s. This mndition can be expressed as follows:

[l-xEs tl(wfx:s)
~., ,

This more general case of the schema 5 raises some problems. What does it
mean to say that 5 is true?

12.2 Definition of Schema Connectives

When we consider the &Chema operators corresponding to predicates, they have
the same properties as ordinary predicates. The sdlema mnstruction 5 IP can
(when viewed as a predicate) be considered to be a conjunction of a &Chema
predicate and an ordinary predicate. The rules illustrating these properties are
given in figure 5.

46

Simplifying, Schema Predicates Just: like the for the predicate aLIcu.1us, we
can develop a tactic for simplifying sdlema predicate fonnuJae. Since we will
want it to work for sdlerna predicates in both the antecedent and the conse
quent we make use of the reversible IUies and generate two-sided tactics:

saM-P ;= up-4oom-",cSAndp

bindprod-p:= up-down-tJlcBindProdp

smem-p :=:: up-doum-tJlcSdlmtaMemp

We can examine how these IUies are used to simplify the property of theex
panded Birthday sdlema:

k ElPN tbEN D tk::::odomb f- P .
k E • N j Ib ; N -.> DJ I k _ dorn b f- P ;:mdprod-p

[k ;"Nj j~;N-.>D] lk~domb f- P 'bmdprod-p

[k ;PNjA[b;N-.>DJ lk~dornb f- P ~nd-'
- s-and-p

1Ie,I'N;b;N-.>D] jk~domb f- P .
lie ;I' N; b ; N -.> D] Ak ~ dorn b f- P and-I
~'-';;~T:;;-'--:;=;C;-;"-':";::::;':;'-;'---;, smem-p
IIe;PN;b;N-.>Dlk~dornb] f- P

The tactic sCh_pred_1 10 follows the pattern in this simplification by splitting
the schema predicate into a conjunction of schema predicates, and then sepa
rates them and repeats the process on both of the sub-expressions:

sch-p"d-t;= '«bindprod-p I smem-p I sand-p [skip);

(and-t, roch-pred-'; sch-p~-' [skip)

Iskip)

12.3 Schema Predicate Substitution

The free variables of a schema as a predicate are generated from two sources.
The first is the free variables of the schema as an expression. The second source
is the alphabet of the schema. These component names are newly introduced
by the schema. So we have the following equality:

~S= ¢SuoS

The additional free variables in a schema predicate result in a different sub
stitution. Not only can the expression level variables be substituted. but also
the component variables. Sometimes they can be the same names. 1ltis can
cause some complications for the quantified smemas. The substitution rules
for schema predicates are given in figure 6.

OVV\ie (I('roonstrate a simplilied larue that only considen thno-e types of constmetor: thl:5e that
ga'lerate predicate conjundioI\:!i.

47

b0[S IP) - b0SAb0P

b 01~SI

b0[So1]

b0[YS.1]

-

-

-

--b 0S

b8Sob8'T

'Vb 0 S.b!,:.} T

a(boS) n (¢b o TUab) ~ 0

b0[3S.1] - 3b 0 S.b0T

a(boS) n (¢br-l TUQb) ==: .0

Figure 6: Substitution into Schema Predicates

13 Schema Expressions

A more complete definition of schernas is obtained from looking at them as ex
pressions. These schema expressions are sets of bindings. We characterise these
sets by defining the property of membership. So each rule considers what it
means for a binding to be in a particular schema construction. The rules for
schema expressions arc given in figure 7.

Schema Expression Substitution The difference in free variables for sdlemas
as expressions and as predicates means that there are two types of substitution
that must be considered. Substitution into schema expressions is a homomor
phism. The rules for sdlema expression substitution are given in figure 8.

14 Specification-Level Proofs

Wecan now revisit the proofs presented at the beginning of the tutorial.

