
HIGHER-LEVEL ALGORITHMIC STRUCTURES

IN THE REFINEMENT CALCULUS

by

Steve King

Technical Monograpb PRG·124
ISBN ll-902928-98-8

January 1999

Oxford University Computing Laboratory
Programming Research Group
Wolfson Building, Parks Road
Oxford OXI 3QD
England

cy~(':.rll \ ;' ,.-. r"'; I-. I r

\ .

01l\uI v U f.. -~ jUl.)

Copyright © 1999 Steve King

Oxford University Computing Laboratory
Programming Research Group
Wolfson Building, Parks Road
Oxford OX! 3QD
England

Higher-level algorithmic structures

in the refinement calculus

Stephen King

St Edmund Hall

w..
• u,mID
~

Trinity Term 1998

Being a Thesis submitted faT the degree of D.Phil. in the University of Oxford.

Higher-level algorithmic structures
in the refinement calculus

D.Phil. Thesis

Stephen King

St Edmund Hall

Trinity Term 1998

Abstract

This thesis extends the refinement calculus into two Dew areas: exceptions and itera
tors. By extending the calculus in this way, it is shown that we can carry out the formal
development of programs which exploit the exception-handling and iterator mechanisms
of programming languages. For both areas of expansion, the same strategy is u~d: rel
atively simple extensions to the language are first proposed, together with the semantic
machinery to prove the correctness of new laws. Then these simple extensions are com
bined. into complex mechanisms which mimic more closely the language facilities found in
programming languages, which are necessary for programs of realistic size.

For exceptions, the major idea is to distinguish between nonnal and exceptional ter
mination of program constructs. Dijkstra's weakest precondition semantics are extended
to give meaning to this by considering predicate transformers which take as arguments
more than one postcondition. The notation is extended to deal with multiple exceptions,
and appropriate actions for them, by the use of procedUI'€s.

The technical background for the iterator construct proposed comes from the functional
programming community: homomorphisms from initial data types. Again, it is shown how
this can be related to iterators in programming languages. This involves giving weakest
precondition semantics for procedures as parameters.

Both extensions to the refinement calculus are used to give formal developments of
programs which use a pre-existing library of abstract data types. A specification is given
for a typical library component, and several sample programs are developed.

Contents

Part I Prologue 1

1 Introduction 2

1.1 Software development and the refinement calculus 2

1.2 Extending the refinement calculus 4

1.3 Thesis structure 5

1.4 Contribution 6

1.5 Notation 6

2 The refinement calculus 7

2.1 Basics. . 7

2.2 History 9

2.3 Further features 10

2.4 An example development 11

2.5 Conclusion 14

Part II Exception handling 15

ii

CONTENTS iii

3 SiInple exceptions 16

3.1 The need for exceptions. 17

3.2 Syntax for exceptions 18

3.3 Recursion 25

34 Semantics 31

3.5 Conclusion 37

4 Exceptions on a larger scale 38

4.1 Named exits and handling routines 38

4.2 Laws for raise and handler . 40

4.3 A development using named exits 42

4.4 A possible enhancement 47

4.5 Conclusion 47

Part III lterators 49

5 An iterator construct 50

5.1 Introduction 50

5.2 The it ..ti construct for sequences 51

5.3 Homomorphisms on initial algebras 53

5.4 Catamorphisms and the it .ti construct . 57

5.5 More general data types 59

5.6 Refinement of branches 60

5.7 Conclusion 65

6 Higher-order programs 67

6.1 Syntax .. 68

6.2 Semantics 69

CONTENTS i'

6.3 Laws for procedure variables 85

6.4 Naumann's syntactic restrictions. 8·'j

6.5 Conrlusion 86

7 Encapsulating iterators 87

7.1 Procedures a<; parameters. 87

7.2 Example 90

7.3 An iterator procedure. 93

7.4 Merging iterators 96

7.5 A more general law 100

7.6 Conclusion 100

Part IV Applications 101

8 Applications 1; exceptioDs 102

8.1 Introduction 102

8.2 Exceptions for Collection Classes 105

8.3 Additional notation and laws. . 111

8.4 A collection cla,<;s specification 113

8.5 Sample developments 119

8.6 Conclusion 123

9 Applications 2: iterators 124

9.1 Introduction 124

9.2 Collection Cl<U;s iterators 124

9.3 Collection Class iterators and it .. tl 127

9.4 A simple development. 129

9.5 More complex types. . 130

CONTENTS v

9.6 COIlciusion 130

Part V Epilogue 131

10 Related work and conclusions 132

10.1 Rela.ted work on exceptions. . 132

10.2 Related work on iterators . 136

10.3 Further work. 142

lOA Conclusions . 144

Bibliography 146

Appendices

A Procedures and C++ functions 150

B Sununary of laws 154

Et quand finira mon livre? Probleme. Pour qu'il paraisse l'hiver
prochaine, je n'aj pas d'ici 1a une minute a. perdre. Mais, par m<r
ments, il me semble qne je me nqwHie camme un vieux camembert,
tant je me sens fatigue! Gustaue Flaubert

vi ACKNOWLEDGEMENTS

Acknowledgements

The work described in this thesis has taken several years, and there are therefore
many people t.o be acknowledged.

In vaguely chronological order, financial support (in terms of a salary!) has
corne from Oxford Vniversity Computing Laboratory, IBM United Kingdom
Laboratories Lt.d, Oxford University Department for Continuing Education and
The University or York, and [am most grateful to these organisations.

Thanks, too, to those who have read and commented-on drafts of parts of the
material presented here: Richard Bird, Ana Cavalcanti, Ian Haye::>. Tony Hoare.
Dave Naumann, Jane Sinclair, Jan van de Snepscheut, Jim Vo..'oodcock.

Thanks to Andrew 1-lartin and Mike Spivey for assistance with I7-JE.X styles.

For the last 3 years, I have been working at the University of York, and I am
very grateful to the Computer Science Department, particularly ·the Head of
Department, Dr Keith Mander, and Professors Ian Wand and John ;\kDt!rmid:
I do appreciate their support, encouragement and forbearance!

I have benefitted from the love of my family and the friendship of many people
at St Edmund Hall, Oxford University Computing Lab and The 'lniversity
of York: they have provided snpport, encouragement and anusl;' Ilt various
appropriate times.

lowe a major deht of gratitude to Carroll Morgan, my supervisor, who has
managed to maintain interest (I think) over a considerable period of time. He
has consistently provided ideas, suggestions and feedback on drafts, and I am
very grateful to him: I'm not sure that this thesis would ever have reached this
state without him!

But my major deht is to my wife Clare, who has put up with 'the dreaded
T ' for as long as she has known me, who has seen several deadllnes corne
and go, and who will be more than happy to see the back of it. I am ahsolutely
certaiu that I would not have reached this state without her, and I am eternally
gratefuL let real life now commence!

Steve King
Septemher 1998

God keep me from ever finishing anything. This whole book is but
a draft - nay, but a draft of a draft. Oh Time, Strength, Cash,
and Patience! Herman Melville

Chapter 1

Introduction

Ever since the 1968 NATO conference which introduced the phra~e 'the ~oft
ware crisis' to the world, software Jevp!opers (or at least their managers) ha\-e
been searching for the Holy Grail of programming -- a software development
technique which will allow them to develop ever larger and more complex soft
ware products, with the certainty that the programs delivered will perform as
expected, always giving 'r:orrect results' -- whatf'ver that may mean. They
also want to be sure that these products will be delivered on time and within
budget, and that they will be documented and structured so as to make it
simple to carry out any future enhancements -- of course, there will be no
bugs, so error removal will not form part of maintenance. It is now 30 years
since that <:onference, and, despite the claims of some marketing managers and
over-enthusiastic salesmen, the search for the ultimate software development
method is still going on. This thesis attempts to fill a small hole by extending
an existing development technique and notation to cover two areas that wer!'
previously beyond its reach. :'fa claim is made that the extended method is
even close to this ultimate development method, but it is certainly a step in
the right direction l

1.1	 Software development and the refinement calcu
lus

The notation which is to be extended is that of the refinement cakulus, 1 which
is based firmly on the idea that programming is a mathematical activity. When

1III particular, we use Morgan'li verSion of the calculus (41),

2

3 1.1. SOFTWARE DEVELOPMENT AND THE REFINEMENT CALCULUS

Dijkstra introduced his language of guarded commands [17], he included COQ

structs that could be given simple and elegant mathematical meanings. Con
structs such as the unrestricted 'goto' of early programming languages were
rejected because they did not have a simple mathematical meaning: symp
toms of their complex semantics were that there were no simple laws that they
obeyed, and that programmers were much more likely to misunderstand t.heir
behaviour and make mistakes while using them. The claim of early rnE'mbers
of the 'formal methods' school was that programmers who used a restricted
language with well-understood semantics were much less error-prone.

One of the areas of research interest which subsequently opened up was the use
of mathematical notations for the specification of software: by introducing prp
cision into the software development process at an early stage, to describe what
the proposed system was intended to achieve, researchers (and users) hoped to
uncover misunderstandings and area<> of uncertainty as early as possible, thus
enabling corrections to be made before too much further work had been carried
out. Because the 'programming language' - Dijkstra's language of guarded
commands, or something similar -- and the specification language both had
a firm mathematical basis, it was possible, at least in theory. to prove that a
program met its specification. Much research effort was spent, and is still be
ing spent, on ways of proving such developments correct, using techniques such
as introducing intermediate design stages to reduce the size of the 'gap' to be
proved.

By the early 198015, it had become clear that one of the problems was the
difference in notations used at the specification, design and coding stages: at
each stage a favourite notation Was used, making it difficult to prove relation.
ships between the stages. This caused a growing interest in 'wide-spectrum
languages', which were languages that could be used throughout the develop
ment process, v.ith features designed particularly for certain stages, but the
whole language described in a coherent mathematical framework. This reduced
the difficulty involved in translating from a specification notation described in
one sort of mathematics to a design notation described slightlJ' differently, to
a programming notation described in yet a third way. The various refinement
calculi2 are such wide-spectrum languages, which developed by extendiug the
programming language - Dijkstra's guarded commands - with non-executable
constructs suitable for writing specifications. A development. begins with a
specification, usually expressed in terms of these non-executable specification
constructs. The specification is then 'transformed' until it contains entirely
executable constructs. These transformations are justified by the laws of the
calculus, which guarantee to 'preserve meaning' in a very precise way. Details
of Morgan's version of the refinement calculus notation and its laws are given
in Chapter 2.

2For historical reasons, _ oft/!u refer to 'the refin/!ment calculus', although there are
several notations - see Section 2.2 (or sam/! details of lhe history of tbese calculi.

4 1.2. EXTENDl'iG THE REFINEMENT C4LCULUS

1.2 Extending the refinement calculus

This then is the r:ontcxt in which we are working: we have chosen to extend
the refinement calculus to coyer t"'"O new features of programming languages:
exceptions and iterators. The reason for the choice of these two additional fea
tures lies in the author's experience while working on a research project funded
by IBM Hurslcy. By the carly 19905, there had been some success at Hursle:y
in the use of formal methods, at least in the area of recording specifications
and designs precisely, if not in the use of proof, and there was some interest
in the use of other techniques to improve programmer productivity. Qnf:' of
the technklues investigated involved the use of the Boblingen Building Blocks:
these werc a collection, produced by IBM's laboratory in Boblillgen, Germany,
of implementatinm of commonly-used abstract data types, such as sets. maps
trees etc:. The Block.., were implemented using the macro-pxpansioll facilities of
an IBM-int!'mal high-level s)'stf>ms programming language, PL/AS. The inw5
tigation looked at ways in which the USf> of the lllocks could be im:orporated
into a development Illethod which was then based on Z. The intention was that
specifications would be written in Z, using Z's notions of sets, relations, fUJl(:
tions etc, which could thl'n bp implemented directly using the relevant Building
Blocks. Clearly, the first stE'P was to write formal specifications for thf) Blocks,
but here certain problems arose. Three serious difficulties wen' discovered while
writing the specifications:

•	 the Blocks indud!'d an iteratO[mechanism, which allowed programmers
to apply an operation to each element of a data structure;

• when	 an operation failed, an exception-handling mechanism came ill to
effect; and

•	 lJIany of the operations dealt v;ith pointers, either as inpnts or outputs.
rather than dealing with the data structures themselves.

The last of these Wa<> recognised a<> just one a<>pect of a major problem that
has heen facing the formal methods community for some time - how to deal
convincingly with pointers. It was decided not to tackle this. but to work ou
the first two problems, which provided new and interesting challenges.

At around tbis time (1993), a new version of the Building Blocks appeared,
re-written to use the C++ language, rather than PL/ AS, and available as a
commercial product, rather than. being restricted to the IBM community. It
was also no longer dependent on the rather crude macro-expansion facility of
PL/AS, and seemed to be a much more stable and robust product. it was
thl;'refore decided to base the research around this product, which had now
bel;'n renamed the IBM Collection Class Library.

13 THESIS STRUCTURE 5

1.3 Thesis structure

In order to give meaning to the exception-handling and iterator mechanisms
in the Collection Class Library, our strategy is to describe first some simpler
constructs which we can add to the refinement calculus and give meaning to,
and whose laws we can explore, before showing how these simple constructs can
be llsed for the more complicated mechanisms of the existing library. Prior to
that, in Chapter 2, we give a brief summary of the standard refinement calculus
notation. and its meaning.

Our work on exception handling starts in Chapter 3, where, after examining the
need for exceptions, we make the important distinction between two Corms of
termination for constructs of the language, normal and exceptional termination.
We explore some laws that the extended language constructs obl:y and show
how to develop programs that make use of these constructs. W('. also extend
the usual semantic framework (Dijkstra's weakest precondition) to cover the
two forms of termination, and we are therefore able to justify the Jaws we have
proposed.

However, a realistic treatment of exceptions needs to do more than distinguish
between normal and exceptional termination: different actions may be appro
priate for different errors during a pacticular invocation of a command, and
it may be the case that different actions are appropriate for a single excep
tion during different invocations. In Chapter 4, we deal with this, basing an
exception-handling mechanism on the use of procedures.

Part III of the thesis contains our work on iterators. Once again, we start with
a fairly simple addition to the refinement calculus notation (in Chapter 5),
which is based on work from the functional programming community on cata
morphisms - homomorphisms from initial algebras.

In order to encapsulate iterators, as we must if we are to use them as part of a
library of abstract data types, we need to pass procedures as paranleters. This is
not covered in the usual treatments of tbe refinement calculus, but recent work
by Naumann [49] on weakest precondition semantics for procedure variables has
laid the foundations on which we base a treatment of procedural pacameters
in Chapter 6. This allows us to discuss the encapsulation of iterators in the
following chapter.

Having set up all this machinery for dealing with exceptions and iterators. we
can now return to the Collection Class Library, and work on some applications
of our work. The two chapters in Part IV of the thesis deal with applications
involving exceptions and iterators, respectively. Having given a specification of
one of the Collection Classes, we show how programs are developed which use
that specification.

Finally, in Chapter la, we set our work in the context of other related work,
look at possible future work, and draw some conclusions.

6 1A. CONTFlBUTION

Since a large number of laws are introduced at many different point-s In the the
sis, we have collected tog-ether all the laws in Appendix B, for ease of reference.

1.4 Contribution

The overall contribution of t.hi5 thesis is t.o show how an existing softwarE-'
development notation - the refinement calculus - can be extended in two
directions, to cover two additional features common!}' found in programming
languages: exceptions and iterators. The techniques used the distinct.ion
between normal and exceptional termiuation and the use of catamorphisms, to
gether with the semantic extensions used t.o give meaning t.o these constructs -
are perhaps more important than the applicatIon of the extended language t.o
the development of programs u5illg a particular library of ab:-tract daw types.

Some of the material in this thesis on exceptions has previously heen published
in the Formal Aspects of Computing .Tournai [25}.

1.5 Notation

In Part II of the thesis --_. on exceptions - and the summary of the relln('lllent
calculus, the following notat.ional conventions are used:

•	 names consisting of a single letter repeated t.hree times, aaa, bbb <:tc.,
represent programs; and

•	 single Greek letters 0:, (3 etc., represent predicates, that is, sets of states
(We are not considering the question of expressibility, and thus we some
times blur the distinct.ion between a Boolean function on a st.at.e :::ipace
and the corresponding set of states.)

Cn-numbered laws eg "followiflg assignment" refer to laws in the standard text
on the refinement <:alculus [44].

Chapter 2

The refinement calculus

In this chapter, we give a very brief introduction to the refinement calculus.
We describe first the basic constructs of the language and their meanings in
terms of Dijkstra's weakest precondition. Then we give a brief history of the
development of the calculus and look at some more advanced features. Finally,
we give a short. sample development to show the notation in USE.

2.1 Basics

The refinement calculus arose out of a simple extension of Dijkstra's language
of guarded commands [17]. A $pecification, here written

w, [a,~]

comprises a frame w, and two predicates: the precondition a and the postcon
dition /3. It is a command in the programming language which. like the others,
describes the intended effect of a computation. Unlike conventional program
ming commands however, it does not necessarily suggest a ru~chanism for the
computation: it gives the what, but not the how. In the refinement calculus
world, we do not distinguish specifications from programs: every specification
is also a program (but not vice versa).

In the specification w : [a, ,oj, the frame w is a (possibly empty) list of variables
that the specification (command) may alter. When the precondition a is true
initially, the specification is guaranteed to tenninate in a state satisfying the
postcondition p. On the other hand, when Ct is not true initially, no guarantees

7

8 2.1. BASICS

can be madf' about the beha"iour of the specification: it might terminate' in an
arbitrar)' state or it might uot t('rminate at all.

For exampl(':

•	 y [i.rue, y2 = xJ is a specification which states that a value should be
a.'isigncd to y to make till" predicate y2 := X true' (thus assigning to y a
squar(' root of x);

•	 e : [oS :f:. 0, e E oS] is a command which chooses an elem('nt e from a set s.
provirkd .5 is non-empty; if 8 is e'mpty initially, then this command might
not terminatf', or it might assign an arhitrary value to e; and

•	 x: [b 2 2'. .,lac, ax':! + bx + c:= OJ i~ a command which solve:, the quadratic
equati(Hl for x, provided the disL.iminant is non-negative: if the diHcrimi
nant is less thau 0, then its behaviour is arbitrary.

The meaning of a specification st.atement can be giYe'n in terms of Dijkstra's
weakest precondition semantics [18J:

11Ip(W: [a,.B],q»;:' a 1\ lVIl'. ,13::} rp)

which meanH that, for example,

wp(e:[s:f:.~},eEJjJ,rj} = ,~:f:.{}I\(Vr.eE.~=}~?)

Apart from the sp('eificatioll stateml'nt, thp second et>s~ntial ingredient of thf'
refinement calculus i:-; a relation, called refineml'llt, between programs. \Ve write'

0.0.0. ~ bbb

for t\\o·o programs Illla and bbb. to say that 0.0.0 is retined by bbb: and that,
in turn, means informally that any client who has <L"ikcd for th<' program alla

will be happy if given bbb instead. Formally, the definition of the refinement
relation between programs is given by weakest preconditions:

aaa ~ bbb ~ wp(lllla,,p) ~ Il'p,bbb,fj!) for all post conditions rj

For example, the first specification mentioned above, y: [true, y2 := x], could be
refined by the program y ::= ..,IX. On the other hand, it could also be refined by
the program y := -..,IX: any client who had agreed that their needs were met
by the original specification would have no grounds for complaint, whichever
program they were given.

Program development in the refinement calculus is usually carried out via a
series of so-called refinement steps, starting from a specification 0.0.0., say, and
ending with an executable program zzz. In between might orcur a number of
'hybrid' programs, containing both specifications and executable fragments:

aaa I;::; .. ~ III I;::; mmm I;::; nnn I;::; 000 I;::; ... I;::; zzz

9 2.2. HISTORY

Syntax Semantics
assignment
sequential

composition
alternation

recursion

specification

skip
abort
nondeterministic

choice
1 uaked guarded

command

"' E wp(x, E,¢) ¢[x\E1
aaa; bbb wp(aaa; bbb, ¢) =

wp(aaa, wp(bbb, ¢)
if(Ui. 0:, ----t aaa;) fll wp(if(ili. 0, -; aaa,)ti,¢) ~

(Vieo:.)A
(/\ i. Q; => wp(aaa,,¢))2

mu aaa. P(aaa) um given by least fixed point:
see Section 3.4

w,[o,m wp(w, [o,OJ,¢) ~

oA (Vw'O=>¢)
Bkip wp(,kip, ¢) ~ ¢

abort wp(abort, ¢) = false

aaa U bbb wp{aaa U bbb,¢) =
wp(aaa,¢) A wp(bbb,¢)

0: ----t aaa I wp(a: aaa, ¢) =
0: => wp(aaa,¢)

Figure 2.1: The major constructs of the refinement calculus

The overall desired result aaa ~ zzz follows from the transitivity of~. The
justification for each refinement step is given by appealing to one (or more) of
a collection of laws, from which the 'calculus' takes its name.

The major constructs of the language are summarised in Figure 2.1, together
with their usual meanings in terms of standard weakest preconditions. Later
however, we will need to extend the notion of weakest preconditions to COver
exceptions.

2.2 History

Historically, Back was the first to embed specifications in programs, using the
weakest precondition calculus [3, 4J, although his specifications contained only a
single predicate. More recently, both Morris [46J and Morgan [42J have extended
Back's work by using separate pre- and postconditions. All three authors have
the same refinement relation. The refinement calculus continues the tradition
of Hoare [21J and Dijkstra [18]; for example, the meanings of the specification
statement and the refinement relation were deliberately chosen to make true
the following theorem (Theorem 3 of [42]);

lThis is a shorthMd for

if al 1I1111[0 .. 0an 1I11a,. fl

The number of brMches must be finite, but may be zero.
1V a.od A denote disLribu\ed disjunction and coojunction, TeipectiveJy.

10 2.3. Fl"RTHER FE.4TURES

Taking w to be all program variables, and aaa to be an executable
program,

w : [pre, post] t; aaa

has ('xactly the samC' meaning as

(Vw • pre => Ulp(aaa,post))

This theorem allows us to check the validity of the laws of the refinement
calculus. sudl as this law. for decomposing a specification into the sequemial
composition of two specifications'

w: [p7-e.postj t; w: [pre, mtd] ; w: [mtd,postJ

There is an extensive collection of laws such as the above. some with sidt'
conditions to be proved, which are used to justify the renneffif'llt steps in a
program development. A tutorial introduction to these laws rna:". he found in
[44]. while a colleCtion of more theoretical papers may be found in [45J.

2.3 Further features

We look more closely now at some specific features of thp rennemf'nt calcu
lus. The first is 'naked' gua.rded commands, which were firs;t described by
Nelson in [50]. :Morgan and Morris discovered them inuflpendently, as a natural
consequence of the semantic definitions of t.he refinement calculns These are
commands of the form 'a -t aaa' which do not necessarily occur within if ... fi
or do .. ad. For any predica.te a (the guard) and program aaa we define

wp(o:-t aaa,Q) == o:=> wp(aaa,r;!»

Though such commands are well-behaved, and even to some extent geuC'rally
accC'pted, they do not satisfy the 'Law of the Excluded Miracle· [18]: in partic
ular,

wp(false -t skip, ¢) = tn~e

for any postcondition 1> whatever. For that reason we give the guarded com
mand false -t skip the name magic. and note that aaa ~ magic for any aaa.
It is also easily checked with wp that magic is left-absorptive: magic; aaa ==
magic for any program aaa.

The second feature is pure nondeterministic choice. 'Ve have

wp(aaa ~ bbb,<I» " wp(aaa,¢) /\ wp(bbb.¢)

The two constructs interact nicely: one example is that aaa ~ magic == aaa ==
magic 0 aaa holds for all programs aaa. Another example is provided by the

11 2.4. AX EXAMPLE DEVELOPMENT

first step of the derivation in Section 3.2,3 which is easily verified using wp. In
this step, we remove the iLfi around an alternation, which is justified so long
as the guards are exhaustive, leaving naked guarded commands.

A logical constant plays the role of a 'ghost '-variable. It can he used for example
to refer in pOIlt--conditions to values defined before a statement. In what follows,
we will use the logical constant t' to refer to the initial value of the variant
expression. Logical constants are introduced by con, whose meaning is given
as follows:

llIp(1[con x. aaa]1,4;) == (3x. wp(aaa,¢))
provided that ¢ contains no free x

An assumption is written {a}, for some predicate 0, and in a sense conveys
the claim that "a is true here". As a statement it acts as skip when a is true,
abort otherwise. This means that it is different from an 'assert statement',
as found in Algol- ,\T for instance, which is guaranteed to terminate4 when the
formula is false. Unlike assert statements, assumptions are therefore useless for
program instrumentation, but are intended for use during tbe development of
programs, and are removed before the final code is collected. The meaning of
an asBUmption is given by

wp({a},¢) 'OaA¢

It should be noted that we usually omit the semicolon between an assumption
and any following statement:

{a}; aaa = {a} aaa

Layout of developments

A particular technique of layout is often found in refinement calculus develop
ments: certain lines of the deVl'lopment are labelled with numbers, and these
labels are used to coutinue the derivation at a later stage. We also sometimes
label lines with a <J symbol: this signifies that this line will be worked on in
the \'ery next step of the development. There will therefore be at most one
line marked with <J at any stage, although it is possible that se\'eralljnes may
be labelled with numbers. The complete program can eventually be found by
collecting the code fragments from the braw::hes of the resulting development
tree, These notations are used in the example below.

2.4 An example development

We now give a brief example of a program development using the refinement
calculus features mentioned above. We will spell out the steps in some detail:

3after Law 3.13 on page 24

~and to cause immediate program t~rminMion!

2.4. ..1,1\' EXAjIPLE DEVELOPMENT	 12

in a 'real-life' dl'velopment, such detail \\Could be neither required nor desirable.

The simple program fragment which we will develop is t.o ;';f!t the yaluf! of a
boolean variable dep<'nding Oil whether an array contains some particular yalut'.
Our variable declarations arc as follows:

as : 1..n ---;. X
x: X
b : Boolean

The array is modelled as a total function from tile indices 1..11 to thr va]IIP~

which are drawn from the srt X. Wl' arC' required to set th" value of b. dl'pendill)..';
on whether x appears in the array. Our specification is therefore

b : [b ~ 3 i : Ln. as i = xJ

(Notice that the pr~condition, which is tnte, has bC'f.tl omitted - this is a
common abbre\'iation in specification stalPmpnts.)

The development starts by introducing a local variable j, which will be nsrd
to mark how far through the array we have chf'cked. \Ve then inlruduce <til

abbreviation I for the predirate which will be used as the loop illyariant. and
spnt the specification into two, for the initialisation and the loop itself:

!;::;	 varj.
b,) : [b ¢::I 31 : 1.. n• as t = xl

I;:;;	 I==b~3i:l .. j.asi=x.
b,j : [tme,I]; <l

b,j. II,] AJ ~ nJ III

Tbe loop initialisation is ea.<;ily impleoH'nted with a mult.iple assignment to b
and J, and we can nLJW introduce the loop, which has invariant I. guard J f:- 71

and variant n - j.

I;:;;.	 b,j:= Jalse.O

(I)!;::; "variant n - J"

do j f:- n---;.
b,j : [I 1\ j f:- n. I 1\ 0 ~ n - j < n -:kJI <l

od

(Hints about the justification for a refinement step are often given as annota.
tions to tbe refinement symbol, enclosed in "quotation ma.rks". Initial variables
are marked with a subscript zero.) The loop body is refined with a following
assignment to increment j.

!;;;	 "following assignment, contract frame"
b • II A j t n, IbV + 111; <l

j := j + 1

The remaining part of the loop body is implement.ed (in a ye'ry crude way)
using two nested alternations. The first alternation tests the value of b - if it

13 2.4. AN EXAMPLE DEVELOPMENT

is t,rue, then x has already heen found, and so we need do !lothing.

!;;; if b---+
{b}b. [I A]" ",IbV + III <J

Q ~ b~

{~b}b, II Ai" ",IbV + III (2)
fi

!;;; skip

In the case where b is false, we test the value of as(j -+- 1) - if it is equal to x,
we set b to true, and, if not, we move on to test the next value.

(2)~ b,[(~ 3i,Li.",i~x)Ai"",IbV+l]1

<::
;f a,(j +[~ ~r-;j. a" = x]

b, i"" ,IUV+1J <J

a8(j + 1) =- x

oa'(j+[I~~~;-7j.a,;=x]
b, i"" ,IUV+l] (3)

all(} -+- 1) ! x

fi

~ b:== true

(3) <:: skip

Collecting the code from the development tree gives the fol(owrng program:

var j.

b,j := false, 0;

doj =1= rt----+

if b ----+ skip

O...,b ----+if a.'l(j+l)=x ---+b:=true

D a.'l(j + 1) ! x ---+ skip

6

6;

j := j -+- I

ad

It is certainly not the most efficient code to solve this problem - it would
dearly be better to 'drop out' of the loop as soon as an occurrence of x is found
- but it is correct! In Section 3.3, we give a milch simpler and more efficient
solution to a very similar probLem, using the loop/exit/end construct defined
there.

14 2.5. COf'lCLtTS[(J.'\i

2.5 Conclusion

In this chapter, we have given a brief introduction to the refinement calculus: we
have described the basic constructs of the language and given their semantics
in terms of Dijkstra·s weakest precondition. The chapter concluded with a
discnssion of some lIlore advanced features of the calculus and th(' devdopment
of a simple program.

-
-

Chapter 3

Adding simple exceptions to the
refinement calculus

In this chapter, we show how a form of exception mechanism call be added to the
refinement calculus. It is deliberately not a complex Illpchanism: our ronC<'rn is
to discover, in the simplest possible context. what additional semantic;", notions
are needed for exceptions. and to give a mechanism which can be later \}f' m,ed
to model the more sophisticated exceptlon mechanisms that arc found in real
programming languages

We start with an examination of the need for exceptions in programming lan
guages. Having com'jured ourselves that we are not chasing a complete red
herring, we show how to add a very simple exit mechanism to the refinement
calculus. This mechanism is based on the distinction between normal and ex
ceptional termination: in addit.ion to tenninating normally, certain program
Construct.s are now also permitted to terminate exceptionally. VIi'c propose some
algebraic laws for the new constructs, using our intuition about their behaviour
to guide us. Section 3.3 shows how to deal with recursion in our extended lan
guage, giving a law for iteration and proposing a loop/exit/end construction.
The last section of this chapter gives a formal basis to the previous work. In it,
we extend Dijkstra's weakest precondition semantics to cover predicate tranS
formers wbich take more than one postcondition as arguments -- we need I.wo
postconditions, to describe conditions for normal and exceptional termination.
Given this semantic framework, we are then able to justify tbe laws proposed
earlier, both the simple ones and those involving recursion.

In the next chapter, we will extend t.bis scbeme to deal with nampd exceptions,
and the association of program fragments witb those exceptions.

16

17 3.1. THE NEED FOR EXCEPTIONS

3.1 The need for exceptions

Interest in exception handling as a concept in progranuning language design
arose in the early 1970s out of the increasing realisation of the importance of
abstraction and modularity. Language designers wanted to allow programmers
to write 'robust software' which would continue to function (or at least to
behave predictably) under whatever circumstances it might be used. As larger
programs were written, often consisting of many levels of procedure call, it
became important to specify the precise effect of a procedure. Bnt when things
'go wrong' -- there is an arithmetic overflow or a subscript out of range, for
instance - there is the question of who is ill the best position to decide on the
appropriate recovery action: is it the writer of the procedure which has run into
problems, or the caller of that procedure? Parnas noted [51] that it has to be the
caller, and that the possibility (however remote) of such errors wa,<; an important
part of the procedure's interface. It is not difficult to appreciate that a condition
such as not finding a particular valne while searching an array might be an error
in some circumstances, and expected in others: the appropriate action in the
two cases could be very different. IT exceptions are not used. then either the
invoking procedure has to pass more information to the invoked procedure to
enable it to interpret the 'error' correctly, or the invoking procedure needs t.o
include code aronod each invocation to ensure that inputs are ill the required
range and so on. Bnt these checks may also be carried out ill the invoked
procedure, or they may more easily be performed there, and in an}' ca,<;e, certain
exceptional states (for instance, lack of resources) may be impossible to detect
prior to the invocation. Thus exceptions can be seen as conditions detected
while a procedure is being performed that need to be brought to the attention
of the invoker of the procedure, so that appropriate action can be taken. The
use of exceptions is one way to generalise an operation: by ~pecifying that
under certain circumstances an exception will be raised, rather than leaving the
operation undefined, the programmer can make the procedure more generally
useful.

Goodenough [20] has identified three potential uses for exceptions:

• to deal with impending failure;

• to give additional i.nformation about a valid result; and

• to monitor the progress of an operation.

An invoked procedure may 'fail' in one of two ways: on its domain or on its
range. Domain failures occur when the inputs are outside the precondition of
the procednre, while range failures are caused by the procedure's inability to
achieve its postcondition. This may be because of the failure of some lower-level
component, or it may be a problem with resource depletion, for instance. The
exception mechanism that we introduce below is chiefly concerned with the use
of exceptions for notification of failure.

18 3.2. SYNTAX FOR EXCEPTIONS

Goodenough's other potential uses for exceptions are perhaps not ~o common.
One could imagine a browsing operation on a sequential data structnre', which.
at the samf' time as returning the final element, gave the user a warning that
there were no more elements to be retrieved, thus saving a subsequent browse
which was doomed to failure. Except,ions could be used to give this sort of addi
tional information aboot valid results of an operation. It would also be possible
to use exceptions to monitor an operation, perhaps by writing a message to
the console e.xplaining how thE' operation is progressing - for iO:'itance. what
percentage of a 5earch has been complet.ed -- and enquiring whether the uSr'r

wants to continue.

