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Abstract

This thesis extends the refinement calculus into two new areas: exceptions and itera-
tors. By extending the caleunlus in this way, it is shown that we can carry out the formal
development of programs which exploit the exception-handling and iterator mechanisms
of programming languages. For both areas of expansion, the same strategy is vsed: rel-
atively simple extensions to the language are first proposed, together with the semantic
machinery to prove the correctness of new laws. Then these simple extensions are com-
bined into complex mechanisms which mimic more closely the language facilities found in
programming languages, which are necessary for programs of realistic size.

For exceptions, the major idea is to distinguish between normal and exceptional ter-
mination of program conatructs. Dijkstra’s weakest precondition semantics are extended
to give meaning to this by considering predicate transformers which take as arguments
more than one postcondition. The notation is extended to deal with multiple exceptions,
and appropriate actions for them, by the use of procedures.

The technical background for the iterator construct proposed comes from the functional
programming community: homomorphisms from initial data types. Again, it is shown how
this can be related to iterators in programming languages. This involves giving weakest
precondition semantics for procedures as parameters.

Both extensions to the refinement calculus are used to give formal developments of
programs which use a pre-existing library of abstract data types, A specification is given
for a typical library component, and several sample programs are developed.
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Chapter 1

Introduction

1.1

Ever since the 1968 NATO conference which introduced the phrase ‘the soft-
ware crisis’ to the world, software developers {or at least their managers) have
been searching for the Holy Grail of programming -— a software development
technique which will allow them to develop ever larger and maore complex soft-
ware products, with the certainty that the programs delivered will perform as
expected, always giving ‘correct results’ — whatever that may mean. They
also want to be sure that these products will be delivered on time and within
budget, and that they will be documented and structured so as to make it
simple to carry out any future enhancements — of course, there will be no
bugs, so error removal will not form part of maintenance. It is now 30 years
since that conference, and, despite the claims of some marketing managers and
over-enthusiastic salesmen, the search for the ultimate software development
method is still going on. This thesis attempts to fill a small hole by extending
an existing development tecknique and notation to cover two areas that were
previously beyond its reach. No claim is made that the extended methed is
even close to this ultimate development methed, but it is certainly a step in
the right direction!

Software development and the refinement calcu-
lus

The notation which s ta be extended is that of the refimement caleylus,' which
is based firmly on the idea that programming is a mathematical activity. When

‘In particular, we use Morgan's version of the calculus [44].

2



1.1. SOFTWARE DEVELOPMENT AND THE REFINEMENT CALCULUS 3

Dijkstra introduced his language of guarded commands [17], he included con-
structs that could be given simple and elegant mathematical meanings. Con-
structs such as the unrestricted ‘goto’ of early programming languages were
rejected hecanse they did not have a simple mathematical meaning: symp-
toms of their complex semantics were that there were no simple laws that they
obeyed, and that programmmers were much more likely to misunderstand their
behaviour and make mistakes while using them. The claim of early members
of the ‘formal methods’ school was that programmers who used a restricted
language with well-understood semantics were much less error-prone.

One of the areas of research interest which subsequently opened up was the use
of mathematical notations for the specification of software: by introducing pre-
cision into the software development process at an early stage, to describe what
the proposed system was intended to achieve, researchers {and users) hoped ta
uncover misunderstandings and aveas of uncertainty as early as possible, thus
enabling corrections to be made before too much further work had been carried
out. Because the ‘programming language’ — Dijkstra’s language of guarded
commands, or something similar — and the specification language both had
a firm mathematical basis, it was pogsible, at least in theory, to prove that a
program met its specification. Much research effort was spent, and is still be-
ing spent, on ways of proving such developments correct, using technigues such
as introducing intermediate design stages to reduce the size of the ‘gap’ 1o be
proved.

By the early 1980s, it had become clear that one of the problems was the
difference in notations used at the specification, design and coding stages: at.
each stage a favourite notation was used, making it difficult to prove relation-
ships between the stages. This caused a growing interest in ‘wide-spectrum
languages', which were languages that could be used throughout the develop-
ment process, with features designed particularly for certain stages, but the
whole language described in a coherent mathematical framework. This reduced
the difficulty involved in translating from a specification notation described in
one sort of mathematics to a design notation described slightdy differently, to
a programming notation described in yet a third way. The various refinement
caleuli? are such wide-spectrum languages, which developed by extendiug the
programining language — Dijkstra’s guarded commands — with non-executable
constructs suitable for writing specifications. A development begins with a
specification, usually expressed in terms of these non-executable specification
construets. The specification is then ‘transformed’ until it contains entirely
executable constructs. These transformations are justified by the laws of the
calculus, which guarantee to ‘preserve meaning’ in a very precise way, Details
of Morgan’s version of the refinement calculus notation and its laws are given
in Chapter 2.

2Far historical reasons, we often refer to ‘lhe refinement calculus’, although there are
several notations — see Section 2.2 [or some details of Lthe history of these calculi,
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1.2 Extending the refinement calculus

This then is the context in which we are working: we have chasen ta extend
the refinement calculus to cover two new features of programming languages:
exceptions and iterators. The reason for the choice of these two additional fea-
tures lies in the author's experience while working on a research project funded
by IBM Hursley. By the early 1990s, there had been some success at Hursley
in the use of formal methods, at least in the area of recording specifications
and designs preciscly. if not in the use of proof, and there was some interest
in the use of other technigues to improve programmer productivity. One of
the techniques investigated involved the use of the Boblingen Building Blocks:
these were a collection, produced by IBM’s laboratory in Béblingen, Germany,
of implementatinns of commonly-used abstract data types, such as sets. maps
trees ctc. The Blacks were implemented using the macro-expansion facilities of
an IBM-internal high-level systems programming language, PL/AS. The inves-
tigation looked at ways in which the use of the Blocks could be incorporated
into a devclopment niethod which was then based on 2. The intention was that
specifications would be written in Z, using 2's notians of sets, rclations, func-
tions etc, which could then be implemented directly using the relevant Building
Blocks. Clearly, the first step was 1o write formal specifications for the Blocks,
but here certain problems arose. Three serious difficulties were discovered while
writing the specifications:

o the Blocks included an iterator mechanism, which allowed programmers
to apply an operation to each element of a data structure;

s when an operation failed, an exception-handling mechanism came inta
effect; and

» many of the operations dealt with pointers, either as inpnts or outputs.
rather than dealing with the data structures themselves.

The last of these was recognised as just one aspect of a major problem that
has heen facing the formal methods community for some time — how to deal
convincingly with pointers. It was decided not to tackle this. but to work ou
the first two problems, which provided new and interesting challenges.

At around tbis time (1993}, a new version of the Building Blocks appeared,
re-written to use the C++ language, rather than PL/AS, and available as a
commmercial product, rather than being restricted to the IBM community. It
was also no longer dependent on the rather crude macro-expansion facility of
PL/AS, and seemed to be a much more stable and robust product. It was
therefore decided to base the research arpund this product, which had now
been renamed the IBM Collection Class Library.
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1.3 Thesis structure

In order to give meaning to the exception-handling and iterator mechanisms
in the Collection Class Library, our strategy is to describe first seme simpler
constructs which we can add to the refinement calculus and give meaning to,
and whose laws we can explore, before showing how these simple constructs can
be used for the more complicated mechanisms of the existing library. Prior to
that, in Chapter 2, we give a brief summary of the standard refinement calculus
notation, and its meaning.

Onur work on exception bandling starts in Chapter 3, where, after examining the
need for exceptions, we make the important distinction between two forms of
termination for constructs of the language, normal and exceptional termination.
‘We explore some laws that the extended language constructs obey and show
how to develop programs that make use of these construcis, We also extend
the usual semantic framework (Dijkstra’s weakest precondition) to cover the
two forms of termination, and we are therefore able to justify the laws we have
proposed.

However, a realistic treatment of exceptions needs to do more than distinguish
between normal and exceptional termination: different actions may be appro-
priate for different errors during a particular invocation of a command, and
it may be the case that different actions are appropriate for a single excep-
tion during different mvocations. In Chapter 4, we deal with this, basing an
exception-handling mechanism on the use of procedures.

Part 111 of the thesis contains our work on iterators. Once again, we start with
a fairly simple addition to the refinement calculus notation (in Chapter 5),
which is based on work from the functional programming community on cata-
morphisms — homomorphisms from initial algebras.

In order to encapsulate iterators, as we must if we are to use them as part of a
library of abstract data types, we need to pass procedures as parameters, This is
not covered in the usual treatments of the refinement calculus, but recent work
by Naumann [49) on weakest precondition semantics for procedure variables has
laid the foundations on which we base a treatment of procedural parameters
in Chapter 6. This allows us to discuss the encapsulation of iterators in the
following chapter.

Having set up all this machinery for dealing with exceptions and iterators, we
can now return to the Collection Class Library, and work on some applications
of our work. The twao chapters in Part TV of the thesis deal with applications
involving exceptions and iterators, respectively. Having given a specification of
one of the Collection Classes, we show how programs are developed which use
that specification.

Finally, in Chapter 10, we set our work in the context of other related work,
look at possible future work, and draw some conclusions.
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1.4

1.5

Since a large number of laws are introduced at many different points m the the-
sis, we have collected together all the laws in Appendix B, for ease of reference.

Contribution

The overall contribution of this thesis is to show how an cxisting software
development notation — the refinement calculus — can be extended in two
directions, to cover two additional features commonly found in programming
languages: exceptions and iterators. The techniques used the distinction
between normal and cxceptional termiuation and the use of catamorphisms, to-
gether with the semantic extensions used to give meaning to these constructs —
are perhaps more important than the application of the extended language to
the development of programs using a particular library of abstract data types.