48

r r , E'I 1\ .. 1\11..1. E'"
r 1- .. E [X, .,; •.. ; x.:.l.1 ,

r 1-!l0SA!l0T SAJtdrJ---.b0S t~d("'S)

I' J-- b Ie-'S rI-6E(.~i\n U(wfS,.,T)

Tl-be5v/10T rl-b8S=:-60T 51",p
r:--b E (SVT) UScJr(wfSvT} fI-6c(S=1) H(wf.<;=:-T}

r I- b 8 5 0- 6 G T HSl./f{wIS "'" T) r I- b E 5 A 6 0 P t jSdI:mwzMO'l
r~6 EO I~","T) fI-6c[Sl P)

SAU
fl-'iS.6~';T

,CC---7""'C':;'~8='CT~ t.jS£Iisls(<1> T'l (ob '--' o~) = l"l) HI<t>Tn
fl-bE::JS.T rI-6E'iS.r

lab ,J as) ""~)

Figure 7~ The S•.hema Expression Calculus

6 0 [5 I PI - [b 0 5 16 0P]

whmabnaS= 0

6 0 [5 I PI - [boSIPJ
whenabn~P CaS

6, [-,,51 - 1--/1 0 51

6 o lS o IJ - [boSoboIJ

b 0 [VS.1] - [\Ib o S.b o 1]

6 0 [35.1] - [3b 0 S.b 0 71

Figure 8: Substitution into SChema FXpres.sions

49

14.1 Theorem about AddBirthday

Section 6.3 demonstrated how the proof given by Spiveycan be setup as a tactic
over the inference rules presented here.

spivey-5 ==eqlD.c(lemmal)

(known' = dombirthday');

eqlac(lemmu2)

(birthday' =birthday u {(1UJmc? ,date'!)});

eqtlU(lemrtUl3)

(dom(birthdayu {(name?, date?)}) =

(dam birlhdilyj U (dam{l""me? ,dilte?)))),

eqtoc(/emma1)

(dom((""me",dil"'I)) = {""me?}),

etltac (lemma5)

(dom birthday = kmm.mJ;
Refl

\n order to complete the proof, we must simply demonstrate that the five
lemmas used above follow from the definition of AddBirthday.

AddBirthday I- known' =dom birthday'

i\ddBirthday r /Jirlll{wy' = birthday U {(name?, date?)}

AddBirthday r dom(birthday U {(name?, date?)}) =

(dombirthday) U (dom{(name?,date?)})

AddBirtlulay I- dom{(name?,dall.'?)} = {name?}

AddBirthday I-- dom birthday::; known

Several of the lemmas arise directly from the definitions in the antecedent.
'[he tactic gen-expand expands schema definitions as far as possible, It works on
goals such as

5] := Tt

5, ,~ [5, IPll

5, ,~ [5,; S2Jl

5J rQ

in which 53 is rewritten to give

TtplT'tp. r Q

etc (Here PI is the predicate which results from replacing all those variables in
P which belong to the alphabet of T by their primed versions.)

First, the schema expressions are expanded, acoording to their definitions;
thm any resulting decorated schemas are rewritten so that only variable names

50

c

are derorated; a predicate copy of the schema is made, and then it is simplified
into t-separated components.

gen-expand:= !(exhaust leilmiz-t; tryd«(}'Iflte~left); ptlr.pred-t; sch-pred-t

When gm-e:rptmd is applied to our initial goal, or one of the lemmas which
remains to be proved, the result is as follows:

*'-: PNAME AIJi~, NAJrU. -"I DA.n l.i:lloq", '" damlJi~1\

b;IouIn' : PNAME 1\ l1i11hd"!/ ; NAME -"I DATI:" I blow,,' = dom 1Ji~'1\

1W'fIe? ,NAME A dlUt? DA.TE I
~ {n_? E 1::nowlr1 l\"i1'fItd~' == u(bir/hdq. {(_?,dlIi~?)jH

k"",,", E IPNAMEt
1!inJ,dti.!I E NAME -"I DATCj

kmr.un = dOIIl"i1'fltd~t

k1fw.... ' E IF" NAMq
IJirtfuW!I' E NAME -"I DATEj

krlmm' = dQllll!inlldti.y' ~

"""",? E NA'IoI£t

dlIi~? E OAITt

~ (_" E kn""'''l:
l!irdldt>y' = .j11!ir/kdt>y,{("..,.,~?,diIJ~?)J)

c

-Q'----,---=--------:-__--:----,------ gm-apald
BiriJl4"!1Book := [brow" : lI'NAME; bir/kdt>y: NAME -"I DATE 11"01",, =dom N,lhdti.ylt
~i~Bool: ,= [BIr/kdti.!lB«>I:, (Birth.</g!lBrok)'H
AildBi~ ,= l~ir//Idg!l8oDl:;me'I: NAME; tkJit? ; DATE I

