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Abstract 

This thesis extends the refinement calculus into two Dew areas: exceptions and itera
tors. By extending the calculus in this way, it is shown that we can carry out the formal 
development of programs which exploit the exception-handling and iterator mechanisms 
of programming languages. For both areas of expansion, the same strategy is u~d: rel
atively simple extensions to the language are first proposed, together with the semantic 
machinery to prove the correctness of new laws. Then these simple extensions are com
bined. into complex mechanisms which mimic more closely the language facilities found in 
programming languages, which are necessary for programs of realistic size. 

For exceptions, the major idea is to distinguish between nonnal and exceptional ter
mination of program constructs. Dijkstra's weakest precondition semantics are extended 
to give meaning to this by considering predicate transformers which take as arguments 
more than one postcondition. The notation is extended to deal with multiple exceptions, 
and appropriate actions for them, by the use of procedUI'€s. 

The technical background for the iterator construct proposed comes from the functional 
programming community: homomorphisms from initial data types. Again, it is shown how 
this can be related to iterators in programming languages. This involves giving weakest 
precondition semantics for procedures as parameters. 

Both extensions to the refinement calculus are used to give formal developments of 
programs which use a pre-existing library of abstract data types. A specification is given 
for a typical library component, and several sample programs are developed. 
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Chapter 1 

Introduction 

Ever since the 1968 NATO conference which introduced the phra~e 'the ~oft
ware crisis' to the world, software Jevp!opers (or at least their managers) ha\-e 
been searching for the Holy Grail of programming -- a software development 
technique which will allow them to develop ever larger and more complex soft
ware products, with the certainty that the programs delivered will perform as 
expected, always giving 'r:orrect results' -- whatf'ver that may mean. They 
also want to be sure that these products will be delivered on time and within 
budget, and that they will be documented and structured so as to make it 
simple to carry out any future enhancements -- of course, there will be no 
bugs, so error removal will not form part of maintenance. It is now 30 years 
since that <:onference, and, despite the claims of some marketing managers and 
over-enthusiastic salesmen, the search for the ultimate software development 
method is still going on. This thesis attempts to fill a small hole by extending 
an existing development technique and notation to cover two areas that wer!' 
previously beyond its reach. :'fa claim is made that the extended method is 
even close to this ultimate development method, but it is certainly a step in 
the right direction l 

1.1	 Software development and the refinement calcu
lus 

The notation which is to be extended is that of the refinement cakulus, 1 which 
is based firmly on the idea that programming is a mathematical activity. When 

1III particular, we use Morgan'li verSion of the calculus (41), 

2 



3 1.1. SOFTWARE DEVELOPMENT AND THE REFINEMENT CALCULUS 

Dijkstra introduced his language of guarded commands [17], he included COQ

structs that could be given simple and elegant mathematical meanings. Con
structs such as the unrestricted 'goto' of early programming languages were 
rejected because they did not have a simple mathematical meaning: symp
toms of their complex semantics were that there were no simple laws that they 
obeyed, and that programmers were much more likely to misunderstand t.heir 
behaviour and make mistakes while using them. The claim of early rnE'mbers 
of the 'formal methods' school was that programmers who used a restricted 
language with well-understood semantics were much less error-prone. 

One of the areas of research interest which subsequently opened up was the use 
of mathematical notations for the specification of software: by introducing prp
cision into the software development process at an early stage, to describe what 
the proposed system was intended to achieve, researchers (and users) hoped to 
uncover misunderstandings and area<> of uncertainty as early as possible, thus 
enabling corrections to be made before too much further work had been carried 
out. Because the 'programming language' - Dijkstra's language of guarded 
commands, or something similar -- and the specification language both had 
a firm mathematical basis, it was possible, at least in theory. to prove that a 
program met its specification. Much research effort was spent, and is still be
ing spent, on ways of proving such developments correct, using techniques such 
as introducing intermediate design stages to reduce the size of the 'gap' to be 
proved. 

By the early 198015, it had become clear that one of the problems was the 
difference in notations used at the specification, design and coding stages: at 
each stage a favourite notation Was used, making it difficult to prove relation. 
ships between the stages. This caused a growing interest in 'wide-spectrum 
languages', which were languages that could be used throughout the develop
ment process, v.ith features designed particularly for certain stages, but the 
whole language described in a coherent mathematical framework. This reduced 
the difficulty involved in translating from a specification notation described in 
one sort of mathematics to a design notation described slightlJ' differently, to 
a programming notation described in yet a third way. The various refinement 
calculi2 are such wide-spectrum languages, which developed by extendiug the 
programming language - Dijkstra's guarded commands - with non-executable 
constructs suitable for writing specifications. A development. begins with a 
specification, usually expressed in terms of these non-executable specification 
constructs. The specification is then 'transformed' until it contains entirely 
executable constructs. These transformations are justified by the laws of the 
calculus, which guarantee to 'preserve meaning' in a very precise way. Details 
of Morgan's version of the refinement calculus notation and its laws are given 
in Chapter 2. 

2For historical reasons, _ oft/!u refer to 'the refin/!ment calculus', although there are 
several notations - see Section 2.2 (or sam/! details of lhe history of tbese calculi. 



4 1.2. EXTENDl'iG THE REFINEMENT C4LCULUS 

1.2 Extending the refinement calculus 

This then is the r:ontcxt in which we are working: we have chosen to extend 
the refinement calculus to coyer t"'"O new features of programming languages: 
exceptions and iterators. The reason for the choice of these two additional fea
tures lies in the author's experience while working on a research project funded 
by IBM Hurslcy. By the carly 19905, there had been some success at Hursle:y 
in the use of formal methods, at least in the area of recording specifications 
and designs precisely, if not in the use of proof, and there was some interest 
in the use of other techniques to improve programmer productivity. Qnf:' of 
the technklues investigated involved the use of the Boblingen Building Blocks: 
these werc a collection, produced by IBM's laboratory in Boblillgen, Germany, 
of implementatinm of commonly-used abstract data types, such as sets. maps 
trees etc:. The Block.., were implemented using the macro-pxpansioll facilities of 
an IBM-int!'mal high-level s)'stf>ms programming language, PL/AS. The inw5
tigation looked at ways in which the USf> of the lllocks could be im:orporated 
into a development Illethod which was then based on Z. The intention was that 
specifications would be written in Z, using Z's notions of sets, relations, fUJl(:
tions etc, which could thl'n bp implemented directly using the relevant Building 
Blocks. Clearly, the first stE'P was to write formal specifications for thf) Blocks, 
but here certain problems arose. Three serious difficulties wen' discovered while 
writing the specifications: 

•	 the Blocks indud!'d an iteratO[ mechanism, which allowed programmers 
to apply an operation to each element of a data structure; 

• when	 an operation failed, an exception-handling mechanism came ill to 
effect; and 

•	 lJIany of the operations dealt v;ith pointers, either as inpnts or outputs. 
rather than dealing with the data structures themselves. 

The last of these Wa<> recognised a<> just one a<>pect of a major problem that 
has heen facing the formal methods community for some time - how to deal 
convincingly with pointers. It was decided not to tackle this. but to work ou 
the first two problems, which provided new and interesting challenges. 

At around tbis time (1993), a new version of the Building Blocks appeared, 
re-written to use the C++ language, rather than PL/ AS, and available as a 
commercial product, rather than. being restricted to the IBM community. It 
was also no longer dependent on the rather crude macro-expansion facility of 
PL/AS, and seemed to be a much more stable and robust product. it was 
thl;'refore decided to base the research around this product, which had now 
bel;'n renamed the IBM Collection Class Library. 



13 THESIS STRUCTURE 5 

1.3 Thesis structure 

In order to give meaning to the exception-handling and iterator mechanisms 
in the Collection Class Library, our strategy is to describe first some simpler 
constructs which we can add to the refinement calculus and give meaning to, 
and whose laws we can explore, before showing how these simple constructs can 
be llsed for the more complicated mechanisms of the existing library. Prior to 
that, in Chapter 2, we give a brief summary of the standard refinement calculus 
notation. and its meaning. 

Our work on exception handling starts in Chapter 3, where, after examining the 
need for exceptions, we make the important distinction between two Corms of 
termination for constructs of the language, normal and exceptional termination. 
We explore some laws that the extended language constructs obl:y and show 
how to develop programs that make use of these constructs. W('. also extend 
the usual semantic framework (Dijkstra's weakest precondition) to cover the 
two forms of termination, and we are therefore able to justify the Jaws we have 
proposed. 

However, a realistic treatment of exceptions needs to do more than distinguish 
between normal and exceptional termination: different actions may be appro
priate for different errors during a pacticular invocation of a command, and 
it may be the case that different actions are appropriate for a single excep
tion during different invocations. In Chapter 4, we deal with this, basing an 
exception-handling mechanism on the use of procedures. 

Part III of the thesis contains our work on iterators. Once again, we start with 
a fairly simple addition to the refinement calculus notation (in Chapter 5), 
which is based on work from the functional programming community on cata
morphisms - homomorphisms from initial algebras. 

In order to encapsulate iterators, as we must if we are to use them as part of a 
library of abstract data types, we need to pass procedures as paranleters. This is 
not covered in the usual treatments of tbe refinement calculus, but recent work 
by Naumann [49] on weakest precondition semantics for procedure variables has 
laid the foundations on which we base a treatment of procedural pacameters 
in Chapter 6. This allows us to discuss the encapsulation of iterators in the 
following chapter. 

Having set up all this machinery for dealing with exceptions and iterators. we 
can now return to the Collection Class Library, and work on some applications 
of our work. The two chapters in Part IV of the thesis deal with applications 
involving exceptions and iterators, respectively. Having given a specification of 
one of the Collection Classes, we show how programs are developed which use 
that specification. 

Finally, in Chapter la, we set our work in the context of other related work, 
look at possible future work, and draw some conclusions. 



6 1A. CONTFlBUTION 

Since a large number of laws are introduced at many different point-s In the the
sis, we have collected tog-ether all the laws in Appendix B, for ease of reference. 

1.4 Contribution 

The overall contribution of t.hi5 thesis is t.o show how an existing softwarE-' 
development notation - the refinement calculus - can be extended in two 
directions, to cover two additional features common!}' found in programming 
languages: exceptions and iterators. The techniques used the distinct.ion 
between normal and exceptional termiuation and the use of catamorphisms, to
gether with the semantic extensions used t.o give meaning t.o these constructs - 
are perhaps more important than the applicatIon of the extended language t.o 
the development of programs u5illg a particular library of ab:-tract daw types. 

Some of the material in this thesis on exceptions has previously heen published 
in the Formal Aspects of Computing .Tournai [25}. 

1.5 Notation 

In Part II of the thesis --_. on exceptions - and the summary of the relln('lllent 
calculus, the following notat.ional conventions are used: 

•	 names consisting of a single letter repeated t.hree times, aaa, bbb <:tc., 
represent programs; and 

•	 single Greek letters 0:, (3 etc., represent predicates, that is, sets of states 
(We are not considering the question of expressibility, and thus we some
times blur the distinct.ion between a Boolean function on a st.at.e :::ipace 
and the corresponding set of states.) 

Cn-numbered laws eg "followiflg assignment" refer to laws in the standard text 
on the refinement <:alculus [44]. 



Chapter 2 

The refinement calculus 

In this chapter, we give a very brief introduction to the refinement calculus. 
We describe first the basic constructs of the language and their meanings in 
terms of Dijkstra's weakest precondition. Then we give a brief history of the 
development of the calculus and look at some more advanced features. Finally, 
we give a short. sample development to show the notation in USE. 

2.1 Basics 

The refinement calculus arose out of a simple extension of Dijkstra's language 
of guarded commands [17]. A $pecification, here written 

w, [a,~] 

comprises a frame w, and two predicates: the precondition a and the postcon
dition /3. It is a command in the programming language which. like the others, 
describes the intended effect of a computation. Unlike conventional program
ming commands however, it does not necessarily suggest a ru~chanism for the 
computation: it gives the what, but not the how. In the refinement calculus 
world, we do not distinguish specifications from programs: every specification 
is also a program (but not vice versa). 

In the specification w : [a, ,oj, the frame w is a (possibly empty) list of variables 
that the specification (command) may alter. When the precondition a is true 
initially, the specification is guaranteed to tenninate in a state satisfying the 
postcondition p. On the other hand, when Ct is not true initially, no guarantees 

7 



8 2.1. BASICS 

can be madf' about the beha"iour of the specification: it might terminate' in an 
arbitrar)' state or it might uot t('rminate at all. 

For exampl(': 

•	 y [i.rue, y2 = xJ is a specification which states that a value should be 
a.'isigncd to y to make till" predicate y2 := X true' (thus assigning to y a 
squar(' root of x); 

•	 e : [oS :f:. 0, e E oS] is a command which chooses an elem('nt e from a set s. 
provirkd .5 is non-empty; if 8 is e'mpty initially, then this command might 
not terminatf', or it might assign an arhitrary value to e; and 

•	 x: [b 2 2'. .,lac, ax':! + bx + c:= OJ i~ a command which solve:, the quadratic 
equati(Hl for x, provided the disL.iminant is non-negative: if the diHcrimi
nant is less thau 0, then its behaviour is arbitrary. 

The meaning of a specification st.atement can be giYe'n in terms of Dijkstra's 
weakest precondition semantics [18J: 

11Ip(W: [a,.B],q»;:' a 1\ lVIl'. ,13::} rp) 

which meanH that, for example, 

wp(e:[s:f:.~},eEJjJ,rj} = ,~:f:.{}I\(Vr.eE.~=}~?) 

Apart from the sp('eificatioll stateml'nt, thp second et>s~ntial ingredient of thf' 
refinement calculus i:-; a relation, called refineml'llt, between programs. \Ve write' 

0.0.0. ~ bbb 

for t\\o·o programs Illla and bbb. to say that 0.0.0 is retined by bbb: and that, 
in turn, means informally that any client who has <L"ikcd for th<' program alla 

will be happy if given bbb instead. Formally, the definition of the refinement 
relation between programs is given by weakest preconditions: 

aaa ~ bbb ~ wp(lllla,,p) ~ Il'p,bbb,fj!) for all post conditions rj 

For example, the first specification mentioned above, y: [true, y2 := x], could be 
refined by the program y ::= ..,IX. On the other hand, it could also be refined by 
the program y := -..,IX: any client who had agreed that their needs were met 
by the original specification would have no grounds for complaint, whichever 
program they were given. 

Program development in the refinement calculus is usually carried out via a 
series of so-called refinement steps, starting from a specification 0.0.0., say, and 
ending with an executable program zzz. In between might orcur a number of 
'hybrid' programs, containing both specifications and executable fragments: 

aaa I;::; .. ~ III I;::; mmm I;::; nnn I;::; 000 I;::; ... I;::; zzz 



9 2.2. HISTORY 

Syntax Semantics 
assignment 
sequential 

composition 
alternation 

recursion 

specification 

skip 
abort 
nondeterministic 

choice 
1 uaked guarded 

command 

"' E wp(x, E,¢) ¢[x\E1 
aaa; bbb wp(aaa; bbb, ¢) = 

wp( aaa, wp(bbb, ¢) 
if(Ui. 0:, ----t aaa;) fll wp(if(ili. 0, -; aaa,)ti,¢) ~ 

(Vieo:.)A 
(/\ i. Q; => wp(aaa,,¢))2 

mu aaa. P(aaa) um given by least fixed point: 
see Section 3.4 

w,[o,m wp(w, [o,OJ,¢) ~ 

oA (Vw'O=>¢) 
Bkip wp(,kip, ¢) ~ ¢ 

abort wp(abort, ¢) = false 

aaa U bbb wp{aaa U bbb,¢) = 
wp(aaa,¢) A wp(bbb,¢) 

0: ----t aaa I wp(a: ...... aaa, ¢) = 
0: => wp(aaa,¢) 

Figure 2.1: The major constructs of the refinement calculus 

The overall desired result aaa ~ zzz follows from the transitivity of~. The 
justification for each refinement step is given by appealing to one (or more) of 
a collection of laws, from which the 'calculus' takes its name. 

The major constructs of the language are summarised in Figure 2.1, together 
with their usual meanings in terms of standard weakest preconditions. Later 
however, we will need to extend the notion of weakest preconditions to COver 
exceptions. 

2.2 History 

Historically, Back was the first to embed specifications in programs, using the 
weakest precondition calculus [3, 4J, although his specifications contained only a 
single predicate. More recently, both Morris [46J and Morgan [42J have extended 
Back's work by using separate pre- and postconditions. All three authors have 
the same refinement relation. The refinement calculus continues the tradition 
of Hoare [21J and Dijkstra [18]; for example, the meanings of the specification 
statement and the refinement relation were deliberately chosen to make true 
the following theorem (Theorem 3 of [42]); 

lThis is a shorthMd for 

if al ...... 1I1111[ 0 .. 0an ...... 1I11a,. fl 

The number of brMches must be finite, but may be zero. 
1V a.od A denote disLribu\ed disjunction and coojunction, TeipectiveJy. 



10 2.3. Fl"RTHER FE.4TURES 

Taking w to be all program variables, and aaa to be an executable 
program, 

w : [pre, post] t; aaa 

has ('xactly the samC' meaning as 

(Vw • pre => Ulp(aaa,post)) 

This theorem allows us to check the validity of the laws of the refinement 
calculus. sudl as this law. for decomposing a specification into the sequemial 
composition of two specifications' 

w: [p7-e.postj t; w: [pre, mtd] ; w: [mtd,postJ 

There is an extensive collection of laws such as the above. some with sidt'
conditions to be proved, which are used to justify the renneffif'llt steps in a 
program development. A tutorial introduction to these laws rna:". he found in 
[44]. while a colleCtion of more theoretical papers may be found in [45J. 

2.3 Further features 

We look more closely now at some specific features of thp rennemf'nt calcu
lus. The first is 'naked' gua.rded commands, which were firs;t described by 
Nelson in [50]. :Morgan and Morris discovered them inuflpendently, as a natural 
consequence of the semantic definitions of t.he refinement calculns These are 
commands of the form 'a -t aaa' which do not necessarily occur within if ... fi 
or do .. ad. For any predica.te a (the guard) and program aaa we define 

wp(o:-t aaa,Q) == o:=> wp(aaa,r;!» 

Though such commands are well-behaved, and even to some extent geuC'rally 
accC'pted, they do not satisfy the 'Law of the Excluded Miracle· [18]: in partic
ular, 

wp(false -t skip, ¢) = tn~e 

for any postcondition 1> whatever. For that reason we give the guarded com
mand false -t skip the name magic. and note that aaa ~ magic for any aaa. 
It is also easily checked with wp that magic is left-absorptive: magic; aaa == 
magic for any program aaa. 

The second feature is pure nondeterministic choice. 'Ve have 

wp(aaa ~ bbb,<I» " wp(aaa,¢) /\ wp(bbb.¢) 

The two constructs interact nicely: one example is that aaa ~ magic == aaa == 
magic 0 aaa holds for all programs aaa. Another example is provided by the 



11 2.4. AX EXAMPLE DEVELOPMENT 

first step of the derivation in Section 3.2,3 which is easily verified using wp. In 
this step, we remove the iLfi around an alternation, which is justified so long 
as the guards are exhaustive, leaving naked guarded commands. 

A logical constant plays the role of a 'ghost '-variable. It can he used for example 
to refer in pOIlt--conditions to values defined before a statement. In what follows, 
we will use the logical constant t' to refer to the initial value of the variant 
expression. Logical constants are introduced by con, whose meaning is given 
as follows: 

llIp(1[ con x. aaa ]1,4;) == (3x. wp(aaa,¢)) 
provided that ¢ contains no free x 

An assumption is written {a}, for some predicate 0, and in a sense conveys 
the claim that "a is true here". As a statement it acts as skip when a is true, 
abort otherwise. This means that it is different from an 'assert statement', 
as found in Algol- ,\T for instance, which is guaranteed to terminate4 when the 
formula is false. Unlike assert statements, assumptions are therefore useless for 
program instrumentation, but are intended for use during tbe development of 
programs, and are removed before the final code is collected. The meaning of 
an asBUmption is given by 

wp({a},¢) 'OaA¢ 

It should be noted that we usually omit the semicolon between an assumption 
and any following statement: 

{a}; aaa = {a} aaa 

Layout of developments 

A particular technique of layout is often found in refinement calculus develop
ments: certain lines of the deVl'lopment are labelled with numbers, and these 
labels are used to coutinue the derivation at a later stage. We also sometimes 
label lines with a <J symbol: this signifies that this line will be worked on in 
the \'ery next step of the development. There will therefore be at most one 
line marked with <J at any stage, although it is possible that se\'eralljnes may 
be labelled with numbers. The complete program can eventually be found by 
collecting the code fragments from the braw::hes of the resulting development 
tree, These notations are used in the example below. 

2.4 An example development 

We now give a brief example of a program development using the refinement 
calculus features mentioned above. We will spell out the steps in some detail: 

3after Law 3.13 on page 24
 
~and to cause immediate program t~rminMion!
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in a 'real-life' dl'velopment, such detail \\Could be neither required nor desirable. 

The simple program fragment which we will develop is t.o ;';f!t the yaluf! of a 
boolean variable dep<'nding Oil whether an array contains some particular yalut'. 
Our variable declarations arc as follows: 

as : 1..n ---;. X 
x: X 
b : Boolean 

The array is modelled as a total function from tile indices 1..11 to thr va]IIP~ 

which are drawn from the srt X. Wl' arC' required to set th" value of b. dl'pendill)..'; 
on whether x appears in the array. Our specification is therefore 

b : [b ~ 3 i : Ln. as i = xJ 

(Notice that the pr~condition, which is tnte, has bC'f.tl omitted - this is a 
common abbre\'iation in specification stalPmpnts.) 

The development starts by introducing a local variable j, which will be nsrd 
to mark how far through the array we have chf'cked. \Ve then inlruduce <til 

abbreviation I for the predirate which will be used as the loop illyariant. and 
spnt the specification into two, for the initialisation and the loop itself: 

!;::;	 varj. 
b,) : [b ¢::I 31 : 1.. n• as t = xl 

I;:;;	 I==b~3i:l .. j.asi=x. 
b,j : [tme,I]; <l 

b,j. II,] AJ ~ nJ III 

Tbe loop initialisation is ea.<;ily impleoH'nted with a mult.iple assignment to b 
and J, and we can nLJW introduce the loop, which has invariant I. guard J f:- 71 

and variant n - j. 

I;:;;.	 b,j:= Jalse.O 

(I)!;::; "variant n - J" 

do j f:- n---;. 
b,j : [I 1\ j f:- n. I 1\ 0 ~ n - j < n -:kJI <l 

od 

(Hints about the justification for a refinement step are often given as annota.
tions to tbe refinement symbol, enclosed in "quotation ma.rks". Initial variables 
are marked with a subscript zero.) The loop body is refined with a following 
assignment to increment j. 

!;;;	 "following assignment, contract frame" 
b • II A j t n, IbV + 111; <l 

j := j + 1 

The remaining part of the loop body is implement.ed (in a ye'ry crude way) 
using two nested alternations. The first alternation tests the value of b - if it 
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is t,rue, then x has already heen found, and so we need do !lothing. 

!;;; if b---+ 
{b}b. [I A]" ",IbV + III <J 

Q ~ b~ 

{~b}b, II Ai" ",IbV + III (2) 
fi 

!;;; skip 

In the case where b is false, we test the value of as(j -+- 1) - if it is equal to x, 
we set b to true, and, if not, we move on to test the next value. 

(2)~ b,[(~ 3i,Li.",i~x)Ai"",IbV+l]1 

<:: 
;f a,(j +[~ ~r-;j. a" = x ] 

b, i"" ,IUV+1J <J 

a8(j + 1) =- x 

oa'(j+[I~~~;-7j.a,;=x ] 
b, i"" ,IUV+l] (3) 

all(} -+- 1) ! x 

fi 

~ b:== true 

(3) <:: skip 

Collecting the code from the development tree gives the fol(owrng program: 

var j.
 
b,j := false, 0;
 
doj =1= rt----+
 

if b ----+ skip
 
O...,b ----+if a.'l(j+l)=x ---+b:=true
 

D a.'l(j + 1) ! x ---+ skip
 
6
 

6;
 
j := j -+- I
 

ad 

It is certainly not the most efficient code to solve this problem - it would 
dearly be better to 'drop out' of the loop as soon as an occurrence of x is found 
- but it is correct! In Section 3.3, we give a milch simpler and more efficient 
solution to a very similar probLem, using the loop/exit/end construct defined 
there. 
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2.5 Conclusion 

In this chapter, we have given a brief introduction to the refinement calculus: we 
have described the basic constructs of the language and given their semantics 
in terms of Dijkstra·s weakest precondition. The chapter concluded with a 
discnssion of some lIlore advanced features of the calculus and th(' devdopment 
of a simple program. 



-
-




Chapter 3 

Adding simple exceptions to the 
refinement calculus 

In this chapter, we show how a form of exception mechanism call be added to the 
refinement calculus. It is deliberately not a complex Illpchanism: our ronC<'rn is 
to discover, in the simplest possible context. what additional semantic;", notions 
are needed for exceptions. and to give a mechanism which can be later \}f' m,ed 
to model the more sophisticated exceptlon mechanisms that arc found in real 
programming languages 

We start with an examination of the need for exceptions in programming lan
guages. Having com'jured ourselves that we are not chasing a complete red 
herring, we show how to add a very simple exit mechanism to the refinement 
calculus. This mechanism is based on the distinction between normal and ex
ceptional termination: in addit.ion to tenninating normally, certain program 
Construct.s are now also permitted to terminate exceptionally. VIi'c propose some 
algebraic laws for the new constructs, using our intuition about their behaviour 
to guide us. Section 3.3 shows how to deal with recursion in our extended lan
guage, giving a law for iteration and proposing a loop/exit/end construction. 
The last section of this chapter gives a formal basis to the previous work. In it, 
we extend Dijkstra's weakest precondition semantics to cover predicate tranS
formers wbich take more than one postcondition as arguments -- we need I.wo 
postconditions, to describe conditions for normal and exceptional termination. 
Given this semantic framework, we are then able to justify tbe laws proposed 
earlier, both the simple ones and those involving recursion. 

In the next chapter, we will extend t.bis scbeme to deal with nampd exceptions, 
and the association of program fragments witb those exceptions. 

16 
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3.1 The need for exceptions 

Interest in exception handling as a concept in progranuning language design 
arose in the early 1970s out of the increasing realisation of the importance of 
abstraction and modularity. Language designers wanted to allow programmers 
to write 'robust software' which would continue to function (or at least to 
behave predictably) under whatever circumstances it might be used. As larger 
programs were written, often consisting of many levels of procedure call, it 
became important to specify the precise effect of a procedure. Bnt when things 
'go wrong' -- there is an arithmetic overflow or a subscript out of range, for 
instance - there is the question of who is ill the best position to decide on the 
appropriate recovery action: is it the writer of the procedure which has run into 
problems, or the caller of that procedure? Parnas noted [51] that it has to be the 
caller, and that the possibility (however remote) of such errors wa,<; an important 
part of the procedure's interface. It is not difficult to appreciate that a condition 
such as not finding a particular valne while searching an array might be an error 
in some circumstances, and expected in others: the appropriate action in the 
two cases could be very different. IT exceptions are not used. then either the 
invoking procedure has to pass more information to the invoked procedure to 
enable it to interpret the 'error' correctly, or the invoking procedure needs t.o 
include code aronod each invocation to ensure that inputs are ill the required 
range and so on. Bnt these checks may also be carried out ill the invoked 
procedure, or they may more easily be performed there, and in an}' ca,<;e, certain 
exceptional states (for instance, lack of resources) may be impossible to detect 
prior to the invocation. Thus exceptions can be seen as conditions detected 
while a procedure is being performed that need to be brought to the attention 
of the invoker of the procedure, so that appropriate action can be taken. The 
use of exceptions is one way to generalise an operation: by ~pecifying that 
under certain circumstances an exception will be raised, rather than leaving the 
operation undefined, the programmer can make the procedure more generally 
useful. 

Goodenough [20] has identified three potential uses for exceptions: 

• to deal with impending failure; 

• to give additional i.nformation about a valid result; and 

• to monitor the progress of an operation. 

An invoked procedure may 'fail' in one of two ways: on its domain or on its 
range. Domain failures occur when the inputs are outside the precondition of 
the procednre, while range failures are caused by the procedure's inability to 
achieve its postcondition. This may be because of the failure of some lower-level 
component, or it may be a problem with resource depletion, for instance. The 
exception mechanism that we introduce below is chiefly concerned with the use 
of exceptions for notification of failure. 
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Goodenough's other potential uses for exceptions are perhaps not ~o common. 
One could imagine a browsing operation on a sequential data structnre', which. 
at the samf' time as returning the final element, gave the user a warning that 
there were no more elements to be retrieved, thus saving a subsequent browse 
which was doomed to failure. Except,ions could be used to give this sort of addi
tional information aboot valid results of an operation. It would also be possible 
to use exceptions to monitor an operation, perhaps by writing a message to 
the console e.xplaining how thE' operation is progressing - for iO:'itance. what 
percentage of a 5earch has been complet.ed -- and enquiring whether the uSr'r 

wants to continue. 

One of the reasons that we concentratl:' on the first of Goodenough's uses for 
exceptions is that it fits most easily with our model of exceptiou handling: in 
designing an exception mechanism, there is a fundamental choice between the 
resumption model and the termination model. The question that distinguish('s 
between thes£> two models is 'Does the raiser of an exception continue to exist 
aft.er the exception has been raispd?' In the resumption model, the answ(~r is 
yes, and it is possiblp that whateyer code handles the exception might solve th(' 
problem and return coutrol to the point where the exception was raised. In the 
termination model. it is assumed that it will not he worth returning to the point 
of raising the exception, and so the whole procedure is terminated. The choice 
between the two models is a balance between expressive power and simplicity 
in the semantics. Although thr resumption model is more complex, leading 
to tomplications in the relationships between procedures 1 and the spedfication 
of procedures, it seems to offer a more general approach. However, Liskov 
and Snyder [31, Section Vj claim tbat the termination model, because of its 
simplicity, is preferable to the resumption model, provided -- and thb is an 
important proviso -- that it supplies 'adeqnate expressive power'. They go on 
to discuss situations that arc 'handled awkwardly' by the termination model and 
'simply' by tbE' resumption model, and claim that such situations do not arise 
frequently in practice. Following their lead from the design of th(' exception 
handling mechanism in CLL", we usp a mechanism based on the termination 
model. 

3.2 Syntax for exceptions 

In order to be able to develop programs with exceptions, we need to extend the 
language of the refinement calculus. The main change is to alter the specifica
tion statement, but Yr'€ will later define some other useful additional notation. 

lNonnally, ignoring rocursion, a caJling procedure is dependent on a procedure which it 
calls, relying on it to perform some computation. However, in the resumptiou model, the 
calling procedure and the raiser of the exception are mutuaJly dependent: the caller depends 
on t.he exception rai!ler in the nonnal way, bm the exception raiser also depends on the 
hOUldler, which is part of the calHng procedure, to perform some action when a.n exception is 
raised 
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The exceptional specification statement 

Our first addition to traditional refinement calculus notation involves a gen
eralisation of the notion of the postcondition of an operation. Since we are 
considering exceptional behaviour, it is no longer enough to cornider a single 
postcondition for an operation to represent the condition which must hold when 
the operation terminates. Instead, we consider two postconditions - onl? for 
normal termination and one for exceptional termination. We therefDre ne-ed to 
extend the specification statement. In the simple form of the refinement cal
culus, without exceptions,. the specification statement contains a precondition 
and a single postcondition. We now consider a specification stal,ement with 
a precondition and a pair of postcouditions - one for normal, and one for 
exceptional behaviour. Thus we write 

W • la, ~ ) ,] 

for a specification which, when 0: is initially true, is guaranteed either 

• to terminate normally, satisfying j3; or 

• to temunate exceptionally, satisfying ,. 

As before, only variables in the frame w may be changed. All logical connectives 
are assumed to bind more tightly than >. 

The formal semantics of this exceptional specification statement will be given 
in Section 3.4, when we have introduced the extended version of wp which is 
necessary to deal with exceptional termination. In fact, our extension of the 
specification sta.tement arises naturally from the extension of the wp predicate 
transformer. 

The connection with the original specification statement, which has only a single 
postcondition, is given by taking fabe as the exceptional postcondition: 

W. [a,~J ~ w. la,~) /alaeJ . 

In the same way that skip, abort and magic are special Ca.<ies of the tra.di~ 

tional specification statement, there are two special cases of the exceptional 
specification statement. The more important is obtained by taking an empty 
frame, with true a.<i the precondition and exceptional postcondition, and false 
as the normal postcondition: 

exit == : [fabe > trueJ 

(As is usual in the refinement calculus, the true precondition ha.s been omitted.) 
Execution of exit always causes exceptional tennination, with no change to any 
variable. 

The second special case of the exceptional specification is obtained by taking 
true as the precondition and both of the postconditiorn;. This statement does 
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not seem suffiCIently useful to require a name, but it can easily 1)(' expressed as 
a nondeterministic choice beh'ieen skip and exit: 

w: [true, true> true} = skip Uexit 

This statement is always guaranteed to terminate, but that termination may 
be normal or exceptionaL 

The final piece of llotation that we need at present is the exception block. which 
shows t.he exrent of the scope of an exceptional termination. For inst.allCC. all 
exi.t occurring inside a pair of block bracket.s [ ] causes coutrol to be passf'd 
to the statement following the closing bracket. The laws for introducing blocks 
will show that they can be nested but. lIOt. otherwise overlapping. 

