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Abstract

The main contribution of this thesis is a study of the dynamic programming and greedy
strategies for solving combinatorial optimization problems. The study is carried out in the
context of a calculus of relations, and generalises previous work by using a loop operator
in the imperative programming style for generating feasible solutions, rather than the fold
and unfold operators of the functional programming style. The relationship between fold
operators and loop aperators is explored, and it is shown how to convert from the former to
the latter.

This fresh appraach provides additional insights irto the relatiouship between dynamic pro-
gramming and greedy algorithms, and helps to unify previously distinct approaches to solving
combinatorial optimization problems. Some of the solutions discovered are new and solve
problems which had previously proved difficult. The material is illustrated with a selection

of problems and solutions that is a mixture of old and new.

Anothet coutribution is the inventiou of a new calculus, called the graph calulus, which is a
ugeful tool for reasoning in the relational calculns and other non-relational calculi, The graph
calculus represents formulae by formal pictures, and this enables proofs to be expressed more
simply. It is also more powerful thau standard point-free reasoning, and its simple intuitive

basis aids greater understanding of the structure of formulae and certain proofs.
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Chapter 1

Introduction

The main contribution of the work presented in this thesis is the study of greedy and dynamic

programming strategies in a relational context.

Previous work in this area by Bird and de Moor {12, 11, 9, 10] details a number of theorems
about these programming strategies. These theorems depend on the use of a fold operator
over an jnitial datatype, or the converse of such an operator, to generate feasibie solutions

for eptimization problems.

In this thesis, the yse of folds and unfolds is replaced by a stmple imperative-style loop oper-
ator. This gives an extra degree of freedom in the way that feasible solutions are generated,

and hence there is wider applicability of the greedy and dynamic programming sirategies,

A [urther generalization demonstrates how traditional-style invariants can be used to reason

about loop operators in a relational setting.

An additional contribution of this thesis is the development of the graph calculus, a proof

method which uses formal pictures to expose the relational structure of formulae.

1.1 Overview

The standard relational specification of optimization problems to be used in this work is

min B - AGen.
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The generator relation Gen is one that penerates a feasible solntion to the problem, Afien
returns the set of all feasible solutions, and min A selects the mipimum of these with respect

to the relation R, which determines the cptimality criterion.

In previous work of Bird and de Moor [12, 11, 9, 10] the generator relation was expressed

using a fold operator or the converse of such ar operator.

In this thesis, a simple imperative-style loop operator is nsed to generate feasible solutions
instead. This abstracts away from the structure of the problem, and optimization problems

are modelled as
minf - Atim 7.

Here the relation fim T repeats T to the input urtil it can do so no mare. So T is a

constructor relatiou that performs one step of building a feasible solution to the problem.

Greedy algorithms perform a sequence of decisions, whereby at each stage a locally optimal
choice is selected. The greedy step will be modelled by the following relation

G = minS - AT.

Here AT takes a partial solution, extends it by applying one construction step I'in all possible
ways, and returns the set of the resulting partial solutions. The criterion for local optimality
is given by S, and the locally optimal choice is selected by §, The cormplete algorithm is
lim G| which repeats the greedy step until it can be performed no more.

Dynamic programming can be modelled in a variety of ways; the essential element that ali
models have in common is that in some way, unnecessary compntation is avoided. We will

model a dynamic programming step by the relation
D = #inS - sprouts T.

Here a set of partial solutions is maintained, and sprouts T performs some amount of con-
struction on these, that is, it applies T to some of the partial solutions. The relation Sis a
comparison reltion which can indicate whether a partial solution is worse than another, and
the relation thin § removes some of the worse partial solutions. The entire algorithm is

minR-limD - T,

where 7 takes the input and makes it into a singleton set, then lim D repeats the dynamic
programming step until all the partial solutions are completed, and then an optimum is
selected using min R.
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1.2 Outline

Chapter 2 is a reference section of well-known material that briefly covers the relevant
operators and laws [rom the theory of relations that will be needed. Concepts [rom
category theory are used to construct datatypes and fold operators over these datatypes.

Chapter 3 introduces the graph calcelus, which is a useful too! for constructing proofs,
particularly in the relational, sequential and similar calculi. [ndeed, this calculus was
discovered whilst experiencing frustration during attempts to construct preofs during

the course of the work for this thesis. The chapter is complete in itsell.

Chapter 4 presents the history of greedy and dynamic programming strategies, and dis-
cusses work of Bird and de Moor in this area. Their theorems use relational folds over
datatypes to construct potential feasible solutions to problems, and examples are given
to show the theorems in action. At the eud of the chapter it is shown where these
theorems are inadequate, by discussing problems that this theory does nol cover,

Chapter 5 proposes an alternative way to generate potential feasible solutions o a problem,
using a simple loop operator, rather than recursive folds or their converses. Further-
more, it is shown that loops generalize folds and unfolds, and practical examples are

giveu.

Chapter 8 presents the main theorems concerning dynamic programming and greedy al-
gorithms in this thesis. Optimality conditions for greedy and dynamic programming

strategies are discussed, and examples given,

Chapter 7 generalizes the work from the previous chapter in two ways. Firstiy, the concept
of an invariant is discussed, and generalizations of the greedy aud dynamic programming
theorems are presented. Secondly, the use of the loop operator to canstruct feasible
solutions to problems is re-examined and generalized. Examples of both generalizations

are presented.

Chapter 8 summarizes and evaluates the results in this thesis.



Chapter 2

Prelminaries

2.1 The History of Relational Calculi

The concept of relations is not a recent idea. Augustus de Morgan began work on relations in
the 1850s and 1860s (reprinted in [76]). Peirce in the 1870s continued this work, with several
papers concerning “The Logic of Relatives” (collected and reprinted in [79]). Peirce made
mathematically precise some of the fundamental ideas about relations, and laid down some
laws about them. Schrider in 1895 [87] extended Peirce’s work, and listed many additional

laws about relations.

Work on relations lay dormant for several decades, until Tarski in 1941 [95] thought that
relations deserved to be better-known and studied. He proposed two approaches to binary
relations, a sel-theoretic approach and a point-free axiomatic approach (with axioms derived
from the set-theoretic model), and posed several questions comparing the two approaches,
including the question of whether the point-free approach was complete with respect to
the set-theoretic {or point-wise) approach. This paper stimulated much new research into

relations.

Relation algebras were invented, these being models of the point-free axioms for relations.
Lyndon in [60, 61] demonstrated that the point-free axiomatization was incomplete with
respect to the set-theoretic approach. He did this by producing seme relation algebras which
did not satisfyall the theorems of set-theoretic relations.

Since theu, relations have been used in many branches of computer science:
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» Just as categories were modelled on functions, allegories were invented as a categorical
model of relations. Freyd and S¢edrov in 1990 [33] produced the standard textbook on
the subject, and showed that unitary tabular allegories were complete with respect to

set-theoretic relations.

e Backhouse and his colleagues have investigated an extensive theory of datatypes, based
on the calcutus of relations [1].

e Relation algebras have been further investigated by McKenzie in [66, 67] and Maddux
in [62, 63]. Maddux also wrote an interesting paper about the history of binary relations
[64], which is recommended for further reading.

o The relational language Ruby has heen used for designing hardware, for example see
the work of Jones, Sheeran and Hutton [90, 49, 91, 45, 50].

Relations have also been used to reason about graphs. Schmidt and Strohleins wrote
{86]. Relations of arbitrary arity have also been used to represent graphs in the work
of Mbller and Russling [72, 71, 70, 73, 83, 84].

s Bird and Meertens developed a formatism for functional programming [6, 7, 69). The
research of Bird and de Moor later focused on optimization problems, which are more
simply specified using relations: functions cannot express the non-determinism inherent
in taking a minimum accurately, as there may be no minimum or several. Thus the
functional formalism was generalized to relations, detailed in {10].

2.2 Binary Relations

Relations will be described in a style that generalizes that of functional programming, and
they will be viewed intuitively in an operational manner. [t will be helpful tothink of binary
relations as relating values to other values, and thus a set theoretic (or point-wise) view of
relations is used. Composition of relations will be as the left-to-right composition of functions
., and every relation will possess a well-defined type of the form A + B.

Even though binary point-wise relations are the calculus of choice, it is alsoadvantageous to
use laws expressed in the point-free calculus of relations. In particular, a rigorous calculational
proof style will be employed, using many laws from the point-free axiomatization.

This section gives briel definitions of the operators used on binary relations in this thesis,

together with their useful properties. Often a point-wise definition wil be given to aid
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intuitive understanding of the operator, followed by a universal property to provide the
equational reasoning to be used in proofs.

A relation R : A +- B (pronounced “A from B") is a subset of 4 x B, and the notation =Ry
will be used for (z,y) € R. In examples it can become cumbersome Lo write out variables
several times, and so the notation
R L
TH—y+— ¢
will be used to abbreviate zRy A y5:z, for exammple, and similarly
R L

Tt—y—>z

will be used to abbreviate tRy A =5y.

2.2.1 Basic operators

Several speial symbols stand for the empty, identity and universal relations:

t={}
iy = {(aa) |0 € 4)
Naxs = {(a,b) | o€ A, be B}.

The subscripts are usually omitted when they are clear from the context.

The converse of a relation is defined to be
R® = {(n7)|(z.¥) € R),

and thus converse is an involution
R°°® = R.

For example, the relation € ° (which is usnally written as 3) is the converse of the set

membership relation €.

The composition operator on relations generalizes the composition of functions:
R-S = {(z,2) |3y (s} € R A (y.5) € S}.

As for functions, composition is associative, with its identity the funetion id.

The intersection of two relations is just that, the intersection of the two sets of pairs. It may

also be defined with a universal property:
RCSNT & RCS A RCT.
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Similarly the union operator is the union of the two sets, and its universal property is
RUSCT & RCTASCT.

The converse, composition, intersection and union operators are all monotonic with respect

to C. The convention that composition binds tighter than intersection or union will be used.

Other useful properties of the above operators are that © left and right-distributes over M and

J, N and U distribute over each other, and alsa the following:

t

(R-5)° = §°-R°
(RUS)-T = R-TUS-T
(RNS)-T € R-TNS-T

R-SNT C (RNT-§%-5.

The latter is known as the Moduler Law, or Dedekind’s Rule.

2.2.2 Functions

Partial functions are also known as simple relations. Equationally, a relation 5 is simple
when

5.8° C id,
and is total, or entire, when
id C §° -5,

A relation is also a funciion when it is both simple and total. Conventionally, we will write
functions in small letters, whereas relations will be written prefixed with a capital letter.

Useful properties of functions ate the so-called shunting rules:

frRC S & RCf°-§
RCS:-f o R-f°C 5.

If a relation and its converse are both functions, the relation is an isomorphism.
2.2.3 Coreflexives

A reflezive relation R has the property that

id C R,
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and thus iccording to the tradition of category theory, a coreflezsve relation has the property
that

R ¢ id.

Coreflexives may also be thought of as predicates. [ndeed a predicate p may be turned into

a coreflexive in the following way:
p? = {(z.z}|pe}
Useful properties of coreflexives are that for any coreflexives I.JJ and predicate p,

I-y=1InJ
id = p? U (—-p)?.

Two imporant operators are those that return the domain and range of a relation. They are
defined by

i

dom R = {{y,y) |3z - (z,y) € R}
run i = {(z,2)|3y - (z.y) € R},

and are thus coreflexives. Alternatively they may be defined pointlessly as follows:
domR=R°-Rnid

ran R R-R°n id.

Some usefvl properties concerning domains and ranges are that

R =R -domR
R=ranR-R
dom R° = ran R.

We will also use another coreflexive which is defined as follows:
notdomR = {{y,y)| -3z - (z,y) € R}.
The following properties will be useful:
S - notdom (R-8) € notdomR - §

dom B = dom § & notdomR = noldom5
dom RN p? C dom S & notdem S N p? C notdom R.
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2.2.4 Quotients

The left aud right quotient operators are defined as follows:
R\T
T/R

{(t %) | ¥z » zRy = =Tz}
{(y,2) | ¥z - zRz = yT=},

it

so for example, €\€ and 3/3 are better known as set-theoretic inclusion and its converse.

Alternatively, quotients can be defined by the universal properties
R-5CT & SCh\T
S RCT ¢« S§CT/R.

Many properties can be derived from the above equations. In particular, the [ollowing prop-
erties demonstrate why these operators are called gnotients:

R/S-5 CR
R/S-S/T C RIT
RIS T)-§ C B/T

{and there are of course correspouding laws for left quotients). Quotients bind tighter than
the composition opetator.

Quotients interact together as follows:
(B\8)* = §°/R®
(R/5)° S°\R°.

1

it

Other useful properties of quotients and [unctions can be obtained from their universal prop-

erties and the shunting rules:

RIS [ = R/ -S)
RIS = (f R[S
[S\R = (S-fNR

S5\R-f° = S\(R-f°).

2.2.5 Orderings

Relations may be used in a mauner similar to that of functions, to operationally do something
to the input. Relations may also be used to order objects. Reflexivity of an ordering has
already been mentioned; a relation R is trunsitive when

R-R € R.
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Relations that are transitive and reflexive are known as preorders.

A relation R is connected when
Rugr® =1L

This property of a relation is useful when we want to guarantee being able to compare any

two elements, for example, when taking a minimum with respect to R.

The reflezive transitive closure of a relation R is defined to be the smallest preorder that
includes R, and is denoted R". Thus for any preorder 5,

RCS = R*CS.

Trivial properties of reflexive transitive closure are that
R CR
td C R".

Similarly, the transitive closure of a relation R (the smallest transitive relation containing R)
is denoted A¥.

2.2.6 Operators on Relations

The power trenspose operalor provides a way of trausformiug a relation into a function:

(AR)z = {y| yRz}.

Given z, the function AR applied to z returns the set of elements that relate to z
using R. TFor example, AChildOf when applied to Queen Elizabeth IT returns the set
{Charles, Anre, Andrew, Edward}. The universal property of this operator is that

f=AR & e-f =R,

and further weful properties of power transpose are that

€-AR =R
A(R-f] = AR-f
AR-B° C 3.

A similar opeator is ezistential image which applies instead to sets of values, and so

(ER)X = {y|ze X A yRz}.
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Useful properties concerning E are the following:

ET = A(T-¢€)
A(R-5) = ER - AS
AT = ET T,

where rz = {z}.

Another operator on relations which relates sets to each other is the symmetrical powerset:
XPR)Y & (Vze X Jye Y zRy) A (Vye Y- -Jdz e X - zRy).

That is to say, all the members of one set relate by R to some member of the other set. The
corresponding pointiree definition is

PS = e\(S-€) n (3 -5)/3.
Some useful properties of the above operators and coreflexives are the following:
Pp? . Ep? Ep?

Pp? C Ep?
Pp? C id.

The following properties demonstrate how the above operators interact with membership:
€-EP P.¢
PR-2 C 2-R
€e-PR C R-e.

I

The minimum with respect to a relation R is defined by
minR = € N R/3.

Translating the above into words, a minimum with respect to R is a member of the set, and
is R-ier than every other member of the set. Usually R is a connected preorder in order for
the relation min R to be total. A property of minimum for reflexive preorders R is that

R = minR->3.
In the rest of this thesis, only minimums (rather than maximums) will be copsidered, but
this is not restrictive as

mazR = minR°.
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Two universal properties concerning minimum are as follows
S CmnR-AP & SCPAS-P°CR
S5C minl-EP & SC P-e A 5-3-P°CR,

and these can be easily derived from the definitions of the operators and their universal

properties.
To take account of the context when taking a minimum, we can use the following equation:

mink - AP = min(RNP-P°) - AP.

A relation s well-founded if
dome = dom (min R),

that is, every non-empty set has a minimum under R.

2.2.7 Products and Coproducts

Products of relations relate pairs together, that is, if R : A « B and §: C « D then
ARxS§:AxC+— BxDand

(a,c)(R x §)(b,d) & aRb A £Sd.

Alternatively, using the projection functions out! and outr, the product of two relations can
be defined equationally

BRx 8= outl®-R-outl N outr® .5 oulr.
Useful properties of the projection functions are that
outl - outl® = id = oulr - outr®
outl - outr® = 11 = outr® . outl,
and from the above,

eutl - (R x 5) R - outf
outr - (Rx8) € § - outr.

[}

The split of tvo relations R: B+~ Aand §: C — Ais {R, S} : Bx C «— A. Set-theoretically,
the split applies each relation to the input:

(b,c} (R SYa & bRa A cSa.
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It can also be defined equationally:

(R,5) = outl®-R N outr®.8S.

Coproducts are also sometimes known as disjoint sums. Just as the product object A x B
deals with pairs, a “left” element from 4 end a “right” element from B, the coproduct object
A+ B deals with a “left” element from A or a “right” element from B. The injections in! and
inr are then the functions which attach “left” and “right” labels on an element respectively,
The axiomatic definition of coprodncts of relations is that if R : A & B and §: C « D,
then R+ S5: A+ C «+ B+ [ and

B+8 = inl-B-inl° U inr-§-inr°.

This may be thought of in a point-wise fashion as follows: when z(R+ 5)y, then cither z € A4,
y € B, they are both labelled with a “left” label and zRy, or ¢ € C, y € D, they are both
labelled with a “right” label and £Sy. The injections in! and inr are both functions with the
following properties:

inl®dnl = id = inr® inr

inl° -inr = @ = inr® -inl

Some properties showing how injections interact with coproducts are as follows:

i

inl - R R+8-inl
intr -8 = R+5-inr.

Similar to the way splits interact with products, the join of two relations interacts with
coproducts. If R: A+~ Band §: 4 + C then [R,5]: A « B+ C, and
[R,S] = R-inl°U S-inr®.

Thus the relation [R, 5] either removes a “left” label and applies R, or removes a “right”

label and applies §.

Some particular properties of coprodncts and joins which will be used are the following:

[P-Q,R-§] = [P,R] - Q+5
[P-R,P-5] = P[RS
[P.RIV[Q.S] = [PUQ,RUS]

[P.EIC (RSl PCRAQCS
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2.3 Useful Categorical Concepts

A small amount of familiarity with category theory will be assumed, but this can easily be
obtained from one of the good references for computer scientists, such as Barr and Wells {2]
or Pierce [80].

The category we will be working in is Rel, which has sets as objects and relations as arrows,
and this is the world of the relational programmer. Rel is also an allegory, where an alle-
gory is a category enriched with intersection and composition operators, together with the
comparison operator C. Allegories were invented to look at relations categorically in much
the same way as categories look at behaviour of functions. See [33] for more details about

allegories.

In this section, we take a brief look at the main properties of various operators we will need

later conceming datatypes.

2.3.1 Functors

One concept we reqnire is that of a functor, which is a structure-preserving map (on the
arrows and objects) between categories. That is, F is a functor when
R.:B+A = FR:FB+FA
Fid = id
F(R.-5) = FR-FS.
One example of a functor is the identity functor | : C « C from a category to itsell that maps
objects and arrows to themselves, This is an example of an endofunctor, a functor with the
same source and target categories. Another example is the constant functor K4 : C + D,

which maps objects to the object A (in the category C) and arrows to the arrow ids. The
operators E and P are both functors of type Rel «— Rel.

Functors F : A « B and G : B «— C may be composed in the obvious manner, to give
another functor FG : A « C.
A monotonic functor F satisfies the following property for any R,5:

RC S= FRCEFS,

and such a functor is called a relator. Bird and de Moor [13] showed that relators are precisely

those functom that preserve converse

F(R®) = (FR)°.
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They ate called relators, because functors on Fun that are also relators can be extended to

functors on Rel. The functor P is a relator.

Products and coproducts may be used to construct functors. If F and G are functors, then
let

(F+G)4
(F+G) R

I

FA + GA
FR + GR,

and similarly for products. Then we have that F + G and F x G are functors too.

Polynomial functors can be constructed from the above definitions. A polynomial functor is

one of the following:

¢ The identity functor |, or one of the constant functors K,

® FG, F+G or F x G, where F and G are polynomial functors.

Potynomtal functors will be useful for the construction of datatypes, as detailed in the next
section.

An example of a non-polynomial functor is P.

2.3.2 Initial Datatypes and Catamorphisms

The idea of using initiality to represent datatypes has been known for many decades, although
Hagino [35, 36] and Malcoim [65] brought the idea into more prominence, More details about
the ideas briefly mentioned here may be found in Fokkinga [32], for example.

If we have a functor F : C = C, then any arrow 3 in the category C which is of type
3 : B « FB (for some object B) is an F-algebra.

A category of F-algebras may now be constructed, with the F-algebras as the objects, and
(R, FR) pairs as the arrows, where R and FR are arrows in the original category that form a
commuting diagram like this:

Fe—Ei.Fc

B

C
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That is, tie equation that R - 8 = v . FR.

For some flunctors F, this category of F-algebras has an initial object. That is, there is exactly
one (&, F1) pair from this initial object to any other F-algebra. The initial object is unique
up to isonorphism. The injtial object will usually be denoted @ : 4 « FA, aiso called the
initial algebra, or initial F-algebra, and A will be called the carrier of the algebra. There is
an initial tbject in this category for many functors, in particular when we are dealing with
F : Rel +Rel, polynomial relators have this property.

