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Abstract

The lack of a method for developing programs from Z specifications is a difficulty that is
now widely recognised. As a contribution to selving this problem, we present ZRC, a refinement
calculus based on Morgan's work that incorporates the Z notation and follows its style and con-
veptions. Other refinement techniques have been proposed for Z; ZRC builds upon some of them,
but distiuguishes itself in that it is completely formalised.

As several other refinement techniques, ZRC is formalised in terms of weakest preconditions. In
order to define the semantics of its language, ZRC-L, we construct a weakest precondition semantics
for Z based on a relational semantics proposed by the Z standards panel. The resulting definition
is not unexpected, but its construction provides evidence for its suitability and, additionally,
establishes connections hetween predicate transformers and two different relational models. The
weakest precondition semantics of the remaining constructs of ZRC-L justify several assumptions
that permeate the formalisation of Morgan’s refinement calculus. Based on the semantics of ZRC-L,
we derive all laws of ZRC.

Typically the refinemeat of a schema in ZRC begins with the application of a conversion law
that translates it to a notation convenient for refinement, aud proceeds with the application of
refinement laws. The conversion laws of ZRC formalise the main strategies and rules of translation
available in the literature; its set of refinement laws is extensive aud includes support for procedures,
parameters, recursion, and data refinement.

Morgan and Back have proposed different formalisations of procedures and parameters in the
context of refinement techniques. We investigate a surprising and intricate relationship between
these works and the substitution operator that renames the free variables of a program, and reveal
an inconsistency in Morgan’s caleulus. Back’s approach does not suffer from this inconsistency,
but be does not present refinement laws, We benefit from both works and use a model based on
Back’s formalism to derive refinement laws similar to those in Morgan’s calculus. Furthermore, we
derive additional laws that formalise Morgan's approach te recursion.

Three case studies Mlustrate the application of ZRC. They show that ZRC can be useful as a
technique of formal program development, but are by no means enough to ascertain the general
adequacy of its conversion and refinement laws. Actually, since Z does not enforce a specific style
of structuring specificatious, it is likely that new laws will be proved useful for particular system
specifications: two of our case studies exemplify this situation. Our hope is that ZRC and its
formalisation will encoursage further investigation into the refinement of 2 specifications and the
proper justification of any emerging strategies or techniques.
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Chapter 1

Introduction

Z [58, 8] is a well-established formal specification language that has a distinguishing mechanisin of
modularisation: the schema calculus. Its success is evident: many case studies [25, 27] have already
been developed, some of which involve industrial applications; a wide range of tools [57, 31, 24]
that support several aspects of its use have been implemeuted; and several courses and textbooks
are at our dispesal [52, 16, 65). In spite of all this, a drawback has been recognised in the use
of Z: the abseuce of a well-defined and provahly correct method of moving from the specification
phase to the later stages of program development.

Several proposals for solving this problem can he found in the literature. Some results have been
achieved on methods of prototyping Z specifications [17, 13, 29, 54] which focus on the production
of low cost prototypes with the aim of capturing requirements and validating specifications. In all
cases, the prototypes can be generated mainly by translating restricted forms of specifications.

Another line of research considers the use of refinement techniques to develop implernentations
for Z specifications. As opposed to prototyping methods, a refinement technique aims at the pro-
ductiou of efficient imperative programs. Its major features are a unified language of specification,
desigu and programming, a refinement relation, aud a stepwise style of program development. In
tbe particular case of a refinement calculus, refinement laws are used to derive programs from
specifications.

King proposes in [34] the comhiued use of Z and Mergan's refinemneut calculus. In this work the
differences between Z and the notation of Morgan's calculus [45] are analysed and, in the light of
these considerations, laws that translate schemas and some schema expressions to programs of this
refinement calculus are suggested. In [64], Woodcock indicates one additional translation law: a
form of promotion is implemented as a call to a procedure with a value-result parameter.

TIu [66] Wordsworth proposes a refinement technique for Z where schemas themselves are re-
garded as commands. In this work, refinement is accomplished either hy laws that are similar to
the translation rules of [34] that apply to schema expressions, or by verification instead of calcu-
lation, when none of these laws apply. There is no equivalent to the law of [34] that can translate
every schema.

Other proposals that present characteristics of both prototyping and refinement techniques, or
that present just some characteristics of one of these approaches, are also available, The objective
of the work presented in [61], for instance, is the definition of a methed for implementing Z
specifications using a functional language. In this case, an executable subset of Z (Z~~) is identified,
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and refinement occures in a unified framework for specification and programming. Nevertheless,
the exemplified refinement does not follow any formal technigne and it is hoped that the Z—~
prograrns can be employed as final products or that comparison of test results can be used in
validating an eventual translation to another programming language.

A notation for documenting the devejopment of Ada programs from Z specifications is defined
in [56]. Despite the fact that a langnage similar to that of Morgan’s refinement calculus is used,
the proposal consists of designing the programs directly in Ada and then providing an account of
their correctness using the notation and literate programming. Refinement laws are not used.

The objectives of producing efficient programs, and of applying a development method that
is mathematically sound and allows the use of calculational techniques are best served by the
approaches in [34, 66, 64, 65]. In particular, the proposals in [34, 64, 65] distinguish themselves
by encouraging and enabling the construction of programs by calculation, instead of verification,
to a much greater extent.

ln this work, we present ZRC, a refinement caleulus for Z whose design is based mainly on [34,
64, 65] and Mergan's calculus. Following the lines of [64, 65], ZRC employs a notation compatible
with the Z style at all stages of development. Most of its laws are based on those of [34, 64,
65, 45], but we consider exteusions and adaptations, and introduce new laws in order to comply
with the Z notation and facikitate the application of ZRC. As Morgan’s calculus, ZRC provides
support for procedures, recursion, and data refinemnent. We prove the soundness of all its laws
and this is probably its most remarkable feature. As far as we know, no attempt has been made
to formalise [34, 64, §3). Our work uncovers a few mistakes, and indicates simplifications and
generalisations. We also point out an inconsistency in [41].

At the moment, there is an effort to standardise Z, and a fairly complete account of the language
bas already been given in [8]. We assume familiarity with Z as presented in this document, which
we use as a hasis for our work, A conformant and more accessible presentation can be found in [65].

In the uext section we provide an averview of ZRC by means of a very simple example: the
birthday book that is specified in [58]. In Section 1.2 we describe the subsequent chapters and
appendices.

1.1 A Simple Development

The starting point of a system development in ZRC is, in general, a concrete Z specification
whieh is expressed in terms of data types available in the target programmiog language. This
specification can be, for instance, the result of applying the Z data refinemnent technique to an
abstract specification.

In this section, we apply ZRC to derive an implementation for a birthday book which was first
specified and data-refined in [58]. This is a small system that records birthday dates and is able
to issue reminders. In what follows, we reproduce its concrete specification as presented in [58].

The birthday hook deals with names apd dates from the sets NAME and DATE, which are
introduced as given sets.

[WAME, DATE)

People’s names and birthday dates are registered in the arrays names and dates which are rep-
resented as total functions from Np; for simplicity, in [58] potentially infinite arrays are assumed
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QOperation Precondition
AddBirthdayl [ ¥Yi:1.. hwm e name? # names i
FindBirthdayl | 3::1.. hwm « name? = names ¢

Table 1.1: Operations Preconditions

to be available in the target programming language. The birthday of the person whese name is
recorded at the :-th position of names is on the date recorded at the i-th position of dates.

__ HFirthdayBook1
names : N -+ NAME
dates Ny — DATE
hwm: N

Yi,j:1. . hwm e i #j = names i #£ nomes j

The additional state component hwm determines the portion of names and dates that Is in use: the
positions from 1 to hwm. The state invariant establishes that no name is recorded in these positions
mare than once.

The hirthday book has three operations. The first that we specify adds a person’s name and
birthday, inputs name? and date?, to nemes and dates,

— AddBirthdayl
A BirthdayBook1
name? : NAME
date? : DATE

Yi:1. hwm e name? # nomes 1
hwm' = hwm + 1
names’ = names & {huwm' — name?}
dates’ = dates & {hum' — date?}

This is a partial operation: name? can be added to names only if it is not already recorded there
in the positions from 1 to hwm. The preconditions of AddBirthdayl and FindBirthdayl, the pext
operation that we specify, are shown in Table 1.1.

The operation FindHirthdayl finds the birthday, output date!, of the person called name?.

__ FindBirthdayl
E BirthdayBook1
name? : NAME
date! : DATE

3i:1.. hwm e name? = names 1 A date! = dates 1

This operation can he successfully executed only if name? is recorded in nemes (see Table 1.1).
The last operation, Remind], retrieves the names of the people that have their birthday on an
input date today?. The outputs are an array cardlist!, which records these names, and a natural
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nurmber ncards! that identifies the section of cardlist! that is being used.

— Remindl
ZBurthdayBookl
today? : DATE
cardlist! : N, -+ NAME
ncards! | N

1:1 .. peards! e cardlist! 1} = { ; : 1. Awm | dates j = loday? ® ngmes
7

As opposed to AddBirthdayl and FindBirthdayl, Remindl is a total operation: its precondition
is true.

With the assumption that uames, dates, arrays, and natural unmbers are available in the
target programming language, we start the refinement of the operations. [n this stepwise process,
intermediary and fiual programs are written in ZRC-L, the language of ZRC. Besides the Z notation.
this language embodies specification and programming constructs typically found in refinement
techniques; it is an extension of Dijkstra's language of guarded commands [14], which we assume
to be known. Final programs are written with the nse of executable constructs only. Translating
them to an imperative target language should not be difficult, hut is not in the scope of ZRC.

The first step of the birthday book development consists of transforming the schemas that
specify operations into specification statements. This change of notation is the concern of the so
called conversion laws of ZRC. Here, we use that named §C ({basic conversion).

A specification statement has the form w : lpre, post], where w, the frame, is a list of variables,
and pre, the precondition, and post, the postcoudition, are predicates. This program cau change
only the value of the variables in w and, when executed from a state and with ioputs that satisfy
pre, terminates in a state and with outputs that satisfy post. By applying 6C to AddBirthdayl
{and then simplifying the precondition of the resulting specification statement), we obtain the spec-
ificaticn statoment shown below. For clarity, we stack the coujuucts of its pre and postcondition.
and those of many other predicates that follow.

AddBirthday 1

= bC

|' (Vi,]:l..hmeE#J#namesi#names; )
¥i1:1.. hwm e name? 3 names 1 '
¥Vi,7:1.. hwm' o1 5# 7= names’ i # names’ j
names, dafes, hum : ¥i:1l.. hwm e name? £ names 1 (i}
hwm' = hum + 1
ngmes' = names P {hwm' — name?}
detes’ = dates @ {hwm’ v date?}

As AddBirthdayl, this program can change the values of the state components. Its precondition in-
cludes the state invariant and the precondition of AddBirthdayl. The postcondition comprises the
invariant of the after-state and the predicate of Add8irthdayl. Altogether, the specificatiou state-
ment (i) and AddBirthdsyl specify the same operation. The advantage of writing AddBirthdayl
as a specification statement is that, even though they are abstract programs which, as schemas,
cannot be executed, specification statements are better suited for refinement.
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In ZRC, specifications (schemas, specification statements, and other constructs that we in-
troduce in Chapter 3} and designs, which mix programming and specification constructs, are all
regarded as programs. In this more geperal context, we can say that refinement is a relation
between programs. Informally, a program ps refines a program p, when p2 is acceptable as an
implementation {or design} of p;.

Refinement laws characterise properties of the refinement relation. The refinement process
consists of repeatedly applying them to derive an efficient and executable program from a speci-
fication. A conversion law is a refinement law that transforms a specification written in Z into a
program of ZRC-L. In general, they are applied at the beginning of the refinement process conly.

As an example, we present below the refinement law assig! (assignment introduction), which
can be used to refine a specification statement to an assignment.

Law assig! Assignment introduction
w, vl : [pre, post]
C assigl
vl = el
provided pre = post{ef/vl][_/']
Syntactic Restrictions
» ol contains no dnplicated variables;
e vl and el have the same length:
o ¢l is well-scaped and well-typed;
» el has no free dashed variables;

¢ The corresponding variables of vl and expressions of el have the same type.

The symbol C represents the refinement relation and, as we mentioned above, sssigl/ is the law
pname. Since the assignment vl := el potentially modifies the variables of o, they must be in the
frame of the specification statemnent. The proviso ensures that, when the precondition of the speci-
fication statement holds, its postcondition is satisfied if the after-state variables assume the values
established in of := el. To pnt it more simply, it certifies that this assignment really implements
the specification statement. The predicate post[e!/ul’][-/'] is tbat obtained by substituting the
expressions of el for the corresponding variables of v/’ and removing the dashes from the free vari-
ables of post. The syntactic restrictions guarantee that the assignment is well-formed, well-scoped.
and well-typed.

The operation AddBirthdayl can be implemented by an assignment whose intreduction can be
justified by an application of assig! to the specification statement (%).

(1) E assigl
hwm, nemes, dates 1= hwm + 1, names ® {hwm +1 — name?}, dates & {hum + 1 — date?)

As required, hwm, names, and dofes are in the frame of (i). Also, this list has no repetitions
and has the same length as Awm + 1, names & {hwm + 1 — nome?}, dates & {Awm + 1 — date?},
whose expressions refer only to variables in scope: either state or input variahles. Finally, these
expressions have the same type as the corresponding variables of hwm, names, dates,
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As to the proof-obligation ensned by the proviso of assigl, we observe that the second conjunct
of the postcondition of (¥) is in its precondition, and the last three conjuncts are the equalities that
characterise the assignment. Therefore, the interesting part of this proof-obligation is prompted by
the first conjunct and amounts to showing that the assignment maintains the state invariant. Since
the array names 3 {hwm + 1 — name?} coincides with names in all positions except hwm + 1, the
precondition of (i) (or, more precisely, the state invariant) guarantees that it contains no repetitions
in the positions from 1 tg hwm. Qur concern is, therefore, only with the introduction of rame?
in the posttion kwm + 1. The precondition, however, also states that name? is not recorded in
(1.. hwm) < names, and consequently its insertion does not lead to repetitions.

In general, the refinement of an operation comprises several applications of different laws. Pro-
gramming constructs are introduced gradually and their components are developed independently.
The refinement of FindBirthday] provides an example.

The specification statement obtained by applying the conversion law bC to FindBirthdayl,
which provides an alternative definition for this operation, is presented in the sequel.

FindBirthdayl
= bl
Vi,j:1.. hwm ei#; = names 1 # names j
date! : Ji:1.. hwm ¢ name?! = names § ’
J2:1.. hwm @ name? = names 1 A date! = dales t

(2}

Since FindBirthdayl cacnot chaoge the state, only the output variable is in the frame of this
specification statement. Its precondition includes the state invariant and the precondition of
FuwndBirthdayl. The postcondition, however, is simply the predicate of FindBirthdayl: by not
changing the state, FindBirthdayl trivially maintains its invariant which, therefore, does not need
to be enforced in the postcondition of {).

This operation can be implemented by an iteration that records in an auxiliary variable the
position where name? occurs in names, followed by a proper assignment to dete!. The declaration
of the auxiliary variable can be introduced by applying the vrbl (variable introduction) law to (13},
The resulting program is shown below.

C vrb!
[vark: N, o
Yiz:1.. hum e i# j = names t # names j
k, date! : d1:1,. hwm » neame? = names ¢ ’ <

di:1.. hum e name? = names 1 A date! = dates 2
1

This progrem is a variable block that introduces the auxiliary variable § of type N. The scope of
k is restricted to the body of the variable block: the specification statement obtained by adding &
to the frame of (1i). In the refinement of this program we can rely on the fact that & € VM. The
symbol on the right margin indicates the program that is refined subsequently: the specification
statement as opposed to the variable block as a whole.

The assignment to date! can he introduced by the fassigl {following assignment introduction)
law, which splits a specification statement into the sequential composition of another specification
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statement with an assignment.

C fassigl

di: 1., hwm e name? = names 1 ; <]
Ai:1l..hum e name? = names 1 A dates k' = dates i

dale! ;= dates k

Yi,j:l. hwmei#; = names i £ names j
k, date! : !

In order to introduce the iteration, we need to identify its invariant: a predicate whose validity
is established right before the jteration and that is preserved by it. In our example, a proper
invariant is the predicate below,

(Fi:1.. hwm @ name? =nemes 1) A(V1:1.. &k~ 1enome? # names i)

We can introduce this predicate in our specification hy splitting the above specification statement
into a sequential composition of two other specification statements with the use of sege/ (sequential
composition introduction). This law introduces an intermediate goal which must beestablished by
the first specification statement in the sequential composition and may be assumed by the second
one. The first specification statement may assume the precondition of the original specification
statement, and the second specification statement must establish its postcondition. In our example,
we take the iteration invariant as the intermediate goal.

C segefl
[ f ¥3,5:1..hwmei#;= nomes 1 # names j
Ji:1..hwm ¢ name? = ngmes 1 ’
k, date! : .
! Ji:1.. hwm e name? = ngmes 1 <
Yi:l.. k" —1ename? # names ¢
[ { 31:1.. hwm e name? = names 1
k, date! : Yi:l,.k—1ename? # names i (41)
L Je:1.. hwm o nome? = nomes 1 A dafes k' = dates i

The first specification statement above establishes the invariant. It can be refined to an assignment
as shown in the sequel.

C assigl
k=1

The proof-cbligation associated to this application of assigf is trivial, because the first conjunct
of the invariant is in the precondition of the specification statement and, when k' is 1_ the secand
conjunct is a universal quantification aver the empty set.

The law sP (strengthen postcondition) refiues a specification statement by strexgthening its
postcondition under the assumption that its precondition holds. We apply this law to (111) in order
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[[var k:N; o
k=1,
do name? #names k » k:=k+1od;
date! = dates k

Figure 1.1: FindBirthday] Implementation

to express its pestcondition in terms of the iteration invariant.

(152} C sP
Ji:1..hum e name? = names i
Yi:1..k—1ename? # names i
k. date! : Ji:1..hwm e name? = names i

Yi:1l.. k"~ 1ename? # names 1
name? = names k'

Applications of sP give rise to proof-obligations. In this case, we have to show that the ahove
postcondition implies the postcondition of {:i1), when its precondition holds. In order to conclude
from name? = names &' and dates k' = dates k' that &' is the 1 characterised hy the existential
quantification in the postcondition of (#ii), we have just to show that it is in the interval 1 .. hwm.
This follows from the observation that the precondition of (#:) states that name? occurs among
the first huwm elements of names, and k' is the first position of names where name? occurs.

The above specification statement is in a form appropriate for the application of the itl (it-
eration introduction) law, which introduces an iteration that preserves the invariant and, in this
case, keeps executing until name? = names k holds. In order to guarantee termination, we have
to identify a variant: an integer expression whose value is decreased by each step of the iteration,
but is bound below by 0. An appropriate variant for our examnpie is hwm — k.

C it

do name? # names k —
Ji:1.. hum  neme? = names i
Yi:l..k—1aname? # names 1
name? # names k
Ji:1.. huwm e name? = nemes 1
Vi:1.. k' —1ename? # names i
0< hum -k’ <hwm -k

k. date! :

od

The precondition of the specification statement in the body of the iteration includes, besides the
iteration invariant, its guard: name? # names k, which certainly holds at that point, as otherwise
the iteration would have not proceeded. Under this assumption, the task of this specification
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[var £:Nw

ncards!, k :=0,0;

do k # hwm —
k=k+1;
if dates k = today? —

cardfist!, ncards! 1= cardlist! © {ncards! + 1 3 names k}, ncards! + 1

[I daies k # today — skip
fi

od

Figure 1.2: Rermindl Implementation

statement, namely, decrease the variant while preserving the invariant, can be accomplished by
the assignment that increases the valne of k by 1.

C assigl
k:=k+1

Since name? is not in the first £ — 1 positions of names, and js not in its k-th position either, then
obviously name? is not in the first k positions of names. By increasing &, we certaioly decrease the
value of hwm — k. And since name? is among the first Awm elements of names, then hwm > &, so
that 0 < hum — (k + 1). These observations account for the proof-obligation that is generated by
the above application of assigf.

The implementation of FindBirthdayl that we have just derived is presented in Figure 1.1. For
the sake of conciseness, we do not refine Remindl, but in Figure 1.2 we present an implementation
for it that can be derived in ZRC.

The conversion and refinement laws that have been used in this section are presented in Ap-
pendix D. There we specify precisely the transformations that can be achieved by each of them
as well as the proof-obligations that they generate., The main subject of the next chapters is the
definition of a model that supports the derivation of these and many other laws.

1.2 Overview

The formalisation of ZRC is based on weakest preconditions. In the next chapter, we present a
weakest precondition semantics for Z which we construct from a relational semantics that has been
proposed by the Z standardisation committee. Although the weakest precondition semantics is
not surprising, its construction gives reassurance as to its adequacy and is itself of interest. To
begin with, we establish an isomorpbism between predicate transforms and a relational model that
has been used elsewhere to formalise the data refinement rules of Z. In second place, we compare
this relational model] to that nsed in the Z relational semautics and, finally, we define tbe weakest
precondition semantics. As it consists of a unique definition that considers schemnas that specify
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operations in general, compositional formulations for the weakest precondition of some schema
expressions are also provided in Chapter 2.

Chapter 3 concludes the semantics definition of ZRC-L by defining the weakest precondition of
its remaining constructs. They are similar to those of Morgan’s refinement calculus and, in speci-
fying their weakest precondition, we explain many assumptions of its formalisation. In Chapter 3,
we also introduce the definition that we adopt for refinement, and the scope rules of ZRC-L.

The formalisation of ZRC is highly based on that of Morgan’s calculus, however, our treat-
ment of procedures, parameters, and recursion follows Back’s approach. In Chapter 3, we uncover
a rather subtle apd unexpected relation between Morgan's and Back’s formalisis and the sub-
stitution operator that renames the free variables of a program, and show that Morgan's work
presents an inconsistency. As a consequence, even though most laws of ZRC concerned with the
development of (recursive or parametrised) procedures are similar to those of Morgan's calculus,
the model that we present in Chapter 3 to support their derivation is based on Back's work,

Yet in Chapter 3. we present the conversion laws of ZRC and exemplify their application. For
the sake of canciseness, we do not discuss each of the refinement laws individually: we concentrate
our attention on those that support procedute developments and data refinements. Several of
the laws that deal with procedures have no counterpart in Morgan’s calculus and formalise its
approach to recursion.

The application of ZRC in the refiuement of a small system has already been ilustrated in the
previous section. Three more sizeable examples are provided in Chapter 4. The ficst ane is a class
manager that King has used as & case study for his approach to the refiuement of 2 specifications,
The second example is part of a text editor for which a C implementation has been obtained
using a technique mostly based on verification rules. The third and final example is an Aitbus
cabin-ilumination system. Its developruent and that of the text editor suggest the introduction of
two additional conversion laws, which we present in Chapter 4 itself.

The last chapter presents pur conclusions, discusses some related works, and proposes directions
for further research. Finally, four appendices complement the material presented in Chapters 2
and 3. Appendix A explains the less familiar symbols of the mathematical notation employed
in Chapter 2, and Appeudix B presents proofs for some of the theorems introduced in this same
chapter. The weakest precondition semantics of ZRC-L is summarised in Appendix C. Lastly,
Appendix D presents the conversion and the refinement laws of ZRC along with their derivation.




Chapter 2

A Weakest Precondition Semantics
for Z

In the same way as a onmber of other refinement techniques [47, 48, 4, 45), ZRC is formalised in
terms of weakest preconditions (wp) [14], which are used to define both the meaning of ZRC-L
and the refinement relation. This chapter is concerned with the wp semantics of ZRC-L or, more
specifically, of Z. The remaining constructs of ZRC-L, which are not part of the Z notation, are
considered in Chapter 3.

In the next section we reproduce part of the Z relational semaatics; this work, which is presented
in [8) by the standardisation committee, is the responsibility of Brien. [n Section 2.2 we provide
an equivalent wp semantics for Z which is constructed with basis on the relational semantics
itself and on an isomorphism between weakest preconditions and relations. The wp semantics
is composed of a single definition that contemplates schemas that specify operstions in general.
In order to facilitate its application, in Section 2.3 we derive compositional formulations for the
weakest preconditions of some schema expressions. Finally, Section 2.4 discusses some aspects of
the wp semmantics and examines some related works.

2.1 The Relational Semantics

The part of the Z relational semantics presented in this section is that concerned with the definition
of schemas. As a wp semantics considers only the meaning of operations, and these are specified
in Z by schemas, we concentrate here on their definition. Basically, we introduce the definitions
used in Section 2,2. The complete specification is presented in [8].

The relational semantics is defined in a denotational style. It is based on an abstract syntax
and on semantic functions which map schemas, declarations, or predicates, for instance, to values
of a semantic universe. These functions are specified compositionally.
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2.1.1 Syntax

The abstract syntax of Z is partially defined below using a BNF-like notation. We write termipal
symbols enclosed in quotation marks and non-terminal symbols in itahcs.

Scherna = SConstruction
SConsiruction == ‘(" Decl *|” Pred ')’
Dect = SimpleDecl
| CompndDecl
SempleDecl =  VarName, VarName, ..., VarNeme '’ Ezp
CompndDecl == Decl ‘; Decl
SchemaTezt == SimpleSeT
| CompndSeT
SimpleScT = Decl
ComprdScT = Decl ‘|’ Pred

The syntactic categories Pred, VarName, and Ezp correspond to the Z predicates, variable names,
and expressions, respectively.

2.1.2 Semantic Universe

The semantic universe is based on ZF set theory. It comprises denotations for names, types, values,
and specifications as a whole.

The language used in the specification of the semantic universe {and of the semantic functions)
is defined in [8). It consists mainly of conventional mathematical or Z notation together with some
set and relational operators. The unusual operations used here and in Section 2.2 are enumerated
and briefly explained in Appendix A.

Names and Types

The paragraphs of a Z specification introduce names and associate with each of them a type. We
can distinguish different sorts of names: schema, variable, and constant names. Therefore, the
set Name, which contains all names that can be used in a specification, is partitioned by the
sets SchemaName, Variable, and Constant, which contain, respectively, all valid scheixa, variable,
and constant names. The set of given set names, which is called GivenSetName, is a subset of
Constant,

A typeiseither a given set, a power set, a cartesian product or a schema ty pe. As a cousequence,
Type, the set of all valid types, is partitioned into the sets Glype. Plype, Ctype and Stype. The
structure of Type is defined by the constructors givenT, powerT, cproductT' and schemaT.

givenT : GivenSetName —+ Glype
powerT : Type —+ Plype
eproductT : Typet —+ Clype
schemaT : Signafure —+ Stype

A given set type is constructed out of its name by givenT; a power set type is constructed by
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powerT from its hase type; cproductT constructs a cartesian product type out of the tuple com-
posad of its base types; finally, schemaT takes a signature and comstructs a schema type. A
signature is a finite partial function from Varigble to Type.

Each type is associated with a set of values, which is called its carrier set. This association is
established by a function named Carrer.

Elements

A pair formed by a type and a value of its carrier set is called an element, The set Elm, that
contains all these pairs, is defined as a relation between types and values.

Definition 2.1 Elm == Carrier § 3

The membership relation for elements (I) associates an element whose value is a set with
elements whose values belong to this set. The type in a set-valued element is a power set.
Definition 2.2 3 == (powerT~1x 3)

In this definition, (. x .} is not used as the traditional ZF operator; {powerT ™! x 3) relates a pair
formed by a power set type pt and a set s (a set-valued element) to the pairs formed by the base
type of pt and a member of 3. The definition of {_ x _) adopted here is presented in Appendix A.

An association of variahle names with elements is called a situation. The set Siluation contains
all finite partial mappings from Varigble to Elm.

Deflnition 2.3 Situation == Variable » Elm

The typing and value constraints in a generic definition (schema or constant) may be specified
in terms of its parameters. As a consequence, generic types and generic elements have to be
cousidered.

Generica

A generic type is either a type itself or a function. The type of a generic schema or constant is
represented hy a fnnction which defines the type of each of the schema or constant instantiations.
The type of an instantiation is determined by the value it ascribes to the parameters, The set of
all generic types is called GenType.

Definition 2.4 GenType == Type U U,.o(Plype™ — Type)

Similarly, a generic element can be an ordinary element or a function from tuples of set-valued
elements to elements. The set containing all set-valued elements is Pelm. In its definition, Elm is
viewed as a relation.

Definition 2.5 Pelm == Plype < Elm
The set of generic elements is GenElm, Its definition is very much like that of GenType.

Definition 2.6 GenElm == Elm U U, (Pelm" — Elm)

A declaration, predicate or schema, for instance, can he defined in terms of names that have
been previously introduced in the specification. As a result, their meaning depends, in general, on
the types and values of these names or, in other words, on the environment.
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Environments

An environment records a particular association of types and values with names. The set of all
environments, Env, contains all finite partial functions from names to generic elements.

Definition 2.7 Env == Name « GenElm

Environments and situations play a major role in the relational semantics of schemas. In what
follows, we reproduce its definition.

2.1.3 The Semantics of Schemas

The semantic function that defines the meaning of schemas is {-}™'9, which maps schemas to
relations between environments and situations. For a schema §, the relation {$)™'® associates an
environment with each of the situatious that assign elements to the components of 5 according to
its definition.

{S)™s : Env & Situgtion

As the definition of S may depend on the environment, different situations may be associated with
different eavironments.

The meaning of a schema {[} | P} is defined in terms of the meaning of its declaration —
(D)™ — and of its schema text — {D | P}*'. These are defined in the sequel.

(D | P = (DY (D[ PY™5 2)

The relation {0 | P}™ associates an environment p with each of its enrichments that include the
variables declared in [} and satisfying the restrictions in D and P. The composition {2 | P} 2
relates p to all subsets of these enrichments. The intersection rules out the subsets that are not
situations that assign values to precisely the variables declared in D.

The Semantics of Declarations

The function ()™ establishes the meaning of declarations. For a declaration D, (D)™¥ is the
relatiou thay associates an environment with all situations that assign values to exactly thase
variables declared in {7 in accerdance with its restrictions.

(D} Env & Situation

If the type definitions of D rely on the environment, then in general (D)*' relates different sets of
situations to different environments.

The definition of (_)*' is givea by recursion over Decl. The base case is a simple declaration
of the form ny,...,n, 1 9.

(ramm )™ = 175 {m 3, e B3 ()

The relation fs]*' defines the meaning of the set expression s: a function that associates an
environment with the element that represents the type and the value of s in that environment.
This element is related by {(m°, 3),...,{nm°, )} to every m-tuple of pairs of the form (n,, z),
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where i is the position of the pair in the tuple and z, an element of s. Finally, {...} associates
each of these tuples with the corresponding situation (set of pairs). Altogether, (ny,...n, & s)™
relates an environment to all situations that associate any value of s to each n,.

A compound declaration has its meaning specified as follows.

(Dr; Da)™ = {{Dn])™ {02)™) 5 1

The relation {{D;)™, (D)™} associates an environment p with the pairs of situations that relate
elements to the variables declared in D) and D; in a way that respects their definitions. The pairs
that are compatible as functions (in the sense that variables that belong to the domain of both of
them are associated with the same value) are related to tbeir union by L.

The set of names introduced by a declaration is known as its alphabet. This set is specified
by the function o, which is defined as shown below. Application of this particular function to a
declaration D is represented simply by juxtaposition: aD.

aln..... fim ¢ 8) = {n1,- .., "}
Q(Dl; D) =abDUals

The alphabet of a simple declaration contains exactly the variable names ry,....nn that it in-
troduces. In the case of a compound declaration, its alphabet is the union of the alphabets of its
COpPOnENts.

The Semantics of Schema Texts

The meaning of schema texts is defined by {_}*'. This functiou associates a schema text with a
relation between environments: for a schema text 5¢, {St)™ associates an environment with all
its enrichments by situations that assign elements to the components of 5t in accordance with its
definition.

{St}* : Env & Env

As in the case of schemas and declarations, the definition of 52 may depend on the environment
and, that being so, different environments may determine different sets of situations,
The definition of {_)** is by recursion over SchemaTest. The base case is a declaration.

Oy = 4.0 e

The relation {D}* associates an environment p with each of the environments that can be obtained
by enriching p with a situation that is related to it in (D).
The semantics of a compound schema text is defined as follows.

{D| P} = (D} & (P}

The set {P]* contains the environments that satisfy the predicate P. While (D}, as mentioned
above, relates an environment to each of its enrichments that takes the declaration D into account,
{D | P}* relates that environment just to those of these enrichments that satisfy P.
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The Semantics of Predicates

A predicate P hes its meaning defined by the set {P]}*, which, as already said, contains the
environments in which P holds. This set is defined as the intersection of the set of environments
in which P is well-typed and the set of environments in which P is supported. A predicate is
supported in an environment if it is true in that environment. For example, - (z € z) is supported
in all environments, since the axiom of regularity ensures that z € 1 is false. Nonetheless, - (z € z)
is not well-typed in any euvirgnment, so that its meaning is the empty set of environments.

Here, we present only the definition of {P}", the set of environments in which P is supported,
and actnally restrict ourselves to negations, conjunctions, implications, and existential and univer-
sal quantifications, These are the definitions used in Section 2.2.

An environment supports a negation —~ P if it does not support P.

(~ P} = Ean\{P}”

The set of environments in which a conjunction P, A P, is snpported is the intersection of the set
of environments in which P; is supported with the set of environments in which P; is supported.

{P1 AP} = (P} N {P]}”
An implication P, = P2 is supported in any environtment that snpports = 2, or P,
l[PI = Pz]}v = {I"* P1BVU ‘EF!I}V

Existential quantifications have the form 3 5t e P, where 5t is a schema text and P is a predicate.
An environment p supports a predicate 3.5t » P if P is snpparted in some enrichment of g that
takes the definition of St into account.

{35t e P} = dom{{St}™ & {P}*)

As previonsly explained, {5t} associates an environment p with all its esrichments that consider
St. The relation {St}* o {F]}" associates p only to those enrichments that support P; its domain
contains exactly the environments that support 35t ¢ P. Universal quantifications are defined in
terms of existential quantifications.

{¥Ste PI¥ =~ 35t e - P}

This definition relies on de Morgan's law; Y5t e P is supported in an envircnment p if P is
supported in all enrichments of p that refiect St.

This relational semantics is, as pointed ont before, a subset of that specified in [8]. In the next
section we present an equivalent weakest precondition semantics for Z.

2.2 A Weakest Precondition Semantics

In [14], where weakest preconditions were first iatrodnced, they are used to define the semantics of
a programming language. A semantics based on weakest preconditions consists of the definition of
a function called, in general, wp. This function determines, when applied to a program P and to
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a predicate 3, the weakest precondition that guarantees that P terminates in a state that satisfies
1. The predicate v is called a postcondition.

In this section we construzct a wp semantics for Z or, more precisely, based on the relational
semantics presented in the previous section, we determine the result of applying wp to aschema that
specifies an operation. This is a predicate transformer: a function from predicates to predicates.
We establish a correspondence between relations and predicate transformers, and use {(_)™5, the
semantic function that defines the relational model of a schema, to specify its weakest precondition.
The wp function so defined specifies a weakest precondition semantics for Z that is equivalent to
its relational semantics in the sense precisely defined by the correspondence betweeu relations and
predicate transformers.

Firstly, we consider an alternative relational model where initial states and inputs are related
to final states and outputs. The correspondence hetween this model and predicate transformers
ig examined in a gemeral setting rather than in the particnlar context of Z. Secondly, we present
a way of expressiug the relational model defined by {_)*'5 for schemas that specify operations in
terms of the alternative relational model. Finally, we define wp.

2.2.1 Predicate Transformers and Relations

Weakest precondition semantics is hased on the principle that the meaning of a program is properly
characterised only if, for every postcondition #, the preconditions that guarantee termination in
a state that satisfes y can be identified. In other words, wp is supposed to be well-defined for all
posteonditions . For this reason, we impose no restriction over their sets of free variables, which,
in the context of Z, may include those that represent the final state and the outputs, and those
representing the initial state and the inputs as well.

At this stage, we represent predicates as sets. We consider a set [ of all possible initial states,
and a set F of all final states. Inputs are regarded as part of the initial states, and outputs, as
part of the final states. Predicates over initial states (and inputs} are elements of PJ, with &
representing false and /, true, for instance. Postconditions, which are predicates over the initial
and final states, are represented as elements of P(J x F), or rather, as relations between initial
and final states, Altogether, the domaiu of predicate transformers that we consider is the set of
total functions P(/ x F} = P/

In contrast with Dijkstra’s wp, the postconditions to which these predicate transformers can
be applied represent state transitions instead of fiual states. They determine, when applied to
a postcondition ¥, the weakest precondition that guarantees that the program that it represents
perform the state transition specified by .

As a matter of fact, we identify two healthiness conditions and consider only the predicate
transformers that satisfy them. The first of these healthiness conditions is positive conjunctivity.
A predicate transformer pt is positively conjunctive if it distributes over non-empty intersections:

ptiN{reSi Hh=N{1eptS }providedl {15 } #@ {2.1)

Except when traditional mathematical notation is used, function application is represented by a pe-
riod, so that, for instance, pt.(M{ ¢ « 5; }) is the application of pf to the postcondition M{ = » 5; }.
At this point, we depart from [8], where function application is represented by subscription. This
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notation is not convenient for our purposes because, in many cases, we apply this operator re-
peatedly and to lengthy expressions. Positively conjunctive predicate transformers correspond to
operations that do not present angelic nondetermintsm [6]. Mouotonicity with respect to C is a
consequence of positive conjunctivity [15].

The second healthiness condition is concerned with the specification of initial states in post-
conditions:

iept{{i} x FljuS)=1ept.(1} x Fy)forany F CF, S C I\ {i})x F (2.2)

If i belongs to pt.{({i} x F} US), then we can conclude that p? either is miraculous at : or,
when executed in 1, is guaranteed to lead to a final state iu Fy . In both cases, ¢ must helong
to pt.({1} x F|}, An operation is miraculous at a state § if it can achieve whatever postcon-
dition is required, including false, when executed from i [47). Monotonicity implies that, since
{7} x 7y € {{1} x M) U 5, we can actually strengthen (2.2) to an equivalence,

The lemnma below identifies a property of the predicate transformers that satisfy both {2.1)
and (2.2}, This result is used later on in this section.

Lemma 2.1 For every predicate transformer pt that satisfies both (2.1) and (2.2). initial state
i € I, and sel of final states Iy C F,

iepi{{i}x Fy=tepl(I xF)
Proof
(=) By {i}x F1 €I x Fy and monotonicity.

(<) By Ix Py = ({1} x FOU{(I\{:}) x F) and (2.2).
m]

The relational model that we consider at this point is [} + F|, the set of relations between
I, and F,, where I, is the set JU{Ll} and, likewise, F, is FU{L}. In this model, a relation
associates an initial state § with a final state f when the execution of the operalion that it represents
may lead to state f from state i. The distinguished state L represents nontermination: it is the
state reached when an operation fails to terminate. A partial relation represents an operation that
is miraculous at the states that are not in its domain.

An operation that (for a particular initial state) always fails to terminate is not regarded as
being any worse than another one that may fail to terminate just sometimes. Consequently, there
is no interest in distinguishing these cases and we further restrict our model by assurning that,
when an operation may fail to terminate, it may also terminate and establish any arbitrary result.
Formally, we assume that the relations R of our model satisfy the following healthiness condition.

Vi:L e LeER({}D=RI{}D=F, (2.3)

In words, if, when executed in a state ¢, R may lead to L, then it may lead to any final state
whatsoever.
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When an operation fails to terininate, it is not possible to execute another operation and recover
from this situation. Therefore we impose yet another restriction on the relations of our model:

LRL (2.4)

This healthiness condition gnarantees that, whenever an operation is executed after some other
operatiou has failed to termminate, it also leads to nonterinination.

The domain of predicate transformers and the relational model we have just presented are
isormorphic. In order to prove this result, we define the weakest preconditiou of a relation; define a
function that gives a relational semantics for predicate transformers; and show that these functions
are each other's inverse.

The function r2wp can be applied to a relation R and to a postcondition § to determine the
weakest precondition that guarantees that R establishes 5. Its definition is as follows.

Definition 2.8 For every relation R and postcondition S,
r2wp R.S = dom (R 37)

By considering R\ §, we identify all possible ways in which R may fail to establish 5. Therefore,
the complement of the domain of this relation contains exactly those initial states in which the
execution of R is guaranteed to achieve §. Whatever postcondition § is considered. the states that
are uot in the domain of R are always included in dom({R \ S). This is in accordante with our pre-
vious observation that R is miraculous at these states and therefore can achieve any postcondition
required.

By way of illustration, we consider [ = (i), 5,43} and F = (f1, fa, fs}. If R is the relation

{ (J_‘l)‘ (i!fl)! (J-'fﬁ}v (*vai!)u
(i) G,
(. ) }

we can deduce that r2wp. R.{(x, f), (i3, fs)} is equal to {iz,43}. Indeed, if executed from L, R is
pot even gnaranteed to terminate, and from 1|, it may achieve f; as well as fo. Oa the other hand,
R is miraculous at # and, if executed from g, it is guaranteed to reach f.

The theorem presented below shows that the predicate transformers defired by r2wp satisfy
the healthiness conditions we proposed above.

Theorem 2.1 For every relation R, rw2p. R sofisfies the healthmness conditions (2.1) and (2.2).
Proof

Healthiness condition (2.1):
r2up. R{N{ie 5 })
=dom{R\ (N{ie*5 }) [by definition of rZuwp]

=dom U{ e R\ S } [by a property of sets]

=U{iedom(R\ S, } {by a property of dom)
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= 7 edom(R\ S) } [by a property of sets}
=MN{ i r2up.R.S; } [by defivition of r2wp)

Healthiness condition (2.2):

i € r2up R{{i} x F)US)

= ¢ € dom(R\ (({i} x Fr}u sy [by definition of r2up]
=i gdom(B\ ({1} x FLILS)) [by a property of sets]
={i}aRC({i} x FYUS [by a property of sets]|
={i}aRC {i} x Ay by 8 C (J\ {iP) x Fi
=4 € r2up.R.({i} x F1) [by definition of r2wp and the previous steps]

0

The relation corresponding to a predicate transformer is determined by wp2r. The definition
of this function is presented in the sequel.

Definition 2.9 For every predicate transformer pt,
wp2rpt={i:0; f: Flvept (I x{f.1}}

The postcondition [ x {f, L} simply specifies all final states different from f, since no particular
initial state is determined. The predicate pt.(f x {f, L]) characterises the initial states in which
execution of pt is not guaranteed to avoid f or, to put it wmore simply, the initial states in which
execution of pt may lead to f.

For every monotonic predicate transformer pf, the relation wp2r.pt satisfies the healthiness
conditions {23) and {2.4). This can be proved by relying on the definition of wp2r and by
observing that pt.{f x {1}) = pt.(J x F} and L is not in the range of predicate transformers. For
the sake of canciseness, we do nol present the details here.

The theorems that follow establish that r2wp and wp2r are each other’s inverse, and therefore
establish ap isomorphism between the relational and the predicate transformer model.

Theorem 2.2 For every predicale iransformer pt that satisfies the healthiness conditions (2.1)
and (2.2},

r2wp. (wp2r.pt) = pt
Proof For every postcondition 5,

r2up.(wp2r.pt).§
= dom{(wp2r.pt) \ $) [by definition of r2wp]

=dom({v:fy; f: FL|iept( x {f,LD) J\8) [by definition of wp2r)

=dom{ i:/y; f:F (i, flgSniept{fx{f,1})} [by a property of sets]
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={i: 7 |3f:Sq{iDesept.Ux{f, L))}
={i: L |(f:SQ{JDereptlIx{, LN}
={i:IleeN{ /ST Tepttd=xT 1N}
={i: I lreptN{S ST} DeIx{f, 1} ]}
={i:l 1€ pt.(IxS({i} D)}
={s:|iept{i} xSI{} D))

[by definition of dorm]

[by a property of sets]

[by a property of sets)

by L € S {i} ) #2 ard (2.1)]
[by a property of sets]

[by Lernrna 2.1}

={1:I|i€ptS} [by § = ({i} x 8 {i} D) U ({i} @5}, and (2.2)]

= pt.S

[by a property of sets]

w}

Theorem 2.3 For every relation R that salisfies the healthiness conditions (2.3) and (2.4),

wp2r.{r2up.R) = R

Proof
wp2r.{r2uwp.R)
={did; f:F|i€r2upR(Ix{f,1})}

={£:IJ_;f:FJ_|i€d0m(R\(Ix{f,J.}))}
={i:I; f:FL)iedomB\UI x{,1)}

={id; f:FLjicedom(({L} aR)U(R>{f,1})) }

={i:I;;f:F |i=1lviRfviR1l}
={i:I;f:F |i=1ViR[}
={i:I fFL]iRS})

=R

[by definition of wp2r]

[by definition of r2wp]

[by a property of sets]

by RC I, x Fy)

[by properties of relations]
[byi RL=iR [, by (2.3)]

[by i=L1=1+ R f, by (24) and (2.3)]

[by aproperty of sets]

w]

In the next section, we show that the model used for schemas that specify operations in the
relational semantics of Z is isomorphic to a model defined in terms of an instance of the relational

model we have presented above.

2.2.2 The Different Relational Models

The Z relational semantics models schemas as relations between environments and situations. In
particular, schemas that specify operations are modelled by relations Mg that have the property
below, where St, St', Inp?, and Out! are sets which, together, contain all the scherna components.
The set 5S¢ contains the names of the variables that represent the state comporents, and St’, the
variable names that are formed by suffixing a dash (') to the names of S they represent the
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components of the after-state. The sets frp? and Cut! contain the names of the input aud output
variables, respectively.