One of the reasons that we concentratl:' on the first of Goodenough's uses for
exceptions is that it fits most easily with our model of exceptiou handling: in
designing an exception mechanism, there is a fundamental choice between the
resumption model and the termination model. The question that distinguish('s
between thes£> two models is 'Does the raiser of an exception continue to exist
aft.er the exception has been raispd?' In the resumption model, the answ(~r is
yes, and it is possiblp that whateyer code handles the exception might solve th('
problem and return coutrol to the point where the exception was raised. In the
termination model. it is assumed that it will not he worth returning to the point
of raising the exception, and so the whole procedure is terminated. The choice
between the two models is a balance between expressive power and simplicity
in the semantics. Although thr resumption model is more complex, leading
to tomplications in the relationships between procedures 1 and the spedfication
of procedures, it seems to offer a more general approach. However, Liskov
and Snyder [31, Section Vj claim tbat the termination model, because of its
simplicity, is preferable to the resumption model, provided -- and thb is an
important proviso -- that it supplies 'adeqnate expressive power'. They go on
to discuss situations that arc 'handled awkwardly' by the termination model and
'simply' by tbE' resumption model, and claim that such situations do not arise
frequently in practice. Following their lead from the design of th(' exception
handling mechanism in CLL", we usp a mechanism based on the termination
model.

3.2 Syntax for exceptions

In order to be able to develop programs with exceptions, we need to extend the
language of the refinement calculus. The main change is to alter the specifica
tion statement, but Yr'€ will later define some other useful additional notation.

lNonnally, ignoring rocursion, a caJling procedure is dependent on a procedure which it
calls, relying on it to perform some computation. However, in the resumptiou model, the
calling procedure and the raiser of the exception are mutuaJly dependent: the caller depends
on t.he exception rai!ler in the nonnal way, bm the exception raiser also depends on the
hOUldler, which is part of the calHng procedure, to perform some action when a.n exception is
raised

19 32. SYNTAX FOR EXCEPTIONS

The exceptional specification statement

Our first addition to traditional refinement calculus notation involves a gen
eralisation of the notion of the postcondition of an operation. Since we are
considering exceptional behaviour, it is no longer enough to cornider a single
postcondition for an operation to represent the condition which must hold when
the operation terminates. Instead, we consider two postconditions - onl? for
normal termination and one for exceptional termination. We therefDre ne-ed to
extend the specification statement. In the simple form of the refinement cal
culus, without exceptions,. the specification statement contains a precondition
and a single postcondition. We now consider a specification stal,ement with
a precondition and a pair of postcouditions - one for normal, and one for
exceptional behaviour. Thus we write

W • la, ~) ,]

for a specification which, when 0: is initially true, is guaranteed either

• to terminate normally, satisfying j3; or

• to temunate exceptionally, satisfying ,.

As before, only variables in the frame w may be changed. All logical connectives
are assumed to bind more tightly than >.

The formal semantics of this exceptional specification statement will be given
in Section 3.4, when we have introduced the extended version of wp which is
necessary to deal with exceptional termination. In fact, our extension of the
specification sta.tement arises naturally from the extension of the wp predicate
transformer.

The connection with the original specification statement, which has only a single
postcondition, is given by taking fabe as the exceptional postcondition:

W. [a,~J ~ w. la,~) /alaeJ .

In the same way that skip, abort and magic are special Ca.<ies of the tra.di~

tional specification statement, there are two special cases of the exceptional
specification statement. The more important is obtained by taking an empty
frame, with true a.<i the precondition and exceptional postcondition, and false
as the normal postcondition:

exit == : [fabe > trueJ

(As is usual in the refinement calculus, the true precondition ha.s been omitted.)
Execution of exit always causes exceptional tennination, with no change to any
variable.

The second special case of the exceptional specification is obtained by taking
true as the precondition and both of the postconditiorn;. This statement does

20 3.2. SYNTAX FOR EXCEPTIONS

not seem suffiCIently useful to require a name, but it can easily 1)(' expressed as
a nondeterministic choice beh'ieen skip and exit:

w: [true, true> true} = skip Uexit

This statement is always guaranteed to terminate, but that termination may
be normal or exceptionaL

The final piece of llotation that we need at present is the exception block. which
shows t.he exrent of the scope of an exceptional termination. For inst.allCC. all
exi.t occurring inside a pair of block bracket.s [] causes coutrol to be passf'd
to the statement following the closing bracket. The laws for introducing blocks
will show that they can be nested but. lIOt. otherwise overlapping.

Simple laws

We can immediately propose .'iomf' simple algebraic lav.'s which show how thc~c

new language constructs should intl'ract. Tllese law:; will t)(~ proved sound lat~L

when we have set up the semantics for exceptions.

Law 3.1 program aftrr exit

A program following exit has no effect.

exit; aaa = exit

(Equalit.y of programs means semantic eqnivalence, tha.t ji). mutual refine

ment.)

Law 3.2 exit ending block

An exi.t at the end of an exception block has no effect.

[aaa; exit] == ~aaa]

Law 3.3 exception-free block

Exception blocks have no effect on exception-free programs.

[aaa] == aaa proVIded aaa ill aception-jree

Section 3.4 cont.ains a weakest prwolldition rllaracterisation of the idea of a
program being exception-free, but for now we can think of it as "syntactically
without occurrences of exits or specification statements with exceptional post
conditions" .

With these three laws alone, and the usual laws of the refinement calculus, we
can show the equivalence of some simple code fragments. For instance,

if Cl then aaa 6 2 ,

21 3.2. SYNT.4X FOR EXCEPTIONS

can be shown to be equivalent to the following, which is often used when aaa
is long, and 0: tests for some error condition:

[if -'0: then exit ft; aaa]

(The equivalence only holds when aaa is exception-free.) Although th€ following
algebraic derivation may seem daunting in length for an essentially simple result,
we set it out in full simply to illustrate clearly the nature of such reasoning.

if 0: then aaa ft

=: "exception-free block 3.3, provided aaa is exception-frce"

[if 0: then aaa 6]
= "exit ending block 3.2"

[if 0: then aaa 6; exit]

= "definition ofiC..then..6"

[ifo,aaa
U -'0: -t skip
fl

exit

=: "distribution of ; exit into if"

[if 0: --t aaa; exit

o -'0 --t skip; exit

fl

=: "skip left identity of; and program after e:nt 3.1"

[if 0, skip; aaa; exit
U -'0: --t exit; aaa; exit
fl

= "distribution out of if "

[if 0:, skip

o "'0:, exit
fl;

aaa; exit

= "definition of if.. then..fi and ent ending block 3.2"

if "'0: then exit fi.;

aaa

J
We have thus shown the eqnivalence as programs of

if 0: then aaa fi.

2An ahemative nOlation for it 01 --. CllI.lI. ~ -'01 --. skip ft

22 ,,2. SYNTAX FOR EXCEPTIONS

and

n if,u then exit fi: aaa]

nsing only the Ijirnple equivalrmce~ of La.ws 3.1-3.3.

In Spction 3,2 WP will be able tn show a much shorter derivation of t.he same
a·sult.

Further development laws

The laws giwII in tlw pre\"ious section are clearly not powerful enough to allow
us to make' all the development. steps WE' would like. In partitular. thl?Y are
all equations, whereas we would expect some laws wbich actuall~' involve re
finements; and there is nO law for introducing exceptions into a program, other
thaJL with an exit right at the f'lld of ,Ill exception block.

The first additional law that we 00\\" give allows us to convert a traditional
specification statement into an exceptional one:

Law 3.4 e:r:ccptwnal specijicatiun

An except.iollalspeeification can be formed by duplicating the postcondi
tion of a flon-exceptional specification statement., and surrounding it with
an exception block.

w , [a. Bl ~ [w , [a, iJ > iJ]]

Vle can refine a specification statement by discarding either the exceptional or
the normal branr.h.

Law 3.5 take nonnal brunch

A specification statement can be implemented by taking thp normal
branch unconditionally.

w , [a,iJ > "II c; w ,[a,BI

Law 3.6 take exceptional brunch

A specification statement can be implemented by achieving Ih£' excep
tional postcondition, and then performing an exi1:.

w: [a,13 >...,.J ~ w: [a,...,.]; exit

It is convenient to introdnce at this stage a further abbreviation which will
make the layout of developments slightly easier: for programs /laa and bbb, we
write

aaa > bbb

23 3.2. SYNTAX FOR EXCEPTIONS

(pronounced "aaa else bbb") as a shorthand for

aaa ~ (bbb; exit)

aaa > bbb is a specification of a computation which, if it terminates normally.
will have executed aaa; if it tenninates exceptionally. it will have executed bbb.
The choice between the two is arbitrary and unpredictable. This notatiou allows
us to separate the normal and exceptional behaviours in a development, and
therefore to continue their development separately. The relationship between
this new construct and the specification statement is very simple:

Law 3.7 else notation

Specifications and the 'else' notation

w , la, ~ > ,J ~ w , la, ~J > w , la, ,J

We can immediately give a few simple laws for the new 'else' construct; although
we do \lot prove their soundness here, such proofs are easy exerCISes given the
semantics of Section 3.4.

Law 3.8 take normal bmnch

An 'else' construct can be implemented by taking the first branch uncon
ditionally.

aaa) bbb l;;; aaa

Law 3.9 take exceptional bmnch

An 'else' construct can be implemented by taking the second branch un
conditionally, followed by an exit.

aaa > bbb l;;; bbb; exit

Law 3.10 choice-else

A nondeterministic choice between two programs which do not contain
exceptions is equivalent to an exception block containing the programs as
branches of an 'else' construct.

aaa 0 bbb = [aaa > bbb] provided aaa and bbb are exception-free

Law 3.11 introduce trivial else

An exit-exception pair can be introduced by offering the trivial choice
between equal alternatives (corollary to choice-else 3.10).

aaa == [aaa > aaa] provided aaa is exception-free

24 3.2. SY1VTAX FOR EXCEPTIONS

We see that choice-el.'Je 3.10 and introduce trivial else 3.11 are the crucial laws
which. allow us to introduce the else construct (and thus the possibility of an
exception) into a program which previollsly did uot contain one.

The laws above are reasonably straightforward. Since 'taking an exit' alters
control flow in a program, however, we might expect the interaction of exit and
sequential composition to be less ohviolls:

Law 3.12~eq1Jenhal compoilitlOn

Distribute sequential compo.<;ition through 'else'.

aaa :> bbb
<;;
(cn: > bbb) , (ddd:> eee) provided aaa ~ ece; ddd

and bbb ~ Gee; eee

ThE' law is informa.lly justified hy examining the thn:e possible behaviours of
t.he right-hand side: the first lS that ea: dl1d t.erminates normally, and relines
t.he normal termination path aao: of the left-hand side; in the second we find
that. bhb terminates exceptionally, and equals the exceptional termination path
of thE' left-hand side; finally ecc; ece terminates exceptionally, and refine.~ the
exceptional termination path of the left-hand side.

\Ve can also give a somewhat simpler law for introducing a sE'quentiai compo
sition into a specification statement.:

Law 3.13 .'Jeque71tial composition

Splitting a specification with sequential composition.

w, la,~ > ,]
<;;
w, la,' > ,]
w, I',~ > ,I

We can now return t.o the example of the previous section. Use of t.he else
construct allows a much more concise development.

if Q then aaa 6.

== "definition of if..then. 6., and removing if..f1."

Q -t aaa

U""0: -t skip

== "choice-else 3.10, assuming aaa is exception-free"

o -t aaa :> ""0 -t skip (1)

3.3. RECURSION	 2.\

(1)	 ~ "sequential r..ompositian 3.12, justification below"

(0 ~ skip> -'u --+ skip): (2)

/lllil > magic (3)

(2)	 ~ "expand >, definition of if"then..fi"

if ---a then exit fi

(3)	 ~ "take normal branch 3.8"

aaa

That concludes the development; collecting the code gives

Kif ""'0 then exit 6.; aaa]

as before.

The two side-conditions for the application of .,equential composition 3.12 are
satisfied as follows: we require first that {} ~ /lila!; (u --+ skip), /lila (easily
checked with wp; alternatively viewed as a sort of associativity Df --+ and ;).
We also require that,a --+ skip ~ a --+ skip; magic (uot so obvious, but in
fact the right-hand side simplifies to magic on its own).

This development is much shorter than the previous versiou, but. it should be
noted that we have only proVf~d refinement, not equality as befoI'€_ Notice also
that magic has appeared in our development, though we have not needed to
implement it (fortunately); we ha\'e used take normal branch 3.8, finally, to
discacd it by choosing the left-hand side of the 'else' construct.

3.3 Recursion

The laws presented above can - in principle - convert any 'finit.ary' program
that contains exception5 into an equivalent program that is exception-free. The
same is not true for ('infinitary') programs which contain recursion, either ex
plicitly or implicitly.

Explicit recursion is usually found in the form of recursive procedure calls, in
whicb a given procedure A, 5ay, contains a call to the same A within it (For
simplicity, we consider only the case where there are no parameters.) These two
notions - recursion and procedure call -- are not inextricably linked however;
we separate them by using the recursion block

mu X • P(X) um ,

thus freeing us to deal with recursion on its own. Further details can be found
in [44].

The meaning of the above is the least fixed point of the program-to-program
fundion 'P. (For an example, see the treatment of loops below.) More precisely,
we consider P to have type PT ----+ PT, and to be monotonic. The type PT,

26 3.3. RECVRSIO.~r

in turn, is P S --'I P S: predicate transformers taking sets of (final) states to
~ets of (initial) states. The set S of states is fixed throughoUt the discussion,
but in practice would be large enough to contain the standard and constructed
types. Recursive procedures are no longer entities to be distinguished in their
own right; but one might say that a procedure was recursi....e if its body werE' a
recursion block.

ImpliCIt recursion is that introduced by iteration. The do ...od coustruction in
the guarded conunand language is ~ for us - defined as followl:l:

do G --+ body od

is equivalent to the following recursion block (in which D is a fresh identifier):

muD_

ie G then body; D 6

urn

The body of an iteration can bE' any program at all. For instance, takiug a.

rather extreme Ca...se. it might be magic, so we could have an iteration

do true --'I magic od

This program can be simplified as follows:

do tme --+ magic od

= "unwinding the recursive definition oncE'''

it tme then (magic; do true --+ magic od) fi

= "removing it true"

magic; do tme --+ magic od

== "magic absorptive"

magic

Thus magic even 'jumps out of infinite loops'.

Refining to recursion

In order for recursion to appear in a program whose specification did not contain
it, there must be a refiuement step whose right-hand side introduces a recnrsion
block. Temporarily ignoring the matter of termination, a law to justify such a
step might be

U aaa!; P(aaa), then aaa!;;: rou D. P(D) urn. ,

given some monotonic program-to-prograrn function p.

We can take terminatiou roto account - as we must, to avoid the absurd
'everything is refined by rou D • D wn' by a small amount of trickery

27 3.3. RECURSION

Law 3.14

involving logical constants, assnmptions, and a variant function. (These issues
are explained in more detail in Section 2.3 and [44].)

The (non-exceptional) law for recursion introduction [44J is as follows:

reCl.l.rlllOn

Let e be an integer-valued expression, V a logical constant, aaa a pro
gram, and P a monotonic program-lo-program function, and assume that
neither aaa nor P contains V. Then if

{e = V}aaa ~ PUO ~ e < V}aaa)

we can conclude

aaa ~ mu D. P(D) urn

In practice, P will always he built from the constructs of the language, and so
it is guaranteed to he a monotonic function since the constructs themselves are
monotonic.

The variant function for a recursion is an integer expression that is bounded
below, yet is strictly decreased on each recnrsive call. Although th~requirempnt

for the variant to be integer-valued is sufficient for our needs, it. is stronger t.han
necessary: there exist programs which need ordinal-valued variants - see, for
example, [12]. We show in in Section 3.4 below that the abov~ law remains
valid in the presence of exceptions - and the proof uses transfinite induction.
For now we proceed, on that assumption, with the presentation of recursion
and iteration.

Iteration

We recall [44, Law 5.5J that the jaw U5ed in the refinement calculus for intro
ducing iteration (without exceptions) is

W: [0,0 A---.G]
~
do G-+

w ,[G A a ,a A (0" ,< .,11

ad.

The conventional conditions for loop correctness appear in the above as fol
lows, given that the invariant is 0 and the variantS is e: the invariant is true

..... L '_'_

-£.eru-~uO!l(:np,ed variables in a po:stconditioo are u!led to refer to (be values of those
va.c:iables in the initial state. They are defined in terms of logical conBtiillLS, and are a. very
convenient abbreviation for tbe sort of spedficatlonB we wish to writl'. A l'ffo-subscripted
expression, like eo here, is an abbreviation for the expre9&lon with all variable occurrences
zero-subscripted.

28 3.3. RECURSIOS

initially (indicated by the precondition of the left-hand side); its truth finally,
and the negated guard, are sufficient to establish the desired result (shown by
the postcondition of the left-hand side); the invariant is maintained by the loop
body (it appears both in the pre- and postconditious of the loop body, on the
right-hand side); the variant is strictly decreased (postcondition of the body);
the variant is bounded below (postcondition of the body).

To incorporate exceptions into the above we can show first, using the techniques
of earlier sections4 , that

(, ~ V) w , [a, a A ~G > ~l

C;
if G then

w: [a /\ G ,a /\ (0::; e < eo) > j3];
{O.$ e < V} 1l! : [a, a /\ -.G > ,6J

Ii,

which matches the condition for recursion introduction in recursion 3.14. The
proof ohhis is not complicated; rather than give it formally, however, we sketch
an argument as follows. We consider separately the two cases distinguished by
whether -.G is true initially. If -,G holds initially, the left-hand side is refined
by skip becaus(' the required postcondition of the normally-terminating branch
holds already (0 in the precondition, -,G assumed). Given -,G initially, the
right~hand side equals skip.

If G holds initially, then the right-hand side either

1. terminates normally having executed
W : [0 /\ G ,0/\ (0 ~ e < eo)]; {O ~ e < V} w: [a,o: /\ --.G]; or

2. terminates exceptionally having executed
w: [0 /\ G,o /\ (0 ~ e < eo)]; UI: [a,13]; or

3. terminates exceptionally having executed tv : [a /\ G,13].

In all three cases, the postcondition established by the right-band side is ap
propriate for the mode oftermination (as given on the left-hand side): a /\ G
normally and 13 exceptionally.

Thus we can conclude from recurS10n 3.14 that

UI: [a,a /\ -.G > 13]
C;
muD_

if G then

tv: [a /\ G ,a /\ (0 ~ e < eo) > i3]; D

6

urn ,

4We recall that the logical connectives hind more tightly than >, so, for example, the
specifica.tion stUement on the LHS of this refinement is parsed as w , [0, (0/\ -,G)) tlJ.

29 3.3. RECURSION

which gives IlS the iteration law required:

Law 3.15 IteratIOn

w:[a,QI\---.G >,8]
[;
do G --t

tv: [0: 1\ G ,0: 1\ (0 :S e < eo) > .31
od

Compared to the iteration law for the refinemeut calculusitholll exceptions,
the extended law simply contains "> {3" in hoth postconditions. It operates
analogously to the non-exceptional version if it terminates normally; however,
the loop body is provided with the possibility of exceptional termination, when
~J most be established. as demanded of the overall exceptional postcondition.
The exceptional blanch may assume (additionally) G, since the loop body would
not be exerutl'd if G were not true.

Loop / exit / end

As an application of the above, we collsider the loor/exit/end construction
found in Modula-2 (or equivalently thl:' while/break construction of C). This
is defined to be equivalent to a do ..od loop with a tnil~ guard, enclosed iII an
exception block:

loop aaa end

[do true -t aaa odD

where the aaa willusuaUy include an exit command, to ensure loop termina
tion.

\\le proceed as follows to construct a rule for introducing loop into a pro
gram; note that the (extreme) strengthening of the postcondition for the non
exceptional case to false effectively forces exceptional termination, which is the
way loop/exit/end behaves.

w, [",~l

= "application of introduce trivial else 3.11 above"

[w, ["'~ > ~ll

~ "strengthen normal postcondition"

[w , [",Ja~, > ~ll

~ "iteration 3.15"

[do true -t

W: [0: II true, 0: II (0 S e < eo) >)3]

30 3.3. RECURSIOS

od

Removing the superfluous "/\ true" gives the following law:

Law 3.16 loop mtrodlLetion

w: [a,B]
i;
loop

u' : [0: ,0: /\ (0 $. e < e{)) > ,3]

ond

Thus the task of the non-excC'ptional part of the lvop body is to maintain (}
(the invariant) while strictly decrea.sing the ,'arialJt e Oil each iteration (but. not
below 0). Since that cannot continne indefilJitdy, ev~ntuaUy the exceptional
route must be taken, after establishing ;J as the left-hand side requires.

~ote that, likf' mtmJuct' tnmal elst' 3.11, thi::. is a law which introduces <Ill

exception and a corresponding block together -- th(' extl'UT of the eXCl:ption
block is taken to bC' the loop...end block, ~o an exit in thp body of thp loolJ
will cause a jump to the botwm of the loop, just after the end statement.

Example

To show this law in action, we develop a program whirh is intl'nded to find
the index of a particularalue guarantped h.l ocrllr in an array. v...'e makl; th('
following variable declarations:

as: array [O ..N - IJ of A
11 :A

i :O.. N

The development is as follows:

•• la E a'rO .. N - 1]. a = a,['JI
~ i :=0;

•• ia E a,IL.N - 1], a = a;[']] (1)

(1) ~ "loop introduction 3.16, inyariant a E as[i .N- IJ: variant N - t"

loop

.. [IN] a E a,[i ..N - 1] _ [.]]
!. a E a,~ t.. - 1 , 10 < i $. N > a - as 1 (2)

ond

(2) ~ "el.se notation 3.7"
i: [a E a,~[i ..N - 1], a E as[i .. N - 1] /\ 10 < i $. N] (3)
~ i: [a E asli ..N - 1), a:= as[,]]; exit (4)

(3) i; a¥- as[i] -l- t := i + 1

(4) ~ a := as[iJ -) exit

31 3.4. SEMANTICS

Notice that the exceptional and the non-exceptional branche~ arll refined t.o
naked gnarded commands which, combined by Q, lead to the e:tpecr,ed alterna
tion in the loop body. The justifications for these final refinements to naked
gua.rded commands arc omitted, but they can easily be checked with wp.

\Ve can coUect the code to give:

i:= 0;
loop

a¥- as[tj-. i := i + 1

Ua == as[i]----; exit

end ,

which we may rewrit.e, using the definition of if.. then .. fi and rilles from Section
3.2. as

i:= 0;
loop

if a = asli] then exit fi ;

i:= i+l

end

3.4 Semantics

Weakest preconditions for languages with exceptions

The traditional weakest precondition technique for giving semantics to a lan
guage involves defining a function wp, which, for any stat~ml'nt aaa in the
language, returns a prcdicate-to-predicate function (a predicate transformer).
The function wp(aaa) maps a postcondition 0: to the weakest precondition (3
from which aaa is guaranteed to terminate satisfying 0:. For example, the
weakest precondition of the simple asSignment statement x := E is given by

wp(" 0= E,a) =nixIE]

This metbod of giving semantics for languages without exceptions is not suffi
ciently powerful for our needs, because we ha\"e to distinguish between norma]
and exceptional t.ermination. Following Back [6] and Manasse and Nelson \37]'
we therefore int.roduce a predicate transformer which is a function of two argu
ments rather than the usual one. We use the notation

tql(aaa,1I,t)

where aaa is a program, and 11 and E are predicates, to denote

the weakest precondition from which aaa is guaranteed either:

• to terminate normally satisfying 11 (for normal); or

32 3A. SEMANTICS

Syntax Semantics
x:- E
aaa; bbb
if(Ui-a,....., ana,)fi

mu aaa _ P(aaa) urn

w,[a,~>,)

aaa U bbb
a""" aaa

wp(x:- E,v,f) _ v[x\E]
wp(aaa; bbb,v,f) = wp(aaa,wp(bbb V,f),f)
wp(if(Ui _ a,""" aaa,)fi,v,f) =

tV i_a;) /\ (/\ i_a. :::;} wp(aaa" v, 1':))
given by least fixed point: see below
wp(w: [0,1'3:> ..."J,V,f) =

01\ (Vw _ (J => v) /\ (Vw _...,,::::} f)
wp(aaaahbb,v,() = wp(aaa,v,f) /\ wp(bbb,v.f)
wp(o. -; aaa,v,f") =a=> wp(aaa,v.€)

Figure 3.1: Weakest precoudition semantics

_ to terminate exceptionally satisfying f (for exceptional).

Now we can give a compositional semantics to our language, UShlg this notation.
For any construct which was in th(' language before w(' a.dded exits, S<tY]JPP,

the corresponding new weakest precondition definition is giyen by

Wp(ppp,V,f) ~ wp(ppp,v)

(where the wp on the left is our ue", version, and the wp on the right is the stan
dard Dijkstra wp). That is because the 'original' constructs tC'rminatlO' normallr
by dlO'finition - they contain no exits. Sillce they cannot terminate exception
ally, the right-hand side is independent of t.. For instance, the commands skip
and abort are given meaning t.hus:

wp(skip,V,f) = v

wp(abort, v, () = false

The other constructs of the language (apart from recursion) have defining eqna
bans very similar to the usual (Dijkstra) wp equations: these are given ill Figure
3,1.

Notice that, in Figure .J.l, we have given a wp definition to the exceptional
specification statement w [a, {3 :> ..."J. As we remarked earlier, the simple
specification statement is a special case:

w, [a,~) ~ w, [a,~ > f.",)

We can therefore calculate its weakest precondition:

wp(w ,[a,~),v,,)

~ wp(w, [a,~ > f."'], v,,)
= a 1\ (Vw _ {3 =>- v) 1\ (Vw _faye => f)

=01\ ('v'w_{3=>-v) ,

which agrees with the definition in {42].

33 3.4. SEMANTICS

More interesting are the equations for the exit command a.nd thr exception
block:

wp(exit, v, E) = (':
wp([aaa],v,t) == wp(aaa,v,v)

The equa.tion for the exception block reflects the fact that any exit inside aaa
will be caught by the exception block.

U !:ling these weakest. precondition definitions, we can verify the laws which wefe
given earlier, and justifiE>d at that stage only in terms or the informal operational
semantics. For iustance, e.nt ending block 3.2 states

IT a.aa; exit n= IT aaa]

Taking weakest preconditions, we find

wp([aaa; exit],1/, f)

= wp(aau; exit.v,v)

= wp(aaa,wp(exit,v,v),v)

== wp(aaa,l/,v)

== wp([aaa 1/, /.I. E)

Many of the laws given earlier ha"ve side-conditions stating that certain compo
nents must be exit-free, where the obvious test for exit-freeness is syntactic.
But we can be more precise if we use a weakest precondition characterisation
of the concept:

aaa is exit-free iff wp(aaa, v, f) = wp(aaa, 1I, 0<:') for any f, ('

Now we can verify choicr.-el5r'~ 3.10, for instance. We need to show that

a.aa.~bbb=ffaaa>bbb]

givt~n that aaa and bbb are both exit-free. Taking the wPi'tkesl precondition on
tbe right, we obtain

wp{[aaa > bbb],v,o<:)

= wp(aaa > bbb,v,v)

= wp(aaa ~ (bbb; exit),lI,lI)

= wp(aaa,v.v) 1\ wp(bbb; exit,lI,lI)

= wp(aaa,v,v) 1\ wp(bbb, wp(exit,lI,lI), 1I)

= wp(aaa, v, 1I) 1\ wp(bbb, 1I, 1I)

= "since aaa and bbb are both exit-free"

wp(aaa,v,f) 1\ wp(bbb,1I, 0<:)

=wp(aaa 0 bbb,v,o<:)

Many ofthe otber laws which were given earlier involve refinements, rather than
just equalities. In order to verify these laws, we need a weakest precondition
definition of refinement. Following [44] and other writers on the refinement
calculus, our definition is a.s follows:

3.4. SEMANTICS 3'

For any programs aaa and obO, we say that aaa is refined by bbb,
written aaa i; bbb, exactly when for all postconditions II and f",

111p(aaa, 1I,{) ==> wp(bbb,lI,t)

Now we can prove some of the laws that were given earlier. For instance, to
prow Law 3.6, we must show that

w: [a,;] > -rJ ~ UJ: [a. I]; exit

Taking the weakest precondition of the lrft-hand side, we get

0: 1\ (Vw. ,3 ==> v) 1\ (Vw -1':::} f)

while the right-hand side gives

wp(w: [0:,1'], wp{exit, lI,f),f)

:::: 0: 1\ (V Ill. '" ==> wp(exit II, f))

= 0: 1\ ('lite. ~r ==> f)

So the weakf'st precondition of the left-hand side implies the weake~;;t precondi
tion of t.he right-hand side, a5 reqnin>d.

A more complicated eXdmple is giVC'1l b:.' Law 3.12. for which we must show
that

aaa > bbb

~
(cce> bbb); (ddd> eee)

when we know that

aaa !;;" a~; dtid

and bbb ~ ccc; fa

In terms of weakest preconditions, these pnwisos say

wp(aaa,lI,f) ~ wp(ccc; ddd,lI,f)

and wp(bbb, II, f) ~ wp(ccc; eec, II, f)

for all postconditions II and f.

Following a similar argument to the proof of ChOice.~e.lse 3.10 above,e can take
the weakest precondition of the left-hand side of this law to get

wp{ aaa > bbb, II, c)

:= wp(aaa a (bbb; exit),lI,f)

:= wp(aaa, II, f) 1\ wp(bbb; exit, II, f)

:= wp(aaa,lI,f) 1\ wp(bbb,wp(exit,lI,f),f)

:= wp{aaa,II,f) 1\ wp(bbb,f,f)

35 3.4. SEMANTICS

The right-hand side is slightly more complicated:

wp({ccc> bbb): (ddd> eee),II,f)
== wp(CCc > bbb.wp(ddd > ere , lI,l), f)
== wp(ccc > bbb,wp(ddd.v,f) 1\ wp(eee.t,f).f)
== wp(ccc,wp(ddd,lI,f) 1\ wp(eee,f,f),d

1\ wp(bbb,i.f)
== "by conjunctivity"

wp(ccc, wp(ddd,lI,f),f)

1\ wp(ccc, wp(eee,f,f),f)

1\ wp(bbb,f,f)

Now the first conjunct here is just wp(ccc; ddd, II, t'), and so we know that the
first, conjwlCt of the left-hand side implies this, by the side-condition. The
second conjunct is wp(eec; eee, 1", f), and we know that this is implied by the
second conjwlCt of the left-hand side, since the definition of the refinement
relation says that the implication holds for all postcondltions. and so it must
hold when we take (for both postconditions. The third conjunCi. appears on
the left-hand side in exactly the same form.

Recursion

As usual, the semantics of recursion is given by a least fixed point construction
In general, given a program-to-program function P we write Jl P for its least
fixed point, and take that to be the meaning of the syntax

muX _P(X) urn

given in Section 3.3.

Rather than proving tbe recursion law directly (Law recursion 3.14 in Sec
tion 3.3 above), we will instead give a lemma from which it is easy to derive
the law. We "'ill give an outline proof of this lemma, noting that Greek letters
denote ordinals, not predicates, for the duration of this lemma!

Recursion lemma Let an ordinal-indexed family of programs aaa.:. be such
that for any ordinal a

aaa.:. ~ P(UPII3 < a _ aaaa)

for some mOnotonic program-ta-program function P, where U denotes least
upper bound in the refinement ordering given above. Then

aaa,. ~ Jl P

for all a.

36 3..1. SEI\IANTICS

Proof outline By transfinite induction on 0:, with all three cases together:

aaa,~

~ "assumption"

P(Ut31 (3 < 0: - aaa,J)

~ "U,p monotonic; inducth'e hypothesis"

PIUJI J <0 .~P)

~ '·even when 0. :: 0"

P(~P)

= "IJ. P fix£'d point"

~P

o

Now we must show how to obtain the recursion law from this lemma.

Recursion Law (Law 3.1~)

Let e be an integer-valu£'d f'xpression, V a logical constant. aaa a pro/7am,

and P a monotonic prop;ram-to-program function, and assume that neithf>r aafl

nor P contains V. Then if

{e == V}aaa !; P({O:5 e < V}aaa)

we can conclude

aaa!;; muD_P(D)um

Proof	 Let us define a family of progra.ms aaaa by

aalla = {e == o:}aaa

We may assume from the statement of the law that. for any a,

{e == o}aaa ~ P({O:5 e < O:}(laa).

But

{0:5	 e < o}aaa

{(V J IJ < 0 • , =J)) aaa

"by wp"

(UJ I J < O' {, = J}); aaa

"left-distribution of; into U"
(UJ IJ < O' {, = Jlaaa)

(Ut31 t3 < 0 - aaaa)

So we have

aaa" ~ P(Ut31 t3 < a _ aaao)

37 3.5. CONCLUSION

as required for the recursion lemma abovC'. and we may conclude that, fOr any
G,

aaa" ~ JJ P

In other words,

{e=ct}aaa~JJP foralla

Since this holds for any ct, we conclude that aaa r; It P :limply by letting a range'
over all possible values of e permitted by our original choice of state span,' S ..5

o

3.5 Conclusion

In this chaptl:'r, we have introduced the bll.sic form of an exception mechanism
for the reHnement calculll~. The exit construct was used to distinguish between
normal and exceptional termination of a program. Some laws abont the inter~

action of exits with other constructs were given, guided initially by intuition.
Finally, a semant.ic framework was introduced, involving an extension of the
standard weakest precondition to take separate post-condit.ions for normal and
exception;,l termination. Given this framework, the laws proposed earlier werC'
proved correct, including the law for recursion.

~ln fact, we also nee<lthe I'quivalence

(V',.z,];y) (U,e2;)!;Y_

Chapter 4

Exceptions on a larger scale

The simple exception mechan~'lm introduced in the last chapter is dearly not
powerful enough to be u~ed it! any serious programming endt:'avouT. However, it
is not too difficult to combine the idea of exits with t.he pcuceduTf' mechanism
already in the language. to provide 0'1 flexible and powerful exception-handliug
system. This is the concern of this chapter. Aftm describing how to deal with
named exits and exception-handling routinps, we propose and prove some laws
for the new constructs, and show how to use them in a sample development.

The exception-handling system introduced here will be used in Chapter 8 for the
development of some more significant programs, which use a library of abstract
data types.

4.1 Named exits and handling routines

There are two reasons why we decided to start our investigation of exceptions in
the previous chapter with a very simple scheme of exits and exception blocks:
the first is that it is obviously better to understand a simple scheme before
moving on to consider anything more complex. The second reason concerns
the sheer variety or mechanisms for generating exceptions and handling them
which are found in programming languages. By taking an abstract view and
considering only the contrast between normal and exceptional termination and
the interrupted flow of control given by the exit construct, we are left with a
mechanism which has no bias towards any particular programming language.
We can develop this simple scheme in various ways to produce mechanisms
that are easy to translate into different programming languages. We will show

38

39 4.1. NAMED EXITS AND HANDLING ROUTINES

one such development in this chapter, and the translation into a programming
language will come in Chapter 8.