Concerning the initiality of o, if 4 : B + FB is another F-algebra, then there is a unique

arrow frome to 3, and we will label it as follows:

Fa—t0 gy
B

B

o

A

)

The (3} is lled a catamorphism (proncunced “cata-beta”), and will be written {)f. The

subscript ofthe functor concerned will often be omitted if clear from context L.

The fact that the catamorphism is unique gives rise to a universal property:

Q=Wr = Q@-a=4-FQ

To explore tlis definition further, an example is given.

Erample; Nw-empty cons lists
Lists of nimbers are a common datatype that functional programmers use, and could
be definel as {ollows:

numlist ::= Nat num | Cons num numliat

Thus suct a list either contains just one number, or is a pair consisting of a number
and anotber such list. Mathematically, if the set of such lists is L, and the set of
numbers & ¥, we have just described that

L=N+ NxIL

’In this thesis, a catamorphism may well appear with no mention of a functar at all, and then a few lines
later an F will magically appear!
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and so the functor corresponding to this is F, where this functor defined on relation
arrows and set objects is respectively

FR = ddy Fidy x R

FX = N+ NxX.
Thus [NMat, Cons] is an F-algebra of type L «+ F [, and this is in fact the initial algebra
for this functor.

To investigate what a catamorphism (P) means with regards to these lists, we will
look at an exam ple F-algebra P, so we require that P be of some type B «— N+N x B,
for some set B. If we took B to be N, then an example for P could be

P = [id, plus).

So P returns the number itself if given a “left-labelled® number, and if given a
“right-labelled” pair of numbers, returns its sum.
What is (id, plus)®? From the above universal property for catamorphisms we have
that

(P) - [Nat, Cons] = [id, plus] - F{P),

and from the properties of join and coproducts abave, we get that this is equivalent
to the two equations
(P) - Nat = id
{P) - Cons = plus - (id x {P)).

These can be easily seen to be the exact pointfree translation of the familiarequation

sum (Nat n) n

sum {(Cons n x) = n + {sBum x)

which sums the numbers of a list. This can also be expressed using a fold operator

of functional programming. §

This is exactly what catamorphisms are -— folds downwards through the data structure.
This is also why catamorphisms are so named by Meertens in [68): from the greek, cata
means “downwards”, and morphe means “according to form™. So a catamorphism [P) goes
downwards through the structure of the datatype doing P as it goes.

?We write (R, SD instead of (R, 5]D
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From the fact that o is an isomorphism [58] and the universal property above, we get the

following useful properties:

(@ e = Q- FQ)
{@ = Q- -FQ) - e

and from the universal property for catamorphisms and the fact that functors preserve iden-

i

tities, we get that (a)) itself is the identity catamorphism:

ﬁa]] = id.

Another usfu] properties of catamorphisms are the so-called promotion rules:

R.($=(T) €« R-5=TFR
R-(HC(T) € R-5CT-FR
R-(D2(1) € R-52T-FR.

Bird first coined the term promotion as it applied to lists in [5].

From the above we see that catamorphisms are monotonic with respect to C:

RCS> (R)C(5)

2.3.3 Final Datatypes and Anamorphisms

The dual conept to catamorphisms is that of enemerphigmas. As there exist initial algebras,
similarly there exist terminal algebras, and the corresponding arrow from evety F-algebra
to the termiral algebra is labelled with an anamorphism. However, the category Rel is its
own dual, som this category, initial algebras are also terminal and vice versa, and every
anamorphismis also the converse of a catamorphism. In this thesis, we will often express a
relation as a atamorphism or an anamorphism, depending on which is more convenient to
define.



Chapter 3

The Graph Calculus

In the previous chapter, the particular relational calculus to be used in this thesis was in-
troduced, This chapter, which has already beer published in [23, 2d], introduces a new way
to represent formulae using graphs. This caiculus can greatly assist proofs in the relational

calculus and other calculi.

The calculus was originally invented by the author to apply to relations. Gavin Lowe noticed
that the work was also applicable to the sequential calculus [96], and the development of the
graph calculus was a joint collaboration.

3.1 Introduction to the Graph Calculus

Traditionally, mathematical formulae have always been written down on a single line. Given
four relations P, €, R and §, then

2P -UNAR Sy & JuvezPuruQuirzRervSy.

But snppose also that u and v are related by a relation T. Traditional mathematics has
no way of writing down such a relation in a point-free style using only the composition
and intersection operators. In other words, the language of intersection and composition is

expressively incomplete,

Instead, a calculus of graphs will be used for representing and reasoning about relations. For
example, the relation P- @ N -5 will be represented by the following graph:

e

19
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Each edge represents the relation with which it is labelled; two consecutive edges represent
the composition of the corresponding relations; two paths with the same start and end points

represent the intersection of the corresponding relations.

To add theabove condition that the intermediate points are related by T, a corresponding
edge labelled T is added:

PNG
A%

As well as describing how to represent relations as graphs, a number of graph transformetion
rules will bedeveloped. Transforming a graph according to these rules alters the correspond-
ing relation: for example, removing an edge from a graph makes the corresponding relation

larger.

The graph cilculus provides a useful tool for doing proofs about relations. The calculus gives
us a way of getting at the internal structure of a relation; and because the representation
is very visua, it is often easier to see what is the correct next step in a proof. Sometimes
the proof without graphs is complicated and difficult to find, and in some cases, results have
been proved using the graph calculus that were otherwise too difficult.

In fact, the graph calculus applies to more calculi than just the refational calculus. It provides
a general way of representing many mathematical formulae that cannot be writien down on

one line in the normal way. 1t then provides rules for transforming these representations.

In the next section the graph calculus is applied to the relational calenlus: it is formally
defined how a relation can be represented by a graph, then graph transformation rules are
presented, and the calculus is illustrated with examples. In section 3.3, the sequential calculus
of [96] is considered: the calculus is described, it is shown how elements of the calculus can
be represented by graphs, graph transformation rules are presented, and the graph calculus
is used to prove a result which has not otherwise been proved in the sequential calcujus. In

section 3.4 various other points of interest are discussed.

3.2 Representing Relations by Graphs

In this chapter, a set-theoretic approach to relations is necessary for the graph calculus,
as opposed to an axiomatic view. The main operators to be used are composition, union,

intersection, id and IT4, 5, which all take their usual set-theoretic definitions.
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As mentioned above, relations are represented by labelled edges in a graph. The composition
of relations is represented by edges in sequence, and intersection by edges in parallel, so for
example, the relation (P-Q°N (RU S)) - T can be represented by:

WDT

RuSsS

Arrows can be reversed to give the converse of a relation, and nnion can be represented by

splitting the graph, so the above relation may also be represented by:

Note that in the drawing of each graph, care is taken to make it obvions which are the left-
most and right-most vertices of the graph, so that is it easy to see precisely which relation is
being represented.

Composition, intersectiou, union and converse are the four main relational operators repre-
sented in the graph calculus, but as will be seen later, other operators are also representable,
for example the domain and range operators are simply represented by lone edges going from
ot to a vertex. For example, ran R - 5 may be represented by

and § - dom R by

3.2.1 Formal Definitions

Farmally, the type of graphs used are of the form {V, 5, t, E) where V is a finite set of vertices,
8 € V is the source, t € V is the target, and E € P(V x & x V) is a finite set of edges
labelled with elements of S representing relations: the edge (v, R, v} represents an edge to
v from v labelled A.
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When draving a graph, the source and target will not be explicitly labelled: they will be
the tight-most aad left-most vertices, respectively. As the relations used in this thesis are
thought of m the same setting as functions, they have the backwards composition “”, and
hence the meaning of the graph is from right-to-left. Users of a relational calculus with
forward conposition may just as easily decide to use left-to-right arrows instead, and the

source is then at the left hand side of the graph, and the target on the right.

Note that tlere are no conditions concerning the connectivity of graphs. Also, sefs of edges
are used, rather than bags; this means that a graph with two edges to v from v labelled R
is the same as the corresponding graph with only one such edge.

The formal definition of the graph in which a graph represents a relation is as follows:
Definition The graph G = ({v, ..., va}, vo, va, E) represents the relation {G] where
2{G)y iff Tm,.. 2z =E Ay =AY, S, ) EE 2 5.

The relation [G] is called the interpretation of G,

Thus a graph represents the relation that relates z and y iff there is some way of labelling
the vertices with values such that z labels the source, y labels the target, and if there is an

edge labelled § between twa vertices then the corresponding values are related by S.

For example, the graph

P‘}
B~ S

telates z and y iff
g, 2, m-t=mAy=nAnPurnuinRnrn Sy,

that is, the graph indeed represents the relation P-Q N R - S.

Note that thereis hidden type information in the above definition that is implicit. Just as the
composition oftwa relations R- 5 only has meaning if the source type of R is the same as the
target type of §, the labelling of the graph has similar restrictions. Thus there is an implicit
type T; associaled with each vertex v;, and wherever (v;, S, ;) € E, then 5 : T; + T;.
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On subsequent pages graphs will be drawn to represent the relations represented by those
graphs. So G7 C G'3 should be taken to mean that the [Gi] C [Ga]; 61 2 G denotes
[Gd = [Ga].

In order to effectively use these graphs to prove properties of relations, a number of graph
transformation laws are required. Some of these transformations leave the corresponding
relation urchanged; others produce a superset of the original relatjon. Each of the laws may
easily be proved sound with respect to the above definition.

The first four laws formally state how composition, intersection, converse and union are
represented in the graph calculus.

If an edge is labelled by a relational composition, then it may be split into two;

Composition Law If v’ is a vertex not in V, then

(V.s,, EU{(v,R-§,v)}) = (VU {t"}, 8,6, EU {{v,R,v"), (v, 5,07)}).

An edge labelled with an intersection may be replaced by two separate edges with the same
start and end points, and vice versa:

Intersection Law

(V,s,t, EU{(v,Rn 8, 0)}) = (V,s, L, BEU {{v, R, v"), (v, §,v)]).

If an edge of a graph is labelled with the union of two relations, K and 5, then the graph may
be replaced by the union of two graphe with corresponding edges labelled by R and by -

Union Law

(V,s,t,EU{{v,RUS,v}}) & (V,s,t, EU{(v,R,v)})
U(v,s t, Eu{{»,S,v}.

An edge may be reversed in direction and relabelled with its converse:

Converse Law

(V,s,t, EU{{s, R,v")}) = (V,s,t,EU {{v',R® v)}).
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The following laws concern two other operators of the relational calculus, the universal and

identity rdations.

Any two vertices are connected via the universal relation:

Universal Relation Law If v,0" € ¥, then

(V,s, 8, E) = (V,s,(,EU {(Uw I, v })-
If two vertices are related by the identity, then they may be joined together:

Identity Law
iV,s, L, EU {{v,id,v)}) =
({renujue V}lrens,rent, {(renu, R,renv’) | (v, R,u’) € E}),
v, fu=19v

where renu =
tt, otherwise.

The function ren renames the node v° to ».

For the nextlaw, the concept of a graph homomorphisme is required:

Definition Given graphs G = (V, 8, ¢, E)and &' = (V', 8", 1", E), 2 homomorphism from G
to G” is a function ¢ : ¥V — V° such that: ¢(s) = &, ¢(t) = ¢’, and for each edge
{1, P, v) € E, there is a corresponding edge {¢(u), P,¢(v)) € £.

For example, there is 2 homomorphism from the left hand graph to the right hand graph
below, mappiig ug to t, u and w to vy, and u3 to 1.

i

O
e w3

R
P " Q m./

Homomorphism Law If there exists a homomorphism from G to G° then G 2 G°.

Note that if there is a homomorphism ¢ from G to G’, and another komomorphism 4 from G~
to &, then G 2 G". This allows us to identify the following two graphs, for example:
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r 9
o< >- and o-.L.qi.
P g

The following law states that removing edges makes the corresponding relation larger. It can
be proved as a corollary of the previous law, but it is sufficiently useful 10 be worth stating
explicitly.

Remove Edges Law (V,s5,{, EU{(v,R,v)}) € (V.91 E).
Another useful corollary of the Homomorphism and Composition laws is the following:

Join Composition Law If (v, R, v),{v’,5,¢”) € E then

(V.s,4, E) 2 (V,5,t, EU{(v,R-5,v"}}).
An edge labelled with R may be replaced by a graph representing R:

Replacing Law
If the interpretation of (V°, 5", ¢, E’) is the relation B, and V11 V' = {#,t'}, thea

(V.s,t, EU{(s, R, )}) & (VU V', st EUE).
Enlarging the relation labelling any edge enlarges the relation represented by the whale graph:

Monotonicity Law If R C S then

(V,s,t, EU{(v,R,v")}) € (V,s,, EL{(v,5,v)]})

This is an extremely useful law as it allows techniques from the relational calculus to be
incorporated into the graph calculus. The relational calculus may be used to prove R C §,
and then the above law allows an edge labelled with R to be replaced by cne labelled §.
In particular, laws about the other operators of the relational calculus may be derived. For
example, using the property of quotients that

R/S5-8 C R
5-S\R C R

and using the Monotonicity, Homomorphism and Composition laws, we obtain
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Right Quotient Law If (v, R/S5,v), (v', 5. v") € E, then

(V,s,t, B} = (V,s,8,EU{v, R, v")).

Left Quotient Law If (v, 5, v'), (v, S\R,v”) € E, then

(V,s,t.B) = (V,3,¢, EU (v, R,v")).

The above laws allow a graph to be reduced to a normal form: the Composition, Converse,
Intersection and Union laws allow compound labels to be broken down into simple labels;
the Homomerphism law then allows redundant edges to be removed. Furthermore, the trans-
formation laws — along with the observation that a graph with a single edge labelled R
represents the relation R — justify our informal description of how to represent a relation by

a graph.

Having presented the transformation laws for the graph calculus, it is time to see some small

examples ofthe calculus in use.

Frample: The Modular Law

As mentioned before, a useful law of the relational calculus is the following:
AnNB-C C (A-C°nB): C.

(also known as Dedekind’s law). This law cannot be proved by calculation using
only the universal properties of intersection, converse and composition: this is one
of the allegory axioms, and it is easy to find frameworks which satisfy all the other
axioms but not the modular law. The proof may either be calculated in a pointwise
fashion, or by using tabulations. Both methods are less elegaat than the proof using
the graph calculus:

AnB-C

IR

{Graphical representation}

R
—_—
@]
=3
f=}
-
@
E;
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A

Il

{Composition}
’ %
' A

{Converse; remove edge}

In

c
A.C°

13

{Graphical representation}

(A4-C°n B)-C.

Ezample: An Arithmetical Lemma

Another small example roucerns a lemma pertaining to sets of natural numbers:
min < -3/3 - dom€ C < .min<

Translated into English, this lemma states that the minimum of any nonempty set
of natural numbers is at least as large as the minimum of any superset of the original.
This may be proved as follows:

min £ -3/3 - dome

112

{Well-foundedness of <}

min £ -3/3 - dom(min <)

H's

{Graphical representation}

min <

min < 3/3
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1%

{Definition of minimum; intersection}

</3
c €
</3 3/3

{Converse; quotient; converse}

3
e €
< /SR/‘/S

{Quatient}

|
%T
€

\\E

e

in

1A

/2

3/3

i

{Remove edges; definition of minimum}

{Graphical representation}

e

< -min <.

Both proofs sbove illustrate a common technique in the graph calculus, namely adding ail

the arrows needed, then removing superflucus ones at the end.

In the next section, it is seen how this way of representing relational formulae by graphs can
be extended to many other different calculi.
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3.3 Sequential Calculus

The sequential calculus [96] aims to provide a common framework of algebraic laws applicable
to many models of reactive systems. A preliminary exploration of the main ideas of the

sequential calculus is necessary before going on to model it using graphs.

Central to the sequential calculus is the notion of an observation. The relational calculus
is an example of a sequential calculus, where an observation is a pair (z,y) such that z is
related to y. In the calculus of intervals [16], an observation is a pair (s, t} of times—the
start and teruination times—with s < ¢ In regular expressions [52], an observation is a
finite sequence of letters drawn from some alphabet A. In the regularity calculus [26}, the
sequences are given the structure of a group. In interval temporal logic [101}, observations
are functions from time intervals to states. In the traces model of CSP [43], observations are

traces of visible actions.

In each of these calculi, two observations may be composed via an associative coﬁmposition

G

operator, “;". For regular expressions, the composition operater is simply concatenation of

strings. For the other calenli, composition is a partial operator; for example, in the relational
calculus two observations may be composed iff the second element of the first observation is
the same as the first element of the second observation; in this case the intermediate point is

omitted:

(ry8)i(s,2) = (r,1).

An observation z is a prefix of y, written 2 < y, if z can be extended to y:
rLy & Jz-rz=y.
In each calculns, a system may be represented by a set of observations, termed a sequential

relation. These form a Boolean algebra under the union and intersection operators, The

composition operator may be lifted point-wise to sets:

PQ = {pglpePrgeq)

The universal set of observations is denoted by €.

An important concept is that of units, Each observation £ has a left unit ¥ and a right
unit 2 such that
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— —
For example, in the relational and interval calculi, (z, y)= (z,z) and (z, y)= {y, ). The set

of all units is denoted by fd:

Id = {z |?: I =?]-

In {96], a number of algebraic laws are developed for reasoning about sequential relations,

rather than reasoning about individual observations; for example:
R:ild=R=Id;R. FP{QURY=P:QuUP;R, FAQNR)C P;@QnFP;k

The main difference between the relational and sequential calcuii is the lack of a converse

operator in the sequential calculus.

3.3.1 Representing sequential relations by graphs

The graph calcuius may be used to represent sequential retations in an obvious way. The only
slight difference is that as the operator %" in the sequential calculus is usnally a forwards
composition operator, graphs will be read from left-to-right. For example, the following graph

25

represents il sequential relation P;@ N R;S. Each edge represents the sequential relation
with which itis labelled; a path through the graph represents the composition of the corre-
sponding relations; two paths with common source and target represent the intersection of

the corresponding relations.
The represemation is formalized as follows:
Definition The graph & = {{m, ..., v.}, m, ta, ) represents the sequential relation
[¢] ={=z| 2, -.zn - o =% A In =2z
AVIED...n-z1, <
AV(e, S,)e E-Fyef - my=1r,}
The sequential relation [G] is called the interpretetion of G.

Thaus an obseration z isin the intetpretation of & if for each vertex ¢; there is a corresponding

observation z; such that:
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» the observation correspending to the source is the left unit of =
e the observation corresponding to the target is z
e each observation is a prefix of =

¢ for each edge (v,, 5, v;) there is an observation y of § which when composed with &,

gives T,.

An observation starts at the source with a unit cbservation, and then the graph is traversed.
Each edge extends the observation with an observation from the edge's label, until the target
is reached. Each intermediate observation is compatible with {i.e. is a prefix of} the final

observation.

The definition seemns biased towards cumnulative effects from left to right. On closer inspection
the definition is indeed symmetrical, because of the properties of the sequential calculus.

Unfortunately a more elegant definition has not been forthcoming,

It is easy to prove the following theorem from the above definition:

Theorem 3.3.1 {Laws of the sequential calculus} Each of the following graph transfor-
mation laws hold for the sequeniial caleulus: Composition, Intersection, Union, Iden-
tity, Homomorphism, Join Composition, Remove Edges, Replacing, Monotonic-
ity.

The relational ealculus is a particnlar example of a sequential calculus, so it would be hoped
that the two ways of interpreting a graph—as a relation or as a sequential relation—are

compatible; the following lemma shows that this is indeed the case.

Lemma 3.3.2 Given a graph G labelled with refations, let R be the corresponding relational
interpretation of the graph, and let S be the corresponding sequential relation interpretation;
then:

Ry & (z.y)€S.

See [23] for a proof.
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3.3.2 Local linearity

Many sequential calculi satisfy an additional axiom, that of {oce! linearity. This is expressed

at the level of abservations as [ollows:

l'or all observations z, 27, ¢, ¥,
sy=zy = dw-nyw=z A wy =y
Vdw-ziw=a A wy=y.
This may also be expressed as a pair of commuting diagrams:
.

L L
2t Y x,v\

w

i

Lifting the axiom of Jocal linearity to the level of sets of observations using staudard formulae

written on one line has proved difficult. Oue formulation is

P:@nis = (P a0y n B(QN5)
U (PN R1S N PQ NSy

However, this formulation does not seem to be strong enough for all onr requirements.

In the graphcaleulus, the axiom of local linearity can be expressed as follows: if a graph G

contains twoedges with start points u and v, aud commeon end point w,

to u:

(37} ol Q
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(Note that the above pictures may be subgraphs of the complete graph.) This is fermalized

as follows:

Local Linearity Law If (u, P, w). (v, Q. w)eE then

fie

(V,s.l. E) (Vs L, EU (.2 el UV, et A0 {{0. 2, 4)}).

The soundness of this law is confirmed in [23],

Erample: The 3-C Law
The diamond operalsr is defined to be
CY = Q.Y

The above is pronounced “somewhere X~ (and corresponds to interval lemporal
logic): it contains all observations that include an element of X as a subobservation.