Ys:ranMpwdoms = SEUSE U Inp? U Out! (2.5)

A relation between environments and situations models a schema Op by associating, with an envi-
ronment p, the sitnations that represent possible assignments of types and values to the components
of Op, according to its own definition. The domain of these situations is always the same: the
components of Op. This is basically the property asserted by (2.5), which considers schemas whose
components are the variables in St St' U Inp? U Qut\.

The alternative model that we propose for these schemas consists of functions from environ-
ments to relations. In this model, the function that represents a schema Op associates, with an
environment p, the relation that models the operation defined by Op in p. The relational model
used is an instance of that presented in Section 2.2.1. The particular sets of initial and final states
that we consider are [StInp and FStOut, which we define below.

IStInp = { & : Situation e« dom s = St U Inp? }
FStOut ={ s : Situation » dom s = S’ U Out! }

Altogether, the model that we suggest is a subset of Erv — {[Stinp, & F§!Out, ), where Enuv is
the set of environments defined in Section 2.1.2. The functions that we consider have only relations
that satisfy the healthiness conditions (2.3) and (2.4} iu their range. Moreover, since miraculous
operations camnot be specified in Z [42], these relations are total as well.

In what follows, we show that this model is isomorphic to that used in the relational semantics of
Z. Firstly, we define a function r2f that transforms a relation between environments and situations
into a corresponding function from environments to relations between situations. Secondly, we
define f2r, which transforms a function from environments to relations back into a relation between
environments and situations. Finally, we prove that r2f and f2r are inverse to each other, if applied
to relations or functions that satisfy the previously mentioned restrictions.

The definition of #2f is presented below,

Definition 2.10 For cvery relation Mg between environments and siluaiions, and environment
0.

r2f Mrp = {isi:IStInp,; fso: FStOut, «
(39 Srtuation e p Mp s A s =im U fso) V (2.6)
— (35 Situation ® p Mg 5 A isi C a) (2.7)
1

provided p ¢ dom Mg,

The domaiz of the function r2f.Mp is that of Mg. For every environment p in the domain of Mg,
the relation r2f. Mg.p is defined by considering the situations related to p in Mg. Each of them
assigns types and values to the before and after-state, input, and ovtput variables, and describes a
possible behaviour of the operation, when executed in the initial state and with the inputs defined.
All pairs of situations from IStInp and FStOut that can he abtained by splitting these situations
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are associated iz r2f.Mg.p - disjnnct {2.6) in Definition 2.10. Moreover, if a particular situation
tsi of IStIng, is not included in any of them or, in other words, the operation aborts {does not
terminate or terminates in an arbitrary state) if executed from the state and with the inputs
specified by iss, then it is assoclated in r2f.Mg.p to all situations of FStOut; — disjunct (2.7},

The relatiou r2f.Mpg.p is total since, for any situation isi of IStinp, , either it is included in
a situation of Mg( {p} || - disjunct (2.6) - or it is not - disjnnct (2.7). If it is included, it is
related in r2f.Mg.p to sitnations fso that are also included in situations of Mg{ {p} |. Therefore,
isi cannot possibly be related to 1. On the other hand, if ist is not included in any situation of
Mg{ {g} ). then, as already reinarked, it is related to all situations of F5I0ut;. In conclusion,
r2f Mpg.p satisfies the healthiness condition (2.3). Finally, since 1 is not inciuded in any situation of
Mz( {2} ], we conclude that it is refated to 1 in r2f.Mg.p, and so, the healthiness condition (2.4)
is satisfied by this relation as well.

The function f25 is defined in the sequel.

Definition 2.11 For every function Mp from environmenis to relations, environment p, and sit-

ualion s,
p (farMp)s =
L& (Mp.p)) {(StL Inp?) s} | A (2.8)
Aisi: IStinp; fso: FStOut | (isi, fso) € Mp.pe s =isi U fso (2.9

provided p € dom Mp.

An environment p in the domain of My may be related by f2r. My to a situation s only if the inijtial
state and inputs defined by s are not related to 1 in Mp.p or, to put it another way, the operation
is guaranteed to terminate when execnted in tbis state and with these inputs - conjunct (2.8) of
Definition 2.11. In this case, if s can be ohtained by combining situations isi azd fse related in
Mg .p ~ conjunct (2.9), then p (f2r Mp) s holds.

A direct consequence of the definitions of [St/np and F5¢0ut is that all situations in the range
of f2r.Mr have domain §tU Inp? U §t' U Qutl. In other words, f2r.Mp satisfies the healthiness
condition (2.5).

As we have already hinted, r2f and f2r are each other’s inverse. This is proved hy the theorema
below.

Theorem 2.4 For every function Mg from environments to total relations betveen situations of
IStinp, and FStOut) that salisfy the healthiness conditions {2.%) and (2.4),

r2f.{fer Mp) = Mr

Proof For every environment p in the domain of My,
r2f.(f2r.Mp).p
= { 151 : IStinpy; fso: FStOul, [by definition of r2f]
(39 : Situation & p (f2r.Mp) s A 3 =151 U fso) V
~ {35 Situation » p (f2r.Mp) s Ais1 C s)



Chapter 2. A Weakest Precondition Semantics for Z

= { dst : ISthnp,; fso: FStOut) [by definition of f2r]
{3 : Situotion »
LE (Mp-p) {(S1U Inp?) < 6} ) A
(Jisdy : IStInp; fsoy : FStOut | (151, fsor) € Mp.p e s = 1511 U fsop) A
s=1s U fs0) V
= (Js: Situalion e
L (Mpp)( {(SLU Fnp?) <5} b A
(3 18y : [Stinp; fso1 : F510ut | (isiy, fso1) € Mp.pe s = isty U fso) A 1si C 5)
}
= { isi : [Snp,; fso: FStOut, » [by (35i U fso = isiy U fsoy) = (isi = isy A fso = fso;)]
(Lg (Mp.p)({isn} ) A lisi,fso} € MppAisi#LAfso#£ L)V
— (35 : Sttuatson »
L (Mpo) {(StU Inp?) a5} b A
{Jisy : IStinp, fso, : FSIOut | (isé, fs01) € Mp.p e s = 151 U fsoy) A st C 5)

1
= { wsi: ISthnp,; fso: F3t0ul, « by 5 = 153 U fs0) = (is1 C § = isn = ist}]
(L& (Mp.p){ {350} D A (ist, fso) e MppnisiALAfoo £ L) v
~ (L& (Mp.p) {is} D A (3fso, : FStOut » (isi, fso;) € Mp.p) A iss £L)
1
= { isi : IStinp; fso : FS10ut, » by predicate calculus)
(191, fs0) € MppA fso £ L)V LE (M p)( {ine} v
— (3 fs01 : FStOut » (isi, fso) € Mp.p) Visi =L
1

={ i IStinpy; fso : FSLOut o [by (151, f30) € Mp.p A fso = L = L € {Mp.p}{] {isi} ]]
(153, fs0y € Mp.pv L€ (Mp.g)( {ssi} ) v
A (3 fs0; : FStOut e (ist, fso)) € Mpp) v isi= 1

}
= { st: IStinpy; Jso : FS510ut) e [by isi = L= L € (Mp.p)] {251} ], by (2.4)]
(151, f50) € Mp.pv L€ (Mp.p){ {isi} | v ~ Afso1 : F5tOut » (ist, fsor) € Mp.p
}

= { i [Stinp); fso: FStOuty » (isi, f50) € MrppvLle (Mep)] {3si} ] }
[by Mp.p is totall
={ isi : IStInp.; fso: FStOut, » {iss, fso) € Mr.p }
[by L & (Mp.p){ {isi} [ => (153, fso) € Mp.p, for every fso, by (2.3)]
= Mr.p [by a property of sets]
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Theorem 2.5 For every relation Mg between environments and siluations that satisfies (2.5),

for.(r2f Mg) = Mg

Proof For every environment g in the domain of Mg, and situation s,

o (f2r.(r2f . Mg))

=L (r2f Mrp)| ((StUnpT) as} ) A [by definition of f2r)
Jisi : IStinp; fso: FStOut | (isi, fso) € r2f Mp.p® s = 1si U fso
=~ ({35 : Situation e p Mg s A sy =(StUInp?)asuU L)V {by definition of r2f]

~ (Is : Situatton e p Mg sy A (St Inp?) as C o)) A
isi : IStInp; fso: FStOut
((Ts, : Situation e« p Mp 31 A s =1si U fs0) V
- {35 : Situalion » p Mp 51 Aist C 51)) A
s = isi U fso
= (35 : Situation ¢ p Mg s A (St UTnp?) 95 Cs) A [by L is included in no situation)
Jise : [Stinp; fso: FS1Out e
((3 81 : Situation e p Mg 51 A 5 = int U fso) v
- (35 2 Situalion e p Mg s) Aisi C 1)) A
s =13t U fso
= (33 : Situction e« p Mg 51 A (StUInp?) 93 C 51} A
(p Mg s v — s : Situation e p Mp 5y A (St UInp?) a5 C 5)
[by s = tsi U fso = (ist = (St U Inp?) <5 A fso = (S'U Out!) a 3)]

= (33 : Situgtion e p Mg sy A(StUInpTY s S s)Ap Mp s [by predicate calculus]
=p Mgs [by p Mg s =>p Mg s A{StUlnp?) a5 C 5]
=

In the next section, we use r2f and r2wp to determine the weakest precondition of a schema that
specifies an operation in an arhitrary environment p.

2.2.3 The Definition of wp

Every scherna that specifies an operation may be written in the form (d; d’; di7; do! | p}, where d
declares the variables that represent the state components, 4’, the corresponding dashed variables,
di?, the input variables, do!, the output variables, and p is a predicate. In order to determine the
weakest precondition of these schemas or, in other words, the weakest precondition sernantics of
Z, we consider initially the mode) assigned to them by {L}**s. If Op is a schema that specifies
an operation, r2f.{0p)™S defines it as a function from environments to relations between situa-
tions. For an environment p in the domain of this function, r2f.{p)™%.p is the relalion between
situations that represents Op in this environment. Finally, r2wp.(r2f.{0p}*'3 ) is the weakest
precondition of Op in p.
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The expression r2wp.(r2f.(Op}*™'$.p) is @ function from sets to sets: a predicate transformer
as defined in Section 2.2.1. Nonetheless, for practical reasons, we want to define wp as a function
from Z predicates (elements of the syntactic category Pred) to Z predicates. With this aim, we
define an interpretation for them as sets: a function [.], which specifies a set representation for Z
predicates in p.

In order to define this function, first we define a set interpretation for declarations: another
fupction which we also name -].

[} = { s: Situation » o {d}™s}

The relation {d})* associates p with all situations that assign types and valnes to the variables
declared by d according to its definition. These are the situations that characterise d.

In defining a set representation for the Z predicates, we consider only those predicates that
are relevant here. A predicate p over the variables defined in p and the alphabet of a declaration
d; d'; di?; do!is represented by a set of pairs of situations from [d; di?} and [d’; do!].

[Pl = { in:{a; dr7]; fso: {d’; dol] | p B isi & fso € {p}™ }

As explained in Section 2.1.3, {p}™ contains all the environmeuts in which p is satisfied. A pair
{isi, fsv) of situations belongs to [p] exactly when the environment p @ isi 6 fso belongs to {p}"*
or, in words, exactly when p is satisfied in p D ist & fso.

For a predicate p over the variables in p and the alphabet of d; di?, we have the following very
similar definition.

Ipd={w:[d; &?] | p2rsi € {p}™ }

In this case, pis represented hy a set of situations instead of a set of pairs of situations.

The set representations of conjunctions and implications invoiving predicates over the variables
in p and those in the alphabet of d; d'; di?; do! can be expressed compositionally in the usual
way. This is established by the lemma below-

Lemma 2.2 For all predicates p and g over the varigbles in the domuein of p and these in
a(d; d'; di?, do"),

[ Aql=1plnld
Ir=d=1plu]a]

Proof Forthe sake of brevity, we consider just implications; the proof for conjunctions is similar.
As mentioned in Section 2.1.3, {p}™ is the conjunction of the set of environments in which p is
well-typed with the set of environments in which p is supported. Here, however, we consider only
predicates ihat are well-typed in the environment p and in view of the declarations d: d’; di?, de!.
More precisely, we consider only predicates that are well-typed in any environment p & 1s1 & fso,
where tsi and fso are situations that belong to the set representation of d; di? and d'; do!, respec-
tively. For such a predicate, p @ és1 & fso € {[p}™ is equivalent to p & isi & fso € {p]}”, where, as
explained in Section 2.1.3, {{p]}” is the set of environments that support p. This fact is used below.

[p =14}
= {w:[d; di?}; foo: [d; do!] | p & isi @ fso € {p= g} } [by definition of [-]]
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= { iss:|d; di?}; fso:[d'; dof] | p b isi® fso € {-p}" L {q]}" }
[by the above comment and the definition of {_}*)
={ ist: [d; di7]; foo:[d'; dol] | p @ isi © foo € Env\{-p}” U {q}" )
[by definition of {-I*

={ si:[d; di?); fso: [d'; dol] | p@isi @ fro € {p}¥ } U {by a property of sets

{ist: [d; di?]; fso: [d'; do!] | p S in & fso € fig]}" }
=[plu 14l by defnition of [_]]
O

The next lemma provides a compositional formulation for the sel representation of existential
quantifications of the form 3d'; do! « p and universal quantifications of the form Vd'; do! e p.

Lemma 2.3 For every predicafe p over the variables in p and those in a(d; d; dil; doY),

[34'; do' e p] = { isi: [d; di?]| {3 fso: [d'; dolf e (isi,fs0) € [p]) }
[Vd'; dolep] = { si:[d; d?]|{Vfso:[d"; dol] e (1si,fs0) € [p]) }

Proof For the sake of brevity, we consider just universal qnantifications; the proo! for existential
quantifications is simpler.

fvd'; do'ep]
= {150 : [d; di?] | p@is € {Vd'; dole p}™ } [by definition of [ ]
= {si:[d; di?] | pDisi € {¥d'": dole p}’ }

[by ¥ &’; do! e p is well-typed (see comment in the proof of Lemma 2.2]
= { s d; di?] | p@isi € {- 3d'; do's ~p}” } {by definition of { }"]
= {isi: [d; di?] | = p& isi € dam({{1, {d'; do!)*)3D) > {~ p}*) } [by definition of {_}"]
={ ist: [d: di?] |~ 3fso: Situstion e p@ 2sifd’; do)"fso A p D isi @ fso € {- p]}¥ }

[by properties of relations]
= { isr: [d; di?] |~ 3fso: Sutuation e p (d'; dol)*fso A pbisi & fso € {- p}” }
[by the variables of a(d; di?) are mot free in d; do!)

= {isi:[d; €i?) |- Ifs0:[d"; dol] e p&isi@ fso € {~p}” } [by definition of [_}}
= {isi:[d; dt?]] - 3fso:[d'; dol) e~ pDisi® fs0 € {p]}” ) [by definition of { "]
= { st : [d; di?)| = 3fse: [d"; dot] » — (ds3, fs0) € [p] } [by definition of []]
= {isi : {d; di?)| ¥V fso:[d'; do'] e (isi, fs0) € [p] } [by predicate calculus)

0

The two lemmas above are used in the sequel in the proof of Theorem 2.6.
Below we consider a postcondition 4% expressed as a Z predicate and define (the set represen-
tation of} wp.Op.v, for an arbitrary schema Op that specifies an operation.
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Definition 2.12 For every schema {d; d'; di?; do! | p), cnuironment p, and postcendition 4,
[wp.(d; d'; di?; do' | p).g] = r2uwp.(r2f.{(d; d'; di?; do!| p)DMS.p).[¥)

The environment is an implicit parameter of wp. As a conseguence of Definition 2.12, for every
environment p, the predicate transformer that wp associates with a schema (d; d'; di?; do! { p)
that specifies an operation is equivalent, in the sense precisely defined by r2wp and r2f, to the
relational model of this schema specified in the relational semmantics of Z.

Theorem 2.6 in the sequel presents a definition of wp in terms of Z predicates. Its proof relies
on Lemma 2.4, which identifies properties that characterise the representation of a schema that
specifies an operation in the relational semantics of Z.

Lemma 2.4 For every schema (d; d'; di?; dol | p), environment p and sifuation s,
e §id; d', &% dot | p)™S s =p (d5 ' di?; do)M 5 A (p@ s) € [P}
Proof
p {(d; dfy dit; do! | pi)™S s
= (p,s) € (d; d'; di?; dol)™ N ({d; d'; di?; do!| p}™ 5 2) [by definition of {J™*]
=p (d; d% di?; dol)™ s A3o: Enve (p,o) € {d; & di?; do! | p)" AsCo
[by properties of sets and relations]

=p {d; & di?; do!l)™ s A [by definition of {_}*]
Jo: Ew e (p,o) € ({1,(d; 45 di% do)™) s @) {p}* AsCo
=p (d; d; di?; do')™ 5 A [by properties of relations]

Ao : Env e (Jv: Situation » p (d; d; di?; do')P vAo=pdv)Aac e p}Y AsCo
=p (d; &; di?; do!)™ s Ado:Enveag=pdsAce o}
[by doms = domv = afd; d'; &i7; do') andso o =p & v = (s Co =5 = v}
=p (d: &' di?; dol)™ s A (p®s) € P} [by predicate calculus)
m]
The operation (d; ¢'; di7; do!| p) is guaranteed to terminate exactly when there is a final
state and outputs that satisfy p. Furthermore, it is guaranteed to establish + upon termination
if, whenever p holds, so does 1. In the theorem below, termination is raptured by (34; dols p).
Correctness or, more precisely, the establishment of 4. is captured by (v d'; do! e p = ¥).
Theorem 2.6 For every schema (d; d'; di?; do!| p}, and postcondition 1,

wp.{d d'; di?; do!| ply =(3d'; dol e p) A(Vd'; dolep =)

Proof We assume that {d; d’; di?; do!| p) is named Op.
[wp.Op-4]
= r2up.(r2f.{Op)™5.0).[¥] [by definition of wp]
= dom{{r2f.(Op)"s.0) \ [¥]) [by definition of r2wp]
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[l

dom({ isi : ISthip); fso: FSIOut, « [by definition of r2f]
(35 : Situation e p (Op)™5 5 A s =isiL fio) v
— {35 : Situation » p (Op)™S s A i Cs)

N

dom({ isi : [Stinp; fso: FSIOut, e
— (3 : Situation » p (Op)™'S s Adsi Cs)

N [¥D n

dom({ #si : IStInp; fse: FStOut, «
(s : Situation e p (Op)™S 5 A s = 151U f50)

D [by properties of sets and relations]

dom ({ 8% : IStinp,; fso: FStOut) e
— (s : Situalion » p {Op)™5 5 Adsi Cs)
I\ [¥] 5 (FS5t0ut, x FSt0Out ) N
dom ({ ist : IStInp; fso : FStOut) e
(35 : Situation « p {OP)™S 5 A s = w1 U fso)
N [¥] 3 (FS5tOuty x FStOut,))

[by dom R = dom (R § U/), where U is the universe relation|

dom { i8% : IStinp,; fso: FS(Outl)
Jifso: FS10ut| »
~ (35 : Situation e p (Op)™5 5 A isi C 3) A (isi, ifs0) € [v]
}
dom { 18 : [Stinp); fso: FSiOut|
difso : FSIOut,
(35 : Situgtron & p (Op)™5 s A s = i1 U ifso) A (isi, ifso) € [#]
} [by properties of sets and relations)

dom { isi : IStInp|; fso: F5t0ut, e -~ s : Situation e p (Op)™s s AiCs N
dom { 4si: IStInp,; foo : FS5i0ut) «
Jifso : FStOut) «
(33 : Situation ¢ p (Op)™S s A s =isiUafso) A (ds8,ifie) & [y]
} [by (asi, L) ¢ [}, for any isi]
{ 1si: IStinp ® 35 : Situation e p (Op)™S s AisiCs } N
{ isi: [Stinp, =
Vifso : FStOut,; s: Situation e p (Op)™'S s A 5 = isiUifso = (131, ifs0) € [+

} [by a property of sets and relations)
{ is1: IStinp « As : Situgtion # p (Op}™'S s A Cs )N
{isi:IStInp e
Vifso : FSI0ut,; s: Sutuation @ p (Op)™s s A s = 15i Usfso = (11, 1f50) € [¢])
} [by LE 5. for any situation s]
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{ isi : ISt/np @ 35 : Sutuation e p (Op)™ s AdsiCs N
{ 191 : ISiinp »
¥ 3 : Situation e
p (Op)™s 5 A dsi = (ed U adi?) 45 = {in, (ad’ Lade!) < 5) € [¥]
} [by s = isi Uifso = iss = (ad U adi?) s A ifso = (ad' Uado!) d s}
{ dsi : IStinp »
I35 Situation » p {d; d'; di?; do )™ s A{pms)e {p}M A i C 5
1N
{ is2: IStinp e
Vs Sutuation
o (d; d' ai? do)™ s Alp@s) € {p}™ A st = (ad Uadi?) 95 =
(tat, (ad' U adol) 4 5) € [/]
1 [by Lemma 2.4]
= { ist: [Stinp »
35, : ISting; 53 : FStOut »
o (dy &% &, do)™ (51 B s) Alp@a @) € [plM A isi =g

i

In
{ isi: {Stinp »

¥s1 : IStinp; sq: FStOut e

o ld; d'; di?; do')™ (81 G sy) AloB s D)€ [p}™ A isi =9 =
(isi, 52) € [¥]

} [by o (d; d'; &i7; do!)™ 5 implies dom 5 = ad; &'; di7; dol]
{ 1si:IStinp »

Jsp : FSt0Out e p {d; di7)™ isi A p {d; do")™ 52 A (pD 15i & 52) € [P}

In
{ isi: IStinp e
Yo : FS5tOut
e (di i)™ i Ap{d; dal)™ s A (p®1si B sz} € {p}M = (151, 52) € [¥]
} [by p{d; 2'; di?; do')™ (51 @ 52) = p {d; 7)™ 5, A p (d'; do)™ 5]

{ist: [dy ds?) e {35y : [d'; do'] s {p@isi D s) € {p}™ )} N
{ iz [d; di?} o (Voo :[d'; do!] » (ppisi & 52) € {[p}* = (s, 5) € [¢]) }

[by definition of [_] for declarations]
[(3d", dot=p) A (Vd'; dol » p = %)) [by definition of [_] for predicates]

I

[m]
In order wrule out the possibility of scope conflict, we assume that the before and after-state, the
input, and the ontput variables are not free in the declarations. The free varxiables of a declaration
are those that occur free in the type definitions.

In the next section we consider a few healthiness conditions that are satisfied by wp.
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2.2.4 Healthiness Conditions

In [14] four properties of wp that reflect characteristics of programming languages are pointed
out; law of excluded miracle, monotonicity, A-distributivity, and continuity. As we show in the se-
quel, from these, just continnity is not satisfied by the wp function that we have defined. The law of
excluded miracle holds because miraculous operations cannot be specified in Z, and A-distributivity,
because angelic operations cannot be specified either. On the other hand, continuity does not nec-
essarily hold because operations of unbounded nondetermiuism can be defined.

Theorem 2.7 Law of Ercluded Miracle.
wp.(d; d'; di?; dol| p).false = false

Proof

wp.{d; d"; di?; do!}.false

=(3d; dolw p) A(Yd'; do! e p= [alse) [by definition of wp]
= (3d; dolw p) A (Vd'; dol » - p) [by predicate calculus)
=(3d'; do'® p) A~ (3d'; dolwp) [by predicate calculus]
= false [by predicate calculus)

m]

Monotonicity and A-distributive are a direct consequence of Theorem 2.1, since up is defined in
terms of r2wp.

A predicate transformer pt is continuous if, for every indexed family { + : Ne p, } of predicates
such that p; = py+1 for all i € N, we have that pt.(31: Nep) = (3i: Ne pt.p;). As mentioned
before, wp does not necessarily defines a continuous predicate transformer. A counterexample can
he provided if we consider the operation that chooses an arbitrary positive integer and the family
of predicates { i : N » p,(z') } where p,(z') = z' < 1. This operation can be specified as follows.

__CH
z:Z
o Z

' >0

According to Theotem 2.6, wp.CH = (Vz': Ze 1’ > 0= 9). The family of predicates consid-
ered satisfies the property alluded in the characterisation of continuity: p,(z') 2 piy1(z’), for all
i € N. Nevertheless, wp.CH does not satisfy the corresponding property. First of all, as we show
below, for every ¢, wp.CH .p,(z’) = false.

wp.CH.p(z")
=(vz' :Zaz'>0=pi(z') {by definition of wp]
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=(Vo':Zes >0 1" < i) [by definition of p,{z')]

= false [by a property of <]

In conclusion, {31 :Ne wp. CH.p;(x")) is false. On the other hand, wp. CH.(31 : N » p,(z’)) is true.
This is proved below.

wp. CH.(3i: N+ pi(z")

=(Vz':Zez' > 0= 3i: Nepi(2') {by definition of wp)
=(Ve':Zer'>0=3Ji:Nez' <3} [by definition of p;(z’)]
= true [by a property of <]

So, wp.CH {31:Ne pi(2")) is not equivalent to {3i: N» wp.CH p.(z")) and therefore, wp.CH is
net continuous.

In the next section we introduce a number of thesrems that help in calculating the weakest
precondition of some schema eXxpressions.

2.3 Schema Expressions

A Z schema can be specified by an expression of the schema calculus and, although we can calculate
the weakest precondition of every schema that specifies an operation by first expanding it to
the form {d; d'; di?; do!| p}, ideally we should be able to express and calculate the weakest
precondition of a schema expression compositionally, Unfortunately, wp does not distribute nicely
through most schema operators. In what follows, we present a number of results that can be
applied in some particular cases.

The theorem below presents a compositional formulation of wp which can be obtained in the
case of a schema disjunction, if the disjuncts are operations over the same state and with the same
inputs and outputs.

Theorem 2.8 For all schemas Op, and Op; that specyfy operations over (he same stale and with
the same wnpuls and outpuls, and for every postcondition 1,

wp.(Op1 V Op)y =
{wp.Opy .true vV wp. Opg.true) A
{wp.Opy .true = wp. 0p1. %)} A (up. Opz-true = wp. Opa. )

The operation Op; V Op, terminates if either Opy or Opy does. When Op, (similarly Ops) termi-
pates, Op V Opg can behave just hike it and, in this case, Op; V Ops is guaranteed to establish ¢
only if Om(Op2) is. Of course, when both Opy and Ops terminate, then Op; v Op; can behave
like either of them and therefore both have to guaranteedly establish . A proof for Theorem 2.8
and for some other theorems we introduce in this section can be found in Appendix B.

As implication can be expressed in terms of disjunction, we can, based on Theorem 2.8, for-
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mulate the weakest precondition of a schema implication compositionally.

Theorem 2.9 For all schemas Opy and Opy that specify operations over the same sltate and with
the same inputs and oulputs, and for every posicondition ¥,

wp.(Op1 = Op2). ¥ =
(wp.— Opp.true V wp.Opa.true) A
(wp.~ Opr.true = wp.—~ Op1.) A (wp. Opa.true = wp. Opp.4)

promided Op| 13 normalised.

Requiring Op; to be normalised is necessary as, otherwise, the schema expressions Op = Opy and
- Op; V Opz are not equivalent, as expected.

Since p; < p is equivalent to (p1 A p2) V - (p1 V pa), we can express wp.(Op, & Opa) in terms
of wp.(Opy A Op) and wp.~ (Op1 V Op), if Op; and Ope are normalised.

Theorem 2.10 For all schemas Op; and Opq that specify operations over the seme state ond with
the same inputs and oulputs, and for every postcondition v,

wp.(Op) & Opa)v =
(wp.(Op A Op).true V wp.~ (Op; V Opy).true) A
(wp.(Opy A Ope).true = wp.(Op1 A Op2).yr) A
{zp.~ (Op1 V Opp).true = wp.—~ (Opy V Op2).4h)

provided Op, and Op: ore normalised.

Existential quantifications that are applied to and yield schemas that define operations are
considered in the next theorem.

Theorem 2.11 For every schema Op that specifies an operation, all declaretions d, d', di?, end
do! that introduce components of Op, and every postcondition p,

wp.(3d; d'; di7; dole Op)yp =
(3d; di? e wp.Op.true) A (Vd; di? » wp.Op.true = wp.Op.y)

provided the variables of ad, ad’, adi?, and ado! do nof occur free in .

Hiding is a special form of existential quantification. The schema Op\ad.ad’, adi?. ads! is
equivalent to 3d; d'; di?; dol e Op, so that, under the restrictions imposed on d; d’; di7; do?,
and 4 in Theorem 2.11, wp.{Op\ad,ad’ adi?,ado!) .y = wp.(3d; d; di7; dol e Opl.yy. Actually,
ad, ad’, adi?, and ado! are sets of variable names and what the hiding operator takes as argument
is a comma-separated list of variable names. Nonetheless, we allow ourselves this minor abuse of
notation and assume that ad,od’, adi?, ado! does denote a list of the variables declared in d, o,
di?, and da!.

Schema projection can be defined in terms of conjunction and hiding. The schema defined by
Op, [ Opz is equivalent to {Op; A Op2)\ad, ad’, adi? ads!, where d, &', ¢i?, and do! declare the
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components of Op, that are not components of Ops.
Theorem 2.12 For all schemas Opy and Opy that specify operations, and every postcondition ¥,
wp-(Op [ Op) 4 =
(3d; di? e wp.(Opy A Ops).true) A
(Vd; di7e up.(Opy A Opz).true = up.(Op; A Op).9)

where d and di? declare the state componenis and the input varzables of Op, that are net compo-
nents of Opy. We assume that all components of Opy that are not components of Opy are not free
in .

The form of a schema renaming is Snv/ov], where 5 is a schema, and nv aund ov are lists
of variables. The schema S[nv/ov] is obtained from S by substituting the variables of nv for
the corresponding ones in ov. We consider the case Op[ns,ns' ni?, nolfos, 05", 017, 00'). where
renaming is applied to a schema that specifies an operatien and produces another schema that
specifies an operation. As expected, os' (ns') is the list of variables obtained by dashing the
variables of pg (ns).

Theorem 2.13 For every schema Op that specifies an operalion, all lists of varables os, 0i?, oo,
ns, ni?, and no! without duplicates, and every posicondition 1 where the variables of os, os', 6i7,
and oo! do not occur free,
wp.Op[ns,ns’, ni7, nol/os, 0s', 01?2, ool).9 =
(wp.Op.y[os, o5, 027, 00! /ns, ns’, vi?, nol|}ns, ni? fos, ;7]
We assume thot the variables of ns, ns', ni?, and no! are nolf components of Op; and that the
variables of 01. 017, n3, ng', ni?, and no! do nol occur as giobal variables 1n Op.

If we rename the components of a schema, we can calculate its weakest precondition with respect
to a postcondition 3 by expressing ¥ in terms of the original component names and calculating
the weakest precondition of the original schema with respect to this postcondition. The resulting
predicate is expressed in terms of the original state and input variables, which then have to he
renamed.

The schema expression called generic schema designator has the form S{ej. eg, ..., ea], where
5 is the name of a generic schema with n parameters and e, ez, . . ., e, are set-valued expressions.
Since the parameters of a generic definition are used as ordinary given sets, we can ignore the pa-
rameters of a generic schema Op that specifies an operation and calculate its weakest precondition
as if it were an ordinary schema. The next theorem shows how this result can help in calculating
the weakest precondition of Ople;, ea, ..., en)-

Theorem 2.14 For every generic schema designalor Opley, ez, ..., e,], where Op 15 a generic
scheme that specifies an operation and has peramelers 37, 1),...,%,; and for every postcondition
Y where z1.23,...,z, do nol occur free.

wp.Ople, ez, .., en] ¥ = (wp.Op.)er, ez, € /T 20, -, 2]

provided the components of Op are not free in ey, ¢ep,..., en.
If the weakest precondition of Op is known, the weakest precondition of Opley, €z,..., €] ¢can be
obtained simply by substituting e;, ez,..., ¢, for the occurrences of the corresponding parameters

of Op in this predicate.
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2.4 Conclusions

With tbe objective of formalising ZRC, we have presented a weakest precondition semantics for
Z equivalent to the relational semantics defined in [8], which is an official document of the Z
standardisation committee. Actnally, we have constructed a wp semantics for Z based on this
relational semantics. The outcoming definition is neither complex nor surprising, but its calculation
provides evidence for its adequacy and is itself of interest.

An isomorphism between a relational model and weakest preconditions has been established.
This relational model is along the lines of that presented in [28], and is used in [63] to formalise
the data refinement rules of Z. A connection between it and the relational model assigned to
schemas that specify operations in [8] has been presented as well. This is the link to the standard
Z semantics that is rnissing in [65).

In [26], an isomorphism between a relational model and a predicate transformer model based
on weakest preconditions and weakest liberal preconditions (wip) is established. In this work, the
behaviour of operations in states where they may fail to terminate is of interest, hencc the nse of
weakest liberal preconditions, Correspondingly, the relational model adopted there does not satisfy
our healthiness condition (2.3). Moreover, L (or oo, as it is called in [26]) is not in the domain of
the relations that are considered there, so that (2.4) s not necessary. As far as predicate trans-
formers are concerned, the healthiness conditions imposed in [26] restrict the model to universally
cenjunctive weakest liberal preconditions, and relate wp and wip. Together, these healthiness con-
ditions imply that tup is positively conjunctive, which is our healthiness condition {2.1). Since the
postconditions of [26] specily states, as opposed to state transitions, our healthiness condition (2.2)
is not an issue there.

An innovative aspect of our work is to formalise the Oxford-style of specifying operations using
wp. The only other formalisation that we are aware of is the relational work in [65]. On the
otber hand, as opposed to the relational semantics, the weakest precondition semantics of Z does
not define it completely: while the relational semantics ascribes a meaning to all its syntactic
strnctures, the wp semautics is restricted to a subset of the syntactic category Schema. As already
noted, however, the motivation for the definition of a wp semantics for Z was not the provision of
an alternative account of its semantics, but the formalisation of ZRC.



Chapter 3

ZRC

In this chapter we present ZRC: its language (ZRC-L), its conversion and refinement laws, and
its formalisation. Most conversion laws are based on those of (34, 64]; we give them a uniform
presentation in a style closer to the 7 notation. The refinement laws are, on the whole, based
on those of Morgan's calculus. Again, in order to conform to the Z style, adjustments have been
necessary and, in several cases, we adopt refinement laws similar to those of [65]. Furthermore, we
introduce additional conversion and refinement laws.

Our main enterprise, however, has been the formalisation of ZRC. Apparently, there has been
no effort to establish the soundness of the translation rules of [34, 64}, and so formalisation is a
distinctive attribute of ZRC.

Most of this work is based on the formalisation of Morgan's calculus [47, 45]. Nonetheless,
due to an inconsistency we have found in [41], we adopt Back's approach [3] in our treatment
of proeedurcs and parameters. Additionally, we formalise the use of variants presented in [45];
the refinement laws of ZRC concerned with the development of recursive procedures support the
technique suggested in Morgan's calculus and have no equivalent there. Our approach to data
refinerent is based on that of [46], which, as shown in [39], is more general than that of [45], which
is based on the auxiliary variable technique.

Section 3.1 provides an informal description of ZRC-L; its weakest precondition semantics is
presented in Appendix C. In the previous chapter we have considered the semantics of Z. In
Section 3.2, we discuss the semantics of several constructs of ZRC-L that are not part of the Z
notation, and in Section 3.3 we formalise our notion of refinement.

The semantics of procedures, parameters, and recursion is considered separately in Section 3.4.
There we examine a connection between Morgan's and Back's formalisms and the substitution
operator that renames the free variables of a program, and unveil an inconsistency in Morgan’s
work. Furthermore, we define the semantics of the variaut blocks nsed in Morgan’s approach to
recursion [45]. Much of the material in this section also appears in [11].

In Section 3.5, we define the scope rules of ZRC-L. The conversion laws are presented in
Section 3.6, where we also exemplify their application. Section 3.7 discusses the refinement laws;
for the sake of conciseness, we focus on those related to the development of procedures and data
refinement. Appendix D lists all conversion and refinement laws and their derivations. Finally,
Section 3.7 summarises the results obtained and discusses a few related works.
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3.1 ZRC-L

As with the languages of several other refinement techniques, ZRC-L is an extension of Dijkstra’s
language of guarded commands. It includes additional statements so that specifications as well
as programs can be written and more sophisticated program design mechanisms can be used.
Specifications, in particular, can be expressed in ZRC-L with the use of the Z notation. However,
a numher of statements which express specifications in a form better suited for refinement are also
available. One of them is the specification statement, which bas been presented in Section 1.1. The
other ones are assumption and coercion, which can be regarded as special specification statements.

The state components, or rather, the before-state variables, and those that are introduced
by variable blocks, are collectively named program variables. This is in contrast with Morgan's
calculus where the variahles that represent the before-state are (-subscripted and called initial
variables. In ZRC, as in Z, the after-state variables are those that are decorated.

The frame of a specification statement can contain only program and output variables. Since
preconditions do uot characterise state changes, they cannot contain free occurrences of after-state
variables. There is here a significant difference from the use of O-subscripted variables in [45, 47].
It is not only the case that we decorate a different set of variables. but also we use the initial {in
our terminology, the program) variables to write the precouditions.

The program skip can be considered as an abbreviation for : [true, true]. It does not change
any variable, as il has an empty frame, and always terminates. Assumptions and coercions, which
are called annctalions, can also be viewed as specification statements with empty frames. An
assumption {pre} corresponds to the specification statement : [pre, true], which acts as skip if
executed from a state that satisfies pre, and aborts otherwise. A coercion [pest] corresponds to
: [true, post]. I executed from a state that satisfies post, it acts as skip as well, but otherwise it is
a miracle, as it establishes post without modifying any variable. Programs of the form {pre} ; p
and [pest] ; p can be written as {pre} p and [post| p, respectively.

A miracle is a program thal is miraculous at some initial states so that, as already explained
in Chapter 2, it can achieve any postcondition when executed from these states. These programs
violate the law of excluded miracle; they cannot be refined by auy executable program. Miracles
may arise by mistake during the refinement process, but they may be useful, as shown in [40, 42].

A variahle block has the form || var dif e p]|, where dv! declares variables with no decoration
that may be referred to in the program p along with their dashed counterparts. We assume
that program variables, their dashed counterparts, and input and output variables are not free in
declarations.

The design of programs may require the use of logical constants. These can beintroduced by a
constant block of the form ][ con del » p]|, where del declares logical constants and p is a program.
As opposed to variable blocks, constant blocks are not executable and have to be eliminated during
refinement.

Procedures, possibly recursive, are declared in blocks as well. In order to illustrate the notation
we employ to write procedure blocks, we consider the example below.

lproc Inc = z:=z+1eInc; Inci

This very simple program uses the procedure Inc to increase the value of £ by 2. The program
z: =1z + 1 is the body of Inc, and Inc; Ine is the main program (the scope of the procedure).
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The general form of a procedure block is {{ proc pn = body @ mp ]|, where pn is a procedure pame;
body is indced a procedure body: a program or a parametrised staternent (a construct we introduce
below), and finally mp is a main program.

Parametrised procedures can be defined with the use of parametrised statements. These can
have the form (val dul e p)}, (res dvl e p}, or (val-res dul ® p), which correspond to the traditional
conventions of parameter passing known as call-by-copy: call-by-value, call-by-result, and call-by-
value-result, respectively. In each case, dvl declares the formal parameters, and p is a program.

As opposed to assignments, for instance, parametrised statements are not programs by them-
selves. Nevertheless, a parametrised statement {or the name of a procedure whose body is a
parametrised statemnent) can be applied to a list of actual parameters to yield a program which acts
as that obtained by passing the actual parameters to the program in the body of the parametrised
statement. The number of actual parameters must be the same as the number of formal param-
eters; the correspondence between them is positional. As an example, we present the procedure
block below.

[[proc Inc 2 {(val-res n: No n:=n+41) e Inc(z) ; Inc{y)]|

This program increments the variables z and y using a parametrised procedure Inc.

Parametrised statements whose parameters use different mechanisms of transmission can be
defined as well. For instance, (val z: IN; val-res y: Zw y ;= y + z) has a value parameter z of
type N and a value-result parameter of type Z.

In the case of a call-by-result or a call-by-value-result, the list of actual parameters must be
duplicate-free. In [41, 3, 45] this list is also supposed to contain only variables. In ZRC-L, however,
we allow for function applications as well. The idea is that, if the function is imnplemented by an
array, then the function application corresponds to an array indexing, which in most program-
ming languages i3 acceptable as an actual parameter irrespective of the mechanism of parameter
transmission used. This generalisation is needed in the treatment of promotion {see Section 3.6).

The development of recursive procedures requires the use of variants. Recursion may be used if
the refinement of a program (parametrised statement) p leads to another program (parametrised
statement) that contains p itself as a component. Due to termination concerns, however, the
introduction of recursion requires the definition of a variant: an integer expression whose value
must be decreased by each recursive call, but caunot assume negative values (cf. iteration variant
in Section 1.1). From a theoretical point of view, the type of a variant can be any well-fonnded
set, but in practice it is enough ta consider that the variant is an integer bounded below by 0.

As guggested in [45], a variant is declared in a new kind of procedure block called a variant
block. Its form is [[proc pn = body varient vrt is ¢ » mp ]|, where vrt is a name for the variant
expression e. As constant blocks, variant blocks are not executable and have to be refined away.
By way of illustration, we consider the program that assigns to the variable z the factorial of y,
7 : [true, ' = y!]. If, when refining this program, we decide that we want to develop a recursive
procedure that implements the factorial function, we have to introduce a variant block like that
presented below, which declares a procedure Fact.

[[proc Fact = (val n: Ne {N = n} z: [true,z" = n!}) variant N is ne
z : [true, 2’ = y!}
I

At this point, we cau refine the body of Fact to obtain a recursive implementation for this pro-
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cedure, and refine the main program to introduce the appropriate procedure call. The variant NV
plays the role of a logical constant in the body of Fact. The assumption {N = n} in the body
of this parametrised statement fixes the initial value of N as being n. Recursive calls may be
introduced only at points where this value has been strictly decreased. In Section 3.7.2 we return
to this example and show in detail how Fact can he refined to a recursive procedure

In Sections 3.2 and 3.4 we consider the weakest precondition semantics of the statements we
have informally introcdtuced in this section, and of a few others. The entire set of definitions that
compose the wp semantics of ZRC-L is presented in Appendix C.

3.2 Primitive Statements, Composition, Variables, and Constants

In this section we discuss the wp semantics of the primitive statemnents (specification statement,
skip, assignment, etc.) of ZRC-L, of sequential composition, and of the variahle and constant
blocks. Our definition of the alternation semantics is the same as that in [47). Procedures and
recursion are considered in Section 3.4. The semantics of iteration is defined in terms of recursion
in the usual way.

In the formalisation of Morgan's caleulus [42, 45], the weakest precondition of a specifica-
tion statement is defined as shown below, where ol is the list of all variables, and vy the list of
corresponding 0-subscripted (initial) variables.

wp.w : [pre, post].i = pre A (V w @ post = ) [vl/ vh) {3.1)
In comparison, onr definition is as follows.
Definition 3.1 For every postcondition ¥ with no free program variables,
wp.w : [pre, past).yy = pre A (Vdw' « post = ¢)[_/)
where dw declares the variables of w.

This definition considers the type of the variables in the frame when quantifying over them. Since
the frame lists the program variables that can he modified, instead of their dashed counterparts,
we have to consider the declaration dw' instead of dw. What we are using is a decoration operation
that applies to declarations. In general, the declaration ds differs from d just in the names of the
variables that it declares: the alphabet of ds can be obtained by appending the symbol “s” to the
pames of the non-decorated variables in the alphabet of d.

The purpese of the substitution in Definition 3.1 is the same as that in (3.1): to eliminate
the variable decorations. The predicate p[_/'] is that obtained by removing the dashes of the free
variables of p. More precisely, p[-/'] is an abbreviation for plvl/vl'], where vl is the list of all
program variables and vi' is the list of variables obtained by dashing the variahles in /. In more
general terms, for every list of variahles I, I can be obtained by dashing the non-decorated variables
in {. The list »! of program variables, in particular, does not contain any decorated variables and
so, vl' is the result of dashing all variables in W,

Definition 3.1 and other weakest precondition definitions presented in the sequel contemplate
only postconditions that do not contain free occurrences of program variables. Nevertheless, as
already remarked in Chapter 2, wp semantics relies on the principle that the meaning of a program
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is precisely specified only if, for every postcondition ¢, the preconditions that ensure termination
in a state that satisfies 1 can be characterised. Therefore, we must be able to calculate weakest
preconditions with respect to postconditions that are expressed in terms of program variables as
well. For this reason we introduce another definition.

Definition 3.2 For every program p and posteondition i, mcluding those that contain free occur-
rences of program variables,

wp.p. = (wp.p.y(cl/ vi])[vi/cl]

where vl is the lisl of all program variables and cl is a fist of fresh constants, none of which 15 free
mpoor .

The weakest precondition of z : [z > 0,7' = /7 | with respect to z’ = z, for instance, is 7 =1,
as expected, On the other hand, according to [42, p. 11}, wp.z:[z >0,z =/ |s =5 is
z > 0 A /T = 5, with zp as an ordinary constant or variable which might as well have been called
y. Definitions 3.1 and 3.2 together formalise the use of decorations both in the postconditions of
specification statetnents and in postconditions of wp.

The free names (variables, logical constants, etc.) of a program are precisely identified in
Section 3.5. Informally, these are the names that are not bound by a declaration. We must note,
however, that not only the variahles explicitly introduced by a variable block, but also their dashed
counterparts, are bound in this program. Also, we regard both the components and the global
variables of a schema as its free variables. Nonetheless, if p is a schema, and nv and ov lists of
variables, p[nu/ov] is not a substitution, but a renaming, which affects the components of p only.