Simple laws 

We can immediately propose .'iomf' simple algebraic lav.'s which show how thc~c 

new language constructs should intl'ract. Tllese law:; will t)(~ proved sound lat~L 

when we have set up the semantics for exceptions. 

Law 3.1 program aftrr exit 

A program following exit has no effect. 

exit; aaa = exit
 
(Equalit.y of programs means semantic eqnivalence, tha.t ji). mutual refine

ment.)
 

Law 3.2 exit ending block 

An exi.t at the end of an exception block has no effect. 

[aaa; exit] == ~aaa] 

Law 3.3 exception-free block 

Exception blocks have no effect on exception-free programs. 

[aaa] == aaa proVIded aaa ill aception-jree 

Section 3.4 cont.ains a weakest prwolldition rllaracterisation of the idea of a 
program being exception-free, but for now we can think of it as "syntactically 
without occurrences of exits or specification statements with exceptional post
conditions" . 

With these three laws alone, and the usual laws of the refinement calculus, we 
can show the equivalence of some simple code fragments. For instance, 

if Cl then aaa 6 2 , 
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can be shown to be equivalent to the following, which is often used when aaa 
is long, and 0: tests for some error condition: 

[ if -'0: then exit ft; aaa] 

(The equivalence only holds when aaa is exception-free.) Although th€ following 
algebraic derivation may seem daunting in length for an essentially simple result, 
we set it out in full simply to illustrate clearly the nature of such reasoning. 

if 0: then aaa ft 

=: "exception-free block 3.3, provided aaa is exception-frce" 

[if 0: then aaa 6] 
= "exit ending block 3.2" 

[if 0: then aaa 6; exit] 

= "definition ofiC..then..6" 

[ifo ....,aaa 
U -'0: -t skip 
fl 

exit 

=: "distribution of ; exit into if"
 

[if 0: --t aaa; exit
 
o -'0 --t skip; exit
 
fl 

=: "skip left identity of; and program after e:nt 3.1" 

[if 0 ...., skip; aaa; exit 
U -'0: --t exit; aaa; exit 
fl 

= "distribution out of if "
 

[if 0: ...., skip
 
o "'0: ...., exit 
fl; 

aaa; exit 

= "definition of if.. then..fi and ent ending block 3.2" 

if "'0: then exit fi.; 

aaa 

J 
We have thus shown the eqnivalence as programs of 

if 0: then aaa fi. 

2An ahemative nOlation for it 01 --. CllI.lI. ~ -'01 --. skip ft 
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and 

n if .....,u then exit fi: aaa] 

nsing only the Ijirnple equivalrmce~ of La.ws 3.1-3.3. 

In Spction 3,2 WP will be able tn show a much shorter derivation of t.he same 
a·sult. 

Further development laws 

The laws giwII in tlw pre\"ious section are clearly not powerful enough to allow 
us to make' all the development. steps WE' would like. In partitular. thl?Y are 
all equations, whereas we would expect some laws wbich actuall~' involve re
finements; and there is nO law for introducing exceptions into a program, other 
thaJL with an exit right at the f'lld of ,Ill exception block. 

The first additional law that we 00\\" give allows us to convert a traditional 
specification statement into an exceptional one: 

Law 3.4 e:r:ccptwnal specijicatiun 

An except.iollalspeeification can be formed by duplicating the postcondi
tion of a flon-exceptional specification statement., and surrounding it with 
an exception block. 

w , [a. Bl ~ [w , [a, iJ > iJ]] 

Vle can refine a specification statement by discarding either the exceptional or 
the normal branr.h. 

Law 3.5 take nonnal brunch 

A specification statement can be implemented by taking thp normal 
branch unconditionally. 

w , [a,iJ > "II c; w ,[a,BI 

Law 3.6 take exceptional brunch 

A specification statement can be implemented by achieving Ih£' excep
tional postcondition, and then performing an exi1:. 

w: [a,13 >...,.J ~ w: [a,...,.]; exit 

It is convenient to introdnce at this stage a further abbreviation which will 
make the layout of developments slightly easier: for programs /laa and bbb, we 
write 

aaa > bbb 
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(pronounced "aaa else bbb") as a shorthand for 

aaa ~ (bbb; exit) 

aaa > bbb is a specification of a computation which, if it terminates normally. 
will have executed aaa; if it tenninates exceptionally. it will have executed bbb. 
The choice between the two is arbitrary and unpredictable. This notatiou allows 
us to separate the normal and exceptional behaviours in a development, and 
therefore to continue their development separately. The relationship between 
this new construct and the specification statement is very simple: 

Law 3.7 else notation 

Specifications and the 'else' notation 

w , la, ~ > ,J ~ w , la, ~J > w , la, ,J 

We can immediately give a few simple laws for the new 'else' construct; although 
we do \lot prove their soundness here, such proofs are easy exerCISes given the 
semantics of Section 3.4. 

Law 3.8 take normal bmnch 

An 'else' construct can be implemented by taking the first branch uncon
ditionally. 

aaa ) bbb l;;; aaa 

Law 3.9 take exceptional bmnch 

An 'else' construct can be implemented by taking the second branch un
conditionally, followed by an exit. 

aaa > bbb l;;; bbb; exit 

Law 3.10 choice-else 

A nondeterministic choice between two programs which do not contain 
exceptions is equivalent to an exception block containing the programs as 
branches of an 'else' construct. 

aaa 0 bbb = [aaa > bbb] provided aaa and bbb are exception-free 

Law 3.11 introduce trivial else 

An exit-exception pair can be introduced by offering the trivial choice 
between equal alternatives (corollary to choice-else 3.10). 

aaa == [aaa > aaa] provided aaa is exception-free 
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We see that choice-el.'Je 3.10 and introduce trivial else 3.11 are the crucial laws 
which. allow us to introduce the else construct (and thus the possibility of an 
exception) into a program which previollsly did uot contain one. 

The laws above are reasonably straightforward. Since 'taking an exit' alters 
control flow in a program, however, we might expect the interaction of exit and 
sequential composition to be less ohviolls: 

Law 3.12~eq1Jenhal compoilitlOn 

Distribute sequential compo.<;ition through 'else'. 

aaa :> bbb 
<;; 
(cn: > bbb) , (ddd:> eee) provided aaa ~ ece; ddd 

and bbb ~ Gee; eee 

ThE' law is informa.lly justified hy examining the thn:e possible behaviours of 
t.he right-hand side: the first lS that ea: dl1d t.erminates normally, and relines 
t.he normal termination path aao: of the left-hand side; in the second we find 
that. bhb terminates exceptionally, and equals the exceptional termination path 
of thE' left-hand side; finally ecc; ece terminates exceptionally, and refine.~ the 
exceptional termination path of the left-hand side. 

\Ve can also give a somewhat simpler law for introducing a sE'quentiai compo
sition into a specification statement.: 

Law 3.13 .'Jeque71tial composition 

Splitting a specification with sequential composition. 

w, la,~ > ,] 
<;; 
w, la,' > ,] 
w, I',~ > ,I 

We can now return t.o the example of the previous section. Use of t.he else 
construct allows a much more concise development. 

if Q then aaa 6. 

== "definition of if..then. 6., and removing if..f1." 

Q -t aaa 

U""0: -t skip 

== "choice-else 3.10, assuming aaa is exception-free" 

o -t aaa :> ""0 -t skip (1) 



3.3. RECURSION	 2.\ 

(1)	 ~ "sequential r..ompositian 3.12, justification below" 

(0 ~ skip> -'u --+ skip): (2) 

/lllil > magic (3) 

(2)	 ~ "expand >, definition of if"then..fi"
 

if ---a then exit fi
 

(3)	 ~ "take normal branch 3.8"
 

aaa
 

That concludes the development; collecting the code gives 

Kif ""'0 then exit 6.; aaa] 

as before. 

The two side-conditions for the application of .,equential composition 3.12 are 
satisfied as follows: we require first that {} ~ /lila!; (u --+ skip), /lila (easily 
checked with wp; alternatively viewed as a sort of associativity Df --+ and ; ). 
We also require that ....,a --+ skip ~ a --+ skip; magic (uot so obvious, but in 
fact the right-hand side simplifies to magic on its own). 

This development is much shorter than the previous versiou, but. it should be 
noted that we have only proVf~d refinement, not equality as befoI'€_ Notice also 
that magic has appeared in our development, though we have not needed to 
implement it (fortunately); we ha\'e used take normal branch 3.8, finally, to 
discacd it by choosing the left-hand side of the 'else' construct. 

3.3 Recursion 

The laws presented above can - in principle - convert any 'finit.ary' program 
that contains exception5 into an equivalent program that is exception-free. The 
same is not true for ('infinitary') programs which contain recursion, either ex
plicitly or implicitly. 

Explicit recursion is usually found in the form of recursive procedure calls, in 
whicb a given procedure A, 5ay, contains a call to the same A within it (For 
simplicity, we consider only the case where there are no parameters.) These two 
notions - recursion and procedure call -- are not inextricably linked however; 
we separate them by using the recursion block 

mu X • P(X) um , 

thus freeing us to deal with recursion on its own. Further details can be found 
in [44]. 

The meaning of the above is the least fixed point of the program-to-program 
fundion 'P. (For an example, see the treatment of loops below.) More precisely, 
we consider P to have type PT ----+ PT, and to be monotonic. The type PT, 
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in turn, is P S --'I P S: predicate transformers taking sets of (final) states to 
~ets of (initial) states. The set S of states is fixed throughoUt the discussion, 
but in practice would be large enough to contain the standard and constructed 
types. Recursive procedures are no longer entities to be distinguished in their 
own right; but one might say that a procedure was recursi....e if its body werE' a 
recursion block. 

ImpliCIt recursion is that introduced by iteration. The do ...od coustruction in 
the guarded conunand language is ~ for us - defined as followl:l: 

do G --+ body od 

is equivalent to the following recursion block (in which D is a fresh identifier): 

muD_
 
ie G then body; D 6
 

urn 

The body of an iteration can bE' any program at all. For instance, takiug a. 

rather extreme Ca...se. it might be magic, so we could have an iteration 

do true --'I magic od 

This program can be simplified as follows: 

do tme --+ magic od
 

= "unwinding the recursive definition oncE'''
 

it tme then (magic; do true --+ magic od) fi
 

= "removing it true"
 

magic; do tme --+ magic od
 

== "magic absorptive"
 

magic
 

Thus magic even 'jumps out of infinite loops'. 

Refining to recursion 

In order for recursion to appear in a program whose specification did not contain 
it, there must be a refiuement step whose right-hand side introduces a recnrsion 
block. Temporarily ignoring the matter of termination, a law to justify such a 
step might be 

U aaa!; P(aaa), then aaa!;;: rou D. P(D) urn. , 

given some monotonic program-to-prograrn function p. 

We can take terminatiou roto account - as we must, to avoid the absurd 
'everything is refined by rou D • D wn' by a small amount of trickery 
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Law 3.14 

involving logical constants, assnmptions, and a variant function. (These issues 
are explained in more detail in Section 2.3 and [44].) 

The (non-exceptional) law for recursion introduction [44J is as follows: 

reCl.l.rlllOn 

Let e be an integer-valued expression, V a logical constant, aaa a pro
gram, and P a monotonic program-lo-program function, and assume that 
neither aaa nor P contains V. Then if 

{e = V}aaa ~ PUO ~ e < V}aaa) 

we can conclude 

aaa ~ mu D. P(D) urn 

In practice, P will always he built from the constructs of the language, and so 
it is guaranteed to he a monotonic function since the constructs themselves are 
monotonic. 

The variant function for a recursion is an integer expression that is bounded 
below, yet is strictly decreased on each recnrsive call. Although th~requirempnt 

for the variant to be integer-valued is sufficient for our needs, it. is stronger t.han 
necessary: there exist programs which need ordinal-valued variants - see, for 
example, [12]. We show in in Section 3.4 below that the abov~ law remains 
valid in the presence of exceptions - and the proof uses transfinite induction. 
For now we proceed, on that assumption, with the presentation of recursion 
and iteration. 

Iteration 

We recall [44, Law 5.5J that the jaw U5ed in the refinement calculus for intro
ducing iteration (without exceptions) is 

W: [0,0 A---.G] 
~ 
do G-+
 

w ,[G A a ,a A (0" ,< .,11
 
ad.
 

The conventional conditions for loop correctness appear in the above as fol
lows, given that the invariant is 0 and the variantS is e: the invariant is true 

..... L '_'_

-£.eru-~uO!l(:np,ed variables in a po:stconditioo are u!led to refer to (be values of those 
va.c:iables in the initial state. They are defined in terms of logical conBtiillLS, and are a. very 
convenient abbreviation for tbe sort of spedficatlonB we wish to writl'. A l'ffo-subscripted 
expression, like eo here, is an abbreviation for the expre9&lon with all variable occurrences 
zero-subscripted. 
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initially (indicated by the precondition of the left-hand side); its truth finally, 
and the negated guard, are sufficient to establish the desired result (shown by 
the postcondition of the left-hand side); the invariant is maintained by the loop 
body (it appears both in the pre- and postconditious of the loop body, on the 
right-hand side); the variant is strictly decreased (postcondition of the body); 
the variant is bounded below (postcondition of the body). 

To incorporate exceptions into the above we can show first, using the techniques 
of earlier sections4 , that 

(, ~ V) w , [a, a A ~G > ~l 

C; 
if G then 

w: [a /\ G ,a /\ (0::; e < eo) > j3]; 
{O.$ e < V} 1l! : [a, a /\ -.G > ,6J
 

Ii,
 

which matches the condition for recursion introduction in recursion 3.14. The 
proof ohhis is not complicated; rather than give it formally, however, we sketch 
an argument as follows. We consider separately the two cases distinguished by 
whether -.G is true initially. If -,G holds initially, the left-hand side is refined 
by skip becaus(' the required postcondition of the normally-terminating branch 
holds already (0 in the precondition, -,G assumed). Given -,G initially, the 
right~hand side equals skip. 

If G holds initially, then the right-hand side either 

1. terminates normally having executed 
W : [0 /\ G ,0/\ (0 ~ e < eo)]; {O ~ e < V} w: [a,o: /\ --.G]; or 

2. terminates exceptionally having executed 
w: [0 /\ G,o /\ (0 ~ e < eo)]; UI: [a,13]; or 

3. terminates exceptionally having executed tv : [a /\ G,13]. 

In all three cases, the postcondition established by the right-band side is ap
propriate for the mode oftermination (as given on the left-hand side): a /\ ...... G 
normally and 13 exceptionally. 

Thus we can conclude from recurS10n 3.14 that 

UI: [a,a /\ -.G > 13] 
C; 
muD_
 

if G then
 
tv: [a /\ G ,a /\ (0 ~ e < eo) > i3]; D
 

6
 
urn , 

4We recall that the logical connectives hind more tightly than >, so, for example, the 
specifica.tion stUement on the LHS of this refinement is parsed as w , [0, (0/\ -,G) ) tlJ. 
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which gives IlS the iteration law required: 

Law 3.15 IteratIOn 

w:[a,QI\---.G >,8] 
[; 
do G --t 

tv: [0: 1\ G ,0: 1\ (0 :S e < eo) > .31 
od 

Compared to the iteration law for the refinemeut calculus ......itholll exceptions, 
the extended law simply contains "> {3" in hoth postconditions. It operates 
analogously to the non-exceptional version if it terminates normally; however, 
the loop body is provided with the possibility of exceptional termination, when 
~J most be established. as demanded of the overall exceptional postcondition. 
The exceptional blanch may assume (additionally) G, since the loop body would 
not be exerutl'd if G were not true. 

Loop / exit / end 

As an application of the above, we collsider the loor/exit/end construction 
found in Modula-2 (or equivalently thl:' while/break construction of C). This 
is defined to be equivalent to a do ..od loop with a tnil~ guard, enclosed iII an 
exception block: 

loop aaa end 

[ do true -t aaa odD 

where the aaa willusuaUy include an exit command, to ensure loop termina
tion. 

\\le proceed as follows to construct a rule for introducing loop into a pro
gram; note that the (extreme) strengthening of the postcondition for the non
exceptional case to false effectively forces exceptional termination, which is the 
way loop/exit/end behaves. 

w, [",~l 

= "application of introduce trivial else 3.11 above" 

[w, ["'~ > ~ll 

~ "strengthen normal postcondition" 

[w , [",Ja~, > ~ll 

~ "iteration 3.15" 

[ do true -t 

W: [0: II true, 0: II (0 S e < eo) > )3] 
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od 

Removing the superfluous "/\ true" gives the following law: 

Law 3.16 loop mtrodlLetion 

w: [a,B] 
i; 
loop
 

u' : [0: ,0: /\ (0 $. e < e{)) > ,3]
 
ond
 

Thus the task of the non-excC'ptional part of the lvop body is to maintain (} 
(the invariant) while strictly decrea.sing the ,'arialJt e Oil each iteration (but. not 
below 0). Since that cannot continne indefilJitdy, ev~ntuaUy the exceptional 
route must be taken, after establishing ;J as the left-hand side requires. 

~ote that, likf' mtmJuct' tnmal elst' 3.11, thi::. is a law which introduces <Ill 

exception and a corresponding block together -- th(' extl'UT of the eXCl:ption 
block is taken to bC' the loop...end block, ~o an exit in thp body of thp loolJ 
will cause a jump to the botwm of the loop, just after the end statement. 

Example 

To show this law in action, we develop a program whirh is intl'nded to find 
the index of a particular ....alue guarantped h.l ocrllr in an array. v...'e makl; th(' 
following variable declarations: 

as: array [O ..N - IJ of A 
11 :A
 
i :O.. N
 

The development is as follows: 

•• la E a'rO .. N - 1]. a = a,['JI 
~ i :=0; 

•• ia E a,IL.N - 1], a = a;[']] (1) 

(1) ~ "loop introduction 3.16, inyariant a E as[i .N- IJ: variant N - t" 

loop 

.. [ IN] a E a,[i ..N - 1] _ [.]]
!. a E a,~ t.. - 1 , 10 < i $. N > a - as 1 (2) 

ond 

(2) ~ "el.se notation 3.7" 
i: [a E a,~[i ..N - 1], a E as[i .. N - 1] /\ 10 < i $. N] (3) 
~ i: [a E asli ..N - 1), a:= as[,]]; exit (4) 

(3) i; a¥- as[i] -l- t := i + 1 

(4) ~ a := as[iJ -) exit 
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Notice that the exceptional and the non-exceptional branche~ arll refined t.o 
naked gnarded commands which, combined by Q, lead to the e:tpecr,ed alterna
tion in the loop body. The justifications for these final refinements to naked 
gua.rded commands arc omitted, but they can easily be checked with wp. 

\Ve can coUect the code to give: 

i:= 0; 
loop
 

a¥- as[tj-. i := i + 1
 
Ua == as[i]----; exit
 

end , 

which we may rewrit.e, using the definition of if.. then .. fi and rilles from Section 
3.2. as 

i:= 0; 
loop
 

if a = asli] then exit fi ;
 
i:= i+l
 

end 

3.4 Semantics 

Weakest preconditions for languages with exceptions 

The traditional weakest precondition technique for giving semantics to a lan
guage involves defining a function wp, which, for any stat~ml'nt aaa in the 
language, returns a prcdicate-to-predicate function (a predicate transformer). 
The function wp(aaa) maps a postcondition 0: to the weakest precondition (3 
from which aaa is guaranteed to terminate satisfying 0:. For example, the 
weakest precondition of the simple asSignment statement x := E is given by 

wp(" 0= E,a) =nixIE] 

This metbod of giving semantics for languages without exceptions is not suffi
ciently powerful for our needs, because we ha\"e to distinguish between norma] 
and exceptional t.ermination. Following Back [6] and Manasse and Nelson \37]' 
we therefore int.roduce a predicate transformer which is a function of two argu
ments rather than the usual one. We use the notation 

tql(aaa,1I,t) 

where aaa is a program, and 11 and E are predicates, to denote 

the weakest precondition from which aaa is guaranteed either: 

• to terminate normally satisfying 11 (for normal); or 
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Syntax Semantics 
x:- E 
aaa; bbb 
if(Ui-a,....., ana,)fi 

mu aaa _ P(aaa) urn 

w,[a,~>,) 

aaa U bbb 
a""" aaa 

wp(x:- E,v,f) _ v[x\E] 
wp(aaa; bbb,v,f) = wp(aaa,wp(bbb V,f),f) 
wp(if(Ui _ a,""" aaa,)fi,v,f) = 

tV i_a;) /\ (/\ i_a. :::;} wp(aaa" v, 1':)) 
given by least fixed point: see below 
wp(w: [0,1'3:> ..."J,V,f) = 

01\ (Vw _ (J => v) /\ (Vw _...,,::::} f) 
wp(aaaahbb,v,() = wp(aaa,v,f) /\ wp(bbb,v.f) 
wp(o. -; aaa,v,f") =a=> wp(aaa,v.€) 

Figure 3.1: Weakest precoudition semantics 

_ to terminate exceptionally satisfying f (for exceptional). 

Now we can give a compositional semantics to our language, UShlg this notation. 
For any construct which was in th(' language before w(' a.dded exits, S<tY ]JPP, 

the corresponding new weakest precondition definition is giyen by 

Wp(ppp,V,f) ~ wp(ppp,v) 

(where the wp on the left is our ue", version, and the wp on the right is the stan
dard Dijkstra wp). That is because the 'original' constructs tC'rminatlO' normallr 
by dlO'finition - they contain no exits. Sillce they cannot terminate exception
ally, the right-hand side is independent of t.. For instance, the commands skip 
and abort are given meaning t.hus: 

wp(skip,V,f) = v
 
wp(abort, v, () = false
 

The other constructs of the language (apart from recursion) have defining eqna
bans very similar to the usual (Dijkstra) wp equations: these are given ill Figure 
3,1. 

Notice that, in Figure .J.l, we have given a wp definition to the exceptional 
specification statement w [a, {3 :> ..."J. As we remarked earlier, the simple 
specification statement is a special case: 

w, [a,~) ~ w, [a,~ > f.",) 

We can therefore calculate its weakest precondition: 

wp(w ,[a,~),v,,) 

~ wp(w, [a,~ > f."'], v,,) 
= a 1\ (Vw _ {3 =>- v) 1\ (Vw _faye => f) 

=01\ ('v'w_{3=>-v) , 

which agrees with the definition in {42]. 
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More interesting are the equations for the exit command a.nd thr exception 
block: 

wp(exit, v, E) = (': 
wp([aaa],v,t) == wp(aaa,v,v) 

The equa.tion for the exception block reflects the fact that any exit inside aaa 
will be caught by the exception block. 

U !:ling these weakest. precondition definitions, we can verify the laws which wefe 
given earlier, and justifiE>d at that stage only in terms or the informal operational 
semantics. For iustance, e.nt ending block 3.2 states 

IT a.aa; exit n= IT aaa ] 

Taking weakest preconditions, we find 

wp([ aaa; exit ],1/, f)
 
= wp(aau; exit.v,v)
 

= wp(aaa,wp(exit,v,v),v)
 

== wp(aaa,l/,v)
 

== wp([ aaa 1/, /.I. E)
 

Many of the laws given earlier ha"ve side-conditions stating that certain compo
nents must be exit-free, where the obvious test for exit-freeness is syntactic. 
But we can be more precise if we use a weakest precondition characterisation 
of the concept: 

aaa is exit-free iff wp( aaa, v, f) = wp( aaa, 1I, 0<:') for any f, (' 

Now we can verify choicr.-el5r'~ 3.10, for instance. We need to show that 

a.aa.~bbb=ffaaa>bbb] 

givt~n that aaa and bbb are both exit-free. Taking the wPi'tkesl precondition on 
tbe right, we obtain 

wp{[ aaa > bbb ],v,o<:) 

= wp(aaa > bbb,v,v) 

= wp(aaa ~ (bbb; exit),lI,lI) 

= wp(aaa,v.v) 1\ wp(bbb; exit,lI,lI) 

= wp(aaa,v,v) 1\ wp(bbb, wp(exit,lI,lI), 1I) 

= wp(aaa, v, 1I) 1\ wp(bbb, 1I, 1I) 

= "since aaa and bbb are both exit-free" 

wp(aaa,v,f) 1\ wp(bbb,1I, 0<:)
 

=wp(aaa 0 bbb,v,o<:)
 

Many ofthe otber laws which were given earlier involve refinements, rather than 
just equalities. In order to verify these laws, we need a weakest precondition 
definition of refinement. Following [44] and other writers on the refinement 
calculus, our definition is a.s follows: 
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For any programs aaa and obO, we say that aaa is refined by bbb, 
written aaa i; bbb, exactly when for all postconditions II and f", 

111p(aaa, 1I,{) ==> wp(bbb,lI,t) 

Now we can prove some of the laws that were given earlier. For instance, to 
prow Law 3.6, we must show that 

w: [a,;] > -rJ ~ UJ: [a. I]; exit 

Taking the weakest precondition of the lrft-hand side, we get 

0: 1\ (Vw. ,3 ==> v) 1\ (Vw -1':::} f) 

while the right-hand side gives 

wp(w: [0:,1'], wp{exit, lI,f),f)
 
:::: 0: 1\ (V Ill. '" ==> wp(exit II, f))
 
= 0: 1\ ('lite. ~r ==> f)
 

So the weakf'st precondition of the left-hand side implies the weake~;;t precondi
tion of t.he right-hand side, a5 reqnin>d. 

A more complicated eXdmple is giVC'1l b:.' Law 3.12. for which we must show 
that 

aaa > bbb 

~ 
(cce> bbb); (ddd> eee) 

when we know that 

aaa !;;" a~; dtid
 
and bbb ~ ccc; fa
 

In terms of weakest preconditions, these pnwisos say 

wp(aaa,lI,f) ~ wp(ccc; ddd,lI,f)
 
and wp(bbb, II, f) ~ wp(ccc; eec, II, f)
 

for all postconditions II and f. 

Following a similar argument to the proof of ChOice.~e.lse 3.10 above, ......e can take 
the weakest precondition of the left-hand side of this law to get 

wp{ aaa > bbb, II, c)
 
:= wp(aaa a (bbb; exit),lI,f)
 
:= wp( aaa, II, f) 1\ wp( bbb; exit, II, f)
 
:= wp(aaa,lI,f) 1\ wp(bbb,wp(exit,lI,f),f)
 
:= wp{aaa,II,f) 1\ wp(bbb,f,f)
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The right-hand side is slightly more complicated: 

wp({ccc> bbb): (ddd> eee),II,f) 
== wp(CCc > bbb.wp(ddd > ere , lI,l), f) 
== wp(ccc > bbb,wp(ddd.v,f) 1\ wp(eee.t,f).f) 
== wp(ccc,wp(ddd,lI,f) 1\ wp(eee,f,f),d 

1\ wp(bbb,i.f) 
== "by conjunctivity" 

wp(ccc, wp(ddd,lI,f),f)
 
1\ wp(ccc, wp(eee,f,f),f)
 
1\ wp(bbb,f,f)
 

Now the first conjunct here is just wp(ccc; ddd, II, t'), and so we know that the 
first, conjwlCt of the left-hand side implies this, by the side-condition. The 
second conjunct is wp( eec; eee, 1", f), and we know that this is implied by the 
second conjwlCt of the left-hand side, since the definition of the refinement 
relation says that the implication holds for all postcondltions. and so it must 
hold when we take ( for both postconditions. The third conjunCi. appears on 
the left-hand side in exactly the same form. 

Recursion 

As usual, the semantics of recursion is given by a least fixed point construction 
In general, given a program-to-program function P we write Jl P for its least 
fixed point, and take that to be the meaning of the syntax 

muX _P(X) urn 

given in Section 3.3. 

Rather than proving tbe recursion law directly (Law recursion 3.14 in Sec
tion 3.3 above), we will instead give a lemma from which it is easy to derive 
the law. We "'ill give an outline proof of this lemma, noting that Greek letters 
denote ordinals, not predicates, for the duration of this lemma! 

Recursion lemma Let an ordinal-indexed family of programs aaa.:. be such 
that for any ordinal a 

aaa.:. ~ P(UPII3 < a _ aaaa) 

for some mOnotonic program-ta-program function P, where U denotes least 
upper bound in the refinement ordering given above. Then 

aaa,. ~ Jl P 

for all a. 
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Proof outline By transfinite induction on 0:, with all three cases together: 

aaa,~ 

~ "assumption" 

P(Ut31 (3 < 0: - aaa,J) 

~ "U,p monotonic; inducth'e hypothesis" 

PIUJI J <0 .~P) 

~ '·even when 0. :: 0" 

P(~P) 

= "IJ. P fix£'d point" 

~P 

o
 

Now we must show how to obtain the recursion law from this lemma.
 

Recursion Law (Law 3.1~)
 

Let e be an integer-valu£'d f'xpression, V a logical constant. aaa a pro/7am,
 
and P a monotonic prop;ram-to-program function, and assume that neithf>r aafl
 
nor P contains V. Then if
 

{e == V}aaa !; P({O:5 e < V}aaa) 

we can conclude
 

aaa!;; muD_P(D)um
 

Proof	 Let us define a family of progra.ms aaaa by 

aalla = {e == o:}aaa 

We may assume from the statement of the law that. for any a, 

{e == o}aaa ~ P({O:5 e < O:}(laa). 

But 

{0:5	 e < o}aaa 

{(V J IJ < 0 • , =J)) aaa 

"by wp" 

(UJ I J < O' {, = J}); aaa 

"left-distribution of; into U" 
(UJ IJ < O' {, = Jlaaa) 

(Ut31 t3 < 0 - aaaa) 

So we have
 

aaa" ~ P(Ut31 t3 < a _ aaao)
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as required for the recursion lemma abovC'. and we may conclude that, fOr any 
G, 

aaa" ~ JJ P 

In other words, 

{e=ct}aaa~JJP foralla 

Since this holds for any ct, we conclude that aaa r; It P :limply by letting a range' 
over all possible values of e permitted by our original choice of state span,' S ..5 

o 

3.5 Conclusion 

In this chaptl:'r, we have introduced the bll.sic form of an exception mechanism 
for the reHnement calculll~. The exit construct was used to distinguish between 
normal and exceptional termination of a program. Some laws abont the inter~ 

action of exits with other constructs were given, guided initially by intuition. 
Finally, a semant.ic framework was introduced, involving an extension of the 
standard weakest precondition to take separate post-condit.ions for normal and 
exception;,l termination. Given this framework, the laws proposed earlier werC' 
proved correct, including the law for recursion. 

~ln fact, we also nee<lthe I'quivalence 

(V',.z,];y) (U,e2;)!;Y_ 



Chapter 4 

Exceptions on a larger scale 

The simple exception mechan~'lm introduced in the last chapter is dearly not 
powerful enough to be u~ed it! any serious programming endt:'avouT. However, it 
is not too difficult to combine the idea of exits with t.he pcuceduTf' mechanism 
already in the language. to provide 0'1 flexible and powerful exception-handliug 
system. This is the concern of this chapter. Aftm describing how to deal with 
named exits and exception-handling routinps, we propose and prove some laws 
for the new constructs, and show how to use them in a sample development. 

The exception-handling system introduced here will be used in Chapter 8 for the 
development of some more significant programs, which use a library of abstract 
data types. 

4.1 Named exits and handling routines 

There are two reasons why we decided to start our investigation of exceptions in 
the previous chapter with a very simple scheme of exits and exception blocks: 
the first is that it is obviously better to understand a simple scheme before 
moving on to consider anything more complex. The second reason concerns 
the sheer variety or mechanisms for generating exceptions and handling them 
which are found in programming languages. By taking an abstract view and 
considering only the contrast between normal and exceptional termination and 
the interrupted flow of control given by the exit construct, we are left with a 
mechanism which has no bias towards any particular programming language. 
We can develop this simple scheme in various ways to produce mechanisms 
that are easy to translate into different programming languages. We will show 

38 
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one such development in this chapter, and the translation into a programming 
language will come in Chapter 8. 

There are two important featurt!S that are missing in the mechanism proposed 
in the previolls chapter: the ability to distinguish between 'different" exceptions, 
and the ability to Msociate code fragments with exceptions. In any reasonably
sized system, there ",-ill be several ways in which exceptions can be rai~ed. 

Indeed, within one procedure, it is quite possible that several 'errors' might 
occur. For example, if we model a bounded map a.'l a partial function from 
Keys to Values. 

map: Key --+--1 Value
 
inv #map S; max,
 

then an attempt to add a new pair to the map might be modelled as follows: 

procedure add (value k : Key, v : Value) ~ 

k¢dommap ) ]map. # ,map = maPoU{k ....... t'} (oj
[( map < max 

When we make this procedure robust, by specifying the behaviour when the 
preconditioll of (.) is not met, we would like to be able to distinguish be
tween the case where there is alrl?ady a value stored under the given key 
(k E dom map) and the case wherl? the map has already reached its maxi
mum size (#map = max). Without this distinction, we cannot give useful 
error mes.~age~, for instance. 

