Machine-Assisted Theorem-Proving
for Software Engineering

Andrew Martin
Pembroke College

AR

Technical Monograph PRG-121
ISBN 0-902928-95-3

July 1996

Orxford University Computing Laboratory
Programming Research Group

Wolfson Building, Parks Road

Oxford OX1 3QD

United Kingdom

Capyright & 1906 Andrew artin

Quxford University Compstting 1 aboratory
Programming Research Group

Wolfson Building. Parks Koad

Oxforg OX13Q0

England

Machine-Assisted Theorem-Proving for Software Engineering

D.Phil. Thesis

Andrew Martin
Pembroke College

Michaelmas 1994

Abstract

The thesis describes the production of a large prototype proof sysiem for Z, and a tactic lan-
guage in which the proof tacrics used in a wide range of systems (ineluding the system described
here} can be discussed.

The details of the construction of the tool—using the W logic for Z, and implemented in
20BJ—are presented, long with an account of some of the proof taclics which enable Y to be
applied to typical proofs in Z. A case study gives examples of such proofs. Special atiention is
paid to soundness concerns, since it is considerably easier to check that a program such as this
one produces sound proofs, than to check that each of the impenetrable proofs which it creates
is indeed sound. As the first such encoding of W, this helped to find bugs in the published
presentations of ¥V, and to demonstrate that Y makes proof in Z tractable.

The second part of the thesis presents a tactic language, with a formal semantics (independent
of any particular tool) and a set of rules for reasoning about tactics written in this language. A small
sel of these rules is shown to be complete for the finite (non-recursive) pan of the language. Some
case studies arc tncluded. as are some ideas on how this tactic language can give rise to lightweight
implementations of theorem proving tools. The teol described in some detail is another theorem-
prover for Z, this time based on LittleZ.

Contents

Note to the reader

Acknowledgerents

1 Introduction

1.1
1.2
1.3
1.4

Theorem-ProvingTools
Tools Applied o FormalMethods ,
UsingProof Tools
Outline e

Part1 Work with 20BJ

2 Encoding W In 20B]

2.1
22
23

WiAlegicforZ0 oo
20BJ: A Metalogical TheoremProver
SYRAX . . . e e e e e
GeneralRules . . . _
Lifting e e e
Tactics e e e
EXpressions L L e e e
Declacations L e e e e .
DecisionProcedures - L Lo oL
Tactics for W's Expression Axjoms
AToolkitTactic v i
Combining Tactic Actions oo .
Bindizg Substitution

3 Case Study

31
3.2
33

Specification L L L Lo e
Initialization Theorem
Precondition Theorem L Lo, L

vii

o

= P N S

CONTENTS

34 Conclusions v e e e e e e 43

4 Discussion 45
41 Soundhess L i o e e e e 45

42 ChoiceofLogic.o 46

4.3 Choice of Implementation Technology 48

4.4 Companson with Other Approaches 49

45 TACHCS . -« - o e e e e e e e 50

4.6 Auxiliary Definitions L L 51

47 Rule-lifing 53

4.8 Strengths and Weakaesses L. L 53

4 A RulesandTricksAdded., 55
Partll Tactic Language 57
5 A Tactic Language 5¢
5.8 TecHCLANGUAZE - . - -« « v 4 e e e e e e e 60

52 Exampleso 62

53 SemanticModel., ... 65

54 SimpleLaws 66

55 LawsinvolvingCut 6%

5.6 TACHCASSEILONS .« « « - v = ¢ v v o vt m e e e v e e 70

5.7 Full Completeness o i e 73

58 Semantic Model incorporating Recursion Lo 78

59 Derived Tacticals -« « -+« v v v v v e e e e 81

5.10 Stouctyral Combipalors L. 85

S5.11 Pattem-matching oo, 88

512 Parallel Composition 91

533 OtherDerivedlaws.o 94

6 Applications of Tactics 97
6.1 Associajve/Commutative Mawching, 97

6.2 A Tactic Proofof LemmaS4.d4 101

63 Lifing 106

6.4 Propositionel Calculus, again L, 109

65 TowardsaLibraryofTacticals 112

7 Implementation using Gaofer 115
70 LileZ e e e e e e e [§]

7.2 BasicTacticImerpreter 116

T3 OSYRK . . L. e e e e e 117

74 BasicRules e e e 1ig

75 ACaseStudy . . - . - o oo i e e 121

7.6 DISCUSSION . . . o v v v e e e e e e e e e e e 122

8§ Conclusions
ProofToOls o o e

8.1
8.2
8.3
B.4

Further Work

Bibliography
A On Lists

Al

Definitions

125
125
126
128
129

130

135

Note to the reader

the benefit of hindsight (a year afier the thesis was finalized), perhaps some

more comments on the use of 20BJ are warranted. When the wark described
in the first part of thesis was begun, 20BJ was under active development in Oxford,
and showed some promise of becoming a usefu! logical framework. That project
ended however, leaving the tool unsupported, and causing some frustration. The work
described here is almost certainly the largest case study undertaken with20BJ; it was
not entirely sufficient for the task-—see Chapter 4.

Since this work was completed, others have followed a similar path [KB95], en-
coding the W logic using the fsabelle system, The paper cited contains a comparison
of that work and this, remarking that Isabelle is much more flexible and powerfut than
20B]. The encoding described here is rather more faithful than that in Isabelle, but at
the price of a considerable loss of efficiency.

ORIG[NALLY, this monograph was prepared as the anthor's D Phil. thesis. With

vii

Acknowledgements

EPSRC (formerly, SERC). Support has come from many membersof the PRG,

to whom I am most grateful. Special thanks are due (0 my supervisor, }im
‘Woodcock, for advice and guidance {on both style and content}; also to Stephen Brien,
Andrew Stevens and Keith Hobley, all of whom have been long-suffenng as I have
attempted to understand and apply their work. The ‘Attic Crowd® helpedio provide a
congenial and occasionally productive working environment.

Thanks, oo, 10 these who have read and eommented-on various drafts of material
presented here. Paul Gardiner has studied numerous different versions of Chapter 5,
and never tires of suggesting improvements. Anonymous referees have made helpful
comments on Chapters 2 and 5; Bernard Sufrin and Philipp Heuberger have also helped
with some valuable comments on earlier drafis of parts of the thesis. Peler Baumann,
Ina Kraan, Ian Toyn and Jon Hall have read with sufficient diligence to spot some
subtle errars; my thanks to them. My examiners, Bill Roscoe and Will Harwood, also
deserve thanks for helping me to spot, and to iron out, some further infelicities.

Finally, all this would never have come abou without suppert from many friends—
particularly in Pembroke MCR and 5t. Matthew's Church—and my family, most chief-
ly my parents,

THE work described here has been carried out under a research studentship from

Andrew Martin
24th May 1996

Daminus illuminario mea et salus mea

Chapter 1

Introduction

ODERN SOFTWARE ENGINEERING relies to an increasingly largeextent upon

so-called ‘formal mcthods’ of program design and development. To date,

much of the work on formal methods has concentrated on the e of formal
methods for design work (caming some methods the more accurate description of
formal description technigues). Yalidation of that design, and subsequentdevelopment
wark are often accomplished by more traditional techniques of coding and testing,

Onc of the reasons for this is that formal development and validation necessarily
involves considerable effort in proof. In VDM [Jon90], it is necessary 1o prove that
operation specifications do not break any global invariants that have been declared on
the state variables. Likewise, in the usual style of using Z {Spi92a, WD%6] (which is
used in this thesis), the specification should include a demonstration that its declared
initial state satisfies all state invariant properties (Chapter 3 preseats an example of
such a proof).

Development calls for similar proofs, about operation and/or daw refinement,
whether the development is constructive (that is, the methodology used supplies a
proof of correctness ‘for free’ as the development proceeds), or it calls for post hoc
proof (producing a program, and then praving that it meets its specification).! Such
proofs, though potentially very similar to those proposed by mathematicians for cen-
turies, are generally quile unwieldy.

These proofs present problems for a number of reasons:

s The nature of formal descriptions tends to give rise to very formal proof require-
menis. Proofs undertaken are correspondingly of a very formal nature—quite
unlike anything usually produced in mathematics (except in elementary logic
texthooks, where formal proof exercises serve mercly to demonstrate that de-
tajled formal proof is possible (but undesirable)).

« The datarypes used in computing tend to be much ‘larger’ than those typically
present in mathematics. This leads (o proofs in which there are multiple cases to

1'The Latter is, in general, moch harder than the former, and terds to b avoided.

CHAFPTER i. INTRODUCTION

L1

be considered, and many small details and side-conditons to be checked; proafs
in which none of Lhe steps is hard 10 follow, but the sheer number makes the
reader uncertain that he would spot any but the most glaring omissions.

& Any new, ground-breaking proof in mathematics will be published in the liter-
ature, and subject 10 considerable peer-review; hence its correctness is likely 10
be checked by numerous professional mathematicians. The proof that a given
program meets its specificaion will, even with the best enginecring qualiry as-
surance schemes, be locked at by only a handful of collezgues, most of whom
will not share detailed knowledge of the problem area [DMLP79]

These problems make the development activity of proof ripe for machine suppon.
Computers lend to be good at keeping track of great levels of detail, recording large
structures faithfully, and checking without complaint the most tedious of calculations.
Of course, involving computers also itself adds to the level of formality needed: with
today's technology, we are unable to give a compuler the intuition which a mathemati-
cian might bring 10 a problem, and so proof search tends to be fairly naive (though
many useful procedures and heuristics have been discovered—see below; this remains
an active area of research in the logic community). This, in turn, makes the proofs
even harder to understand.

Theorem-Proving Tools

Many machine proof tools have been proposed and implemented in the last forty
years. Initially, much emphasis was placed on tools whick would accomplish proofs
of mathematical theorems (from group theory, for example). Such tools are penerally
auromatic. Either they implement complete algorithms (‘uniform proof procedures’)
guaranteed to find a proof if one exists withir their logic; or heurdstics (‘non-uniform
proof procedures’) which seek to limil the combinatorial explosion thus obtained, by
restricting their search to ‘likely’ proofs. In either case, the proof is accomplished (or
fails) without significant user intervention.

Gradually such methods began to be applied 1o problems more related 10 computer
science. Tools were implemented which allowed the user significant control over the
activity of searching for proofs—via tactic programming. Some of the highlights are
as follows:

» The Boyer-Moore theorem prover (NQTHM) [BS79] was one of the fist to
apply theorem proving techniques to program verification tasks (and continues
to be developed). It is an automatic theorem-prover, working with a quantifier-
free first-order logic, and was also one of the first such twols 10 have a general
induction principle built-in. Guidance to the ool is achicved by having the user
propose lemmas which are likely 1o be useful—the system proves them and then
attempis to use them in the construction of its main proof.

« Edinburgh LCF is a British contribution which also dawes from the °70s
[GMW79). it was LCF which introduced the notion of a tactic as a program for
directing the theorem praver, and tacrica! as a higher-order function for com-
bining tactics. LCF is less automatic than NQTHM. &fter presenting the system
with a goal to prove, the user supplies a tactic which directs the system on how lo

1.1. THEOREM-PROVING TOOLS 3

find the proof, Edinburgh LCF was based on Scott’s logic of computable func-
tions and was useful for reasoning about denotational semantics and functional
programming. Cambridge LCF [PauB7] extends the logic of Edinburgh LCF and
is well-suited 10 reasoning about domain theory. LCF also introduced the notion
of guaranteeing soundness via a safe datatype. In LCF objects whith represent
proofs belong o a datatype Proof, and the only way to construct proofs is via
functions which construct them vsing primitive axioms and rules—thus ensuring
that only sound proofs are created.

e HOL is anather tool which has grown out of the work on LCF [Gor88]. HOL
uses the same implementation technology (based on ML—which was inirially
designed as a metalanguage for LCF), bur implemenis a differemt logic. It
has found particular application in the proof of comectness for digital cir-
cuits [BGH*92].

* A more recent system is PYS [ORSvH93], which is much more closely targeted
vpon specification and proof for computer systems. By having a closely-coupled
language, type-checker and proof checker (type-checking, for example, may
entail some theorem proving), it aims 10 offer a higher degree of automation
than js present in LCF, but to give the user more control over the proof than is
possible in NQTHM.

Other tools have been implemented 1o support particular software devepment 1ech-
nigues.
o The B [Abr91] tool was initially a configurable and extendible proof system, but
is now pan of a B development method, based on absrract machine notation.
The theorem-proving ability of the tool is mainly used in the ‘auto-prover’ which
checks the soundness of refinement steps.

mural [JJLM911 is a ool which supports the proof activity requind by a VDM
development. It has a user-interface which is tailored 10 VDM (lisplaying the
VDM teal as it wold appear in a typeset documnent). Proof may be conducted
interactively or via tactic programs—which are structured by arranging ruies and
tactics into theories for dealing with panicular datatypes and panicular classes
of proof.

These tools differ in their implementation technologies and the degree of automa-
tion which they offer. Most are configurable and exiendible. 1o enablethem 1o adapt
to a user’s problem domain, but each supplies a logic and methodology of its own (in
most cases, the efficiency of the heuristics offered to the user is heavily dependent on
the logic which is implemented).

A more receat development in this field is the idea of a logical fumework. This
is a tool whose only huilt-in notions are metalogical ideas of what il is to make an
inference, what comprises a proof, how proofs are constructed from primitive inference
rules, what operations on proofs are sound, and so on. These 1005 are generally
supported by an extensive formal (generic) proof theory. Before attempting proofs, the
the user must frst supply (or select) an object logic—-an account of alogical system,
its syntax and rules of inference.

s The Edinburgh Logical Framework (LF) [HHP91], for example, is based on a

typed A-calculus. in which logics are represented via a ‘judgements as types”
principle, whereby cach judgement is identified with the type ol its proofs.

CHAPTER I. INTRODUCTION

» Isabelle [Pau89, Pau90] arose out of Paulson’s work on LCF—as a more generic
approach to theorem proving. It is supplied with many pre-defined object log-
ics, including classical firs-order logic, many-sorted first-order logic, Zermelo-
Fracnkel set theory, the logic of LCF, elc.

e 20BJ{GSHH92] has been developed in Oxford {in a joint project with RHBNC),
and has not penetrated very far beyond this, maybe due to implementation dif-
ficullics. 20BJ uses a safe datatype, in the style of LCF, but insiead of making
proofs the safe objects, in 20BJ the sort (type) of tactics is the protected one—
tactics can be built only from primitive rules and pre-defined tacticals.

1.2 Tools Applied to Formal Methods

Some of the popular formal methods have had, from the outset, well-defined underly-
ing semantics which has given rise to a workable proof theory and proof tools.

VDM is based on a three-valued logic, and has a domain-theorelic semantics.
The standard text on VDM [Jon90] describes how to construct VDM proofs, and so
provided the essential groundwork for the implementation of mural—see above. CSP
has a number of semantic models (Lhe choice of which being dictated by the power of
the results which the user wishes to bring to bear on problems), and two of these (the
traces model and the failures/divergences model) are described in the standard text on
CSP [Hoa85]. A model-checking tool (FDR [For92]) based on the latter has recently
been implemented.

The focus of the work in this thesis is on Z, which is in (relatively) widespread
use for sysiem specification, but for which deduciive systems are still being explored,
Spivey gave Z a detailed formal semantics [SpiB8] after Z had already been in use for
some time. More recent work has provided Z with a simplified semantics [GLW91,
BN192] and this has given Fise to a reasoning system for Z, named W in [WB92].

Z is presented as a broad-spectrum formal method. It is envisaged that it should
be possible to specify the functional aspects of any computer system in Z, prove that
the specification is self-consistent, and refine it (in formal fashion) into executable
code. As such, most of the proofs which a2 Z user is called vpon to undertake will not
involve deep propenies of the specification; they wil] be unlikely to involve inductive
arguments, and they should, therefore, be highly aniomatahle. Moreover, when a proof
Lask is not so straightforward, there remains a significant amounl of book-keeping 1o
be done (checking, for example, that partial functions are always applied within Lheir
domains); and in this a proof assistant can be very valuable,

Machine support for (and auiomation of) such proofs is the subject of this the-
sis. 'We shail be interested in software engineering concerns (lactic programming, in
particular—tactics permit proof re-use, and the recreation of proofs following speci-
fication changes), as well as means of guaranieeing the soundness of the proof tools
produced.

A large prototype proof system for Z has been produced. The details of the con-
struction of this tool-~using the W logic, and implemented in 20BJ—are presented
in this thesis. Special anention is paid to sorndness concerns, siace it is considerably
easier 10 check that a program such as this one produces sound proofs, than to check
that each of the impenetrable proofs which it creates is indeed sound. As the first
such encoding of W, this helped to find bugs in the presentation in [WB92), and to

1.3. USING PROOF TOOLS 3

1.3

demonstrate that ¥ makes proof in Z tractable (though in this implementation, only
just—see Chapter 4).

Two proof tools for Z are commercially available—ProofPower and Zola—these
will be discussed in Chapier 4, where each is compared to the approach laken in this
thesis. Both permit a similar range of proofs to be constructed to those produced by the
wol described here. ProofPower is constructed using a version of HOL (see above);
and as such, produces proofs which are inherently sound with respect to HOL's [ogic;
Zola implemenis & logic which is closer 10 W,

One of the problematic areas in the construction of the tool mentioned above was
the construction of tactics—the programs which direct proofs. Any that are more com-
plex than simply instructions 10 the ol to apply a few proof rules in sequence, they be-
come hard o comprehend. As a broad goal, the user seeks very general lactics—ones
which will prove a large class of theorems without intervention, and without undue in-
efficiency. A way (o reason about such programs—their semantics, how o ransform
them without changing their effect, how to specify and re-nse them etc.—was needed,
and so the second part of the thesis presents such a language, with a formal seman-
tics (independent of any particular tool) and a set of rules for reasoning about tactics
written in this language. It includes some case studies. and some ideas on how this
tactic language can give rise to lightweight implementations of theorem proving tools.
The too) described in some detail is another theorem-prover for Z, this time based on
LittleZ [BHW94].

Using Proof Tools
Several factors affect the usability and value of a proof tool, such as:

« soundness: this has been a large concern in the work presented her. Its impor-
tance is relative to the amount of confidence which will be placed in the tool’s
outpul, and the extent to which that output will be cbecked by others.

« user interface: in particular, this includes

- the interactive component, and
= the tactic language.

The first of these will receive litte attention here; the (hesis attempts to show
that the second can be treated in much the same way as any other programming
language.

 efficiency of implementation: clearly, there is litle valve in producing an in-
teractive tool if the user must wait for many minutes between mouse clicks.
Conversely, even a highly-automated tool will not be very useful if it can be run
only as an overnight batch job.

the extent of the tactic library: a user wishing to construct proofs about spec-
ifications does nol wish to spend time repeating proofs of basic laws from the
mathematical toolkit—nor proofs of laws that *should” be in the toolkit but are
not Moreover, the user may reasonably expect to be provided with a set of
well-understood proof search procedures—and an adequate specification of their
function.

CHAPTER i. INTRODUCTION

14

+ the level at which the basic laws sit (i.e, whether they deal with puints, sets,
predicates, functions, schema operations, etc.): this issue can largely be hidden
by an extensive tactic library (provided the ool is fast enough), but at some point
most users will need to come into contact with the basic laws—which musi be
comprehensible in the context of 2 given specification.

These issues are strongly inter-related. The greater the sophistication of the basic
laws, the more efficient the impiementation—bul the harder it is to prove that those
laws are sound (both because they are far removed from the semantic definitions and
because as they become more specialized, more are required). The nature of the lactic
language will affect the way in which the tactic library can be utilized in users’ tactics.
In the second part of this thesis, a lactic language is described which aims 10 permit
reasoning about tactics via a collection of algebraic laws—thus promoting re-use and
refinement.

QOutline

As indicated above, the thesis is presented in two parts. The first describes the pro-
duction of a proof tool for Z by enceding YW in 20B). The second describes a tactic
language—-a general language, not specific to any particular tool.

Chapter 2 describes the encoding of W in 20BJ, and goes on to describe some
uscs of 2087's tactic programming facilities in enlarging the granularity of proof sicps
which can be undertaken jn W. Chapier 3 uses these rules and tactics 10 discharge the
proof obligations arising in a ‘typical’ Z specification. Chapter ¢ discusses the benefits
and difficulties involved in using 20BJ, and the extent to which W is appropriate for
the business of proof in Z. 1t also compares the approach taken here with that taken in
ProofPower and Zoia.

Chapler 5 presents the tactic language, mentioned above and gives its formal se-
mantics. I then lists a complete set of laws for manipulating finite {non-recursive)
tactics, before going on to consider how recussion is to be modelled and incorporated
in the rule system. The addition of strucrural combinatars to the language permits a
mate succincl expression of certain tactics than is generally possible. Chapter 6 uses
this tactic notation and the laws of tactic ransformation to describe some lactic case
studies, and 1o demonsirate some of the properties of the tactics presented. In Chapter 7
this tactic semantics is used a basis for a new proof tool for Z, implemented directly in
a lazy functional language. This implementation is very much more efficient than thai
presented in Part 1,

Part I

Work with 20BJ

Chapter 2

Encoding W in 20BJ

21

tool for Z. The tool (named JigsaW) is based on the deductive systern (which

has been called W [WB92]) contained in the draft Z standard [BN192], and
i implemenied using the 20BJ metalogical theorem prover [GSHH92]. Much of the
material in this chapter has appeared in a paper at FME'93: Indusirial Strength Formal
Merhods TMar93a).

The following sections give an outline of W and of 20BJ. Section2.3 discusses
how Z’s syntax has been encoded in OBJ3, and Section 2.4 shows how the basic
predicate calculus rules are expressed in 20BJ. Sections 2.5 and 2.6 consider two
proof-structuring devices; rule-lifting and tactics. In Section 2.7 the encoding of W's
rules for reasoning about expressions is explained, and in Section 2.8 te rules which
enable Z's specification constructs o be used in proof are considered. The next four
sections describe some larger tactics—for dealing automatically with propositionat
calculus (Section 2.9), expression axioms (Section 2.10) and the mathemarical toolkit
(Sectton 2.11). These are brought together in a more general tactic in Section 2,12,
The final section (2.13) describes the means by which lactics are used o apply binding
substitution rules with care.

THIS CHAFTER presents details of the construction of a prototype theoremn-proving

W: A Logic for Z

As Z has grown in popularity, various logics have been proposed for reasoning within
it. One such logic is W [WB92]. W has the great benefit of having (largely) been
proven sound with respect to the semantics of standard Z [BN*92).! The logic is a
sequent calculus in the style of Gentzen; but since it is for reasoning inZ, it is a ryped
logic. Thus the sequents take the following form:

Deoclarations | Predicates I Predicates .

UThe later document gives a new presemtation of the logic, but this account remaing based upon the
former.

10

CHAFPTER 2. ENCODING W IN 208/

2.2

The sequent is said to be valid iff, in an environment augmented by the Declarations,
by assuming all the Predicates on the left-hand side {(the antecedenis) it is possible
to prove one of those on the right (the consequents). Any (or all) of these parts of the
sequent may be empty.? If there are no predicates or no declerations on the left, the
bar is omitted. Rules in WY are written

premisses

—————— (name
conclusion ()

where the conclusion is a sequent, and the premisses consist of zero or more sequents,
The rule may also have a side-condition (proviso).

The presentalion in [WB92] gives an explicit characterization of bound and free
variables, and of substitution, which makes encoding it very straightforward, Also in-
cluded are rules (axioms) for the basic expressions which occur in Z (rules concerning
set membership, cartesian tuple equality, etc.), and rules which permit the definilions
introduced in a specification (in schemas, generic definitions etc.} 1o be incorporated
as antecedents.

20B]J: A Metalogical Theorem Prover

In order 10 support an encoding of W a suitably general theorem-proving assistant is
needed. Chapter 1 has discussed the use of logical frameworks for this purpese. The
wol chosen here was 20BJ: whilst siill being developed, it had the advantage of being
produced tocally and providing a moderately geod user interface.

20BJ should not be confused with OBJ3 (version 2, [GWE8]) upon which it is
built, OBJ3 may be viewed as a term rewriting system. Programs in OBJ3 consist of
sort (datatype) declarations and eguations which are generally used as left-to-right
rewrite rules. The system is able to ‘reduce’ twerms, wsing all of the rewrite rules
exhavstvely, or to apply individual rewrites to selected terms 3

20BJ consists of a nurnber of OBJ3 modules (the 2B System), together with an
X.windows based user interface to OBJ3 (the 2087 Tool, X2 obj). The ool provides
windows for easy interaction with the underlying QBJ3 system; button presses being
converted into OBJ3 input commands. The output from OBJ3 is redirected into a
numnber of windows, so that, for example, proofs under construction can be represented
as trees in a manner which corresponds to a pencil-and-paper proof.

20BJ imposes very few assumptions about the logic being encoded. The OBJ3
modules construct an absiract datatype of Proof£s, together with operations for con-
structing such proofs from Goals and Rules. Such Rules may be combined 10 form
Tactics. The user must supply OBJ3 modules which define a term algebra for the
object langnage {see below). These are then linked to the 20BJ system by identifying
one form of term (in our case, the sequent) with the OBJ3 sort Goal. The inference
rules of the systern are then described as objects of sort Rule. The user describes the
behaviour of these rules by giving equations for the built-in operator?

Readers unfamiliar with this stybe will be surprised 10 s¢¢ sequents such as & F. This is valid if and
only if the predi in & are contradictory (hence, & + is equivalent 1o & false).

3208) extends these options, by permitting rules 0 be de-selecied From the reduction system, and by
peTRiting sets of named rules t be applied exhasstively,

AThe keyword op introduces an op definition. In this i this is » deg case of OBJ3s
arbitrary mirfir syntax. The simple juxtaposition of » Rule and & Goal (orms an application of this
operator.

2.3. SYNTAX

11

23

op - - : Rule Goal -> GoalList .

Thus rules are viewed as functions from Goals to lisis of Goals.

The encoding is comprised of a few modules containing such equations. The user
of JigsaW creates a module containing definitions from a Z specification (see, for
example, those in Section 2.8 below), importing these modules 100. Afier this module
has been loaded into 20BT, the user may specify a goal t2rm (using the 208 tool), and
the system uses the user-supplied rules, together with built-in rules for manipulating
proof trees, to construct a proof tree. This construction is entirely user-driven; to apply
a rule 10 a particular node in the tre¢, the user simply has to click on thit node and
specify the rule/tactic to be applied.

The theory underlying 20BJ is presented in [GSHH92]. 1t was iatended that
the implementation of 20BJ should be shown to conform to its specification in a
formal categorical proof theory. This framework would make possible a proof that
the encoding is faithful to ¥W—and thus that proofs produced using Jigsal are indeed
sound (that is, as sound as W). A methodology for undenaking this proofhas not been
forthcoming.

Syntax

The first step in producing an encoding of a logic in 20BJ, then, is to provide an OBJ3
module defining a term algebra® for the logic under consideration. Z has a rich con-
crete symax, described using a context-free grammar in the drafi Z standerd [BN+92].
This can be translated into OBJ3 in a faitly systematic manner, due to 0BJ3's order-
sorted algebra and arbitrary mixfix operator definitions.

Each of the main non-terminal symbols in the grammar becomes an 0BJ3 sort. In
principle every non-terminal could be an OBJ3 sont, but since many are ot referred to
outside the grammar, it suffices to collapse many of the productions inthe grammar,
using operator precedences to ensure that the same language is described. An example
of a part of this encoding is given below. (The expression in square brackets describes
the operator precedence; operators with lower numnbers bind tighter.)

op |A| - «.» _ : SchemaText Predicate -» Predicate [prec 40)
op |E| - <.» _ : SchemaText Predicate -> Predicate [prec 40 | .
op |Bl| - <.> _ : SchemaText Predicate -> Predicate [prec 40]
op - <=» _ : Predicate Predicate -» Predicate [prec 35] .

op - => _ : Predicate Predicate -» Predicate | prec 321] .

op - ¥ _ ; Predicate Predicate -» Predicate [prec 30 | |

op - © _ Predicate Predicate -» Predicate [prec 28 | .

Some of the non-terminals are given by productions with portential repetitions;
these are represented using extra sorts. For example, sequence displays arc defined
as follows:

Expression5 =... | Sequence | ...
Sequence = (', Expression®, { *, Expression0},")’

In OBIJ3, this is expressed (with all the Expression classes collapsed into one) by
defining the comma as an assocjative operator which forms lists of expressions from

That is, the constanis and operaior symbals for the language, together with laws describing which
sorings of symbols make valid terms.

12

CHAFPTER 2. ENCODING W IN 20BJ

shorter lists; single expressions being the simplest of those lists. Sequences are formed
by surrounding such lists of expressions with angle brackets.
sort Expreasions -

subsort Expression < Expressionas .
op - . - ¢ Expressions Expreseionsa -> Expressions [assoc] .

op < - » : Expressions -> Expreaaion [prec 15] .

The grammar is also careful to specify the rdle of parentheses in Z. This is slightly
unfortunate, in that parentheses in OBJ3 have a built-in meaning—they are used to
modify operator precedence. In most cases, Z uses them for the same purposs, and
to avoid circularity in the grammar. By explicitly giving operator precedence 10 the
symbols being defined, and collapsing together some of the non.terminals, explicit
menltioning of parentheses in the grammar can be avoided. The parenthesss defintng
tuples, though, have genuine syntactic value. Because in OBJI3 they serve only to
group objects, this definition

op { -) : Expressions -> Expresaion .
is meaningless. Instead, we write
op Tuple(. } : Expressions -> Expression .

There are few instances of this type of problem, so the result of this activity is a
concrete syntax which is tolerably readable. The precise choices for concrete syntax
were entirely arbitrary; chosen for readability and as a reasonable approximation to
typeset Z. Good concrete syntax makes the encoding of rules easy to read and so
increases confidence in the accuracy of the code.

Type-Checking

As yet, no attemp has been made to include type-checking in the encoding. This is a
significant problem as, clearly, the soundness of the logic is dependent on its input be-
ing well-typed. W ensures that most of the inference rules preserve type-correctness.
The only exception is cut, which introduces new predicates (cut is discussed at greater
length in Section 2.6 below).

e|dFp, ¥ e|p,Br¥
e|®F ¥

(cut(p))

Therefore, the minimum requirement is that both initial goals, and sequents produced
by cur {in backward reasoning) be type-checked. Having no mechanism available for
type inference means that all genencs must be fully instantiated at input time (and
hence at all points of interaction with the 1ool}—writing @[X] instead of merely & and
{8, T) € (- C .){X] instead of § C T, for example.

This is consistent with YV’s approach—the logic simply assumes that all the terms
it encounters are well-ryped, and that all generics are fully instantiated. In ‘pen-and-
paper’ reasoning, such details can often be overlooked; this option is not available since
the tool must work entirely formally. We could extend the logic to include another
form of judgement; one indicating that a particular expression has a particular type.
This would permit type-checking to be performed at the same time as proof {generally
via automatic tactics, since Z's type system is decidable), allowing generic parameters

2.3. SYNTAX

13

10 be supplied when necessary. However, it would mean that the logic being encoded
was far removed from W. Section 4.2 considers this issue further.

The 20BJ documentation {SH92] suggests using sorr constrainss in encoding the
grammas, so that terms will be syntactically well-formed only if they are type—correct.
Support for this has not been implemented, and although this is appealing, even if it is
possible 10 express the Z type system in this way, performance of the todl is likely to
render it useless (parsing is already very slow).

Another possibility is to pre-process the user’s OBJ3 code using a ol similar to
fuzz [Spi92b], both checking for type-correctness and providing generic parameters.
The cut rule presents a problem in this scheme (since its parameter needs to be type-
checked, but is not (in general) available to be pre-processed). It would ke possible 1o
have the rule write its resulting sequents out to a file which could later be type-checked
(the soundness of the proof being dependent on the success of the type-checking). This
is problematic because LIFT (see Section 2.5) introduces nested scopes. When cuf is
used within the lifted proof, the cut term may contain variables which ar in scope in
the context of ihe LIFT, but not in global scope; their types may nat, therefore, be
readily apparent unless each application of LIFT also makes an entry in the file.

W Meta-Functions and Syntax Extensions

Since 20BJ assumes very little about the logic being encoded, it is necessary (o de-
fine the sequent explicitly® (identifying it with the sort Goal mentioned above), and
notions of free variables (¢), alphabet of declarations(a), and substitution. These are
carefully defined in the presentation of W |WB92] and/or the semantics [BN+92),
using sets of equations.

Substitution, for example (accomplished using explicit bindings) is specified with
expressions Jike

b(¥d|peg) = Vbd|{ad<ab)pe(adab)lg
provided ad N ¢.(ad 4 b) =
b(~p) = -bp
b.pAgq) = bpAbg
bipvg = bpvbyg

These equations ranslate directly into OBJ3 (thc keyword eq introduces an equation.
ceq infroduces a conditional equation):

ceq (b . (|ajd | p<.>q} = (|]a] (b. @) |
{{alpha(d) \dsub b) . pi<.> {(alpha(d) \d@sub b . gq})
if ((alphaid} inter phielalpha{d) ‘dsub b}) == *nii=} .
eg (b. (Tpi)y=""1(b . pt.
eqg (b, (P Q@) =+{(b. p} " ib. q} .
eq (b . pVvagy =4{b. plvib. q

As immediate substitution is not always required (for example, the presentation of
Leibniz’s nule requires that there be a pfedicalc present of the form { x~ 1 .p) these

SNote that whereas in YW missing dex| and predi are d) by whie rpace, pattem-
mauching in the encoding is greatly aaded by inclusion of syrrbols for empty declaration: snd empty lisis of
predicates. As a result, the empty soquent { F Y isdenoted by & | * |- *.

CHAPTER 2. ENCODING WV IN 20B}

24

2.5

rules are presented nsing 20BJ's ability o ‘turn ofi” rewrites; they are used only when
the rule subst is selected. Some rewrite rules must not be applied exhaystively (as subst
does)—they are applicd when necessary via a subst tactic (see Section 2.13).

The equations for« and ¢ are presented in 8 similar manner. Since they are features
common to most logics, 20BJ provides fast buili-in operators for implementing them.
These operators do not appear to be sufficient to describe Z’s binding constructs, and
s0 they are encoded directly. Section 4.6 considers this matter further.

General Rules

W is based on a classical sequent calculus, and thus includes a full set of well-known
inference rules. For example, the classical rules for or-introduction on the right and
the left could be written in ¥V as

di &+ ¥,pq d|%.p-¥ d| ¥ qb T
il A0 L1 B8 a .
jergpug ¥ (o pVar ¥ (ve)

However, in the presentation of ¥ [WB92], rules are presented in the following
simplified form, together with a theorem on rule-tifting (this theorem is reproduced in
Section 2.5 below):

Fp, pE qr
BE (v o vh)
Fpvag LA L

It is convenient to present the encoding in a similar way, with simple rules together
with a meta-ruie for rule-lifiing (also discussed below). Thus two rules above are
implemented by |-or and or |- (thesc are defined as constant operators of sort
Rule; recall that a rule juxtaposed with a goal forms an instance of Lhe rule application
operator, sO these equations are between GoalLists):

op |-or : -> HAule .
eq l-ox (& | * [-pVa = (% |*|-p.,q .
op or|- : -» Rule .

eqor|- (¥ lpvgqgl-*=(®)pi-, & | qgl-".

The assumption rule is distinctive in that it has no premiss:

——— (assumption)
diptp)
and so the 20BJ rule generates an empty list of subgoals:
op assusption : -»> Rule .
eq assumption (@ [p |- P} =[]

This implementation leads to a most uncluttered encoding, which is easily seen to
be comrect, and can also easily be verified correct (that is, faithful to W).

Lifting

The theorem on rule-lifting serves both to simplify the presentation of ¥V (by making
it easier to read) and to help strucrure the proof that W is sound with respect to Z's
semantics. It factors-out elements which would otherwise be common o each tule.