Theorem 3.1 below shows that Definitions 2.6 and 3.2 are not in contradiction.

Theorem 3.1 For every schema (d; d'; di?; do! | p) and postcondition ¥,

wp.{d; d'; di?; do' | p)yb = (wp.{d, d'; di?; do' | p).ylcl/ad])[ad/ cl]
where ¢l is o list of fresk conslants, which are not free in (d; d'; di?; do! | p) and .
Proof

wp.(d; &; di?; do!|p).v

=(3d  dolep) A (Vs dolep =) [by Definition 2.6]
= (Ad'; do! » p) A (Vd'; do! e p = pcl/ad][ad/el]) [by cf are not free in 4]

= ((3d'; do!e p) A (Yd'; dol e p= P[cl/ad)))ad/ell
[by cf are not free in d', do!, and p, and ad are not in ad’ and ado!]
= (up.(d; d% di?; do! | p).elel/cd])[ed/cl] [by Definition 2.6)
a
As defined in Chapter 2, ad is the set of variables declared by d, or rather, its alphabet. In the
above theorem ord is used in substitutions as a list of variables. For the sake of simplicity, we

employ this notation whenever the order in which the vartables of the alphabet of a declaration is
listed is not relevant. In Theorem 3.1, for example, it is not necessary to determine the particular
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fresh constant of ¢! that replaces each of the variables in the alphabet of d. Nonetheless, we assume
that the list of variables denoted by ad is always the same and, also, that ad lists the alphabet
of the decorated declaration ds in the same order as ad hists the corresponding variables in the
alphabet of d. In this way, the predicate plad’/ad), for instance, is that obtained by dashing the
free occurrences of the variables of the alphabet of d in p.

In [43. 45|, types are treated as special forms of invariants. However, the notion of invariant in
these works and that of Z are different. While in {43 invariants compose a context for programs.
in Z the opcrations themselves contain the invariant as part of their specification. As the variable
hlocks with invariant and the invariant blocks of [43, 43| are not considered here, types are treated
directly in ZRC: the type declarations are regarded as axioms, as in [2]. Moreover, as we have
already secn, the weakest precondition of schemas and specification statements take the types of
the variables into account, and so do the other weakest precondition definitions that follow.

Annotations and skip can be explained in terms of specification statements, as noted in the
previous section. These interpretations explain their weakest precondition semaatics, which we
present below.

Definition 3.3 For every posicondition ¥ with ro free prograrm vanables,

wp.skip.g' = ¢
wp.{pre}.¥f = pre A v
wp-[post].¢' = post-/'] = ¥
The predicate 1, or more generally, a predicate p’ is that obtained by dashing the free program
variables of p; p’ is an abbreviation for p{uvt'/vl], where vl is the list of program variables.
The weakest precondition of assignments is defined below.

Definition 3.4 For every postcondition 4’ with no free program variobles,
wp.vl := el.y’ = Plel/vl]

If vl := el is to establish ¥, tben this predicate must hold when the variables of »I' assume the
values denated by the corresponding expressions of el and all other variables assume the values of
their undasbed counterparts. This is exactly the property characterised by y/[el/4].

Sequential compositions are considered in the definition that follows.

Definition 3.5 For every postcondition ¥ with no free program variables,
wp.(py ;5 p2)w = wp.pr.(wp.p2)

Usnally, sequential composition is defined by weakest precondition composition. In our case, an
intermediary substitution is necessary, hecause postconditions are expressed in terms of dashed
variables, and weakest preconditions, in terms of program variables.

The weakest precondition of a variable black is usually defined just for postconditions in which
the variables that it declares are oot free. As far as the calculation of weakest preconditions is
concerned, this restriction introduces no loss of generality since these variables are bound in the
variable block and, therefore, can be renamed in case of clash. Nonetheless, proofs are usually
carried out under the assumption that they are not free in the postconditions involved and it
might not he entirely clear why this assumption is legitimate. We clarify this point by proposing a
more general definition for wp. |[var dul e p]| .% and introducing theorems that back up the usual
assumption later in Section 3.3.
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Definition 3.6 For every postcondition Y with no free progrem variables,
wp. |[var dule p)|l .y =V dle wp.p[l, l'/vi, Wl']y

provided dvl and dl declare the variables of vl and I, respectively, and differ just in the names of
the varables that they declare; and the names of I and ' are not free in p and .

By way of illustration, we calculate the weakest precondition of |[var z : N» z := 1]} with respect
to ' =1. In this example, we are working with different variables of name z. According to
Definition 3.6, we must, as shown below, rename the occurrences of z inside the variable block.

wp. [varz: Nez:=1] z =1

=Vy: Newp(z:=1)[p, ¥ /2,2']d' =1 [by Definition 3.6)
=Vy:Newpy:=1lz'=1 [by a property of substitution]
=Vy:Nefz =1)1/y] [by definition of wp]
=z=1 [by predicate calentus}

Surprising as it might be, this result is in accordance with the fact that [[var z: Nez :=1]| is
equivalent to skip, since it does not change any external variable and always terminates.

Theorem 3.2 shows that when only postconditions that do nol contain free occurrences of the
names in vl and v!' are considered, Definition 3.6 coincides the with the usual definition of the
weakest precondition of a variable block. The proof of this theorem relies on Lemma 3.1. This
lemima establishes that, if we systematically change the names of the free variables of a program
and of a postecondition without causing any clashes, then the result of applying wp to them is not
altered, except only for the names of its (ree variables.

Lemma 3.1 For all lists of variables | and ul, and for every program p,
we.py = (wp.pll, /ol ol |l 8ol ol wif]

provided the names of | gnd ' are not free in p and 3.

Proof Structural induction over p.
W]

As au example we take the programs z :[true,z’ =z + 1] and y: [true, ' = y + 1], observing
that the latter can be obtained by substituting in the former y and y* for z and z’, respec-
tively. Similarly, we consider the postconditions z’ > 0 and y' > 0. 1t is not difficult to see that
wp.T : [true,z’ =z + 1].z' > 0=17 > —1 and that wp.y:[true,y’' =y +I].¢' > 0=y > -1, and
50 wp.y:ftrue,y’ =y + 1]y > 0= (wp.z:(true,z’ =z + 1].7' > 0)[y/z].

Theorem 3.2 For every postcondition v in which netther program variebles nor names of vl and

v’ are free,
wp. [var dvl e pl| . =Vdul e wp.p.y

provided dvl declares the verables of vl.
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Proof

wp. [[var dul e p]| ¥
=vdlewpp[l, I'fel, o]y [by Definition 3.6|
=Y dlw wp.p[l, /vl o' L1,V ful, vl [by vl and v’ are not free in 1]
=Vdul e (wp.p[, ' /o, v} L, U fol, o)) f1)
[by vl are not free in wp.p[l, V' fvl, Wl'l.p[L, ¥ ful, w'] (by Theorem 3.9)]
=VYdul e wp.p.yp [by Lemma 3.1]
O
For example, we can use Theorem 3.2 to calculate the weakest precondition of the variahle hlock
|[var £ :Nw® z:=1]| with respect to y' = 1 in a much simpler way than that dictated by Defini-
tion 3.6.

wp.[varz : Nez:=1] .y =1

=vVr:Newpz =1ly =1 [by Theorem 3.2]
=Vz:Ne(y=1)1/3] [by definition of wp]
=y=1 [by predicate (‘alculus]

In this case, since neither z nor 7’ are free in the postcondition, the variable r declared by
[[var z: Ne z:=1]| does not have to be renamed.
OQur definition of the constant block semantics also generalises its usual definition.

Definition 3.7 For every postcondition b unth no free program variables,
wp.|[con del » p]| ¢ =3 dl e wp.p[l/cl]

prownided dcl and di declare the constanis of cl and {, respectively, and differ just in the names of
the constants that they declare; and the names of { and I are not free tn p and .

The generalisation follows the same lines used above in the case of variable blocks. If just post-
conditions not containing free occurrences of the names of ¢l and ¢!’ are taken into account,
Defiuition 3.7 is equivalent to the usual weakest precondition definition of constant blocks. This
result is established by Theorem 3.3. Belore introducing this theorem, we presert a lemma that is
used in its proof.

Lemma 3.2 For all lists of constants | end ci, and for every program p,
wp.p = (wp.pit/cll.¥lt/cl])[el/1]
provided the names of ! and ' are not free in p and 3y,
Proof Structural induction over p.
D

This lemma is similar to Lemma 3.1. In this case, the systematic change of names of constants,
rather than variables, is considered.
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Theorem 3.3 For every postcondition o in which neither program variables nor names of ¢! and
cl’ are not free,

wp.[[con del ¢ p]| .y = Fdcl e wp.pyp
provided dci declares the constants of cl.
Proof

up [(con det e p)|

= 3dl e upp(ifcl]yp [by Definition 3.7]
= 3dl e upp(t/cl)y[i/ [by ¢l are not free in ]
= 3 del o (up.p{l/ct)w|t/cih{ci/l] [by cf are not free in wp.p{l/cl].¥[l/el] (by Theorem 3.9)]
= Adct e wp.p.y [by Lemma 3.2

o

If we take the constant block |[con ¢ :Nez: [z =c,z' = c +1] ||, then we can use Theorem 3.3
to calculate its weakest precondition with respect to ' = 1 as follaws.

wpfconc:Nez:[z=c2'=c+1] ] 2'=1

=3c¢:Nowpz:fz=c¢c,d’'=ec+1]7 =1 [by Theorem 3.3]
=3e:Noez=chc=10 [by definition of wp]
=z=90 [by predicate calculus]

As ' = 1 contains no Free occurrence of ¢ or ¢', no renaming is necessary.

In Chapter 2, we have shown that, from the healthiness conditions pointed out in [14], just
continuity is rot satisfied when weakest preconditions of schemas are considered. On the other
hand, when programs are taken into account as well, wp satisfies only monotonicity. Tbe law of
exchided miracle is not satisfied by specification statements, and A-distributivity is not satisfied
by constant blocks.

As already mentioned, the semantics of procedures and recursion is the subject of Section 3.4.
Io the next section we formalise the notion of refinement adopted in ZRC.

3.3 Refinement

The definition that we adopt for &, the refinement relation, is that in [47], which embodies the
concept of total correctness.

Definition 3.8 For all programs p; and pa, pi T p; if and only if, for all posiconditions v,
wp.pLY = wp.ppy

Intuitively py C p2 exactly when po terminates whenever p; does, and produces only results that

are acceptable to p;. Therefore, if p; T pq, then ps is always satisfactory as a substitute for p;.
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A more formal justification of Definition 3.8 can be found in [42, 4].

The derivations of the conversion and refinement laws of ZRC rely on Definition 3.8 and.
consequently, consist of establishing implications between weakest preconditions. The theorems
that follow allow us to assume that the postconditions involved in these proofs satisfy certain
restrictions concerning their sets of free variables. These assumptions simplify the proofs and are
also exploited in the formalisation of Morgan’s calculus.

The first theorem allows us to consider only postconditions that de net contain free program
variables.

Theorem 3.4 If, for every posicondition 4 that does nol coniein free progrem vanables, we have
that wp.p1.¥ = wp.p2.¥, then wp.py.6 = wp.p2.d for every posteondition 6.

Proof
wp.py.8
= (wp.pi.dlct/vi])[vi/cl) [by definition of wp]
= (wp.pz (et vi])[vl/ d] [by assumption]
= wp.p.b [by definition of wp]
a

The corollary below is useful if we want to prove tbat py is equal to p; (their weakest preconditions
are equivalent), and not only refined by it.

Carallary 3.1 If, for every postcondition @ lhat does not eontain free program vanables, we have
that wp.pL .y = wp.pa.y, then wp.pi.d = wp.pa.b, for every postcondition §.

The proof of this corollary is a straightforward application of Theorem 3.4.

In the case where p; is a variable block, Theorem 3.5 is of use as well. Provided neither the
variables introduced by p, oor their dashed counterparts are free in pp (which is often the case),
only postconditions that do not contain free occurrences of these variables have to be examined.
For these postconditions, the simpler definition of the weakest precondition of a variable block
introduced by Thearem 3.2 applies.

Theorem 3.5 Suppose that, for every postcandition 3 in which program variabies and the names
of vl and ol are not free, wp. [[var dut e pl| .4 = wp.py . Then wp. |[var dul o p]| .8 = wp.py.5,
for every postcondilion & unth no free program vanables, provided dul deelares the variables of vl
and the names of vl and v’ are not free in p,.

Froof If the names of vl (and ul’) are in scope as variables, the proof is as follows.

wp. l[var dvl o p)] .4
(wp. |[var dul e p]| [t, /o, vl'|.8[1, F ful, vl )){ui /1] [by Lemma 3.1)
(wp. |[var duvl s p]| .6[1 1 /v, oI’ [vi/1] [by a property of substitution]

il

= (wp.p2.8[1, V' fol, wi'])[vi /1) [by assumption]
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= (wp.pa[t, 8ol w60, 1 f ol ol Y[ wi /1) [by vi and v’ are pot free in ps)
wp.p2.6 f{by Lemma 3.1]

1l

If the names of vl are in scope as constants (in which case, the variables of v’ are not in scope),
the proof is similar, but uses Lemma 3.2, instead of Lemma 3.1.

O
A similar result holds when ps is a variable block.

In the event that p; is a constant hlock, Theorem 3.6 allows us to confine our attention to
postconditions in which the constants that it introduces and the dashed variables named after
theru are not free. In this way we can make use of Theorem 3.3 which gives a simple but restricted
definition of constant blocks.

Theorem 3.6 Suppose that, for every posicondition ¥ in which program variables and the names
of cf and ¢l’ are not free, wp.|[con dcl @ p)| % = wp.py-y. Then wp.{[con dcl e p]| .6 = wp.pz.4,
for every postcondition & with no free program variables, provided dcl declares the constants of cl,
and the names of ¢l and cl’ are not free in po.

Proof Similar to that of Theorem 3.5.

[m]}
A similar theocrem covering the case in which p2 is a constant block can be proved. Appendix D
presents many law derivations which make use of the theorems listed above.

An important result about &, which can be easily proved by structural induction, is that it
distributes through the program structure: the program constructors are monotonic with respect
to it. This means that the different components of a program can be refined separately.

As shown later on in Section 3.7.3, a possible way of refining a variable block is by data refine-
ment. This cansists of replacing the variables that it declares and modifying its body accordingly.
The objective is to rewrite the program using data structures which, for instance, can be more
efficiently implernented. The variables declared in the original variable block are called abstract.
and those declared in the new variable block, concrete. A data refinement relation characterises
the programs that ean replace the body of the original variable block.

Qur definition for this relation has been suggested by the work in [33], where a proof-obligation
expressed in terms of weakest preconditions characterises data refinement between schemas that
specify operations. We adopt the notation of [46] and write py =<au, cut,ci P2 to mean that py is
data-refined by p3. The lists of variables al and cuvl enumerate the abstract and concrete variables,
respectively; ci is the coupling invariant, a predicate that specifies how the abstract and concrete
variables are related. The concrete variables must be fresh.

Definition 3.9 For all programs p1 and py, l1sts of variables avl and cul, and predicate ci,
P Sau.cun P2 if and only if
ci Awp.pr.y = wp.pp. Idavl’ e o’ Ay

for all postconditions ¥ in which the variables of cul and cvl’ are not free. The declaration davl
introduces the variables of arl. The variables of cul and evl’ must not be free in p1. Moreover, aul
and cul must be disjoint.

When atl, cvl, and ci can be deduced from the context, we write the data refinement relation
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simply as <.

For reassurance, we observe that if both p; and po are schemas, pr =<qui,col,ci P2 holds ex-
actly when the corresponding Z proof-obligations [or data refinement can be discharged. This
relationship is precisely formulated in Theorem 3.7.

Theorem 3.7 For all schemas A end C that define, respectively, an abstract and a concrete siate;
schema R that defines a retrieve relation between 4 and C; and schemas Op; and Op,

BAwp.Opyp = wp.Opp (T4 e R A W)
if and only if
YA; Cepre Opy A R=»pre Opy and YA, C; C'epre Opy ARAOpy=> 34« Opy A R
A proof for this theorem is not provided here, since this result is not used further ahead.
The next theorem establishes that our definition coincides with that iu (46, 50]. This result

guarantees that our definition does not incur extra complexity to the derivation of the data refine-
ment laws of ZRC.

Theorem 3.8 For all programs p, end pa, lists of abstract and concrete variables avi and evi,
and coupling invartant ct, p1 < p2 if and only if

{(Idavl e ¢t A wp.p1.¥) = wp.py. Idavl’ e« ci' AP

for every postcondition ¥ in which neither program variables nor veriables of cul are free. The
variables of avl and avl’ must not be frec in py. The declaration daul iniroduces the verigbies of
avl. The variables of evl and cul' musl not be free in py. Moreover, avl and cvl must be disjornt,

Proof At first, suppose that p; < m.
ddavi e et A wp. ;Y
= Jdavi e wp.pz. Idavl’ s ct’ Ay [br Definition 3.9)
= wp.pz.3davl’ e ct’ A ¢ [by avl are not free in wp.py. 3 dovi’ ® cif Ay (by Theorem 3.9))
Conversely, suppose that {Jdavl e ci A wp.py.¥7) = wp.p2. Idavl’ e ci’ A 3 holds for every post-

condition ¥ in which neither program variables nor variables of ¢ul’ are free. For a postcondition
& in which the variables of cvl and cu’ are not free,

ci A wp.pr.é

= o1 A (wp.p1-8[ct/vl])[vl/el] [by definition of wp]
= (ci A wp.py.d[clfvl])[vl/el] [by cf are not free in ci]
= (Tdavi ® ci A wp.pr.8[ct/ul])[ul/c] [by predicate calculus]
= {(wp.py. Adavi’ » ci’ A d[clful])[vl/cl] [by assumption]

= {wp.py.(Idavl’ e ci' A 8)[el/vl])[vi/cl]
[by ¢ are not free in dawl and ci’, and ¢! are not in avi’]
= wp.pz. ddevl’ e ci' A S {by definition of wp]

m]
The characterisation of data refinemeut in this theorem considers just postconditions that do not
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contain free occurrences of program variables. The existence of this simpler specification of the
data refinement relation is not surprising, since Corollary 3.1 and Theorem 3.1 establish that the
semantics of a program is completely defined by the restriction of wp to postconditions with no
free ocourrences of program variables. The derivations of the data refinement laws of ZRC rely on
Theorem 3.8, rather than on Definition 3.9 directly. These laws are discussed in Section 3.7.3 and
listed in Appendix D.

3.4 Procedures, Parameters, and Recursion

Back [3] and Morgan [41] have both formalised the use of procedures and parameters in the context
of refinement techniques. These works are connected in a perplexing and unanticipated way to the
substitution operator that renames the free variables of a program. In this section we examine this
relationship and give our reascns for adopting Back's approach in the treatment of procedures in
ZRC; aiso in this section we define a semantics for procedures and recursion.

3.4.1 Exploring the Effect of Substitution

Both Back and Morgan adopt the copy rule of Algol 60 when defining a semastics for non-reeursive
procedures. According to this rule, a program that contains a procedure call is equivalent to that
obtained by substituting the procedure body for the procedure name. Variable capture must be
avoided, in order to ensure that the scope of variables is static. As an example, we take the
procedure block befow, which has been presented in Section 3.].

{procIne = z:=z+ 1o Inc; Ine]

As expected, this program is equivalent tox =z +1; r:=z+1.
In order to ilustrate the concerns related to the capture of variables, we consider the program
below which assigns 1 to a global variable z.

llproc P2z :=1e|varz:Ne P] ] (3.2

In the maig program of this procedure block, the variable black || var z : N P]| declares a variable
£ local to its body, P. Since there is a variable z free in the body of P, we cannot, as in the previous
example, apply the copy rule and substitute £ :=1 for P. This substitution would lead to the
capture of the global variable z mentioned in the body of P by the local declaration of r in the
main program and, therefore, would violate the rules of statie scope. Before applying the copy
rule to (3.2), we have to rename the local variable z.

The refinement law vrbR (variable renaming), which is presented and derived in Appendix D,
can be used to rename the variables introduced by a variable block. By applying this law, we con-
clude that, since z is not free in P, (3.2) i3 equivalent to /[proc P =z ;=1 & |[var z s P[z/z] ]| ]I.
At this point, our main concern is the result of P[z/z].

There seems to be two acceptable possibilities: P and z := 1. In the frst case, the substitution
operator acts on the name P and, since z is clearly not free in this program, P is itself the result;
substitution is a syntactic operator, and is referred to as syntactic substitution. In the second
case, the substitution operator acts on the body of P and yields the result of substituting z for z
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in that program. The behaviour of substitution is dependent on the context in whichit is applied,
and this operator is referred to as context dependent substitution. This somewhat vnusual form
of substitution is adopted in [535] and, as we explain later, is part of a possible solution to the
problems we uncover here.

Both forms of substitution can be defined by recursion in the usual way. The interesting part
of their definitions is that concerned with the application of substitution to a procedure name. In
the case of syntactic substitution we have that, for a procedure name pn and lists of variables uf;
and uly, pn[uly/vh) = pn. For context dependent substitution, if p is the body of the procedure
pn, then pn[vh/vli] = p[vl/vh]. The main purpose of this section is to show that eilher definition
of substitution leads to inconsistency in Morgan’s formalisation of procedures and parameters.
Moreover, we show that Back's formalisation presents no problems, provided we adopt syntactic
substitution.

If we assume that P[z/z] is z := 1 {context dependent substitutiou), we canr deduce that
[var z - Ne P[z/z] ]| is equivalent to |[var = : Nw» z ;= 1]|. This program, however, can be shown
to be eqnivalent to skip: it does not change any variable other than the local varishle that it in-
troduces, and always terminates. Overall, we can prove that (3.2), which is supposed to assign 1
to I, is equivalent to skip.

In [55), Sampaio avoids this problem by restricting the applicatiou of the law that accounts for
the renaming of the variables declared by a variable block. He defines the notion of contiguous
scope and establishes that the renaming is possible only if the variables have a coatiguous scope
in the body of the variable block. A variable is said to have a contiguous scope in a program if
either this program does not contain procedure calls or the variable is not free in the bodies of
the procedures that are called. In the above example, since = does not have a contiguous scope
in P, because z is free in the body of this procedure, we carnot deduce, according to [55], that
livar z: Ne P]| = |[var z : Ne P[z/z] ||. Consequently, the undesired deductica that we have
presented cannot be carried out.

Although it might be considered a solution to the problem, we cannot adopt this approach if
we accept the usual wp semantics of variable blocks presented in {3, 47, 45] or that adopted in
ZRC, which is similar. In all these models, the equality [var z: Ne P]| = |[var :: Ne P[2/z] ||
can be deduced, provided z is a fresh variable. As a consequence, if we assume context dependent
substitution, the yndesired deduction can be carried out in these models.

Sampaio gives an algebraic semantics for the langnage mtroduced in (55]. In this semantica,
the restricted renaming law that he proposes (based on the notion of contiguous swpe) is regarded
as an axiomn and no model is presented for the langnage.

In summary, if we discard the possibility of changing the semantics of variable blocks, we have
to assume that P[z/z] is eqnal to P, or, in more general terms, that, substitution is a syntactic
operator. This is the form of substitution adopted by both Back and Morgan, and adopted in
ZRC-T. as well.

While this decision avoids the probiem discussed above, we show helow that it leads to another
problem in Morgan's formalisation of parameters [41, 45]. In his calculus, the use of parametrised
procedures is made possible by substitutions which define both the formal and actual parameters
of a procedure at the point(s) of call rather than definition. The forms of substitution available
correapond to call-by-value, call-by-result, and call-by-value-result. For example, a substitution
by result has the form p[result viz/v!|], where p is the program ta which it applies, ul,, the list
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of formal parameters, and uly, the list of actual parameters. The main program of the procedure
block below, for instaace, is composed by two substitutions by result.

[[prec Zero = n := 0 » Zero[result z/n| ; Zero[result y/n] J|

This program assigus § to the vartables = and y using a procedure Zero.

In [41] Morgan provides a wp semantics for substitutions, but they can also be defined in terms
of variable blocks. For instance, from the weakest precondition of a substitution by result, we can
derive the eqgnality below, where { is a list of fresh variables.

plres vhojuvh] = |[var { e plijvh]; vh:=1]| {3.3)

The variable block abave implements a call-by-result using the well-known technique of assignment
from a local variable. This is the definiticn actually adepted in [45].

In order to explain the problem with this approach to parametrised procedures, we consider
the program that assigns 1 to a variable z using the procedure P of (3.2).

|[proc P =z == 1 » Plresult z/z] || (3.4)

As we show below, in view of our comments about procedures and result substitutions, and as-
suming that syntactic substitution is adopted, we can get to an urexpected conclusion. Namely,
this procedure block is equivalent to |[var [® 2 :=1; z:=[]|, a program that assigns 1 to £ and
an arbitrary value (that assigned to [ upon declaration) to z.

[proc P2 2 :=1 e P[result z/z] |

={proc PSz:=1e|varle Plifz]; z:=1]] [by (3.3)]
= f(proc P2z =10 [[var te P; z:=1] ] iby Pli/s] = P]
=|varfmz:=1; z:=1] [by the copy rule]

It might appear that an immediate solution to this problem is to adopt context dependent rather
than syntactic substitution. In this case, P[{/z), in the second line of the above derivation, would
be replaced by [ :== 1 (ratber than by P), and the overall result of the derivation would be z ;= 1, as
expected. Nevertheless, we have just concluded that substitution must be regarded as a syntactic
operator, sizce otherwige we run into the problem raised earlier in this section.

If we apply the copy rule at an earlier stage, before replacing the result substitution by the
variable block defined by (3.3), the resulting program assigns 1 to z as well. The development is
shown below,

[proc P =1 :=1 e Plresultz/z] ]|

= 1:= l[result z/z] [by the copy rule]
~[lvar te (z = DYz 2= 1] [by (3.3)
=fvar{el:=1; z:=1] [by a property of substitution)
=z:=] [by properties of assignments and variable blocks]

In conclusion, the order in which the laws are applied influences the result.
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In [45], Morgan uses the strategy illustrated by our second development above. However, the
laws that can be derived from the model of procedures and substitutions provided in [41, 45] do
not enforce the application of tbis strategy: the order of application used in the first development
is also supported by this model.

Altogether, whatever definition we adopt for the substitution operator, we run inio problems if
we consider Morgan's formalisation of procedures. If we assume that P[z/z] is z ;=1 or, in other
words, context dependent substitution, we run into the prohlem illustrated by our frst example.
Alternatively, if we assume that Plz/z] is P (syntactic substitution), the problem posed by our
second example comes about. This problem is not specific to result substitutions: similar difficulties
would arise if we had used value or value-result substitutions.

In Back’s approach, which we adopt in ZRC, this problem does not occur if we define that the
substitution operator is syntactic. In his work, as in ZRC, parametrised procedures are defined
with the use of parametrised statements. Their applicatiou to actual parameters is defined in
terms of variable blocks. For example, call-by-result is defined by the equation below, where { is a
{ist of variables that are not free in p, and are not in vlz.

(res vl e p)(vly) = ([var L e p[l/vh]; vh:=1]|

The right-hand side of this equation is identical to that of {3.3).

Using Back’s parametrised statements, we can write the procedure block (3.4) in the following
way: [[proc P = (res ez :=1) ¢ P(z}]|. Since the result of applying a procedure name to an
actual parameter cannot be established without investigating the body of the procedure, when
reasoning about P(z), the only way to reduce it to a variable block is by first applying the copy
rule. Consequently, within Back's framework, the unwanted deduction that could be carried gut
nsing Morgan’s approach cannot arise.

As already explained, Sampaio avoids the undesired deductions we have presented by adopting
context dependent substitution and introducing a notion of contiguous scope which is used to
restrict the application of the law that renames local variables. If we assume that variables cannot
be redeclared, or in other words, if we rule out the possibility of using nested scope, the variables
always have a contiguous scope. In this case, the usual law that renames local variables can be ap-
plied without further constraints. This restriction over variable declarations, however, is generally
too severe. Moreover, as Sampaio’s formalisation of procedures and parameters is essentially the
same as that of Back, he could have defined substitution as a syntactic operator, aod then avoided
the restriction imposed on the reaaming law.

A negative aspect of Back's work is the introduction of an additional construct: the paramet-
rised statement. Before laws can be derived, the notion of refinement bas to be extended to these
atatements, and properties of the new refinement relation have to be proved. This is accomplished
in the next section, where we also define the semantics of variant blocks.

3.4.2 Semantics

As already remarked in Section 3.1, the forms of parametrised statement that we consider in ZRC
correspond to call-by-value, call-by-result, and call-by-value-resnlt, instead of call-hy-reference as
in [3]. The semantics of these statements, or more precisely, of the programs obtained by applying
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them to lists of actual parameters is not surprising. The definitions are as follows.

Cail-by-value (val dvi e p)(el) = |[var di e !:=el; p[l,I'/ol,ul'l || provided dvl and di de-
clare the variables of Wl and {, respectively, and differ just in the names of the variables that
they declare; and the names of { and I' are not free in p and el.

Call-by-result (res dvi, » p}{vh) = |[var di e p[I,I'/vii, vl{] ; vl = {]| provided dvl) and di de-
clare the variables of v and I, respectively, and differ just in the names of the variables that they
declare; and the names of [ and I’ are not free in p, and are not in vl

Call-by-value-result  (val-res dviy » p)(vh) = |[var die =k pll,I'/vl, oll]; vk =]
provided duvl; and 4/ declare the variables of vy and {, respectively, and differ just in the rames of
the variables that tiey declare; and the names of { and I are not free in p, and are not in vi.

As mentioned in Section 3.1, in ZRC-L a function application can be the actual parameter of a
call-by-result. The semantics of programs of this form is defined below in terms of ordinary calls.

Call-by-result (with a function application as actnal parameter)
(resv:tep)(fzy=|fvaru:te(respv:tep)u); f:=fD{z—u}]
provided u and ¢ are not free in p.

The variable block that corresponds to a cail-by-result whose actual parameter is a fnnction ap-
plication introduces a fresh auxiliary variable u. In this program, u is used as actual parameter,
instead of the function application, and subsequently the function is updated accordingly. A call-
by value-result can also take a function application as actual parameter. The definition of its
semantics is similar to that of a call-by-result and is presented in Appendix C.

Parametrised statements that combine different forms of parameter transmission are defined
by composition. For a mechanism of parameter passing par, and a formal parameter declaration
fpd (either an ordinary declaration or a declaration that combines different forms of parameter
transmission itself), we have the definition below.

Multiple parametrisation mechanisms

{par duly; fpd ¢ p)(eh, ek) = (par dvli e (fpd  p){eh]){el)

provided the variables declared by dul) are not free in ely.

This definition expresses in a general way the definitions of {3].
The definition of refinement that we adopt for parametrised statements is that of [3].

Definition 3.10 For atl parameirised statements (fpd ¢ p1) ond {fpd & p;), with the same formal
purameter declaration, (fpd e p1}) T (fpd ¢ m) if and only if, for all lists al of ocluval parameters,
{fpd e pi{{al) T {fpd » pa)(al).

Surprisingly, maybe, p1 C pz is not equivalent to (fpd » p1) T (fpd @ p2). As shown in [3},
parametrised statements are monotonic with respect to the refinement relation, so that p1 T pe
implies {fpd » p1) T (fpd e py). Nevertheless, there are cases in which {fpd ¢+ ;1) T (fpd » p2),
but p; C pz does not hold. For instance, by applying the definition of call-by-value, it is not diffi-
cult to prove that both (val n: Ne n:=n+ 1)(m) and (val n: N n := n + 2)(m) are eqnivalent
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to skip. Therefore, we deduce that (valn:Nen:=n+1) C (val n:Nen:=n+2). Never-
theless, n :==n + 1 is not refined by n :=n + 2.

In order to simplify the presentation and derivation of the refinement laws, we establish that a
parametrised statement may declare no formal parameters. These special parametrised statcments
are actually programs themselves and we define that, for every program p, { e p} = p.

The main program of a procedure block and the body of a recursive procedure may refer to
the procedure name, so they are not conventional programs. From the semantic point of view,
they are contexts: functions from programs {parametrised statements) to programs {parametrised
statements). If ¢ is the main program of a procedure block or the body of a recursive procedure,
it corresponds to the function that, when applied to a program (parametrised statement) p, yields
the result of substituting p for the free occurrences of the procedure name in <.

The semantics of a procedure block, which we define below, is based on the copy rule of Algol 60
and on least fixed points, as adopted, for example, in [3, 47, 45].

Procedure block |[proc pn = {fpd e p,){(pn) ¢ pa2{pn) || = p2{u(fpd * p1))

Since, as we have already said, programs can be seen as special parametrised statements, this
definition (and others that follow) contemplates procedure blocks tbat declare ejther parametrised
or non-parametrised procedures. It states that a procedure block is equivalent to the program
obtained by applying its main program to the least fixed point of the procedure body. A more
nsual notation for the least fixed point of a function (fpd  p1) is ppn » (fpd e p)(pn), where
(fpd * p1)(pn) is the application of the context (fpd » p;) to the program pn {and not the appli-
cation of the parametrised statement (fpd o p;) to the actual parameter pn). Nooetheless, for the
sake of hrevity, we will adopl the more concise notation p(fpd o p1}.

The existence of u{fpd » p;) has to be justified. According to Knaster-Tarski [60], we can es-
tablish that u(fpd e pi) exists by showing that the set of programs and the sets of parametrized
statements with the same formal parameter declaration are complete lattices, and that (fpd e py)
is monotonic, As expected, the partial order of interest is refinement. Programs are modelled as
monotonic predicate transformers, which, as shown in [7), form a complete lattice. The bottom ele-
ment of tbe set of parametrised statements with formal parameter declaration fpd is (fpd & abort),
Moreover, the least upper bound of a set of parametrised statements {i » {fpd & p,)} can be defined
as (U] » {fpd » p;)}){al) = U{i = (fpd = p;}{al)}, for all lists sl of actual parameters. Finally, the
program constrnctors are monotonic with respect to C . Consequently, (fod # py) is a monotonic
function, as required.

In the case where (fpd o p;) does not contain free occurrences of pr or, in other words, pn is not
a recursive procedure, u(fpd » p)) is (fpd » p)) itself. Therefore, |[proc pn = (fpd » p1) » py(pn}]|
is the program obtained by substituting (fpd  py) for the calls to pn in pg, p2{fpd * p|), as expected.

The variant name introduced by a variant block is a logical constant whose scope is restricted
to the procedure body. This logical constant is supposed to assume ever decreasing values in the
successive recursive procedure calls. Accordingly, the semantics of a variant block is as follows.

Variant block
l[proc pn = (fpd » p1)(pn) vasiant n is ¢ » p2(pn)]| = pa(u(fpd » [[con n: Z o py )

The fact that variant names are logical constants implies that, as mentioned before, variant blocks
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are not executable.
In order to comsider data refinement of procedure and variant blocks, we have to extend the
data refinement relation to contexts.

Definition 3.11 For all conterts from programs lo programs pey and pep, lists of abstract and
concrete vartables avl and cvl, and predicate ¢t, pry < pep f and only if, for ail programs p, and
P2 such that py < pa, par{m) < pealpa)-

Actually, we have adopted the definition proposed in [18].

The definitions that we have introduced in this and in previous sections are used in Appendix D
to derive conversion and refinement laws, In the next section we consider the scope rules of ZRC.

3.5 Scope Rules

The scope rules of ZRC-L are those that a programmer with experience in a langnage like Pascal,
for instance, might expect. They are defined below by a function (fn,) that associates a program
or a parametrised statement with the set of its free names.

The functian fn, is defined recursively. The function fnpa, which is used in its definition, gives
the free narues of a predicate; fn. defines the free names of an expression; finally, faa specifies
the free names of a declaration: those that are free in the expressions that define the types of the
variables in its alphabet. These functions are defined (under other names) in [8].

frpld | p)=adUfng.d U frpgp

fry.pn = {pn}, where pn is a procedure name.

Jnp.w : [pre, post] = elem.w U frigg.pre U fngy.post

fnpyskip=9@

fnp {pre} = frpd-pre

frg.[post]= frpy.post

fapvl ==l = elem.vl U fne.el

fnpprLs pa) = fippt U frp.pa

frpifliegi o pifi=U{i®fopag U frpp}

frpdaflyeg = pood=U{iefre Y frpp )

frp. j[var dvl e p]| = fag.dvl U frp.p\{advl Uodel’)

frp.|[con dol e pl = fra.det U frg.p\adel

frp.(fpde p) = fra.fpd U frp.p\(cfpd Uefpd')

fag.|proc pn = (fpd o p1) ® ;21| = (fnp.(fod @ p1) U oy pe\{pn}

fap.|[proc pnt = (fpd o py) variant nis e o p]| =
fra-fpd U frp.p1 \{pn, n} U fre.\arfpd U frp p2\{pn]

The function elem gives the set of elements of a list. The « function, which is usuvally applied
to ordinary declarations to determine the set of variables that they declare, is applied above to
formal parameter declarations as well.
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A prograui or parametrised statement is well-scoped if its free variables are before or after-state,
input, or output variables, or still global variables of the Z specification in whick it is inserted.
A well-scoped constant block, in particular, satisfies yet another restriction: the dashed variables
named after the constants it introdnces are not free in its body. Our definitions, theorems, lemmas,
corollaries, and laws contemplate only well-scoped programs and parametrised statements.

The following theorem is extensively used throughout this work.

Theorem 3.9 If a variable (constant) v and its dashed counterpart v are not free in the program
p and in the postcondition ¥, then v is not free i wp.p.y.

Proof Structural induction over p.
]
As a matter of fact, this theorem bas already been mentioned in proofs presented in the previous
section. It is used again later in this chapter and in Appendix D.
The lemma below is also used in subsequent proofs.

Lemma 3.3 For every program p, postcondition v, and predicate & such that resther ufs free
variables nor their undashed counterparts are free in p,

(wppydAd= wpp (v AY)

Proof Structural induction over p.
O
Intnition might snggest that equality and not only implication holds in the ahove theorem. How-
ever, we should note that in the case where p is a miracle, it will establish ¢' under any circnm-
stances.
The next sections discuss the conversion and refinement laws of ZRC. They all take the scope
rules of ZRC-L into account.

3.6 Conversion Laws

The majority of the ZRC conversion laws are based on those in [34, 64]. The most general of these
laws, which can convert any schema that specifies an operation, is named 3C (bssic conversion).
Its two formulations have already been used in Section 1.1. The first one is shown below: it can
be applied to every schema of the form {AS; di7; do!| p) in order to translate it to an equivalent
specification statement. Its derivation and those of all other ZRC conversion laws are presented in
Appendix D.

Law bC Basic conversion
{AS; di?; do! | p}
= bC
ad.ado! : [inv A 3d'; do! e inv’ A p,tnv’ A p]

where §= (d | inv)

The predicate inv A 3d’; do! & iny’ A pis a conjunct of pre (AS; 4i7; do! | p}, which also includes
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the restrictions over the state and input variables that are introduced by d and di?. Nevertheless,
the methods for calcalating pre {AS; di?; do! | p) which are often employed in practice [66, 16, 85,
52] leave both iny and the restrictions of d and di? implicit, and point out just 3d’; do! = inv' A p
as the precondition of (45; di?; do!| pj. Consequently, when determining the result of applying
bC to a particular schema that specifies an operation, we can rely on the caleulations that establish
its precondition.

By way of illustration, we consider the specification of a simple bank account presented in [16].
In this example, the state is formed by two components: bal and od{. They are both integers which
represent, respectively, the balance and tbe overdraft limit of the acconnt.

_ Account
bal,odl: L
odl > 0
odl + bal > 0

An account overdrawn by an amount of money b has a negative balance: —b. The state invariant
establishes that the overdraft limit of an account cannot be negative and cannot be overstepped.

We examine the cperation Withdrew which withdraws money from the account. It has an
input, with?, which determines the amount of money to he withdrawn.

Withdrw
FAACCOHTU

with? | &

0 < with? < odl + bal
bal’ = bal — with?
odl’ = odl

According to[66, 16, 65, 52], the precondition of Withdraw is 0 < with? < od! + bal. The amount
of money to be withdrawn must be positive and must be available in the account. The result of
applying bC to Withdraw is the following specification statement.

odl' >0
odl >0 odi’ + bal > 0
bal,odl : || odi+ bal>0 | 0< with? < adi + bal
0 < with? < odl + bal bal' = bal — with?
odf = odi

When bC s applied to a schema that specifies an operation, its preconditior sbould preferably be
already awilable in a simplified form. Nonetheless, this should not be seen as an extra burden
of the refinement process. On the contrary, calculating the precondition of the operations is a
recommended part of the specification phase [66, 65, 52] and, therefore, bC actually encourages
the reuse of an existing result.

In [34) King writes specification statements using the 0-subscript convention for initial variables
adopted in (47, 43]. We have followed, however, the lines of {64, 65) and kept the dashing convention
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of Z to maintain the compliapce with this notation. Moreover, in [47, 45] the names of the variables
are usually very short probably to make their copying easier. Following this guidelne, King has
suggested the shortening of the variable names of the Z specifications when translating them to
the notation of the refinement calculus. Nevertheless, we believe that a tocl can make all the
necessary copying, understanding the designs is important, and the collected code gives guidance
to the developer. Therefore, we have suppressed this shortening phase.

Schemas which specify operations that do not change the state or, more precisely, schemas of
the form {£S; di?; do! | p), can be written as (AS; di?; do! |pA el =¢1 A... A ¢, = €4}, where
£1,...,, are the components of 5: the state components. As a consequence, we can use bC
to transform (=5; di?; do! | p} into a specification statement. Nonetheless, since schemas of this
form occur very frequently in Z specificatious, we propose an additional conversion lw, or rather,
an additioual formulation of 5C that considers their particular features.

Law b Basic conversion (operations that do not modify the state)
(Z8; di% do' | p}
= b0
ado! : [inv A 3 do! e plad/ad’], p]
where S 2 (d | inv)
The specification statements generated by this formulation of C do pot include the state com-
ponents in their frames. Moreover, their postconditions do not enforce the maintenance of the
invariant because, since the state components are not modified, the state invariant is necessarily
maintained. The predicate 3do! » plad/ad’] is what is commeonly regarded as the precondition of
{=§; di?; do!| p).
As an example, we consider the operation Balance, which retrieves the balance of the bauk
account. This operation does not change the state and has an output: ball.

— Balance
= Account

ball - £
bal! = bal

This is a total operation: its precondition is true. By applying the ahove formulation of 5C to
Balaonece, we get the specification statement below.

ball : [odi > D A odl + bal > 0, bal! = bali

This is a much mere concise result than that we would obtain if we used the first formnlation of
bC.

Every schema that specifies an operation can be written in a form appropriate to the application
of bC and, therefore, this law can be used to transform any such schema into a specification
statement. Nonetheless, before bC can be applied to a schema defined with the we of schema
operators like conjunction, digjunction, and others, the schema expressions have 1o be expanded.
As pointed out by King, however, some schema expressions can be translated directly into more
structured programs.
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Schema disjunctions can be transformed into alternations if the operations invelved act over the
same state and have the same inputs and outputs. Iu ZRC, this can be efferted by an application
of the conversion law sdisyC' (schema disjunction conversion}, whichb bas three formulations. Its
first formulation is shown helow.

Law sdisyC Schema disjunction conversion

Op; v Opy
T sdisiC

if prey = Op1[] preg = Op2 68
where

e pre Op; = pre; Anv Al

e pre Op,= preg A inv ALy

® inv is the state invariant;

s ¢ is ihe restriction that is introduced by the declarations of the state components and
input variables.

Syntactic Restriction Op, aud Op; act over the same state and have the same input and
output variables.

The guards pre; and pres are supposed to be the preconditious of Om and Opz as calculated
in [66, 16, 65, 52). Their characterisation in terms of pre Op; and pre Op;, however, does not
uniquely identify thern, since conjunction is idempotent. Nonetheless, any of the predicates pre;
and pres that satisfy this characterisation can be used as guards. The same observation holds for
the other formulations of sdisjC', which also refer to pre; and preg.

As an example, we consider once again the bank account operation Withdraw, which is partial.
If it takes as input an integer that is not positive or that represents an amount of money not
available in the account, then its bebaviour cannot be predicted. In the Oxford style of writing Z
speciftcations, treatment of this error case consists of defining a robust operation using a disjunction
like ( Withdraw A Success) V WithdrawError, where WithdrawError is a schema that specifies the
effect of the operation in an error situatiou. Typically, Success is a schema as that we present
below.

Success
result! : MESSAGES

The set MESSAGES contaius the possible error messages and ok, the message that signals success.
The operstion Withdratw A Success behaves as Withdraw, except that it has an output, result!,
which indicates that the withdrawal has been successfully accomplished. Its precondition is that
of Wathdmw [65). The schema WilhdrmwError that we present below defines that, in case of error,
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the state is not changed and the message errer is output.

__ WithdrewError
ZAccount

with? :
resull! : MESSAGES

with? < Qv with? > odl + bal

result! = error

In the absence of error, ( Withdraw A Success) V WithdrawError acts as Withdraw A Sucecess; oth-
erwise, it bebaves as WithdrawError. By applying sdisyC to this operation, we can get the alter-
nation below.

if 0 < with? < odl + bal =& Withdraw A Success
[ with? < 0V with? > odl + bal — WithdrawError
1

The schemas Withdraw A Success and WithdrawError that compose the branchesof this alterna-
tion can be converted to specification statcments by the bC law. Later on we present another law,
seonjC (schema conjunction conversion), which can also be applied to Withdrew # Success.

The second formulation of sdisjC introduces a fresh boolean variable used to record the pre-
condition of the first disjunct.