There are two important featurt!S that are missing in the mechanism proposed
in the previolls chapter: the ability to distinguish between 'different" exceptions,
and the ability to Msociate code fragments with exceptions. In any reasonably
sized system, there ",-ill be several ways in which exceptions can be rai~ed.

Indeed, within one procedure, it is quite possible that several 'errors' might
occur. For example, if we model a bounded map a.'l a partial function from
Keys to Values.

map: Key --+--1 Value

inv #map S; max,

then an attempt to add a new pair to the map might be modelled as follows:

procedure add (value k : Key, v : Value) ~

k¢dommap)]map. # ,map = maPoU{k t'} (oj
[(map < max

When we make this procedure robust, by specifying the behaviour when the
preconditioll of (.) is not met, we would like to be able to distinguish be
tween the case where there is alrl?ady a value stored under the given key
(k E dom map) and the case wherl? the map has already reached its maxi
mum size (#map = max). Without this distinction, we cannot give useful
error mes.~age~, for instance.

It. can also be useful to associate code fragments with particular exceptions.
In the ca.~l? abov(>. we might just want to give the user an informative error
ml?ssage, or Wl? might want to attl?mpt some sort of 'clean-up' artion - if the
exception has been raised in the middle of a sequence of operations, some of the
operations may need to have their effect reversed in order to resl[)re the system
to a reasonable state.

The mechanism we propose i.nvolves the use a construct already In the language
- procedures. Since procedures arl? already a method for gl\ing names to
program fragment.s, it seem uatural to combine them w'ith exits to gie an
exception-handling mechanism. In order to declare a bandler, we write

handler H :::: hhh

as an abbreviation for

procedure H :::: hhh; exit

In order to distinguish, for tbe user, the procedures which are exception-handlers
from the standard procedures, we write

raise H

which is simply an abbreviation for a call of procedure H. Thus. when exception
H is raised, tbe associated code hhh is executed, and contwl passes to the

42 LAWS FOR RAISE AND HANDLER 40

end of the smallest enclosing exception block.1 Clearly, this sl:heme can deal
v.ith multiple exceptions without any further complication, simply by declaring
several handlers. For instance, a user of the add procedure giveu above might
declare a handler for Alf"e.adyThere (to be executed when add is i'll\'oked with
k E dam map) and a handler for Full (for when #map = mflX).

Another addIltage of the scheme is that it enables the declaration of the handler
to be separated from the raising of the exception, even to the extent that they
might be the responsibility of different developers. In the case study which
inspired this work .- the use of a library of abstract data types - it will he
seen (in Chapter 8) that. many of the library operations have specifications that
include the raisiug of exceptions: the v.Titer of these specifications, and their
implementor, can have no idea of what will bt' the most appropriate action to he
taken when a specific exception is raised. It. is the developer of the application
which uses the lihrary who has this knowledge, and it is his responsibility to
declare the handlers for the exception.

4.2 Laws for raise and handler

As usual with new constructs, we propose some laws about the constructs which
will be useful when carrying out developments. These laws can b~ proved correct.
using the propert.ies of exceptions and procedures. In all of the laws. we assume
that the name chosen for a handler is fresh - suitabl~ renaming can bC! used,
if necessary.

The first two laws are simply ~llca.psula.tions of the definitions above, so that
we can refer to them:

Law 4.1 handler definition

A declaration

bandler H :2 hhh

is an abbreviation for

procedure H ~ hhhj exit

Law 4.2 mise definition

Raising an exception

raise H

is an abbreviation for

H,

a call of procedure H.

lThat IS, the smalle'!l exception block e/lcl~j/lg the pOint at whiclJ H IS raised, /lot the
point at which il is declared.

41 4.2. LAWS FOR RAISE AND HANDLER

We need to show bow to introduce handlers into a program. A sequential com
position of two exit-free programs can be implemented by turning t.he second
half of thE' eomposition into an exception-handler:

Law 4.3 seqtjf~ntl.al compositIon and raise

aaa; bbb
IT handler H == bbb •

aaa: raise H
provided aaa and bbb are exit-free

Proof

RHS [handler H == bbb •
aaa; raise H

i
"Copy rule, mise definition 4.2"

IT aaa; bbb; exit]

"e:nt ending block 3.2"

IT (Jaa; bbb]

"exception-free block 3.3"

aaG: bb/!

LHS

o

If a program already contains aaa follow('d by exjt, we ran replace this with
raise H:

Law 4.4 introduce handler

IT P(aaa; exit)]
IT handler H ~ aaa _

P(raise H)

The validity of this law follows immediately from the COP)' Rnle.

A program containing an else constrnct can be refined to a choice with a raise
in one branch:

Law 4.5 introduce handler

nP(aaa > (bbb; co,)) I
[handler H == ccc •

P(aaa 0 (bbb; raise H))

42 4.3. A DEVELOPMENT USING N.4MED EXiTS

In this C3:3e, the proof follows from the definition of > and mtroduce handler
4.4.

If aaa and bbb are exit-free, then a nondeterministic choice between them can
be implemented by an exception block with aall as ODe branch of the choice,
and raise H as the other branch, if the code associated with exception H i~

bbb,

Law 4.6 introduce hr17ldler to chaif/'

aaa U bbb

[handler H ::: bbb •

aaa

U raise H

pmvided aaa (lnd bbb are exit.jm;

Proof

LHS ==	 aaa U bbb

"chuice-else 3.llY'

[aaa>bbb]

"intmduce handler 4.5"

[handler H =:; bbb •

aaa Uraise H

o

We can always add mOfe code after a raise construct, since it will never be
executed.

Law 4.7 mi.'le-.'lequential composition

raise H

raise H, aaa

The proof of this is immediate from program after exit 3.1, and the definition
of raise.

4.3 A development using named exits

In order to show some of the rules from the previous section in use, and in order
to give a flavour of the developments which are possible using named exceptions

43 4.3. A DEVELOPMENT USING N.4MED RUTS

and error-handling routines, we work our way through a small example in this
section. We will need some mdre laws as we progress.

Our task seems initially to be very simple: we havE' to find t.he sum of three
nUITlhers

sum := a + b + c

The difficulty occurs because we will not be abl(' to use the buiJt.m addition
operation of the programming language, but will have to use tLt following
procedure instead. which in turn uses the type valid:

L'ulid ~ - maxint., maxint

procedure add (value i,j: N,result s: N):=

i,},i+jEl'ulid ---) s:=I+j

, ~ i,J E ,alid) • 0 fi
U i + j " l'ulid ---) raise veT" ow

i ¢ valid V •

Q j ¢ valid) ---) raise Badlnput

The add procedure recognises the possibility of two forms of error: if either
of the input numbers is not a valid integer (it is not between -maxint and
+ maxint) , then the exception Barilnput is raised. If both inpnts are valid, but
th~ir sum is not, then Overflow is raised. Only if both inputs and their sum
are valid is the result parameter s set to the sum of the inputs.

Gi ven that we are using this procedure, we need to adjust our specificat.ion
slightly to reflect the fact that we can only achieve our goal if certain condition!;
are met.

Spec :2: s·um, r : [OK V B V OV] ,

where we have the following definitions:

a, b, , E valid)

OK :2: a + b, a + b + c E val~d

sum=a+b+c

(

r:::: Ok

ra ¢ valid V J
b rt valid V

B :2: c rt valid)

(sum:::: 0

r:::: Bad

a, b, , E val,d J

(a + b rt valid V

OV :2: a + b + c ~ valid)

(
 3um :::: mllXmt.

r:::: Over

If we cannot use add to obtain the sum, tben we set the return code r accord
ingly, and set sum to either 0 or maxint.

44 4.3. A DEVELOPMENT USING N.HlED EXITS

\\-'bile thi~ example might seem a little contrived at first sight, it is not really:
when we carry out developments which ",ill eventually use the a.ddition operator
of a real machine, we often cheat because we assume that the addition will work
correctly. In fact, its behaviour is very similar to that of the add procrdure
above - it can overflow or behave strangely if its inputs are 'out of raIlgp'.2

The obvious way to implement Spec is to use two calls of add, with appro
priate handlers for Overflow and Badlnput. The target of our development is
something like

[handler Overflow =- stlm := mannt; r := Over
Badlnput :: sum:= 0; r :== Bad.

add(a, b, sum);
add(sum. c, .n~m);

r':= Ok

The problems ItOW it; to Iwmipulate Spec until it contains two (:QIlserulivE' copiE's
of add with appropriat(> substitutions. It is not difficult to split OK into a
sequential romposition, but we alflo need to distributt' the relevant partb of TJ
and OV into the corrt::ct parts of tbe composition

The first additional law t.hat WP need, easily proved by v;p calculation. helps tll
turn a specification with a postcondition that is a disjunction into ;Ul t::xception
block, with branches corresponding \.0 t.he clauses of the disjunction.

Law 4.8 di/Jjunction-else di/Jtribution

W : [0:,191 V... Vt9,.J

C;
 ~

w : [a,:JtI
)

w : [a, 192]

)

w, [o,~"J

OUf Spec is already in a suitable form to apply this law, but, before we do so,
it will be convenient to split Band OV into two further disjunctions:

(a ~ vabd V)
B= b~valid) ('~Vaiid)

/Jum=O V IJum=O
(

l' =Bad r == Bad

2Tbis is particularly true when the programming language contains ~veral forms of nnm
ber: int, longint, float, rea.! etc.

45 4,3, A DEVELOPMENT USING NAMED EXITS

a, b, C E va/;d) (a, 6, 0 E vabd ,)
QV=	 a+b~vaJi~ V a+b+c~.valtd

8um ::: max11lt 5urn == ma.:nnt
(
" = Ol'er r = Otler

We call these disjunctions Bl and B2 and QVI and OV2, respectively.

Now we can apply di.~j1Lnctton-el8e distnbution 4.8:

Spec
,<urn," [OK V (Bl V B2) V (OVI V OV2)]

sum,r: [OK V Bl V aVI V B2 V OV2]

);;;; "dl.~j1Lnct'lOn-else distriblltion 4.8"
[

.~um, r : 10K]	 ~

>
SUIll,": [BI]
>
.~1Un, r: [aVI]
>
sum, r : [B2] ,
sum, r: [OV2J

The next step is to develop the sUt,,:cessful branch into a sequential composition:

sum, r:

sum, r:~

yum, r:

a,b,cEaalid]
a+ b,a +b + c E valid

sum=a+b+c[
r = Ok

a, 6, C E aal;d]
a + b, a + b + c E valid

[sum=a+b

'6 I'do"CEV01
b /"d

a + ,a + b + c E va I,
[sum=a+b

a,6,o E ,.t;d .]
a + h, a + h + c E voltd

sum = a + b +c
r=Ok

Let us narnp these two specification statements OKl and OK2.

Now we simply have to associate the error-case branches with the appropriate
parts of the successful case" In order to mo\"e the branches around, we need
these two laws:

Law 4.9 else distf"'ibution

(aaa; bbb) > eee

(aaa > eee]; bbb

46 4.3. A. DEVELOPMENT USING NA1\lED EXITS

Law 4,10 else distf'ibution

(aaa; bbb)) eee
i;;; (aaa) eee) ; (bbb) eee) provided c.cc ~ aaa; eee

Now the inside of thE' exception block can be refined as follows:

(OK1; OK2)) sum, r : [B1]) sum, r: [OV1]
> sum,r: [B2J) sum, r: [OV2]

!;;;:	 "else distf'ibution 4.9"

((OKl, >Urn," IBl]' mm," [OVl]); OK2)
> $um. r: [82]) .'ium, r: [OV2J

!;;;:	 "eL~e distf'ibution 4.10, take normal bmneh 3.5(twice)"
(OKl) .'ium,r: [B1]) .'ium,r: [OVl]); (1)
(OKZ) .'ium, r: [B2J) .'iUm, r : [OV2]) (2)

The application of else di$tributian 4.10 is justified by the fat-i that

.lum. r: [82J 0 sum, r: [0\/2]
[; OKl; (mm" , [82) n mm,' . {OV2])

i.ake normal bmneh 3.5 allows us to remove the two extra else-branches that
would otherwise appear at the end of (1).

Now we have our program in the shape required, and it is a simple matter to
refine (1) and (2) using calls of add.

a, b, , E ,al;d]
(1)= .'ium,r: a+b,a+b+eEval~d

[sum=a+b

(a",abdV]
b f/. valid) •

o sum,r: .'ium::: 0 ; eXit
[

r = Bad

a, b, , E ,al;d]
a+bfj.valid . o sum,r: .;eXit

sum = maxsnt[
r = Over

i;;; handler Badlnput == sum :::: 0; r:= Bad
Overflow == "um := ma;r.int; r :::: Over_

a, b E ,alid)
(a + b E valid --t sum := a + b

(a" ,alidV) . .
(b f/. valid) --t raISe Badmput

a,bE'al;d) . 0 fl
(a + b f/. valid --t raISe ver ow

!;;;:	 add(a, b, sum)

The development for (2) is very similar, except that the assignmem of Ok to r
is moved to the end of the exception block:

(2) h add(sum, c, sum);
r:= Ok

We have now developed the program for sum:= a + b + c. It cannot be denied
that it is a somewhat tortuous development: more experience with development
involving exceptions and exception-handling is likely to reveal 'development
idioms' -- patterns which appear frequently -- which can then be encapsulated
into further laws, It is interesting to note that we actually end up with two
declarations of the handlers in the above development: since they are identical,
they can be merged to simplify the code.

It is also worth remarking on the change we made in our original specification.
to allow for the possibility of the add procedure 'failing': we started with a
specification consisting of a simple assignment to ~um, and we ended up with
a more complicated specification, formed from the three disjuncts. OK, Band
QV. Clearly this transformation is not a refinement, since it allows different
behaviours within the original precondition. It is in fact what Banach calls
a retrenchment [7], This sort of transformation occurs fairly often in system
development: the top level 'specification' capture.s most ofthe de..'1ITed behaviour
of the system. but it needs to be transformed until the exact behaviour is
captured, in all its gory detail: then the process of formal refinement can start.

4.4 A possible enhancement

One advantage of this procedure-based mechanism for exception-handling is
that it can easily he extended to model an additional feature which is found in
the exception-handling mechanisms of several programming lallguages.3 Lan
guages such as CLU [31] allow the programmer to pass a parameter to an
exception handler. Since, as far as we are concerned, exception handlers are
just procedures, we can model this with the normal procedure-passing mecha
nism for procedures. One application of this would be to give more informative
error messages - a handler for RecomNotFound could say exactly which record
could not be located, for instance.

4.5 Conclusion

In this chapter, we extended the simple exit mechanism defined previously, by
introducing the idea of an exception handler. This encapsulated the actions to

3Section 10.1 contains details of some of the exception-handling mechanisms available in
programming languagl!!l.

48 4.5. CONCLUSION

be taken when a particular exception was raised. It was defined using the pro
cedure mechanism already found in the language. Several laws were proposed
and proved, and sample de....elopments showed how the laws could be used.

Chapter 5

An iterator construct

This chapter begins our study of iterators and how they can be introdured into
a development method based on the refinement calculus. The notation used
is based partly on recent results from the functional programIlling community
about homomorphisms on recursively-defined data (,ypes (see for example [9,
36]). These results are summarised in Section 5.3, after the introduction of a
basic iterator construct over sequences. \Ve then look at iterators over more
complex recursive types, and at how we can use a combination of recursive and
non-recursive types to specify the behaviour of a module. The final part of this
chapter shows how some of the results from the functional programming theory
can be used.

In ~ubsequent chapters we will develop this work by investigating the use of
procedure variables, and thus procedures as parameters. In Chapter 7 we will
show how procedure parameters can be used to encapsulate iteraton;, and so
enable them to be specified and used in developments based on a library of
pre-defined abstract data types.

5.1 Introduction

Before looking at the fllllctional programming ideas, we motivate the work with
a brief introdudion to iterators: what they are, why they are important and
the history of their use. Eckart [191 has described iteration as 'the ability to
consider every element of a data structure'. For instance, a company's personnel
database might contain a lisl of records, each of which contains details of an
employee, such as name, address, salary and so on. Given this structure, we

50

51 5.2. THE IT ..TI CONSTRUCT FOR SEQUENCES

could use an itcrator to define a procedure which would examine each record
in turn, and reduce the salary of all those who eArned more than £50K by
20%. Alternatively, we could obtain a list. of all those employees earning morC'
than £30K, or evcn the total wage bill for the company. Thes£' three examples
illustrate three common forms of iteration: the first takes thE' form of an 'update
in place'; the second is a filter, producing a smaller collection of records; and
the third produces a scalar value.

The key fact about an iterator construct is that its user should Deed no knowl
edge of how the structure is implemented: it should be possible to abstract
from such details as whether the list is Singly or doubly linked and whether It is
stored in maiu or secondary storage. The interesting challenge is that we wanl
users, while working within the refinement calculus. to be able to use iterator
constructs on elements of types they have themselves defined, rather than 'iim
ply au built-ill types. We therefore eventually need to pass, a.~ parameters to
such constructs, information about the action to be applied to ea:h element of
the structure: this motivates our iut.erest iu procedural p<JIaIIU'ters, exploreu
further in Chapter'l 6 aud 7.

Although itcrawrs have appeared iu programming languages for many Jears,l
there has beeu some reuf'wed interest recently. Wing [54] notes that two recent.
trends in technology are likely to cause future interest: persistent object repos
itories and large-scale distributeu information systems. A persistent object
repository [tl can be seen as a generalisation of a database: iflStcad of records
in a relation, there are objects in collections of different types - often user
defined abstract types. Just as for databases, users want to carry out queries
over these collectiom;, which are simply applications of iterators. The situation
is slightly diHerent for large-scale distributed information systems such as the
World Wide Web, WAIS and gopher: when these systems were introuuced,
there was uo dirert support for iterators, so users were forced to follow hyper
text links to achieve the effect of a query such as "Find me all the objects that
...". However, there are uow several search~engilles available, which provide a
more user-friend I)· interface to these iteration-like abstractions.

5.2 The it ..ti construct for sequences

Consider an iteratiOn over a sequence s of type seq A, defined by

type seqA ~ Empty I ConsA(seqA) ,

where we make use of the usual refinement calculus notation for disjoint union
types: each element of the type is either an empty sequence, or it is constrncted
from an element of A and another sequence. (Further details may be found in
[44, Chapter 15J.) For brevity, and the convenience of an infix operator, we will

ISeclion 10.2 contains a review of i~eralor COiUtructa ill severa.! progromming languages.

52 5.2. THE IT..TI CONSTRUCT FOR SEQUENCES

often use the abbreviations

() '" Empty
a:a,~ ~ Cons a as

The purpose of the iteration is to perform some calculation which involves the
consideration of each element of the sequence in turn. "liVe suppose that the
result of the iteration is to be stored in a variable f', which is of some type R
A first example of the construct that we propose to use for the iteration is the
following:

it s into r with

() ~ r"=x

Oa:as ---+ r:=[(a,as)

,;

The it .. t.i construct begins with a statement of the variable over which the
iteration is to he performed, S l and thE' variable where the result i:-; to be st.ored,
r. This is followed by a collection of branches, one for each part of the disjoint
union definition of the type of s.1. In t.his tase, the first brauch covers the empty
seQuence-, and the second branch covers non-empty sequences made up of an
element a, together with a sequence a.s. The interpr~tation which W~ intend for
this (:onstruct is as follows: if the sequence s is empty, then the result variable
f· is \lpdated with a (constant) value x; alternatively, if.1 is \lot empty, then the
uew value of r is found by applying a binary function f to the first element of
s and to the result of the iteration over the remainder of ,~ ~ it will be clear
from the definition below that this result is determined by a rec\lrsion.

This brings us to one of the interesting points about this construct .- the dual
use of as in the second branch. On the left of the arrow I as is a pattern matcher,
while on the right it is the result of a recursive call. Use of this abbreviation
has the advantage that we do not have to give a name to the fmlction W~ are
applying to s.

We can now give the definition for the it .ti construct in terms of a recursive
procedure.

Definition 5.1 sequence Itemtor

An iteration over a sequence s of the following form

it 5 into r with

() ~ bbb

na:a3 ---t ccc

ti

is defined as

2There are obvious similaritiet< wi~h the taggffi alternation and iteratioD constructs of [44J.

53 5.3. HOMOMORPHISMS ON INITIAL ALGEBRAS

1(s, r)

where

procedure I(value s, result r) ==
if 8 is

() --; bbb
Oa:as -----> l!varl.I(as,I);ccc[a.s\llJI

fi

Notice that the local ,:ariable 1 is used to stofe the result of appl)"ing the pw
cedure recursively to fi.'l, so that it can be used in the immediately following
statement, by means of substitution. Notice that, since the recursive call is
applied to the tail of s, we are guaranteed that the recursion will terminate.

For example, suppose we have the following declarations:

s:seq N

'": N

Then the following program fragment will obtain the sum of the sequence:

it s into.,. with
() --; ,. ,= 0

on:nll -----j. .,.:= n + n.~

'i

Similarly. we obtain the length:

it !J into r with

() --; ,,~O

~ n:nll --+ .,.:= 1 + nil

ti

5.3 Homomorphisms on initial algebras

To generalise iterators beyond sequences, and to expose the links between the
twoexarnples above, we use recent work in the functional programming commu
nity, which we summarise in this section. The work is based on homomorphisms
- functions on recursively-defined data types whose inductive definition mimics
the structure of the type. Further details may be found in [9, 36, 39].

First we give an informal indication of the direction of this work, before outlining
its formal basis: since we are transferring work from functional programming
into the refinement calculus, we give only a brief summary of the results required
rather than the full details, which may be found in the papers cited.

54 5.3. HOMOMORPHISMS 01" INITBL .~LGEBRAS

An informal approach

Suppose we define a type T by

T"';aAlbBTlcTCT

This uses the previously defined types A, Band C and defines the construetOl
functions a, band c, whose types are thus

a:A---+T

b:E--+T--+T

c:T---+C--4T---.;T

Each element of T can be thought of a~ 'tagged' with a constructor function.

Now, suppose that we wish to define a function on T, which will give as result
an element of some type R, say f T ---+ R. We can achieve this by defining
three subsidiary fuuctions, each designed to show the effect of f on the disjoint
part of its domain corresponding to each of the constructor functions.

The simple:;t part of the domain is that formed by a: for this we definE'

j;J,:A---;R

which maps every element of A to an element of R. Now to find the effect of f
on an element of T of the fonn a a, WE': merely apply la to a.

The functions corresponding to band c are slightly more complex, but the types
of their domaius are derived from the domains of the constructor fuuctions,
with each instance of T replaced by R (since, as t.he function is recursively
applied, all of the elements of T in the lower-level structure have already been
transformed to elements of R). So the subsidiary functions we need to define
have the following types:

Ib:B---;R~R

fc:R~C----.R----.R

Once we have given the functions Iill Ib and Ie. we can comhine them, using thp
so-called 'banana brackets' [36], to define a function from T t.o R;

f "'; iI!.'/b'/cl

This function I can be applied to auy element. of T, however it has been con
structed. Moreover, for any elempnt of T, we can be sure that exactly one of
the subsidiary functions is applicable.

We will use, as a concrete example running through this section, the type of
non-empty lists of natural numbers. This is defined by

Natlist == SingleN I (onsNNatltst ,

using the previously defined type N and the constructors Single and (ons.

55 5.3. HOMOMORPHISMS ON INITIAL ALGEBRAS

For every function we want to define on Natlist, we need to give two subsidiary
functions to show the effect on a singleton list, and on a longer list. Thus if we
want to map an element of Natlist to its sum, we can define the funct.ion ill two
parts:

~um(Singlen) ~ n

sum(Cons n 115) n + .mm(ns)

So the function sum can be defined:

'urn ~ Qid,(+)D

Similarly, to obtain the product of the elements of a list, we defiIlt

product == Qid,(*)D

To add one to every element of a list, we define

me_list = Qinc, cons - incD

where

inc n = Single n + 1
cons - incn 118:::: (ons(n + 1) 1109

Note that inc_list does not 'update' the list, but rather forms a new list of the
desired values.

Applying these functions to the list (1,2) gives

Qid.(+)D (1,2) ~ I + 2 ~ 3
Qid, (')D (1,2) ~"2 ~ 2
Qinc, cons - ineD (1, 2) == (1 + 1,2 + 1) == (2,3)

Formal definitions

It is well-known that recursively-defined types, such as Nat/is! above, can be
viewed as initial algebras of an appropriate functor. For instance, if we define
the functor F by its action on objects (sets) and £unctious:

F(A) ~ N + (N x A)
F(f) ~ id + (id x J)

then

F(Natlist) == N + (N x Natlist) .

Now the two constructor functioIlB of Nat/ist can be combined into a single
function with the join operator

[Single, Cons] : N+ (N x Nat./ist) ---. Natlist

56 5.3. HOMOMORPHISMS ON INITIAL ALGEBRAS

and we can deduce that we therefore have an F-algebra, which consists of
FNatlist, Natlist and the function between them [Single, Cons].

For any two F-algebras f : FA ----j- A and 9 : FB ----- B, an F-homomorphism from
f to 9 is an arrow h : A ----j- B soch that

h . f ~ g' Fh ,

which expresses equationally that the folloy,'ing diagram commutes:

9
FB B

Fh1 1h

FA f A

The join [Single,Cons] is actually defined to be the initial algebra of F. It is
therefore possible, given any other F-algebra -- say 9 -- to find a uuiquf' F
homomorphism from the initial algebra to g. This concept of the 'unique ho
momorphism from an initial algebra' is the basis of our iterator construct, and
is called a catamorphism [36]. It is usually written with the 'banana brack
ets' mentioned above: UgD. A simple way of thinking about catamorphisms is
that the functions given between the brackets UDare used as 'replacements' for
the constructor functions of the cata.morphism's argument -- a form of 'organ
transplant' .

In the next section we will make explicit th~ connection between catamorphisms
and the it ..ti construct, showing how the assignment of a catamorphism applied
to an element of a datatype can be refined directly to an iterator. But first we
explore the definitions of catamorphisms a little more, showing how they can
be defined in two ways, either in functional programming terms, or with a
collection of recurllive equations.

If we consider again the examples above on Natlist we can see two forms of
definition. For instance, the sum function can be defined, using the subsidiary
functions of identity and addition, by

sum:= Uid,(+lD

Alternatively, the following equations together define it:

sum (Single n) := n
sum (Consn n!i) == n + sum(ns)

Similarly, the inc-list function, which adds one to each element of a Nat/1st, is
defined" either by

tnclist = Uinc, COfU - incD

or by

inc-list (Singlen) = Single(n + 1)
inc_Iut (Coos n ns) := Coos (n + 1) inc.-1ist(ns)

57 5.4. CATAMORPH1SMS AND THE 1T..Tl CONSTRUCT

In both of these cases, it i.~ clear that the variant for the recursive definitions is
given by structural induction over the datat)"!,£': the recursive call on the RHS
of the definition is applied to the tail of the original argument..

Of course, it is not difficult to obtain the recursive equations from the functionClJ
definition. If a catarnorphism c on Natlist is defined by

c:l!f,gD,
then the following recursive equations also define c:

c (Single n) = I n

c (Cons n m) = g(TI, c(1IS))

5.4 Catamorphisms and the it ..ti construct

We now give the connection betwClen catamorphisms and thCl it. ti construct
which we introduced earlier. From the definit.ion of it..ti abm'e in terms of
a recursive procedure, we can prove a law which will allow us to carry out
developments where we implement an assignment with an iteratar. Note that
we are now returning to work with the sequence type defined at. the start of
Section 5.2.

Law 5.2 assignment ite1lltor

If the valup to be assigned to a variable is formed by th€ application of
a catamorphisrn to a sequence, then the whole assignment can be imple
mented with an iLti construct.

,,~I!f,gD ,
r;;

it s into r with
() --+,,~ f

U a:as --+ r:= g(a, as)

'i

Proof

By the definition of iLti, it is enough to prove that

"~I!f,gD '
r;;

1(" r)

where, as before,

procedure I(value s,rellult r):3

if sis

() --+ ,,: f
na"" --+ I[var I. I(a., /); r ,: g(a, I) II

fl

58 5.4. CATAMORPHISMS .~ND THE IT..TI CONSTRUCT

We therefore develop the 35signmcnt until it is transformed into a H'cur"ive
proeedure:3

r,=I)j"D,
~	 re [(value ..'l,result r) variant V is #s.

{I' ~ #,j

r,=I)j"D,

<;; r[l'=#"r=F(,)]

t;;;; "tagged alternation"
if..'l is

() -; ,,[, ~ () A I' ~ #" r ~ F(,)] ~

~ a:as ~ r: [s = a:as II V = #s, r = F(s)] (1)

6

~	 "by definition of F, and conversion to recursive form"

r:= f

(1) ~ "by definition of F, and conversion to recursive form"
r: [s = a:as /I, V = #s , r = 9(a, F(as))]

~	 varle
1:[s=a:asAV=#,~, l=F(as)As=a:asA V=#s]; (2)
r: [s = a:as A V = #,~ II I = F(as) , r = 9{a, F(as))] <]

~	 r;= g(a,l)

(2)<;; I,[V>#",~O, I=F(a,,)]

<;; I(a" I)

o

,,\ore can use this law to give some very simple examples of iterations over se
quences. Suppose we have the fotlowing declarations:

5 : seql\l

1':1\1

Then we can develop simple iterators by referring directly to the catamorphism
style definitions of the functions concerned. For example, for the sum of a
sequence:

r:= Es
,,= [O,(+)D'

~	 "assignment itemtor 5.2"

it s into r with

() -; ,,= 0
Dn:ns ----jo r:= n + ns

ti

JNole that we are using the refinement rule for recursion from the socond l'dition of Mor·
gan's text [44J, rather than the original formulation - from the fil'"8t edition [43J - which
was used)n the descnption of rOCUl'"8ion with exceptions in Cha.pter 3.

59 5.5. MORE GENERAL DATA TYPES

What we are doing here is to import refinements like

r :== ~s

"~ ~o, (+)D,

directly from other theori('.E: we are able to use the lit.erature on catarnorphisms
to simplify the development of OUI own iterators.

The lengt.h of a sequence can also be obtained with an iterator:

1':= #.~

"define a E5 b ==- 1 + b"
, ,~ ~O, mD.,

[; "asstgnment itemtoT" 5.2"
it s into T" wi.th

() ~ ,,~O

On:ns ---Jo 1':==nfDns <1
I;

[; 1":= 1 + ns

5.5 Iterators over more general data types

We now work in a more geucral framework, with an arbitrary recursive data
type. The type we use is defined schematically by

type T';?; a I b X IcY T

Thus an element of T is either a constant, identified by a, or it is the image Df
an element of some set X, tagged by b, or it is formed from an element of Y
and some other element of T and is tagged by c. It will become clear how the
definitions and refinement laws can be pxtended from a type with these three
'typical' branches to any other recursive type.

First we extend Definition sequence iterator 5.1.

Definition 5,3 general iterator

If t is allY element of the type T defined above, then

it t into r with
a ---+ aaa

Ubx -~bbb

Ucyt' ~ r:cc
Ii

is defined to mean the same as

I(t, ,)

where

60 5.6. REFINEMENT OF BRANCHES

procedure I(value t,result r) ~

if t is

a ---+ aaa

ObI --> bbb
O,yl' --> II var I. I(t',I); ,,,,[t'\I] II

Ii

Notice that the local variable is only needed on the third branch, where there
is a recursive occurrence of T in the type definition. If there were several
occurrences within one branch, then the same number of local variables would
be required: so a branch

mTT

would correspond to a branch in the definition of the procedure 1 which had
the form

m I, ~ --> I[var h, h • I(t" I,); I(t" h); ,,,,It,, 1,\1" hi]I

Having extended the definition of an iterator itself, we can also extend th(' law
which introduces an iterator a'i a refinement of an assignment:

Law :>.4 aS31gumefit iterutor

,,= qP, Q,RD 1

<;;

it t into r with

a --t r:= P

DbI --> ,,= Q(I)
~cyt' --t r:=R(y,t')

ti

5.6 Refinement of branches

Now that we have these laws over more complicated data types, we can use
them to develop some more sophisticated examples. The observant reader may
be wondering about the point of having ", :==" in each branch of the it .. ti
construct. In fact, it is useful to have a program fragment (rather than au
expression) in each branch, because it gives scope for further refinement: in
Ca.'3es where the expression being assigned to the result variable - for instance,
R(y, t'l in the it..ti construct in Law assignment iterntor 5.4 - cannot be
easily evaluated in the target language, the assignment r := R(y, t'} can be
refined until it is code. (In program developments where we are using libraries
of abstract data types, it is also likely that we will want to refine branches uuti!
the:}' can be replaced by calls of library procedures,)

61 5.6. REFINEME1"';T OF BRA~\'CHES

We give two examples which show the idea of this refinement of branches. The
first is based on an example in a paper about iterators in the CLU programming
language [32). The task is to count ho\\.· many numeric characters an contained
in a string which might also contain alphabetic characters.

We need to define two disjoint union types for characters, which are either
alphabetic or numeric, and for strings, which are either empty, or contain a
character and a string:

type
Char ~ alph Alpha I num Numeric
String == empty I ch Char String

(We a'iSume that Alpha and Numeric have been suitably defined.)