2.5, LIFTING

15

Theorem 2.5.1

(Rule-lifting)

. e d|¥EY
If the inference rule

e;d{¥F®
fied|p¥kqd
fied|p¥tqd
providing that (ad LU ad YN (gp U dg) = & .

is sound,

then the rule is also sound,

The theorem could readily be generalized to cover rules (proofs) with more than one
Premuss.

For similar reasons, it is nseful to provide a meta-rule in the encoding(justified by
this theorem) which takes a rule, R, and some collection of terms from thecurrent goal,
and returns a new goat which is the result of applying R to the sclecied terms, leaving
the other terms unchanged (read T (1) as selecting (excluding) predicatevdeclarations
indicated by position number, hence (p, g, 7,5)1 (13} = {p,) and (p,q,1,5) | (13) =
(g.5)):

dyd)i|®; $LiF¥, ¥lk
d| ¥
1) ’
AL S
ti|@tjF ¥tk
provided ((a(d T} Ua(@)) \{aldt)na@d)))n{@ijuelii=2c

(LIFT(, j K, R))

whenever

In some languages, this description would almost serve to define rulelifting. This,
however, is merely a specification of some rather ugly OBJ3 code, which is not re-
produced here. Proving Lhat this specification of the rule is sound, andproving that
the implementation of rule-lifting satisfies it, is one of the major outstanding questions
regarding the demonstration of soundness for Jigsal¥ (see Section 4.7).

The reason why this rule is needed may not be immediately clear. Systems such as
LCF [Pau87] have no comparable construction. The problem lies in the fict that 20BJ
is a logical framewerk whereas LCF implements a particular logic, The rule-lifting
takes place at a very low level in the latter; in the former it must be dfined by the
user (the author of the encoding). If the logic under considerstion were more unusuval
(Ninear logic, for example) the forms of lifting which would produce faithful encodings
would be much more restricted; this is why lifting cannot easily be builtin to 20B1J.

Possible Variations

In Andrew Stevens’ encoding of first order predicate calculus in 20BJ(the example
encoding in [SH52)), each of the primitive rules is expressed in its fill form, with
lifting ‘built-in". For example:
op ore : NzInt -> Rule .
ceq ore (N} (H |- X} =
(H; hyp{N,H} = 1 |- X),(H ; hypIN.H) : 2 |-X)
if matches!{ Z v Y. hypiN, H) | .

which simply makes this inference:

H,ZFX H;YFZ
HFX

fore(N)) whenever H1N=2ZVY .

16

CHAPTER 2. ENCODING W IN 2081

2.6

This makes the rule hard 1o read—and verify—and tends to make tactics hard to write.
Morcover, the side condition present in the rule-lifiing theorem would need to be
duplicated in all the rules which modify the declaration part of the sequent.

By contrast, if it were seen as desirable to have a rule such as the above in JigsaWV,
it could readily be defined (as a tactic) using LIFT {a “0" is used as an argument to
LIFT to denote parts of the sequent from which nothing is to be lifted):

op OR|- i NzNat -> Tactic .
eq OR[- {n) Seq = LIFT(0.n.0,0x|-) .

The use of lifting within tactics leads to some interesting results; see Section 2.6 below.

This form of rule lifting is tied closely to counting the positions of predicates
(and declarations) in lists, Another approach might be 1o make use of associa-
tive/commutative matching, wriling patterns which would match lists (sets) of pred-
icates comaining one 10 which the rule would apply. A problem here would be that in
the case of multiple matches, one would need a means of indicating 1o which predicate
the rule is to be applied.

Again, if a ule of this sort—one which matches any applicable part of the goal—is
needed, it can be written using LIFT, with an auxiliary function £ind which finds &
match (using the 20BJ buili-inmatches)in a list of predicates and returns its position
number:

op |-OR : -» Tactic .
eg |-OR (d | PHI |- PSI} = LIFT{0,0,find{p V q.PSI),|-or) .

Thus the high-level LIFT meta-rule appears to be a very general formulation, both
making derived rules and 1actics very easy to write and making any proofs about the
encoding easy to structure, since it commesponds well with the original presentation.
Similar notions of lifting are present in Isabelle [PauB9] (where lifting over assump-
tions and over quentification (declaration parts) are treated separately) and in the Ed-
inburgh LF [HHP91, Chapter 4] presentation of first-order logic. Those presentations
are in the context of natural deduction; this formulation with a sequent calculus would
appear 10 be slightly novel.

The greatest problem with this approach is that there is much potential for ineffi-
ciency. Having the selection of predicates from goals as a high-level operalion {on a
par with tactic imerpretation) rather than as a fast built-in, hidden from the user, leaves
the user free to write very inefficient tactics which frequently pull sequents apart and
then put them back together again. However, the judicious corbination of LIFT with
tactics can lead to very efficient tactics where each rule is directly applicable to the
goal at hand, with no need for searching or selection (see below, example on page 19).

Whilst lifting aids the construction of tactics, it can be rather difficult to use imer-
actively: counting predicates as they are printed on the screen is very error-prone. A
good user interface would permil clicking on the predicates to which a mle is 1o be
applied. The rule could be wrapped in a LIFT whenever the form of the selected goal
demanded it.

Tactics

Tactics are programs which perform proofs. A tactic captures the essence of a formal
proof, in some sense, and thus storing the 1actic enables the proof to be repeated al a

2.6. TACTICS

later date, maybe in differing circumstances. This is an important software engineer-
ing consideration since a system specification may be expected to change from time
to time, and it should be possible to check that theorems are still provable without un-
necessary additional effort. The proof performed by a tactic may be very general, in
which case the tactic is available as a derived inference rule.

The fact that the tactic is built from primitive rules means that the proof will
succeed only if the side-condilions on those rules are met, even though they are not
(usually) mentioned explicily in the tactic. By virtue of being built solely from
sound inference rules, tactics may make large inference steps without any need for
additional proofs of soundness beyond those necessary for the primitive rules. In
making reasoning steps, the user need not be aware which are the result of rules, and
whtich are implemented by tactics. Thus, for example, although the definitions from the
Z mathematical tooikit are provided, the user will not generally need to be concerned
with the details of the rules for applying generic definitions; instead a toolkit tactic
will bring the relevant definition inio the antecedent, apply it to the selectsd term, and
remove any unwanted definitions. An example of such a tactic is given beiow.

20B) presents the user with a rich wactic language, and much of the remainder
of this chapter (and the following one) will be spent considering the construction
of suitable tactics for proof in Z. Such tactics—tlike most programs—often become
sufficiently large that their effects are not clear. Part [T of this thesis is given over to
finding succinct, formal descriptions of the actions of tacucs.

Tactic Language

[n 20B) the lactic language is an extension of the language of rules. All rules can
be considered as lactics, and tactics can be combined using the following LCF-style
tacticals (t, and rp are taclics, £5 is a list of tactics):

) THEN r; (sequential composition} applies 1, to the goal then applies f; to the re-
sulting subgoal(s).

t; THENL 15 (parallel composition) applies r; to the goal, then applies the tactics in ts
zip-wise 10 the resulting goals. Thus, for example, if £, produces three subgoals,
i5 must consist of three tactics; rs[1] is applied to the first subgeal, rs{2] to the
second, etc.

11 ELSE t; applies ¢, to the goal; if it succeeds, the tactic terminates, otherwise 15 is
applied ro the initial goal.

As the tactics are written in OBJ]3 they may be arbitrarily compler. Tactics may
call other tactics. in a functional programming style, and recursion is available, making
the language very powerful. Thus these tacticals may be used to construct vartous other
familiar programming language features, The 20B) documentation [SH92] suggests
tactics for iteration (REPEAT) and exhaustive application of rules (EXHAUST). Both
are recursive, REPEAT applying the supplied tactic and then caliing itself with an
index which is the predecessor of the original index: and EXHAUST vsing ELSE 1o
conlinue execution until application of the supplied tactic fails.

op REPEAT : Wact ProofTactic -» Tactie .

eqg REPEAT(N, PT) Seq = if N == 0 then idtac
else PT THEW REPEAT(p(N) , PT} fi .

CHAPTER 2. ENCODING W IN 20BJ

op EXHAUST : ProofTactic -»> Tactic .
eq EXHAUST{ PT) Seq = (PT THEN EXHAUST(PT}) ELSE idtac ,

idtac is an identty tactic; it always succeeds, leaving the goal to which it is applied
unchanged. Seqis a place-holder denoting any sequent—see below for tactics defined
as applying to more specific goals. The presence of a goal term on the left-hand side
permits tactics 1o behave differently on different goals, and allows patterns matched
as being in the present goal 1o be parameters to the right-hand side (see, for example,
the definition of BINDINGMEM below}. That the goal term does not appear on the
right-hand side is one of the more peculiar features of 20B)'s tactic interpreter,

Often-used forms

Tactics are made more general by being parametrised. CUT takes a parameter which
gives the predicate 10 be cut into the goal. The ‘raw’ cut rule in W is applicable only
to a goal consisting of an empty sequent, an unlikely goal:

pk tp
— (ewrlp))

However, writing

op CUT : Predicate -> Taccie ,
eq CUr (p) Seq = LIFT{0,0,0,cucfd}) .

yields the mare useful rule

ej®tp ¥ e|p,®F¥
cTEF ¥ (CvTe)

Often, cur is vsed o introduce a lemma (or theorem, or axiom) for which a proof
(tactic) already exists. CUT can be used to construct a tactic which intraduces the
predicate p to a goal’s hypothesis list, proving I p using the provided tactic, PT.

op CUTLEM : Fredicate ProcfTactic -» Tactic .
eqg CUTLEM (p, PT) Seq = CUT(p} THENL (LTPTI(0,0,1,8T), idtac} .

Many axioms (see below) are expressed in the form F p < ¢, from which it is a
simple matter to prove, for example, the validiry of the following inference rule

Fgq
Fp .

The transformation from an equivalence to an inference rule is accomplished by the
tactic | -EQULIFT=>. As the goal must match one side of the equivalence (ihe left-
hand side, in this case), this tactic nses panern matching on the goal to ensure that
it is only applied where appropriaze. 20BJ's tactics ere defined using an equation
involving a goal {in the above, any goal Seq is satisfaclory) so that the tactic’s action
can be conditiona) on the form of the goal.

| -EQULIFT=> uses CUTLEM {above)} to inroduce p <> ¢ 10 the hypothesis list,
and then splits it apant using +»F and =+, The later produces two subgoals: the first
is the required sequent (reduced to F g by thin) and the second is of the formp, .. . + p;
which is discharged by assumption.

2.7. EXPRESSIONS 19

op |-EQULIFT=> : Predicate ProcETactic -» Tactic |,
eq [-EQULIFT=> {(p <=> q, PP) (% | * |- p) =
{ CUTLEM (p <=> @, PT} THEN LIFT(0,1,0,equ|-}
THEN LIFT{0,2,0,imp|-}
THENL (THIN{0,1.2), LIFT{0,1,1,assumption)) }

The goal-term is not necessary in this case; it simply avoids the inefficiency of applying
the tactic when il is certain to fail. It also serves to ensure that lhe position numbers
supplied to LIFT are coitect (i.e. that there are no spurious predicales present which
might become involved in the proof); the tactic will, in general, need to be lift-ed
before use. The tactic could be more concisely written, with the user merely supplying
4, and the tactic forming the predicale p <+ g to be supplied 1o CUTLEM. This is of
little consequence, as | -EQULIFT=> will generally be used within other tactics, as
illustrated below.

Tactic Transformation

With such a rich tactic language, there will be many tactic forms which will be func-
tionally equivalent. It has already been noted that lifting can be used with wactics 1o
create efficient new tactics. CUTLEM, for example, can be more efficiently expressed
with the THENL within the scope of the LIFT:

eq CUTLEM (p, PT) Seq = LIFT{0,0,0, {cut{p) THENL!PT, idrac}))
This uses only onc instance of LIFT insiead of the two above. A more concrete
example is this derivation involving the axiom of extension (expressed here as an
inference. See page 20 for a description of the rule and tactc,)
d|drVritexrcu¥ d|dFV¥riuexey¥
d|PFVr:texeunvVr:ueret ¥
didr-i=u¥

{FA)
(- EXTENSION(x))

which could be programmed as

LIPT(0,0,1.|-EXTENSION(x)) THEN LIFT{0,0,1,|-and)

but is better written as

LIFT(0,0,1, |-EXTENSION(x} THEN {-and)

It seems that rule lifting frequently distributes through THEN. Similarly some
tactics expressed using pattern malching to take different actions depending on the
form of the goal could also be writien using ELSE. Some ways of expressing tactics
will be much more efficient than others. Chapters 5 and 6 explare Lctic equivalences
which could be used (o ransform tactics into their most efficient form. [t may even be
waorthwhile to have OBJ3 undeniake such a iransformation before applying the tactic.

2.7 Expressions
In order Lo reason about Z specifications, W provides a number of axioms which

describe how sets and functions and the predicate calculus are related. There is also
a theorem which permits axioms o be expressed as premiss-free inference rules, so

20

CHAFTER 2. ENCODING W IN 20B]

that, for example, the axiom concerning binding membership becomes a premiss-free
inference nule.

—————— (binadi
FheSebS becomes FbESt:b.S(l ingMem)

Such rules are readily implemented as rules which produce no new subgoals, but
to apply them in this form would be tedicus in the extreme. Fortunately, it is casy to
incorporale them in a tactic which makes the rule very usable:

FbS
Fbes

op |-BINDINGMEM : -> Tactic .
eq |-PINDINGMEM (% | * |- b \in §) =
| -BQULIFT=>(b \in S <=> b . S, bindingMem]

(- BINDINGMEM)

This scheme also allows parameters to be provided o the inference rules. For
example, the axiom of extension quantifies over a variable, with certain freeness con-
ditions:

Ft=u& Vx:texeuAVr:uexc€t providedx & (p.uUdet) .

The tactic | -EXTENSION implements this aziom as an inference rule, allowing the
user to choose the bound variable (its freeness being assured by the rule extension).

op extension : -> Rule .
cq extension (& | * |- (t = uw) <=> {({|A] {x : £} <.> {x \inwu}) *
(A] (x : u) <> tx \in eji)) = []
if (({x) irter {phie{u) union phie(t))) == *nil*}

op |-EXTENSION : word -» Tactic .
eq |-EXTENSION(x) (& | * |-t = u) =
|~BQULIFT=>{t = u <=> [A| x : ¢
(Al = : u <.

<,» x \in ¢
> x \in t, extension)

Section 2.7 illustrates the use of this wctic. Moreover, when | -EXTENSION is applied
it will invariably be followed by FA and I V, 50 it may be bundled into & tactic which
does precisely this, and automatically chooses a fresh bound variable:

op |-EXT-TAC : -» Tactic .
eq |[-EXT-TAC (& | # {- t = uv) =
| -EXTENSION {new (x,x)) THEN |-and THEN |-all .
So this tactic makes a (relatively) large reasoning step:
n:thkxeu X iukFxeqg
Ft=u

(| -EXT-TAC)

Rules which are expressed using eliipses present the greatest difficulty. Their
presentation in W is essentially informal. Before they can be encoded, they must
be formalized. So

Flt, o) ={u,. o) & h = A... Al =i,
is more precisely expressed as

F 15 = s & £(is, u5)
where rnu)=(t=u)
and E((t,15), (&, us)) = (¢ = w) A E{ts, us} .

Once the axiom is expressed in this form, an OB)3 implementation becomes natural:

2.8. DECLARATIONS 21

2.8

ap cartProdEqu -» Rule .

op mkeqconj @ Expressaons Expressions -»> Predicate .

eq mkeqconj (t,u} = {(t = u)

eq mkegconi ({t,Es},{u.us}) = it = u) * mkegcaoni{ts,us)

cg cartProdBqu (% | * |- (Tuple(ts) = Tupie{us]] <=> p} = [}

if (p == mkegconji{ts,us)}

and, again, a Lactic makes it usable:

op |-CARTPRODEG : -> Tactic .,
eq |-CARTPRODEQ (% | * |- Tuple(ts) = Tuple(us}} =
| -EQULIFT=>({ {Tuplelts) - Tuple{us)) <=>»
mkeqconjits,us) , cartProdBqu)

Declarations

W includes rules for making use of lhe large structuring constructs in a Z specification:
schemas, axiomatic/generic definitions, etc. These inference rules are implemented as
20BJ Rules with sehemas ete. as parameters.

Schemas

The schema

—3 -

d

p

permits this inference 1o be made:

S=[dipl+
'_

Which is expressed in 20BJ as

op schdef : SchemaDef -> Rule .
eq schdef (SCH 5 IS d ST p END) (% | = |- *) =
F | s=1djp] |[-*}

Clearly the user does not want to type out the schema definition each time it is
used, 50 we encode the definitions from a given Z specification in an OBJ3 module.
By defining an auxiliary eperator

op . -def : SchemaMame -> SchemaDef .
we enable the user to make definitions like
eq S ~def = SCH 5 I1¢ x : T 5T x \in U END .
and refer 0 S -def in invoking the rule. In fact, this is made still easier by a 1actie:

op SCHDEF : SchemaMName -> Tactic
eq SCHDEF (S) Seq = LIFT(0,0,0,schdef (5 -def})

22

CHAPTER 2. ENCODING W IN 20BJ

This encoding also makes alphabet calculations very straightforward: when the
alpha function encounters a schema name S as part of a declaration, it tries to expand
S -def.

The primitive inference rules are not particularly useful, in that the predicaies
introduced to the sequent wil] invariably be nsed with an application of Leibniz’s rule,
So, for schemas, for example, we have a tactic:

op APPLY-SCHDEF : SchemaName -> Tactic .
eq APPLY-SCHDEF (5) (% | * |- p) =
{ SCHDEF (S) THEN
| -LEIBNIZ THEM
THIN(O,1.0) THEN
subst THEN
EXHAUST{ | -and) } .

This brings the schema equality into the assumptions, uses il to rewrite the right-hand
side, removes the definition again, applies subst (as | -LEIBNIZ introduces a binding,
rather than actually rewriting the right-hand side) and then exhaustively applies kA Ip
split the goal into its constituent parts. For example, given

==[xr:N{x<8],

we infer

FxeN Fx<6
—— 5 (APPLY-SCHDER(S))

The tactic AUTO-SCHDEF uses APPLY-SCHDEF, choosing the schema name from
the form of the goal.

op AUTC-SCHDEF : -» Tactic .
eq AUTO-SCHDEF (% | * |- $) = APPLY-SCHDEF(S)
eq AUTO-SCHDEF (% | * |- b . &) = APFLY-SCHDEF(S) .

Since schemas are often nested, application of EXHAUST (AUTO-SCHDEF) is a com-
mon paradigm in tactics where schema definitions need to be expanded, for exampte
in the tactic for initial slate theorem proofs.

Generic Definitions

In a similar way, whilst the generic definitions which comprise the Z mathematical
toolkit are available to the user of Jigsal¥, they will gencrally be used via tactics which
hide the instances of GenDef (the equivalent for generic definitions of schdef for
schemas). For exampie, dom has the following definition

let domdef = (GFN { X , ¥ | BAR
{dom : ({PFIX \crosa ¥} --» PP{X)}}
ST
(jA] R i PP(X \cross ¥} <.> dom R =
{ix: X sty : ¥ | (tx |-> ¥} VinR) <> x })
END)

and the tactic below makes, for example, the inferences shown in Figure 2.1.

2.8. DECLARATIONS 23

op [-DOM-TAC{| -), -} : Expressions Expression -» Tactic .
eq |-DOM-TAC(IN. Y], §) (% | * |- p) =
i GENDEF (dordef, {X,Y]) THEN

CM(<] R > S |> \in [R : PP(X \cross Y}]}

THENL

{

{ THIN(0,1 2,2) THEN |-BINDINGMEM THEN subst THEN
| -POWERSET (x) THEN [-all)

{ LIFT(0.1 3,0,all}-) THEW THIN{O,1 7 4,0) THEN subst THEN
LIFT{0,1,1,|-LEIBNIZ} THEN THIN(O,1,0))

b

The aim is to simplify & goal of the form b z € dom[X, ¥]S. Application of GenDef
intraduces Lhe signature and predicaie from the definition of dom as antecedents. The
cut rule introduces a binding which can be used to specialize the universal quantifier
from the definition of dom (j.e. it identifies R in the definition with § in the goal). This
produces two subgoals. The first asserts that the chosen binding belongs to the correct
(schema) type. This is simplified, using bindingMem elc., to an assertion that § is a
subset of X x Y. The second subgoal is rewniten vsing ¥ =, vhin and subst so that the
antecedent contains a definition of dom{X, Y]§ using a set comprehension. Leibniz’s
rule is used to instantiate that definition, and then the rule of thin is used to remove the
definition from the antecedent.

Abbreviations
QOne further class of definitions found in Z is the abbreviation definitions:
21X == {x: X | false} .

W has. so far, given no rule for dealing wilh such definitions, but in order to accom-
plish useful proofs, a way is needed of dealing with them (for example, the definition
of & is essential in inany initial state theorem proofs), The abbreviation is intended
as shorthand for the generic definition

@ = {x: X | false}

but to make this translation, type inference is needed—which we do rot have. The
encoding used, for the time being, keeps to the spirit of the abbreviavon; it is imple-
mented as a direct OBJ3 rewrite:

[axiom emprydef] eq \empry [t) =
(<] X >t {>. {x: X | False } .

The binding is used to prevent any problems of variable capture: i allows substitu-
tion to remain in the Y scheme, rather than conforming to OBJ3's ideas of rewriting.
The labels ‘axiom’ and ‘emptydef’ serve respectively to prevent the rule from be-
ing used as a general rewrile, and to identify 1he rule when the user wishes to apply
it. The rule is applied using | -apply, which uses the 20BJ operation namedred to
invoke a named rewrite rle in the consequent. (An analogous apply| - also exists.)

CHAPTER 2. ENCODING W IN 20BJ

Fre{s:Xiy:¥|r~yeSaax}

domiX, ¥]S = (thun}
{(x:X;¥:¥|srryeSex}
te{x:X;y: ¥|xrry€ESaa} .
dom|X, ¥]5 = (eib)
{x:X;y:Y|r—y€ Sex}
-
3 € dom{X, 115 {subsr)
{ R~ S }.(dom[¥, 1R =
{x:Xy:¥Y|xrycRex})
.
1 € dom[X, |5 i)
1R~ ShER P 1), ¢
YR.P(X xY)edom[X,Y]R =
:§FrxeXxY v {(z: X y:¥|xyERax},
FYr:SexexxY { R~ 8 p.(dom[X,Y]R =
’_—XTY_(P”W’“") {x: X, y:F|lx—=yE Ruzx}),
_ WSEPXXT) dom € B(X x ¥} — F(X)
F{R= LR PX 7)) ’w;) dom €
FlR=Spe R P <) ‘:') 2 € dom(X, Y]$ wh
dom € P(X = 1) — P(X), {thin) {R~SpER:P(Xx 1),
YR :P(X x ¥} » dom[X, ¥]R = dom € P(X x ¥) — P(X},
[x:X;y:YlzyER=I) YR :P(X x ¥) e dom[X, VIR =
[{x:X;y:¥|x— y€ERux)
(R~ ShE[R:PXx T, P mTIREmy *
£ € dom(X, ¥]S z € domiX, ¥]§ (eut)
Loy

dom & P(X x ¥} —+ P(X)

VR:P(X x ¥) e dom[X,Y}R =
{x:X;y: Y|z yER 0z},

F

z € dom(X, ¥]§

F 7 € dom([X, ¥I§

(GenDef(dom))
Figure 2.1: Application of | -DOM-TAC

A common use of this definition js fo discharge goals of the form x € @[X] F by
reducing the left-hand side to false. This is accomplished by EMPTY-TAC| -.
op EMPTY-TAC|~ : -» Tactic .
eq EMPTY-TAC|- (% | t \in \empty [u] |- *) =
{ apply|-(‘emptydef) THEN subst
THEN SETCOMP|- THEN
exist|- THEN
LIFT(0,1,0,and|-} THEN
LIFT(C,1,0,false|-}) .

This tactic exhibits a subtle problem: the definition of &2 mentions a variable, x.
Following the application of (3r), x is present in the declaration part of the schema,
50 10 satisfy the side condition on ZJFT, x must not appear free in the goal sequent,
atherwise the tactic fails. Since the tactic does not produce any new subgoals, this
problem could be avoided by beginning the tactic with a TRY (chHypVars{ x ~ x |}).
For a 1actic which retums a new goal, however, such a renaming might be disconcerting
for the user. W atlows for a-conversion under the quantifier, but this has not been
implemented.

2.9. DECISION PROCEDURES 25

2.9 Decision Procedures

In using a logic like W, it quickly becomes apparent that at many (indeed, most) points
in the proof the choice of which rule to apply is entirely determined by the form of the
goal. No creativity is required, and 50 a simple tactic can be constructed to enable this
choice to be made automaticelly.

An obvious target for this form of amomated reasoning is the propositional caleu-
lus; for any given proposition at most onc rule is appropriate. This rule is selected by

PROP-TAC:
eq PROP-TAC (% | * |- p * g} = |-and
eq PROP-TAC (¥ | * |- p V q) = |-or
eq PROP-TAC (& | * |- " p] = |-not
eq PROP-TAC (% | * |- p => q) = |-imp
eq PROP-TAC (% | D - q |- *) = and|-
eq PROP-TAC (% | p Vv g |- *} = or[-
eq PROP-TAC (% | ~ p |- *) = noti- .
I p=>ql-* = imp|-

eq PROP-TAC (%

eg PROP-TAC DEFARULT Seq = failtac .

DEFAULT is a specia) tactic keyword which enables a tactic to be defined as having a
particular bebaviour in the event that none of the supplied patterns matches the cutrent
goal.

In general, we will wish to apply PROP-TAC exhauslively across the sequent.
The EXHAUST 1actic previously presented is not sufficient for this task, as it applies
tactics 1o the sequent as @ whele, whereas PROP-TAC, like many of the primitive rules,
applies caly to sequents containing single predicales, As a result, we define MPROP,
which uses LIFT to apply PROP-TAC to each term in Lhe sequent separetely, and to
do so recursively.

op MPROP : -» Tacktic .
op MPROP|- : ProofTactic -> Tactic .
eq MPROP[- (d | PSI |- PHI) =

LIFT(Q,count-preds (PSI), 0, TRY [PRCP-TAC THEN MPROP))

op |-MPROP : ProofTactiec -» Tactic .
eqg |[-MPROF (d | PSI |- PHI} =
LIFT(0,0, count-preds (PHI) . TRY (PROP-TAC THEN MPROP))

eq MPROF (d | PSI |- PHI) = REPEAT{count-preds(P3I) MPROP[-) THEN
REPEAT {countc-preds (PHI) , |—HPROP) .

| -MPRQP works by applying PROP-TAC 10 the last predicale io consequent. If
this succeeds, MPRCOP is applied recursively to the resulting subgoals. If it Fails, the
TRY ensures that the actic behaves like idtac. Since this bappens in the scope of a
LIFT, the resulting predicates (new, or unchanged) are appended to the front of the list
of predicates in the consequent, MPROP applies this tactic (and the one which works on
the antecedent) repeatedly (once for each predicate), and the cycling described above
cnsures that cach predicate in the original goal is considered exacily once.

26

CHAPTER 2. ENCODING YV IN 208]

When writing a recussive tactic it is clearly desirabie to ensure that the tactic will
necessarily terminate. This is readily established in Lhis case by the fact that each
recursive call of MPRCP is preceded by a call of PROP~TAC, and cach successful
call of PROP-TAC reduces by one the (finite) number of propositional connectives in
the sequent. This number is bounded below by zero, and so the recursion necessarily
ternuinates. That the tactic is correct-—ie. that it removes all possible propositional
connectives is hander to demonstrate; such considerations are part of the motivation for
Part II of Lhis thesis.

Another tactic which can be used to good effect is one which atternpts to discharge
the current goal via the as sumpt ion rule, rying each antecedeni-consequent pair in
tum:

op MASSUM : -> Tacric .
op MASSUMR : Nat -» Tactiec .
op MASSUML : Nat -»> Tactic .

eq MASSUM {d | PSI |- PHI) = MASSUML(count-preds(PSI)}
eq MASSUML{K} {d | PSI |- PHI} =
if N == 0 then failtac
else if N == 1 then MASSUMR({count-preds(PH1})
else (MASSUMR(count~preds(PHI))
ELSE {LIFT{0,¢ount-preds (PSI}, 0, idtac) THEN MASSUMLIp(N)1)})
LT +
eq MASSUMR{N] (d | PSI {- PHI) =
if N == 0 then failtac
else if N == 1 then
LIFT (0, count-preds (PSI}, count-preds (PHI}, assumption)
else {LIFT{0,count-preds|PSI),count-preda{PHI) assumption}
ELSE (LIFT(0Q,0,count-preds(PHI),idtac] THEN MASSUMRI(p(N)1})
£1 fi .

As with MPROP, this tactic relies on the cycling obtained by repeatedly applying
a lifted lactic to the last predicate in the antecedent/consequent. MASSUML calls
MASSUMR once for each predicate in the antecedent. MASSUMR attempts to match
that predicate with each of the predicates in the consequent. Execution of this tactic
is bounded by the sizes of PST and PHI in the original sequent. Ii either returns with
a completed proof, or it returns failure. (In practice, the failtac is replaced by
a call to 20BJ’s exception-handling mechanism, so that the point of the failure can
(optionally) be determined).

A sufficient decision procedure for the propositional calculus is achieved by first
removing all propositional connectives {via the rules called by PRCP-TAC) and then
looking for subgoals where the assumption rule applies. If this rule applies to aif
the subgoals, then the original sequent is a tautology, and a theorem of W. As a result,
the following lactic is a decision procedure for the propositionat fragment of W—it
returns no subgoals whenever il is applied to a tautology:

MPROP THEMN MASSUM |
Since the action of MPROP is invariably useful, even if the resulting subgoals are
not discharged by assumpt ion, we would not wish the failure of MASSUM to undo
the work done by MPROP. As a result, a more useful tactic is

MPROP THEN TRY [(MASSUM)

2.9. DECISION PROCEDURES 27

Clearly, these tactics can readily be generalized to apply any tactic in a ‘truly’
exhaustive fashion. MPROP immediately generalises by allowing a tactic argument,
and simply replacing all instances of PROP~TAC with that tactic.

op TOEACH : ProofTactic ~» Tactic .

op TOEACH|- : FProofTactic -» Tactic .
eq TOBACH|- (PT} (d { PSI |- PHI) =
LIFT(0, count-preds{PSL},Q, TRY{PT THEN TOEACH(PT}})

op |-TOEACH ; ProofTactic -» Tactic .
eq |-TOEACH (PT) (d | PSI |- PHI) =
LIFT (0,0, count-preds {PHI), TRY |PT THEX TOEACHI(PT}}!

eq TOEACH (PT) {d | PSI |- PHI} =
REPEAT {count -preds [PSI), TOEACH| - {PT}) THEN
REPEAT {count -preds {PHI} . | - TOEACH{PT) }

Likewise, MASSUM can be parametrised 10 use any rule/tactic which applies w a
pair of predicates,

op |-ANY-PAIR : ProofTactic -» Tactic .

op |~PAIR-REPR : Nat ProofTactic -» Tactic .
op |-PAIR-REPL : Nat ProocETactic -» Tactic .

eq |-ANY-PAIR (PT) |d | PSI |- PHI} = |-PAIR-REPL|count-preds (PSI).PT)
eq |-PAIR-REPL(N,PT) {d | PSI |- PHI} =
if N == 0 then ! rPairRepLPail

else if N == 1 then |-PAIR-REPR{count-preds (PHI),PT
else (|-PAIR-REPR (count-preds(PHI}.PT}
ELSE (LIFT(J,count-preds{PS1),0, idtac}
THEM |-PAIR-REPL{p({N),PT}])

fi fi .
eq |-PAIR-REPR(N,PT) (d | PSI |- PHI) =
if N == 0 then ! ’PairRepRFail
else if N == 1 then LIFT{0,count-preds (PSI),count-preds (PHI) , PT)

else (LIFT{0,count-preda(PSI},count-preds (PHI}.PT)
ELSE {LIFTI(0,0,count-preds|(PHI}, idtac)
THEN |-PAIR-REPRI(p(N),PT]})
i £1i .

Comments about wermination are again relevant here. In the case of TOEACH, the
argument lactic (PT) must, like PROP-TAC, have the property that it is applicable to
every goal (and if necessary has a DEFAULT clause (o catch this); and it musi, after
some finite time, fail to apply to any goal (i.e. it must decrease some bound function).

Another wactic, having very similar properties to TOEACH, can be described. The
design of this tactic owes more to thal of ANY--PAIR than to that of TOEACH. The
tactic searches for somewhere to apply its argument tactic (PT), (erminating imrnedi-
ately after doing so. If no such place can be found, the tactic fails. Assuch, exhaustive
behaviour is achieved by EXHAUST{ | -TRY-EACH}).

op |-TRY-BACH : ProofTactic -» Tactic
op |-REF : Nat ProofTactic -» Tactic .

eq |-TRY-EACH (PT] (d | PSI |- PHI) = |-REP{count-preds (PNI), PT}
eq {-REF(N,PT) {d | PSI |- PHI} =
Lf N == 0 chen failrac

else if N == 1 chen LIFT(0,0,count-preds (PHI),.PT)

28

CHAPTER 2. ENCODING W IN 208J

2.10

else (LIFT{D.Q,count-preds{f4I),PT}
ELSE (LIFT(0,0.count-preds [PHI), idtac) THEN |-REPI(p{N).PT}))

£i £i .
op TRY-EACH|- : ProofTactic -» Tactic .
op REP|- : Nat proofTactic -» Tactic .

eg TRY-EACH|- (PT) (2 | PS1 |- PHI} = REP|-{count-preds{PSI},PT} .
eq REP|-{N,PT) (d | PSI |- BHI) =
if N == D then failtac
else if N == 1 then LIFT(0.count-preds(ESI),Q, PT)
else (LIFT(0.count-preds(PSl),0,PT)
ELSE (LIPT{0,count-preds(PSI).0, idtac) THEN REP|- {piN}, PT)))
£i £i .

op TRY-EACH : ProofTactic -» Tactic .
eq TRY-EACH(PT} Seq = |-TRY-EACK(PT) ELSE TRY-EACH|-(PT)

These tactics are sufficiently complex that their structure (and correctness) may
not be apparent. Chapter 6 revisits these definitions, in a clearer form, suggesting
that TOEACH { PT} and EXHAUST { TRY-EARCH (PT}) are equivalent in their effect,
with TOEACH performing a depth-first search, and TRY -EACH forming the basis of a
breadth-first search.

Tactics for WW’s Expression Axioms

Just as the rules dealing with propositions are usefully collected together into the tactic
PROP-TAC, most of Ws axioms dealing with expressions can similarly be viewed as
a set of mutually exclusive tactics, with the form of the goal determining which tactic
is to be applied.® The tactic EXP -TAC deals with such situations—dealing principally
with predicates of the formr € w, ort = w.

For example, the code for dealing with binding membership of schemas looks like
this:

eq EXP-TACI(x]) (% | * |- b \in Sc) = |-BINDINGMEM THEN subst .
eq EXP-TAC(x) (% | b \in Sc |- *) = BINDINCMEM|- THEN subat .

Set comprehensions may appear in two different forms—with or withoul a term after
the ». The rule setabbr converts from the short to the long form (providing the
characteristic tuple of the defipition). EXP-TAC must be able to deal with both forms:

eq EXP-TAC(x) {% | = |- t \im { St }) = }-apply(’setabbr) THEN
|-SETCOMP THEN
TRY { | -ONEPT) .

eq EXP-TAC(x) (% | * |- t \in { St <.> v }) =|-SETCOMP THEN

TRY { | -GNEPT)

In the ¢ € u case, the choice of tactic is dependent entire{y on the form of u. The
case of § = u i5 rather less certain. The best case is when ¢ and g are equal: then the
rule of reflection applies; otherwise, an instance of the axiom of extension is needed.

eq EXP-TAC(X) (% | * |- t = u) = reflection ELSE |-EXTENSTOM(x)

SCompare R's Theories.