Law sdisjC Schema disjunction conversion with boolean variable introduction
Op v Opy
T sdisjC
[var #: Boolean e b : [true. &' & pre;]; if b— Op [] prez — Opa fi]]
where
s pre Opy = preg Adnv A
a pre Op; = pres A tnu AL
« inw is the state invariant:

e ! i3 the restriction that is introduced by the declarations of the state components and
input variables.

Syntactic Restrictions

e Op and Op, act over the same state and have the same input and output variables;

e b and b’ are not free in Op; and Opa.

For example, { Withdraw A Success) vV WithdrawError can be transformed into the variabie black
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below using this formulation of sdis;C.

llvar succs : Boolean o
suces : [true, succs’ € 0 < with? < odl + bal);
if suces — Withdraw A Success

[ with? <0 v with? > odl + bal = WithdmwErrer
fi

I

The specification statement registers the precondition of Withdraw A Success in the local variahle
succs. The Boolear type is not one the Z primitive types and is not defined in the Z mathematical
toolkit, but can be specified using the Z notation without difficultics. As a matter of fact. the
formulation of sdisjC above is a specialisation of that we present below, which introduces a fresh
variable v of an arbitrary type t. Examples of the application of this formulation of sdisjC can be

found in the next chapter.
Law sdisjC Schema disjunction conversion with variable introduction
Op1 V Opa
C  sdisiC
[[var v:tev: [true, ¢jv'/v] |5 if ¥y = {d A¢h} Op1 [l we — {@ Az} Om i)
provided
o ) Alprer Vopreg) => i Vi
s & Afprey ¥ preg) = (¢, = pre;) for 1 = 1,2
where
e prelp; = pre; Adne Al
s preOpy = preg A wnw A L
» 1xv is the state invariant;

a ¢ is the restriction that is introduced by the declarations of the state components and
input variables.

Syntactic Restrictions
® o %, and 1 are well-scoped and well-typed predicates;
& ¢, 4, and ¥ have no free dashed variables;

& Op; and Opy act over the same state and have the same input and output variables;

» v and v are not free in Op; and Opz.

This formulation of sdisjC generalises the correspoading translation rule of {34]. The latter converts
Op, and Opy to specification statements.

A schema conjunction may be translated into a sequential composition if the conjuncts act on
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different state components. This can be achieved by applying the conversion law sconjC.
Law sconjC Schema conjunction
Op1 A Opz
C scomC
Op1; Op

Syntactic Restriction Op; and Opp have no coumon free variables.

As an example, we take Withdraw A Success; by applying scomyC' to this operation, ve can gec the
sequential composition Withdraw ; Success. This method of translating schema conjuuctions was
propased in [34]. There, although the conversion procedure is clearly explained, the formulation
of the law is mistaken. It was due to our effort to formalise ZRC that we uncovered this problem.

As a matter of fact, the relationship between the Z relational and weakest precondition se-
mantics presented in Chapter 2 does not acconnt for schemas which, like Success, have no state
components and initial variables. It is to be expected, hawever, that their weakest precondition sat-
isfies the characterisatiou presented in Theorem 2.6 for scheinas that specify operations in genperal
and that, consequently, the laws of ZRC can be applied to them as well.

Due to the form of its predicate, Success can be translated to an assignment; the law gssC (as-
signment conversion} can perform this task. ft is suggested but not actually formnlated in [34).

Law ass’ Assignment colversion
(AS; di?; do! | ej=e A Aef=e Aoyl =eqir. . Aot = engm)

C assC

€l sty 0ily s omt =oAL L Eugm
provided irv(e1,. .., enfC1, .., 0]
where

e §={d|inv)

& ¢),...,Cq are state components (¢lements of ad);

s o!,...,0m! are ontput variables (elements of ade!).
Syntactic Restriction ad' and ade! are not free in e, ..., €npm-

The syntactic restriction guarantees that no after-state or output variable is free in any of the

eXpressions ej,.. .. €ntm, and so, the equalities ¢ = ¢),..., ¢, = €n, 01! = a1, 00 = Enim
can be established by ci,....cn.01% ... 0m!i=e1,...,e,0m. The proviso guarantees that. this
assignment maintains the state invariant. By applying assC to Success, we get result! .= ok.

Tbe formulation of the next law, scompC (schema composition conversion), has heen motivated
by comments in [58, 52]. This law applies to schema compositions Op; § Ope, where Op; and Op,
are operations that act over the same state and bave no commen putput variables. Using seomp(C,
we can translate a schema composition like this into a sequential (program) composition, as long
as the preconditiou of Op; is guaranteed to be established by Op,, provided the precondition of
Op, 3 Opy bolds. This restriction is enforced by the proviso. The restriction on the output variables
is necessary because, if Op; and Ops have a common output variable, then Opy § Opy produces an
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output that takes the specification of both Op; and Op, into account, and Op, ; Op;, an output
that considers just the specification of Opa.
Law scompC Schema composition conversion
Op1 5 Opz
C  secompC
Op ; Opm
provided (preg A Op)) = pre)
where
e preg =pre{Op1 2 Opz) Adnw A EA I A ly;
e preOp = pre; Ainw AL A Iy
® nv is the state invariant;
e t, ¢, and tp are the restrictions that are introduced by the declarations of the state
components, of the input variables of Opy, and of the input variables of Opy, respectively.
Syntactic Restrictions
e Op; and Opq act over the same state;
» Op; and Opy have no common cutput variables.
As in the case of sdisjC, pre; and prey are supposed to be what is commonly regarded as the
precondition of Op; § Opz and Ops, respectively.
To illustrale the application of seompC we adapt the example of (38], a counter with a limit.

It3 state is formed by the components value, which records the current value of the counter, and
fimnit, which records the positive natural number that limits the value of the counter.

— Counter
value, imat : N

vafue < Gmat
Hmil > 0

This counter has a reset {Reset) and an increment {/nc) operatiou.

— Reset
ACounter

value’ = 0
lmat’ = himit

— Iuc
ACounter

value’ = value + 1
limst’ = limit

The application of scompC to Resel 3 Inc yields the program Reset ; Inc. As Reset 3 fncis a total
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operation, the proof-obligation generated is Reset = value’ < limit’. Since Reset specifies thac
value' = 0 and the state invariant guarantees that iimit’ > 0, we can conclude that value’ < limiy’
and the imphcation above is valid. This reflects the fact that, after resetting the counter, it is
always possible to increment it.

In {64] Woodcock presents and derives a law that implements a promoted operation using a
call-by-value-resnlt. This work has motivated the formulation of promC (promotion conversion),
a law that applies to a promoted operatiou 3AL ¢ & A Op. The operation Op acts over a {local)
state [ and has no inputs or outputs. The schema ¢ defines a mixed operation: it acts on the local
state L and on the global state . The latter contains just one component: a function f from an
arbitrary type X to L. The purpose of ¢ is to specify how an operation on the local state can be
used to update the global state. Its iuput, £?, identifies an element in the range of f.

Law premC Promotion conversion

JALed A Op
Z promC

[[proc pr = (val-res r: Lo {r,r' : L| snv A inv' A p)[r.z;, g, o, 2l])) e pr(f 22) |
where

La{g i ..o Tt | inv)
Op={AL| p}
G{f: X = L)

—%
AG
AL
3?7 X
z? € dom f
6L=f z?
{7} <af ={z?}af
ft=6L

Syntactic Restriction pn, r, and f are not free in Op.

The procedure block introduced by promC declares a procedure pn that implements the local
operation Op. This procedure has a value-result parameter r whose type is L: that of the e]-
ements in the range of f. The body of pn is not Op itself, but a corresponding operation
that acts on the state formed by the single component r, instead of on L. The substitution
{inv A inv’ A p)[r.x,. F.3i, /40, £]) teplaces all references to the components of the original state in
the predicate of Op with references to the corresponding components of r or r’. The main program
consists only of a procedure call with the actual parameter f 2.

By way of illustration, we consider the specification of a registration and booking system of a
holiday plavscheme for children presented in [52]. In this example, a child representation is defined
bv a schema named Child which records its age and other details that may be relevant to the
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system: a value of the given set CHILDINFQ.

Child

age 1 5..16
details : CHILDINFO

We define an aperation Birthday, which increases the age of the child by 1.

Birthday
AChild

age’ =age + 1
details’ = details

The registration system associates identifiers to children. Its specification uses another given set,
CHILDID, which contains all child identifiers.

ChitdReg
[ creg : GHILDID ~ Chald

The followjng mixed operation is used to promote operations on Child to act on a particular child
registered in the system.

—®1C__ _
AChidReg
AChild
c?: CHILDID

c? € dom ereg

OChild = creg c7

{c?} acreg’ = [c?} acreg
creg' ¢7 = O Child’

The operation that updates the age of the child ereg c? can be specified by the schema expression
3AChild « $1C A Birthday. By applying the conversion law promC to this promoted operatiou.
we can obtan the procedure block below.

[ proc bd = {val-res c: Child & {¢,c' : Child | ¢’.age = c.age + 1 A ¢, details = c.delails)) o
bi{creg c?)
I

Twa additional conversion laws are presented in Chapter 4. In the next section, we discuss the
refinement laws of ZRC.
3.7 Refinement Laws

The refinement laws of ZRC are presented and derived in Appendix D. They are similar to the
carresponding laws of Morgan's calcnlus that deal with initial variables, but some modifications
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have been necessary to take the Z decorations into account. As a consequence, in many cases the
ZRC refinement laws correspond more closely to those in [65]). The application of several of these
laws has already been illustrated iu Section 1.1. Many more examples can be found in Chapter 4.
Here, we discuss the refinemeut laws concerned with the development of procedures aud data
refinement.

In the next section, we present laws that can be used to introduce procedure and variant blocks,
and procedure calls. These laws have no counterpart in [45] and support Morgan’s techniqne of
procedure development. In Section 3.7.2, we present refinement laws that can be used to intro-
duce parametrised statements. These correspond to the laws of [44] that introduce substitutions.
Finally, Section 3.7.3 contemplates the data refinement laws, which are based on [46], instead
of [45).

3.7.1 Procedures and Recursion

The refinement law that can be employed to introduce a procedure block is presented below.

Law pref Procedure introduction
i)
= pred
[[proc pr = (fpd « p1) # p2 ]l
Syntactic Restrictions
e pn is not free in py;
+ {fpd » p|) is well-scoped and well-typed.
This law allows any program p; to be transformed into a block that declares a procedure pr not
called in pp, and whose main program is p; itself. Calls to pr can be introduced subseqnently in
p; using the pcalll {procedure call introduction) law preseuted later on.

As mentioned in Section 3.4, a program can be regarded as a parametrised statement with an
empty formal parameter declaration. Therefore, even tbough the body of pn is presented above
as being a parametrised statemeut, prc/ can also be used to introduce a block that declares a
non-parametrised procedure. Similar comments apply to the other laws that we present in this
section.

The introduction of a variant black can be achieved with the use of the refinement law below.
Law vrti Variant introduction

P2
= urt]

[iproc pr = (fpd @ {n = ¢} ;) variant u is e o p3]|
Syntactic Restrictions
s pn and n are not free in ¢ and pg;

e (fpd ® p1) and € are well-scoped and well-typed.

Recursion can be introduced by refining (fpd ® {n = ¢} p1) and subhsequently replacing occurrences
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of (fpd @ {0 < n < ¢} p1} in the resulting program by procedure calls (using pealfl}.
The pealll law has three formulations. The first of them is aimed at the introduction of

procedure calls iz the main program of procedure blocks that declare non-recursive procedures.

Law peallf Call to a non-recursive procedure introduction

[[proc pn = (fpd & pr) ® p2{(fpd » p1)] ]}
= pealll
[[proc pr = (fpd @ p1) = pa[pn]]|
Syntactic Restriction pn is not recursive
We identify an occurrence of a program (parametrised statement) py in a context ¢ by writing ¢[p; ]
Subsequent references to €[p;] denote the context obtained by substituting ps for that particular
occurrence of p) in ¢. The program c[p;] should not be confused with c(pz). As already explained,

the latter, is theresult of substituting ps for the {ree occurrences of the procedure name, as opposed
to a particular occurrence of py, in e

The iutroduction of a procedure call in the main program of a variant block can be accomplished
by the following formulation of pealil.

Law peallf Procedure call introduction in the main program of a variant block

[[procpn = (fpd o p1) variant n is e & py{(fpd » p3)]]|
T peall]

[ proc pn 2 {fpd » p;) variant n is ¢ » p2[pn]]|
provided {n =e} ps C p,
Syntactic Restrictions

e pnis not free in py;

e nisnot free in e and p3.

Recursive calls can be introduced with the use of the last formulation of pealll, which is presented
below.

Law pcail] Recursive call intraduction

||proc pr = (fpd o pr{(fpd ® {0 < e < n} p3)]) variant nis e s ;]|
C  poalil

llproc pr = (fpd  prjpn]) » pa |
provided (n = e} ps T plUfpd + {0 < ¢ < n} py)].

Syntactic Restriction = is not free in p; and py[pn]

In the next section, we present an example that illustrates the application of this and several other
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refinement laws we have presented here.

3.7.2 Parametrised Statements

The peelll law allows the substitution of parametrised procedure names for parametrised state-
mments. We still need. however, laws that introduce parametrised statements. Iu this section, we
present three such laws, which account for value, result, and valueresult parametrised statements.
They correspond to the laws of [44] that introduce substitutions that apply to specification state-
ments. The laws of [45] combine an application of these simpler laws with an application of a law
that introduces procedure calls.

The law that introduces a call-by-value is as follows.

Law vS Value specification
w : [pre{el/vl), post(el, el' Jul, of'] ]
= oS
(val dvl » w : [pre, post]){el)
where dul declares the variables of vl.
Syntactic Restrictions
o The variables of v{ are not in w;

» The variables of w are not free in el.

The introduction of a call-by-result can he achieved with the refinemeut law that is presenied
helow.

Law r5 Result specification

w, vl : [pre, posi)

= rS
(res dol) » w, vl : [pre, post(vl [vl) ) (vk)

where duvij declares the variables of ;.

Syntactic Restrictions
e vl and »l; have the same length and contain no duplicated variables:
+ The variables of vl are not in w and are not free in pre;

» The variables of vh and vl] and are not free in post.

Ancther formulation of r$§ allows the introduction of a call-by-result whose actval parameter is a
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function application.

Law r$ Result specification (function application as actual parameter)
w,f i [pre {27} a [ = {7} af Aposilf’ 2?/fp'] ]
= r§
(res fp:tew, fp: ipre, post]}{f z7)
where 1 is the type that contzains the range of f.
Syntactic Restrictions
» [ is of a function type;
* [ and fp are not in w;
s { and f' and are not free in post.
The program w,j: {pre, {27} <4 f' = {2?} < [ A post[f’ £?/fp'] | modifies { only by changing f z?

as specified in post{f’ £7/fp']. The program w, fp : [pre, post] changes fp in the same way. So, by
passing the parameter f z7 to (res fp » w, fp : [pre, post]), we obtain the desired effect on f.

The law »rS§ (value-result specification) presented below introduces a call-by-value-result.

Law orS Valueresult specification

w, vl : [pre[viy/ o], post{viy /ul] ]
= S

(val-res duly » w, i, : [pre, post[vl] /vly] |){vl)
where dul] declares the variables of ulj.
Syntactic Restrictions

# The variables of vl are not in w;

s The variables of vl{ are not free in post;

» The variables of vl and vl are not free in w : [pre, post].

As r8, this law also has an extra formutation which contemplates calls that have function applica-
tions as actual parameters. This additional formulation of vrS is similar to the second formulation
of r§ presented above, and can be found in Appendix D. As a matter of fact, yet a third formula-
tion of vrS is presented (and derived) there. It is more general than the above formulation of vr§,
as it can be applied tc any form of program and not only specification statements.

The mp§ (merge parametrised statements) law, which can also be found in Appeudix D, com-
bines parametrised staternents. The three laws mentioned above introduce parametrised state-
ments that use a single mechanism of parameter passing and mpS§ allows us to merge them, if
they are compatible {in a sense precisely defined by the formulation of this law). The mpS law
corresponds to the law of [44] that merges substitutions.

As an example, we refine the program z : {true, 2 = y!] mentioned in Section 3.1. As suggested
there we implement by recursion a procedure Fuc! that assigns to r the factarial of its value
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[[proc Fact 2 (valn:Neif n=0—oz:=1Jn >0 Fact(n —1); z:=zxn fi)
Fact{y)

|

Figure 3.1: Collected code for the factorial program

parameter. The first step in our development is the intreduction of the variant block that declares
Fact.
z: ftrue,z’ = y!|
= vrt]
[proc Fact = (val n: N# {N =n} z: [true,g’ = n/]) variant N isn e
z: [trne, z' = y!) <

Il

Obviously, we want to implement the main program of this variant block hy a callto Fact. With
this purpose we introduce an appropriate parametrised statement.
=8
{(val n: Ne x : [true,z' = n/])(y)
At this point we can introduce the precedure call.
|[proc Fact = (val n: Ne {N =n} z:{true,z’ = n!]) variant N is n e
{val n:Nez:[true,2’ = nf])(y)
I
C pealll
[[proc Fact = (val n: Ne {N =n} z:{true,z’ = n!]) variant N is n e Fact{y) ]
The proof-obligation that is generated hy this application of pcelll arnounts w showing that
{N = n} z :[true,z = n!], is refined by itself, which is trivial since refinement is reflexive.

It is not difficult to verify that the program in the procednre body can be refined to the following
alternation.

Hn=0—-z:=1

Jn>0=z:ln>0AN=n1=[n-1)/]; q
I:=1Xn

fi

The remaining specification statement assigns to z the factorial of r ~ 1. It can he implemented
by a recursive call. First we introduce a parametrised statement using the v§ law again.

=S5
(valn:Nez:[n+1>0AN=n+12" =nrf))(rn-1)

The body of this parametrised statement can be refined to {0 < n < N} z:{true,z’ = n!]. Now
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we can apply pealll to introduce the recursive call to Fact. The resulting procedure block is
presented in Figure 3.1. The proofobligation that is generated is shown below.

{N =n}z:ltrue,z’ = n/]

Cifrn=04z:=1
In>0-s(valn:Na{0<n<N}z:|truez’=n/fi{n~-1); =z xn
fi

This is exactly the result that we have chtained when developing the body of Faci. Therefore, we
do not need to provide any additional justification to discharge this proof-obligation.

In general, if we apply pcalll in the way illustrated above, with p; as the program in the
original specification of the procedure, the discharge of the proof-obligations generated is trivial.
This strategy of refinement produces developments that follow Morgan's approach to recursion.

3.7.3 Data Refirement

As already mentioned in Section 3.3, a variable block can be refined using data refinement. This
can be accomplished by the refinement law ¢R (data refinement) which we present below. The
list of abstract variables is aul, the concrete variables are those of cul, and ci is the coupling
invariant. When applied to a variable block that declares the abstract variables, dR generates
another variable block that declares the concrete variables instead and whose body data-refines
the body of the original variahle block.

There are three formulations of dR. The first cne is as follows.

Law dr Data refinement (restricted)
[[var dul; davl e py]|
C dR
|[var dut; devl e po]|
provided
*m < py
» Ydeul o Idavl & a1,

where daul and dewl declare the variables of aw! (the abstract variables) and cul (the concrete
variables); and ct is the coupling invariant.

Syntactic Restrictions
» The variables of cuf and cul' are not free in py, and are not in avl;
e The variables of aul and av!’ are not free in pg;
¢ o is a well-scoped and well-typed predicate.
The first proviso of this formulation of 4R obliges p; and py to be related by data refinement. The

syrntactic restrictions enforce the freeness conditions imposed by the definition of data refinement
and guarantee that ci is well-scoped and well-typed.
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The second praviso requires that any combination of values that can be assumed by the concrete
variables correspond to some comhination of valnes that can be assumed by the abstract variables.
Tkis proviso is very restrictive, but it is necessary since the initial valne of a varishle after its
declaration is arbitrary. By way of illustration, we take the mean calculator that has been presented
in [46). In its abstract specification, a bag & is used to store a collection of numbers with the
objective of calculating its mean: 3- b/#b. The operators §, and # are not part of the Z (ZRC)
notation, but, for simplicity, we adopt the notation of [46] at this point and assume that 3~ b is the
sum of the elements of b, and #b, its size. 1n [46] Morgan and Gardiner suggest a data refinement
that replaces & with the variables s and = which record, respectively, the sum and the size of the
bag. The coupling invariant is s = 3. b A n = #b.

Although it can be easily proved that z,y := Y b, #b is data-refined by z, y := 3,n, the refine-
ment below does not hold.

|[var b-bagN ez, y:=3 b,#b]| C [[var s,n:Nez,y:=s,n]|

We ohserve that the weakest precondition of |[var b:bagNez,y:= 7. b, #b] with respect to
z > 0= y > 0, for instance, is true, since any bag that has a sum greater than 0 has some element.
On the other kand, the weakest precondition of [[var s,n: Nwe z,y:= s, n]| with respect to the
same posteondition is false, Upon declaration s and n may get any value and, in particular, they
may get values such as 3 and 0, which do not correspond to the sum and size of any bag.

The second formulation of dR considers variable blocks whose bodies start with an initialisation
of the abstract variables and so do not depend on their initial arbitrary values. [n this case, the
restrictive proviso of the first formulation may be dropped.

Law dR Data refinement (variable blocks with initialisation)
[var dul; davl e asl: [true, inst’] ; py ]
C dR
[[var dut; deul » cvl: [true, (I davi & e A inil)']; pl
provided p; < p2

where davl and devl declare the variables of av! (the abstract variables) and ctd (the concrete
variables); and ¢i is the coupling invariant.

Syntactic Restrictions
¢ The variables of cvl and cul’ are not free in init and p), and are net in avi;
s The variables of aul and at!’ are not free in pg;

* ¢iis a well-scoped and well-typed predicate.

In [46] just variable blocks with invariants are considered. In these blacks the initjalisation is
implicit.

The third and last formulation of dR applies to every variable black that declares the abstract
variables, irrespective of any particular property of the abstract or concrete variables, ar of the
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coupling invariant.
Law dR Data refinement

[[var dul; davi e p; ]|
C dR
[[var dul; devl e cul : [true, (3 dovl » )] 5 p2)l
provided p; £
where dawl and dew! declare the variables of avl (the abstract variables} and ¢vl (the concrete
variables); and ¢i is the coupling invariant.
Syntactic Restrictions
s The variables of cvl and ¢t are not free in p, and are not in awi;
o The variables of av{ and awl’ are not free in py;

e c1 is a well-scoped and well-typed predicate.

The variable block that is generated by this formulation of dR contaius an initialisation of the con-
crete variables, and sc, before they are used, these variables are assigned values which correspond
to some combination of values of aul.

The program p; mentioned in all formulations of dfl can most of the times be calculated from
p1. avl, cul, and ci using data refinement laws. These are enumerated and derived in Appendix D.
They are based on those of [46], but as those of [45], which support the auxiliary variable technique,
they can be applied to programs with free initial (or in the terminology adopted here, program)
variables. More specifically, the data refinement law that deals with specification statements
contemplates the possibility of program variables occurring free in them. This law is shown below.

Data Refinement Law Specification statement

vl w: [pre, posi]
4

l{con davl e cvl, w : [ci A pre, Jdaul’ » ct’ A ul' = ul A post] ]|
where

» day! declares the variables of aul;

* gl = vl,ul, and v and w! are disjoint.

Syntactic Restriction The variables of avl are not in w.

The list of variables ul contains the abstract variables that are not in the frame of the specification
statement.

The program p obtained by data-refining a specification statement s with the use of this law
is always the most general data refinement of s. This resuilt is established by Theorem 3.10, which
shows that there is no program that data-refines s that cannot be obtained by refining p: nothing
is lost by taking p as the data refinement of s.
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Theorem 3.10 For all programs ol, w : [pre, post] and p, lists of absiract and concrele varvables
avl and cvl, and coupling invariant ci, if vl,w: [pre,post] % p then

[con davl e cvl, w: [ci Apre,Idavl’ e er' Auwl =ul Apost] | C p

The hsls of variables vl and ul partition avi. The declaration davl introduces the vanables of aul.
The variables of cul and covl’ must not be free in vl, w : [pre, post], and avl and cvl must be disjoint.

Proof

wp.||con davi ® cvl,w: [ei A pre,Tdavd’ e ci' A ul' = ul A post] ||
= davi e ¢i A pre A (¥ deul', dw' e (3davl e a1’ A ul’ = ul A post) = ¥)[/']
{hy definition of wp]

1]

Idavl e cf A pre A (Vdeol'; du'; davl’' @ ci! A ul' = ul A post = )[/]
[by aul’ are not free in ¢]
Adavi @ ci A pre A (Vdavl; du' e ul' = ul A post = Vdenl' o ci' = ¢)[-/']
[by cul’ are nat in ul’ and are not free in davl’. dw’, and post]

il

= Jdavleci Apre A (Vdul; du' e post = ¥ deol’ a i’ = ) [ul/ul][/]
[by predicate calculus]
Fdavl e c2 A pre A (Y dul'; duw' e post = Vdool' a a' = P)[-/]
{by a property of substitution]

= ddavie ci Awp.vl,w: [pre,post).Vdevl e o’ = ¥ [by definition of wp)
= wp.p.Adavl’ » ¢i’ AVdeol' @ et = ¢ [by assumption]
= wp.p. Adavl’ o [by monotonicity of wp]
= wpp [by aul' are not free in #]

a

The data refinement laws that apply to annotations are special cases of the Jaw that coansiders
specification statements. Therefore, it is a direct consequence of the theorem above that, when
applied to a program p, all these laws produce the most general program that data-refines p.

Schemas and assignments can be data-refined by first transforming them into equivalent spec-
ification statements and then using the appropriate data refinement law. In the case of schemas,
the conversion law bC (basic conversion) can be used to perform the transformation; in the case
of assignments the refinement law s§ (simple specification) is suitable.

In general, data refinement distributes through the program structure. This means that the
structure of the program is preserved wben it is data-refined. Procednre and variant blocks, how-
ever, may be lost. Procedure blocks that declare non-parametrised procedures, whether recursive
or pot, can be data-refined by merely data-refining their bodies and main programs. The same
cannot be said about procedure blocks that introduce parametrised procedures and about variant
blocks.

Parametrised procedures bave to be removed before the application of the data refinement
laws of ZRC can proceed. In the case where the procedure is not recursive, the first formulation of
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peallf (procedure call introduction) can be uged to remove the procedure calls and then pref (pro-
cedure introduction] can be used to remove the procedure block. Unfortunately, if the procedure
i3 recursive, it does not seem to exist a simple way to do that. Applications of parametrised
staternents to actual parameters can be data-refined by transforming them into equivalent variable
blocks. These trapsformations can be guided by the definition of the parametrised statements
semantics itself,

As far as variant blocks are concerned, even though ix theory we can data-refine those that do
not declare parametrised procedures by data-refining their procedure bodies and main programs,
this is not really worthwhile. If we are not able to redefine the variants in a way that guarantees
that their relationship to the procedure bodies is maintained, then they will be of no use to the
process of refining the procedure.

In face of these restrictions, and also observing that assignmenrts are transformed into specifi-
cation statements during data refinement, we conclude that any necessary data refinement should
he carried out as early in the refinement process as possible. The later the data refinement occurs,
the greater is the chance that part of the effort to refine the program is wasted.

The data refinement relation is not reflexive in general. However, if the abstract variahles and
the global variables that are free in the coupling invariant, and their dashed counterparts are not
free in a program, then it is data-refined by itself. Tbis is established by the theorem we present
in the sequel.

Theorem 3.11 For every program p, ail lists of abstraci and concreie veriables avi and cul,
and every coupling mverignt ci, 1f the variables of avl, the frec variables of ct, and their dashed
counterperis are not free tn p, then p < p. The vanables of cvl and col’ must not be free in p
either. and avl and cvl must be disjoint.

Proof

Jdavl eci A wp.p.tp
= Jdavie wp.p.(v A a') [by Lemma 3.3]
= Jdavle wp.p. davl’ e &3’ A Y [by monotonicity of wp]

= wp.p.Idavl’ e ci' Ay [by avl are not free in wp.p. Idavl’ » ca’ A ¥ (by Theorem 3.9)]

a
Applications of this theorem may save effort during the data refinement of a variable hlock.

3.8 Conclusions

Qur main objective has been the proposal and formalisation of a refinement calculus for Z whose
design builds upon results already available in this area and which employs a notation that is
compatible with the Z style. Indeed ZRC includes conversion laws that correspond to those that
have been initially presented or suggested in [34, 64, 58], but uses the decoration conventions of
the Oxford style of writing Z specifications. Furthermore, its refinement laws are based mainly on
those of (45] with adaptations and extensions that contemplate the Z style as in [65].
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In Appendix D we prove the validity of all conversion and refinement laws of ZRC. To make this
possible, we have provided a weakest precondition semantics for ZRC-L and defined a refinement
relation. The scope rules of ZRC-L bave also been specified and the syntactic restrictions of the
laws take these rnles into account. As a consequence of this effort of formalisation, we bave clarified
many details of the original presentation and formalisation of the conversion and refinement laws.

Another method for refining Z specifications is presented in [32]. This work, which is discussed
in more detail in Chapter 5, defines wp as a schema operator and proposes a tefinement-wp
calculus for Z. Both in [32] and bere, the postconditions of wp define state transitions instead of
states as in [47, 45]. We bave chosen this alternative approach because it seems to be difficult to
justify differences in the treatment of dashed and undashed variables in the context of Z. We have
managed, however, to deal separately with the additional complication that has been introduced
due to the treatment of these more complex postconditions. As a consequence, the ZRC laws are
derived in Appeundix D in much the same way as the corresponding laws of Morgan’s calculus can
be derived in the framework of [47, 45].

In |1, 2, 4], where another formalisation of the stepwise refinement technique is proposed,
specifications employ the dashing convention of Z (and ZRC). Nevertheless, dashed variables are
regarded as local to specifications and cannot occur free in the postconditions of wp. In other
words, as in [47, 45], these predicates are assumed to specify states.

Our definition for the data refinement relation also considers postconditions that define state
transitions. This definition is equivalent to the Z characterisation of data refuement and to
the definition presented in [46], which takes into account only postconditions that define states,
Therefore, once again no extra complexity has been introduced in the derivation o the ZRC laws.

The data refinement laws of ZRC are based on those of [46], but apply directly to programs
with free occurrences of program variables. In particular, the data refinement liw of ZRC that
applies to specification statements does not seem to have been proposed before.

The technique of data refinement that is presented in [45] makes use of auxiliary variables. As
shown in [39, 46], this technique is equivalent to the application of two data refinements: a first data
refinement introduces the concrete variables, the abstract variables are then made auxiliary (in a
sense precisely defined in [39]), and finally they are removed by a second data refinement. These
data refinements are special in that they take an empty list of variables as argument. There are
no abstract variahles in the case of the first data refinement, and no concrete variables in the case
of the second data refinement.

Functional data refinement [46, 45] is yet another specialised technique also described in [68, 65].
In this case, the coupling invariant is a conjnnction between a concrete invariant {a predicate over
the concrete and global variables) and a number of equalities. For each abstracl variable there is
an equality that defines its value as a function of the values of the concrete variabies (and, possibly,
of the global variahles) when these satisly the concrete invariant,

Qur treatment of procedures follows the approach of [3], because we have found the formalism
in [41] to be inconsistent. As we have explained, there is a subtle interaction between substitution,
procedures and parameters. Of particular importance is the definition of the substitution operator
when applied to a procedure name. Two alternatives have been analysed: one of them establishes
that the substitution operates on the procedure body (context dependent substitution}); the other
one specifies that the procedure name itself is taken into account {syntactic substitution). Unfor-
tunately, whichever option is chosen, Morgan’s approach to procedures and parameters runs into
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difficulties.

To our knowledge, the interaction hbetween procedures, parameters, and substitution that we
have discussed was originally peinted out in [$5]. Sampaio's idea of restricting the application of
the renaming law can be considered as a solution to the problems found in Morgan®s approach, hut
this restriction turns cut to be too severe in practice. Also, Sampaio has presented no mathematical
model to justify ihe restricted version of the renaming law.

The problem with Morgan's work seems to be a consequence of an unfortunate design deci-
sion: formal parameters are not regarded as local variables in the procedure body. This decision
was perhaps an attempt to avoid parametrised statements, as suggested by Back. They do indeed
increase the complexity of Back’s formalism, which involves a greater number of definitions and
theorems that Morgan’s. However Back's approach does not present any of the complications we
have uncovered in Morgan’s work and does not impose restrictions as the solution proposed by
Sampaio. Therefore, it seems ta be the right direction to follow. Regarding formal parameters as
ordinary (global) variables causes problems, as revealed by our study.

As far as the development of procedures is concerned, however, we lollow Morgan’s style. In {3]
Back presents rules to prove the correctness of (recursive) procedures. In contrast, the development
of procedures in ZRC is supported by refinement laws. Some of them have a counterpart in
Morgan’s calculus and others are additional laws that support the use of variants he proposes
in [49].

Another analysis of the usage of procedures in the refinemeut calculus is presented in [20]. This
study, however, concentrates on the methodological aspects of the development of procedures.
In [20], the suitability of the refinement laws presented in [45] is discussed and an alternative
strategy of program refinement, where {non-recursive) procedures are introduced in the final phase
of development, is suggested. In [49], Morris presents another formalisation of procedures and
parameters. We have not considered this work in our study because it is similar to Back’s.

Completeness has not been tackled here. We have proved that the ZRC laws are sound, but
have not considered whether or not they are enough to derive any pessible program. Actually, since
we cover only downward simulation (5], our set of refinement laws is not going to be complete.
Apparently, a complete data refinement method for a language with recursion and unbounded
nondeterminism is yet to be found [19].

In the next chapter we apply ZRC to refine (some of} the operations of three different system
specifications. There we discuss a few issues concerning the use of ZRC.
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Case Studies

A few short program developments that illustrate the application of ZRC have already been pre-
sented in Chapters 1 and 3. In this chapter we present three more substantial case studies. Iu
the next section we develop an implementation for a class manager; in Section 4.2 we present a
development of (part of} a text editor; finally, in Section 4.3 we refine some operations of an Airbus
cabin-illymination system. In Section 4.4 we finish this chapter by presenting a few conclusions
that we have drawn from these case studies.

The examples considered have uot heen tailored to ZRC. The class manager specification bas
been originally written by Jones [30] using VDM and in [34] King uses this example as a case study
for his technique of refining Z specifications. The text editor has been specified by Neilson in [51],
where a technique based mainly on rules of verification is nsed to develop a C implementation for
this system. The illumination system has been specified in (23).

4,1 The Class Manager

In [34] King presents initially a concise Z specification of the class manager, which is then data-
refined with the use of the Z rules. In what follows, we reproduce the more concrete specification.

The class manager recards the students that are enrolled on a class, distinguishing those that
bave done the midweek exercises. The set of stndent identifications is called Student and is
introduced as a given set.

|Student]
A global canstant maz estahlishes the maximum size of a class: a positive natural number.
maz : N
maz > @

The state components are ¢, which records the identification of the students that are registered
in the class; ez, which singles out the students that have done the exercises; and num, the number
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of students which are enrolled.

Class_1
el:1..mar - Student
er :1.. maz + Boolean
num : 0., mar

((L.. num) acl) € (N>~ Student)

The components ¢! and ez are both arrays (total functious), with index set 1 .. maz, and num is
a natural number in the interval from 0 to maz. The information about the num students that
are enrolled in the class is held in the positions from 1 to num of ¢f and ez. If i is an index that
identifies one of these positions, then the student cf i has done the midweek exercises exactly when
er 1. The state invariant establishes that, when restricted to 1 .. num, el is injective, so that the
record of enrolled students does not contain repetitions.

The class manager operations are specified by Enrol_ok_l, Compl_ok_l, and Leave_ok_l. The
first of these schemas defines the operation that enrolls a student on the class. Its input, 57, is the
student identificalion.

— Enrol_ok_1
AClass )
57 . Student

sT@€fa:1. . numecli}
UM < max

cl' = el @ {num’ - 57}
exr’ = ez @ {num’ — false}
num' = num + 1

The success of this operation depends on 57 not being already registered and the class not being
full. If registered, 57 is supposed not to have done the exercises. The schema Compl_ok_1 defines
the operation that records that a student has completed the exercises. It also takes as input
an identification represented by s7, which must be that of a registered student who has not yet
completed the exercises.

Compi_ok_1
Allass_1
57: Student

di:l..numecli=s7Aeri="falsea
el' = cl A ez’ = ez & {3 — true} A num’ = num

The operation Leave_ok.1, which records that a student has left the class, is not actually considered
in {34], but we propose a definition for this operation and refine it below. As Enrol_ok_1 and
Compi_ok_1, it takes as input an identification 87, which in this case must be among those recorded
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Operation Precondition

Enrol.ok 1 | s?7¢{::1..numecl1} A num < maz
Compl_ok 1 | 3i:1..numwecli=5s? A ez 1= false
Leave_ok 1 |Ji:l.. numecli=3?

Table 4.1: Precondition of the Operations

in the first num positions of cl.

__ Leave_ok_1
AClass_1
57 Student

Ji:l..numecli=37A
(1..i—1lacd=(1..:-1)acA
{l..i—1aqger’=1..i-1)<es A
{(i.num—ac=0+1..num)<acdA
(i..num—1}dez' =1 +1. num) dez A
num’ = num —1

Table 4.1 shows the preconditions of Enrol_ok_1, Compl_ok_1, and Leave_ock_1.
As part of the error treatment, we extend the set of messages Response that is defined in [34].

Response = ok | full | found | missing | not_found
The specification of the case of success i3 as indicated in the Oxford style of writing Z specifications.

Success
f_msp.' : Response

resp! = ok

The error cases of the operations are defined by the schemas that follow. The first schema specifies
the error case of Enrol_ok_1 in which the class is full.

— Full
EClass_1
resp! : Response

Rum = mas
L resp! = full

The error case in which the student is already recorded ts contemplated by Fourd_1.

— Found_1
ZClass. 1
3?7 : Student

resp! : Response

Ji:l..numecli=s?
resp! = found

The schema Missing. 1 defines the error case of Compi_ok_1: the student is not enrolled or has
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Operation | Precondition #
Fuli 1 fum = maz

Found .1 Fi:l.. numect=s7

Missing_1 Vi:l..numecli#5?Veri=true
NotFound_1 |V1:1..numecli#35?

Table 4.2: Precondition of the Error Conditions

already completed the exercises.

. Missing_1

ECiass_1

5?7 . Student
resp! : Response

Yi:l..pumeclt#s?Vert=true
resp! = missing

The final error case is that of Leave_ok_1: the student is not registered iu the class.

— NotFound_1

ZClass_1

57 1 Student
resp! : Response

Vi:l, numecly#s?
resp! = nol_found

The preconditions of Full 1, Found_i, Missing_1, and NotFound_1 are presented in Table 4.2.
The schemas Enrol_1, Complete_l, and Leave_l give a robust defivition for the operations of
the class manager.

Enrol_| = (Enrol_ok.1 A Success) v Full_1 v Found_1
Compiele 1 = (Compl_ok_1 A Success) v Missing_1
Leave | = (Leave_ok.1 A Success} v NotFound_1

These definitions complete the specification.

In order to develop an implementatiou for the class manager, we cousider each of the schemas
Enrol 1, Complete_1, and Leave_l in succession, We couvert all of them to alternations that
implement the successful and error cases separately. In the case of Complete .l and Leave_ we
apply the third formulation of sdis;C (schema disjunction conversion), In the case of Enroi_1,
since it is specified as a disjunction of three schemas, we use a more general formulation of this
conversion law. The actual formulation of sdizjC that we apply is a straightforward extension of
its third formulation and as such is not presented here. In all cases, the variable that is introduced
by sdisyC is named w. If 57 is already in cl {the student is already enrolled on the class), theq w
is initialised with its position. Otherwise, w takes the value num + 1. Its type is 1..maz + L.

By applying sdis;C to Enrol_1, we can obtain the variable block shown below. The guard
w = num + I A num < mar identifies the successful case of Enrol_I, num = maz identifies the




4.1 The Class Manager Bl

case in which the class is full, and firally w € 1.. num identifies the case in which s? is already
enrolled on the class.

Enrol_1
L sdis;C
[[var w:1..mar+1e
w:true,{w’' €1.numAdw =s?)V(w' =num+1AsTE{i: 1. numecli})];
if w=rnum +1A num < maz —
{w=num+1As?¢g{i:1..numecl i} A num < maz}{Enrol_ok1 A Success)
0 num = maz —
{( (wEl..numAelw:s?)v(w:num+l/\s?¢{i:l..numocli}))}
num = mas
Full_1
Qwel..num—= {wel. numAcl w=3?} Found_l
fi

J

The four proof-obligations generated by this application of sdisjC are implicalions whose an-
tecedent we simplify below.

((wel. numAcu=s")V{iw=num+1As7¢g{{i:1..numecli}))A
{(pre {Enrol_ok_1 A Success) V pre Full_1 V pre Found_1)
=((wel. . numAcdw=sT)V(w=num+1As?€{i:Ll..numeclil)))A
(pre Enrol_ok_1 V pre Full_1V pre Found_1}  [by a property pointed out in [65, p.211] )

={wel..numAcdw=3)V{w=num+1AsTg€{i:1..numecli}))A
((s?7¢{¢:1..numecli}Anum<mar)Vaum=mazV3Ii:1. nunaecli=s?)
[see Tubles 4.1 and 4.2)

S(wel. . rnumAcdw=shV(w=num+1As?7g{i:1. . numecli})

[by num < maz since num : 0.. maz)

Since pre distributes over disjunctions [65{, pre (Enmol_ok 1 A Success) V pre Full 1 V pre Found_1
is the precondition of Enrol_1. As this is supposed to be a rohust operation, it should not come as
a surprise the fact that, as shown above, this predicate can be reduced to true. The consequents
of the proof-obligations are enumerated below.

(a) {w=num +1Anum <maz)V num=rmazr Vw €1..num;

(b) w=num+1lAnum<mar=s?T¢{i:1..numacli} A num < maz;
(c) num = maz = num = maz; and

(d) weél.. num=>3i:1.. numecl1=3s7.

We consider the cases w€1l..numAclw=3s? and w=num +1AsT@€{i:1l. . numecli}
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separately. If w € 1.. num apd ¢l w = s?, then, obviously, w € 1.. num, so (a) holds; if we suppose
additionally that w = gum + 1, we have a contradiction, so (b} holds; and finally, w is a witness for
31:1..num e cl 1=357, and so (d) holds. Since (c) is trivial, it does not have to be considered.
Ifw=num+1ands?@{i:1..numecii}, then, since (a) can be written ore simply as
w=num+1Vaum=mazVwel. num (by nutm £ mez), it follows from w = num + 1; {b)
holds trivially; and if we assume that w € 1.. rum, then there is a contradiction, and conseqnently
(d} holds.

‘The operation Errol_ok_1 A Success can be converted to a sequential composition hy am ap-
plication of sconj€ (schema conjunction conversion).

Enrol_ok_1 A Success
C sconjC

Enrol_ok 1l ; Success

An application of the assC {assignment conversion) law justifies the conversion of Success to an
assignment.

Stccess
C assC

resp! := ok

In [34], the fact that Enrol_ok.1 and Success act on different states is not exploited and this
conjunction is expanded before being translated. This is perbaps because the translation rule that
applies to schema conjunctions presented in [34] is not properly formutated and has proved to
be misleading. Conjunctions like Enrol_ok_1 A Stccess are used in the definition of most robust
operations specified in accordance with the Oxford style.

By applying the bC (basic conversion) law to Enrol_ek_1, we obtain the following specification
statement,

{((1..num’) qc'} € (N~ Student)
sT¢{1:1..numecli}

cf, {(1..num) dcl) € (N~ Student)

Al s7eqi:t. numecti) rum < max
e L o "| & = cd @ {num’ — 57}
num num < mar

ex’ = er & {num' » false)
num' = num + 1

This program can be implemented by a multiple assignment that inserts s7 in ¢! and adjusts ex
and num.

C assig!

e, ez, num = ol & {num + 1 = s?}, ez @ {rum + 1 — false}, num + 1

The proof-obligation associated with this application of essigl (assignmment introduction) is an
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implication. Its antecedent is the conjunction of the predicates () to {a3) listed below.
{a1) ({(1..num) <cl) € (N> Student);

{ag) s2¢{1:1..numecl1}; and

{az) num < maz.

The conzequent of this implication is the conjunction of the following predicates.
{c)) {(1..num+ 1) <1 (cd & {nrum + 1 — 37})) € (N> Student);

(cz) s?7€{3:1.. numecli};

{c3) num < maz;

(eq) cl® {num +1 — 37} = el & {num + 1 — s7);

(cs) ez @ {num + 1 > false} = ez @ {num + 1 — false}; and

(cg) num + 1 =num + 1.

The proof of (¢;} amounts to establishing that the invariant is maintained by the assignment. This
follows from (a;) and (az).

Since the specification of Enrol_ok_1 explicitly states its precondition, it appears in hoth the
pre and the postcondition of the specification statement that is generated by applying 5C to
Enrol_ok_1. As a consequence, the precondition of Enrol_ok_1 appears above as (cz) and (c3),
and we have to prove that it holds. Fortunately, this kind of proof does not really add up to the
complexity of the proof-obligation: in this case, (e3) and (c3) also appesr as (as) and (a3). The
conjunctions {cq) t0 {¢¢) hold trivially.

The application of 5C to Full_1 generates the following specification statement.

respl : [((1 .. num) < cl} € {N >+ Student) A num = maz, num = maz A resp! = full]
It can also be implemented by an assignment.