It. can also be useful to associate code fragments with particular exceptions. 
In the ca.~l? abov(>. we might just want to give the user an informative error 
ml?ssage, or Wl? might want to attl?mpt some sort of 'clean-up' artion - if the 
exception has been raised in the middle of a sequence of operations, some of the 
operations may need to have their effect reversed in order to resl[)re the system 
to a reasonable state. 

The mechanism we propose i.nvolves the use a construct already In the language 
- procedures. Since procedures arl? already a method for gl\ing names to 
program fragment.s, it seem uatural to combine them w'ith exits to gi ....e an 
exception-handling mechanism. In order to declare a bandler, we write 

handler H :::: hhh 

as an abbreviation for 

procedure H :::: hhh; exit 

In order to distinguish, for tbe user, the procedures which are exception-handlers 
from the standard procedures, we write 

raise H 

which is simply an abbreviation for a call of procedure H. Thus. when exception 
H is raised, tbe associated code hhh is executed, and contwl passes to the 
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end of the smallest enclosing exception block.1 Clearly, this sl:heme can deal 
v.ith multiple exceptions without any further complication, simply by declaring 
several handlers. For instance, a user of the add procedure giveu above might 
declare a handler for Alf"e.adyThere (to be executed when add is i'll\'oked with 
k E dam map) and a handler for Full (for when #map = mflX). 

Another ad .....dIltage of the scheme is that it enables the declaration of the handler 
to be separated from the raising of the exception, even to the extent that they 
might be the responsibility of different developers. In the case study which 
inspired this work .- the use of a library of abstract data types - it will he 
seen (in Chapter 8) that. many of the library operations have specifications that 
include the raisiug of exceptions: the v.Titer of these specifications, and their 
implementor, can have no idea of what will bt' the most appropriate action to he 
taken when a specific exception is raised. It. is the developer of the application 
which uses the lihrary who has this knowledge, and it is his responsibility to 
declare the handlers for the exception. 

4.2 Laws for raise and handler 

As usual with new constructs, we propose some laws about the constructs which 
will be useful when carrying out developments. These laws can b~ proved correct. 
using the propert.ies of exceptions and procedures. In all of the laws. we assume 
that the name chosen for a handler is fresh - suitabl~ renaming can bC! used, 
if necessary. 

The first two laws are simply ~llca.psula.tions of the definitions above, so that 
we can refer to them: 

Law 4.1 handler definition 

A declaration 

bandler H :2 hhh 

is an abbreviation for 

procedure H ~ hhhj exit 

Law 4.2 mise definition 

Raising an exception 

raise H 

is an abbreviation for 

H, 

a call of procedure H. 

lThat IS, the smalle'!l exception block e/lcl~j/lg the pOint at whiclJ H IS raised, /lot the 
point at which il is declared. 
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We need to show bow to introduce handlers into a program. A sequential com
position of two exit-free programs can be implemented by turning t.he second 
half of thE' eomposition into an exception-handler: 

Law 4.3 seqtjf~ntl.al compositIon and raise 

aaa; bbb 
IT handler H == bbb • 

aaa: raise H 
provided aaa and bbb are exit-free 

Proof 

RHS [ handler H == bbb • 
aaa; raise H 

i 
"Copy rule, mise definition 4.2"
 
IT aaa; bbb; exit]
 
"e:nt ending block 3.2"
 
IT (Jaa; bbb]
 
"exception-free block 3.3"
 
aaG: bb/!
 
LHS
 

o 

If a program already contains aaa follow('d by exjt, we ran replace this with 
raise H: 

Law 4.4 introduce handler 

IT P(aaa; exit) ] 
IT handler H ~ aaa _ 

P(raise H) 

The validity of this law follows immediately from the COP)' Rnle. 

A program containing an else constrnct can be refined to a choice with a raise 
in one branch: 

Law 4.5 introduce handler 

nP(aaa > (bbb; co,)) I 
[ handler H == ccc • 

P(aaa 0 (bbb; raise H)) 
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In this C3:3e, the proof follows from the definition of > and mtroduce handler 
4.4. 

If aaa and bbb are exit-free, then a nondeterministic choice between them can 
be implemented by an exception block with aall as ODe branch of the choice, 
and raise H as the other branch, if the code associated with exception H i~ 

bbb, 

Law 4.6 introduce hr17ldler to chaif/' 

aaa U bbb
 
[ handler H ::: bbb •
 

aaa
 
U raise H 

pmvided aaa (lnd bbb are exit.jm; 

Proof 

LHS ==	 aaa U bbb
 
"chuice-else 3.llY'
 
[aaa>bbb]
 
"intmduce handler 4.5"
 
[ handler H =:; bbb •
 

aaa Uraise H 

o 

We can always add mOfe code after a raise construct, since it will never be 
executed. 

Law 4.7 mi.'le-.'lequential composition 

raise H
 
raise H, aaa
 

The proof of this is immediate from program after exit 3.1, and the definition 
of raise. 

4.3 A development using named exits 

In order to show some of the rules from the previous section in use, and in order 
to give a flavour of the developments which are possible using named exceptions 
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and error-handling routines, we work our way through a small example in this 
section. We will need some mdre laws as we progress. 

Our task seems initially to be very simple: we havE' to find t.he sum of three 
nUITlhers 

sum := a + b + c 

The difficulty occurs because we will not be abl(' to use the buiJt.m addition 
operation of the programming language, but will have to use tLt following 
procedure instead. which in turn uses the type valid: 

L'ulid ~ - maxint., maxint 

procedure add (value i,j: N,result s: N):=
 
i,},i+jEl'ulid ---) s:=I+j
 

, ~ i,J E ,alid ) • 0 fi
U i + j " l'ulid ---) raise veT" ow 

i ¢ valid V •
 
Q j ¢ valid) ---) raise Badlnput
 

The add procedure recognises the possibility of two forms of error: if either 
of the input numbers is not a valid integer (it is not between -maxint and 
+ maxint) , then the exception Barilnput is raised. If both inpnts are valid, but 
th~ir sum is not, then Overflow is raised. Only if both inputs and their sum 
are valid is the result parameter s set to the sum of the inputs. 

Gi ven that we are using this procedure, we need to adjust our specificat.ion 
slightly to reflect the fact that we can only achieve our goal if certain condition!; 
are met. 

Spec :2: s·um, r : [OK V B V OV] , 

where we have the following definitions: 

a, b, , E valid )
 
OK :2: a + b, a + b + c E val~d
 

sum=a+b+c

( 

r:::: Ok 

ra ¢ valid V J
b rt valid V 

B :2: c rt valid) 

( sum:::: 0
 
r:::: Bad
 

a, b, , E val,d J
 
(a + b rt valid V
 

OV :2: a + b + c ~ valid)
 

(
 3um :::: mllXmt.
 
r:::: Over
 

If we cannot use add to obtain the sum, tben we set the return code r accord
ingly, and set sum to either 0 or maxint. 
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\\-'bile thi~ example might seem a little contrived at first sight, it is not really: 
when we carry out developments which ",ill eventually use the a.ddition operator 
of a real machine, we often cheat because we assume that the addition will work 
correctly. In fact, its behaviour is very similar to that of the add procrdure 
above - it can overflow or behave strangely if its inputs are 'out of raIlgp'.2 

The obvious way to implement Spec is to use two calls of add, with appro
priate handlers for Overflow and Badlnput. The target of our development is 
something like 

[handler Overflow =- stlm := mannt; r := Over 
Badlnput :: sum:= 0; r :== Bad. 

add(a, b, sum); 
add(sum. c, .n~m); 

r':= Ok 

The problems ItOW it; to Iwmipulate Spec until it contains two (:QIlserulivE' copiE's 
of add with appropriat(> substitutions. It is not difficult to split OK into a 
sequential romposition, but we alflo need to distributt' the relevant partb of TJ 
and OV into the corrt::ct parts of tbe composition 

The first additional law t.hat WP need, easily proved by v;p calculation. helps tll 
turn a specification with a postcondition that is a disjunction into ;Ul t::xception 
block, with branches corresponding \.0 t.he clauses of the disjunction. 

Law 4.8 di/Jjunction-else di/Jtribution 

W : [0:,191 V... Vt9,.J
 
C;
 ~ 

w : [a,:JtI 
) 

w : [a, 192] 

) 

w, [o,~"J 

OUf Spec is already in a suitable form to apply this law, but, before we do so, 
it will be convenient to split Band OV into two further disjunctions: 

(a ~ vabd V)
B= b~valid) ('~Vaiid) 

/Jum=O V IJum=O 
( 

l' =Bad r == Bad 

2Tbis is particularly true when the programming language contains ~veral forms of nnm
ber: int, longint, float, rea.! etc. 
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a, b, C E va/;d) (a, 6, 0 E vabd , ) 
QV=	 a+b~vaJi~ V a+b+c~.valtd
 

8um ::: max11lt 5urn == ma.:nnt
( 
" = Ol'er r = Otler 

We call these disjunctions Bl and B2 and QVI and OV2, respectively. 

Now we can apply di.~j1Lnctton-el8e distnbution 4.8: 

Spec 
,<urn," [OK V (Bl V B2) V (OVI V OV2)]
 
sum,r: [OK V Bl V aVI V B2 V OV2]
 

);;;; "dl.~j1Lnct'lOn-else distriblltion 4.8" 
[ 

.~um, r : 10K]	 ~ 

> 
SUIll,": [BI] 
> 
.~1Un, r: [aVI] 
> 
sum, r : [B2] , 
sum, r: [OV2J 

The next step is to develop the sUt,,:cessful branch into a sequential composition: 

sum, r: 

sum, r:~ 

yum, r: 

a,b,cEaalid ] 
a+ b,a +b + c E valid 

sum=a+b+c[ 
r = Ok 

a, 6, C E aal;d ] 
a + b, a + b + c E valid 

[ sum=a+b 

'6 I'do"CEV01 
b /"d 

a + ,a + b + c E va I,
[ sum=a+b 

a,6,o E ,.t;d . ] 
a + h, a + h + c E voltd 

sum = a + b +c 
r=Ok 

Let us narnp these two specification statements OKl and OK2. 

Now we simply have to associate the error-case branches with the appropriate 
parts of the successful case" In order to mo\"e the branches around, we need 
these two laws: 

Law 4.9 else distf"'ibution 

(aaa; bbb) > eee
 
(aaa > eee]; bbb
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Law 4,10 else distf'ibution 

(aaa; bbb) ) eee 
i;;; (aaa) eee) ; (bbb ) eee) provided c.cc ~ aaa; eee 

Now the inside of thE' exception block can be refined as follows: 

(OK1; OK2) ) sum, r : [B1] ) sum, r: [OV1] 
> sum,r: [B2J) sum, r: [OV2] 

!;;;:	 "else distf'ibution 4.9" 

((OKl, >Urn," IBl]' mm," [OVl]); OK2) 
> $um. r: [82] ) .'ium, r: [OV2J 

!;;;:	 "eL~e distf'ibution 4.10, take normal bmneh 3.5(twice)" 
(OKl) .'ium,r: [B1]) .'ium,r: [OVl]); (1) 
(OKZ) .'ium, r: [B2J ) .'iUm, r : [OV2]) (2) 

The application of else di$tributian 4.10 is justified by the fat-i that 

.lum. r: [82J 0 sum, r: [0\/2] 
[; OKl; (mm" , [82) n mm,' . {OV2]) 

i.ake normal bmneh 3.5 allows us to remove the two extra else-branches that 
would otherwise appear at the end of (1). 

Now we have our program in the shape required, and it is a simple matter to 
refine (1) and (2) using calls of add. 

a, b, , E ,al;d ] 
(1)= .'ium,r: a+b,a+b+eEval~d 

[ sum=a+b 

(a",abdV]
b f/. valid) • 

o sum,r: .'ium::: 0 ; eXit 
[ 

r = Bad 

a, b, , E ,al;d ] 
a+bfj.valid . o sum,r: .;eXit 

sum = maxsnt[ 
r = Over 

i;;; handler Badlnput == sum :::: 0; r:= Bad 
Overflow == "um := ma;r.int; r :::: Over_ 

a, b E ,alid ) 
( a + b E valid --t sum := a + b 

(a" ,alidV) . . 
( b f/. valid) --t raISe Badmput 

a,bE'al;d) . 0 fl 
( a + b f/. valid --t raISe ver ow 

!;;;:	 add(a, b, sum) 



The development for (2) is very similar, except that the assignmem of Ok to r 
is moved to the end of the exception block: 

(2) h add(sum, c, sum); 
r:= Ok 

We have now developed the program for sum:= a + b + c. It cannot be denied 
that it is a somewhat tortuous development: more experience with development 
involving exceptions and exception-handling is likely to reveal 'development 
idioms' -- patterns which appear frequently -- which can then be encapsulated 
into further laws, It is interesting to note that we actually end up with two 
declarations of the handlers in the above development: since they are identical, 
they can be merged to simplify the code. 

It is also worth remarking on the change we made in our original specification. 
to allow for the possibility of the add procedure 'failing': we started with a 
specification consisting of a simple assignment to ~um, and we ended up with 
a more complicated specification, formed from the three disjuncts. OK, Band 
QV. Clearly this transformation is not a refinement, since it allows different 
behaviours within the original precondition. It is in fact what Banach calls 
a retrenchment [7], This sort of transformation occurs fairly often in system 
development: the top level 'specification' capture.s most ofthe de..'1ITed behaviour 
of the system. but it needs to be transformed until the exact behaviour is 
captured, in all its gory detail: then the process of formal refinement can start. 

4.4 A possible enhancement 

One advantage of this procedure-based mechanism for exception-handling is 
that it can easily he extended to model an additional feature which is found in 
the exception-handling mechanisms of several programming lallguages.3 Lan
guages such as CLU [31] allow the programmer to pass a parameter to an 
exception handler. Since, as far as we are concerned, exception handlers are 
just procedures, we can model this with the normal procedure-passing mecha
nism for procedures. One application of this would be to give more informative 
error messages - a handler for RecomNotFound could say exactly which record 
could not be located, for instance. 

4.5 Conclusion 

In this chapter, we extended the simple exit mechanism defined previously, by 
introducing the idea of an exception handler. This encapsulated the actions to 

3Section 10.1 contains details of some of the exception-handling mechanisms available in 
programming languagl!!l. 
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be taken when a particular exception was raised. It was defined using the pro
cedure mechanism already found in the language. Several laws were proposed 
and proved, and sample de....elopments showed how the laws could be used. 





Chapter 5 

An iterator construct 

This chapter begins our study of iterators and how they can be introdured into 
a development method based on the refinement calculus. The notation used 
is based partly on recent results from the functional programIlling community 
about homomorphisms on recursively-defined data (,ypes (see for example [9, 
36]). These results are summarised in Section 5.3, after the introduction of a 
basic iterator construct over sequences. \Ve then look at iterators over more 
complex recursive types, and at how we can use a combination of recursive and 
non-recursive types to specify the behaviour of a module. The final part of this 
chapter shows how some of the results from the functional programming theory 
can be used. 

In ~ubsequent chapters we will develop this work by investigating the use of 
procedure variables, and thus procedures as parameters. In Chapter 7 we will 
show how procedure parameters can be used to encapsulate iteraton;, and so 
enable them to be specified and used in developments based on a library of 
pre-defined abstract data types. 

5.1 Introduction 

Before looking at the fllllctional programming ideas, we motivate the work with 
a brief introdudion to iterators: what they are, why they are important and 
the history of their use. Eckart [191 has described iteration as 'the ability to 
consider every element of a data structure'. For instance, a company's personnel 
database might contain a lisl of records, each of which contains details of an 
employee, such as name, address, salary and so on. Given this structure, we 
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could use an itcrator to define a procedure which would examine each record 
in turn, and reduce the salary of all those who eArned more than £50K by 
20%. Alternatively, we could obtain a list. of all those employees earning morC' 
than £30K, or evcn the total wage bill for the company. Thes£' three examples 
illustrate three common forms of iteration: the first takes thE' form of an 'update 
in place'; the second is a filter, producing a smaller collection of records; and 
the third produces a scalar value. 

The key fact about an iterator construct is that its user should Deed no knowl
edge of how the structure is implemented: it should be possible to abstract 
from such details as whether the list is Singly or doubly linked and whether It is 
stored in maiu or secondary storage. The interesting challenge is that we wanl 
users, while working within the refinement calculus. to be able to use iterator 
constructs on elements of types they have themselves defined, rather than 'iim
ply au built-ill types. We therefore eventually need to pass, a.~ parameters to 
such constructs, information about the action to be applied to ea:h element of 
the structure: this motivates our iut.erest iu procedural p<JIaIIU'ters, exploreu 
further in Chapter'l 6 aud 7. 

Although itcrawrs have appeared iu programming languages for many Jears,l 
there has beeu some reuf'wed interest recently. Wing [54] notes that two recent. 
trends in technology are likely to cause future interest: persistent object repos
itories and large-scale distributeu information systems. A persistent object 
repository [tl can be seen as a generalisation of a database: iflStcad of records 
in a relation, there are objects in collections of different types - often user
defined abstract types. Just as for databases, users want to carry out queries 
over these collectiom;, which are simply applications of iterators. The situation 
is slightly diHerent for large-scale distributed information systems such as the 
World Wide Web, WAIS and gopher: when these systems were introuuced, 
there was uo dirert support for iterators, so users were forced to follow hyper
text links to achieve the effect of a query such as "Find me all the objects that 
...". However, there are uow several search~engilles available, which provide a 
more user-friend I)· interface to these iteration-like abstractions. 

5.2 The it ..ti construct for sequences 

Consider an iteratiOn over a sequence s of type seq A, defined by 

type seqA ~ Empty I ConsA(seqA) , 

where we make use of the usual refinement calculus notation for disjoint union 
types: each element of the type is either an empty sequence, or it is constrncted 
from an element of A and another sequence. (Further details may be found in 
[44, Chapter 15J.) For brevity, and the convenience of an infix operator, we will 

ISeclion 10.2 contains a review of i~eralor COiUtructa ill severa.! progromming languages. 
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often use the abbreviations 

( ) '" Empty 
a:a,~ ~ Cons a as 

The purpose of the iteration is to perform some calculation which involves the 
consideration of each element of the sequence in turn. "liVe suppose that the 
result of the iteration is to be stored in a variable f', which is of some type R
A first example of the construct that we propose to use for the iteration is the 
following: 

it s into r with
 
() ~ r"=x
 

Oa:as ---+ r:=[(a,as)
 
,; 

The it .. t.i construct begins with a statement of the variable over which the 
iteration is to he performed, S l and thE' variable where the result i:-; to be st.ored, 
r. This is followed by a collection of branches, one for each part of the disjoint 
union definition of the type of s.1. In t.his tase, the first brauch covers the empty 
seQuence-, and the second branch covers non-empty sequences made up of an 
element a, together with a sequence a.s. The interpr~tation which W~ intend for 
this (:onstruct is as follows: if the sequence s is empty, then the result variable 
f· is \lpdated with a (constant) value x; alternatively, if.1 is \lot empty, then the 
uew value of r is found by applying a binary function f to the first element of 
s and to the result of the iteration over the remainder of ,~ ~ it will be clear 
from the definition below that this result is determined by a rec\lrsion. 

This brings us to one of the interesting points about this construct .- the dual 
use of as in the second branch. On the left of the arrow I as is a pattern matcher, 
while on the right it is the result of a recursive call. Use of this abbreviation 
has the advantage that we do not have to give a name to the fmlction W~ are 
applying to s. 

We can now give the definition for the it .ti construct in terms of a recursive 
procedure. 

Definition 5.1 sequence Itemtor 

An iteration over a sequence s of the following form 

it 5 into r with
 
() ~ bbb
 

na:a3 ---t ccc
 

ti 

is defined as 

2There are obvious similaritiet< wi~h the taggffi alternation and iteratioD constructs of [44J. 
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1(s, r) 

where 

procedure I(value s, result r) == 
if 8 is 

() --; bbb 
Oa:as -----> l!varl.I(as,I);ccc[a.s\llJI 

fi 

Notice that the local ,:ariable 1 is used to stofe the result of appl)"ing the pw
cedure recursively to fi.'l, so that it can be used in the immediately following 
statement, by means of substitution. Notice that, since the recursive call is 
applied to the tail of s, we are guaranteed that the recursion will terminate. 

For example, suppose we have the following declarations: 

s:seq N
 
'": N
 

Then the following program fragment will obtain the sum of the sequence: 

it s into.,. with 
( ) --; ,. ,= 0
 

on:nll -----j. .,.:= n + n.~
 

'i 

Similarly. we obtain the length: 

it !J into r with
 
() --; ,,~O
 

~ n:nll --+ .,.:= 1 + nil
 
ti
 

5.3 Homomorphisms on initial algebras 

To generalise iterators beyond sequences, and to expose the links between the 
twoexarnples above, we use recent work in the functional programming commu
nity, which we summarise in this section. The work is based on homomorphisms 
- functions on recursively-defined data types whose inductive definition mimics 
the structure of the type. Further details may be found in [9, 36, 39]. 

First we give an informal indication of the direction of this work, before outlining 
its formal basis: since we are transferring work from functional programming 
into the refinement calculus, we give only a brief summary of the results required 
rather than the full details, which may be found in the papers cited. 



54 5.3. HOMOMORPHISMS 01" INITBL .~LGEBRAS 

An informal approach 

Suppose we define a type T by 

T"';aAlbBTlcTCT 

This uses the previously defined types A, Band C and defines the construetOl 
functions a, band c, whose types are thus 

a:A---+T
 
b:E--+T--+T
 
c:T---+C--4T---.;T 

Each element of T can be thought of a~ 'tagged' with a constructor function. 

Now, suppose that we wish to define a function on T, which will give as result 
an element of some type R, say f T ---+ R. We can achieve this by defining 
three subsidiary fuuctions, each designed to show the effect of f on the disjoint 
part of its domain corresponding to each of the constructor functions. 

The simple:;t part of the domain is that formed by a: for this we definE' 

j;J,:A---;R 

which maps every element of A to an element of R. Now to find the effect of f 
on an element of T of the fonn a a, WE': merely apply la to a. 

The functions corresponding to band c are slightly more complex, but the types 
of their domaius are derived from the domains of the constructor fuuctions, 
with each instance of T replaced by R (since, as t.he function is recursively 
applied, all of the elements of T in the lower-level structure have already been 
transformed to elements of R). So the subsidiary functions we need to define 
have the following types: 

Ib:B---;R~R 

fc:R~C----.R----.R 

Once we have given the functions Iill Ib and Ie. we can comhine them, using thp 
so-called 'banana brackets' [36], to define a function from T t.o R; 

f "'; iI!.'/b'/cl 

This function I can be applied to auy element. of T, however it has been con
structed. Moreover, for any elempnt of T, we can be sure that exactly one of 
the subsidiary functions is applicable. 

We will use, as a concrete example running through this section, the type of 
non-empty lists of natural numbers. This is defined by 

Natlist == SingleN I (onsNNatltst , 

using the previously defined type N and the constructors Single and (ons. 
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For every function we want to define on Natlist, we need to give two subsidiary 
functions to show the effect on a singleton list, and on a longer list. Thus if we 
want to map an element of Natlist to its sum, we can define the funct.ion ill two 
parts: 

~um(Singlen) ~ n
 
sum(Cons n 115) n + .mm(ns)
 

So the function sum can be defined: 

'urn ~ Qid,(+)D 

Similarly, to obtain the product of the elements of a list, we defiIlt 

product == Qid,(*)D 

To add one to every element of a list, we define 

me_list = Qinc, cons - incD 

where 

inc n = Single n + 1 
cons - incn 118:::: (ons(n + 1) 1109 

Note that inc_list does not 'update' the list, but rather forms a new list of the 
desired values. 

Applying these functions to the list (1,2) gives 

Qid.(+)D (1,2) ~ I + 2 ~ 3 
Qid, (')D (1,2) ~"2 ~ 2 
Qinc, cons - ineD (1, 2) == (1 + 1,2 + 1) == (2,3) 

Formal definitions 

It is well-known that recursively-defined types, such as Nat/is! above, can be 
viewed as initial algebras of an appropriate functor. For instance, if we define 
the functor F by its action on objects (sets) and £unctious: 

F(A) ~ N + (N x A) 
F(f) ~ id + (id x J) 

then 

F(Natlist) == N + (N x Natlist) . 

Now the two constructor functioIlB of Nat/ist can be combined into a single 
function with the join operator 

[Single, Cons] : N+ (N x Nat./ist) ---. Natlist 
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and we can deduce that we therefore have an F-algebra, which consists of 
FNatlist, Natlist and the function between them [Single, Cons]. 

For any two F-algebras f : FA ----j- A and 9 : FB ----- B, an F-homomorphism from 
f to 9 is an arrow h : A ----j- B soch that 

h . f ~ g' Fh , 

which expresses equationally that the folloy,'ing diagram commutes: 

9 
FB B 

Fh1 1h
 

FA f A
 

The join [Single,Cons] is actually defined to be the initial algebra of F. It is 
therefore possible, given any other F-algebra -- say 9 -- to find a uuiquf' F
homomorphism from the initial algebra to g. This concept of the 'unique ho
momorphism from an initial algebra' is the basis of our iterator construct, and 
is called a catamorphism [36]. It is usually written with the 'banana brack
ets' mentioned above: UgD. A simple way of thinking about catamorphisms is 
that the functions given between the brackets UDare used as 'replacements' for 
the constructor functions of the cata.morphism's argument -- a form of 'organ 
transplant' . 

In the next section we will make explicit th~ connection between catamorphisms 
and the it ..ti construct, showing how the assignment of a catamorphism applied 
to an element of a datatype can be refined directly to an iterator. But first we 
explore the definitions of catamorphisms a little more, showing how they can 
be defined in two ways, either in functional programming terms, or with a 
collection of recurllive equations. 

If we consider again the examples above on Natlist we can see two forms of 
definition. For instance, the sum function can be defined, using the subsidiary 
functions of identity and addition, by 

sum:= Uid,(+lD 

Alternatively, the following equations together define it: 

sum (Single n) := n 
sum (Consn n!i) == n + sum(ns) 

Similarly, the inc-list function, which adds one to each element of a Nat/1st, is 
defined" either by 

tnclist = Uinc, COfU - incD 

or by 

inc-list (Singlen) = Single(n + 1) 
inc_Iut (Coos n ns) := Coos (n + 1) inc.-1ist( ns) 
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In both of these cases, it i.~ clear that the variant for the recursive definitions is 
given by structural induction over the datat)"!,£': the recursive call on the RHS 
of the definition is applied to the tail of the original argument.. 

Of course, it is not difficult to obtain the recursive equations from the functionClJ 
definition. If a catarnorphism c on Natlist is defined by 

c:l!f,gD, 
then the following recursive equations also define c: 

c (Single n) = I n
 
c (Cons n m) = g( TI, c(1IS))
 

5.4 Catamorphisms and the it ..ti construct 

We now give the connection betwClen catamorphisms and thCl it. ti construct 
which we introduced earlier. From the definit.ion of it..ti abm'e in terms of 
a recursive procedure, we can prove a law which will allow us to carry out 
developments where we implement an assignment with an iteratar. Note that 
we are now returning to work with the sequence type defined at. the start of 
Section 5.2. 

Law 5.2 assignment ite1lltor 

If the valup to be assigned to a variable is formed by th€ application of 
a catamorphisrn to a sequence, then the whole assignment can be imple
mented with an iLti construct. 

,,~I!f,gD , 
r;; 

it s into r with 
() --+,,~ f 

U a:as --+ r:= g(a, as) 

'i 

Proof 

By the definition of iLti, it is enough to prove that 

"~I!f,gD ' 
r;; 

1(" r) 

where, as before, 

procedure I(value s,rellult r):3
 
if sis
 

() --+ ,,: f 
na"" --+ I[ var I. I(a., /); r ,: g(a, I) II 

fl 
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We therefore develop the 35signmcnt until it is transformed into a H'cur"ive 
proeedure:3 

r,=I)j"D, 
~	 re [(value ..'l,result r) variant V is #s.
 

{I' ~ #,j
 
r,=I)j"D,
 

<;; r[l'=#"r=F(,)]
 

t;;;; "tagged alternation" 
if..'l is 

() -; ,,[, ~ () A I' ~ #" r ~ F(,)] ~ 

~ a:as ~ r: [s = a:as II V = #s, r = F(s)] (1) 

6 

~	 "by definition of F, and conversion to recursive form"
 
r:= f
 

(1) ~ "by definition of F, and conversion to recursive form" 
r: [s = a:as /I, V = #s , r = 9(a, F(as))] 

~	 varle 
1:[s=a:asAV=#,~, l=F(as)As=a:asA V=#s]; (2) 
r: [s = a:as A V = #,~ II I = F(as) , r = 9{a, F(as))] <] 

~	 r;= g(a,l) 

(2)<;; I,[V>#",~O, I=F(a,,)] 

<;; I(a" I)
 

o
 

,,\ore can use this law to give some very simple examples of iterations over se
quences. Suppose we have the fotlowing declarations: 

5 : seql\l
 
1':1\1
 

Then we can develop simple iterators by referring directly to the catamorphism
style definitions of the functions concerned. For example, for the sum of a 
sequence: 

r:= Es 
,,= [O,(+)D' 

~	 "assignment itemtor 5.2"
 
it s into r with
 

() -; ,,= 0 
Dn:ns ----jo r:= n + ns 

ti 

JNole that we are using the refinement rule for recursion from the socond l'dition of Mor· 
gan's text [44J, rather than the original formulation - from the fil'"8t edition [43J - which 
was used )n the descnption of rOCUl'"8ion with exceptions in Cha.pter 3. 
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What we are doing here is to import refinements like 

r :== ~s 

"~ ~o, (+)D, 

directly from other theori('.E: we are able to use the lit.erature on catarnorphisms 
to simplify the development of OUI own iterators. 

The lengt.h of a sequence can also be obtained with an iterator: 

1':= #.~ 

"define a E5 b ==- 1 + b" 
, ,~ ~O, mD., 

[; "asstgnment itemtoT" 5.2" 
it s into T" wi.th 

() ~ ,,~O 

On:ns ---Jo 1':==nfDns <1 
I; 

[; 1":= 1 + ns 

5.5 Iterators over more general data types 

We now work in a more geucral framework, with an arbitrary recursive data 
type. The type we use is defined schematically by 

type T';?; a I b X IcY T 

Thus an element of T is either a constant, identified by a, or it is the image Df 
an element of some set X, tagged by b, or it is formed from an element of Y 
and some other element of T and is tagged by c. It will become clear how the 
definitions and refinement laws can be pxtended from a type with these three 
'typical' branches to any other recursive type. 

First we extend Definition sequence iterator 5.1. 

Definition 5,3 general iterator 

If t is allY element of the type T defined above, then 

it t into r with 
a ---+ aaa 

Ubx -~bbb 

Ucyt' ~ r:cc 
Ii 

is defined to mean the same as 

I(t, ,) 

where 
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procedure I(value t,result r) ~
 

if t is
 
a ---+ aaa 

ObI --> bbb 
O,yl' --> II var I. I(t',I); ,,,,[t'\I] II 

Ii 

Notice that the local variable is only needed on the third branch, where there 
is a recursive occurrence of T in the type definition. If there were several 
occurrences within one branch, then the same number of local variables would 
be required: so a branch 

mTT 

would correspond to a branch in the definition of the procedure 1 which had 
the form 

m I, ~ --> I[var h, h • I(t" I,); I(t" h); ,,,,It,, 1,\1" hi ]I 

Having extended the definition of an iterator itself, we can also extend th(' law 
which introduces an iterator a'i a refinement of an assignment: 

Law :>.4 aS31gumefit iterutor 

,,= qP, Q,RD 1 

<;;
 
it t into r with
 

a --t r:= P
 
DbI --> ,,= Q(I) 
~cyt' --t r:=R(y,t') 

ti 

5.6 Refinement of branches 

Now that we have these laws over more complicated data types, we can use 
them to develop some more sophisticated examples. The observant reader may 
be wondering about the point of having ", :==" in each branch of the it .. ti 
construct. In fact, it is useful to have a program fragment (rather than au 
expression) in each branch, because it gives scope for further refinement: in 
Ca.'3es where the expression being assigned to the result variable - for instance, 
R(y, t'l in the it..ti construct in Law assignment iterntor 5.4 - cannot be 
easily evaluated in the target language, the assignment r := R(y, t'} can be 
refined until it is code. (In program developments where we are using libraries 
of abstract data types, it is also likely that we will want to refine branches uuti! 
the:}' can be replaced by calls of library procedures,) 
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We give two examples which show the idea of this refinement of branches. The 
first is based on an example in a paper about iterators in the CLU programming 
language [32). The task is to count ho\\.· many numeric characters an contained 
in a string which might also contain alphabetic characters. 

We need to define two disjoint union types for characters, which are either 
alphabetic or numeric, and for strings, which are either empty, or contain a 
character and a string: 

type 
Char ~ alph Alpha I num Numeric 
String == empty I ch Char String 

(We a'iSume that Alpha and Numeric have been suitably defined.) 