2.10. TACTICS FOR W'S EXFRESSION AXIOMS 29

Sometimes equality predicates have been introduced 10 the antecedent in order to
be used in rewriting other expressions; here Leibniz’s rule is used. The fom given
in W is rather contrived, so various tactics are needed in order 1 accomplish such
rewriting in practice.

For example, the rule of Leibniz is expressed as

s=n{x~1hph

Py vy (Leibniz)

’
s0 it is reasonablc to construct a tactic which performs a similar inference in the

consequent:
s=tk{x~1)hp (Leib)
s=th{x~shp .

op |-LEIB : -» Tactic .

eq |-LEIB (% [t =u |- <] ¥ ">u |>» . p) =
t coTi<| ® ">t |> . ™

TRENL

{ THIN(0,0.2)

{ LIFT(0,2 1,0,Leibniz) THEN
ASSUMPTION(2,1) }

H

A more devious manceuvre must be employed if rewriting is needed, ut the pred-
icate to be rewritten has no binding attached:

s=tdx~thph

= ipF (Leibnizs)

op LETBNIZ*}- : -»> Tactic .

eq LEIBNIZ*|- (% | x =t . p |- =) =

{ LIFT(D,2.0,T88U8]|-(<| x > x |» . p)) THEM
LIPTID.2 1,0,Leibniz) THEN
LIFT(0,2,0, SURST] THEN
LIFT(0,2 1,0,idtac)

The crucial feature of this tactic is TSBUS, a tactic which behaves like SUBST in
reversc (e.g. in this case, it takes the goal p - and replaces it with { x~ x p.p).

op TSBUS|- : Predicate -» Tactic .
eq TSBUS|- (q! (% | p |- *) =
(cUTiq)

THENL

(GenAssUM(1,1),

THIN(G,2,0) })

(GenASSUM simply applies the substitution rules to the sequent—to normalize the
terms—before atempting the assumptionrule.)

A similar approach can be employed 10 construct REFL | -, a tactic which reflects
equalities (converting 7 = u I into 4 = r), so that the Leibniz tactics can be applied
to goals in which the equality is backwards. For example,

LETBNIZ* |- ELSE {REFL|- THEN LEIBNIZ*|-]
will behave like thc Leibriz+ described above, whether the goal presented js (x =

tp Fyor(f = x,p F). A nomber of tactics for applying Leibniz’s rule in various
antecedents and consequents are defined. The tactic MLEIB tries each of these jn turn.

30

CHAPTER 2. ENCODING W IN 20BJ

2.11 A Toolkit Tactic

2.12

One of the features of Z which makes it prectical for use as a specification language
is the large library of specification constructs which are described in the langwage
reference documents [Spi92a, BN192], and may be assumed in any specification—
usueliy referred 1o as the Mathematical Toolkit. The encoding of Jigsal¥ implements
a small subset of these definitions; sufficient merely to support the case studies which
have been undertaken.

The encoding provides a foolkit tactic, TK ~TAC, which describes how to rewrite
a given goal 1o remove any reference 1w a function named in the toolkit—for example
TK-TAC for ‘dom’ is almost identical 1o the DOM-TAC previously described. Like-
wise, goals featuring empty sets can be handled with a part of TK- TAC which invokes
EMPTY-TAC. Within the small set of such definitions encoded in JigsalV, various
patterns emerge, suggesting that it would not be hard 1o ¢xtend TK-TAC 1o cover the
whole toolkit, For example, DOM-TAC can be converted inta a tactic for dealing with
— U . with very few changes, the chief of which is to change the term which is the
subject of the CUT to include a binding cortaining two terms instead of one. Union is
described in the same gencric box as intersection and set difference. A suitably general
tactic will use GENDEF to bring that generic definition into the antecedent of the goal,
and then use ANY-PAIR to find a consequent ierm which can be rewritien using one
of the definitions.

Part of the presentation of the toolkit in [Spi92a] is an ad Aoc collection of general-
purpose laws which have been found to be useful in reasoning about Z specifications.
Qur aim is that TK-TAC, together with the tactics outlined above {collected together in
the next section) should be able 10 prove such laws, as they arise in proofs. This is not
the most efficient approach to theorem-proving, hut provides a demonstrably sound
method of applying these laws (even in the presence of modifications to the logic) and
since 20BJ has no lemma-sioring capability this is the only way 1o construct such a
library in this frame. Moreover, the set of laws in {Spi92a] makes no pretence at being
complete; a tactic abie to prove a wide class of such rules may be a usefu! way of
completing the sel.

Combining Tactic Actions

A natural extension of the propositional calculus decision procedure is the tactic be-
low, which attempts to apply cxhaustively all of the propositional calculus rules, the
expression-handling tactics, the toolkit definitions, and the “easy’ two predicate calcu-
Ius rules.

op BIG-TAC : -» Tactic .
eq BIG-TAC Seq = FIRST(TH-TAC,EXP-TAC (x} . PRED-TACZ, PROP-TAC} .

op NEW-TAC3 : -~» Tactic .
eq NEW-TAC3 Seq =
EXHAUST (TRY-EACH (BIG-TAC) ELSE
| -ANY-PATIR (assumption) ELSE
ANY-FAIR| - {QTHER-WIDER-FPRED)
) .

2.13. BINDING SUBSTITUTION 31

213

(Notc that FIRST is a generalization of ELSE: it anempts to apply each of the tactics
in turn, reuming with the resule of the first successful application {or failing if none is
applicable).

This tactic could also include calls 10 AUTG-SCHDEF within its list of tactics
to try. This has been omitted here as it can lead 10 the *explosion’ of a proof. In
particular, the indiscriminate expansion of schema definitions in the antecedent leads
to very large sequents, with a consequential deterioration of efficiency. Instead, the
tactics for dealing with particularly common goals (see below) can be crafted o include
appropriate expansions of included schemas. [f the expansion of schema terms is
avoided, this tactic can be reasonably efficient. The time taken by OB/ to by 10
apply the various rulesftactics listed in BIG-TAC is very small in cornpanison to the
time taken to calculate the side-condition on rule-lifting. More discussion on tactic
construction will be found in Section 4.5.

Binding Substitution

Mast of the binding substitution rules given in [WB92, Tables 5-7] can be imple-
mented direcily as OBJ3 rewnites, as Section 2.3 suggests. Because delayed substitu-
tion is often useful (for example, in order to apply Leibniz's rule), these are introduced
using the label {axiom] which 20BJ takes 10 mean that they should not be used in
‘normal’ reductions, but only on request-—-when called by name, or when a built-in
such as filtdred is used.

Certain rules cannot be applied in this way. For example, the ‘leap-frog® rule;®

b.(c.p) = c.{bp) wheneveracNgb=S Ac(b)Ngc =&

must be applied sparingly if infiniie loops are Lo be avoided. This is the mosi problem-
atic of the substitution rules. Others must, though, be applied with caution.

bp=p wheneverabNg,p=2

(pred-subst) is one such rule. This is because the empty binding § is frequently
used with substitution to explode certain definitions (schemas used as predicates, for
example)}. For this to work. the binding must be distributed through the schema {by a
rule like b.[d | p] = b.[d] A (b.p)), and not simply removed by the ruk above.

These special cases are covered by having the subst rule look like this:

let excluded-rules = { ‘leap-subst ::
{*split-subst ::
(“pred-subst ::
‘decor-subst)l) .
eq subst-rule (d | BEI |- pS1) =
(filtdred (’%, excluded-rules ,top.{d | PHI |- PSI)))

The other exceptional rules being split-subst:

{x~st; Bhp=Q8).({x~a1hp) ol Bfn¢t=@

9This is omitted in [WEB92], bw is essencial when nesied subshitutions are uscd, n capanding generic
definitions, for exampie.

CHAPTER 2. ENCODING W IN 20BJ

and decor-subst
b.(5¥) = [b.8]¢ provided ab a(S¥) =@

When rewriting involving these special rules is required, a tactic applies them in a
controlied way. A generalized substitution tactic is

op GenSUBST* : -> Tactic .

eq GenSUBST" (% | * [~ (b . P) =

{
subst THEN EXHAUST(|-applyi‘pred-subat)) THEN
subst THEN EXHAUST(|-apply(‘decor-subst)] THEN
subst THEN TEY(|-apply('lsap-subst}) THEN
suhst THEN EXHAUST(|-apply(’decor-subst}) THEN
subst THEN EXHAUST{|-apply!‘sch-subst)} THEN
subst THEN EXMAUST{|-apply!-pred-subst]) THEN
subst

)

Discovering which combinations of rules led to rewriting problems was very much
an ad hoc process. Ideally, the set of symtactic equivalences in the standard [BN*92]
should be Church—-Rosser and lerminating (i.e. if used as lefi-to-right rewrites they
should produce the same end result, regardless of the order of application, and do so
in a finite time).

Schemas as Predicates

W uses a trick with birding substitutions in order to expand sequents of the form
F [$], making, for example, the inference

FxeNAx<E
Fix:N{x<§f] .

The expansion cames by exploiting the syntactic equivalence b.|d | p] = &.[d] A b.p,
and then b[x : ¢] = b.(x € 1), elc. By choosing & to be the empty binding £,
a general-purpose transformation can be accomplished. MKBIND-TAC transforms a
predicate into one prefixed by an empty binding (the step (+) is accomplished by Lhe
rule pred-subst, see above):

Hip pFr (#)
H¥p.p Gpbp
Fp

op MEKBIND-TAC : -»> Tactig .
eq MKBIND-TAC ((CUT(</> . p)
THENL
(THIN{(D,0Q,2}

{ LIFP(0,1.0.apply|-('pred-subst)) THEN assumption!
)
)

Then a tactic like GenSUBST *—but nor beginning with pred-subst-—can be
employed to normalize the predicate.

Chapter 3

Case Study

31

can be used, this chapter describes the process involved in discharging some

of the usual proof obligations arising in a ‘realistic’ Z specificaion. In the
pages which follow, tactics for producing suitable proofs for a case study by Wood-
cock [Wo092) (A Mulii-Level Security System) are presented.

Q § A DEMONSTRATION of the way the system described in the previous chapter

Specification

This specification comes from a problem domain in which Z has been used extensively
-—the design of secure systcms. We describe (at a high level) the essential components
of the system:

Users are individuals who may use the system, in arder to access (read and/or write)
data,

Subjects are active processes in the system.

Objects are data items in the system (documents, files).

Levels are the classifications which objects attract (and to which users are cleared)—
restricled, classified, . . . top secret,

Profiles are records of which users may access data at which level of classification.

Access modes may be read, write or execulte,
The given sets of the specification, then, will be as follows:
[Level, User, Subject, Object]

A common requirement for such multi-level security systems is one of mon-
interference. This is commonly characterized [BL.74] as No read up; No write down:

33

34

CHAPTER 3. CASESTUDY

if x reads v, then x must be cleared 10 access data classified al least as highly as v. Con-
versely, if x writes y then ¥ must be sufficiently highly classified as to cover anything x
might write.

These ideas lead 1o the need for a security level dominance relation. We specify
it here, without giving any formal properties for it, though we would expect it to be
reflexive, antisymmetric and transitive.

V> - Level ++ Level

Profiles (as mentioned above) will be given by a (fixed) function from users 1o sets
of ¢learance levels.

| profile : User — P Level
Access modes are specified hy a free datatype.
Mode = read | wrile | execute

The state of the system consists of functions giving ievels to subjects and objects,
recording which subjects are accessing which objects with which modes, and which
users own which subjects. The invariant says that all accesses must be made by
subjects with classifications upon objects with classifications, and that each subject
owned by a user must be classified—and each classified subject must belong to a user.

S
suk : Subject +» Level
obf : Object » Level
acc : (Subject x Object) + Mode
prin: Subject -» User

domace C (dom sub) x (dom obj)
dom prin = dom sub

The security requirements for the system are given by three additional schemas,
each adding an extra predicate 0 the state invaniant. Firstly, each subject must be
cleared to a level which is one of those possible for its owner.

—_51
5

Y1 : domsub e sub s € profilelprin 5)

Secondly, whenever a read is taking place, its subject must be at least as highly
classified as the object being read.

52
S

Vs : Subject; o Object » ({s,0) ++ read) € acc = subs > objo

Finally, whenever a wnite is laking place, the object being written must be at least
as highly classified as the subject doing the writing.

3.1, SPECIFICATION 35

53
s

¥s: Subject; o : Object » {(s,0) v+ write) € acc = objo > subs

The system is secure when these three conditions hold simultaneously.
SecS=={S1AS$2) A 53

Initially, nothing is classified, no access is taking place and no cbjects exist.

SecSinit
SecS'
suld =&
obf =@
acc' =
prin’ = @&

In the following section, we shall demonstrate that such a system exists—i.e. that
the initial state predicates salisfy ihe state and security invariants.

- A SecSinit » true

A typical operation on the stale is 10 open an object for reading. The operation
must be supplied with an object and a subject on which to operate.

— OpenToRead(
AS

s? . Subject
o? : Object

s? € domsub

0? € dom obj

Vs : Subject o (s,0?) € domacc
sub 57 > objo?

sub' = sub

obj' = obj

acc’ = acc U {(s?,07) = read}
prin’ = prin

We shall demonstrate that the precondition of this schema is

__OpenToReadOPre
S

57 1 Subject

o? : Objeci

&7 € dom sub

o? € domobj

Vs Subject o (5,07) ¢ domacc
sub 57 > obja?

36 CHAPTER 3. CASE STUDY

3.2 Initialization Theorem

It is usval, when giving the Z specification of a sysiem’s state, to describe the initial
state of the system. This generally serves two purposes:

« it gives suitable injdakizations for the state variables when the system is refined
to code; and

o the initial state usually gives explicit values 1o the slaie variables, so demonstrat-
ing that it satisfies the global predicates on the slate—i.e. demonstrating that the
stale has a model.

Therefore, it is necessary 1o show that the initial state satisfies the state schema. The
following theorem is sufficicnt lo demonsuate this:

F A8ecSinir o true

Recalling the form of the inference rule for -3, the first step, clearly, is to cut in a
binding, allowing the existential guantifier 1o be removed:

b & [SecSinit]
'_

ASecSinit o true,
b.true

oo (F3)
b € [SecSinii]
-
F b € [SecSinit], 3 SecSinit © rrue I SecSinit o true (ext)
cut

F ASecSinit » true

The tight-hand branch is trivial to resolve. The lefi-hand branch most proceed with
binding membership and substitution, followed by an application of the definition of
schema SecSlnir.

b b.SecS’ © b.(sub' =) Fb(obf =2) Fblacc’ =&) F b(prin’ = &)
F b.SecSinir
F b € [SecSinif], 3 SecSnit o true

(APPLY-SCHDEF)
(thin, bindingMem, subst)

A general tactic which makes these steps, supplied with a binding b and a schema
name SN is

CUT(b \in | S¥ J)
THENL
{ | THIN(0,0,2) THEN
| -BINDINGMEM THEN
subst THEN
APPLY -SCHDEF (5N))
, | |-exist THEN
LIFT{0,0,2,subst THEN |-true) }
)

3.2. INITIALIZATION THEOREM 37

Clearly the binding recessary b is the one which will allow most of thesé subgoals
to be discharged by reflection:

{ sub! ~ @5 obf ~+ 2; acd ~ @, prinf ~ @} .

Following application of the tactic given above, it will be necessary w continue
to expand schema definitions, and 10 simplify propositional/predicate formulae. Thus
a tactic like NEW-TAC3 is needed. We could, at the same time, apply miles from
TK -~ TAC, but for reasons of efficiency—mentioned above, and expiored further in Sec-
tion 4.5—this tactic is not included, The tactic below combines the steps already taken
with this general eabaustive behaviour, producing a general tactic for commencing
initialization theorems.

op INIT-TAC : WordDec BindingExtn -> Tactic .
eq INIT-TAC(x,b) (% | * |- (|E|] SN <> True}) =
(
CUT(b \in [SN 1)
THENL
{
THIN(G, 0,2},
[-exist
) THEN
EXHAUST (
TaY-EACH (FIRST (PRED-TAC2, PROP-TAC, AUTO-SCHDEF, EXP-TAC {x)) }
ELSE |-EACHPAIR{assumption)

Since the schema SecSTni consists merely of equality predicates, together giv-
ing explicit values 10 all the state variables, there is no need for the user to con-
struct the binding b; a simple ORJ3 function can do it, permitting the definition of
AUTC~INIT-TAC. This is worthwhile since writing schemas like SecSinir is a very
common Z style.!

op ax-part ; Sche'.naDef'A> AxiomFart .
eq ax-part (SCH SN 15 DP ST AP END} = AP .

eq ax-part (SN ="= [(d |\ p 1} =p .
op init-binding : AxiomPart -»> BindingExtn .
eq init-binding (x = t) = <| x "> ¢ [> .

eq init-binding (ix = £} \\ AP) =
<] x "> t |> bindcat init-binding (AP)

op AUTQO-INIT-TAC : WordDec -> Tactic
eq AUTO-INIT-TAC(x} (% | * |- IE| SN <.> True) =
INIT-TAC{x, init-bindinglax-part {SN -def}]} .

Subgoals

Applying AUTO-INIT-TAC to our initial goal yields 24 subgoals. Many of these are
duplicated, because SecS is defined as the conjunction of threz very similar schemas,
each of which includes the stalc schema S. Hence, the state schema features in three

 INotice that by defining the auxiliary functions scen here, nothing is added to e logic. If they contain
ermors, the tactic will simpfy fail to spply (or wil) produce unsolvable subgoals).

CHAPTER 3. CASE STUDY

branches of the proof tree—and in each case leads 10 seven subgoals. The remaining
three subgoals are respectively contributed by S1, 52 and 3. Omitting duplicates,
Lhese subgoals are:?

F @ € Subject + Level

F @ € Object + Level

F Z € (Subject x Object) «++ Mode

\ @ € Subject + User

I dom @ C dom @ x dom @

y:dom@Fy € dome

5:dom@ - @5 € pmfile(@ .s')

s: Subject; o : Object|((s,0) » read) e BF P52 B o
s : Subject; o : Objecil((s,0) » write) e @Fr Bo> @

It is worth noting that Woodcock armives (by a different route) a1 the same list of
subgoals in [Wo092, page 11]. At this point he writes ‘Each of these follows from
properties of the correct instantiations of @'. Some effort is needed to verify this
in W, but all this work can be accomplished by the general tactic described above
(NEW-TAC3); i.e. each of these goals is an instance of a rule which might be presented
alongside the woolkit definitions.

For example, first goal is solved by rewriting with the definitions of -» and @. The
dehnition of -+ is given by a set comprehension. Showing that @[Subject x Level] is a
member of this set entails showing

F & € Subject ¢y Level
and

FV¥x: Subject; yi,y; 1 Levele (x» y, ET Az y EB) 3y =¥z .
The first of these subgoals is simplified by using the definition of ++ 1o rewrite it
as b @ € P(Subject x Level). This can be rewritien using the axiom for powerset
membership (as a rule), and predicate calculus, giving

x € B x € Subject % Level .
The definition of &, and more predicate calculus, eventally gives false - ., ., which
completes the proof (via the rule falset).

The second of the subgoals can be simplified by predicate calculus, to give

x : Subject; y1, ¥z Level [x~y €@ xrpne@ by =y .

and then either of the predicates in the antecedent can be rewritien to false, as before,
completing the proof for this subgoal, too.

*Notc that ¥ : dom@ r ¥ € dom@ is not entirely wivial. The generic Fnrﬂ.mrm of dom and
&, which are omitied here, arc different in the dem and the conseq bgoal it in fac
y : dom(Subyecs, Useri@{Subject x User] - y € dom{Subject, Level| @[Subject x Levt.!]

3.3. PRECONDITION THEOREM 39

3.3 Precondition Theorem

Another proof which it is often instryctive to produce is the proof Lhat an operation has
a particular precondition. This is conventionally produced in a consmruciive manner:
the precondilion is that schema which is obtained by hiding (existentially quantifying
over) all the output and final-state variables; this schema s then simplified. [n W such
an approach is not an option, and so instead we must propose a precondition and then
demonstrate that it is logically equivalent to the schema produced by hiding. That is,
for schema P, having proposed precondition Ppre, we must show that

pre P < Ppre .

However, this cannot simply be packaged into a WV sequent as a consequent, since
it has many free variables. One solution is to add a declaration pant whick will *close’
the sequent. This is hard to do neatly, so inslead we prove two theorems:

pre P - Ppre
and
Ppre - pre P .

These are closed theorems provided the alphabets of pre P and Ppre are identical.
Type-checking is sufficient 10 guarantee this.
Therefore, for the OpenToRead(operation, we must show

pre OpenToRead0 + OpenToRead0Pre
and

OpenToRead0Pre & pre OpenToRead(.

First Goal

When the specification is written in a style which makes the precondition explicit in
the operation schema—as in this case—the first of these goals is quite straightforward.
The declaration part musi be brought into the antecedent, and the definition of ‘pre’
expanded.

pre OpenToRead(| OpenToRead0 \ (sub', obf ,acc’, prin’) + OpenToRead0OPre
pre OpenToRead0 | pre OpenToRead0 - OpenToRead0Pre
pre OpenToRead() - OpenToRead(OPre

(predef)
(Declpred)

Application of the rule for hiding requires the presence of a predicate asserting that (in
this case} for all instances of OpenTaRead(, some schema text is saosfied, with that
sehema text having as its alphabet the variables being hidden:

3Ste S+
VS e85\ (xp,-om) F
A suitable schema text is simply the restriction of the declaration pant of OpenToRead0
10 its post-state and output variables. A tactic introduces this via cu, and uses schema

expansion o demonstrate that it is rue {postdecls extracts the rievant parts of the
declaration from the named schema):

(hidingh)[aSt = {n1,...,1,}]

40

CHAPTER 3. CASE STUDY

ap PRECOND-FORALL—-INTRO : SchemaName -~> Tactic .
eg PRECOND-FORALL-INTRO (SN} (d | PHI |- p} =
{
cuT {|A] 8N <.> [postdecls(sSn})}
THENL
{ (THIN{0,C,2) THEN
LIFT(0,0,1.]-al] THEN DECLPRED) THEN
LIFT(0,1,0,EXHAUST {TRY - EACH (AUTO-SCHDEF) }) THEN
LIFT{(0,0,1,EXFLODE} THEN
LIFT(0,C,1,HPROF} THEN
MASSUM)

idrac

Following application of this tactic, the hiding rule can be applied, and then the
3 ryle. Afier this, all that is necessary is o expand all of the schema definitions,
and discharge all of the goals {or most of them, depending on the style of operation
schema) via the assumption rule, The following tactic accomplishes all this.

op PRECOKD-A-TAC : -» Tactic .

eq PRECOND-A-TAC ({pre Sc) | * |- T1) =

{
DECLPRED THEN
LIFT(0,1,0,apply|-{‘predef} THEN subst} TREN
PRECOND- FORALL-INTRO (Sc) THEN
LIFT{0,1 2,0, hiding|- THEN exist|-) THEN
LIFT{0, 1,0, EXHAUST {TRY-EACH (AUTO- SCHDEF) } } THEN
LIFT{0,0,1,AU70-SCHDEF THEN EXPLODE THEN MPROF} THEN
TRY {MASSUM) TNEN
LIFT{0,0,1,AUTO-SCHDEF THEN EXPLODE THEZN MPROP) THEM
TRY {MASSUM)

)

The expansion of schemas in this tactic is a compromise between generality and effi-
ciency. A more general tactic would exhaustively expand schemas and propositions,
trying the assumpiion rule after each action. As such this tactic specialized to the
particular instance of the precondition theorem under consideration here.

Second Goal

The second goal requires more work. However, it begins in a similar manner.
This time predef and hiding must be applied in the consequent. The tactic
PRECOND-FORALL-INTRO is used again, to provide a suitable predicate to satisfy
the hiding rule.

Afier this, in order to satisfy the resulting existential quantification in the con-
sequent, it is necessary toO use cuf to provide a binding. Since the operation is
deterministic—i.e, each of the post-state variables has its value described by an equa-
tion of the form X = f(8), such a binding can be created in a similar manner to that
used in the initialization theorem above. The tactic post —CUT-TAC does this.

op PRECOND-B-TAC : -> Tactic .
eq PRECOND-B-TAC (T1 | * |- (pre Sc)) =
{ DECLPRED THEN
LIFT(0,0,1, |-apply(’'predef) THEN subst) THEN

3.3, PRECONDITION THEOREM a1

LIFT (0, 0,0, PRECOND- FORALL~INTRO(Sc)] THEN
LIFT(0,1.1, |-hiding) THEN

post-CUT-TAC THENL

{ { THIN(D.,0,2) THEN

LIFT(0,0,1, EXP-TAC(y) THEN SUBST*) THEN
LIPT(0, 1,0, EXHAUST (TRY- EACH {AUTO- SCHDEF)) | THEN
LIFTIC,0,1,MPRCP) THEN

TRY (MASSUM))

LIPT(0,1,1,|-exist THEN THIN(D.l,1)) THEN
LIFT (0,1, 0, AUTO-SCHDEF! THEN
LIFT(C, 0,1, AUTO-5CHDEF) THEN
TRY{LIFT(D,0,1.1eflaection!} THEN

TRY (MASSUM) !

)

The result of applying this fully-general 1actic to the geal Ppre F pre P js three
subgoals

OpenToRead0Pre | 57 € Subject, o7 € Object,
ace € (Subject x Object) «—+ Mode
F acc U {(s?,0?) — read} € (Subject x Object) ++ Mode

OpenToRead0Pre | 57 € domsub,o? € dom obj,
(V3 : Subject » (5,07) & domacc),
sub s? 2 objo?, 5,57 € Subject, a? € Object
F { sub’ ~+ sub; obf ~ obj;
ace’ ~» ace U {{s7,07) — read}; prin’ ~+ prin [.AS

5 : Subject; OpentoRead(0Pre | Vs : Subject » (5,07) & domace
k(5,07 ¢ domace

The third of these subgoals is the easiest 1o satisfy: it suffices to provide 2 binding
(the identity) to specialize the universal quantification so that the assumption rule can
be applied:

CUT{ «| s "> s |> \in [s : Subject })

THENL { (LIFT(0.0,1,EXP-TAC(X) THEN subst} THEN MASSI)
, (WIDER-PRED-TAC THEN MASSUM} }

The first subgoal is proved by unpacking the consequent using the toolkit definition
of ¢4, and then the axiom {inference rule) for powerset. This gives a goal of the form
¥ € acc U {{s7,07} — read] v y & (Subjeci x Object) x Mode This is solved by
invoking the toalkit definition of U, which entails showing that the arguments to U
belong to its declared type (generic parameters are suppressed here). Thus it becomes
necessary to show {(s7,07) — read} € P((Subject x Object} x Mode). All this
might be accomplished by NEW-TAC3, but the number of definitions involved makes
it inapproptiate, for efficiency reasons?, and so a hand-crafted tactic is used: *

*No doubt NEW-TAC3 could be improved ypon, bat the speed of the toal precludes experimentation
with bewristics for finding proofs clickently.

4This cntails a smalt cheat. made is introduced by an axdef, rather than a froe daarypc definition {(the
two afe cquivalent—see [WB92]). The rule for the Latrer hag pot been implemented

42 CHAPTER 3. CASE STUDY

LIFT{D,0,1, TK-TAC THEN EXP-TAC(y} THEN |-all THEN DECLPRED)
THEN LIFTI(0,1,0,TK-TAC)
THENL ((LIFT(0,0,1,EX?-TACiz}) THEN
MPRED THENL
{ (LIFTi0,1,0,apply|-(«->def)} THEN subst THEN MASSUM},
idtac)),
(LIFT(Q,1,0,EXP-TAC({z)) THEN MASSUM) | THEN
LIFT(0,9,1,EXP~TAC{z) THEN |-all THEN
DECLPRED THEN LIFT(0,1,0,EXP-TAC(y))} THEN
LIFT(0,1,0, TK-TAC THEN subat THEN TUPLEMEM |-
THEN and|{- THEN L1FT(0.1.0, TUPLFMEM|- THEN and{-)}) THEN
LIFT(0,0,1, EXP-TAC (x) THEN |-and) THENL
((LIFT(D.§,1.EXP-TAC (x) THEN |-and)
THENL ({LIFT(0,1,1,|-LEIB-TAC2{x)) THEN MASSOM),
{LIFT(0, 2,1, {-LE1B-TAC2{x)) THEN MASSUM))) ,
{LIFT{0,3,1, |-LEIB-TAC2 (x}) THEN AXDEF (defmode) THEN MRSSUM) }

Clearly this tactic has no generality whatspever. It is, however, the sont of tactic which
is worthwhile retaining as a ‘recipe’ of how to prove this goal—so that if the proof
has to be repeated (when the specification changes) it can (with luck) be done so
automatcally. A more well-structured tactic would, of course, be easier to re-use.
Finally, the second goal must be simplified using schema expansion:

LIFT{0,0,1, AUTO-5CHOEF) THEN

TRY (MASSUM) THEN

LIFT(0.5,0, AUTO- SCHDEF) THEN

LIFT{0,0.1, AUTO-SCHOE®) THEN

TRY (MASSUM}
This leads to two subgoals. The first of these is the first subgoal above. The second is

OpenToRead0Pre
+ dom(acc U [(s7,07) — read}) € {dom sub x dom obj)

An application of TK-TAC to this yiekis unsurprisingly iwo new subgoals:
OpenToReadOPre

F ¢ 5~ dom(acc i {(s?,47) — read}); T~ domsub x domobj § €
[5 : P(Subjecr x Object); T : P(Subject x Object)}

OpenTaRead0Fre; x : Subject x Object |
x € dom{acc U {(57,07) — read})
F x € dom sub x dom obj
The first of these simplifies to
OpenToRead0Fre b dom(acc Ut {(s7, 07) — read}) € P(Subject x Object)
and

OpenToRead0FPre - dom sub x domobj € P(Subjecr x Object)

The proof continues in similar vein for a while. Each definition (of *~, dom,
- etc.) must be expanded (with TK-TAC), and the function arguments shown
to belong to the relevant domains. NEW-TAC3 is able to accomplish many of these

3.4. CONCLUSIONS 43

34

steps, but with the complexity of the terms growing (as dehnitions are expanded,
their bound variables become variables introduced in the sequent's declaralion part,
and the predicates involving them are multiplied), its performance becomes appalling.
Certain steps need applications of Leibniz's rule—to rewrite 1he consequent using
equations from ihe aniecedent—and these are best guided by hand. (X20BJ also
crashes when the goals exceed 1024 characters, which has made completing the proof
rather difficult.)

Conclusions

This case study demonstrates that proof of worthwhile theorems is possible in JigsaW.
The simple general-purpose tactics outlined in Sections 2.10, 2,11, and 2.12 prove
useful in strucnuring the proof and adding reusability, but the general tacticNEW-TAC3
is limited in its usefulness due to efficiency problems. Its siructure could be improved
by giving il a better heuristic (rather than simply applying each rule at each predicale,
breadth-first).

The proofs are protracted due Lo many arguments using points. We might hope that
taclics could bring the level of reasoning up to the algebra of sets and funclions. The
nead to demonstrate that functions are applied within their domains, however, tends to
re-introduce such low-level detail-—see Section 4.2.

Chapter 4

Discussion

4.1

proving system in which the proof abligations arising in Z specifications could

be discharged. This goal has been achieved. The level of automation possible is
heavily dependent on the style of specification under consideration: for the specifica-
tons wrinen in the style of Chapler 3, autornation is moderately advanced.

An initial estimate of the effort involved (‘it should take two weeks’} proved to be
grossly optimistic; many months of effort have been expended in bringing the tool to a
state where the case study outlined above could be undertaken. This chapter discusses
the chief difficulties and benefits which this approach has given, and compares it with
other proof tools having a similar scope.

The system which has been produced has been of considerable benefit in exploring
how 1o reason in W; indeed, it has revealed several infelicities in the original presen-
tation of W. 20BJ seems to be well-svited to producing this sort of system. The chief
benefit has been the ability to construct with relative ease a (probably) faithful encod-
ing which Ipoks rather similar to the ‘pencil-and-paper’ presentation of the logic. Such
a presentation has the advantage of being easy to verify correct (informally, at least),
and one retains some intuition aboul how proofs should proceed.

Nevertheless, JigsaWW as described in the previous chapters, can be no more than
a prototype. It is somewhat incomplete (most of the rules of W are included, but only
small pans of the Z mathematical toolkit have been encoded), it requires a large, fast
machine in order to run, and it is nevertheless very slaw.

THE GOAL OF THIS PIECE OF WORK was to implement a prototype theorem-

Soundness

One important motivation in some of the design decisions which have been taken is
that of seundness. There is little value in conducting proofs about formal specifications
in Z using a system which is not demonstrably sound with respect to the formal
semantics of Z, since it will give no increased confidence about the correctness of

45

CHAPTER 4. DISCUSSION

4.2

the specificalion/refinement (especially if the proof is construcied by a machine, and
is too complex to check by hand).

There are broadly two areas in which unsoundness may arise in a proof assistant.
It is necessary to demonstrale that the logic underlying the tool is sonnd,! and to show
that the encoding of 1hat logic in the proof framework is faithful.? The approach taken
here is to build a tool which is based on a deductive system which has been widely
circulated, and subject to peer review, and so is accepled as sound. The verification of
faithfulness must entail some lack of formality (since the accepted presentation of the
logic is not within the meta-logic of the theorem-pioving tool)—but, as will be scen
from Table 4.1, the critical code (i.e. the basie rules and the meta-syniactic definitions
of a, ¢, eic.) is very compact and, as has been seen above, reads very much like the
originat presentation.

Choice of Logic

Since Z is a typed language. some of the infuition which one brings from classical
untyped set theory and logic is unsound. For example, since a theorem of classical
predicate calculus is

(Vxe P} = Plx\g] ,
we might casually write down
(Vx:X e P)= Pli\q] ,

but this requires as a side-condition that X be non-empty.

Moreover, the semantics of Z gives special care 10 the treatment of undefined
expressions. A logic for reasoning about Z specifications must treat undefined values
in a manner which is consistent with this semantics. Also, Z’'s mathematical toolkit
is pre-determined. Some systems of computational logic wilt offer large libraries of
computationally efficiert definitions of datatypes (scts, relations, sequences, etc), and
theorems about them. We cannot arbitrarily adopt such definitions without verifying
that each is sound {and ideally, complete} for the Z toolkit.

As a result, the choice of reasoning system to vse in conducting proofs about Z
specifications is a critical one. The introduction o [WB%2] surveys the compeling
options. Some authors have avoided confronting this issue. using fragments of logics
which give sound inferences (or indeed, unsound ones, as above) within Z without
addressing difficulties such as the ones above (see, for example, [Jon91b] on (Dil90]).
Most of the impetus far providing a complete logic for Z has come from those seeking
to provide proof lgols for Z. The chief amongst these are the embedding of Z in HOL
and the Zola logic (see Section 4.4).

The W logic, used bere, has also been constructed with machine support in mind,
though it actually arose out of work on producing a new semantics for Z [GLW%1,

L The meta-logic also eeds to be shown to be sound. This is claimed for 20B) (il has en extensive
underlying theory), bt a demonstrarion of the aciual correspondence of the tool with the thoary appears to
be lacking.

3 An encoding i fusthfil for a logic if it allows only the production of proofs which are penmined in the
logc. M is adequare il il permits the production of alf of the proofs permatted in the logic.

I Thesc arise becanse functions defined in Z are ofich partial, and becausc of the u {definite descripton)
operator, which is also partial.

4.2. CHOICE OF LOGIC 47

BN*92], Since it is presented alongside the standard, it seems, of the options presented
here, the most sensible choice as the basis for a tool.

It should be observed that W is a very standard treatment of first order predicate
calculus. The value of it is that it collects together in a coherent, unified manner rules
appropriate for expressions formed within Z’s type system, a sound way of dealing
with (or avoiding dealing with) undefined expressions, and axioms for scts, tuples,
bindings etc.