Intuitively, this can be thought of as “at some stage, X occurs”.
The 3-C law states:

PiQRNOX C PUQRNOX) U (PiQ NOXKR U O(5noQ)

That is, if an observation of X occurs sometime during an observation of P:(;R, then
cither it occurs during @Q;R. or it occurs during P;@, or @ occurs during X. Much
eflort has gone inte proving this law using the standard axioms of the sequential
caleulus, but without snccess.

Lising the graph calculus versiou of the axiom of local linearity, the proof is extremely

straightforward:

P RNOY
=  {Graph represeutation}
.ﬁ/ ~
o
X

2

{Local finearity}

P P
Q U <Q
Q 1)
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~  {Local linearity applied to second graph}
P P £
U 0 Q U xn ]
Q 1 19 o
X X X
C  {Removing edges}
P P ¢
¥4 \K U Q\&‘ U Qo Q
. Q Q
X X X

112

{Relatious corresponding to graphs}

PAQRNOX) U (PQNOXKR U O(XNOQ).

3.4 Discussion

3.4.1 Other Representable Calculi

The operators most fundamental to the idea of the graph calculus are the intersection and
composition operators, Any calculus with two such operators that can be intuitively thought
of as parallel and sequential can be considered to see whether it is suitable for representation

by a graph calculus.

Thus given aspace & with operators N, ; and a preorder C, a graph calculus over § is a
valculus of ditected graphs labelled with members of &, such that there exists some way
of interpreting a praph as a member of &, and that the following transformation laws are

~atisfied:

Compesition, Intersection. Homomorphism, Monotonicity, Replacing,

This provides a framework for others to represent their own calculi by graphs. A formal
definition of the meaning of a graph is necessary, together with the proofs of soundness of
the above trapsformation laws. If required, laws for other operators such as converse and

union should also be preved sound; other laws for further operators may then be derived
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particuiar to that calculus. Auy law in the underiying calculus will have a counterpart in the
graph calculus {because of the monotouicity law), but in some cases the graphical law will

he stronger {for exarnple, the local linearity law of the sequential calculus).

3.4.2 Soundness and Completeness

The sounduess of the graph calculus is expressed as
G G = [G St

anel this is easily derivable from the individual soundness of all the transformation laws. As
for completeness, trivially [rom the Monotonicity Law the graph calculus is complete with

respect to the vuderlying calculus:

A C R > ({u« 9}1 4, v, {(U| Ry, U)}J o ({'-"v U}, . v, {(u1 Ry, "’)})

However. there arises a mare iuteresting question of completeness. Tarski’s axioms of the
pointfree relational calculus {95] are jucomplete with respect to the pointwise axioms of
the relational calculus. For example. Lyndon in [60] showed that the fallowing three valid

sentences of the poiutwise relational calculus are not provable from Tarski's axioms:

LAN{B-CND-(ENF-G)
C B-((B*ANC-E)-G°n C-Fn B°- (4 G°Nn D -F))-G

2.24BnC-DNnE-F
C A-(A°C N B-D°n (B-Fen A°-E)-(F-D°n E°-C))- D

3.3C B CND-E A B -DNC-E°C F-G
5  AC(B-FAD-G)-(F-CNG-E).

The graph calculns is more complete than Tarski’s axiomatization as the above three sentences
are easily proved usjug the graph calculus. The reader eager to attempt a proofin the graph

caleulus may like to do the third (or more!) of the above sentences,

It is not known whether the graph calculus is complete with respect to set-theoretic binary

relations.
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3.4.3 Usefulness of the graph calculus

Onher exanples of the nse of the graph calculus can be found elsewhere in this thesis. Note
however that graphical proofs are usually not the method of cheice. 1n a large majority of
cases, the sandard proof method is adequate, and even when the graph calculus is helpful in
linding a ptoof, such proofs can often be trausiated back into the standard method. Hence
the exampls elsewhere in this thesis are few. althongh many more were originally proved

using the graph calenlus as au aid.

The particdar advantages that prove to be most nseful are the “goiug around the corner”
property (eg. see the 3rd step in the Modyular Law exainple) and the increased expressive
power of the graph calculus. Tor example, Tarski [§5] gives an example of a predicate not

expressible 1s a seutence of the relational calculus:
dw.zy,crclyrzRzAacRuAyRzAgRuvAwiz:.

T'his predicate may be expressed in the graph calculus as follows:

The extra expressive power of the graph calculus makes some proofs possible that cannot
he done othewise, for example the proofs of the modular law and the 3-< law abave. Even
in short prods, the steps taken oftea result in intermediate graphs that are not directly
trauslatable back to the underlying calcnlus, Even when the extra expressive power of the
graph calculys is not used, graphical proofs can be easier because they give a very visual

representatior of formulae, and this can make the next step more obvious.

Another way «f describing the graph calenlus is that it has all the power of poiutwise reasoning
{indeed the psint are themselves visible as vertices), bnt also the pointfree advantage of not

having to labd them all!

Some formulae themselves may be simpler as graphs. For example. in the relational cal-
culus, formule involving dorn, rur, i or I are often greatly simplified in the graphicai

representatjon
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Products of relations are also easily represented, by graphically interpreting their definition

in terms of projections:

outl i outl
oulr
oulr 3

This vields the pictorially intuitive idea of products being represented as parallel arrows; the

graphical representation makes it easier to reason about each element of the pair separately.

3.4.4 Related work

Brown and Hutton [17] have developed a calculus of pictures, oriented towards circuit de-
sign. Their pictures are built up from basic cells and wires using sequential composition,
intersection and reciprocation. They give a semantics Lo pictures in terms of relations, in a
manuer very similar to our approach. In [17, 18] it is shown that their calculus is complete
in that two pictures are equivalent with respect to their transfermation rules if and only if
they represent the same relation for all interpretations of the basic cells; this proof proceeds

Ly viewing pictures as arrows in a unitary pretabular allegory [33].

Their approach is restricted to calculi with intersection, composttion and cenverse, whereas
the graph calculus also makes provision for the union operator, and does not necessarily
include the converse operator. Furthermore, their approach is more oriented towards treating
basic cells as simply symbols, and proving circuits equivalent in an automated manner [46];
whereas our calculi-—particularly the relational calculus—are more oriented towards using
the properties of the basic relations themselves in order to manually prove results concerning
those relations. The Brown-Hutton pictures seem to be the easier to use for circuit design,

whereas our graphs are suitable for more abstract calcult.

3.4.5 Generéiizing the graph calculus

So far only graphs with two special vertices, the source and target, have been considered.
This can easily be generalised to allow graphs with & special nodes, representing a k-ary
relation. Tarski [95] gave another example of a predicate not expressible in the relational

calculus;

Ve, g,z JuszRuAyRuAzRu
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This can be represented nsing a graph representing a ternary relation, with the three outer-

most nodes representing the three components of the relation:

I"
=

The graph calculns conld also be extended to use Ayperedges within graphs (i.e. edges with
more than two ends) to represent £-ary relations: then composition of relations wonld be
simply reptesented by hyperedges sharing nodes. A suitable use for these type of graphs has
not been fornd, but if one appears, it wonld be hoped that a suitable pictorial representation

could be also found that would make reasoning abont such relations easier.



Chapter 4

Greedy and Dynamic

Programming Strategies

Optimization problems expressed in their most general form can be specified relationally as

follows:
mm R - A Gen.

The relation Gen is called the generalor as it generates a single feasible solution from the
input. Thus A Gen generates the set of all possible feasible solntions, and min X then selects

a best one according to the relation f.

In this chapter, we take a look at the historical background behind greedy and dynamic
programming strategies. For each strategy, we also review some theorems of Bird and de
Moor that cousider prablems for which the generator can be expressed as either a catamor-
plisim or an anamorphism. Examples of problems are given to show the catamorphisms and

anamorphisms in use, and alse the ontlines of their solutions are given.

The last section demonstrates inadeqnacies of the theorems presented, by considering prob-
lems that do net fit into the format.

4.1 Greedy algorithms

‘fhe greedy strategy typically applies to optimization problems where there is a choice to be

made at each stage. A locally optimal (with respect to some ordering) choice is made at each

39
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stage, and this is the origin of the term “greedy™. If this greedy strategy works, then this
will produce a resultiug optimal solution fer the problem. Greedy algorithms usually result

in efficient solutions. so it is desirable to find greedy algorithms to solve problems.

4.1.1 History of Greedy Structures

The paradipm of greediness is very simpie, but not so simple are greedy structures {problem
structures for which the greedy algorithm produces an optimal solution}, and much attention

has been giveu in the literature to greedy structures.

One mathematical structnre which can model several greedy algorithms is that of a matreid.
A matroid s a hereditary set system with an exchauge property (the matroid property).
These were first thought of iu 1935 by Whituey [98). Edmouds in {29) first linked matroids

1o greedy slgorithms.

However matroids do naot include all greedy structures, and not every matroid is a greedy
structure, and for the specific purpose of getting closer to characterizing greedy strnctures,
greedoids were introduced by Korte and Lovisz [53, 57]. These are a gemneralizalion of ma-
troids. beiug hereditary sequence systems (rather than set systems), with an exchange prop-

erty.

Greedoids characterize some problem structures very well. In particular, they suit preblems
that it inte a hereditary sequence system and that have a linear objective fuuction to optimize
(56, 41].

liowever. greedoids are not adequate. They are bath too general (greedy algorithms do not
always retun optimal solutions) and toc constraining (there exist set systems which are
greedy structures but not greedoids). Helman iu [40] acknowledges this ame uses the concept

of dominance relations to cope with more general greedy algorithms.

Alore recently Bird and de Moor [3, 12] have modelied greedy algorithms using catamorphisms
and anamorphisms, so the problem structure is that of au initial datatype. It is these theorems

that are discussed in the next section.

4.1.2 Catamorphisms

Firstly, we coisider problems specified usiug a catamorphism as a generator:

min R - A(P).
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A greedy algorithm may be used to solve problems in this form, as Bird and de Moor [9]

showed with the following theorem:

Theorem 4.1.1

If the foliowing condition holds on P: 4 «— FA and R: A « A,
FR-P° C P° R,

then

{rmin B - AP) C min R - A(P).

Here the relation miin R - AP is the greedy step performed at each stage of the catamorphism.
Typically it is implemented by some function f € min R - AP. and from the menotonicity
of catamorphisms, the program is (f). The condition on P and R is a type of monotonicity

coudition, and can be Lhought of as follows:

If one partiel solution is better than another (with respect lo R), and P is applied to the
worse one, then there is a way of applying P to the better one to result in a still better partial

solution with respect to R.

We illustrate the above theorem with the following example:

Erample: Lexicographicelly Largest Subsequence

The lexicographic ordering is that used in dictionaries:

(1 <0 s
(z:zs) <p (y:ws), H{z<y) V (c=y A s <y ys).

As this ordering is defined primarily using the first element of a list, it seems reason-
able to use the datatype of cons lists. A catamorphism to construct a subsequence of
the original list is (ndl, cons U outr), and thus the problem of the lexicographically
largest subsequence can be specified as

win (<5)° - A(nil, cons U outr).

A simple check shows that if one sequence is lexicographically larger than another,
adding the same element onto the front does not change this relationship. Thus the
monotonicity condition is satisfied, and the problem is solved by the greedy algorithm
(min(<L)° - A(nil, cors U outr)). §
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The optimality condition above is one that relies on local properties of partial solutions, and
as such, ilis a strong condition. Many greedy algorithms do not satisfy this condition, as
taking a non-optimal step at one stage can result in a better partial =zolution at the next

stage.

4.1.3 Anamorphisms

For problens specified using the converses of catamorphisms
min k- A(P)°.

there is a verv different theorem for greedy algorithms in [12):

Theorem 4.1.2
If R is a preorder, @ -FR C R-o and for some §

S FP)-a” C F(P) a®-H
then the furigue) solution G of the equation
G =a-FG-minb - AP
satisfies

G CminR-A{P)°.

In the above, G is used to compute the solution to the problem. The function AP ° re
turns all possible partial solutions generated by taking one step P°. then min § returns the
Lest of these with respect to S. then the greedy algorithm is recursively performed on the
subproblem(s) by FG, and « combines the sub-sclution(s) together to solve the complete

problem.

The condition on o is a form of monotonicity condition, that expresses mathematically that
a respects the ordering 2. That is, if one sub-solution is better thau another with respect to

R. then recombining them in the same way preserves that relationship.

The other requirement is the greedy condition, and ensures that if one partial solution is
hetter than avother with respect to 5. and you complete the worse partial solutiou using
FPD - e, then there is a way of completing the other using F{P) - o to result in a solution
which is better with respect to A. This means that each stage, we only need to retain a

partial solution that is optimal with respect to $.
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In coutrast to the greedy condition for the previous theorem which only considered local
optimality of partial solutions, this is a global greedy condition that takes completed solutions

into account. This is a weaker coudition, and many more algorithms match this paradigm.

Eremple: The Shopping Beg Problem

This was suggested by Gavin Lowe, after visitiug a Gateway supermarket, and this

is a special case of the Mivimum Tardiness problem from Operations Research.

After visiting the supermarket, there are a number of items which need packing into
a shopping bag, and for siinplicity, we will pack the iterns in a vertical stack. Each
item has a particular weight and a certain strength, and it is desired to pack the
itenis in order tv minimize the risk that the items get squashed. The 1isk of an
individual itemn getting squashed is its strength minus the weight of the items packed
on top of it, and it is desired to minimize the maximum risk of the whole shopping

bag.

The catamorphism (nilbay, consbag) over lists converts a list into a bag, and so the
set returued by A(nilbag, consbag])® gives all possible arrangements of shopping bags.
We take the comparison relation R to be the preorder that prefers shopping bags
with lower maximun risks (over all the items), and thus min R - A{nilbay, consbug]) °

specifies the problem above.

The tronotonicity condition ou o is satisfied as adding an item to the bottom of the

shopping bag does not affect the maximum risk of the items above it.

A simple calculation starting from the greedy condition (similar to that in [12])
shows that the comparison relation 5 to decide which item to put at the bottom of

the shopping bag prefers the item with the greatest sum of weight and strength. §

‘The Minimum Tardiness problem itself is addressed in [12], and other examples of partition
probleius that fit inte the format of this theorem can be found in [22], inclnding the Motorway
Driving problem frowm [21].

4.2 Dynamic Programming

Divuamic programming is a general technique for solving many different types of optimization
problem and can be characterized in several different ways. The common theme is that

in sorne wmanner, unuecessary computation is aveided, either by not cemputing the same
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thing, twice, or by eliminating computational steps which cannot possibly contribute to an
optimal sclution. In this thesis, we will only be considering discrete (rather than continuousj
optimization problems. Typically, dynamic pregramming applies to problems where there is
a seqnence of decisions to be made, and solutions to problems are combinations of solutions

{0 sub-problems.

4.2.1 History of Dynamic Programming

The term dynamic programming was introdnced in the 1950s by Richard Bellman [3]. The
icleas he presented in his book had been in existence for some time, but he was the first te
gather them together and present a mathematical basis for thein. He was also the first to

introduce the idea of the Principle of Optimality:

“An optimal policy has the property that whatever the initial state and ini-
tial decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision.”

This idea he presented as the crucial condition necessary for dynamic programming to work,

Bellinan and his colieagues [3, 4] applied dynamic programming to many different types
of problems. including Markov decision problems, stochastic processes, even the theory of

nuclear reactors!.

Since then, the main groups of people to work on the theory of dynamic programming have
been computer scientists and operations researchers. Computer scientists have tended to
think of dynamic programming as a “bottom-up™ tabulation scheme, where a table is used
to store partial results (to avoid needing to compute the same result twice). In contrast,
operations researchers (for example, see Ecker and Knpferschmid {28] ) incline to the view
that dynamic programming is a “top-down™ recnrsicn scheme, and avoid calculating the

solution to the same sub-problem twice.

The following researchers are a representative sample of those wha have investigated the

theory of dynamic programming:

® Shreider [92] in 1§61 thought of dynamic programming problems as discrete decision
processes, and modelled these using finite-state aulomata. Discrete decision processes
consist of a set of decisions, and set of strings of decisions, called policies. and some

cost function on policies.

'BOOM!
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Held and Karp [37] in 1962 demonstrated how dynamic programming can be used
to solve sequence problems {for example scheduling and assembiy-line problems) and
permutation problems (for example the traveling salesman and knight’s tour preb-
lems). Later in [51], they considered the theory of dynamic programming, modelling
the problem strncture as a sequential decision process. Sequential decision processes
are a generalization of discrete decision processes in that they also lake into account the
construction of the policies. Karp and Held used the idea of a finite-state automaton

together with a cost structnre to model sequential decision processes.

Bonzon [15] in 1970 developed a mathematical formulation of the tabulation involved

in dynamic programming for discrete decision processes.

Elmaghraby [31] iu 1970 presented a different view of the theory of dynamic program-
ming. disliking some aspects of decisions and discrete decision processes, and instead
preferring to emphasize the concepts of state and state transformation within the con-

text of discrete decision processes.

Ibaraki [47] in 1973 considered more specialized models of dynamic programming, con-

centrating on particular varieties of decision processes.

In 1982, Denardo published a book [25] which covers a wide range of dynamic program-

ming models and applications.

Morin [78] in 1982 considered the relationship of the Principle of Qptimality to the
related Monotonicity Assumption, which asserts that if a partial solution is better than
ancther at one stage of the computation, then doing the next step resultsin the same

relationship at the next stage.

Sniedovich [94] in 1986 discussed the principle of optimality showing that it was not
correct (it is not necessary for optimal solutions to consist of optimal solutions to sub-
problems. only sufficient}. He also presented an improved version that is weaker than

the original.

Helman has done much work on dynamic programming. In [38], Helman discusses the
Principle of Optimality and demonstrates its use by sample case studies. In further
work, he generalized decision processes, The policies of such processes are always
strings, which is restrictive, and so Helman and Rosenthal in [42] took policies to be
binary trees, which geueralize lists. He also separated the problem structure {rom the

actual com putation performed,

[n [39], Helman proposed a new model for dynamic programming and branch-and-

bound algorithms. His new model involved dominance relations, which are comparison
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relations on partial solutions.

s Oege de Moor [74] in 1992 generalized further from nsing binary trees to using any
initidd datatype. This work was in the setting of the category of relations, and as such,

incomporated non-determinism.

[tesearch has often concentrated on the structure of the problemn, and more specifically. on
the datatype being used. Ln particnlar, the work of de Moar puts more emphasis on this,
using catamorphisms on initial datatypes to express the structure of dynamic programming

problems. ft is his work together with that of Bird that we now lock at.

4.2.2 Catamorphisms

We first consider problems specified using a catamorphism
min 8 - A(P).

The dynamic programining theorem for these problems is the following:

Theorem 4.2.1 If R and § «re preorders such that § € R and
FS.p° C P° -5,
then

min R (thinS - A(P-Fe)) € min i - A[F)

Here 5 is a relation similar to Helman’s concept of a dominance relation, and the menotonicity
rondition on 5 expresses that: if one partial solntion is better than another with respect to 5.
then there isalways a way of applying P to the better one that is better chan any application

of P to the worse one. This is Morin's Monotonicity Assumption from [78].

Thus solutiors that are worse with respect to § can be removed, and the resulting algorithm
is man - (thn S - A(P-Fg)]). The A(P-Fg) takes a set of partial solutions and applies Lhe
next step P o them in all possible ways. The relation thin § then removes some solutions
that are worse with respect 1o 5. Finally, when the catamorphism is finished, the best partial

solution withrespect to R is taken.

Thinning with respect to a relation is defined to be

thin§ = €\e N (3-5)/3.
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‘That is, thin § takes a set aud returns a subset of the original, while making sure that every

member of the original is represented by something at least as good with respect to 5.

If § were conuected, then we conld implement thin § by taking the singleton set containing
« minimum under S. thus obtaining a greedy algorithm. 5o for dynamic programming, 5 is

a non-conuected preorder, not always able to compare any two partial solutions.

An example of this style of dynamic program:ming is the following:

Erample: 0-1 Knapsack Probiem

A thief contemplates an opeu safe to be ransacked, and sadly notes that the knapsack
carried can only carry ' in weight. Each item in the safe has a weight and value.

Whicl items should the burglar take in order to niaximise the total value of the haul?

For this probleimn, if the input is a list of items, a packing of the knapsack can be
represented as a subseqneuce of that list, or if are we just interested in the weight
and value of the packing, as a weight/value pair. Thus required is a catamerphism
{¥) that produces a packing. P is the relation [nil, ndd - notheavy? U oulr] that can
either add the next item if the packing so far is not too heavy, or it can not add the
itetr. The preorder R simply prefers packings of greater total value,

In deciding which packings can be safely thrown away, 5 prefers packings that are
lighter and more valnable. It is easily shown that the monotonicity condition is
satisfied, because if one packing is lighter and more valuable than another i the set,
then doing # to the heavier cheaper packing is still heavier and cheaper than the
partial solution obtained by doing F in the same way to the better packiug.