Seme of the material in this thesis on exceptions has previously heen published
in the Formal Aspects of Computing Journal {23).

Notation

In Part II of the thesis -~ on exceptions — and the summary of the refinement
calculus, the following notational conventions are used:

« names consisting of a single letter repeated three times, sas, bbb ctc.,
represent programs; and

+ single Greek letters a, 3 etc., represent predicates, that is, sets of states.
{We are not considering the question of expressibility, and thus we some-
times blur the distinction between a Boolean function on a state space
and the corresponding set of states.)

Un-numbered laws eg “following assignment” refer to laws in the standard text
on the refinement calculus [44].



Chapter 2

The refinement calculus

2.1

In this chapter, we give a very brief introduction to the refinement calculus.
We describe first the basic constructs of the Janguage and their meanings in
terms of Dijkstra’s weakest precondition. Then we give a brief history of the
developinent of the caleulus and look at some more advanced features. Finally,
we give a short sample development to show the notation in use.

Basics

The refinement calculus arose out of a simple extension of Dijkstra’s language
of guarded commands [17]. A specification, here written

w: o, 0]

comprises a frame w, and two predicates: the precondition a and the postcon-
dition 8. It is a command in the programming language which. like the others,
describes the intended effect of a computation. Unlike conventional program-
ming commands however, it does not necessarily suggest a mechanism for the
computation: it gives the wkat, but not the how. In the refinement calculus
world, we do not distinguish specifications from programs: every specification
is also a program (but not tvice versa).

In the specification w : [a, f], the frame w is a (possibly empty) list of variables
that the specification {command) may alter. When the precondition e is true
initially, the specification is guaranteed to terminate in a state satisfying the
postcondition . On the other hand, when o is not true initially, no guarantees

7
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o

can be made about the behaviour of the specification: it might terminate in an
arbitrary state or it inight uot terminate at all.

For example:

e y : [true,y? = 2] is a specification which states that a value should be
assigned to y to make the predicate 4° = =z truc {thus assigning to y a
square root of 1);

¢ o:[s #{}.e € 5] is a coinmand which chooses an element e from a set s,
provided s is non-empty; if s 1s empty initially, then this command might
not terminate, or it might assign an arhitrary value to e; and

o 1:[b? > dae. az® + bz + ¢ = 0] is a command which solves the quadratic
equation for z, provided the discriminant is non-negative: if the discrimi-
nant is less thaun 0, then its behaviour is arbitrary.

The meaning of a specification statement can be given in terins of Dijkstra’s
weakest precondition semantics [18):

wp(w:[e, 8l¢) SaA(Muwedg) .
which means that, for example,

wple:{s#{},e€s),¢) = s£{JAVreecs = o)

Apart from the specification statement, the second essential ingredient of the
refinement calculus is a relation, called refinenient, between programs. We write

aoe C bbb

for two programs aca and bbb, to say that aaea is retined by bbb: and that,
in turn, means informally that any client who has asked for the program cac
will be happy if given bbb instead. Formally, the definition of the refinement
relation between programs is given by weakest preconditions:

aae C 66b = wplaae, ¢) = wp{hbb, ) for all postconditions ¢

For example, the first specification mentioned abave, y : [true, y* = 1], could be
refined by the program y := +/Z. On the other hand, it could also be refined by
the program y := —/z: any client who had agreed that their needs were met
by the original specification would have no grounds for complaint, whichever
program they were given.

Program development in the refinement calculus is usually carried cut via a
series of so-called refinement steps, starting from a specification eaa, say, and
ending with an executable program zzz. In between might occur a number of
‘hybrid’ programs, containing both specifications and executable fragments:

aga C ... CHICmmmCnnnCoooC...C zzz
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9
Syntax Semantics
assignment z:=F wp(z := E, ¢) = ¢[z\E]
sequential aaa; bbb wp(oaa; bbb, @) =
composition wp(aae, wp{bbb, ¢}
alternation if(li # @ = san;) A | wp(if(]i ¢ a. = sag,)f,¢) =
(Viea,)A
{Aiea; = up(aan, )y
recursion mu gae « P(ase) um | given by least fixed point:
see Section 3.4
specification w: (o, 5] wp(w : ja, ], ¢) =
ah(Nwed=¢)
skip skip wp(skip, ¢) = ¢
abort abort wp(abort, ¢) = false
nondeterministic aaa [| bbb wp(ess | bbb, ¢) =
choice wp(eaa, ¢) A wp(bbb, )
uaked guarded @ —+ aoo wp(a — aas, @} =
command | a = wp(saa, @)

Figure 2.1: The major constructs of the refinement calculus

The overall desired result gaa T zzz follows from the tramsitivity of C. The
justification for each refinement step is given by appealing to one (or more) of
a collection of laws, from which the ‘calculus’ takes its name.

The major constructs of the language are summarised in Figure 2.1, together
with their usual meanings in terms of standard weakest preconditions. Later
however, we will need to extend the notion of weakest preconditions to cover
exceptions,

History

Historically, Back was the first to embed specifications in programs, using the
weakest precondition calculus [3, 4], although his specifications contained cnly a
single predicate. More recently, both Morris [46] and Morgan [42] have extended
Back’s work by using separate pre- and postconditions. All three authors have
the same refinement relation. The refinement calculus continues the tradition
of Hoare [21] and Dijkstra [18]; for example, the meanings of the specification
statement and the refinement relation were deliberately chowsen to make true
the following theorem (Theorem 3 of [42]):

1This is a shorshand for
if oy = agag ... an = gue. B .

The nurnber of branches must be finite, but may be zero.
*\/ and A denote disiributed disjunction and conjunction, respectively.
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2.3

Taking w to be all prograin variables, and aaa to be an executable
program,

tv : [pre, post] I aaa
has exactly the same meaning as

(¥ w o pre => wp(aaa, post)) .

This theorem allows us to check the validity of the laws of the relinement
calculus, such as this law. for decomposing a specification imto the sequential
composition of two specifications:

w: [pre.post] T w:[pre.mad]; w: [mud, post] .

There is an extensive collection of laws such as the above. some with side-
conditions to be proved, whicl are used to justify the rehnement steps in a
program development. A tutorial introduction to these laws may be found in
[44]. while a collection of more theoretical papers may be found in [45).

Further features

We look more closely now at some specific features of the relinement calcu-
lus. The first is ‘naked’ guarded comruands, which were first described by
Nelson in [50]. Morgan and Morris discovered thern independently, as a natural
consequence of the semantic definitions of the refinement calculns These are
commands of the form ‘a — a#aa’ which do not necessarily occur within if .. . fi
or do...od. For any predicate a {the guard) and program eas we define

wp{a — aga,d) £ o= wplaga,d) .

Though such commands are well-behaved, and even to some extent generally
accepted, they do not satisfy the ‘Law of the Excluded Miracle’ [L8]: in partic-
ular,

wp{false —r skip, &) = true

for any postcondition ¢ whatever. For that reason we give the guarded com-
mand false — skip the name magic. and note that saa T magic for any aaa.
It is also easily checked with wp that magic is left-absorptive: magic; aga =
magic for any program aaa.

The second feature is pure nondeterministic choice. We have
wp(aaa || bbb, @) = wp(eaa, $) A wp(bbd,¢) .

The two constructs interact nicely: one example is that aaa || magic = aaa =
magic || gaa holds for all programs aaa. Another exarnple is provided by the
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2.4

first step of the derivation in Section 3.2,% which is easily verified using wp. In
this step, we remove the if. fi around an alternation, which is justified so long
as the guards are exhaustive, leaving naked guarded commands.

A logical constant plays the role of a ‘ghost’-variable. It can he used for example
1o refer in post-conditions to values defined before a statement. In what follows,
we will use the logical constant V to refer to the initial value of the variant
expression. Logical constants are introduced by con, whose meaning is given
as follows:

wp(|{ con z e gac ||,8) = (T2 » wp(aca, §))
provided that ¢ conteins no free

An assumption is written {a}, for some predicate a. and in a sense conveys
the claim that “a is true here”. As a statement it acts as skip when « is true,
abort otherwise. This means that it is different from an ‘assert statement’,
as found in Algol-W for instance, which is guaranteed to terminate! when the
formula is false. Unlike assert statements, assumptions are therefore useless for
program Instrumentation, but are intended for use during the development of
programs, and are removed before the final code is collected. The meaning of
an assumption is given by

wp{{a}, ) Z=ang .

It should be noted that we usually omit the semicolon between an assumption
and any following statement:

{a}; aad = {a} caa

Layout of developments

A particular technique of layout is often found in refinement calculus develop-
ments: certain lines of the development are labelled with numbers, and these
labels are used to coutinue the derivation at a later stage. We also sometimes
label lines with a < symbol: this signifies that this line will be worked on in
the very next step of the development. There will therefore be at most one
line marked with < at any stage, although it is possible that several lines may
be labelled with numbers. The complete program can eventually be found by
collecting the code fragments from the branches of the resulting development
tree. These notations are used in the example below.

An example development

We now give a brief example of a program development using the refinement
calculus features mentioned above. We will spell out the steps in some detail:

Jafter Law 3.13 on page 24
4and to cause immediate program termination!
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in a ‘real-life’ development, such detail would be neither required nor desirable.

The simple program fragment which we will develop is to set the value of a
boolean variable depending on whether an array contains some particular value.
Our variable declarations are as follows:

as:l.n— X
z:X
b : Hoolean

The array is modelled as a total function fromn the indices 1.1 to the values
which are drawn from the sct X. We are required to set the value of b. depending
on whether © appears in the array. Qur specification is therefore

b:lbei:lneasi=rx| .