We define first an infix operator $ which will form part of the catamorphism: 

(alph c)m n == n 
(num c) EEl n == n + 1 

Now it is clear that, if counLnum is the function which, when applied to a 
string, returns the desired number of numeric characters, then 

counLnum = ~O, E9D 

We can therefore immediately i.ntroduce an iterator, as follows: 

"~ QO,ffil' 

l; "as!Jignment ilerntor 5.4" 
it S into i with 

empty -----? i:= 0 
Uch c cs -----? i:= cEDes <l 

.i 

Since the expression c ffi cs is not immediately implementable, we need to refine 
the second branch, which is not difficult using a tagged alternauan: 

l; "tagged alternation" 
if c is num -----? 

i: [c == numn,t == cEB C5J (I) 
Uc is alph -----? 

i : [c == alph G, i == c lOB cs] (2) 
fi 

The tIl,a branches of the tagged alternation are easily implemmted, Ilsing the 
definition of ffi: 

(1) r;: i:== cs + 1 

(2) ~ t:= cs 
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This completes thp development, giving overall: 

i := cDunLnum(s) 
!;:;; it s into i with 

empty ---. i:= 0 
Uch c cs ---. if c is num -. i := cs + 1 

D c is alph -t i :"'" cs 
6 

Ii 

Our second exarnple is concerned with the specification of pan of a file system. 
One of the components of this system is a record of the last time a file was 
accessed. This access list is modelled as a mapping from file Names to Dates: 

type Map[lndex, Value] ~	 empty 
I pr Index Value Map[Jndex, Value] 

ai: Map[Name. Date] 

Periodically, it is required to produce, from this access list, two other lists, one 
of which is to contain all those files that were last accessed strictly before some 
given date, and the other is to contain the remaining files which have bP.-en 
accessed more recently. For convenience, the access dates are to be retained in 
both lists. 

We can define two functions, keep and reject, which, when applied to a date 
and the access Jist, will return the required lists: 

keep: Date ~ Map[Name, Date] ~ Map[Name, Date] 

keep dt empty :: empty "f dt > d 
keepdtm 1_ 

keep dt (prn dm) = { prn d(keep lit m) if dt < d 

reject: Date ~ Map[Name, Date] ~ Map{Name, Date] 

reject dt empty = empty 

td d {fTOJecldtm if dt < d 
fTOJec t (pr n m) = pr n d (reject dt m) if dt 2: d 

Assuming that II and t are the variables in which the results are to be stored, and 
that dt is the date about which the access list is being divided, our specification 
is: 

S, t := keep dt ai, reject dt at	 (1) 

The simplest way to implement this, using the theory that we have already 
developed, is to divide the multiple assignment into two simple assignments 
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joined by sequential composition, and to implement each separately with an 
it. ..ti. This gives the following development: 

(1) (:;;; it al into s with
 
empty --+ s::::: empty
 

~	 pr n d m --+ if dt 2. d --+ s:= m 
U dt < d --+ .s:= prndm 
fi 

ti;
 
it al into t with
 

empty --+ t:= empty
 
Uprndm --+ if dt < d --+ := 1n
 

O dt 2 d --+ :=prndm
 
fi
 

'i
 

However, a much more interesting development is obtained by re-f'xpressing the 
problem in functional programming terms, and using results developed by that 
community. Functional programmers would immediately recognise both keep 
and reject as examples of the filter function, which is defined on lists by 

jilt"p() =()
 
if px
filter p (x::rs) = {	 x:(filter p xs)
 

filter pIS if...., px
 

Now if we define a.n infix operator B p , a form of 'conditional cons', by 

I EB p xs =	 x:xs if p x
 
xs if....,px
 

we can immediately express filter as a catamorphism: 

jilterp ~ Q( ),EB,D 

The final function that needs to be defined is one which divides a list into two 
halves, depending on some filtering predicate p: 

split p:rs := (filter p xs, filter p xs) , 

wbere p is the negation of p. It is now easy to see that our original problem 
can be expressed a.s 

(s,t)::=splitpal	 (2) 

where the predicate p is defined (on pairs of names and dates) by 

p(n,d) =dt < d 

Now we have defined split in terms of filter, and filter itself has been expressed 
as a catamorprusm, but we cannot yet express split directly as a catamorphism, 
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which we will need if we are to implement (2) with a single iteration. Using the 
version of filtef" [(IT the Map type, we know that 

split p :u::::	 (jilter p IS, fiJter p X!l)
 
(~empty, E9"D :rs, Qempty,@pDxs)
 

We can e)(press this, in a point-free way, as 

split p :::: Qempty, spD Do Uempty, CBpD 

where 6 is the join operator defined by 

(J 6g)X ~ (Jx.9X) 

Now we can appeal to the functional programming literature. for the result that 
we need. Specifically, in [10, Section 3.2J and [11, Section 3.1], we find the 
so-called banana-split la>;l;: 

Qh~ 6 Qk~ ~ Q(h x k) . unzip~ 

where unzip is defined in terms of the functor F from the algebra which undprlies 
the catamorphism, and two projection functions: 

unzip:: F'lTr D. F7r;! 

Now the functor for the Map type is veT)' similar to that for N()tli.~t given above. 
Its effect on objects and functions is as follows: 

FA(B) ~ 1+ (A x B) 
FA(t) == tdj + (idA x t) 

In our case the parameter A is IndeI x Value, so 

Frrl == id, + (id1 x V x 71",) fori==1,2. 

Now a little algebraic manipulation, in the Squigol fashion, allows us to express 
.'plit p as a catamorphism: 

sp/itp Qempty. ffi"D 6. Qempty, tl!pD 

~by banana-split law"
 
Qllempty, ffi,] x [empty, ffi,J) . (Fw, 6 Frr,)~
 

"since (h x k) . (I I) m) == h·1 t:" k· m" 
Q[empty, ffi,,]· (jdJ + (1d/x v x 7I"d)t:" 

[empty, ffiJi] . (ld1 + (idlx V x 7I"2))D 

"since [1,9)· (h + k) ~ [I. h,g· kJ"
 
Q[empty,ffi,,· (idlxV x 71",)] t:" [empty,ffip' (id/ xv )( 1l"1)]D
 

"sinee [I,g16 [h,k] ~ [I 6 h,9 6 k]"
 
Qemptyt:"empty,ffi"·(ld/,,v )(1l"t}6.ffip·(id/ xv X1l"2)D
 

If we examine the second function in this catarnorphism more closely, we can 
see that each part of the join expect.s t.o be applied to a pair of pairs, the first 
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of which is an (index, valuc) pair, and the second is a pair of maps - the result 
of the recursi ...'e application of the catarnorprusm to the remainder of the map. 
The full iterator development is now given by: 

5,t;=== splitpal 

!;;; s,t;= Qempty t'.emptY,ffip · {idlxv x 1Td to. ffip · (id1><\, x7T:.dD al 

~ it al into s, t with 
empty --t S, t := empty, empty 

Oprndm ---t s,t:=(n,d)@pml,(71,d)6p1"n2 
t; " 

where In, and ffi2 are the first and second components of the pair m. 

The second branch can be developed in the obvious way with an alternation: 

<; if pen, d) -+ J:=prndm\;t:=m2 
D ~ pin, d) --t t:= prndm2; s;= ml 
fi 

5.7 Conclusion 

In this chapter, we have introduced the iterator construct it .. ti, which forms the 
basis of our work on iterators. The construct was based on the idea of a cata
morphism, but. was formany defined as a recursive procedure. Several examples 
were given, showing how part.icular functions can be seen as catamorphisms, 
and therefore implemented by an it .. ti construct. 

In Section 5.5, we explained how the jt .. ti construct for sequences could be 
extended t.o act on a more general data type. The t.ype TUBed there is intended 
to he a typical example of a type generated by a polynomial funr.tor. This form 
of functor - formed from constants, products and coproducts - is general 
enough for our purposes, and we are guaranteed the existence of an initial 
object in the category of F-algebras (see [38]). 

At the st.art of the chapter, we gave illustra.tions of three common forms of 
iteratiOn: t.he 'update in place', the filter and the scalar result. During the 
chapter. we showed how the second and third of these are related to the new 
construct: the file-system example in t.he last section was an example of a filter, 
while the sum or t.he length of a sequence was an example of a scalae result. The 
first form of iteration was not explicitly illustrated, but it is not haed to see that 
following an it ..ti by an assignment of the result back to the original variable 
could have the desired effect. For instance, in Section 5.3, we introdnced the 
inc_list catamorphism: 

inc_list == Qinc, cons - incD 

where inc simply forms a singleton list from the increment of its argument. 
Suppose that we had to implement the following 'update in place' form of 
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iteration: 

S:== inc-list(s) 

adding one to each element of the non-empty list o[ numbers s. It is easy to 
see that this is achieved by t.he [ollowi.ng program: 

VW'" r : Natltst • 
it .~ into r with 

Single n -----; r:== Single n + 1
 
o(on!> n n,'j --) r;== Cons (11 + 1) 11$
 

ti; 
s;= r 



Chapter 6 

Higher-order programs 

\Ve now extend the language of the refinement ealculus to cover procedure 
variables, explaining first the syntax of the new constructs, then their predicate 
transformer semantics. The semantics is given by showing how the normal 
Copy Rule semantics for procedure constants can be replaced by an equivalent 
formulation, which involves considering procedure meaning:; as values. We then 
show how procedure variables can take these values, and give some refinement 
laws. 

The basis of this semantic definition is Naumann's work, reported in [48], hut 
the well-formooness proof and all of the laws here are original. 

The ideas developed here will he used in the next chapter to allow us to define 
an encapsulated iterator procedure, which will need to take procedure values 
as parameters. 

In this chapter) unless otherwise stated, pv will be used to represent a procedure 
variable, and pe an expression of procedure type. "V\i'e will also use semantic 
brackets [ ]. 

67 
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6.1 Syntax 

The only parametrisation mechanisms allowed are value and result. We allow 
procedure types to be named. For example: 

type 
binproc := proc (value a, b : 1\1) 
camp:= proc (value x, y: N, result b: Boolean) 

\Ve can declare variables of procedure type in the normal way, usiug uamed 
types or explicit type expressions: 

va< 

p: binproc 
q: proc (value x, y: N,result b: Boolean) 

Although the parameters of a procedure type are speciHed, it is al50 possible for 
the bodies of procedures to refer directly to external (global) variables. These 
do not have to be specified and this is one of the major t(~chnjcal complications 
in the semantics. However, in languages where procedure variables are not 
allowed to refer to global variables, the expressive power of procedure variables 
is limited. 

Procedure constants and variables may he executed. using the keyword call; 

call q 

Actual paraJIieters are supplied for the formal parameters, as usual. 

When we consider the program fragments which make up procedure expressions. 
we see the first significant syntactic restriction: such expressions must always 
be parametrised. Any variable not mentioned in the expression's parameter list 
must be declared globally. Thus, unless x and yare global variables, we are 
not allowed to assign the procedure value x := y + 1 to a procedure viUiable; 
instead we have to use the value (value y; N, result x ; N • x := y + 1). Once 
again, any exterual variables are not explicitly mentioned. 

Naumann gives two further restrictions on the syntax of the language con
taining procedure variables, which are included at the end of this chapter for 
completeness. 

Having declared procedure variables, we can assign values to them: 

q:= pe 

where pI" is an expression - parametrised as necessary - of tbe correct proce
dure type. However, assignment to procedure variables causes some interesting 
problems -- this is investigated further below. 
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6.2 Semantics 

Notation 

Before giving the predicate transformer semantics of procedure variables, we 
need to define some notation. 

Since keeping track of the state spaces on which the predicate transformers are 
acting is one of the key parts of these semantics, we need notation which allows 
us to restrict and extend the states. Suppose (7 is a state, that is a fnnction 
from variable names to values. Then (7 l x is the restriction of (7 to all variables 
except x (which may be a Jist). So, if y is a state component - in the domain 
of a - and distinct from x, then (a l x).y:::: a.y. 

We also need the inverse image function tx of restriction. Suppose ¢ is a 
predicate over state space E: for now, we can regard ¢ as any member of P E. 
If :x (of type T) is not a component of the state, then ¢ t x is a predicate over 
the state space extended by x. It is therefore a set of states - a subset of ~ x T 
- and is defined by 

aE¢tx == alxE¢ 

The extension of state space E by the fresh variable x : T is denoted by ~, x : T. 
So ¢ t x is a predicate over !:, x : T. 

The final piece of notation required is also concerned with the state spaces over 
which predicate transformers act. Various authors [5, 47] have ~hown that the 
product of two predicate transformers can be used to model their combined 
action: in the case, as here, where we simply want to extend the state space of 
a predicate transformer, we can take its prodnct with the identity transformer 
on the additional components. H f is a predicate transformer over state space 
E, and x is not a component of E, then we define f ® i~ (over 'E, x: T) by its 
action on predicates ¢ over E, x : T: 

a E If 0 id,).¢ 

(3~ I (VT IT E~OT[Zrl G.z] E ¢) oa Iz Ef·~) 

where .,p ranges over predicates over E, and T[X ~ (7.xJ denotes overriding
agreeing \\;th T except at x where it takes value 17 .x. In other words, the weakest 
condition for f 0 id~ to establish ¢ from some initial state 0 is that f should 
establi.sh a condition t/J on E from the relevant part (7 l x of 17, and that every 
state T in t/J should satisfy ¢, when joined with the unchanging component x. 
Alternatively, T is the largest postcondition which when extended at x with a.x 
lies within ¢. 

We note in passing that for predicates (over E, x: T) which are independent of 
x - that is of the form D: t x - we have from above that 

1f0id,).(ajx) ~ (f.a)tx, 
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and hence 

j®idz ~ g0ld" 

implies 

f<;;g 

(The other direction follows directly from monotonicity.) This result will t~nablc 

us to prove the transitivity of the order relatiou on procedure values. 

Procedures as values 

The first step in defining t.he semantics of procedure variables is to define the 
values which such variables may take - we need to determine the set which 
corresponds to a procedure type, say ptoc (value v V, result r : R). We 
take this to be the l'iet of tuples (f, v, r, g) where f is a predicate transformer 
over (v ; V, r R, 9 : G), 9 is a list of the global variables of f, v, '" and 9 an' 
disjoint and the rank! of G is at most that of V and R -- this restrict,ion is 
needed to be sure that the set is properly defined in well-founded set theory. 
(A procedure value with no parameters is therefore not allowed to refer to any 
global variabk's of procedure type.) Although it is uuusual to see the names of 
the parameters ill the values. they are needed in the semantic definitions which 
eame later, and their effect is reduced by the definition of type' equivalence for 
procedure types: 

Definition 6.1 procedure type equivalence 

We extend the normal rules about type equivalence by explaining when 
two procedure types are type equivalent: types proc (value v 
V,re5ult r R) and proc (value t,1 V',re5ult r' R') arE' equiva
lent (written =) exactly when V == V' and R == R'. In other words, the 
parameter names are not significant, and neither are the global variables. 

Having defined the set ofvalue.s corresponding to a procedure type, we can now 
give the order relation on it, which we represent by~. Basically, this is just 
the refinement order on the predicate transformers, but we Ilf'ed t.o be careful 
about the state spaces involved. In the case where both values have the same 
formal parameters, we have 

!j, v, r, g) ~ !j', v, r, h)
 
ilf
 
(f@id,) r; (f'@id,) ,
 

provided 9 is distinct from h. Since f is a predicate transfonner over tI, rand 9, 
and f' acts over v, r and h, we are extending each predicate transformer to act 

'The rank of a type is the maximum le~"€l of nesting of the pTocr.dure COllstru(t()L 
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on the same state space, and saying that the two procedure values are related 
when these extensions of their predicate transformer components are related. 
It is easy to see that the transitivity of ~ follows immediately from the result 
above. 

The definition is only slightly more complicated when there is an overlap be
tween the global variables of the two procedure values, say PI and P2. The 
globals are then partitioned into three lists, g, h and i. These are respectively 
those that appear only in PI, those that appear only in P2, and those that 
appear in both. The refinement ordering is defined as follows: 

(j,V,T,(g,.)) (; (j',v,T,(h,.)) 
iff 
(f 0 ;dh ) <;: (f' 0 id,) 

Again, the predicate transformers are extended to a common state space. 

We omit the case where renaming of parameters is required. 

Procedure calls 

We can now proceed to give the meaning of procedure calls. We deal with calls 
of procedure constants, procedure variables and explicit procedure expressions 
together, since the mechanisms for giving their meanings are very similar, the 
only distinction being where the value is stored. For procedure constants, it is 
stored in the euvironment; for procedure variables, it is stared in the state; and 
for explicit expressions, it does not need to be stored at all. For constants and 
explicit expressions, the rather formidable formula given below is equivalent 
to the standard semantic-.s as given by the Copy Rule (with the addition of 
parameters). 

The motivation for the definition of call P(e, w) is obtained by considering 
the standard result far procedure constants about the replacement of value 
and result parameters by local variables, with assignments to those variables 
before and after execution of the procedure body: 

[call P(e, wH = [var v,r. v:= e; Ii w:= rj 

where P is a procedure constant with associated body I which has fonnal 
parameters u and r, and e and w contain no occurrences of i' or r. As is usual 
in such cases, we elide all mentions of the environment 7], where it is of no real 
importance: both sides of the above equation shonId really be parametrised by 
'1 and the expression e should be evaluated in '1 in the derivation below. 
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An almost-standard application of refinement calculus laws shows 

lVp([var V,". v:== e; j; w;= r],4» 
"local variable law: see below" 
'r/v, r _ wp(v;= e; j; w:= r, (¢t v, r)) 
"sequential composition, assignment" 
V" r 0 wp(l; w ;~ r, (¢ t" r))[,\eJ 
"sequential composition, assignment" 
Vv, r 0 wp(f, (",t v, r))[w\r])[,\eJ . 

In order to be houest about the states au which f acts, we have had to change the 
local variable law slightly to be sure that the predicate on which the transformer 
acts is of the correct 'type': 

Law 6.2 introduce local variable 

wp(var x. aaa, ¢)
 
='rfx. wp(aaa,¢tx)
 

provided ¢ contains no x
 

This distinction is not usually needed in the presentation of the local variable 
law. (A similar adjustment needs to be made to the introdlJCe local constant 
law.) 

Now we consider a statement call P(e, w), where P might be a procedure 
constant, a procedure variable or an explicit procedure expression. Wherever 
it may be stored, the meaning of P is a procedure valne, say 

(j, v, r, 91 

At the point of call, the state must contain 9 (the global variables of P) and w 
(the actual result parameters). We suppose that the remainder of the state is 
given by a list t. (v and r must not appear in t.) Then the meaning of the call 
is given by its effect on a predicate r/J, as calculated above: 

(V v, r 0 ((10 ;d."J.(¢ t" r)[w\r))[,\eJ) 

We shall call this formula oil, so that we will be able to refer to it later. In 
order to justify it, we note that f is a predicate transformer over v, r and 9, 
and therefore f@td""t is a predicate transformer over v, r, 9, w and t. r/J is a 
predicate over the complete state space - 9, wand t - and so (r/J t v, r)[w\r] 
is also a predicate over 9, w, t, v and r. Thus oil is a predicate over 9, wand t 
as required. 

We can now use this formnla for call P(e, w) in the definitions of the three 
different forms of procedure call mentioned above. The meaning of a procedure 
constant is stored in the environment 7'/, and refers to global variables at the 
point of declaration. 
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Definition 6.3 procedure constant call 

[call P(c, w)I,.¢ 

3j,V,f·,g. 
".P~Ij,v,r,g)A 

~ 

]t is not hard to see that this definition of call P(e, w) has the same effect as 
the traditional Copy Rule for procedure constants. 

For an explicit procedure expression there is uo need to st.ore the value at all, and 
references to global variables refer to the point of USP. Here, the environment 
1/ has been omitted. 

Definition 6.4 expliCit procedure e:qJression call 

[call (value v, result ". p)(e, w)].¢ 

3/,9·
[PI ~ Ij, v, r,g) A 
~ 

Finally, the most interesting case is that of a call of a procedure ~'2riable. Here 
the value is stored in the state u. 

Definition 6.5 procedure vGnable call 

a E Icall pv(c, w)].~ 

3/,v,1",9_ 
U·PT):::: fJ,v,r,g) 1\ 

"E~ 

In the case of procedure variables, we note that t must contain pt. itself: the 
constraint on rank given above means that pv cannot appear in 9. We also note 
that f, 9 and t all depend on a: in different states, pv can t.a.ke on different 
procedure values (though the parameters must be of the correct type) with 
different globals referred to, a.cd the remainder of the state, I, will depend on 
the result parameters used. 

Assignment and monotonicity 

Having given meaning to calls of procedure variables, we now consider assign
ments to such variables. The ~emantic framework which we use to describe 
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assignments is complex at first sight, hut it soon becomes clear that the re
strictions we make actually have no effect on most datatypes - and we can 
therefore inherit all the normal refinement calculus results, rather than having 
to fe-prove them. 

The reason for the unusual semantic framework is the need for monotonic
ity. Monotonicity is a fundameutal property of all constructs in the refinement 
calculus, and is the basis for the development strategy known as 'stepwise re
finement ,. It is because all the constructs are monotonic that we can refine 
specifications in isolation, assemble the code with (monotonic) constructs, and 
remain sure that the resulting program is a ....alid refinement of the combined 
specifications. However, the procedure variable assignment pv :::: pe has pe as 
a sub-program - pv is a variable and not a sub-program, hence not subject to 
refinement - but pe ~ pe' does not imply that pv :::: pe ~ pv:::: pe'. Thus 
assignment to a procedure variable is not monotonic. 

Naumann's suggestion [48] to solve this problem was to use a geueralised as
signment statement pv :;;J pe, defined by analogy with Morgan's Simple Spec~ 

ification ahbreviation [44, Abbreviation 8.1J2. Tbis construct assigns t.o pv 
any program wbich is a refinement of the expression pe. Monotonicity of this 
construct follows immediately from transitivity of ~, and consideration of the 
behaviour of some compilers also makes this con~truct seem reasonable: in the 
case wbere pv is merely a pointer to the code of pe, then pv :::: pe will indeed 
establish pv = pe, but compilers often 'optimize' programs by making them 
more deterministic or by making them terminate more often (by monitored 
execution, subscript range checking etc). So it is not clear that pv := pe will 
establish pv == pe in such cases anyway. However, as long as the compiler is 
correct, it should at least be the case that the value of pv will he a.t least as 
good as pe - that pv ;;J pe, 

Although we now have a monotonic construct as desired, it turns out that, in 
the traditional powerset model, only very weak refinement laws can be proved 
about :;;J - for instance, it is no longer the case that pv ;~ pv and skip are 
equivalent: althougb it is easy to show that pv :;:::) pu !;;; skip, tbe other 
direction is not true. In other words, for some predicate ¢, 

wp(,kip, oJ,., wp(pv ,;;) pv), 0) 

The underlying cause of the problems with these laws is that predicates may not 
be monotonic with respect to refinement: for instance, ptl = S is not monotonic 
in pv because it is satisfied by S but not by any proper refinement of S. 

The solution to this difficulty proposed by Naumann [48J is to banish all non
monotonic predicates, thus restoring tbe important refinement laws. The non
monotonic predicates are removed by taking as predicates not all possible sets 
of states, but only th08e which are up-closed under the relevant ordering: if X 
is a poset (with respect to :5), tben a subset ¢ of X is up-closed exactly when 

'Va, b : X • a E ¢ 1\ a :5 b => b E ¢ 

2Morgan points out that the notation is due originally to Jean-Raymond AbriaJ. 
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There are two useful observations we can make about up-dosed subsets: 

•	 for any a E X, the set {x: X I a:S x} is up-dosed; and 

•	 if X is discretely ordered (x ~ yiffx == y), then every subset of X is 
up-closed, and every subset of X x X is also up-closed. 

The first observation will be useful when we later consider statements about 
refinement as state predicates, hut the second is important now. Every type 
T is interpreted as a pre-ordered set. For most datatypes - all except proce
dure types - the ordering is simply equality, giving a discretely ordered set. 
The second observation above then tells us that, for predicates not involving 
procedure variables, the restriction of predicates to np-closed subsets is vacu
ous - we can still use all the results of the traditional powerset model. It is 
only for procedure types that we have to be careful to use up-closed predicates 
(in particular, we cannot use equality). Thus for ordinary variables - those 
not of procedure type - we use the standard assignment construct with its 
usual (substitution) semantics, while for procedure type variables, we use the 
generalised assignment :;;;:J, which is formally defined below. 

Having defined our semantic framework, we now carry out some investigations 
to ensure that the framework has the right properties: 

•	 that the standard programming constructs of the refinement calculus 
maintain up-closure; 

•	 that the new constructs which deal with procedure variables also maintain 
up-closure: 

•	 that the conditious which guarantee that a specificatiou statement main
tains up-closure are reasonable; and 

•	 that the framework is sufficiently well-behaved that recursive constructs 
are well-defined. 

Standard programming constructs We deal first with the case where the 
postcondition coutains no reference to state variables of procedure type. In 
this case, the ordering that concerns us for up-closure is equality, and so we 
can appeal to the usual results about the monotonicity of the constructs of the 
refinement calculus [44]. 

For postconditions which do refer to state variables of procedure t.ype, we pro
ceed by structural induction. For each statement S, we must shflw that if ¢I is an 
up-closed set of states, then so too is wp(S, ¢I), given that the subcomponents 
of S also preserve up-closure. 

From the definition of up-closure, we have, for a procedure variable pv, 

~	 ¢I(pv) is up-closed 
iff ,p(pv) /\ pv ~ ptl' => ,p(pt,') 
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We now look at the standard programming constructs of the refinement calculus 
in turn: 

• skip 

wp(skip,¢) ~ ¢
 

so we have nothing to prove.
 

•	 abort 

wp(abort, ¢) == false
 

which is up-closed.
 

•	 sequential composition 

wp(aaa; bbb,rJ;) == wp(aaa,wp(bbb,¢)) 

Thus the up-closure of wp(aaa: bbb, ¢) follows immediately from the up
closure of ¢ and the inductive hypothesis that aaa and bbb preserve up
closure. 

•	 assignment to a simple (non-procedure) variable x := E; 

wp(x ,~ E, ¢) ~ ¢[x\EI
 

up-closure follows directly from the up-closure of 4>.
 

•	 alternation
 

wp{if 0a, --Jo aaa., :0., ¢)
 
==	 Va, /I
 

(I\(a, => wp(aaa,,¢)))
 

We give names to the formulae in the hypothesis and conclusion: 

HI, Va. A (fI(a; => wp(aaa,,¢)))
 
HZ: pv~pvl
 

H3, (V p,2. O(p') A p' r;; p,2 => ¢(pv2»
 

01 , (Va.)(p,\p,11
 
02, (fI(a. => wp(aaa,,¢)))(p,\p,11
 

We need to pro....e t.hat HI A H2 A H3 => Cl /I CZ. Cl follows immedi
ately from HI, once we insist that no procedure variable may appear in a 
guard. For CZ, we can distribute the substitution through the conjunction 
to get 

fI(a, => wp(aaa,,¢)(p'\P'llI 

again assuming that pv does not OCCllI in any a,. Now let i be any index. 
If a, is false, then we can immediately conclude that 

a, => wp(aaa,,¢)(p,\p,l] 
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If a, is true, then from HI, we can see that wp(aaa" ¢) must also be 
true. By the inductive hypothesis, this is an up-closed set, and hence 
wp( aaa" ¢)[pv\pvl] must be true, giving us onc.e again 

n, => wp(aaa,,!'&)[pv\pvl] 

But i was arbitrary, so we can coudude 

/\la, => wp(aaa,,¢)[pv\pvIJ) 

and, from that, C2 follows. 

New constructs for procedure variables There are two constructs that 
we need to consider; a.<Isignment and procedure call: 

•	 assignment to a procedure variable pv :;;;) pe. The generalis;>d assignment 
is defined as follows3; 

wp(pV ,;) 1'<, ¢) 
= (V pv l 

• pv' ~ pe => ¢[pu \pv']) 

(pu' must be a fresh variable in this formula.) We call this formula 1jJ(pw) 
(or arbitrary procedure variable pw. \\Te need to prove 

tjJ(pm) 1\ pm ~ pwl => ti'(pwl) 
given that r/> is up-dosed. 

We give names to the various formulae: 

HI :fr!J(pw) ('r/ pv' • pv l ~ pe => I,&[pv\pu'j) 
m, pw [;;:: pwl 
H3, ¢ is up-closed 

C, ,,(pwl) (Ypv' • p,i ;) p' => ¢[pv\pv'))[pw\pwl] 

We have to prove that HI I\. HZ 1\ H3 => C, and we start by re-writing 
C, taking the outer substitution inside the quantification: 

C : vl(pwl) ('Vpv'. pv' ;J pe[pw\pwl] => ¢[pu\Pt/][Pw\pwlj) 

Now we choose an arbitrary pv' such that pv' ;J pe[pw\pwl]. If such a 
pv' cannot be found, then C is trivially true. MODotonicity of pe tells us 
that 

pw ~ pwl => pe I; pe[pw\pwl] , 

3This definition agrees with ~ba.t given by Morgan'B Simple Specification abbreviation: 

pv :;! pe = pll : [pv ;) ~[pv\PttlJJ 
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and we know that pw 1; pwl from H2. So we have 

pe 1; pe[pw\pwl] 

Thus hy transitivity of 1;, we have 

PII' ~ pe 

and, by HI, 

¢[pv\pv'] 

The up-closme of 1; also tells US that ¢{pv\pv'j is up-dosed. Thus 

¢[pv\pv'J /\ pll! !; pwl :::} ¢[pv\pv'][pw\pwl] 

Both antecedents are true (from above and H2), and so the conclusion is 
true, giving us C as required . 

•	 procedure variable call callpv(e, w). Although the formula for the weak
est precondition given in Definition 6.5 is rather formidable. most of the 
complications come from the parameter passing. \Vithout that, we simply 
have to show that f 0 idw,t preserves up-closure, given that f does. If thf' 
variable we are considering is pw, then a case analysis gives ns the desired 
re.sult: if pw appears in the list w, t, then f <2 idw,t has no effect on it; 
and if pw is not in that list, then it is covered. by f and the inductive 
hypothesis tells us that up~c1osure is maintained. 

Specification statements Since the specification statement. is an additional 
construCt. which does not appear in Dijkstra's language of guarded commands, 
we do not have to ensure that it always maintains up-dosure. Instead we 
can investigate the conditionS under which it does so, and insist that those 
conditions are met in the new language which indudes procedure variables. 
The conditions for maintenance of up-closure will be conditions on pTe and 
post, where these are the two predicates which form the specification statement. 
Specifically, we show that the up-closure of pTe and the up-closure 01 --, post - 
or, equivalently, the down~closure of post - are sufficient together to guarantee 
that wp(w: [pTf, post], ¢) maintains up-closure of o. 

We may assume 

HI: pv I;; pul 
H2: pTe 
H3: (V'w. post::} 1J) t w 

We have to prove4 : 

Cl, p",[pv\pvl]
 
C2, ((V w • po,' "" ¢) t w)[pv\pvI]
 

4No~e that the wp definition of a specification s,a~ement i~ slightl~ different ITom the 
standard form givell in Chapter 2, as we have to take account of the stUe ~pace8. 
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Cl follows directly from HI, H2 and the up-closure of pre.. 

For C2, we note that w must be different from pv, since we forbid specification 
statements over procedure variables. Hence the tw and the substitmioll for IJV 

can be safely interchanged. \\'e therefore need to show that 

~ post[po\pvl] V ¢[pv\p,'l] 

From H3, we know that, for a p<U"ticular w, either...., post holds or 9 does: 

• if...., post holds, then its up-closure and HI give us ...., post[pv\ptilj 

• if ¢ holds, then its up-closure and HI give us !plPv\pvlJ. 

In either case, ...., post[pv\pvl] V ¢[pv\pvl] holds, giving the desire<! result. 

Recl1r:o;ion The set over which we need recursive definitions to be well-defined 
is the set of programs, and. by the results above, we fan restrict our attention 
to programs which preserve up-closure. 'Ve need to show that this ~et, together 
with the refinement relation, forms a complete partial order (cpo), and thus 
that any monotonic function on the set - a program context - has a least 
fixed-point. 

So our task is to show that every chain in the set has a least upper bound (in 
the set). Suppose that C, is such a chain of increasingly-refined up-closure
preserving programs. The existence of the least upper bound as a program 
follows from standard results, but we need to show that U, C,.-.L also preserves 
up-closure. In other words, we need 

f(U. C, ..l}.¢.x /\ x ~ x :} (U, C,.-.L).¢.x l (t) 

Now, hy definition. (U, C,.-.Lj.¢.I = (U, C•.L¢).x, which is either true or false 
for a particular value of x. If it is false, then we are finished, since the antecedellt 
of (t) is false. If it is true, then, since the C, are increasing, there must be some 
j for which C) ..l.¢.x is true. Since C] preserves up-closure, we therefore know 
that C, ..l.¢.x' is also true, and hence that (U, C,.L¢).x l

, as required. Thus 
the le35t upper bound of the chain preserves up-closure. 