The algorithm can be implemented efficient]y by keeping the set of partial packings
as an ordered list. and a simple inerge operation can include new possible packings

and remove ones worse according to § at the same time. §

Other examples of prablems solvable in this way are the Bitonic Tour aud Company Party

problems from [21], the Paths in a Layered Network problem from [82], and many others,

4.2.3 Anamorphisms

The corresponding theorem for problems specified as follows
min B - A{P)"

is phrased in the traditional style of the recursion equation. This is a refined version of the

main theorem in [74, 12].
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Theorem 4.2.2 If R is transitive, & monotonic wtth respect to R, and fer some preorder S
5 -KP) -a® C F(F) - a° -R.

then the least salution D of the equution
D = minB - Pl -FD) - thin§ - AP®

sutisfies

D

"M

min B - A(P)° .

P is the recursive algorithm to solve the problem. The set of all possible initial steps is
produced by AP, then some choices are removed with thin 5. then D is applied recursively
to all the renaining choices, and then the sub-solutions are recombined using a into solntions

for the whole problem, and then min R takes the best with respect to K.

The inequation o - FR € 1 - o states that if a sub-solution is better than another with
respect to f, it will still be better when you recomnbine it in the same way. This means
that optimal solutions can be composed from optimal solutions to snb-problems, which is

Smedovich’s weaker phrasing of the Principle of Optimality in [94].

The condition involving S is the greedy condition of the previons section, and says that if a
solution is better now with respect to 5, then it can be better eveutually, and thus thinning
does nat discard the wrong =olutions. The difference here s that 5 does not have to be
connected, whereas it did for the greedy algorithmu. In fact § could be just id, and then

thin 5 would remove no partial solutions at all.

[n practice. this algorithm follows the dynamic programming paradigm in two ways, The
thinning possibly reinoves partial solutions that will not lead to an optimal solution, and also
if the computer program to implement it is carefully written. duplicate recursive calls to the

same sub-solition can be avoided (either by the use of tabulation or memoization).

We now consder an example to illustrate this theorem:

Erample: The Paregraph Formalting Problem

Every word processor has an algorithm to format paragraphs neatly. The question of
what makes a paragraph neat is a complex one, for example see Knuth and Plass [54].
We will cousider a simple version of this problem, Given a list of words, a patagraph

will be alist of lines, where each line is a list of words., Paragraphs need to fit into
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the page width, and thus chere is a condition that line lengths are no more thansome
fixed width W. The white spuce on each line ! is defined to be W — linelength!. The
untidivess of a paragraph is defined to be the sum of the squares of the white space

of each line except the last.

To put this problem in the format min R - A{P) °, note that the catamorphism
{emptylist,+# - ([~toowide)? x [d)]) over conslists produces a list of words from a

paragraph which fits into The given width, so we can specify the problem as

mim (untichness® - < -antidiness) - A (emptylist. + - ({~foowide)? > id])° .
In using the theorem above, we take S to be id, and then trivially the conditions on
5 are true, so we need to check that the monotonicity condition o a holds. This
Tollows from the fact that if one paragraph is more untidy than another, then adding

the same first line to both paragraphs does not change this relationship.

The theorein ahbove as applied to this problem then works by choosing the first line of
the paragraph in all possible ways (AP *®), then recursively applies the algorithm to
the remainder of the list of words for each first line, then having found a best para-
graph for each. adds the first line back on again, and then takes the best paragraph.
The avoidance of computation in this algorithm relies on the aveidance of calculat-
ing the solution to the same sub-problem twice. For example, il the paragraph to bhe
formatted is “Memcry, all alone in the moonlight, 1 can smile at the old

»

days; I was beautiful then.” then choosing the first line

Memory, all alone in the moonlight,

requires the same computation of the subproblem “I can smile at the old days;

]

1 was beautiful then.” as does the following choice of first and second lines

Memory,

all alone in the moonlight,

Avoiding calculation of the solution to the same sub-problem twice cen be done by

either tabuiation or memoization. §

An example for data-compression using a non-trivial 5 can be found in [11). Other examples

of the theorem in use can be found in [10] and [22].
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4.3 Inadequacies

The theorems presented in the previous two sections are suitable for solving a wide range of
problems concerning initial datatypes. The examples given have shown their use on problems

cohcetning a variety of datatypes. including partitions. subsequences, permutations,

However, not all optimization probleins can be easily expressed using a generator that is either
a catamorphism or an anamorphism. Some problems require somne artificial manipulation to
transform tle generator into the right format. For example, generating partitions with exactly
n componens needs the addition of an extra parameter to the catamorphisin (for details see
[22]). Thisin itself is not a great problewm, although it does reduce the elegance and simplicity

of using the theorems, and adds an air of artificiality.

More imponantly, there are some algorithms that cannot be expressed using the above theo-
rems at all. Some algorithms cannot be expressed in this way because they are not concerned
with initial datatypes, but there are also algorithms that do concern initial datatypes and

vet cannot he expressed using the above theorems.

Erample: Huffman Coding (44, 83].
The Huffman coding of a bag of numbers requires a binary tree labelled with the tips
of these rumbers in such a way as to minimize the weighted path length of the tree.
This hasapplications lor merging sorted files using as few operations as possible.
For example, the weighted path length of the following tree is 2 x 6 +3x 1 +3 x 2+
3x2+4+3%x34+2x5 = 46, and this is one of the trees that produces an ¢ptimal
tree for the bag of numbers [1,2,2,34,5,65.

As Huffman showed, an optimal tree may be found using a greedy solution. In

brief, the greedy solution involves converting the bag into a bag of binary trees, each
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number 1 being converted into Tipn. and then at each step the wwo trees ¢, t with
the least total weights are joined together to form a new tree Node ! t; this step is

repeated nntil a single tree remains. §

lu attemipting o fit thic greedy algorithm into the format from one of the previous greedy
theorems, the generator relation producing a tree from a bag must be expressed either as a

catamorphisin or an anamorphism.

To express 1 as a catamorphism {P] requires delinjng P to be a relation that takes the next
item from the bag and inserts it somehow into the tree formed so [ar. Not only wonld that
be awkward to define but it does not fit the execution of Hnffman's algorithm, which builds

np a tree from disjoint pieces rather than tip by tip.

[t is easier to express the generator as an anamorphisin (#)°: 7 is the relation that takes two
bags of numbers, one from each half of the tree. and nnites then to form the bag of numbers
for the whole 1ree. However, when the greedy theorein for anamorphisms is considered, it
soon becomes apparent that this is not what is desired. Applying the AP® at the beginning
of the greedy step gives us the choice of all possible initial splittings of the bag of numbers for
the left and right subtrees. Even if there was a feasible greedy way of splitting up the initial

bag of numbers {and none is known), this is still not Hnffman’s algorithm for this problem.

Replrasing this another way. the catamorphism and anamorphism methods are “top-down™

wmethods, whereas Hnffman's algorithm is a “bottom-up™ method.

Otler greedy algorithms that are similarly inexpressible are other battom-up algorithms. For
example, the algorithm by Prim and Jarnik [48, 81]. which finds a rainimum cost spanning
tree of a graph. does not fit into either style of greedy algorithm given in this chapter.



Chapter 5
Introducing the Limit Operator

‘The previouss chapter looked at optitnization problems and their solutions using greedy and
dynamic programming strategies. In all the theorems, the generator of feasible sclutions was
oxpressed usng an anamorphism or catamorphism. Indeed it was also observed that a great

variety of feusible solutions conld be generated in this way.

However, not all generators can be expressed in this way, and even some of those that can re-
cuire a significant amcunt of effort to do so. For example. circular lists are not definable using
initial datatypes; neither are sets, and certainly a generator which has non-initial datatypes

for its domamn and range will not be representable 23 a catamorphism or anamorphism.

[t is sugzested in this thesis that the use of a simple loop is an easier way to generate feasible
solulions than catamorphisms or anamaorphisms. This has the advantage that loops are a
generalization of catamorphisms and anamorphisms {as is proved in this chapter), and it is

alten the case that a loop is a more natural or inteitive way to express the generator.

The relational model of a loop that we are going to use is called the {imit operator, and is

defined as follows:
fm T = notdom T . T",

‘The relation T can be thought of as a relation that comsiructs. At each stage, a T is
performed. constructing one mare piece of the partial solution, until we can perform 7 no

more, and we have finished the construction, to reach a camplete feasible solution.
The relation im T is the least solution of the recursion equation
X = wotdomT U X T,

52
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and thus the Knaster-Tarski fixpoint theorem gives us that

notdom P U Q@ -P C Q = HmP C Q.

‘The following properties of {im which we shall find useful in proofs follow from the above:

lim T - noidorn T = notdom T
imT -domT = limT - T.

Thus the more general expression of optimization problems that we will conader is the

specification

minR - Alim T.

The following section justifies the above claim that limits are a generalization of catamar-

phisms and anamorphisms.

5.1 Catamorphisms

Firstly, we look at how to express catamorphisms as limits. Let {P)f : B + A where 4 is

the carrier set of the initial F-algebra o, and the problem under consideration is
min B - A(P).

An immediate problem that presents jtsell when trying to express () as fim T is that B is
not necessarily the same set as A whereas for limits, T" must necessarily be a relation of type
C + C for some type C. Thus a little type manipulation will be needed, and we will aim to
find relations T. starf and finish such that

{P) = finish - lim T - start,
where fintsh: B «— C, T: C + C and siart : € — 4,

For these relations to be uselul in the context of optimization problems. we #ill need some

conditions on themn so that the following applies:

Theorem 5.1.1 If start ts a function, finish is simple and alse the converse of a function,
and
dom finish = notdom T

Q
7

finish - im T - start
finish® - R - finish,

I

il
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then

minR - AQ = finish - mun 8 Alim T - start.

Proof

min R - AQ
{assumption}
min f - A(finish - im T - start)
{assumptiou, distribution of A over fuuctions}
win B - A(finish - IIm T) - start
{distribution of A}
min R - Efinish « Alim T - slart
{claim}
min - Efintsh « P(dom finish) - Alim T - start
{claim}
finish - min B - P(dom finish) - Alim T - start
{first claim}

finish - min A" - Alim T - start.

The two claims are that

Alim T = P{dom finish) - Alim T (1)

min R - Efinish - P(dom finish) = finish - min R* . P(dom finish) (2)

The first claim is proved as follows:

Il

Ahm T

{property of fimits, distributian of A}
E(notdom T) - Alim T

{property of coreflexives}

Pinatdom T) - E(notdom T) - Alim T
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= {property ol limits; distribution of A}
P(notdom T) - Alim T

{assumnption}

P({dom finiskh) - Alim T,

The second equality follows from two inelusions, which we prove thus:
finish -« min B - P(dom finish) C min R - Efinish - P{dom finish)
& {monotonicity}
finish - min B C min R - Efinish
=  {universal property for minimum}

finisk - min R C finish - €
A finish -min R - > - finish® C R

U]

{definition of minimum}

finish - € C finish . €
A finish - R'f3 -2 . finish® C R

& {quotient cancellation}

finish - RB" - finich® C R

Ll

{assumption}
finigh - finish® - R - finish - finish® C R
&  {assumption; simplicity}

true,

aud the reverse ioclusion:
min B - Efinish - P(dom finish) C finish - min B - P{dom finish)
<  {property of coreflexives, monotonicity}
min B . Efinish - P(dom finish) C finish - min K

&  {totality of finish®}
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finish® - min R - Efinish - P(dom finish) C min R
< {claim}
finish® -min R - Pfinish C min R

{definition of minimum. universal property for intersection}

finish® - min R - Pfinish C €
A finish® -min R - Pfinish C R /3

& {definition of minimum, quotient}

fnish® - € - Pfinish C €
A finish® - R/3 - Pfinish -2 C R

& {property of membership}
finisk® - finish - € C €
A finish® -R/> -3  finish © R
< {assumption, simplicity}
finish® - R/3 - 3 - finish C R’
&  {assumption}
finish® - R/3 - 3 - finish C finish® - R - finish
< {quotient cancellation}

true,

The claim made was that Efinish - P(dom finish) C Pfinish:

Efinish - P(dom finish) C Pfinish

{definition of powerset functor}
Efriish « Pldom finish) C €\(finish-€) N (3 finish)/>
< {universal property far intersection, quotient}

€ - Efinish - P(dom finish) C finish - €
A Efinish - P{dom finish}) - 3 C 3 . finish

& [properties of membership}
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finish - € - P(dom finish) C finish . €
A Efinish -3 - dom finish C 3 - finish

<=  {property of coreflexives}
Efinish -+ 3 . dom finish € > . finish

{property of functions, property of membership}

Ul

3 . dom finish € 3 - finish® - finish
<  {definition of domain. monotonicity}

Irue.

Having now proved what properties on start, finish and T will be useful, the next question
is to ask what is the type C? Consider the state in the middle of the computation of (P}E.
Some elements of type B will represent parts of the computation already completed, and there
will be some of the ariginal structure of type A left. Therelore we require an F-structure that
also incorporates elements of type B. The easiest way to add in B is to do literally just that.
Define

F X
Fh

FX + B
Fh -+ idB,

and let C be the carrier set of the initial F'-algebra o”. The initial algebra of this type will
be of the form of a join, so let o = [Pen, Fin], where the constructor labelling is meant to

suggest Fin for a finished portion of the computation, and Pen for a pending portion.

Erample: Consider the type defined by
numiree = Tipnum | Node numtree numiree
which has the functor

FX = N+ {X x X)
Fh = id+ (h x k).

The carrier set numiree is the set of finite binary trees with natural numbers at the

tips, and the initial algebra is @ = [Tip, Node]. Let (F) : B + numtree be the



58 CHAPTER 5. INTRODUCING THE LIMIT OPERATOR

catamerphism that returns the frontier of a tree, with £ the sef of all finite lists of
natura numbers, and P = [wrap, #].
We then extend the type numiree to include B as detailed above, and an example of

a tree of this datatype is

Having extended the datatype, starf is the embedding function that turns an F-strncture into
an F'-structire, finish is the function that removes the Fin label front a finished computation.
We thus define

start = {Pen]E
finish = Fin®,

50 that start exccutes a catamorphism over the structure attaching “Pending” labels every-
where, and finish merely remaves the “Finished” label from a finished computation. Note

that start is:ndeed a function, and finish is both simple and the converse of a function.

Having defined stert and finish, now all we need is a relation T to do a step of the computa-
tion. Imaginng informally what might happen in the computation {im T with the datatype
and catamorphism (wrap, ] abave, such a computation might go as follows:

/\ . /\ . A
1 />\ ] )\ ;
2 3 [2] 3 2] \3
T T T n.2,3)
(1]
1 [2,3]



5.1. CATAMORPHISMS 59

Taking inspiration from this example, the informal expression of T in English might go
something like "do @ P-step somewhere down the tree”. This is the motivation for the following

definition for the relation P’ that executes a P-step:
P = [Fin.- P -FFin® Q).

The @ represents that vou cannot do a P-step on a finished portion of the computation, the
FFin? checks that all the needed results so far have been finished. and removes the Fin labels

ou them, then P is applied, and £in labels the result linished.

Y

Having defined P° ta do a P-step, we need a relation to do P’ “somewhere down the tree”.

We consider the relation (P° U a’Dp-. At each step either P° may be done (if possible},
or nothing is done (a’). Note that id = (a’Jg- € (P U a’)f, so no P-steps uced be
done at all. Conversely, P could be applied at every stage in the structure, to do the whole

computation in one attempt!

This is a very general relation, and our preferred relation for T might be vne allowing precisely
ane P-step to occur. However, this is awkward to define, and we are not atiempting to find

the most aesthetic limit relation possible, but trying to prove that one exists.

Oue last concern is that as noted earlier, id € (P’ U a’})p, so this is a total relation. But
for a limit, we require the loop to terminate when the computation has finished, so we define
T = (P Va’)p - notdom Fin®. Note that as {P" U &g is total, dom T = notdom Fin®

= netdom finish. as required. We are now ready to prove the following theorem:

Theorem 5.1.2 Given the definitions used above,

(P = fintsh . lim T - start,

Proof
(PDe
{claim}
(P, id)g - (Pen)p

{claim}

I

Fin® - (P Ua')g - (Pen)p
= {claim}

Fin® - (P UaDp-* - (Pen]g
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= {property of domains: note above}

Fin® -notdom I' - (P" U a'Jp-™ + (Pen]p

{claim}
Fin® - notdom T - T™ - (Pen]f

{definitions}

frvish - lim T - slart.

The claims used above are

(Phr = (P.iddp- - (Pendp (1}

(P id)e: = Fin® (P Uade  (2)
(P uadp = (P Ua)e" 3
T = (Puode (4)

Usiug the promation rule, the proof of the first claim reduces to the following inequation
(P.idJpr - Pen = P - F(P,id)p-.

This followsdirectly from the definition of catamorphisms. Promotion is also used to prove

the second caim, and so we need to show that Fin® - (P Un") = [P, id] - F'Fin®:
Fin® (P U )

{dtefinitions. coproducts}

Fu® -[Fin. P-FFin® U Pen, Fin]

{coproducts}

il

[Fir® .Fin- P -FFin® U Fin® -Pen, Fin® - Fin]
=  {ronstructors}

(P -FFin®, id]

{coproducts, definition of F'}

[P.id] - F’ Fin®.

Showing thai (P U a'Jg- is a preorder proves the third claim. Reflexivity has aiready

been observed. and transitivity is proved using the promaotion rule, so we need to show that
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{Pue)pg - (PUa’) C{(Pua) F{PFuUa)p:
{(Pualde -(FuUe)
= {union}
(Puade P U [Puale -o
=  {property of catamorphisms}
(Puale - P u (Pue)- -FlPuale.
It remains to show that (P"Una]g - P € (PPua’) - FIP Ua'Dg-:
(P uede - P
= {definition of P"; coproducts)

[(P Ua)g - Fin:.P-FFin® 9]

{ definitions of P’ and a’; property of catamorphisms}

{Fin-id - P-FFin° 0

N

{definition of P’; union }

P ua

{functors preserve identity; identity catamorphism}

(P U o) Fla)p

N

{monotonicity of catamorphisms and relators}
{(PPua’) -F (P ualp.
For the final claim, the C inclusion follows immediately from the definition of T and the

menotonicity of closure. The 2 inclusion follows from the fact that T is a preorder, and
that (P Uad- C T

(P uale
= {property of coreflexives)

(P Ua’Dp - dom Fin® U (P Ua')p - notdom Fin®
€ {definition of T; property of closure}

(Fuadg -dom Fin®uU T*
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C  {claim}
dom Fin® U T
C  {property of careflexives and closure}

r=.
For the claim above:
(P U &) - dom Fin®
= {coreflexives; definition of domain}
(P uadp - (Fin- Fin® N id) - dom Fin®
C  {monotosicity of intersection}

({F"Ua’ g - Fin- Fin®n (P"Ua'Dg-) - dom Fin®

s

{definitions, property of catamorphism}
{Fr-id- Fin°n (P"U«a g} - dom Fin®
F
= {constructors}

(s N (P U} - dom Fin®

N

{monotoricity of intersection}

dom Fin® .

This completes the proof.

=]

5.2 Anamorphisms

We have yet to show how anamorphisms can be converted into limits. Similar to the previous
section. we consider the anamorphism {PJr°: A + B and again aim to find relations siert,
Jinish and T such that

(FDE° = finishk - Lim T - start.
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The reasoniug is exactly the same as before, except with the direction of computation re-

versed. Keeping the same extension of the datatype and P as before, we now define
starl = Fin
finisk = (Pen)p®
T = (P U] ®  notdom (([Pen]g®)
Clearly, start and finish © are both functions, and dorm T = notdom finish. To apply

Theorem 5.1.1, we just need to check that {Pen]p® (which removes all the Perlabels from

the tree) is as simple as our intuition teils us:

{Pen)p® -{Pen)g C id

1]

{identity catamorphism}
{Pen)p® -(Pende C {a)f
&  {promotion}

{Pen)r® - Pen C a - F(Pen]p®

{property of isomorphisms}
a® - {Pen)p® - Pen C F(Pen)fg®
= {converse, property of catamorphisms}
F(Pendg® - Pen® - Pen C F(Pen)g®
&  {monotonicity, constructors}

true.

Now we can prove a similar theotem for anamorphisms:

Theorem 5.2.1 Given the definitions used immedialely above,

{P)g° = finish - im T . stari.

Proof
(PDr®
= {claim}

firush - (P, idDg- °
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= {claim}
finish - (P Ua'Dg-® - start
= {claim}
finish » (P U a}p-° " - start
= {property of domains; note above}

fnish - notdom T - (P"Ua’]g- ™ - start

Il

{claim}

finish « notdom T - T* - stari

Il

{definitions}
finish - lim T - start

The first thiee claims fallow [rom using converse and the claims (1)-(3) of Theorem 5.1.2.