{Notice that the precondition, which is true, has been omitted — this is a
common abbreviation in specification stalements.}

The development starts by introducing a local variable j, which will be nsed
to mark how far through the array we have checked. We then introduce an
abbreviation [ for the predicate which will be used as the loop invariant, and
sptit the specification into two, for the initialisation and the loop itself:

C wvarje
by:be3i:lneast =z

C J/=bteJdi:ljeasi=ze
b, i [true I]; Q
bl ITA)=n] (1)

Thbe loop initialisation is easily implemented with a multiple assigrment to b
and 7, and we can now introduce the loop, which has invariant /. guard 3 # n
and variant n — j.

T b,j:= false 0

(1)C  “variant n — "
doj#n—
bi:IAF#nIAGSn—j<n— %] |
od

(Hints about the justification for a refincment step are often given as annota-
tions to the refinement symbol, enclosed in “quotation marks”. [mitial variables
are marked with a subscript zero.) The loop body is refined with a following
assignment 10 jacrement j.

C “following assignment, contract frame"”
b:[IAG#nI[i\+1)); Q
ji=J+1
The remaining part of the loop body is implemented (in a very crude way)
using two nested alternations. The first alternation tests the value of b — if it
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is true, then z has already heen found, and so we need do nothing.

C ifb—
{BYp:{Ins#nlIg+1]) <]
l-bt—
(o[ Aai#En Il +1]] (2)
C skip

In the case where b is false, we test the value of as(j + 1) — if it is equal to z,
we set b to true, and, if not, we move on to test the next value.

(2)= &:[(~Fi:ljeasi=z)Aj#EnI[\d+1]

C fas(F+l)=2—

S dicl.jeasi=z
b: i#n N IFAVES!| <
as(j+ 1) =z

Das(j+1)#z—

~Ji:ljeasi=z
b i#n RITAVIETRY (3
as(z+ 1) # =z
C  b:=true
(3)C  skip

Collecting the code from the development tree gives the following program:

VEr j e
b,j .= false, 0;
doj#n—
if & — skip
J-b—ifas(j+1)=z — b:=true
[ as(j + 1) # 1z — skip
[i]

ji=3+1
od

It is certainly not the most efficient code to solve this problem — it would
clearly be better to ‘drop out’ of the loop as soon as an occurrence of r is found
— but it is correct! In Section 3.3, we give a mnch simpler and more efficient
solution to a very similar problem, using the loop/exit/end construct defined
there,
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2.5 Coanclusion

In this chapter, we have given a brief introduction to the refinement calculus: we
have described the basic constructs of the language and given their semantics
in terms of Dijkstra’s weakest precondition. The chapter concluded with a
discnssion of some more advanced features of the calculus and the development
of a simple program.



Part [l

Exception handling




Chapter 3

Adding simple exceptions to the
refinement calculus

In this chapter, we show how a form of exception niechanism can be added to the
refinement calculus. It is deliberately not a complex mechanism: our concern is
to discover, in the simplest possibie context. what additional semantic notions
are needed for exceptions. and to give a mechanism which can he later be used
to model the more sophisticated exception mechanisms that are feund in real
programming languages.

We start with an examination of the need {or exceptions in programming lan-
guages. Having convinced ourselves that we are not chasing a complete red
herring, we show how to add a very simple exit mechanism to the refineinent
calculus. This mechanism is hased on the distinction between normal and ex-
ceptional termination: in addition to terminating normeally, certain program
constructs are now also permitted to terminate exceptionally. We propose some
atgehraic laws for the new constructs, using our intuition about their behaviour
to guide us. Section 3.3 shows how to deal with recursion in our extended lan-
guage, giving a law for iteration and proposing a loop/exit/end canstruction.
The last section of this chapter gives a formal basis to the previous work. In it,
we extend Dijkstra’s weakest precondition sernantics Lo cover predicate traps-
formers which take more than one postcondition as arguments — we need two
postconditions, to describe conditions for normal and exceptional termination.
Given this semantic framework, we are then able to justify the laws proposed
earlier, both the simple ones and those involving recursion.

In the next chapter, we will extend this scheme to deal with named exceptions,
and the association of program fragments with those exceptions.

16
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3.1 The need for exceptions

Interest in exception handling as a concept in programming language design
arose in the early 1970s out of the increasing realisation of the importance of
abstraction and modularity. Language designers wanted to allow programmers
to write ‘Tobust software’ wbich would continue to function (or at least to
behave predictably) under whatever circumstances it might be used. As larger
programs were written, often consisting of many levels of procedure call, it
became inportant to specify the precise effect of a procedure. Bnt when things
‘go wrong’ -— there is an arithmetic overflow or a subscript out of range, for
instance — there is the question of who is in the best position to detide on the
appropriate recovery action: is it the writer of the procedure which has run into
problems, or the caller of that procedure? Parnas noted [51] that it has to be the
caller, and that the possibility (however remote) of such errors was an important
part of the procedure’s interface. It is not difficult to appreciate that a condition
such as not finding a particular valne while searching an array might be an error
in some circumstances, and expected in othera: the appropriate action in the
two cases could be very different. If exceptions are not used. then either the
invoking procedure has to pass more information to the invoked procedure (o
enable it to interpret the ‘error’ correctly, or the invoking procedure needs to
include code aronnd each invocation to ensure that imputs are ip the required
range and so on. Bnt these checks may also be carried out in the invoked
procedure, or they may more easily be performed there, and in any case, certain
exceptional states (for instance, lack of resources) may be impossible to detect
prior to the invocation. Thus exceptions can be seen as conditions detected
while a procedure is being performed that need to be brought to the attention
of the invoker of the procedure, so that appropriate action can be taken. The
use of exceptions is one way to generalise an operation: by specifying that
under certain circumstances an exception will be raised, rather than leaving the

operation undefined, the programmier can make the procedure more generally
useful.

Goaodenough {20] has identified three potential uses for exceptions:

s to deal with impending [ailure;
s to give additional information about a valid result; and

e to Inonitor the progress of an operation.

An invoked procedure may ‘fail’ in one of two ways: on its domain or on its
range. Domain failures occur when the inputs are outside the precondition of
the procednre, while range failures are caused by the procedure’s inability to
achieve its postcondition. This may be because of the failure of some lower-level
component, or it may be a problem with resource depletion, for instance. The
exception mechanism that we introduce below is chiefly concerned with the use
of exceptions for notification of failure.
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3.2

(Goodenough’s other potential uses for exceptions are perhaps not so common.
One could imagine a browsing operation on a sequential data structnre, which.
at the same time as returning the final element, gave the user a warning that
there were no more elements to be retrieved, thus saving a subsequent browse
which was doomed to failure. Exceprions could be used to give this sort of addi-
tional information abont valid results of an operation. [t would also be possible
to use exceptions to monitor an operation, perhaps by writing a message to
the console explaining how the operation is progressing — for instance. what
percentage of a search has been completed -— and enquiring whether the user
wants to continue.

One of the reasons that we concentrate on the first of Goodenough’s uses for
exceptions is that it fits most easily with our model of exceptiou handling: in
designing an exception mechanism, there is a fundamemntal choice between the
resumption model and the termination model. The question that distinguishes
hetween these two models is ‘Does the raiser of an exception continue to exist
after the exception has been raised?’ In the resumption nodel, the answer is
yes, and it is possible that whatever code handles the exception might solve the
problem and return coutrol to the point where the exception was raised. In the
termination model. it is assumed that it will not he worth returning to the point
of raising the exception, and so the whole procedure is terminated. The choice
between the two models is a balance between expressive power and simplicity
in the semantics. Although the resumption model is more complex, leading
to complications in the relationships between procedures! and the specification
of procedures, it seems to offer a more general approach. However, Liskov
and Snyder [31, Section V] claim tbat the termination model, because of its
simplicity, is preferable to the resumption model, provided -— and this is an
important proviso —- that it supplies ‘adegnate expressive power'. They go on
to discuss situations that arc ‘handled awkwardly’ by the termination model and
‘simply’ by tbe resumption model, and claim that such situations do not arise
frequently in practice. Following their lead from the design of the exception
handling mechanism in CLU. we use a mechanism based on the termination
model.

Syntax for exceptions

In order to be able to develop programs with exceptions, we need to extend the
language of the refinement calculus. The main change is to alter the specifica-
tion statement, but we will later define some other useful additional notation.

! Normally, ignoring recursion, a calling procedure is dependent on a procedure which it
calls, relying on it to perform some computation. However, in the resumptiou model, the
calling procedure and the raiser of the exception are mutually dependent: the caller depends
on the exception raiser in the normal way, but the exception raiser alse depends on the
handler, which is part of the calling procedure, to perform some action when an exception is
raised
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The exceptional specification statement

Our first addition to traditional refinement calculus notation involves a gen-
eralisation of the notion of the postcondition of an operation. Since we are
considering exceptional behaviour, it i3 no longer enough to consider a single
postcondition for an operation to represent the condition which must hold when
the operation terminates. Instead, we consider two postconditions — one for
pormal termination and one for exceptional termination. We therefore need to
extend the specification statement. In the simple form of the refinement cal-
culus, without exceptions, the specification statement contains a precondition
and a single postcondition. We now consider a specification stalement with
a precondition and a pair of postcouditions — one for normal, and one for
exceptional behaviour. Thus we write

w: (e, 8> 4]

for a specification which, when o is initially true, is guaranteed either

e to terminate normally, satisfying 3; or

» to terminate exceptionally, satisfying -y.