Connectives Having examined tbe s;emantic framework, and noted that it 
has the desired properties, it is also interesting to look at the predicate connec
tives to find out which of them maintain the property of upward·dosure: when 
their arguments are upward-closed, so should their result he. Conjunction and 
disjunction of predicates are given set-theoretically by union and intersection, 
respectively, and these do indeed preserve upward-closure. However, negation 
is more complicated, because the complement of an up-closed set need not he 
up-closed. We first define a version of implication which preserves up-closure 
by 

¢~1/) =: U(o. (0 is up-closed) 1\ <5 n ¢ <; 1/1) 
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Now we can define negation in terms of implication: 

":"¢=¢=>0 

It is easy to see that -.:... (j) is the largest up-closed set that is disjoint from 4l. For 
discretely-ordered X, .; q is simply the set-theoretical complement X - cpo 

Quantifications are defined in terms of the projection operator introduced above: 

a E (3 X" 1') ::= (3 T I a :::: T l x .. T E ¢) 
a E (Yx .. dJ)::= (VT I a:::: T Lx .. T E ¢) 

Now we are in a position where we can prove the following lemma: 

Lemma 

If ¢ is up-closed, then wp(skip,o) ::::} wp(pv;~ pv, ¢) 

Proof 

wp(pu:;) pv,¢) 
"definition of :;d" 
(V pu' .. pu' ~ pv ::::} ¢[pu\pu']) 

Now wp(skip, ¢) :::: ¢, and so we must show that, for any pv'. 

1> 1\ pv r:;; pv' ::::} ¢[pv\pu'] 

But this follows directly from the definition of up-closure of ¢, and so the lemma 
~p~. 0 

This gives us the equivalence of skip and pv :;J pv. 

State predicates involving refinement and some basic laws 

The final step before we can prove the correctness DC various laws involving 
procedure 'ia.riables is to consider exactly what is meant by state predicates 
which use the refinement relation. These might appear for instance in the 
pre- or post-condition of a specification statement or in a guard. Wherever 
such a predicate may appear, the mechanism for evaluation is the same: the 
two operands should be extended, by taking their product with appropriate 
identity transformers, until they both act on the same state space. 

For instance, suppose our state comprises the two natural numbers :r and y, 
and consider the state predicate 

:r: [:r = 1() + 1] ~ (proc:x := x + 1) 
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The meaniug of the LHS is a predicate transformer over (x, y), whereas the 
RHS acts only on:J: In order to compare the two, we take the product with 
id., 0 

for any ¢ (over x and y), 
wp(x 0 Ix ~ XO + 1],.) "" wp((x 0= x + 1) e id".) 

which simplifies to 

.[xlx + 1] "" o[xlx + I] 

Alternatively, suppose there is also a procedure variable pv in the state -- for 
simplicity, we assume it takes no parameters. To evaluate 

x: [x ==.r.o + 1] [; ptl 

we need to find out which variables the current value of ptl acts on. Suppose 
that 

•.pv = IJ,. ,x) , 

where 0' is the current state. Thus the current value of ptl is a predicate tram.
former f which acts only on:r. Then. to evaluate the predicate above, we must 
stipulate that y and ptl should remain unchanged: 

for any ¢ (over:r and y), 
wp(x 0 Ix = xo + 1],0) "" wplJ 0 id",",.) 

We are now able to prove three basic Ja\"s about the execution of procedure 
variables. The first law that Wl' prove is the simplest one, where the procedure 
variable has no parameters: 

Law 6.6 introduce procedure variable execution 

w : [pre,post] C pv ]
wo [ pre - ,past ~ call pv 

ProoC In order to prove this law, we must show that the weakest-precondition 
of thl' left-hand side implies the weakest precondition of the right-hand side. 
Looking back at the definitions given earlier, we can see that the right-hand 
side gives us 

If 0 id,) .• 

where f is the predicate transformer part of the current value of pu - agaiu we 
assume no parameters for now - and t is the part of the state on which f does 
not act. On the left-hand side, we get, by the definition of wp for a specification 
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statement 

(w: [pre,post] !; pv) 1\ pre
 
1\ (V w. post::::} ¢) t w
 

Expanding the predicate involving [;;;:, we get 

for any W, 
(pre 1\ (V w • post ::::} -~I) t w) :::> (f 0 idd.ljJ 
A pIT 
1\ (Vw • post :::> ¢)t w 

Taking Wto be ¢ gives us the required result immediately. 

o 

Law 6.7 procedure variable value assignment 

II the procedure variable pv has heen declared as procedure (value v), 
then we have the following refinement: 

w:	 [w:=p~e~pv,post] ~ callpv(A) (1) 

pmvided w : [pre, post] ~ w := E[v\A] 

where A contains no v 

ProoC Suppose that the value of pv in the current state is (j,u"g), so f 
is a predicate transformer over v and the global variables g. Taking weakest 
preconditions on the left of (1), with respect to a predicate ¢ over the whole 
state (g and t), we get 

H1: pre
 

H2 : W :== E ~ ptl
 

H3: (Vw.PQst:::>¢)tw
 

and on the right we get 

C, (y,. (l!@id')(<lt'l)[,\AII 

Since v does not appear in A, the universal quantification in C is vacuous, so 
our revised goal is 

C' , ((f 0 id').(<1 t ,))[,\A] 

We can re-express H2 in a more useful way as 

lor any Wover the whole state g and t
 

(oP t ,)[w\Ej '" I! " id<J·(oP t ,)
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Now the antecedent here is equivalent to 1j;[w\E], so we have 

H2', "lwlEJ ~ (f" 'd,)(", t v) 

The proviso to the law can be expressed ~ 

For any 1/ over 9 and t,
 

p'" A (~w • pO" ~") t w ~ "[wIE[vIAIJ
 

The consequent here is equivalent to Tl{w\E][v\A]' since the only place tI call 

appear in 1][w\E] is in E itself. 

Now from HI, H3 and the proviso (with 1/ instantiated to ¢), we get 

¢[wIEIJvIA] 

By monotonicity of textual substitution and H2' (with 1/J instantialed to ¢), we 
get 

¢[wIEllvIA] =} ((f" id,).(¢ t v))['IA] . 

Putting these two together. we get C' as required. 

o 

Law 6.8 procedure variable result assignment 

If the procedure variable pv has been declared as procedure (result r), 
then we have the following refinement: 

a: [r;=r;r;;.PIJ.post]!; callpv(a) (2) 

provided a: [pre, post] !; a := E 

where r does not occur in E. 

Proof Suppose that the value of pv in the current state is U"r,g), so f 
is a predicate transformer over r and the global variables g. Taking weakest 
preconditions on the left of (2), with respect to a predicate rjJ over the whole 
state (g, a aIld t), we get 

Hi: 'Pre
 
H2: r;= E ~pv
 

H3: (V'a.posl=*¢)ta
 

and on the right we get
 

C , (~r • (If" ido,,)·(¢ t r)lalr])
 

'The proviso can be expressed as
 

For any 1/ over g, a aIld t,
 
pre /\ ('Va. post ~ T) t a ~ 1/[a\E]
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H2 is equivalent to 

for any't/J over the whole state 9, a and t 
(" t r)[rIE] => If '" ,do .')'(" t r) 

which in turn is equivalent to 

(,,[rIEJI t r => If e ,do.,).(<i' t r) 

Taking 'ljJ to be I/>[a\r], we get 

(¢[alrllrIEJI t r => If@'do,,).(¢[alr]tr) 

which can be simplified to 

(¢[aIEJI t r => If '" 'do ,,)·(" t r)[alr] 

By the lemma below, we call simplify this again to 

¢[alE] => Vr 0 (f '" ido,,)·(¢ t r)[alr] 

From HI, H3 and the proviso, with 1'/ instantiated to 1>, we can conclude 1'[a\E],
 
giving us t.he desired result.
 

o
 

Lemma For any predicates a (over some state) and {1 (o\,{'r the state extended 
with a fresh variable z), if we know that 

(<> t r) => ~(x) 

then 

a:::} ('v'x .)3(r)) 

Proof Suppose that 

(a t xl => ~(x) 

Then, if (j is a state in the set a t x, it mllst also be in the set ;3(x). So, by the 
definition of t, 

(0 Lx E a) => (0 E ~) (3) 

Now suppose that (7' is any state in Cl. We must show t.hat (j' E Vx • ~(:t). By 
the definition of V over our up-closed spts of states, we therefore need 

('iT I (j' = T l z. T E;3) 

Consider any T such that (1' = T l z. Then we know that T l x E a r since (j' E a. 
Therefore, by (3), we know that T E ;3. But T was arbitrary, so we have the 
required result about T, and we can conclude that (j' E 'ix. ;3(%). 

o 

mailto:If@'do,,).(�[alr]tr
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6.3 Laws for procedure variables 

Proofs of these laws foUow directly from the definitions. 

Law 6.9 procedure variable value specification 

If the procedure variable p1J has been declared as procedure (value J), 
then we have the following refinement: 

w, [ [ pee t] c ,post] C can pv(A)w: prel,pos I _ pV 

provided w: [pre, post] ~ w : [pred/\A]'postdfo\AoJ] 
when' Ao is A[w\uu] and POStl contains no f 

Law 6.10 procedure variable result specification 

If the procedure variable pv has been declared as procedure (result J), 
then we have the following refinement: 

pee ]
a, [ /. [ t [ 1/]] c ,pa,' [:; call pv(a). prel,POS 1 a _pv 

provided a: [pre,post] ~ a: [prej,postd 

where f does not occur in pret, and neither f nor 10 occur in post}. 

6.4 Naumann's syntactic restrictions 

Naumann's first restriction, which he called the Global Variable Constraint is 
intended to simplify the implementation of procedure variables using stack al
location, by ensuring that external variables of stored procedures - those as
signed to variables or passed as parameters - are visible at every point of call. 
Explicitly, he states that 

'no variable free in the body of a procedure assigned to a procedure 
variable (or passed as an actual parameter) is bound b.y var. aux or 
pro'. 

(Naumann's va,., GUX and pro denote local variables, logical constants and pro
cedure e>..-pre.ssions.) 

The second constraint ensures the absence of aliasing. It has two parts: 

•	 in calls of procedure constants and procedure expressions, the free vari
ables of the called procedure do not appear in tbe actual parameter list; 

•	 in calis of procedure variables (and formal procedure type parameters) 
only variahles bound by var may appear as actual result parameters; thus 
by the Global Variable Constraint, they are distinct from the externals of 
the procedure variable. 
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6.5 Conclusion 

In this chapter, we have stepped back from the work on iterators to look at bow 
variables of procedure type can be incorporated into the language of the refine
ment calculus. The semantics of such variables was described using weakest 
preconditions, following Naumann's work, while the originaJ work in thls chap
ter showed the well-formedness of Naumann's constructions, and the validity of 
several new refinement laws about procedure variables. The. work described in 
this chapter will form the basis of Cbapter 7. 



Chapter 7 

Encapsulating iterators 

In this chapter we bring toget.her the work of the pre\'iolls boo chapters 
Chapter 5 on the it..ti construct, and Chapter 6 on pruc~dure variables -
to show how we can encapsulate the iterator construct into a procedure itself. 
This euables us to put forward a development method which is based on the 
refinemeut calculus and which uses a pre-defined library of abstract data. types. 
\Ve start by considering the use of procedures as parameters, ba"l~d On the 
theory of procedure variables, hefore giving an example, and shOWing how to 
encapsulate the iterator construct. Subsequent chapters will show the use uf 
the libraries of abstract data t.vpes on a larger scale. 

7.1 Procedures as parameters 

Now that we have given syntax and semantics to procedure ,'ariables, thereby 
putting procedure values on the same level as values of other types, it is only 
a small extension to allow procedure variables as parameters, thus permitting 
procedure values to be passed to and from otber procedures just as other values 
are passed. 

Syntax 

We allow parameters of procedure type to appear in parampter lists for a pro-
cedure, just as simple (non-procedure) parameters do. These procedural pa
rameters may be passed by value, result or ..-a!ul;'-resuli. When a procedural 

87 
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parameter is used, its own parameters must be specified in the parameter list,l 
For example, consider the following procedure definition: 

procedure P (value x, y : N; fp : procedure (value 11 : V); 
resalt op : procedure (value w : W)) 

This declares P to be a procedure which has three ....alue parameters and one 
result paramrter. Of t.he value parameters, two are simple parameters (;r and 
y, both numbers) aud the other, fp, is a procedure which itself takes a single 
value parameter. When P is called, an actual procedure value of the correct 
t}"pe must be supplied for fp, just as numeric values must be supplied for x and 
y. The result of executing P is commuuicated through the result parameter 
op: again the name of an actual procl'dure variable of the correct type must be 
supplied on the calL 

It is worth recalling here that Naumann gave some additional syntactic con
straints in [48J to simplify implementatiou and prevent aliasing. These are 
summarised in Section 6.4. 

Semantics 

We recall that the definition of substitution by value for non-procedure variables 
was constructed so that the following equality would hold: 

P[value f\A] 
I[ var /. 

1,= A; 
PIf\I) 

II 
where P is a program, f a variable, A a term and I a fresh local variable. In 
order to deal with substitutions for procedure variables, we will use very mudl 
the same approach. However, there is a problem with the program fragment 
above, when we replace f by a procedure variable pv: we must also replace I 
by a fresh local procedure variable lp. We then have an assignment to lp, and 
we recall that assignmeut to procedure variables is a non-monotonic construct. 
So instead, we want a definition that maintains the following equality: 

P[value MAPI 
I[varlp. 

Ip:~ AP; 
PIh>\lp] 

II 
Now fp is a procedure variable, AP a term suitable for assignment to such a 
variable - a program fragment - and lp a fresh local procedure variable of 
suitable type. 

I Remember however lhat global variables are nOl specified for a. procedure type. 
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The definition of this substitution is as follows: 

Definition 7,1 procedure value ~ublltitution 

wp(P[value fp\APJ,¢) 

'X. X ~ AP "" wp(P,¢)I!PIX] 

It should be noted that this definition is consistent with the standard definition 
of substitution by value: for a variable x of discrete (non-procedural) type, an 
assignment x:~ e is equivalent to the normal x := e. A similar remark applies 
to the definition of result substitution which follows. 

Similarly, the definition of (non-procedural) substitution by result was chosen 
to give the following equality: 

P{result r\a] 
II var I. 

P[r\ll; 
a:= I 

II 

In the ca.~e of procedure parameters, r, a and I must all be procedure variables, 
and so the assignment to a is a problem. Instead we aim at the following 
equality: 

P[result l]I\apJ 
I[varlp. 

P['1'llp]; 
ap:;::::) lp 

]1 

Now 1]1, ap and lp must all be procedure variables of the same type. 

The definition of thi3 substitution is as follows; 

Definition 7.2 procedure result IlUb.9titution 

wp(P[result '1'1 api, ¢) 

'Ip. ""(P['1'lap}. (' ap • ap ~ Ip "" ¢It ap) 

'Vhile these definitions give precise semantics to the procedure variable versions 
of the two major substitution forms, they are not particularly user-friendly. 
However, as an alternative to using the laws, we can also manipulate the speci
fication under consideration until it matches the program fragments above, and 
then immediately replace it with the appropriate procedure call. Experience 
has shown that this is actually more helpful than proposing and proving other 
laws using the weakest-precondition definitions. 
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7.2 Example 

Our first exa.mple2 of the use of procednres as parameters (oucentrates on the 
use of value parameters. Later we'll show how to nse result parameters t.o 
combine two iterators to form a third. We consider the development and USE' 

of a procedure, /indmax, to fintl the maximum of an array a of elE'ments of 
type T, where the ordering relation R is not ha.rd-coded into the procedure, 
but passed as a paramE'ter: for any two values of T, say x and y, the proo'durr 
parameter 1p should return a boolean value b to show whether or not they art' 
related; that is, execution of rp will establish b ¢:} x R y. The development 
of findmax gives a f\..lrther example of the use of procedure variables -- in th~ 

development. of a procedure which has a procedure parameter, that parameter 
is treated just as a local procedure variable - while the use of findmax shows 
particular procedure valu~s heing passed as actual parameters. 

There are two value parametpn_ and one result parameter to findmax: 

findmax (value a: IL1T1lY[O .. N - IJ of T; 
rp : procedure (value x. y : T, result !J : Bool); 

result m: T) 

The postcondition that we want findmax to pstablish is that m is the maximum 
value (in the R-ordering) in a: 

'<:/ j : 0 .. N • a(j] R m 1\ m in a (1) 

The precondition, from which we have to establish (1), must contain the fact 
that R is a total order. We must also assume that 17J computes the relation R., 
which can be expressed as follows: 

b,[b<>xHyJ [; ,p (2) 

We note that, in the definition of the type of "p, the variables x, y and b would 
normally be taken as place-holders, but we need to use them in specification 
statements. Specifically. we expe<:t predicates about rp, such as (2), to include 
specification statempnts with x, y and b free in the pre- and/or postconditions. 

So the specification of findmax is 

findmax::= m : [R is a total order 1\ (2), (l)J 

For brevity, we omit, from here on, the requirement that R should he a total 
order - formally, it should be carried through each precondition. 

:lThe example is tilin from [491 where it is expressed in tennll of Hoare triples, rather 
than the refinement CaiCUIU6. 
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Standard development steps take us to the following program: 

findmax (value a: array[O .. N - 1] of T; 
rp: procedure (value x. y : T, result b: Bool); 

result m: T) 

vari:int.
 
tn, i := a[O], 1;
 
do i #N---Jo
 

var c : Bool • 

" [1.1]; (3) 
if c then m := a[I]; 

i := i + 1 
od 

where the loop invariant I and the postcondition of (3) J are given by: 

I:;=' (b: [b<::>xRy] ~ rp) /\ (Vj :0 .. i-Ie a[j]Rm) /\ (min a) 
J ~ ('r/) : 0 .. i-I. a[j] R m) /\ (m in a) /\ (c <=> m R ali]) 

Of course, the interesting part of this development for us comes in justifying 
the replacement of (3) with a call of rp. Expanding I and J and removing the 
conjuncts which occur in both precondition and postcondition3 gives 

(3)[;; ,,[b.[b<>xRyl[;; 'J',,<>mRa[i]] 

Since rp has both value and result parameters, we need a combination of two 
laws given in the last chapter, procedure vanable value specijicallon 6.9 and 
procedure variable result 8pecification 6.104 ; 

Law 7.3 proeedm'e variable value and re~lUlt 3pecification 

If the procedure variable pv has been declared a~ procedure 
(value v, result r), then we have the following refinement; 

w.ac.[ peew,r:[prel,postl!ar\r]]!;pv,po3t] ~ callpv(A,ar) 

provided w, ar: [pre,po8t] ~ W, ar; [pf'edv\A], P08t1[v\AJ ] 

where r does not occur in pre}, and neither r nor ro occurs in post}, 

Comparing the left-hand side of this rather formidable law with (3), it is not 

JFin>t the two conjuncts are removed from the p06tcnndition, since they can be derived 
from the precondition, Then they are removed from the precondition by ~imple weakening. 

4The law given here is 8lightly simplified. the full vernioll is given at the end of this chap~er. 
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too difficult to match up the variables and predicates: 

Law 7.3 (3) 
w 
a, c 
pee true 
v x, y 
, ~ 

pee, true 
po,tl r;¢}:rRy 
pv '"po,t c ¢} m R a[il 
A m,a[iJ 

The variable freedom provisos do not cause any problem. We need to have r 
and "-0 not occurring in POSt1, which in this case means that b and bo mnst not 
occur in c ~ :r: R y. We must also have l' not occurring in prel, which here is 
true. 

Similarly, the side condition is satisfied: in order for the law to be vaHd, we 
need 

W, a,.-: [pre, POjt] ~ lV, ar: [predv\A],polltl[V\A] J 

In this case, A is the pair m, a[;J. and so the condit.ion is 

c' Ic ¢> mRa!,]]
 
[; ,,[(c¢>xRy)[x,y\m,a[;]]]
 

which is clearly true. 

Since the conditions are all satisfied, we can conclude that 

(3)	 r;:;; "procedure vanable value and result Ilpecijication 7.3"
 
call ",(m, a[i], c)
 

This completes the development. Collecting the code gives the following pro
gram: 

findma:r: (value a: arrny[O .. N - 1] of Tj 
rp : procedure [value x, y : T, result b: Baal); 

result m: T) 

var	 I : int •
 
m, i := a[OJ,l;
 
doi::j:.N-.+ 

var c: Baal. 
call ",(m,a!'],c); 
if c then m := ali}; 

i:=i+l 
od 
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Having defined findmax, we can now use it in various ways. For instance, 
suppose we need to find the spread (the difference between the minimnm and the 
maximum) of an array of integers. We can achieve this - admittedly not very 
efficiently - by calling findmax twice, passing different procedure parameters 
to find the ma.'C..imum and minimum, and then subtracting one result from the 
other. Suppose two procedure constants are defined as follows: 

procedure lte(value x. y: mt,result b: Bool) 
3 b ,= (x ~ y) 

procedure gte(value x,y: mt,result b: Bool) 
3 b ,= (x 2 Y) 

These can tben be passed to findmax: 

spread: int
 
as : G1Tl1y[O ..N] 0/ int
 

spread:= mllX(as) - min(as) 
r;; 
var	 mx, mn : mI.• 

mx: [mx = max(a.~)J; (1) 
mn: [mn = min(as)]: (Z) 
spread := mx - mn 

(1)	 ~ findmax(us: ltc, mx) 
(2)	 ~findmax(as,gte,mn) 

Looking in a little more detail at the refinement of (1), we have the following: 

(1) = mx: [Vj : 0 .. N. as[j] :S mx II m.:z: in as} 

!;;; var Ip: procedure (value x,y: int, result b: BDDl). 

lp , [b, [b ., x ~ y! r;; lp];
 
mx: [b : [b ~ I:S yJ!;;; lp, Vj : 0 .. N. (u[j] :S mz II fll.:1' in as]
 

~	 findmax(as, /te, mz) 

using the code expansions for value and result substitutions for procedure 
parameters. 

7.3 An iterator procedure 

Having set up all the machinery of procedural parameters, we now consider 
it{'rators over sequelll:es, recalling that an it.. ti construct over a sequence takes 
the following form: 

it s into r with
 
() --+ r:= x
 

n a:a1l --+ r:= j(a, a1l)
 
ti
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Our aim is to encapsulate this construct within a procedure, which will then 
fann part of a library module specifying the behaviour of sequences 

module Seq
 
var
 

s:seqA
 
procedure seqiter( .. ) ;:,
 

The important gaps remaining in this definition are the parameters to be passed 
to seqiter' and the procedure body. The it ..ti COnBtruct above clearly has three 
important parts which need to be passed as parameters of some sort. The first 
(and the easiest) is the variable r in which the result is to be stored. This is 
passed to seqlter' ilS a result parameter 1 and we suppose it has type X. Thf' 
other two parameters correspond to the two branches of the iteration -- we 
must gl:'t across the action to be taken if the sequence is empty, and if it is 
non-empty. We use procedures for both of these parameters. Dealing first with 
the branch for the empty sequence, we pass (by value) a procedure, 

ep : procedure (result er: X) , 

which has a single result parameter er, which will store the \'alue x. 

For the non-empty brauch, the procedure passed, cp, must take two value pa
rameters, for the first element of the sequence and the value of the iteration 
applied to the remainder of the sequence. It also stores its output in a result 
parameter. So we have 

cp : procedure (value a : A, as; X; result cr : X) 

Note that the type of the second value parameter is X: this parameter repre
sents the re!Jult of the iteration on the tail of the sequence (a!J), rather than 
as itself. This simply reflects the way the corresponding branch of the it .. ti 
construct was defined. 

Putting this all together, we can give a specification of seqiter: 

procedure seqiter( 
value ep: procedure (result er : X), 

cp : procedure (value a ; A, as ; X; result cr : X); 
result ": X) :
it s into r with 

() -l ,p(r)
 
~ a:as --t cp(a, as, I')
 

u 

By the definition of it ,ti (see sequence iterator 5,1), we can express the body 
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of seqiter as a recursive procedure 1(5, r), where 

procedure I(value 5: seq X,result r: Xl == 
if s is 

() --+ ep(r) 
~ a:as --+ var 1. 

I(a<, I); 
cp(a, 1, r) 

fi 

Looking back at the examples of iterators at the end of Section 5.2, we can 
now express them as calls to seqiter. The first example obtained the sum of a 
sequence: 

it 5 into " witb
 
( ) --+,,~ 0
 

on:ns --+ r:= n + R'l
 

Ii
 

As a call to seqiter, this would be 

seqiter(	 (result lOr: N. fT:= 0), 
(value a, as: 1\1; result cr: N. cr:= a + as), , 

Similarly, the length of a sequellce was obtained by 

it s into " with
 
( ) --+,,~ 0
 

~n:ns --+ r:=l+ns
 
Ii
 

which we can now write as 

seqlter(	 (result eT' : I\l. er:= 0), 
(value a, ll'i : N; result cr: N. cr;= 1 + as), , 

These results can be seen as particular cases of the following law, which is easily 
obtained by combining the definition of seqiter above witb assignment itemtor 
5.2. 

Law 7.4 assignment sef/lter 

]f the value to be assigned to a variable is formed by the application of 
a catamorphism to a sequence, tben the whole assignment can be imple
mented by a call to .seqiter. 
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"~ilf,gD ' 
[; 

seqiter(	 (result er. er :::: n, 
(value a, as; result cr. cr ::: g(a, as»), 
, 

The types of the parameters of the procedure parameters in the call to iieqiter 

are a~ follows: er, as and cr have the same type as the overall result r, and (l 

Ita" t.he same type as each element of the seqllence~. 

7.4 Merging iterators 

In Section 7.1, when we gave definitions for procedures as parameters, we de
fined the meanings of both valu(' and result substitutions for pardmcters of 
procedure type, but our example in Section i.2 used only the value substitu
tion. \Ve now remedy this by showing how to form an iterator combinator 
a higher-order procedure which basically merge~ two iterators to form anot,hcr. 
This combinator uses r('sult parameters of procedure type. 

In order to motivate this cOn.<;truction, consider the following problem: suppose 
that we have stored a set of values in all array, and that we need to calculate 
both the sum of the values and the sum of their squares, in order to perform 
some statistical calculatiou. A naive program would be: 

it 8 into sum with
 
( ) .~um:= 0
 

on:ns sum:= n + n8
 

ti;
 
it s into sqsum with
 

( ) sq,'Jum:::: 0
 
on:ns sq,'Jum:= n 2 + ns
 

Ii
 

However, it would clearly be more efficient to make just a single pass over the 
sequence, producing both of the required values in one go. The iteration will 
then take the following form: 

it s into sum, sqsum with 
( ) ----+ sum, sqsum := 0,0 

on:ns -----jo sum, ,'Jq,'Jum:::: n + ns 1, n 2 + ns.2 
Ii 

There are various points to llote about this: 

•	 instead of a single result parameter, we now have a pair; looking hack at 
the definition of the iterator as a recursive procedure (sequence Itemtor 
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5.1), we Can see that this means simply that the recursive procedure uow 
has two result parameters, and that two local variables need to be defined 
to store the intermediate results; 

•	 in the secoud brauch of the iterator, which corresponds to the case when> 
the sequence is uon-empty, we have to refer to the result of the iteration 
on the tail of the sequeuce: in the simpler iterators above, we WeTI' able 
to use nil, hut here ns is a pair of values $0 we have to use theprojections 
ns.l and ns.2 in the assignment of the second bra.nch. 

So our aim is llOW to define an iterator combinator, which takes as input two 
iterators over a sequence -- in the form of the procedures which form their 
branches - and produces as output another iterator over a sequence, the effect 
of which is similar to a parallel combination of t.he two input.s. The output 
iterat.or will also be produced in the form of the two procedures which form its 
branches. Thus we are aiming to replace a program of the form 

var	 rpl, rp2 : procedure ..•
 
seqlter(epl, cpl, rl);
 
seqiter(ep2, cp2, r2)
 

by a program of the form 

mergeiter( epl, cpl, ep2. cp2, rpl, rp2)j
 
setpter(rpl, rp2, (rl, r2)) ,
 

where rpl and rp2 are the two procedures output from the it.erator combinator 
mergeiter. 

It now remains to define the combinator mergeiter. As mentioned above, the 
value paramet.ers are the procedures which form the branches of the first it.
erator (epl and cpl) and the second iterator (ep2 and cp2). while the result 
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parameters (rep and rep) form the branches of tlte resulting cOmbined iterator. 

procedure mergeitcr 
(value	 epl; procedure (result er : X) 

cpl: procedure (value a; A, all: X; result cr; X) 
ep2 : procedure (result er: Y) 
ep2: procedure (value a: A, Gil; Y; result cr; Y) 

result rep: procedure (resuJt r; X X Y) 
rep: procedure (value a : A, as: X x Y: 

result r2 ; X x Y) 

rep :;;;) I [var	 I, m'
 
,pl(IJ;
 
ep2(m); 
r;= (I,m) 

II; 
rep :;;;) I[var	 TI,O'
 

cpl(a. as.l, n);
 
cp2(a, as.2, 0);
 
r2;= (TI, 0) 

il 

The observant reader may remember a similar example trnvaIds the t'nd of 
Chapter 5, where we used the so-called banana-split law to convert two iterators 
into a single iterator. The technique used here is very similar I except t.hat we can 
use procedures to encapsulate the functions required, and we can use mergciter 
to generate automatically the procedures needed for the combined iterator. 

We recall that the banana-split law gave us the equivalence of an assignment 
of the form 

x,y;~ I[fl,gIJ,,1[f2,g2J .• 

and one of the form 

:X,Y:=Q/ll)./2, gl-(idA x 1t"I1 c.g2·(idA X 1t"2)DS , (.J 
where I). is the join operator ~ (f I).g)x = (f x, 9 x) ~ and the 1t", are projections. 

By as.,ignment 8eqiter 7.4, this second assignment (... ) can be implemented by 
a call to seqiter. But our major interest lies in the parameters to this call. 

Returning to our example, we can write the original specification as 

sUffi,sqsum:=Q/I,glDs,Q/2,92Ds, 

where f1 and /2 are both the constant function which returns zero, while 91 
and g2 are given by 

gl(x, y) = x + y
 
g2(:x,y) =:x2 + y
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So the first parameter to seqite,' is 

(result,.: N x N. 1":= (0,0)) 

The second parameter must encapsulate the second part of the catamorphism 
in (*). Expanding the rather complicated function gives 

(value a: N, as: N x 1\1; result ,'2 : N x N.
 
1"2:= (a + as.I, a2 + as.2))
 

\Ve have thus shown that 

sum, sqsum := ill 1. glD 3, crf2, 92D 5 

(;; "assignment seqiter 7.4"
 
sEqlter( (result r: N x N. r :== (0,0)),
 

(value a : 1\1, as: N x 1\1; result ,.2: N x N.
 
1'"2:= (a + as.I, a2 + as.2)),
 

(sum,sqsum)
 

Now we can introduce local procedure variables, and initialise them to the 
required values so that they can be used as parameters to seqitef': 

1;;;; var lep : procedure (result r : seq N x seq 1\1)
 
lcp : procedure (value a : N, as: seq N x seq ,~;
 

result 1'"2 : seq N x seq l\') •
 

lep,lcp :;1 ( (result r: N x N • r:= (0,0)), 
(value a : N, all : ~ x N; result 1'2 : N x N. 

1'"2:= (a + as.l,a2 + all.2)) 
) ;
 

Ileqitel'"(lep, lcp, (Ilum, SqSllfll))
 

Now, using the definition of mef'geite1' and the code expansions of value and 
result paumetrisations given above in Section 7.1, il is possible to show that 
the first statement of these two can be implemented by a call to me1'geite1' with 
the right valne parameters, which will assign procedure values to the result 
parameters which can then be passed dirt;>Ctly to seqitel'". The details of this are 
gruesome and unenlightening - except as evidence that it can be done - and 
are therefore omitted. 

To snmmarise, what we have done is to define mergeite1', and then to show that 
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our original problem can bl:' impleml:'ntl:'d by the following program: 

var Zep : procedure (result r : seq 1\1 x Sl:'q 1\1) 
lcp : procedure (value a : 1\1, a,~ : seq 1\1 x >;eq 1\1: 

result r2 : ::::eq 1\1 x setl 1\1) • 

mergeiter(result r : 1\1 • r := 0), 
(value a : 1\1, as : 1\1: result cr : 1\1 • cr := a + as), 
(result r : 1\1 • r := 0), 
(value a : 1\1, as; 1\1: result cr: 1\1. c.r;= a2 + as), 
lep, 
lcp): 

segiter(lep, lcp, (sum, sqsum)) 

As we anticipated, this is simply a call to mergeiter, followed by a call to seqitcr, 
and the essence of the banana-split law for sequences has been encapsulated, 

7.5 A more general law 

As promised, Wl:' gin' here the unsimplified Yersion of procedure variable val'ue 
and re::JlIlt specification 7.3. The slight generalisation allowed here is that the 
value paramet.er is allowed in the frame of the specification in the second con
junct of the precondition (with a change to the corresponding sidecondition). 

Law 7.5 procedure variable value and T"f'..'!ult specification 

If the procedure \'ariable pv has been declared as procedure 
(value lJ, result 1'), then we have the following refinement: 

W, ar: [ 
pre ost] C call v(A ar)

w,v,r;[pT"f'.l,postdar\rJ]~PlJ'P - p, 

provided w, ar: [p~.post] i; w, ar ; [P~dlJ\AJ,postdttl\Ao]] 

where l' does not occur in prel' and neither 11, r nor ro occur in postt, 
and Ao is Alw, or\wo, (iro]. 

7.6 Conclusion 

In this chapter we have brought together the earlier work on iterators and 
procedure variables to sbow how iterators can be 'packaged' into procedures in 
their own right, using procedural parameters to pass information to the iterator 
about the actions to be taken on each branch of the data type. The definitions 
of substitutions for procedure parameters are very similar to those for the siUlple 
non-procedure parameters, with slight adjustments to deal witb assignments to 
procedure variables. 