We define first an infix operator $ which will form part of the catamorphism:

(alph c)m n == n
(num c) EEl n == n + 1

Now it is clear that, if counLnum is the function which, when applied to a
string, returns the desired number of numeric characters, then

counLnum = ~O, E9D

We can therefore immediately i.ntroduce an iterator, as follows:

"~ QO,ffil'

l; "as!Jignment ilerntor 5.4"
it S into i with

empty -----? i:= 0
Uch c cs -----? i:= cEDes <l

.i

Since the expression c ffi cs is not immediately implementable, we need to refine
the second branch, which is not difficult using a tagged alternauan:

l; "tagged alternation"
if c is num -----?

i: [c == numn,t == cEB C5J (I)
Uc is alph -----?

i : [c == alph G, i == c lOB cs] (2)
fi

The tIl,a branches of the tagged alternation are easily implemmted, Ilsing the
definition of ffi:

(1) r;: i:== cs + 1

(2) ~ t:= cs

62 5.6. REFINEMENT OF BRANCHES

This completes thp development, giving overall:

i := cDunLnum(s)
!;:;; it s into i with

empty ---. i:= 0
Uch c cs ---. if c is num -. i := cs + 1

D c is alph -t i :"'" cs
6

Ii

Our second exarnple is concerned with the specification of pan of a file system.
One of the components of this system is a record of the last time a file was
accessed. This access list is modelled as a mapping from file Names to Dates:

type Map[lndex, Value] ~	 empty
I pr Index Value Map[Jndex, Value]

ai: Map[Name. Date]

Periodically, it is required to produce, from this access list, two other lists, one
of which is to contain all those files that were last accessed strictly before some
given date, and the other is to contain the remaining files which have bP.-en
accessed more recently. For convenience, the access dates are to be retained in
both lists.

We can define two functions, keep and reject, which, when applied to a date
and the access Jist, will return the required lists:

keep: Date ~ Map[Name, Date] ~ Map[Name, Date]

keep dt empty :: empty "f dt > d
keepdtm 1_

keep dt (prn dm) = { prn d(keep lit m) if dt < d

reject: Date ~ Map[Name, Date] ~ Map{Name, Date]

reject dt empty = empty

td d {fTOJecldtm if dt < d
fTOJec t (pr n m) = pr n d (reject dt m) if dt 2: d

Assuming that II and t are the variables in which the results are to be stored, and
that dt is the date about which the access list is being divided, our specification
is:

S, t := keep dt ai, reject dt at	 (1)

The simplest way to implement this, using the theory that we have already
developed, is to divide the multiple assignment into two simple assignments

63 5_6. REFINEMENT OF BRANCffES

joined by sequential composition, and to implement each separately with an
it. ..ti. This gives the following development:

(1) (:;;; it al into s with

empty --+ s::::: empty

~	 pr n d m --+ if dt 2. d --+ s:= m
U dt < d --+ .s:= prndm
fi

ti;

it al into t with

empty --+ t:= empty

Uprndm --+ if dt < d --+ := 1n

O dt 2 d --+ :=prndm

fi

'i

However, a much more interesting development is obtained by re-f'xpressing the
problem in functional programming terms, and using results developed by that
community. Functional programmers would immediately recognise both keep
and reject as examples of the filter function, which is defined on lists by

jilt"p() =()

if px
filter p (x::rs) = {	 x:(filter p xs)

filter pIS if...., px

Now if we define a.n infix operator B p , a form of 'conditional cons', by

I EB p xs =	 x:xs if p x

xs if....,px

we can immediately express filter as a catamorphism:

jilterp ~ Q(),EB,D

The final function that needs to be defined is one which divides a list into two
halves, depending on some filtering predicate p:

split p:rs := (filter p xs, filter p xs) ,

wbere p is the negation of p. It is now easy to see that our original problem
can be expressed a.s

(s,t)::=splitpal	 (2)

where the predicate p is defined (on pairs of names and dates) by

p(n,d) =dt < d

Now we have defined split in terms of filter, and filter itself has been expressed
as a catamorprusm, but we cannot yet express split directly as a catamorphism,

64 56. REFINEMEST OF BRANCHES

which we will need if we are to implement (2) with a single iteration. Using the
version of filtef" [(IT the Map type, we know that

split p :u::::	 (jilter p IS, fiJter p X!l)

(~empty, E9"D :rs, Qempty,@pDxs)

We can e)(press this, in a point-free way, as

split p :::: Qempty, spD Do Uempty, CBpD

where 6 is the join operator defined by

(J 6g)X ~ (Jx.9X)

Now we can appeal to the functional programming literature. for the result that
we need. Specifically, in [10, Section 3.2J and [11, Section 3.1], we find the
so-called banana-split la>;l;:

Qh~ 6 Qk~ ~ Q(h x k) . unzip~

where unzip is defined in terms of the functor F from the algebra which undprlies
the catamorphism, and two projection functions:

unzip:: F'lTr D. F7r;!

Now the functor for the Map type is veT)' similar to that for N()tli.~t given above.
Its effect on objects and functions is as follows:

FA(B) ~ 1+ (A x B)
FA(t) == tdj + (idA x t)

In our case the parameter A is IndeI x Value, so

Frrl == id, + (id1 x V x 71",) fori==1,2.

Now a little algebraic manipulation, in the Squigol fashion, allows us to express
.'plit p as a catamorphism:

sp/itp Qempty. ffi"D 6. Qempty, tl!pD

~by banana-split law"

Qllempty, ffi,] x [empty, ffi,J) . (Fw, 6 Frr,)~

"since (h x k) . (I I) m) == h·1 t:" k· m"
Q[empty, ffi,,]· (jdJ + (1d/x v x 7I"d)t:"

[empty, ffiJi] . (ld1 + (idlx V x 7I"2))D

"since [1,9)· (h + k) ~ [I. h,g· kJ"

Q[empty,ffi,,· (idlxV x 71",)] t:" [empty,ffip' (id/ xv)(1l"1)]D

"sinee [I,g16 [h,k] ~ [I 6 h,9 6 k]"

Qemptyt:"empty,ffi"·(ld/,,v)(1l"t}6.ffip·(id/ xv X1l"2)D

If we examine the second function in this catarnorphism more closely, we can
see that each part of the join expect.s t.o be applied to a pair of pairs, the first

65 5. 7. CONCLUSION

of which is an (index, valuc) pair, and the second is a pair of maps - the result
of the recursi ...'e application of the catarnorprusm to the remainder of the map.
The full iterator development is now given by:

5,t;=== splitpal

!;;; s,t;= Qempty t'.emptY,ffip · {idlxv x 1Td to. ffip · (id1><\, x7T:.dD al

~ it al into s, t with
empty --t S, t := empty, empty

Oprndm ---t s,t:=(n,d)@pml,(71,d)6p1"n2
t; "

where In, and ffi2 are the first and second components of the pair m.

The second branch can be developed in the obvious way with an alternation:

<; if pen, d) -+ J:=prndm\;t:=m2
D ~ pin, d) --t t:= prndm2; s;= ml
fi

5.7 Conclusion

In this chapter, we have introduced the iterator construct it .. ti, which forms the
basis of our work on iterators. The construct was based on the idea of a cata
morphism, but. was formany defined as a recursive procedure. Several examples
were given, showing how part.icular functions can be seen as catamorphisms,
and therefore implemented by an it .. ti construct.

In Section 5.5, we explained how the jt .. ti construct for sequences could be
extended t.o act on a more general data type. The t.ype TUBed there is intended
to he a typical example of a type generated by a polynomial funr.tor. This form
of functor - formed from constants, products and coproducts - is general
enough for our purposes, and we are guaranteed the existence of an initial
object in the category of F-algebras (see [38]).

At the st.art of the chapter, we gave illustra.tions of three common forms of
iteratiOn: t.he 'update in place', the filter and the scalar result. During the
chapter. we showed how the second and third of these are related to the new
construct: the file-system example in t.he last section was an example of a filter,
while the sum or t.he length of a sequence was an example of a scalae result. The
first form of iteration was not explicitly illustrated, but it is not haed to see that
following an it ..ti by an assignment of the result back to the original variable
could have the desired effect. For instance, in Section 5.3, we introdnced the
inc_list catamorphism:

inc_list == Qinc, cons - incD

where inc simply forms a singleton list from the increment of its argument.
Suppose that we had to implement the following 'update in place' form of

66 5.7. CONCLUSION

iteration:

S:== inc-list(s)

adding one to each element of the non-empty list o[numbers s. It is easy to
see that this is achieved by t.he [ollowi.ng program:

VW'" r : Natltst •
it .~ into r with

Single n -----; r:== Single n + 1

o(on!> n n,'j --) r;== Cons (11 + 1) 11$

ti;
s;= r

Chapter 6

Higher-order programs

\Ve now extend the language of the refinement ealculus to cover procedure
variables, explaining first the syntax of the new constructs, then their predicate
transformer semantics. The semantics is given by showing how the normal
Copy Rule semantics for procedure constants can be replaced by an equivalent
formulation, which involves considering procedure meaning:; as values. We then
show how procedure variables can take these values, and give some refinement
laws.

The basis of this semantic definition is Naumann's work, reported in [48], hut
the well-formooness proof and all of the laws here are original.

The ideas developed here will he used in the next chapter to allow us to define
an encapsulated iterator procedure, which will need to take procedure values
as parameters.

In this chapter) unless otherwise stated, pv will be used to represent a procedure
variable, and pe an expression of procedure type. "V\i'e will also use semantic
brackets [].

67

68 6.1. SYNTAX

6.1 Syntax

The only parametrisation mechanisms allowed are value and result. We allow
procedure types to be named. For example:

type
binproc := proc (value a, b : 1\1)
camp:= proc (value x, y: N, result b: Boolean)

\Ve can declare variables of procedure type in the normal way, usiug uamed
types or explicit type expressions:

va<

p: binproc
q: proc (value x, y: N,result b: Boolean)

Although the parameters of a procedure type are speciHed, it is al50 possible for
the bodies of procedures to refer directly to external (global) variables. These
do not have to be specified and this is one of the major t(~chnjcal complications
in the semantics. However, in languages where procedure variables are not
allowed to refer to global variables, the expressive power of procedure variables
is limited.

Procedure constants and variables may he executed. using the keyword call;

call q

Actual paraJIieters are supplied for the formal parameters, as usual.

When we consider the program fragments which make up procedure expressions.
we see the first significant syntactic restriction: such expressions must always
be parametrised. Any variable not mentioned in the expression's parameter list
must be declared globally. Thus, unless x and yare global variables, we are
not allowed to assign the procedure value x := y + 1 to a procedure viUiable;
instead we have to use the value (value y; N, result x ; N • x := y + 1). Once
again, any exterual variables are not explicitly mentioned.

Naumann gives two further restrictions on the syntax of the language con
taining procedure variables, which are included at the end of this chapter for
completeness.

Having declared procedure variables, we can assign values to them:

q:= pe

where pI" is an expression - parametrised as necessary - of tbe correct proce
dure type. However, assignment to procedure variables causes some interesting
problems -- this is investigated further below.

69 6.2. SEA1J\NTICS

6.2 Semantics

Notation

Before giving the predicate transformer semantics of procedure variables, we
need to define some notation.

Since keeping track of the state spaces on which the predicate transformers are
acting is one of the key parts of these semantics, we need notation which allows
us to restrict and extend the states. Suppose (7 is a state, that is a fnnction
from variable names to values. Then (7 l x is the restriction of (7 to all variables
except x (which may be a Jist). So, if y is a state component - in the domain
of a - and distinct from x, then (a l x).y:::: a.y.

We also need the inverse image function tx of restriction. Suppose ¢ is a
predicate over state space E: for now, we can regard ¢ as any member of P E.
If :x (of type T) is not a component of the state, then ¢ t x is a predicate over
the state space extended by x. It is therefore a set of states - a subset of ~ x T
- and is defined by

aE¢tx == alxE¢

The extension of state space E by the fresh variable x : T is denoted by ~, x : T.
So ¢ t x is a predicate over !:, x : T.

The final piece of notation required is also concerned with the state spaces over
which predicate transformers act. Various authors [5, 47] have ~hown that the
product of two predicate transformers can be used to model their combined
action: in the case, as here, where we simply want to extend the state space of
a predicate transformer, we can take its prodnct with the identity transformer
on the additional components. H f is a predicate transformer over state space
E, and x is not a component of E, then we define f ® i~ (over 'E, x: T) by its
action on predicates ¢ over E, x : T:

a E If 0 id,).¢

(3~ I (VT IT E~OT[Zrl G.z] E ¢) oa Iz Ef·~)

where .,p ranges over predicates over E, and T[X ~ (7.xJ denotes overriding
agreeing \\;th T except at x where it takes value 17 .x. In other words, the weakest
condition for f 0 id~ to establish ¢ from some initial state 0 is that f should
establi.sh a condition t/J on E from the relevant part (7 l x of 17, and that every
state T in t/J should satisfy ¢, when joined with the unchanging component x.
Alternatively, T is the largest postcondition which when extended at x with a.x
lies within ¢.

We note in passing that for predicates (over E, x: T) which are independent of
x - that is of the form D: t x - we have from above that

1f0id,).(ajx) ~ (f.a)tx,

70 62. SEMANTICS

and hence

j®idz ~ g0ld"

implies

f<;;g

(The other direction follows directly from monotonicity.) This result will t~nablc

us to prove the transitivity of the order relatiou on procedure values.

Procedures as values

The first step in defining t.he semantics of procedure variables is to define the
values which such variables may take - we need to determine the set which
corresponds to a procedure type, say ptoc (value v V, result r : R). We
take this to be the l'iet of tuples (f, v, r, g) where f is a predicate transformer
over (v ; V, r R, 9 : G), 9 is a list of the global variables of f, v, '" and 9 an'
disjoint and the rank! of G is at most that of V and R -- this restrict,ion is
needed to be sure that the set is properly defined in well-founded set theory.
(A procedure value with no parameters is therefore not allowed to refer to any
global variabk's of procedure type.) Although it is uuusual to see the names of
the parameters ill the values. they are needed in the semantic definitions which
eame later, and their effect is reduced by the definition of type' equivalence for
procedure types:

Definition 6.1 procedure type equivalence

We extend the normal rules about type equivalence by explaining when
two procedure types are type equivalent: types proc (value v
V,re5ult r R) and proc (value t,1 V',re5ult r' R') arE' equiva
lent (written =) exactly when V == V' and R == R'. In other words, the
parameter names are not significant, and neither are the global variables.

Having defined the set ofvalue.s corresponding to a procedure type, we can now
give the order relation on it, which we represent by~. Basically, this is just
the refinement order on the predicate transformers, but we Ilf'ed t.o be careful
about the state spaces involved. In the case where both values have the same
formal parameters, we have

!j, v, r, g) ~ !j', v, r, h)

ilf

(f@id,) r; (f'@id,) ,

provided 9 is distinct from h. Since f is a predicate transfonner over tI, rand 9,
and f' acts over v, r and h, we are extending each predicate transformer to act

'The rank of a type is the maximum le~"€l of nesting of the pTocr.dure COllstru(t()L

71 6.2. SEMANTICS

on the same state space, and saying that the two procedure values are related
when these extensions of their predicate transformer components are related.
It is easy to see that the transitivity of ~ follows immediately from the result
above.

The definition is only slightly more complicated when there is an overlap be
tween the global variables of the two procedure values, say PI and P2. The
globals are then partitioned into three lists, g, h and i. These are respectively
those that appear only in PI, those that appear only in P2, and those that
appear in both. The refinement ordering is defined as follows:

(j,V,T,(g,.)) (; (j',v,T,(h,.))
iff
(f 0 ;dh) <;: (f' 0 id,)

Again, the predicate transformers are extended to a common state space.

We omit the case where renaming of parameters is required.

Procedure calls

We can now proceed to give the meaning of procedure calls. We deal with calls
of procedure constants, procedure variables and explicit procedure expressions
together, since the mechanisms for giving their meanings are very similar, the
only distinction being where the value is stored. For procedure constants, it is
stored in the euvironment; for procedure variables, it is stared in the state; and
for explicit expressions, it does not need to be stored at all. For constants and
explicit expressions, the rather formidable formula given below is equivalent
to the standard semantic-.s as given by the Copy Rule (with the addition of
parameters).

The motivation for the definition of call P(e, w) is obtained by considering
the standard result far procedure constants about the replacement of value
and result parameters by local variables, with assignments to those variables
before and after execution of the procedure body:

[call P(e, wH = [var v,r. v:= e; Ii w:= rj

where P is a procedure constant with associated body I which has fonnal
parameters u and r, and e and w contain no occurrences of i' or r. As is usual
in such cases, we elide all mentions of the environment 7], where it is of no real
importance: both sides of the above equation shonId really be parametrised by
'1 and the expression e should be evaluated in '1 in the derivation below.

72 6.2. SEM.4NTICS

An almost-standard application of refinement calculus laws shows

lVp([var V,". v:== e; j; w;= r],4»
"local variable law: see below"
'r/v, r _ wp(v;= e; j; w:= r, (¢t v, r))
"sequential composition, assignment"
V" r 0 wp(l; w ;~ r, (¢ t" r))[,\eJ
"sequential composition, assignment"
Vv, r 0 wp(f, (",t v, r))[w\r])[,\eJ .

In order to be houest about the states au which f acts, we have had to change the
local variable law slightly to be sure that the predicate on which the transformer
acts is of the correct 'type':

Law 6.2 introduce local variable

wp(var x. aaa, ¢)

='rfx. wp(aaa,¢tx)

provided ¢ contains no x

This distinction is not usually needed in the presentation of the local variable
law. (A similar adjustment needs to be made to the introdlJCe local constant
law.)

Now we consider a statement call P(e, w), where P might be a procedure
constant, a procedure variable or an explicit procedure expression. Wherever
it may be stored, the meaning of P is a procedure valne, say

(j, v, r, 91

At the point of call, the state must contain 9 (the global variables of P) and w
(the actual result parameters). We suppose that the remainder of the state is
given by a list t. (v and r must not appear in t.) Then the meaning of the call
is given by its effect on a predicate r/J, as calculated above:

(V v, r 0 ((10 ;d."J.(¢ t" r)[w\r))[,\eJ)

We shall call this formula oil, so that we will be able to refer to it later. In
order to justify it, we note that f is a predicate transformer over v, r and 9,
and therefore f@td""t is a predicate transformer over v, r, 9, w and t. r/J is a
predicate over the complete state space - 9, wand t - and so (r/J t v, r)[w\r]
is also a predicate over 9, w, t, v and r. Thus oil is a predicate over 9, wand t
as required.

We can now use this formnla for call P(e, w) in the definitions of the three
different forms of procedure call mentioned above. The meaning of a procedure
constant is stored in the environment 7'/, and refers to global variables at the
point of declaration.

73 6.2. SEMANTICS

Definition 6.3 procedure constant call

[call P(c, w)I,.¢

3j,V,f·,g.
".P~Ij,v,r,g)A

~

]t is not hard to see that this definition of call P(e, w) has the same effect as
the traditional Copy Rule for procedure constants.

For an explicit procedure expression there is uo need to st.ore the value at all, and
references to global variables refer to the point of USP. Here, the environment
1/ has been omitted.

Definition 6.4 expliCit procedure e:qJression call

[call (value v, result ". p)(e, w)].¢

3/,9·
[PI ~ Ij, v, r,g) A
~

Finally, the most interesting case is that of a call of a procedure ~'2riable. Here
the value is stored in the state u.

Definition 6.5 procedure vGnable call

a E Icall pv(c, w)].~

3/,v,1",9_
U·PT):::: fJ,v,r,g) 1\

"E~

In the case of procedure variables, we note that t must contain pt. itself: the
constraint on rank given above means that pv cannot appear in 9. We also note
that f, 9 and t all depend on a: in different states, pv can t.a.ke on different
procedure values (though the parameters must be of the correct type) with
different globals referred to, a.cd the remainder of the state, I, will depend on
the result parameters used.

Assignment and monotonicity

Having given meaning to calls of procedure variables, we now consider assign
ments to such variables. The ~emantic framework which we use to describe

74 6.2. SEMANTICS

assignments is complex at first sight, hut it soon becomes clear that the re
strictions we make actually have no effect on most datatypes - and we can
therefore inherit all the normal refinement calculus results, rather than having
to fe-prove them.

The reason for the unusual semantic framework is the need for monotonic
ity. Monotonicity is a fundameutal property of all constructs in the refinement
calculus, and is the basis for the development strategy known as 'stepwise re
finement ,. It is because all the constructs are monotonic that we can refine
specifications in isolation, assemble the code with (monotonic) constructs, and
remain sure that the resulting program is aalid refinement of the combined
specifications. However, the procedure variable assignment pv :::: pe has pe as
a sub-program - pv is a variable and not a sub-program, hence not subject to
refinement - but pe ~ pe' does not imply that pv :::: pe ~ pv:::: pe'. Thus
assignment to a procedure variable is not monotonic.

Naumann's suggestion [48] to solve this problem was to use a geueralised as
signment statement pv :;;J pe, defined by analogy with Morgan's Simple Spec~

ification ahbreviation [44, Abbreviation 8.1J2. Tbis construct assigns t.o pv
any program wbich is a refinement of the expression pe. Monotonicity of this
construct follows immediately from transitivity of ~, and consideration of the
behaviour of some compilers also makes this con~truct seem reasonable: in the
case wbere pv is merely a pointer to the code of pe, then pv :::: pe will indeed
establish pv = pe, but compilers often 'optimize' programs by making them
more deterministic or by making them terminate more often (by monitored
execution, subscript range checking etc). So it is not clear that pv := pe will
establish pv == pe in such cases anyway. However, as long as the compiler is
correct, it should at least be the case that the value of pv will he a.t least as
good as pe - that pv ;;J pe,

Although we now have a monotonic construct as desired, it turns out that, in
the traditional powerset model, only very weak refinement laws can be proved
about :;;J - for instance, it is no longer the case that pv ;~ pv and skip are
equivalent: althougb it is easy to show that pv :;:::) pu !;;; skip, tbe other
direction is not true. In other words, for some predicate ¢,

wp(,kip, oJ,., wp(pv ,;;) pv), 0)

The underlying cause of the problems with these laws is that predicates may not
be monotonic with respect to refinement: for instance, ptl = S is not monotonic
in pv because it is satisfied by S but not by any proper refinement of S.

The solution to this difficulty proposed by Naumann [48J is to banish all non
monotonic predicates, thus restoring tbe important refinement laws. The non
monotonic predicates are removed by taking as predicates not all possible sets
of states, but only th08e which are up-closed under the relevant ordering: if X
is a poset (with respect to :5), tben a subset ¢ of X is up-closed exactly when

'Va, b : X • a E ¢ 1\ a :5 b => b E ¢

2Morgan points out that the notation is due originally to Jean-Raymond AbriaJ.

75 6.2. SEMANTICS

There are two useful observations we can make about up-dosed subsets:

•	 for any a E X, the set {x: X I a:S x} is up-dosed; and

•	 if X is discretely ordered (x ~ yiffx == y), then every subset of X is
up-closed, and every subset of X x X is also up-closed.

The first observation will be useful when we later consider statements about
refinement as state predicates, hut the second is important now. Every type
T is interpreted as a pre-ordered set. For most datatypes - all except proce
dure types - the ordering is simply equality, giving a discretely ordered set.
The second observation above then tells us that, for predicates not involving
procedure variables, the restriction of predicates to np-closed subsets is vacu
ous - we can still use all the results of the traditional powerset model. It is
only for procedure types that we have to be careful to use up-closed predicates
(in particular, we cannot use equality). Thus for ordinary variables - those
not of procedure type - we use the standard assignment construct with its
usual (substitution) semantics, while for procedure type variables, we use the
generalised assignment :;;;:J, which is formally defined below.

Having defined our semantic framework, we now carry out some investigations
to ensure that the framework has the right properties:

•	 that the standard programming constructs of the refinement calculus
maintain up-closure;

•	 that the new constructs which deal with procedure variables also maintain
up-closure:

•	 that the conditious which guarantee that a specificatiou statement main
tains up-closure are reasonable; and

•	 that the framework is sufficiently well-behaved that recursive constructs
are well-defined.

Standard programming constructs We deal first with the case where the
postcondition coutains no reference to state variables of procedure type. In
this case, the ordering that concerns us for up-closure is equality, and so we
can appeal to the usual results about the monotonicity of the constructs of the
refinement calculus [44].

For postconditions which do refer to state variables of procedure t.ype, we pro
ceed by structural induction. For each statement S, we must shflw that if ¢I is an
up-closed set of states, then so too is wp(S, ¢I), given that the subcomponents
of S also preserve up-closure.

From the definition of up-closure, we have, for a procedure variable pv,

~	 ¢I(pv) is up-closed
iff ,p(pv) /\ pv ~ ptl' => ,p(pt,')

76 6.2. SEMANTICS

We now look at the standard programming constructs of the refinement calculus
in turn:

• skip

wp(skip,¢) ~ ¢

so we have nothing to prove.

•	 abort

wp(abort, ¢) == false

which is up-closed.

•	 sequential composition

wp(aaa; bbb,rJ;) == wp(aaa,wp(bbb,¢))

Thus the up-closure of wp(aaa: bbb, ¢) follows immediately from the up
closure of ¢ and the inductive hypothesis that aaa and bbb preserve up
closure.

•	 assignment to a simple (non-procedure) variable x := E;

wp(x ,~ E, ¢) ~ ¢[x\EI

up-closure follows directly from the up-closure of 4>.

•	 alternation

wp{if 0a, --Jo aaa., :0., ¢)

==	 Va, /I

(I\(a, => wp(aaa,,¢)))

We give names to the formulae in the hypothesis and conclusion:

HI, Va. A (fI(a; => wp(aaa,,¢)))

HZ: pv~pvl

H3, (V p,2. O(p') A p' r;; p,2 => ¢(pv2»

01 , (Va.)(p,\p,11

02, (fI(a. => wp(aaa,,¢)))(p,\p,11

We need to pro....e t.hat HI A H2 A H3 => Cl /I CZ. Cl follows immedi
ately from HI, once we insist that no procedure variable may appear in a
guard. For CZ, we can distribute the substitution through the conjunction
to get

fI(a, => wp(aaa,,¢)(p'\P'llI

again assuming that pv does not OCCllI in any a,. Now let i be any index.
If a, is false, then we can immediately conclude that

a, => wp(aaa,,¢)(p,\p,l]

77 6.2. SEM4NTlCS

If a, is true, then from HI, we can see that wp(aaa" ¢) must also be
true. By the inductive hypothesis, this is an up-closed set, and hence
wp(aaa" ¢)[pv\pvl] must be true, giving us onc.e again

n, => wp(aaa,,!'&)[pv\pvl]

But i was arbitrary, so we can coudude

/\la, => wp(aaa,,¢)[pv\pvIJ)

and, from that, C2 follows.

New constructs for procedure variables There are two constructs that
we need to consider; a.<Isignment and procedure call:

•	 assignment to a procedure variable pv :;;;) pe. The generalis;>d assignment
is defined as follows3;

wp(pV ,;) 1'<, ¢)
= (V pv l

• pv' ~ pe => ¢[pu \pv'])

(pu' must be a fresh variable in this formula.) We call this formula 1jJ(pw)
(or arbitrary procedure variable pw. \\Te need to prove

tjJ(pm) 1\ pm ~ pwl => ti'(pwl)
given that r/> is up-dosed.

We give names to the various formulae:

HI :fr!J(pw) ('r/ pv' • pv l ~ pe => I,&[pv\pu'j)
m, pw [;;:: pwl
H3, ¢ is up-closed

C, ,,(pwl) (Ypv' • p,i ;) p' => ¢[pv\pv'))[pw\pwl]

We have to prove that HI I\. HZ 1\ H3 => C, and we start by re-writing
C, taking the outer substitution inside the quantification:

C : vl(pwl) ('Vpv'. pv' ;J pe[pw\pwl] => ¢[pu\Pt/][Pw\pwlj)

Now we choose an arbitrary pv' such that pv' ;J pe[pw\pwl]. If such a
pv' cannot be found, then C is trivially true. MODotonicity of pe tells us
that

pw ~ pwl => pe I; pe[pw\pwl] ,

3This definition agrees with ~ba.t given by Morgan'B Simple Specification abbreviation:

pv :;! pe = pll : [pv ;) ~[pv\PttlJJ

78 6.2. SEMANTICS

and we know that pw 1; pwl from H2. So we have

pe 1; pe[pw\pwl]

Thus hy transitivity of 1;, we have

PII' ~ pe

and, by HI,

¢[pv\pv']

The up-closme of 1; also tells US that ¢{pv\pv'j is up-dosed. Thus

¢[pv\pv'J /\ pll! !; pwl :::} ¢[pv\pv'][pw\pwl]

Both antecedents are true (from above and H2), and so the conclusion is
true, giving us C as required .

•	 procedure variable call callpv(e, w). Although the formula for the weak
est precondition given in Definition 6.5 is rather formidable. most of the
complications come from the parameter passing. \Vithout that, we simply
have to show that f 0 idw,t preserves up-closure, given that f does. If thf'
variable we are considering is pw, then a case analysis gives ns the desired
re.sult: if pw appears in the list w, t, then f <2 idw,t has no effect on it;
and if pw is not in that list, then it is covered. by f and the inductive
hypothesis tells us that up~c1osure is maintained.

Specification statements Since the specification statement. is an additional
construCt. which does not appear in Dijkstra's language of guarded commands,
we do not have to ensure that it always maintains up-dosure. Instead we
can investigate the conditionS under which it does so, and insist that those
conditions are met in the new language which indudes procedure variables.
The conditions for maintenance of up-closure will be conditions on pTe and
post, where these are the two predicates which form the specification statement.
Specifically, we show that the up-closure of pTe and the up-closure 01 --, post -
or, equivalently, the down~closure of post - are sufficient together to guarantee
that wp(w: [pTf, post], ¢) maintains up-closure of o.

We may assume

HI: pv I;; pul
H2: pTe
H3: (V'w. post::} 1J) t w

We have to prove4 :

Cl, p",[pv\pvl]

C2, ((V w • po,' "" ¢) t w)[pv\pvI]

4No~e that the wp definition of a specification s,a~ement i~ slightl~ different ITom the
standard form givell in Chapter 2, as we have to take account of the stUe ~pace8.

79 6.2. SEMANTICS

Cl follows directly from HI, H2 and the up-closure of pre..

For C2, we note that w must be different from pv, since we forbid specification
statements over procedure variables. Hence the tw and the substitmioll for IJV

can be safely interchanged. \\'e therefore need to show that

~ post[po\pvl] V ¢[pv\p,'l]

From H3, we know that, for a p<U"ticular w, either...., post holds or 9 does:

• if...., post holds, then its up-closure and HI give us, post[pv\ptilj

• if ¢ holds, then its up-closure and HI give us !plPv\pvlJ.

In either case,, post[pv\pvl] V ¢[pv\pvl] holds, giving the desire<! result.

Recl1r:o;ion The set over which we need recursive definitions to be well-defined
is the set of programs, and. by the results above, we fan restrict our attention
to programs which preserve up-closure. 'Ve need to show that this ~et, together
with the refinement relation, forms a complete partial order (cpo), and thus
that any monotonic function on the set - a program context - has a least
fixed-point.

So our task is to show that every chain in the set has a least upper bound (in
the set). Suppose that C, is such a chain of increasingly-refined up-closure
preserving programs. The existence of the least upper bound as a program
follows from standard results, but we need to show that U, C,.-.L also preserves
up-closure. In other words, we need

f(U. C, ..l}.¢.x /\ x ~ x :} (U, C,.-.L).¢.x l (t)

Now, hy definition. (U, C,.-.Lj.¢.I = (U, C•.L¢).x, which is either true or false
for a particular value of x. If it is false, then we are finished, since the antecedellt
of (t) is false. If it is true, then, since the C, are increasing, there must be some
j for which C) ..l.¢.x is true. Since C] preserves up-closure, we therefore know
that C, ..l.¢.x' is also true, and hence that (U, C,.L¢).x l

, as required. Thus
the le35t upper bound of the chain preserves up-closure.

Connectives Having examined tbe s;emantic framework, and noted that it
has the desired properties, it is also interesting to look at the predicate connec
tives to find out which of them maintain the property of upward·dosure: when
their arguments are upward-closed, so should their result he. Conjunction and
disjunction of predicates are given set-theoretically by union and intersection,
respectively, and these do indeed preserve upward-closure. However, negation
is more complicated, because the complement of an up-closed set need not he
up-closed. We first define a version of implication which preserves up-closure
by

¢~1/) =: U(o. (0 is up-closed) 1\ <5 n ¢ <; 1/1)

80 6.2. SEMANTICS

Now we can define negation in terms of implication:

":"¢=¢=>0

It is easy to see that -.:... (j) is the largest up-closed set that is disjoint from 4l. For
discretely-ordered X, .; q is simply the set-theoretical complement X - cpo

Quantifications are defined in terms of the projection operator introduced above:

a E (3 X" 1') ::= (3 T I a :::: T l x .. T E ¢)
a E (Yx .. dJ)::= (VT I a:::: T Lx .. T E ¢)

Now we are in a position where we can prove the following lemma:

Lemma

If ¢ is up-closed, then wp(skip,o) ::::} wp(pv;~ pv, ¢)

Proof

wp(pu:;) pv,¢)
"definition of :;d"
(V pu' .. pu' ~ pv ::::} ¢[pu\pu'])

Now wp(skip, ¢) :::: ¢, and so we must show that, for any pv'.

1> 1\ pv r:;; pv' ::::} ¢[pv\pu']

But this follows directly from the definition of up-closure of ¢, and so the lemma
~p~. 0

This gives us the equivalence of skip and pv :;J pv.

State predicates involving refinement and some basic laws

The final step before we can prove the correctness DC various laws involving
procedure 'ia.riables is to consider exactly what is meant by state predicates
which use the refinement relation. These might appear for instance in the
pre- or post-condition of a specification statement or in a guard. Wherever
such a predicate may appear, the mechanism for evaluation is the same: the
two operands should be extended, by taking their product with appropriate
identity transformers, until they both act on the same state space.

For instance, suppose our state comprises the two natural numbers :r and y,
and consider the state predicate

:r: [:r = 1() + 1] ~ (proc:x := x + 1)

81 6.2. SEMANTICS

The meaniug of the LHS is a predicate transformer over (x, y), whereas the
RHS acts only on:J: In order to compare the two, we take the product with
id., 0

for any ¢ (over x and y),
wp(x 0 Ix ~ XO + 1],.) "" wp((x 0= x + 1) e id".)

which simplifies to

.[xlx + 1] "" o[xlx + I]

Alternatively, suppose there is also a procedure variable pv in the state -- for
simplicity, we assume it takes no parameters. To evaluate

x: [x ==.r.o + 1] [; ptl

we need to find out which variables the current value of ptl acts on. Suppose
that

•.pv = IJ,. ,x) ,

where 0' is the current state. Thus the current value of ptl is a predicate tram.
former f which acts only on:r. Then. to evaluate the predicate above, we must
stipulate that y and ptl should remain unchanged:

for any ¢ (over:r and y),
wp(x 0 Ix = xo + 1],0) "" wplJ 0 id",",.)