As before, only variables in the frame w may be changed. All logical connectives
are assumed to bind more tightly than ».

The formal semantics of this exceptional specification statement will be given
in Section 3.4, when we have introduced the extended version of wp which is
necessary to deal with exceptional termination. In fact, our extension of the
specification statement arises naturally from the extension of the wp predicate
transformer.

The connection with the original specification statement, which has only a single
postcondition, is given by taking false as the exceptional postcondition:

w:la,fl=w:|a 3> false] .

In the same way that skip, abort and magic are special cases of the tradi-
tional specification statement, there are two special cases of the exceptional
specification statement. The more important is obhtained by taking an empty
frame, with true as the precondition and exceptional postcondition, and false
as the normal postcondition:

exit = : [false > true] .

(As is usual in the refinement calculus, the true precondition has been omitted.)
Execution of exit always causes exceptional termination, with no change to any
variable.

The second special case of the exceptional specification is obtained by taking
true as the precondition and both of the postconditions. This statement does
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Law 3.1

Law 3.2

Law 3.3

not seem sufftmently useful to require a name, but it can easily be expressed as
a nondeterministic choice between skip and exit:

w: [true, irue > true} = skip || exit .

This statement is always guaranteed to terminate, but that termination may
be normal or exceptional.

The final piece of uotation that we need at present is the exception block. which
shows the extent of the scope of an exceptional termnination. For instance. an
exit occurring inside a pair of block brackets [ ]| causes control to be passed
to the statement following the closing bracket. The laws for introducing blocks
will show that they can be nested but not otherwise overlapping.

Simple laws

We can immediately propose some simple algebraic laws which show how thesce
new language constructs should interact. These laws will be proved sound later,
when we have set up the semantics for exeeptions.

program after exit

A program following exit has no effect.

exit; age = exit
{Equality of programs means semantic eqnivalence, that is. mutual refine-
ment.)

exit ending block

An exit at the end of an exception block has no effect.

[ago; exit] = [asa]

exception-free block

Exception blocks have no effect on exception-free programs.

[eag] = caa provsded sac is ezception-free

Section 3.4 vontains a weakest precondition characterisation of the idea of a
program being exception-free, but for now we can think of it as “syntactically
without occurrences of exits or specification statements with exceptional post-
conditions”.

With these three laws alone, and the usual laws of the refinement calculus, we
can show the equivalence of some simple ccde fragments. For instance,

if @ then aea 7 |
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can be shown to be equivalent to the following, which is often used when aaa
is long, and o tests for some error condition:

[if & then exit fi; aga ] -

(The equivalence only holds when gaa is exception-free.) Although the following
algebraic derivation may seem daunting in length for an essentially simple result,
we set it out in full simply to illustrate clearly the nature of such reasoning.
if @ then ggo 6
= “exception-free block 3.3, provided aaa is exception-free”
[if & then eaa fi]
= “ezit ending block 3.2"
[if o then aso §; exit]
= “definition of if .then..i”
[if a — asa
| ~a — skip
fi;
exit
|
= “distribution of ; exit into if
[if & - aag; exit
[ ma — skip; exit
fi
]
= “gkip left identity of ; and program after ez:t 3.17
[if @ — skip; aas; exit

[ =a — exit; gas; exit

fi
|

= “distribution out of if "
[if &« — skip
} @ = exit
§;
aaa; exit
1
= “definition of if..then..f and enit ending dock 3.2
[ if - then exit fi;
saa
1.
‘We have thus shown the egnivalence as programs of

if & then aac fi

2An alternative notation for if & — aaa ] ~a — skip
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Law 3.4

Law 3.5

Law 3.6

and
[ if —o then exit fi; sas |
nsing only the simple equivalences of Laws 3.1-3.3.

In Section 3.2 we will be able to show a much shorter derivation of the same
result.

Further development laws

The laws given iu the previous section are clearly not powerful cnough to allow
us to make all the development steps we would like. In particular. they are
all equations, whereas we would expect some laws which actunally involve re-
finetnents; and there is no law for introducing exceptions into a program, other
than with an exit right at the end of an exception block.

The first additional law that we now give allows us to convert a traditional
specification statement into an exceptional one:

exccptional specification

An exceptional specification can be formed by duplicating the postcondi-
tion of a non-exceptional specification statement, and surrounding it with
an exception block.

wila 8] =Jw:fa,d > d)]

We can refine a specification statement by discarding cither the exceptional or
the normal branch.

take normal brench

A specification statement can be implememted by taking the normnal
branch unconditionally.

wifa, 3> 7] Cw: e, f]

take exceptional branch
A specification statement can be implemented by achieving the excep-
tional postcondition, and then performing an exit.
w:la,B >4 Cw:[a,q]; exit

It is convenient to introdnce at this stage a further abbreviation which will
make the layout of developments slightly easier: for programs aaa and bbb, we
write

aaa > bbb
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Law 3.7

Law 3.8

Law 3.8

Law 3.10

Law 3.11

(pronounced “aaa else bbb™) as a shorthand for
aga || {bbb; exit) .

aaa > bbb is a specification of a computation which, if it terminates normally.
will have executed aaag; if it terminates exceptionally. it will have executed bbb.
The choice between the two is arbitrary and unpredictable. This notatiou allows
us to separate the normal and exceptional behaviours in a development, and
therefore to continue their development separately. The relationship between
this new construct and the specification statement is very simple:

else notation

Specifications and the ‘else’ notation

wie 8> =wilef] > wla]

We can immediately give a few simple laws for the new ‘else’ construct; although
we do uot prove their soundness here, such proofs are easy exercises given the
semantics of Section 3.4.

take normal brench
An ‘else’ construct can be implemented by taking the first branch uncon-
ditionally.

agaa> bbb C aaa

take exceptional branch
An ‘else’ construct can be implemeuted by taking the second branch un-
conditionally, followed by an exit.
aaa > bbb T bbb; exit

choice-else

A nondeterministic choice between two programs which do not contain
exceptions is equivalent to an exception block containing the programs as
branches of an ‘else’ construct.

aaa || bbb = [aaa > bbb] provided saa and bbb are ezception-free

introduce triviel else

An exit-exception pair can be introduced by offering the trivial choice
between equal alternatives (corollary to choice-else 3.10).

gaa = [aea > aca provided eaa is ezception-free
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Law 3.12

Law 3.13

We see that choice-else 3.10 and introduce trivial clse 3.11 are the crucial laws
which allow us to introduce the else construct (and thus the possibility of an
exception) into a program which previously did uot contain one.

The laws above are reasonably straightforward. Since ‘taking an exit’ alters
control flow in a program, however, we might expect the interaction of exit and
sequential composition to be less abvious:

sequenfial composition

Distribute sequential campasition through ‘else’.

aga > bbb
C

(coo > bbb) ; (ddd > ece) provided caa T ccc; ddd
and bbb T cce; ece

The law is informally justified by examining the three possible behayiours of
the right-hand side: the first is thal cee; ddd terminates normally, and relines
the normal termination path aar of the left-hand side; in the second we find
that. bbb terminates exceptionally, and equals the exceptional termination path
of the lefti-hand side; finally ccc; ece terminates exceptionally, and refines the
exceptional termination path of the left-hand side.

We can also give a somewhat simpler law for introducing a sequential coinpo-
sition into a specification statement:

sequential composition

Splitting a specification with sequential composition.

e, 3 > ]

[

g£1N

3[0.65’)'];
6,8 > 7]

g

We can now return to the example of the previous section. Use of the else
construct allows a much more concise development.

if a then aaa B

It

“definition of if..then..f, and removing if. .8"
a —+ gaa
[| ~a —+ skip

“choiec-else 3.10, assuming aaa is exception-free”

[

a —+ aaa > ~a —+ skip (1)

)



3.3. RECURSION

3.3

E

(1) C “sequential composition 3.12, justification below”
(e = skip > —a — skip); (2)
ann > magic (3)

(2) C “expand >, definition of if. .then. £”
if ~a then exit A
(3) C “take nermal branch 3.8"

aaa
That concludes the development; collecting the code gives
[ if —a then exit fi; cac ]
as before.

The two side-conditions for the application of sequentiol composition 3,12 are
satisfied as follows: we require first that @ = ase C (a — skip). aao (easily
checked with wp; alternatively viewed as a sort of associativity of = and ; ).
We also require that ~a — skip C a — skip; magic (uot so obvious, but in
fact the right-hand side simpiifies to magic on its own).

This development is much shorter than the previous versiou, but it should be
noted that we have only proved refinement, not equality as before. Notice also
that magic has appeared in our development, though we have not needed to
implement it {(fortunately}; we have used take normal branch 38, finally, to
discard it by choosing the left-hand side of the ‘else’ construct.

Recursion

The laws presented above can — in principle — convert any ‘finitary’ program
that contains exceptions into an equivalent program that is exception-free. The
same is not true for (‘infinitary”) programs which contain recursion, either ex-
plicitly or implicitly.

Explicit recursion is usually found in the form of recursive procedure calls, in
which a given procedure A, say, contains a call to the same A within it. (For
simplicity, we consider only the case where there are no parameters.) These two
notions — recursion and procedure call — are not inextricably linked however;
we separate them by using the recursion block

mu X ¢ P{X) um ,

thus freeing us to deal with recursion on its own. Further details can be found
in [44].