A symmetric sequent calculus Iike ¥ is appealing because for any given predi-
cate it is almost always clear which rule should be applied. Few inferences require
creativity or insight; those common ones which do are (¥} and (3). where the user
must provide expressions to specialize Lhe V¥ and 10 witness lo the 3. The general lack
of such a need for creativity is the foundation of the major proof-structuring tactics
described above. Rewriting with equality (i.e. applying Leibniz’s rule} is harder, and
needs more work (exhaustive application 1o every predicate pair in the goal is possible,
but leads 10 a combinatorial explosion, and o is to be avoided). The order in which
these rules are to be applied (i.e. which predicate in the goal to expand first) is less
clear (see the Seclion on tactics {4.5) below). This affects the efficiency of the tool, bui
not its ability 1o complele proofs.

In proving something in ¥V, one ends up repeating many of the steps which a type-
checker might make, which is unfortunate. For example, in Chapler 2 the application
of DOM-TAC w the term F z € dom[X, ¥]$ generates not only the subgoal - ¢ €
(x:X;y:Y|x+r y € 5ex}, bualso the requirerment to show that § is some
subset of X x Y—which the type-checker may have already determined, in order for
the expression dom{X, ¥]5 1o have been well-formed. Moreover, the type-checker can
generally deduce the types X and ¥ whereas here they must be supplied explicitly.
(These reqquirements are present to avoid difficolties with undefined values.)

A logic in which type-comectness was established within the same framework
as the proof (via aulomalic tactics) might be more straightforward to use. It would
reduce some duplication of effort, it would allow the arguments of cur to be type-
checked automatically, and would permit generic paramelers o be calculated when
necessary. Stephen Brien’s thesis {Bri95] presents type-inference rules for Z (in the
style of [SpiB88] and [{SS90]), with each type inference corresponding to a logical
inference in ¥V, Using the two systems together could form the basis of a more unified
ool

This work with W has also suffered from the fact that il has been undergoing
change during the course of the work. It was necessary to fix on one account of the
logic [WB92] (mainly consistent with an ear]y version of the Z sndard |Bri92]),
and nor to bring JigsaW up-to-date with [BN*92). Again, keeping to one coherent
account of the logic is important with regard to soundness; to mia-and-match rules
adds to the likelthood of producing an unsound system. However. Lhere are some
problems of intemal consistency with this version of the logic (problems of soundness
do not directly concern the encoding)}—most chiefly in the auxiliary definmitions (of ¢,
a. elc.; See Section 4.6). Of course, locating such difficulties has been valuable to the
development of the description of . (For example, crucial side-conditions on various
subslitution rules were discovered by noticing that rewrites occurred when they should
not have done. Also, trying to implement ‘rule-inversion’ [WB32, Theorem 2] pointed
out a major unsoundness i the conference pre-prini of that paper.)

In the discussion section of [WB92}, it is commented that this style of proof
may not be the most convenient, One might hope that W could form the basis for

48

CHAFPTER 4. DISCUSSION

4.3

a system of, say, equational reasoning (so that another calculus could be proved sound
by expressing it in ¥V, rather than proving soundness direcdy from the semantics).
Ideally the tactics presented for JigsaW¥ could form the basis of such an account. In
practice, they are a considerable distance from being able to do so.

Choice of Implementation Technology

For the reasons given in Chapter 1, having chosen a logic whichb is not identical to one
of those classically studied by logicians, a logical framework is the most obvious tool
10 use to produce a working proof system?——otherwise one will be encumbered with
the difficulty of expressing one logic in terms of another, with anendant problems of
soundness and a Joss of clarity in the inlerface.

The choice of which logical framework to use was fairly arbitrary. 20BT was under
development in Oxford. It seemed to be fairly stable; it had a readily comprehensible
mela-Janguage (equational logic, in the style of OBJ3); OBJ3's arbitrary mixfix syntax
permitted the adoption of a style of concrete syntax which closely mirrored that usu-
ally used in Z; it had an awwactive user-interface; and it had a comprehensive underly-
ing theory—expressible in OBJ3—thus giving some confidence that proofs produced
would be faithful to W.

Whether this choice was appropriate is unclear. The interface to 20BJ is even
better than it was initially, now offering various graphical displays of proof trees and
the ability to ‘fold* unwanted internal nodes of proof trees. Pop-up windows, and the
ability Lo exploit the ‘network wransparency’ of X-Windows (so that the proof tool can
be run remotely, on a fast machine) are invaluable in making the tool usable. Defining
Z syntax in OBJ3 proved guite simightforward (see Chapter 2), and this concrele
syntax remains very readable.

However, the OBI3 parser has considerable rouble with some of the larger Z
constructs {generic definitions, for example). As will be seen from Table 4.1, parsicg
the source files for Jigsal¥ takes quite a fong time (averaging 2-3 lines per second
on the fastest availahle machine—most of the parsing time is taken up by parsing
the wolkit and the sample specification). For many months, the inability of 20BJ to
produce a saved binary stale meant that each invocation of the tool carried this heavy
parsing overhead. During this time, insufficient computing power was available, so
this overhead was a considerable handicap. Early versions of 20BJ supponed batch
processing, but as the interactive inlerface improved this ceased o be an option.

Moreover, the overloading of some syntactic classes (schemas may appear as
schema texts, expressions and predicates, for example)}—implemented via OBI3's or-
der sarted algebra \eads to many situations where diffeting parses are possible, and
determining the correct one is not always straightforward (an example appears in Sec-
tion 4.6). Some of these problems are suble—and the parser does not flag errors as
often as one might expect—giving potential soundness problems. Also, indealing with
the concrete syntax, there are various miscellaneous equivalences scaitered through the
standard. These must be implemented as rewrile rules (e.g. set comprehensions of the
form { 5t } are converted, by adding the » and characteristic tuple, inlo the more gen-
eral form { 5t u }), the presence of which serves further 1o complicate the reasoning
system. Furthermore, another problem of working directiy with the concrete syntax

4A “dirccr’ implernentation, in a functional or logic progr
Chapter 7.

15 also B poasibili Y. See

-3 L

4.4. COMPARISON WITH OTHER APPROACHES 49

44

is the lack of any ability 1o elide detail from the interface; everything which is in the
proof tree is displayed on the screen. This is most principally a problem with the
generic parameters already discussed.

Interpretation of the code is also very slow. A number of factors contribute to this.
Clearly, a general-purpose tool will be inherently less efficient than a specialized one.
The code for Jigsa¥V is quite a large OBJ3 program, and so the number of equations 1o
be matched al each reduction is large. Many of the ¥ rules have side-condihions which
must be checked by calculating free variables and alphabets of declarations. When
calculating the latter for scherna terms, considerable effort is needed, as al! the nested
schema instances must be expanded. OBJ3 provides facilities for ‘memoization” which
would be of value here, but the 20BJ mechanisms make these unusable.

The 20BF system actually interferes with much of the OBJ)3 implementation. Tni-
tially, 20BJ was 10 be implemented in OBJ3, and to take advantage of ils type(sori)-
safeness to guarantec that only sound proof trees eould be constructed. Now, however,
much of 20B] is implemented directly using the underlying Lisp system (for reasons
of efficiency). so one mus! place considerable trust in the implementor’s code (the ty pe-
safeness was badly compromised in one or two releases). This makes any anempt to
demonstrate formally that the encoding is faithful 1o W rather futile.

Omne lack in 20B]J (and hence Jigsa¥V) is that it cannot support schematic proofs——
i.e. proofs containing meta-variables (variables denoting predicates, for example).
This is because rules’ side conditions are all fully evaluated as the rule is applied; and
freeness conditions are generally satisfied (x does not occur free in the literal ‘p’, even
if p denotes a predicate); so unsound inferences may follow. However, if such a proof
is reduced 10 a Lactic {this is the only way 10 re-use proofs in 20BJ) then whenever the
tactic is applied {to ground terms), the side-conditions will be properly checked, and
only sound inferences can result.

None of these problems has prevented a useful prototype from being produced,
though they have added considerably o the frustration of the author. The implementors
of 20B) were always very willing 10 fix bugs, but the frequency of new releases of the
system became sometimes rather hard to handle, No further development work on
20B] can be foreseen, so future enhancement of Jigsa¥ is unlikely (o be worthwhile.

Comparison with Other Approaches

Several other proof 1o0ls for Z are available. They may be classified in a variety of
ways; the principal distinction appears 10 be whether they implement directly a logic
for Z, or seck 1o embed Z in some other logical system.

Encodings within other Logics

One of the most successful theorem-proving assistants available is HOL [Gor88).
There are at least two encedings of Z in HOL [BG94, Jon92]. The first paper describes
the difference between these two as a difference between ‘shallow’ or ‘deep’ encoding.
The former is shallow in that it ‘macro expands’ some Z consmucts (in particular,
schemas) into much simpler HOL constructs. This gives an encoding which is suitable
for reasoning within specifications, bul is not able to prove results about the langnage
(the commutativity of schema conjunction, for example; such a result could be proved
for arbitrary schernas in ¥, though not in the present encoding in 20BT). ProofPower

CHAPTER 4. DISCUSSION

4.5

(from ICL {lon92]), provides a deeper embedding, with all the Z operators defined in
HOL. As such, one level of potential error (in the incofrect macro expansion, taking
account of variable capture; is avoided. Nevertheless, neither is ProofPower ‘deep’
enough to be able to prove properties like the commutativity of schema conjunction.

The benefil of this approach is that HOL is widely-used, wusted and well-
supporied, and it is supplied with a very large tactic Jibrary, so many complex proofs
can be accomplished with relatively little effori. The chief disadvantage is that whilst
ihe representation of Z in HOL claimed to be “semantically faithful, in that the terms
chosen to represent any given construct are not only adequate to represent the con-
struct syntactically, but also mean the same thing as the relevant Z construct’ [ICL93},
this can be verified only if the semantic description of {draft} standard Z is expressed
in HOL (and it is not). Gordon suggests [BG94] that one could encode the entire se-
mantic description from {BN*92] in HOL, and thus obtain a tool capable of deriving
jogical rules (such as those in ¥W)}—though such a tool seems unlikely to be ractable
for reasoning about specifications {Gor94].

Another encoding approach is to encode something like W within Isabelle [Pau8S).
This wark is in progress in Zurich.

Directly Constructed Tools

The Zola tool from IST is based on a logic of ils own {the Zola fogic), which is very
simifar to W.5 It is, however, not part of some other proof assistant, but constructed
solely for use with Z—indeed, a large part of the Zola tool is the syntax-directed editor
and type-checker, which provides, in some measure, @ CASE tool for Z specification.

Zola 1akes the same approach as that take here to the Z mathematical toolkit. It
is provided as an on-line specification document, and it is pessible to use a general-
purpose tactic to solve many of the “toolkit laws’ which arise in proofs. Zola's tactics
are compared with those used here {and the refinement of them, in Part I} in Sec-
tion 6.5.

CADIZ {JMT91} is a similar venture, though proof support there is still in its early
stages. The proof engine in this system is using rules based on those in W.

Tactics

The tactics presented above (Sections 2.9-2.12) are naive but effective. They accom-
plish a useful range of proofs, but are very slow. The general approach laken is to
decompose anlecedents and consequents into the simplest atomic predicates (member-
ship of base type, equality) and then attempt to apply the assumption rule (and, for
consequents, the rule of reflection). An earlier application of assumption would be
more efficient.? Replacement of the simple assumption rule with some sort of unifi-
cation would improve the chances of finding a match; in particular, would make use
of the tactics hased on Leibniz’s rule more automatable. However, such a unification
algorithm would need to be expressed in 20BJ's tactic language, and as such would
probably not be fast enough in operation Lo be useful.

3Some work showing that the Zols logic is rclatively sound with respect (o WY has been undertaken.

90ne could ally the atfemp at EpLion with the application of tactics in a tactic like TRY -EACH,

sa that afier a given predicase is mansformed, asrumprion can be micd withow ancmping o maich every
dent with every q &% in MASSUN.

4.6. AUXILIARY DEFINITIONS 51

4.6

By reason of this tendency only to simplify terms, the automatic tactics do not
create as much of a combinatorial explosion as one might fear. The chief source
of extra material in the goals is the inclusion of schemas and other definitions. The
wolkit tactic thins out the latter quite effectively (see, far example, DOE-TAC in
Figure 2.1). Predicates arising from schema expansions, on the other hand, cannot
readily be thinned, as they may be needed later in the proof. A bigger problem might
arise from the arbitrary/exhaustive application of MLEIB—which is why it is left under
user control. With hindsight, it is clear that an improved versicn of CUT would be
worthwhile. Some thinning could usefully be employed—i.e. in the inference an
page 18, the predicales ¥ could be thinned from the left-hand branch, Itis hard to
make such a change at this point, as so manay tactics rely on term positioning and
ordering. If infinite loops are to be avoided in breadth-first searches, it is necessary
that each component tactic in, say. BIG-TAC should return goals which do not contain
the same top-level connectives as those in their original goal.

Al each iteration, a tactic like NEW-TAC3 attempts to apply a large number of
rules in a number of places within the current goal. The lime taken fo attempt all these
marches is small in comparison to the time taken 1o check side-conditions where rules
do apply to goals, so this seems a most reasonable approach. As the side conditions are
such a performance problem, care must be taken to make each tactic which appears in
the scope of a LIFT do as much work as possible—using one LIFT instead of several,
whencver possible, as this reduces the number of times that the LIFT side-condition
nceds to be checked. In a later chapter, Section 6.3 discovers exact conditions for the
combination of such LIFTs,

Some of these tactics make very careful use both of success and failure in tactic
application. Often it is important to allow a tactic o fail—it can then be used in the
coneext of an EXHAUST or TRY, as appropriate. The differing design philosophies
behind variaus tactics tend to force them into a number of ‘families’. Tactics MPROP,
EXPLODE, SUBST, etc. never fail, and so are used in sequential composition (using
THEN). Tactics like AUTO-SCHDEF and TK-TAC fail if they are not applicable to
the current goal—so they can be combined more readily using ELSE, often within the
scope of an EXHRUST. This is the striking contrast between TOEACH and TRY - EACH.
The former never fails—making it hard to incorporate with other wctics in a large
tactic with recursion—whereas the latter may fail, so it can be applied exhavstively (in
conjunction with other tactics, as appropriate). The algebra of how such combinations
work is a feature of the neat part of this thesis,

The proofs constructed thus far have given some insight into the sorts of tactics
which will be needed in order to make proving mundane thearems an easy task, Con-
struction and refinement of these tactics is the obvious next step. Tt was once sugpested
that 2081, in functioning as a mera-logical theorem-praver, could assist in proving
(meta-)theorems about proofs, as well as supporring reasoning within a given logic.
This has not become possible. Instead, the next part of this thesis explores a means of
reasoning about tactics—and hence aboui the proofs they produce.

Auxiliary Definitions

Undoubtedly, the greatest par of the effert involved in encoding W in 20BJ came in
the definition of what Section 2.3 descnbed as W's meta-functions—a which deter-
mines the alphabet of a declaration, ¢ which extracts the set of free variables in a term,

52

CHAPTER 4. DISCUSSION

and the syntactic equivalences (rewrite rules) for binding substimtions.

The chief problem with these functions has been the interaction of two difficul ies:
{a) the account of these functions in [WB92] is incomplete (very incomplete in places),
so the encoding incorporates many ad hoc cases,” and (b) the 20BJ encoding’s reliance
on OBJ3's order-sorting for the syntactic classes makes errors in these expressions very
difficult to debug (as well as being time-consumning).

For example, the infix operator *." (written o in [BN92]) for attaching a binding
10 a term {accomplishing a substitution) is overloaded in that it may attach a binding
Lo a schema or a predicate. The rule

bdy; dy] = b.Jd1] A B[]

therefore has an ambiguous lerm on the lefi (it might be a schema or a predicate),
but the term on the right musl be a predicate (the possible ambiguity between schema
conjunclion and predicale conjunction is not at issue here). However, schemas form a
sub-sort of the sort of predicates (a schema may be used as a predicate) and as a result
the parser assigns the sort schema 1o the left-hand side. In arder to make the equation
sort-correct, the right-hand side therefore gains a OBJ3 retracr (which is by default
invisible), r : Predicate>Schema. This serves to coerce the nght-hand side into
being a schema, which then fails to match any predicate rules (e.g. FA). Identifying
this problem was rather difficull. The OBJ3 experts concluded that it was probably
a bug, and suggested the work-around of defining the two instances of g in separate
modules (which allows them to be distinguished).®

These meta-functions also form the major efficiency batile-neck in the applicabon
of rules in Jigsa¥V. Many rules have side conditions, or are invoked via LIFT, with
its side conditions, and these side conditions generatly require the calculation of a
and ¢ for various lerms. For sequents involving many terms (or nesled sequents) with
binding substitutions attached, such calculations can be lengthy.

20BJ provides a library of built-in functions which are intended to make such cal-
culations straightforward (and fast, being implemented in LISP), and to assist in the
construction of fresh variables as necessary. However, Z’s syntactic conventions ap-
pear to be too rich to fit into the scheme for describing which variables are bound,
and which free in expressions/predicates. In particular, one gives expressions along
the lines of eq variable(x} = true. Since some of the variables in the en-
coding are not simple vanables, however, bul compounds (e.g. x'), the system was
defeated (it would calculale that x was a free variable of (xc ' }). Mereover, attempls
to circumvent this became baroque, and remained unsuccessful:

eq phie (t] = freevars (t)

if {not{marches{itl IF t2),t)})) and (not{matches(xx "qg,t}}) .
aq phie (t1 IF t2) = phieitl) ;; phie(r2) ;; Op(eé IF @) .
eq phie {xx "~ g} = »xx "q .

The intention of the i £-clause in the first equation is to prevent expressions such as 1
and SN T from being decomposed too far. x' is a free variable in ils own right, and the
free variables of 3 N T include (M .) (which is not apparent to the built-in function
freevara).

T An appendix 1¢ this Chapeer lists some of these ad hoc inclusions and wicks.
The OBJY grammar allows t2fms (o be differcniialed by bbelling ther with their module andfor sort
nane. In Hus case, no amount of soet Labelling seemed sufficiént 1o conpvince the parter thal tis was an
jo0 between predi and not b h

4.7. RULE-LIFTING

53

4.7

4.8

Insicad, then, o and ¢ are implemented directly vsing 20B)’'s UNIVERSAL-
FINSETS module. This provides a (relatively) efficient implementation of finite sets
(with operations for union, intersection, membership, eic.). Ope source of difficulty in
debugging this code (and also of unsoundness) was the fact that OBI3 will not auto-
matically Hag incomplete reductions as ermors. Hence, if, say, the rule forphie {1
IF t2) above were omitied, the term would stay un-reduced, and have an empty in-
tersection with some list of variables—potentially allowing a law to be applied which
should not be applied.

This problem might be solved by making a denved intersection/set equality test
which returns false if the terms to be intersected are not simple sets of variables.
Coding this test in OBJ3, however, would further compound performance problems in
an area which is already a bottleneck. A more efficient solution is to ensure that for
every lerm £, af (elc.) can be fully reduced to a set of variables (that is, show that the
rules for @ are Church—Rosser and terminating).

Rule-lifting

The authors of [WB92] found the theorem on rule-lifting to be useful ia soucturing
the paper account of W. Making rule-lifting into a meta-rule turned oul to be a
valuable way of structuring the encoding, alsc. Extending this to cover tactic-lifting
has provided a most eseful proof(tactic)-struciuring technigue.

The implemenlation of rule-lifting (tactic-lifting) raises some soundness concems.
Its soundness with respect 1o the meta-logic is guaranteed by use of the built in operator
TAC, which invokes the tactic inlerpreler; the resulting inference gets converted inte
arule, which is then applied to the current goal. The soundness of that (derived) rule
is guaranteed by the sound construction of tactics from rules by the tactic interpreter.
Its soundness with respect to W can be verified only by careful study of the (rather
complex) code; confirming that it is consistent with Theorem 2.5.1.

The chief outstanding difficulty with rule-Jifting is in the way that 1erms are se-
lected by the index of their position in the list of predicates (or declarations). Chap-
ler 6 presents an account of rule-lifiing which is generic over schemes for selecting
predicates.

Strengths and Weaknesses

The work described in this first part of this thesis has eaplored the possibility of making
a sound theorem-prover based on W and 20BJ, programmable and adaptable to a wide
class of problems. In so doing, it has developed for W some taclics which address
some of the more common concemns: the more automatable ones.

This set of 1actics is effective in proving certain theorems (the initialization the-
orem work for the case study above transferred with no alterations to the (simpler)
problem of initialization for the standard SirthdayBook [Spi924] example). However
it is relatively narrow in its applicability, and uses heuristics which are unnecessar-
ily inefficient. The speed of execution has prevented significant improvements in the
design of these heuristics from being investigated.

The execution speed of the 1ol appears w be hit most significantly by the effon
involved in checking side-conditions. This is, at least in part, due to the elaborate

CHAPTER 4. DISCUSSION

Code for Z syntax 570 lines
Code for W rewrites, side conditions ete 681 lnes
Code for account of logic proper 815 lines
Code for basic tactic library 1598 lines
Code for ootkit {very incomplete) 675 lines
Code for demo8.obj (Security System) 348 lines
Total 4687 lines

Compiled image for JigsaW+ Tooklit + Demo 8 | 15079928 bytes

On SparcStationl0 with 32Mb:

Time to build compiled image 30 mins

Time to prove init-thm in case study: >3 20 haurs

Time to prove pre-thm-a i hour

Time to prove pre-thm-b 3 1.5 hours
On SparcStation2 with 32Mb:

Time Lo prove init-thm for BirthdayBook 40 mins

Tabie 4.1: Some Statistics

notions of variable occurrence and scope in Z. Finding a logical framework with
sufficiently general nations of variable binding may be a difficult task.

In order to give some idea of the scale of the work described here, and to give
some substance to the comments about the speed of the implementation, some rough
statistics relating to Jigsa)V are presented in Table d.1.

4.A. RULES AND TRICKS ADDED 55

4.A Rules and Tricks Added

The W-rewrites module uses a number of syntactic equivalences which are missing
from the published accounts of W [WB92] (and/or the Z draft standard [BN*92]).

b.(x‘[l‘]_, I]}) = (b.r)[b.f], b.l)]

b.(s, 1) = (bs,ba}
b.{r} = {b.1}

b{tIGu) = beiGbu provided ab N (LIG) = @

QIR ~t)(nIR) = (h,ta) €1
Q(IF)~ b (n IF)=, 5)

{x~t; Bhs={Bh.({x~1)y) alBpnge =@

(SN~ SPSN =S
[{ SN~ S}.5N] = §

b.(ep) =c(bp) wheneveracNgb=0@ Aalp)Ngec=a

bp=p wheneverab dyp = @

(5] = [S[A]] where A= {5}~ a8 .. 2y~ x4, withaS = {r;,..., 5}
{ SN~ S P(SNTA]) = SiAl

afx~a) ={z}
alx~n By ={sx]UalB)
ad SN~ 1} = {SN}
etc.
albd) = a{d) providedobNad = @
The trick for calculating aSN has already been mentioned:
aSN = a(mkdecis(decl—part(SN —def))) ,

the auxiliary functions (mkdecls) ferching and expanding the scherna definition as
necessary. Decorated schemas present linle additional challenge: we get the alphabet
of the undecorated schema, and then decorate each member of the set.

a($¥) = mapdecor{as,7)

56

CHAFPTER 4. DISCUSSION

Finally, the alphabet of a schema under renaming/binding substitution is calculated by
fetching the declaration part of the schema and applying the renaming 1o it:

a(SN[BY) = al(expdects(SN)){B])
a(b.SN} = alb.(expdects(SN)))

For a{{b.5)[8}), etc., we need 1o invoke subst within the alpha somehow—and there-
fore this must not arise in the scope of a side-condition (otherwise an infinite loop will

result).
The inference rule chHypVars certainly needs some side conditions-—~-those at-

tached (o alpha-conversion suffice.

Part II

Tactic Language

Chapter 5

A Tactic Language

previous chapters was that they quickly became rather complex. The tactics

in Sections 2.9-2.12, in particular, are quite hard to understand and verify.
This chapter atiempts to remedy this by presenting Angel—a very general language
for expressing tactic programs, making very few assumptions about the form of the
expressions {goals) in the target logic, and about the rules which xt upon them,
transforming one expression into another.

It is hoped that by describing a tactie language in this way it will be possible to
demonstrate functional correctness of tactics, hy providing a semantics for tactics and
using il to produce algebraic laws for tactic equivalence. One application of such
laws is to provide correctness-preserving transformations, enabling, for example, tactic
efficiency to be improved. Although the language was originally intended to support
goal-directed (hackward) proof in a natural way, it has been found 1o be much more
widely applicable as a language in which general expression transformations can be
described.

It is important to distinguish between soundnress and functional correciness in a
theorem-proving system. The former is guaranteed by ensuring that the proof rufes are
sound, that the encoding is faithful, and thal rules (and the goals 1o which they apply)
can be combined o make proofs only in a sound way. This soundness of combination
is often accomplished via a safe datarype—thar of proof in LCF; that of tacric in
this chapter. Such a tactic will be funcrionally correct if it accomplishes the proof its
author intended—that is, if it satisfies its specification. If the design of the tactic is
amiss, then either an unexpected proof will be created (one which will still be sound),
or (more likely)} the proof will fail.

A crucial feature of the language is its ‘angelic’ nondeterminism. When a tactic
presents a choice of possible next steps, the step(s) which will sicceed (if any) will
be chosen. This will generally be implemented using backtracking.! Our semantics

ONE OF THE DIFFICULTIES which arose in the construction of the tactics in the

! Notice that the issues of succexs/failure and terminasion are orth I. The ge is angelic with
respect to the first but (nammlly) pot to the second. The construction of lermisanng functions is a well-

59

CHAPTER 5. A TACTIC LANGUAGE

51

admits the following law, which is quite distiactive (|’ is often written ORELSE. and
'’ as THEN):

(alb)sc=(a;c)){bic) .

This means that if ¢ fails afier the o branch has been taken, the b branch will be
attempied (followed again by ¢). 1t is more customary for such choices to be made
once only {i.e. to fail if ¢ fajls, despite there being an untried choice further up the tree).
This rmight be described as a contrast between *shallow’ and 'deep’ backtracking.

Section 5.1 gives an overview of the constructs in the tactic language, and is fol-
lowed by a section giving sotne examptes of the application of these tactic constructs.
Section 5.3 gives a formal treamment of the fundamenial constructs in the language,
and some of the algebraic laws arising from these definitions are presented in Sec-
tion 5.4, together with a proof that these laws form a complete set with respect to
the semantics given in Section 5.3. The theory is extended to cover recursively de-
fined tactics in Section 5.8, and Section 5.6 describes some extensions to the language
which are particularly usefy) for reasoning about tactics. Various derived lacticals are
described in Section 5.9, and an example shows how properties of those definitions can
be proved, demonstrating that the acticals behave as expected. Section 5.10 further
extends the tactic language to include ‘structural combirators’, which allow tactics to
exploit structural properties of the expressions to which they are applied. Section 5.11
describes a methed for adding pattern-matching to the language, and Section 5.12 uses
the ideas from the previous two sections to make the language appropriate for proofs
that bifurcate; that is, where goals arise in parallel composition.

Sections 5.1-5.10 form a paper which is expected to appear (subject to re-review)
as joint paper with Paul Gardiser and Jim Woodcock, in the journal Formal Aspects
of Computing. 1 am grateful to the other named authors for the ideas presented in
Sections 5.1-5.3, which have enabled me to develop the rest of the chapter.

Tactic Language

In this section we give an informal description of the tactic language, explaining the op-
eration of each language construct. The precise meaning is presented in Sections 5.3,
5.8 and 5.10. Occasionally, this will be referred-to as a meta-language, 10 distinguish
it from the object language in which the basic rules (see below) are expressed. Ex-
pressions in the meta-tanguage are described here, expressions in the object language
will often be called *goals’. They may be predicates, sequents, progrums, or algebraic
expressions (etc.), dependiag on the system under consideration.

The set of basic rules may be considered 10 be a subset of the set of tactics. It is
helpful to mark the use of these atomic tactics, and so their use in tactics is signaled
by the use of the keyword rale:

rule rulename .
There are two possible ouicomes when applying an atomic tactic to a geal (expression):

if the rule matches the expression (i.c. the expression is in the domain of the rule) then
the myle is applied, producing a new expression; if the rule does not maich then the

devstood problem in both functional snd imporative progr ing languages, and we covisage similar

5.1. TACTIC LANGUAGE 61

application fails. A formal treatment of failure permits reasoning about tactics whose
definitions critically depend upen the failure of a rule to apply, as well as on successful
application.

Two special aipmic tactics exhibit these two behaviours. The first always succeeds,
leaving its expression unchanged; the second always fails:

skip
fadd .

Functions which operate on lactics, refurning néw Lactics as a result, e conven-
tionally called racticals]GMWT9]. Fundamentally, ractics can be combined in two
ways: in aliermation or in sequence. The sequential composition of two tactics is writ-
fen:

itz

The behaviour of this tactic is first 1o apply ¢; . thus producing a new expression (goal),
and then (o apply f; to that expression (goal). If either 1, or 13 fails thea so does the
whole composition.

The aliernation of two lactics £ and fz is written:

nleg .

When applied to an expression, the above lactic may succeed by applying 1, or by
applying t2 (f is tried first). The tactic fails iff both £, and r; fail. As discussed in
the introduction (see below for a formal definition), this combinator gives rise to a
form of angelic choice: it will choose whichever tactic allows success in fulure tactic
applications {i.e. those later in a sequential compesition), preference going to the tactic
on the left.

Since this form of alternation may lead w problems of inefficient (wasteful)
searches, and (in the recursive case) problems of non-termination, a cur operator, in
the style of logic programming, is provided:

Ir .

This tactic behaves exactly like ¢, but locally restricts the action of alternation. It
returns the first successful tactic application; if a subsequent 1actic application fails,
then the whole actic fails; alternatives within ¢ are not re-explored.

Recursive lactics are written

(uX v 1ac(X)} |

where X is a variable and iac(X) is a tactic in which the variable X may occur as
though it were itself a tactic. The wactic {uX o tac(X)) behaves 85 iac(X), but with
each occurrence of X behaving as though it were (1 X » tac(X)).

Inclusion of recursion in the language introduces an extra possibility for the even-
tual outcome of a lactic. As well as succeeding (producing a new expression) or faiting
to apply, it may fail to terminate and run indefinitely. Whilst such a 1actic will net in
general be useful when writing \actic programs, it is helpful to be able to reason about
it. We follow Dijkstra [DS90] and call the non-terminating program

abort .

62

CHAPTER 5. A TACTIC LANGUAGE

5.2

Depending on the form of the expressions to which the rules and 1actics apply, it is
often appropriate to incorporate structiral combinators? in the tactic language. These
permit the controlled application of Laclics to partieular sub-¢xpressions. Whether such
applications are appropriate is dependent upon the form of the rewriting system being
used—monotonicity is required (so that rewriling a sub-expresston produces a valid
transformation of the whole expression). For example, in a term rewriting system, we
might want 1o define taclics which operate on expressions of the formp A ¢.p V ¢,
etc,, applying one taclic to that part of the goal correspording to p, and another 1o that

corresponding to ¢. The structural combinators and accomplish this:

1132
fllz .

So (1 t2)(gc A g2) = (A1 .1 A fa g2). In general, we would require one such
combinator for each operator in the object language.

Similarly, a valuable construct in goal-directed proof is a paralle! combinator,
which applies lists of tactics to lists of goals—in this case, a pair of tactics to a pair of
goals; applied 10 {g1, g2). the following tactic would apply # to g; and £2 (o go:

Iy " Ia .

 permits the definition of tactics which are dependent upon the goal io which they
are applied (see Section 5.11 for more motivation of the definition of this tactical},

(Bv1,--,Vueg —1) .

This tactic binds the {meta-)variables v, . .., v, within the scope of g and ¢. If goal g
matches exactly the goal presented to the tactic (the variables v, ..., v, being angeli-
cally chosen, if possible, to make this be the case), the whole tactic behaves like tactic
¢. If not, the tactic fails

In the remainder of this chapter, we will use a range of meta-syntax for describing
tactics. A simple equality will be used to inroduce a named taclic—this may be
read simply as a macro expansion (with parameters instantiaved where necessary, and
circular {recursive) taclic references replaced by suitable u-expressions.

To avoid over-use of parentheses, we adopt the following order of precedence for
operator binding: function application (including suces and fails-—see below) binds
closest of all; cut binds next closest; with the binary operators next (sequential com-
position binding most strongly, followed by sauctural combinators, and altemation
binding the least somongly). i and 7 (and eon—see Section 5.11) bind their variables
as far to the right as possible—i.e. Lhey are the weakest of all.

Examples

Alpha-Conversion

Probliems reiating 1o the capture of free variables ofien arise in mechanized theorem-
provipg. These are ofien dealt with by the use of procedures outside the tactic/rule

T Michacl Goldsmith has suggested the more pichwresgue name: of geographical combinators.

5.2. EXAMPIES

63

language. This section demonstrates an approach which might be adopted in our wctic
language.

Consider a system for rewriting predicate calculus expressions. The basic rewrite
rules will be expressed as meta-equalities (using =), rewriting going from left to right.
A rule such as 3A is limited in its usefulness by the side condition attached 1o it:?

A == ((BxeP)AQ)=(Txe(PAQ)
whererisnotfreein Q .

This will generally be approached by the application of a rule which performs an alpha-
conversion on goals of the form (3x ¢ P(x)):

3() == (JxeP(x)) = (3y=P0))
where y is not free in P .

The difficulty in applying 3(y) comes in the choice of the variable y. Qur approach
is to define the following tactic which makes successive choices for passible values of
¥, chosen from some set of vaniable names {y1,...,y,}:?

)rule 30y -

-Je == IyE{yn yreesda

Now we can write a tactic which generalizes the rule 3A:
—3A" == (1—3c[A|skip) ; rule 34 .

This, then, is a tactic which, when presented with a goal of the form ((3x e P) A Q)
will search for an alpha-conversion which will permit the expression to be rewritten as
(3y = (P A @)). As the tactic stands, if it were sequentially composed with a tactic
which might fail (e.g. due to the chosen bound variable introducing a later conflict), it
would backirack, and produce further alpha-conversions as necessary. This behaviour
may be undesirable {e.g. the applicability of the later tactic might not be improved by
further alpha-conversions); in this case we could use the tactic

1(t=3A")

which would proceed with the first alpha-conversion to permit A to be applied, and
permit no later backtracking (but fail instead).

Searching

Structural combinators may be combined with recursion to produce powerful tactics
which search for points of applicability. For example, if presented with an expression
which was in the form {(py A (p2 A (... A pa)...)), the following tactic will find the
fiest gy which is a disjunction, and apply tactic 1 to its first disjunct. If none of the p, is
a disjunction, the tactic fails.

firstor(t) == ch((rsHp)SkiPNkiPX)

In fact, the cur version of this tactic behaves as described above; without a cur it will
backtrack as necessary, and apply ¢ to each left-hand disjunct in rum.

3Here 1, £, snd (2 sre meeta-vuriahles; they will be bowmd respectively (o the appoprals ¢ ified object
varisble and Lo the predicates presem when the e it applied to a goal.
"Now] (i) is s aharthand for i(y1) | . .. | f{ya). See also, Section 5.8,

CHAPTER 5. A TACTIC LANGUAGE

Commutative/Associative Rewriting
When applying tactics o goals cortaining operators which are commutative and/or
ssociative, it is helpful 1o be able 10 try 10 apply the taclic to various commuta-
tive/associative instances under tactic control. If a rule fails to apply, we would like to
backtrack and apply a ransformation to the goal—~producing a different commutative
and/or associative instance—and then try to apply the rule again.®

For example, in the accoum of W above, (a more general version of) the following
rule appears

Frl=u ALZ=u,

= o) 1} (canProdMem)

In applying this rule (3n the forward sense), it would be most desirable to be able to
maich (automatically} £.2 = ug A 1.1 = u;. Using a suilable instance of comm (below,

with | A | for , a more general inference would be accomplished by the tactic
rule cantProdMem | mude comm ; rule cartProdMem .