Chapter 8 

Applications 1: exceptions 

8.1 Introduction 

While developiug theory and notation, it is sometimes all t.oo easy to forget 
the original reason for the work that we are doing: our aim is to enable tbe 
development of correct progra.ms from their specifications. This chapter and the 
following one are intended therefore to show how real programs are developed 
using the notations previously introduced. 

There was a choice, for these chapters, between developing a single large pro-
gram and working on several smaller ones. In the end, it was decided to follow 
the latter course: although the development of a large program eould show how 
the techniques would BCale-Up to industrial-sized problems, there was the dan
ger that it would not be possible, in a large development, to s~ the merits of the 
particular techniques proposed for exceptions and iterators, as they would get 
lost in the mass of development details. So this chapter and the following one 
contain several small developments, with some of them being later combined 
into larger programs. 

The context in which these sample programs will be developed is that of IBl\l's 
Collection Class Library for C++. This is a set of C++ cla..'lSes that implement 
commonly-used abstract data types, such as sets, maps and sequences. We give 
a short summary below of the main features of the Collection Class Library.l 

Section 8.2 describes how the exception-handling mechanism introduced earlier 

lThe motivation for usiog the Collectioo Cli16S Library is that the author was 8Upported 
by IBM ill the early stages of this research. 
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can be related to exception handling in C++ and the Collection Class Library. 
In general, we give 'guidelines' on how to develop C++ programs, rather than 
fully justified 'laws" since the justification of such laws would require a formal 
semantics for C++, whicb is beyond the scope of this thesis! 

Since C++ is not an ideal language for wbich to develop programs in the refine
ment calculus style, we have found it useful to introduce a few abbreviations 
to make the jump Erom guarded commands to C++ slightly easier. These are 
concerned with the relationship between C++ functions and refinement calculus 
procedures, and are found in Section 8.3 and Appendix A. We also give some 
additional laws that are u!ied in the sample developments: rather than disrupt 
the development~ by giving the laws 'in-line', they are collected in this section. 

After all this extra notation, we are finally able to show how the individual data 
types from the Collection Class Library can be specified. For this purpose, we 
take sequences as our example, giving a specification which consisl,s of a state 
model, followed by descriptious of the many operations provided in the library 
to manipulate sequences. Several sample programs are developed. 

Chapter 9 will show bow the iterator mechanism we have described can be used 
with the iterator mechanism of the Collection Class Library Further examples 
will be developed. 

An introduction to the Collection Class Library 

IBM's Collection Class Library for C++ is a set of C++ classes that implement 
cOInroonl:y used abstract data types, including sets, maps, sequences, relations, 
trees, stacks, bags, queues and priority queues. Most collection classes exist 
in several forms, depending on whether the collection is sorted. whether ele
ments can be accessed by keys, whether there is an equality relation defined for 
elements anti whether elements must be unique or if multiple occurrences are 
allowed. 

For each collection class, many operations are defined: each takes the form of 
a C++ function, some having side-effects, some giving return values, and some 
both. If certain preconditions are not met when the operation is called, an 
exception may be raised. The informal specification [22] defines what the pos
sible exceptions are for each function, but not the exact circumstances in which 
they are raised. This important omission is rectified in the formal specifications 
later in this chapter, for every relevant exception except for the lOutOjMemory 
€xception. This exception can be raised by any of the variations of the add 
operation when the operating system is sbort of memory. It has to be treated 
differently since we cannot describe, at our level of abstraction, exactly when 
this will happen. Having experimented with a specification which merely stated 
that the add operations could raise this exception non-determiIllstically, un
der any circumstances, it was instead decided to omit it completely: the non
deterministic specification was not particularly helpful since it didn't describe 
when the exception would be raised, and it made developiug programs which 
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used the add operation particularly difficult. Whi]l? not ideal, the pragmatic 
solution of not mentioning thl? IOutO/Memory exception at all means that is 
much more practical to use the rl?finement calculus to argut: about thp correct
ness of an implementation, including the circumstances under which any other 
exception may be raised. However, tbe developer must remember to use an
other form of argnml?nt to reason about the possibility of the operating system 
running out of memory, and what actions should be taken if that possibility 
arises. This seems to be a case where formalism needs to be combined with 
pragmatism, 

The Collection Class Library also has a built-in met.hod of indirectly accessing 
the elements of a collection: the user of a collection class, once he has declared 
an instance of the class, can declare a 'cursor', which is then associated with 
that particnlar collection. This cursor can be used to access the elements of the 
collection: there are several operations which take a cursor as input, or return 
a cursor as output, and, for ordered collections, there are operations which 
access the elements in cursor order. For example. addAsNext takes an element 
and a cursor as input; provided that the cursor is valid and a.<;sociated with the 
collection that is being operated on, the element i!' added to the collection at the 
position after that pointed to by the cursor. Altbough the cursor mechanism 
provides a reasonably efficient way of programming, by removing til{' Heed to 
copy or mow possibly large pieces of data, it suffers from one major drawback:2 

whenever the collection is altered in any way, by thp addition or removal of 
elpments. all of the cursors are invalidated - that is, th€' programmer cannot 
rely on their still pointing to the same elements, or even to any elements at all. 
However, the description of the sequence library component given below does 
not deal at all with cursors: a decision wa.s made that the cursor behaviour was 
not sufficiently linked with either exceptions or iterators to merit its inclusion. 
Although the operations which involved cursors could raise excepth.ms, there 
was no significant difference in the use of exceptions between these operations 
and non-cursor operations. Inclusion of cursors would have meant a significantly 
larger specification, but without significantly more interesting material. 

Cursors can be used to program iterations over a data structure, but there is 
also a more abstract mechanism, the allElemenfsDo operation. Both of these 
are described in the next chapter. 

Several of the operations found in tbe Collection Class Lihrary also exist in 
alternative versions where, instead of a value being supplied to or returned 
by the operations, a pointer to the value is uspd. We have not described any 
of these alternative versions, since the focus of our interest is exceptions and 
iterators. 

2This is the case in the CUlTent implementation. atlea:;\ fu\ure ven;ions may change this. 
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8.2
 Exceptions and the Collection Class Library 

In Chapter 3, we introduced a simple exception mechanism and showed how we 
could extend the idea of weakest precondition semantics to give a meaning to 
exceptional termination, and to justify the laws we stated about the constructs. 
In Chapter 4, we extended this mechanism by considering named exceptions, 
using procedures to give a form of exception handling, whereby different ac
tions could he associated with different exceptions. Our task now IS to show 
how we can nse these ideas to develop C++ programs which use the exception 
handling fcu:ilitics of the Collection Class Library. Since the library makes di
rect use of the exception mechanism of the C++ language, we look first at this, 
before deciding how much of the C++ notation we will model with our excep
tion handling mechanism. Our aim is always to develop programs rigorously 
using the refinement calculus, and then to translate them into the target pro
gramming language - or a subset of it. This translation process defines our 
view of a 'safe' subset of the programming language, since, although we cannot 
possibly guarantee to be able to develop formally every conceivable program in 
the language, we Call guarantee that any program that is the end-product of a 
refinement calculus development and a translation will meet its specification. 

Exception handling in C++ 

The C++ exception handling mechanism allows a programmer to recognise when 
a function has been called in an nnusual situation, and to pass control back to 

the caller of the function. The caller is then able to handle the exception in 
an appropriate way. The language constructs which implement this exception 
handling are: 

• 'throw expressions: 

• try blocks; 

• catch blocks. 

In the body of a function, the programmer can signal all unusual situation 
with a throw expression. This expression can contain information to be passed 
back to the caller, perhaps an indication of which object caused the exception. 
Alternatively it might just be a signal that the unusual situation has arisen. 
The concrete syntax consists of the keyword throw, followed by an assignment
expression. In the context of a declaration of aobj a.g an element of a class A, 
the two possible forms of a, throw statement might be: 

throw (aobj)j
 
throw IlnvalidCursorj
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The first of these shows information being passed back to the caller, in this ca::;e 
the variable name aobj. In the second example, a constant yalne is passl'd. 
which is just the name of the exception 

Try blocks and catch blocks are used together to show the scope of definition of 
SOIlle handling routines, and the contents of those rantilles. respectively. Thus 
a single try block is followed immediately by one or more catch blocks: 

try{ 

statements 
} 

catch(exl)i
 

statements
 
}
 

catch(ex2){
 
statements
 
}
 

The statements enclused in braces after the try keyword are the scope of the 
sllcceeding catch blocks: jf a function whirh j;l called in these statements throws 
an exception which matches any of the catch blocks (exl or ex2 above), ,hen 
the corresponding handler is C'xecuted. If the ca.tch block terminates normally. 
control passes to the statement after the final handler. 

At the start of each catch block, there is a, parenthesised expression which 
declares the type of object that the exception handler may catch, and optionally 
a variable name to identify the object thrown within the succeeding code. The 
rules to determine which l:atch block is executed are: 

•	 if the object thrown matches the type of the ca.tch expression of tht' first 
block, control passes to tbat block; 

•	 if the object. thrown does not match the type of the catch expression of 
the first block, then subsequent blocks are searched for a mat.ching type; 

•	 the special catch expression catch( ... ) will match any thrown expression 
(and should therefore only appear in the last of a sequence of catch blocks); 

•	 if no match is found, the search is continued in all enclosing try blocks 
and then in the caller of the current function; 

•	 if no match is found after all t.his. a call to the terminate() funct.ion is 
made. 

C++ exceptions and the refinement calculus 

In its very simplest form, C++ exception handling is not very difficult to incor
porate into the refinement calculus development method, as we bave extended 
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it to cover exceptional postconditions. The restriction that we put on the gen
eral scheme outlined above is that we don't allow objects to he passed to catch 
blocks.J Instead we insist that the catch expression which determmes which 
exceptions are caught by a block should consist of a type name, and that type 
should be a single element type (formed from a class with no data or methods). 
So we might ha....e· 

Exception1 claBs { /_ IlO methods -/ } 

try { 

throw Exception1; 

} 

catch (Exception1) { 

Another restriction that we place on the general C++ exception mechanism is 
that we do not coyer thf' case when' the catch argument is a public base class (ie 
subtype) of the thrown class object: we insist that the catch argument 5hould 
be exactly equal to the thrown object. 

Having described the very restricted form of C++ exception handling which we 
are going to use, we are uow in a position to show how we can devrJop programs 
in our extended version of the refinement calculus, and then transliterate them 
into C++. 

Using the rules given in previous chapters for exits, we aitH to develop a pro
gram which has the form 

[handler	 E1 ~ aaa
 
E2" bbb
 

En: nnn.
 
nz
 

Assuming all the subprograms (aaa to nnn, and zzz) are code, we would be 
finished, since we can transliterate this into C++ as: 

class El { ;. .; };
 
class E2 { ; .. .; };
 

class En { ;* .; }j 

void mainO { 

3As Wall mentioned in Cha.pter 4, we could model this, but the Collection Class Library 
exception mechanism does nOl include this feature, SO we do not need to consider it. 
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try { zzz }
 
catch (El) { aaa }
 
catch (E2) { bbb }
 

catch (En) { nun } 

So each exception Ei i9 declared a.s a clas~ with no members, and t.he handler!> 
become catch blocks while the main program body zzz becomes a try block. 

A simple development with exceptions 

In this section, we give a formal development of a C++ program which contains 
exceptions. The example is very closely based on a sample program from the 
IBM C++ Reference Manual [22]. The original program is shown in Fignre 8.1 
overleaf. but we will slightly alter saoif' of the Input and output statements to 
simplify (.he development. 

Our starting point is the following specification: 

varn:N 

o : R. 
r : good I brld 
Z ~ n :::: 0 1\ r = bad 
NZ == n::f; 0 1\ n:::: lin 1\ r:::: good 

o,r, [Z V NZI 

If n is non-zero, the output 0 is to be set to the reciprocal of n. The response 
code 1"" indicates whether or not the out.put is a valid reciprocal. 

The development starts by introducing an exception block and duplicating t.he 
normal postcondition as an exceptional postcondition: 

!;;;	 .. exceptwnal specification 3.4" 
[ 
0, r : [true, Z V NZ > Z V NZJ	 <l 

I 
Using the law for sequeutial composition. we can split this into two: 

1;;;	 "sequential composition 3.13" 
0, r: [true, n;;f 0 > Z V NZJ; (1) 
0, r ~ [n;;f 0, Z V NZ > Z V NZj (2) 

The second branch is implemented by choosing tbe non-exeeptional route: 

(2) !;;; "take normal branch 3.5" 
o,r, In ,to,Z V NZ) 

<:: o,roln,tO,NZJ 
o,r ~ [n;;f O,n ¥- 0 1\ 0 = lin A ,. = good] 

!;;; 0,":= I/n,90od 
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• 
The folloving example illustrates the basic use of try, catch, 
and throw. The program prompts for a numerical user input and 

determines the input's reciprocal. Before it attempts to print 
the reciprocal to standard output, it checks that the inpnt 
value is nonzero, to avoid a division by zero. If the input is 
zero, an exception is thrown, and the catch block catches the 
exception. If the input is nonzero, the reciprocal is printed 
to 8tandard output. 

............•................................................• /
 

_include <iostream.h> 
#include <stdlib.h> 
class IsZero { ;_ _; }; 
void ZeroCheck( int i ) 
{ 

if (i==O) 

thrO'lil IsZeroO; 
} 

void mainO 
{ 

deuble a; 

ceut « "Enter a number: ". 
cin » a; 
try 
{ 

ZeroCheck( a )j 

cout « "Reciprocal is " « 1.0/a « endl; 
} 

catch ( IsZero ) 
{ 

ceut « "Zero input is net valid" «endl; 
exit(l) ; 

} 

exit (0); 
} 

Figure 8.1: IBM's original program showing the use of exceptions 
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The first branch is developed by introducing an alternation, before deciding 
whether to aim for the normal or exceptional postcondition. 

~1)~ ifn=O---1' 
0, r ; [n = 0, n#-O > Z V NZ] (3) 

~ ni"O-t 
0, r : jn -::f 0, n -::f 0 > Z V NZ] (4) 

fi 

The fir~t branch of the alternation is implemented by choosing the exceptional 
postcondition -- any attempt to develop the normal postcondition would lead 
to it miracle. 

(3)	 ~ "take exeeptwnal branch 3.6" 
0, r : [n = 0, Z V NZ]; ~ 

exit 
~ 0, r: [n =0, Z] 
~ r:= bad 

The second brallr.h of the' alternation is easily implempnted by choosing the 
normal postcondition, and noticing that we arE' already finished! 

(4) ~	 "take normal bllltlch 3.5" 
o. r: [n f:- 0, n f:- 0] 

~ skip 

Collecting the code t.ogpther we get 

0, r: [2 V NZJ 
!:: I 

if 11 == 0 -t r ;= bad: exit 
o n f:- 0 -t skip 
fi;
 
0,'" := lin, good
 

We can re-structure this slightly by using a handler: 

~ "introduce handler 4.4" 
[ handler IsZero ~ r :== bad _ 

if 11 == 0 -t raise(IsZero) 
n rI -# 0 -t skip 
fi; 
0, r := lIn, good 

We now translate to C++, using the translation guidelines introdnced above, 
and include a few extra statements to reveal the results of the calculation on 
the console. and to set return codes, 
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'inc1ude <iostream.h> 
.include <stdlib.h> 
class IsZero { I" '" .1 }; 
void mainO
 
{
 

double n; 

cout « "Enter a number:
 
cin » n;
 

try
 
{ 

if (n==O) throw IsZero(); 
o = 1.0/n; r = good; 
cout « "r is " « r « endl; 
cout « "0 is " « 0 « endl; 

} 

catch ( IsZero 
{ 

r = bad; 
cout « "r is « r « end1;II 

exit (1);
 
}
 

exit(O) ;
 
}
 

8.3 Additional notation and laws 

The end-product of the refinement calculus development method is a program 
in the language of Dijkstra's guarded commands [17J. It is relatively straightfor
ward to translate such a program into a language such as Pascal or Modnla-2 for 
compilation and execution. However, the Collection Class Library is designed 
for the C++ language, and the mapping from guarded commands to C++ is not 
quite so simple. We have taken a pragmatic view where possible, since the focus 
of our work is on exceptions and iterators in the refinement calculus, not on 
the particular problems caused by the choice of C++ as the target programming 
language. 

Appendix A contains details of t.he mismatch between C++ functions and the 
usual procedures of the refinement calculus. However, this mismatch occurs in 
only one place in the case studies in this chapter, and so the new notation is 
not very significant. 

More importantly, we give some additional laws of the refinement calculus, 
which win be used in the example developments. 
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Additional laws 

The st.andard refinement calculus deYelopment tl"Chllique is to manipulate the 
specification. using the laws of the calculus. until we have a program consisting 
of execut.able code. In our case, becausC' we intend to use the Collection Class 
Library, we can use the copy rule to replan? a procedure body with a procedurC' 
call, so we will be aiming either wwards executable code, or towards fragments 
of program which matdl (with suitable parametrisatiol1) the bodie~ of proce
dures defined in the library modules. As We follow this development method, 
it is clear that the presence of exceptiolls in the specifications uf the collection 
class operations means that we need to use the laws lrorn Chapter 4 which 
.~how how to manipulate exit, raise <U1d else constructs in the context of the 
standard programming constructs. We also need to perform some development 
steps which seem strange at first -- their purpose is to change the program 
fragment we are currently working on so that it corresponds to a procedure 
body. This gives rise to the need for some additional laws, which are eas)' to 
verify using weakest preconditions. 

We need anothpf law to show how the else cunstruct interacts with sequential 
composition. 

Law 8.1 else distributi.on 

(twa: bbb) ) cec 
~ aall; (bbb ) eee) pf·o1Ji.ded eee!;;: /Ilia; eee 

We can implement a specification statement whose postcondition consists of a 
disjunction, by introducing an exception block and taking the disjuncts as the 
normal and exceptional postconditiuns of an extended specification statement 
inside the block. 

Law 8.2 disjunction-else 

w. [0,0 V1] 
[ 

IV : [0:,,B ) 1'1 
i 

We can turn a specification into a choice between guarded commands, using 
any program at all in the new branch, if we kilO..... that the branch will never be 
taken: 

Law 8.3 superfluous chOice 

w. [a, OJ
 
~ "'f --) w: [o:,tJl
 

o 'l' --) liM 

provided a => l' 
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It is sometimes conY€n.ient to transform a guarded specification statement into 
one where the guard has been absorbed: 

Law 8.4 ab!lorb guard 

0-> W. [0,,] 
w. [0"" 0, o[w\",,] 1\ ,I 

provided tL1) i8 not free in D: 

8.4 A collection class specification 

Having set up all the extra notational machinery that we need. WI: are uow ablE' 
to give a specification of a sample collection class. for which we use sequences. 
We first describe all of the operations on sequences, and then give a small 
example to show how the new pieces of notation introduced aboYe can be Ilsed. 
As was mentioned above. there is ODe omission from the description below: we 
do not concern ourselves with the IOutOfHemory exception. This is au exception 
which can he raised by any of the add operations, reflecting the possibility that 
the operating system might report t,hat, it has run out of memory. We would 
not. be able to describe the f'xart rirrumstances under which t.his might happen. 
and including the pos$ibility of runuing out of mf'mory makes the specification 
unnecessarily complicated. 

The sequence class 

The only state variable is the sequence itself. 4 

module ISeq[Eleml'ntj =
var 

5 s.eq[Eleme1It] 

There are four different ways to add an element to the sequence, In the simplest 
case, the new element is added to the end of t.he sequence, and a return cocte 
indicates whether the operation has completed successfully.5 

procedure add(1' : Eleme1lt,result T": B{Juleal1) =
s. T":= s ~ (e), true 

We have explicit operations to add the new element to the beginning or end of 
t.he sequence. 

procedure addAsFIT"st( e : Element) =
s:=(e)-s 

procedure addAsLast( e : Element) 2: 

s:=s-(e) 

4~ in Z, our sequences are indexed from 1 to the length of the sequ~nce. 

5For brevity. vre assume thal all parameters ate passed by value, Ilnlees e:o;plicitly nOLl'd 
otherwise. 
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\\'e can also specify the position at which we wa.llt the element to be added. If 
t.his position is invalid, an except.ion is raised. Otherwise, th(' uew element is 
added at the specified position, with subsequent elements being 'shunted down' 
as required. (t and .t. are functions which return parts of a sequence: ,<; t n 
gives the first n elements of a sequence s, and ,~.t. n returns the seqnenct' with 
the first n elements removed.) 

procedure addAtPosition(i : N. e: Element)':;' 
1 $ i S; #s + 1 --+ s := s t (i - 1) ~ (e) ~ s.t. (i - 1) 

U (i = 0) V (i > #s + 1) -t raise(IPosltionlnvalidExcepllOlI) 

The anyElcment operation returns a randomly-chosen element of thc sequence. 
provided that the sequence is not empty. 

procedure anyElement(result e : Element) ==
 
st-(} -te:[eErans]
 

o s = () -t raise(IEmptyException) 

We can examine the clement at any particular position in the sequence. 

procedure elementAtPosltion(i: N,result e: Element).3
 
l~l~#.~ -te:=sl
 

o (i == 0) V li > #s) -t raise(IPMnf,lOnlnvahdExceptwn) 

We can look at thc first p.!t'lllent of the ~equenc(~, pro\"ided that the t'f'qliencf' is 
not empty. 

procedure fiT'.~tElement(resulte: Eleme.nt) :2
 
s :f:. () -t e := s 1
 

~ s ::: 0 -t raise(IEmptyExcrption)
 

There are scveral enquiry operations for sequence". For <:ompatibility with 
other classes in the Collection Class Library, the operatiuIl" i,Bounded and 
uFuIl are provided: since this class is not bounded, the former operation always 
returns False. Similarly t.he sequence can never be full. The i,~Empty operation 
determines whether the sequence is current I,. empty 

procedure isBounded(resuJt T' : Boulean) :2
 
T':= false
 

procedure isFuIl(result T' : Boole..an) =
 
T':= false
 

procedure isEmpty(result T' : Boolean) ==. 
,,~(, ~ 0) 

We can access the last element of the sequence, provided that the sequence is 
not empty. 

procedure lastElement(result e : Element) ~
 

"I' 0 ~ <= '(#')
 
o s == 0 -t raise(JEmptyException) 
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Since this class providps a data type of unbounded sequences, the operation 
which might be expected to return the maximum number of elements that th(' 
sequpncp can contain will always raise an exception. 

procedure maxNumberOjElements(result n : N) ~
 

raise( INotBoundedException)
 

VIle can determine the current size of the sequence. 

procedure numberOfElement.'l(result n : N) ;;:
 
n:= #:'1
 

There are two forms of 'multiple remo'\'O.l' operations: the first removes all of the 
elements of the sequence unconditionally, and so the sequence becomes empty. 
The second form removes all those elements of the sequeuce which satisfy a 
given property. Here we model this property as a set of elements, and use the 
squash function to 'close up' the gaps in the sequence which are caused by the 
removal of those elements ill the set. 

procedure removeAlil =
., ,~ () 

procedure removeAIl2(b: P Element) =

s := squash(s I::> b)
 

There are three ways to remove a single element from thp sequpnce: by specify
ing which element is to be removed, or by t.aking the first. or Ja.'l p}pmpnt. An 
exception is raised if the position is not valid. or if the sequencp is empty. 

procedure removeAtPosltion( i : N) =
1 ~ i ~ #s --t 5 := 5 t (i - n- s ~ i
 

U (i =0) V (i > #s) --t ra1se(IPo,~ition/rH;alldExcephorl)
 

procedure removeFirst =

s =i () --t S := s ~ 1
 

U s = (} --t ra1se(/EmptyExcephon)
 

procedure removeLa!Jt ==
 
';i () -j,,~, t (#' - 1)
 

Us = 0 -+ raise(IEmptyExaption)
 

Example 

We now show how programs can be developed using the specification of a library 
module, such as the sequence module above. We follow the usual technique 
of using the procedure rules to replace a procedure body by a call (with the 
appropriate parametrisation), but some unusual development steps have to be 
taken because the procedure specifications above give the possibility of raising 
an exception. Although this example ia fairly simple, it shows the techniques 
needed to introduce the exceptions. 
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\Ve will work on a sequence of numbers. and WP will expect some sort of return 
code: 

s:seqN 
r: OK I TooSmall 

The specification of our problem i.~ 

Spec :;
 
if #.~ ~ 2 ---+ ,~, r:o= (s t #s - 1) t 1. OK
 
~ #s < 2 ---+ r := TooSmall
 
fi
 

If the sequence s has at least two elements, thell the first and last elements are 
removed. Otherwise, s is left ullchanged and a return code indicates that the 
sequence is too smail. 

The implementation that we are aiming tit involves using removeFir.st and 
n~mQveLallt to take off the first and last elements of s. 1£ tbe sequence is 
empty, then obviously a call to the first operation will immediately faiL How
ever, if s is a singleton sequence, then a call to Olle of these procedures will 
sU(:(:e€d a.nd then the other will fail. So we need to store the initial value of s 
in a local variable, so that. it can be restored later, if IltTessary. Thns thv first 
development step is to introduce the local variable 1, and a logical constant fOl" 
the initial value of s: we also work with naked guarded commamis rathp.1" than 
alternations, since this matches the library procednre definitions: 

Spec 
~	 varl:seqN.
 

con S.
 

1:= s; 

{1~S)#,~2 -;U'~(d#'-l).l,OK) 

( 
<] 

U {l = S} #s < 2 --+ 8, r : [r = TooSmall/\ s = 5] 

The next step of the de',lelopment IS to introduce an exception block, and to 
change the nOll-deterministic choice into an 'else' construct: 

i;;;;	 "choice-elsc 3.10" 

I 
{l ~ S} #' ~ 2 -; " r,~ (, t #' - 1) .1, OK 

> 

{I:::: S} #3 < 2 --+ S, r: [r = TooSmall/\ 3:::: 5j 

The assignment of OK to r can be moved to the end of the exception block: 

1;	 "eLge distribuhon 4.9" 
{1~S)#,,,2 -;, ~(,t#,<-IH1 ) 

<] 

( 
> {1::::S}#s<2 --+s,r [r= TooSrnall/\3=Sl 
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r:= OK 

The exceptional construct is split into two with sequential composition. using 
the sQrm:what complicated law introduced earlier (page 24). 

~ "sequential composition 3.12"
 
{1~S},1'() -H ~(,t#,--I) )
 

> (I) 
( 

{f::: S} #s < 2 -t Il," [r:::: Too$mall /\ s :::: S] 

(I~S},1'() -t,,~(,.j.l) ) 

> ~) 
( 

{I:::: S} #.5 < 1 -t Il, r: [r ==: TooSmall/\ s:::: 5j 

(The use oJ this law is justified by noting that 

{I ~ S} #' ~ 2 -, ,.~ (, t #' -- I) t I 

C 

{I ~ S}, l' () -t , .~ (<t #' - I);
 
{I ~ S}, l' () -t ,;~ (, t I)
 

and that 

{l:::: S} #5 < 2 ---t $, r: [T ==: TooSmalll\ S := S] 

!::: 

{I ~ S},,, () -t,;~ (, t #' - 1); 
{l:::: 5} #8 < 1 ---J S, r; [T':= TooSmal[/\ s ::::: S] 

as required.) 

The program now looks very promising because the two halves of the sequential 
composition are similar to the specifications of the removeLast and removeFirst 
operations, respectively. Converting each exceptional branch into an assign
ment. then removing the unnecessary assumptions, and slightl)" re-writing the 
guards makes the match even more clear: 

(2) !::: , l' 0 -t,;~ d I
 
> S = () -t r,s:= TooSmall,l
 

(I) !::: , l' 0 -t,.~, t #s -- I
 
> #s < 2 -t r, s := TooSmall,l
 

~ "strengthen guard"
 
s ¥- () -t S := s t #8 - 1
 

> S = () -t r,s:= TooSmall,l
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We can make th(' match to the library specifications complf'te by definillg a 
handler for the exception which is raised when the operations are applied to au 
empty spqut'llce For this we need to retllrn to the top level of the developIDeut: 

Spec 
[;	 "intmduce hrmd/t',.. 4.5"
 

varl:seqN.
 
1:= s; 

[handler JEmptyExc:eption == 'T. s:== TooSrnall,l_ 
(B 1- () --l' j :=.s i #$ - 1 

Ds = () --l' railOe IEmplyExcepl-ion); 
(, " () .... , ,~, 11 

o .5 == () --l' raise IEmptyExceptwn); 
r;::: OK 

Notice that the handler for IErnptyException should actually be declared twice: 
however the handlers are idllntical and so the declarations can be merged. 

Finally we use the l:Opy rule to insert calls to the remotieLast and r"emoveFi"',5t 
operations, to give t.he following program: 

varl:seqN.
 
1:= s;
 
ff handler IEmptyExcept'lOn == r·, S := TooSmall, I •
 

.~. removeLas/:
 
s.rernoveFirsl.;
 
r:=OK
 

What's missing? 

Thif; completes our specification of the sequpnce class, but we should be honest 
and admit that there are a few parls of thf' commercially-available class that 
we haye not specified: 

•	 We have not given a specification of the iterator operation allElementsDo: 
this would not be too difficult, but we have concentrated on exceptions 
in this chapter. The next chapter shows how to use the allElement,~Do 

operation . 

•	 We have not described the addAllFrom operation, which allows the user 
to form a combination of two collections, by adding the elements of a 
second collection to the current one. It should be possible to specify this 
in terms of an iteration over the second collection, hut there are some 
interesting questions: for instance, what happens if an exception is raised 
(perhaps because of lack of memory) midway through the iteration? The 
manual is very unclear on this! 
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•	 As mentioned earlier, we have not described the L»ie of cursors, or the 
fOutO/Memory excl?ption, We ha.ve also liot described the operations 
whj(n use pointf'rs. 

8.5 Sample developments 

We can now give some larger sample develupments ....-hich use the Rpet:ificil.tion 
set out above. 

Mapping a function 

In order to show how we can use the specification of the sequeuce class above, 
we start by developiug a program to transform a giveu text, t, a sequence of 
words, into another text, 5, by applying an as-yet-unspecified funct.ion f to 
each element uf t. The development will be tackled in two different ways: Ilsing 
ordinary sequeuce operations ill this chapter, and using iterators in the next 
chapter. 

The specificatIDli of thf' proLlem stipulates that the sequences should have the 
same length, and that f should be applied to each elemeI!t of t to prodll(:E' the 
corresponding element of s. 

var s, t: ISfq[Word] 

"[(#' = #,) A Vj' 1..#'. ,j ~ f('j)] 

The first step is to introduce a local variable and split the specificauon statement 
into an initialisation, followed by what will become a loop: 

C	 Yarl:!\'. 
- "I~{#s=i)l\(i:S#t)I\VJ:1..i.sj=f(tjr· 

S,1 : {true, I]j (1) 
~,i:[I.I /\i=#tJ	 (2) 

The iuitiaJisation is easily implemented as two assignments: 

(1) r; ";'~ ( ),0 

and the assignment to s is implemented with a call to the ,-emol'f,4U procedure: 

~	 s.,-emoveAll1j 
i:= 0 

Returning to (2), v.'C can see that the iteration is guarded by I t:- #t, u,-hich 
we can represent as I t:- t.numberOfElemen~!, remembering6 that this is an 

6Seoe Appendix A. 
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abbreviation for the declaratiolL of a local variable, say fltJmT, followed by a 
call to t.n'UmbeTOfE!ement<~ with the result stored in numT, and the use of 
I 1: llumT as the real guard:? 

(2)	 ~ "iterution" 
do i;f:. t.numberOfElemenls!-+ 

. [ I I ] <J 
5.1: ~¥-#t'OS:.#t-j<#t-1(j 

od 

Siuee it is clear that we will need to increment l, we llse the followlfIg o.\'st91lment 
law on the loop body: 

i;;;; "following assignmt;nt" 

r I I[,\i+l]] (3)
!l: Li =f:. #t' 0 S #t - (i + 1) < #t - i ; 
i ;== i + 1 

It is tempting to implement Lhe first half of [be loop body with a simple assign
ment: 

(3)"	 ,,~.< ~ (J '(i + 1)) , 

but this would lead to trouble, siuce t.he only way we can access tlw (i + l)th 
clement of t it-; \.0 use lhe elementAtPusttiori operation. In order to 115(' it 
successfully, we OE'f'd to be sUI'e that the supplied position -'- 1+1 in this (:a.~e 

- lies within the bound~ of the sequence. So here we need 1 S i + 1 :S # t. 
Therefore, a development that proceeded st.raight to an a~signment as above 
would soon run into problems. So instead, we introduce another local variable 
to store the relevant element of t: 

(3) ~	 var 11' : Word. 
I /[,\.+1] ] 

11',5: [ i¥-#t'O:S#t-(I+l)<#t-t 

i; ''-~eql.Lential composition" 

<J 
11' = t(1 -1-1) 

W,' [;/#" ,/#t ]; 

w," [ , "I#t , II'\i + 11] (4) 
11' = t(i + 1) 

The first half of this is implemented by introdncing a nondeterministic choice. 
We know from tbe precondition t,hat the first branch of the cboice must be 
taken, so we have complete frt>edom of choice for the second branch. We choose 
to raise an exception so that tbis construct matches exactly the specjfication of 

7In the body of the loop, we conLinue to use #t, since these OCCUrTences are not in code, 
and will di9.ll.ppear later in thE! development 
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t.elemcntAtPontion(i + 1, w). 