The meaning of the above is the least fixed paint of the program-to-program
function P. (For an example, see the treatment of loops below.} More precisely,
we congider P to have type PT — PT, and to be monotonic. The type PT,
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in turn, is P$ — P §: predicate transformers taking sets of (final) states to
sets of (initial) states. The set 5 of states is fixed throughout the discussion,
but in practice would be large encugh to contain the standard and constructed
types. Recursive procedures are no longer entities to be distinguished in their
own right; but one might say that a procedure was recurstve if its body were a
recursion block.

Implicit recursion is that introduced by iteration. The do...od coustruction in
the guarded command language is — for us — defined as follows:

do G —+ body od
is equivalent to the following recursion block (in which D is a fresh identifier}:

mu De
if ¢ then body; D B
um .

The body of aun iteration can be anv program at all. For instance, takiug a
rather extreme case. it might be magic, so we could have an iteration

do true — magic od
This program can be simplified as follows:

do true = magic nd
= “unwinding the recursive definition once™
if true then (magie; do true = magic od) i
= “removing if true”
magic; do #frue —+ magic od
= “magic absorptive”

magic .

Thus magic even ‘jumps out of infinite loops’.

Refining to recursion

In order for recursion to appear in & program whose specification did not contain
it, there must be a refiuement step whose right-hand side intraduces a recarsion
block. Temporarily ignoring the matter of termination, a law to justify such a
step might be

If saa C P(aaa), then aae C mu D « P(D) um ,

given some monotonic program-to-program function 7.

We can take terminatiou imto account — as we must, to avoid the absurd
‘everything is refined by mau D « D uwm’ — by a small amount of trickery
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Law 3.14

involving logical constants, assnmptions, and a variant function. {These issues
are explained in more detail in Section 2.3 and [44].)

The (non-exceptional) law for recursion introduction [44) is as follaws:

recurston

Let e be an integer-valued expression, ¥ a logical constant, aaa a pro-
gram, and P a monotonic program-to-program function, and assume that
neither aea nor P containg ¥, Then if

{e=V}aas C P{0< e < V]aaa)
we can conclude

asa C mu D e P(D) um .

In practice, P will always he huilt from the constructs of the language, and so
it is guaranteed to he a monotonic function since the constructs themselves are
meonatonic,

The wariant function for a recursion is an integer expression that is bounded
below, yet is strictly decreased on each recnrsive call. Although the requirement
for the variant to he integer-valued is sufficient for cur needs, it is sironger than
necessary: there exist programs which need ordinal-valued variants — see, for
example, [12]. We show in in Section 3.4 below that the above {aw remains
valid in the presence of exceptions — and the proof uses transfinite induction.
For now we proceed, on that assumption, with the presentation of recursion
and iteration.

Iteration

We recall [44, Law 5.5] that the law used in the refinement caleulus for intro-
ducing iteration (without exceptions) is

w: o, 0 A-G]

c

do G >
w:[GAa.an(l<e<e)

ad.

The conventional conditions for loop correctness appear in the above as fol-
lows, given that the invariant i3 o and the variant?® is e: the invariant is true

3Zero-subscripted variables in a postconditiop are used to refer to tbe values of those
variables in the initial state. They are defined in terms of logical constanls, and are a very
convenient abbreviation for the sort of specifications we wish to write. A zero-subscripted
expression, like ey here, is an abbreviation for the expression with all variable occurrences
zero-subscripted.
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initially (indicated by the precondition of the left-hand side); its truth finally,
and the negated guard, ave sufficient to estahlish the desired result (shown by
the postcondition of the left-hand side); the invariant is maintained by the loop
body (it appears both in the pre- and postconditious of the loop body, on the
right-hand side); the variant is strictly decreased (postcondition of the body);
the variant is bounded below (postcendition of the body).

To incorporate exceptions into the ahove we can show first, using the techniques
of earlier sections?, that

{e=V}w:la,an-G>J
[

if G then
wifaAG,arn{0<e<eg)>d);
{0<e< V}w:{aan-G> 4

which matches the condition for recursion introduction in recursion 3.14. The
proof of this is not complicated; rather than give it formally, however, we sketch
an argument as follows. We consider separately the two cases distinguished by
whether =7 is true initially. If -G holds initially, the left-hand side is refined
by skip because the required postcondition of the normally-terminating branch
holds alreadv {a in the precondition, =@ assumed). Given - initially, the
right-hand side equals skip.

If G holds initially, then the right-hand side either

1. terminates normally having executed
wilaA G,ar{0<e<e);{0Le< V) w:fa,arnG;or

2. terminates exceptionally having executed
wi:lah G,anr(0<e<eg));w:af;or

3. terminates exceptionally having executed w : [a A G, [].

In all three cases, the postcondition established by the right-band side is ap-
propriate for the mode of termination (as given on the left-hand side): a A =G
normally and 3 exceptionally.

Thus we can conclude from recursion 3.14 that

w:la,a A -G > f)
c
mu D e
if G then
wifoA G,ar(0<e<e)> s D
fi
um ,

“We recall that the logical connectives hind more tightly than >, so, for example, the
specification statement on the LHS of this refinement is parsed a8 w : [, (a A =G} > §].
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which gives us the iteration law required:

Law 3.15 ueration

w:la,an-G>f
u
da G —
wilan G ar{0<e<e)> 3
od

Compared to the iteration law for the refinemeut calculus without exceptions,
the extended law simply contains “> 4" in hoth postconditions. It operates
analogously to the non-exceptional version if it terminates normally; however,
the loop bedy is provided with the possibility of exceptional termination, when
{3 mnst be established. as demanded of the overall exceptional postcondition.
The exceptional branch may assume (additionally) G, since the loop body wouled
not be exeruted if 3 were not true.

Loop/exit/end

As an application of the above, we consider the loop/exit/end construction
found in Modula-2 {or equivalently the while/break construction of C). This
is defined to be eruivalent to a do..od loop with a ¢rue guard, enclosed in an
exception block:

loop aaa end

[ do trie =+ aaa od] .

where the gae will usually include an exit command, to ensure loop termina-
tion.

We proceed as follows to construct a rule for introducing loop into a pro-
gram; note that the (extreme) strengthening of the postcondition for the non-
exceptional case to false effectively forces exceptional termination, which is the
way loop/exit/end behaves.

w: o, f]
“application of introduce trivial eise 3.11 above”
fw:le, 4> 00
“strengthen normal postcondition”
[a - [a, false > 3]
“iteration 3.15”7
[ do true —
wijaAtrue ,aA (0< e <e) >

I

I

1N}
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Law 3.16

od
1

Removing the superfluous “A true™ gives the following law:

loop 1ntroduction

w: [, J)
C
loop

w:le arh(D<e< g}
end

Thus the task of the non-exceptional part of the lovp body is to maintain «
(the invariant) while strictly decreasing the variant e on each iteration (but not
below 0). Since that cannot continne indefinitely, eventually the exceptional
route must be taken, after estahlishing J as the left-hand side requires.

Note that, like introduce trimal else 3,11, this is a law which introduces an
exception and a corresponding block together —- the extenr of the exception
block is taken to be the loop...end block, so an exit in the Lody of the loop
will cause a jump to the botrom of the loop, just after the end statement.

Example

To show this law in action, we develop a program which is intended to find
the index of a particular value guaranteed to occur in an array. We make the
following variable declarations:

a3 :array [0.N — 1] of A
a4
i:0.N

The development is as follows:

i:ac asf0.N —1],a= esfi]

C =D
1:[a € as[t.N - 1], ¢ = as]i]] (L
(YE  “loop sntroduction 3.16, invariant a € as[+.N — 1]; variant N — "
loop
. a€asfi.N -1 ;
i: [a € as[+..N -~ 1], o <[1. <N ] > a = asfi 2

end
(2)C  “else notation 3.7"
itla€asfi.N-1,aeas[i. N -1]Ap < £ <N]|
Ji: [a € a.Sli..N — 1), a = as[4l]; exit
3C aFawli]o1=i+1l
C o= asfi] = exit

,_,,..‘
—_—




3.4. SEMANTICS

31

34

Notice that the exceptional and the non-exceptional branches are refined to
naked gnarded commands which, combined by [, lead to the expected alterna-
tion in the loop body. The justifications for these final refinements to naked
guarded commands are omitted, but they can easily be checked with wp.

We can collect the code to give:

i=10
loop
aFash] Fi=i+1
[ @ = as|i] = exit
end ,

which we may rewrite. using the definition of if..then..fi and rules fom Section
3.2, as

=0

loop
if @ = as[i] then exit £ ;
ti=i+1

end .

Semantics

‘Weakest preconditions for languages with exceptions

The traditional weakest precondition technique for giving semantics to a lan-
guage involves defining a function wp, which, for any statement gaae in the
language, returns a predicate-to-predicate function (a predicate transformer).
The function wp(ess} maps a postcondition ¢ to the weakest precondition 3
from which @es is guaranteed to terminate satisfying . Far example, the
weakest precondition of the simple assignment statement 7 := F is given by

wp(t .= F,a) = a[z\E] .

This method of giving semantics for languages without exceptions is not suffi-
ciently powerful for our needs, because we have to distinguish between normal
and exceptional termination. Following Back {6] and Manasse and Nelson |37),
we therefore introduce a predicate transformer which is a function of two argu-
ments rather than the usual one. We use the notation

up(aaa, v, €)

where aaa is a program, and v and ¢ are predicates, to denote

the weakest precondition from which esa is guaranteed either:

¢ to terminate normally satisfying v {for nermal); or
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Syntax Semantics
r:=F wp(z = E,v,€) = v[r\E]
aaa; bbb wp(eog; bbb, v,¢) = wp(aca, wp(bbb.v, ), €)

if(Ji e 2, = o0, ) A wp(if (i » o, = aoq i, v, €) =
(Vis o) A(AT»a, = wp(asa,,v,¢€))
mu aaa ® P{aca) um | given by least fixed point: see below

w o, 8 > 7] wp(w < [a,f > 7),v.) =
arVusd=)AVwey =g

aag { bbb wp(aaajhbb, v, €) = wp(aaa, v, e) A wp(bbb.v.€)

a — aaa wpla — aaa,v.€) = a = wplaaa,v.c)

Figure 3.1: Weakest precoudition semantics

s to terminate exceptionally satisiving ¢ (for exceptional).