For a rule with more instances of A, a more general (recursive) version of comm is

needed.
For a binary operator &, and a rewnte rele

comm == a@®b=bpa

we may wrile a taclic which generates as alternatives all the commutative instances of
its goal:

comms = uX o (rulecomm | skip);
((x | skip) [&] skip):
{skip [&] (X | skip))

Likewise, if the nulc assoc expresses the associativity of &
assoc == a@(bBc)=(ad B @®c

(we shall write cossa for the application of the same rule as a rewrite from right o left)
then assocs is a tactic which generates all possible alternative associations of &:

norm = {erhaust{rule cossa) ; {norm narm)) | skip
assocs = !norm; exhaust{rale assoc) ; {(assacs assocs) | skip} .

fl

(exhaust is defined in Section 5.9—it applies its argument as many times as possible.)
In this definition, norm is a tactic which *normalizes’ an expression—associating all
of its @s to the left. Ways of improving these tactics will be discussed in Section 6.1.

One might have expected that to produce a tactic which atnempts all associa-
tive/commulatjve jnstances in turn, it would suffice to compose assocs and comms
sequentially. This turns out t¢ be too naive (such a composition would need 1o be iter-
ated n times if there are # instances of & in the goal, and that iterated tactic produces
many duplicates); an efficient combined tactic is yel to be discovered.

5The tactics which follow do not guarancee 10 producs each instance only onee; merely that all possible
instances will be produced. Ser also, Section 6.1.

5.3. SEMANTIC MODEL 65

53 Semantic Model

In this section we give a denotationat semantics for the fundamental constructs of the
tactic language; that part of the language given by

T = ruleR
| skip

| faH
T

| TI|T

| T ,

where R is some basic set of rules which transform one expression into another.

Our semantics makes no assumptions about the form or siructure of the expressions
to which our tactics apply; we shall simply describe expressions as being members (g,
gi,etcyof aset G

The behaviour of alternation requires the model to allow that application of a
tactic may produce several possible outcomes, with the order in which the outcomes
arise being of some importance. We will, therefore, use lists 10 describe the possible
outcomes of a tactic application.

A suitable account of the theory of lists will be found in [Bir88].° An appendix
gives some of the more important definitions. For a set A, seqA is the st of all finite
lists whose clements are drawn from A. ™ is the list concalenation operator, and -~/
represents distributed concatenation (sometimes called flatten or concal). head' is the
function which takes a list, and returns a list consisting of the first clement of the
argument list, or returns the emprey list, if the argument list was empty. For a total
functon f : A — B, f* : seqA — seqB is the function that operales on lists by
applying f to each of their elements. Conversely, ° applies a list of functions to a
single argument, producing a list as the result (so {f, g, h)°x = (f x, g 1,k x}).

Tactics, then, will be toal functions from G 10 seqG. The list of expressions
returmed by a tactic is the list of all possible outcomes of the tactic application, arising
from all possible paths through any alternation contained within the tactic. Failure will
be denoted by the empty list; when a single new expression (subgoal) s returned (as in
the case where a basic rule is applied), this will be denated by a singleton; and where
there are several allemative subgoals (see allernation, below), a list of aliernatives is
returned.

Basic rules are the simplest tactics. When applied within their domains, they
produce singleton results—with no allematives. When applied outside their domains,
they fail, and return no results at all.”

ge€domr = nlerg = (rg)
g¥domr = rulerg=(}

The atomic tactics skip and fail have very simple definitions.
skipz = {g)
fmilg = (}
¢Whilst the account here makes use of Bird's theary of lists, the notarion will be more Z-like.

7in the term rule r, the r denotes & rule aame, whoreas ia down - and r g, r denotes & function from goals
10 goals. Semantic brackrts right be esed to void ambiguity, but they are not genenlly necessary.

CHAFPTER 5. A TACTIC LANGUAGE

54

Law5.1
Law 5.2

Law 5.3

Law 5.4
Law 5.5

Law 5.6

Definition 5.4.1

Law 5.7

The fundarmental tacticals described above can also be given simple definitons in
this list notation. Alternation concatenates the alternatives presented by its component
tactics;® sequential composition applies the second tactic to all the possible outcomes
of the first. Cut counteracts the action of alternation by restricting the tactic application
1o the first successful outcome.

e = ~folt,m)°
g = "\f ofz% 00
't = head' ot

Simple Laws

Our aim is to produce a calculus for reasoning aboul tactics written in this language.
As such, this section gives a small set of laws which are proven sound with respect to
the semantics in Section 5.3, and shown to be complete.

Laws

skip is a unmit of sequental composition; fail is a unit of alternation and a zero of
sequential composition.

{a} skip;t=1 {b) ¢ =r;skip
(a) ¢|fail = (by +="fail|r
(a*) 1; fail = fail (b) fall = fail ;¢

Both sorts of composilion are associative, and sequential composition distributes
over alternation on the right only.

w2 in)=(nlntls
fi(esn)=(in)in
(hle)ira= (s} | {r2:03)

The distributive law on the left succeeds only for sequential tactics, due 10 the
ordering of alternatives: in f(; (fz | 53), the altemalives for f; and 3 (arising from
different alternatives for 1,) are interleaved; whereas in (¢; ; 1) | {t ; fa). all of the
alternatives for i, precede those for rg.

(Sequential Tactics) A tactic is sequential if it is skip, [ail, rule r for some basic rule
r, or it has the form ty ; tz, where 1y is in one of these forms, and 1y Is a sequential
acric.

() = (i) {n) for t; any sequential taclic

SReaders unfamiliar with this prins-free style may prefer tosse (11 | 72)g = 11 2 ™ 12 . o6

5.4. SIMPLE LAWS 67

Soundness

Theorem 542 Al of these laws are sound with respeci to the semantics given in Section 5.3,

Proof: The proofs of these laws depend on simple properties of lists and functional
composition. They are all quite similar. Only a small sclection is prescnted here, The
lemmas and properties referred to below are discussed in [Bir88, BirB6].

Law 5.1(a): let g be any expression, then

(skip ; 1)z
= (~/ o1+ o 2kip)g Definition of ;
= ~/(re(skdpg)) Funciional composition
=/ (u(g)) Definition of skip
=~fitg Definition of *
=tg Property of "‘f
Law 5.5:
{rin) it

Definition of ;
Definition of ;
Froperty of o

="forgxo () ;1y)
="/otgeo(~folnor)

="fomxo~folaxo

="fo~folgeealyrol
="fo[sonesoheon

="~fo(~fonpsan)or

Lemmafs o~/ =~/ ofss
Lemma~fe~f="~fa~fa
Property of o and »

=~fo(taita)eory Definition of ;
=1 ;(nits) Definition of ;
=]
Completeness

In this section we prove that the laws listed above are complee for the tactic language
presented in Section 5.3 without the cut operator. In this context, the set of laws can be
said to be complete when tactics which are observationally equivalen (i.c. they behave
identically on all goals} are provably so (using the Jaws). The value of such a result is
that gl ransformations of tactics (which are sound for every set of primitive rules) may
be undertaken using the laws given above, without reference to the semantic model,

The ideas are similar 10 those used in proving the completeness of a proof system
for a process algebra, e.g. [Bro83]. The completeness is relative to the rule system over
which the tactics are applied, since two rules may be equivalent without there being any
tactic equivalence between them. As such, we regard tactics as being syntactic objects
with the names of the rules they invoke as free variables. Demonstrating completeness
involves defining a notion of tactic equivalence (t; = 1, see Definilion 5.4.5) which is
independent of the chosen instantiation of rule names for rules.®

®In onder to be Fully 1, we should disti

igh hetween three differem sorts of tactic equaliry:

68

CHAPTER 5. A TACTIC LANGUAGE

Definition 5.4.3

Lemma 54.4

The methodology of the proof is to define a normat form for tactics, o show that
every tactic can be transformed inlo a unique normal form using the laws above, and
then to show that if two tactics are equivaleni then they have the same normal form.

In the following, we shall use the notation

| &

)
10 denote the alternate composition #;, | . . . { ¢, with (for uniqueness of representation)
the alternation combinators associated to the right. The index sequence { will be finite;
if it is & singleton, then the allenation will be vacuous, and consist merely of one
instance of the tactic 1;; if it is empry, the expression will denote fall. Similar comments
apply to generalized sequential composition:

; i 1
wl

except that an empty sequential composition will denote skip.

{Cut-free Normal Form) Say that a tactic is in cut-free normal form if it is of the form

15, rten)

where the r; are names of primitive rules.

Any tactic expressed using basic rules, alternation, sequential composition, skip and
fail can be transformed into a unique ractic in cui-free normal form using the lgws
above,

Proof: Proof is by structural induction over the possible forms of goals. The base
cases are skip, fall and rule r, all of which are immediately in normal form.

The first inductive case is | f3. Using the inductive hypothesis, we may assume
that #; and 1, are in normal form. If either is fall, it can be eliminated by Law 5.2;
otherwise the tactic is already in normal fonm, or can be placed in nonmal form by the
alternation associative law, 5.4,

The second inductive case is /) - fz. Again, by induction, f; and f; may be assumed
1o be in normal form. If either is skip or fail, Laws 5.1 and 5.3 can be used to pul
the taclic into normal form. Otherwise, Law 5.6 can be used to distribute t; onto
the aliernation compoenents of ¢, and then (the components thus distributed being
sequential) Law 5.7 can be used o distribule the sequential components of £z onto
those of #,. Finally, the associative laws 5.4 and 5.5 can be used to put the resulting
tactic inio ¢ut-free narmal form. a

In order to demonstrate that the rules used for purting tactics into normal form are
complete, it is sufficient to show that for cach tactic there is exactly one tactic in normal
form to which it is semantically equivalent. As mentioned above, for this purpose, we
may regard tactics as expressions with rule names as free variables. A ground instance
of a tactic will have all those rule names bound 1o actual functions.
syniactic equality of tactics, the cquality proved using the laws above, and the equivalence mentioned
above—which would accursiely be defined 5 (Vo o Y o [11]p g = [02)r £} (with p describving a
mapping [rom ruke names to panial functions from goals 10 goals). We shall Aag use of the first by the
phrase “are identical’ or *has the forin'. the sceond by *=", and the third by '=".

5.5. LAWS INVOLVING CUT 69

Definition 5.4.5

Lemma 5.4.6

Theorem 5.4.7

Corollary 5.4.5

5.5

Law 5.8
Law 5.9

Law 5.10

Law 5.11

(Tacthe Equivalence) Say thar tacrics 1 and 13 are equivalent (1, = fz)} if for all
mappings of rule names to rules, foraligoalsg. h g =1 g.

If two tactics in normal form are equivalent, then they are identical

Proof: This is proved hy demonstrating that there can be no point at which the
tactics differ. Let the rules which comprise the tactics be ry,rz,. .., and choose an
instantiation in which the the expressions (goals) are indexed by sequences of rule
numbers, so that r; g/) = gy and r; g, = Brp)-

In this way, the name of a given expression records the history of rules applied to
it: (rudery, ; ruler;, ; ruder,, | ruder, gy = {8l ja) 184} EIC- A g() can occur
in the result only if an alternation branch in the tactic is skip; the result goal list will
be empty only if the tactic is fadl (in this rule instantiation, no application of primitive
rules to goals fails).

Using this rule instantiation, a tactic applied to g will produce an account of that
taclic’s normal form (being the alternation of the sequential composition of the rules
in the respective goals in the result list), and so the resull is immediate. a

Two tactics are equivalent under afl rule instantiations iff they have the jame normal
form

The rules given above are complete for the cui-free finite (non-recursive} taclic lan-
guage.

Of course, the value of a system without cut is questionable: the normal form
proof demonstrates that all alteration can be distributed to the outermost level, where
most applications of the language will make use only of the first ouicome in the
sequence of results. Nevertheless, taclics which are not in normal form may make use
of the apparent angelic nondeterminism to present reasoning steps in a comprehensible
manner. Cut gives much more scope for structuring tactics, however, and so the
following sections give some laws for cut, and then go to some lengths to demonstrate
that the larger set of laws is also complete.

Laws involving Cut
This section presents some laws showing bow cut interaces with the other tactic com-
binators, These laws are proven sound in a similar way to those above; only one proof

is shown here.
Atomic rules and tactics are unchanged by applicalions of cut.

lakip = skip
fail = fail
I(ruler) = ruler

A cut tactic enables sequential compesition to distribute over altemnation on the
left.

Yy itz lra) = (rsta} | (I 5 da)

CHAPTER 5. A TACTIC LANGUAGE

Proof: Let g be any expression, and let head'(r; g) = (k) (if £y ¢ = {), the proof is

trivial), then:

(!fl itz “a))g

=(~/o(rm|na)r oly)g Definition of ;
= ~/{(t2 | t3)* (head'(r; g))} Functional composition, and definition of !
=~/ ((rz [2} (W) Assumption
="/l h" i3 k) Defnition of », and |
=fhh™tah Property of ~/
= (~/{nx B))) ~ (/1= (h))) Property of ~/ and =
= (~/(fax (head'(ty g)))} ~ (~/{ia» (head'(t g)})) Assumption
={"]or* oli)g ~(~/onx oln)g Functional composition
= (I ir2)g~ (I in)g Definition of ;
= ((nin) | (hsn))e Definition of |

0

Law 5.7 is a special case of this law, thanks to Lemma 5.6.2, below.
Cut partially distributes over sequential composition and over alternation.

Law 512 Iyl =1 M)

Law5.13 Wipsm) =Yn:'n)

Law5.14 @ i je) =0 |12) (b) Nty |t2) =1y | 1)
Cut also produces two adsorption rules:

Law 5.15 e | nig) ="

Lavw 5.16 Ltz [a) = | 5)

Special cases of these are as follows; skip becomes a left-zero for altemation, and
alternation becomes idempotent:

Law 5.17 Yskip | £} = skip
Law5.18 Nefn) =r

5.6 Tactic Assertions

In reasoning about tactics, it is helpful 1o have a formal way 1o describe the success
or failure of a tactic. The tactic suces ¢ fails whenever £ fails, and behaves like skip
whenever f succeeds. Conversely, fails ¢ behaves like skip if ¢ fails, and fails if ¢
succeeds. These tacticals are useful reasoning tools, and they have shown themselves
10 be useful in writing real tactics, too {see, for example, Section 6.1).

tg=()=
(failstg =skipg A suecstg = fail g)

tg="(hy,...h) =
(failsrg=1Tallg A succsig =skip g)

5.6. TACTIC ASSERTIONS 71

Law 5.19
Law 5.20
Law 5.21
Law 5.22
Law 523
Law 5.24
Law 5.25
Law 5.26
Law 5.27
Law 5.28
Law 5.29
Law 530
Law 531
Law 5.32

Law 533
Law 534
Law 535
Law 536
Law 5.37

These t1actics play a similar réle to that of assertions in other languages. However, as
tactics (rathet than predicates) they are more readily usable in reasoning, and can be
manipulated directly using the algebraic laws applicable to all tactics.

Laws

The interaction of fails and suces with each other and with the other basic tactics gives
rise to a large set of laws. There is a certain duality between fails and succs which
means that by giving primitive laws for fails, corresponding laws for succs can be
proven. Those which follow may be taken as primitive; a list of laws derived from
these is presented in Section 5.13.

suces iy =1t

hd Sfails ;¢ = 1ail

Jails t = fails 't = Yails

Jails(suces 1) = fails t

hd Jfails 1y ; fails ta = fails t3 ; fails n,

Wil) = | (fails 1y 5 1)

Wy se2) =1t s suces) 3 1

suces(t | u) = !(suecs 1 | succs u)
Sails(t | u) = fails 1 ; fails u

suces s ; suces(s ; 1) = succs(s ; 1)

fails s = fails 5 ; fails(s ; 1)

s fails i = fails(1s ;1) ; Is

Sails(fails s ;1) = succs 5| fails s ; fails ¢

Jails(s ; fails 1) = fails 5 | succs(s:1)

Derived Laws
A number of valuable laws can be proved from those above. These include:

W=

L fails s, suces(s 1) = fall

Jails(e 1 d) = faits(r ; succs d)
Is; suces 1 = suces(ls ;i) ;s

Jails(fails 1y = succs ¢

72 CHAPTER 5. A TACTIC LANGUAGE

Law 538 * Jails 1 ; suces by = suces Iy ; fails §y

Law 539 * SHCCS 1 ; SUCCS T3 = SHOCS Iy ; SHCes £y

Law 5.40 succs(succs 1) = suces !

Law 5.41 succs(fails 1) = fails 1

Law 5.42 succs(t :d) = suces(r; suces d)

Law 5.43 suces 1= suces W = suces |

Law 5.4 succs skip = skip

Law 545 succs fall = fail

Law 5.46 Jails skip = fail

Law 547 Jails fail = skip

Law 548 Sails t; fails £ = fails 1

Law 549 SUCCS |} SUCes | = SUeCs t

Law 550 * succs {; fails 1 = fails 1 suces ¢ = fail

Law3.51 * Jails t | suces ¢ = suces ¢ | fails t = skip

Law5.52 suces (t | u) = suces ¢} fails t 5 suces u

Law5.53 succs (fails 5,) = fails 5 ; suces:

Law 5.54 suecs (succs s, 1) = succs s ; suces

Law 5.55 succs (s ; fails) = suces 3, fails(s ;1)

Law 5.56 succs (5 suecs £) = suecs 5, suces(s ;)

Law 5.57 fails (suces 5+ 1) = fails 5| succs 5, fails

Law 5.58 Sails (5 ; suecs 1) = fails s | succs s fails(s ;1)
Sequential Tactics
For this larger language, we may extend the earlier definition of sequential tactics:

Definition 5.6.1 (Seguential Tactics) A sactic Iy sequential if it is skip, fail, yule r for some basic rule
r, I, fails t or succes ¢, for some tactic 1, or it has the form t| | 13, where 1 is in one of
these forms, and &y is a sequential tactic.
Lemma 5.6.2 Whenever o tactic 1 is sequential, we may show thar t =)1, using the laws above.

Progf: by structural induction, using Definition 5.6.1 above.
Case: skip = !skip by Law 5.8.

5.7. FULL COMPLETENESS 73

5.7

Definition 5.7.1

Lemma 5.7.2

Case: fall = !fail by Law 5.9,
Case: ruler = !(ruler) by Law 5.10.
Case

i

=

= ¢ | taid) Law 5.2
= 1(!r| fail) Law 5.14
=10 Law 52

Case: fails 1 = Yfails 1, by Law 5.21

Case: suces f = Isucer t, by Law 5.43

Case:) ;12
iz
=1l Inductive Hypothesis
=y 1) Law 5.12
={n 13} Inductive Hypothesis
a

Full Completeness

Having defined suces and faits, it is now possible 1o prove a completeness result for
the whole finite (non-recursive) language, including the cut operator:

T = ruleR
| skip

| fail

| T:T

| 7T

por

| sucesT

| foilsT s

where R is some hasic set of rules which transform one expression into another. The
proof proceeds in much the same way as that in Section 5.4, bul the conversion to
normal form is now a two-stage process.

(Pre-Normal Form) A tactic is in pre-normal form if it has the form
|5 raler; y
j:li‘ & ("’J ')
where the g; are guards of the farm succs (3 ry) or fails (54 ri), or (possibly empty)
sequential compositions of such guards, and the r; are instances of basic rules.

Any tactic writien in the language above can be put into pre-nomal form using the
laws given above.

74

CHAPTER 5. A TACTIC LANGUAGE

Proof: The proof proceeds like that for cut-free normal form, above, by structura)
induction. The base cases are, again, trivial; the case for 1, | r; is as before (i.e. using
Law 5.2 where necessary).'”

In the sequential composition case, I ; f2, we may assume {using the inductive
hypothesis) that the sequentially composed tactics are in pre-normal form. If either
is skip or fail, Laws 5.1 and 5.3 can be used 10 put the composition into pre-normal
form. Otherwise, Law 5.6 can be used to distribute /2 onto the altérnation components
of 11, and then, since the components of 1, are sequential, they are equivalent 1o their
cut forms (Lemma 5.6.2), and so Law 5.11 can be used to distribute the separate
componenis of £ onto those of 1,

This procedure will place the tactic in the form

| (81,0582, 02)
=l

Since the r,, are sequences of rules, we have that 'y, = ¢, (by applying Lemma 5.6.2),
and so Laws 5.30 and 5.36 can be used to assemble the guard components at the
beginning of each alternation branch (and the cuts can be removed. by applying the
same lemma again). The resulling tactic will be in pre-normal form.

Additional inductive cases are needed: The tactic Ir is normalised via use of
Law 5.24. Since ¢ 1s in pre-normal form (by the inductive hypothesis}, repeated use of
this law will distribute the cuts onto the sequential components, from where they can
be removed (Lemma 5.6.2). This distribution may resull in the creation of nested in-
stances of succs and faily. Laws 5,31, 5.32, and 5.53-5.58, can be used to remove those
nested instances. Finally, any alternations introduced by these laws may be moved lo
the outermost level using the distributive laws (5.6 and 5.11, applying Lemma 5.6.2).
The resulting tactic will be in pre-normal form.

For the case fails t, the tactic t may be assumed 10 be in pre-normal form, and so if
it is an altemation, Law 5.27 can be used 10 distribute the fails through the altenation.
Laws 5.31 and 5,32 (and laws derived from them, 5.53-5.58) can be used to remove
nested instances of swccs and fails. Doing so may introduce alternations, as above, and
so distributive laws can be used to rarsform the resulting tactics into pre-normal form.

Similar arguments apply [0 suces & normalization begins with Law $.52, and then
proceeds like that for fails, a

Pre-normal form is insufficient for proving completeness since it does not guaran-
tee uniqueness; the following tactics are all in pre-nommal form (provided s and ¢ are
sequences of rules), and all equivalent:

N

succs s i85l

succs (550 .5,¢
suces g suces (5548t

erc, More crucially, where allemation and fails are involved, it becomes impossible
simply to ‘complere’ the guard (as in the last of the examples above). Some allemation
branches would be mutually exclusive and could therefore be reordered; olhers would
not, and their order would be important.

12[Jse of the associative laws (5.4 and 5.5) will be assemed, where necessary, throughout the following
proof.

5.7. FULL COMPLETENESS 75

Definition 5.7.3

Instead, then, a tactic in normal form will be one which is factored into a number
of tactics v, in cui-free normal form, each one guarded (by a guard g,) in suwch a way
that the success of the guard is sufficient to guarantee the success of every alternative
branch of the tactic it gnards, with the guards being mutually exclusive. Ewch guard
must be ‘maximal’ in that it must contain a succs or fails for each sequence of rule
applications that might arise in any of the v,.

The definition of general normal form, and the lemmas which follow, will be
relative to some set of rule sequences. Rule sequences will be sequences of the form
rule r; ; ruler; ; ruler;, etc. A set of such sequences T will be prefix closed if for any
rin T, T also contains all initial subsequences of ¢ (i.e. for a set containing the rule
sequence above fo be prefix closed, it would also need to contain rule r; ; rule ry and
the atomic tactic rule ry).

For a given tactic 4, in order for the normal form to be well-defined, it must be
calculated relative to some sufficiently large sei of rule sequences. ‘Sufficiently large’
means that it must at least contain the minimal set of rule sequences determined by
consideration of the tactic { in pre-normal form (using notation from Defizition 5.7.1):
thal set must contain all the instances of Tule sequences (5, Tuler,), and all the rule
sequences occurming (preceded by suces or fails) in the guards g;. and must be prefix-
closed.

(General Normal Form) A tactic is in general normal form relative to a ser of ruie
sequences T, if it has the form

lgiv
I

where the v, are tactics in cut-free normal form (and are not [ail), and the g; are guards
as ahave, with certain provisos:

a. (consistency) for each guard g;, if for some rule sequence 1, g, conlains succs 1,
it must not contain fails s, for s any prefix of t {or ¢ itself);

b. (maximality) for each j, for all t in T, either succs f or fails t must be present in
B
c. (sufficiency) for each J. the success of g, must be sufficien! to guaraniee thar of

all the alternate clauses in v, ie. ifv, = |tvn, then for all k, suces v;, must be
presentin g,

d. (mutual exclusivity) the guards are mutually exclusive; that is, for i and j, wirh
i # j, there must be some rule sequence ! for which g, contains succs ¢ and g;
contains fails ¢ (or vice versa).

If the conditions in the definition above are met, the following properties may be
proved using the laws given previously:

& # fall
SuccS 53 g = & or failst; g; =g,

SHCCT g = SUCCS R, | SUCCS Vy
&8 = fail W #j)

76

CHAFTER 5. A TACTIC LANGUAGE

Lemma 5.7.4

Due to Laws 5.23, 5.39, and 5.38, we may observe that the components of the
guards in a lactic in normal form can be arbitrarily re-ordered. Moreover, this property,
together with the mutual exclusion property, means that the outermast alternation can
be re-ordered, too: an arbitrary pair of adjacent altemation branches of a lactic in
general normal form can be considered, due to the foregoing remarks, to have the form
(suces 15y) fails 1. 59);

suces 15y | fails ;52
= (fails t| suces t) s (suces £ 5y | fails t 5 53) Laws 5.51 and 5.1
= foils 1, succst; 5) Laws 5.6 and 5.1}, applying Lemma 5.6.2
fails i ; fails t ; 52
|suces ¢ suces t)51
|succs ¢ fails ¢ 52
= fails t ;52 | suces ¢35, Laws 5.50, 5.2, 5.48, and 5.49

Since arbitrary branches may have their order swapped, the ordering of the tactic as a
whole may be changed arbitrarily. This means thal the normal forms achieved below
will be unique only modulo these two forms of reordering,

Given a sufficiently large prefic-closed set of rule sequences, T, any taclic in pre-
normal form can be put inio a unigue normal form relative ro T (unigue modulo
reordering of the guards), using laws drawn from the sel given above.

Proof: Consider the tactic formed from all possible guards for rule sequences in T:

3 (suces t| fails 1y

rT
‘This is equivalent to skip. The distributive laws (5.6 and 5.11, applying Lemma 5.6.2}
can be used to ‘multipty out’ this expression into the form

| 8i '

!
{this still being cqual 1o skip). From ! we may remove all those i for which g, is
equivalent to fail, via Law 5.34 and the commutative laws (5.23, 5.39, and 5.38),
to give I'. These guards then have the mutual exclusion property mentioned in the
definition of general normal form. They have the consistency property. since those
which are equivalent to fail have been removed. They also have the maximality
property, in that for each f in T, for each J, either g; contains fails ¢ or it contains
SuCes 1.

If we sequentiaily compose this tactic with the tactic in pre-normal form:

(b2 ()

and again use Lhe distributive laws, we obtain

| fg;;h,;(h;x}n) .

[Ha

this tactic remaining equivalent ta the original tactic in pre-normal form.

5.7 FULL COMPLETENESS 77

Lemma 5.7.5

By the maximaliry property (and the sufficient size of T), for each A,, g, pair, we
have either that each component of #; is present in gi, and so by the commutativity
laws (as above) and Laws 5.48 and 5.49, g, 1 iy = g;, or that g, has a succs ¢ for which
& has a fails t (or vice versa), and 50 by the commutativity laws and Law 5.34, we
have g;; k; = fail.

Therefore, the tactic above may be rewritten without the A5, and with some if the
Js omitted (so J! replaces 7).

I gii(; rt) .
£k

=

Now, by the commutative laws for succs and fails (as above), and Laws 5.20
and 5.2, those inner alternation branches whose guards which contain an instance of
Jaiis(;, r) can alsa be omitted (so I} becomes J}'). In the event that J!' becomes empty
following these changes (thus the alternation aver j simply denotes fail), Law 5.2 can
be used to omit this i from I’

Finaily, the {left) distributive law can be used to transform the tactic into the
required normal form:

1o 1(59)

This is in normal form, since the g; remain maximal, consisient, and mutually
exclusive. Their sufficiency arises as a result of the maximalily and the omission (in
the last step, above) of clauses which must fail. w]

Twa tactics in general normal form (relative to some sufficiently large prefix-closed
set of rule sequences, T) are equivalent iff they are identical modulo reordering of the
guards.

Proof: The proof proceeds like that of the corresponding lemma above {5.4.6). The
“if" part is guaranteed by the soundness of the laws which make reordering possible;
for the ‘only if* pan. we produce a rule/goal model in which the semantic behaviour
of a 1actic can be used to reconstruct its normal form.

Let the rules referred-1o in the tactics be ry, . .., r,, and let the goals be decoraled
with pairs: a prefix-closed set of ule sequences, and a single rule sequence. The
former will be those sequences of rules (drawn from T) which can succced when
applied to the indicated goal; the latter a trace of rulcs which have already been
successfully applied.

That is, g,, € domr; & 3xs : 5 | head xs = r;, In this case, 7, g5, = By)
where ' = { 25| r; ~ x5 € 5 }; otherwise the rule application fails.!*

By considering the behaviour of a wactic applied to various goals, it is possible to
determine the guard/body'? pairs of its normal form. The application of a actic 1 10
a goal g, (y, will either result in the empry sequence as output, or a sequence of the
form (g, ss-- -, 8s.n)- [he former case will arise either because s fails 10 be prefix
closed (corresponding to lacking the ‘consistency’ property of the normal form), or
because it corresponds to one of those guards which was omitted above because it was

11 Thig is why the definition of normal form requires that if the guards are successhully executed, the rukes
must ot fil.

78

CHAFTER 5. A TACTIC LANGUAGE

Theorem 5.7.6

Corollary 5.1.7

58

guarding a lactic equivalent to fail. If a non-empty sequence is produced, she body part
of an alternation in the Lactic can be reconstructed as the atternation of 1y . . . 1,, and the
guard for that branch from swces applied to each member of s and faifs applied (o each
member of the complimentof sin T

By considering all such initial goals g, () {with 5 as any prefixclosed subset of
T) for which the oulcome is nol the empty sequence (i.e. failure), it is possible to
reconstruct the whole tactic in normal form.

The maximality is guarenteed by ensuring that every member of 7 is present in
each guard—with either succs or fails—and the mutual exclusivity by the fact that
the sets of sequences with succs are different in each guard. The sufficiency and
consistency of the guard is ensured by the fact that i1 gives rise to an outcome which is
not failure.

In this way, a tactic in normal form is completely characterized (modulo reorder-
ing) by the set of goals on which it succeeds and the outcomes when it does so, and
the result follows immediately. o

Two tactics are equivalent under all rule instantiations iff they have the same general
normal form, modulo reordering of the guards.

The set of laws is complete for the language described above.

Semantic Model incorporating Recursion

In this section we extend the semantic model to cover recursive 1actics. To do this, we
shall need a model which uses (potentially) infinite lists, in place of the finite lists used
above.

Infinite Lists

The style of infinite lists which we shall use js thal found in many treatments of
functional programming with lazy evaluation. A suitable mvodel for such lisis will
be found in [Mar93b); the definitions remain consistent with those in Appendix A.1.

The datalype of infinite lists differs from that used above by the incorporation of
partial and infinire lists. The set of lists over a set A, (denoted seg A, as above) is
augmented by the addition of an extra element, L. A partial order is then defined
over this set of lists. L, is the least-defined element in the set. It is a partial list, as
is any list which ends with 4. One [ist is less than another {denoted by 5, C_, ;)
whenever they are equal, or the first is a partial list which forms an initial subsequence
of the second. Formally, an infinite list is a Jimit of a suitable (i.e. direcied) set of
partial lists (the limit of the set of lists § is denoted | | 5)-

We sha]l retain the same notation for list concatenation as was used on finite lists,
and so the tactc definitions previously given will still apply. However, note that
whenever 5, is a panial or infinite list, then 5, ™5, = 5, (for any 5;). Also, ~/ i
{necessarily) ill-behaved on cenain infinite lists. A pathulogical (but important) case
is

OO =1

As tactics are defined as functions from goals to lists of goals, it is a standard
construction to extend the ordering on lists of goals to be an ordering on tactics. This

5.8. SEMANTIC MODEL INCORPORATING RECURSION 79

Law 5,59
Law 5.60
Eaw 5.61

Theorem 5.8.1

is accomplished in a pointwise manner. A suitable treatment can be found in [LS87).
The relevant definitions are as follows:

hCrhaer (Vg:Gonghytag)

(Llr:)g:'_lm{r:sorg} .

Semantics
The atomic tactic abort is simply defined; it maps any goal to the undefined list:
abortg =15 .

The recursion operator is defined as a least fixed point, For f a function from tactics
to tactics, we have that

(uX ef(x)) =} | {i:Nefi(abory) } .

Again, this is a standard construction, covered, for example in [LS87]. It requires that
the tacticals used to define f are continuous—and those defined above can be shown
10 have this property. It is worth noting that this least fixed point is L only in the case
that for all i, we have that f*(abort) = abort, i.e. exactly when f(abort) = abort.

Laws

The laws given in Section 5.4 also hold in the presence of recursive tactics, with the
exception of those marked with (*). abort is catastrophic; sequential and alternate
composition are strict in their left-hand argumenis.

abort ;r = abort
abort |r = abort
Vabort = abort

The composition operalors ane net strict in their right-hand arguments (indeed, if ¢ is
not abort and does not always succeed, we have abort Cr ¢ ; abort, etc.), since the
tactic which precedes abort may mask its action (i.e. in the sequential case, ¢ may fail,
and fail ; abort = fail).

Since the tacticals presented above (and below) are continuous with respect to the
Cr, we may use Park's Theorem [Par69] to deduce properties of fixed points.

(Park) For any tactic Q, and continuous function from tactics to tactics, F:
FOICr@
(X eFX)ErQ .

In order to demonstrate equality of recursively-defined tactics, it suffices to show
refinement in each direction separately. This theorem allows that refinement to be
demonstrated by showing that each tactic satisfies the other's recursive equation.

For tactics which are known to ierminate, and satisfy the same rcursive equation,
however, a simpler proof of equality is possible. In this model, a warctic will be said to
terminate when applied (o a given goal if it produces a finile (non-partial, non-infinite)
list of subgoals.

80

CHAPTER 5. A TACTIC LANGUAGE

Theorem 5.8.2 Let X and Y be arbitrary tactics such that Y = (nZ » F(Z)) and X = F(X). (For

Law 5.62

Law 5.63

Law 5.64

Law 5.65

Law 5.66

some contingous F). If Y is known lo terminate on all inputs then X = Y,

Proof: In onder 1o show that X = Y, it is sufficient, by extension, to show that, for
an arbitvary goal g, X g = ¥ g, Park’s theorem gives us that ¥ Cr X; therefore
Y8 Co X £ Now,

Yg
= |Jp{ i: N f{abort) }2 Definition of u
= Uy { i: N o f(abort) g} Definition of | 1

Since we know that Y g terminates, we know that there is some j such that | |, {i: N e
filabort) g} = f*(abort) g, and that this is a finite (non-partial) list. Recalling that
C o i5 a strict inequality iff the expression on the left-hand side is partial, we deduce
that Yg=Xg.]

Infinite Alternation

One further extension to the tactic language which has proved useful in establishing
properties of recuesive tactics (see Lemma 5.9.1 below) is a generalization of the
alternation operator of Section 5.3. We define an infinite alternation, such that

T s0)

i=at+l

T st =sm)(

holds, by using a vector of recursive tactics (that is, by taking a fixpoint in the function
space N =+ T).

Tuf(f) = pX s F(Xo)

where F{X,) = f(i) | F(Xis1)

Laws

Infinite alternatior has many of the same properties as ordinary (finite} alternation:

Jowia=(] s@):d

\(1so)=1(1 vo)

| fall = abort

=0

o f= Tl;f(i) providedr = !¢

oo
|
=a 1=0

5.9, DERIVED TACTICALS 81

Law 5.67
Law 5.68

Law 5.69

5.9

Interaction with fails and succs

For tactics which are not known 10 terminate, suces and fails are of limited usefulness.
For tactics which certainly do nol terminate,

1g =1lg=>
(fails 1 g = abortg A suces1g = sbortyg) .

In other cases, typically we mighi be able 1o say
abort Cr suces t Cr skip or abort Cr suces t Cr fail |

and similarly for fails.

In each case, the lefi-hand inequalities will be sirici if the tactic 1 is known to
produce some outpul {in which case, suces ¢ will satisfy the left-hand equation, and not
the right-hand one); if the tactic is known to terminate, the right-hand inequality will
be an equality.