We are now able to prove three basic Ja\"s about the execution of procedure
variables. The first law that Wl' prove is the simplest one, where the procedure
variable has no parameters:

Law 6.6 introduce procedure variable execution

w : [pre,post] C pv]
wo [pre - ,past ~ call pv

ProoC In order to prove this law, we must show that the weakest-precondition
of thl' left-hand side implies the weakest precondition of the right-hand side.
Looking back at the definitions given earlier, we can see that the right-hand
side gives us

If 0 id,) .•

where f is the predicate transformer part of the current value of pu - agaiu we
assume no parameters for now - and t is the part of the state on which f does
not act. On the left-hand side, we get, by the definition of wp for a specification

6.2. SE.i\-lANTICS	 B2

statement

(w: [pre,post] !; pv) 1\ pre

1\ (V w. post::::} ¢) t w

Expanding the predicate involving [;;;:, we get

for any W,
(pre 1\ (V w • post ::::} -~I) t w) :::> (f 0 idd.ljJ
A pIT
1\ (Vw • post :::> ¢)t w

Taking Wto be ¢ gives us the required result immediately.

o

Law 6.7 procedure variable value assignment

II the procedure variable pv has heen declared as procedure (value v),
then we have the following refinement:

w:	 [w:=p~e~pv,post] ~ callpv(A) (1)

pmvided w : [pre, post] ~ w := E[v\A]

where A contains no v

ProoC Suppose that the value of pv in the current state is (j,u"g), so f
is a predicate transformer over v and the global variables g. Taking weakest
preconditions on the left of (1), with respect to a predicate ¢ over the whole
state (g and t), we get

H1: pre

H2 : W :== E ~ ptl

H3: (Vw.PQst:::>¢)tw

and on the right we get

C, (y,. (l!@id')(<lt'l)[,\AII

Since v does not appear in A, the universal quantification in C is vacuous, so
our revised goal is

C' , ((f 0 id').(<1 t ,))[,\A]

We can re-express H2 in a more useful way as

lor any Wover the whole state g and t

(oP t ,)[w\Ej '" I! " id<J·(oP t ,)

83 6.2. SEMANTICS

Now the antecedent here is equivalent to 1j;[w\E], so we have

H2', "lwlEJ ~ (f" 'd,)(", t v)

The proviso to the law can be expressed ~

For any 1/ over 9 and t,

p'" A (~w • pO" ~") t w ~ "[wIE[vIAIJ

The consequent here is equivalent to Tl{w\E][v\A]' since the only place tI call

appear in 1][w\E] is in E itself.

Now from HI, H3 and the proviso (with 1/ instantiated to ¢), we get

¢[wIEIJvIA]

By monotonicity of textual substitution and H2' (with 1/J instantialed to ¢), we
get

¢[wIEllvIA] =} ((f" id,).(¢ t v))['IA] .

Putting these two together. we get C' as required.

o

Law 6.8 procedure variable result assignment

If the procedure variable pv has been declared as procedure (result r),
then we have the following refinement:

a: [r;=r;r;;.PIJ.post]!; callpv(a) (2)

provided a: [pre, post] !; a := E

where r does not occur in E.

Proof Suppose that the value of pv in the current state is U"r,g), so f
is a predicate transformer over r and the global variables g. Taking weakest
preconditions on the left of (2), with respect to a predicate rjJ over the whole
state (g, a aIld t), we get

Hi: 'Pre

H2: r;= E ~pv

H3: (V'a.posl=*¢)ta

and on the right we get

C , (~r • (If" ido,,)·(¢ t r)lalr])

'The proviso can be expressed as

For any 1/ over g, a aIld t,

pre /\ ('Va. post ~ T) t a ~ 1/[a\E]

6.2 SEM4NTICS 84

H2 is equivalent to

for any't/J over the whole state 9, a and t
(" t r)[rIE] => If '" ,do .')'(" t r)

which in turn is equivalent to

(,,[rIEJI t r => If e ,do.,).(<i' t r)

Taking 'ljJ to be I/>[a\r], we get

(¢[alrllrIEJI t r => If@'do,,).(¢[alr]tr)

which can be simplified to

(¢[aIEJI t r => If '" 'do ,,)·(" t r)[alr]

By the lemma below, we call simplify this again to

¢[alE] => Vr 0 (f '" ido,,)·(¢ t r)[alr]

From HI, H3 and the proviso, with 1'/ instantiated to 1>, we can conclude 1'[a\E],

giving us t.he desired result.

o

Lemma For any predicates a (over some state) and {1 (o\,{'r the state extended
with a fresh variable z), if we know that

(<> t r) => ~(x)

then

a:::} ('v'x .)3(r))

Proof Suppose that

(a t xl => ~(x)

Then, if (j is a state in the set a t x, it mllst also be in the set ;3(x). So, by the
definition of t,

(0 Lx E a) => (0 E ~) (3)

Now suppose that (7' is any state in Cl. We must show t.hat (j' E Vx • ~(:t). By
the definition of V over our up-closed spts of states, we therefore need

('iT I (j' = T l z. T E;3)

Consider any T such that (1' = T l z. Then we know that T l x E a r since (j' E a.
Therefore, by (3), we know that T E ;3. But T was arbitrary, so we have the
required result about T, and we can conclude that (j' E 'ix. ;3(%).

o

mailto:If@'do,,).(�[alr]tr

85 6.3. LAWS FOR PROCEDURE VARI.4BLES

6.3 Laws for procedure variables

Proofs of these laws foUow directly from the definitions.

Law 6.9 procedure variable value specification

If the procedure variable p1J has been declared as procedure (value J),
then we have the following refinement:

w, [[pee t] c ,post] C can pv(A)w: prel,pos I _ pV

provided w: [pre, post] ~ w : [pred/\A]'postdfo\AoJ]
when' Ao is A[w\uu] and POStl contains no f

Law 6.10 procedure variable result specification

If the procedure variable pv has been declared as procedure (result J),
then we have the following refinement:

pee]
a, [/. [t [1/]] c ,pa,' [:; call pv(a). prel,POS 1 a _pv

provided a: [pre,post] ~ a: [prej,postd

where f does not occur in pret, and neither f nor 10 occur in post}.

6.4 Naumann's syntactic restrictions

Naumann's first restriction, which he called the Global Variable Constraint is
intended to simplify the implementation of procedure variables using stack al
location, by ensuring that external variables of stored procedures - those as
signed to variables or passed as parameters - are visible at every point of call.
Explicitly, he states that

'no variable free in the body of a procedure assigned to a procedure
variable (or passed as an actual parameter) is bound b.y var. aux or
pro'.

(Naumann's va,., GUX and pro denote local variables, logical constants and pro
cedure e>..-pre.ssions.)

The second constraint ensures the absence of aliasing. It has two parts:

•	 in calls of procedure constants and procedure expressions, the free vari
ables of the called procedure do not appear in tbe actual parameter list;

•	 in calis of procedure variables (and formal procedure type parameters)
only variahles bound by var may appear as actual result parameters; thus
by the Global Variable Constraint, they are distinct from the externals of
the procedure variable.

86 6.5. CONCLUSION

6.5 Conclusion

In this chapter, we have stepped back from the work on iterators to look at bow
variables of procedure type can be incorporated into the language of the refine
ment calculus. The semantics of such variables was described using weakest
preconditions, following Naumann's work, while the originaJ work in thls chap
ter showed the well-formedness of Naumann's constructions, and the validity of
several new refinement laws about procedure variables. The. work described in
this chapter will form the basis of Cbapter 7.

Chapter 7

Encapsulating iterators

In this chapter we bring toget.her the work of the pre\'iolls boo chapters
Chapter 5 on the it..ti construct, and Chapter 6 on pruc~dure variables -
to show how we can encapsulate the iterator construct into a procedure itself.
This euables us to put forward a development method which is based on the
refinemeut calculus and which uses a pre-defined library of abstract data. types.
\Ve start by considering the use of procedures as parameters, ba"l~d On the
theory of procedure variables, hefore giving an example, and shOWing how to
encapsulate the iterator construct. Subsequent chapters will show the use uf
the libraries of abstract data t.vpes on a larger scale.

7.1 Procedures as parameters

Now that we have given syntax and semantics to procedure ,'ariables, thereby
putting procedure values on the same level as values of other types, it is only
a small extension to allow procedure variables as parameters, thus permitting
procedure values to be passed to and from otber procedures just as other values
are passed.

Syntax

We allow parameters of procedure type to appear in parampter lists for a pro-
cedure, just as simple (non-procedure) parameters do. These procedural pa
rameters may be passed by value, result or ..-a!ul;'-resuli. When a procedural

87

88 7.1. PROCEDURES AS PARAMETERS

parameter is used, its own parameters must be specified in the parameter list,l
For example, consider the following procedure definition:

procedure P (value x, y : N; fp : procedure (value 11 : V);
resalt op : procedure (value w : W))

This declares P to be a procedure which has threealue parameters and one
result paramrter. Of t.he value parameters, two are simple parameters (;r and
y, both numbers) aud the other, fp, is a procedure which itself takes a single
value parameter. When P is called, an actual procedure value of the correct
t}"pe must be supplied for fp, just as numeric values must be supplied for x and
y. The result of executing P is commuuicated through the result parameter
op: again the name of an actual procl'dure variable of the correct type must be
supplied on the calL

It is worth recalling here that Naumann gave some additional syntactic con
straints in [48J to simplify implementatiou and prevent aliasing. These are
summarised in Section 6.4.

Semantics

We recall that the definition of substitution by value for non-procedure variables
was constructed so that the following equality would hold:

P[value f\A]
I[var /.

1,= A;
PIf\I)

II
where P is a program, f a variable, A a term and I a fresh local variable. In
order to deal with substitutions for procedure variables, we will use very mudl
the same approach. However, there is a problem with the program fragment
above, when we replace f by a procedure variable pv: we must also replace I
by a fresh local procedure variable lp. We then have an assignment to lp, and
we recall that assignmeut to procedure variables is a non-monotonic construct.
So instead, we want a definition that maintains the following equality:

P[value MAPI
I[varlp.

Ip:~ AP;
PIh>\lp]

II
Now fp is a procedure variable, AP a term suitable for assignment to such a
variable - a program fragment - and lp a fresh local procedure variable of
suitable type.

I Remember however lhat global variables are nOl specified for a. procedure type.

89 7.1. PROCEDURES A.S PAR.4.\IETERS

The definition of this substitution is as follows:

Definition 7,1 procedure value ~ublltitution

wp(P[value fp\APJ,¢)

'X. X ~ AP "" wp(P,¢)I!PIX]

It should be noted that this definition is consistent with the standard definition
of substitution by value: for a variable x of discrete (non-procedural) type, an
assignment x:~ e is equivalent to the normal x := e. A similar remark applies
to the definition of result substitution which follows.

Similarly, the definition of (non-procedural) substitution by result was chosen
to give the following equality:

P{result r\a]
II var I.

P[r\ll;
a:= I

II

In the ca.~e of procedure parameters, r, a and I must all be procedure variables,
and so the assignment to a is a problem. Instead we aim at the following
equality:

P[result l]I\apJ
I[varlp.

P['1'llp];
ap:;::::) lp

]1

Now 1]1, ap and lp must all be procedure variables of the same type.

The definition of thi3 substitution is as follows;

Definition 7.2 procedure result IlUb.9titution

wp(P[result '1'1 api, ¢)

'Ip. ""(P['1'lap}. (' ap • ap ~ Ip "" ¢It ap)

'Vhile these definitions give precise semantics to the procedure variable versions
of the two major substitution forms, they are not particularly user-friendly.
However, as an alternative to using the laws, we can also manipulate the speci
fication under consideration until it matches the program fragments above, and
then immediately replace it with the appropriate procedure call. Experience
has shown that this is actually more helpful than proposing and proving other
laws using the weakest-precondition definitions.

90 7.2. EX.HfPlE

7.2 Example

Our first exa.mple2 of the use of procednres as parameters (oucentrates on the
use of value parameters. Later we'll show how to nse result parameters t.o
combine two iterators to form a third. We consider the development and USE'

of a procedure, /indmax, to fintl the maximum of an array a of elE'ments of
type T, where the ordering relation R is not ha.rd-coded into the procedure,
but passed as a paramE'ter: for any two values of T, say x and y, the proo'durr
parameter 1p should return a boolean value b to show whether or not they art'
related; that is, execution of rp will establish b ¢:} x R y. The development
of findmax gives a f\..lrther example of the use of procedure variables -- in th~

development. of a procedure which has a procedure parameter, that parameter
is treated just as a local procedure variable - while the use of findmax shows
particular procedure valu~s heing passed as actual parameters.

There are two value parametpn_ and one result parameter to findmax:

findmax (value a: IL1T1lY[O .. N - IJ of T;
rp : procedure (value x. y : T, result !J : Bool);

result m: T)

The postcondition that we want findmax to pstablish is that m is the maximum
value (in the R-ordering) in a:

'<:/ j : 0 .. N • a(j] R m 1\ m in a (1)

The precondition, from which we have to establish (1), must contain the fact
that R is a total order. We must also assume that 17J computes the relation R.,
which can be expressed as follows:

b,[b<>xHyJ [; ,p (2)

We note that, in the definition of the type of "p, the variables x, y and b would
normally be taken as place-holders, but we need to use them in specification
statements. Specifically. we expe<:t predicates about rp, such as (2), to include
specification statempnts with x, y and b free in the pre- and/or postconditions.

So the specification of findmax is

findmax::= m : [R is a total order 1\ (2), (l)J

For brevity, we omit, from here on, the requirement that R should he a total
order - formally, it should be carried through each precondition.

:lThe example is tilin from [491 where it is expressed in tennll of Hoare triples, rather
than the refinement CaiCUIU6.

91 7.2. EXAMPLE

Standard development steps take us to the following program:

findmax (value a: array[O .. N - 1] of T;
rp: procedure (value x. y : T, result b: Bool);

result m: T)

vari:int.

tn, i := a[O], 1;

do i #N---Jo

var c : Bool •

" [1.1]; (3)
if c then m := a[I];

i := i + 1
od

where the loop invariant I and the postcondition of (3) J are given by:

I:;=' (b: [b<::>xRy] ~ rp) /\ (Vj :0 .. i-Ie a[j]Rm) /\ (min a)
J ~ ('r/) : 0 .. i-I. a[j] R m) /\ (m in a) /\ (c <=> m R ali])

Of course, the interesting part of this development for us comes in justifying
the replacement of (3) with a call of rp. Expanding I and J and removing the
conjuncts which occur in both precondition and postcondition3 gives

(3)[;; ,,[b.[b<>xRyl[;; 'J',,<>mRa[i]]

Since rp has both value and result parameters, we need a combination of two
laws given in the last chapter, procedure vanable value specijicallon 6.9 and
procedure variable result 8pecification 6.104 ;

Law 7.3 proeedm'e variable value and re~lUlt 3pecification

If the procedure variable pv has been declared a~ procedure
(value v, result r), then we have the following refinement;

w.ac.[peew,r:[prel,postl!ar\r]]!;pv,po3t] ~ callpv(A,ar)

provided w, ar: [pre,po8t] ~ W, ar; [pf'edv\A], P08t1[v\AJ]

where r does not occur in pre}, and neither r nor ro occurs in post},

Comparing the left-hand side of this rather formidable law with (3), it is not

JFin>t the two conjuncts are removed from the p06tcnndition, since they can be derived
from the precondition, Then they are removed from the precondition by ~imple weakening.

4The law given here is 8lightly simplified. the full vernioll is given at the end of this chap~er.

92 7.2.	 EXA_~fPLE

too difficult to match up the variables and predicates:

Law 7.3 (3)
w
a, c
pee true
v x, y
, ~

pee, true
po,tl r;¢}:rRy
pv '"po,t c ¢} m R a[il
A m,a[iJ

The variable freedom provisos do not cause any problem. We need to have r
and "-0 not occurring in POSt1, which in this case means that b and bo mnst not
occur in c ~ :r: R y. We must also have l' not occurring in prel, which here is
true.

Similarly, the side condition is satisfied: in order for the law to be vaHd, we
need

W, a,.-: [pre, POjt] ~ lV, ar: [predv\A],polltl[V\A] J

In this case, A is the pair m, a[;J. and so the condit.ion is

c' Ic ¢> mRa!,]]

[; ,,[(c¢>xRy)[x,y\m,a[;]]]

which is clearly true.

Since the conditions are all satisfied, we can conclude that

(3)	 r;:;; "procedure vanable value and result Ilpecijication 7.3"

call ",(m, a[i], c)

This completes the development. Collecting the code gives the following pro
gram:

findma:r: (value a: arrny[O .. N - 1] of Tj
rp : procedure [value x, y : T, result b: Baal);

result m: T)

var	 I : int •

m, i := a[OJ,l;

doi::j:.N-.+

var c: Baal.
call ",(m,a!'],c);
if c then m := ali};

i:=i+l
od

93 7.3.	 AN ITERATOR PROCEDURE

Having defined findmax, we can now use it in various ways. For instance,
suppose we need to find the spread (the difference between the minimnm and the
maximum) of an array of integers. We can achieve this - admittedly not very
efficiently - by calling findmax twice, passing different procedure parameters
to find the ma.'C..imum and minimum, and then subtracting one result from the
other. Suppose two procedure constants are defined as follows:

procedure lte(value x. y: mt,result b: Bool)
3 b ,= (x ~ y)

procedure gte(value x,y: mt,result b: Bool)
3 b ,= (x 2 Y)

These can tben be passed to findmax:

spread: int

as : G1Tl1y[O ..N] 0/ int

spread:= mllX(as) - min(as)
r;;
var	 mx, mn : mI.•

mx: [mx = max(a.~)J; (1)
mn: [mn = min(as)]: (Z)
spread := mx - mn

(1)	 ~ findmax(us: ltc, mx)
(2)	 ~findmax(as,gte,mn)

Looking in a little more detail at the refinement of (1), we have the following:

(1) = mx: [Vj : 0 .. N. as[j] :S mx II m.:z: in as}

!;;; var Ip: procedure (value x,y: int, result b: BDDl).

lp , [b, [b ., x ~ y! r;; lp];

mx: [b : [b ~ I:S yJ!;;; lp, Vj : 0 .. N. (u[j] :S mz II fll.:1' in as]

~	 findmax(as, /te, mz)

using the code expansions for value and result substitutions for procedure
parameters.

7.3 An iterator procedure

Having set up all the machinery of procedural parameters, we now consider
it{'rators over sequelll:es, recalling that an it.. ti construct over a sequence takes
the following form:

it s into r with

() --+ r:= x

n a:a1l --+ r:= j(a, a1l)

ti

94 7.3. AN ITER4TOR PROCEDURE

Our aim is to encapsulate this construct within a procedure, which will then
fann part of a library module specifying the behaviour of sequences

module Seq

var

s:seqA

procedure seqiter(..) ;:,

The important gaps remaining in this definition are the parameters to be passed
to seqiter' and the procedure body. The it ..ti COnBtruct above clearly has three
important parts which need to be passed as parameters of some sort. The first
(and the easiest) is the variable r in which the result is to be stored. This is
passed to seqlter' ilS a result parameter 1 and we suppose it has type X. Thf'
other two parameters correspond to the two branches of the iteration -- we
must gl:'t across the action to be taken if the sequence is empty, and if it is
non-empty. We use procedures for both of these parameters. Dealing first with
the branch for the empty sequence, we pass (by value) a procedure,

ep : procedure (result er: X) ,

which has a single result parameter er, which will store the \'alue x.

For the non-empty brauch, the procedure passed, cp, must take two value pa
rameters, for the first element of the sequence and the value of the iteration
applied to the remainder of the sequence. It also stores its output in a result
parameter. So we have

cp : procedure (value a : A, as; X; result cr : X)

Note that the type of the second value parameter is X: this parameter repre
sents the re!Jult of the iteration on the tail of the sequence (a!J), rather than
as itself. This simply reflects the way the corresponding branch of the it .. ti
construct was defined.

Putting this all together, we can give a specification of seqiter:

procedure seqiter(
value ep: procedure (result er : X),

cp : procedure (value a ; A, as ; X; result cr : X);
result ": X) :
it s into r with

() -l ,p(r)

~ a:as --t cp(a, as, I')

u

By the definition of it ,ti (see sequence iterator 5,1), we can express the body

90 7.3. AN ITERATOR PROCEDURE

of seqiter as a recursive procedure 1(5, r), where

procedure I(value 5: seq X,result r: Xl ==
if s is

() --+ ep(r)
~ a:as --+ var 1.

I(a<, I);
cp(a, 1, r)

fi

Looking back at the examples of iterators at the end of Section 5.2, we can
now express them as calls to seqiter. The first example obtained the sum of a
sequence:

it 5 into " witb

() --+,,~ 0

on:ns --+ r:= n + R'l

Ii

As a call to seqiter, this would be

seqiter((result lOr: N. fT:= 0),
(value a, as: 1\1; result cr: N. cr:= a + as), ,

Similarly, the length of a sequellce was obtained by

it s into " with

() --+,,~ 0

~n:ns --+ r:=l+ns

Ii

which we can now write as

seqlter((result eT' : I\l. er:= 0),
(value a, ll'i : N; result cr: N. cr;= 1 + as), ,

These results can be seen as particular cases of the following law, which is easily
obtained by combining the definition of seqiter above witb assignment itemtor
5.2.

Law 7.4 assignment sef/lter

]f the value to be assigned to a variable is formed by the application of
a catamorphism to a sequence, tben the whole assignment can be imple
mented by a call to .seqiter.

96 7.4. MERGI1\'G ITERATORS

"~ilf,gD '
[;

seqiter((result er. er :::: n,
(value a, as; result cr. cr ::: g(a, as»),
,

The types of the parameters of the procedure parameters in the call to iieqiter

are a~ follows: er, as and cr have the same type as the overall result r, and (l

Ita" t.he same type as each element of the seqllence~.

7.4 Merging iterators

In Section 7.1, when we gave definitions for procedures as parameters, we de
fined the meanings of both valu(' and result substitutions for pardmcters of
procedure type, but our example in Section i.2 used only the value substitu
tion. \Ve now remedy this by showing how to form an iterator combinator
a higher-order procedure which basically merge~ two iterators to form anot,hcr.
This combinator uses r('sult parameters of procedure type.

In order to motivate this cOn.<;truction, consider the following problem: suppose
that we have stored a set of values in all array, and that we need to calculate
both the sum of the values and the sum of their squares, in order to perform
some statistical calculatiou. A naive program would be:

it 8 into sum with

() .~um:= 0

on:ns sum:= n + n8

ti;

it s into sqsum with

() sq,'Jum:::: 0

on:ns sq,'Jum:= n 2 + ns

Ii

However, it would clearly be more efficient to make just a single pass over the
sequence, producing both of the required values in one go. The iteration will
then take the following form:

it s into sum, sqsum with
() ----+ sum, sqsum := 0,0

on:ns -----jo sum, ,'Jq,'Jum:::: n + ns 1, n 2 + ns.2
Ii

There are various points to llote about this:

•	 instead of a single result parameter, we now have a pair; looking hack at
the definition of the iterator as a recursive procedure (sequence Itemtor

97 7.4. MERGING ITERATORS

5.1), we Can see that this means simply that the recursive procedure uow
has two result parameters, and that two local variables need to be defined
to store the intermediate results;

•	 in the secoud brauch of the iterator, which corresponds to the case when>
the sequence is uon-empty, we have to refer to the result of the iteration
on the tail of the sequeuce: in the simpler iterators above, we WeTI' able
to use nil, hut here ns is a pair of values $0 we have to use theprojections
ns.l and ns.2 in the assignment of the second bra.nch.

So our aim is llOW to define an iterator combinator, which takes as input two
iterators over a sequence -- in the form of the procedures which form their
branches - and produces as output another iterator over a sequence, the effect
of which is similar to a parallel combination of t.he two input.s. The output
iterat.or will also be produced in the form of the two procedures which form its
branches. Thus we are aiming to replace a program of the form

var	 rpl, rp2 : procedure ..•

seqlter(epl, cpl, rl);

seqiter(ep2, cp2, r2)

by a program of the form

mergeiter(epl, cpl, ep2. cp2, rpl, rp2)j

setpter(rpl, rp2, (rl, r2)) ,

where rpl and rp2 are the two procedures output from the it.erator combinator
mergeiter.

It now remains to define the combinator mergeiter. As mentioned above, the
value paramet.ers are the procedures which form the branches of the first it.
erator (epl and cpl) and the second iterator (ep2 and cp2). while the result

98 7.4. A..JERGISG ITER.4TORS

parameters (rep and rep) form the branches of tlte resulting cOmbined iterator.

procedure mergeitcr
(value	 epl; procedure (result er : X)

cpl: procedure (value a; A, all: X; result cr; X)
ep2 : procedure (result er: Y)
ep2: procedure (value a: A, Gil; Y; result cr; Y)

result rep: procedure (resuJt r; X X Y)
rep: procedure (value a : A, as: X x Y:

result r2 ; X x Y)

rep :;;;) I [var	 I, m'

,pl(IJ;

ep2(m);
r;= (I,m)

II;
rep :;;;) I[var	 TI,O'

cpl(a. as.l, n);

cp2(a, as.2, 0);

r2;= (TI, 0)

il

The observant reader may remember a similar example trnvaIds the t'nd of
Chapter 5, where we used the so-called banana-split law to convert two iterators
into a single iterator. The technique used here is very similar I except t.hat we can
use procedures to encapsulate the functions required, and we can use mergciter
to generate automatically the procedures needed for the combined iterator.

We recall that the banana-split law gave us the equivalence of an assignment
of the form

x,y;~ I[fl,gIJ,,1[f2,g2J .•

and one of the form

:X,Y:=Q/ll)./2, gl-(idA x 1t"I1 c.g2·(idA X 1t"2)DS , (.J
where I). is the join operator ~ (f I).g)x = (f x, 9 x) ~ and the 1t", are projections.

By as.,ignment 8eqiter 7.4, this second assignment (...) can be implemented by
a call to seqiter. But our major interest lies in the parameters to this call.

Returning to our example, we can write the original specification as

sUffi,sqsum:=Q/I,glDs,Q/2,92Ds,

where f1 and /2 are both the constant function which returns zero, while 91
and g2 are given by

gl(x, y) = x + y

g2(:x,y) =:x2 + y

99 7.4. MER.GING ITERATORS

So the first parameter to seqite,' is

(result,.: N x N. 1":= (0,0))

The second parameter must encapsulate the second part of the catamorphism
in (*). Expanding the rather complicated function gives

(value a: N, as: N x 1\1; result ,'2 : N x N.

1"2:= (a + as.I, a2 + as.2))

\Ve have thus shown that

sum, sqsum := ill 1. glD 3, crf2, 92D 5

(;; "assignment seqiter 7.4"

sEqlter((result r: N x N. r :== (0,0)),

(value a : 1\1, as: N x 1\1; result ,.2: N x N.

1'"2:= (a + as.I, a2 + as.2)),

(sum,sqsum)

Now we can introduce local procedure variables, and initialise them to the
required values so that they can be used as parameters to seqitef':

1;;;; var lep : procedure (result r : seq N x seq 1\1)

lcp : procedure (value a : N, as: seq N x seq ,~;

result 1'"2 : seq N x seq l\') •

lep,lcp :;1 ((result r: N x N • r:= (0,0)),
(value a : N, all : ~ x N; result 1'2 : N x N.

1'"2:= (a + as.l,a2 + all.2))
) ;

Ileqitel'"(lep, lcp, (Ilum, SqSllfll))

Now, using the definition of mef'geite1' and the code expansions of value and
result paumetrisations given above in Section 7.1, il is possible to show that
the first statement of these two can be implemented by a call to me1'geite1' with
the right valne parameters, which will assign procedure values to the result
parameters which can then be passed dirt;>Ctly to seqitel'". The details of this are
gruesome and unenlightening - except as evidence that it can be done - and
are therefore omitted.

To snmmarise, what we have done is to define mergeite1', and then to show that

100 7.5. A MORE GENERAL LA W

our original problem can bl:' impleml:'ntl:'d by the following program:

var Zep : procedure (result r : seq 1\1 x Sl:'q 1\1)
lcp : procedure (value a : 1\1, a,~ : seq 1\1 x >;eq 1\1:

result r2 : ::::eq 1\1 x setl 1\1) •

mergeiter(result r : 1\1 • r := 0),
(value a : 1\1, as : 1\1: result cr : 1\1 • cr := a + as),
(result r : 1\1 • r := 0),
(value a : 1\1, as; 1\1: result cr: 1\1. c.r;= a2 + as),
lep,
lcp):

segiter(lep, lcp, (sum, sqsum))

As we anticipated, this is simply a call to mergeiter, followed by a call to seqitcr,
and the essence of the banana-split law for sequences has been encapsulated,

7.5 A more general law

As promised, Wl:' gin' here the unsimplified Yersion of procedure variable val'ue
and re::JlIlt specification 7.3. The slight generalisation allowed here is that the
value paramet.er is allowed in the frame of the specification in the second con
junct of the precondition (with a change to the corresponding sidecondition).

Law 7.5 procedure variable value and T"f'..'!ult specification

If the procedure \'ariable pv has been declared as procedure
(value lJ, result 1'), then we have the following refinement:

W, ar: [
pre ost] C call v(A ar)

w,v,r;[pT"f'.l,postdar\rJ]~PlJ'P - p,

provided w, ar: [p~.post] i; w, ar ; [P~dlJ\AJ,postdttl\Ao]]

where l' does not occur in prel' and neither 11, r nor ro occur in postt,
and Ao is Alw, or\wo, (iro].

7.6 Conclusion

In this chapter we have brought together the earlier work on iterators and
procedure variables to sbow how iterators can be 'packaged' into procedures in
their own right, using procedural parameters to pass information to the iterator
about the actions to be taken on each branch of the data type. The definitions
of substitutions for procedure parameters are very similar to those for the siUlple
non-procedure parameters, with slight adjustments to deal witb assignments to
procedure variables.

Chapter 8

Applications 1: exceptions

8.1 Introduction

While developiug theory and notation, it is sometimes all t.oo easy to forget
the original reason for the work that we are doing: our aim is to enable tbe
development of correct progra.ms from their specifications. This chapter and the
following one are intended therefore to show how real programs are developed
using the notations previously introduced.

There was a choice, for these chapters, between developing a single large pro-
gram and working on several smaller ones. In the end, it was decided to follow
the latter course: although the development of a large program eould show how
the techniques would BCale-Up to industrial-sized problems, there was the dan
ger that it would not be possible, in a large development, to s~ the merits of the
particular techniques proposed for exceptions and iterators, as they would get
lost in the mass of development details. So this chapter and the following one
contain several small developments, with some of them being later combined
into larger programs.

The context in which these sample programs will be developed is that of IBl\l's
Collection Class Library for C++. This is a set of C++ cla..'lSes that implement
commonly-used abstract data types, such as sets, maps and sequences. We give
a short summary below of the main features of the Collection Class Library.l

Section 8.2 describes how the exception-handling mechanism introduced earlier

lThe motivation for usiog the Collectioo Cli16S Library is that the author was 8Upported
by IBM ill the early stages of this research.

102

103 8.1. INTRODUCTION

can be related to exception handling in C++ and the Collection Class Library.
In general, we give 'guidelines' on how to develop C++ programs, rather than
fully justified 'laws" since the justification of such laws would require a formal
semantics for C++, whicb is beyond the scope of this thesis!

Since C++ is not an ideal language for wbich to develop programs in the refine
ment calculus style, we have found it useful to introduce a few abbreviations
to make the jump Erom guarded commands to C++ slightly easier. These are
concerned with the relationship between C++ functions and refinement calculus
procedures, and are found in Section 8.3 and Appendix A. We also give some
additional laws that are u!ied in the sample developments: rather than disrupt
the development~ by giving the laws 'in-line', they are collected in this section.

After all this extra notation, we are finally able to show how the individual data
types from the Collection Class Library can be specified. For this purpose, we
take sequences as our example, giving a specification which consisl,s of a state
model, followed by descriptious of the many operations provided in the library
to manipulate sequences. Several sample programs are developed.

Chapter 9 will show bow the iterator mechanism we have described can be used
with the iterator mechanism of the Collection Class Library Further examples
will be developed.

An introduction to the Collection Class Library

IBM's Collection Class Library for C++ is a set of C++ classes that implement
cOInroonl:y used abstract data types, including sets, maps, sequences, relations,
trees, stacks, bags, queues and priority queues. Most collection classes exist
in several forms, depending on whether the collection is sorted. whether ele
ments can be accessed by keys, whether there is an equality relation defined for
elements anti whether elements must be unique or if multiple occurrences are
allowed.

For each collection class, many operations are defined: each takes the form of
a C++ function, some having side-effects, some giving return values, and some
both. If certain preconditions are not met when the operation is called, an
exception may be raised. The informal specification [22] defines what the pos
sible exceptions are for each function, but not the exact circumstances in which
they are raised. This important omission is rectified in the formal specifications
later in this chapter, for every relevant exception except for the lOutOjMemory
€xception. This exception can be raised by any of the variations of the add
operation when the operating system is sbort of memory. It has to be treated
differently since we cannot describe, at our level of abstraction, exactly when
this will happen. Having experimented with a specification which merely stated
that the add operations could raise this exception non-determiIllstically, un
der any circumstances, it was instead decided to omit it completely: the non
deterministic specification was not particularly helpful since it didn't describe
when the exception would be raised, and it made developiug programs which

104 8.1. INTRODUCTION

used the add operation particularly difficult. Whi]l? not ideal, the pragmatic
solution of not mentioning thl? IOutO/Memory exception at all means that is
much more practical to use the rl?finement calculus to argut: about thp correct
ness of an implementation, including the circumstances under which any other
exception may be raised. However, tbe developer must remember to use an
other form of argnml?nt to reason about the possibility of the operating system
running out of memory, and what actions should be taken if that possibility
arises. This seems to be a case where formalism needs to be combined with
pragmatism,

The Collection Class Library also has a built-in met.hod of indirectly accessing
the elements of a collection: the user of a collection class, once he has declared
an instance of the class, can declare a 'cursor', which is then associated with
that particnlar collection. This cursor can be used to access the elements of the
collection: there are several operations which take a cursor as input, or return
a cursor as output, and, for ordered collections, there are operations which
access the elements in cursor order. For example. addAsNext takes an element
and a cursor as input; provided that the cursor is valid and a.<;sociated with the
collection that is being operated on, the element i!' added to the collection at the
position after that pointed to by the cursor. Altbough the cursor mechanism
provides a reasonably efficient way of programming, by removing til{' Heed to
copy or mow possibly large pieces of data, it suffers from one major drawback:2

whenever the collection is altered in any way, by thp addition or removal of
elpments. all of the cursors are invalidated - that is, th€' programmer cannot
rely on their still pointing to the same elements, or even to any elements at all.
However, the description of the sequence library component given below does
not deal at all with cursors: a decision wa.s made that the cursor behaviour was
not sufficiently linked with either exceptions or iterators to merit its inclusion.
Although the operations which involved cursors could raise excepth.ms, there
was no significant difference in the use of exceptions between these operations
and non-cursor operations. Inclusion of cursors would have meant a significantly
larger specification, but without significantly more interesting material.