Now we can give a compositional semantics to our language, usmg this notation.
For any construct which was in the language before we added exits, say ppp,
the correspondiug new weakest precondition definition is given by

wp(ppp,v,€) = wp(ppp,v)

(where the wp on the left is our uew version, and the wp on the right is the stan-
dard Dijkstra twp). That is because the ‘original’ constructs terminate normally
by definition — they contain no exits. Since they cannot terminate exception-
ally, the right-hand side is independent of €. For instance, the commands skip
and abort are given meaning thus:

wp(skip,v,e) = v
wp(abort, v, ¢) = false

The other constructs of the language {apart from recursion) have defining equa-
tions very similar to the usual (Dijkstra) wp equations: these are given in Figure
3.1

Notice that, in Figure 3.1, we have given a wp definition to the exceptional
specification statement w : [, 3 > 7). As we remarked earlier, the simple
specification statement is a special case:

w:la, Bl =w:[e,8 > folse] .
We can therefore calculate its weakest precondition:

wp(w : [a, 8], €)
= wp(w : [a, 8 > false], v, ¢)
=aA(Vwed=>v)A(Vwe false =€)
=ar(Vweld=>v),

which agrees with the definition in (42].
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More interesting are the equations for the exit command and the exception
block:

wplexit, v, e) = ¢
wp([saa]., v.€) = wp(asa.v,v) .

The equation for the exception block reflects the fact that any exit inside aaa
will be caught by the exception block.

Using these weakest precondition definitions, we can verify the laws which were
given earlier, and justified at that stage only in terms of the informal operational
semantics. For iustance, enl ending block 3.2 states

[ ens;exit | = aaa ] .
Taking weakest preconditions, we find

wp([ aaa; exit J,v,¢)

wp(aag; exit. v, v)

wp(aaa, wplexit, v, v), v)
wp{eaes, v, v)
wp{] cas o) .

Many of the laws given earlier have side-conditions stating that certain compo-
nents must he exit-free, where the obvious test for exit-freeness is syntactic.
But we can be more precise if we use a weakest precondition characterisation
of the concept:

aaa is exit-free iff wp{asa,r.€) = wp(eaa, v ') for any «,¢
Now we can verify choice-else 3.10, for instance. We need to show that

eae || bbb = [ aaa > bbb |

given that aaa and bbb are both exit-free. Taking the weakest precondition on
the right, we ohtain
wp(] aas > bbb ], v,€)
= wp(caa > bbb, v, v)
= wp{aaa || (bbb; exit), v, v)
= wp(aaa,v.v} A wp(bbd; exit, v, v)

wp(aaa, v.v) A wp(bbb, wplexit, v, v), v)

wp(aca, v, v) A wp{bbdb, v, v)

“since aaa and bbb are both exit-free”
wp(aaa, v,€) A wp(bbh, v, €)
= wp(aas || bbb, v,€) .

Many of the other laws which were given earlier involve refinements, rather than
just eqnalities. In order to verify these laws, we need a weakest precondition
definition of refinement. Following [44] and other writers on the refinement
calculus, our definition is as follows:
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For any programs aas and bbb, we say that aea is refined by bbb,
writtert aaa C bbb, exactly when for all postconditions v and e,

wplaas, v, €) = wp(bbd, v, e} .
Naw we can prove some of the laws that were given earlier. For instance, to
prove Law 3.6, we must show that
w:fe,d>9) Cw:a.v) exit .
Taking the weakest precondition of the left-hand side, we get
ar(Yued=2p)AVuey=c) .
while the right-hand side gives

wp(w : [a, 7], wp{exit, v, ¢), )
=aA(Vwe~ = wplexit.v,€))
=aA(Yueq=e).

S0 the weakest precondition of the left-hand side implies the weakest precondi-
tion of the right-hand side, as reqnired.

A more complicated example is given Ly Law 3.12, for which we must show
that

aaa > bbb
C

(cce > bbby ; (ddd > eee)
when we know that

car T cec; ddd
and bbb C cec; ece .

In terms of weakest preconditions, these provisos say

wyp(aea, b, €) = wp(cec; ddd, v, €)
and wp(bbb, v, €) = wplcee; eec, 1,€) .

for all postconditions v and e.

Following a similar argument to the proof of chasce-else 3.10 above, we can take
the weakest precondition of the left-hand side of this law to get

wp{aaa > bbb, v, c)
= wp{aee [ (bbb; exit), v, €)
wplasea, v, €) A wp(bbb; exit, v, €)
= wp(aaa, v, €) A wp(bbb, wplexit, v, €), €}
= wp{eaa, v, ) A wp(bbb, e €) .

|
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The right-hand side is slightly more complicated:

wp({cce > bbh) : (ddd > eee), v, €)
= wp(cec > bbb, wplddd > eee, v, €}, €}

wp(cec > bbb, wp(ddd. v, €) A wpleee. €, €).€)
wp(cee, wp(ddd, v, €) A wp(eee. e,€), €)

A wp (bbb, €. €)
“by conjunctivity”

wp(ecce, wp(ddd, v, €),€)

A wplece, wp(eee, €, €], €)

A wp(bbb, €, €}

Now the first conjunct here is just wp(cec; ddd, v, €), and so we know that the
first conjunct of the left-hand side implies this, by the side-condition. The
second conjunct is wp(cec; eee, €,€), and we know that this is implied by the
second conjunct of the left-hand side, since the definition of the refinement
relation says that the implication holds for ail postconditions. and so it must
hold when we take € for both postconditions. The third conjunc. appears on
the left-hand side in exactly the same form.

Recursion

As usual, the semantics of recursion is given by a least fixed point construction
In general, given a program-to-program function P we write uP for its least
fixed point, and take that to be the meaning of the svntax

mu X « P(X) um
given in Section 3.3.
Rather than proving tbe recursion law directly (Law recursion 3.14 in Sec-
tion 3.3 above), we will instead give a lemrna from which it is easy to derive

the law. We will give an cutline proof of this lemma, noting that Greek letters
denote ordinals, not predicates, for the duration of this lemma!

Recursion lemma Let an ordinal-indexed family of programs asa, be such
that for any ordiral o

aaae TP(A| B < aeanss) ,

for some monotonic program-to-program function P, where || denotes least
upper bound in the refinement ordering given above. Then

aag, T u'P

for all e,
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Proof outline By transfinite induction on e, with all three cases together:

qaa,

mn

“assumption”
P(LUA| 2 < @+ aaag)

L), P monotonic; inductive hypothesis”
PG| A< aenP)

“even wheu a = 07
PlpP)

= “uP fixed point”

pP .

Im]

N

u]

Now we must show how to obtain the recursion law from this lemma.

Recursion Law (Law 3.14)

Let e be an integer-valued expression, V' a logical constant. gag a prograin,
and P a monotonic program-to-programn function, and assume that neither aaa
nor P contains V. Then if

{e= V}aaa C P{0 £ e < V}aea)
we can conclude

aga T mu D e P(D)um .

Proof Let us define a family of programs aaa, by
asa, = {e = alaas .
We may assume from the statement of the law that, for any a,

{e =ca}laaa C P({0 < e < a}saa).

But.
{0< e <ajaaa
= {(VB}|B<are=0)}aaa
= by wp”
(UG8 <as{e=73}); asa
= ‘“left-distribution of ; into | "
{UF|8 <ae{e=3)aga)
= {UB|8 < aeasay) .
So we have

aag, © P(LS| 8 < a e aaap)
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3.5

as required for the recursion lemma above. and we may conclude that, for any
@,

aga, Cp¥P .
In other words,
{e=claea C pP foralle .

Since this hiolds for any o, we conclude that ase T 4 7 simply by letting o range
over all possible values of ¢ permitted by our original choice of state space 8.

0

Conclusion

In this chapter, we have introduced the basic form of an exception mechanism
for the refinement, calculus. The exit constryct was used to distinguish between
normal and exceptional termination of a program. Some laws abont the inter-
action of exits with other constructs were given, guided mitially by intuition.
Finally, a semantic framework was introduced, involving an extension of the
standard weakest precondition to take separate postconditions for normal and
exceptions] termination. Given this framework, the laws proposed earlier werc
proved correct, including the law for recursion.

31n fact, we also need the equivalence

(Vrez,Cy) = (Urex)Cy



Chapter 4

Exceptions on a larger scale

4.1

The simple exception mechanism iniroduced in the last chapter is clearly not
powerful enough to be used tt any serious programming endeavour. However, it
is not too difficult to combine the idea of exits with the procedure mechanism
already in the language. to provide a flexible and powerful exception-handliug
system. This i{s the concern of this chapter. After describing how to deal with
named exits and exception-handling routines, we propose and prove some laws
for the new constructs, and show how 1o use them in a sample development,

The exception-handling system introduced here will be used in Chapter 8 for the
development of some more significant programs, which use a library of abstract
data types.