The fourth daim is proved in the same way as claim (4) of that theorew, using instead the
sub-claim that (P U a'Dp- ° - dom (Pen)g® = dom {Pen)g®. The inclusion 2 follows from

reflexivity. and the C inclusion is proved as follows:
(P uea’de® - dom (Pen)p® € dom {Pen]g®

{converse, property of domains}

run (Pen)g - (P’ U@’y € ron (Pen)g
< {property of coreflexives, monotonicity}
ron (Pendp - (PPuede C id
= definition of range, identity catamorphism}
(1 (Pendg - (Perde®) - (P Uadp € (oD
<  |monotonicity of intersection}
(Pends - (Perde® (P Uadpr € (o
<  {promotion}

(Perdp - (Pendg® - (P Ua’) C o - F{{Penlg - (Pen)g®)

{definiticns, coproducts}
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=

=

The claim

{Pendf - {Pen)p® -[Fin- P-FEin®U Pen, Fin]
C  [Pen, Fin] - F{(Pen)g - (Pen)g®} + 5d
{coprodocts, union}
(Pendg - [(Pendg® -Fin- P -FFin® U (Pen)p® -Fen, (Pen)g® - Fin)
¢ [Pen-F((Pendp - (Peng ). Fin]
{claim}

[([Pen])F - L[PGHDF" -Fen, 9]
C  [Pen F({Pen}g: {Pendg®), Fin]

{coproducts}

(Penlp - [Pen)g® -Pen C  Pen-F{(Pen)g - (Pen)g°)
{functors, praperty of catamorphisms}

(Pen)p - (Pen)p® -Pen C (Pen)p - a - F(Pen)g®
{monotoenicity, union}

(Penlp® -Pen € o - F{Pen]p®
{property of isomorphisins}

a° - (Pen)g® -Pen C F(Pen)g®
{property of catamorphisms}

F(Pen)g® - Pen® -Pen C F{Pen)g®
{monotonicity}

Pen® -Pen C id
{constructors})

true.

above was that {Pen)p® - Fin C &
(Pendg® -Fin C @
{converse. monoctonicity of catamorphisms}

Fine (Perp C (9)F
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& (promotion}
fin® - Pen C @ - FFin®

{empty relation}

I

Fin® - Pen C @
& {constructors}

frue.

5.3 Practicalities

In the previous two sections, we showed that catamorphisms and anamorphisms can be ex-
pressed as linils, and these expressions are nseful within the context of aptimization problems.

In 1his seclion, we discuss the practical aspects of that conversion.

In each casothe limit relation 7 was expressed using a catamorphism. As mentioned before,
the catamorphism {P° U o')p- is a very general one. One application may result in nothing
being accomplished, or one or more P’ steps being done, or P* may be applied through the
whole structure to de the computation in one step. Clearly, completing the computation
in one stepis not desirable, as this does not allow any improvements in efficiency to be
made at intermediate stages. Better would be an an execution { or implementation) of the

computation (" U @D  that makes a small amount of progress at each stage.

Fortunately in practice it is very easy to find such implementations. Expressing the genera-
tion of partizl solutions using a limit is often simpler than using a catamorphism (if indeed
it can be expressed using a catamorphism), and often has a closer correspondence with intu-
ition. The previous two sections provide reassurance that such a limit relation does indeed

exist for every catamorphism and anamorphism. We now consider an example.

Erample: Generating a Knapsack Packing
We consider the 0-1 Knapsack Problem from the previons chapter. The input is a
list of items, and we assume we are given the capacity C of the knapsack, some type
of items I, and fnnctions wgt and val on the items that return their weights and

values respectively.
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If we ate just interested in the weight and value of the packings, and thus a packing

is a weight/value pair, then the functor
F=K +Krxl}
and the catamorphism {emptysack, add - 0k? U leave]} generates a packing, where
emptysack {0.0)
ok (i, (0,0)) = (wgti + w) < C
add (i, (w,t))

leave (i, (w,v)) = (v, v).

{(w+ wgt i, v + val {)

Now it would be possible to convert the above catamorphism into a limit wsing the
definitions from the ahove theorems, and use {P" U o'}g- - notdom Fin® for the
limit relation 7. From this definitiou, each application of T would take a prefix of
the list and decide which of those items to add to the packing. While this step is a
valid one to construct the next stage of a packing, it is obvious that a more simple

limit celation may be defined as follows:

(w,o,is) T (w,v,f:1s)

(w+ wgt i,0 + vali,is) T (w.o,i:1s), if ok (i, (w, v)).

The input to the program is then (0,0, é3), where is is the bag of items in the safe.

§

As cau be seen in the above example, with limits there is not necessarily any fixed structure
to the input. and so the remainder of the input yet to be processed needs to be mentianed

explicitly in the partial solution.

The above example was easily expressed using limits, and a great number of other examples
are also very easily expressed using limits. In practice, all the examples I looked at I found
very easy to express using limits, whereas | have often struggled to express more unusual

examples using catamorphisms and anamorphisms. See later in this thesis for more examples.



Chapter 6
Limits and Algorithms

Havirg established that a limit operator is an effective way to generate feasible solutions
10 optimizalion problemns {and is also more general), in this chapter we will solve problems

specified in the following format
min . Ablim T,

We will corsider using greedy and dynamic programming strategies, in particular in relation
to previous work of Bird and de Moor. Their {onr theorems presented in a earlier chapter

were these:

® Theotem 4.1.1 for greedy algorithms using ratamorphisms to generate feasible solutions,

and requiring a condition for lecal optimality

o Thegren 4.1.2 for greedy algorithms using anamorphisms to generate feasible solutions,

requiring the principle of optimality and requiriug a condition for final optimality

o Theorem 1.2.1 for dynemic progremming algorithms using celarnorphisms to generate

feasible solutions, and requiring 2 loce! monotoenicity condition

e Theorem 4.2.2 for dynamic programming algorithms using enamorphisms to generate
feasible solutions, Tequiring the principle of optimality and a condition for final opti-

mality

In this list there are two theorems for each programming strategy. In this chapter are pre-
sented two theorems, one for each programming strategy, where the catamorphic and anamor-

phic approaches are captured under the umbrella of one thesrem. The similarity between the

68
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greedy and dynamic programming approaches is also emphasized with the similarity of the

theorems.

Optimality conditions required for the theorems and how they relate to each other are also

considered.

6.1 Greedy Algorithms

First we will consider finding greedy solutions to optimization problems, The essence of
greedy algorithms is that at each step, the best (with respect to some ordering) of the choices
available is selected. A [eithful way of representing this paradigm using relations is:

G = min§ - AT.

The relation T represents a possible choice available, and so the function AT takes a partial
solution, aud returns the set of all possible choices; then min S selects the best with respect to
some relation §. Note that although 5 should respect R in some way, it. need not necessarily
be the same relation as & (although it often is): R is part of the specification, and as such,
is only necessariiy defined on finished solntions, those in the set returued by AlimT. The

preorder S. however, mnst be able to compare partial solutions.

Having defined & to be a greedy step, the complete greedy algorithm is merely the repetition
of G until we have finished, and thus our algorithm will be {irn G. Thus we come to the

following theorem:

Theorem 6.1.1
Let

M
G

mmB - AlimT
minS - AT,

i

where H 1s a preorder on the set of completed solutions represented by notdom T, If the

Sollowing conditions are satisfied:

dom G = dom T
G- (imT)® C (imT)° - R,

then

fimG C M.
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Proof

This theorem is a corollary of Theorem 7.1.1. O

The first condition above ensures that whenever we have an unfinished partial solution {that
is. one in the domain of T'). we may perform ( 1o it, and thus it is in the domain of . This
ensures thealgorithm does not halt preatnrely. The satisfaction of this condition implicitly

requires a condition on S that a minimum can always be taken on a set resulting from AT.

The second condition is the one that ensures that & selects the correct choice at each stage.
[t requires that if a greedy step is perfornied on a partial solntion. then for any completion of
thal pariial sclution. there is a contiunation from the greedy step that results in a completion

at least as good with respect to A.

The result of the algorithm gives us that any output from fim & is an ontpuat from M, and as
limits are total relations, this means that km ¢ always gives an output, and thns implements
M. If (¢ is then implemented by a partial function f such that f € & and dom f 2 dom T,
then [ chooses which mininum with respect to S to select, and lim [ € #m G. Thus the
algorithmn may be implemented as a simple loop with body [ and guard dom T.

Termination of the loop may be easily checked by using the method of variants, for example.

Lrample: The Marbles Problem

The marble collector has several marbles of different colours. The object of the
marbles game is to pair the marbles np in differently-colonred pairs. There are two
main objectives to the marbles problem, the first being more important than the

second:

« We must manage to choose as many pairs as possible

o We prefer using up the marbles of the rarest colour first

This is actually a problem from the real world, posed by a local programmer at
the University of Oxford who was organising drugs for a donble-blind clinical trial.
The marbles are the boxes of drugs, and the different colours of the marbies are the
different code numbers on the boxes of drugs. The doctors who have to administer
the drugs should not know which drugs are which, to make it double-blind, hence the
idea of using two differently coded balches for each treatment gronp. The pairs of
marbles thus correspond to the two codes for the treatment group. Using the rarest



6.1. (REEDY ALGORITHMS 71

marbles first makes sure the smaller supplies of drugs do not get too small a trial,

and choosing as many pairs as possible means as little drug wastage as possible.

To transiate the above into the problem format
min R - AlimT.

recall that the reiation im T should produce a feasible solutien to the problem, by
doing T steps until no more can be done. So the natural action for T to perform is
tle step of selecting [rom the remaining marbles a pair of distinctly coloured marbles,
Representing the current situatiou by a pair (ps, ms). where ps is a bag of pairs of
marbles chosen so far, aud ms is the bag of the remaining marbles {we will represent

a marble bv its colour), T cau be defined
{ps+ 1(ny.mg)f,ms = fmy,mpf) T (ps,ms), if my#Fmy A my,ma€ ms,

and the input will be {] §, M), where M is the original bag of marbles.

The comparison relation R is defined as
(pss, ms;) Ripsz, sy} & {pa| 2| ps2,

which only takes account of the first objective. We will aim for an optimal solution
for the first objective. and if we can manage to choose a greedy step that helps with

the second objective, so much the better.

We have to decide which relation to choose for §. Using up the rarest and second-
rarest marbles first might result in a glut of common marbles unpaired, as would
happen with the bag of marbles { Red, Russet, Cyan, Cyanf, so as a compromise, we
choose to use the most commou marbles up first as well as the most rare oues. Hence

we define
(ps+ U{rmma)§, s = lmy, mef§) S (ps + Umz, maj§, ms — Lma, myf)
= | ms#Emy — ms#Emy | > | ms#ny — meFmy |,
where ms#m is the multiplicity of m in the bag ms. Thus the greedy step G will
choose one of the rarest marbles together with one of the commonest marbles.

It is clear that dom (¢ = dom T as if there is more than oue colour of marble
remaining to choose from, we can always pick the rarest and most common marbles

from the remainder. Thus we just need to verify the greedy condition:
G-(lmT)” C (timT)° -R.
To prove this, let

G im T
(ps’, ms") é————— (ps, ms) [——) {PS, M5).
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We have to show there exists {PS", M5”) snch that
R fhim T Y . R )

(ps’,ms) ————— (PS', M5') ——— (P5, M5).
The way we approach this is to consider the completion (PS5, MS) and obtain
(PS5, M5 from it. Consider which marbles were chosen at the greedy step. Suppose
that the rarest marble chosen was a red marble, and the commonest marble chosen
was a cyan marble,
If PS - ps already contains a red-cyan pair then we can take (PSS, MS") to be
(PS5, M5).
If PS -ps contains no pairs with red inarbles in (they are all unpaired in AMS), then
we may form (P5°, MY”) by taking a inarble paired with a cyan marble and pairing

up thered and cyan marbles,

® OO ——®0 O

and then possibly pairing the spare marble with any other spare red marble in MS,
thus making { PS", MS’) a possible improvement on {P§, M5), although no worse.

Otherwie, there is a pair in PS— ps with a red marble, say a red-black pair. Consider
which marbles (if any) the cyan marbles are paired to in £S — ps. Usless there are
unpaired cyan marbles, they cannot all be paired to black marbles for then there
would be more black marbles than ¢yan ones, contradicting that the cyan ones are

at least as common as black marbles in ms.

So eithet there is a cyan marble paired with a non-black marble (sayv a jade marble},

in which case swapping the red-black and cyan-jade pairs

®® OO — ®O L

leads to a solution {(PS’, MS") with the same number of marble pairs.

Alternatively there is an unpaired cyan marble, in which case the black marble may

be swapped with the cyan one,

© ®® — OW

{and theblack marble may be swapped with any spare unpaired cyan marbles in
MS"), togive a solution (PS’, M5’ no worse than (PS5, MS).

We have verified the greedy condition, and thus the greedy algorithm lim G works.



The local programmer who posed this problem came up with the same solution
independentiy, but was unable to prove that it worked. | was happy to reassure him
that it did. §

Note in the above example that it is not easy to see how the generator could have been
expressed natvrally using a catamorphism or anamorphism. A catamorphism would operate
over the original bag of marbles, and it is not clear that you can decide as you go what
to do with each marble, whether it is to complete a pair, or start a new pair. or to be an
unpaired marble. An anamorphism would require a catamorphism operator over the pairs
of marbles and the leftover marbles to vield the original bag, and although it is reasonably
easy to imagine a catamorphism over a bag of pairs of marbles, it is less easy to imagine a
ratamorphism over a bag of paizs together with some leftover marbles. Limits ate the natnral

wayv to speciflv this problem.

6.1.1 Optimality Conditions

The greedy condition that was referred to in the main theorem was
G (kmTY C (limT) - R.

Rephrasing this condition in English, this says that if the best choice {with respect to 5) is
chosen, then this can result in a better (with respect to R) final completed solution than
anv of the other choices. 1 will label this the Best-Final condition. In fact saying that this

condition is satisfied is really tantamount to saying that the greedy algorithm works,

Now recall the greedy theorem for problems generated by anamorphisms. It had a greedy
condition that looked like

S F(P)-a° C F(P) - a° -R.

Translated into English, this is a different condition saying that if one choice is detter (with
respect to §) than another. then for any completion of the worse choice, the better choice can
result in an overall better (with respect to R) final solution. This is significantly different to
the previous condition, deaiing with “better” rather than “best”. This paradigm I will call
the Better- Final condition.

The other greedy theorem that dealt with problems generated by catamorphisms had a
different greedy condition still, a monotonieity condition:

FR-P° C P°-R.
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The transiation of this condition is that if one choice is better than another at one stage,
there is a continuation that is better than the other ar the next stage. This is a stronger

condition than the others, and we call it the Betier- Local condition.

There is also a fourth greedy condition, the Best-Local condition, called the minotonicity
condition m [9]. Translated into English, this condition says that if at one stage the best
chioice is chosen, then this can result in a better solution at the next stage than any other
choice. However we will not go into further detail, as not many problems satisfy this condition
but not the Better-Local condition, and for those that have been found to do so, it is much

vasier to prove the Best-Final condition for them instead.

The four conditions relate to each other in the following manner (the arrows represent impli-

cations):

Best-Final

Lemma 6.1.2

Best- Local Better- Final

Lemma 6.1.3

Better-Local

{The two implications on the left will be not proved as we do not go into detail regarding the
Best-Local cordition.)

Note that for Bird and de Moor's theorems, the local conditions apply to problems ex-
pressed using catamorphisms, and the final conditions apply to problems expressed using
anamotphisms. Some problems that are only expressible using a catamorphism require a
linal condition to prove that the greedy algotithm works for them. Similarly, some problems
that are only expressible using anamorphisms require a local condition to more easily prove
that the greedy algorithm works. Also, some problems are not naturaily expressible using
cither catamorphisms or anamorphisms. Translating the above greedy conditions into Lim

Theory will enable such problems to be solved too,
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The Better-Final Condition

The Liin Theoty version of the Betler- Final condition is
(SnT-T% - (limTY* C (limT)° R,

and the foliowing lernma shows that this is sufficient for the greedy algorithm to work:

Lemma 6.1.2
{f the ubove condition holds, then

G- (imT)® C (imT)° - R.

Proof

The proof follows from Lemma 7.1.2. Q

The condition of this lemma is clearly analogous to the greedy condition of Theorem 4.1.2,
where the F[P)-a ® correspends with a (fira T)° here. The T T° relationship in intersection
with 5 is merely context, as we will be comparing two partial solutions that were just derived

from the saine previous partial solution.

As you might expect, the Shopping Bag problem giveu in the earlier section as an example
for Theotem 4.1.2 is also an example that works for this theorem.

Here is another example of a problem for which this condition is satisfied:

Ezample: Rally Driving
This problem arose from a programmiug exercise in [27].

A rally driver drives thraugh the desert, following a set route, and there arestopping
poiuts where a can of petrol may be picked up (cans vary in size). The driver wishes
to pick up enough cans to reach the end of the journey, but wishes to stop as few

times as possible.

Let the potential stopping points of the car be 0., .n, where 0 is the start,and n the
finish. The distauce iu kilometres of point i from the start along the route is given
by dist i, and there is a can containing engugh petrol for (petrnl 1) kilometres at that
point. We will assume [or practical purposes the tank of the car is infinitely large,

and that the car starts off with no petrol.
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We will also assume that the problem values are reasonable, that is, there is enough

petrol lo do the whole journey and that distances increase along the route:

dist() = 0
Yi.je i< j = disti < disty

1-1

Vi e (3 petrolj) > disti.

;=0
[f we represent solutions by sets of stops and define
torelpetrol S = Zpetrols,
=)

theu wecan specify the problem as

min {(#° - < -#) - Astops.

where stops returns some set of stops S where totalpetrol & > dist n. The relation
stops can be implemented in a variety of ways. One way to do it is to choose addi-
tional reachable stopping points one by one until there is enough petrol to complete

the route, so we let stops = fm T, where
(su{i}} Ts, if disti < totalpetrols < distn A i¢s,

where the input is { }. So T chooses a stopping point reachable using the petrol
cans plarned so far, and adds it to the set. Note that the stopping points are not

necessarily chosen in increasing order of distance from the start.
Now we require a relation 5, to dictate which choice of stopping point is better than

another. An obvions preference is a stopping point which has more petrol, and so

we define
(stim}) S {su{pm}). if petrolp, > petrol py.
The greedy condition i5 easily proved for this relation. Suppose that
(U {m}) e (U {p2}) ——T s (s U {pa} U w).
Then if p; € w then certainly
(su{mh) — =" (s U{p} Uw) ¢ (sU {pz} U ).

Otherwise if p;1¢w then as stop p; provides more petrol, the same stops in w added
o (s U {p}) can also be added to (s U {p;}), possibly needing fewer stops to reach
the end of the route, and thns completing (s U {p1}) in this way will result in no

more stop: than in (s U {p2} U w).



Thus the greedy algorithm solves this problem. Keeping the unchosen reachable
stops in order of petrol available leads to an O{r log n) algorithm.

§

The above programming problem has been known to my colleagues at Oxford for several
vears, but yet the greedy algorithm was not found until the use of iimits was considered.
Previous attempts to solve the problem had automatically started with the expressing of the

problem using either a catamorphism or the converse of a catamorphism.

if the input data is represented as a list of (distance, petrol) pairs then a partition is a natural
way to represent the different sections of the ronte. Generating a partition by a calamorphism
or anamorphism on cons or snoc lists naturally requires deciding sequentiafly which stops
should e ysed, either from start to finish, or finish to start. The algorithm above may
choose which stops to use in a non-sequential order. There is a way of generating partitions
in a non-sequential way. by using an anamorphism on the type of join lists. However this is
more coniplicated, and it is not clear that this would be useful, as nsing Theorem 4.1.2 requires
the problem be split up into distinct subproblems, not obvionsly possibie with this problem
as the surplus petrol from one section catries over into the next, and so the sub-problems

interact.

For this problen:. it can be truly be said that over-fixation on catamorphisms did lead to a

very simple and obvions greedy algorithm bheing overlooked.

Other examples of problems which natnrally use the Betler- Final condition include the Min-

imum Tardiness problem, and the Ski Matching problem from [75].

The Best-Final Condition

There are problems which do not satisfy either of the Best-Local or Better- Final conditions
naturally (that is to say. maybe some obscure or complicated 5 would ensnre that they do,
but we are trving to think of simple easilv-computable comparison relations to sdlve problems,

not contrived ones). The following is such a problem:

Ezample: Prim and Jarnik’s algorithm

This is one of the algorithms for finding a minimum cost spanning tree of a connected
graph. usually attributed to Prim [81] althongh already previously discovered by
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Jarnik [48]. In this algorithm, the edges selected so far form a tree, and at each
stage, the edge selected is the lowest-cost edge adjacent to the tree that does not

form acycle.
We can specify the problem of finding a minimum cost spanning tree in the lim style
by choosing

(tu{e},es) T (t,es), if tree(tU{e}) A c€es A egt

with ({}, E') as the input, where E is the set of edges in the graph. The relation for

comparng trees is
{1, es1) R (tz, e82) = eost t; < cost by,

Thus we have specified the problem in the form min R - A(lim T). To solve the
problem using the algorithm above, we define the the local comparison relation § to
be R.

Neither the Petter-Final nor the Best-Local condition works for this .S, as shown by
the following counterexamples. For the Betler- Final condition, consider the following

graph:

If the tree after the first step is {(rz,1m)}, then at the second step, the tree
{(v2, 13), (v, 13)} is better than the tree {(vz, m), (3, vg)}, yet the latter can be

completed to the minimum cost spanning tree of cost 13, whereas the former cannot.