Cursors can be used to program iterations over a data structure, but there is
also a more abstract mechanism, the allElemenfsDo operation. Both of these
are described in the next chapter.

Several of the operations found in tbe Collection Class Lihrary also exist in
alternative versions where, instead of a value being supplied to or returned
by the operations, a pointer to the value is uspd. We have not described any
of these alternative versions, since the focus of our interest is exceptions and
iterators.

2This is the case in the CUlTent implementation. atlea:;\ fu\ure ven;ions may change this.

105 8.2. EXCEPTIONS FOR COLLECTION CLASSES

8.2
 Exceptions and the Collection Class Library

In Chapter 3, we introduced a simple exception mechanism and showed how we
could extend the idea of weakest precondition semantics to give a meaning to
exceptional termination, and to justify the laws we stated about the constructs.
In Chapter 4, we extended this mechanism by considering named exceptions,
using procedures to give a form of exception handling, whereby different ac
tions could he associated with different exceptions. Our task now IS to show
how we can nse these ideas to develop C++ programs which use the exception
handling fcu:ilitics of the Collection Class Library. Since the library makes di
rect use of the exception mechanism of the C++ language, we look first at this,
before deciding how much of the C++ notation we will model with our excep
tion handling mechanism. Our aim is always to develop programs rigorously
using the refinement calculus, and then to translate them into the target pro
gramming language - or a subset of it. This translation process defines our
view of a 'safe' subset of the programming language, since, although we cannot
possibly guarantee to be able to develop formally every conceivable program in
the language, we Call guarantee that any program that is the end-product of a
refinement calculus development and a translation will meet its specification.

Exception handling in C++

The C++ exception handling mechanism allows a programmer to recognise when
a function has been called in an nnusual situation, and to pass control back to

the caller of the function. The caller is then able to handle the exception in
an appropriate way. The language constructs which implement this exception
handling are:

• 'throw expressions:

• try blocks;

• catch blocks.

In the body of a function, the programmer can signal all unusual situation
with a throw expression. This expression can contain information to be passed
back to the caller, perhaps an indication of which object caused the exception.
Alternatively it might just be a signal that the unusual situation has arisen.
The concrete syntax consists of the keyword throw, followed by an assignment
expression. In the context of a declaration of aobj a.g an element of a class A,
the two possible forms of a, throw statement might be:

throw (aobj)j

throw IlnvalidCursorj

106 82. EXCEPTIONS FOR COU,ECTION CUSSES

The first of these shows information being passed back to the caller, in this ca::;e
the variable name aobj. In the second example, a constant yalne is passl'd.
which is just the name of the exception

Try blocks and catch blocks are used together to show the scope of definition of
SOIlle handling routines, and the contents of those rantilles. respectively. Thus
a single try block is followed immediately by one or more catch blocks:

try{

statements
}

catch(exl)i

statements

}

catch(ex2){

statements

}

The statements enclused in braces after the try keyword are the scope of the
sllcceeding catch blocks: jf a function whirh j;l called in these statements throws
an exception which matches any of the catch blocks (exl or ex2 above), ,hen
the corresponding handler is C'xecuted. If the ca.tch block terminates normally.
control passes to the statement after the final handler.

At the start of each catch block, there is a, parenthesised expression which
declares the type of object that the exception handler may catch, and optionally
a variable name to identify the object thrown within the succeeding code. The
rules to determine which l:atch block is executed are:

•	 if the object thrown matches the type of the ca.tch expression of tht' first
block, control passes to tbat block;

•	 if the object. thrown does not match the type of the catch expression of
the first block, then subsequent blocks are searched for a mat.ching type;

•	 the special catch expression catch(...) will match any thrown expression
(and should therefore only appear in the last of a sequence of catch blocks);

•	 if no match is found, the search is continued in all enclosing try blocks
and then in the caller of the current function;

•	 if no match is found after all t.his. a call to the terminate() funct.ion is
made.

C++ exceptions and the refinement calculus

In its very simplest form, C++ exception handling is not very difficult to incor
porate into the refinement calculus development method, as we bave extended

107 8.2. EXCEPTIONS FOR COLLECTION CL.4SSES

it to cover exceptional postconditions. The restriction that we put on the gen
eral scheme outlined above is that we don't allow objects to he passed to catch
blocks.J Instead we insist that the catch expression which determmes which
exceptions are caught by a block should consist of a type name, and that type
should be a single element type (formed from a class with no data or methods).
So we might ha....e·

Exception1 claBs { /_ IlO methods -/ }

try {

throw Exception1;

}

catch (Exception1) {

Another restriction that we place on the general C++ exception mechanism is
that we do not coyer thf' case when' the catch argument is a public base class (ie
subtype) of the thrown class object: we insist that the catch argument 5hould
be exactly equal to the thrown object.

Having described the very restricted form of C++ exception handling which we
are going to use, we are uow in a position to show how we can devrJop programs
in our extended version of the refinement calculus, and then transliterate them
into C++.

Using the rules given in previous chapters for exits, we aitH to develop a pro
gram which has the form

[handler	 E1 ~ aaa

E2" bbb

En: nnn.

nz

Assuming all the subprograms (aaa to nnn, and zzz) are code, we would be
finished, since we can transliterate this into C++ as:

class El { ;. .; };

class E2 { ; .. .; };

class En { ;* .; }j

void mainO {

3As Wall mentioned in Cha.pter 4, we could model this, but the Collection Class Library
exception mechanism does nOl include this feature, SO we do not need to consider it.

108 8.2. EXCEPTIONS FOR COLLECTION CHSSES

try { zzz }

catch (El) { aaa }

catch (E2) { bbb }

catch (En) { nun }

So each exception Ei i9 declared a.s a clas~ with no members, and t.he handler!>
become catch blocks while the main program body zzz becomes a try block.

A simple development with exceptions

In this section, we give a formal development of a C++ program which contains
exceptions. The example is very closely based on a sample program from the
IBM C++ Reference Manual [22]. The original program is shown in Fignre 8.1
overleaf. but we will slightly alter saoif' of the Input and output statements to
simplify (.he development.

Our starting point is the following specification:

varn:N

o : R.
r : good I brld
Z ~ n :::: 0 1\ r = bad
NZ == n::f; 0 1\ n:::: lin 1\ r:::: good

o,r, [Z V NZI

If n is non-zero, the output 0 is to be set to the reciprocal of n. The response
code 1"" indicates whether or not the out.put is a valid reciprocal.

The development starts by introducing an exception block and duplicating t.he
normal postcondition as an exceptional postcondition:

!;;;	 .. exceptwnal specification 3.4"
[
0, r : [true, Z V NZ > Z V NZJ	 <l

I
Using the law for sequeutial composition. we can split this into two:

1;;;	 "sequential composition 3.13"
0, r: [true, n;;f 0 > Z V NZJ; (1)
0, r ~ [n;;f 0, Z V NZ > Z V NZj (2)

The second branch is implemented by choosing tbe non-exeeptional route:

(2) !;;; "take normal branch 3.5"
o,r, In ,to,Z V NZ)

<:: o,roln,tO,NZJ
o,r ~ [n;;f O,n ¥- 0 1\ 0 = lin A ,. = good]

!;;; 0,":= I/n,90od

82 EXCEPTIONS FOR COLLECT/a,,, CLASSES 109

j •••

•
The folloving example illustrates the basic use of try, catch,
and throw. The program prompts for a numerical user input and

determines the input's reciprocal. Before it attempts to print
the reciprocal to standard output, it checks that the inpnt
value is nonzero, to avoid a division by zero. If the input is
zero, an exception is thrown, and the catch block catches the
exception. If the input is nonzero, the reciprocal is printed
to 8tandard output.

............•..• /

_include <iostream.h>
#include <stdlib.h>
class IsZero { ;_ _; };
void ZeroCheck(int i)
{

if (i==O)

thrO'lil IsZeroO;
}

void mainO
{

deuble a;

ceut « "Enter a number: ".
cin » a;
try
{

ZeroCheck(a)j

cout « "Reciprocal is " « 1.0/a « endl;
}

catch (IsZero)
{

ceut « "Zero input is net valid" «endl;
exit(l) ;

}

exit (0);
}

Figure 8.1: IBM's original program showing the use of exceptions

82. EXCEPTIONS FOR COLLECTION CLASSES	 llO

The first branch is developed by introducing an alternation, before deciding
whether to aim for the normal or exceptional postcondition.

~1)~ ifn=O---1'
0, r ; [n = 0, n#-O > Z V NZ] (3)

~ ni"O-t
0, r : jn -::f 0, n -::f 0 > Z V NZ] (4)

fi

The fir~t branch of the alternation is implemented by choosing the exceptional
postcondition -- any attempt to develop the normal postcondition would lead
to it miracle.

(3)	 ~ "take exeeptwnal branch 3.6"
0, r : [n = 0, Z V NZ]; ~

exit
~ 0, r: [n =0, Z]
~ r:= bad

The second brallr.h of the' alternation is easily implempnted by choosing the
normal postcondition, and noticing that we arE' already finished!

(4) ~	 "take normal bllltlch 3.5"
o. r: [n f:- 0, n f:- 0]

~ skip

Collecting the code t.ogpther we get

0, r: [2 V NZJ
!:: I

if 11 == 0 -t r ;= bad: exit
o n f:- 0 -t skip
fi;

0,'" := lin, good

We can re-structure this slightly by using a handler:

~ "introduce handler 4.4"
[handler IsZero ~ r :== bad _

if 11 == 0 -t raise(IsZero)
n rI -# 0 -t skip
fi;
0, r := lIn, good

We now translate to C++, using the translation guidelines introdnced above,
and include a few extra statements to reveal the results of the calculation on
the console. and to set return codes,

111 8.3. ADDITIO_"·l.4.L NOTATION A.ND LA.W5

'inc1ude <iostream.h>
.include <stdlib.h>
class IsZero { I" '" .1 };
void mainO

{

double n;

cout « "Enter a number:

cin » n;

try

{

if (n==O) throw IsZero();
o = 1.0/n; r = good;
cout « "r is " « r « endl;
cout « "0 is " « 0 « endl;

}

catch (IsZero
{

r = bad;
cout « "r is « r « end1;II

exit (1);

}

exit(O) ;

}

8.3 Additional notation and laws

The end-product of the refinement calculus development method is a program
in the language of Dijkstra's guarded commands [17J. It is relatively straightfor
ward to translate such a program into a language such as Pascal or Modnla-2 for
compilation and execution. However, the Collection Class Library is designed
for the C++ language, and the mapping from guarded commands to C++ is not
quite so simple. We have taken a pragmatic view where possible, since the focus
of our work is on exceptions and iterators in the refinement calculus, not on
the particular problems caused by the choice of C++ as the target programming
language.

Appendix A contains details of t.he mismatch between C++ functions and the
usual procedures of the refinement calculus. However, this mismatch occurs in
only one place in the case studies in this chapter, and so the new notation is
not very significant.

More importantly, we give some additional laws of the refinement calculus,
which win be used in the example developments.

112 8.3. ADDlTlOt·'AL Z'iOTA.TlON AND LA.W5

Additional laws

The st.andard refinement calculus deYelopment tl"Chllique is to manipulate the
specification. using the laws of the calculus. until we have a program consisting
of execut.able code. In our case, becausC' we intend to use the Collection Class
Library, we can use the copy rule to replan? a procedure body with a procedurC'
call, so we will be aiming either wwards executable code, or towards fragments
of program which matdl (with suitable parametrisatiol1) the bodie~ of proce
dures defined in the library modules. As We follow this development method,
it is clear that the presence of exceptiolls in the specifications uf the collection
class operations means that we need to use the laws lrorn Chapter 4 which
.~how how to manipulate exit, raise <U1d else constructs in the context of the
standard programming constructs. We also need to perform some development
steps which seem strange at first -- their purpose is to change the program
fragment we are currently working on so that it corresponds to a procedure
body. This gives rise to the need for some additional laws, which are eas)' to
verify using weakest preconditions.

We need anothpf law to show how the else cunstruct interacts with sequential
composition.

Law 8.1 else distributi.on

(twa: bbb)) cec
~ aall; (bbb) eee) pf·o1Ji.ded eee!;;: /Ilia; eee

We can implement a specification statement whose postcondition consists of a
disjunction, by introducing an exception block and taking the disjuncts as the
normal and exceptional postconditiuns of an extended specification statement
inside the block.

Law 8.2 disjunction-else

w. [0,0 V1]
[

IV : [0:,,B) 1'1
i

We can turn a specification into a choice between guarded commands, using
any program at all in the new branch, if we kilO..... that the branch will never be
taken:

Law 8.3 superfluous chOice

w. [a, OJ

~ "'f --) w: [o:,tJl

o 'l' --) liM

provided a => l'

84 A COLLECTION CLASS SPECIFICATION 113

It is sometimes conY€n.ient to transform a guarded specification statement into
one where the guard has been absorbed:

Law 8.4 ab!lorb guard

0-> W. [0,,]
w. [0"" 0, o[w\",,] 1\ ,I

provided tL1) i8 not free in D:

8.4 A collection class specification

Having set up all the extra notational machinery that we need. WI: are uow ablE'
to give a specification of a sample collection class. for which we use sequences.
We first describe all of the operations on sequences, and then give a small
example to show how the new pieces of notation introduced aboYe can be Ilsed.
As was mentioned above. there is ODe omission from the description below: we
do not concern ourselves with the IOutOfHemory exception. This is au exception
which can he raised by any of the add operations, reflecting the possibility that
the operating system might report t,hat, it has run out of memory. We would
not. be able to describe the f'xart rirrumstances under which t.his might happen.
and including the pos$ibility of runuing out of mf'mory makes the specification
unnecessarily complicated.

The sequence class

The only state variable is the sequence itself. 4

module ISeq[Eleml'ntj =
var

5 s.eq[Eleme1It]

There are four different ways to add an element to the sequence, In the simplest
case, the new element is added to the end of t.he sequence, and a return cocte
indicates whether the operation has completed successfully.5

procedure add(1' : Eleme1lt,result T": B{Juleal1) =
s. T":= s ~ (e), true

We have explicit operations to add the new element to the beginning or end of
t.he sequence.

procedure addAsFIT"st(e : Element) =
s:=(e)-s

procedure addAsLast(e : Element) 2:

s:=s-(e)

4~ in Z, our sequences are indexed from 1 to the length of the sequ~nce.

5For brevity. vre assume thal all parameters ate passed by value, Ilnlees e:o;plicitly nOLl'd
otherwise.

114 8A A COLLECTION CUSS SPECIFIC.4TIO!'I

\\'e can also specify the position at which we wa.llt the element to be added. If
t.his position is invalid, an except.ion is raised. Otherwise, th(' uew element is
added at the specified position, with subsequent elements being 'shunted down'
as required. (t and .t. are functions which return parts of a sequence: ,<; t n
gives the first n elements of a sequence s, and ,~.t. n returns the seqnenct' with
the first n elements removed.)

procedure addAtPosition(i : N. e: Element)':;'
1 $ i S; #s + 1 --+ s := s t (i - 1) ~ (e) ~ s.t. (i - 1)

U (i = 0) V (i > #s + 1) -t raise(IPosltionlnvalidExcepllOlI)

The anyElcment operation returns a randomly-chosen element of thc sequence.
provided that the sequence is not empty.

procedure anyElement(result e : Element) ==

st-(} -te:[eErans]

o s = () -t raise(IEmptyException)

We can examine the clement at any particular position in the sequence.

procedure elementAtPosltion(i: N,result e: Element).3

l~l~#.~ -te:=sl

o (i == 0) V li > #s) -t raise(IPMnf,lOnlnvahdExceptwn)

We can look at thc first p.!t'lllent of the ~equenc(~, pro\"ided that the t'f'qliencf' is
not empty.

procedure fiT'.~tElement(resulte: Eleme.nt) :2

s :f:. () -t e := s 1

~ s ::: 0 -t raise(IEmptyExcrption)

There are scveral enquiry operations for sequence". For <:ompatibility with
other classes in the Collection Class Library, the operatiuIl" i,Bounded and
uFuIl are provided: since this class is not bounded, the former operation always
returns False. Similarly t.he sequence can never be full. The i,~Empty operation
determines whether the sequence is current I,. empty

procedure isBounded(resuJt T' : Boulean) :2

T':= false

procedure isFuIl(result T' : Boole..an) =

T':= false

procedure isEmpty(result T' : Boolean) ==.
,,~(, ~ 0)

We can access the last element of the sequence, provided that the sequence is
not empty.

procedure lastElement(result e : Element) ~

"I' 0 ~ <= '(#')

o s == 0 -t raise(JEmptyException)

115 8.4. A COLLECTION CLASS SPECIFICATION

Since this class providps a data type of unbounded sequences, the operation
which might be expected to return the maximum number of elements that th('
sequpncp can contain will always raise an exception.

procedure maxNumberOjElements(result n : N) ~

raise(INotBoundedException)

VIle can determine the current size of the sequence.

procedure numberOfElement.'l(result n : N) ;;:

n:= #:'1

There are two forms of 'multiple remo'\'O.l' operations: the first removes all of the
elements of the sequence unconditionally, and so the sequence becomes empty.
The second form removes all those elements of the sequeuce which satisfy a
given property. Here we model this property as a set of elements, and use the
squash function to 'close up' the gaps in the sequence which are caused by the
removal of those elements ill the set.

procedure removeAlil =
., ,~ ()

procedure removeAIl2(b: P Element) =

s := squash(s I::> b)

There are three ways to remove a single element from thp sequpnce: by specify
ing which element is to be removed, or by t.aking the first. or Ja.'l p}pmpnt. An
exception is raised if the position is not valid. or if the sequencp is empty.

procedure removeAtPosltion(i : N) =
1 ~ i ~ #s --t 5 := 5 t (i - n- s ~ i

U (i =0) V (i > #s) --t ra1se(IPo,~ition/rH;alldExcephorl)

procedure removeFirst =

s =i () --t S := s ~ 1

U s = (} --t ra1se(/EmptyExcephon)

procedure removeLa!Jt ==

';i () -j,,~, t (#' - 1)

Us = 0 -+ raise(IEmptyExaption)

Example

We now show how programs can be developed using the specification of a library
module, such as the sequence module above. We follow the usual technique
of using the procedure rules to replace a procedure body by a call (with the
appropriate parametrisation), but some unusual development steps have to be
taken because the procedure specifications above give the possibility of raising
an exception. Although this example ia fairly simple, it shows the techniques
needed to introduce the exceptions.

116 8.4. it COLLECTION CLASS SPECIFICATION

\Ve will work on a sequence of numbers. and WP will expect some sort of return
code:

s:seqN
r: OK I TooSmall

The specification of our problem i.~

Spec :;

if #.~ ~ 2 ---+ ,~, r:o= (s t #s - 1) t 1. OK

~ #s < 2 ---+ r := TooSmall

fi

If the sequence s has at least two elements, thell the first and last elements are
removed. Otherwise, s is left ullchanged and a return code indicates that the
sequence is too smail.

The implementation that we are aiming tit involves using removeFir.st and
n~mQveLallt to take off the first and last elements of s. 1£ tbe sequence is
empty, then obviously a call to the first operation will immediately faiL How
ever, if s is a singleton sequence, then a call to Olle of these procedures will
sU(:(:e€d a.nd then the other will fail. So we need to store the initial value of s
in a local variable, so that. it can be restored later, if IltTessary. Thns thv first
development step is to introduce the local variable 1, and a logical constant fOl"
the initial value of s: we also work with naked guarded commamis rathp.1" than
alternations, since this matches the library procednre definitions:

Spec
~	 varl:seqN.

con S.

1:= s;

{1~S)#,~2 -;U'~(d#'-l).l,OK)

(
<]

U {l = S} #s < 2 --+ 8, r : [r = TooSmall/\ s = 5]

The next step of the de',lelopment IS to introduce an exception block, and to
change the nOll-deterministic choice into an 'else' construct:

i;;;;	 "choice-elsc 3.10"

I
{l ~ S} #' ~ 2 -; " r,~ (, t #' - 1) .1, OK

>

{I:::: S} #3 < 2 --+ S, r: [r = TooSmall/\ 3:::: 5j

The assignment of OK to r can be moved to the end of the exception block:

1;	 "eLge distribuhon 4.9"
{1~S)#,,,2 -;, ~(,t#,<-IH1)

<]

(
> {1::::S}#s<2 --+s,r [r= TooSrnall/\3=Sl

•

84 A COLLECTION CUSS SPECIFIC.4TION 117

r:= OK

The exceptional construct is split into two with sequential composition. using
the sQrm:what complicated law introduced earlier (page 24).

~ "sequential composition 3.12"

{1~S},1'() -H ~(,t#,--I))

> (I)
(

{f::: S} #s < 2 -t Il," [r:::: Too$mall /\ s :::: S]

(I~S},1'() -t,,~(,.j.l))

> ~)
(

{I:::: S} #.5 < 1 -t Il, r: [r ==: TooSmall/\ s:::: 5j

(The use oJ this law is justified by noting that

{I ~ S} #' ~ 2 -, ,.~ (, t #' -- I) t I

C

{I ~ S}, l' () -t , .~ (<t #' - I);

{I ~ S}, l' () -t ,;~ (, t I)

and that

{l:::: S} #5 < 2 ---t $, r: [T ==: TooSmalll\ S := S]

!:::

{I ~ S},,, () -t,;~ (, t #' - 1);
{l:::: 5} #8 < 1 ---J S, r; [T':= TooSmal[/\ s ::::: S]

as required.)

The program now looks very promising because the two halves of the sequential
composition are similar to the specifications of the removeLast and removeFirst
operations, respectively. Converting each exceptional branch into an assign
ment. then removing the unnecessary assumptions, and slightl)" re-writing the
guards makes the match even more clear:

(2) !::: , l' 0 -t,;~ d I

> S = () -t r,s:= TooSmall,l

(I) !::: , l' 0 -t,.~, t #s -- I

> #s < 2 -t r, s := TooSmall,l

~ "strengthen guard"

s ¥- () -t S := s t #8 - 1

> S = () -t r,s:= TooSmall,l

118

•
8.4. .4 COLLECTION CLASS SPECIFICATION

We can make th(' match to the library specifications complf'te by definillg a
handler for the exception which is raised when the operations are applied to au
empty spqut'llce For this we need to retllrn to the top level of the developIDeut:

Spec
[;	 "intmduce hrmd/t',.. 4.5"

varl:seqN.

1:= s;

[handler JEmptyExc:eption == 'T. s:== TooSrnall,l_
(B 1- () --l' j :=.s i #$ - 1

Ds = () --l' railOe IEmplyExcepl-ion);
(, " () , ,~, 11

o .5 == () --l' raise IEmptyExceptwn);
r;::: OK

Notice that the handler for IErnptyException should actually be declared twice:
however the handlers are idllntical and so the declarations can be merged.

Finally we use the l:Opy rule to insert calls to the remotieLast and r"emoveFi"',5t
operations, to give t.he following program:

varl:seqN.

1:= s;

ff handler IEmptyExcept'lOn == r·, S := TooSmall, I •

.~. removeLas/:

s.rernoveFirsl.;

r:=OK

What's missing?

Thif; completes our specification of the sequpnce class, but we should be honest
and admit that there are a few parls of thf' commercially-available class that
we haye not specified:

•	 We have not given a specification of the iterator operation allElementsDo:
this would not be too difficult, but we have concentrated on exceptions
in this chapter. The next chapter shows how to use the allElement,~Do

operation .

•	 We have not described the addAllFrom operation, which allows the user
to form a combination of two collections, by adding the elements of a
second collection to the current one. It should be possible to specify this
in terms of an iteration over the second collection, hut there are some
interesting questions: for instance, what happens if an exception is raised
(perhaps because of lack of memory) midway through the iteration? The
manual is very unclear on this!

85 SAMPLE DEVELOPMENTS	 119

•	 As mentioned earlier, we have not described the L»ie of cursors, or the
fOutO/Memory excl?ption, We ha.ve also liot described the operations
whj(n use pointf'rs.

8.5 Sample developments

We can now give some larger sample develupments-hich use the Rpet:ificil.tion
set out above.

Mapping a function

In order to show how we can use the specification of the sequeuce class above,
we start by developiug a program to transform a giveu text, t, a sequence of
words, into another text, 5, by applying an as-yet-unspecified funct.ion f to
each element uf t. The development will be tackled in two different ways: Ilsing
ordinary sequeuce operations ill this chapter, and using iterators in the next
chapter.

The specificatIDli of thf' proLlem stipulates that the sequences should have the
same length, and that f should be applied to each elemeI!t of t to prodll(:E' the
corresponding element of s.

var s, t: ISfq[Word]

"[(#' = #,) A Vj' 1..#'. ,j ~ f('j)]

The first step is to introduce a local variable and split the specificauon statement
into an initialisation, followed by what will become a loop:

C	 Yarl:!\'.
- "I~{#s=i)l\(i:S#t)I\VJ:1..i.sj=f(tjr·

S,1 : {true, I]j (1)
~,i:[I.I /\i=#tJ	 (2)

The iuitiaJisation is easily implemented as two assignments:

(1) r; ";'~ (),0

and the assignment to s is implemented with a call to the ,-emol'f,4U procedure:

~	 s.,-emoveAll1j
i:= 0

Returning to (2), v.'C can see that the iteration is guarded by I t:- #t, u,-hich
we can represent as I t:- t.numberOfElemen~!, remembering6 that this is an

6Seoe Appendix A.

120 8.5. SAMPLE DEVELOPMENTS

abbreviation for the declaratiolL of a local variable, say fltJmT, followed by a
call to t.n'UmbeTOfE!ement<~ with the result stored in numT, and the use of
I 1: llumT as the real guard:?

(2)	 ~ "iterution"
do i;f:. t.numberOfElemenls!-+

. [I I] <J
5.1: ~¥-#t'OS:.#t-j<#t-1(j

od

Siuee it is clear that we will need to increment l, we llse the followlfIg o.\'st91lment
law on the loop body:

i;;;; "following assignmt;nt"

r I I[,\i+l]] (3)
!l: Li =f:. #t' 0 S #t - (i + 1) < #t - i ;
i ;== i + 1

It is tempting to implement Lhe first half of [be loop body with a simple assign
ment:

(3)"	 ,,~.< ~ (J '(i + 1)) ,

but this would lead to trouble, siuce t.he only way we can access tlw (i + l)th
clement of t it-; \.0 use lhe elementAtPusttiori operation. In order to 115(' it
successfully, we OE'f'd to be sUI'e that the supplied position -'- 1+1 in this (:a.~e

- lies within the bound~ of the sequence. So here we need 1 S i + 1 :S # t.
Therefore, a development that proceeded st.raight to an a~signment as above
would soon run into problems. So instead, we introduce another local variable
to store the relevant element of t:

(3) ~	 var 11' : Word.
I /[,\.+1]]

11',5: [i¥-#t'O:S#t-(I+l)<#t-t

i; ''-~eql.Lential composition"

<J
11' = t(1 -1-1)

W,' [;/#" ,/#t];

w," [, "I#t , II'\i + 11] (4)
11' = t(i + 1)

The first half of this is implemented by introdncing a nondeterministic choice.
We know from tbe precondition t,hat the first branch of the cboice must be
taken, so we have complete frt>edom of choice for the second branch. We choose
to raise an exception so that tbis construct matches exactly the specjfication of

7In the body of the loop, we conLinue to use #t, since these OCCUrTences are not in code,
and will di9.ll.ppear later in thE! development

8.5 SAMPLE DEVELOPMENTS 121

t.elemcntAtPontion(i + 1, w).

<; "~uperfiuous choice 8.3"

1 S i + 1 S #t --)w:=t(i+l)

o (0 = ,+ I) V Ii + 1 > #tl --) raise(IPosttionlnvalidEw'ption',

~ t.elementAtPosition(i + 1, w)

Returning to the second half of the sequential compo~ition. we can expa.nd the
definition of I and it is then easy to seE' that it can be implemented by app]:. ing;
J to III, and then appending w to the end of s.

#5 = I

is #t #s == t + 1
(41~ 1II, .~ : Vj:l.i.,j=!(tj), i+lS#t

i##t Vj:l.i+l • .s)==:J(tj)
w=t(i+l)

[; IIJ:= /(111);
!J:=.~ ~ (w) <J

f; s.addAsLast(w)

This completes the first development of the problem. Collecting the code gin'.~

the following program, when' we have also defined a dummy handler for the
exception, even though we know that the exception can never be raised within
the block -- this is to prevent an over-zealous compiler complaining that there
is an undefined procedure:

~ handler IPositionlnualidException := skip.

vari:N.

s. removeAll1;
1:= 0;

do i t- t.numberOJElements! -+

var w : Word_

t.elementAtPosition(i + 1, w);

w=J(wl; ('1

.1.addAsLast(w);

i:= 1+1

ad

I
The assignment marked (_) is still not code, since we don't yet know the defi
nition of the function f.

A particular function

The development above is clearly generic, in that we do not specify what func
tion should be applied to each element of the list. We now lock at a particular

122 8.5. SAMPLE DEVELOPMENTS

function f 1 which is moti"ated by an exercise from a standard programming
texLll We do not go into any great detail in the development. since the prob
lem does not make any great use of exceptions, whirh are our chief concern
in this chapter. However, several of the refinement steps arc motivated by thE'
need to use operations from the sequence collection class for manipulating thf>
seqnences involved, and this is til{' purpose of including the development here:
we can see how the development ha.s to be geared towards these class operations.

The iJroblem rpquirements are as follows: we are gi.....en a text t in thl' form of
a Sf'qUlmre of words. and two list~ of words a and b. The task is to traI15form
thl: text f into a text s by replacing each occurrence of a word a, with the
corresponding word b•. Thus, for instance, if a is (one, two, th,.,:e) and b is
(eleven.l.we/ve, thirteen}, then a text (it, is, two, mmute,~,pasl., three) would be
transformed to (tt. ts. twelve, mmuf.es, past, thirteen). Clearly we can use the
'map' code developed above, and the only work left is to define the function I
which will serve in this case, and then to deve)o(.J code to replace the assignment
marked (*) in the development of the previous section. From the informal
statement of requirements, we can see that the function I that we arc interested
in is the onf> which maps a word onto its transform:

procedure transform(m : Word,result out: Word) ;;;=

out:= f(m)

where
I : Word -i Word

'd . W d I() = { b(a-
I

w) if w E ran a

IJJ. 01'. W w ifw'l.rana

Expressing this as a specification, we get. the starting point for our development:

out :=/(m)

c; out: [(inEnna) (,nf,ana)]
out =:- b(a- l in) Vout=in

The algorithm chosen is a sequential search, where a local variable p i.~ intro
duced, the pnrpose of which is to store an index such that, if in does actually
appear in a. then p will point to it, and if tn doesn't. appear in a then p will
be set to one more than the length of a. Once p has been set to this valne,
it is simple to achieve the desired postcondition with an alternation, using the
elementAtPosition operation.9

~ varp:N.

,[(,nE,ana) v(,nf,ana)] (5)
p In = a p p =#a + 1

[(in E 'ana) v(on fnna) , out:
m=ap p=#a+l

8Thl' problem appeiUll in [55] a3 exercise 1. 7, where it is expressed in tl'rnl& of arrlloYS rather
than 5equences.

9A5 in the previou8 example, superfluous chPlce 8.3 is also required to introduce the
'superfluous' branch of elementAtPoslhon.

8.6. CONCLUSIOl',;' l23

in E "'" a) (in ~ "n a)]
(out:::: b(a-lm) V out:::: in <J

!; if 1 ~ P .s:: #a --+ b.elementAlPo.'i1tton(p, out)
o p = #a + 1 --+ out := in
fi

Setting p to t.he correct index value is achieved with an it,eration, which uses
yet another local variable ,. to store the most recently access('d element of (J,.

(5)!; var!J: Word
"f ~ (1 So P So #a + 1) ~ (in ~ a[Lp - 111

/\ (1 .s:: p .s:: #a:::} tI = a[p])" •
p:= 1;
a.elementAtPosition(p, tI):
dopi#a+ll\ini!J~

if 1 S p .::; #a - 1 --+ a.elementAtPosition(p + 1,1';'
Op=#a --+skip
fi
p := p + 1

od

This c,ompletes the development of the procedure transform. The cullected code
shows three calls to the elementAtPosition operation from the sequence clas~:

var p : N, v: Word
p ::::: 1:
a.elementAtPosition(p. v);

do p t- #a + 1/\ in t- v --+
if 1.s:: p .s::. #a - 1 --+ a.eJementAtPosihon(p + 1 1')
Op::::#a -lskip
fi·
p:= p + 1

od;

if 1 .s:: p ~ #a --+ b.elementAtPosttton(p, out)

o p = #a + 1 --+ out := in
fi

8.6 Conclusion

In this chapter, we have completed our study of exceptions. Chapler 3 started
with a very abstract approach, which simply differentiated between normal and
exceptional termination. Tben, in Chapter 4, we extended this by introducing
handlers and multiple exceptions. We have now shown how to relate these ideas
to the very specific exception mechanisms which exist in the Collection Cla~s

Library. We gave a specification of one of tbe classes, and showed how it is
possible to develop programs which use that specification. lr. particular, we
showed several developments which use the exception-handling mechanisms of
the Collection Class Library.

Chapter 9

Applications 2: iterators

9.1 Introduction

\"Ve invf'~t,igate in this chapter how W{' can appl:y the ideas about itcrators which
were introduced in earlier chapters to the dewlopment of programs which usp
the it{'rator fa.cility uf the Collection Class Library. We arc therefore not par
ticularly concerned with exceptions in this chapter.