~ ("""I<'? E bli;lum) 1\ ";r/~' '" bir/M,,!/ u {("amt?,d.t~?)}H

AddBir/M"!I

o

Having done this, in order to discharge a goal which appears somewhere in
the schema antecedent, we need simply the tactic is.Jcnoum:

is.Jcn(}um := gen-expand; ifer-os5um-toc

Simple Lemmas Therefore, the tactics to prove some of the lemmas arc now
entirely trivial.

lemmal:= is.Jcnown

remma2 := is.Jcnown

lemma5:= is.Jcnoum

Lemmas that use the toolkit The remaining two lemmas rely on properties
of the toolkit definitions, some of which were proved earlier. Since a common

51

form for these lemmas arising from the toolkit is f- "I S • P, we provide a tactical
toolkit, which takes three argwnents-the tactic used to prove the Ienuna., the
predicate which. is the lemma, and a binding showing how the quantification
is ro be specialized in this case---and returns (assuming the tactic suo:eeds] the
requirement to show that the binding belongs to the schema in the quantifier
(i.e. that it has the right type).

This last requirement is generally <-'Overed by the tactie is-known-type, which
takes this resulting goal, simplifies it, and applies is-known where possible.

is-known-type:== (Sand IBindProd ISchemaMem);

t-ilnd; !(subsl-lac; is-known I subst-lac)

Lemma 4 The fourth lenuna uses the so-called 'Harwood's Theorem';

Va ,A, b,Bodcm((a,bJ} ~ {a)

This has been proved elsewhere, by hilrwood-Iac.

lemma4:= loolkit(harwood-tac)

iVa' NAME, b ,DATE 0 dom{(a,b)} = {a})

i a:= name?,b:= dille? ,;

is-known-type

AddBirl1Jdl2g I- (u; ~?,": dUlt? ~ E;u: NAAIE;": DATE] .~~;;;;;~:;';g~~~+~~;!~~~~~'=~§is-tn<r~,"_ry~
AddBirtlllkllJ I- dom[IIl_?,dlllt?l} {II<t111t'?} looikilllrll",.oood-J<I<·).

LeJl\ma 3 The third lemma depends on the 'toolkit' lemma

"Ij:g: NAME -+1 DATE. dom(/ ug) = dom! U domg

which will be proved by dom-cup-lemma - omitted. In this instance, the toolkit
tactic produces the subgoal

AddBirthdily
f
it ,= birtl,day,g'~ {(name?,date'J) I E if,g' NAME -,; DATE]

which simplifies-via the first part of is-known-type-to

AddBirthday f- birthday E NAME -++ DATE

AddBirthday 1-- {(name'?, date'?) E NAME --+t DATE

The first of these is discharged immediately by is-known; the second requires
more work-----making use of the tactics relating parbal functions, relations, sin
gleton pairs, powersets, etc., in Section 9, above.

52

use-dol11Cllp ;= dcm-cup-lemmil

Iem""a,~ loolJcit(use.Jom<up)

(V/,g ,NAME ... DATE. doml/ug) ~

dom/udomg)
(f'~ birtM>y,g,~ {Iname?,"'''')} .;

is-bu>wn-type; nil-jim

nd-fun ;~ /shift7; /shiftS; pfun-iHd..nil-fun;

(rel-is-power; pair-pow-prod-mem;

(thinr; is-knoum)

II
W-4l11; t-imp; aM-t; e:r.tmem-t; twpJesel-t;

thinr-tac2; e:r.tmem-t; twplesel-t;

RefI))

Of course, this proof has been arranged for readability. It is very tar from
being an effident proof---expanding AddBirthday separately for each lemma is
very costly. Conversely, part of the power of Z is in the ability it gives the user
to wrap up iruonnation in a schema-and experience shows that with proofs
involving sizeable specifications it is most important not to expand schema def
initions fully until the information they contain is needed.

14_2 Initialization Theorem

The tactic that follows is perhaps a more honest 'first-oJr proof of the initializa
tion theorem.. It begins by providing a witness for the existential quantifiet-the
empty function birlJu1Jzy and empty set known. Using this binding. it is easy to
discharge the original goal; the new goal is to prove that this binding does in
deed belong to InitBirthdayBook.

nus is dooe by replacing InitBirthdoyBocic by its definition [using Leilmiz).
The predicate part of InitBirthdtzyBook is then quickly solved by Refi. The re
maining goal is further expanded by use of the definition of Birthday-which
was included by InitBirthday/Jod(. After making all the resulting substitutions.
and applying t-and several times, we are left to demonstrate three properties of
the empty set; the.se were proved in Section 9.