<; "~uperfiuous choice 8.3"
 

1 S i + 1 S #t --)w:=t(i+l)
 
o (0 = ,+ I) V Ii + 1 > #tl --) raise(IPosttionlnvalidEw'ption', 

~ t.elementAtPosition(i + 1, w) 

Returning to the second half of the sequential compo~ition. we can expa.nd the 
definition of I and it is then easy to seE' that it can be implemented by app]:. ing; 
J to III, and then appending w to the end of s. 

#5 = I 

is #t #s == t + 1 
(41~ 1II, .~ : Vj:l.i.,j=!(tj), i+lS#t 

i##t Vj:l.i+l • .s)==:J(tj) 
w=t(i+l) 

[; IIJ:= /(111); 
!J:=.~ ~ (w) <J 

f; s.addAsLast(w) 

This completes the first development of the problem. Collecting the code gin'.~ 

the following program, when' we have also defined a dummy handler for the 
exception, even though we know that the exception can never be raised within 
the block -- this is to prevent an over-zealous compiler complaining that there 
is an undefined procedure: 

~ handler IPositionlnualidException := skip.
 
vari:N.
 
s. removeAll1; 
1:= 0;
 
do i t- t.numberOJElements! -+
 

var w : Word_
 
t.elementAtPosition(i + 1, w);
 
w=J(wl; ('1
 
.1.addAsLast(w);
 
i:= 1+1
 

ad 

I 
The assignment marked (_) is still not code, since we don't yet know the defi
nition of the function f. 

A particular function 

The development above is clearly generic, in that we do not specify what func
tion should be applied to each element of the list. We now lock at a particular 
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function f 1 which is moti"ated by an exercise from a standard programming 
texLll We do not go into any great detail in the development. since the prob
lem does not make any great use of exceptions, whirh are our chief concern 
in this chapter. However, several of the refinement steps arc motivated by thE' 
need to use operations from the sequence collection class for manipulating thf> 
seqnences involved, and this is til{' purpose of including the development here: 
we can see how the development ha.s to be geared towards these class operations. 

The iJroblem rpquirements are as follows: we are gi.....en a text t in thl' form of 
a Sf'qUlmre of words. and two list~ of words a and b. The task is to traI15form 
thl: text f into a text s by replacing each occurrence of a word a, with the 
corresponding word b•. Thus, for instance, if a is (one, two, th,.,:e) and b is 
(eleven.l.we/ve, thirteen}, then a text (it, is, two, mmute,~,pasl., three) would be 
transformed to (tt. ts. twelve, mmuf.es, past, thirteen). Clearly we can use the 
'map' code developed above, and the only work left is to define the function I 
which will serve in this case, and then to deve)o(.J code to replace the assignment 
marked (*) in the development of the previous section. From the informal 
statement of requirements, we can see that the function I that we arc interested 
in is the onf> which maps a word onto its transform: 

procedure transform(m : Word,result out: Word) ;;;=
 
out:= f(m)
 

where 
I : Word -i Word
 

'd . W d I( ) = { b(a-
I 

w) if w E ran a
 
IJJ. 01'. W w ifw'l.rana 

Expressing this as a specification, we get. the starting point for our development: 

out :=/(m) 

c; out: [( inEnna ) (,nf,ana)]
out =:- b(a- l in) Vout=in 

The algorithm chosen is a sequential search, where a local variable p i.~ intro
duced, the pnrpose of which is to store an index such that, if in does actually 
appear in a. then p will point to it, and if tn doesn't. appear in a then p will 
be set to one more than the length of a. Once p has been set to this valne, 
it is simple to achieve the desired postcondition with an alternation, using the 
elementAtPosition operation.9 

~ varp:N.

,[(,nE,ana) v(,nf,ana)] (5) 
p In = a p p =#a + 1 

[( in E 'ana) v( on fnna ) , out: 
m=ap p=#a+l 

8Thl' problem appeiUll in [55] a3 exercise 1. 7, where it is expressed in tl'rnl& of arrlloYS rather 
than 5equences. 

9A5 in the previou8 example, superfluous chPlce 8.3 is also required to introduce the 
'superfluous' branch of elementAtPoslhon. 
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in E "'" a ) ( in ~ "n a )]
( out:::: b(a-lm) V out:::: in <J 

!; if 1 ~ P .s:: #a --+ b.elementAlPo.'i1tton(p, out) 
o p = #a + 1 --+ out := in 
fi 

Setting p to t.he correct index value is achieved with an it,eration, which uses 
yet another local variable ,. to store the most recently access('d element of (J,. 

(5)!; var!J: Word 
"f ~ (1 So P So #a + 1) ~ (in ~ a[Lp - 111 

/\ (1 .s:: p .s:: #a:::} tI = a[p])" • 
p:= 1; 
a.elementAtPosition(p, tI): 
dopi#a+ll\ini!J~ 

if 1 S p .::; #a - 1 --+ a.elementAtPosition(p + 1,1';' 
Op=#a --+skip 
fi 
p := p + 1 

od 

This c,ompletes the development of the procedure transform. The cullected code 
shows three calls to the elementAtPosition operation from the sequence clas~: 

var p : N, v: Word 
p ::::: 1: 
a.elementAtPosition(p. v); 

do p t- #a + 1/\ in t- v --+ 
if 1.s:: p .s::. #a - 1 --+ a.eJementAtPosihon(p + 1 1') 
Op::::#a -lskip 
fi· 
p:= p + 1 

od;
 
if 1 .s:: p ~ #a --+ b.elementAtPosttton(p, out)
 
o p = #a + 1 --+ out := in 
fi 

8.6 Conclusion 

In this chapter, we have completed our study of exceptions. Chapler 3 started 
with a very abstract approach, which simply differentiated between normal and 
exceptional termination. Tben, in Chapter 4, we extended this by introducing 
handlers and multiple exceptions. We have now shown how to relate these ideas 
to the very specific exception mechanisms which exist in the Collection Cla~s 

Library. We gave a specification of one of tbe classes, and showed how it is 
possible to develop programs which use that specification. lr. particular, we 
showed several developments which use the exception-handling mechanisms of 
the Collection Class Library. 



Chapter 9 

Applications 2: iterators 

9.1 Introduction 

\"Ve invf'~t,igate in this chapter how W{' can appl:y the ideas about itcrators which 
were introduced in earlier chapters to the dewlopment of programs which usp 
the it{'rator fa.cility uf the Collection Class Library. We arc therefore not par
ticularly concerned with exceptions in this chapter. 

Our applications III this cbapter are based on the sequence Collection Class 
introdu<:,ed in the last chapter: this has the advantage that we do not. need to 
go through a long specification before WE? actually get to tbe more interesting 
section!; on how the iterator concepts are used ",ith the class. 

\\'e start by gidng an introductioll to the iterator mechanisms availablf' in 
the Collection Class Library. By taking a slightly unusual definition of the 
sequence type, we then show how one of these mechanisms can be related to 
the it..ti construct. We give some examples to show how programs can be 
developed using iterators over sequences, and we finish b:.' returning to the 
sequence example - mapping a function - from the pre',ious chapter. 

9.2 Iterators in the Collection Class Library 

The Collection Class Library incorporates two iteration methods: a mE'thod 
which uses cursors and a method which uses iterator functions. We will describe 
the cursor method briefly, and tben concentrate on the use of iterator functions, 
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because rhi~ is the method that relates best to am it. ti construct. 

Iterating using cursors 

An iteration over a collection can be achieved using t.he standard cursor oper
ations, and the C++ for construct. Consider the following example. 

ISet <int) colI; 
15et <int)::Cursor current(coll)i 
for ( current.setToFirst(); current.isValld(); 

current.setToNext()) 
{ 

II 
colI elementAt(current); 
II 

} 

coll is first declared to be a spt of integers, and current is declared (using 
the nested class Cureor ) <I.S a cursor for the set colI. The for constrnct is 
initiaJised with current. setToFirst, continues a.s long as current. isValict 
is true. and uses current. setToNext to advance to thp nrxt elemenl. In tht, 
body of the for construct, coll.elementAt(currellt) is used to obt.ain \<1. 
reference t.o) the element pointed to by current. 

In order to make programming slight.ly easier, the CollE'c\.ion Class Library 
provides a macro forCursor: 

.define forCursor (c) \ 
for ((c).setTorirst(); \ 

(c). isValidO; \ 
(c).setToNext()) 

With coll and current defined as abO\;e, the program now becomes 

forCursor(current) 
{ 

I I ... 
coll.elementAt{current) 
II 

} 

There are warnings in the manual [22J about. not adding or removing element:> 
from a collection during an iteration, 'or all elements may not be visited once'. 
One reason for this is that any addition or removal from a collection causes the 
invalidation of all cursors. 
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This is aJI that we will say about iteration llsing cursors, other than to note the 
similarity with the iteration schemes of various object-oriented languages (seE' 
Section 10.2). 

Iteration using iterator functions 

The second, and more interesting, mf'thod of iteration in the Collect.ion Class 
Library is to use the allElementsDo operation. Tbe Collection Class Library 
reference manual [22] gives two reasons why the cursor method might not be 
acceptable: 

•	 for unordered collections, it might be stylistically undesirable to haw 31\ 

explicit (yet arbitrary) order; and 

• it, is possible that it might be more efficient to carry out an iteration in 
an arbitrary order, using something ot.her than cursors. For instance, if a 
tree implementation is being used, a recursive descent iteration might be 
mare efficient, despite the extra function calls. 

In order to use the allElementsDo operation. the user has to supply a function 
which is to be applied to each element of the collection in turn. For ordered 
collections. the iteration order is the same as the order of the ('ollection, and, 
for unordered collections, the iteration order is arhitrary. The fum'cion to be 
applied to each E'lement of tbe colleCtiou also gives a Boolean return value. This 
vatue can be used to lerminate the iteration prematurely, since the iteration \~'ill 

only move on to the next element if this return value is true. 

For example, the sequence class contains the following declaration: 

Boolean allElementsDo (Boolean (.function) (Elementk, void_), 
void_ additionalArgument = 0) ; 

This function could be used to sum the elements of a sequence of integers as 
foHow~: 

typedef ISeq <int> IntSeq ; 

Boolean sumUpFunction (int const& i, void. sum){ 
.(int.)sum += ij 
return True; 

} 

IntSeq s; 
\\ ... 
int sum '" OJ 
s.allElementsDo (sumUpFunction, ksum) 
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The sumUpfunction is declared: it takes two parameters. an integer i and the 
cumulative total sum. Its effect is to add i to the totaL A sequence. s. ofintegero:. 
is declared. The variable sum is initialised to O. and then allElementsDo is 
applied to s with sumUpFunction as the CunctlOn to be applied to earh rlerrwnt. 
aud the result stored in sum. 

In what follows. we will make no use of thf' Boolean value returned by the 
function supplied as a parameter to allElementsDo, but it could clearly be 
used to provide an exit. tnechanism from the middle of an iteration. 

Doe of the drawbacks of this method of itt>ration call be seen in t.he aboy(' 
examp[(': if the function to be applied to each element requires additioJlru argu
ments, perhaps an accumulation parametE?r, these must be sllpplied J.S iI. second 
parameter to allElementsDo, aud they are therefon' not y;eJ] ('wapsulated. J11 

the example above, we have to supply sum as the extra param('ter. The Col
lection Class Library provides yet. another way of performing iteration to g('t 
around this: there is a form of the allElementsDo operat,ion which takes as 
its parameter an 'iterator class', rather than the function to be applied to each 
element. These iterator classes must cont.ain a function called applyTo, and the 
class must be deriyed from an abStract base class IIterator. Now additional 
arguments that are needed for the iteration can be pa..<;sed as argulllent;; to the 
constructor of the derived iterator class. However, we will not b(' u::;ing this 
form of allElementsDo. 

9.3 Collection Class iterators and it..ti 

We must now explain how we can relate the iterator mechani,m described 
above - allElementsDo with an iterator function -- to the it .. ti construct 
from Chapter 5. We will describe this relationship, just as we described the' 
mapping from guarded command programs witb excepti,ms and handlers to 
C++ programs. in terms of an informal collection of guidelines, rather than an~' 

formally-defined translation. 

The key to the relationship between allElementsDo and it .. ti lies ill Our '.. iew 
of the type underlying the s{'quence class. The traditional view - and thl' one 
taken in Section 5.2 - is that sequences are constructt'd as eHher empty or b~' 

applying the Cons function to an element and another sequence: 

type seq A .2: Empty I Cons A (seq A) 

\Vhen seen like this, sequences are oft{'n called 'Cons-lists'. However, for reasons 
that will become clear, it is much more convenient for lIB to use an alternative, 
but isomorphic, vi{'w, where we treat a sequence as a 'Snoc-list'[ll, Chapter 1]: 

type seq A :3 Empty ISnoc (seq A) A 

With this complementary definition of the sequence type, it ..ti constructs now 
take a correspondingly different form, with the branches as always correspond
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ing to the branches of the type definition: we can find the sum of a sequence s 
with 

it s into r with 
Empty --t r :== 0 

U Snoc ns n --t r :== 118 + rl 

ti , 

or the length of a sequence with 

it s into r with 
Empty --+1';=:O 

D Snoc n5 n --t r := ns + 1 
ti 

Now we must show how to encode this iLti in teems of allElementsDo. The 
technique used is to treat r, th(> result variable of the iteration, as an 'accumu
lation parameter': the initialisation ofthis parameter is derived from the Empty 
branch, while the function to bp passed La allElementsDo is derived from the 
Snoc branch by replacing occurrences of the front of the sequence -- ns in the 
examples above - with the result variable, and making the last elemC'nt of the 
sequence _. 11 abm"e -- a value parameter to the function. 

Examples may make this transformation a little clearer. The summation itf'ta
tor abov~ becom~s 

r ~ 0 ;
 
s.allElementsDo (value n, valUe-result r . r ~ r + n) ;
 

where we have used the standard nAinernent calculus desaiptions of parameter 
passing nlf'chanisms, rather than C++ 's more cryptic * and t. The initialisation 
r = 0 is taken directly from the Empty branch, whil£! the function r =. r -+ n 
comes from the Snoc branch, ,.. := 1IS + 11, with ns replaced in our usual way 
by the result ....ariable r. 

Similarly, the length iterator above becomes 

r =. 0 ;
 
s.allElementsDo (value n, value-result r r = r + 1)
 

Generalising slightly, we obtain the following guidelines for implementing an 
it..ti construct o....er a Snoc-list, s: 

it s into ,.. with 
Empty ---; r:= c 

o Snoc as a ---; r := !(as, a) 
,; 

is transliterated into C++ as 
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r = c ;
 
s.allElementsDo (value a, value-result r . r ~ f(r,a)) ;
 

The reason for treating sequences a.~ Snoc-lists rather than Cons-lists is so that 
the accumulation will 'start at the right end'. In functional programming tc·rms. 
our definition of it ..ti (once the recursion is removed) corresponds to a Joldr. 
rather than a Joldl: we t.herefore needed a definition of the sequence lype which 
matcl..les t.his. 

9.4 A simple development 

We can now return to the example of Section 8.5, and fulfil the promise made 
there to repeat the development, this time using iterators. The specification of 
the problem is that a sequence t should be transformed to another sequence $. 

by applying an as-yet-unspecified function f to each element l
, 

var 3, t: ISeq[Wonij 

"1(#' = #1) A"J' 1 .#1. '/ = /(11)] (1) 

It turns out that this development llsing iterators is much simpler than thE' one 
given earlier, siuee all the det.ails of local variables and do..od constructs are 
neatly encapsulated in the iterator construct. The first step is to t~pxpress the 
specification as a catamorphism: 

(1) ~ "~ Qm1, m2D' , 

where 

ml () ~ Empty
 
m2as a = SnOCflj (f a)
 

So we can immediately irnplemeut the catamorphism with an it. ti: 

f; "assignment itemtoT 5.2, Snoc version" 
it t into 3 with 

Empty --; s := Empty 
o Snocas a --; s:= Snoc as (J a) 

'i 

We can translate this into C++, using the guidelines above and the definition 
of s,removeAlll: 

B. removeA111 ;
 
t.allElementsDo ( value a, value-result s . s = Snoc 8 (f 8) ) j
 

1 Both sequences happen to contain words, but ~hat is not relevant hl'r~ 
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Once it is known which function f is required for a particular development, 
it is clear that the C++ function passed to t. allElementsDa can he further 
developed. Indeed, it is likely that it will he necessary to use another library 
operation, such as s. add, to add tbl' new element to the end of the sequence s 
as it is being constructed. However, thpsc are not our concerns here. 

9.5 More complex types 

We condude this chapter with a brief description of how the above scheme for 
translation to the Collection Class Library might be extended to morp. complex 
types such as trees. There is an obvious reason why the schelle cannot deal 
with trees in its present form; the trick of accumulating the result of a foldr in 
a variable Cannot work with a type like trees because there is morc than one 
recursive occurrence on the right hand side - we ne-ed to accumulate the result 
of applying the function in qnestion to the left sub-tree a.nd to the right sub
tree, so we need two local "."riables_ Of course, at the next level of unwinding, 
we m...>eu four variables. and so on. 

How~ver, WIO carl get round this problrm by splitting the prohlem into two parts: 
first we flatten the tree, then we iterate over the flattened strurture. Of course, 
the flattened structure shonld be of a typc for which we can easily convert to 
a call of allElementsDa. such as Snoc-Iists. We can often appeal to the fusion 
law [11, Equation 2.12] as a way of transforming a catamorphism o'l.'er tref;'S to 
one over the new typc, such as Snoc-lists. 

Of course, we should also consider the question of efficiency': this approach 
to the implementalion of iterators oyer complex structures - by flatttCning 
the structures and iterating over the f1attl'ned version - is only going to he 
acceptable if we can maintain the efficiency of an algorithm on the flattened 
structures when it. is translated back to the more complex structure. This is 
a topic which remains open for further research, which will inevitahly involve 
an investigation into the relationship between data refinement and the it..ti 
construct 

9.6 Conclusion 

In this chapter, we have shown how the iterator construct introduced earlier 
can be related to the iterator mechanism which is built into the Collection 
Cla."s Library. For sequences, we showed how treating a sequence a5 a Snoc-list 
meant that there was an easy way to turn an it.. ti construct into an initialisation 
followed by a call of the allElementsDooperation. We have seen that the it..ti 
construct is actuaJly very flexibll', since we can choose whatever 'view' of the 
type is most convenient. This choin:~ can he made at a late stage, as it does not 
need to be fixed. 





Chapter 10 

Related work and conclusions 

In this final chapter. we set our work in context by surveying other published 
work on exceptions and iterators. \Ve suggest SOInE' areas for future work and 
end by drawing some conclusions. 

10.1 Related work on exceptions 

In this section, we look at the varieties of exception mechanisms available in 
a selection of programming languages. before examining some proposed tech
niques for the formalisation of these mechanisms. 

A variety of exception mechanisms 

When we looked, in Chapter 3, at why exceptions were needed in program 
development, we mentioned two models of exception handling: the termination 
model and the resumption model. These models reflect the different views of the 
actions possible when an exception is raised or signalled - whether the signaller 
should be ended and control passed to a handling routine, or whether control 
should be passed to the handler and then back to the original signaller at the 
point where the exception was raised, after some sort of attempt to 'clean up'. In 
fact, when we examme the literature, we find a few other proposals for possible 
actions: the signalling procedure could be 're-tried' from the beginning, or the 
exception could be propagated to allow a higher level of procedure to respond to 
the error. This wide choice of actions i9 reflected in the variety of mechani9ms 
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a~'a.ilabl~ for exceptions in programming languag~s. Some langl1age~ permit 
more than one sort of response, while others restrict what, is allowed. In general, 
the more complex mechanisms are, not surprisingly. the cau~e for more complex 
formalisations. 

Exception handling in PL/I [35J is based on the resumption lnodel. For sOllie 
bu itt-in exceptions, it is possible to specify that an operation should be re-tried. 
though this feature i:> not extended to user-defined exception!;. Exceptions are 
automatically propagated until an appropriate handler is found, and the SCOpf

of exceptions is global. 

In contrast, exception handhng in CLU [31} is based on the t.ermin.,tion mudeL 
and exceptions must be explicitly propagated olong the invocation chain. The 
language allows only statements and procedures to raise exceptions, not expre.'>' 
sions. These exceptions can be parametrised, and, since exceptions that. might 
be rahed hy a procedure must appear in its declaration, a certain amount of 
type-checking is possible. 

Goodenough [20) has proposed a notation for exceptions that is extrem('!y flex
ible, allowing several forms of response to the raising of all exceptlon including 
both resumption and termination. The exceptions raised are neither typed nor 
parametrised. 

Ada's exception mechanism (see for example [8]) is based on the termination 
model, and here too exceptions are non-typed and non-parametrised. Excep
tions are not declared in procedure headings, and so compilers are unable t,o 
do much ch~cking, Ada's mechanism is fairly complex and therefore difficult to 
formalise. 

Yemini and Berry [57] have proposed an interesting scheme which is more am
bitious than most of the others, and claims to cover all of the possible responses 
to the r.using of an exception. They base their ideas on the so-called 'replace
ment model': by viewing a program as an expression, with side-effects allowed 
in expreSSion evaluation, they see the raising of an exception in an expression 
as corresponding to a sub-expression which could not be fully evaluated. The 
handler of an exception produces a resutt which can be used in one of two ways: 
it can either replace the result of the sub~expression (thus giving the effect of 
a I'esumption), or it can replace the result of the whole expression which raised 
the exception (a termination) - hence the name 'replacement model'. The 
authors' concerns with modularity and orthogonality lead to a very powerful 
and flexible mechanism. 

Formalising exception mechanisms 

There have been several attempts at fonnalising some of these exception mech
anisms. In many cases, this has meant imposing restrictions on the mechanism 
and providing formal semantics (or only a part of it, Or making significant pro
posals for change. For instance, Luckham and Polak [33] have attempted to give 
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axiomatic semantics to the exception mechanisms in Ada, and have only suc
ceeded by making major changes: banning automatic propagation of exceptions 
and insisting that they are propagated explicitly to invokers, for examp]£', 

Yemini [56J ha..<; given an axiomatisation of the exception mechanism baspd on 
the replacement model, which involves only two new proof rules in addition to 
those of the block-structurpd language in which the mechanism is used. The 
simplicity of the axiomatisation is probably due to the use of procedures and 
the concern with orthogonality of program constructs. 

Turning now to predicate transformer semantics, Cristian showed [15, 16] how 
a semantics could be gil-en to a deterministic programming language with ex
ceptious. His technique involved viewing programs as multi-exit structures, and 
thereby giving their meaning with sets of predicate transformers. Writing WPe 
for Cristian's wp, we have in his notation, 

•	 wpc(P,; ,a) denotes the weakest precondition un der which program P 
is guaranteed to terminate normally, satisf~ring the predicate o. This is 
simply the usual Dljkstra predicate transformer wp(P, a); and 

•	 UJPc(P, e,o) similarly denotes the weakest precondition under which P i!'> 
guaranteed to terminate at exit point e, satisfying a. 

According to CriEtian, the meaning of a program P was given by the predicate 
transformers wpdP, ; ,a) and wpc(P, e, 0) for all possible exit points e. 

However, if we try to use Cristian's technique on our own language which in~ 

eludes non-determinacy, exception blocks and an exit command, we soon ruu 
into problems. Following Cristian's ideas, we find that the meaning of a pro
gram P is given by the two predicate transformers 

Ulpe(P,; ,a) and wp,,(P,exit,o). 

However, the separation of the meaning of P into two separate predicate trans
formers is the root cause of the problem. Consider the program 

Q == skip nexit 

in which IT denotes nondeterministic choice. 1 Since we cannot guarantee that 
Q will terminate successfully, wpc( Q,; ,a) == false. Similarly, since we cannot 
guarantee that the exit will be taken, wPe(Q,exit,a) == false. So Cristian's 
semantics for Q is given by these two (constant) predicate transformers. 

Now consider instead the program RQ]. We know that, for successful termina
tion, 

wp,([QI,; ,0) = 0 

sil"lce t.he exit in Q will be caught by the exception block. This exposes the 
problem with Cristian's approach: we cannot give the meaning of RQ] in termS 

'The lll.llguage lor which Crist ian ga.ve a. semanucs in [16] did no~ include this open.tor. 
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(only) of the meaning of Q, since a does not appear in the latter. The problem 
is that, "'ith the two separate predicate transformers, we cannot express that Q 
is guaranteed to terminate, either normally or exceptionally: we can say only 
that it cannot be guaranteed to terminate in either state in particular. 

Apart from Cristian's work, there have also been one or two other allempls to 
generalise predicate transform('fS to deal with exceptions. At the start of this 
work, we were aware of Crist ian 's approaA.:h; but since then we have tncounten~d 

three others, two dating from the 1980s and the other contemporaneous with 
our own work. 

In an Ilnpubli::.hed report [6], Back and Karttunen discussed hOll" Dijkstra's 
wC'akest precondition predicate transformer [17] ('(mId be generalised: instpad 
of giving the semantics of a language by a function 

w : Stat -t (Cond -t Cond) 

(wbere SI.at. is the set of all statem12nts of the' language. a.nd C'ond dl'nure" 
the set of all possible pre- and postconditions). they introduced Ihe idea of a. 
multiple-arp;ument pre'dicate transformer: 

w : Stat --+ (Cond rn -t Cond) 

They uspd this notion to give semantics for statements with multiple exit points: 

w(S)( Q1,. ., Qm) is the weakest pr12condition which guarantees that 
execution of S will terminate at one of the exit points of S, surn that. 
if exit h, is reached, then condition Q. will hold, for i = 1, ... , m. 

After showing how Dijkstra's so-called 'healthiness conditions' may be gener
alised to multiple-argument predicate transformers, they defin~i a simple and 
elegant language for multi-exit statements (see also [2]), and uscd this to give' se
mantics to a language with goto statements, by trallsforrning it to the language 
with lIlulti-exit statements. 

Their work is slightly more general than mil work of Chapter 3, in that it allows 
for statements with any number of exit points rather than just the two, normal 
and exceptional. that we deal with. We prefer however to deal with multiple 
exits using a procedurc mechanism, thus keeping the extra semantic structure 
to a minimum. They also do not treat recursion. More significant is thE." fact 
that they deal only with a programming language, rather than a refinem12nt 
calculus, and so there is no notion of refinement of programs containing multi
exit statements. 

In another report, pnblished slightly later, [37). Manasse and Nelson give a 
s'imilar definition of a weakest precondition of two argument.s, though their work 
is not primarily concerned with exception handling, but the transformation of 
high-level control structures into low-level instruction sequences. 

Another related piece of work [291 has heen carried out at approximately the 
same time as our own. Following the work of Lukkien [34), which gave an 
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operational (trace-based) semantics for the guarded command language, Leino 
and van de Snepscheut give a similar semantics for a language with exceptions, 
by adding a state variable to indicate whether a statement has terminated 
normally or exceptionally, a construction isomorphic to our use of a pair of 
postconditions. From this trace semantics, they derive a weakest precondition 
semantics, with a defiuition, very similar to Ours, of wp(S) as a function of two 
arguments, for normal and exceptioual termination. 

They explore the algebraic properties of wp in terms of arbitrary functions of 
two arguments, but are not concerned, as we are, with the refinem('.nt of pro
grams containing exits. Indeed, the use of explicit specifications is a significant 
advantage when considering rules for rigorous program development that must 
refer to "assertions established within a program fragment". With specifications 
available, those assertions are explicit parts of the program; without them, rules 
for reasoning about a complete block must refer to the reasoning employed with 
respect to its constituents, rather than simply to the constituents themselves. 

We could nse the procedure-based exception mechanism of Chapter 4 to de
scribe the construct aaa <l bbb introduced in [29], which either executes 0.0.0. 

successfully, Or leaves aaa via an exit and continues with bbb. This structure 
is easily modelled as 

[ handler H ~ bbb •
 
aaa'
 

where, rather than "exit", the body aaa' uses "raise H", but is otherwise 
identical to l1aa. 

Of course, the benefits of a "<l-calculus", so nicely explored in !29], are not 
so accessible when the relatively heavy mechauism of procedures is used. But 
the procedure-based mechanism is perhaps easier to adapt to the sometimes 
perverse demands of ex.isting practice, and thus might be necessary anyway. 

10.2 Related work on iterators 

Several prograrnmiug languages include some sort of iterator mechanism, and 
we re\'iew a selection of them in this section. There has been much less work on 
formalising iterators - that is, providing a Cormal semantics and a mechanism 
by which an iterator COnstruct can be proved correct. Where such work has 
been carried out. for a particular language, it is mentioned below. 

Alphard 

The Alphard language [52J, developed at CMU in the Late 1970s, has two iterator 
constructs: 
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•	 a for construct which is used for iteration over a complete data structUfP: 
and 

•	 a first construct which is Ilspd (primarily) for search loops. 

\Ve will concentrate on [,he for constrnct, remarking only that exetllti<Jn of the 
first construct involves t.ra\-ersing a data structure lwtil an elemellt is found 
which meets some condition, and then performing ::;ome artion. (If no elelllellt 
satbfying the' condition hi found, an alternative action can be taken.) TIl(" for 
constrnrt takes the following form: 

for I: gen(y) while p(x) do ST(x, y, z) 

A local variable x is declared, which will take, in turn, the Y<1!nr5 sp(~cified by 
the generator gen(y). For each value of x which satisfies the consnaillt 0, rhf' 
loop body 51' is p.xecuteu. Clearly. the heart of the for con"truct lilO'~ in the idea 
of the geuerator gcn(y). so we look a littlp more closely at thit A generator is 
a 'form' (the Alphard term for abstract data type) obeying c('rt,ain conditi.ons: 
it must provide two Boolean-valued functions &irlit and &next, which h;lYP thl' 
sidC'-effl'ct that their invocation will produce a sequence of valms to be bound 
to the loop variable'. For both functions, the Boolean value returned indicat.e~ 

whether there are elements remaining which have yet to be iterated over. 

Thus the meaning of the for tonstruct can be given: 

begin local x: gen(y); 
7r +-- :r. .&init; 
while 7r cand 8(x) do 

(ST(x. y, z); 7r +-- x.&ne.:rt) 
end 

where 1f is a compiler-generated Boolean variable, t--- dpnotes assignmt'rlt. and 
cand denotes the 'conditional conjunction' operator. 

A simple example of an Alphard generator is the upto generator, which produces 
the sequence of numbers between a lower bound lb and an upper bound 'Ub
that is, (lb,lb + 1, ... , ub), or the empty sequeuce if lib < lb. 

form lIpto(lb, ub : integer) extends k: integer = 
beginform 
specifications 

inherits (allbut +--); 
function 

&init(u: upto) returns (b : boolean), 
& next (u : upto) returns (b . boolean); 

implementation 
body &init = (u.k +-- u.lb; b +-- u.lb :$ u.ub); 
body &next:=- (u.k +-- u.k + 1; b +-- u.k:$ u.ub); 

endforrn 
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Tbis generator can be used in a for statement. For instance, summing the first 
n intpgprs is achipved by: 

·~um +- 0; for j : upto(l, n] do sum +- sum + j 

It is possible to add verification information to an Alphard form, using an in
variant clause, an initially clause, and pre- and postconditions for each functiou. 
It is also possible to give a concrete version of the state, and to give a repre
sentation function relating the concrete to the abstract view. Proof obligations 
can then be given to ensure the correctness of the form: this means ensuring 
that irlVariants are maintained by abstract and concrete operations, and that 
initial states correspond. Since a generator is just a special sort of form, it is 
possible to apply these proof rules to a generator. Using the expansion of the 
for construct given above, it is also possible to obtain a proof rule for the con
struct. However it is rather unwieldy. Because of this, there are various simpler 
proof rules for the for construct, which can be used when the generator satisfie~ 

certain conditions. In practice, many generators do satisfy these conditions, so 
the full form of the proof rule is seldom needed. Thus the effort of the proof 
is transferred from the verification of the for construct, to verification that the 
generator oheys the necessary conditions. 

When comparing the Alphard generator with our own it ..ti construct, we can 
see two immediate differences from our own work. Firstly, we have hidden all 
the details of how to 'move on' to the next element of the collection, by using a 
recursive procedure. Thus tbe user of the iterator has no need to know anythiug 
about the internal details of the object over which he is iterating, beyond its 
definition. Secondly, we have considerabh> flexibility with the it ..ti construct: 
as noted in Chapter 9, l\'e have the freedom to choosp whatever 'view' is most 
convenient of the type of the variable to be iterated over. However. in Alphard, 
once the &llext function is defined, tbe iteration order is fixed. On the other 
hand, it should be noted that the Alphard mechanism has the advautage that 
it is easy to describe a generator that produces ani}" part of somp structure to 
be iterated over - perhaps every otber element of a list. While possible, this 
would be more convoluted with it..ti. 