C assig)
vesp! = full

In this case the proof-obligation generated is the much simpler implication below.
({1..num) <1¢l) € (N~ Student) A num = maz = num = maz A full = full

It is a trivial task to discharge this proof-obligation.

In much the same way, Found_1 can be refined to the assignment resp!:= jound. The as-
sumptions that remain in the branches of the alternation can be refined to skip by applying the
assumpR (assumption removal) law, and then eliminated by the siC (skip left composition) law.

The only program that still needs to be refined is the specification statement that initialises w.
We implement it with an iteration whose development can be carried out in a standard way and, for
the sake of conciseness, is not presented here. This iteration can be found in Figure 4.1, where we
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[[var w:1..maz + 1l e
w:=1;
do wEnum+1lAclw#s?ow:=w+lod;
if w=nun+1A num < mar —
el,ex,num = cl @ {num + 1 — s?}, ez @ {num + 1 — false}, num + 1
[ num = maz —+ resp! .= full
[ wel.. num — resp! ;= found
fi

Figure 4.1: Implementation of Enrol_1

presented the collected code of Enrol_1. Its invariant is w € num +1 A s? €ran((l..w - 1) 9¢l)
and its variant is num + 1 — w.

The development of Complete_l is similar to that of Enrol.1 and is not presented in as many
details. The application of sdisjC to Complete_1 can intraduce the variable block below. The
guards of the alteroation are w € 1.. num A exr w = false and w = num + 1V ex w = true. They
identify whether ar not the student is enrolled and has not yet completed the exercises.

Complete_1
C sdiiC
[var w:1..mar+ 1w
w:firue, (w' €l . numAc w =s")V(w =num-+1As?¢{i:1. . numecli})];
ifwel..numA ez w=[alse =
{wel. . numAclw=35TAex w = false} {Compl_ok_1 A Success)
luw=num+1Verw=true—
{((wel..num/\dw=s?)V(w=num+1f\s?€[t:l..num-clz’_}))}
w=num-+1Verw = true
Missing 1
fi

]

Three proof-obligations are generated by this application of sdisi¢. They are all implications
with antecedent (w€l..numAclw=s?)V{w=num+1As7¢{i:1..numecli}). The
consequents are the predicates we show below.

{c1) (wel..num A ez w = false) V w = num + 1V ez w = true;
(ca) wel..num Aer w=1false=>3s:1.. . num e cl i =s?Aer = false; and
(c3) w=num+1lVezxw=true=>Vi:1l..numeclizs?Veri=true

It is not difficult to discharge these proof-obligations if the cases w € 1 .. num A ¢l w = s? and
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fvar w:l..mar+1a
w:=1;
do w#num+lAaclw#s? sw:=w+lod;
ifwel. . numA ez w=1false = ez := ez B {w ~+ true}
0 w=num+1Ver w=true -+ resp! := missing

fi

Figure 4.2: Implementation of Complete_1

w=num+1AsT& {1:1.. numecli]} areconsidered separately.

As Enrol_ok_l A Success, Compl_ok.1 A Success can be converted to the sequential compo-
sition Compl_ok_1 ; Success by an application of sconjC. In order to refine Compl_ok_1 to an
assignment, first we apply 5C to this schema, and then use abd (absorb assumption) to ob-
tain the specification statement below, whose precoudition incorporates the assumption preceding
Compl_ok_1 A Success in the program generated by the application of sdisiC to Complete_1.

wel..numAclw=3s?Aer w="false{(l..num)}acl) € (N Student), W

e, ((t..num') < cl’) € (Nr Student)
ez, :

Ji:l..nume
num

cli=sTAexi="false Acl = el A ez’ = ez & {1~ true} A num' = num
This program can be refined to the assignment that follows.

C assigl
ez = ez & {w 3 true}

The interesting part of the proof-obligation generated by this application of assigi consists of
showing that the existential quantification below holds under the assumption that the precondition
of the above specification statement is satisfied.

Ji:l..numecli=s?Aeri=falseAer @ {we true} = ex @ (i ~ true}

Since w € 1.. num, ¢ w =37, and ex w = false, it is clear that w satisfies the requirements im-
posed by this existential quantification.

The schema Missing_1 can be refined to resp! := missing in much the same way as Full_1 has
been refined to resp! := full {and Found_1 to resp! := found) in the development of Enrol_1. The
code for Complete_1 is pregented in Figure 4.2.

The development of Leave_1 is again similar. For brevity, we do not present the variable
block that we introduce with an application of sdigrC. It also introduces w and the guards of the
alternation in its body are w € 1.. num and w = num + 1. In what follows, we present only the
refinement of Leave ok_1.

1nitially, we apply &C to this schema. Afterwards, we incorporate i the precondition of the
resulting specification statement the assumption that reflects the characterisation of w and the
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guard of the branch in which Leruve_ok_1 occurs. This is accomplished by an application of abA.
The program that we obtair is presented below.

[wel.. numaA el w=sTA((1.. num) adl) € (N~ Student), |
((1..num') <cl) € (N~ Student)
Fi:l..numecl i =37 A
ol ex. nem (1..i—-Dacd={1..i-adAn

P fl..i—1)<er'=(1..i-1<der A
(i..nuom -l acd ={{i+1..num)aclA

(1.num—1)ger’=(i+1..num) dez A

‘_ num' = num — 1 J

The precondition of this specification statement establishes that e/ w = 7. Moreover, the charac-
terisation of cI’ aod uum’ and the fact that the invariant halds for ¢l and num imply that it holds
for cl' and num’ as well. Consequently, we can use sP (strengthen postcondition) to simplify the
postcondition of this specification statement. If afterwards we apply wP weakening precondition)

to eliminate the invariant from the precondition of the resulting specification statement, we obtain
the program below.

l.w-lad=0. w-1ad
1..w—-1)<ezr’" ={(1..w—~1)dezx
cloez,num: |wel. . numAdw=s? ]| {w..num-1}<dcl =(w+1.. num)dcl

(w..num-1)<der’ =(w+1..5um) ez
aum' = num — 1

This program ran be implemented by an iteration that shifts the elements of ¢l ard er, and an

assignment that decrements num. The assignmeot can be introduced by an application of the
Jassig! {following assignment intreduction) law,

C fassig/
(l.w-1lad=(1..w-1)q¢l
d, 1. w-1ljger=(1..w~-1)dez
ez, :(wel..numAclw=sh| (w..num-1) el =(w+1.. num) acl ;o<
num (w..num —1)<der’ = (w+1.. num) ez

fium’ = num
num = num — 1

Since num is not modified by the specification statement, we can simplify it by applying the
¢/R {contract frame) law to remove num from its frame.

CoR

(l.w-DYdet ={1..0 — V) ad

der: |wel. numacdw=s?, (1..w-1det’=(1. w—1)<ez
(w..num -1 <acd =(w+1.. num)<ac
(w..rum—1) ez’ = (w+1..num) dez 4

In order to introduce the iteration, we need a variable to range over the indexes of of and ex. We
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introduce the variable i by applying the vrbl {variable introduction) law.
C vrbl

f[var i:1.. maz e

—

Lcw—ldel'=(1..w—-1)a4d
Lw-1)der!=(l..w—-1)<dez
.num— 1) ad = (w+1..num)del
.num ~ 1y der' =(w+1..num)d e

. (
5, (
cl:|lwEel. . numAcl w=s? (

(

-

€x

g g

I

The segel (sequential composition introduction) law is used to introduce the iteration invariant.
The restriction over i that is imposed by it (w < 1 < num) is normally introduced separately by
means of a variable block with invariant in {45]. Since this block is not available in ZRC, we have
to deal with a slightly longer iteration invariant.

C segcl

[con CL: 1.. maz — Student; EX : 1.. maz —+ Boolean «
weEl.. numAcl w=237,
Vi:l. w—lecl'y=cljrer’ j=ezj

icl,ex: Yi:w..i'—ledlj=c G+ 1)Anez' j=ex (j+1) ; <
Yj:i' . .numecl j=cljher’ j=erj
w <t < num

[ /il w—leclj=CLijAerj=EX]j ]

Viiw..i-leclj=CLg+NAexj=EX{+1)
Yi:i.numeclj=CLinerj=EXj !

il e w < i< num 0

T (1..w—1)ael=(1.. w*l)dCL
(l..w-1der'=(1..w~1)4a9EX
(w..num—l)dcl’_(w+1..num)<|CL
(w..num~ 1) der' =(w+1..num) a EX

I
We can implement the first specification statement by initialising i with w.

C assigl

i=w

By not changing ¢/ and ez, we establish the first and third conjunct of the postcondition of this
specification statement in a trivial way, by assigning w to i, we also establish the second conjunct,
which, when ' is w, becomes a gqnantification over the empty set: w .. w — 1; finally w < num isa
consequence of w € 1 .. num, which is a conjunct of the precondition of the specification statemnent.
These comments account for the proof-obligation associated with the above application of assigl.
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Before applying il (iteration introduction), we have to use sP to rewrite the postcondition of

{r).

(i) C sP
r ¥ji:l..w—1leclj=CLjAerj=EXj ]
Vitw. . i~lecj=CLi+Aesij=EX(3+1)
Vi:t..numeclj=CLjAexj=EXj}] ’
. w <t < num
i,cl,er: -

Vi:l..w—-led j=CLynrer’ j=EX;

Vitw.. ' —lecl j=CL(j+1YAer’3=EX (j+1)
Vit .numecd j=CLyner j=EXj

w< i <num Al =num

It is not difficult to see that when the iteration invariant holds and 1 = num, the requirements
imposed by the pestcondition of (3) arc satisfied.

Citf
do i # nsm —

Yiil.w—lecly=CLjrer;=EX;
Yitw..i—1leclj=CLp+1)Aexj=EX (j+1}
Vyti..numeclj=CLiANexj=EXj
w<i<num AL F num

Vi:l.w—led j=CLjnrer’j=EX)

Vicw.. ¥ —lec j=CL{F+1jAex" j=EX (j+1)
Vi:t'..numec j=CLjnes )=EXj

w < < num Anum— i < rum —i ]

el,

od
The body of the iteration can be implemented by the assighment below.

C assigl
cheni=cl@f{ircd i+ D}hex@{irres i+1j}+1

The proof-gbligation generated by this application of assig! consists of showing that the assignment
above preserves the iteration invariant when the guard i # num holds. Namely, we have to prove
an implication whose antecedent is the conjunction of the predicates (a;) to (as) below.

(a) Vy3:l..w~1leclj=CLjnrnerj=EX

fag) Vjiv..i—lecl j=CLG+DAer;=EX(j+1);
(as) Vyir..numeclj=CLjAexj=EX j:

(24) w <1 € num; and

(a5) @ # num.

The consequent of the implication is the conjunction of (1) to (c5).
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|[var w:1..maz + 1 e
w:=1;
do w#num+1Aacduev#s? 2wi=w+1lod;
ifwel.. num —
lvari:1..maz s
= w
doi # num el er,i=c®{i—cd(i+1)}ez G trr ez {i+1)}.i+10d
s
num = num — 1
[ w=num + 1 = resp! := nat_found

fi

Figure 4.3: Implementation of Leave 1

(@} vitl.w—ls(cda{imd i+ j=Cljrlez@{im ez (i+1)})j=EX j;

{ca) Vitw. is(cdd i d i+ j=CLG+NA(ez@{imr ez (i+1})i=EX (§+1);
(2} ¥73:i+1.. nume(cd@(imd{(i+ D} j=Cljnrleadf{ime o+ 1)})j=EX j;
{cs) w < i+ 1< num; and

{cs) num ~ (i + 1) < num — 4.

From {a) and {a4), we can deduce that (c;) holds, since (cl ® {i — ¢l (i +1)}) j = ¢! j and,
similarly, (ez & {i — ez (i + 1)}) 7 = ez j, for any j in the interval from 1 to i ~ 1. Likewise,
from (a3), we deduce {c3). For (c2), we have the result below.

(d{im cd (i+1)}) 4
=d (i+1) [by a property of functions)
=CL{i+1) [by (s}, (ay), and (as)]

Similarly, (ex & {i = ez {i +1)}) i = EX (i + 1). From this and (az), we infer that (cz) holds.
As a consequence of (aq} and (ag), we have that w < i < num: (¢,) follows from this; (c5) is trivial.

As we observed earlier on, we had to define an iteration invariant which is longer than that
we could define if we had variable blocks with invariants in ZRC. As a consequence, the proof-
obligations that were generated during the refinement were longer as well. Namely, we had to
add (cq) in the previous proof-obligation and had to observe that w < num when assigning w to
i. Had we introduced the constraint w < i < num in a variable block with invariant, this could
be avoided. However, in a later stage, when removing the invariants, we would have to prove
that both (c¢4) and w < num hold anyway. These proofs would require further manipulation of
the program already obtained and therefore would lead to a longer development. Of course, they
could be omitted if regarded as trivial; this is the strategy employed in [45).
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Figure 4.4: State of the Text Editor

The constants CL and EX are not in use anymore and so we can use conf (constant removal)
to eliminate them. The resulting collected code is shown in Figure 4.3.

4.2 The Text Editor

QOur second case stndy is a screen-oriented text editor which, as said before, has heen specified
by Neilson in [51]. There, Neilson uses what is called a hierarchical approach to specification: he
defines the state and operations of the text editor incrementally, and groups the definitions in
levels. At each level a new model (state and operations) is defined: the new state includes that of
the previous level, and some of the new operations are promotions of previous levels’ operations.
There are nine levels and each of them contemplates a different aspect of the text editor; the ninth
level defines it as a whole. In this section we consider the states aud some operations of the first
two levels.

As already remarked, in [51] a C implementation is developed for the text editor. The levels
of the specification are considered separately and, in each case, the first development step is data
refinement. Here, we actvally consider the resulting concrete specifications.

The documents manipulated by the text editor are sequences of characters or, more precisely,
elements of a given set Char. A global constant Mar determines the maximum size of these
documents.

The (concrete) state at level 1 can be specified as we show below.

ConcDocl
Arr:1.. Maz - Char
LP RP,CP:0.. Maz

LP< RP
CP < Maz + LP — RP

The component Arr is an array that holds the document (sequence of characters) being edited;
LP, RP, and CP are poigters. The document is in the positions from 1 to LP and from RP + 1 to
Mazx of Arr (see Figure 4.4}, and CP is the cursor position: an index of this subsequence of Arr.
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The operation that moves the cursor to the left by a character can be specified as follows.

— LeftMvCharpec1 C
AConeDocl
CP#0
Arr' = Arr
LP =LP
RP =RP
cP=CP-1

This operation is partial: the cursor can be moved to tbe left if it is not at the top of the docu-
ment {CP # 0). In this case, moving the cnrsor to the left corresponds to decrementing CP.

In [51] the error cases of all abstract operations are treated using the Oxford style of writing
Z specifications. The concrete operations presented there, on the other hand, correspond to the
robust abstract operations, but are nat specified in a structured way. Here, for the sake of concise-
ness, we consider concrete operations which correspond to successful cases of abstracts operations.
The longer concrete operations of [51] can be refined by, for instance, writing them using the
Oxford style of error treatment and applying the strategy exemplified in the preceding section. Al-
ternatively, they can be transformed into specification statements using the bC (basic conversion)
law and refined to alternations. In both approaches, operations that contemplate successful cases
eventually emerge in the development, and can be refined as we show here.

By applying bC to LeftMuyCharp,. C, we get the following specification statement.

CbC

Arr, LP < RPACP<Maz+LP—RPACP#0,

;‘;’ : LP' < RP'A CP' < Mez + LP' — RP'
CP, CPAOAAT' = A ALP =LPARPP=RPACP =CP-1
This program can be implemented by an assignment.

C assigl
cP:=CP-1

The proof-obligation generated by this application of essigl is trivial.

Every operation that modifies the document is specified by a composition whose first schema is
Standardize. This is an operation that sets the state to a standard configuration without modifying
either the document or the cursor position. The second schema of the composition defines the effect
of the operation on a state in this standard configuration.

The operation Standerdize can be defined as shown below.

— Stendordize

AConcDoel
LP'=CP
CP'=CP

(1..LP'URP' +1. . Maz) 1A'= (1..LPURP + 1 .. Maz)| Arr

When the state is in the standard configuration, (P and LP are equal. Operations that modify the
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document can be more easily specified under the assumption that the state is in this configuration
because changes are always made at the cursor position.

As an example, we take the LeftDeleteCherC operation which deletes the character to the left
of the cursor.

LeftDeleteCharC = Standardize 3 LeftDelete CharCStandard
The operation LeftDelete CharCStandard can he specified as follows.

— LeftDelete CharCStandard

AConcDecl
CP 0

Arr! = A
LP'=[P -1
RP' = RP
CP =(CP-1

The precondition of this operation is CP # 0 A LP # 0. If the cursor is at the top of the docu-
ment (CP = 0), there is no character to its left to be deleted. If, otherwise, CP # 0, as the state is
assumed to be in the standard configuration, the character to the left of the cursor can be removed
by simply decrementing LP and CP,

By applying the law scompC (schema cornposition conversion) to LeftDelete CharC we can
transform it into a sequential program composition.

LeftDelete CharC
C scompC
Standsrdize ; LeftDelete Char CStandard

The precondition of LeftDeleteCharC is CP # 0. Therefore, the proof-obligation generated by the
above application of scomp € consists of proving that CP # 0 and Standordize imply CP’ # 0 and
LP' 5 0. Since Standardize does nat modify CP and sets LP to CP, this implication can be easily
established.

The resull of applying bC to Standardize is the following specification statement.

LP < RP A CP < Maz + LP - RP,

Arr,

p LP' < RP' A CP' < Maz + LP' — RP'
AP LP' = CP

op CP' = CP

(1..LP'URP' +1.. Maz)| Arr' = (1..LPURP +1.. Maz)] Arr

We implement Standardize with an alternation that distinguishes the cases LP > CPand LP < CP.
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Before introducing it, however, we remove CP from the frame of the above specification statement.

C ¢fR
p LP < RP ACP < Max + LP — RP, 1
E LP'< RP' A CP < Moz + LP’ - RP'
LP,
RP LFP' = CP
(L..LP'URP'+1..Maz)| Arr' = (1. . LPURP +1.. Maz) ] Arr
C altf
if LP> CP —
A [LP > CPALP <RPACP < Maz+ LP - RP,
™| £LP' < RP'A CP < Maz + LP' ~ RP'
LP,: . <
RP LP' = CP
i (1..LPPURP' +1. Maz} ] Arr' = (1..LPURP +1.. Mar)| Arr J |
| LP < CP -+
A LP<CPALP<RPACPS< Maz+LP - RP, T
™| fLP' < RP' A OP < Maz + LP' - RP' )
LP,: (i)
P LP' = CP
(1..LP'URP' +1..Maz)1 Arr' = (1..LPURP +1.. Moz} | Arr / |
a

If LP > CP, Standardize can be implemented by an iteration that moves the part of the document
in the positions between CP + 1 and LP to the right and joins it ta the part in the positions from
RP + 1 to Maz. In order to express the invariant of this iteration, we need logical constants.
C AV
[con ARRC : | .. Maz — Char; LPC,RPC:0.. Maz «
LP> CPALP<RPACP< Maz+LP-RP
Arr, (ARRC:AW;’\LPC::LPARPC:RP !
LP,:| fLP' < RP'ANCP < Maz+ LP' - RP'
RP LP' = CP
(1..LP'URP +1.. Maz)jArr' ={1..LPURP +1..Maz)1| Arr
]

Using sP (strengthen postcondition) and wP {weakening precondition) we can refine the above
specification statement to that presented below, which is written in a form appropriate to the
application of the ftf (iteration introduction) law.

LP < RP A CP < Maz + LP — RP 7
(L..LPURP +1..Maz)] Arr = (1.. LPCURPC +1.. M) | ARRC |,
Arr, LP > CP
LP,: | / LP' < RP' A CP < Maz + LP' - RP’
RP (1..LP'URP'+1.. Maz)| Arr’ = (1.. LPCU RPC +1.. Maz) | ARRC
LP > CP
L\LP'=CP

The proci-obligations generated by sP and wP in this case are trivial. The variant of the iteration
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#LP>CP o

do LP#CP = Arr,LP,RP := Arr ® {RP — Arr LP},LP -~ 1,RP — 1 od
NLP<CP~

do LP #CP = Arr,LP,RP := Ar & {LP +1 Arr (RP+1)},LP + 1,RP +1 od
fi

Figure 4.5: Implementation of Standardize

is LP - CP.
C ]
do LP # CP

LP < RP A CP < Moz + LP - RP
(1..LPURP+1..Mar)1 Amr = (1. _LPCURPC +1.. Maz)| ARRC|,

f;’_ LP > CP 4
ap | (LP' < RP'A CP < Maz + LP' ~ RP'

{(1..LP'URP +1. . Max)1 A"’ ={(1..LPCURPC +1.. Moz} ARRC
LP'> CPALP — CP < LP-CP
od
The body of this iteration is refined by the following assignment.
C assigl
Arr,LP,RP := Amr & {RP - Arm LP},LP -1,RP -1

The interesting part of the proof-obligation generated by this application of assig/ (assignment
introdnction) consists of showing that the predicate below is satisfied when the precondition of the
above specification statement holds.

(1..LP-1URP.. Maz) | {Ar & {RP = Ar LP}) =(1..LPCURPC +1.. Maz)1 ARRC
We establish this equality as follows.

(1..LP-1URP. Maz}1{Ar & {RP — Arr LP})
(1..LP—-1U{RP}URP+1.. Maz)| (Arr ® {RP — Arr LP}) [by a property of sets]
((1..LP-1)1 (A & {RP — Arr LP})) ™ ({RP}1 (Arr & {RP — Arr LP1}™
(

i

((RP+1..Maz)| (Arr @ {RP = Arr LP})) {by a property of 1]
=((1..LP —1)1 Arr) " (Arr LP) " ((RP +1.. Max) 1 ArT) [by LP < RP]
=({1.LP-1)1 Arr) " ({LP}Y1 Am) " ((RP +1.. Maz) 1 Arr) [by a property of 1]
=(1..LP—-1u{LP}URP +1.. Maz)| Arr [by a property of 1]
=(1..LPURP +1.. Mar)| Arr [by a praperty of sets]
=(1..LPCURPC +1.. Maz)1 ARRC [by assumption]

Now, since ARRC, LPC, and RPC are not iz use anymore, their declarations can be removed by
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an application of conR (constant removal). The specification statement (i), which standardises
the state when LP £ CP, can he refined to an iteration in a similar way. Figure 4.5 ptesents the
collected code of Stendardize.

In order to obtain an implementation for LeftDelele CharC we still have to refine the operation
LeftDelete CharCStandard. This program can be implemented by LP, CP := LP - 1, CP — 1; this
assignment can be derived by an application of 3C and a subsequent application of assigl/. The
proof-obligation that arises is trivial.

The operation that iuserts a character in the document is InsertCharC. As LefiDeleteCharC,
it is specified by composing Stendardize with an operation that acts on a state in the standard
configuration. In this case, the operation is InseriCkarCStandard.

InsertCharC = Standardize § InsertCharCStandard

The operation fnseriCharCStandard (InsertCharC) takes as input the character z? to be inserted
in the document. If this character is a {ab, it is not inserted. Instead, spaces are inserted until the
cursor reaches the next tabstop or the documeut reaches its maximum size. The case in which £7
is a tab is distinguished in the specification of InsertCharCSlandard.

InsertCharCStandard = InsertNonTabCStandard v InsertTabCStandard
The operation InsertNonTabCStandard inserts in the document a character different from tab.

__InsertNonTabCStandard
A ConcDocl
z?: Char

27 £ tab

LP # RP

Arr = Amr & {LP + 1 = 7}
LP'=LP +1

CP' =CP+1

RP' = RP

The precondition of this operation is £? # tab A LP # RP. If LP = RP, the dosument has already
got to its maximum size and no additional character can be inserted. The case in which 2? = fab
is contemplated by InsertTabCStandard.

__InsertTabCStandard
AConcDocl
z?: Ckar

z? = lab
LP + RP
letinl==maz({ i:1..CPe Arri=nl } U{0})

nsp == mn{tabstop — {CP — Inl} mod tabstop, RP — LP} »

Arr'=Arr ®{i:LP+1..LP +nspearrsp }

LP' = LP + nsp

CP' = CP + nsp

RP' = RP

The character n! (newline} marks the end of the lines. The local variable inl records the position
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where the line abgve that in which the cursor is positioned finishes. If the cursor is in the top line,
in{ takes the value 0. The variable nsp records the number of spaces that must be inserted: either
the number of posilions between the cursor and the next tabstop or the number of characters that
can be inserted in the document before it reaches its maximum size, whichever is smaller. The
tabstop positions are those that are exact multiples of the constant {ebstep.

As LeftDelete CharC, MmseriCharC can be converted to a sequential program composition using
scompC.

InsertCharC
C secompC
Standardize ; InsertChar CStandard

The preconditionof msertCharC and of fnsertCharCStandard is LP # RP. Therefore, this appli-
cation of scomp( gives rise to the proof-obligation LP # RP A Standardize = LP' # RP'. Since
Standardize establishes that (1.. LPPURP' +1.. Moz)| Arr’ ={1..LPURP + 1.. Mazx}1 Arr,
we dednce that the sizes of these sequences are equal and so LPY + Mar — RP' = LP + Max — RP.
As a consequence, we have that LP/ — RP' = LP — RP. As LP < RP (by LP < RP, according to
the state invariant, and LP # RP), then LP' - RP' < LP — LP = (. Therefore, LP' < RP' and,
in particular, L' # RP’ , as required.

We implement the operation fnsertCharCStandard using an alternation that we introduce
applying the law sdisjC (schema disjunction conversion).

InsertCharCStandard
C sdisjC
if 7 £ tab A LP # RP — InsertNonTabCStandard

[ 27 = tab A LP # RP — InsertTabCStandard
fi

Since LP # AP 15 a conjunct of both guards of this alternation, it can be eliminated by an appli-
cation of the refinement law wG (weakening guards).

CwG

if 27 # tab = InsertNonTabCStandard
[l 17 = tab — InsertTabCStandord
f

It is not difficult to verify that the operation InsertNonTabCStandard can be refined to the assign-
ment Arr, [P, CP = Arr @ {LP+1— 1?7}, LFP+1,CP + 1.
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Our first step in the development of fnsertTabCStandard is the application of 5C.

InsertTabCStanderd
cC o
LP < RPACP < Mar+LP —RP Az = tab A LP # RP, ]
LP' < RP'ACP' < Maz+ LP' — RP' Az7=tabA LP # RP
Arr, letlnl==maz{{i:1..OP « Arr i=nl }u{0})
LP, nsp == min{tabstop — (CF — (nl) mod tabstop, RF — LP} «
RP, A =Arr @ {+: LP+1. LP+nsper1rrap }
CP LP' = LP + nsp
CP' = CP + nsp
RP'=RP ]

At this point we introduce the program variables puint and pvnsp. As the local variahles Inl and
nsp defined in the postcondition of the above specification statement, they are used to record the

position of the last n! that appears before the cursor and the number of spaces to be inserted.

C B

[ivar pvinl, pmsp : 0., Maz »

I

[LP < RP A CP < Max + LP - RP Ac?=tab A LP # RP,
puinl, LP'< RP' A CP' < Maz + LP'— RP' Azl =tab A LP # RP
pinsp, let inl == ma:({i: l..CP-ArrI:nI}U{O})

Arr, nsp == mn{tabstop — {CP — Ini} mod {abstop, RP ~ LF}
Lr, At = Arr G {i:LP41. . LP+nsppeivr sp}
RP, LP' = LP + nsp
crP CP' = CP + nsp
RP' = RP

Using seqcf (sequential composition introduction), we refine the body of this variable block to a
sequential composition.

C seqed

LP < RPACP < Max+LP— RP Az?=tabA LP # RP,

puinl ; (LPSRPACPSMa;+LP—RPAz?:tabALP7ERP) :

puinl,
punsp,
Arr,
LP,
RP,
cP

pulnl’ = maz({ i:1.. CP e Arr i =nl } U {0}}
[ { LP<RPACP<Maz+LP-RPAZI=tabA LP#RP ]
pulni = max{{i:1..CPe Arri=nl }U{0}) ’
LP' < RP' A CP' < Maz + LP' — RP' A z7 = tab ALP # RP

letinl == maz({i:1.. CP e Arri=nl }U{0})
nsp == min{tabsiop ~ (CF — inl) mod tabstop, RF — LP} «
A’ =Arr & {t:LP+1. . LP +nspe i+ sp }
LP" = LP + nsp
CP' = CP + nsp

RP' = RP

The first program of this sequential composition initialises pvin{ with the position of Arr in which
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the last nl appearing hefare the cursor occurs. This program can be impletnented using an it-
eration (see Figure 4.6). Its development presents no surprises and is not presented here. The
invariant of the iteration is nf & Arr(| pvlnl + 1.. CP |} and the variant is puini.

In the development of the second specification statement above we introduce yet another se-
quential composition.

C segel

puinl =maz({i:1..CPe Arr v =nl }U{0})

pnsp ; LP < RPACP < Moz + LP—RPAZ?=1tabALP#RP ;
pulni = maz({1:1..CP e Arr i = sl JU{0})
prmsp’ = min{tabstop — (CP — puinl) mod tabstep, RP — LP}

(LPSRPACPSM:L:+LP——RPA;:?=tabALP#RP)

[ /LP<RPACP<Ma+LP—RPAN:T=tabALP # RP
puinl =maz({i:1..CP e Arri=nl}u{D}) .
puind, pvnsp = min{tabstop — (CP - puinl) mmod tabstop, RP — LP}
punsp, LP' < RP'ACP < Maz + LP' — RP' A x? =teb A LP £ RP
Arr, let ini == mar({ 1:1.. CP e Arr i =nl } U {0}) q
e, nsp == mun{tabstop — (CP - Inl) mod tabstep, RP — LP} »
RP, A =A@ {i:LP+1..LP+nspeirrsp }
cP LP' = LP+ nsp
CP'= CP+ nsp
i RP' = RP )

The first of these specification statements intialises punsp. With an application of assigf we can
refine it to pwnsp := mn{tabstop — { CP — pvinl) mod tabstop, RP — LP}. The proof-obligation
originated can be discharged with no difficulties.

The second specification statement inserts the spaces in Arr, and adjusts LP and CP. The
appropriate assignment to these pointers can be introduced by fassig! (following assignment in-
troduction}.

C fassigl
[/ LP<RPACP<Maz+LP—-RPAz?=tabALP# RP
puinl =maz({i:1..CPe Ari=nl }U{0}) ,
pulni, punsp = min{labstop — (CP — pvinl) mod tabstep, RP — LP}
punsp, LP'< RP'ACP < Maz+ LP - RP'Az? =tabALP #RP
Arr. letinl ==maz({ 1:1.. CP e Arr i =nl JU{0}) a
e, - nsp == min{fabstop — (CP ~ Inl) mod tabstop, RP — LP} « !
RP. A =A@ (i:LP+1.. LPt+nspei—ssp}
cr LP' + pynsp' = LP + nsp
CP’ + prmsp' = CP + nsp
| RP' = RP

LP,CP := LP + pvnsp, CF + pvnsp

In order to simplify the above specification statement we use the ¢fR (contract frame) law to



4.2 The Text Editor 99

reduce its frame to Arr, and then apply sP and wf to obtain the program below.
Arr o [true, A = Arr @ {i: LP+1..LP + pinsp e i — sp }]

This specification statement can he jmplemented using an iteration.
Below, we introduce an auxiliary variable j, which ranges over indices of Arr.

C oorbf
[varj:0.. Moz e
A [true A’ = Arr @ { i: LP+1..LP + punspe 1 sp )] <

Using segcl, we introduce the jteration invariant.

C seqcl
|lcon ARRC :1.. Maz =+ Char »
JArr ftrue A’ = A& { i+ 1. . punspe LP + i sp }1;
jA"_',:Arr=ARRCEB{:':}+1..pvn.9poLP+1'»—bsp}, }
’ | A = ARRC & {i:LP+1..LP+ punspe 1+ 57 }

1

It is not difficult to verify that the first specification statement is refined by ; := punsp,
After using sP lo write the second specification statement above in a form suitable to the
application of i/, we can apply this Jaw to introduce the iteration below. Its variant is j.
doj#0—
jyArr: [
od

Ar = ARRC @& {i:j+1..pmspe LP +i sp } Ay #£0,
A = ARRC@ {i:j'+1..pmspe LP+i sp } A0S <

The body of this iteration is refined by the following assignment.

C assigl
A ji=Amr & {LP+j— spl.j -1

The proof-obligation that arises from this application of agsig/ can be easily discharged. At this
point, conR {constant removal} can be used to remove the declaration of ARRC. The collected
code for /nsertChorCStendard can he found in Figure 4.6.

The level 2 of the text editor specification defines a mode] for an unbounded display: basically
a non-empty sequence of lines and a screen cursor identified by a pair of coordinates. At this level
no length restrictions apply: neither the length of the lines nor the length of the sequerce itself are
restricted. A line is a sequence of characters that does not include n! among its elements.

The concrete state at this level includes that of level 1, ConcPocl, and introduces additional
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if 2?7 # tab = Arr, LP.CP = Arr & {LP+1 27}, LP+1,CP + 1
[ z7=tab =
[[var pvini, punsp : 0. Max »
pulnl := CFP ;
do puinl # 0 A Arr puinl # nl — puinl := puinl — 1 od ;
pvnsp := min{tabsiop — (CP — puinl) mod tabstop, RP — LP} ;
[[var j : 0.. Maz »
J = pwnsp ;
doj; #0—= Arrji=Arr & {LP+j— sp},j -1 od
s

LP,.CP := LP + pvmsp, CP + punsp

Figure 4.6. Implementation of fnsertCharCStandard

components that represent the unbounded display. [ts specification is as follows.

—_ Concloc2
ConcDocl
Startln, Endin, DocNL : 0., Maz
CurX,CurY :1.. Maz +1

Stariln < CP < Endin
nd g ran({Startin + 1.. Endin) 1 ((1.. LPURP +1.. Maz) | Arr}))
Startin £0={(1.. LPURP +1.. Maz)| Arr) Startln = nl
Endin # Maz + LP —RP = ((1..LPURP +1.. Maz)| Arr) (Endin+ 1) =nl
DocNL = #{({1 ..LPURP +1.. Maz}1 Arr) 1> {nl})
CurX = CP — Startln + 1
CurY = #{({1.. CP)1({L.. LPURP +1.. Maz}1 Am)) > {nl}) + 1

The sequence of lines of the unbounded display is that determined by the contents of the document
in the obvious way. The components Startin and Endin are pointers; Startin determines the
position of the document that precedes the start of the cursor line, and Endlin, the position where
this line ends. The component DocNL records the number of occurrences of the nl character in
the document. Finally, CurX and CurY record the cursor coordinates in the display. The top left
position has coordinates (1,1).

The first four conjuncts of the ConeDoc2 invariant characterise Startln and Endin. The first
conjunct states that the cursor i3 in the line delimited by these pointers. The second conjunct
establishes that they indeed delimit a line: there is no n! in the positions fromn Startin + 1 to Endin
of the document. The third and the fourth conjuncts require that this line is as long as possible: if
Startin is pot pointing to the beginning of the document, then it is pointing to a nl; similarly, if
Endin is not pointing to the end of the document, then it is pointing to a position preceding a nl.
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The states at levels 2 and 3 have the same components and differ only in their invariants: the
state at level 3 includes that at level 2 and has a stronger invariant. For this reason, perhaps.
in [51], the state at level 2 is data-refined during the development of the level 3. Cousequently,
there Concloc? includes two additional components that are related to restrictions introduced at
level 3. Here, for brevity, and as we do not consider the level 3, we omit these comporents,

The operations at level 2 are promotions of the operations at level 1. They are all defined as
the conjunction of a level 1 operation with A ConcDoc2. Below, we present an example.

LeftDeleteCharpacy = LeftDeleteCharC A ALoncDoc2

This is the level 2 operation tbat deletes the character to the left of the cursor.

Intnition snggests tbat we can implement a level 2 operation as the sequential composition of the
operation that it promotes with a program that updates the additional components of ConcDoc2
and so implements AConclloc2. The conversion law sconjC (schema conjunction cenversion)
transforms schema conjunctions into sequential compositions, but cannot be applied to the leve] 2
operations, since Concllocl, the state over which the level 1 operations act, and ConcDoc2 are not
disjoint. Nevertheless, motivated by this example, we present below an additional formulation of
sconjC which can be nsed convert the level 2 operations. Its derivation can be foundin Appendix D.
Law sconjC Schema canjunction conversion (hierarchical specification)

{ASy; diy?; doy! |y A AS:
L sconjC
[con dcl o
{ASy; diy?; doy! | o}
(S$15 dyj dy | inwi[cl/odt] A invelet/adi} A prlel/adi][ /] A inng)
|

provided (preg A fnvy A nv] A py) = pre}

where

v 5 2 {dr |inwn) and S2 £ {5); dy | intg);

e pre({AS;; diy7; dot| p1} A AS2) = preg A inv A fnig A fp;

e pre{AS; A ZS81) = preg A inuy Adng A By,

e tc and f; are the restrictions introduced by d,; do; dii? and dy: d. respectively;
» del declares the constants of el.

Syntactic Restrictions

» The components of A S, ate the only common [ree variables of {&.5; diy?; doy! | ;) and
A8y

+ The names of ¢/ and ¢’ are not free in (ASy; di?; doyl| p1) and ASy;

e cl and ad, have the same length;

= The constants of cl have the same type as the corresponding vasiables of ad;.

The state 5 includes and extends the state S;. The constants of el are used to represent the
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initial values of the corresponding variables of ad): those held by them before the execution of
{ASy; diy?; doi!| pi). The second schema in the sequential composition establishes inw; without
modifying the components of Sy, but assuming that sny; and inv; bold before the execution of
(AGy; diy?; doi!|p) and that this program establishes ;1. The proviso guarantees that this is
not an impossihle task. The predicates prec and prey are supposed to be those that are usually
regarded as the precondition of {AS[; di7; doy!| p1} A AS2 and AS: A 28y, respectively.

By way of illustration, we take the level 2 operation that moves the cursor to the left by a
character.

LeftMuCharpoe: C = LeftMuCharp,. C A AConcDoe2
We can refine LeftMuCharpecp € to the constant block below by applying sconjC.

LeftMuCharpee C
C sconjC
[[con ARRC : 1.. Maz — Char, LPC RPC,CPC :0.. Maz »
LeftMuCharpa € 1 UpdateConcDoc2
1

The schema Update ConcDoc2 can he defined as follows.

— UpdateConcDoc2
Z ConcDocl
Startin, Endln, DoeNL, Startin’, Endin’ DocNL' - 0.. Moz
CurX CurY, CurX’, CurY' : 1. Maz +1

LPC < RPC A CPC < Maz + LPC —- RPC

Startlhh < CPC < Endin
n ¢ ran{(Startin + 1.. Endln) 1 {(1.. LPCURPC +1.. Maz)| ARRC))
Startin 0= ({(1.. LPCURPC +1.. Maz) | ARRC) Startin = nl
Endin # Mar + LPC — RPC =»

{1..LPC U RPC +1.. Mar)| ARRC) (Endin + 1} = nl
DocNL = #(({1 .. LPCURPC +1.. Maz)| ARRC) &> {nl}}
CurX = CPC — Startln +1
Cur¥ = #(((1.. CPC)1((1.. LPCURPC + 1.. Maz)} ARRC)) > {nl}) +1
CPC #0
Arr= ARRCALP=LPCARP=RPCACP=CPC -1
Startn’ < CP < Endin’
nl g ran{(Startin’ +1.. Endln’) 1 ((1.. LPURP +1.. Maz)1 Arr))
Startl’ #0 = ((1..LPURP +1.. Maz) | Arr) Startin’ = nl
Endin'# Maz + LP - RP = ((1.. LPURP+1.. Maz}| Arr) (Endin’ +1) = nl
DocNL' = #(((1.. LPURP +1.. Maz) | Arr) &> {nl})
CurX' = CP — Stariin’ + 1
CurY' = #(((1.. CP)1({1..LPURP +1 .. Maz)| Arr)) > {ni}) +1

The extra components of ConcDoc2, namely, Startin, Endin, DoeNL, CurX , and CurY, are derived
componects. Their values are well-defined for all possible values of the cormpoueuts of ConclDocl.
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if (CP<LPAAmM (CP+1)=al)v (CP>LPAAmM(RP-LP+(CP+1))=nlj>
Stariin := CP ;
do Starlln #0 A
((Startln < LP A Arr Startin # nl) v (Startin > LP A Are (RP — LP + Startin) # ni)} -
Stariin := Startin ~ 1
od;
Endin, CurX, CurY := CP,CP — Startin + 1, CurY — 1
f-({CP<LPAAm (CP+1)=nl}V (CP > LPAAm(RP — LP 4+ (CP +1))=al)) -
CurX ;= CurX -1
fi

Figure 4.7: Implementation of UpdateConcDoc2

Therefore, pre(A ConcDoc2 A ZEConellocl) is true and the proof-obligation generated by the above
application of sconjC is trivial.

For the sake of brevity, we do not refine UpdateConcDoc2 here. Since LeftMvuCharp,. C does
wot change the contents of the document, UpdateConcDoc2 does not need to updale DocNL. The
values of Startin, Endin, CurX, and CurY, however, may have to be changed. Theimplementation
that we present in Figure 4.7 for Update ConcDoc2 performs the necessary modifications taking into
account that the invariant held before the execution of LeftMuCharpae C and that this eperation
simply decrements the value of CP hy 1. This js the information recorded in Update ConcDoc2
using the constants ARRC, LPC, RPC, and CPC. The alternation in Figure 4.7 identifies whether
or not moving the cursor to the left has changed the cursor line.

4.3 The Airbus Cabin-Illumination System

The last case study that we present here is based on a Z specification presented in {23] for an Airbus
cahip-illumination system. This specification has been intentionally writien using mostly concrete
data types. Therefore, only a few minor modifications are necessary to make it appropriate as a
starting point for the development of an implementation for the illumination system using ZRC.

The Airbus cabin is divided into three zones and two entry areas; a zone may, for instance,
accommodate the first class or the husiness class seats. The illumination system provides separate
control for eack of these parts of the cabin. The lights in a cabin zone or entry area are dimmable;
they have three illumination levels. Additionally, the cabin zones may have an extra set of special
night lights; if not, the ordinary lights are used to provide a night light service.

The free types ZONES and EA presented below contain identifiers for the cabin zenes and the
entry areas.

ZONES = 21| 22|23
EA w= fudlaft

In [23] the zane and entry area identifiers are introduced as constants of & free type LOCATION,
and ZONES and EA as ahhreviations for the sets {z1,22, 23} and {fiwd,aft}, respectively. Here,
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Figure 4.8: Command Panel of the [llumination System

since LOCATION is not used in the specification of either the state or the operations we examine,
we omit its definition.

Figure 4.8, which has been extracted from [23], preseuts the panel used by the attendants
to command the itlumination system. For each of the cahin zones, this panel contains four but-
tors labelled BRIGHT, DIML, DIM2, and NIGHT. For each of the entry areas, there are three but-
tons: BRIGHT, DIM1 and DIM2. A light indicator is associated with each of these buttons. The set.
DIM; defined in the sequel contains constants that represent the light indicators of a particular
cabin zone or entry area. These constants are elements of the free type DIM, which is used to
represent the light brightness levels.

DIM = diml | dim2 | bright | off | onNI2
DiMy == {dim1, dim2, bright, off }

The free type SWITCH contains the constants active and passive which are used to indicate
whether or not a light indicator associated to a NIGHT button is on.

SWITCH = aclwe | passive

Actually, SWITCH is used in this specification for two differeat purposes. The second use of
SWITCH is explained later on.

The BRIGHT, DIM1, and DIM2 buttons of the cominand panel are used to switch on and off and
to adjust the level of brightness of the cabin zones and entry areas. The function of the NIGHT
buttons and the way in which the night light service is controlled is determined by the value of
the global variable CAM_NLAUTO defined below.

| CAM _NLAUTO : FEATURE
Its type, FEATURE, i3 specified as follows.
FEATURE = disabled | enabled

If the valve of CAM _NLAUTO is enabled, then the illumination system provides a night light
autoservice. In this case the night lights and night light indicators in the command panel are
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automatically switched on (off) whben the ordinary lights are switched off {om) and the NIGHT
button is used only to switch off the night lights. If, otherwise, CAM_NLAUTC is equal to
disobled, then the NIGHT buttons control the night lights. When a NIGHT button is pressed, the
corresponding night ight indicator is turned on, and the night Iights are turned on if or when the
ordinary hights are turned off. When the NIGHT hutton is pressed again the indicator and the night
lights, if necessary, are turned off. Also, when any other button of the same zone is pressed, the
night lights are turned off if they are on.

The schema ZONEINDstale defined below specifies part of the illumination system state. The
component zonefnd represents the light indicators associated with the BRIGHT, DIM1, and DIM2
buttons that control cabin zone tights. Since, for each zone, at most one of these indicators is on,
zonelnd is defined as a total function from ZONES to DIM,. For a zone z, zonelnd z is the light
indicator that is on in that zone: diml, dim2, or bright, or takes the value off when none of them
is on. The component niind represents the night light indicators; it is a function from ZONES to
SWITCH: nllnd z is either active or passive depending on whether the NIGHT indicator of zone z
is on or off.

_ ZONEINDstate
zonelnd : ZONES = DIM,
nlind : ZONES = SWITCH

Viz: ZONES ¢ nllnd z = active = (zonelnd z = off v CAM_NLAUTO = disabled)

The invariant in ZONEINDstate establishes that, in all zones, if the NIGHT indicator is on, then
either the diml, dim2, and bright indicators are off so that the ordinary lights in the zone are off,
or the night light autoservice is disabled so that the NIGHT button has been pressed to pre-select
the night light service.