Our applications III this cbapter are based on the sequence Collection Class
introdu<:,ed in the last chapter: this has the advantage that we do not. need to
go through a long specification before WE? actually get to tbe more interesting
section!; on how the iterator concepts are used ",ith the class.

\\'e start by gidng an introductioll to the iterator mechanisms availablf' in
the Collection Class Library. By taking a slightly unusual definition of the
sequence type, we then show how one of these mechanisms can be related to
the it..ti construct. We give some examples to show how programs can be
developed using iterators over sequences, and we finish b:.' returning to the
sequence example - mapping a function - from the pre',ious chapter.

9.2 Iterators in the Collection Class Library

The Collection Class Library incorporates two iteration methods: a mE'thod
which uses cursors and a method which uses iterator functions. We will describe
the cursor method briefly, and tben concentrate on the use of iterator functions,

124

125 92. GOLLECTION GLASS ITERATORS

because rhi~ is the method that relates best to am it. ti construct.

Iterating using cursors

An iteration over a collection can be achieved using t.he standard cursor oper
ations, and the C++ for construct. Consider the following example.

ISet <int) colI;
15et <int)::Cursor current(coll)i
for (current.setToFirst(); current.isValld();

current.setToNext())
{

II
colI elementAt(current);
II

}

coll is first declared to be a spt of integers, and current is declared (using
the nested class Cureor) <I.S a cursor for the set colI. The for constrnct is
initiaJised with current. setToFirst, continues a.s long as current. isValict
is true. and uses current. setToNext to advance to thp nrxt elemenl. In tht,
body of the for construct, coll.elementAt(currellt) is used to obt.ain \<1.
reference t.o) the element pointed to by current.

In order to make programming slight.ly easier, the CollE'c\.ion Class Library
provides a macro forCursor:

.define forCursor (c) \
for ((c).setTorirst(); \

(c). isValidO; \
(c).setToNext())

With coll and current defined as abO\;e, the program now becomes

forCursor(current)
{

I I ...
coll.elementAt{current)
II

}

There are warnings in the manual [22J about. not adding or removing element:>
from a collection during an iteration, 'or all elements may not be visited once'.
One reason for this is that any addition or removal from a collection causes the
invalidation of all cursors.

9.2 COLLECTION CLASS lTER4TORS	 126

This is aJI that we will say about iteration llsing cursors, other than to note the
similarity with the iteration schemes of various object-oriented languages (seE'
Section 10.2).

Iteration using iterator functions

The second, and more interesting, mf'thod of iteration in the Collect.ion Class
Library is to use the allElementsDo operation. Tbe Collection Class Library
reference manual [22] gives two reasons why the cursor method might not be
acceptable:

•	 for unordered collections, it might be stylistically undesirable to haw 31\

explicit (yet arbitrary) order; and

• it, is possible that it might be more efficient to carry out an iteration in
an arbitrary order, using something ot.her than cursors. For instance, if a
tree implementation is being used, a recursive descent iteration might be
mare efficient, despite the extra function calls.

In order to use the allElementsDo operation. the user has to supply a function
which is to be applied to each element of the collection in turn. For ordered
collections. the iteration order is the same as the order of the ('ollection, and,
for unordered collections, the iteration order is arhitrary. The fum'cion to be
applied to each E'lement of tbe colleCtiou also gives a Boolean return value. This
vatue can be used to lerminate the iteration prematurely, since the iteration \~'ill

only move on to the next element if this return value is true.

For example, the sequence class contains the following declaration:

Boolean allElementsDo (Boolean (.function) (Elementk, void_),
void_ additionalArgument = 0) ;

This function could be used to sum the elements of a sequence of integers as
foHow~:

typedef ISeq <int> IntSeq ;

Boolean sumUpFunction (int const& i, void. sum){
.(int.)sum += ij
return True;

}

IntSeq s;
\\ ...
int sum '" OJ
s.allElementsDo (sumUpFunction, ksum)

9.3 COLLECTION CLASS ITERATORS AND IT..TI 127

The sumUpfunction is declared: it takes two parameters. an integer i and the
cumulative total sum. Its effect is to add i to the totaL A sequence. s. ofintegero:.
is declared. The variable sum is initialised to O. and then allElementsDo is
applied to s with sumUpFunction as the CunctlOn to be applied to earh rlerrwnt.
aud the result stored in sum.

In what follows. we will make no use of thf' Boolean value returned by the
function supplied as a parameter to allElementsDo, but it could clearly be
used to provide an exit. tnechanism from the middle of an iteration.

Doe of the drawbacks of this method of itt>ration call be seen in t.he aboy('
examp[(': if the function to be applied to each element requires additioJlru argu
ments, perhaps an accumulation parametE?r, these must be sllpplied J.S iI. second
parameter to allElementsDo, aud they are therefon' not y;eJ] ('wapsulated. J11

the example above, we have to supply sum as the extra param('ter. The Col
lection Class Library provides yet. another way of performing iteration to g('t
around this: there is a form of the allElementsDo operat,ion which takes as
its parameter an 'iterator class', rather than the function to be applied to each
element. These iterator classes must cont.ain a function called applyTo, and the
class must be deriyed from an abStract base class IIterator. Now additional
arguments that are needed for the iteration can be pa..<;sed as argulllent;; to the
constructor of the derived iterator class. However, we will not b(' u::;ing this
form of allElementsDo.

9.3 Collection Class iterators and it..ti

We must now explain how we can relate the iterator mechani,m described
above - allElementsDo with an iterator function -- to the it .. ti construct
from Chapter 5. We will describe this relationship, just as we described the'
mapping from guarded command programs witb excepti,ms and handlers to
C++ programs. in terms of an informal collection of guidelines, rather than an~'

formally-defined translation.

The key to the relationship between allElementsDo and it .. ti lies ill Our '.. iew
of the type underlying the s{'quence class. The traditional view - and thl' one
taken in Section 5.2 - is that sequences are constructt'd as eHher empty or b~'

applying the Cons function to an element and another sequence:

type seq A .2: Empty I Cons A (seq A)

\Vhen seen like this, sequences are oft{'n called 'Cons-lists'. However, for reasons
that will become clear, it is much more convenient for lIB to use an alternative,
but isomorphic, vi{'w, where we treat a sequence as a 'Snoc-list'[ll, Chapter 1]:

type seq A :3 Empty ISnoc (seq A) A

With this complementary definition of the sequence type, it ..ti constructs now
take a correspondingly different form, with the branches as always correspond

128 9.3. COLLECTION CLASS ITERATORS AND IT..TI

ing to the branches of the type definition: we can find the sum of a sequence s
with

it s into r with
Empty --t r :== 0

U Snoc ns n --t r :== 118 + rl

ti ,

or the length of a sequence with

it s into r with
Empty --+1';=:O

D Snoc n5 n --t r := ns + 1
ti

Now we must show how to encode this iLti in teems of allElementsDo. The
technique used is to treat r, th(> result variable of the iteration, as an 'accumu
lation parameter': the initialisation ofthis parameter is derived from the Empty
branch, while the function to bp passed La allElementsDo is derived from the
Snoc branch by replacing occurrences of the front of the sequence -- ns in the
examples above - with the result variable, and making the last elemC'nt of the
sequence _. 11 abm"e -- a value parameter to the function.

Examples may make this transformation a little clearer. The summation itf'ta
tor abov~ becom~s

r ~ 0 ;

s.allElementsDo (value n, valUe-result r . r ~ r + n) ;

where we have used the standard nAinernent calculus desaiptions of parameter
passing nlf'chanisms, rather than C++ 's more cryptic * and t. The initialisation
r = 0 is taken directly from the Empty branch, whil£! the function r =. r -+ n
comes from the Snoc branch, ,.. := 1IS + 11, with ns replaced in our usual way
by the resultariable r.

Similarly, the length iterator above becomes

r =. 0 ;

s.allElementsDo (value n, value-result r r = r + 1)

Generalising slightly, we obtain the following guidelines for implementing an
it..ti construct o....er a Snoc-list, s:

it s into ,.. with
Empty ---; r:= c

o Snoc as a ---; r := !(as, a)
,;

is transliterated into C++ as

129 9.4. A SIMPLE DEVELOPMENT

r = c ;

s.allElementsDo (value a, value-result r . r ~ f(r,a)) ;

The reason for treating sequences a.~ Snoc-lists rather than Cons-lists is so that
the accumulation will 'start at the right end'. In functional programming tc·rms.
our definition of it ..ti (once the recursion is removed) corresponds to a Joldr.
rather than a Joldl: we t.herefore needed a definition of the sequence lype which
matcl..les t.his.

9.4 A simple development

We can now return to the example of Section 8.5, and fulfil the promise made
there to repeat the development, this time using iterators. The specification of
the problem is that a sequence t should be transformed to another sequence $.

by applying an as-yet-unspecified function f to each element l
,

var 3, t: ISeq[Wonij

"1(#' = #1) A"J' 1 .#1. '/ = /(11)] (1)

It turns out that this development llsing iterators is much simpler than thE' one
given earlier, siuee all the det.ails of local variables and do..od constructs are
neatly encapsulated in the iterator construct. The first step is to t~pxpress the
specification as a catamorphism:

(1) ~ "~ Qm1, m2D' ,

where

ml () ~ Empty

m2as a = SnOCflj (f a)

So we can immediately irnplemeut the catamorphism with an it. ti:

f; "assignment itemtoT 5.2, Snoc version"
it t into 3 with

Empty --; s := Empty
o Snocas a --; s:= Snoc as (J a)

'i

We can translate this into C++, using the guidelines above and the definition
of s,removeAlll:

B. removeA111 ;

t.allElementsDo (value a, value-result s . s = Snoc 8 (f 8)) j

1 Both sequences happen to contain words, but ~hat is not relevant hl'r~

130 95. MORE COMPLEX TYPES

Once it is known which function f is required for a particular development,
it is clear that the C++ function passed to t. allElementsDa can he further
developed. Indeed, it is likely that it will he necessary to use another library
operation, such as s. add, to add tbl' new element to the end of the sequence s
as it is being constructed. However, thpsc are not our concerns here.

9.5 More complex types

We condude this chapter with a brief description of how the above scheme for
translation to the Collection Class Library might be extended to morp. complex
types such as trees. There is an obvious reason why the schelle cannot deal
with trees in its present form; the trick of accumulating the result of a foldr in
a variable Cannot work with a type like trees because there is morc than one
recursive occurrence on the right hand side - we ne-ed to accumulate the result
of applying the function in qnestion to the left sub-tree a.nd to the right sub
tree, so we need two local "."riables_ Of course, at the next level of unwinding,
we m...>eu four variables. and so on.

How~ver, WIO carl get round this problrm by splitting the prohlem into two parts:
first we flatten the tree, then we iterate over the flattened strurture. Of course,
the flattened structure shonld be of a typc for which we can easily convert to
a call of allElementsDa. such as Snoc-Iists. We can often appeal to the fusion
law [11, Equation 2.12] as a way of transforming a catamorphism o'l.'er tref;'S to
one over the new typc, such as Snoc-lists.

Of course, we should also consider the question of efficiency': this approach
to the implementalion of iterators oyer complex structures - by flatttCning
the structures and iterating over the f1attl'ned version - is only going to he
acceptable if we can maintain the efficiency of an algorithm on the flattened
structures when it. is translated back to the more complex structure. This is
a topic which remains open for further research, which will inevitahly involve
an investigation into the relationship between data refinement and the it..ti
construct

9.6 Conclusion

In this chapter, we have shown how the iterator construct introduced earlier
can be related to the iterator mechanism which is built into the Collection
Cla."s Library. For sequences, we showed how treating a sequence a5 a Snoc-list
meant that there was an easy way to turn an it.. ti construct into an initialisation
followed by a call of the allElementsDooperation. We have seen that the it..ti
construct is actuaJly very flexibll', since we can choose whatever 'view' of the
type is most convenient. This choin:~ can he made at a late stage, as it does not
need to be fixed.

Chapter 10

Related work and conclusions

In this final chapter. we set our work in context by surveying other published
work on exceptions and iterators. \Ve suggest SOInE' areas for future work and
end by drawing some conclusions.

10.1 Related work on exceptions

In this section, we look at the varieties of exception mechanisms available in
a selection of programming languages. before examining some proposed tech
niques for the formalisation of these mechanisms.

A variety of exception mechanisms

When we looked, in Chapter 3, at why exceptions were needed in program
development, we mentioned two models of exception handling: the termination
model and the resumption model. These models reflect the different views of the
actions possible when an exception is raised or signalled - whether the signaller
should be ended and control passed to a handling routine, or whether control
should be passed to the handler and then back to the original signaller at the
point where the exception was raised, after some sort of attempt to 'clean up'. In
fact, when we examme the literature, we find a few other proposals for possible
actions: the signalling procedure could be 're-tried' from the beginning, or the
exception could be propagated to allow a higher level of procedure to respond to
the error. This wide choice of actions i9 reflected in the variety of mechani9ms

132

133 10.1. HEL:\TED \tv'ORK OI'l EXCEPTIOl\-S

a~'a.ilabl~ for exceptions in programming languag~s. Some langl1age~ permit
more than one sort of response, while others restrict what, is allowed. In general,
the more complex mechanisms are, not surprisingly. the cau~e for more complex
formalisations.

Exception handling in PL/I [35J is based on the resumption lnodel. For sOllie
bu itt-in exceptions, it is possible to specify that an operation should be re-tried.
though this feature i:> not extended to user-defined exception!;. Exceptions are
automatically propagated until an appropriate handler is found, and the SCOpf

of exceptions is global.

In contrast, exception handhng in CLU [31} is based on the t.ermin.,tion mudeL
and exceptions must be explicitly propagated olong the invocation chain. The
language allows only statements and procedures to raise exceptions, not expre.'>'
sions. These exceptions can be parametrised, and, since exceptions that. might
be rahed hy a procedure must appear in its declaration, a certain amount of
type-checking is possible.

Goodenough [20) has proposed a notation for exceptions that is extrem('!y flex
ible, allowing several forms of response to the raising of all exceptlon including
both resumption and termination. The exceptions raised are neither typed nor
parametrised.

Ada's exception mechanism (see for example [8]) is based on the termination
model, and here too exceptions are non-typed and non-parametrised. Excep
tions are not declared in procedure headings, and so compilers are unable t,o
do much ch~cking, Ada's mechanism is fairly complex and therefore difficult to
formalise.

Yemini and Berry [57] have proposed an interesting scheme which is more am
bitious than most of the others, and claims to cover all of the possible responses
to the r.using of an exception. They base their ideas on the so-called 'replace
ment model': by viewing a program as an expression, with side-effects allowed
in expreSSion evaluation, they see the raising of an exception in an expression
as corresponding to a sub-expression which could not be fully evaluated. The
handler of an exception produces a resutt which can be used in one of two ways:
it can either replace the result of the sub~expression (thus giving the effect of
a I'esumption), or it can replace the result of the whole expression which raised
the exception (a termination) - hence the name 'replacement model'. The
authors' concerns with modularity and orthogonality lead to a very powerful
and flexible mechanism.

Formalising exception mechanisms

There have been several attempts at fonnalising some of these exception mech
anisms. In many cases, this has meant imposing restrictions on the mechanism
and providing formal semantics (or only a part of it, Or making significant pro
posals for change. For instance, Luckham and Polak [33] have attempted to give

134 10.1. RELATED WORK ON EXCEPTlONS

axiomatic semantics to the exception mechanisms in Ada, and have only suc
ceeded by making major changes: banning automatic propagation of exceptions
and insisting that they are propagated explicitly to invokers, for examp]£',

Yemini [56J ha..<; given an axiomatisation of the exception mechanism baspd on
the replacement model, which involves only two new proof rules in addition to
those of the block-structurpd language in which the mechanism is used. The
simplicity of the axiomatisation is probably due to the use of procedures and
the concern with orthogonality of program constructs.

Turning now to predicate transformer semantics, Cristian showed [15, 16] how
a semantics could be gil-en to a deterministic programming language with ex
ceptious. His technique involved viewing programs as multi-exit structures, and
thereby giving their meaning with sets of predicate transformers. Writing WPe
for Cristian's wp, we have in his notation,

•	 wpc(P,; ,a) denotes the weakest precondition un der which program P
is guaranteed to terminate normally, satisf~ring the predicate o. This is
simply the usual Dljkstra predicate transformer wp(P, a); and

•	 UJPc(P, e,o) similarly denotes the weakest precondition under which P i!'>
guaranteed to terminate at exit point e, satisfying a.

According to CriEtian, the meaning of a program P was given by the predicate
transformers wpdP, ; ,a) and wpc(P, e, 0) for all possible exit points e.

However, if we try to use Cristian's technique on our own language which in~

eludes non-determinacy, exception blocks and an exit command, we soon ruu
into problems. Following Cristian's ideas, we find that the meaning of a pro
gram P is given by the two predicate transformers

Ulpe(P,; ,a) and wp,,(P,exit,o).

However, the separation of the meaning of P into two separate predicate trans
formers is the root cause of the problem. Consider the program

Q == skip nexit

in which IT denotes nondeterministic choice. 1 Since we cannot guarantee that
Q will terminate successfully, wpc(Q,; ,a) == false. Similarly, since we cannot
guarantee that the exit will be taken, wPe(Q,exit,a) == false. So Cristian's
semantics for Q is given by these two (constant) predicate transformers.

Now consider instead the program RQ]. We know that, for successful termina
tion,

wp,([QI,; ,0) = 0

sil"lce t.he exit in Q will be caught by the exception block. This exposes the
problem with Cristian's approach: we cannot give the meaning of RQ] in termS

'The lll.llguage lor which Crist ian ga.ve a. semanucs in [16] did no~ include this open.tor.

135 10.1. RELATED WORK ON EXCEPTJOJ'iS

(only) of the meaning of Q, since a does not appear in the latter. The problem
is that, "'ith the two separate predicate transformers, we cannot express that Q
is guaranteed to terminate, either normally or exceptionally: we can say only
that it cannot be guaranteed to terminate in either state in particular.

Apart from Cristian's work, there have also been one or two other allempls to
generalise predicate transform('fS to deal with exceptions. At the start of this
work, we were aware of Crist ian 's approaA.:h; but since then we have tncounten~d

three others, two dating from the 1980s and the other contemporaneous with
our own work.

In an Ilnpubli::.hed report [6], Back and Karttunen discussed hOll" Dijkstra's
wC'akest precondition predicate transformer [17] ('(mId be generalised: instpad
of giving the semantics of a language by a function

w : Stat -t (Cond -t Cond)

(wbere SI.at. is the set of all statem12nts of the' language. a.nd C'ond dl'nure"
the set of all possible pre- and postconditions). they introduced Ihe idea of a.
multiple-arp;ument pre'dicate transformer:

w : Stat --+ (Cond rn -t Cond)

They uspd this notion to give semantics for statements with multiple exit points:

w(S)(Q1,. ., Qm) is the weakest pr12condition which guarantees that
execution of S will terminate at one of the exit points of S, surn that.
if exit h, is reached, then condition Q. will hold, for i = 1, ... , m.

After showing how Dijkstra's so-called 'healthiness conditions' may be gener
alised to multiple-argument predicate transformers, they defin~i a simple and
elegant language for multi-exit statements (see also [2]), and uscd this to give' se
mantics to a language with goto statements, by trallsforrning it to the language
with lIlulti-exit statements.

Their work is slightly more general than mil work of Chapter 3, in that it allows
for statements with any number of exit points rather than just the two, normal
and exceptional. that we deal with. We prefer however to deal with multiple
exits using a procedurc mechanism, thus keeping the extra semantic structure
to a minimum. They also do not treat recursion. More significant is thE." fact
that they deal only with a programming language, rather than a refinem12nt
calculus, and so there is no notion of refinement of programs containing multi
exit statements.

In another report, pnblished slightly later, [37). Manasse and Nelson give a
s'imilar definition of a weakest precondition of two argument.s, though their work
is not primarily concerned with exception handling, but the transformation of
high-level control structures into low-level instruction sequences.

Another related piece of work [291 has heen carried out at approximately the
same time as our own. Following the work of Lukkien [34), which gave an

136 10.2. RELATED WORK ON ITER.1TORS

operational (trace-based) semantics for the guarded command language, Leino
and van de Snepscheut give a similar semantics for a language with exceptions,
by adding a state variable to indicate whether a statement has terminated
normally or exceptionally, a construction isomorphic to our use of a pair of
postconditions. From this trace semantics, they derive a weakest precondition
semantics, with a defiuition, very similar to Ours, of wp(S) as a function of two
arguments, for normal and exceptioual termination.

They explore the algebraic properties of wp in terms of arbitrary functions of
two arguments, but are not concerned, as we are, with the refinem('.nt of pro
grams containing exits. Indeed, the use of explicit specifications is a significant
advantage when considering rules for rigorous program development that must
refer to "assertions established within a program fragment". With specifications
available, those assertions are explicit parts of the program; without them, rules
for reasoning about a complete block must refer to the reasoning employed with
respect to its constituents, rather than simply to the constituents themselves.

We could nse the procedure-based exception mechanism of Chapter 4 to de
scribe the construct aaa <l bbb introduced in [29], which either executes 0.0.0.

successfully, Or leaves aaa via an exit and continues with bbb. This structure
is easily modelled as

[handler H ~ bbb •

aaa'

where, rather than "exit", the body aaa' uses "raise H", but is otherwise
identical to l1aa.

Of course, the benefits of a "<l-calculus", so nicely explored in !29], are not
so accessible when the relatively heavy mechauism of procedures is used. But
the procedure-based mechanism is perhaps easier to adapt to the sometimes
perverse demands of ex.isting practice, and thus might be necessary anyway.

10.2 Related work on iterators

Several prograrnmiug languages include some sort of iterator mechanism, and
we re\'iew a selection of them in this section. There has been much less work on
formalising iterators - that is, providing a Cormal semantics and a mechanism
by which an iterator COnstruct can be proved correct. Where such work has
been carried out. for a particular language, it is mentioned below.

Alphard

The Alphard language [52J, developed at CMU in the Late 1970s, has two iterator
constructs:

10.2 RELATED WORK ON ITERATORS	 137

•	 a for construct which is used for iteration over a complete data structUfP:
and

•	 a first construct which is Ilspd (primarily) for search loops.

\Ve will concentrate on [,he for constrnct, remarking only that exetllti<Jn of the
first construct involves t.ra\-ersing a data structure lwtil an elemellt is found
which meets some condition, and then performing ::;ome artion. (If no elelllellt
satbfying the' condition hi found, an alternative action can be taken.) TIl(" for
constrnrt takes the following form:

for I: gen(y) while p(x) do ST(x, y, z)

A local variable x is declared, which will take, in turn, the Y<1!nr5 sp(~cified by
the generator gen(y). For each value of x which satisfies the consnaillt 0, rhf'
loop body 51' is p.xecuteu. Clearly. the heart of the for con"truct lilO'~ in the idea
of the geuerator gcn(y). so we look a littlp more closely at thit A generator is
a 'form' (the Alphard term for abstract data type) obeying c('rt,ain conditi.ons:
it must provide two Boolean-valued functions &irlit and &next, which h;lYP thl'
sidC'-effl'ct that their invocation will produce a sequence of valms to be bound
to the loop variable'. For both functions, the Boolean value returned indicat.e~

whether there are elements remaining which have yet to be iterated over.

Thus the meaning of the for tonstruct can be given:

begin local x: gen(y);
7r +-- :r. .&init;
while 7r cand 8(x) do

(ST(x. y, z); 7r +-- x.&ne.:rt)
end

where 1f is a compiler-generated Boolean variable, t--- dpnotes assignmt'rlt. and
cand denotes the 'conditional conjunction' operator.

A simple example of an Alphard generator is the upto generator, which produces
the sequence of numbers between a lower bound lb and an upper bound 'Ub
that is, (lb,lb + 1, ... , ub), or the empty sequeuce if lib < lb.

form lIpto(lb, ub : integer) extends k: integer =
beginform
specifications

inherits (allbut +--);
function

&init(u: upto) returns (b : boolean),
& next (u : upto) returns (b . boolean);

implementation
body &init = (u.k +-- u.lb; b +-- u.lb :$ u.ub);
body &next:=- (u.k +-- u.k + 1; b +-- u.k:$ u.ub);

endforrn

138 102. RELATED WORK ON ITERATORS

Tbis generator can be used in a for statement. For instance, summing the first
n intpgprs is achipved by:

·~um +- 0; for j : upto(l, n] do sum +- sum + j

It is possible to add verification information to an Alphard form, using an in
variant clause, an initially clause, and pre- and postconditions for each functiou.
It is also possible to give a concrete version of the state, and to give a repre
sentation function relating the concrete to the abstract view. Proof obligations
can then be given to ensure the correctness of the form: this means ensuring
that irlVariants are maintained by abstract and concrete operations, and that
initial states correspond. Since a generator is just a special sort of form, it is
possible to apply these proof rules to a generator. Using the expansion of the
for construct given above, it is also possible to obtain a proof rule for the con
struct. However it is rather unwieldy. Because of this, there are various simpler
proof rules for the for construct, which can be used when the generator satisfie~

certain conditions. In practice, many generators do satisfy these conditions, so
the full form of the proof rule is seldom needed. Thus the effort of the proof
is transferred from the verification of the for construct, to verification that the
generator oheys the necessary conditions.

When comparing the Alphard generator with our own it ..ti construct, we can
see two immediate differences from our own work. Firstly, we have hidden all
the details of how to 'move on' to the next element of the collection, by using a
recursive procedure. Thus tbe user of the iterator has no need to know anythiug
about the internal details of the object over which he is iterating, beyond its
definition. Secondly, we have considerabh> flexibility with the it ..ti construct:
as noted in Chapter 9, l\'e have the freedom to choosp whatever 'view' is most
convenient of the type of the variable to be iterated over. However. in Alphard,
once the &llext function is defined, tbe iteration order is fixed. On the other
hand, it should be noted that the Alphard mechanism has the advautage that
it is easy to describe a generator that produces ani}" part of somp structure to
be iterated over - perhaps every otber element of a list. While possible, this
would be more convoluted with it..ti.

CLU

At around the same time that Alpbard was being developed at CMU, Barbara
Liskov's team at MIT was developing a language called CLU [30J. One of
the guiding principles behind CLU was that it should support abstraction in
program construction [32]. The language contains mechanisms to support three
forms of abstraction;

•	 procedural abstraction - supported hy procedures;

•	 data abstraction - supported hy the use of clusters, the CLU term for
abstract data type; and

139 W2 RELATED WORK ON ITERATORS

•	 control ab~lraction - as wen as the usnal if and while constructs. lter
alars can be dPl1ned

An iterator is therefore a proceLlure-like camif.ruct, at the S<\ffie kvd <L~ procp
dUTes and clnsters. Like AJphard, iterators are used in conjunction with for
statements: as the itf'ralor produces elements of a data structure Dill' at a tune.
so the for statemf'nl consumes them.

The syutax of the definition of an iterator in eLC is:

id == iter [parms] a,gI' [yields] [sjgntlt.~J [where]
TlJutincbody

end fd

The yields clause specifiC!s the number, order am} t~'pes of the objects which
will be delivered at each stage of the iteration. \\'ithin the routine-body. d yIeld
st.atement is used to presEmt the caller (a for statement) with Iht' nrxt element
(The s1gnuls clanse specifies which exceptions may be rai:-ed. and Ihewherc
clause specifies own variahles.)

The CLV for statement takes the following form:

for [id l , •••j in invocatIOn do bOlly end,

wh€re tn'Vocation is the invocation of an iteJatOl. Unlike A\phard. where thp
looping mechanism is found in the for stat(lmf'nt, in CLV the looping must b"
explicitly programmed in the body of the iterator? Each tim(l a yield state
ment is executed in the iterator's body, the objects yielded are assigned to thf>
variables declared in the for statement, and the body of the for srat(lment i~

executed. Then the iteratar body is resumed at the point immedIately follow
ing the yield statement. The for statement terminates on termination of t.he
iterator.

For instance. we can define an it.erator to yield the characters of a string. one
at a timc:

stnng_chars = iter (s : string) yields (char);

ind.ex; lot := 1;

11mit : int := atring$size(s);

while ind.ex :s. limit do

yield(string$fetch(s, mde.x));
index := index + 1:
end;

end string_chars;

2In fact, it IS UBUal to use another, more primitl\·E, for statement ill tile bO<.ly of an itEralor.

140 10.2. REL.4TED WORK ON ITERATORS

We can then use this iterator to discover how many numeric characters a string
contains:

counLnumeric = proc(s; string) retucns(int);
count: iot := 0:
for c: char in Jtnfly-ehan(s) do

if char_ls_Tlumeric(c)

then count;= count + 1:

end;

eud;

ret urn{ count);

end cotmLflumC7'ic

In her the.is [53], \Ving gave a method for specifyiug iterators, which has re
cently been extended to iterators for concurrent and distributed systems [54).
Wing's technique for specifying CLU iterators involves adding assertions to an
iterator, similar to those used for a procedure, to give pre- and postconditions
for each invocation. However, unlike a procedure, an iterator's specification is
concerned v,rith more than just two states - as well as the overall first and last
states, there are the intermediate states for each invocatiou. There also needs
to be a distinction hetween two kind~ of termination for iterators - the 'real'
termination when all the elements have been rielded, and the suspension that
occurs after each yield. The assertions refer to state variables which can be
decorated with subscripts p"e and post, as well as a special state object (ie an
auxiliary variable) jirfJt, which flags when we are in the very first state, and
history variables which 'remember' values between invocations.

Both of the remarks made above when comparing Alphard iterators to the it .. ti
construct still hold true for CLU iterators: the user has to program explicitly
the method of progress through the collection, and the it..ti is more flexible,
However there is more generality here, iu that it is possible fm' the user of
the CLU iterator to rite a yield statement which returns a more complex
expression than simply the current object in the collection - for instance, each
yield statement might return a. pair of consecutive characters in the sequence,
allowing a for statement to calculate the frequency of pairs of characters. This
would be considerably more complex using an it .. tL

On the verification side, while Wing's assertions and associated proof rules do
allow the verification of a CLU iterator, the proof is at a very low level, dealing
with the intermediate states during the iteration ~ well as the overall pre- and
postconditions. In contrast, the effort of verification for the it ..ti construct is at
a much higher level, involving the reformulation of the postcondition as a cata
morphism. Once this has been done, implementation as an iLti is immediate,
by asfJignment iterntor 5.2, or a similar law for other types.

141 HJ.2. REL.HED WORK ON ITER-HORS

Object-oriented languages

In recent years, many object-oriented environments have introduced libraries of
a.bstract data types, often including container classes. These container cla<;ses,
which describe such types as set::;, bags, trees, etc., often contain some sort of
iteration mechanism, whereby the user can traverse the data structure. How
ever, these mechanisms are often based on the notion of a cursor, with the user
having to supply cursor manipulation routines. As an example, we will descrihe
the iteration mechanisms a,,-ailable in Eiffel [40].

The Eiffellibrary contains an Iteration Library which consists of da.<;ses which
encapsulate various iteration mechanisms over arbitrary data structnres .- lin
ear iteration, two-way iteration, tree iteration (preorder, postorder or inorder).
These iterations are defined in terms of two sorts of deferred rout.ines . - these
are routines which are called in the iterator, but not actually defined until the
iterator is used: traversal rontines and operation routines. The traversal rou
tines are concerned with cursors, and need only be defined once for each data
type. The operation routint"'s are concerned with the particular actiorls to b('
taken as part of each iteration, and so can be given different values to achil:'Vf'
different iterations.

For example, the LINEARJTERA TION library class contains the following
do_until routine:

do_untll(s: TRAVERSABLE[Tj) is
- - Starting at the beginning of s, apply action to every item of s
- - up to and inr.luding the first one satisfying te.st.

require

trnversable-ex13t3 : s :f:. Void;

traversable-satISfied: invarianLvalue(s)

do

from

start(s); prepare(s)

invariant
invarianLvalue(s)

until

ofJ(s) or else test(s)

loop

action(s);
!orth(,)

end;
jf not 0.fJ(3) then action(s) end;
wrnpup(s)

ensure
not ofJ(3} implies test(s)

end - -do_until

In this iteration, the traversal routines are start, forth and off, and the opera
tion ron tines are prepare, action, test and wrnpup.

142 10.3. Ft'RTHER WORK

In order to itemtp over an object .~ which is it FIXED LIST. we can use an
integer index position to represent the cun;or, and the traversa.l routines become'

•	 start(s) - pMibon ;= 1

•	 forth(s) -- position := po.9ition + 1

•	 ofJ(.9) - pOllitton > count, where CGlmt givp:; the number of octupied
places in .9,

The Eifle} rpnaming methanisUl is used to allow two different iterations ovpr
the same structure, by renaming the operation routines a') they are imported

There are difficulties with the cursor approach to iterators, not Il?asl. the prob
lems of nested iterations. when it is not easy to keep track of several cursors
and the problem of robust iterations, wheu elements may be added or removed
during an iteration, There has been work reported to solve these problems: [23J
proposes a CLU-like mechanism for Eiffel and [24J does the- same for C++, while
[26] is mncerned with robust iterators in a C++ class lihrary.

The chief disadvantage of the Alpbard mechanism and the Inore receut proposals
for object-oriented languages is that they rpquire the user of the iterator to
supply routines to control the iteration. This means that knowledge of the
data structure's implementation is required, thus negating on(~ of the primary
advantages of using t,he iterator in the first place. The CLU mechanism is much
cleaner in that respect, but the complications in the proof obligations caused by
thp suspend/resume semtilltics are non-trivial. Lamb has proposed [27] the use
of trace specifications for the specification of Alphard-style iterators. He also
mentions the use of procedure parameters, and shows how traces can be used
to give 'partial specifications' of iterators which use procedure parameters,

However, the maiu difference between the it..ti construct and all of thp related
work mentioned in this section is in tbe level of abstraction and the level of
mathe-matical maturity required for their use: the iteration scheme:; for Al
phard, CLl! and Eiffel all require the user of the iterator to suppI,"" routines
which need knowledge of the internal structure of the type of the variable being
iterated over. The user of the it..ti can work at a more abstract level, hut
needs to be more mathematically mature; while the average programmer can
easily understand the ideas of iuitialising and advancing a cursor, he may have
more difficulty with catarnorphisms! However. he would prohahly benefit from
thinking more deeply ahout the constructors oC both the type of the variable
to be iterated over and thl' target type of the iteration.