53

init-t4c:= t-exists(known := .0[NAM£),birthday:= .0 [NAME x DATE) ~;

(subst-uu:; I-Irue II skip);

t-Zerlmiz ; SchBindMem;

subst-tac ; t-and;

(skip II Refl)

thinr-tac2; t-Ieibniz;

thinr-tac2; J-and;

(I-<lnd II skip);

((emply-in-power Ii wply-in-pfun) II empty-dom)

ignoring the :minor subgoals, then, the tactic above produces a proof with
lhi~outline form:

- ?,[NAMEJ E ~~AME f-iM-pIl'll' r- rz;NAME)< DATE: E NAJ.LE _> DATE t-ilhl'fu" ~ "'iNA),{£] _ dom rz!NAME ~ DAT£'. e-dom
I-~nd

I1indknOtlln:= ""[NMf£],birlhda.If:= "'[NAME~· DATE]0

[mlJlj'" : IPNAME; birlhdag, NAME DATE I knOtlill = dom birthdgy]
--,--,---'---------'---,--,----'-------"- I-ldbrre

[JjrlNJayBook := [biD"''' . ?SMfE: I,irthdag, NAME --+ DArt krrO'~", = <.lom "'-rtJrrk1!1

c

i kuolllll;= O[NAME].birlhday ;= "[NAME x DATE' 0 BirThdoyBld./\

_0"IN_AME_"J_=_o"IN_A_M_E,,1 I-!rib"iz

Birthda!lBook := ~""lIm : PNAAIE; birthdgy : NAME --+ DATI knrrrJm = dllm birThday);

IniIBirlhday&d::= [BjrThd"VBook I knmml = 0[NAftf£:;

C

Iknou,,, ,= .e[NAMEi,/7irtNJ.a.y "" o [NAME " DATE; EInilB'nfIQiyI.lool:
-,--,--:c-,-'--,-'--::-::-'---,--'--,---::--::-,--=-=,-'-'--,--,--,--,-,- /-UlJiI>
BjrthdayBoot:= :J;:nOtlln: PNAME; lJirt!vlll!J' NAME -~ DATf" I k"rrrJ'" _ dom birthday; I

lrrilBirlhda!l&d; ,:% [Birrl1day&d: I kllwm = 0[NAMEj]

c
31rriIB..lkday&d: .lrllf

54

References

Harwood, W. T. (1990). Proof rules for Balzac, Tedmia" 'epon, {ST, Cambndge.

Jones, R B. (199J). Proof support for Z via HOL parts I & II, TedlniC41 report, ICL
Secure Sy"ems, Wmnecll.

Martin, A. P., Gardiner, P. H. B. and Wxxlrod<, J. C. P. (1996). A tactic calculus,
Formal Aspects of Computing. To appear.

Sennett, C. T. (1987). Review of type d1ecking and scope lUles of the specifi
cation language Z, Report no. 87017, RSRE, Ministry of Defence, Malvern,
Worcestershire, UK.

Spivey,]. M. (1992). The Z Noiatinn: A Reference ManWlI, second edn, Prentice
Hall.

Woodcock, J. C. P. and Brien, S. M. (1992), W: A logic for Z, in J. E. Nicholls
(ed.), Proceedings of the Sixth Annual Z User Meeting, 1991, Workshops in
Computing.. Springer-Verlag,. pp. 77-96.

55

Appendix

This appendix Tel.urds the text of the relevant parts of the ctlI'Tent draft Z ~
dacd, 1his is by no means in its final {ann, but represents the best available so
far.

Contents

A Deductive System from Draft Z Standard 58

A.i Freevariabies and alphabets 58

A.2 Substitution 62

A.3 In ferenct> rules. 66

57

A Deductive System from Draft Z Standard

A.I Free variables and alphabet.