For the Best-Local condition, consider this graph:

If the treeafter the first step is {(vs, v4)}, then at the second step, the best possibility
is the tree {{1vy, 13), (¥, vg)} with cost 7, and this leads to a tree with either cost 12 or



13 at the next step. However choosing the (g, v5) edge instead leads to the possibility
of the tree {(#a, v}, (v4, v5), (5, 1)} with cost 11,

The Best-Final coudition does work, however. Suppose that

(¢u{e}, es) s (1, es) —)HMT (tU s, es).
We require a completion of (¢ U {e}, es) that has no greater cost than (t Us, es). If
e € s, then

(tu{e},es) ——)»M‘T (tUs,es) 4———R {tU s, es).
Otherwise, let the edge e be (u, v), where u is a vertex in the tree ¢, and vis not in
the tree. As £ U s spans the entire graph, there must be a path from ¥ to v in the
tree, and as u is in the tree ¢, and v is in the set of vertices uot in the tree 2, this
path must at some stage include an edge ¢ = {uv", v’} € s such that u" is in the
tree t, and v is not. The edge e’ has cost no less than e, becanse ¢ was the greedy
choice from (t, es}, and thus ¢ U {€} U s — {&'} is a spanning tree of no greater cost
than ¢t U s, and thus

(LU (e}, es) — T 4 (tU{e}Us—{e'},e8) — (tUs, es).

Another example of a problem that naturally only satisfies the Best- Final condition is Huff-

man’s algorithm, and the condition is easily proved using a standard exchange argument.

One problem that satisfies the Best-Local condition is the Change-Making problem (see
[20, 160, 19]). However it is much easier to show that the Best- Final condition holds for this
problem.

The Better-Local Condition

Finally we come to the Befter-Locel condition. In its simple form, it looks like a simple
monotonicity condition

§-T° C T°.5,

which says that if a partial solution is better at one stage, theu it can be better at the next
stage. However in Lim Theory this is not quite the condition we need. Partial solutions may

be completed at different stages, unlike the peneration of solutions using catamorphisms. One
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partial sclition may be completed before another one, and we need to take account of this,
The conditions we need are the following:

dmT - -S-T° T° .8
noldomT - S -T° C §
S-notdomT C (KmT)° -R.

N

The first is the Better- Locel condition, which applies if neither partial solution is completed
yet., The second condition deals with the case where the better solution is already finished,
and requires that the better solution stay better whilst the worse one is completed. The
third condition above says that if the worse solution with respect to 5 has been completed,
completing the better solution results in an overall better final result. And thus we come to

the following lemma:

Lemma 6.1.3
If the above three conditions are sotisfied, then

(SAT-T% - (im T)® C (mT)° -R.

Proof
(SAT-T° - (timT)° C (imT)° -R
& {monotonicity of intersection}

S (im TY* C (imT)° - R

fli

{converse; guotient}
imT C (R°-fim T)/S®
& [recursion equation for limits}

notdom T U (R°-limT)/§°-T C (R° -lim T)/§°

1]

{universal property of union}
noidom T C (R°-kmT)/S°
A (R®-limT)/8°-T C (R®-lmT)/5"

{quotient; converse}

S notdomT C (limT)° - R
A(R°-limT)/S°-T.-5°C R*-imT
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=  {assumption}
(R®-tim T)/5°-T-8°C R*-limT
=  {property of domains; union}
(R®-tim T)/§° . T - §° -domT C R® -limT
A(R®-limT)/§°-T-8° -notdomT C R°-timT
& {assumptions; converse}
(R°-tim T)/S§° -8° T C R° -kimT
A (R -UmT)/§°-5°C R°-limT
<  {quotient cancellation}
R® timT C R°-limT
AR -limT.-T C R° . limT
< {monotonicity; recursion equation for fimits}
true.
a

Here is an example of a problem solved using the Belter-Local condition:

Ezample; Dictionary Coding

This technique is used for file compression, for example Wagner in [97] used this
method for optimizing the space used by error messages within a compiler.

The text is split up into substrings, each of which is a prefix of some word in a
dictionary provided. The text is then compressed by replacing each substring by
a pointer to the dictionary together with the length of the substring. Maximum
compression is obtained by splitting up the text mto as few substrings as possible,

and thus this is our optimization problem.

Let the dictionary be a set of words D, and for feasibility assume all singleton strings
over the alphabet used belong to D. Partitions may be generated in nany ways,
either scanning the input list from left to right, or right to left, or pariitioning ir
more random places, as in the Rally Driver’s problem. Consideration of scanning
from right to left soon reveals a greedy solution. We generate the partitions by tim T,
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where
(tzt, [ws] H ps) T (izt H# ws, ps), if ws#[] A ws(Prefiz - €)D,

and thus the input will be (Tezt,[]}, where Text is the complete text to be com-
pressed, and the comparison relation H is outr® -#° - < -# - outr, and thus our
specification is min R - Alim T,

Having specified the problem, we need to choose a greedy ordering §. An obvious

choice is to try and use up as many characters as possible, and so we define
{21, psy) S (iztz, ps;) = tzb H concat psy = tzty A concat py;
A #ps < #ps
A Ftl < #ir
(the first two conditions are just context information).

To prove this greedy choice works, we prove that the three conditions hold. For
S notdomT T (mT)° R,

let (2zt,psy) S([], psz). We can deduce that tzt; = [] aud #ps; < #ps; from the
definition of 5, and thus

(11, por) — s ({1, p31) ————— (], P3a)-

For the next condition
nodom T -8 - T° C 8§,
we let
(1 51} ———— (g2t 4 ws, pss) ——— (1283, [ws) + psa).
Then clearly from the definition of &,

(1], p1) ————— (tzty, [ws] 4 pz).

For the main condition
domT-§-T° C T°.§,
suppose that
(izty, ps1) — (tzt2 - ws, pa;) — {tzty, [ws] + ps2),

where tzt,£[]. If it is the case that for some non-empty w, tzf 4 w = tzt;, then w
is a prefix of ws, which is a prefix of some word in the dictionary, and sa

(tsts, p3r) ———» (taty, [w] 4+ poy) ——— (tzty, [ws] 4+ psy)-



Otherwise, trtz has at least as much text remaining as tzt), and if (zt, = taty H [4],
then

{tzt1, ps1) — T 5 (tzto, [[1]] # pa&r) — (tzty, [ws)H pay).

Thus the choice of taking the longest possible prefix of a dictionary word at the end
of the sequence is a greedy algorithm that works for this problem. §

Other examples that satisfy this condition are the Motorway Driving problem from [21] and
the Shortest Ascending Partitions problem from [14].
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6.2 Dynamic Programming

Not all optimization problems are easily solved by a greedy strategy. At any stage, it may
not be simple to determine which partial solution will lead to an optimal completed solution.
In that case, several partial solutions will have to be retained at each stage to cover all
eventualities, and efficiency will depend on retaining as few partial solutions as possible.

Before discussing the discarding of unnecessary partial solutions, we first consider how the
possible feasible solutions to the problem are generated.

The following diagram represents how partial solutions are built up from the input:

The node at the top represents the input, and for each node, the set of its children is the set
given by AT applied to each node. Thus each arrow represents a possible application of T.
The diagram is tree-like, but technically not a tree, as some of the nodes may coincide. The
finished solutions are the leaves (that is, nodes with no children), corresponding to partial
solutions that are not in the domain of T,

The above tre of partial solutions may also be likened to a sequential decision process without
the cost function. The possible decisions at each state (partial solution) are represented by
the children of the node representing the partial sclution, and are given by AT. The feasible

policies of the decision process are the leaves of the tree, the completed partial solutions.
When considering the problem as a sequential decision process represented by an automaton,

the relation Tis the transition {unction on the states of the automaton.

The specification we are using ia

min B - AMim T,



and thus a general scheme for executing this would be to build up all the feasible solutions
using lim T applied to the irput, and then taking the minimum with respect to H. We
wish to make this more efficient, and the main strategy of dynamic programming is that it
removes unnecessary computations. Thus rather than simiply generating the enlire set given
by Alim T, that is, the leaves of the above tree, we wish to be able to decide toremove from

consideration some branches of the tree.

To further this objective, we now consider how the set of completed feasible solutions might

be generated from the input.

6.2.1 Sprouting

For the process of taking a set of partial solutions and moving one step closer to the set of

finished solutions, we will use the concept of sprouting.

The definition is
sprouts T = cup - (ET-Pdom T x id) - luni®
where

uni(z,y) = xUy, if 2#{}
ecup(z,y} = 2 U y

Translating the above inte English, sprouts T takes the input set, takes some uncompleted
partial solutions cut of the set, applies T in all possible ways to them, then adds these
new partial solutions back into the set, doing nothing to the unchosen solutions apart from
retaining them.

Consider an example. Suppose the partial solutions we have are those ringed in this diagram:
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then sprouting just the left-most node would result in the set of partial solntions represented

by the ringed set here:

Properties of the relations mentioned above that will be used in equational reasoning are the

following:

€-spoutsT C T € U €

€-luni = €-oull U €- outr
eup- outl® C 3/3
cup- outr® C 3/3

We will also use more particular styles of sprouting. The relation allsprouts sprouts every
possible partial uncompleted soiution, and leaves completed solutions alone:
allsprouts T = E(T U notdom T} - dom (T - €).
The relation sprout T sprouts a single uncompleted solution:
sprouiT = cup - (AT - dom T x id) - leons®,
where
leons(r,y) = {z} Uy, if z£{)}.
Straightforward calculation can be used to show that

allsprouts T C sprouts T
sprout T C sprouts T,
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6.2.2 Thinning

To continue the gardening theme, after sprouting some fresh partial solutions, we want to
retain the ores that might lead to a best solution, and remove ones that we know are worthless.
The gardening terminology for removing unwanted plants that have sprouted is thinning, and
that is exactly what we shall be doing.

Recall that the following relation thins a set with respect to a preorder 5:
thin§ = e\e n (3-5)/3.

That is, a subset of the original is returned, so that every member of the original set has
something S-ier than it in the subset.

Se we will use a relation § to compare partial solutions to decide which are definitely going
to result in a better final solution. Often two partial solntions will be incomparable, which
is why we do a thinniug rather than taking 2 minimum.

8.2.3 Dynamic Gardening

We will use the above concepts to generate partial solutions and thin oul unnecessary ones,
and this is the basis of the following Dynamic Programming theorem:

Theorem 6.2.1
Let

M minf - AlimT
D C e\€ sprouls T,

where R is a preorder on the set of completed solutions represented by notdom T, and the
following conditions are satisfied:
dom (T -€) C dom D
D.-3.(imTy C 3-(imT)® -R.

Then

minft -imD .71 C M.
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Proof

This theorem is a corollary of Theorem 7.1.3. O

Thus the algorithm that we are given is the relation min £ - im O - +, which takes the input,
makes it into a singleton set, does D repeatedly until it can do so no more, and then takes
the best with respect to 8.

D is the dynamic programming step that does some sprouting and throws (maybe) some
partial solutions away. The inclusion of 2 in €\€ - sprouts T still leaves plenty of leeway for

the implementation of D.

The condition on the domain of D says that when we still have uncompleted partial solutions
in our set, D will work. The second condition says that we do not throw away anything
useful from the set of partial solutions kept. That is, any completion of a partial solutien
that was in the set before doing I} has a counterpart in the set after doing [ that can result

in a completion at least as good.

The dynamic programming condition on [ as stated above is not an easy one to use. Before

studying some examples, we present three lemmas to make its calculation easier:

Lemmn 8.2.2
If D C thinS -sproutsT and S5 - (imT)° C (imT)° - R, then

D .3 (imT)° C 3- (imT)° R

Proof

The result of this lemma follows from Lemma 7.1.4. O

Recall the Better-Local greedy condition from the previous section. This condition will be
useful for dynamic programming too, and we have the following lemma as a corollary to
Lemma 6.1.3:

Lemma 8.2.3
If the following conditions hold,
domT .§-T° C T° .8
notdomT -5 -T° C §
S notdomT € (limT)° - R
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then

S . {imT)° C (imT)° -R.

The following lemma is similar to the previous lemma, but the conditions are easier to prove.
It is particularly suitable for those comparisou relations which only compare partial solutions

at the same stage of development.

Lemma 6.2.4
If the following conditions hold

domT -5 -T°C T°-8
notdom T - S - notdom T C R
S - notdom T = notdom T . S,

then

§ . (kimT)° C (imT)°-R.

Proof

We show this to be a corollary of Lemma 6.2.3 by showing that the above conditions imply
the conditions of that lemma. For the second condition,

notdom T -5 - T°

{assumption}
S - notdomT - T°

{property of domains}

N

{empty relation}
S.
For tbe third condition,
S - notdom T
= {property of coreflexives}

S - notdom T - notdom T
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{assumption}
notdorn T - S - notdom T
= {property of coreflexives}

notdom T - notdom T - 5 - notdem T

C  {assumption}
notdom T - R
€ {recursion equation for limits}

(lim T)° - R.

We will use the above lemma in the following examples, and the examples will be used as

motivation to discuss aspects of this particular style of dynamic programming.

Ezample: 0-! Knapsack Problem

Recall the 0-1 Knapsack problem, where a thief has to maximize the total value of
the haul, subject to the total weight being less than C. In the previous chapter we
represented items by {weight, value) pairs. Here partial solutions will be the weight
and value of the packing so far, together with the items not yet considered, Possible
packings can be generated using the following relation:

(w,v,i8) T (w,v,i:1is)
(v+ wgti,v+ vali,is) T (w,v,i:ds), if w4 wgti < C,

with theinput {0, 0, #8), where ss is the list of items in the safe initially. Defining R
by

(Uﬁ.lh,[]) R ('-921 VZ!{]) = n 2 v,
we have the problem specified as min R - Alim T,
To solve this problem with dynamic programming, we need a comparison relation

§ which says when oue partial solution will definitely be better than another. A

reasonable 5 to define is the following

{0,10,i8) § (157, 02,08) = 21 A 1) <y,
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which translated into words, says that a partial solution is better if it is more valuable
and lighter.

We can now check the conditions from Lemma 6.2.3. For the first,

domT - S§.T°C T°.8,

suppese that
- - S - . T .
(wr, v, §18) &———— (wy, 09,81 45) —————— (uy, vg, i),
then
. T . 5 ,
(tm, ty, § 1 i8) ————— (w1, w, i8) ———— (wn, vy, is).
Alsa, if

.. 5 .. T . ..
(g, w1, & 48) 6— (wn,vp, 4 : 48} —— (wp + wol i, o0 + val 1, ),
then a8 w; < uwxg, o) + wgti < wey + wgt { and so
T s
(w1, vy, 4 2 i8) — (10 + wot 1, vy + val i, is) — (wy + wgt i, v; + val 4, is).

The second and third conditions follow directly from the definition of S.

Thus we know that dynamic programming is applicable to this problem. We can
implement this algorithm as the standard method for solving this problem: the
maximum possible thinning is done at each stage (usually a good strategy), and the
maximum possible sprouting is done using allsprouis T at each stage.

In functional programming the set of partial solutions can be kept as an ordered
list of partial solutions, ordered by decreasing value and weight. Then at exch stage
the sprouting and thinning is implemented by a simple merge and purge operation
on two liste (one representing the choice of the next object, one represesting the
rejection of the next object), that also removes solutions worse with respect to §.
Then when the solutions are completed, the most valuable packing is at the head of
the list.

§

In the example above, it was shown that dynamic programming was a passible technique to
use for solving the problem, but it did not go so far as to produce an actual program. The
algorithm given by the main theorem is still abstract, and there is still considerable freedom
of implementation. This is the trade-off that happens with such a theorem. As we will
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see, many different sorts of dynamic programming algorithms are covered with this theorem.

However, this generality abstracts away from the actual implementation.

Note that in the above example, the monotonicity condition satisfied is the same as for the
greedy algonthm. It is not the case however that we could use the greedy algorithm to solve
the above problem, because the other necessary condition for the greedy algorithm to work
is that the greedy choice G has to be able to choose the best at each stage. In dynamic
programming, the relation § does not have to be connected, and so cannot always retnrn a

minimum (though thinning will always work).

The above nethod was very similar to the catamorphic method used in Theorem 4.2.1. Let
us compare this to the anamorphic method of Theorem 4.2.2. It is possible to compute
packings using anamorphisms. Items in a list ¢an be individually tagged either Taken or Not
Taken, and this can represent a packing of the knapsack. The converse of the catamorphism to
remove tagsfrom such a list, subject to weight considerations, will generate possible packings.

The anamorphic method is similar to the familiar standatd recurrence equations of dynamic
programming. For example, for the 0-1 Knapsack problem, let Pe:(fs) be the list of items
that is the best packing for a safe with items 1s and a knapsack with weight capacity C.

Then the recurrence relation is

Peff])
Pei: is)

[l
Pg{is), if wgti > C

Uvaiwe { Pc(i8), 12 Po_wgi(i5)), otherwise.

]

If this were to be implemented (using memoization, say, to avoid the computation of similar
results), the movement of the computation across the space of partial solutions would result
in a depth-first search across the tree. This is in contrast to the method described above,
which performs a breadth-first search, searching all partial solutions at one leve| at the same
step.

Ezample: The Paragraph Formatting Problem

We consider again the problem of formatting paragraphs neatly, this time in more
detail. Firstly we construct paragraphs using the limit operator. There are several
ways by which line breaks can be added to a list of words: one simple way is to add
them sequentially starting with the first line. Thus we define

(B4 [0,4) T (s, L4 y), if 0< linelengthl < W
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and the input will be ([], ws) where ws is the list of words to be formatted. The above
definition assumes that the line length of an empty line is (, and that non-empty
lines have length greater than 0-

With the following definitions
whitespacel = W — linelength!
whiles ls = sum (map (square - whitespace) Is)
untidiness (Is 4 [{]) = whites Is,
we can now define f to be
(Is1,[]) B (s2,[]) = untidinessls; < untidiness ls;.

The problem of formatting paragraphs is now specified asmin R - Alim T.

To solve this by dynamic programming, we need to find a comparison relation §
to compare partial paragraphks. Once lines at the beginning of the paragraph are
chosen, they do not subsequently change, so an obvious cheice for S is to compare
the untidiness of the already chosen lines. Furthermore, if the paragraphs are not
completed, then the last lines of the partial paragraphs can be compared too.

Hence we define

(Is1, 1) S (I3, ), if whitesls; < whitesis; A y#[]
(’311[])3(1921[])1 i ("31,[])3“‘7‘2:[])‘

To prove that S can be used, we use Lemma 6.2.4. Note that (is, y) is in the domain
of T precisely when y is non-empty. First we need that dom T . 5 - T*C T*° .S,
If

(Lon, T4 ) —— (foy L4 ¥) — (lsg + (1], ),
then from the definitions of T and 5, we have that
(o1, 1 4 ) — (o, 4 [, 9) — Uy # (1), 9).
The second and third conditions for Lemma 6.2.4 trivially follow from the definition

of §.

We now know that § is a suitable relation to thin partial solutions with, but an
algorithm is stil a long way off, as sprouting and thinning can be done in many
possible ways. Usually doing the maximum possible amouat of thinning is a good
idea, as there is no reason to retain useless partial solutions. However thereis a good



94 CHAPTER 6. LIMITS AND ALGORITHMS

reason Lo be careful what sort of sprouting we perform. Suppose there is a “bad”
partial solution {one destined to be thinned eventually), and a partial solution that
is better with respect to 5 is not yet available, because it is not yet developed to that
stage. Sprouting the bad partial solution is unnecessary computation, and instead

sprouting less developed partial solutions is a better strategy.

So for this problem, the partial solutions to be sprouted at each stage are the ones
with the most words left to place. Hence at each stage we want to sprout the partial
solution (Is, y) for which y is longest. The partial solutions could be kept in a list
in descending order of the length of their second component. Then just the head of
the list is sprouted at each stage. If the result of the sprout is put into a similarly
ordered list, then the thinning can be performed by a linear merging and purging
operation on the two lists. ]f there are n words in the original list, the result is an
O{ Wn) algorithm, assumiug that the maximum number of words possible on one
line is G(W).

§

I[ntrinsic to the main idea of dynamic programming is the existence of sub-problems. It is
the careful planning so that solutions to sub-problems are computed only once that results
in unnecessary computation being avoided. The use of limits means that we no longer have

the notion of a sub-problem, but yet sub-problems are not absent, merely disguised.

In standard dynamic programming the idea is that if two partial computations require the
solution to the same sub-problem, then the sub-problem is solved once, and the result passed
to both original partial computations/solutions. Either tabulation or memoization may be
used to mzake sure that solutions are only computed at most once.

In this style of dynamic programming, if two partial solutions both require a solution to the
same sub-problem, then it is decided using the comparison telation .§ which is the better
partial solution, and then the worse one is discarded, and the better one may remain for the
start of the computation on the sub-problem.

For example, for the paragraph formatting problem above, consider the two partial solutions

([ “I resember the time I knaw what happiness was;” },“Let the memory live again.”}

([ul reaembar”,“the time I knew vhat happiness lias;"],“[.et the memory live again.”)

The former i better with respect to the 5§ above, and the latter will be discarded. The
former (or arother partial solution better than it) will remain in the current set of partial
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solutions, and will eventually (unless discarded on account of a better solution) be involved
with processing the remaining word list “Let the memory live again.”.