Named exits and handling routines

There are twg reasons why we decided to start our investigation of exceptions in
the previous chapter with a very simple scheme of exits and exception blocks:
the first is that it is obviously better to understand a simple scheme before
moving on to consider anything more complex. The second reason concerns
the sheer variety of rnechanisms for generating exceptions and handling them
which are found in programming languages. By taking an abstract view and
considering only the contrast between normal and exceptional termination and
the interrupted flow of control given by the exit construct, we are left with a
mechanism which has no bias towards any particular programming language.
We can develop this simple scheme in various ways to produce mechanisms
that are easy to translate into different programming languages, We will show

38
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one such development in this chapter, and the translation into a programming
language will come in Chapter 8.

There are two important features that are missing in the mechanism proposed
in the previcus chapter: the ability to distinguish between ‘different exceptions,
and the ability to assoclate code fragments with exceptions. In any reasonably-
sized system, there will be several ways in which exceptions can be raised.
Indeed, within one procedure, it is quite possible that several ‘errors' might
occur. For example, if we model a bounded map as a partial function from
Keys to Values.

mep : Key - Value
inv #map < maz |

then an attempt to add a new pair to the map might be modelled as follows:

procedure add(value & : Key, v : Value} =

) k ¢ dom map _ .
map : [(#"mp<mn),map_mapgu{kmt} (+)

‘When we make this procedure robust, by specifying the behaviour when the
precoudition of () is not met, we would like to be able to distinguish be-
tween the case where there is already a value stored nnder ihe given key
(k € dom map) and the case where the map has already reached its maxi-
mum size (#moep = maz). Without this distinction, we cannot give useful
error messages, for instance.

It can also be useful to associate code fragments with particular exceptions.
In the case above. we might just want to give the user an infermative error
message, or we might want to attempt some sort of ‘clean-up’ action — if the
exception has been raised in the middle of a sequence of operations, some of the
operations may need to have their effect reversed in crder to restore the system
to a reasonable state.

The mechanism we propose invelves the use a construct already in the language
-— procedures. Since procedures are already a method for gwing names to
program fragments, it seem uatural to combine them with exits to give an
exception-handling mechanism. In order to declare a handler, we write

handler H = hhh
as an abbreviation for
procedure H = hhh; exit .

In order to distinguish, for the user, the procedures which are exception-handlers
from the standard procedures, we write

raise H

which is simply an abbreviation for a call of procedure H. Thus. when exception
H is raised, the associated code hhh is executed, and control passes to the



4.2, LAWS FORRAISE AND HANDLER 40

4.2

Law 4.1

Law 4.2

end of the smallest enclosing exception block.! Clearly, this stheme can deal
with multiple exceptions without any further complication, simply by declaring
several handlers. For instance, a user of the add procedure giveu above might
declare a handler for AlreadyThere (to be executed when add is mvoked with
k € dom map) and a handler for Full (for when #map = max).

Another advantage of the scheme is that it enables the declaration of the handler
to be separated from the raising of the exception, even to the extent that they
might be the responsibility of different developers. In the case study which
inspired this work -— the use of a library af abstract data types — it will be
seen (in Chapter 8) that many of the library operations have specifications that
include the raisiug of exceptions: the writer of these specifications, and their
implementor, can have no idea of what will be the most appropriate action to he
taken when a specific exception is raised. It is the developer of the application
which uses the lihrary who has this knowledge, and it is his responsibility to
declare the handiers for the exception.

Laws for raise and handler

As usual with new constructs, we propese some laws about the constructs which
will be useful when carrying out developments. These laws can be proved correct.
using the properties of exceptions and procedures. In all of the laws, we assume
that the name chosen for a handler is fresh — suitable renaming can be used,
if necessary.

The first two laws are simply encapsulations of the definitions above, so that
we can refer to them:

handler definition

A declaration
handler H = hhh
is an abbreviation for

pracedure ff = hhk; exit .

raise definition
Raising an exception
raise M
is an abbreviation for
H,
a call of procedure H.

1That is, the smallest exception block enclosing the point at which H is raised, not the
point at which it is declared.
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Law 4.3

Law 4.4

Law 4.5

We need to show bow to introduce handlers into a program. A sequential com-
position of two exit-free programs can be implemented by turning the second
half of the composition into an exception-handler:

sequential composition and raise

aca; bbb
= [ handler K = bbb o
aga; raise H
1 provided aga and bbb ere exit-free

Proof

RHS = [ handler H = bbb »
aga; raise H

= “Copy rule, raise definition 4.2"
[ aaa; bbb; exit ]

= “egit ending block 3.2"
[ vaa; bbB]

= “exception-free block 3.3"
aat: bbb

= LHS

If a program already contains aas followed by exit, we ran replace this with
raise H:

introduce handler

[ P(eca; exit) ]
= [[hmldler HZ agaae
P(raise H)
i

The validity of this law follows immediately from the Copy Rnle.

A program containing an else constrnct can be refined to a choice with a raise
in one branch:

introduce handler

[ P(aoa > (bbb; ecc)) ]
= [handler H = ccc o
P(aaa || (bbd; raise H))
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In this case, the proof follows from the definition of > and intreduce handler
4.4.

If eac and bbb are exit-free, then a nondeterministic choice between them can
be implemented by an exception block with aaa as one branch of the choice,
and raise { as the other branch, if the code associated with exception H is
bbb:

Law 4.6 introduce hundler to choice

aoa [ bbb
= [ handler H = bbb »
aca
[| raise H
1 provided aca and bbb are exit-free
Proof
LHS = aaa || bbb
= “choice-else 3.10”
[ aoa > bbb |

= “introduce handler 4.5”
[ handler H = bbb »
aga || raise H
I

We can always add more code after a raise construct, since it will never be
executed.

Law 4.7 ruoise-sequential composition

raise H
= raise H; gaa

The proof of this is immediate from progrem after ezit 3.1, and the definition
of raise.

4.3 A development using named exits

In order Lo show some of the rules from the previous section in use, and in order
to give a flavour of the developments which are possible using named exceptions
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and error-handling routines, we work our way through a small example in this
section. We will need some mdre laws as we progress.

(Our task seems initially to be very simple: we have to find the sum of three
numbers

sum:=a+b+c .

The difficulty occurs because we will not be able to use the builtsn addition
operation of the programming language, but will have to use the following
procedure instead. which in turn uses the type valid:

valid = —mazint. mazint

procedure cdd (value i, 7 : N, result s : N} =
L b+jervalid 9 s:=1 45

5 i,7 € valid

i+ j & valid

i € valid vV

0 j & valid

) — raise Qverflow
) —} raise Badlnput

The add procedure recognises the possibility of two forms of error: if either
of the input numbers is not a valid integer {it is not between -mazint and
+matint), then the exception BadInput is raised. If both inpnts are valid, but
their sum is not, then Overflow is raised. Only if both inputs and their sum
are valid is the result parameter s set to the sum of the inputs.

Given that we are using this procedure, we need to adjust our specification
slightly to reflect the fact that we can only achieve our goal if certain conditions
are met.

Spec = sum,r : [OK V BV OV] ,
where we have the following definitions:

a, b, ¢ € valid
a+b,a+ b+ c€ valid
sum=—a+b+¢
r=0k

(a & valid v
b valid v
B= ¢ & valid)
sum = 0
r = Bad
a, b, c € vahd
(a+ b & valid vV
ov = a+ b+ c & valid)
sum = mazint
r = Qver

OK =

If we cannot use add to obtain the sum, tben we set the returncode r accord-
ingly, and set sum to either O or mazint.
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Law 4.8

While this example might seem a little contrived at first sight, it is not really:
when we carry out developments which will eventually use the addition operator
of a real machine, we often cheat because we assume that the addition will work
correctly. In fact, its behaviour is very similar to that of the gdd procedure
above — it can overflow or behave strangely if its inputs are ‘out of range’.?

The obvious way to implement Spec is to use two calls of add, with appro-
priate handlers for Overflow and BadInput. The target of our developinent is
something like

sufn = mannat; r := Over
sum:=0; r:= Bad »

[ handler Overflou
BadInput
add{a, b, sum);
add{sum. c, sum};
ro= Ok

1

The probleins now is to manipulate Spec until it contains two consecutive copies
of add with appropriate substitutions. It is not difhicult to split OK into a
sequential composition, but we also need to distribute the relevant parts of I
and OV ipto the correct parts of the composition.

The first additional law that we need, easily proved by wp calculation. helps to
turn a specification with a postcondition that is a disjunction into an exception
btock, with branches corresponding to the clauses of the disjunction.

disjunction-else distribution
w:oyf V..V B
c
w:la, ]
>

w : [a, B

v oL

w: o, 8a)

Qur Spec is already in a suitable form to apply this law, but, before we do so,
it will be convenient to split B and OV into two further disjunctions:

(o & valid v ,
b & valid) ¢ € volid
V| sum=0
sum =0
+ - Bad r = HBad

*Tbis is particularly true when the programming language contains several forms of nnm-
ber: int, longint, float, real etc.
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8,4, c € valid a, b, c € vahd

a+b & valid a+b+cgvahid
ov = . Y .

sum = mazint sum = marint

r = Over r = Over

We call these disjunctions B1 and B2 and OV1 and OV2, respectively.
Now we can apply disjunction-else distribution 4.8:

Spec
sum,r: [OK v (B1V B2) v (OV1v OV2)]
sum,r: [OK v Blv OVlv B2v OV?Z]

]

Inn

“disjunction-else distribution 4.8”
[
sum, r: [OK] Q
>
sum, v : [B1]
>
sum,r: [0V1]
>
sumn, 1 : (B2
>
sum,r:[0V2)
i
The next step is to develop the suceessful branch into a sequential composition:
[ a,b,c € valid
= eumr a+b,a+b+c€ valid
= ST sum=a+b+c¢
L r=0k
[ a, b, ¢ € valid

Im

sum,r: | e+ ba+b+ c€ valid
sum=a+b

a,b, ¢ € palid
o6 +ba+b+cevalid
sum=a+b+c
r=0k

-a,b,ce valid
sum,r: | e+ b, a+b+c€valid,
sum =g+ b

Let us name these two specification statements OK'1 and OK2.