A.I.t Parclgraphs

,,[x] o

"P 'liP

¢S See below

¢Ix '5) ¢;

ol>coe) 1"
¢([x]S) <is I (x)

¢(xIY] ,oe)

,,(n, tn,) ""¢II1 U (¢II~ \ and

~nix] {x)
uP ~ 0

05 = Seebelow
~o(x: s) {x}

~(t(r :=e) {x}
~o([x]S) oS

~o(xIY]=e) {x}
~a(TI I tII:,d ani U alI2

58

"
ISl

ISl
...

II
II

II
If

II
II

<
;
'
~

 •
~
-
-
-
~
-
"
-

"-
"

.
,
\
,
0

0
0

0
.
 •

• 0::5:'
~

-
-
<

>
i
t
n

l
J

)
 '"

...
1:9

m
l
&
o
&
e
:
-
~
Q
.
,
Q
.
,
)
:
>

m

-
e

"'
"

'"
~
~

...

t&
1&

;e;-;e;'9'
...

E
o

!:'

v;

"I' "
? !.<

II
II

II
II

II
II

11
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

~
~
~
~
~
B
,

"'-

l
-
i

"'-
l

....
,

...
,

A.1.4 Expressions

fix) {x}

¢(x lelJ {xl u ¢<

¢(i) '" ¢(z) '" t;){el> ... ,en} ¢(edu··· U 6(enJ

¢{S oe) ¢SU(¢< I oS)

¢(l!' s) ¢(s)

¢(el ,en) ¢(e,)u .. u¢(e,)

¢(5j x ". x sn) ¢(s,)U . U¢(,,)

¢(e.l) ¢(e)

Q!xl:=e\,. ,xn:=en) ¢(et} U "u m(en)

9(05) O}S

¢(h) ¢(b)

¢ife) ¢!U¢e

¢(~S oe) ¢Suo}(e, IDS)

¢(if P thenel else e2 ti) 4>P U OCl U ¢e2

¢(b"") ¢II U (d>e lob)

61

A.2 Substitution

A.2.1 Predicates

bs(e==u)

b 0 (e E s)

b 0 t::nJe

b G false

b8~P

b8(P~Q)

b8(PvQ)
b(:J(P~Q)

b8(P¢>,>Q)

When nb n <,}PsaS:

b0VS.P

b':.,3S.P
bC;j3 1 S.P

=:

==
==
:=

'"

'"

'"
:=

==

==
==
=:

boe::bou

b 0 e E b Co S

true

false

~b8P

b8P~b8Q

b8Pvb c,Q
b~.P~bS'Q

bSP<::;>bsQ

VbsS.?
3bCS.P
3 I bOS.1'

When nb n as n i}P= .0 and as n ¢XJ=flJ;

b0VS.P =- Vb2S.bS'P

b03S.P == 3b85.bl~P

b031 SeP == 31 b0S-b0P
WhenabnaS = 0:

b8S '" [boS]
When wfb:

bGS '" bO[b,S]

{y,"vfG((Y·""iSP) '" (Y'"(Y'"v!,"!· P

Ix,"v I 0 (IY"" I,P) '" IY," i""v l'cv I C· ({x '" v I c PI
wherey f/. r!Jv

62

h
. 0
..,

<

~

~
l

 '" (')
'". "

.
"•

.
"•

8
.., <

"f . "

~

"'
<. "
c..,

(')

"
'
~

;<
'"

0
G)

..,
.
"
 '" (') l'

f..,

0.., <

'" (') .
"

f..,
f..,

f..,
(')

.:.:-:
G.., .., ..,
>

 n
~

'" '" '"
(')

(')
(')

.
"

.
"

.
"

;;

.£ 8
.
"

m

;;

-'C

0
.
"

m

f..,
f..,

f..,

~
1

0
.
"

.
"

.
"

•
•

• '"
;; Y/,

~

G

.
"

.
"

.
"

m
~

II
>

m

'" ~

"' "' "' "'
III "' "'

"' h
'

"'(')
.
"

"'
:;;; "' "'

III
0
:J

..
f..,
~
~
h

"
(>

•

•
•

'lj. '" '" '"
C

~

£Tl~ rri:

.£'8
~
.