Ezample: The Siring Edit Problem

The string editing problem concerns the transformation of ene string into another,
using as few operations as possible. This has many applications: the number of
operations required is called the edit distanee or Levenshtein distance (see [59, 98])
between the two strings, and this can be used for spell-checking, speech recognition,
and comparison of DNA sequences (see [34]) for example. The book [83] is the

comprehensive reference on the subject.

We will consider the following edit operations on strings: adding, deleting, or retain-
ing a character. If the editing is carried out from left to right of the given word, then
a partial solution can be represented by a triple (es, u, v), where es is the list of edits
done so far, 4 is the remainder of the word that we are transforming, and v is the

remainder of the word required. An edit step can be performed by the relation T
(es # [Retel,u, v} T (es, c:u,e:v)
(es +# [Addc),u,v} T (es,u,c:v)
(es 4 [Dele),u,v) T (es,e: u,v).

As it is desired to find the shortest list of edit operations possible, we define

(es1,[1,[1) R(eea (1, [1) = #em < #ean.

The problem can now be specified as min B - Alim T, with the inpuot {{], w, 1),
with 1, being the giveu word, and w; being the required word.

In grder to use dynamic programming for this problem, we need a comparison rela-
tion § to determine when one partial solution is beiter than another. One obvious
choice for § is that if two partial solutions are at the same stage with respect to Lhe
remaining input, then the one which has used fewest edit cperations so far must be

better. Hence we define
(es;, u,v) S{esa, u,v), if #es < #esy

We need to prove that this is a suitable choice of §. Using Lemma 6.2.4, the first
condition required is that dom T - 5. T° € T° .5, and we must consider all three
possibilities that T'° might perform on the left hand side. If

5 T
(esy, ez uc:v) &— (esg, c:u,c:0) — (esy H [Ret €], u,v),
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then from the definitions of T and S,

T 5
(esy, €t 1w, ¢ 1 v) — () + [Ret ¢], u, v) +— (esy # [Ret ], u, v).

For thesecond possibility, if
(es1, € : u, v} {i (es3, ¢ & u, v} —Tr (esy + [Del e], u, v),
then from the definitions of T and 5, we have that
(es1, ¢ 3w, v) BEIN (es) # [Del €], u, v) L (es2 # [Del ], u, v),

and the third case is symmetrical to this cne. The second and third conditions of

Lemmma 6.2.4 follow trivially from the definition of 5.

We have yet to decide on an actual algorithim. Agair, the consideration that least-
developed partial solutions should be spronted first applies.

Hence ateach stage we want to sprout the partial solutions (es, u, v) for which there
is most remainiag in u and v. Thus we do not wisk to sprout a partial solution
(e8), u, v) il there is another partial solution (csy, 4” H# u, v’ 4 v) in the set, with at
least oneof v’ and v’ non-empty. One way to implement this strategy is to at each
stage sprout the partial solutions (es, u, v) with minimal #u + #v.

§

The tabulation of results from the solving of sub-problems is one of the most important
techniques in dynamic programming. However, the use of limits to construct feasible solutions
has resulted in an abstraction away from the structnres of the optimization problems, so there

is no longer anotion of sub-problem.

However, the lable can be still seen in this method of dynamic programming. The table is
an embedding into the partial space of solutions, and often the computation of the dynamic
programming algorithm will mimic the steps taken to constrnct the table.

We consider an example of a computation for the above String Edit problem to illustrate
this idea. The word Cih! is to be changed intc Caph?, and this diagram shows the partia)
solutions that are considered during the execution of the algorithm. The arrows represent

! Caanciopene
7,8 Casseiopeiae
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applications of T, Retz is abbreviated by z, Addz by Z and Delz by €. The partial
solutions marked with a cross are those which get discarded from the thinning process.

(,CIH .CAPH}

N3 .04 PH) (T .cig.47H)
—
(e .AFH)/
(T Y. arm) \

(T AP A

The above structure corresponds to the table used to solve this problem with the standard
algorithm.

Cne other consideration that is vital in the formal development of imperative programs is
the termination of loops, and this has not yet been addressed.

When performing a loop lim P, it might be thought that the requirement would be that fim P
is total. Certainly this is necessary, but it is not sufficient. The totality of a relation only says
that it is possible to produce a result, but does not guarantee that a result will be produced.
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For this thesis, work on the termination of relational loops has not been investigated. Instead,
in practice, for each individual example it has always been straightforward to check that the
loop terminales, by using the well-kpown method of variants.



Chapter 7

Further Generalizations

Two generalizationsa are discussed in this chapter. The first concerns the nse of invariants
to prove that dynamic programming and greedy strategies work, The second generalization
considers the construction of {easible solutions using a more general method than the limit

operator.

7.1 Invariants

In the previous chapter, we considered theorems for solving combinatorial optimization prob-
lerns wsing dynamic programming and greedy strategies. With the aid of these theorems,
many dynamic programming and greedy algorithms can be proved to be correct, but not all

of them.

This is because these theorems fail to take into account contextual information. When the
execution of an algorithm is in progress, the information available is not merely the knowledge
of which partial solution or solutions are being considered, but also that this algorithm has
heen used to reach this stage of the computation. For example, if a greedy algorithm lim ¢
is being used, it is known that the partial solution under consideration is in the range of G*.

The idea of invariants is that they can capture such contextual information. However, it
might be that such an invariant as ran 7 is an awkward coreflexive to calcnlate with, and
we might instead requite just a part of the context ran G*. Thus an invariaut will be a
coreflexive which is maintained throughout the algorithm.

9%
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7.1.1 Greedy Algorithms

We now incorporate invariants into the main greedy theorem: the optimality condition is
altered so that the invariant can be used, and an additional condition corresponds to the
mainterance of the invariant. We also require that the invariant be true initially, and thus
the slightly altered algorithm is now im G - [.

Note that bytaking I to be id, we obtain the greedy theorem of the previous chapter.

Theorem 7.1.1
Let

M
G

I

minR - Alim T
min§ - AT,

il

where R is g prearder on the set of completed solutions represented by notdom T. Let there
ezist a corefezive [ such that the following conditions hold:

domT NI C dom G
G- I1ci-G
G-I (kmT)° C (limT)° - R.

Then
imG-7 C M.
Proof
imG . C M
=  {quotient}
imG C M/I

4 {recursion equation for limits}

notdom G U (M/f)-G C M/I

i

{quotient, union}
notdom G-1 U (M{I)-G-1 C M

%=  {property of coreflexives}
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notdem G-1 U (M/I).G-T-T C M
{assumption}
noidom G-I 0 (M/)-I-G-T C M

{quotient canceilation}
notdom G- T U M- G- 1 C M
{assumption, property of domains}
notden T U M-G-I C M
{definition, universal property for minimum}

notdom T U M-G-1 C limT
A (notdomT U M-G-I) - (imT)°C R.

The first of these inclusions is proved

c

c

notdom T U M-G-T

{property of coreflexives}
notdom T U M .-G

{definitions, universal property for minimum}
notdom T U kimT-T

{recursion equation for limits}

lim T,

and the second is proved

(a}

(notdom T U M -G-I) - (lim T)°
{union }

notdorn T -{lim T}°U M -G -1.(lim T)°
{property of limits}

notdom T U M -G -I-(limT)°
{assumption}

notdomT U M .(Iim T)* -R
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lal

{definition. A-cancellation}

notddom T U mm R -3 - R

1M

{reflexivity, property of minimnm}

ngdom T U R- R

lal

{reflexivity and transitivity}

b
u}

We now illistrale the use of invariants with an example.

Ezample: Dartboard Arrangemenls

This cxample concerns the problem of arranging nnmbers aronnd the sectors of a
dartboard, and it is taken tom several papers [89, 93, 30].

It is desired to arrange the numbers around & dartboard in such 2 way to maximize
the exclemenl of a game of darts plaved using the board. A plaver throws the sharp-
pointed darts at the cork board. usually aiming at a particular sector of the board.
and the resulting score is determined by which sector the player actually hits. Thus
il the sector aimed at has a very different nmnber from the sector actually hit. this
could be considered exciting.

With this in mind. we consider a a measure suggesled by [30]. The excitement level
of a dirtboard is defined 1o be the sums of the squares of the differences between

adjacent sectors of the board.
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The usnal style of dartboard, as illustrated, does not fare badly with respect to
this measure. Ita excitement level is 2480; however this can be improved upon.
We consider a greedy approach to finding the best dartboard with respect to this

measure.

Nate that we will not assume that the numbers to be assigned to the dartboard
are {1...20}, nor that they are integral, nor that they are distinct. Indeed
there exist dartboards which have more numbers and which have duplicates, The
Grimsby board uses the numbers {1...28} and the East London or Fives board uses
15,5,5,10,10, 10, 15, 15, 15, 20, 20, 20§,

First we consider how to represent dartboards (and also partially completed dart-
boards). As we are interested in relationships between neighbouring numbers, it
seems reasonable to consider contiguous segments {arcs) of a dartboard, and so we
will represent an arc of a dartboard as a double-ended list. A dartboard may be
constructed as follows:

([n] 4 zs,m8) T (28, {nf + ns)
(zs W [n], n8} T (zs,1n]+ na),

where the input given is ([], N}, & being the bag of numbers with which the dart-
board will be labelled.

In order to consider the excitement of partial and completed dartboatds, we define

i

sum (zipwith (square - diff) ([} H =29, 28))
peac ([d)} 4 a5 4 [d]).

pezc {[d] + z6)
ezc ([d) + 29)

i

The function peze gives the excitement level of a partial dartboard, and ezxc gives
the excitement level for a completed dartboard. Defining the optimality criterion as

(nhln R (”ﬁln = €zcTs, > exc T8,

the problem is specified as min R - Alim T.

To soive this problem using a greedy algorithm we need a comparison relation 5 to
dictate which choice to make when adding a number at each step. An obviow choice
would be to maximise the partial excitement level of the possible arcs, and so we
take 5 to be

(z51, 19} .5 (z9g, n82) = pexczs 2 perczay.

Note that this means that G will either choose the largest possible number and add
it to the smaller end of the arc, or will choose the smallest possible number and add
it to the larger end, depending on which produces the greater difference.
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We will now try to prove the usual greedy condition & - (fim T)° C (timT)° - R.

If G is pladng the first number
G hm T

([l ns) & (], Inf + n8) ———— (25 4 [n} #ys,1 T},

then the nimbers can be added in the same order, to give that
tim T R

(6, ns) ————— (28 4 [n] H ys, 1) & {(zs 4 [n] # y5, ] J).
Otherwise, the arc so far is non-empty, and let us suppose that {without loss of
generality), the right end of the arc is added to, so that

(ze 4 [#, ], na) 4—6— (zs # [z], l=] + ns).

Suppose that z; is the head of zs - [z;], that is, the number at the left side of the
arc. Without further loss of generality (as the other case is symmetrical), suppose
further that zx is the minimum of the bag [ 2§ + ns, so that z; < z;. We can picture

the arc as
k)
Tk
zs Z;
We have to consider a completion of {zs 4 (z;], {zxJ + ns) and show that there is a
completion of {zs H [z;, zs], ns) at least as exciting. Let
timT
(23 4 [z5], 12§ + ns) = (28 + 23 4 (5] # v2 4 [m]. 1)

(note that above, we take that z, is at the end of the list, but if it had not been, we
could have cyclically rotated the list representing the dartboard so that this was the
case). let 5y be the number that has been placed next to z;, that is, the head of the
list yo 4 [z:]; let z,,, be the head of zs 4 zs 4t [3;], that is the number that z; is next
to. Note that z,, could be z;. This can be represented pictorially as

Tm Ik

ys
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We now obtain a completion of (zs + [z;, 2], ns) by flipping the arc ys # [z], to
obtain the dartboard zs 4+ zs 4 [2;, zx] + reverse ys. This dartboard looks like

T I

TEVErse y§

Ty
x8 £

We now need to show that this darthoard has greater excitement than the board
28 4 T8 H [z;] 4+ s H# [zz]- The only affected neighbours are those at the ends of
the rotated arc, and thus the increase in excitement is (z, — 2k )2 + (2 — 2)* — (z; —
) — (23 ~ £, )7, which is 2(z; — )(z, — T)-
From the choice of zx at the greedy step, zx < z;, 50 we need to show thal z, < z;.
This will be true if =, = z;, by our assumption that z, < z;. But if nol, then it
appears that we know uothing about z,,.
We do actually know something about z,,. The greedy step has been performed
at each stage, and thus always either the minimum or maximum of the remaining
numbers is chosen at each greedy step. If we had started with the lowest (or highest)
number, this would mean that all the numbers chosen so far are either higher or lower
than all of those not yet chosen. This would then give us that at the greedy choice
of ;, as z; < zj, 7; has to be greater than or equal to all the unchosen numbers at
that stage, including z,,, and hence we have z,, < z,.

Thus we take as an invariant = p?, where
plze,ns) = Yz czswmz<Nns Vv 2 Lins

In order to ensute this invariant is maintained after the first step of the algorithm,
we need to adjust the comparison relation. The first number to be selected can either
be the maximum or minimum of the available uumbers, and we arbitrarily choose

the minimum:
(z81,n31) S (281, nsy), if (281, ns) §(zsz, nsz)
([z],nay) 5 ([y], nsa), if z <.

Maintenance of the invariant is easily demonstrated from the argument above, and
thus the dartboard problem can be solved by the algorithm lim (min §” - AT) - I.

The resulting dartboard is the following

105
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Somehow | do not think this will become popular in public houses. &

The above example used a Best-Final condition. There is alsa a Hetfer- Final condition thar
can be used with invariants, which wil] be demonstrated later in this chapter. 1t is given

below, together with the proof of its applicability:

Lemma 7.1.2 (S T-T-T°) - (lim TY* C im T)° - 1. then

G -1-(IimT)® C (HmT)° - R

Proof
o f - (imT)°
€ {definition, property of coreflexives}
mS - AT-1) - T-(imT)°
= {property of minimum. property of corellexives)
mn (S T-F-T°)-AT . (lim1)°
= {dowains}

mig (SO T-F-T¢) - AT - wotdom T - (Iim T1°
U min{SNT-f-1°) - AT -dom T - (Iim T)°

€ {universal property }
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T - notdom T - (lim T)°
U min (SNnT-I-T°)-AT -dom T - (timT)°

{property of domains}

min(SO T I-T% - AT - T°® - (lim T)°

]

{A-cancellation}

mn(SOT-I-T°) -3 (IimT)°

N

{property of minimnms}

(SNT-T-T% - (limT)°

[

{assum ption}

(lim T)® - R.

7.1.2 Dynamic Programming

The incorporation of invariants into the dynamic programming theorem is very similar. This
time, I is a coreflexive operaling on sets of partial solutions, rather than on a single partial
solution. Note that by setting I to be Lhe identity relation, we get as a corollary Theorem
6.2.1, the main dynamic programming theorem of the previous chapter,

Theorem 7.1.3
Let

M = mnR . AlimT,

where R is ¢ preorder on the set of completed solutions represented by notdom T, and let D

be a relation and I a coreflezive such that the following conditions are satisfied:

D.-T C e\e-sprouts T
domn(T-€) nI C domD
D-1rcr-p
D.I-3.-(limT)* € 5-(EmT)"-R
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Then

minR - limD-.-I.1r C M

Proof

Let M* = minR - Elim T. Then

mnR-limD.I-rC M

{definition, existential image}
mnR - limD-IT.-1r C minR-ElimT -~
& {monotonicity, definition}

mnR-limD -] CM

Hl

{quotient}
limD C min RAM'/T
& {recursion equation for limits}

notdom D U min R\M/I - D C min RAM/I

{universal property for union, quotient}
min R - noidom D -1 C M’
A minB-minR\M/I-D.IT C M
<  {assumption, property of domains}
min R - notdom (T -€) C M’
A minR-minR\M/I-D. I C M
& {quotient cancellation}
min R - notdom (T -€) C M’
AMII-D-1CM

{universal property for minimum}
min R« notdom (T -€) C #imT - €

A minR - notdom (T -€) -3 - (imT)° C R
A MM -D-TClimT-€
AMII-D-]-3-(imT)°C R
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The first of these inequalities can be shown as follows:

men R - notdom (T - €)

N

{definition of minimum}

€ - notdom (T - €)

WM

{property of domains}

notdam T - €

8]

{property of limits}
imT - €.
The second inequality proceeds thus
min R « notdom (T -€) -3 - (lim T)®
C  {property of domains}
minR - 3 - notdom T - (lim T)°

{reflexivity, property of minimum}

R - notdom T - (lim T}°

{property of limits}

l

R - notdem T

M

{property of coreflexives}

R.
The third inequality is shown as follows

MJI-D T

M

{property of coreflexives; assumption}

MYr-y-p.I

N

{quotient cancellation; assumption}

M’ - e\€ . sprouls T

M

{definition}

minR .- ElmT - e\€ : sprouts T
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@]

{definition of minimum}

€ -ElimT - €\¢ - sprouts T

{property of membership}

kmT - € - €\€ - sprouts T

1a]

{quotient cancellation}

imT - € - sprouts T

N

{property of sprouting}
imT - (T-€ U €)
= {unien}

T -T-€ U imT - €

M

{property of limits; idempatency}
limT - €,
and the final inequality can be proved as follows:

M/f-D-I-5. (limT)°

{properly of coreflexives}

M{I-D-f-1-3 (imT)°

€  {assumption}
MAr-I-D-I-3.(limT)°
C  {quotient cancellation; assumption}
M -3 -(kmT)° -R
= {definition; existential image; converse}
minf - A(imT - €) - (imT - €)° -R
€ {A-cancellation}
minf -3 R
C  {property of minimum, transitivity of precrders}



The dynamic programming condition of the above theorem is difficult to prove. The following

femma provides an easier condition to verify:

Lemma 7.1.4
(SN € -ron(spr-0)-23)- (ImT)°C {limT)° -R and spr C sprowts T, then

thin§ -spr - I3 -(limT)° C 3-(imT)° - R,

Proof

Let §° = § 1 € - ran{spr-I) - 3. Then calculate as follows:

thin§S - spr - I -3 - (mT)°

{property of range}

thin§ - ren{spr-I)-spr- [ -3 (mT)°

C  {claim}
thin§* - spr- 1 -3 - (lim T)°
C  {property of coreflexives}
thin§" . spr -3 - (im T)°
C  {claim}
thinS - (3 U 3/3-AT-dom T} - (im T)°
€ {definitior of thinning}
(3-8)3-3 U 3/2-AT-dom T} - (limT)°
C  {union, quotient cancellation}

3.8 (limT)°
U (3 8)/3-AT -dom T - (lim T)*

It

{property of limits}
3-8 - (timT)°
U (3-8)3 AT-T° . (IimT)°
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= { A-cancellation, quotient cancellation }
53-8 -(BmT)° U 3-8 - (mT)°

{idempotency, assumption}

5 (imT)° - R

The first of the claims is that thin 5 - ran Q@ € thin{§ N €: ran Q - 3), which from the

definition of thin and properties of quotient is equivalent to the two inequalities

thinS - man Q@ C €\c€
thin§ -ran @} -3 C 3-(SN € - rang - 3)

The first of these is trivial [rom the definition of zhin and properties of coreflexives, The

second may be proved as follows:
thinS - man @ - 3
= [definition of thinning; graphical representation}

Q
(3-5)/3

=  {quotiert cancellation; composition}

= {quotient cancellation}

Q
(2-5)3

E g

€ {remove edges}



=  {graphical representation}

3-(§ Ne-mn@Q-3)

The second claim is that
spr -3 C 3 U 3/3-AT -dom T

and the following derivation proves this:

spr - 3
C  {assumption}
sprouts T - 3

=  {definition of sprouting}
cup - (ET -PdomT x id) - luni® -3
=  {property of set union}
cup - (ET -PdomT x id) - (outr® .3 U oull® 3)
= {union}
eup - (ET -PdomT x id}) - ouir® -3
U cup - (ET -PdomT x id) . outi® -

€ {properties of projections}
cup - outr® -3 U cup - outl® -ET - PdommT - 3
C  {property of set union}

3/3-3 U 3/5 €T PdemT - 3
C  {quotient cancellation, property of membership}

3 U 3/3-ET: 3 -domT

{function interaction with quotient, property of membership}
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30U 3/(3-T° -3 -domT

lg]

{quotient cancellation}

5 U 3/T° -domT

{property of A; function interaction with quotient}

>4 3/5-AT -domT

We now consider how invariants can be used in dynamic programming. One importaut use is
their role in data refinement to improve algorithmic efficiency. By retaining extra information
about the partial solutions, unnecessary calculation can be avoided, and iuvariants can be

used to show that these refirements are correct.

To illustrate this technique, we consider a simple improvement. to one of the problems in the

last chapter

Ezample: The String Edit Problem
Recall the String Edit problem mentioned earlier, where it is desired to transform
one string into another using as few edit operations as possible. The list of possible
edit operations was constructed using the following constructor relation
{es 4 [Rete],u,v) T (es,c:iu,c:v)
(s H [Add c],u, v} T (es,u,c:v)
{es # [Delc),u,v) T (es,c:u,v),

and the optimality criterion was
(esr, [1, [} B (s, [T [1) = #est < dfess

The comparison relation for performing the thinning was the following
{es1,u,v) S (esp, u,v), if  #es) < #esy,

and the sprouting strategy was to sprout the least developed partial solutions, that
is, those with the largest #u + #v.