The combinators suces and fails are strict:

Jails abort = abort
succs abort = abort

The following refinement result is of interest; by symmeiry, the refirements in the
rule and the proviso may be replaced by equalities.

h|hCraln provided succs ty Cr fails t,

Derived Tacticals

In the many treatments of tactics and tacticals (see Section 8.2), a few derived tac-
licals recur frequently. These have shown themselves to be particularly valuable for
describing tactic programs: operators for iteration (repear), robust application (sry)
and exhaustive application (exhaust). We define these here, and describe some of their
properties.

Definitions
Most tactic languages include a definition of a repear tactical (sometimes called

iterare). repeat(n, £) will run wactic 1 the number of times specified by 2. We denote
this more succinctly with a notation suggestive of iteration.

‘D
o+l

= skip
=M

The limiting case (repeat f indefinitely) is not very useful:

~o= 5
uXer X .

This tactic is either abort or fail, depending on whether ¢ always succeeds, or eventu-
ally fails. Instead, a tactic which applies r as many Limes as possible, terminating (with

82

CHAPTER 5. A TACTIC [ANGUAGE

Law5.70

Law 571

Law5.72

Law5,73

Law5.74

Law 5.75

Law 5.76

Law 5.77

Law 5.78

Law 5.79

Law 5.80

Law 5.81

success) when t fails to apply, is defined. The tactical which does this is called exhauss
(some authors call it repear).

exhgust 1 = {uY » (1;Y | skip))

A property of exhaust is exhaust 1 = t ; exhaust 1 | skip, and this will generally be
used as its definiton. This Lactic is able to backirack, both in the number of iterations,
and in the evaluation of 1. Sometimes this gives more freedom 1han is usetul, and so
(exhaust 1) will often be used—Law 5.82 gives a useful altemative formulation of Lhis
tactic.

It is often useful 1o be able to try to apply a taclic, but to succeed whether or not
the tactic applies. This is accomplished by the derived tacucal rry.

try t = (1| skip}

Laws about Iteration

Tieration has some obvious properties. These can be proved by induciion using the
laws given above.

l‘";l‘”’:f‘"’"‘

suces ;P = ptl

- Sails £ ;1 =< fail

fails 2L =1 fails e

Jails ©* = fails (* | fails /1

succs I = succs AL succs PP

fails " = fails P~ | (suces 71 fails)
fails P = skdp => fails "+ = skip
=t = F=r

Laws about try

There are few obvious usefu] laws about iry.
ry) =tryr
exhaust t ;ry t = exhausf |

v)y = try v

5.9, DERIVED TACTICALS g3

Law 5.82 ¢

Law 5.83

Lemma 5.9.1

Laws about exhaus!

The following laws about exhaust help 1o characterize its behaviour. Those laws
marked with (1) apply only when exhaust ¢ must terminate, i.e. when ¢ is not abort
and does not always succeed—otherwise they are refinements rather than equalities.
The proofs make reference to some derived laws which are listed in Section §.13; laws
which ean be proved using the primitive laws given in Sections 5.4 and 5.6).

Wexhaust 1) = (X o (¢, X | skdp))
Proaf:
{exhaust £}
= !(r; (exhausi 1) | skip} Prapenty of exhqust
= 1(!{t : (exhaust 1)) | skip) Law 5.14
= ()¢ (exhaust 1)) | skip) Law 5.13
= (i ; Yexhaust 1) | skip) Law 5.14
Hence, by Thearem 5.8.2, Y{exhaust 1) = (uX & {1 X | skip)). a
succs(exhaust t) Cr skip
Proaof:
succs{exhaust 1)
= succs(t ; exhaust 1 | skip) Definition of exhaust
= suces(t; exhausrt) | (swccsskip)) Law 5.26
= Vsuces(t; exhanss 1) § skip) Law 5.44
= (suces(t; exhaust 1) | fails(t ; exhaust 1)) Laws 5.24,5.1, and 5.22
Cr skip Law 5,113

]
Like Law 5.1 13, this law can be strengthened to equality in the case that r; exhauss ¢
is guaranteed to terminate. -
Similar arguments give that |~ (¢ ; fails 1) Cr skip; a fact which will be used
below,
Proof of the remaining laws (see below) is made possible by the following lemma,

For any sequential tactic ¢,

exhaust i) = | (¢ Jails 1) .
=0

Prmof: It suffices to show refinement in each direction separately.
(a) Wexhaust 1) Cr |72, (¢ fails 1)

Refinement in this direction is demonstrated by showing that the infinite choice
satisfies the recursive equation for !exhaust f) (Law 5.82). i.c. thatl(s ;l:o(x" fails 1))

a4

CHAPTER 5. A TACTIC LANGUAGE

skip) C

d

(1]

It

Il

Il

It

®) iy

Tt s fails t).

]2 (r < fails 1) | skip)
Mfaits (13§74 ; fails 1)) 5 ship | 53| (¢ 3 fails 1)) Law 5.121
Wfails (53] oo (s fails) £5] g (7 s fails 1) Law 5.1
Mfaits (23, (7 s fails D))22, (#+ < fails 1)) Law 5.66
Waits{t s suces(| gttt s fails 0)) 1| oo ¢ fails £)) Law 535

T !(fails t ; skip | !zl(f iJfails 1)} succs |:U(H ; fails 1)) Cr skip
Waits ¢ ||, (¢ : fails 1)) Law 5.1
Yails ¢ | faiis(fails 1) ; !l::l (¢ ; fails 1) Law 5.24
fails 1| suecs ¢, !]:](r‘ ; fails 1) Laws 5.37,and 5.21
fails ¢ |l:1 (succst; ¢ ; fils 1) Property of |, and Law 5.66
faifs t || (¢ fails) Laws 5.19, and 5.70
I::o ¢ fails ¢ Law 5.62

¥ fails t) Cr (exhausi 1)

In order 10 prove this result, we make use of the recursive definition of infinite
allernation, Writing F(k) = i ; W(exhaust 1), we show that H (k) Cr (F(k) | H(k+1)),
where F(k) = . fails £; i.e. that H satisfies the equation for infinite alternation. Since

exhaust £} = H(0), we have lhal|

T

|

I

o0

{¢'; fails 1) Cr Wexhaust 1).

=0

3]
&, exhaust 1) Definition of H
;1 ; exhaust t | skip) Definition of exhaust
* ; Nfails(t ; exhauss £) ; skip | 1 ; exhaust t) Law 5.121
& Wfails(r ; echaust £) | ¢ ; exhaust 1) Law 5.1
&5 faits(t ; suces(exhaust)} | 1 ; exhausi 1) Law 5.35

Cr & ; (fails{r; skip) | 1 ; exhaust 1)

i

Law 5.83; exhausr ! not guaranteed to terminate

Wails t| t; exhaustr) Law 5.1
& (Yails 1 | fails(fails 1) ; (1 : exhaust 1)) Law 5.24
¢ (faits t | suces ¢ (1 ; exhaust 1}) Law 5.21
& (fails t | suces 13 1(Y ; texhaust 1)} Assumption, and Law 5.13
& (fails £ | suces 13\ ; lexhaust 1) Law 5.12
& (fails f | suces 1 ;¢ Yexhaust 1Y) Assumption
*; (fails 1) 1 Yexhaust 1) Law 5.19
I (fadls £ | 1 (exhaust 1)) Assumption, and Law 5.78
VP fails 0| 1 5 b Mexhaust 1) Law 5.11

¢ fails | * ot exhaust o) Assumption, and Law 5.78

5.10. STRUCTURAL COMBINATORS 35

= £ fails 4] A+ ; exhaust 1) Law 5.70
= F(k)|Hk+1) Definitions of F and H
[}

This is a valuable result since it reduces a recursive expression into something
resembling our earlier normal form for tactics together with an assertion. The assertion
is essential for the comectness of the latier tactie. This may lead to a completeness
result for the tactic language with recursion. See Section §.3.

Law 584 ¢ Wexhawsi 1) ; 1 = fail
oo

{This holds under the previously-siated assumptions; hence |_; # # abort), and so
Law 5.3 is applicable below; otnerwise, the result becomes a refinement.)

Proof:
Wexhausr 1) ;1
= (|1 £ fails i) ; ¢ Lemma 5.9.1
= (|2, F) :fails 11t Law 5.63
= (|7,) ; fall Law 5.20
= fall Law 5.3
]
Law 585 Wexhausi £} ; exhaust 1) = !(exhaust 1)
Prmof:
Yexhaust t) ; !(exhaust 1)
= lexhgusi 1} ; !(t ; exhaust t | skip) Definition of exhaust t
= 1(Nexhaust 1) ; (1 ; exhaust 1 | skip)) Law 5.13
= V(!exhaust t) ;1 ; exhasust ¢ | exhaust 1)) Law 5.11
= Y(fuil ; exhaus: 1 | !(exhaust 1)) Law 5.84
= !(!(exhaust 1)) Law 5.2
= (exhaust 1) Law 5.33
m]
Law 5.86 fails ¢ ; exhaust 1 = fails t
Law 5.87 exhaust 1) ; fails t = \(exhaust ()
Law 5.88 try(exhaust t) = Yexhaust 1)

5.10 Structural Combinators

When the tactic language is used in a particular application, it will often be useful
to define tactics which exploit the structure of the goals (expressions) to which they
are applied. This is accomplished by the use of srructural combinators. An example
of their use was seen in Section 5.2, Any definition of such a combinator must be
sound with respect to some meta-theorem for the expressions under consideration—
i.e. monotonicity is required, so that application of taclics 10 sub-cxpression gives a
valid rewriting of the whole expression,

86

CHAPTER 5. A TACTIC LANGUAGE

Law5.89

Semantics

If an binary operator & is present in the object (expression/goal) language, it may be
lifted into the tactic language as by the following definition:

crossis = [Jo{¥4t5)
break(p, @ p1) = {p1,p1}
combine(py,pa) = (p1 ® p2)

n 12 = combines o (cross{h,iz)} © break

The defigition is the composition of three auxiliary functions. The central function
cross does the work—it lakes a list of sub-expressions and zips them with a list of
tactics (Y, pronounced “zip with f*, is defined in Appendix A.1). This produces a list
of lists of allematives. These alternatives must be combined via a cartesian product,
[1 (so that the first alternative from the first tactic may be matched with the first or the
second alternative from the second lactic, and so on). The auxiliary definitions break
and combine simply convert a goal with an infix & into a list of subgoals, and vice
versa.

Laws

Certain Jaws have rather asymmetric provisos, as a result of the definition of [].
An alternative ordering of the results of the cartesian preduct would give different
{aws. If a diagonal enumeration were used the structural combinators would be better-
behaved with respect to tactics producing infinitely many alternatves, but the abides
and distributive laws would need stronger provisos.

When defined in this way, abt‘de.r with sequential composition:

([@]n): s [@1n) = (i) [@]{nin)

provided 1y = 'z, 0or f) = and 13 = Ity

Proof:
(t) & 12) 2 (1 By}
="folts @t)ro (1 @ 1) Definition ;
=~/ o(combines o cross{ty, t4) o break)* o combinex o cross(iy, 13} o break
Definition of &

~/ ecombiness o (cmss(.ra, fa})a
(break o combine)s o cross{ty, ty) o break Property of o and *
7~/ ocombinexx o (cross(iz, 1)} ¥ 0 cross(ey, 12) © break
Property of combine and break, and first lemma below

It

= combines o ™[o(cross{ts, ;)] * o cross{ty, 3} o break Lemmas, below
= combinex o (cmss("/ ofawof, " folxo fg))* o break Key Lemma
= combinex o (cross(e; ; #a, 42+ ta)) % 0 break Definition of ;
=t 13) D21} Definition of &

a

5.10. STRUCTURAL COMBINATORS 87

Law 5.90
Law 5.91

Law 592

Lemmmas (to be found in [Bir8B))

foide=f
fronf="[ofsx
froge={fog)s

Key Lemma {subject (0 proviso):
~fa(cross{ia,ta))» 0 cross{ty, t2) = cross{~/ afzx o1y, "/ otax o)
Proof: Lety g1 = (flu,- Lo Rmyandi; g2 = (hzl,. .. ,hz,,).

(~/ ocross(ta, ta))* o cross{n, t2}) {1, g2)
= (~/o([Telviglts. t) o [T o(¥iginn, 2))}{g1. g2} Definition of cross

= (’\/o(n n(Yid(fa,q)})- o n) (1, &1,1z 82) Definition of Yid

= (~/o(I] o ¥iqlts, ta)) o TD ((huay - -, Bam)y (Pizas - - - Fizn))
Assumption

= (~/o(ITa(¥iq{ts, ta)))#) Property of []

(Uhans hndse oo (Bans ooy (rmg)y (B B2al)
= ~f{T16 Aus ta handy o T1E0 Buny ta Bron)y ey
[1{ts himy 14 B2rd, - T1{t3 i ts h2a)) Definitionof =, and vy
=TH{~ /Ay, .-t bimds ™ byt haad) 1
= (Te(vig{~/ ors2 0 1, [otes a 1))} g1, g2}
Definition of ¥ ;4 and =, and assumption
= cross{™~[otax 01y, " otgm 0 13} {21, 82} Definition of cross

Step (1) is justified by Lhe initial proviso—both t; = 17, and £, = !ty with 13 = !5 are
sufficient conditions; their disjunction appears to be a necessary condition:

fz = li; implies that # = 1 {or # = 0, which is a degeneratc case}. In this
case, Lhe requirement becomes that [[{ta Ay, s Az1) 7™ - ™ []{f Aimoda Frzy) =
n(!; k7 ...713 ’l],.,h hgl). and this is a property of 7 and n

Similarly, r, = !t irnplies that m = 1, but no sueh law exists between ~ and J]
in this case, and so a further constraint—that r3 k1, = (k), for some k {again ignoring
degenerate cases)—is needed. Then the equation becomes [T{{(k), &y hor) ~ ... ~
TT{4k), ta han) = TI{{K) ta By ... ™ 14 hap), which follows from the definition of

. o
Also, [@]distributes through alternation, and cut distributes through

n(8)inln) =n[8]a)i[@]n)
(n | 02) [@]ts = (1 [@©]4:)) (12 [@] 1a) provided £, = Y13
!(ﬁ .I'g) =1 !!g

Notice that the proofs of these laws use (depend on) the property breakocombine =
id . Notice too that the lactic 5 t; fails if either 1y or 7z does, and fails if presented
with a goal which is not of the form g, @ g, (this is accomplisbed by having break
return an emply list in this instance; sce also the defiritions of ¥ end []).

88

CHAPTER 5. A TACTIC LANGUAGE

Law 5.93

Law 5.94

511

suces(n rg) = succs(sidp skip) ; succs(n)
suces(n !-;) = (suces 1) (succs t)

Example

With this generic definition in place, the tactical can now be defined, simply by
giving appropriate instanliations for break and combine:

breakn (g, A g2) = (81,82)
combine, (81,82} = (g1 A 22)

Lifted parallel composition (for goal-directed proof, where branching proof rees
give rise to parallel compositions of goals) will be slightly harder to define. See
Section 5.12 for details.

Pattern-matching

{tis desirable to have a tactic take different actions depending on the form of the goal o
which it is applied. For example, in the Z frame in Chapter 2, the 100lKkit tactic TK-TAC
was used to rewrite predicates using relevant definitions from the toolkit. This could
have been written using only alternation, but the inefficiency involved (rcwriting with
each definition until the correct one is found) would be great.

Moreover, it is often useful (o be able 1o parametrise tactics with terms that arise
within the goal. Recall, for example, the tactic for replacing a schema by its definition:

auto~schdef (- S) = apply—schdef §
auto—schdef(r b.5) = apply—schdef §
elc.

We have already assumed that basic rules act in this way (see, for example, the
rules wsed in Section 5.2). Since we have ruled out tactics being arbitrary functions
on goals for reasans of soundness {only basic rules can directly manipulate goals),
another tactic construct is needed—one which allows access to the terms in the goal.
but is nevertheless forced to apply only basic rules.'?

permits Lhe definidon of tactics which are dependent upon the goal 1o which they
are applied. Unsoundness is avoided by having return a facric rather than (say) a list
of alternative subgoals:

(TV1ye e, Vna g —+ 1) .

This tactic binds the (meta-}variables v, ..., v, within the scope of g and 1. If goal
g matches exactly the goal presented to the tactic {the variables in vy, ..., v, being
angelically chosen, if possible, to make this be the case), the whole tactic behaves like
tactic r. If not, the tactic fails.

For example,

(rxe(txe8) — ()| (rxe(Fx=35)-— skip}

1#20B) wkes an alternative approach, where ail tactics are parametrised in this way As a resull most
20B] wactics simply discard their goal parameter; they are total and constant

5.11. PATTERN-MATCHING 89

is a tactic which will behave like lactic ¢ (parametrised by x) if presented with a goal
of the form (F x € §), will skip if presented with a goal of the form (F x = §), and
will fail otherwise.

Semantics

The variables which 1 introduces are metg-variables: that is, they may range over
members of any of the term classes (expressions, predicates, object variables) in the
object language. The account which follows will assume that the members of those
termn classes are denumerable, and that the panicular term classes 10 which the vari-
ables belong will be apparent {so, in the example above, x must denote an object vari-
able, say, and S must denote an expression). The scope of the meta-variable introduced
in this way will be made explicit where necessary, by use of parentheses.

This construction may be given a farmal meaning by defining its two components
separately. Firsl, a tactic which succeeds only if it is presented with a goal matching
its argument {equals is a tactic parametrised by some goal g):

equalsgg = skipg
equalsgh = fallg where h# g .

This is a very tigbtly defined tactic—it calls for true equality of goals, In order
to make it useful, free variables for binding names to terms will be needed. We
may accomplish this by introducing another construct—Ilogical conslants, in the style
of [Mor90}:

(conv =)

This tactic introduces v as a set of free variables chosen from an appropriate syntactic
class (denoted TERM below) in 1, angelically chosen so that as many choices as
possible succeed:

(conver(v)) = (Ive‘rm l(v})

Notice that Iverm is intended to indicate that the possible terms are enumerated
in some order. If maiching over severai variables stmultanecusly is required, they
must all be introduced 10gether—s50 that a ‘diagoenal’ enumeration can be used. Note,
100, that con may bind any term/expression in the object language. For instance,
(conp » eguals {F p) ; 5} is a wetic which will apply s to any sequent having just one
predicate on the right-hand side—and p may be a parameter to 5.

This, however, is a very weak specification of con’s behaviour! This definition
will abort if there are no suitable instanatiations of v, whereas il is usually possible to
determine this in a firite time (and have the wctic fail instead)}—and nested instances
of con will not, for the same reason, be handled well (they will tend to abort, since
the value chosen by the ouler con will be fixed whilst ai! of those offered by the inner
con are tried—if no maich is possible for the first-chosen outer value, an infinite loop
will ensue).

141t is also Bt & plansib jon. Whilst the variables, exp di o1e, of our object
lmguagemaybelhemeumllythnllmﬂ'nbh.1lwuuldclcaﬂybemwwnusamplymﬂmmmhonem

CHAPTER 5. A TACTIC LANGUAGE

Law 598
Law5.96
Law$.97

Law 5.98
Law 5.9%
Law 5.100

Law 5.101
Law 5.102

A rcasonable implementation of con will allow rwo notions of scope—there is the
area in which backtracking is possible (preferably ‘smant” backtracking, which will
cause failure if no maiches can be found) and an area in which the variables introduced
by con are bound. [deally, the extent of these two scopes will be determined by the
tactic prograinmer—in practice, the first will be limited to a single instance of eguals
(see Section 7.2). The backtracking wili generally need to be limited, so that if the
tactic body fails (for reasons unrelated to the pattern-matching) the whole tactic will
fail.

Now we may define

(vy,...,vaog —) = (convy,...,vo @ equals g 1) .

Morgan observes thal con is not (cannot be} code in any imperative language. The
situation is slightly better here—con introduces a simple pattern-matching problem, !*
which is solvable for a first-order language, and may be partially soluble for other
languages. In the light-weight implementatjon introdueed in Chapter 7. this is achieved
by appealing to the unification algorithm in the underlying functional language, thus
giving onc of the implementations proposed above. Implementation of a unification
algorithm to give a tactic interpreter precisely the semantics described here is also
possible,

Laws on equals
Proaf of laws aboul equals is elementary.

equals g ; equals g3 = fall if g, # g2
equals g ; equals g = equals g

lequals g = equals g

Laws on con

con distributes whenever no variable capture is caused. The side~conditions are
phrased using ¢ (by analogy with the Z semantics (see Chapter 2) }—intended to ex-
tract the set of free (meta-)variables of the tactic to which it is applied. The *weak’
semantics proposed above would, of course, allow the first two laws to be proved
withoul the side-conditions, but if backtracking is to be restricted as discussed in the
prose, these provisos are needed.

(convey ;1) =(conven}:ih provided v ¢ oy
{conver ;13) =1 ;(convern) provided v & ¢ty and 1 = 'ty
(convei) =t provided v ¢ ¢¢

con may be expected wo satisfy other common quantifier rules:
{conv et) = (conwu e fv\u)) provided u @ ot

equals g ; (con g’ s equals g' | 1) = equals g ; f[g'\ g]

'5For cenain classes of problem. o con which signalled nnification rnight be of benefit.

5.12. PARALILEL COMPOSITION gl

5.12

Law 5.103

Lawson

The above laws may be used 10 derive some properties of w1, but in general it will be as
easy to deal with reasoning about con and eguals, so no derived laws will be presented
here.

Paraliel Composition

We shall handle proof trees thar bifurcate using structural combinatars, & described
in Section 5.10. There is, however, an added complication, in that the application of
a tactic 10 a proof tree branch may lead to ne subgoals—the proof of that branch may
be completed. That is to say, the type of proof nodes consists of empty nodes (),
single nodes g, and compound nodes g || g3 (g7 and g2, being, in tum, empty, single
or compound),'® These symbals wiil carry these meanings for the remainder of this
secton.

Tactic paralle! composition |]| [may be defined as a structural combinator over this
type by making the following definitions for break and combine:

brva.k" (81 [l g2) = {g1,82)
bn?ak" & =)
break () = ()

combiney (g1,82) = &1 || &3

Of course, the application of basic Tules must fail if they are applied to proof nodes
other than single goals (i.e. 10 empty or compound nodes).

Clarity will generally be improved by removing the empty nodes from parallel
compositions as they arise. We add two basic laws:

II\| IH

nullidl. == (() j|g}
nutlidR == (g ()

and then define a tactic paralle] composition‘” 10 be the application of the apprapriate
structural combinator, followed by an attempt lo apply these identity laws:

fille=hn m:,) ;. (rule nutfidL | rule nullidR | skip)

Now, whilst the abides property (Law 5.89) holds for m tactic paralle] composition

(]] y has this property only when the nultid roles are not invoked, i.e. only when neither
1, nor f; complietes a proof branch.

(llad:(tallrd = (i)l {n:)
pravided the 1, satisfy the conditions for Law 5.89 and those above

1810 desling with an objoct kogic in which the prool trees may divide into mare than two branches (i.c.
where application of a rule fo & goul may produce move than two subgoals), therr may be some value
in guznlmngﬂmuxnumsomummpomdnndcsmy contain arbitrary lists of other (potentially

pound) nodes. This cx d structure (rather than simply a list of simpie goals} must be retained,

rthel il pamllel position i8 [0 be in any way similar to the other structural combinators, and if
1actics arc 1o be abke oo enploit the soructure present in the proof tree

17 A small measure of overloading seems appropriate here.

92

CHAPTER 5. A TACTIC LANGUAGE

Law 5104

This definition permits the definition of a parallel closure tactical—V) applies ¢ to
all the individual goals in a parallel composition:

T e {) — skip
(W = | |rgigaeg|lgn — 0| AV

ingeg-——1¢

That definition is more accurately rendered:

m e () — skip
= (uXe | {merzeepllga — X[X })

|[mgeg—t

Parallef closure can be used to define the following useful tactical, which corre-
sponds closely to THEN in 20BJ. It applies 1, to its goal, and then applies #; 10 each of
the resulting subgoals. The notation {a semicolon, with the dot replaced by an asterisk)
is reminiscent of that used for map—t; being applied Lo each goal resulting from 1;:

b=
Laws
(M) = o}

Proof:
(1)@
= (uX e equals ()
|(con g » equais g ; £1)
[(comgy, g2 « equals (g1 || 22) (X 1 X))) Definition of) and of
= (uX e equals ()

equals ()

|(cong’ ® equals g' ;1)

[{congl,z; ® 2
equals (2] | g2) : (X 1X))
[(comgy, gy ® equals (g, || g2); (X || X))) Definition of (" and of =

= (pX » equals ()

|(cong e equalsg (uX o

equals ()
l(cong e equalsg; | |(cong' e equals g’ ;1))
([{con g). & » equals (g} |t £3): () [[41)))
[{con g1, g2 » equals (g1 {| g2): (X || X))) Definition of u and ¥
= (uX o equals ()
equals g ; equals ()
{(cong e | |equals g;{cong' e equals g ;1) }
(lequals g ; (cong!, g5 » equais (g} [l g4 ; (0 || /(1)))
[{com g1, g2 » equals (g, || g2); (X]| X))) Law 5.11 and Law 5.97

= (uX ® equais ()

5.12. PARALLEL COMPOSITION

93
fall

l(cong (lequals g ; ¢))
[{cong,gh » equals g ; equals (g] || g4) ; (A7 141))

|(c0ng1,g: = equals (g1 || g2): (X | x))) Laws 5.95, 5.102 and 5.99
= (X = equals)

|[{con g e (equals g ; 1) | fuil)

|(comg,ga o equals (g1 |l g2): (X 1| X)) }

Laws 5.2, 5.95, 5.100, and 5.3
= (X » eguals ()
|(cong ® equals g ; t}
J{cong:, gz @ equals (g1 || 82) s (X 1 X)}) Law 52
=40 Definition of (1!
O
Law 5.105 @40 = gy A provided that £{*) satisfies the proviso

for the [I-abides law, and that 1; and f; are terminating

Proof: Tt suffices 1o show that rm {1} satisfies the recursive equation for (¢ ; ¢ n))‘“'):

I,gn) ;lg")
= eguals () ,)V

|{congx, g2 » equas (g, || g2) : (5" 1)) : "

[(comg = equalsg: 1;) ;" Definition of (", and Law 5.6
= equais () ; Y

[{con g1, 82 = equals (g, Il ga) : (17 i A7) 1 45)

[(cong e egualsg;n ;l&')) Law 598
= equals ()

I(con gr, gz » equals (g1 § &2} (157) 11 8 V)

((comg e equals g i 1y ; V) Lemmas

The lemmas used above are:
equals () &V = equals ()
AR A = (A 1V 1)

The first one is a siraightforward consequence of the laws przsenled earlier. The

second depends on the proviso—allawing r% 1) 10 be rewritten as l," I r2 , and allowing
the abides law to be ased.

CREUICS
= (" n 4" (8" 140
= (li” :rgll) It (r(lll . t,("))

Definition of (1)
Abides Law 5.103

94 CHAPTER 5. A TACTIC LANGUAGE

]
These laws give rise 1o some derived laws about the generalized sequential compesi-
tion (3):
Law 5.106 hi{tastha) =) provided the ¢, are terminating, and
provided #7 satisfies the proviso for the ||-abides law
Proof:
n (e 50)
=0 (pf)® Definition of ;
=4 ;(rg") ;,gul) Law 5.105
=t ;49 Law 5.5
=(hin)it Definition of §
m]
Law 5,107 skip ;¢ = (V)
Law 5108 5 skip =1
Law5.109 fail 5 = fail = ¢ ; fail
Law 5110 (et =nhinlnsn
Proof:
{t10);
= (n{n);d" Definition of ;
=n " Law 5.6
=t3italtasta Delinition of ¢
O

5.13 Other Derived Laws

This section is present for the sake of completeness; it lists various laws which were
omitted from the earlier account, but seem useful nevertheless.

Law 5,111 succs abort = abort

These two laws may be strengthened to equalities if r is guaranleed to terminate
(Laws 5.50 and 5.51):

Law 5.112 suces ¢ ; fails ¢ = fails 1 ; suces ¢ Cy fail

Law 5.113 Jails 1| succs 1 = suces t| fails t Cr skdp

5.13. OTHER DERIVED LAWS 95

Law 5.114
Law 5.115
Law 5.116

Law 5.117

Law 5.118

Law 5.119

Law 5,120

Law 5.121

(succs | 1) = sucesr
¢ sueces) =1t
| fails 1 = (¢ | skip) = fails 1 [1t

|13 =13 | £, provided sucesty = fails iy

Proof:
succs hy = fails 1y
= succs ty Cr fails tz A fails ta Ty sucery property of Cr
= succs ty Cr fails ta A sucesty Cy fails Laws 5.37,5.22
n{Crr|nAnR|nCriln Law 5.69
=nin=f|n property of Cr
o

Wt d | fails t) = !{r; | skip} provided suces 4 = skip

fails(r, d) Cr fails t provided succs d Cr skip

Procf:
Jails{t; d}
= fails(t ; suces d) Law 5.35
Cr fails(e ; skip) supposition
= fails ¢ Law 5.1
;]

e ;d| skip) T N(r; 4| fails) provided suces d Cr skip

Proof:
e ; d | skip})
= e d | fails(t; d)) Law 5.116
Cr e ; 4| fails 1) Law 5.119
[m]

!(l] |l3) = 1(fa:i.s hih |I])

HERETY!

=0 | &) Law 5.33
=y | faits &, ; '2) Law 5.24
=Yi |fails 1, 5 12) Laws 5.14 and 5.13

=Wfails 1, ;83| 1) Law 5.69

Chapter 6

Applications of Tactics

6.1

$ WAS COMMENTED at the beginning of Chapter 5, the tactic language described

above seems to be very wide in its applicability. This chapter locks at a number

of Lhese applications, and aims to demonstrale how the language can be used

to improve the readability and explore properties of some of the tactics previously

presented, and how the algebraic laws previously given can be of valee in validating
and ransforming these tactics.

These taclics serve to demonstrate both the power of the language and its limi-
tations. Convincing proofs of tactic correctness can be constructed—though for all
but the simplest tactics, Lhese are something of a tour de force. Such proofs serve 10
highlight the properties of the application area which are being exploited: the proof of
tactic equivalence generally fails until some property of the basic rules is assumed.

Associative/Commutative Matching

norm Improved

The tactic presented in Section 5.2 for normalizing (i.e. lefi-associating) associalive
expressions can be improved upon, and shown to be correct, The improvement became
apparent to the author in the process of Lhe correcmess argument which follows.

An improved version of norm is

norm = (lexhaust(rule cossa) : (skip norm)} | skip .

(The difference being Lhat a recursive instance of morm has been replaced by a skip.
This leads 10 an efficiency improvement in execution of some 25%.)

In order io demonstrate that this tactic does indeed produce terms in *normal form’,
consider the following taclic, which checks for normal form. It succeeds when its
argument is in normal form, and fails otherwise:

isnormal = fails compound | (fails compound) isrormal
compound = skipallp

97

98

CHAPTER 6. APPLICATIONS OF TACTICS

Lemma 6.1.1

(Note that isnermal = \isnormal.)

Itis clear that aorm always terminates: each recursive application of agrm is within
the scope of a [&] Any term presented 10 norn will contain only finitely many
instances of @, and so the number of ierations is bounded.” As a result, in order
to show thet norm always produces a goal which is in *normal’ form, it suffices to
prove that succs(lnerm ; isnormal) = succs(norm). In order to do this, some lemmas
are usefui:

Jails compound ; isnormal = fails compound
FProaf:
fails compound ; isnormal
= fails compound,
(fails compound | fails compound isnormal) Definition of isnormal
= fails compound ; fails compound

Vfails compound ; (fails compound isnormai) Law 5.11

= fails compound
|fails compound ; (fails compound isnormal) Law 5,48
= fails compound | fail Law 6.1 and definition of compound
= fails compound Law 5.2
[m]

Lemma6.1.2 fails(lexhausi(rule cossa) ; (skip norm)) = fails compound

Proaf:
Soils(*exhausi(rule cossa) ; (skip norm))
= fails(lexhaust{rule cossa) ; succs{skip narm)) Law 5.35
= fails(lexhaust(rule cossa) ; succs(skip skip))
Law 5.94, and succs norm = skip

= fails(succs{skip @ skip) ; lexiausi(rule cossa)) Property of cossa
= fails(succs(skip @ skip) ; succs{lexhaust{rule cossa))) Law 5.35
= fails(succs{skip @ skip) : skdp) Law 5.83
= fails(skiptac [& | skip) Laws 5.1 and 5.22
= fails compound Definition of compound

The property of cossa used in this proof is that it does not effect the success or failure
of skip skip, and so

Yexhaust(rule cossa) ; succs(skip skip)
= succs(skip @ skip) ; !exhaust{rule cossa);
0

! Termination also depends on the werminarion of exhaust(rule cossa) . This is assared by & similar argo-
ment, there only being fimnely many corsa-redexes in 2 finule erm, and fresh redexes not being introduced
by applicanans of cussa

6.1. ASSOCIATIVEXCOMMUTATIVE MATCHING 99

Lemma 6.1.3 'exhaust{rule cossa) ; |(skip norm) ; isnormal =
lexhaust({rule cossa) ; (skip @ (‘norm ; isnormal))

Proof: Noting the law

Law 6.1 (1 [@] 1) ; fails(ship @] skip) = fail = fails(skip [® |skdp) ; (1 [&] r)

we observe first that

1(skip | @ | norm} ; isnormal
= !{skip norm) ; (fails compound | (fails compound) icnommal)
Definition of isnormal
= |{skip @ norm) ; Jails compound|
\(skip [®] norm) ; (fails compound [@ | isnormal) Law 5.11
= fall } |(skip | | norm) ; (fails campaund isnormal)
Laws 6.1 and 5.92
= (skip [@] lnorm) ; (fails campound [@ | isnormal) Laws 5.2 and 5.92
= fails compound ngrm ; isnormal

Now, it is a praperty of the nile cossa that
fails compound | & | skip = fails(rule cossa) ; (skip | & | skip)
And so

lexhausi(rule cossa) ; !(skip norm) ; isnormal

= lexhaust(rule cossa) ; fails compound | @ | lnorm ; isnormal Above
= lexhaust(rule cossa) | (fails compound skip);
(skip tnorm ; isnormal) Laws 5.89 and 5.1
= lexhaust(rule cossa) ; faiis(rule cossa);
(skip skip) ; (skip @ 'norm ; isnormal) Ahbove
= lexhaust(rude cossa) ; (skip @ lnorm ; isnormal) Laws 5.87 and 5.1
[m]

This proof demonstrates a valvable technique made possible by Lhe abides law for
structural combinalors—faciorizing a tactic £ E tg as

1Y s.l.lp;sklp Iz
It also demonstrates the practical effect of the comment that completeness is relative
to the rule system in use—this proof has used a property of the rule cossa which
(inherently) cannot be proved within the tactic language.