~
~
,

(')
~

.
"

.
"

'"
C

.
"

8
~

.c
.
"

~

"' "' "'
=

h
'
,
~

::;¢".h
~
~
0

"

(')
.
"

.
"

;£
.!i:
"'c;;
.
"

A.2.3 Expressions

box

(b,x::e)ox

\b,x,=e'0Y

b 0 x[yJ
b 0 j

b 0Z

b o {el,· •. ,e,,}

"When ab n ~~aS:

be {soe}

bolllSee)

VVhen ab n oS n ~=:

b 0 {soe}

b o (IlSee)

boPS

be;. {(el' "'le,,))

bO(SIX' 'X511)

b o (e.i)

bO{xI::el, .. ·,xII::e,,~

WhenabnaS =:.0

b 0 BS

When ab =: 0'5

boBS

bI 0 b.x

b,(je)

b (ifPC:hencl elsee:;! fil

bI0 (bclC)

{x,=v'",({x=ul8<)
{y,=v l,,,,({x,=u 18<)

:= x when x 'f- ab

:= e

" (b~0e

"
:= j

== Z

== {b Q el, ... ,b 0 c,,}

" {bGSoe)

::::;: J,b 0 S.e

.0 and as n ¢b=0:

_ {bGS ob8e}

:= /-tbQSeboe

== lP'b 0 s

== (bOel,' .,boell)

== b 0 s I X···xb s 5,r

== (boe).i

== ~xl:=b0el, ... ,x,,:=boell)

== 8b 9 S

== b

== (b i 0 b)..r

" (b,fI(b 0 e)

:= ifb(~lPthenb,,-.eIelseb Oe2

==
" (,,=(x,=Vl~,u~ce

" (x,={y=v ~Ou .,0,
((Y=v l'~)

whenx 'f- ¢U.

b4

A.2.4 Schema expressions

b 0 [xl, ... x,,:sl ==
When obnoS:::"

~b, [S! PI
When ab n otP<;;oS

b 0 [5 IP]

b 0{-8)
boISI-T] ~

be [SvTj ;=

b,IS*T] ;=

b,[S<>Tj
b,[S[1] ~

b 0 SI!x" ... ,x,1
bo[~So1]
b,[35oTj

~b o [3 1 S e TJ
b 0 [5[x,fy" ... ,x,,!Y,1l

b 0 [5:1] ;=

b 0 [5']

[xl" .x" :b 0 s]

[b05/ b oP]

[b05/ p]

[--b051
[boS I- boT]

[b8S V b'c1]

/b05 => b81]
[boS <> b81]

[b,S[b o 1]

(b 8 S)I[x" .. ,x,J
[~b85 ob8TI
[3bGS 0 b81]

[3} b0S e b:::.Il

[b 0 S[x,fy, • ... X, !Y,II
[b0 S :: b 0Il
[(b 0 5)'1

65

A3 Inference rules

A,3.1 Structural rules

Assumption rules

rtF I- p AssumPred

rtx := e r- x = e AssumDefin (wf(x:= e))

I'tx :S I- xEs AssumDed (wf(x : 5J)

rts!- s SchemaAss (oS n ¢S = 0)

Paragraph and thinning rules

PARf- Q .
PIR f- Q t~edQmJ

rl5lP f- Q HSch17ed

rl5l PI Q

TI--P
Thinl

TIlr f- P

rf-p

71tinr (an n rpP = 12')rtnl--p

Tt tT2 tnl-p SI1ift(aT2 n ¢JD =l2l)
T 1 tntr2 1--p ann"f2 = 0

A.3.2 Equality and substitution

fief!r I-e =f

TI--u=e
Symm

TI--e=u

rtu=el--v=e
Trans

rtu_el-v_u

rib f-p

r I- b 8 P t .!VseBind

ftb I-- u :: e
t!EquBind(abn<,bu =@)