The dim1, dim2, and bright indicators of the entry areas are represented by the state component
eaInd, which is introduced by the following schema.

EAINDstate
realnd s EA = DMy

By analogy with zonefmd, ealnd is a tota] function from EA to DIM,.

When the Airbus is on the ground, the cabin illumination can be controlled from a MAIN
button. Its indicator is represented by the state component mainind, which is introduced by the
schema MAININDstale that follows.

_ MAININDstate
ZONEINDstate
EAINDstate
mainind : SWITCH

mainind = passive &
ran niind = {passive} A ran zonefnd = {off } A ran eafnd = {of}

The type of manind is SWITCH, If mainfnd is equal to passive, the MAIN indicator is off and so
are all other indicators. This is the property stated by the invariant of MAININDstate.
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The lights are identified by addresses in a bus, which, in [23], are elements of a given set
ADDRESS. Here, in order to obtain a more concrete specification, we define that addresses are
wumbers in the interval from 1 to mazed, a global variable introduced below.

mazad : N
mazad >0

The addresses of the lights and night lights in each of the zones and entry areas are identified by
tables: partial functions from 1.. mazad to ZONES or EA.

CAM_CAB :1.. mazad » ZONES
CAM_EA:1.. mazad » EA

CAM _NLY : 1. mazad » ZONES
CAM_NL2:1..mazad » ZONES

CAM N1 C CAM_CAR
dom CAM_CAB N {dom CAM_EAUdom CAM_NL2) =@
dom CAM_EANdom CAM _NIL2 =@

The addresses it {the domain of) the table CAM_CAB are those of the ordinary lights in the cahin
zones; if the address a is in CAM_CASH, then it identifies a light that is in the zone CAM _CAB a.
Similarly, CAM_EA distingnishes the addresses of the lights in the entry areas. If the cabin zones
have special night lights, then their addresses are recorded in CAM_NL2. Otherwise, CAM_NL1
singles out the ordinary lights that are used to provide the night light service. The addresses
in CAM_NL1 are also in CAM_CAB; and the sets of addresses in CAM_CAB, CAM_EA, and
CAM_NL2 are pairwise disjoint.

The last component of the illumination system state, ill, represents the cabin zone, entry area,
and night lighis; it is introduced by the schema ILLstate.

— ILLslate
il : 1.. magad — DIM

¥a:1..mazad & il o = onNI2 = a ¢ (dom CAM_CAB Udom CAM _EA)

The light addresses of interest are those in the tables CAM_CAB, CAM_EA, CAM_NL1, and
CAM_NL2. The constant onNI2 represents the on state of a special night light; it is different
from dim1, dim2, and bright, since the special night lights and the ordinary lights are of different
types. The invariant of fLLstate asserts that, for every address a, if ®l is onNI2, then & does
not identify an ordinary light: it is either in CAM_NL2 or is an unused address. In [23], ol is
defined as a partial function whose domain is the set of addresses in CAM_CAB, CAM_EA, and
CAM_NL2. We define it as a total function {an array) as this data type is more readily available
in most programming languages.

The first operation of the illumination system that we examine is MAINop, which is triggered
by pressing the MAIN button. This operation has no effect if the Airhus is not on ground. The
global constant LGEARst defined below determines the current state of the landing gear; with
this information, it is possihle to work ont whether or not the Airbus is on the ground.

| LGEARst : LGCIU

The free type LGCIU contains three constants that represent the possible states of the landing
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gear.
LGCIYU = downCompressed | downLocked | upLocked

The Airbus is in the air when the landing gear is either downlocked or upLocked. This situation
is characterised by the schema MAINisBlocked.

MAINisBlocked
rLGEARst € { dounlocked, upLoeked}

In this case, MAfNop does not change the state: it behaves like the operation NCop defined below.

NOop
ZZONEINDstale

ZEAINDstate
EMAININDstate
ElLLstate

If the Airbus is on the ground, the effect of MA/Nop depends on whether the MAIN indicator is on
or off. If it is on, it is turned off, and so are all other light indicators. In the specification below,
the new values of ronefnd, nlind, and eafnd are determined by the state invariant.

— MAININDopPasstve
AMAININDstate

mainind = active
mainfnd’ = passive

The lights themselves are turned off as well.

 MAINILLopPassive
ASLLstate

' = { a:1.. rmazad » a = off }

If the MAIN indicator is currently turned off, then AMA/Nop reinitialises the system. The MAIN
indicator is turned on.

— MAININDINITop
MAININDstate'

mamind’ = acliwe

The BRIGHT indicators are turned on and the NIGHT indicators are turned off. This is specified by
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the schemas ZONEINDINITop and EAINDINITop.
— ZONEINDINITop ___
ZONEINDstate’

zonelnd’ = { z : ZONES » & — bright }
ntlnd’ = (z : ZONES & z — passwe }

—— EAINDINITop _
EAINDstate'

eafnd’ ={ z: EA » z > bright }

Finally, the ordinary lights are switched to bright and the special night lights, switched off.
ILLINITop
ILLstate'

{ a:(dom CAM_CABUdom CAM.EA) e a s bright } U
{a:dom CAM_NL2 e a — off } C il

The initialisation operation is defined as the conjunction of the Jast four schemas presented above.
INITop 2 ZONEINDINITop A EAINDINITop A MAININDINITop n ILLINITop
The MAINop cperation is specified as follows.

MAiNop= (MAINisBlocked A NOop) v
(~ MAIN:sBlocked A
(MAINILLopPassive A MAININDopPassive V
[MAININDstate | mainind = passive] A INITop)}

The precondition of the first disjunct of MAINop, namely, MAINisBlocked A NOop, can be ex-
pressed as LEEARst = downLocked v LGEARSst = upLocked; the precondition of the second dis-
junct of MAINop is LGEARst = downCompressed.

By applying the first formulation of sdigfC (schema disjunction conversion) to MAINop, we
can obtain the following alternation.

if LGEARst = doumlLocked v LGEARst = upLocked —
MAINis Blocked A NOop <
[| LGEARst = downCompressed —
-~ MAINisBlocked A
{MAINILLopPassie A MAININDopPassive Vv {¥)
[MAININDstate | mainind = passwve] A INITop)
fi

If we apply to MAINisBlocked A NQOop the second formulation of bC (basic conversion), which




4.3 The Airbus Cabin-Illumination System

109

[[var i : .. mazed +1 e
i:=1:
do 1 3 mazad +1 -

ifteset 2> ill:=dlid{i— dim}]] i &set —skip fi;
=141

od

Figure 4.9: Implementation of updfLL

deals with operations that do not modify the state, we obtain the specification statement below,

C&C

| MAININDstate A ILLstate A LGEARst = dounlLocked V LGEARst = upLocked,

" zonelnd’ = zoneind A nilngd’ = nlind A ealnd’ = ealInd A mainind’ = mainind A il = il

This program can be refired to skip using the law skf (skip introduction}.

C skf
skip

The proof-obligation that arises requires us to prove that the state components are equal to them-
selves, which obviously is trivial.

The application of the first formulation of 5C to the schema () generates the following speci-

fication statement.

zonelnd,
niind,
ealnd,
mainfnd,
il

[ MAININDstate A ILLstate A LGEARst = downCompressed,

MAININDstate' A ILLstate’ A LGEARst = doumCompressed
mainind = achwe
mainind' = passive v
d'={a:1..mazad ¢ a — off }
mainind = passive
zonelnd' = { z: ZONES o z — bright }
nlind’ = { z . ZONES @ z v+ passwe }
ealnd = { z: EA e z— bright }
mainind' = active
{ a:{dom CAM_CABUdom CAM_EA) e av brght J U
{a:dom CAM _NL2ea s off } Cdll

(x)

We implement this program using an alternation that distingnishes the cases mainfnd = active and
mainind = passive. Before we introduce this alternation, however, we use the law prel (procedure
introduction) te declare the procedure updILL presented helow, which is used later on to update ali.
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updILL{1.. mazad,eff ) ;

zonelnd, nlind, ealnd, mainind := {z1 — off,z2 — off ,z3 = off },
{z1 — passive,z2 — passwe, z3 — passive},
{fwd = off, aft v+ off }, passive

Figure 4.10: Implementation of (4)

The procedure block that is introduced by the application of prcf has the specification statement
(42) as its main program.

updILL £ (val set: F(1 .. mazad); dim: DIM el : [true il = #I B { 2 : set e 2 > dim }])

The procedure upd/LL has two value parameters: set and dim. It updates il by setting to d:m the
brightness level of the lights whose addresses are in set. We assume that a data type corresponding
to the type constructor F is available (or has been implemented) in the target programming
language. In fact, the majority of the traditional imperative programming languages do not include
a type constructor like I, but in the library of most object-oriented programming languages there
is a class that defines a set type.

The specification statement in the body of updILL can be implemented using an iteration; a
possible implementation for this program is presented in Figure 4.9. Its refinement is not difficult
and, for the sake of conciseness, is not presented here.

Applying alt {alternation introduction) to (i) and then using sP (strengthen postcondition)
and wP (weakening precondition) to simplify the specification statements in the branches of the
reaulting alternation, we cau obtain the following program.

if mairind = active

zonelnd, e
ndlnd, ue .

Ind mainind' = passive (if)
:a:‘} 4 ran niind’ = {passive} A ranzonelnd’ = {off } A ran ealnd’ = {off }

inind,

al [\ill' ={e:1..mazad w2 > off }
[] mainind = passive —
[ zonelnd' = { z: ZONES & z -+ bright }

zonelnd, nlind’ = { z : ZONES » z — passive }

ﬂ‘j’vﬂz» Nirue, | o809 = {2 BA w2 bright } ()
:ﬂ:‘ﬂ}ﬂd . ‘ maiﬂrndr = active

e { a: (dom CAB.CAB Udom CAM_EA) e a v+ bright } U

{a:dom CAM_NL2eaw— off } Cll'
fi

The specification statements (i) and {iv) can he refined in much the same way and here we
proceed to refine only (iv). In Figure 4.10 we present an implementation for ().
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By applying fassig! (following assignment introduction) to (tv) we can introduce assignments
to zonefnd, nifnd, ealnd, and mainind.

C fassvgl
zonelnd,
nilnd, true, ]
eafnd, i | {a:(dom CAM_CABUdom CAM_EA) e a — bright } U | ;

mainind, {a:dom CAM _NL2e a— off } C I’

il

zonelnd, nilnd, eaind, mawnind ;= {z1 — bright, :2 — bright, 23 v bright},
{21 v passive, x2 — passive, 23 — passive},
{fwd v+ bright, aft — bright}, active

With a view of updating il using calls to updfLL, we use cfR (contract frame} to reduce the frame
of the above specification statement to ili, and then apply sP to obtain the program below.

true, 1
;| =il @ { a: (dom CAM.CAB Udowm CAM_EA) » a — bright } &
{ ¢:dom CAM _NL2wa — off }

Two calls to updIL L are necessary to update il in the required way. We introduce the sequential
compogition as follows.

C segel
[[con CILL:1.. mazad + DIM «
il [true, il = il & { a: (dom CAM_CABUdom CAM _EA)e a vt bright 1] ; (v}
il = CILL® { o : (dom CAM_CAB U dom CAM_EA) » a — bright },
il | il = CILL& { o : (dom CAM_CABUdom CAM_EA) e a— bright } @ | (vi)
{a:domCAM _NI2 e aw off }

i

Using vS (value specification) we can refine (v) to a parametrised statement which, with an
application of peatll (procedure call introduction), can be transformed into a call to updILL with
parameters (dom CAM_CAB Udom CAM_EA) and off. The dom operator is not available in
most programming languages. We assume, however, that a data type called Table, for instance, is
used to represent CAM_CAB, CAM_EA, CAM_NL1, and CAM _NL2, and that it has operators
like dom and others we use use in the sequel.

As to (td), we would rather simplify it before applying vS; using sP and then wP we refine it
to the following program.

il : [true, il =@ { ¢ : dom CAM _NL2 ¢ a = off }]

As with (v), this program can be refined to a call to upd/LL with parameters dom CAM _NL2 and
off with the use of v5 and peallf.

As the constant CTLL is not being used anymore, we can apply conk (constant removal) to
eliminate its declaration. This concludes the refinement of MAINop.
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Anocther operation of the illumination system that we consider here is EAop, which controls
the illnmination of the entry areas. This is the operation activated by pressing the DIML, DIM2,
or BRIGHT button of one of the entry areas. In the specification of EAop, the input variables ea?
and dim? determine, respectively, the chosen entry area and brightness level. The type of dim? is
the subset of DIM defined below.

DIMy == {duml.dim2, bright}

If the cockpit door is open and the oil pressure is high, which iudicates that there is an engine
running. the illumination of the fwd entry area cannot be changed arbitrarily to avoid blinding
the cockpit personnel. The table CAM_EAD establishes the maximum brightness to which some
of the fwd entry areas lights can be switched in this situation.

CAM_EAD : ADDRESS -+ {aff , dim]1, dim2}

dom CAM_EAD C dom(CAM_EA > {fud}}
The operator _ <4, — defines an order for the brightness levels according to their intensity.
— <gim -: DIMy &+ DIMy

off <gm dim2 A dim2 <gm diml A diml < g bright
Ya,be: DIMy| 6 <aim DA <m0 8 <Cgym €

The global variables cockDoor and oilPres determine, respectively, whether or not the door is open
and the oil pressnre.

cockDoor : DOOR
0ilPres: PRESSURE

Their types are defined as follows.

DOOR u= closed | open
PRESSURE ::= low | high

The behaviour of EAop depends on whether the light indicator associated with the button pressed
is on or off. Il'it is on, the lights are at the brightness level chosen and both they and the light
indicator are turned off. If it is off, then it is turned on and the lights are switched to the chosen
brightness level. If the chosen entry area is fwd, the cockpit door is open, and the oil pressure
is high, then the lights addressed in the table CAM_EAD are switched to the chesen brightness
level or to the level indicated in CAM_EAD, whichever is lower. The effect of Edop on the light
indicator is apecified by EAINDop.

— EAINDop
A EAINDstate
ZZONEINDstate
ea? . EA

dim? . DIM,

ealnd(ea?) = dim? = ealnd’ = ealnd @ {ea? — off }
ealnd(ea?) # dim? = ealnd’ = ecalnd @ {ea? — dim7}

The schema EAILLopPassive defines the effect of EAop on sl when the light indicator associated
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with the button pressed is on.

EAILLopPassive
AJLLstate
EAINDstate

ea? : EA

dim? : DIM,

eafnd(ea?) = dim?
il = ill® { ¢ :dom({CAM_EA© {ea?}) ez — off )

The effect of EAop ou il when the indicator is off is specified by EAJLLopActive.

__EAILLopActive
ATLLstate
EAINDstate
ea? : EA

dim?: DIM,

ealnd(ea?) 3 dim?
il =il @ if ea? = fwd A cockDoor = apen A 0ilPres = high
then { z: dom(CAM_EA t> {ea?}) o 2 +> dim? } @
{7 :dom CAM_EAD | CAM_EAD x <4, dim? e z = CAM_EAD z}
else { z: dom{CAM_EA > {ea?}) ® z — dim7 }

The defipition of EAop is as follows. The precondition of this operation is true.
EAop = EAINDop A (EAILLopActive V EAILLopPasstve)

The refinement of EAop can start with an application of the first formulation of bC. Since this
operation does not modify zonelnd, however, we can traunsform it into a shorter program using a
third formulation of bC that we present belaw. Its derivation is presented in Appendix D.

Law bC Basic conversion {operations that do not modify some state campanents)

{AS; BT, di?y do! | p}
C &C
adg,ade! : [inus A invy A3 d}; dol e (invy A p)ladr /ady), (inug A plladrfady] ]
where § = (T; dg | invg) and T = (d7 | inv7)
The state is specified by 5, which inciudes 7. The operation {AS; ET; di?; do! | p} modifies the
state, but not the components of T. Therefore, the specification statement generated by C does
not include them in its frame and does not enferce in its postcondition the maintenance of the
part of the state invariant defined in 7. The predicate 3dg; do! e (inv; Ap)ladr/adl] is (what
is commonly regarded as) the precondition of (AS; ET; di7; do! | p).
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The application of this formulation of C to EAop yields the specification statement below.

[ ZONEINDstate A ILLstate,
ILLstate’'
eafnd(ea?) = dim? = ealnd’ = ealnd @ {ea? — off }
eafnd(ea?) # dim? = ealnd’ = ealnd B {ea? — dim?}
ealnd(ea?) = dim?
ealnd, (:’ll’:iﬂe‘j{ z:dom(CAM_EA > {ea?}) e 2> off }
il ) eafnd(ea?) # dim?
dl' = sl @ ¥f ea? = fwd A eockDoor = open A 0ilPres = high
then { z:dom(CAM_EA D {ec?}) # z — dim? } &
{ z:dom CAM_EAD | CAM_FAD 7 <4y dim? e
x> CAM_EAD 1}
else { z:dom{CAM_EA > {ea?}) ¢ z — dim? } |

We use the alt] law to introduce an alternation that determines whether the indicator associated
with the button pressed is on or off. After applying sP and wP to the branches of this alternation,
we obtain the following program.

if ealnd = dim? —

ealnd, .t ealnd’ = ealnd & {ea? — off } (vid)
[T\ i =it @ { z: dom(CAM_EA D {ea®}) o £ 3 off }
[l eafnd # dim? —

[true,
ealnd’ = ealnd ® {ea? — dim?}
dl' = 4l @ if ea”? = fwd A eockDoor = open A odlPres = high
then { z : dom{CAM_EA > {ea?}) e 2 — dim? } & {viu)
{ z:dom CAM_EAD | CAM_EAD 1 <y4im dern? »
T CAM_EAD 1}
else { 1 : dom(CAM_EAr {ea?}) e 2 dim? } |

ealnd,
il ’

fi

In what follows we refine the specification statement {viti). The refinement of (vit) is similar and
sipler.

Applying fassigl to (viii) in order to introduce an assignment to ealnd, and ¢fR in order to
simplify the remaining specification statement, we derive the following program,

true,
il' = il D if ea? = fwd A coekDoor = open A oilPres = lugh
il then { z:dom{CAM_EA D {ea?}) 0z — dim? } & ;
{z:dom CAM_EAD | CAM _EAD 1 < 4, dim? ez CAM_EAD z }
else { z:dom(CAM_EAr {ea?]) 92—+ dim? }

ealnd = ealnd & {ea? — dtm?7}

The form of the postcondition of the above specification statement suggests the introduction of
ap alternation. With this purpose, we apply alt! to this specification statement and, following
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if ealnd = dim? —
upd/LL(dom(CAM _FA D {ea?}),off ) ; ealnd := ealnd & {ea? -+ off}
[} caind # &im? —
if ea? = fud A cockDoor = epen A 0ilPres = high —
[[vari:1.. marad +1 =
=1,
do i # marad +1 —+
if 1 € dom(CAM _EA > {ea?}) —+
if { € dom CAM _EAD A CAM_EAD 1 <4y dim? =
=il ® {i— CAM_EAD {}
-(iedom CAM _EAD A CAM _EAD i <gmn dm?) —
#= 3l @ (i dim?}

fl
[l § € dom{CAM_EA > {ea?}) —+ skip
fi;
=141

od
|
[} = (ea? = fuwd A cockDoor = apen A oilPres = high) -
updILL{dom{CAM _EA > {ea?}}, dim?)
fi
ealnd := ealnd & {ea? -+ dim?}

Figure 4.11: Implementation of E4op

the application of sP and wP to the branches of the resulting alternation, we get to the folowing
program.

if ea? = fwd A cockDoor = open A oilPres = high —
true,
|l =il d{ z: dom(CAM _EA> {ea?}) s s = dim? } & (iz)
{ r:dom CAM_EAD | CAM _EAD 2 <4m dim? e 2 — CAM_EAD ¢ }
[} - (ea? = fwd A cockDoor = open A oilPres = high) ~
il [true,dll’ = sl @ { £ : dom(CAM_EA {ea?}) » 2 — dim? }] (z)
fi

With an application of vS followed by an application of pealll, we can refine (z) to a call to
updiLL with parameters dom(CAM _EA t> {ea?}) and dm7. As to (iz), since this program does
not switch lights to a common brightness level, we would rather implement it without nsing upd/LL;
Figure 4.11 presents an implementation for (xit) that uses an iteration directly. The developrnent
of this program poses no difficulties and is not discussed here.
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In Figure 4.11 we present the collected code of EAep. The other operations of the illumination
system either can he refined in much the same way as MAINop aud EAep or have specifications
that are too long to be considered here.

4.4 Conclusions

In this chapter, with the objective of showing that ZRC is a suitable starting point for the study
of refinement of Z specifications, we have preseuted three case studies. The examples we have
discussed are not exactly realistic. The class manager and the text editor do not beloug to the
class of systems that motivate the study of formal methods of software developmeut and, due to
space restrictions, we have considered only two of the simpler operations of the cabin-illumination
system. Even so, our case studies bring forward a few important points about ZRC.

Since the Z stvle of structuring specifications is open, the schema calculus can be emiployed to
specify operations in a wide variety of ways. For this reason, it is to be expected that the proposal of
additional conversion and even refinement laws become uecessary or appropriate as ZRC is applied
in the development of a larger range of systems. The refinement of the text editor, for instance,
has prompted the introduction of a formulation of sconjC (schema conjunction conversion} that
had not been included in the original set of conversion laws. Also, in the development of the
cabin-illumination system, the proposal of an additienal formulation of 6C (basic couversion) has
been proved to be useful.

In this respect, what distinguishes ZRC from other methods of refining Z specifications is its
formalisation. Based on this work, the soundness of any new conversiou or refinement law that
becomes necessary can be established and the risk of mistakes minimised. The mauy examples of
law derivations provided in Appendix D) can be of assistance in this kind of effort. Altogether,
ZRC is not only a collection of laws that can be applied to refine Z specifications, but also a theory
of refinement for 2.

The use of the Z dashing convention, as opposed to the (~suhscript conventiou adopted in
Morgan’s calculus to represent initial variables, may have caused some coucern as to the complexity
of the refinement laws. Indeed, if compared to corresponding laws of Morgan's calculus, some of
the ZRC refinement laws have a slightly more cornplex formulation which involves additional
substitutions to remove or introduce dashes. By now, however, it should be clear that this does
not lead to more complex proof-chbligations and that refinements in ZRC can be carried out in
much the same way as they can in Morgan's calculus. Furthermore, we believe that, at least for
those used to the Z style, the formulations of the ZRC laws are not obstructive.

As with Morgan's calculus, the application of ZRC may involve long programs and proof-
obligations. Even though the conversion laws of ZRC aim at exploiting the structure of the schema
definitions and avoiding unnecessary expansions, lengithy schemas, specification statements, and
proof-abligations may eventually come about or be part of the initial specification. The text editor
case study, for instance, involves quite a few long programs and, as we have said, this is not even a
realistic example. Specifications of systems whose development requires the use of formal methods
are usually much more complex and lengthy., The eflective application of ZRC to refine these
systems requires the assistance of a tool. Without this support, since the activities involved io the
refinement process are extremely error-prone, the reliability of the results obtained is compromised.
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In the next chapter, we conclude our presentation of ZRC by considering related works and
possible lines of future research. There we compare ZRC to the technigques employed by King and
Neilson to develop implementations for the class manager and the text editor.
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Conclusions

At present, if the use of a formal method covering all phases of software development, possibly
with the support of a tool, is required, then Z is not a feasible or a straightforward answer. This is
one of the major criticisms that have been levelled at Z. which, nevertheless, is a highly successful
specification language. In this context, ZRC comes as a modest but promising step forward in
the direction of further encouraging the application in practice of Z and, mere generally, of formal
methods.

As a refinement calculus, ZRC integrates a successful specification language to a most promising
method of developing programs. The refinement calculus builds upon resvits of vears of research
on {formal) program development. As with Back's [1, 4] and Morris’s [48, 50} work, Morgan’s
calculus formalises the stepwise refinement technique of program development, but goes further
and proposes an innovative style of presenting developments and calculating programs based on
an extensive set of refinemnent laws.

The possibility of calculating, as spposed to verifying, programs acconnts for developments that
can be uniformly presented as sequences of simple refinement steps. Each step can be justified by
the apphcation of a refinement law and, possibly, the discharge of corresponding preof-abligations.
Moreover, refinement laws provide guidance on the construction of programs.

Although there seems to be no report of applications of the refiuement calculus in industry or
of case studies of substantial size, we are convinced that external factors are respounsible for this
situation. The refinement calculus is still in its relatively early days: it was only in 1990, when the
first edition of Morgan’s bocok [44] went into press, that the refinement calculus was put together
and more widely publicised.

Moreover, the application of the refinement calculus involves heavy formula manipulations and
the proof of long theorems, and so is practically infeasible without the support of a tool when larger
examples are considered; apparently, at the moment, no reliable and effective tool that supports
the application of the refinement calculus on tkis scale is available. Also, the benefits of applying
the refinement calculus in a rigorous way, leaving proof-obligations unproven or providing only
informal arguments ta discharge them, do not seem to have been emphasised.

The specification facilities of the refinement calculus are also a cause of concern because the
lack of a structuring mechanism like the schema calculus can be a difficulty in the treatment of
more complex examples. With ZRC, this last problem is solved. Nevertheless, it must be said that
a lot of effert is still required before the use of a refinement calculus becornes widespread.
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The integration of Z to a refinement calculus was first proposed in [34] by King, and, in [64, 65]
and [66], Woodcock and Wordsworth also follow this approach. To the best of our knowledge,
however, ZRC is unmique in that it is completely justified in terms of a well-established mathematical
medel] of program development: weakest preconditions. Moreover, ZRC adopts the conventions
of Z, avoiding a change of style during the development process, and includes support for the
development of, possibly recursive and parametrised, procedures and a calculational technique of
data refinement.

In summary, ZRC is a comprehensive technique of program development which can be used to
calculate programs from Z specifications in a smooth way, and which js firmly based on mathemat-
ical principles. Its design bas taken advantage of existing resnlts on refinement of Z specifications
and, furthermore, its formalisation makes it extensible. In view of that, we believe ZRC to be
a source of encouragement for further study on refinement of Z specifications; the application of
ZRC in the development of complex realistic systems in a rigorous way or with the support of a
tool can teach us many lessons. In tbe next section, we discuss related works and in Section 5.2
we propose a few lines for fnture research.

5.1 Related Work

Most conversion laws of ZRC are based on those proposed by King in [34). There are, however, some
fundamental differences between ZRC and the technigne proposed in [34] to refine Z specifications.
In general terms, King's work is not a refinement calenlus for Z, as ZRC is, but a method for
integrating Z with Morgan’s calculus. As such, King’s technigue provides the same specification
and design resources of Z and the refinement calculus, but, on the other hand, its application
requires a change of notation and style doring the development of a program.

When refining a schema using King’s technique, we first translate it to & program of the
refinement calculus. In this process, the decoration conventions of Z are forgone, the O-subscript
convention for initial variables of Morgan’s calculus are adopted, and the names of the state
components and of the input and output variables are shortened. For those familiar with both Z
and the refinement calculus, this change of notation may not be a major hindrance, but ZRC is
a proof that it is not necessary. Moreover, we believe that, for Z users, the notation employed by
ZRC is both natural and elegant.

In [34] Z specifications are translated to modules; the structure employed is that presented
in [45]. The clause var is used to declare the state components, the and clause, to introduce the
state invariant, and the operations are declared as procedures. In contrast, as we point out in
the next section, ZRC is concerned only with the translation of individual operations. We further
discuss the issues of modules and invariants in Section 5.2.

The technigne proposed by Wordsworth in {66] to refine Z specifications is, as ZRC, tailared
to the Z notation and style. In tbis work, Wordsworth defines a refinement relation between
schemas using the relational view of operations (instead of weakest preconditions). Assignment
is defined as a schema, so that refinement of a schema by an assignment can be proved using
the definition of refinement between schemas. Other programming constructions (alternation,
sequential compaosition, variable blocks, and iteration) can be introduced vsing refinement rules;
some of them correspond to conversion rules of [34] and some of them correspond to laws of
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Morgan's caleulus. As in ZRC, schemas are regarded as commands. In [52). Potter, Sinclair, and
Till provide an altemative presentation of Wordsworth’s techmigue.

Specification statements are not part of the language considered by Wordsworth. Even the
refinement rules of [66] that correspond to laws of Morgan’s calculus apply to schemas. As a
consequence, they give rise to more complex proof-obligations and provide little gnidance to the
development; they are better suited to the verification, rather than to the calculation, of programs.

Wordsworth proposes the nse of schemas as procedures. More precisely, he presents an exampie
where a parametrised call to a procedure (schema) with an input and an output is equivalently
defined as a schema and can, therefore, be used as a command; refinement can proceed as usual
since procedure calls are schemas. As a matter of fact, Wordsworth does not present his approach
to procedures and parameters in details, but it ts clear that it is not as general as Back's approack,
in which procedures may be defined by any form of program aud not only schemas.

As mentioned in Chapter 4, in [51] Neilson develops a C implementation for a text editor based
on its Z specification; there he also introduces the technique of development that he employs.
Besides considering the development of programs from concrete Z specifications, Neilson proposes
a technique for data refining Z specifications different from that in [58. 52. 16, 65). Since ZRC is
not concerned with this stage of the refinement of a Z specification, we do not discuss this part of
Neilsan's work here.

There are many similarities between Neilson’s and Wordsworth's technique for (algorithmically}
refining schemas. Neilson defines refinement Letween schemas in the same way as Wordsworth
and proposes the same refinement rnles to introduce programming constructs (except for that
concerning assignment). As opposed to Wordsworth. however, Neilson does not present refinement
rules corresponding to ICing’s conversion rules. Instead, Neilson proves a number of properties of
the refinement relation and presents several refinement rnles that are uscd in the development of
the text editor. In order to justify his refinement rules, Neilson defines the programming constructs
as schemas.

Another approach to the refinement of Z specifications is suggested in [63]. There Ward intro-
duces in the language of Morgan’s calculus generalisations of the Z conjunction and disjunction
schema aperators so that specification statements can be combined and the Z incremental style
of building specifications can be used. The aim is to achieve a refinement calculus that can cope
with larger specifications itself

Ward, however, does not consider the other Z schema operators, which also contribute to the
success of the Z style, and it is not clear how they can be added to the refinement calculus. More-
aver, the conjunction and disjunction operators that he defines are not monotonic with respect
to the refinement relation. The technigne that Ward suggests for refining programs built as con-
junctions or disjunctions consists of using either the weakest precondition definitions directly or
refinement laws similar to the rules presented in [34] for translating schema expressions.

In [16] Diller proposes a method of program verification for Z. As King integrates Z with
Morgan’s calculus, Diller integrates Z with a Floyd-Hoare logic. In developing a program to
implement an operation specified by a Z schema using Diller’s technigue, we first transform the
schema into a Hoare triple and then proceed to write and verify the program as usual in methods
based on Floyd-Hoare logics. The conversion procedure presented by Diller transforms a schema
that specifies an operation into a Hoare triple whose pre and postcondition are determined by the
schema (and program variables) in consideration and whose program component is to be guessed.
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This work does not take advantage of the structure of schema expressions.

As we have briefly mentioned in Chapter 3, in [32] Josephs defines wp as a schema operator.
For a schema Op that specifies an operation over a state defined hy a schema §, and for a schema R
that specifies a postcondition, wps: (Op, R} is defined in [32] as a schema that specifies the weakest
precondition that guarantees that Op terminates in a state that satisfies . In spite of this, our
characterisation of wp in terms of Z predicates {Theorem 2.6 in Chapter 2) is similar to that in [32].
Operations with input and output, however, are not treated in [32].

The wp schiema operator is used in [32] to define schemas and schema operators that represent
programs and program constructors of Dijkstra’s langnage of guarded commands, and to define a
refinement relation between schemas. Based on these definitions, Josephs proposes a few refinement
rules. These rules mention the wp operator and, in summary, Josephs's method is a refinement-
wp calenlus for 2. As in [66), specification statements are not considered in Josephs's work; the
comments made above about Wordsworth’s refinement rules are also valid for Josephs's rules: they
are in general difficult to apply and more appropriate for program verification instead of calculation.

5.2 Future Research

Throughout this work, we have assumed that the components of a schema that specifies an opera-
tion are the before and after-state, input, and output variables. Initialisation operations, however,
characterise states, and not state transitions. Therefore, their components are just the after-state,
input, and cutput variables. As a consequence, ZRC cannot be used to refine initialisation opera-
tions. This is not a major problem because in general initialisation operations are very simple so
that their implementation does not require the use of a refinement calculus. Nevertheless, it should
not be too difficult to extend ZRC (and its formalisation) te deal with initialisation operations.
Schemas with no state components and initial variables, like that named Success which has been
defined in the specification of the class manager (see Section 4.1), and which are often used in the
Oxford style of error treatment, are yet to be considered as well.

The formalisation of ZRC involves several proofs of theorems, lemmas, and corollaries, and,
in particular, many law derivations, all of which have been carefully checked. Since the activities
involved in the elaboration and presentation of proofs are admittedly very error-prone, however,
by using a theorem prover to check the formalisation of ZRC, we can improve its reliability and,
cansequently, that of the ZRC laws. A similar work is presented in [7], where Back and Wright
describe how the HOL proof assistant system can be used to formalise a refinement technique
largely based on Back’s work.

The variable blocks with invariants (and invariant hlocks) of Morgan’s calculus are oot part of
ZRC-L. Their treatmeat incurs in considerable modifications to the wp semantics of ZRC-L, to the
definition of refinement, and, consequently, to the whole formnalisation of ZRC. The definition of
an invariant in a variable block has influence on the behaviour of the program in its body: it may
assume and must preserve the invariant. In {43], Morgan defines weakest preconditions in relation
te an invariant, which is an additional parameter of wp. The task of establishing a correspondence
between the weakest precondition of a schema relative to an invariant and its relational semantics
may not be trivial. Moreover, as far as we know, the formalisation of invariants has pot yet
been considered in conjunction with procedures and data refinement. Invariants can be of help



122 Chapter 5. Conclusions

in rigorous developments, where their elimination is either ignored or justified informally. Their
usefulness in completely formal developments, however, can be discnssed,

As already remarked, King implements a Z specification using a modnle written nsing the
language of Morgan’s calculus. In [52], Potter, Sinclair, and Till show how to itmplement a driver
progranl which cortrols the execution of the operations of a Z specification. [n contrast, ZRC
concentrates only on the refinement of individual operations. The ultimate implementation of a Z
specification does involve the embedding of its operations, or rather, of their implemeuntations, in
a program that provides an interface for them. The development of these programs, however, may
not be trivial and involve complex questions of modularisation. We do not helieve that this issue
can be addressed lightly in a general context.

The schema calculus is largely responsible for the success of Z, as it enconrages and supports
the development of structnred specifications. Many have argued that the schema calculus is not
cuough and have proposed modular extensions to Z {38, 9, 37, 59, 36]. Whether or not tlie structnre
of a specification should be used in its implementation, however, is still an open question. Works
on this area incide [12, 53, 10]. Our hope is that, as the issue of modularisation seems to be fairly
independent from that of implementing individual operations, ZRC can be integrated without
many difficulties with design methods concerned with the architectnral aspects of programming.

The fact that the use of a refinement calculus in practice requires the support of a tool is widely
recognised. The works in [62, 21, 7, 68, 67, 22] describe different tools that have been developed
to support the application of Morgan's calculus and other refirement techniques. Before ZRC can
be seriously considered in practice, a tool that supports its application has to be made available.

The consolidation of ZRC also depends on the development of more case studies. Our ambition
is that, by establishing a solid foundation for the refinement of Z specifications, ZRC and its
formalisation become an additional motivation for further investigations in this field. Mnch work
is yet to be done on strategies for refining Z specifications.
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Mathematical Notation

In Chapter 2 we have used the semantic metalanguage introduced in [8]. In this appendix. which
is partially extracted from (8] itself, we summarise the less familiar symbols of this Janguage that
we have actually employed.

3 Choice relation: associates a set witk eack of its elements. It is the inverse of the element
relation.

t3ySyeEsr

{...} Set extension function: takes a tuple of values as argument and yields the set containing
them.

{- . -}-(-tln- .- :In) = {Il,.. . ;In}
_° Constant function constructor

Iy ==z

U Compatible union: this function forms the union of compatible fnnctions or, in other words,
functions whose uniou is still a function.

fug=/fUgprovided Vz:domfNdomgefr=9gz
Relational Constructors
{R1,.--, Ra} Tupling construction
(R, o Ra) (o ¥n) & 2R A A T Ry
(Ry x ... x Rp) Product of relations
(f,. . Za) (Ry % X Bu) (1,--s¥a) & 2 Ry ALA 5, Ry yn
R~! Relatioual inverse

tR 'y & yRz
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Cartesian products

A" Enumerated product: set of tuples (z;,...,z.) such that z;,..., 2, € A.
A" Generalised product

At = U|>0 Al




Appendix B

Proofs of Some Theorems

In this appendix we present the proof of some of the theorems that have been proposed in Chapter 2,
but first we introduce a lemma.

Lemma B.1 For every schema (d; d'; di?; do!| p), and postcondition 0,

(vd'; dolep =) =
wp.(d; d'; di?; do! | p}. true = wp.{d; d', &i7; do!|p).¥

Proof

Vd'; dotep=>o
=Vd; dole ((3d; dolep) A(p=¥)) V(= (3d; dolep) Alp =)

[by predicate caleulus]
=Vd; dole((3d; dolep)A({p=>y))V (=~ (3d;dalep)A—pA(p=1)

[by predicate calculus]

=Vd'; dole ((d'; dolep) Alp=4))V~(Id; do' e p} [by predicate calcu)us)
=({3d'; dolep) A (Vd'; dofe p =)V~ (3d; do! ep) {by predicate calculus]
= wp.(d; d'; di?; do!| p).true = wp.{d; d'; di?: do! | p).y [by definition of of wp]

a

This lemma is used in the proof of the next two theorems.

Theorem 2.8 For all schemas Op, and Op; that specify operations over the same state and with
the same inpuls and outpuls, and for every postcondilion v,

wp.(Opr V Op).¢b =
(wp. Opy.true V wp. Opp.true) A
(wp.Op;.true = wp.Opy.¢) A (wp.Opy.true = wp, Opy.10)
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Proof Without loss of generality, we assume that Op, and Op: can be written in the form
(d; d'; di?; do! | py) and {d; d'; @7; do! | p2}, respectively.

wp.(Op, V Op). ¥
= wp.(d; d; d&r?; do! | p1 V g2} [by a property of schema disjunction]

(3d’; dolepr V) A(Vd'; dolepr Vo= o) [by definition of wp]
=((3d'; dolep)) v (Id; dolepg)) A (Vd'; do' ey V py = ¢) [by predicate calculns)
= (wp.Op.true V wp. Opy. true} A (Vd'; do! s p) V 2 = 4} [by definition of wp]

il

(wp.Opy. true V wp. Opg. true) A (Vd'; do! e p1 = ¢) A(Vd'; dole pg = 4)

[by predicate calculus]
= (wp.Opy.true V wp. Ope. true) A [by Lemma B.1]
{wp.Op,.true = wp.Op1.10) A (wp.Opy. true = wp.Opa.9)

a

Theorem 2.11 For every schema Op thal specifies an operation, all declarations d, d', di?, and
do! that iniroduce components of Op, and every posicondition 1,

wp.(3d; d'; di?; dol e Op)ap =
{3 d; di? e wp_Op.true) A (Vd; di? » wp.Op.trne = wp.Op.v¥)

provided the variables of ad, ad’, adi?, and ado! do not occur free in .

Proof We consider an existential quantification 3 dy; &f; dii7; do;! » Op, where Op is the schema
(dy; dy; dy; d}; diy?; dig?; doyl; dog! | p}, and adi Nady = 2, ad] Nad, = &, ady? Nadi? =&,
and ado! Nadoy! = 2.
wp.(Idy; df; di7; dole Op).yp
= wp.ldy; dy; dip?; doa! | 3 dy; d); diy?; dogle p)y
[by a property of schema existential quantification]
= (3d}; dogl @ Tdy; d); diy?; doyl e p) AV d); dogl e (3dy; df; disT; doyle p) =)
[by definition of wp]
= (3¢ dogle 3dy; a; diy7; doy! e py AV dogl e ¥V dy; d; diy?; dot!ep = ¥)
[by adi, ad], ady?, and ado;! are not free in )
= (3dy; diy? « 3d{; d}; doyl; dog! e p) A (¥ dy; diy? e Vdi; d; doy!; doole p = 1)
[by predicate calculus)
= (3d]; di;? » wp.Op.true) A (Vd;; diy7 e wp.Op.true = wp.Op.¢)
{by definition of wp and Lemma B.1]

u}
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Theorem 2.14 For every schema Op that specifies an gperation, all ltsts of variables os, 0i7, oo!,
ns, ni?, and no! without duplicates, and every postcondition ¢ where the variables of o0s, 0s', 0i7,
and o0o! do not occur free,

wp.Op[ns,ns’,mu?, no'fos, 0, 0i?, 00!ll.¥ =
(wp.Op.¥[os, 04", 0i?, 00! /ns, ns’, ni?, nol))[ns, ni?/os, 017]

We assume that the vartables of ns, ns', ni?, and no! are not eomponents of Op; and that the
variables of os, 0i?, na, ns', ni?7, and no! do not occur as global variables in Op.

Proof We consider a schema Op of tbe form {d: dos; d’; dos’; di?; doi?; do!; doo! | p}, where
dos, dos’, doi?, and doo! declare the variables of 03, 04', 037, and ool, respectively. We assume
tbat d, d’, di?, and do! declare the components not affected by the renaming. We also assume
that the variables of ns, ns', ni?, and no! are declared by dns, dns’, dni?, and dno!.

wp.[Op[ns, ns’, ni?, nol/os, es’, 0i?, oo!)) .4
= {3 d'; dns'; dol; dnol e p[ns, ns’, ni?, nol/os, 05, 0i?, vol]) A
(Vd'; dns'; do!; dno! e p[ns, ns', m? no!/es, os', 0i?, 00!] = )
[by a property of renaming and the definition of wp|
= (3d'; dos'; do!; doo! ® p)[ns, ni?/os, o3?] A
(vd'; dns’; do!; dno! e p[ns,ns', ni?, nol/os, as5', 0i?, 00l] = 1)
[by ns’ and no! are not free in p, and os and 0i? are not free in d', dos’, do!, and doo!
= (3d'; dos'; dol; doo! e p}[ns, ni?/os,0i?] A [by a4, 0s', 0i?, and oo! are not free in 1)
(¥ d'; dns"; do'; dno! e p[ns, ni?/0s, 0i?||ns’ nel/os’, 0o!] =
Yles, os', 0i?, 00!/ ns, ns', m?, no![ns, nil/os, m?]{ns’, no!/os’, oo'l}
= (3d'; dos’; do'; doo! e p)[ns, ni?/es, 0i?] A
(v d'; dos’; do!; doo! e p =+ Y[os, 08", 0i7, 00!/ ns, ns', ni?, nol]}[rs, riT/0s, 0i?)
[by ns’ and no! are not free in p, and os and 0:? are not free in d', do¢’, do!, and doo!]
= ({(3d’; dos'; do!; dool e p} A [by a property of substitution]
(Vd'; dos'; do!; doo! e p => ¥[os, 08, 0i”, vol/ns, ns', ni?, nol]))|ns, m?/es, 0i?)

= (wp.Op.yles, 05", 0i?, 00! /ns, ns’, m?, nat)[ns, ni?/ os, 0i?) {by definition of wp]
[m]

Theorem 2.15 For every generic schema dessgnator Op{ci,ea,... . en], where Op is a generic
schema that specifies an operation and has paramelers 1y, 72,..., In, ond for every postcondition
Y where 51, Z2,. .., I, do not accur free,

wp.Opley, en,....en] ¥ = (wp.Op.)[er, e2,. .., enf2t1, Ta,s. .. . B

provided the components of Op are not free 1 e, ea,..., en.
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Proof As Op is a generic schema that specifies an operation and has parameters i, s2,. . . , Zn,
we can assume that it can be written in the form {d; d’; di?: do!| p}[z1, 22,..., zn]. In this case,
the generic schema designator Op[er, e2,..., eq] can be expanded to the schema below, since the
variables of ad, ad', adi?, and ode! are not free in ej,ez2,...,€n.

(d[ela 32,---a3n/111 T2y-oy In]; (I’[E], €240y en/IlaI’Z'--~ ,I“];
di?(e1, €2,y €n/F1, T2y o - Zn)s doler, €2, cen /T, 3, T0] |
ple ez, enf1, 32, .. - 20}

Theorem 2.6 applies to this schema and hence we can make the following deduction.
wp.(Opler. ez, . ., eal). ¥

= (3d'[en e, s nfT1, T2, ... Ia); doler, e0,. . en/T1 B2y . En] ®

plenea,... enfT, @, -, In]} A

(Vd'[enen,. .. enfZ1, Ta, ..., Zn)i doler, €2, €n/T1, T2, .- . %n] ®
pler ez, enfmi, 22,- . In] = ) [by definition of wp]
={((3d'; dol e p) A (Vd'; dol @ p = y))er, €0, - 60 /T1, Ty, T
|by z1,%2,..., T, are not free in %, and ord’ and rdo! are not free in ej, €, ..., eq]
= (wp.Op)er, ez, n /21, 20, . .- . 2] [by definition of wp]

a




Appendix C

Weakest Precondition Definitions

In this appendix we provide a weakest precondition semantics for ZRC-L. Most of the definitions
that we present have already been introduced and discussed in Chapters 2 and 3; this appendix is

a Snmmary.