Theorem 6.1.4 succs(!norm ; isnormal) = succs(rorm)

100

CHAPTER 6. APPLICATIONS OF TACTICS

Proof: First, observe that

succs(norm)

= succs(lexhaust(rulbe cossa) ; (skip @ norm) | skip)
Definition of norm
= W(succs(lexhaust(rule cossa) ; (skip @norm)) | skip)
Laws 5.26 and 5.33
= !(suces({exhaust{rule cossa) ; suces(skip @ norm))

[faits{exhaust{rule cossa) ; (skip D] norm))) Laws 5.24 and 5.42
= !(suces(!exhausi(rule cossa) ; succs(skip | & | norm))
|fails compound) Lemma 6.1.2
= I(suces{\exhause(rule cossa) ; (skip succs norm))
|fails compound) Law 5.94
Moreover,

succs('norm ; isnormal}
succs(!(lexhaust(rule cossa) ; (skip norm) | skip) ; isnormal)
Definition of norm
suces(!(lexhaust(rule cossa) ; (skip Inorm) | skip) ; isnormatl)
Laws 5.14,5.13,58and 592
succs({(lexhaust(rule cossa) ; (skip lnorm} ; isnormal)
[fails(lexhaust(rule cossa) ; (skip @ norm)) ; isnormal)

I

Laws 524 and 5.6
= succs((lexhausi(rube cossa) ; (sldp tnorm) ; isnormal)
|fails compound ; isnormal) Lemma 6.1.2
= succs((lexhausr(rule cossa) ; (sldp lnorm) ; isnormal)
|fails compound) Lemma 6.1.1
= (succs(lexhaust(rule cossa) ; {skip lngrm) ; isnormat)
|fails compound) Laws 5.26 and 5.41
= !succs(lexhausi(rule cossa) ; (skip (‘norm ; isnormat)))
[fails compound) Lemma 6.1.3
= l{succs(lexhaust(rule cosso) ;succ:(skip (morm ; isnormal)))
[faits compound) Law 5.42
= Wsuccs(lexhaust(rube cossa) ; (skip suces(lmorm ; isnarmat)))
[faits compound) Law 5.94

Therefore, since succs norm and suces(!norm ; isnormal) salsfy the same recursive
equation, we have, by Theorem 5.8.2, that they are equal. [m]

6.2. A TACTIC PROOF OF LEMMA 54.4 101

6.2

Wider Improvements

The whole associative-instance-generating tactic can be improved by calling aorm only
once, and using calls of exhaust(rale cossa) on recursive calls:

assocs’
assocrec

norm ; assocrec
(lexhaust(ruke cossa) ; exhausriassoc),

(assocrec | @ | assocrec)) | skip

In

assocs’' should be equal to the assocs presented in Section 5.2, but a proof is not
atemnpted here.

Efficiency can be improved further by reducing the number of duplicale insiances
which assocs’ produces. One way in which 1o do this is 1o introduee a tactic which
guards the recursive call of assoc assoc—altowing it to happen only if it will
produce any more associative instances; i.e. only if it will be applied to e, @ (&3 & e3)
or {ey Dez) Bey.

guard = succs(guardexpry | guardexpra}
guardexpr; = (skip[® | {skip sk.'lp))
guardexpr; = {(skip & |sldp) | & | skip)
assocrec’ = (lexhaust{rule cossa) , exhaust(assoc);

guard ; (assocrec' assocrec')) | skip

Without this guard, the number of duplicates grows very quickly with the size of the
expression—as each application of assocrec ssocrec entails, al sone point, a skip
which repeats the goal expression. Because assocrec’ differs in its list of outcomes
from assocrec, the two are not equivalent as tactics.?

A Tactic Proof of Lemma 5.4.4

Some of the proofs in Chapter 5 are very algorithmic in nawre. The obvious way to
represent these formally is to convert them into tactics.® This section presents some
tactics which might be used to give a demonstration of the correctness of Lemma 5.4.4
{for the cut-free language, but using the basic rules involving cur 1o accomplish right-
distribution for sequenlial tactics).

The Laws 5.1-5.18, will be the basic rules of the instance of the tactie language
used here. They will be referred-to by (hopefully obvious) names, rather than numbers,
for ease of reading.

*One can imagine that 2 ‘unique instances’ operator—used like cwr, but producsg a list of aliematives
which were all differcal, might be @ wscful addition to the tactic language. We might then expect to be
able to prove inig astocrec = uniq assocrec’ . The value of such oo operatar would depend on the relative
efficiencies of suitably Ghering te list of outoomes. and of applying the subssquen tactics more ofien than
woukd otherwise be pecexary.

SEdsger Dijkstra has advocatzd ing conmpaiational techniques for proving a mnge of mathemasical
theorerns. Sce, for example [Dij54).

102 CHAPTER 6. APPLICATIONS OF TACTICS

Into Normal Form
The follewing tactic converts an arbitrary lactic into (cul-free) normal form.

norm = uX e
m o skip — skip
{ e fail — skip
| mreruler — skip
rule failida
| mroen|t — (xmx) | rulefaitids
[skip
rule failzerva
| rule fzilzerob
{ rule skipida
rrn,rzcr1;fg—>(xmx):! | rule skipidb
| rule Idisir , X
|rdislr1ac X
iskip

All of the components of this tactic are in the set of basic laws, except the taclic
rdistriac, which applies the left distributive law (5.11) if possible (that is, if the term
on the right-hand side of the sequential compositon can be replaced by the cut version
of itself; i.e. if i is sequential).

rdistnac = (makecul B skip);
rule rdisir;
(uuma.kecmE]skip) .

Tactics makecut and unmakecur add cuts Lo those tactics which may be cut without
changing their meaning—the seguential tacties. This comesponds to the proof in
Lemma 3.6.2.

makecut = 7 & skip — rule cuiskip
| 7w o fail — rule cutfail
|7 reruler — rulecutrule
|mti bz et — {makecut Bmakecur);
{rulecuiseq’)

unmakecut = w o !skip — rule cutskip
|7« 'fail — rule cugfail
|mre!ruler — rulecutrule
| 7otz oYy ;i) — ralecurseq’;

(unmakecut [Zl unmakecur) .

After the main tactic has executed. it is necessary 10 move the brackets so that all
of the *;’s and *{’s are associated to the left. This is readily accomplished by the waciic
norm of Section 5.2. Here we shall use instantiations of this tactic as lefiassocseq (1o
associate sequential compositions 1o the left) and as Jeftassocalt (to do the same for
allernavions).

Since a tactic in normal form wil) consist of (potentially) many sequential compo-
sitions separated by alternations, a recursive version of lefrassocseq is needed:

recleftassocseq = (recleftassocseq m lefrassocseq) | leftassocseq .

6.2. A TACTIC PROOF OF LEMMA 544 103

The over-all normalisation is therefore

norm' = norm ; leftassocall ; \recleftassocseq .

Checking Normal Form

Another actic can be defined to check that its goal is in normal form. It fails if the
tactic is not in normal form, and behaves like sldp otherwise.
First, some tactics which recognise the atomic terms:

isskip = w e skip — skip
isrule = nr e ruler — skip
isfail = mafall — skip .

Then recall that a tactic is in sequential form if it is skip, or it is an atomic rule, or it is
the sequential composition of a non-skip sequential tactic and an atomic rule:

isskip | isrule | (isseq [;]isrule)

isrule | (isseq’ [;]isrute) .

isseq

isseq

Finally, a tactic is in normal form whenever it is fall, or it is sequential, or it is the
alternation of a tactic in normal form with a sequential tactic:

1]

il

isnormal = isfail | isseq | {isnormal’ m isseq)

isnormal’ = isseq | (isnormal’ misseq) .

Proof
The goal of this subsection is to prove that the sequential composition

lnorm' ; isnormal

always succeeds, and hence that nornr’ always produces a tactic in nommal form.

The termination of these tactics is the first thing to prove. agrm must terminate,
since each recursion is guarded by an operation which strictly decreases the number
of |5 in the scope of a ;. rorm' terminates because norm does, and because fass must
terminate on finite 1erms (at each recursion, it is applied to a smaller portion of the
initial goal). Similar comments apply to isnormal.

The successful temmnination of the tactic above may be approached by defining
another normality-checking tactic; one which does not expect the operators to be left-
associated:

isseqish = isskip | isrule | (isseqish’ E' isseqisk’)
isseqish' = isrule | (isseqish’ D issegish'’)

isnormish

isfail | issegish | (isnormish’ II[isnormish)

isnormish’

isseqish | (snormish’ m isnormish’) .

Having made these definitions, we are in a position to prove that succs(norm’ ;
isnormatl) = skip. The proof will depend on two lemmas:

104

CHAPTER 6. APPLICATIONS OF TACTICS

Lemma 6.2.]

Lemma 6.2.2

succs(isnormish) = succs(lefiassocair ; lreclefiassocseq ; isnormal)
Proaf: (owline). We have, by Law 5.26 and the definition of isnarmish,
succs isfail

succs{isnormish) = ! | Isuccs isseqish
|succs(isnormush’ |1 | isnormish")

and. by the definition of isnormal, Law 5.26, and Law 5.11:

succs(leftassocalt ; \reclefiassocseq | isnormal) =

succs(leftassocalt ; recleftassocseq ; isfaif)
1 | |succs(leftassocalt ; \reclefrassacyeq ; isseq)
|succs{leftassocalt ; \recleftassocseq ; {isnormal’ m isseq))

It suffices to show that the corresponding branches of the above terms are equal.
For the firsl branch we must show that:

succes isfarl = succs(leftassocali | \recieftassacseq ; isfail) .

This is clear: if the goal js fall then leflassocalt and reclefiassocseq will both skip: if
it is not, then no amoum of associating will make it sp.
The second branch requires:

succs isseqish = succslefiassocalr ; lreclefiassocseq ; isseq) .

Expanding the definition of recleftassocseq, and using Law 5.24 to remove the cur
around it, and the distributive laws, the right-hand side can be rewriten o

\(leftassocalt ; fails(reciefiassocseq | | | leftassocseq) ; leftassocseq ; isseq))

suces((leftassocalr | (recleﬁasmc:e leftassocseq) ; isseq)

The ficst of these branches is ideniically faif (if the structural combinator succeeds,
then isseq fails, and vice versa). Since recleflassocseq and leftassocseq never fai),

(reclefiassocseq m leftassocseq) fails if and only if skip EI skip does. fails(skip m
skip) is equivalen! (o {sseqish, and fefiassocalr never fails, so the problem reduces to
demonstrating

isseqish = succs(isseqish ; leflassocseq | isseq)

which may be shown by expanding the definition of leftastocseq.
The third branch needs:

succs(isnormish’ m isnormish') =

succs(leftassocalt ; recleftassocseq ; (isnormal’ lIl isseq}) .
This proceeds along similar lines, but is more complex. 8]

suces(lnorm ; isnormish) = skip

6.2. A TACTIC PROOF OF LEMMA 5.4.4 105

Proof: (outline). Since norm always succeeds, it suffices to shaw that 'nerm . isnormish
succecds whenever norm does. Observe that 'norm = norm. A proof by structural
induction over the possible forms of goals is appropriate.

‘We have, by the definition of norm, and Law 5.26

succs(!norm ; isnormish)
= Ysuces(n o skip — isnormish)
suces(m o fall — isnormish)}
succs(x r o rober — isnormish)
succs(mty b oty | 2 —
rule failida
(norm [I] norm) ;! | |rulefailidb | ; isnormish)
|sidip
succs(Tiy, a0t s 1lg —
rule failzeroa
| rale failzerob
| rule skipida
(norm B norm) ;! | cubeskipidb ; isrormish)
| rube Idistr ; norm
|rdistrtac ; norm
[skip
)
The first three branches (base cases) are immediately equivalent to
succs(n » skip — skip)
etc. The fourth may be rewritten, using Law 5.24 and the distributive laws, as
succs(m iy, lpety |1n —
{norm | | | norm) ; rule failida ; isnormish
|(norm || | norm) ; robe failidb ; isnormish }
|(rorat| | | norm} ; fails(rude foitida) ; fails{role faitidb) ; isnermish
Now, we have, as a property of failida, that

succs(role failida ; isnormish)
= succs((fsnormish III isnormish) ; Tule failida)

and similar properties for the other two branches. Therefore, by Law 5.42, the abides
1aw {5.89) and induction, we have that the fourth branch succeeds exactly when that in
noret does.

The fifth branch may be treated similarly. The instances of succs(norm; isnormish)
which arise in the distributive cases can be asserted as being equivalent to succs norm,
again by induction. n]

Theorem 6.2.3 succs(norm' ; isnormal} = skip

106

CHAPTER 6. APPLICATIONS OF TACTICS

Proof:

succs(norm ; isnormish) = skip Lemma 6.2.2
= succs{norm ; succsisnormish) = skip Law 5.42
= succs(norm ; succs(leftassocalt | \recleftassocseq ; isnormal}) = skip
Lemma 6.2.1
= suces(norm ; lefiassocall ; \recleftassocseq ; isnormal) = sidp ~ Law 5.42
= succs(norm' ; isnormal) = skip Definition of norm

[

6.3 Lifting

One of the most interesting features of the encoding of W in 20BJ in Chapter 2 was
the meta-rule described as rule-lifting. Rule-lifting enables the simple inference rules
to be presented without reference to the unchanging parts of a goal. thus simplifying
the presentation, and collecting most of the provisos regarding free variables, int one
place: the meta-rule lift.

In the 20BJ frame this rule was implemented as a function from rules 1o rules, and
extended Lo tactics by the use of a 2QBJ primitive which converted a proof (produced
using a tactic) into a rule (which could then be applied within the ‘real’ proof tree). In
the new scheme of things, however, tactics may backtrack (i.e. produce alternatives),
whereas rules may not.

As a result, two different versions of tactic-lifting are presented here. The first
implements tactic-lifting as a special structural combinator. This will be taken as the
working definitton in the laws which follow. The second approach is to implement
tactic-lifting combined with cur—so that the approach taken in 20BJ {above) can be
used.

An unsatisfactory feature of the 20B3 encoding is the means by which terms are
selected for Jifting. This was accomplished by presenting three sequences of numbers
to the meta-rule. These denoted positions of predicates (declarations) in the respective
predicate (declaration) lists to which the rule was to be applied. This tended to restrice
unnecessarily the way in which lifting was used, and prevented general algebraic laws
about lifting from being established.

The presentation here is generic over selection schemes. The relevant tacticals
will take a selection component 5. and apply it 0 a goal g such that g T 5 denotes
the goal formed by selecting certain components from g, and g | 5 denotes the goal
formed by excluding those components from g. A function § is a partial inverse for
these, so that (g T 5) § (g | 5) has the same semantic value as g-——though the terms
may appear in a different order. In some selection schemes, { will be a rue inverse,
permitting {if to satisfy rather more laws than when it is not. (In fact, the requirement
isthat (g1 3, 82) 75 = g and (g; I, g2) L 5 = g2. Even if], is carefully defined,
this holds only for very well-behaved tactics, and so, in general, we do not have that
comb o brk = 1d.}

Tactic-lifting is essentially similar to applying a structural combinator—some parts
of the goal are selected, and have the lifted tactic applied to them; other parts are not.

6.3. LIFTING 107

and have skdp applied to them.*

lift st = combs o (filter_cross{t,skip)) o (brk 5)
brksg = (gTs84s)
comb(g1,82) = g1l
combigy || g2.83) = combi{gy, ga} || comb{ga, gs}
comb(g, ()) = ()

comb{{},g) = (}

In place of the usual cross in this definition, a filfered version is needed, as lifting
is subject 10 a side-condition. filfer_cross returns only those goal alternatives which
satisfy the side-condition,®

((iltigy.4a)) © cross) (g1, £2)
[00k(g, gy *

if ~/{proviso+ b1} = by
then{{k;, k2))

else()

proviso g = H(a(decis gy) U aldecis g))N
d{preds g2) =

[l

Jilter_cross {12} {g1,82)

ﬁ'"(.!h&:)
okty, gy b1,)

then{g)
else()

An aliernative approach to lifting is to define it in the same way as was done in the
20BJ version; as a function acting upon rules.

liftrule s r g = (combine_sequeni(gis,gts))«{r(g 1)
combine_sequent (g,,g2} x = H{a(decls g2) U a(decls x))
N @ipredsg1) =&

I.hen(g; Ix)
else()

As previously, this definition can be used to define a version of lifting for tactics—
using a function tacrule, which takes a tactic and returns a rule which behaves like the
cut version of the tactic.

lifttactic 5 1 = vule(liftrule s (tacrule 1)}

(The precise details of the definition of tacrule are an artifact of the implementation
details of rules, taclics and goals. Converting a tactic into a rule may seem to be a
dangerous activity from soundness point of view, bul since a tactic may only make
sound inferences, there is no problem with regarding it as a rule.)

Laws
Law 6.2 !l:ffs(fllf'z)-_-l'lffsljlllffsh

40bserve that 2 more general form of Lifting could be defined—many rules could be applied in paraliel,
ln&ﬁmgmofhm%hmﬁmd@duﬂymﬂhmﬂ

Sfilrer_cross could be defined using the functional progmmming filter, bix e definition here avoids
treaning predi as functi this definition comes from an idea in [BirS6]; it is more in keeping with a
Zslylcofdmnglhmg:

108

CHAPTER 6. APPLICATIONS OF TACTICS

Law 6.3

Proof: Let (f, £) be the function which, when presented with a 2-tup)e applies f lo the
firsi argument and g to the second (i.e. formally, (f,g) = V(f o my, g o ma}, where m,
and 4 are projection functions).

lifi s (8, | 2)

= combr o filter_cross(t; | ta, skip) o brk s Definivon of fift
= comb= o filt o cross(t; | t2,skip) o brk 5 Definition of filter_cross
= combe o fili o cruss(~/ o{ty, 13)°, skip) © brk s Definition of |
= comb= o filt o ~{ o{cross{t, , skip), cross{t, skip))° o brk 5

Lemma (below)

combr o ™[o Yy {filr, filr) o (cross{,, skip}, cross{ry, skip})® o brk s
Property of ¥4, ™ and filf
combx o ™} o{fill o cross(iy , skip), filt o cross{ty, skip}}® o brk s
Property of ¥ ;4 and ©

Il

combs o =/ o{filter_cross{r,, skip), filter .cross(e, skip)}°® o brk 5
Definition of filrer_cross
= 7/ ofcombx, combs}o
{filrer_cross{n , skip}, filter_cross{t;, skip})® o brk s
Property of ¥;4. ™ and »

i

=~/ o{combs o filter_cross{1\,skip},

combe o filter_cross(tz,skip})® o brk s Property of * and ¥ 4
= 7/ o{combs o filler_cross{t;, skip) o brk s,

combx o filter_cross{1y, skip) ¢ brk s)" Property of ©
=liftse |liftsty Definition of |

The Lemma referred-to above is the property
[o{crassits, skip), cross(ta, skip))® = cross(~/ o1y, 12)°, skip) ,
which fellows from the distributivity of [] over ~ in the first argument. o

Hfts(h) =liftsn lift51q
provided brk o comb s = id and for all g, decls(s, g) = decls g

Proof: (outling) lift 5 1 15 a special insiance of a structural combinator r &, skip. If this
behaves like any typical structural combinator, the proof is immediate:
{1 ©. skip) ; (1; @, skip)
= (115 f2) ®; (skip ; skip) Law 5.89
= (1, ; f2) @, skip Law 5.1

The proof of the abides property (Law 5.8%) is conlingent upon the property comb o
brk = id and upon the ‘key lemma’, which, for @,sklp will be

7/ o(filter_cross{ty, skip)) o filer_cross{t,, skip) =
Flter_cross(™ [oz~ o 1, skip)

6.4. PROPOSITIONAL CALCULUS, AGAIN 109

Law 6.4

Law 6.5

6.4

The former is covered by the first proviso in the staiement of the law; the latter
is proved in the same way as in Section 5.10, provided the instances of filt do not

interfere—the second proviso is sufficicnt to guarantee this. =]
lifts(ftst) =Hft s¢ provided (gts)ts=gtrsand (g 15 s =(F)
Proof:
Iifts (lifr s 1)g
= (combs o filter_ceoss{lif s ¢, skip} o brk) g Definition of lift
= (combs o filter cross(lifr s 1, skip)) (g ts,g s Definition of brk 5
= {combsafilt o [}{tifts1 (g t5),{g L 3)) Definition of filter_cross, etc.
= (combx o filt o n)

({combs o iter_cross{s, skip})((g 1 5) 5, (3 1) 4.5), (g 4)
Definition of lift, elc.

= {combs o fili o [])
{{combx o filter_cross{t, skip}) (g 15, (F)}, (g L 5} Proviso
= (combs o filto [} (t(g 1 5). (g L 5)) Lemma

= (comb o filter_cross(t,skip)}{g 15,8 |5}
Definition of filter_cross, etc.
= (combx o filtercross(t, skip) o brk s)g Definition of brk 5
=lifts1g Definition of fift
The lemma is

combx o filter_cross{t, skipy(h, (F)y =tk ,

which is proved by simple properties of comb (noting that skip(k) = ({F)), that the
filter condition is necessarily true in this case, and that comb{h, (F)) =k {F) = h).
)

flifts(n Jlift s} s diftsn liftse
provided s satisfies the provisos for Laws 6.3 and 6.4

Proof:
tift s(ty ; lift 5 01)
= lift s 4y o tift s (Life 5 19} Law 6.3
=liftsty it st Law 6.4
[}

Propositional Calculus, again

We are now in a position lo retum to the decision procedure for the propositional
calculus in JigsaW, described in Section 2.9. This section shows how 10 define this
tactic in Angel—a process which immediately revealed to the author an efficiency-
improving separation of concerns, detailed below.

110 CHAPTER 6. APPLICATIONS OF TACTICS

First Approach

Recall Lhat the fundamental propositional calculus tactic is proptae, which applies
whichever propositional tactic is appropriale. It is defined using a distributed version
of |, called first.® after a similar tactic in LCF.

firsr () = fail
Sfirst (x:xs) = x| first xs

propiac = first{ rule rruth,
rule contradiction,
rule negationl,
rule negationR,
rule conjunctionL,
rule conjunctionR,
role disjuncrionl,
Tule disjunctionR,
rule implicationL ; (lifiLfirst (rule thin) |} skip),
Tle implicarionR,
rule equivalencel,
rule equivalenceR)

The addition afler implicaianL is due 1o the fact that in v1.0 of the Z Base Stan-
dard [BN*92], this rule leaves the implication in its first premiss. Using a lifting
selection scheme like that chosen in JigsaVV, we define ffLfrst = 1ifi((), (0), {).

Having made this definition, it simply remains o define a tactic which can apply
something of this form to every predicale in a sequent.

toeacht = (nd, ¥, ® e (d| ¥+ &) — (toeachL (Y¥¥ ; (toeachR 1)#T)

fildast(1ry(1 3 toeach 1)}
HiftRlasi(try(1 5 toeach 1))

toeachlL ¢
toeachR ¢

As before, the special lifis, (lifiLlast and /fiRlas) are derived from lift, using selectors
which return the sequent containing only the rightmost predicate of the antecedent
{consequent) of the original sequent.

Having made these definitions, mprop, which applies propositional tactics exhaus-
tively, is simply toeach proptac.

An alternative approach is to write a tactic which is not itself recursive—that is, it
is more like repear (i.¢. "—but is applied exhaustively.

iryeachRt = (wd, ¥, & o (d| ¥+ D) — srepR{#P, r))
srepR(0,1) = fajltac
srepR(1,1) = kftRlast 1

srepR(n + 1,1) = liftiRiast 1| (lifiRlastskip ; srepR(#1, 1))
tryeachL = (nd, ¥ .%o (d| ¥ F $) — srepL(#¥,7))
srepL(0,1) = failtac
srepl{1,) = lifiLlastt

srepLin + 1,1) = liftLdast 1| (liftLiasrskip ; srepL(n, 1))

mprop2 = exhaust(tryeachL propiac | tryeachR proptac)

5The name is new inaccurate since it will apply as many of the allernatives as possible.

6.4. PROPOSITIONAL CALCULUS, AGAIN 111

The relationship between mprop and mprop2 is straightforward-—the former is a
deph-first scarch (each application of proptac is followed by a recursive instance of
toeack proptac) whereas the laner is a hreadth-first search (when an application of
propac succeeds, its result is returned 0 the main goal sequent, which is processed
in a cyclic manner; so afier all of the original predicates have been tried, thase which
were produced by applications of proptac become inputs to propiac again).

As such, both 1actics may be expected to produce Lhe same result (with all proposi-
tional connectives removed)—but with the alternative goals (less completereductions)
in differing orders. Hence we postulate Lhat

Improp = \mprop2

but Lthe complexily of the terms precludes arguments even at the informal level of the
previous section.

Greater Efficiency

In cxamining Lhese definitions, it became clear that the tull generality of proprac is
inappropriaie. Whenever propiac is applied, it is already apparent whether it is being
applied on the lefi- or the righi-hand side of a sequent. Hence, we may partition
proptac into 1wo taclics;

proptacl, = firsi (rule contradichion,
rule negationl,
rule conjunciionl.,
rule disjunciionl,
rule implicationlL ; (liftLfirst (role thin} || skip),
rule equivaiencel.)
propiacR = first { role truth,
rule negationR,
rule conjunctionR,
rule disjuncrionR,
rule implicationR,
rle equivolenceR) .

We may then define a new version of toeach:
(rd, %, @e(d]¥Fd) —
(toeachL &)¥¥ § (toeachR 12)#*)

toeachl (1, 1g) = liftLlast (rry(ty ; toeach’ (11, 1))}
toeachR (1, 1x) = liftRlast(try(te ; toeach' (t,_,rg)))

toeach’ (1, tr)

and wrile mpop = toeach'(proptacl, proptacR). In a similar vein, mprop2 =
exhaust(tryeachl pmptacl. | tryeachR proptacR).

These new tactics are, on average, some 25% faster than those previously pre-
sented.

massum

To complele the decision procedure which is made possible using mprop or mprop2, a
1actical which tries to apply the assumption rule is needed. This can again be defined

112

CHAPTER 6. APPLICATIONS OF TACTICS

6.5

using a more general tactic, which applies a tactic applicable to a pair of goals:
topairst = (nd,p, @, deld|p, ¥+ &) —
lift ({), {0), all} (ropairs’ 1) | thinR Q ; ropairs 1)
topairs't = (7d, ¥, q,da(d]| ¥+ q®%) —
Hift ((),€0),{0)) 1 | thinL O : topairs’ 1)
massum = topairs(rule assumption)

Decision Procedures
A sufficient decision procedure for propositional calcubus is
mprop | massum

The first outcome of this tactic is success (with no goals) if the initial goal is a tautol-
ogy; it fails otherwise, In general, a much more efficient tactic is

\mprop ; massum |

since it is only the first outcome of mprop which is interesting; only the first aliernative
is a candidate for consideration by massum. Since the outcome of mprop is interesting
whether or not massum is applicable, it will frequently be useful to use the tactic

\mprop 5 ry(massum) |

These tactics are dependent on properties of selection (in order to cycle through
the predicates, etc.). As such they will work oaly with the non-invertible forms of Jift.
This points to the desirability of defining two sorts of lifting (or ratber, selection}—this
one, and a liftinplace version—which obeys more laws, but is harder to use in tactics
such as these.

Towards a Library of Tacticals

This chapier, together with the preceding one, has described a collection of tactieals;
some particularly suited to sequent calculi like YV, some more general in their appli-
cation:

iry ¢ attempts 1o apply ; if r fails to apply, it succeeds, leaving the goal unchanged.
lift s ¢ applies 1 to a selection of predicates from the goal sequent.
¢ repeats tactic f, n times, fajling if any of those iterations fails.

exhgust t repeats tactic 1 as many times as possible (which may be zero) and always
succeeds (provided ¢ fails eventually).

exhaust, ¢ was not defined above, but behaves like exhaust, but with an upper limit (of
n} on the number of times 1 is applied: exhausty t = skip and exhaustp, ¢ =
1 ; exhaust, | skip.

6.5. TOWARDS A LIBRARY OF TACTICALS 113

toeach t applies tactic ¢ exhaustively to each predicate (in depth-first fashion) in the
goal sequent; terminating with success when no further points of applicability
can be found.

tryeach t attempts lo apply (actic ¢ 1o each predicate in the goal in turn, terminating
with success when that application is successful—or failing if there is no pred-
icate to which 1 may be applied. exhaust(sryeach 1) performs a breadch-first
exhaustive application of 1,

topairs t behaves like fryeach 1, except that each attempt to apply ¢ iavolves one
antecedent and one conseguent.

GSSOCop e EENETAlEs BSSOCIAtive instances of terms in op, by use of rule.

Many of these lacticals are also present in other theorem proving sysiems; exhausi,
for examgple, is almost universal. The names differ, of course, and some systems use
different means of accomplishing the same effect. In Zola (where a logic very much
like W is used) some of the above are present, and the effect of others is accomplished
via tactic keywonds [Bla94]. These may be defined per-lactic, but some common ones
are addr and jump, which targer application on panticuiar parts of the goal-—akin to
rule-lifting and structural combinators (the account in [Bla94] also highlights difficul-
ties regarding Lhe ordering of changing/unchanging predicates—-simila to problems
which arise in the discussion of inverses in 1,) and } (Section 6,3).

Chapter 7

Implementation using Gofer

7.1

lists, it lends itself to a simple implementation in a lazy funetional programming

language. This chapter describes a lightweight approach 1o the creation of such
an implementation, and outlines bricfly a new prototype theorem-prover for Z, written
in the Gaofer language [Ton9 la] —a dialect of Haskef!, Initial results have been encour-
aging, with execution speed some two orders of magnitude better than that achieved in
20BlJ,

The first section of this tactic describes how the tactic language of Chapter 5 is
implemented in Gofer. The following sections show how the encoding in 20BJ may
be re-cast in this scheme, and presem a small case studv. This time, the deductive
system used is not YV, hut that of LinleZ [BHW94].

S INCE THE TACTIC LANGUAGE described above is given a semanucs using lazy

LittleZ

LittleZ is a sub-language of Z which comains the familiar constructs of set theory
together with a typing structure following the style used in the typed lambda calcu-
lus. Stephen Brien’s thesis |Bri95] describes LinleZ in some detail. and proposes a
reasoning system for the language. That system js used here.

In contrast to W, judgements in this logic are sequents with a single predicate as
the consequent, and a list of LittleZ paragraphs (given sets ([X]). declarations (x : X).
definitions {x := e), and predicates) as the antecedent. These paragraphs are separated
by {, so a typical sequent might have the form

Xitxy:Xt{z:=fxt bpla) .

The materiat in the antecedent should be understood as a Z specification, with each
new paragraph in the scope of the previous anes.

115

116

CHAPTER 7. IMPLEMENTATION USING GOFER

7.2 Basic Tactic Interpreter

The core of the implementation is a Gofer program which implements directly the
definitions of Section 5.3:

type TACTIC = GOAL -» [GOAL)

skiptac g
failtac g

[g]
[

rhentac bl 2 = concat.{map t2).tl
elsetac tl t2 = concat.{tcevery [tl,r2]}
cuttac t = head’ .t

The implementation of rule is slightly more complicated, for two reasons. First,
a means is needed for checking the side-condition g € dom . This is accomplished
by having the basic rules return members of a structured datatype—either Fails,
for application outside of the rule’s domain, or Succs xs where xs is a (possibly
empty) list of subgoals:
dara TAGGED = Succs [SEQUENT]

| Fails
type RULE = SEQUENT -»> TAGGED

rule can then be defined:

rule :: RULE -»> TACTIC
rule r {Singl &8} { r s /= Fails
| otherwise

[goalify t)
)

where Succs £ =T 5

Second, the relationship between SEQUENT and GOAL (suggested by the presence of
3ingl s and goalify t above) is that rufes return lists of SEQUENTS, whereas
tactics operate on GOALs—a compound structure, like thar outlined in Section 5.12.
The function goal i £y converts the former to the iatter.!

data GOAL S5ingl SEQUENT

| Parcomp GORL GUAL
| Kogoal

goalify [x] = Singl x
goallfy (x:y:ys) = Parcomp (Singl x) {goalify {y:ys})
goalify [] = Nogoal

Since such structured goals are present, we implement a structural combinator for
applying lactics in parallel to parallel compositions of goals.

partac tl t2 = {map combine_par}.icress [tl,t2]}.{break_par)

combine_par (Nogoal,g2] = g2
combine_par (gl,Nogoal] = gl
combine_par [gl,g2] = Parcomp gl g2
break_par (Parcomp gl g2} = [gl,g2)

cross ts = cp- (zZipwithapply Cs)

1To need a conversion function 1s a htle unfortunse Of course, the (wo representations are
isomorptuc—but the presentamon of the ruies 1« more readable 1f they rotum lists. Nevertheless, concise-
pess would be improved by doing away with the lisis of sequents. Conversely. if this were a description
of a generic frame (rather than a Lightweight. sdaprable implementaion) goalify would serve 10 make
specific the erobedding of the object logic (sequents) in the generic framewark (GOALS).

7.3, SYNTAX

117

7.3

Finally, there is the implementation of 7 to consider. Whilst a fully-general unifica-
tion procedure could be writien, it often suffices 10 make do with the pattem-matching
in the underlying language. We define

pitac £t g = (L g} @

and then implementr; = (x¥e g — f)as

tl = pitac s
where 5 g

(where g is some suitable pattern with the variables of ¥ free). This eonsiruction does
not support backtracking (angelic choice) over the bound variable assignments—i.e.
it is akin to !(x ¥ » g — 1), except that backtracking within ¢ is still permitted. In
general, this is not a problem, as the most general solution is found by the interpreter.?

In order to make the basic combinators readily usable, we define infix operators for
them, giving precedences as cutlined in Section 5.1. Unfortunately, the symbols *; °,
“||" and ‘| are reserved in Gofer.

thentac
parcac
elsetac

i)
M.
|

(.
t.
.]y

oo

(%]

infixl L
infixl 4 .|].
infixl 3 .|.

This set of definitions may be used as a starting-point for varicus tactic-based
systems. The particular care over the implementation of rule is determined by the
calculus which follows; the rest is quite generic.

Syntax

In order 1o make use of the tactic definitions, as with encoding ¥V in 20BJ, the first
step is 1o describe the syntax of LittleZ as a number of Gofer datatypes. This time,
however, we encode the abstract syntax, and must give explicit constructors for each
production. This reduces readability (and introduces a need for a separate parser), but
does give greater assurance than was possible in the encoding in 20BJ that the terms
subsequently used do indeed correspond to the expected productionsin the gramrmar.

Predicates, for example, inhabit the datatype PRED:

2Foc arhitrary instances of con, this solution would not be suitabie, but for x (where the action of con
is determined by an instance of equals), this i sufficient.

k@

118 CHAPTER 7. IMPLEMENTATION USING GOFER
Pred = Expr € Expr data PRED = In EXKPR EXPR

| Ewr=Expr Equ EXPR EXPR

| true ZTrue
ZFalse

| false | Hot PRED

| = Pred And PRED PRED

| Pred A Pred Or PRED PRED

| Pred v Pred Imp PRED PRED

| Pred = Pred Iff PRED PRED

I Pred < Pred Forall WAME EXPR FRED
Exists NAME EXPR PRED

| ¥ Name: Expr e Pred Substp SUBST PRED

| 3MName : Expr e Pred

| { Name := Expr | Pred

The meta-syntactic functions can then be defined over this dalatype in a very
straightforward manner. phip returns a set of values—and a datatype of seis is readily
implemented in Gofer. Incompletenesses in this account will lead to exceptions being
raised in execution, not to silent unexpected truth of side-conditions, as in 20B].

phip (In e 5) = phie e ‘upion' phie s

phip (Equ & w) = phie e ‘'union' phie v

phip ZTrue = emptysel

phip ZFalse = emptyset

phip (Not p) = phip p

phip (0r p Q) = phip p ‘union' phip g

phip {(And p q} = phip p ‘union® phip q

phip {(Imp p g} = phip p ‘union® phip q

phip (Iff p g} = phip p ‘'univn' phip g

phip {Forall = & p} = phie e ‘union' (phip p ‘diff' (singleton x)}

phip (Exists x & p) = phie e ‘unien' (phip p ‘diff' (singleton x)})

7.4 Basic Rules

The judgements of this logic are sequents which have a list of Z paragraphs on the
left-hand side (antecedent), and a single Z predicate on the right (consequent).

type SEQUENT = ((PAR],PRED]

An inference rule is a partial function from one of these sequents Lo a list of subgoal
sequents. It is implemented as a toral function onto a disjoint union—if the (true) rule
is applied within its domain, the result is placed in the part of the union 1agged with
Succs; if not, the result is Fails—see above.

Most of the inference rules concern the consequent predicate; some are defined in
terms of the lass antecedent paragraph. As very few rules refer to any of the other
antecedents, and as Gofer offers pattern-matching on cons-lists, the list of antecedents
will be stored in reverse order.