10.3 Further work

There are several directions in 'o':hich it would be possible to extend the work
described in this thesis, and we now investigate a few of them,

143 10.3. FL'RTHER WORK

Exception handling and parameters

In Section 4.4, WP mentioued the idea of passing parameters to excepllon han
dlers. This feature already exists in some programming languages such as eLl:
[31J. Itould not he w'ry difficult to extend our handler mechanism - based
as it is on the idea of procedures - to cover this possibility, USillg th~ otandard
(by value) procedure-passing mechanism for procedure::!.

Exception handling in other programming languages

In Chapter B, we showed how the exception-handling mechanism mtroduced
in Chapter -l. could be mapped to the C++ language and the Colle:tion CI<lsS
Library. It would be interesting also to investigatt: how to d('velop programs
in other languages with different exception-handling mechanisms. For instance,
nums and \\'ellings [13, Chapter 6] describe the exception-handling mechanisms
in the Ada95 and C++ languages and a proposed mechanism for C [28]. These'
mechanisms are classified, together with those for CHILL, CLl} and \le5a, in
terms of the HCOpf' of a handler, whether cxcf\ption propagation occurs,hether
the resumption or terminatiou model is used, and whether parameters can be
pa..<;scd to a handler. An attempt to formalise these mechanisms using our
framework could make an interesting comparison.

Iterators in other languages

In a similar vein, it would be possihle to examine the iterator merhanisms of
various prograrnrning languagl'"s to see how easy it would be to map OUf it .. ti
constrllct onto different target languages.

Iterators and optimisation

The functional programming literature (e.g. [11, Chapters 7-10]) contains de
tailed studies of the application of catamorphisms to so-called 'optimisation
problems', Siuce the it .. ti construct is based on catarnorphisrm, it should be
possibLe to re-cast these problems in the refinement calculus framework. This
alternative approach might yield further insights into this important application
area.

The Collection Class Library

Thruing to the Collection Class Library, t.here are at least tllt'O areas that require
further work before the aim of using the library in a formal dev€lopment process
can be rE'alisoo. The first problem is the use of cursors, since our specification

144 10.4. CONCLUSIONS

oC the sequence class in Chapter 8 did uot include wy mention at all of cur
Sors. Although several attempts were made to describe the cursor mechwism
formally, it wa~ not possible to find a well-structured description, such that the
specification of any other library module also involving cursors would be able
to fe-use the cursor description in the sequence cla5s. The second problem was
referred to in the Introduction - point.ers. The difficulty of formally developing
programs which use the pointer mechanism of a programming language remains
an open problem, aud an important one. For efficiency reasons, programmers
are always going to want to program with pointers, and it. is the task of thl:'
formal methods community to provide them with a formal basis for doing so.

Automation

All of the developments in this thesis have been carried out by hand, without
the assistance of any automation. However, it is clear that refinement calculus
development methods are likely to be adopted on a large scale by industry only
when there is significant tool support. Thus the addition of our new constructs
t.o existing refinement calculus tools [14} would be a great aid in promoting t.heir
use.

Case studies

Finally, more experience is needed in the use of all the language coustructs
introduced in this thesis: exceptions, exception handlers, iterators, procedure
variables, and so on. It is by working on case studies that. we will be able to
propose (and later prove correct) laws which will simplify the developments
that use these constructs. As Naumann put it [49], 'it remains to gain more
experience with development of higher order programs in refinement calculi, in
order to find more convenient notations and derived laws'.

10.4 Conclusions

The wOrk described in this thesis ha5 extended the refinement calcnlus to cover
two new areas - exceptious and iterators. The motivation for the work came
from IBM's Collection Class Library, and it is against this that we can measure
Lts success.

For exceptions, we built up a formalised exception mechanism, in stages, frOID

a fairly abstract statt where we simply made a distinction between normal and
exceptional termination, and gave a semantic framework in which refinement
laws could be proved correct (Chapter 3). We then extended this by allowing
the user to differentiate between different exceptional terminations in a sin
gle program, associating appropriate actions with each exception. To achieve
this, Chapter 4 introduced a mechanism for handling exceptions, based on the

145 10.-1. CONCLC'SIOXS

use of procedures. The connection back \.0 the CollectIOn Class Library wa.c;

made in Cbapter 8 where a specification of a sample class - sequences - was
given, and th(! Collection Class Library exception mechanism was related to
the procf'dure-based mechanism previously described. Several programs were
de\"e!oped formally, making USE' of the refinement laws which had been proposed
and proved correct. \Ve can therefore regard tht' work on exceptions as reasoll
ably successful, in that it a.chie\·ed its aim of formalising the Collect,ion Class
Library's exception mechiUlism.),10reover. tbe ideas introducpd ShQllld be easy
to transfer to differf'nt languages. allowing the formalisation of other exception
mechanisms.

For iterators,e took our inspiration from the field of functional programming.
In particular, we based the iLti construct in Chapter 5 on catamorphisms.
although it W,LS formally defined as a recursi\"e procedure. Having worked ini
tially with sequences, we also showed how iterators could be defined OVl:r more
general types, and gave examples showing the it .. ti construct in USE' for d(:'
veloping programs. The second of these examples also showed hOI\" a. result
from fnnctional programming ahout catamorphisms - the banana-slJlit law
could be used to assist in an iterator-hased development. Since our goal was
to describe iterators for the Collection Class Library, we t.hen needed a way to
encapsnlate the it.. ti construct so that it could bf' defined in a library class. to
be used as required. This meant that it would be necessary to pass procedure
values to the library procedure. corresponding to the branches of the iterator.
Although the usual parameter mechanisms for the refinement calmlus do not
co\'er procedure parameters, we were able to use the work of Naumann as a ba
sis far a description of procedures as values. Once again, weakest prffondit.ion
semantics allowed ns to propose and prove correct various laws. In Chapter 7.
we used this work to develop a theory of procedures as parameters and to pro
vide an eucapsulation of the iterator construct so that it could be placed in
a library. Finally, Chapt.er 9 brought us back to the Collection Class Library.
as we showed how an iterator for the sequence class described earlier could be
formalised with an it..ti con<;truct. This involved taking a slightl) unnsual def
inition of the seqnence type, so that the recursion of the it .. ti could be mapped
to a foldr. The success in formalising the Collection Class Library's iterator
mechanism is perhaps not so striking as tbat for exceptions, as iL is depeudem
on finding a definition for the type which corresponds to <I. foldr. HowE'wr, for
types which do have such a definition. the formalisation works well. 110reover,
the it .. ti construct remains well-defined for types which do not have such a
definition, and the results and laws on procedures variables have lUnch wider
application.

Bibliography

[1]	 A. Albano and R. Morrison, editors. Persistent Object Systems, Workshops
in Computing. Springer-Verlag, 1992. Proceedings of the 5th International
Workshop on Persisfent Object Systems, Sail Miniato, Italy.

[2)	 R.-J.R. Back. Exception handliug with multi-exit statements. Technical Report
IW 125/79, Mathematiscb Centrum, Amsterdam, November I9i9.

[3J	 R.-J.R. Back. Correctness preserving program refinements: Proof theory and
applications. Tract 131, Mathematisch Centrum, Amsterdam, 1980.

[4]	 ft.-J.R. Back. A calculus of refinements for program derivations. Acta Infor
matica, 25:593--624, 1988.

[5J	 R-J.R. Back and M.J. Butler. Exploring summation and product operators in
the refinement calculus. In Moller [41].

[6J	 R.-J.R. Back and M. Karttunen. A predicate transformer semantics for state
ments with multiple exits. University of Helsinki, unpublished MS, 1983.

[7]	 R. Banach and M. Poppleton. Retrenchment: an engineering variatiou on re
finement. In Didier Bert, editor, B'98: Recent advancell in the development
and use of the B mcthod, number 1393 in Lecture Notes in Computer Scieuce.
Springer-Verlag, 1998.

{8]	 J. Barnes. Programming in Ada95. Addison-Wesley, 1996.

[9]	 R.S. Bird. Functional algorithm design. In Moller [41].

[10]	 R.S. Bird. The algebra of programming principles. In M. Bray, editor, Deductrvf
program design, volume 1:;2 of NATO AS] Series F: Computer and Systcms
Sciences. Springer-Verlag, 1996. Proceedings of 1994 Marktoberdorf Summer
School.

146

147 DlBLIOGRAPHY

[11]	 R.5. Bird and O. de Moor. AlgeblZl oj Programming. Prentice-Halllnterna
tional series in computer science / C.A.R. Hoare, series editor. Prentice-Hall
International, Englewood Cliff~, N.J. ; London, 1997.

[12}	 H.J" Boom. A wrlakpr preconditiou for loops. Trans. Prog. Lang. Sys.. 4(-\.):668
677, October 11)82.

[13J	 A. Burns and A.J. \Vellings. Real-Time Sy,~tems and Programming Lrmgyages.
Addisoll-Wes\('y, 2nd ('dition, 1997.

[14J	 D. Carrillgt'lfl. I.J. Hayrls, R. Xicksoll, Watson G., and \\"ebh .T. A re,"iew of
existing refinement tools. Technical Rrlport 94-8, Software Verification Research
Centre, University of Queensland, Anstralia, June 199-\..

[I.'j]	 F. Cristiano Robust data types. Acta InJ01matica, 17:365 ·397.1982.

[16]	 F. Cristiano Correct <loUd whust programs. IEEE Trans, Soft E1I9.. SE
10(2):163-174, r-...'1arch 1984.

[17]	 E.\V. Dijkst.ra. Guarded commands, nondeterminacy and formal d(,rivation of
programs. Comm. ACM, 18(8):453-457, August. 1975.

[18]	 E.Vw-". Dijkstra. A Di.~e:plme oj Programming. Prf'nticf'-Hall. Englewood Cliffs.
1976.

[19]	 J.D. Eckart. Iteration aud ab::itract data types. SIGPLAN NotIces. 22(4). April
1987.

[20]	 .LB. Goodenough. Exception handling: Issues and a proposed notat.ion. Comm
ACM, 18(12):683- 696, December 1975.

[21J	 C.A.R. Hoare. An axiomatic basis for computer programming. Comm. ACM.
12(10):576-580,583, October 1969.

\22]	 IBt-.I Corporation. IBM C/C++ FirstStep Tools' Collection Ctas, Ltbrary ReJ
erence. 582G-3757.

[23]	 ~1. Katrib and 1. Martinez. Collections and iterators in Eiffrl. J07!f'nal oj
Object-Oriented Progrummmg, pages 45-51, November-December 1993.

[24]	 M.H. Kim. A new iterator mechanism for the C++ programming language.
ACM SIGPLAN Notices, 30(1), January 1995

[25J	 S. King and C.C. Morgan. Exits in the refinement calculus. Fonnal Aspects oj
Computing, 7(1):54··76, 1995.

[26]	 T. KoRer. Robust iterators in ET++. Structured Pmgmmming. 14:62-85, 1993.

[27]	 D.A. Lamb. Specification of iterators. IEEE Trans. Soft. En9., 16(12):1352
1360, December 1990.

[28J	 P.A. Lee. Exception handling in C programs. Software - P111tllce and Expe
rience, 13(5):389-406, 1983.

148 BIBLIOGRAPHY

[29]	 K.R.M. Leino and J.L.A. van de Snepscheut. Semantics of exceptions. [II Ernst
Rudiger Olderog. editor, Progmmming concepts, methods and calculi, volume 56
of IFIP 1hlllsactions A: Computer Science and Technology. Elsevier, 1994.

[30) B. Liskov, R. Atkinson, T. Bloom, E. Moss, C. Schaffert, R. ScheiBer, and
A. Snyder. CLU Reference Manual. Number 114 in Lecture Notes in Computer
Science. Springer-Verlag, 1981.

PI]	 B. Liskov and A. Snyder. Exception handling in CLU. IEEE 1rans. Soft. Eng.,
5E-5(6):239--251, No....ember 1979,

[32]	 B. Liskov, A. Suyder, R. Atkinson, and C. Schaffert. Abstraction mechanisms
in CLU. Comm. ACM, 20(8):564-576, August 1977.

[33J	 D.C. Luckham and W. Polak. Ada exception handling: an axiomatic approach.
Tram. Prog. Lang. SY5., 2(2), April 1980.

[34]	 J.J. Lukkien. An operational semantics for the guarded command language.
In R.S. Bird, C.C. Morgan, and J.C.P. Woodcock, editors, Mathematic:; of
Progrnm Construction, number 669 in Lecture Notes in Computer Science.
Springer-Verlag, 1992.

[35]	 D.M. MacLaren. Exception handling in PL/I. SIGPLAN Notices, 12(3), 1977.

[36J	 G. Malcolm. Data structures and program transformation. Science of Computer
Progrnmming, 14:255-279,1990.

[37J	 M.S. Manasse and C.G. ~elson. Correct compilation of control structures.
Technical report, AT&T Bell Laboratories. September 1984.

[38]	 E.G. Manes and r..LA. Arbib. Algebraic approaches to program semantlcs. Texts
and monographs in computer science. Springer-Verlag, 1986.

[39J	 L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413-424,
1992.

[40]	 B. Meyer. EiDel: the. Language. Prentice~Hall, 1992.

[41J	 B. Moller, editor. Mathematics of Program Construction, number 947 in Lecture
Notes in Computer Science. Springer-Verlag, 1995.

[42J	 C.C. Morgan. Thf' specification statement. Trans. Prog. Lang. Sys., 10(3), July
1988. Reprinted in [45].

[43]	 C.C. Morgan. Programming from Specificatiofl$. Prentice-Hall International
series in computer science / C.A.R. Hoare, series editor. Prentice-Halllnterna
tional, Englewood Cliffs, N.J. ; London, 1990.

[44J	 C.C. Morgan. Programming /rom Specifications. Prentice-Hall International
series in computer science / C.A.R. Hoare, series editor. Prentice-Hall Interna
tional, Englewood Cliffs, N.J. : London, 2nd edition, 1994.

[45J	 C.C. Morgan and T.N. Vickers, editors. On the Refinement CaJculus. FACIT
Series in Computer Science. Springer-Verlag, 1993.

149 BIBLIOGRAPHY

[46] .1.:\1. ~fDrris A theoretical basis for stepwise relinement and the programming
calculus. Science of ComputCl" Programming, 9(3):287-306. December 1987.

[47]	 D.A. :;..jaumann. Two-wtegones and program strueture: data types, refinement
calculi, and p"edlClltc tmnsformers. PhD thesis. University of Texas at Austin,
CSA, 199'

[48]	 D.A. :'\aumann. Predicate tra.nsformer semantics of all Oberon-like language.
In Ernst-Rudiger Olderog, editur. Programmmg concepts, methods and calc all.
volume 56 o{ IFIP TnmsllclwlIs A.: Computer Seience and Teehnology. ElSE-vier.
1994.

[49]	 D.A. :'\aurnann. Predlcate transformers and higher order programs. Thco7'eti(,al
Compute,- Science, 130(1):111-159,1995.

(50]	 e.G. :-relson. A generalization of Dijkstra's calculus Tnms. Pmg. Lang. Sys,
11(4):517--561, October 1989.

[51]	 D.L. Parn<l.S. Response to detected errors in well-strnctun~d program,. Technical
report. Dept. Computer Science. Carnegie-Mellon Cniversity, July 1972.

[;')2]	 M. Shaw, \Vm.A WuIr. and R.L. London. Abstraction and yprifi<:ation in
Alphard: iteration aud generators. In M. Shaw. editor. Alp/lim/: form and
content. pages 73-116. Springer-Verlag, 1981.

[.~3]	 J.T\'1. Wing. A two-tiered app1'Oaeh to spenfymg progmm.~. PhD the~is, :-onTo
Lab. for Comp.Sci., 1983.

[54]	 J .M. V'ling and D.C. Steere. Specifying iterator5 (or concurrellt and dbtribllu.d
systems. l'npublished draft, 1994,

[55]	 N. \Virth. Al!lorithm,~ and Data Struetures. Prentice-Hall, 1986.

[56]	 S. Yemini. An axiomatic trealment of exception haudling. In 9th Annual
Sympo.~mm on PmlClp/e$ of Programming Languages, 1982.

[57J	 S. Yf>mini and D.:\I. Berry. A modular verifiable exception-handling mechanism.
Tran$. Pl"Og. Lang. Sys., 7(2), April 1985.

Appendix A

Procedures and C++ functions

As was mentioned in Section 8.3, we encounter a problem when modelling the
C++ collection classes in the refinement. calculus, due to the fact that thp C++
language does not distinguish between procedures and functions. Although the
refinement calculus language considers only procedures, many of the collection
classes contain operations which are enquiries on the state variables - in C++,
these are functions which give return values and therefore can be used as ex
pressions. For example, as well as the normal operations such as add and delete
which alter state variables. the sequence class also contains such operations as
number-O/Elemenfs, which returns the number of elements in a sequence. If
we stay strictly within the refinement calculus notation, we must model the
operation as a procedure with a result parameter:

procedure numberOfElements(result n: /\I) ==

n:= #s

Now, how can we use a procedure such as this? As usual when we intend to
use a procedure, we manipulate our program until it 'matches' the body of the
procedure (with suitable substitutions for parameter passing). In the simplest
possible case, suppose we needed to develop code to implement

x:== #s

where s is a sequence. This is easy: we use the result-a.ssignment law to refine
this to a call of the procedure n:umberOfElements with x a.s the result parameter:

~ s.numberOfE1ements(x)

When we come to transliterate to C++, the obvious way to code up the result
parameter is a.s an assignment. So v..e finish up with

150

A.PPE.VDIX A PROCEDURES .4..\rD C++ FUNCTIONS

x = s.numberOfElements

However, things arc not so simple if the expression on the right of the a:;signmen,
is slightly more complex;

x := #s + 1

:.'low we have to introduce a local variable, which we usp to stOTP th€ result of
a call to 1I1/,mberOfElements:

~ vael_
,~.numberOfElements(l):
x;= 1+1

This is transliterated to C++ as

1 = s.numberOfE1ementsi

x = 1+1

whereas thp program which we would really like to develop is

x = s.numberOfE1ements + 1

using the result of \.h(> function call as a sub-cxpression in the expression being
assigned.

One possible solut.ion to this problem would be to extend the refinement cal~

culus notation wit.h some form of 'calculus of functions'. Although this is an
interesting idea, it is not very relevant to the main topic of our work, and we
therefore reject it Illdeed, it is a non-trivial problem, and could potentially
lead to non~delerministic expressions in the langnage. Instead. we adopt a
pragmatic solution, which allows us to specify these operation::, & procedure:;,
in the normal refinement calculus fashion, and then to develop programs wlLietl
use them as though they were Iunctions, in the natmal C++ way.

The solution is based on an abbreviation, which we will explain b;r' de\'eloping
code for the specification mentioned above:

x := #s + 1

We notice that the body of numberOfElements consists simply of an assignment
to the result parameter n. '(jnder these circumstances, if the expression being
assigned in the procedure body (here '#8') appears as a sub-expression on the
right-hand side of an assignment during a development, or within the guard of
an aJternation, we allow ourselves to replace it by the procednre name decorated
with an exclamation mark, numberOfElements! So we can write

x ;== #s +1
<;;

x := numberOfElements! + 1

152 APPENDIX A. PROCEDURES AND C++ FUNCTIO.'1S

This is transliterated to C++ in the ohviotlli way.

This abbreviation cuts out some of the details of the development: essentially,
we are saved from introducing a local variable to store the result of the 'enquiry
procedure'. If we were being totally formal, this local variable would become a
local variable in the C++ code, which we could then optimise away by noting
that, since the enquiry operation has no effect on the state variables, we are
justified in replacing an}" occurrence of the local variable in an immediately
following expression with an inline evaluation of the enquiry.

The full details of these abbreviations are given below. In all of them, P is taken
to be a procedure without. side-effects which has a single result parameter, with
a specification of the following form, where E is an expres:;ion:

procedure P(result r) =
r:=E

Abbreviation A.I atJSiynment abbreviation definilion

Pi may be used as an expression in the right-hand side of au ~signmcnt,

standlng for a declaration of a fresh local variable I, a call of P with I as
the result parameter, followed by the assignment with 1 in place of Pi:
x := n:p(P!) =- I[var I.

PIll;
x ;= ",p(l)

II

The associated law which allows us to introduce this abbreviation iuto an as
signment is:

Law A.2 assignment abbreviation

IT F is an expression, and P is defined by
procedure P(result r) =

r:= E
then

x;= F
!;;
x;= FIE\ P']

Abbreviation A.a alternation yuard abbreviation definition

P! may be used as an expression in the gnard of an alternation, standing
for a declaration of a fresh local variable 1, a cal} of P with I as the result
parameter, followed by the alternation with 1 in place of P!:
if (~ ;. G,(P!) --> B,) fi
=I[varl.

P(l);
if (0 ; • G,!I) --> B,) fi

II

153 APPESDlX A PROCEDURES .4SD C++ nSCTlONS

The law which allows us to introduce this abbreviation into the guard of an
alt.ernat.ion is:

Law AA altematioTl abbreviation

if (D i • G, -) B,) fi

c:
if I~ i. G,IEI P'I -> B,) fi

Tb~ form of the abbn'viation when PJ is used in the guard of an i!rratioll is
slightly LnOTe complex and may not actnally be ueeded.

Abbreviation A,5 ite.mtiO'j guard abbreviation deji'futtolI

P! may be used as an expression in the guard of aD iteration, standing
for a declaration of a fresh local variable I, a call of P wit.h I 3.,', the result
parameter, followed by the iteration with I in place of P!, and a call of P
after thp iteration hody:

do (~ i. Ctt?!) ~ B,) ad
=I[varl e

PI/),
do I~ i. G,(l) -> B,; PIl)) od

]1

So our example above now becomes

I:= #s + 1
L

I := s.T1umberOfElements! +]

which is transliterated to C++ as

x = s.numberOfElements + 1

This abbreviation is used most frequently with the enquiry prurrJures in the
specification of sequences in Chapter 8.

Appendix B

Summary of laws

For easy reference, ail of the laws, definitions and abbreviations from elsewhere
in the thesis arE' gathered together in this appendix.

Chapter 3

Law 3.1 program after exit

A program following exit has no effect.

exit; aaa = exit

(Equality of programs means semantic equivalence, that is, mutnal refine

ment.)

Law 3.2 exit ending block

An exit at the end of a.n exception block has no effect.

[aaa; exit] == [aaa)

Law 3.3 e:I:ception-free block

Exception blocks have no effect on exception-free programs.

[aaa] = aaa provided aaa .., exceptIOn-free

154

A.PPENDLY B. SV.\fMARY OF LA.W5 t5,]

Law 3.4 exceptional .~peCtficatiofi

An excf'ptional specification can be formed by duplicating the postcondi
tion of a non-exceptional specificat.ion statement, and surrounding it with
an exception block.

w. laJ!1 = [w. la,!! > p]1

Law 3.5 take TlonrJ.al branch

A specification statement can be implemented by taking the normal

branch uncouditiollally.

til : [a, d > ')1 ~ w ; [a, 8]

Law 3.6 take exceptional branch

A specification statement can bE' implemented by achieving the excep
tional postcondition, and then performing an exit.

til: [a,tJ > IJ ~ w: [a, 1"]; exit

Law 3.7 else notation

Specifications and the ·else' not.ation

w. [a,B > 0'] = w. la.j!] > w. la,o]

Law 3.8 take normal brunch

An 'else' (':clIlstruct can he implemented by taking the first branch uncon~

ditionally.

aaa >bOb (; aaa

Law 3.9 takc exceptional branch

An 'else' construct can be implemented by taking the second branch un

conditionally, followed by an exit.

aaa >bbb ~ bbb; exit

156 APPENDIX B S,MMARY OF LAWS

Law 3.10 choice-else

A nondeterministic choice between two programs which do not contain
exceptions is equivalent to an exception block containing the programs as
branches of an 'else' construct.

aaa U bbb = [aaa > bbb] provided aaa and bbb are excephon-free

Law 3.11 introduce tnvial else

An exit-exception pair caD be introduced by offering the trivial choice
between equal alternatives (corollary to choice-else 3.10).

aaa = [aaa > aaa] provided aaa t$ exception-free

Law .1.12 sequential composition

Distribute sequential composition through 'else'.

aaa > bbb

(eec> bbb) ; (ddd> eee) p,-ovided aaa ~ ccc: ddd "
and bbb i; ccc; eee

Law 3.13 sequential composition

Splitting a specification with sequential composition.

w' [a, Ii > 01

w, [a,; > oj , "
W , [;,Ii > 01

Law 3.14 recursion

Let e be an integer-valued expression, V a logical constant, aaa a pro
gram, and P a monotonic program-to-program function, and assume that
neither aaa nor P contains V. Then if

{e = V}aaa !:"; P({O S e < V)aaa)

we can conclude

aaa ~ mu D • P(D) urn

157 APPENDIX B. SUMMARY OF L4WS

Law 3.15 Iteration

1lI: [n,D: 1\ ---.G > fj]
!;
do G-+

W : [0: 1\ G ,(} 1\ (0 :S e < eo) > 13]
od

Law 3.16 loop introd1lction

w' [0,6J

!;

loop

W : [0: ,0: A (0 :S e < eo) > OJ
end

Chapter 4

Law 4.1 handler definition

A declaration

handler H == hhh

is an abbreviation for

procedure H ;; hhh: exit

Law 4.2 mlse definition

Raising a.n exception

raise H

is an abbreviation for

H,

a call of procedure H.

Law 4.3 ,sequential c.omposition and mise

aaa; bbb
[handler H =- bbb •

aaa; raise H
provided £laa and bbb are exit-free

158 APPENDiX B. SUMMARY OF LAWS

Law 4.4 mtroduce handler

[P(aaa; exit)]
[handler H == aaa •

P(raise H)

Law 4.5 introduce handler

[P(aaa > (bbb; ",)) I
[handler H :2: ccc •

P(aaa Q (bbb; ,ai,e H))

Law 4.6 mtmdlJcc handler to choice

aaa ~ bbb
[handler H === bbb •

aaa
~ raise H

provided aaa and bbb are exit-free

Law 4.7 roise-lJequential compollition

raise H
raise H; aaa

Law 4.8 disjunction-else distribution

w: [a,f31 V.. V131l]
c:; !

w ; la,~,J

>
w ; [a,iJ,]

>
w; la,~"J

159 .~PPENDIX B. SUMMARY OF LA \\'5

Law 4.9 else disl,n'bution

(aaa; bbb) :> cee

(aaa :> eee); bbb

Law 4.10 else distribution

(aaa; bbb) :> eee
[;;; (aaa:> eee) : (bbb :> cee) provided etC ~ aaa; eee

Chapter 5

Definition 5.1 ,~eq'Uence derator

An iteration over a sequence s of the following form

it s into r with
() --4 bbb

oa:a.s -----+ eee

'1

is defined as

1(" r)

where

procedure [(value s, result r) :=

i.f	 s is

() --4 bbb
U"a, --4 I[var 1.1(",./): ",[a'\l1] I

6

Law 5.2 assignment iterotor

If the value to be assigned to a variable is fanned by the application of
a catamorphisrn to a sequence, then the whoI", assignment can be imple
mented with an it ... ti construct.

"'~ilJ,gD ,
!;

it s into r with
() --4",~ f

Ua;as -t r:= 9(0, a-'l)
,1

APPENDIX B. SUMMARY OF LAWS 160

Definition 5.3 general iteratQr

IT t is any element of the type l' defined above, then

it t into" with

a --. aaa

~bx -----jobbb
~cyt' --+ ecc

ti

is defined to mean the same as

1(1, r)

where

procedure I(value t,result r) ==
if t is

a ----+ aaa
~bx -----jobbb
~c"t' ~ Ilvarlo1(t',Ij;ccclt'\lJI!

fi

Law 5.4 assignment ~terator

ro= [P, Q, RI t

" it t into r with
a --+r:=P

~ bx ~ ro~ Q(x)
~ C Y t' ---t r:= R(y, t')

ti

Chapter 6

Definition 6.1 procedure type equivalence

We extend the normaL rules about type equivalence by explaining when
two procedure types are type equivalent: types proc (value v :
V,result r: R) and proc (value Vi V',result,..': R') are equiva
lent (written =) exactly when V == V' and R = R' . In other words, the
parameter Dames are not significant, and neither are the global "ariables

161 APPENDIX B. SUMMARY OF LAWS

Law 6.2 int'r"oduce local variable

wp(var x • aaa, ¢)
= 'r/1:. wp(aao,¢ t x)

provided ¢ contains no x

Definition 6.3 procedure constant call

[call P(e, wI]" .•

?J/,lJ,r,g.

".P ~ (J,e",g) ,

~

Definition 6.4 explicit procedure. ezpressioTi call

[call (value iI,result ,... pHe, w)] ..p

3/, g.

Ipl ~ !j,e",g) '

~

Definition 6.5 procedure variable wll

"E [call pe(c.wIH
~

3/,1),,-,g_
a.pv == (J,V,T",g) 1\

"E~

Law 6.6 introduce procedure variable execution

w : [pre, post] ~ pv ost] C
w call pu[pre ,p -

Law 6.7 procedure variable value a.5signment

If the procedure variable pu has been declared as procedure (value v),
then we have the following refinement:

w: [w :=P; t:;; pu ,post] t:;; call pv(A)

provided w: [pre,po5t] ~ w:= E[v\AJ
where A contains no v

162 APPENDIX B. SUMMARY OF LAWS

Law 6.8

Law 6.9

Law 6.10

Definition 7.1

procedure variable result asstgnment

If the procedure variable pv has been dpclared as procedure (result r),
then we have the following refinement:

a: [r:=p;er:;;.pv,P05tJ ~ callpv(a)

provided a : [pre, post] (;;; a := E

where ,.. does not occur in E.

procedure t11lriable value specification

If the procedure variable pv has been declared as procedure (value I),
then we have the following refinement;

w, [p" I c: ,post] c:: call pu(A)[w; prel,postL _ pv - .

provided w : [pre, post] ~ w : [predf\A], postdfo \A(J]]

where Ao is A[w\tl.\:l] and post] contains no f

procedure variable result specification

If the procedure variable pv has been dpc]ared as procedure (result I),
then we have the following refinement:

0' [I' [P p,"[VII c: ,po"l f; call pv(a)
. I'"el,POSl a _pv J

pTOV1ded a ; [pre, post] ~ a : [pre" postd

where 1 does not occur in prel' and neither 1 nor 10 occur in post}_

Chapter 7

procedure value substitution

wp(P[vaIue IP\APJ, ¢)

VX • X ::l AP => wp(P,¢)I!P\X]

163 APPENDIX B. SUMMARY OF LAWS

Definition 7.2 procedure result substitution

wp(PI,e,ul' '"Plap], ¢)

'if Ip. wp(P[rp\apJ, ('Ii ap • ap ;;;) lp :::> ¢) tap)

Law 7.3 procedure variable value and result specification

If the procedure variable pv has bet>n declared <1.<; procedure
(value v, result 1'). then we have the following refinement:

W, ar: [pre , post] C call pv(A ar)
w, r: [prel,postdar\r]] r;;:; ptJ - ,

provided w, ar: [pre, post) r;;:; w, ar: [predv\A],postl[V\A]]

where l' does not occur in pre!, and neither r nor 1'0 occnrs in postl _

La~ 7.4 assignment stiJiter

If the value to be assigned to a variable is formed by the application of
a catamorphism to a sequence, t.hen the whole assignment can be imple
mented by a call to seqiter.

"=iI!,gD,
>::

seqiter((result er. er := I),
(value a, t1.'I; result cr. Cr;= g(a, as)), ,

La~ 7.5 procedure tJanable value and result specification

If the procednre variable pv has het>n declared as procedure
(value v,result r), then we have the following refinement:

w, ar : [W, v, r : [pre}, :t [ar\ r]] i;:;; pv . post] ~ call pt'(.4, ar)
l

promded w, ar ~ [pre, post] ~ w, ar : [predv\AJ, postdttJ \Aoll

where T does not occur in pre!, and neither v, r nor ro occur in post},
and Ao is A[w, ar\tLb. aro].

164 APPENDIX B. SUMMARY OF LAWS

Chapter 8

Law 8.1 e15e dutributiQn

(aao.; bbb) > ccc
f; (laa; (bbb > ccc) provided cc.e !; aaa; eee

Law 8.2 disjunction-el!le

w, [o,PV ,1
I

W, [o,P > 11
J

Law 8.3 !JuperjiuDlL3 choice

w'IQ,Pj
C 1 -. w, [Q,PJ
- ~ ~1 -t aaa

provided 0 => I

Law 8.4 ab80rb guard

° -. w, [P,1J
W, [Q => P,Q[w\""j A 11

provided tL.U is not free in 0

Appendix A

Abbreviation A.I 113siynment abb~viation definition

Pl may be used as an expression in the right·hand side of an assignttlent,
standing for a declaration of a fresh local variable I, a call of P with l as
the result parameter, followed by the assignment with I in place of PI:

% ,= "P(P!) ;: I["'" I.
Pill;
% ,= ezp(/)

II

165 APPENDIX B. SUMMARY OF LAWS

Law A.2 assignment abbreviation

If F is an expression, and P if! defiOl"d by
procedure P(result r) .=

r:= E

then

x:= F
[:
x ,= FIE\ PI]

Abbreviation A.3 alternation yuard abbreviation definition

P! may be used as an expression in tbe guard of an alternation, standing
for a declaration of a fresh local variable 1, a call of P with I as the result
parameter, followed by the alternation with I in place of P!:

if (D ; • G.(P') -> E.) fi
=I[varl.

P(l);

if (~ i. G.(l) -> E.) fi

II

Law AA alternation abbreviation

if Wi. G. -> E.) fi
[:
if (0 i • G.[E\ P'l-> E.) 6

Abbreviation A.S iteration yuard abbreviation definition

P! may be used as an expression in the guard of an iteralion, standing
for a declaration of a fresh local variable 1, a call of P with I as the result
parameter, followed by the iteration with 1 in place of Plo and a cal] of P
after the iteration body:

do (U ; • G.(P!) -> E.) od
=I[vurl.

P(l);

do (~ i. G.(l) -> E.; P(I)) od

II