CLU 

At around the same time that Alpbard was being developed at CMU, Barbara 
Liskov's team at MIT was developing a language called CLU [30J. One of 
the guiding principles behind CLU was that it should support abstraction in 
program construction [32]. The language contains mechanisms to support three 
forms of abstraction; 

•	 procedural abstraction - supported hy procedures; 

•	 data abstraction - supported hy the use of clusters, the CLU term for 
abstract data type; and 
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•	 control ab~lraction - as wen as the usnal if and while constructs. lter
alars can be dPl1ned 

An iterator is therefore a proceLlure-like camif.ruct, at the S<\ffie kvd <L~ procp
dUTes and clnsters. Like AJphard, iterators are used in conjunction with for 
statements: as the itf'ralor produces elements of a data structure Dill' at a tune. 
so the for statemf'nl consumes them. 

The syutax of the definition of an iterator in eLC is: 

id == iter [parms] a,gI' [yields] [sjgntlt.~J [where] 
TlJutincbody 

end fd 

The yields clause specifiC!s the number, order am} t~'pes of the objects which 
will be delivered at each stage of the iteration. \\'ithin the routine-body. d yIeld 
st.atement is used to presEmt the caller (a for statement) with Iht' nrxt element 
(The s1gnuls clanse specifies which exceptions may be rai:-ed. and Ihewherc 
clause specifies own variahles.) 

The CLV for statement takes the following form: 

for [id l , •••j in invocatIOn do bOlly end, 

wh€re tn'Vocation is the invocation of an iteJatOl. Unlike A\phard. where thp 
looping mechanism is found in the for stat(lmf'nt, in CLV the looping must b" 
explicitly programmed in the body of the iterator? Each tim(l a yield state
ment is executed in the iterator's body, the objects yielded are assigned to thf> 
variables declared in the for statement, and the body of the for srat(lment i~ 

executed. Then the iteratar body is resumed at the point immedIately follow
ing the yield statement. The for statement terminates on termination of t.he 
iterator. 

For instance. we can define an it.erator to yield the characters of a string. one 
at a timc: 

stnng_chars = iter (s : string) yields (char);
 
ind.ex; lot := 1;
 
11mit : int := atring$size(s);
 
while ind.ex :s. limit do
 

yield(string$fetch(s, mde.x)); 
index := index + 1: 
end; 

end string_chars; 

2In fact, it IS UBUal to use another, more primitl\·E, for statement ill tile bO<.ly of an itEralor. 
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We can then use this iterator to discover how many numeric characters a string 
contains: 

counLnumeric = proc(s; string) retucns(int); 
count: iot := 0: 
for c: char in Jtnfly-ehan(s) do 

if char_ls_Tlumeric( c)
 
then count;= count + 1:
 
end;
 

eud;
 
ret urn{ count);
 
end cotmLflumC7'ic
 

In her the.is [53], \Ving gave a method for specifyiug iterators, which has re
cently been extended to iterators for concurrent and distributed systems [54). 
Wing's technique for specifying CLU iterators involves adding assertions to an 
iterator, similar to those used for a procedure, to give pre- and postconditions 
for each invocation. However, unlike a procedure, an iterator's specification is 
concerned v,rith more than just two states - as well as the overall first and last 
states, there are the intermediate states for each invocatiou. There also needs 
to be a distinction hetween two kind~ of termination for iterators - the 'real' 
termination when all the elements have been rielded, and the suspension that 
occurs after each yield. The assertions refer to state variables which can be 
decorated with subscripts p"e and post, as well as a special state object (ie an 
auxiliary variable) jirfJt, which flags when we are in the very first state, and 
history variables which 'remember' values between invocations. 

Both of the remarks made above when comparing Alphard iterators to the it .. ti 
construct still hold true for CLU iterators: the user has to program explicitly 
the method of progress through the collection, and the it..ti is more flexible, 
However there is more generality here, iu that it is possible fm' the user of 
the CLU iterator to ...... rite a yield statement which returns a more complex 
expression than simply the current object in the collection - for instance, each 
yield statement might return a. pair of consecutive characters in the sequence, 
allowing a for statement to calculate the frequency of pairs of characters. This 
would be considerably more complex using an it .. tL 

On the verification side, while Wing's assertions and associated proof rules do 
allow the verification of a CLU iterator, the proof is at a very low level, dealing 
with the intermediate states during the iteration ~ well as the overall pre- and 
postconditions. In contrast, the effort of verification for the it ..ti construct is at 
a much higher level, involving the reformulation of the postcondition as a cata
morphism. Once this has been done, implementation as an iLti is immediate, 
by asfJignment iterntor 5.2, or a similar law for other types. 
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Object-oriented languages 

In recent years, many object-oriented environments have introduced libraries of 
a.bstract data types, often including container classes. These container cla<;ses, 
which describe such types as set::;, bags, trees, etc., often contain some sort of 
iteration mechanism, whereby the user can traverse the data structure. How
ever, these mechanisms are often based on the notion of a cursor, with the user 
having to supply cursor manipulation routines. As an example, we will descrihe 
the iteration mechanisms a,,-ailable in Eiffel [40]. 

The Eiffellibrary contains an Iteration Library which consists of da.<;ses which 
encapsulate various iteration mechanisms over arbitrary data structnres .- lin
ear iteration, two-way iteration, tree iteration (preorder, postorder or inorder). 
These iterations are defined in terms of two sorts of deferred rout.ines . - these 
are routines which are called in the iterator, but not actually defined until the 
iterator is used: traversal rontines and operation routines. The traversal rou
tines are concerned with cursors, and need only be defined once for each data 
type. The operation routint"'s are concerned with the particular actiorls to b(' 
taken as part of each iteration, and so can be given different values to achil:'Vf' 
different iterations. 

For example, the LINEARJTERA TION library class contains the following 
do_until routine: 

do_untll(s: TRAVERSABLE[Tj) is 
- - Starting at the beginning of s, apply action to every item of s 
- - up to and inr.luding the first one satisfying te.st. 

require
 
trnversable-ex13t3 : s :f:. Void;
 
traversable-satISfied: invarianLvalue( s)
 

do
 
from
 
start(s); prepare(s) 

invariant 
invarianLvalue(s) 

until
 
ofJ(s) or else test(s)
 

loop
 
action(s); 
!orth(,) 

end; 
jf not 0.fJ(3) then action(s) end; 
wrnpup(s) 

ensure 
not ofJ(3} implies test(s) 

end - -do_until 

In this iteration, the traversal routines are start, forth and off, and the opera
tion ron tines are prepare, action, test and wrnpup. 
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In order to itemtp over an object .~ which is it FIXED LIST. we can use an 
integer index position to represent the cun;or, and the traversa.l routines become' 

•	 start( s) - pMibon ;= 1 

•	 forth(s) -- position := po.9ition + 1 

•	 ofJ(.9) - pOllitton > count, where CGlmt givp:; the number of octupied 
places in .9, 

The Eifle} rpnaming methanisUl is used to allow two different iterations ovpr 
the same structure, by renaming the operation routines a') they are imported 

There are difficulties with the cursor approach to iterators, not Il?asl. the prob
lems of nested iterations. when it is not easy to keep track of several cursors 
and the problem of robust iterations, wheu elements may be added or removed 
during an iteration, There has been work reported to solve these problems: [23J 
proposes a CLU-like mechanism for Eiffel and [24J does the- same for C++, while 
[26] is mncerned with robust iterators in a C++ class lihrary. 

The chief disadvantage of the Alpbard mechanism and the Inore receut proposals 
for object-oriented languages is that they rpquire the user of the iterator to 
supply routines to control the iteration. This means that knowledge of the 
data structure's implementation is required, thus negating on(~ of the primary 
advantages of using t,he iterator in the first place. The CLU mechanism is much 
cleaner in that respect, but the complications in the proof obligations caused by 
thp suspend/resume semtilltics are non-trivial. Lamb has proposed [27] the use 
of trace specifications for the specification of Alphard-style iterators. He also 
mentions the use of procedure parameters, and shows how traces can be used 
to give 'partial specifications' of iterators which use procedure parameters, 

However, the maiu difference between the it..ti construct and all of thp related 
work mentioned in this section is in tbe level of abstraction and the level of 
mathe-matical maturity required for their use: the iteration scheme:; for Al
phard, CLl! and Eiffel all require the user of the iterator to suppI,"" routines 
which need knowledge of the internal structure of the type of the variable being 
iterated over. The user of the it..ti can work at a more abstract level, hut 
needs to be more mathematically mature; while the average programmer can 
easily understand the ideas of iuitialising and advancing a cursor, he may have 
more difficulty with catarnorphisms! However. he would prohahly benefit from 
thinking more deeply ahout the constructors oC both the type of the variable 
to be iterated over and thl' target type of the iteration. 

10.3 Further work 

There are several directions in 'o':hich it would be possible to extend the work 
described in this thesis, and we now investigate a few of them, 
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Exception handling and parameters 

In Section 4.4, WP mentioued the idea of passing parameters to excepllon han
dlers. This feature already exists in some programming languages such as eLl: 
[31J. It .....ould not he w'ry difficult to extend our handler mechanism - based 
as it is on the idea of procedures - to cover this possibility, USillg th~ otandard 
(by value) procedure-passing mechanism for procedure::!. 

Exception handling in other programming languages 

In Chapter B, we showed how the exception-handling mechanism mtroduced 
in Chapter -l. could be mapped to the C++ language and the Colle:tion CI<lsS 
Library. It would be interesting also to investigatt: how to d('velop programs 
in other languages with different exception-handling mechanisms. For instance, 
nums and \\'ellings [13, Chapter 6] describe the exception-handling mechanisms 
in the Ada95 and C++ languages and a proposed mechanism for C [28]. These' 
mechanisms are classified, together with those for CHILL, CLl} and \le5a, in 
terms of the HCOpf' of a handler, whether cxcf\ption propagation occurs, .....hether 
the resumption or terminatiou model is used, and whether parameters can be 
pa..<;scd to a handler. An attempt to formalise these mechanisms using our 
framework could make an interesting comparison. 

Iterators in other languages 

In a similar vein, it would be possihle to examine the iterator merhanisms of 
various prograrnrning languagl'"s to see how easy it would be to map OUf it .. ti 
constrllct onto different target languages. 

Iterators and optimisation 

The functional programming literature (e.g. [11, Chapters 7-10]) contains de
tailed studies of the application of catamorphisms to so-called 'optimisation 
problems', Siuce the it .. ti construct is based on catarnorphisrm, it should be 
possibLe to re-cast these problems in the refinement calculus framework. This 
alternative approach might yield further insights into this important application 
area. 

The Collection Class Library 

Thruing to the Collection Class Library, t.here are at least tllt'O areas that require 
further work before the aim of using the library in a formal dev€lopment process 
can be rE'alisoo. The first problem is the use of cursors, since our specification 
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oC the sequence class in Chapter 8 did uot include wy mention at all of cur
Sors. Although several attempts were made to describe the cursor mechwism 
formally, it wa~ not possible to find a well-structured description, such that the 
specification of any other library module also involving cursors would be able 
to fe-use the cursor description in the sequence cla5s. The second problem was 
referred to in the Introduction - point.ers. The difficulty of formally developing 
programs which use the pointer mechanism of a programming language remains 
an open problem, aud an important one. For efficiency reasons, programmers 
are always going to want to program with pointers, and it. is the task of thl:' 
formal methods community to provide them with a formal basis for doing so. 

Automation 

All of the developments in this thesis have been carried out by hand, without 
the assistance of any automation. However, it is clear that refinement calculus 
development methods are likely to be adopted on a large scale by industry only 
when there is significant tool support. Thus the addition of our new constructs 
t.o existing refinement calculus tools [14} would be a great aid in promoting t.heir 
use. 

Case studies 

Finally, more experience is needed in the use of all the language coustructs 
introduced in this thesis: exceptions, exception handlers, iterators, procedure 
variables, and so on. It is by working on case studies that. we will be able to 
propose (and later prove correct) laws which will simplify the developments 
that use these constructs. As Naumann put it [49], 'it remains to gain more 
experience with development of higher order programs in refinement calculi, in 
order to find more convenient notations and derived laws'. 

10.4 Conclusions 

The wOrk described in this thesis ha5 extended the refinement calcnlus to cover 
two new areas - exceptious and iterators. The motivation for the work came 
from IBM's Collection Class Library, and it is against this that we can measure 
Lts success. 

For exceptions, we built up a formalised exception mechanism, in stages, frOID 

a fairly abstract statt where we simply made a distinction between normal and 
exceptional termination, and gave a semantic framework in which refinement 
laws could be proved correct (Chapter 3). We then extended this by allowing 
the user to differentiate between different exceptional terminations in a sin
gle program, associating appropriate actions with each exception. To achieve 
this, Chapter 4 introduced a mechanism for handling exceptions, based on the 
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use of procedures. The connection back \.0 the CollectIOn Class Library wa.c; 

made in Cbapter 8 where a specification of a sample class - sequences - was 
given, and th(! Collection Class Library exception mechanism was related to 
the procf'dure-based mechanism previously described. Several programs were 
de\"e!oped formally, making USE' of the refinement laws which had been proposed 
and proved correct. \Ve can therefore regard tht' work on exceptions as reasoll
ably successful, in that it a.chie\·ed its aim of formalising the Collect,ion Class 
Library's exception mechiUlism. ),10reover. tbe ideas introducpd ShQllld be easy 
to transfer to differf'nt languages. allowing the formalisation of other exception 
mechanisms. 

For iterators, .....e took our inspiration from the field of functional programming. 
In particular, we based the iLti construct in Chapter 5 on catamorphisms. 
although it W,LS formally defined as a recursi\"e procedure. Having worked ini
tially with sequences, we also showed how iterators could be defined OVl:r more 
general types, and gave examples showing the it .. ti construct in USE' for d(:'
veloping programs. The second of these examples also showed hOI\" a. result 
from fnnctional programming ahout catamorphisms - the banana-slJlit law 
could be used to assist in an iterator-hased development. Since our goal was 
to describe iterators for the Collection Class Library, we t.hen needed a way to 
encapsnlate the it.. ti construct so that it could bf' defined in a library class. to 
be used as required. This meant that it would be necessary to pass procedure 
values to the library procedure. corresponding to the branches of the iterator. 
Although the usual parameter mechanisms for the refinement calmlus do not 
co\'er procedure parameters, we were able to use the work of Naumann as a ba
sis far a description of procedures as values. Once again, weakest prffondit.ion 
semantics allowed ns to propose and prove correct various laws. In Chapter 7. 
we used this work to develop a theory of procedures as parameters and to pro
vide an eucapsulation of the iterator construct so that it could be placed in 
a library. Finally, Chapt.er 9 brought us back to the Collection Class Library. 
as we showed how an iterator for the sequence class described earlier could be 
formalised with an it..ti con<;truct. This involved taking a slightl) unnsual def
inition of the seqnence type, so that the recursion of the it .. ti could be mapped 
to a foldr. The success in formalising the Collection Class Library's iterator 
mechanism is perhaps not so striking as tbat for exceptions, as iL is depeudem 
on finding a definition for the type which corresponds to <I. foldr. HowE'wr, for 
types which do have such a definition. the formalisation works well. 110reover, 
the it .. ti construct remains well-defined for types which do not have such a 
definition, and the results and laws on procedures variables have lUnch wider 
application. 
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Appendix A 

Procedures and C++ functions 

As was mentioned in Section 8.3, we encounter a problem when modelling the 
C++ collection classes in the refinement. calculus, due to the fact that thp C++ 
language does not distinguish between procedures and functions. Although the 
refinement calculus language considers only procedures, many of the collection 
classes contain operations which are enquiries on the state variables - in C++, 
these are functions which give return values and therefore can be used as ex
pressions. For example, as well as the normal operations such as add and delete 
which alter state variables. the sequence class also contains such operations as 
number-O/Elemenfs, which returns the number of elements in a sequence. If 
we stay strictly within the refinement calculus notation, we must model the 
operation as a procedure with a result parameter: 

procedure numberOfElements(result n: /\I) ==
 
n:= #s
 

Now, how can we use a procedure such as this? As usual when we intend to 
use a procedure, we manipulate our program until it 'matches' the body of the 
procedure (with suitable substitutions for parameter passing). In the simplest 
possible case, suppose we needed to develop code to implement 

x:== #s 

where s is a sequence. This is easy: we use the result-a.ssignment law to refine 
this to a call of the procedure n:umberOfElements with x a.s the result parameter: 

~ s.numberOfE1ements(x) 

When we come to transliterate to C++, the obvious way to code up the result 
parameter is a.s an assignment. So v..e finish up with 
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x = s.numberOfElements 

However, things arc not so simple if the expression on the right of the a:;signmen, 
is slightly more complex; 

x := #s + 1 

:.'low we have to introduce a local variable, which we usp to stOTP th€ result of 
a call to 1I1/,mberOfElements: 

~ vael_ 
,~.numberOfElements(l): 
x;= 1+1 

This is transliterated to C++ as 

1 = s.numberOfE1ementsi
 
x = 1+1
 

whereas thp program which we would really like to develop is 

x = s.numberOfE1ements + 1 

using the result of \.h(> function call as a sub-cxpression in the expression being 
assigned. 

One possible solut.ion to this problem would be to extend the refinement cal~ 

culus notation wit.h some form of 'calculus of functions'. Although this is an 
interesting idea, it is not very relevant to the main topic of our work, and we 
therefore reject it Illdeed, it is a non-trivial problem, and could potentially 
lead to non~delerministic expressions in the langnage. Instead. we adopt a 
pragmatic solution, which allows us to specify these operation::, & procedure:;, 
in the normal refinement calculus fashion, and then to develop programs wlLietl 
use them as though they were Iunctions, in the natmal C++ way. 

The solution is based on an abbreviation, which we will explain b;r' de\'eloping 
code for the specification mentioned above: 

x := #s + 1 

We notice that the body of numberOfElements consists simply of an assignment 
to the result parameter n. '(jnder these circumstances, if the expression being 
assigned in the procedure body (here '#8') appears as a sub-expression on the 
right-hand side of an assignment during a development, or within the guard of 
an aJternation, we allow ourselves to replace it by the procednre name decorated 
with an exclamation mark, numberOfElements! So we can write 

x ;== #s +1 
<;;
 
x := numberOfElements! + 1
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This is transliterated to C++ in the ohviotlli way. 

This abbreviation cuts out some of the details of the development: essentially, 
we are saved from introducing a local variable to store the result of the 'enquiry 
procedure'. If we were being totally formal, this local variable would become a 
local variable in the C++ code, which we could then optimise away by noting 
that, since the enquiry operation has no effect on the state variables, we are 
justified in replacing an}" occurrence of the local variable in an immediately
following expression with an inline evaluation of the enquiry. 

The full details of these abbreviations are given below. In all of them, P is taken 
to be a procedure without. side-effects which has a single result parameter, with 
a specification of the following form, where E is an expres:;ion: 

procedure P(result r) =
r:=E 

Abbreviation A.I atJSiynment abbreviation definilion 

Pi may be used as an expression in the right-hand side of au ~signmcnt, 

standlng for a declaration of a fresh local variable I, a call of P with I as 
the result parameter, followed by the assignment with 1 in place of Pi: 
x := n:p(P!) =- I[ var I. 

PIll; 
x ;= ",p(l) 

II 

The associated law which allows us to introduce this abbreviation iuto an as
signment is: 

Law A.2 assignment abbreviation 

IT F is an expression, and P is defined by 
procedure P(result r) =

r:= E 
then 

x;= F 
!;; 
x;= FIE\ P'] 

Abbreviation A.a alternation yuard abbreviation definition 

P! may be used as an expression in the gnard of an alternation, standing 
for a declaration of a fresh local variable 1, a cal} of P with I as the result 
parameter, followed by the alternation with 1 in place of P!: 
if (~ ;. G,(P!) --> B,) fi 
=I[varl. 

P(l); 
if (0 ; • G,!I) --> B,) fi 

II 
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The law which allows us to introduce this abbreviation into the guard of an 
alt.ernat.ion is: 

Law AA altematioTl abbreviation 

if (D i • G, -) B,) fi 

c: 
if I~ i. G,IEI P'I -> B,) fi 

Tb~ form of the abbn'viation when PJ is used in the guard of an i!rratioll is 
slightly LnOTe complex and may not actnally be ueeded. 

Abbreviation A,5 ite.mtiO'j guard abbreviation deji'futtolI 

P! may be used as an expression in the guard of aD iteration, standing 
for a declaration of a fresh local variable I, a call of P wit.h I 3.,', the result 
parameter, followed by the iteration with I in place of P!, and a call of P 
after thp iteration hody: 

do (~ i. Ctt?!) ~ B,) ad 
=I[varl e 

PI/), 
do I~ i. G,(l) -> B,; PIl)) od 

]1 

So our example above now becomes 

I:= #s + 1 
L 

I := s.T1umberOfElements! + ] 

which is transliterated to C++ as 

x = s.numberOfElements + 1 

This abbreviation is used most frequently with the enquiry prurrJures in the 
specification of sequences in Chapter 8. 



Appendix B 

Summary of laws 

For easy reference, ail of the laws, definitions and abbreviations from elsewhere 
in the thesis arE' gathered together in this appendix. 

Chapter 3 

Law 3.1 program after exit 

A program following exit has no effect.
 

exit; aaa = exit
 
(Equality of programs means semantic equivalence, that is, mutnal refine

ment.)
 

Law 3.2 exit ending block 

An exit at the end of a.n exception block has no effect. 

[aaa; exit] == [aaa) 

Law 3.3 e:I:ception-free block 

Exception blocks have no effect on exception-free programs.
 

[aaa] = aaa provided aaa .., exceptIOn-free
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Law 3.4 exceptional .~peCtficatiofi 

An excf'ptional specification can be formed by duplicating the postcondi
tion of a non-exceptional specificat.ion statement, and surrounding it with 
an exception block. 

w. laJ!1 = [w. la,!! > p]1 

Law 3.5 take TlonrJ.al branch 

A specification statement can be implemented by taking the normal
 
branch uncouditiollally.
 

til : [a, d > ')1 ~ w ; [a, 8]
 

Law 3.6 take exceptional branch 

A specification statement can bE' implemented by achieving the excep
tional postcondition, and then performing an exit. 

til: [a,tJ > IJ ~ w: [a, 1"]; exit 

Law 3.7 else notation 

Specifications and the ·else' not.ation 

w. [a,B > 0'] = w. la.j!] > w. la,o] 

Law 3.8 take normal brunch 

An 'else' (':clIlstruct can he implemented by taking the first branch uncon~
 

ditionally.
 

aaa >bOb (; aaa
 

Law 3.9 takc exceptional branch
 

An 'else' construct can be implemented by taking the second branch un

conditionally, followed by an exit.
 

aaa >bbb ~ bbb; exit
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Law 3.10 choice-else 

A nondeterministic choice between two programs which do not contain 
exceptions is equivalent to an exception block containing the programs as 
branches of an 'else' construct. 

aaa U bbb = [aaa > bbb] provided aaa and bbb are excephon-free 

Law 3.11 introduce tnvial else 

An exit-exception pair caD be introduced by offering the trivial choice 
between equal alternatives (corollary to choice-else 3.10). 

aaa = [aaa > aaa] provided aaa t$ exception-free 

Law .1.12 sequential composition 

Distribute sequential composition through 'else'. 

aaa > bbb 

(eec> bbb) ; (ddd> eee) p,-ovided aaa ~ ccc: ddd " 
and bbb i; ccc; eee 

Law 3.13 sequential composition 

Splitting a specification with sequential composition. 

w' [a, Ii > 01 

w, [a,; > oj , " 
W , [;,Ii > 01 

Law 3.14 recursion 

Let e be an integer-valued expression, V a logical constant, aaa a pro
gram, and P a monotonic program-to-program function, and assume that 
neither aaa nor P contains V. Then if 

{e = V}aaa !:"; P({O S e < V)aaa) 

we can conclude 

aaa ~ mu D • P(D) urn 
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Law 3.15 Iteration 

1lI: [n,D: 1\ ---.G > fj] 
!; 
do G-+ 

W : [0: 1\ G ,(} 1\ (0 :S e < eo) > 13] 
od 

Law 3.16 loop introd1lction 

w' [0,6J
 
!;
 
loop 

W : [0: ,0: A (0 :S e < eo) > OJ 
end 

Chapter 4 

Law 4.1 handler definition 

A declaration 

handler H == hhh 

is an abbreviation for 

procedure H ;; hhh: exit 

Law 4.2 mlse definition 

Raising a.n exception 

raise H 

is an abbreviation for 

H, 

a call of procedure H. 

Law 4.3 ,sequential c.omposition and mise 

aaa; bbb 
[ handler H =- bbb • 

aaa; raise H 
provided £laa and bbb are exit-free 
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Law 4.4 mtroduce handler 

[P(aaa; exit)] 
[ handler H == aaa • 

P(raise H) 

Law 4.5 introduce handler 

[P(aaa > (bbb; ",)) I 
[ handler H :2: ccc • 

P(aaa Q (bbb; ,ai,e H)) 

Law 4.6 mtmdlJcc handler to choice 

aaa ~ bbb 
[ handler H === bbb • 

aaa 
~ raise H 

provided aaa and bbb are exit-free 

Law 4.7 roise-lJequential compollition 

raise H 
raise H; aaa 

Law 4.8 disjunction-else distribution 

w: [a,f31 V.. V131l] 
c:; ! 

w ; la,~,J 

> 
w ; [a,iJ,] 

> 
w; la,~"J 
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Law 4.9 else disl,n'bution 

(aaa; bbb) :> cee
 
(aaa :> eee); bbb
 

Law 4.10 else distribution 

(aaa; bbb) :> eee 
[;;; (aaa:> eee) : (bbb :> cee) provided etC ~ aaa; eee 

Chapter 5 

Definition 5.1 ,~eq'Uence derator 

An iteration over a sequence s of the following form 

it s into r with 
() --4 bbb 

oa:a.s -----+ eee 

'1
 

is defined as
 

1(" r)
 

where
 

procedure [(value s, result r) :=
 
i.f	 s is 

() --4 bbb 
U"a, --4 I[var 1.1(",./): ",[a'\l1 ] I 

6 

Law 5.2 assignment iterotor 

If the value to be assigned to a variable is fanned by the application of 
a catamorphisrn to a sequence, then the whoI", assignment can be imple
mented with an it ... ti construct. 

"'~ilJ,gD , 
!; 

it s into r with 
() --4",~ f 

Ua;as -t r:= 9(0, a-'l) 
,1 
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Definition 5.3 general iteratQr 

IT t is any element of the type l' defined above, then 

it t into" with
 
a --. aaa
 
~bx -----jobbb 
~cyt' --+ ecc 

ti 

is defined to mean the same as 

1(1, r) 

where 

procedure I(value t,result r) == 
if t is 

a ----+ aaa 
~bx -----jobbb 
~c"t' ~ Ilvarlo1(t',Ij;ccclt'\lJI! 

fi 

Law 5.4 assignment ~terator 

ro= [P, Q, RI t 

" it t into r with 
a --+r:=P 

~ bx ~ ro~ Q(x) 
~ C Y t' ---t r:= R(y, t') 

ti 

Chapter 6 

Definition 6.1 procedure type equivalence 

We extend the normaL rules about type equivalence by explaining when 
two procedure types are type equivalent: types proc (value v : 
V,result r: R) and proc (value Vi V',result,..': R') are equiva
lent (written =) exactly when V == V' and R = R' . In other words, the 
parameter Dames are not significant, and neither are the global "ariables 
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Law 6.2 int'r"oduce local variable 

wp(var x • aaa, ¢) 
= 'r/1:. wp(aao,¢ t x) 

provided ¢ contains no x 

Definition 6.3 procedure constant call 

[call P(e, wI]" .• 

?J/,lJ,r,g.
 
".P ~ (J,e",g) ,
 
~
 

Definition 6.4 explicit procedure. ezpressioTi call 

[call (value iI,result ,... pHe, w)] ..p 

3/, g.
 

Ipl ~ !j,e",g) '
 
~ 

Definition 6.5 procedure variable wll 

"E [call pe(c.wIH 
~ 

3/,1),,-,g_ 
a.pv == (J,V,T",g) 1\ 

"E~ 

Law 6.6 introduce procedure variable execution 

w : [pre, post] ~ pv ost] C 
w call pu[ pre ,p -

Law 6.7 procedure variable value a.5signment 

If the procedure variable pu has been declared as procedure (value v), 
then we have the following refinement: 

w: [w :=P; t:;; pu ,post] t:;; call pv(A) 

provided w: [pre,po5t] ~ w:= E[v\AJ 
where A contains no v 



162 APPENDIX B. SUMMARY OF LAWS 

Law 6.8 

Law 6.9 

Law 6.10 

Definition 7.1 

procedure variable result asstgnment 

If the procedure variable pv has been dpclared as procedure (result r), 
then we have the following refinement: 

a: [r:=p;er:;;.pv,P05tJ ~ callpv(a) 

provided a : [pre, post] (;;; a := E 

where ,.. does not occur in E. 

procedure t11lriable value specification 

If the procedure variable pv has been declared as procedure (value I), 
then we have the following refinement; 

w, [ p" I c: ,post] c:: call pu(A)[ w; prel,postL _ pv - . 

provided w : [pre, post] ~ w : [predf\A], postdfo \A(J]] 

where Ao is A[w\tl.\:l] and post] contains no f 

procedure variable result specification 

If the procedure variable pv has been dpc]ared as procedure (result I), 
then we have the following refinement: 

0' [I' [P p,"[ VII c: ,po"l f; call pv(a)
. I'"el,POSl a _pv J 

pTOV1ded a ; [pre, post] ~ a : [pre" postd 

where 1 does not occur in prel' and neither 1 nor 10 occur in post}_ 

Chapter 7 

procedure value substitution 

wp(P[vaIue IP\APJ, ¢) 

VX • X ::l AP => wp(P,¢)I!P\X] 
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Definition 7.2 procedure result substitution
 

wp(PI,e,ul' '"Plap], ¢)
 

'if Ip. wp(P[rp\apJ, ('Ii ap • ap ;;;) lp :::> ¢) tap)
 

Law 7.3 procedure variable value and result specification 

If the procedure variable pv has bet>n declared <1.<; procedure 
(value v, result 1'). then we have the following refinement: 

W, ar: [ pre , post] C call pv(A ar)
w, r: [prel,postdar\r]] r;;:; ptJ - , 

provided w, ar: [pre, post) r;;:; w, ar: [predv\A],postl[V\A] ] 

where l' does not occur in pre!, and neither r nor 1'0 occnrs in postl _ 

La~ 7.4 assignment stiJiter 

If the value to be assigned to a variable is formed by the application of 
a catamorphism to a sequence, t.hen the whole assignment can be imple
mented by a call to seqiter. 

"=iI!,gD, 
>:: 

seqiter(	 (result er. er := I), 
(value a, t1.'I; result cr. Cr;= g(a, as)), , 

La~ 7.5 procedure tJanable value and result specification 

If the procednre variable pv has het>n declared as procedure 
(value v,result r), then we have the following refinement: 

w, ar : [ W, v, r : [pre}, :t [ar\ r]] i;:;; pv . post] ~ call pt'(.4, ar)
l 

promded w, ar ~ [pre, post] ~ w, ar : [predv\AJ, postdttJ \Aoll 

where T does not occur in pre!, and neither v, r nor ro occur in post}, 
and Ao is A[w, ar\tLb. aro]. 
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Chapter 8 

Law 8.1 e15e dutributiQn 

(aao.; bbb) > ccc 
f; (laa; (bbb > ccc) provided cc.e !; aaa; eee 

Law 8.2 disjunction-el!le 

w, [o,PV ,1 
I 

W, [o,P > 11 
J 

Law 8.3 !JuperjiuDlL3 choice 

w'IQ,Pj 
C 1 -. w, [Q,PJ 
- ~ ~1 -t aaa 

provided 0 => I 

Law 8.4 ab80rb guard 

° -. w, [P,1J 
W, [Q => P,Q[w\""j A 11 

provided tL.U is not free in 0 

Appendix A 

Abbreviation A.I 113siynment abb~viation definition 

Pl may be used as an expression in the right·hand side of an assignttlent, 
standing for a declaration of a fresh local variable I, a call of P with l as 
the result parameter, followed by the assignment with I in place of PI: 

% ,= "P(P!) ;: I[ "'" I. 
Pill; 
% ,= ezp(/) 

II 
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Law A.2 assignment abbreviation 

If F is an expression, and P if! defiOl"d by 
procedure P(result r) .= 

r:= E 

then 

x:= F 
[: 
x ,= FIE\ PI] 

Abbreviation A.3 alternation yuard abbreviation definition 

P! may be used as an expression in tbe guard of an alternation, standing 
for a declaration of a fresh local variable 1, a call of P with I as the result 
parameter, followed by the alternation with I in place of P!: 

if (D ; • G.(P') -> E.) fi 
=I[varl. 

P(l);
 
if (~ i. G.(l) -> E.) fi
 

II 

Law AA alternation abbreviation 

if Wi. G. -> E.) fi 
[: 
if (0 i • G.[E\ P'l-> E.) 6 

Abbreviation A.S iteration yuard abbreviation definition 

P! may be used as an expression in the guard of an iteralion, standing 
for a declaration of a fresh local variable 1, a call of P with I as the result 
parameter, followed by the iteration with 1 in place of Plo and a cal] of P 
after the iteration body: 

do (U ; • G.(P!) -> E.) od 
=I[vurl. 

P(l);
 
do (~ i. G.(l) -> E.; P(I)) od
 

II 