TI--u-bce

66

A.3.3 ProposiUonal calculus

n- pre Q And!
rl-PAQ

r r P /\ Q AndEr
rl-p

r I- P A Q AndEl

r I- Q

rl-p
rl-pvQ OrIr

rl-Q
Or11rl-pvQ

re pvQ rlPl-R rtQeR
OrErl-R

rlP >- Q
imp1

rf-p~Q

rl-p rl-p",Q. E
rrQ trnp

r I- false fa/seE
p-p

n., P I- false

r I- p notE

r I- P ~ false HnotDcf

r f- ~ P

, ,, __ """"" fals<Dcf

trueDcfr I- P ==> tnIe

reP ~ Q " Q ", P tJ.jffDcf

P>-P¢>Q

67

A3.4 Quantifier roles

rts f- P

rf-Vs.p ijAW

Tf-TlS.P Tf-bES AilE

rf-b0P

rf-.0P rf-bES E' I

Tf-3S.P rfSts

r f- .3 S • p rtstp f- Q EristsE

rf-Q

Tf-.3S.P/\SOMETHING IU 'L't.j,. mq rlSts
Tf-.3] S. P

A.3.5 Expression rules

Sets

rj[xJTf- {(x ,-s h T. y) E ll'e tlGenMemlY E aT,wfT)
rt[x]T f- y[,[E e

r f- (Tlx:s.x E 1) /\ (Tlx: t.x E s) t..LSeteq(r rt rj£, u¢t)
T f- s t

Tf-v-el v ... vv=en tJErtmem

Tf-vE {ej,. ,en}

Tf-.3S.e-u

rf-eE{S.u} t..LSetcomp(¢e(1oS=0)

Tf-Tlr:t.xEs tlPowerset(rrt¢.6:)

T f-l E Ps

Cartesian products

Tf-v-e'
rf- (- I ,Tupleequ(lsiSn)

1) - el,'.' ,en)"

rf-u.lESj/\ ... /\u.nEsn tlProdmem

r f- u E Sl x· . X Sn

Tf-u - (el, ,en) tJ.Tuplesel

rf-u.l=e,/\ /\u.n en

68

Labelled products

BindEqu (1 .'S i :s n)
rf-(Xl :=el, ... ,X,,:=e,,)..xi e;

r I- y.x 1 - f.'t 1\ /\ U.xll = f.'" tJ.BindSel
rI--Y-(Xt:-el, ,X,,: ell~

ftbl-x =b.:c BindMem(xEob,wfb)

Schema. _ r ~ 5 ThetaEqu
.t" 1\···l\e.:t"_x,,rl-e..l't J OS

r I- e ~

I- (Xl :=21, . ··,:In :=x") E S i J,BindSdr (oS=-.. {Xl, ... ,X })
tl

~S

Description

r ~ (e, u) Ef A Vy 'f • (y.l ~ e)=>(y.2 ~ ey) t.IYunctApp LV ~ ¢e u 4>1)
r I- u. Ie

r I-e E S

rf- ,x~elsP

rty ,. ~ l,,~y IsP=> y =e DefnDesa

r r e _ J.l.X : siP

fI-P-::::>et-el\---,P=>e2 e
r I- if P then el else e2 fi = e t J,lfThenElse

r I- u = (x :- U t 0 e

rlx ,~ u f- " = e t.lUsedef (x ~ <1>")

A.3.6 Schema calculus

r I- U E [XL :51; ... ; Xli: s,,] UBindProd

rl-u-Xt ES1A •.. /\U..t" Es"

rlbESAbOP
r f- • E [5 1 P] t .LSd1emaMem

rl-bCOjS
n-. E 5 t.lSdlBindMem (wfS)

69

r	 f- b 8 [b 0 Sj jjS<hBindMem' (wfb)

rf-bES

r	 f- ~ b '8S U5Na' (wfS)
rf-bE~S

r 'r b 85 "b 8 T jj,SAIld (wfS" T)
r f- bE (S "T)

rf-b8Svb8T jj,Sor(wfSvT)
rf-bE(SVT)

r I- b '2 S => b \0, T
r f- bE (S => T) jj,Slmp (wfS => T)

r f- b 8S '" b ,,~ r jjSlff (wfS '" T)
r f- b E (S '" T)

TI-3S.b\:-,T
r I-b E 3S: T tlSExists(¢Tn (abUnS) 0= 121)

rl-\iS.bGT
r	 f-b E YS. T jjSA[[(¢Tn(abUnS) = 0)

r f- 3 1 5. b 0 T

r I- b E 3 5 • T tlSUniqExiSls (1JT n (ob uoS) = 121)

j

TI-bE 3x l :51; .. -: Xn:Sn·S lJSf-lide
r f- bE S\[Xll" .,Xn]

rf-bE(S"T)\[xl,.' ,x,J jj,SProj(nS\nT={x,.".,x,,))
rf-bESrT

SOMETHING j JSCamp
r	 I- S1iT

SOMETHING j JSDecar
r f- 5"

70