For every program p and postcondition 3 which possibly contains free program variables, we
have the definition below, where uf is the list of all program variables and ¢f is a list of fresh
constants, none of which is free in p or .

wp.p.y = (wp.paplcd/ol])[vl/d]

For postconditions + that do not contain free occurrences of program variables, we define wp.p.3
by recursion over the structure of p as follows.

1. wp.{d; d'; di?, do! | p)1,b =(3 d'; dole p) A(Vd'; dole p =)

2. wp.w: [pre, pest].yp = pre A (¥ du’ » post = o)[_/']
provided dw declares the variables of w.

3. wp.skip.y' = v

4. wp {pre}.yf' = pre Ay

5. wp.[post].d’ = post[-/'] = ¢

6. wp.ul := el = vlelfvl)

Towpdp i pa)¥ = wp.p(wp prady

8. wpifJiegi o pi iy =(Vieg)n (Aivgi= wppit))

9. wp. [[var delep]l W =Vdl' e wpp[l, /o], W]y
provided

e dul and dl declare the variables of vl and I, respectively, and differ just in the names of
the variables that they declare;

e The names of | and I are not free in p and .
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10.

1L

12

13.

14.

15.

16.

17.

18.

19.

wp.|[con del ep)l 3 = 3dl e wp.p[i/cij.v
provided
e dcl and dl declare the constants of cf and I, respectively, and differ just in the names
of the variables that they declare;

e The names of { and !" are not free in p and v .

(val dul e p)(el) = |[var dl e 1:=el; p[i.lI'/vi,vl'] ]|
provided

s dvl and df declare the variables of ul and I, respectively, and differ just in the names of
the variables that they declare;

s The nanes of | and I’ are not free in p and el.
(res duly » p)(vlp) = |[var di e p[l, /' July, vl}] ; vi2:={]|
provided

e dvl; and di declare the variables of vl and I, respectively, and differ just in the names
of the variables that they declare;

o The names of { and {' are not free in p, and are not in vly.
(val-res du; » p){vly) = |[var dl e L :=uly; p[L,F'/vl ul]; vl =1}
provided

e dul; and d! declare the variables of ol and [, respectively, and differ just in the names
of the variables that they declare;

* The names of { and !’ are not free in p, and are not in vl.

(resvitep)(fr)=|varu:tefresv:tep)(u); f:=fF{r u} ]
provided ¥ and 4’ are not free iu p.
(val-resv:tep)(fz)=|[var u: teu:=fz; (val-res v:tep)(u); f:=fB{zr u}]

provided v and w' are not free in p.

(par dvi; fpd » p){ely, elz) = (par dul o (fpd & p)(eh)}(eh)
provided the variables declared by dul| are not free in ey,

[[proc pn = (fpd » p1)(pn) @ pa(pn) ||= pa(u(fpd o p1))
dofJieg, =+ p;od=|procst Ziflie g —p; it[] ~(V1egq) > skip fiet]
provided «¢ is not free in g, and p,.

il proc pn = (fpd « p1)(pn) variant n is e o pa(pn) = p(u(fpd « ([con n: Ze p]|))
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Laws of ZRC and Their Derivations

This appendix enumerates the conversion and refinement laws of ZRC, together witk their deriva-
tions. The data refinement laws come at the end.

D.1 Conversion Laws

Some conversion laws of ZRC apply to achemas of the form (AS; d?; deo!| p). The lemma below
characterises their weakest precondition.

Lemma D.1 For every postcondition 1,

wp.(AS; di?; do! | p)p = inv A (3d'; dot e mv’ A YA (V' dol et Ap = ¢)
where § = (d | inv).
Proof

wp.(AS; di?; do! | p)yp

=wp.{d; d'; di?; do! | inv A mv’ A p)ap [by a property of A-schemas and inclusion]

il

(3d; dolwinv Adnv' Ap)A (V' doleinu Adne' A p= o) {by definition of wp)

il

inu A {3 d dol e inv’ Ap)A (Vd'; dol e inv Adny' A p = 1)

[by ad’ and ado!are not free in tnv}

il

(3d; do' e inv' A p) A (Vd'; do' e inv A (inv A inv' A p = )

[by cd’ and ado! are not free in iny]
= (34" dol e tnv' A p} A(Vd', do! e tnu A (inv' A p = 9)) [by predicate calculus]
=i A (3d; doleinv' Ap)A(Vd; dol sanv' A p =2

[by ad’ and add! are not free in inv]

a
In this proof we have relied on the fact that the after-state and output variables are not free in
inv. This is a consequence of our assumption that the decorations *”, “?" and “” are not used
for any purpose other than those establisked by the Oxford style of writing Z specifications.
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Basic Conversion

Law 5C Basic conversion
{AS; di?; do'| p}
= bt
ad,ado! : [inv A 3d'; do! einv' A p,ine’ A p]

where § = (d| inv)
Derivation

wp. (AS; 7 do! | p).

= tnv A (3d; doteiny’ AptA(Vd'; dolainv' Ap= 1) {by Lemma D.1]
=inv A (3d; doleiny’ Ap)A(YVd' do'eine’ A p = ¥)ad/ad'] Tby ad' are not free in d’]
= wp.ad odo! : [iny A 3 d'; do' e dnu’ A p,int’ A p) [by definition of wp}

]

Law 5C Basic conversion (operations that do not modify the state)
{28; dit; do' | p)
= bC
ado! : [inv A Jdo! e plad/ad'], p]

where $={d | inv)
Derivation

{(E8; @?; do!| p)

=b¥ ¢,...,cn are the state components {elements of ad)
(AS, diT; dol {pAci=ci A Ach=ca)
=L

snv Add doleine’ ApAc=c A A, = ca,

mApPACI= A AL =Ca

ad, ado! :
= by predicate calculus

adade! : [inv A dol e plad/ad'],ine’ ApAci=c AL . ¢, =ca]
= efR

ade! : [inv A Tdo! e plad/ad'], inv A p)
= 3P lin both directions)

ade! : [inv A Jdo! e plad/ad’), p]
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Law bC Basic conversion {operations that do not modify some state components)
{AS; ET; di?; do!| p}
C C
adg,ado! : [invg Adnvp A 3dy; dol e (invl A p)ladrfady], (invg A pYady fedy] )
where 8§ = {T; ds | invg) and T = (dp | invy)

Derivation
{AS; ET; di?; dot{ p)
=bC

ads, ady, ado! - [ mug Anvr A 3di; di; dat e dnvg A v A p AST, J
?r b} -

invp Ainvp Ap AZT

C /R
ads, ado! - IETIU_?‘ A dnvr /: Eld_'f,-.; d'p; dol e invg /;\ invhh ApAET,
invgladr/ady] Ainvr A pladr/adf]
C sP

adg,ado! : [invg A invp A 3dg; di; del e fnug A invyp A p AET, (invg Apllodr fady] |
C wP

adg,ade! : linvg A v A 3d5; do! e (invg A p)ladr/adf), (invg A p)ledr/ad!] ]

Schema Disjunction

The lemma below is used in the derivation of two formulations of sdigyC (schema disjunction
conversion).

Lemma D.2 For all schemmas Op and Opy that specify operations which act over the same state
and have the same input and oulput variables,

wp.(Opy v Opa)p = (prey V preg) A (preg = wp.Opr.yb) A (prea = up.Opa.tf)
where pre Op; = pre; A inv A ¢, pre Opa = preg A inv AL, mv is the stale invariant, and t is the
restriction that is introduced by the declarations of the state components and mput variables.
Proof The schemas Op; and Opp can be written as {AS; di?; do!| p\) and (AS; &i7; do! | pa),
respectively, where 5§ = (d | inv)}.
(Case pre; = inv A 3d'; do! « inv' A py and preg = inv A 3d’; do! e int’ Ap)

wp.(Opy ¥ Opa).

= (wp.Opy.true V wp. Opy. true) A [by definition of wp]
(wp.Opy. true = wp.Op. YY) A (wp.Opy. true = wp.Op2.¥)
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= ((inv A 3d"; do! @ v’ A p1) V{inv A Jd'; doleinv’ A po)) A {by Lemma D.1j
((srv A 3d'; do! @ anv’ A p1) = wp.Op W) A ({inv A D d'; do! s inv’ A py) = wp.Opa.t)
(Case prey = invA3d'; do'e inv' A py and preg = 3d'; dol » inv’ A py)

wp.(Op; V Opp).%
((snv A3 d'; do! wnv’ A p) Vv (iny A3d'; doleinv’ A py)) A |hy the previous case]
{(inv A 3d'; do! e int' A p1) = wp.Op ) A ((ine AT d'; do'l = inv' A pp) = wp.Opp.vp)

i

Il

((tnv A 3d'; dol e inv' Apy) vV (3d; doleiny’ Apa)) Ammw A [by predicate calculus]
((inv A 3d'; dol e inv’ A py) = wp.Op1.f) A ((Gnv A 3d'; do! e nv’ A pa) = wp.Opy.ab}
= {(tnv ASd"; dol e inv' Am) v (3d'; doleinv' Ap}) A [by predicate calculus)
({tnv A3d’; do! e nv’ A p1) = wp.Opy.3) A ((3d'; dol e inv' A pg) = wp.Opr.y)

The eases in which pre; = 3d"; do! e 1nv’ A py and preg = inv A 3d’; do! e inv’ A pa, and in which
pre; = 3d'; do'winv' A py and pre; = 3d”; do! e inv’ A py are similar. Sinee ¢ is ap axiom (it
reflects type declarations), we do not need to consider the cases in which ¢ is a conjunct of prey or
pres.

ju]

Law sdis3C Schema disjunction conversion
Opy v Opy
C sdigC
if pre; - Op1 [} preo = O i
where
¢ preOpy = preg Anu AL,
e preOpy = preg Ainv A L
e iy is the state invariant;

+ { is the restriction that is introduced by the declarations of the state components and
input variables.

Syntactic Restriction Op; and Op; acl over the same state and have the same input and
output variables.

Derivation

wp.(Opy V Opz).¥
= (prey V preg) A (prep = wp.Opm) A (preg = wp. Opr.1)) [by Lemma D.2]
= wp.if prey, » Op ] prea = Opg v [by definition of wp]

o
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Law 3disjC Schema disjunction conversion with variable introduction

Op V Opa
. sdisjC

[[var v:tewv: [true,¢[v'/v]]; if 1+ {@ Ay} Op (] 2 = {@ A 1) Ops £]
provided

o @A (prey Vo preg) = Y1 Vi

* ¢ A (prer V prez) = (¥ = preg) for i = 1,2
where

e preOpy = prey A v A L

e pre Ops = pre; AR AL

e inv is the state invariant;

e { is the restriction that is introduced by the declarations of the state components and
input variables.

Syntactic Restrictions
* ¢, ¥, and y» are well-scoped and well-typed predicates;
e ¢, ¥y, and ¥ have no free dashed variables;
¢ Op; and Op» act over the same state and have the same input and output variables;

e v and v are not free in Op; and Opa.

Derivation
wp.{Op V Opa)9
=Vu:iewp(Op V Om)y [by v and v’ are not free in Op;, Ops, and 1]
= Yu:te{pre Vpre;) A{prer = wp.Opr. ¥} A (prea = wp.Opa.)) fby Lemma D.2]
= Vu:leg=on(pre Vpre)Alpre = wp Op.¥) A (prez = wp.Op2¥)
{by predicate calculus]
Yo tegd= (P Vi) A = wp.Opd) A (Y = wp.Oma) [by the provisos]

=Vo:ieg=2 (P Vi) AL =AY A wp.Op ) A (e = ¢ A P2 A wp. Opa.yp)
[by predicate calculus]

Yy:teVu:leg= [by v is not free in 1]

(1 va) A (= ¢AY Auwp.Opiy) A (2 = ¢ A Y2 A up.Ony)

tte (Vo' i te gy ] = [by predicate calculus]

{(¥1 V) A (G = 6 A A wp. OnL¥) A (Y2 = ¢ A Y2 A up.Opp))[v'2])

Vv:te (V' :tegfv'/v]= [by a property of substitution]
(1 V) A¥r = ¢ Ay A wp.Opr) A (3 = ¢ A Yo A wp.Opy))v' /o] /)

I
<
«
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=VYu:ite(ve:tedlv'/v] =2 (1 vin) A la property of substitution|
(s = ¢ A1 A wp. Oprat) A (Y2 = 6 Aty Awp.Opp))[v' /ol Y v/ v][-/]

wp. |[var v:t s v ftrue,p[v’/v] ] i = {dAd) On (e = {9 A yn} Om fi]l . @

[by definition of wp]

a

Law sdisyC Schema disjurction conversion with boolean variable introduction

Op v Op;

C sdigiC
[[var b: Boolean = b : [true, b’ & prey} ; if b — Op ] pre; — O ]|

where
e pre Op = pre; Ainv A L
e pre Op; = preg A inu AL
® inv is the state invariant;
® ¢ js the restriction that is iutroduced by the declarations of the state components and

input variables.

Syntactic Restrictions

¢ Op, and Ops act over the same state and have the same input and output variables;

e b and ¥ are not free in Opy and Ops.

Derivation
Op, v Opg
C sdisiC

{{var b : Boolean
b : [brue, (b < preg}[b'/B] ) ; (1)
ifb— {{bs pre;} Ab) Op (#)
0 prez = {(b & pre;) A preal Om (vui)
fi

Il

The proof-cbligations that are generated by this application of sdisjC are discharged in what
follows.
(b & pre,) A (prey V prey)
= (b4 prey) A (b V pres) [by predicate calculus]
= bV preg [by predicate calculus]




D.1 Conversion Laws 137

(b prer) A (prer V prea) A b
= (b pre)) A (prey V prea) A preg [by predicate calculus)
= prey [by predicate calculus)

(b 4 pre)) A (pre; V pres) A prez
= preg [by predicate calculus]

The programs (1}, {#), and (é1) are further refined below.

(1) CsP
b [true, b’ < pre;]

(#) € assumpR
skip; Op
= siC
Op,

(#ii) T assumpR
skip; Ops
=siC
Om

The coliected code is exactly the variable block in the above formulation of sdisiC.

Schema Conjunction

Law sconjC Schema conjunction conversion
Opy A Opa
C  sconjC
Op ; Op;
Syntactic Restriction Op; and Opa have no common free variables.

Derivation The schemas Op; and Op; can be written ia the form (dy; df; di1?; doy! | p1) and
{dy; da; dizT; dog! | pa), respectively.
wp.(Op; A Opg).b

wp.(di; da; df; dy; dit?; dn?; doyl; dog! | pL A )Y
[by a property of schema conjunction)

(3di5 df; doi); dogte p1 A ) A(Vd]; d; dor); dog! s p1 A po = 4 [by definition of wp]

W
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= (3dy; doy! e py A dl; dot e} A (V] d): dot!; dogl e pr A p2 = %)
[by ad) and adog! are not free in p}
= (3dj; doylep} A (Idy; doot» o) A(Vd]; di; doyls doxl e py A py =)
[by ad] and ade;! are not free in 4}, deo!, and p;)
= (3df; dortep) A(Tdy; dote ) AV doyl e py = Vi doolt e pr = 3}
[by ad] and adoy! are not free in p)]
= (3dfs dodep) A (Vdf; do'e (3dl; dop! v po) A (py = (Vs dog! @ p2 = )
{by ad] and ade;! are not free in db, doa!, and p)
= (3dj; dole ) A (Vs dotepy = (345 dopt e po) A (Vdy; dogle py = 9))
[by predicate caleuiua]
= (3df; dofle pu) A V(5 doyl ey = {(Td); dool e p2) A (Y di; dop! » py = ) [ed]/ad)])
[by ed, are not free in d;, dos!l, gy, and ¥
= wp.(Op ; Op)y iby definition of wp]

]

Law sconjC Schemsa conjunction conversion (hierarchical specification)
(AS;; duT; doyt | i) A AS2
= sconjC
[[con dii e
(ASy; dn?; dat | pyy s
(ES; da; dy | inn[cl/ady} A inwlelfad] A prlcl/ad]][-/] A tnuy}
I
provided (preg A fnyg A invl A pr) = prej
where
e 52 {d | inu} and 53 = (51; dz | tnen);
o pre({ASy; diy 7y doy!| p1) A AS)) = prec A fnw A fnm A g
e pre{AS) A SS5)) = pres Ay A inw A b,
® lc and t; are the restrictions introduced by dy; d»; dn 7 and dy; d;, respectively;
e dcol declares the constants of ef.

Syntactic Restrictions

« The components of A5 are the only common free variables of {ASy; di7; doy! | pi) and
A%y

» The names of ¢l and cf' are not free in {AS); di1?; doi! | p1) and AS;

» ¢l and ad) have the same length;

» The constants of ¢/ have the same type as the corresponding variables of ad;.
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Derivation

{ASy; diT; dor!lpy AAS,

= by a property of schema conjunction
(ASq; di?; doy!| p1}

=bC

ady, ady, adoy! : [inty A invg A 3di; df; doy! e inv] Ainul A py,inv] A ineg A p)

C segci
|icon del »
p. | i Ain A3d); 4 doy! e dne] Ainul A, .
ad, ado!: [ (3df; dl; doy! e inv] A invj A p1) Aty Asrm A rv] Apr <
Jdi; db; doi! e inv] Anwy A py .
ady, xdy, ade!: ( my Adntg Anv) A p; (cl/ad)/), (%)
{inv] A inyy A pr){cl/ad]
I
C sP
ady,ado! : [inny A inw A 3 d; di; dor! e ina] A fntg A pr, iR A py]
CwPf
ady,ado;! : [inny A3 dj; doi! e inyf Ap,iny] A py]
= 4
(AS; di?; do! | ;)
The refinement of (i) proceeds as follows.
(i) C P
ady, Jdy; db; doy! e in] Adnvg A py ;
Il )]
ads, ( inm A ing A inv] A gy {et/adi)i-/']
adop! inv] A inv[clfad)] A inwlcl/ad] A pi[clfadi][-/'] A inu A ES
Below we discharge the proof-obligation generated by this application of sP.
({(3d]; di; doy! e inv] Adnuh A p1) Ainny A sneg A inv] A p1){cl/adi][/ A
inv] A inwy[el/ad)] A inmlcl/adi] A prlcl/adi][-/]] A inv) A B8
= iny) A dnvd A prlel/ad][/] A S8 [by predicate calculus]
= inv] A ingy A piel/ad)][-/)ad] /ad)] A 28, [by d1 declares the components of §]
= ino] A A pyfcl/ad)] AES; [by ad; are not free in py]

= (inv] A dnuy A py)[cl/ad)] [by predicate calcuins and a property of substitution]
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We continue as follows.

C wP
Z:l' tny A 3d) e inui[clfad)) A inwlclfad] A pi[cdfad /'] A inviad [ ad]].
(tdf; | ing] A intel/ad)] A tnwlet/adi] A pilel/od )] A e S5
\-

This application of wP gives rise to the proof-obligation that we discharge below.

({3d]; di; doy e ] Al A pr) Adng A g Adny A p)[elfod )]/
= A sy [clfad] A dnwlclfad)]) A pi[cdfad ][] A [by a property of substitution]
((3d]; d; doy! e inv] Atnug A i) Ainag Aoy A dne] A py)[elfadi]./']
= invy Aty el fad) ] A dnwldfad] A pcdfad) ] /]] A (3d) o ingfad fadi]Y [c/adi][/]
{by the proviso {in its weakest form])]
inyy A dnmlctfad] A inwfcdfad) A pid/ad][/] A (3d] e invylad) fad])
[by ad] and ¢dj are not free in dj]
iy A 3d e inu(clfad] A mulclfad] A pylelfads][ /] A inv[ad fad)]
[by ad) are not free in inv; [cl/ad,], tnwfcl/adi], and pifcifadi][-/']]

il

[

Finally we get to the required result.

C ¢fR
&b inyy A 3d) e inufctfad] A mwm[cdfod] A plelfad][-/7] A mulad;/ad]],
VLGt A ine[clfad] A invfclfadl] A mlcljoad ][/ A muh A Z5
=bhC

{25y dy; d) | inv[clfad)] A inv[cl/odi] A pi[clfad ][] A inug)

Assignment
Law assC Assignment conversion
(AS: diT; do' |cf=eg A A =enhol=enp1 A .. AOm! = enym)
C  assC

Clyers €y Ot O = €1, L B
provided invle;,....enfc1,.. ., cn)
where

e §E{d|inv)

& q....,Cn are State components (elements of ad);
® 01!,..., 0! are output variables (elements of ado!).

Syntactic Restriction ad’ and ado! are not free in e1,...,engm.
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Derivation

wp (AS; di?; dol |cl=a A A =en Ao = e Al Ao = enym) ¥
S {(Vd'; dolainv' Aci=er A Ac, = Aol!=en1 A A op! = entm = YY)

[by definition of wp]
= (Vd; dolainv' Aci=e A...Ac, =e, A

=t AL A e Ao =l AL A On! = Enym = V)

[by predicate calculus (Gnt1,. .., cnyt are the state components not in ¢1,. .., ¢,
= inv'[er, - o) Eny Catte e s Cng €L 1 Co ] =
el -y Ba Catlo- o) Cnkls atls - - e T C:'l+“01!ﬂ‘ e 90m!]

{by ad’ and ado! are not free in er, ..., enym]

= mefor... ., enfer, a2 Ulen. . enpm/en .y 01 o]
oY Cati1y-- - Cuti are the state components not in ¢y,. .., ¢e,]
= Yler,. -y ngm/Cle--iCny 01l o O] [by the proviso)
= wpel.., Cm 01y Ol = e g Y [by definition of wp]
a

Schema Composition

Law scomp( Schema composition conversion
Op13 O
C scompC
Op,; Op2
provided (prec A Opi) = prej
where
o pre{0Opy § Om) = prec Adnv AL A L ALy
e pre Opas = preg Adnv At Aly;
e inv is the state iovariant;
s ¢, 1, and t, are the restrictions that are introduced by the declarations of the state
components, of the input variables of Opy, and of the input variables of Opa, respectively.
Syntactic Restrictions
* Op; and Op; act over the same state;

s Op; and Op; have no common output variahles.
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Derivation The schemas Op; and Op; can be written in the form {AS; di\7; do,' | p,} and
{AS; diz?; doy!| py), Tespectively, where § = {d { tnv) and ado|! N adoy! = 2.

(AS; diy?, doit | ;1) 5 (A5 diy?: dogl | po)
= by a properly of schema composition

{AS; dir7; dn?; doy!; dog!| 3d” e inv” A py[ad”/ad’] A palad” fad])
CiC

4. cedor! adon! {inu/\ad’; doy'; ziogloinu’l\fld"-mv"Ap;[od"/od’]’Apg[ad",/ad],]
ad, adoy!.adoy! :

inv' A 3d” e anv” A pilad/ad’] A pelad” fad]

C seqcl
[[con dcie
ad, int Add'; dorl; doxleine’ A3 d" eanr” A pilad” [ad'| A plad” [ad].
adoy): ( E.ld’; doyl; doa! @ v’ A 3d¥ e inv" A pilad” fad’] A palod” fod] ) J; <
adoy! nv Amu' App
3d'; dorl; dop! e e’ A
od 34" « 0" A pilad” fad) A pofad” fod) | [eifad]]/] .
ador’,: inv A inv A py (%)
TA | (inw! A 3d” ¢ im0 A pricd” fad] A palad” fod))(elfod]
I
C sP
Zj; , _[im} A 3d' doy!l; dog!einy’' AT d" winv” Api[ad” fad') Ap[od” fad],
ado;;‘ inv’ A py
C wP
ad, adey !, adoy! : tnv A 3d'; doyl e iny’ A prLind’ A ps)
The proof-obligation that is generated by the application of wP is discharged below.
iny A 3d"; doiY; dog! e inv' A 3d" e inv’ A plad” jad'] A prlad”/ad)
= invA 3d'; doy!; dog! e 34" e inv” A pi[ad”/ad'] [{by predicate calculus]
= e A3d doy! @ 3d" e v’ A pi[ad”/ad']  [by ade:! are not free in d”, inv”, and pi]
= inv A3d’; do)!e 32" e (inv' A py)[ad”/ad’) [by a property of substitution]
= v A3d"; doyle3d e’ Apy [by ad” are not free in inv’ and py]
= inv A 3d; doyleinv' A g iby ad' (adoy!) are not free in do ! (d")]

The refinement proceeds as follows.

C R

ad,adoy!: [inv A 3d'; doy! e v’ A py,inv’ A pp]




D.1 Conversion Laws 143

=4C
(AS; diy?,doy! | py)

The refinement of {f) is as follows.

(:) EcfR
3d’; dos!; dog! e v’ A
ad ados! : 34" e mv” A pilad’/ad| A palad” fad) | [cf/ad][ /1,
Haoz mu Adnu' A py
| (ine’ A3d" e A pilad"fad] A plad”/ad))|cdfad)
CsP

Ad’; do!; doy! e inv’ A
ad, adog!: 14" e inv” A pilad” /ad] A prlad”fad] | [cdfad][-/]. inv’ A p
iny A ant’ A py

The application of sP generates a proof-obligation tbat is discharged below.

(35, ot i 38010109 (.1
= inv' A (inv' A pr)[cl/ed][L/] A g {by predicate calculus}
= mv' A Jd” e (inv' A p1){c/ad]l-/][ad”/ad] A plad” /ad] [by predicate calculus]
= inv' A3 d" e (inv' A p){cd/ad]lad” fad’} A p2lad”/ad]

[by d declares the state components (program variables)]
iny' A 34" o (inv’ A p)[ad” fad|[cl/ad) A pload"/od) [by cl are fresh]
inv’ A 3d" e (inv' A py)[ad” fad'|[cl/ad) A plad” /ad)[cl/ad]

[by a property of substitution)

il

it

e’ A (34" e (inv' A p){ad"/ad") A palad” /ad))|cd/ad]
[by ad are not free in 4" and ¢! are fresh]

I

= me' A {Id" e inv” Ap [ad”/ad] A plad’ fad))icd/ad] [by a property of substitution]

Below we continue with the refinernent.
CwpP
ad,adop! : [inv A 3d'; doo! e inv' A py,inv’ A o]
The application of wP generates a proof-obligation that is discharged below.

Ad'; doyl; dog! e inv' A 3d" winv” A pi[ad"/ad’] A mlad”/ad) (elfad)l_/"
fnv Ainv' A gy -/

= {inv A 3d'; dog! e inv’ A p3)[el/ad][-/] [by the proviso (in its weakest form))

= inv A3d; dogleinv' A Dy [by a property of substitution)
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Finally, we get to the conclusion below.
=bC
(AS; dip?% dog! | po}

As the constants of ol are not free in either {AS; diy?; dof | p} or (AS; du?; dos!| p2), we can

use conf to remove the constant block.
0O

Promotion

Law promC Promotion conversion
FALedA Op
C  promC
[[proc pa = (val-res r: Le {r,7"; L{ (inv Ainv’ A p)[r.z,, r'.3y, [z, 2]]}) @ pr(f 22) )|
where
L={n:t; ... 2p:tn | inw)
Op =(AL| p)
G2(:X»L
—3
Af

AL
7 X

z? € dom f
8L=f z?
{7 af' ={z?} S
Szt =6r

Syntactic Restriction pn, r, and f are not free in Op.

Derivation This proof relies on the lemma below which detines the precondition of a promoted
opetation in terms of that of the local operation. This result was presented in [64], but here we
express it in a slightly different way.

Lemma D3 If L, Op, G, and & are defined as above,

pre (AAL e & A Op) ={G: z7: X | z? € dom [ A {pre Op)[(f 2?).z;/ =]}

Proof

pre (3AL « ® A Op}
= FL e pre ® A pre Op [by a theorem in [64, p.356])
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=3Le fby a property of pre]

G, L, z7: X |
< 3G L'ez?edomf ABL=f 7 A{s?) 9 f = {z?} af Af 17 = 8L > A
pre Op
=3Le{G; L; z?: X |27 € domf AOL=f 7} A pre Op [by predicate calculus]
=(G;z?: X |3Lez?edomf AbGL=f 27 A pre Op)
[by properties of the schema calculus]
=(G; z?7: X | 3r:Le(z?€domf AGL = [ 27 A pre Op)[r.z./ ]
[by a property of bindings]
=(G; 2?: X |3r: La(z? edomf A{gi:=2;) = f 17 A pre Op)[r.z./ =]}
[by a property of 8]
={G; z?: X |3Ir:Laz?edomf A{ri:=rg} =fz?AlpreOp)[r.z./5))
[by a praperty of substitution]
=(G; s7: X |3r:Lez?edomf Ar=fz?7 A (pre Op)[r.o,/5]}
[by a property of bindings)]
={G; z7: X | z? ¢ dom f A (pre Op)[(f £7).%./z]} [by predicate caleulus)

i

AALe & A Op

= by properties of the schema calculus

AG; 7. X|
JALez? edomfAOL=f st A{zt}af ={s?)afAf 2?2 =8L'AOp
=&C
b %7 € domf A (pre Op)[(f z7).m/x],
‘| 3ALez?cdomf AOL=fz?A{z?}af = {z?}af A f 2?7 =8l A Op
E pred
[proc pn = (valres 7 Lo (r, e’ : L| (inv A inv’ A p)[r.zi, .=, /i, 5]}) »

;- [::? € domf A (pre Op)|{f z7).z:/%:),

BALoz?EdomfA9L=fr?/\{:r?}qf’:{:c?}qff\f’::?=9L‘/\Op] e

1

= by a property of bindiogs

z? € dom f A {pre Op)[{(f z?).z./zi],
/ Ar,r':Lae
‘ (::?EdomfAGLr—fz?

{z?} 4l ={z?} 9 f A S sT=0L' A Op ) Irzs e ]
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= by a property of 8

[ 27 € dom f A (pre Op)[{J z7).3:/ 2],
dr.r':Le
z?edomf A{ =5 =f z? . s
( {I?} _ﬂfi — {I?} ‘ﬂf f\f’ 7 = Q 5, 1= I:b A Op )[F.I;';FAIi/I“IJ

= by a property of substitution
[ £ edom/ A (pre Op)[(f 27).5./xi),
Iz Ir, 7 Le
’ z?€domf A{zii=rrp =fz7A
{zfaf ={zafAf2?={ 5,:=r'2, } AOp[ro,r'.5/n, 1
= by a property of bindings
[ 17 ¢ domf A (pre Op)[{f z7).5/2.],
Iz ir,r’:Le
’ ?€domfAr=fzI?A
{£2} o f = {22} Qf A f' 27 =7 A Oplr.z., v xifx,, 7))

= by predicate calculus

Iz [ z7e dom{ A (pre Op)[{f z7).5,/2],
' | =€ domf A {z?} af ={s?} af A Op[r.z, r' 2 /z, ) 2.1 27/r, ']
C sP
/- [ 27 € dom f A (pre Op)[(f T).2i/3,],
' | {z7}af' = {z?}a [ A Oplr.o oz, Zl[f =0, z?/r,v']

= by r isnot free in pre Op

[ (z7 € dom f A pre Oplr.z/zlf z?/r), ]

I | {22} @' = {2 af A Op[r.m gy fo 2} 27, 2, 7]

C urs
(val-res r: L r:[(z? € domf A pre Op)[r.z; /%], Oplr.z,, .5 /2., i} |}(f =7)

The body of the above parametrised statement can be refined as follows..
r:[(z? € dom f A pre Op)|r.z,/z.], Op[r.2;, r".2, /5, /] |
C wpP
r: [(pre Op)[r.%/z), Op[r .z, 7.5/ =i, 5)] |
= by definition of Op
rolfino ATzt o Th e mv' A Y[z /L) (inv Ainy' A pY[ro, rla /T, 2] ]
= by a property of substitution and bindings

wmolr.o, /5] A3r : Lew'[roifz]) A plr.z, o' 5i/z,, 1)),
| {tmv A dne' A p)[rz, T 1) ]
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CsP

sne[r.o /) Adr': Leind|r g /z) A plro, /x5l

ine'[r'.x; f2]) A plrzi, vl zi/n, 1))
=bC

(r,r": L| {inv Asnv’ Ap)r.o, r'.zifz, 2]])

At this point we can apply pealll to the procedure biock and transform the parametrised statement

into a call to pn.

D.2 Refinement Laws

m]

In this section we present the ZRC refinement laws in alphabetical order, and the data refinement

laws.

Law abA Absorb assumption

{pre;} w: [pres, post]
= abA

w : [prey A preg, post]
Derivation

wp.{pre1} w : {prey, post|.¢
= pre; A preg A (¥ dw' e post = ¢)[_/]

= wp.w : [pre; A prea, post).y

Law abC Absorb coercion
w [pre, posty] ; [posta]
= abC

w : [pre, posty A posth]
Derivation

wp.w : [pre, posty] ; [posty)-y’

= pre A (Vdw' e post; = (posta[_/'] = v¥))[-/']
= pre A (¥ dw' e post; = (posty = ¥"))[-/']
=pre A [V dw' & post, A posth = ¢)[-/']

= wp.w : [pre, posty A posty).y

[by definition of wp)
[by definition of wp)

0

[by definition of wp]

[by a property of substitution]
[by predicate calculus]

[by definition of wp]

O



148 Appendix D. Laws of ZRC and Their Derivations

Law alt! Alternation introduction
w : [pre, posi]
C altl
if[lieg 2w:[g: A pre, post]
provided pre = (\/i e g,)
Syntactic Resirictions
« Each g, is a well-scoped predicate;
e No g; has free dashed variables;

® { i e g ]is non-empty.
Derivation

wp.w : [pre,post].

= pre A (Ydw' e post = ][] [by definition of wp]
= (Vrwg) Apre A (Vduw' e post = )/ [by the proviso]
= {Vieg)A(Aieg =g Apren(Vdw' e post = ¥)[/]) [by predicate calculus)
= wpif[]ie g = w: [g; A pre, post] iy} [by definition of wp]
]
Law assigl Assignment introduction
w, w : [pre, post]
C  assigl
=gl

provided pre = post{el/vl'][_/]
Syntactic Restrictions
+ vl contains no duplicated variables;
« 1 and el have the same length;
e el is well-scoped and well-typed;
® ¢l has no free dashed variables;

¢ The corresponding variables of v and expressions of el have the same type.

Derivation

wp.w, vl : [pre, pesl].y

= pre A (¥ dw'; dol e post = ¥')[/'] [by definition of wp)
= post[el/vl'][_/"] A (¥ dw'; dol’ e past = 3")[./"] [by the proviso]
= post(el /vl'][-/] A (post|el/ol'] = v'[el/ vt D/ [by predicate calculus]
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= postlel/ol'][./"] A (post[el/ol'|[_/] = ¥'[el/l'][-/])
= ' (el fol'}[-/"]

ylel/ul|

wp.vl 1= el g’

il

Il

Law gssumfP Assumption

{pre}
= assumpP

: [pre. true)

Derivation

wp.{pre}. v’
= pre A ¢

= pre A (true = ¢)[/') {by predicate calculus and no dashed variable is free in 3

= pre A (true = ')/}

= wp. : [pre, true].y’

Law assumpl Assumption introduction

[post]

= assumpl

{post]{post[-/']}

Derivation

wp.[post]. 4

=posi[-}] = v

= post[-/'] = post[ /] A ¥
= wp [post] {post|_/T1/

Law assumpR Assumption removal
{pre}
C  assumpR
skip

[by a property of substitution

[by a property of substitution]
[by predicate calculus]

[by a property of substitution]
[by definition of wp)

O

[by definition of wp

)

[by definition of wp

[m}

[by definition of wp]
[by predicate calculus]
[by definition of wp)

a
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Derivation
wp.{pre}.¥/
= pre Ay
=
= wp.skip./

Law ¢fR Contract frame
w,z : |pre,post]
C cfR
z : [pre, posiw/w'] ]

Syntactic Restriction The variables of w are not in r.

Derivation
wp.w, 1 : [pre, post].w
= pre A (Ydu'; di’ e post = ) /]
=> pre A (¥ dz' o post = ¥} /]
= pre A{Vdr' e postiw/w'] = ¢)[/']
= wp.z:[pre, post|w/w'} ]¥

Law ¢Q Coercion

{post]
= c0

: [true. post]

Derivation
wp . [poat].y’
= post. '} v
= (post = ¥)'[-/')
= (post = ¢')[-/]
= wp. : [true, post].y’

Law col Coercion introduction
skip
C col
{post]

[by definition of wp]
{by predicate calculus]
[by definition of wp]

u]

[by definition of wp]
[by predicate caiculus}
[by w are not in z]

[by definition of wp]

[w}

[by defipition of wp)
[by a property of substitution)
[by a property of substitution]
[by definition of wp)

a
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Derivation
wp.skip.y’
=9y [by definition of wp)
= post|-/'| =¥ {by predicate calculus]
= wp.[post].¥' [by definition of wp]
m]
Law con{ Constant introduction
r
= econf
[[con del » {init} pj)
provided 3dci e init.
Syntactic Restrictions
¢ fnit is well-scoped and well-typed;
e init has no free dashed variables;
o The constants declared by dct and their dashed counterparts are not free in p.
Derivation
wp.p.¥
= (dcl ® init) A wp.p.t [by the proviso]
= Adcl o init A wp.pY [by axdel and adel’ are not free in p and ]
= wp.|[con dcl = {init} p]| ¥ [by definition of wp)
o

Law con{ Constant introduction (specification statement)

w : [pre, post]

C conf
[con dcl e w: [npre, post] ]|

provided pre = 3 del o npre

Syntactic Restrictions
e npre is well-scoped and well-typed;
e npre has no free dashed variables;

¢ The constants declared by del and their dashed counterparts are not free in w : [pre, post).
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Derivation

wp.w : [pre, post|.y

= pre A (Vdw' e post = 0)[-/] [by definition of wp]
= (3 del » npre)} A (Vdw' e post = ¥} /'] [by the proviso|
= Jdcl e npre A (V du' e post = ¥)[./'] [by edecl and adel’ are not free in dw’, post, and 9]
= wp.|[con del » w : [npre, post] || ¥ [by definition of wp]

a

Law conR Constant removal

[[con det s p]|
= conR
P

Syntactic Restriction The constants declared by del are not free in p.

Derivation

wp.[[con dci » p]| 4

=Jdclewp.py [by definition of wp)
= wp.py [by add and adcl’ are not free in p and ]
a

Law colt Coercion removal
{pre}ipre’]
= eoR

{pre}

Derivation

wp.{pre}(pre’].y/

= pre A (pre'[ S = ) [by definition of wp]
=pre A (pre = o) by a property of substitution]
=pre At [by predicate caleulus]
= wp.{pre}.y/ [by definition of wp)

m]
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Law dimG Diminish guards

ifiegi—p A

C dimG
iflieh; —p; fi

provided
o (Visg)= (Vieh)
o (Vieg) = (h = g), foreach 1.

Syntactic Restrictions
s Each h, is a well-scoped and well-typed predicate;

¢ No 4; has free dashed variables;

o {ieg }aud {ieh } have the same number of elements.

Derivation
wpif[ieg; = p; Gy
= (Vieg)A (Ao = vppy)
S (Visg)A(Ashi= wppiv)
= (Viohi) A (A »hi = wppiy)
= wp.if[Ji @ h; ~+ p, iy

Law dR Data refinement (restricted)
[[var dul; davl = p ]|
C dR
[[var dvl; deul e p2 ]}
provided
* X R
* YVdevl ¢ Sdanl » ¢t

[by definition of wp]
{by the second proviso]
[by the first proviso]
[by definition of wp]

m]

where davl and devl declare tbe variables of aul (tbe abstract variables) and cwl (the concrete

variables); and ct is the coupling invariant.

Syntactic Restrictions

s The variahbles of cv! and col are not free in p;, and are not in awl;

o The variables of av! and avl’ are net free in po;

® ciis a well-scoped and well-typed predicate,
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Derivation
wp. |[var dvi; devi = p) ]| %
=V dul; davl s wp.p. ¥ {by definition of wg]
=VYdul e (Vdcl w davl @ c1) A (¥ davl e wp.p,.Y) [by the second proviso)
=V dul; devl e (davl » c1) A (Y davl » wp.py )
[by cvl and cul’ are not free in davl, p, and ¥)

=V dvl; devie ddavl e ci AV davl & wp.p, [by aul are not free in dawi)
=> ¥V dul; dcul e Idavl @ ¢ Awp.pry [by predicate calculus]
= ¥ dul; devle wp.pe. T davl’ e ct' A Y [by the first praviso}
= Vdul; devle wp.pp ({3 davl” & ') A ) [by evi" are not free in 3]
= Vduol; deul o wp.ppy [by monotonicity of wp)
= wp. |[var dui; devl o po]| % [by definition of wp]

|

Law dRt Data refinement (variable blocks with initialisation)
[var dul; davl e avl ; [true,mit’] ; p ]|
C dR
{[var du; devls cul: [irue, (3davl e ci Anit)]; p2|
provided p; 5 p

where davl and devl declare the variables of awl {the abstract variables} and evl (the concrete
variables); and c¢i is the coupling invariant.

Syntactic Restrictions
s The variables of ¢vf and cvl’ are not free in inif and p;, and are not in aw;
o The variables of avl and avl' are not free in py;

® ¢1is a well-scoped and well-typed predicate.

Derivation

wp. [[var dul; davl » aul : [true,init’] ; p ]}

= Vdul; davl » {¥davl e inil’ = (wp.p1.))[-/'] [by definition of wp]
Vdul; daul e (Ydaul e init = (wp.p1-4))'[-/'] [by program variables are not free in dow'}

n

¥dul; davl e wmit = wp.pr.¥ [by a property of substitution]

lii

¥dul; devl; davl  anit = wp.p, ¢

[by cui are not free in dawl, inst, p1, and v, and cul’ are not free in py and ]
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= YV dvl; devl; davl e ci Adnit = ci A wp.pry [by predicate caleulus)
= Vduvl, dcvl; davl e o1 A iRit = Jdavl e c1 A wp.p1. Y [by predicate caleulus)
= Ydul; devl e (Jdavl e ¢t A dnit) = Jdavl & ci A wp.pr. ¥ [by aul are not free in davl]
= Y dul; devl ¢ (I davie ci Ainit) = wp.py. Tdavl’ e ci' A [by the proviso]
= Ydul; devl e (Idavl e ci Adnit) = wp.pp.(Tdavl e ') Ay [by avl are not free in ]
= YV dul; devl o (Tdavl e v A imat) = wp.po.b {by monotonicity of wp]
= Vdul; deul @ (Vdcvl » (Idavl e ci A nil) = wp.pa.y)) [by predicate calculus]
= Vdul; devl o (Vdevl o (Tdavl @ ¢z Aamat) = wp.pp ¥)'[-/] [by a property of substitution]
= YVdul; devl o (Vdeul' » (3davt e ci A init)feul’ /evl] = (wp.pa.y)[evl’ fevl]) ]
[by evl’ are not free in daul, ci, and ini]
= Vdul; devl o (¥ devi' ¢ (Jdavi e ci A inat) = {wp.pa.0))[-/']
[by a property of substitution]
= wp. |[var dvl; devl e cul: [true, (I davi @ cx A init)] ; po )| W [by definition of wp]

O

Law dR Data refinement

c

[var dvl; davl e p]|

dR

[[var dul; dcul e cul: ftrue, (davi e 1)) p ]l

provided p1 < m

where davl and dewd declare the variables of avl (the absiract variables) and col (the concrete

variables); and ci is the coupling invariant.

Syntactic Restrictions

e The variables of cvl and cvi’ are uot free in pi. and are nat in avi;

¢ The variables of avl and aw' are not free in pg;

¢ i is a well-scaped and well-typed predicate.

Derivation

wp. |[var dul; dovl e p ]| ¥

Vdul,
Y dul;

= ¥ dul;
= Ydul;

v dul;

davl « wp.p| ¥ [by definition of wp)
devl; davl » wp.p1yr {by cul and cel’ ate not free in py and 3]
devl;, davl e c1 = ci A wp.pry [by predicate calculus]
devl; doul e c1 = Tdavi e c2 A wp.p ¥ [by predicate calculus]

devl » (Idavl & 1) = Idavi & ci A wp.prY [by avl are not free in davi]
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= Ydul; devie(Tdavl @ cz) = wp.pp. Idavl @ ot/ Ay [by the proviso]
= Vdul; deol» (davl e ci) = wp.py.(Tdavl o ci') Ay [by aul’ are not free in ¥
= ¥ dul; devl o (3 davl » ci) = wp.p. @ {by monotonicity of wp]
= VY dul; devle (Vdowl e {3 davl e ci) = wp.pa.¥) [by predicate calculus]
= Vdul; devls (Vdcul o (3 davt e ci) = wp.pp.v) [/} [by a property of substitntion]

¥ dul; devi e (¥ deol' » (davl o ex)]cvi’ [ovl] = {wp.pa.gp)[eol’ [ col]) (/']
[by cul’ are not free in davl and c1]

]

n

¥ dul; devl e (¥ deul’ o (Fdavi e a2} = {wp.pa.9))[-/'] fby a property of substitntion]

i

wp. |[var dul; devl e cul : [true, (I davl « 1)) p2]) ¥ [by definition of wp)

O
Law efR Expand frame

w : [pre, post]
= efR
t,x : [pre, post A ' = z]

Syntactic Restriction The variables of z are in scope, are not in w, and are not dashed.
Derivation

wp.w : [pre, post].y

= pre A (Vdu' » post = ¢} /'] [by definition of wp]
= pre A (Y dw' e post = ¥)[z/2']/'] [by a property of substitution]
= pre AV duw'; dz’ e 2' =1 A post = ¥)]-/] [by = arc not in w]
= wp.w,z : [pre, post A z' = z].p [by definition of wp]

[}

Law esA Establish assumption
w : [pre1, post] ; {prez}
= esA
w: [prey A (W dw' e post = pref)[ /'], pest]

where dw declares the variabies of w.
Derivation

wp.w: [prei, post] ; {pre2}./
= prey A (Y dw' » post = (pre; A )Y )[-/'] [by definition of wp)
= pre; A (Vdu' e (post = pred) A (post = ¥'))|-/'] [by predicate calculus)
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= pre; A (Y du' @ post = prej} A (Vdw' e post = ¢'))[/'] [by predicate calculus]
= prey A (V dw' » post = prej)[ /'] A (Vdu' e post = ¢')[/"] [by a property of substitution]
= wp.w : [prey A (Vdw' e post = prej){_/'], post].¢' [by definition of wp]

a

Law fasstg! Following assignment introduction
w, ol : [pre, post]
C  fassigl
w, ol : {pre, postlel[w’, vl fw,vl]jul'] ] ; ol = el
Syntactic Restrictions
e v contains no duplicated variables;
¢ vl and e/ have the same length;
» el is well-scoped and well-typed;
¢ ¢l has no {ree dashed variables;

s The corresponding variables of ! and expressions of el have the same type.