The basic propositional calculus rules, then, will be

LkP THQ andI (ps.p 'And' q) = Succs [{ps,pl , (ps.q))
LrPAQ andI _ = Fails

LEPAQ

“LFP andEr q {(ps.p} = Succs [(ps.p *And' q) 1
LbPng andEl p (ps.q) = Succs [(ps.p ‘*And' q}

7.4. BASIC RULES 119

EFF orir {ps.p '9Or" q} = Succs [(ps.p} !
THEPVQ erir _ = Fails
Zkr oril (ps,p 'Or' q} = Succs [(pa,q})
ErPvQ orll _ = Pails
ErpPvQ EfPFR EIQF R oIE p Q@ Ips,T) = Succs | (ps.p *Or' q, ({Predpar p):ps, 1),
TFR {{Predpar qi:ps, 1) |
it impI (ps.p ‘Imp' g} = Suces [((Predpar p):ps.ql !
L+-P=2Q impI _ = Pails
EHP EHP=Q
T impE p IPs. Q) = Succs [(ps,p),(ps.p 'Imp’ @) !}
Z + false falseE {ps.p) = Suces [{ps,ZFalse))
TP
Ti— P false notE {ps,pl = Succs [({Predpar (Not pl):Ps,ZFalse)]
TP
Extending these to predicates is not hard:
Ep:SEP alll {ps,Forall x s p) = Suces [((Decl x 81:ps,p) |
L+ Y5 SeP alll __ = Fails
allE s {ps,Substp(x,e) p} | » ‘notin’ phie e
Lk Vr:5ef ZFCE = Ssuces { (ps,Forsll x s p).(ps.e "Ia’ s))
Lh{rize P allE _ _ = Fails

The reader will notice immediately that there is a cenain loss of readability, as
cormapared with the 20BJ encoding (due to a larger number of constractor functions
being present, and these being piven with names, rather than symbels) but thal the
encoding is more-or-less immediate.

subst

In the 20BJ encoding, substitution was accomplished via a special rule which invoked
certain OBJ3 rewrite rules not normally applied in the rule-application rewriting. This
implementation uses an inference rule which applies a meta-functiar subst to the
current goals. The function subst is overloaded via Gofer's rype classes, and propa-
gates substitutions appropriately within the goal.

instance Subst FRED where

subat (b 'Substp' (e ‘In" s}) =

{subst{b ‘Subste* e}) 'In'{substib 'Subste‘' s})
subst (b 'Substp' {e ‘Equ’ ul) =

(subst (b 'Subste' e})'Equ’ (subpt(b *Subste' wu)
subst(b 'Substp' ZTrue} = ITrue
subst(b ‘Substp' ZFelse) = ZFalse
subst (b 'Substp' (Not p}) = Not (subat{b ‘Substp' pl}
subst(b ‘Substp*' (p ‘*And* g)) =

(subst (b ‘Subgtp* pl} And* (subat (b 'Subscp' qi}

subst((x,v) *Substp® {Forall y a p}}

| x /= y &% y -"notin® phie v =
Forall y (subst{{x,v) 'Subste' s8)) (subst{{x.v}) ‘Substp' p))

subst((x,v) ‘Substp* [(Exists ¥ 5 p})

120 CHAPTER 7. IMPLEMENTATION USING GOFER

| » /= y && ¥ ‘notip’ phie v =

Exiace y (subst{{x,v) 'Subste’ s)) {subst((x,v]) ‘Substp' p})
subat(b 'Substp' (Inop n el e2}} =
Inop n {substib ‘Subste' el)} (subat(b 'Subste‘' e2})

aubst p = p

Notice the caich-all clause at the end—unrecognised expressions (those ot of the form
{ x ;= e }p) are unchanged by subst.
Substitution is then invoked by a rule:

apply_subst [ps.qgl = Succs [(map subst ps, subst qj)

Making the system hehave like W

Proofs in this new calculus seem o be rather more contrived than those in W. Itis
useful to construct tactics which accomplish (approximately) the same inferences as
the basi¢ rules in W,

Where YV had one rule for disjunction in the consequent, this calculus has twa
(since the consequent is a single predicate}—one approach to taking account of this
with a tactic is to put the two in altemnation; whichever one gives the correct result will
(ultimarely) be chosen. {Of course, this might be very inefficieat in practice.)

t_and = rule andI
t_or = rule orIl .!. rule orlz
t_imp = rule impl
t_not = pitac t
where t (Singl(ps.Net pji} = {rule notE)
{cut_tac p)
({rule notE} .:. swap_tac ,:.
not_t ., assum_tac
swap_tac .:. {(thinr_tac 1))
[= failtac

The last tactic simulates the ‘cross-over” rule for F— ., It is rather more complex,
entailing use of a logical cut:

m assumption
Ti- PI= - PF false :Z:’
2t~ -~ Pt P false 21PF faise .
B Ey I e I A
Tt P false cut_tac{P)
—Trop @

The tactic for ¥ is simply the 2111 rule. ¥* is more complex:
t_all = rule alll

all_t e = pitac ¢t
where t (Singl{{Predpar (Forall x s p}}:ps.q !
= cut_tac (Substpix,e) p}
tirule {allB(s)) .:. lassum_cac .||. skiptac))
BN
skiptac)
L __ = failtac

7.5. A CASESTUDY 121

EiVr:SeP LiVr:SeP
F¥x:S5eP FxeS§

TiVx:SeP
Flx:=e)hP Efvx:SePHx:=epPF O

Etv¥x:SePHQ

7.5 A Case Study

As a simple case study in the use of this new tool, we present a proof of the first taw
in the Z mathematical wolkil (from [Spi92a, page 89]).
In LittleZ, we might represent this law as

X1fx: Xty X3V Xe(Vy: Xex#y & ~(x=1y))}
'_

rFEy=>y#Ex.

The proof proceeds by specializing the universal quantifiers in two different ways
(to gain predicates containing (x # y) and (¥ # x)), then using the cross-over rules
(tactics), Leibniz’s rule, and the rule of reflection 10 complete the proof.

Some infelicities in the account of a-conversion of quantified terms® make the
theorem above rather hard 1o prove, and so instead we demonstrate

[X]tx Xty Xt ¥x: X (¥y XexFEy(x=y))
.

nERInFE,

by means of the following Lactic:!

tag = all t_discharge 2 (Ident *xl"} .:.
all_t_discharge 2 (Ident *yl")
iff & .:. thinr_zac 1 .:. t_imp .:. mp_tac .:.
cut_tac (Not{(Ident "y1")'Bqu*(Ident "»xl1"}}} .:.
{
(ct_not .:. swap_tac ,:. not_t .:.
{t_tsbus ("wl®,Ident "wl"}) .:.
(rule (leibniz {Ident "x1"))) .:.
{ [subsr_rac .:. (rule refl})
S
assum_tac}))
At
{ {repeat_tac 5 drop_snd) .:.
swap_tac .:.
{all_t_diacharge 2 (Ident "yl®}} .:.
{all_t_diacharge 4 (Ident "x1"}} .:.
iff_v .:. {repeat_tac 4 drop_snd) .:.
SwWap_rac .:. Mp_TAC .:. aspun_tac }
}

The wactic all_t discharge n used repeatedly above js derived from all_t. It
makes use of the declaration in the nth position from the - 1o discharge the ¢ € 5
condition which arises when all_t is used:

31n order 10 specialize the und Iy ifed kerm for y, il is neccisary find @ a-convert the inter
quannfication. This appesrs 1o be impossible in the present account of dwe kogic.
A Which, in contratt 10 & comyprrmble 208 tactic. executes in kets thag aoe second.

122

CHAPTER 7. IMPLEMENTATION USING GOFER

all_r_discharge n e = all_t & .:.
{{thinr_tac n .:.assum_cac) .||. subst_tac)

7.6 Discussion

This chapter has described a simple implementation of a theorem-prover in Gofer.
The same approach as the one described here has been used to implement a number of
tools—an implementation of part of W, a tool for testing the associative/commutative
tactics of Section 5.2. and a tactic-based 0l for reasoning about tactics (permitting
the animation of the normalization wctic of Section 6.2). In each case, the soundness
of the implementation is easy Lo verify, the execution is quick, and the user interface is
poor.

The ease with which this implementation is constructed may be contrasted with
the effort involved in the production of the encoding of W in 20QB]J. Certainly, Gofer
provides a much more stable platform for implementation than does 20BJ. Likewise,
the deductive system used here has benefited from two more years’ consideration—
and from feedback regarding the usability of W. The encoding is also made easier by
being the second such piece of work that the implementor has undenaken.

Since one of the most significant performance problems with 20BY came in the
checking of side-conditions, we must be concemed with whether the same problem
is likely to arise here. Initial indications are ihat it will not be so serious a difficulty.
This is both because the tool is much faster 1o begin with (but note that thc com-
plexity of the calculations rises exponeniially with the depth of schema nesting}, and
because this logic presents fewer instances where bound/free variable calculation for
the whole sequent are required. If performance problems do become a scrious prob-
lem, it may be necessary lo use a more advanced functional programming technique
(monads [Wad93], perhaps)—to provide a means of ensuring that each schema has its
free variables and alphabel calculated once only.

User Interface

The output from the ool is simple to improve—a simple pretty printer produces a
readable ASCII rendering of the terms, or X mark-up. Input to the tool 15, al
present, only via the abstract syntax datatypes described above. As a result, the goal
in the previous section was entered as

Singl((Predpar neqdef.decl2,decll),concl}
where negdef = (Forall *"x" (Ident “X"}
(Forall "y" (Identc "X*)
{{{Ident "x")'neq"* (Ident "y*“)} I£ff-
Noc{{ldent "x*) ‘Equ‘{Idenc "y*|}1}]
decll = Deecl ~x1* (Ident "X}
decl2 = Decl "yl tIdent -X*)
concl = ((Ident *"xl1*)'neq’{Ident “yl*})'Imp"
t1Ident "y1-) ‘neq'{Ident "x1"))

Clearly, this is nol praclical, A parser wrillen in Gafer might be used here; a parser
written with standard UNIX 1o0ols Jex and vacc {providing translation into the form
seen above) would be much more efficient, and provide a simple front-end for the tool.
Interactive use of a Gafer program is also possible: this would necessitate use of a
parser for tactics, too.

7.6. DISCUSSION

A reasonable short-tevm goal, then. is a theorem-prover with 2 ‘command-line’
imerface, Specifications can be writien in BIEX, or the Z siandayd interchange format,
with goals inlerspersed, cach provided with a tactic. The tool will read a file of such
input, and outpu! a file wilh each goal replaced by the result of applying its actic 10 it

Related Work

Of course, there have been many previous implementations of theorem-provers in
functional Janguages. The approach taken here is, at its core, similar 1o many of them,
The cenval idea is that theorems (or equivalently, proofs) are encoded as a datatype,
and that the sirong typing ensures that only sound theorems (proofs) can be produced.

Probably the most successful of these—and the originator of the notion of a proof
as a 'safe datatype’ is LCF (as Edinburgh LCF [GMW79] and laier Cambnidge LCF
[Pav87]). That system does not have a primitive lype of inference rules, but it vses
a similarly small set of functions between theorems. The chief difference with the
approach taken here is that in LCF lactics are higher-order functions: as well as
returning lists of goals (corresponding to the paraliel composition of goals above, not
the alternation—LLCF makes no allowance for alternative putcomes) they also retum
proofs, which are functions deducing one theorem from another:

type proof = thm list -> thm;
type tactic = goal -» (goal liat = proof};

The proof component is described as a validation. 1t most be a composition of in-
ference rules. This gives poientially a more efficient implementation than the one
described abave, since rule application is deferred until the end of a proof, so time-
consuming checks can be taken out of the interactive part of the proof activity. The
user must therefore tlake care that only valid tactics are used, otherwise the proof con-
struction will have been in vain. On-line checking of conditions—prmcessing power
permitting—may be less likely to Jead to wasted effort.

LCF is implemented in (and gave rise to) ML. By contrast, choosing a lazy lan-
guage such as Gofer, makes straightforward implementation of backtracking possible.

In most projects, the first system buit is barely vsable.
It may be too slow, 100 big, awkward 1o use, or all three.
There is no alternative but {o start again, . .

—Frederick P. Brooks, Jr.
The My thical Man-Month: Essays on Software Engineering

Chapter 8

Conclusions

8.1

Z, and laid the groundwork for another. Both tools are demonstrably sound

with respect to the published semantics of Z—and in this they are distinctive.
Both have been used to demonstrate that the deductive systems which they cacode are
tractable for proof in Z. The development of such proofs—via tactics—has been given
a formal software engineering treatment.

Tms THESIS HAS DESCRIBED the creation of one prototype theorem-prover for

Proof Tools

Chapter 1 presented some criteria by which a proof tool may be judged. The first of
these was soundness: tbe requirement that any theorem which can be proved by the
ool could also be demonstrated using the (published) semantics of (draft) Standard Z.
By paying special attention to this issue, a proof tool has been produced in which a
user may place reasonable confidence, and the activity of producing and testing the
lool has shown up (minor) Rlaws in the presentation of the deductive system on which
it is based.

The encoding of W in 20BJ also scores well on the user interface side, but falls
down badly on efficiency —the situation is reversed for the tool described in Cbapier 7.
Both have made an attempt a1 providing a tactic library, and in both cases, that library
remains incomplete and not the most efficient possible. No attempt is made adapt some
of the well-known and powerful proof techniques from the more specialized world of
automated theorem proving {resolution, forward chaining, unification, Knuth-Bendix
campletion, etc.). Chapter 4 has discussed whether the rules of W are appropriate for
the construction of a proof toal; the answer seems to be that they are among the best
available,

Comparing Chapters 2 and 7, the relative merits of two different approaches to
implementation can be seen. Whilst the second looks as though it will ultimately be
more useful, the value of the first (the discipline involved in producing the encoding,
and the ease of use of the resulting interface) should no1 be overlocked.

125

126

CHAPTER 8. CONCLUSIONS

8.2

The main réle for such tools is in taking away some of the technical noise from
a Z proof (i.e. the demonstration of internal consistency, and, potentially, the proof
of coreciness of a data refinement), leaving the specifier to worry about the deep
issues invol ved (whether the specification really captures the required behaviour of the
system). Ideally, one's software engineering methodology should abstract away from
that noise, and leave the user dealing with the deep material. Clearly this is not the case
with Z—in demonstrating (¢ven) that a specification is self-consistent many mundane
proof obligations arise. People use Z, and so they need a wol which leaves them able
to devote time to the more important issues. Such an approach is akin, ideally, o other
software engineering wols—the type checker, parser, etc—which find simple bugs, not
profound ones. They help to spot well-formed theories (those which obey the simple
syntax and typing rules), not necessarily correct ones. Of course, the proof ool does do
slightly better than this—if a formal proof of some deeper propenty of the specification
is required, it can be accomplished (with user guidance).

Tactic Language

The work on the tactic language attempts to meet the sofiware engineer's programming
concemns. Having presented a general tactic language having a concise semantics and a
complete transformational calculus, we may define tactics which can be used, re-used,
and substituted with confidence.

This may be contrasted with the tactic languages used by at least two popular
commercial sofiware engineering tools with proof components: B has a wctic/control
language which is closely tied (o the theory under consideration (changes in which may
change the control structure); and Zola has a tactic language based on Lisp in which
taclic behaviours may be modified by keywords in a variety of non-compositional ways
{see Section 6.5).

The fact that the semantics is based on lists {rather than seis) gives rise to some
unpleasant side-conditions on laws—wo tactics which produce the same allernatives,
but with differing orders for those alternatives, are regarded as distinct. Since any
implementation of a tactic language will ultimately have a sequential character, it does
not seem unreasonable to model this in the tactic semantics. Few would argue thatin a
tactic such as !(r | skip), the application of r is equally preferable with the application
of skip.

The angelic nondeterminism (‘deep’ backtracking) present in the tactic language
permits the succinct expression of some taclics, especially those which require search-
ing, and those for which various altematives need to be tried (e.g. the assocs tactic).
The structural combinators permil tactics to be applied 10 sub-expressions with ease,
and in a more intuitive way than that used in Lisp (and hence Zola), or in OBJ3 (where
sub-expressions are selected via a list of position numbers for expressions within ex-
pressions). The negative effect of using a semantics based on lists is seen mosi strongly
in laws relating backtracking and struciural combinators—transformations are possible
only when most of the tactics are sequential (i.e. have the property £ = 1).

It may be commented that the tactic langvage presented here promotes reusability
of a less-than-desirable kind. When a tactic is rewritten/improved, the old version
can be left in place—in allemation after the new—so that if the new implementation
should cause some subsequent tactic to fail, the system may backtrack and use the
old implementation instead. This would be poor style both because it may impair

8.2. TACTIC LANGUAGE 127

efficiency and because it might lead to code which would be very hard to maintain.

Comparison with Other Work

The work on the tactic language follows along history of work in the theerem-proving
and functional programming communities. The fundamental tacticals introduced here
originate in the work on Edinburgh LCF [GMW79]. There, they appesr as THEN
and QRELSE—ihe laiter being a cur version of our alternation operator. The LCF
treatment of tactics differs from that presented here, in that LCF's inference rules are
quite distinct from the set of tactics, and not a subset, as we have presented them here.
Rules are used for forwards proof; tactics are used in backwards (goal-oriented) proof
search, and return *validation functions’, which are compositions of proof rules. As a
result, the safe datatype is that of proofs, not (as here) thar of tactics; tactics are valid if
they are able to be validated by compositions of primitive rules. Stmongly valid tactics
are related to our functionally correct ones.!

Milner [Mil84] gencralizes the ideas from LCF somewhat, chserving how the
notions present in tactic programming {goal, stralegy, achievement, and failure) stand
together in a far more general setting than merely in the area of machine-assisied proof.

An independent semantics for LCF's tactics is found in [Sch84]. Schmidt's goal
is similar to ours—ihe discovery of a language which will facilitate ‘formulation of
high level algorithms that can be compared, analyzed, and even ported zcross theorem
proving systems.’” He does not present a formal treatment of failure, or of recursion.

20BJ {GSHH92] builds on many of the ideas in LCF, but implements rules and
tactics in the way which has been discussed abave—wilh rules as a (clearly delineated)
subsort of the son of tactics. The ELSE operator retains the semantics of LCF’s
ORELSE, though this may change in later versions of the tool.

Paulson describes a simple theorem-prover in [Pau91l], in which the tacties are
ireated in a similar way to those in his [sabelle system. Here, as in the semantics
presented in Chapter 5, the tacticals return sequences of allernatives. There are two al-
ternatjon tactics: APPEND implements our alternation operator, whereas t1 ORELSE
£2 is equivalent ta 1, | (fails 1y ; 17). As aresult, [sabelle’s REPEAT t permits back-
tracking within t, but aot on the number of repetitions of t (unlike evhausr). Isabelle
implements cut as DETERM. The semantics is given using the tacticals” ML defini-
tions; only one algebraic law is given—the one stating that all_tac (i.e. skip) is an
identity for THEN.

Felty's 1actic language {Fel93] is also very similar to that presented in this thesis,
complele with the backtracking suggested by the alternation tactical. Its semantics is
given via its logic-programming implementation, and as such has a more relational
style of approach than that seen here. Nevertheless, a cut version of orelse is
presented, since such pruning of the proof-search is needed in interactive use of the
system she describes. No algebraic laws are given.

The uscfulness of lazy lists o implement backtracking has been known in func-
tional programming circles for some time. Burge [Bur?5) discusses such backtrack-
ing in the context of top-down parsing, and Wadler [Wad85] preseats a whole parser
toolkit in this style. The parser combinators are very similar to those given here. For
example, 1it x is a parser combinator which matches a string whose first character

IStrongly valid tactics are those which cannct lead “wp a blind aliey”. If given ap achicvabie (provable)
goal. they rerurn achievable subgoals.

128

CHAFPTER 8. CONCLUSIONS

83

is x. Parser combinators return a list of tuples containing the matched portion of their
argument siring in the first place, and the remaining string in the second:

lic 'a’' "apple*

= [{*a-, "pple"}]
lit 'a’ "hanana* = []

These combinators may be placed in alternate and sequential compaosition:
alt (lit ‘a*) {(lict *k‘) "banana* = [{("b*, "anana"})
seq list? {lic b*) {lic 'a’) "banana" = [{"ba",*nana*}]
The exhausr tactical is coded as rep:

rep (lic ‘a‘) *aardvark" =
{("aa", "rdvark"}, (*a", "ardvark"), {"", "aardvark®)]

Thus we would expect the theory described in Chapter 5 to be applicable to this work—
and to systems based on it, such as the parser described in [FLB9). Wadier notes that
an added benefit of this method of handling backtracking and failure is the avoidance
of any need to consider exception handling.

Moreover this taclic language may be applied 10 another idea in the theorem-
proving world: in LCF/HOL, rewriting is extensively used for simplification in
theorem-proving. In [Pau83], Paulson describes a means of directing such conversions
using combinators which closely mirror those present in the tactic language. A unified
theory of such combinators/tacticals may make implementation easier, and certainly
makes for a more straightforward conceptual framework,

Further Work

The work with 20BJ can be considered as being at an end. Some serious bugs remain
in 20BJ, and no further development work on that project is being undertaken. As a
result, there seems to be litile value in making the much-needed improvements in the
implementation of W in 20BJ (even if it were clear how to improve the implemen-
tation). Nor is there much point in making improvements to the tactic library—bu
ideas from there may usefully be carried forward into the Gofer implementation—see
below,

The theory behind the tactic language could bear a little tidying. Ideaily, one would
obtain a completeness result for the language including recursion (and, ideally, struc-
tural combinators and pantern-matching, too). Perhaps the most promising approach to
proving that recursive tactics can be put into a normal form is the tactic-based approach
of Section 6.2. A complete tactic-based theorem prover for reasoning about tacties
would be an interesting curiosity, and may be useful for conducting meta-proofs about
other tactic-based systems.

A valuable contribution to the treatment of recursion would be to improve the
rather vague treatment of termination. A formal treatment of sufficient conditions
for termination would be useful, or some other condition sufficient o guarantee that a
recursive equation describes a unigue least fixed point (akin to the notion of guarded
recursion in CSP [Hoa85, page 28)).

To produce a usable proof tool for Z—af least insofar as providing a means of
animating the logic presented in the standard is concerned—it soems sensible to build
on the implementation in Chapter 7, in the way oudined there—providing, at least, a

8.4. FINALLY

129

84

Z proof 1ocl with a command-line interface. Some of the work there is in corstruction
of the parser, and the oucput routines. Most of the work, bowever, is in expanding the
coverage from LittleZ to the whole language (Stepben Brien's thesis [Bri95] explains
how to do this), and providing a tactic library targeted upon proving Z specification
propenics—complete with a formal description of how the tactics behave,

The breadth of applicability of (he tactic language could also be explored further.
The language might be used to express a range of algorithms used in theorem-proving
and term-manipulation systems, and laws like those presented here used to ransform
andVor validate them. 1deas for animating other logics in Gofer, in the style used above,
could lead to a 1oolkit for producing lightweight theorem proving tools—a lightweight
logical framework.

Finally

This chapter ends with a quote from Edsger Dijkstra. He was asked for his opinion on
the use of proof tools; he replied by asking why we should let compuiers take away
our fun. | hope that this thesis has showed that computers can take away the mundane
bits of program verification-—leaving us to have fun with the rest—and we can have
fun directing the theorern provers too.

A rcusable theorem is one which can be proved over and over again.

I have no problem with people using automated theorem provers.
Personally I wouldn’t like to do so:
why delegate to a machine that which is so much fun w do for yourself?

—Edsger W. Dijkstra
(paraphrased, comments at Marktoberdorf Summer School, 1994)

Bibliography

[Abr21] J.-R. Abral. A formal introduction to mathematical reasoning. Technical report, BP
Research International, 1991.

IBG941 J. P. Bowen and M. J. C. Gordon. Z and HOL. In J. P. Bowen and J. A, Hall,
editors, Z User Workshop, Cambridge 1994, Workshops in Computing, pages 141-
167 Springer-Verlag, 1994.

[BGH192] R.]. Boulton, A. D. Gordon, J. R. Harrison, J. M. J. Herbert, and J. Van Tassel. Ex-
perience with embedding hardware description languages in HOL. In V. Stavridou,
T. F. Melham, and R. T. Boute, editors, Theorem Provers in Cicuit Design: Theory,
Practice and Experience: Proceedings of the IBIP TC10/WG 10.2 international Con-
ference, IFIP Transactions A-10, pages 129-156. North-Holland, [992.

[(BHWS4) S. M. Brien, W. T. Harwood, and J. C. P. Woodcock. Logic and description in Z-fike
languages, April 1994. Submitied to FACS.

[Bir86] R. S. Bird. An introduction to the theory of lists. Technical Monograph PRG-56,
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford,
00X 3QD, UK, 1986.

[Bir88] R. S. Bird. Lectures on constructive functional programming. Technical Monograph
PRG-69, Oxford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford, OX 3QD, UK, 1988.

[BL74] D. E. Bell and L. I. LaPadula. Secure computer systems: Mathematical foundations
and model. Technical report, MITRE Corporation, Bedford, MA, 1974,

[Bla%94} K. Blackburn. Example material for a Balzac reference manual. Ref: ISS/HAT/
CSC3/111, February 1994,

{BN*92] S. M. Brien, J. E. Nicholls, et al. Z base standard. ZIP Project Technical Report
ZIPPRGH2/121, SRC Document: 132, Version 1.0, Oxford University Computing
Laboratory, Wolfson Building, Parks Road. Oxford, OX1 30D, UK, November 1992,

[Bri92] Z Basec Standard, March 1992. Version 0.5.

13t

132

BIBLIOGRAPHY

[Br95] S. M. Brien. A Model and Logic for Generically Typed Set Theory (Z). D.Phil. thesis,
University of Oxford, 1993.

[Bro75] F. P. Brooks, Jr. The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, 1975.

[Bro$3] S. D. Brookes. A Model for Communicating Sequential Processes. D.Phil. thesis,
University of Oxford, January 1983,

[B579] R. S. Boyer and J. Suother Moore. A Computational Logic. Academic Press, Inc.,
1979.

[Bur75] W, H. Burge. Recursive Programming Technigues. Addison-Wesley, 1975.

[Dij94] E. W. Dijkstra. The argument about the arithmetic mean and the geometric mean,
heuristics inculded. In M, Broy, edilor, Deductive Program Design, NATO ASI Serjes.
Springer-Verlag, 1994. Marktoberdorf International Summer School, 1994, (o0 appear.

[Dil90] A. Diller. Z An lntroductian to Formal Methods. Wiley, Chichester, UK, 1990,

{DMLP79] R. A. De Milio, R. J. Lipton, and A. J. Perlis. Social process and proofs of theorems
and programs. Communications of the ACM, 22:271-280, May 1979.

IDSS0] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semuntics.
Springer- Verlag, 1990.

[Fel93] A. Felty. Implementing tactics and tacticals in a higher-order logic programming
language. Journal of Automated Reasoning, 11:43-81,1993.

{FL89] R. Frost and J. Launchbury. Constructing natural language intetpreters in a lazy
functional language. The Computer Journal, 32(2):108-121, 1989,

[For92) Formal Sysiems (Europe), Etd. Failures divergence refinement, User Manual and
Tutorial, 1992,

(GLW91] P. H. B. Gardiner, P. J. Lupton, and J. C. P. Woodcock. A simpler semantics for Z. In
Nichoils [Nic91), pages 3-11.

[GMW79] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF; A Mechanised
Legic of Computaiion, volume 78 of LNCS. Springer-Verlag, 1979.

[Gor88} M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In
G. Binwistle and P. A. Subrahmanyam, editors, VLS! Specification, Verification and
Synthesis. Kluwer Academic Publishers, 1988.

[Gor94) M. J. C. Gordon. Private communication, 1994.

[GSHH92] J. Goguen, A, Stevens, H. Hilberdink, and K. Hobley. 20BJ: A Metalogical Theorem
Prover based on Equational Logic. Philosophical Transactions of the Royal Society,
Series A, 339:69-86, 1992, Also in C. A. R. Hoare and M. J. C. Gordon, editors,
Mechanized Reasoning and Hardware Design, Prentice-Hall, 1992,

[GW88] J. Goguen and T. Winkler. Introducing OBJ3. Technical Repont SR1-CSL-88-9, SRI
International, Computer Science Lab, August 1988,

BIBLIOGRAPHY 133

[HHP91] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Report series,
LFCS, Deparment of Computer Science, University of Edinburgh, 1991.

[Hoa85] C. A. R. Hoare. Communicating Sequennal Processes. Prentice-Hall Intenational,
1985.

[HS85] C. A.R. Hoare and J. C. Shepherdson, editors. Marhemarical Logic and Programming
Languages. Prentice Hall, 1985.

[ICL.931 TCL Ltd. Tutorial Notes on Proofin Z, 1993, Tutorial material at FME'93: Indusirial-
Strength Formal Merhods.

{JILM91] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural:- A Formal Development
Suppors System. Springer Verlag, 1991.

[IMT91] D. Jordan, J. A. McDermid, and I. Toyn. CADIZ - computer aided design in Z. In
Nicholls [Nic21}, pages 93104,

[Jon90] C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall Intenational,
second edition, 1990,

[Jon91a] M. P Jones. An Introduction to Gofer, 1991.

[Jon91b] R. B. Jones. Book review of [Dii90]. Science of Computer Programming, 16(3):286—
288, 1991,

[Jon92] R. B. Jones. ICL ProofPower. BCS FACS FACTS, Series I3, [(1):10~13, Winter 1992,

[KB95] I. Kraan and P. Baurnann. Implementing Z in Isabelle. In). P. Bowen and M. G.
Hinchey, editors, ZUM'95: The Z Formal Specificasion Notaiion, volume 967 of
LNCS, pages 355-373. Springer-Verlag, 1995,

[LS87} 1. Loeckx and K. Sicher. The Foundarions of Program Verification. Wiley-Teubner
Series in Computer Science, second edition, 1987,

[Mar%3a] A. Martin. Encoding W: A Logic for Z in 20BJ. In Woodcock and Larsen {WL93],
pages 462-481.

[Mar?3b] A. Marun. Infiniw lists in Z. Draft paper, 1993,

[Milg&4] R. Miiner. The use of machines to assist in igorous proof. Philosophical Transactions
of the Royal Society, London. Series 4, 312:411-412, 1984, Also in {HS85).

[Mor90] C. C. Morgan, Programming from Specifications. Series in Computer Science.
Prentice-Hall International, 1990.

[Nic91] J. E. Nicholls, editor. Z User Workshop, Oxford 1990, Workshops in Computing,
Springer-Verlag, 1991.

[ORS¥H93] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-
tolerant architectures: Some Jessons learned. In Woodcock and Larsen [W1.93], pages
482-500.

[Par69] D. Park. Fixpoint induction and proofs of program properties. Machine Intelligence,
5:59-78, 1969.

134

BIBLIOGRAPHY

(Paug3) L. Paulson. A higher-order implementation of rewriting. Science of Computer Pro-
gramming, 3(2):119-149, 1983.

{PauB7] L. C. Paulson. Logic and Computation—Inte ractive Proof with Cambridge LCF. CUP,
1987.

[Pau89] L. C. Paulson. The foundation of a generic thearem prover. Journal of Automated
Reasoning, 5:363-397, 1989. Also University of Cambridge Computer Laboratory
Technical Report No. 130.

[Paus0] L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361-385. Academic Press, 1990,

[Paud1] L. C. Paulson. ML for the Working Programmer. CUP, 199].

[Sch84] D. A. Schmidt. A programming notation for tactical reasoning. In R. E. Shostak IV,
editor, 7th International Conference on Automated Deduction. Springer-Verlag, LNCS
Volume 170, 1984,

[SH92] A. Stevens and K. Hobley. Mechanized Theorem Proving with 208J: A Tutorial
Introduction, 992,

[Spi88] J. M. Spivey. Understanding Z: A Specificaiion Language and its Formal Semantics,
volume 3 of Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, January 1988,

[$pi92a] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, second edition,
1992,

[Spi92b] J. Spivey. The fuzz Manual. Computing Science Consultancy, 2 Willow Clase,
Garsington, Oxford OX9 9AN, UK, 2nd edition, 1992,

[8890] J. M. Spivey and B. A. Sufrin. Type inference in Z. In D. Bjgrmer, C. A, R, Hoare,
and H. Langmaack, editors, VOM'90: VDM and Z—Formal Methods in Software
Development, volume 428 of Lecture Notes in Computer Science, pages 426-451.
Springer-Verlag, 1990.

[Wad85] P. Wadler. How to replace failure by a list of successes. In Functional Programming
and Computer Architecture, volume 20] of LNCS, pages 1 13-128. Springer-Verlag,
September 1985.

{Wad93] F. Wadler. Monads for functional programming. In M. Broy, editor, Program Design
Calculi, NATO ASI Series F, pages 233-264. Springer-Verlag, 1993, Marktoberdorf
International Summer School, 1992,

[WB92] 1. C. P. Woodcock and S5. M. Brien. W: A Logic for Z. In Proceedings 6th Z User
Meeting. Springer-Yerlag, 1992,

[WD96] J. C. P. Woodcock and I. Davies. Using Z. Prentice-Hall, 1996.

[W1.93] J. C. P. Woodcock and P. G. Larsen, editors. FME'93: fndustrial-Sirength Formal
Methods, volume 670 of Lecture Notes in Computer Science. Springer-Verlag, 1993,

[Woa92] J. C. P Woodcock, Case Study: A Multilevel Security System, 1992,

Appendix A
On Lists

A.1 Definitions

The treatment of lists in this thesis is broadly derived from that in [Bir88]. The
definitions which follow are consistent with those in that monograph (though there,
Bird uses ~-lists rather than the cons-lists described here). This being a thesis based
on Z, the notation used is more Z-like than Bird's; in particular, we use { } for list
brackets, instead of [). Z's lists are strictly finite, but the definitions which foliow also
suffice for infinite lists (see [Mar93b]).

A list over a set X is either the empty list, or of the form x : x5, where x is a member
of X,and xsisalist. The listny : xp : ... : x5, o () is generally writtenas {xy, £2,. .. x,).
The partial lists of Section 5.8 are modelled as lists of the formx, ;52 : ... 1 x4 s 1y,
Infinite lists are limits of partia} lists.

The map operator + is defined thus:

f0O=0
Se(xixs) = (fx):fe x5 .
The dual notion is ° (“all applied 10').
{¥x =)

U:f)x = (fx): ()
List concatenation is similarly defined:

()" ys
(x:xs) ™ ys

¥s
x:{xs ™ ys) .

(II]

Distributed concatenation is a special case of 2 more general operator, usually called
‘reduce’, and writtan */":

&) ==z
&f(x 2 (xg 2 25)) = 1 @ (&/(x; : x5))

135

136 APPENDIX A. ON LISTS

The head” function used here is a totalized version of the more common head
function:

head'{ }
head'(x : x5}

0
{5 -
Function composition is the common (mathematical} backward composilion, and
V defines a pairwise compesition.
(Fog)a) = flglx)
Fvg)x = (fxgx) .

The operatars needed in Section 5.10 are slightly more complicated, though still
standard list processing functions from [Bir881.! Firstly zip with &:

{(1va () = (}
{1:15) Yo (g : g5) = ilfes = #gs
then{r © g) ™ (15 Yo g5)
else() .

Note that # calculates the length of a list. This operator is used in the definition of
structural combinators as ;4. The operator used 1o zip with is “id’, since the desired
result is thal functions in the first list be applied (o arguments in the second:

drg

= (id¢)g

=1 g

The cartesian product [T, is defined using a list ¢cross product:

sXg () = ()
s Xg (v:¥5) = (D) 1) : (x5 Xg ¥5)
[T = X~/ o {id)e

The behaviour of these two operators is illustrated thus:

(e,) Xg (c,d,e) = @B c,bBc,eDd bDdadebdDe)
TH{la b}, {e), {d,e)) = {{a,c,d),(b,c,d}, la,c.e), (b,c,e)}

! However, in order 1o make the siructural combuaters fail cortectly (when inpuls are mis-matched), we
toralize the definition of ¥ —making u reramn the empry list when its inputs arc Tois-matched—and choose
to put X~ /{}y = {), lor similar reasons (comventionally, this is ({ }}}.