The comparison #es, < #es; and the computation #u + #v both take linear time
and are unnecessary., We can add two extra variables to the partial solutions: one to



maintain the length of the edit operations so far, and one to maintain the combined

length of the remaining inputs. Thus the constructor relation is altered to
(es H [Retel, b+ 1,u,v,1-2) T (es,k,c:u,c:v,)
(es # [Addcl,k+ 1w, v, i—1) T (es, k,u,e:0,1)
(es # [Delc],k+1,u,0,i-1) T (es, k,c:u,uv,l),

the optimality criterion can be altered to

[esl,h,[],[],U)R(es;,kg,[].[],ﬂ) = kl S k‘Z:

and the input is now ([], 0, wsy, wsy, #wsy + #wsy), for input words ws; and ws,.

[f we define F = Pp?, where
ples, k,u, v i) = (k= #es A1 = F#u+#v),
then the new comparison relation S’
(esy, kyy u, 0, 1) 57 (emy, ko, u, 0, 0), ik < My
can easily be shown to satisfy the required condition, using the same argument as

before, and thus dynamic programming is applicable.

The set of partial solutions can be kept as a list in increasing order of I, then #u.
Sprouting is performed on those partial solutions with smallest [, those at the front
of the list. The results of the sprouting are then merged with the rest of the list,
thinning out unnecessary solutions at the same time, If the input words are of lengths

m and n, this results in a ¢{mn) algorithm. §

7.2 Beyond the Limits

Up to this point, a limit operator has been used to generate feasible solutions to optimization

problems. Limits have the form
notdom T - T,

and thus feasible solutions are precisely those not in the domain of T. Expressed pictorially,
the feasible solutions are those at the leaves of the tree-like space of partial solutions, obtained

from applying T to the input in all possible ways:
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This methodof generating leasible solutions is very general, but not applicable to all problems.
It may be that not all the completed solutions (leaves of the tree} are feasible solutions to the
problem, ar alternatively it might be that some partial solutions are also feasible solutions
to the problem. For example, if the problem required all paths in a graph, and T was the
relation adding a single edge onto the end of a path, then all partial paths would also be

feasible solutions.

Thus we now consider the following more general method of generating feasible solutions:
p7 - T,

where p is the predicate representing feasibility of a solution.

In fact, problems using such a generator have already been considered. Recall the Marbles
Problem, for which a feasible solution was a bag of paire of differently-coloured marbles,
together with possibly some left-over marbles. Earlier, we kept pairing marbles until all
possible parings had been made, but equally, leaving several marbles unpaired would have
been a feasble solution to the problem. The reason we did not pay much attentjon to this
matter was that one of the objectives was to pair off as many marbles as possible, so it was

known that such uncompleted solutions conld not possibly be eptimal.

Let us comsider the reverse situation. Suppose that a partial feasible solntion to a problem
would provide a better solution than completing it further. Then the generator lim (T-(—p)?)
that stopsat the first partial solution satisfying p would suffice. The following theorem gives
conditions under which it is possible to use T - (~p)7 as a constructor relation:

Theorem 7.2.1
If the following conditions hold for 4 preorder R,

p? -T*° -p? C R



then

min R - Atim (T (~p)?) € minR - A(p?- T*).

Proof
minB - Alim (T - {-p)?) C minR - A(p?- T")
= {universal property for minimums}

minR - Alim(T-{(-p)?) C p?-T~
A minR-Alm(T-(-p)7) - T*° -p? C R

For the first inequation, note that notdern (T - (=p}?) = p? from the second assumption,
and then
minR - Alim (T (-p)7)
€ {universal property for minimurms}

im (T - (-~p)?)

i

{definition of limits, above}
§7 - (T (o))"

{monotonicity of closure}

Im

p? - T
The second inequation above is proved as follows:
min R - Alim (T - (=p)?) - T*¢ -p?
= {above}
minR - A(p? (T (-p))") - T*° -p?
= {claim}
minR - A(p?-(T-(=p)2)") - ((T-{-~p)?)* v T p? - (T (-p)N)7)° - p?
= {converse and union}
min R - A(p? - (T (=p)7)7) - (7 (T - (=p)7)")°
U min B - A(p2-(T-{-p)2)7) - (T*-p? - (T - (~p)?)7)° -p?

[}

{coreflexives, converse}
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minR - A (p?- (T (~p)7)") - (p7- (T - (~p)7)"}°
U min R < A{p? - (T-(=p)1)") - (87 -(T-(~p)7)")° -p7 - T*° -p?

il

{A-cancellation}

minR-3 U minR-5-p?- T .p7

N

[property of minimum}

RU R-p?-T* .p?

N

{assumption, transitivity}
A,
The claim above was that
T" C(T-(-p)D)" U T p7 - (T (=p)7)".

Inclusion of the above reflexive transitive closure can be shown by reflexivity and transitivity
of the right-hand side of the inequation, together with inclusion of T. Firstly the inclusion
of T:

T

Il

{property of coreflexives}

T-(~p)? U T-p?-id

N

{properties of closure}
(T-(~p)?)* U T"-p? - (T-{-p)7)*,
Reflexivity is proved as follows
id
€ {property of closure}
(T (~p)))"
¢ {union}
(T-(=p)?)* v T"-p? - (T-(-P)7),
and transitivity can be shown thus
(T-(=p7) u T - p? - (T-(-p)7)")
(TR U T (T (p)))



{union}
(T (=p)2)* - (T-(=2)7)7)
U ((T-(=p}2)* - T° - p? - (T-(p)7))
u (Tt p? (T-(-p2) - (T- (7))
U (T p? (T (-p)?)" - T7 - p2 - (T (2p)7)")

Ia]

{transitivity and monotonicity of closure}
(T-{=p}7)"

O (T T (T (p))

u (7Tt (T-(-p1)

U (rtep?e T T p? s (T ()T

N

{transitivity, property of coreflexives}

(T-(=p)7)" U I* . p? (T (-7

To illustrate the use of the above theorem, we consider the following example.

Ezample: Knuth's TgX problem
This problem is discussed in Knuth's contribution to [53]. A user of the TgX word

processor (which Knuth wrote) sometimes specifies measurements in the user lan-
guage, and these are often fractions in decimal, for exampie 0 - 264cm. The way TEX
stores the fractional part of a number is as an integer multiple of 1/2'%. As part of
converting between internal and nser representations of a number, Knuth’s problem
is to convert an integer multiple of 1/2' to the shortest decimal fraction possible.

Expressing this mathematically, let convert be a catamorphism over cons lists that
converts a decimal fraction (list of digits) to real numbers in [0,1),

convert = (zero, f])
fld,z) = (d+2)/10

and thus the integral representation of a decimal fraction is given by the function
reunds:

rounds z = |{convert z} x 2164 1/2]
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Using the following definitions
Ty & #z < #y
24 [d] Tz, if de{0...9}
okz = (roundsz = i),
the problem of finding the shortest decimal to express /2'¢, where i is an integer in
the range 0 < i < 2'%, can be expressed as
min B - A(ok?-T7)

with input [].
In order to solve this problem, we first check the conditions for Theorem 7.2.1. The
first condition, that

ok?- T*° -o0k?7 C R

follows easily from the inclusion T'°C R, which is a mathematical translation of the
fact that adding digits to a list makes the list longer. The second condition follows
from theobservation that notdem T = @. Thus Theorem 7.2.1 says that we can use
the usual theorems involving limits to try and solve the problem

min B - Alim T,
where T = T - (—ok)?.
We will aim to find a greedy solution to this problem, and thus need a preorder §
which dictates which digit to choose at each stage. Clearly S should prefer choosing

partial solutions which can lead to a correct approximation for i/2'%, and thus we
define

feasz = (Jy e mundsz -y = i).

If there is more than one possible digit that could be added, a sensible choice would
seem lo be the larger, on the grounds that 0.5 is a shorter decimal than 0.49999.
Thus we define

g [di] Sz 4t [da], if feas {z 4 [dy]} A —{feas (c + [dy]))
zH[di] Sz H[ds), if feas{z4-[dy]} A feas(z+[d2]) A & > dg

To use the greedy algorithm, we note that if we maintain the invariant § = feas?,
thendom G = dom T N I and so we only need to show the greedy condition of
Lemma 7.1.2 holds, namely

(SOAT-T-T° T"° ok? C T°°° .0k?- R.



Let
SOT.T° FoT ™. ok
T4 [d) ————— 7 [dh) ———— 14 [da] # ds,
As ok (z H#[d2] # ds) holds, =+ [d;] is feasible; thus from the definition of 5, z -H[4,]
is also feasible and we have that d; > d,.

From the feasibility of z # [di] and the definition of rounds we have that
rounds (z + [di]} < . Furthermore, rounds is monotonic with respect to the lex-
icographic ordering on decimal fractions, and so i = rounds(z # [d)] + ds) <
rounds(z + [d1]). Hence ok (z 4 [41]} holds, and so

T . ok? R
s [dy] ———— s #{d] —— 74 {d] # ds

Thus the greedy algorithm lim (min S - A(T - (-p)?) - [ solves this problem.

The above algorithm can be improved upon, to reduce the cost of performing the
greedy step. We will borrow some ideas from Knuth [53] and Bird (8] to formulate a
new and improved invariant: two integers o and b are added to each partial solution,

and these numbers will act as pointers to the range of real numbers that the carrent
solution could be completed to, Qur new invariaat I’ is

Jeasz A (Vds e rounds(z# ds)=i = a < 2" x convertds < b)

To initialize the invariant, we have that z is empty initially and so from the following

calculation

rounds ([] 4 da)

{definition of rounds}

[{convert ds) x 218 4+ 1/2| = §

{definition of flcor}
f< (convertds) x 28+ 1/2 < it 1

{arithmetic}

2 — 1 < (convertds) x 277 < 2i 4 1,

the initial input is deduced to be {{], 2i — 1,24 4+ 1).

The termination condition for (z, a, b}, is ok z, and this can be simplified using the
invariant. First note that the invariant implies that & > 0, and then

okz
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{definition}

[l

roundsr = 1

{invariant}

i

0 < 27 x convert[] < b

{arithmetic}
ea<0<h

{above}

Il

ax0

We can use the invariant to simplify the greedy step, which selects the maximum
digit to append to z such that feas(z 4 [d]) at each stage. Thus we calculate

Jeas (z 4+ [d])
= {definition}

Iy e rounds(z H# [d] H#y) =i

{invariant}
Jy e a < 2'7 x convert ([d)4+y) < &

{definition of convert}

I

3y e 10a —2'7d < convert y < 10b — 2174,

and this step dictates how to maintain the invariant for the next step. For the choice
of thedigit d, we continue the calculation, noting that 0 < convert y < 1 for any y:

Jy e 10a —2'7d < converty < 106 - 2'7d

{arithmetic}

it

Jy e 10a/2'7 < d + converty < 106/2%7

]

{above}
10a/2'7 -1 < d < 108727

Note that if 104/2*7 is non-integral, we can take d to be |108/217]. It can be easily
shown that if the two conditions that b is an odd multiple of 2#% and #z < 16 are
added into the invariant, these conditions are maintained, and so 108/27 js indeed

nop-integral.
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This results in the following compact program

z,8,b :=[],2i- 1,2+ 1;
while a > 0 do
d = [106/2'7;
z,ab = z 4 [d], 10a - 217d, 105 — 2'7d

end



Chapter 8

Conclusions

We conclude by first summarizing the work contained in this thesis. In subsequent sections,
different aspects of the theory are evaluated and discussed within the context of other work

in the area.

8.1 Summary

A calculus of relations is used to specify optimization problems in the following form:
M =mirnR - Alim T.

The limit operator is used to specify and construct feasible solutions to optimization problems.
This is a generalizing of earlier work which generated feasible solutions using catamorphisms

and anamorphisms.
The specification was refined in the following way to yield an abstract algorithm using the
dynamic programming strategy

minR - limD -7 C M,

where D is the dynamic programming step modelled as [} C thin S - sprouts T. This
refinement holds under certain conditions (including one for monotenicity) on the relations
S and T,

A further refinement gives a greedy algorithm:

IimG C minR-limD.-r C M.

124



The greedy step is ¢ = min& - AT, and this refinement (an alternative way of proving
Theorem 7.1.1) uses the fact that taking just one best partial solution using min § is a
refinement of thinning using thin S. The refinement holds under certain coaditions on §
and T: the relation § must be connected to ensure that a minimum can be taken, and
an optimality condition must hold on S and T. Four different optimality conditions were
considered, namely the Better- Local, Best-Local, Betier-Final and Best- Final conditions.

Additional contributions include further generalizations: invariants were introduced, and
different ways of generating feasible solutions were considered. Also presented was the graph

calculus, a useful proof tool for equational proofs in the relational and other calculi.

8.2 Dynamic Programming

The dynamic programming model presented in this work is very different from Lhe standard
models. Here the dynamic programming step D Is modelled as

D C thin§ - sprouts T.

This corresponds well 1o some dynamic programming methads, such as those which retain a
set of partial solutions, for example the staudard solution to the 0-1 Knapsack problem. How-
ever, many dynamic progtamming methods ate expressed in terms of solving sub-problems,

and then tabulation or memoization avoids unnecessary duplication of computation.

With this model, the structure of the problem has disappeared into the construction relation
T. There is no longer a notion of a sub- problem, nor of a table of results. The table of results
is an embedding into the space of partial solutions, and it can be seen more clearty when
looking at precisely the partial solutions which are dealt with in the course of the computation
of the algarithm. The relationships between them detail the relationships used to construct
the table.

In the standard models, dynamic programming proceeds by noting that two problems both
reqnire a solution to the same sub-problem. Then the sub-problem is solved once, and the
result used for both problems. Within this model, a different approach is taken: the two
problems {or rather, partial solutions which contain the two problems) are analysed to see
which is better with respect to S, then the worse one is discarded, and then the better one
is retained for the solving of the sub-problem.

Another view of looking at this style of dynamic programming is in terms of seatching the
treelike space of partial solutions. The approach using catamorphisms is like a breadth-first
search, and using anamorphisms is like a depth-first search.
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There are several disadvantages with the approach to dynamic programming presented in
this thesis. By generalizing to include both catamorphic and anamorphic approaches in one
theorem, the theory is necessarily much more abstract, and thus further away from concrete
algorithms. Theexamples given have demonstrated that the dynamic programming approach
is applicable, but specific algorithms were uot given. There are many ways of implementing
the dynamic programming step [, and there is more creativeness and planning yet to do
before a program is reached. The combination of the more general nature of the sprouting
and thinning mechanism and the choice of which partial solutions to sprout next can lead to
moere unusual algerithms, for example see the Paragraph Formatting problem.

Another disadvantage of this style of programming occurs with certain problems which have
tree datatypesin their partial solutions. For these, the structures of the partial solutions are
moere complicated and so it is more difficult to plan a good method of doing thinning and

sprouting, oreven a suitably efficient method.

In summary, this theory provides a fresh context from which to view dynamic programming,
and suggestssome alternative dynamic programming algorithms for some problems, although
the method iz very abstract, and not all dynamic pregramming problems fit straightforwardly
into the theory,

8.3 Greedy Algorithms

The presenied relational paradigm for the greedy step captures the essence of greedy algo-
rithms and in practice, every greedy algorithm [ have seen has fitted into this structure. The
main difference between the work presented in this thesis and other work on greedy algorithms
is that others have concentrated on the structure of problems for which the greedy algorithm
fits. Here the structure is abstracted away from and it is hidden inside the construction

relation T.

The use of relations offers many advantages. Many models of greedy structures use cost
functions to compare completed solutions. Cost functions are applicable to many problems,
but not al. Some problems naturally use a relation for their specification, such as the
Lexicographically Least Subsequence, and thus relations are a better model for optimality

criteria.

Helman's work in [40] also uses relations for optimality criterta in problem instances, called
dominance relations in his terminology. To compute the best local choice at each stage he
uses theconcept of compuletionally feasible dominance relations, which correspond to min §



in the greedy step above. The condition on computationally feasible dominance relations for
the greedy algorithm to work corresponds to the Best-Local condition of this thesis. Helman
also considers a free algebra, which is more general than the usual matroid sets or greedoid

strings, although less general than our framework.

Comparing our model with greedoids, which are hereditary sequence systems with an ex-
change property, the relational framework presented here can be used to generalize greedoids.
If the hereditary language of the greedoid is £, then the construction relation T is

e Tz, ifzr,zhldel,

and then A lim T applied to the input [] returns the language £. Not all greedoids are greedy
structures, nor are greedy structures all greedoids, but those greedoids for which the greedy

algorithm works can be rephrased in the relational format presented in this thesis.

One fresh contribution to greedy theory is the analysis of the optimality conditions for the
greedy algorithm to work. Ever since greedy algorithms were first used, the four optimality
conditions presented here have all been used to prove that greedy algorithms work. However
their collection together in this thesis and the analysis of their relationships is new.

Also, in relation to the work of Bird and de Moor, optimization problems that can be naturally
expressed using anamorphisms can uow be solved using the easier focal optimality conditions.
Similarly the optimization problems which can be naturally expressed using catamorphisms
can now be solved using the final optimality conditions {impossible vsing Bird and de Moor’s

theorems).

The gathering together of the different types of greedy algorithms under the auspices of one
theorem provides an elegant simple theory of greedy algorithms.

8.4 The Limit Operator

The limit operator is a simple relational model of a loop. Within this thesis, loops have been
used to madel the part of a specification that constructs a completed solution from the input.
They have also been used to model the computation of an optimal solution, whether through
the repetition of a greedy step, or a dynamic programming step.

The loop is an integral imperative programming construct, and the im operator is an elegant
and precise way to model it using relations. This is a different treatment from that usually
given to loops. Imperative programs are nsually modelled as predicate transformers, rather
thar relations.
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The use of invariants is a further link to the imperative programming style. This is not a
surprising development, as it is reasonable that the correctness proofs of some algorithms

might require the context of a computation to be takes into account.

A further use forinvariants in this thesis was to improve efficiency by adding extra variables to
the partial solutions, in order to retain more information. This use of ar invariant corresponds
to the idea of using a coupling invariant to perform data refinement of imperative programs,

for example see Morgan [77).

8.5 Limits and Catamorphisms

In this thesis, it has been demonstrated that limits are a generalization of catamorphisms.
This is not merely a theoretical result, as it is very easy in practice to generate feasible
solutions to a problem using limits, and in particular there are problems for which using a
catamorphism is awkward or impossible. This is reflected in the selection of sample problems
throughout the thesis.

As limits are more general, their use allows greater freedom in the constrnction of feasible
solutions to a problem. Indeed this freedom in the case of the Rally Driver problem led to
the discovery of a simple greedy algorithm to solve it, after the problem had been attacked

for some years with approaches using catamorphisms.

One other important result from the conversion from catamorphisms to limits that has not
yet been mentioned is the potential for parallelism. Recall that the computation of (P)f was
executed by

finish - lim ([P Ua')pr - notdom Fin®) - start.

The catamorphism {P’ U a’) - does some number of P steps within the structure. If the
structureis a tree, this offers opportunities for parallel execution, as (P’ U a’}¢- could be
refined to a function which does a P step at each leaf. This could be executed by a number
of parallel processors. Work is underway to construct a more controlled version of the above

relation that does a fixed amount of computation at each step.

8.6 The Graph Calculus

The graph calculus is a new method to assist with lermal proofs about relational {and other)
formulae. Drawing the structure of relations in a picture is not new. Freyd and Séedrov



[33] used such relational pictures to draw sections of allegories; Brown and Hutton [17] used
similar pictures to draw circuits; researchers into relation algebras draw such pictures to aid

their understanding.

This presentation of such pictures differs from previous presentations in the laws and con-

structs that it uses, and that it also applies to more general sequential calculi.

In practice the graph calculus has proved very useful. Several conjectures in the sequential
and relational calculi were stubborn and did not yield their proofs during several days of
effort using the usual non-pietorial method, and yet on application of the graph calculus, the
proofs appeared within minutes. Often with less difficult proofs, the graph calculus lends
itself very well to straightforward calculation at a whiteboard, and then the proof can be
translated back into a more compact form. It should be mentioned that the graph calculus
is not usually the method of choice as many prools can be performed perfeclly adequately
without pictorial help. However, for those proofs which are difficult, the graph calculus can

provide invaluable assistance.

The only disadvantage of the graph calculus is that it does not always transfer from the

whiteboard te paper so well, and it is more time-consuming to word process.

The reason why the graph calculus is so useful is that it exposes the structure of formulae and
makes jt easier to see the correct next step in a proofl. it is half-way between the point-free
and poirt-wise styles of relations. The potuts can be seen in the picture as vertices, but there
is no cumbersome naming of mnltitudinous variables. The same applies to sequential calculi,
in that the points are individual observations, and these can be seen along the edges of the
graph calculus. Unfortunately it is not yet known whether the graph calculus is complete
with respect to either relational points or sequential observations, and this is a topic for

future study.
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