Derivation

w, ol : [pre, post]
C segel
[[con det =
w, vl : [pre, post[elfe’, vl fw, vl] /0] | ;
w, vl : [post[el[w’, vl /w, vl] fulY[cdfw, W] /), post{cl{w, vl] ] <
1|
C assigl

vl = el
The application of assig! generates the proof-obligation that we discharge below.
postel[w’, vl fw, viljvlf|[el /w0, ui][- /']
= postct/w. vij[el[w’, o' fw, ]/ ol']{_/] [by a property of substitution]
= posticlfw. vii[el/ol'][-/] [by a property of substitution)
As the constants of ¢l are not free in w,vl : [pre, post[el(w’, ' /w, v()/vl'] ) and vl := el, we can

remove the constant block by applying conR.
a
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Law fiV Fix initial vlue

w : [pre, post]
E AV

[con del e w:lpre A ¢y = e A ... A £ = €q,post] ||
where ¢;,...,¢, are the constants declared by dei.

Syntactic Restrictions

e The expressions of eg,.. ., e, are well-scoped and well-typed;

e The expressions of ey, ..., ¢, have no free dashed variables;

» The corresponding constants of ¢;,..., ¢, and expressions of ¢;,..., e, have the same
type;

® ¢1,...,¢pand e}, ..., ¢, are not free in w : [pre, post] and in the corresponding expressions
of €ly.--3Cn-

Derivation Diect applicatior of conl. The generated proof-obligation can be discharged as
follows.

pre
=(3dcleci=¢; A ... ANy =€) A pre [by predicate calculus]
=3delecy =€ A... Ncyp =€, A pre [by e1,..., €, are not free in pre|

o
Law atf Jteration introduction
w: [anv snvfw'/w] A - (Vie gi[w'/w])]
C it
do(]i1e g — w: [inv A g, inv[w fw] A0 < vrt[w'/w] < vrt] od
Syntactic Restrictions
e priis a well-scoped ard well-typed integer;

s Each ¢; and vrt have no free dashed variables. expression.

Derivation
w: [iny, dnu[w' fw] A - (V1 e giwfuw])]
C vt
[[proc it = {n = vrt} w: [inv,mow' /w] A - (Vie g(w/w])] variant n is vrt e
w: [iny, inufw'/w] A = (Vi e gfu'/w])]
1
E pall!

[[proc it = {n = vt} w: [iny, inv[w' /] A~ (Vie g[w/w])] variant n is vrt e 1t ]|
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The procedure body can be refined as follows.

C abd
w:n = vt Amy,inv[e’fw) A (Vi g[w/w])]
C alt!
ifieg = w:gAn=osrtAiny,mufw/w]A-(Vieglw/w) <
0 -(Vieg) = w:[~(Vieg)Aan=uvrl Adnv,ine[wfu] A~ (Vieglw/uw)] (1)
fi
C scqeld
[[con dei o
wilg:i An=ulAine,n=vrlAdnv[w'fw] A0 < ert[w'fu] < urt] ; <
(n = vri A mefw'fu] A0 < ertfw' fw] < vrt)[el/w][_/], i
7] Guelw /) A= (Vi o il ful))lel/u] ()
1
CsP
w: g An=uwrt Ay, inv[w'/w] A0 < urtfw'/w] < urt]
C wP

w: [iny A g, inv[w'/w] AQ < vrt[w'/w] < vri]

The refinement of the specification statement (i) is as follows.

() C sP
[ (=t A invw'fw) A0 < ortfw' fw] < ort)[el/w][-/'].
inv[w' /w] A - (Vieglw/uw])
C wP
w: [0 ot <nAdny,inu[w /w] Ao (Ve ggw'/w])]
= obA

{0 < vrt < n} w:[inv,inviw fw] A - (Vie g[w'/w])]

At this point, we can apply pealll to the variant block to replace the above program by a recursive
call to it {and the variant block by a procedure block). Afterwards, we can apply conR to remove
the eonstant block. The refinement of (1) proceeds as shown below.
(¢} C skf
skip
The resulting program is presented below,
[proc it =if[Jie g; = w: [mv A g, inv[w'/w] AD < vrtfw'/w] < uri];

0= (V1 eg)-+skip
fie
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This procedure block. by definition, is equal to the itcration below.

doflt e g —w:[iny A g inv[e/w] AD € ort{wfw] < vrt] od

Law {assig] Leading assigument introduction

w, ul : [pre[el/vl), postiel/vl] ]

C lassigl
ul == el ; w, vl : [pre, posi]

Syntactic Restrictions
« vl contains uo duplicated variables;
« vl and e have the same length;
« ¢l i3 well-scoped and weil-typed;
» el has no free dashed variables;

s The corresponding variables of vl and expressions of el have the same type.

Derivation
w, vl : [prefel /v, post[el/ul] ]
C seqcf
[[con dcl e
ul : [pre(el/vi], pre’ A vl' = €] <
w, vl z [(pre” A vl = el)[el/ V][ /'), post{el/vi][el/vi] ] (2)
I
C assty!

vl = el

The application of asstgf generates the proof-obligation that we discharge below,
preleljvi]
= pre'lel ful][-/'] [by a property of substitution]
= pre[elfol|[- /] nel=¢l {by predicate calculus)
= (pre’ A ol = el)[el/)][/] {by a property of substitution]
We proceed with the refinement as follows.

(i) C sP
w, vl [(pre’ A vl = el)[clful][-/']. post]
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We discharge the proof-obligation that arises from the application of P as follows.

(pre’ A vl' = el)[cl/vl][-/"] A post
= pre A vl = el[cl/vl} A post

= pre A vl = el[ci/vi] A post|el[ct/vl}/ ]

= post{el/ul}[cl /vi]

We finish the refinement with an application of wP,

C wP
w, v - [pre, post]

The proof-gbligation generated is trivial.

Law mA Merge annotations {assumptions)

{pres}{pres}

= mA

{pre1 A prea}
Derivation
wp.{pre; {prez} ¢/
= pre; A preg A

= wp.{prey A prez}.¢

Law mA Merge aunotations (coercions)

[posti][posts]

= mA

[post; A posty}

Derivation

wp [post, J[posty).y’

= posty[-/"] = (posia[ /') = )
= (posty A postz)|-/'] = ¥

= wp.[post; A posiz). v

[by a property of substitution)

[by predicate caleulus)
[by predicate calculns]

[by definition of wp]
[by definition of wp]

a

[by definition of wp]
[by predicate calculus)
{by definition of wp)

a
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Law mpS Merge parametrised statements
{par, dvl » (par; dvl « p)(el))(elz)
= mp§
(par, duly; pary duly  p)(ch, ek)
where dul] and dvly declare the variables of vf) and uf, respectively.
Syntactic Restrictions
s vl and vi; are disjoint;
o The variables of vl; are not free in ef;

« If par, and par, are either result or value-result, then e, and ef; are disjoint.

Derivation By definition.

a
Law pealll Call to a non-recursive procednre introduction
[proc pr 2 (fpd & p1) © p2[(fpd » )]0}
= pealll
[proc pn 2 (fpd & py) » p2[pn]])
Syntactic Restriction pn is aot recursive.
Derivation
[lproc pa = (fpd « p1) o p2[(fpd = p1)] ]!
= pa[{fpd « p1))(efpd * ;1)) [by definition]
= pa{(fod » p1))(fpd * p1) [by pn is not recursive]
= pa[pn](fpd » p1) [by a property of substitution]
= po[pal{ulipd ¢ p1)) [by pn iz not recursive]
= |[proc pn = (fod  p1) ¢ p2[pn]]l [by definition)
[

Law pcalll Procedure call introduction in the main program of a variant block

[ proc pn = (fpd o pi) variant n is ¢ o p;[{fpd » p3)] ]
T pealll

i proc pr = (fpd e p1) variant n is e« py[pn]]|
provided {rn=¢e} p3 T m
Syntactic Restrictions

s pn is not free in py;

* 1is not free in e and p3.
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Derivation
l(proc g = (fpd » p) variant n is ¢ » pe[(fpd o po)] |
= pa{(fpd » p)|(u(fpd # [con n: Z e p ]1)) [by definition)

= pal(fpd o [con n:Ze{n =} p3]))(uifpd  [con n:Z e py )
[by n is not free in e and pj)

=pl{fpd s |[con n:Z e p))]{ul(fpd « [con n:Zep )} [by the proviso]
=pl{fpd e |jconn:Zep]|)](fod o |[con n:Zep ]} [by pn isnot free in p)]
= pa[pn](fpd » |[con n:Zap ) [bv a property of substitution|
= po[pn)(pifpd o |[con n: Ze p ][)} [by pn is not free in py]
= {[proc pn = (fpd « p,) variant n is ¢ « pg[pn]]| [by definition]

a

The derivation of the next formulation of peallf relies on Lemmas D.5 and D.6, which we
present below. In [35, p.73), we can find a more restricted version of Lemma 1.5, where just
programs {parametrised statements with empty formal parameter declarations) are considered,
Since [35] outlines a proof of this special case, for the sake of brevity, we consider just parametrised
statements with ordinary (rzon-empty) formal parameter declarations in the proof of Lemma D.5.
This proof relies on the following additional lemma,

Lemma D.4 Let a family of programs p, be such thal, for any i, p. T c(fpd e U{j |7 < i« p;]),

for a non-empty formal parameter declaration fpd, and monstonic ¢. Then p; T c(u(fpd » ¢)),

for all ¢,

Proof By induction:

{Case i =0)
Do
Ce{fpdell{j|7<0ep]) [by assumption]
= c(fpd » LUD) [by a property of numbers]
= c(fpd ¢ abort) {hy abort is the least refined program)
C c(u(fpd » c)) [by (fpd « abort) is the least refined parametrised statement)
(Case i > 0)
Pi
Ce(fpd e U{j|j<iep}) [by assumption]
Cc(fod »{j|j <1eclu(fpd ®c))}} [by induction hypothesis]

= c{fpd « c(u(fpd » c))) [hy a property of least upper bounds]
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= c((fod » c){plfpd ® ¢))) [by a property of contexts)
= cl{u(fod » ¢)) [by a property of fixed points)
a

Lemma D.5 If. jor an mnteger constant n. an intcger erpression e, a formal parameter deelaration
fpd, and e program p, we have that {n=e} p T c(fpd ® {0 < e < n} p), then we can deduee that

(fpd

s p) T ulfpde c), provided ¢ is & monotonic contezt, and n is not free in p and c.

Proof The assumption can be writtenas {n=e}p C c(fpd e U{7{j <n e {; = e} p}), as we
show heiow,

So.
r C

wp.{0 <e<n}py

=wp{V{jl1<ne)=c}}py [by predicate calculus)
=V{jli<ney=c} nuppit [by definition of wp)
=V{7|lr<nej=cnuwppy} [by predicate calculus)
=V{ilj<neup{i=ec}py} [by definition of wp]
=wp.U{j|j<ne{j=c¢}ply [by a property of L]

by Lemma D.4, {n = e} p © c{u{fpd e ¢}), for all n. Consequently. as we prove below,
lu(fp + ).

uwp.p.y

= (3nen=¢)A wppv [by predicate calculus]
= dnen=c¢ A wppt [by ® is not free in wp.p.y]
= dneup{n = e} p-¥ [by definition of wp)
= Jn e wp.clu(fpd e )y [by the conclusion above]
= wp.c{p(fpd o c)).¢ [by n is not free in wp.c(u(fpd » ¢)).y]

Using this result, we can get to the required conclusion as follows.

Upd o p)

C {fpd o c(u(fpd » c))) [by the result above]
= {fpd » )({fpd * c)) [by a property of contexts)
= u(fpd ® ¢) [by a property of fixed points|
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Lemma D.6 For any program context elpn|, pcluc[pn]] T u c[pn).

Proof uclpn] is a fixed point of ¢[p ¢[pn]], as we show below.

e[ elpnli(u [pn])
= c[pn]{u c[pr]) [by a property of substitution]
=yt ¢c[pn] [by a property of fixed points]

Therefore, jz c[u c[pr]] T u c[pn], as required.

a
Law pealll Recursive call introduction
[proc pn = (/pd e pi[{fpd « {0 < ¢ < n} p3)]) variant n is ¢ » po]|
T pealll
[proc pn = (fpd ¢ pi[pn]) « 2]
provided {n =¢} p3 T pf(fpd » {0 < € < n} p3)).
Syntactic Restriction n is not free in py and p;[pn]
Derivation
[[proc prn = (fpd ® pi[(fpd « {0 < & < n} p3}}) variant n is e # ;2 |}
= pa(u(pd = [lcon 7 T o pi{(fpd o {0 < e < n} )] I) (by definitios]
C pa(ue(fpd # |[con n: Ze p(fpd » p3)] 1)) [by assumpR and siC)
C po(u(fpd = [ con n: Zwe pi[u(fpd » pr[pn])]]])) [by Lemma D5 and the proviso]
C p2(u(fpd o pi[uifpd o pi[pn])])) [by 7 is not free in p;]
C pe(u(fpd o p1[pn])) [by Lemma D.6]
= ||proc pn = (fpd = pi[pn]) * ;]| [by definition]
m]

Law pref Procedure introduction
re
= prel
([proc pn = (fpd « p1) » p2]
Syntactic Restrictions
e pn is not free in py;

e {fpd & py) is well-scoped and well-typed.
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Derivation
P2
= pa(u(fpd o p1))} [by pn is not free in po]
= {[proc pn = (fpd & p;) ® p]| [by definition]

Law r§ Result specification

w, vly : [pre, post)

= 15
{res dvl e w, vl : [pre, post{ul] /vl3] 1) (vh)

where dvl declares the variables of vf;.

Syntactic Restrictions
& ul; and vl; have the same length and contain no duplicated variables:
s The variables of vl are not in w, are not free in pre, and are not dashed;
¢ The variables of v, and ! and are not free in post;

» The variables of viz are not in w.

Derivation

wp.w, vl 5 [pre, post].y’
= pre A (Vdw'; dul} e post = '}[_/] {by definition of wp)
= pre A (Y du'; dl’ e post[l fulf] = ¢'[('/uld])[-/'] [by ¢ are fresh and vl are not in w']
= pre A (¥ dw'; dI’ e post[vl] ful]('/vl] = @'{l'[vi))[-/) [by vl are not free in post]
=Vdlepre AV dw'; dl' e post[ul] fol][V /ul]] = [V v/ [by ¢ are fresh]
=V dle pre(l/vh] A (Vdu'; dl' e postiul full][t, F /o, vl]] = [/ oB]) /1)

[by v4; are not free in pre and post]
=V dle pre(l/vl] A (Vdw'; d e post[ol] folf][1 1 fuly, ol]) = L7 ][ /) M0

[by a property of substitution)

= wp. |[var dle (w, vl : [pre, post[vi} fol) NI, ' fuly, ol}]; vl := ]| %" [by vl are not in w]
= wp.(res dvl) & w, ol : [pre, post[viy /ull] [} (v} [by definition]
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Law rS Result specibcation (function application as actual parameter)
w, [ [pre. {7} af = {z?} af A post[f' 27/fp"] ]
= r§
(ves fp: t e w, fp : [pre, post])(f z7)
where { is the type that contains the range of f.
Syntactic Restrictions
o f is of a function type;
o f and fp are nat in w;
e f and f' and are not free in post.
Derivation
w,f:(pre, {7} < f = {2?} 4 f A post[f' 22/fp") }
C vrbl
[varv:t e
v,w,f : [pre, {27} 9 f = {z?} 4 f A post|f’ 27/p'] ] <
I
C fassigl
vow, f:[pre, {z7} a {F @ {27 v'})={2?} af apost[f 2?7/l & (27~ v} /f]]; <

fi=f@{z? v}

CsP

v,w, f i [pre,{z?} af = {z7} 4 f A post{v'/fp'] ]
C ¢fR

v, w : [pre, post[v'/fp'] ]
CrS§

(res fp: £ e w, fp: [pre, post])(v)
Therefore, we have proved that the refinement below holds.

w,f:lpre, {7} af = {z?} af A post[f* 22/fp] ]
Cllvarv:te(resfp:tewfp:[pre,post])(v); f:=f& {27 v}]

By definition, this variable block is (res fp: t » w, fp : [pre, post]){f £7)}, as required.
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Law segcl Sequential composition introduction
w, T : [pre, post)
= segel
w: [pre, md(w'Jw} ] w,z:[mad, post]
Syntactic Restrictions
* mid is well-scoped and well-typed;
+ mid has no free dashed variables;

¢ No free variable of post is in w.

Derivation

wp.w, x : [pre, post|.o
pre A (¥dw'; dr’ e post = ¥)[_/] by definition of wp]
= pre A (Ydw' » mid[w'/w] = mid{w'/w] A (¥ dw'; dz’ e post = ¢)}[_/']
[by predicate calculus]
= pre A (Vdw' e mid{w'/w| = mid[w'/w] A (V¥ dw'; dz' e post = ) /T[S
by w' are not free in dw']
= pre A (Y dw' o mid[w'/w] = mud[w'/w] A (¥ dw'; dz’ e pest = ¢V D]
[by a property of substitution]
pre A (¥ dw' o mid|w'/w] = mid[w' fw] A (Y dw’; d2’ « post = )]/} /1
[by w are not free in dw’, dz’, post, and 3, and w’ are not free in dw’]
pre AV dw' o mid(w'fw] = (mud A (Vdu'; de’ e post = ) /T[]
[by a property of substitution]

Il

fll

1l

wp.{w : [pre, mid[w'/w) } 1 w,z : [mid, post]}.ib [by defirition of wp]
a
Law segcl Sequeutial composition introduction
w,z,¢, 2! : [pre, posi]
T segcl
[[eon dot » w,y!: [pre, mid] ; w,z,y% 2! [modlel/wi[-/'], postici/w] ] |
where dcl declares the constants of cl.
Syntactic Restrictions
+ mid is well-scoped and well-typed;
* The names of ¢! and ¢’ are not free in mid and w, z,y!, 2! : [pre, post];

e cland w have the same length;

The constants of ¢! have the same type as the corresponding variables of w.
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Derivation

wp.w, z,y, 2! [pre, post].

= pre A (Ydw'; dz’; dyl; dz!e post = ¥)[/']

[by definition of wp]

= pre A (Vdw'; dy! e mid = mid A (Vdw'; dz'; dy'; d2! e post = ¥))[/']

[by predicate calculus]

= pre A (Ydw'; dy! e mud = mad A (Vdu'; di’; dyb dz! e post = ))[cl/w)[w/cl][-/]
[by ¢f ate not free in dw', dy!, mad. dz’, d2! post, and )

= pre A{(3dcl e cl=wA

[by predicate calcuins]

(Vdw'; dy! e md = mid A (Vduw'; dz'y dy!; dz! e post = ¥))el/w]}-/]

= pre A (3dcl e el =w A

[by a property of substitution)

(Vdw', dyle mid => mud[cdfw] A (Y dw'; dz'; dyl; dz''e pestcl/w] = ))[ct/w])]- /]

=preA(Fdel el =w A

[by predicate calculus]

(Vdu'; dy!e mid = mud[elfw] A (¥ dw'; dr’; dy!; dz! e posi[el/w] = ¢))I[-/]

= pre A(3dcl e

[by predicate calculus]

(Vdw'; dy! e mid = mid[el/w] A (Ydw', dz'; dyY; dz! e post[clfw] = $)))[-/]

pre A ddel »

[by dashed variables are not free in dcl]

(Vdw'; dy' e mid = md[el/w] A (¥ dw'; dz"; dy!; dz! e post{cl/w] = #))[_/']

Jdecl e pre A

[by &l are not free in pre]

(¥ dw'; dy! e mid = mid[ct/w] A (Ydw'; dz'; dy); dz! e posticl/w] = V})L./"]

il

Jdcl » pre A

[by & property of substitution]

(v duw'; dy! e mid = mid[cd/w][-/'] A (Ydw'; d2’; dyh; dz!e post|ci/w] = )/

Jdct & pre A

[by w' are not free in duw)

(Y duw'; dy!emid = midlel/w][./'V A (Vdw'; de'; dyh dz!e postici/v] = )/

Jdel » pre A (Vduw'; dy! e mid =

I

{by & property of substitution]

mid[elfw][_ /] A (Y dw'; dz’; dyl; dzle post[clfw) = L)V DA

Jdcl & pre A

(Vdu'; dy'e mid = mid[cl/w][ /'] A (Ydw'; dz”, dy: dz! e post(elfe] = ¥)[_/ )]/
[by w are not free in dw’ dz’, dy!, dz!, post[el/w], and ¢, and w’ are not free in dw')

= Jdcl » pre A (Vdw'; dyl e mid =

[by a property of substitution]

(mid{cl/w][-/] A (¥ dw's dz'; dyl; dz! e post[elfw] = )LV -]

wp.[[con del o w,y!: {pre, mid] ; w,x, !, 21 : [mid[et/w][- /], post[elful ] || 4

[by definition of wp]

o



170 Appendix D. Laws of ZRC and Their Derivations

Law sk/ Skip introduction

w : [pre, post]
C skl

skip
provided pre = post[_/'].

Derivation

wp.w : [pre, post].y

= pre A (Vdu' e post = 1)L/ (by definition of wp]
= post[_[] A (¥ dw' e post = '}/ [by the proviso)
= post[_/"] A (post = ¥)[_/] [by predicate calculus)
= post]_/'] A (post[-/'] = ¥} [by dashed variables are not free in %]
= [by predicate calculus]
= wp.skip.t’ [by definition of wp)
[l
Law sIC Skip left composition
skip ; p
= §lC
r
Derivation

up.{skip; p).¥

= wp.skip.(wp.p.t) [by definition of wp]
= wp.p¥ [by definition of wp]
[m|

Law sP Strengthen postcondition

w : [pre, post]
C sP

w : {pre, npost]
provided pre A npost = posi

Syntactic Restriction npost is well-scoped and well-typed.

Derivation

wp.u : [pre, post].y
= pre A (¥ dw' e post = Y)[/'] {hy definition of wp|
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= pre A (¥ dw’ e pre A npost = ¢)(_/]
= (pre A (Vdw' « pre A npost = ¥)) (/"]
= {Vduw' e pre A (pre A npost = ))[./"]
(Vdu' e pre A (npost = ¥))[-/"]

IIf

fl

pre A (¥ dw' » npost = )/

wp.w : [pre, npost].y

Law srC Skip right compaosition
p i skip
= srC

P

Derivation

up.{p ; skip).¥’
= wp.p.(wp.skip.y'y
= wp.p.y

Law s§ Simple specification
ol = el
= s

ol : [true, v’ = el]

Derivation

wp.vl == elyf

= (el /vi]

= /[elfo}./"]

= (Vdul' o vl = el = ¥')[./]
= wp.od @ [true, o’ = el]. ¢’

[by the proviso]

[by no dashed variable is free in pre)
[by w' are not free in pre)

[by predicate calculus]

[by no dashed variable is free in pre]

[by definition of wp)

a

[by definition of wp]
[by definition of wp]

a

[by definition of wp]

[by a property of substitution]
[by predicate calculus]

[by definition of wp]

m]
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Law vrbf Variable infroduction
w : [pre, post)
= wurbf
[[var dul e u,w: [pre,post] ||
where dvl declares the variables of ul.
Syntactic Restrictions
o dul is well-scoped and well-typed;

« The variables of vl and I’ are not free in w : [pre, post] and are oot dashed.

Derivation

wp.w : [pre, post). i
= pre A (Vdu' e post = o)/} {by definition of wp]
= Vdul e pre A (Vdul'; du' e post = ) [ul/ol'][-/']

[by vl and ol are not free in pre, dvl’, dw’, post, and ]

= wp. |[var dul ¢ o, w : [pre, post] || .¢ [by definition of wp]
=]
Law vrbR Variable renaming
[var dile p]i
= urbR

([var dul o plud, ul'ful, '
where dul and dul declare the variables of v! and ul, respectively.
Syntactic Restrictions

e The variables of ul and ul" are not free in p;

e The variables of ul are not dashed.

Derivation

wp. [[var dul ¢ p]| ¥

=Ydilewppy [by definition of wp)
= Vdul o (wp.p.ap)[ul/ul] [by ul and ul are not free in p and 7]
=Vdul e (wp.plul, ul'/vl, o Lp[ul, ul’ fol, ol')) [0l / wl] [ul /vl {by Lemma 3.1]
=V dul o wp.plal, ul’ ful, vl [by vf and wl' are not free in p(ul, ul’/vi, vl'] and )
= wp. |[var dul e plul, ul'/ui W] )| % [by definition of wp]

[m]
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Law vrS Value-result specification
ploh, vigfuy, vl
= ur§
(val-res dvi; » p}(ui)
where dvl; declares the variables of vi).
Syntactic Restrictions
e The variables of vi; and vl are not free in p;

« The variables of v} and vl are not dashed,

Derivation
wp plt, vl o, uE]4
= wp.pl, V' /v, vl]][vl, vl§ /1,14 [by {and I’ are fresh]
= wp.pll, '/ vy, vlf][vl, vis /1, U] [ fui][vi / V) [by ¥ are fresh]

= (ool 1 oy, )11 ) w1
[by v, and vl are not free in p and ¥'[F/vl), and Lemma 3.1]

= (up.p[l, I /ol o]0/ vl [V /1) (v /1] [by a property of substitution)
=Ydl e (wp.p[l, " /vy, vi{].p[l/vl]) I /1)) [vha/ ] {by predicate calculus]
=wp. [var dle{:=vip; pll,I'/vl,ul]; vy :=1] 4 [by definition of wp]
= wp.(val-res dvl,  p)(vh).v' [by definition]

O

Law vrS Value-result specification (specification statements)

w, vl : [pre[vip/vh ], post[via /ol ] |

= s
(val-res dvh « w, vl : [pre, post[vl] [vig] [} (vh)

where dvl; declares the variables of vi).

Syntactic Restrictions
e The variables of v); are not in w and are not dashed;
e The variables of vl] are not free in post;

e The variables of vl and vi} are not iree in w : [pre, post].

Derivation

w, vl : [pre[vly fvly], post[vla/vh] ]
= by vl are not free in post
w, vly : [pre{vly /vld], post[vi] vl [vly [ul{][vlz/ vh] |
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== by v} are not in w
(w, vl = [pre, post[vl] jvl}] 1)[vhz. vl /viy, if]
= urd

(val-res du, » w, vl : [pre, post[vl] /vl] 1) (vh)

Law vrS Value-result specification (function application as actual paraineter)

wil : [prelf <2/t 427} @ f = {37} <f A postlf 20 f <o fo' |

= ur§
(val-res fp: t s w,fp : [pre,post]}(f z7)

where ! is the type that contains the range of f.

Syntactic Restrictions
e f is of a function type;
e f and fp are not in w;

e fand [’ and are not free in post.

Derivation
w,f :[pre[f z?/fp). {27} @ f" = {22} af A post[f 27, ' 27/ fp, fp'] ]
C wrbf
[[varu:te

vow.f : [pre[f =?/fo} (27} < f' = {22} @ f A post|f 37, [ 27/fp, fp'] ]
I
C segel
v prelf 7/ fo) prelf z2/fp] AV = f 3
vow [ [prelf s?/fplAv = fa? {27 af = {21} af A post|f 27, f' =2/ fp. fo'] ]
L assigl

vi=[z?

The specification statement (i) can be refined as follows.

(i) C fassig!

[me ?/fp) Av = [ 17, ]
v,w, f: {zNa{f'®{z?— o'} ={z?} <f i
( postlf o7, f' 2/ fp. fo' ! B {zT m 0"}/ )] )
f=f® {I? — 'U}
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CsP

v,w,f {pre(f 22/ fpl Av=[ 22 {z?} < f' = {2} <« f A post|f «7.v'/fp.fp] |

C cfR

v, [prelf z?/fp} A v =f 17, postf = v'/fp. /5] ]

CsP

v,w: [pre(f z7/fp] Av=f 27, post[v,v'/fp, fo'] |

Below we discharge the proof-obligation generated by this application of sP.

prelf «?/fo] A v = [ 27 A post[v, v’/ fp, fp']

pre[f £2/fp] A v = z? A post[v,v'[fp, fp']lf =7/4]
pre[f z?/fp] A v=f z? A post[f z7,4'/fp, fr']

= post{f =2, v'/fp, fp']

il

i

We proceed as follows.
C wP
v, : [pre[v/fol postv, o' /fp. fp'] ]
The proof-obligation generated by wP is discharged below.
pre[f z?/fp) Av=f 17
prefv/follf z?/v]Av =/ 17
pre[v/fp) Av =/ 27
= pre[v/ fp]

il

i

The refinement continues as shown below.
C vrS
(val-res fp: te w, fp:[pre, post]{v)

Therefore, we have proved that the following refinement holds.

[by predicate calculus)
[by v is not free in post]
{by predicate calculus]

[by v is not free in pre|
[by predicate caleulus]
[by predicate caleulus)

w,f : [pre[f z2/p) {z7) 9 = {z?} af A post[f =7,/ s/ fp.fp'] ]
Clvarv:tev:=fz?; (val-res fp: te w,fp:[pre,post])(v) ; [:=f@® {27 — o}]

By definition, this variable block is {val-res fp: {  w, fp : [pre, post|}{f =7), asrequired.

Law urt! Variant introduction

P2
= urif

[iproc prn = (fpd » {n = e} p) variant n is e ® pa |

Syntactic Restrictions
e pn and n are not free in e and p);

e (fpd ® p1) and e are well-scoped and well-typed.
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Derivation
23
=pall[con n:Ne u(fpd o {n=¢} p.)]}) (by pr is not free in py)
= |[proc pn = (fpd & {1 = ¢} p1} variant n is ¢ » p3 ]| [by definition]
[m]
Law u5 Value specification
w : [pre[etfui], postel, el’ ful, vl'] |
= 5
(val dul » u : [pre, post]}{el)
where dul declares the variables of »l.
Syntactic Restrictions
e The variables of v are not in w and are not dashed;
+ The variables of w are not free in ef;
® ¢l has no free dashed variables.
Derivation
wp.w : [pre(el/vl], postlel, el ful, ol'] |40
= prefelfvl] A (V dw' » postlel, el! ful, ol'] = w}{_/] [by definition of wp]
= prelI][el/I] A (¥ du’ « post[1, I' ful, vl’|[el, el! /1, F'] = ¥)|.{'] [by ! and I are fresh]

Law

c

= pre[lfvll[el /) A (¥ du’ ® post[l, 7 ful, ol'] = @)]el, el {1 V][]

{by / and I are fresh, and w’ are not free in el’]
= preflfull{el /1] A (¥ dw' w post[1, V' ful, o'} = 9)[1/F][/'][el/1] [by a property of substitution]
= (prefifvi] A (Vduw' @ post{{, 1 /o, o] = OI[/Y][-/D]ei/l]  [by a property of substitution)
Yl o (pre[t/ul] A (Y duw' e post{l, I /ol ol'] = )[1 0]/ Del /1) [by predicate calculus]

=uwp. |[var diel:= el ; (w:[pre,post]}[I,V /ol ul'] ]| ¥ [by ol are not in w)
= wp.(val dvl e w: [pre, post])(el).y [by definition]
m]

wG Weakening guards
ifliegeng—p A
wi
itlisg, =+ p A
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Derivation
ifflieging = pi i
C dimG

ifflieg—>p fl

The proof-obligations generated by this application of dimG can be discharged as follows.

(Vieg g
= (Viegi)Ag [by predicate calculus]
= (Vieg) [by predicate calculus]

(Vieg Ag)Ag

={Vieg)AgAg [by predicate calculus]
=qaAg [by predicate caleulus]
[m]

Law wP Weakening precondition

w : [pre, post]
C wP
w : [npre, post]

provided pre =+ npre.
Syntactic Restrictions
s npre is well-scoped and well-typed;

» npre has no free dashed variahles.

Derivation

wp.w : [pre, post].¥

= pre A (V dw' » post = )[/'] fby definition of wp]
= npre A (Y dw' » post = y1)[-/'] [by the proviso]
= wp.w : [npre, post]. {by definition of wp)

[m]

Data Refinement Laws

In what follows, we present and derive the data refinement laws of ZRC. The lists of abstract and
concrete variables ave avl and evl, respectively, and the coupling invariant is et. The refinement
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law dR (data refinement), which can actually be used to data-refine a variable block, has been
presented earlier on in this appendix.

Data Refinement Law Specification statement

vl, w : [pre, post]

A

i{con datl e col, w: [ct A pre, I davl” e ci' A ul’ = ul A post] ]|
where
e davl declares the variables of avl;
e gvl = vl,ul, aud vf and ul are disjoint.
Syntactic Restriction The variables of e/ are not in w.
Derjvatiaon

Jdavi e ci A wp.vl w : [pre, post].a
Jdavl » a1 A pre A (Vdul'; du' e post = )|/ [by definition of wp]

I

Adavl e a A pre A (Vdol’; dw' s post = )[ul/ul'][_/] [by a property of substitution]

f

Adavi » i A pre A (V dul' o ul' = ul = (Y dul'; dw’ e post = 4))[./"]
[by predicate calculus]

Jdauvl e ci A pre A (V davl’; duw' e ul’ = ul A post = ¢)[-/]
[by ol and w' are not in w!’, and avl = vl ul

Adavl e ci A pre A (Vdevl'; duw'; davl’ e ul' = ul A post = p)[}']
[by cvl’ are not in ul’, and are not free in dw’, daul’, post, and ]
= Adavls ci A pre A (Ydoul'; du'; davl’ o cif A ul' = ul A post =« A )[/]
[by predicate calculus)
=> Jdavie ci A pre A (Vdeol's dw'; davl’ e ci' A ul' = ul A post = Fdaul’ & i’ A )]/
[by predicate calcnlus)
Adar! @ ci A pre A (Vdeol'; dw' e (davl’ » a! A ul’ = ul A post) = Idavl’ & 2! A /]
[by av!’ are not free in dawl']

Iit

Il

wp.|[con davl & cvl,w : [cr A pre, T devl’ o o/ A ul = ul' A post]] . Tdavl’ e e’ Ay
[by definition of wp|

]
Data Refinement Law Skip
skip
=<
skip

Derivation This law is an application of Theorem 3.11.
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Data Refinement L.aw Assumption
{pre}
=<
[[con davi e cul : [c2 A pre, ca'[avl/avl’] ] |
where dauvl declares the variables of sul.
Derivation
{pre}
= assumP
: [pre, true)
<
[con davi & cul:[c1 A pre. I daal’ # c2' A avl’ = aul] ||
= gP {in both directions)
[con davl e cul: fci A pre, ci'[avi/avl’] ] ||
a
Data Refinement Law Coercion
[post]
<
[[con daul @ cul : [ct, (ci’ A post)[avl/avl'] ||
where davl declares the variables of aul.
Derivation
[post]
=c0
: [true, post]
=
[[con davi e cvi; [ct, Tdavl’ @ ci' A avl’ = avl A post] )
= sP (in both directions}
[con davl e cvl: [ei,(ct’ A post)[avl/avl'] )}
a

Data Refinement Law Sequential composition

Pr: ¢

A

" @

provided ;1 =% mandg < @

Syntactic Restriction The variables of aw and aul’ are not free in p; and ¢.
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Derivation

Jdaviect Awpip; q)y

= Jdavl e ¢i A up.pr-{wp.p-y) [by definition of wp)
= wp.pg. Idavl’ « ci' A (wp.gr. )’ {by a provisol
= wp.p2. I davl » c'[avl/avl’] A (wp.gr . Y)Y |avt/ avl') (by predicate calculus)
= wp.p2.(davie ct A wp.qr Y)Y [by a property of substitution]
= wp.po. (wp.qp. T davl’ & ¢’ Ay [by a provise and monotonicity of wp]
= wp.p; qo) Jdavl e et Ay [by definition of wp]

a

Data Refinement Law Alternation

if Uf°g|—‘Piﬁ

A

[con davisif {JieciAg, — q fi]
provided p; < ¢,
Syntactic Restriction The variables of av! and avl’ are not free in g;.
Derivation

Jdawl e c1 A wpif [Jieg — p e

n

Sdavteci A (Vieog)A(Ais g = uwp.p .} [by definition of wp]
= Fdavie (ViociAgitA(Aie{ctAg)= ci Aup.p ) fby predicate calculus]
= Jdavle (Viecar Ag) A (AT e(ciAg) = Tdavl e ci Awp.p.y)) [by predicate calculus]

= Jdavie (ViaciAg)A(Ade{ciAg)=>wpg Idevl’ s cr’ Ay [by the provisoj
= wp.fcon devl ¢ if liectAg, = g R] Idavl’ e ci’ A Y [by definition of wp)
a

The derivation of the rext data refinement law relies on the lemma that follows. It establishes
that, when variables that are not involved in the data refinement are renamed. the resulting
programs are related by data refinement if they were before.

Lemma D.7 For all programs py and pa, lists of abstract and concrete varsables avl and cvl, and
caupling invariant cf, 1f p; < pp then p (L, U /ul ') = po[l, '/ ul. ol'] provided the variables of vl
are not in avl and are not free in ci, and the vanables of [ and I' are not free in p; and py, ere
not in qul and cul, and are not free in ct. The veriables of cul and cul’ must not be free in py; the
variables of avl and avl’ must no be free in py; and avl and ol must be disjoint,
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Proof

Idavi @ cs A wp.-pL [,V /vl o).y
Adant & ci A (wp.pr[l, /vl W] [m, m'fol, ol |9 [m, m’ [ol, W']) [t /)] [by Lemma 3.1]

Jdavt e ci A {wp.pa[l, /vl v )p[m' [ul']){vl/m)] [by program variables are not free in )]
Jdavi » ci A (wp.pi[L /ol ol ol ol JL U [ fol Y[l fED [ ul][wl/m] by Lemma 3.1]
davi e ci A (wp.prp[m’ ol [ul! /U1 vl][vlf m) [by I and I’ are not free in p)]
{Idavl » ci A wp.pr.[m!fol'|[Wl /U] [/ v} [vl/m]

{by vl are not free in dav! and ci, and ! and vl are not in aul, and m are fresh)]
= (wp.pp. Adavd’ » ci’ A [’ [l )[ul’ /U1 1] [vl/m] {by assumption]
{wp.pa. (I davi’ & c’ A P)|m’ ful’][wl (UYL vl] (vl m]

[by v and I' are not free in davi’ and ci’, and are not in aul’, and m are fresh]
(iep.palt, ' ek, ol ok, b /4, U3 da » i A 93m ful [0 [V {1 ol ol /]

[by { and I are not free in pg]

1l

1l

= (wp.pal, ' /vl ). (3 davd’ & ct! A )[m! [ol'])[vl/m] [by Lemma 3.1)
= wp.pall, V' /o, vi']. I davl’ ® i’ A Y [by Lemma 3.1]
D
Data Refinement Law Variable block
j[var dul e p ||
—“<
[[var dvle pz]|

provided p; <X p
Syntactic Restrictiona
¢ The variables of adul are not in av! and are not free in cs;

¢ The variables of avl and avl’ are not free in ps.

Derivation

Jdovl e ci A wp. [var dvl e ;]| ¥

= 3davi e ci AVdle wp.p[l,I'/ul, )0 [by definition of wp)
= Jdavi e Val e ci Awp.p[l, I'fuh, )9 [by 1 are not free in ci]
= VYdleIdavi e ci Awp.p [, 1"/l ol'].9 [by predicate calculus}
= Vdlewp.pa[l,1'/vi,v]. Adari’ e ci' A o [by Lemma D.7 and the pravisa)
= wp. [var dul e p2]] . Idavl’ e i’ A Y [by definition of wp]

[m]
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The lemma below, which is used in the derivation of the data refinement law that applies to
constant blocks, is similar to Lemma D.7, but considers constants instead of variables.

Lemma D.8 For alf pragrams p) and pp, lists of abstract and concrete vartables avl and evl, and
coupling invariani ci. of p1 < p2 then pilifcl} < poll/cl] provided the constants of ¢l are not in
avl and are not free in ci, and the constarts of | are not free in p; and py, are not in avl and cvl,
and are not free in ci. The variables of cvl and cul’ must not be free in py; the varigbles of avl
and avl’ must not be free in pz; and avl and cvl must be disjoint,

Proof

I davl & c1 A wp.pyfi/ellp

= Jdaul & ci A (wp.p I/ cl[m/ellv[m/el])[cl/m] [by Lemma 3.2]
= davl e et A (wp.py[I/ ) ygim/el])[el/m] {by a property of substitution]
= Jdavl e e A (wp.py[{/ ][l /1p[m/el]{cl/)]i/ cl][clfm] [by Lemma 3.2}
= davl e &1 A (wp.pr.g[m/el]lct/ NI/ cl][cl/m] [by ! are not free in p)]

lit

(3 davl wci A wp.pr.ylm/cl][cl/ D)1/ ct)[cl/m]
[by ¢! are not free in davl and ct, ! and cf are not in avl, and m are fresh|
= (wp.py.Idavl’ e ci' A yp|m/cll[cl /i3] cl][ct/ m) [by assumption|

= (wp.pp.(davl’ o ci' Ay)[mjelllel /I et]let/m)
{by ¢l and [ are not free in davi’ and ¢i, cl are not in avl’, and m are fresh)

= (twp.pll/ edlfet /1.3 davl! » o' A @Y [m/ e}l /A1 cl][cl/m) {by I are not free in po}
= (wp.pg[l/cl].(3 dovi’ e ct' A p)[m/el])[cl/m] fby Lemma 3.2]
= wp.pff/cl]. Idavl’ » ci’ A g [by Lemma 3.2]

=}

Data Refinement Law Constant block
[con del e py ]}
<
([con del o p2 ]|
provided p; < p2
Syntactic Restrictions
¢ The constants of adcl are not in avl and are not free in ct;

e The variables of avi and avl” are not free in pp.

Derivation

Jdavl e ci A wp.l{con del e g ]}
= 3davl e cx AJdl e wp.p I/l {by definition of wp]
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= 3dl e Idavl e ci A wp.p|i/eclly [by I are not free in ¢i and dawl]
= J3dl e wp.po(l/cl]. Tdavl’ @ ci’ AP [by Lemma D.8 and the proviso)
= wp.|[con dcl & pp]| . Tdavl' e ci’ A Y [by definition of wp]

a

In tbe lemma that follows we rephrase a result presented in [18]: data refinement distributes
through fixed points. This lemma is used in the derivation of the next data refinement law.

Lemma D.9 For all program coriezls pc; and pep, hists of abstract and concrete vanables avi and
cvl, and coupling wmvariant ci, if pa1 < pe, then ipey =< upes.

A proof for this lemma is presented in [18].

Data Refinement Law Procedure block

[[proc pn = p1(pn) & p2(pn}]|

A

[proc pn = pa(pn) » py(pn}|
provided p; <X psaud p2 < py.

Derivation

[{proe pn = pi{pn) & p2(pn)]]

= pa(um) [by definition]
=< palu p3) [by Lemma D.9 and the provisos}
= [[proc pr = pa(pn} o pa(pn) ]l [by definition)

m]

Data Refinement Law Iteration

do[Jieg; — p, do

A

do[Jie{¥davieci = g,) = ¢, od
provided
o (Sdaviecin{(Viegl)= (VieVdale i1 = ¢;)
* P X G
Syntartic Restriction The variables of avl and av/’ are not free in ;.
Derivation
do[]i e g. = p; od
= by definition
[proc sz = if[lieg = pi: [ ~(Vieg) - skipfi ]
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=‘(

[i proc tt = |[con davi »
flreciag—q; it[l ciA-(Vi1eg)—skipf <

Z dimG
iflie(Ydovleci=g) 2q; st[l~(VieVdavle ct = g) — skip fi
The consequent of the first proof-obligation generated by this application of dim@ is a tautology.
S(VieVdguleci= g)V(VieVdarl e ci = g,)
The second proof-obligation can be discharged as follows.

(Vioeinp)Vier Am(Vieg))) A (Y daul »ci = gi)

= {(aAaV1ag)ViciA=(Vieg))A(Ydavie s = gp) [by predicate caiculus]
=ciAl(Vieg) Vo (Viegha(¥davle ci=g,) [by predicate calculus]
= ¢t A {dd = gi) [by predicate calculus]
= g [by predicate calcukbus)

The last proof-ebligation is discharged below.

(VisaagvicAa-(Vieg))) A-(Yi1eVdavle ot = g;)

=cA-{(VieVdavl e ci= g) [by predicate calculus]
= ci A~ {3davlect A (Vieg)) [by the proviso]
= ciAaWdavleci=—(Vieg)) {by predicate calculus]
= - (Vieg) [by predicate calcnlus)

Since the variables of avl are not free in the alternation generated by the application of dimG,
we can use conR to remove the constant hlock that declares these variables as constants. The
resulting procedure hlock is shown below.

fprec it =if[l1e{vdavleci=>g) = g; #-(VteVdavl e ci = g) —skip fie il]f

By definition, this program is the iteration do [J ¢ « (¥ davl e ¢t = ¢,) -+ ¢, od, as required.
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