Now we simply have to associate the error-case branches with the appropriate
parts of the successful case. In order to move the branches arcund, we need
these two laws:

Law 4.9  else distribution

{aaa; bbB) > ccc
= (aaa > cccj: bbb
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Law 4.10 else distribution

(aaa; bbb} > ccc
C  (asa > cee) ; (bbb > cee) provided cce C aaa; eco

Now the inside of the exception block can be refined as follows:
{OK1; OK2) > sum,r : [B1] > sum,r: [OV]]
> sum,r : [B2] > sum,r : [OV2]

“else distribution 4.9”
({(OK1> sum,r :{B1} > sum,7r : [OV1]}; OK2)
> sum.r 1 [B2] > sum, r: [OV2]

in

1

“else distribution 4.10, take normal branch 3.5{twice)”
(OK1 > sum,r:{Bl] > sum,r : [OV1]); (1)
(OK2 > sum,r:[B2] > sum,r: [OV2]) (2)

The application of else distributian 4.10 is justified by the fact that

sum.r 2 [B2] ]| sum,r: [OV2]
L OKY;{sum,r:[B2) ] sum,r:[OV2]) .

iake normal branch 3.5 allows us to remove the two extra else-branches that
would otherwise appear at the end of (1).

Now we have our program in the shape required, and it is a simple matter to
refine (1) and {2) using calls of add.

a, b, c € valid
sum=a+ b

(1) = sum,r: [a+b,a+b+66whd

(g & valid v
[ sum,r: b ¢ valid) ; exit
sumn =0
r = Bad
a,b, c € valid
| sum,r: a+bg Ual.ld ; exit
sum = marint
r = Qver
T handler Badlnput = sym :=0; r := Bed
Overflow = sum .= meaxzint; r := Ouer »
a,b € valid sumi=a+h
o+ b€ vahd =
(a ¢ valid v . .
I ( b ¢ valid) -+ raise Badinput
a, b € valid .
I (a+ b valid) -+ raise Overflow
C  add(a,b,sum)
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4.5

The development for (2} is very similar, except that the assignment of Ok to r
is moved to the end of the exception block:

(2T add(sum, ¢, sum);
r:= Ok

We have now developed the program for sum := ¢ + # + ¢. It cannot be denied
that it is a somewhat tortuous development: more experience with development
involving exceptions and exception-handling is likely to reveal ‘development
idioms’ -~ patterns which appear frequently - which can then be encapsulated
into further laws. It is interesting to note that we actually end up with two
declarations of the handlers in the above development: since they are identical,
they can be merged to simplify the code.

It is also worth remarking on the change we made in our original specification.
to allow for the possibility of the add procedure ‘failing’: we started with a
specification consisting of a simple assignment to sum, and we ended up with
a more complicated specification, formed from the three disjuncts. K, B and
OV. Clearly this transformation is not a refinement, since it allows different
behaviours within the original precondition. It is in fact what Banach calls
a retrenchment [7]. This sort of transformation occurs fairly often in system
development: the top level ‘specification’ captures most of the desred behaviour
of the system. but it needs to be transformed until the exact behaviour is
captured, in all its gory detail: then the process of formal refinement can start.

A possible enhancement

One advantage of this procedure-based mechanism for exception-handling is
that it can easily he extended to model an additional feature which is found in
the exception-handling mechanisms of several programming languages.> Lan-
guages such as CLU [31] allow the programmer to pass a parameter to an
exception handler. Since, as far as we are concerned, exception handlers are
just procedures, we can model this with the normal procedure-passing mecha-
nism for procedures. One application of this would be to give more informative
error messages -— a handler for RecordNotFound could say exactly which record
could not be located, for instance.

Conclusion

In this chapter, we extended the simple exit mechanism defined previously, by
introducing the idea of an exception handler. This encapsulated the actions to

3Section 10.1 contains details of some of the exception-handling mechanisms available in
programming languages.
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be taken when a particular exception was raised. It was defined using the pro-
cedure mechanism already found in the language. Several laws were proposed
and proved, and sample developments showed how the laws could be used.
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Chapter 5

An iterator construct

5.1

This chapter begins our study of iterators and how they can be introduced into
a development method based on the refinement calculus. The notation used
is based partly on recent results from the functional programming community
about homomorphisms on recursively-defined data rypes (see for exampie [9,
36)). These results are summarised in Section 5.3, after the introduction of &
basic iterator construct over sequences. We then look at iterators over more
complex recursive types, and at how we can use a combination of recursive and
non-recursive types to specify the behaviour of a module. The final part of this
chapter shows how some of the results from the functional programming theory
can be used.

In subsequent chapters we will develop this work by investigating the use of
procedure variables, and thus procedures as parameters. In Chapter 7 we will
show how procedure parameters can be used to encapsulate iterators, and so
enable them to be specified and used in developments based on a library of
pre-defined abstract data types.

Introduction

Before looking at the fnnctional programming ideas, we motivate the work with
a brief introduction to iterators: what they are, why they are important and
the history of their use. Eckart [19] has described iteration as ‘the ability to
consider every element of a data structure’. For instance, a company’s personnel
database might contain a list of records, each of which contains details of an
employee, such as name, address, salary and so on. Given this structure, we
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5.2

could use an iterator to define a procedure which would examine each record
in turn, and reduce the salary of all those who earned more than £50K by
20%. Alternatively, we could obtain a list of all those emplovees earning more
than £30K, or cven the total wage bill for the company. These three examples
illustrate three common forms of iteration: the first takes the form of an ‘update
in place’; the second is a filter, producing a smaller collection of records; and
the third produces a scalar value.

The key fact about an iterater construct is that its user should need no knowl-
edge of how the structure is implemented: it should be possible to abstract
from such details as whether the list is singly or doubly linked and whether it is
stored in maiu or secondary storage. The interesting challenge is that we want
users, while working within the refinement calculus, to be able to use iterator
constructs on elements of types thev have themselves defined, rather than sim-
ply ou built-in types. We therefore eventually need to pass, as parameters to
such constructs, information about the action to be applied to each element of
the structure: this motivates our iuterest iu procedural parameters, explored
further in Chapters 6 aud 7.

Although iterators have appeared iu programming languages for many years,!
there has beeu some renewed interest recently. Wing [54] notes thar two recent.
trends in technology are likely to cause future interest: persistent object repos-
itories and large-scale distributed information systems. A persistent object
repository [1] can be seen as a generalisation of a database: instcad of records
in a relation, there are objects in collections of different types — often user-
defined abstract types. Just as for databases, users want to carry out queries
over these collections, which are siinply applications of iterators. The situation
is slightly different for large-scale distributed information systems such as the
World Wide Web, WAIS and gopher: when these systems were introduced,
there was uo direct support for iteratoers, so users were forced te follow hyper-
text links to achieve the effect of a query such as “Find me all the objects that
...". However, there are now several search-engines available, which provide a
more user-friendly interface to these iteration-like abstractions.

The it..ti construct for sequences

Consider an iteration over a sequence s of type seq A, defined by
type seq A = Empty | Cons A [seq A) ,

where we make use of the usual refinement calculus notation for disjoint union
types: each element of the type is either an empty sequence, orit is constrncted
from an element of A and another sequence. (Further details may be found in
[44, Chapter 15).] For brevity, and the convenience of an infix operator, we wili

1Section 10.2 contains & review of iterator constructs in several programming languages.
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Definition 5.1

often use the abbreviations

0

a:as

Empty
Consaas .

iy 11

The purpose of the iteration is to perferm some calculation which involves the
consideration of each element of the seqnence in turn. We suppese that the
result of the iteration s to be stored in a variable r, which is of some type R.
A first example of the construct that we propose to use for the iteration is the
following:

it s into r with
() —ro=z
[ a:as — r:= f{e,as)
ti

The it..ti construct begins with a statement of the variable over which the
iteration is to be performed, s, and the variable where the result is to be stored,
r. This is followed by a collection of branches, one for each part of the disjoint
union definition of the type of 5.2 In this case, the first branch covers the empty
sequence, and the second branch covers non-empty sequences made up of an
element a, together with a sequence as. The interpretation which we intend for
this construct is as follows: if the sequence s is empty, then the result variable
r is updated with a (constant) value z; alternatively, if s is uot empty, then the
new value of r is found by applying a binary function f to the first element of
s and to the result of the iteration over the retnainder of s — it will be clear
from the definition below that this result is determined by a recursion.

This brings us to one of the interesting points about this constryct -~ the dual
use of as in the second branch. On the left of the arrow, as is a pattern matcher,
while on the right it is the result of a recursive call. Use of this abbreviation
has the advantage that we do not have to give a name to the function we arc
applying to s.

We can now give the definition for the it..ti construct in terms of a recursive
procedure.

sequence ilerator

An iteration over a sequence s of the following form

it s into r with
() - bbb
laas — ece

ti

is defined as

?There are obvicus similarities with the tagged alternation and iteration constructa af (44).
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5.3

Is,m)
where

procedure /{value s, result r} =
if 5 is
(y —> bbb
[ a:as — | var { & I{as,1); ceclas\1]) |

Notice that the local variable ! is used to store the result of appling the pro-
cedure recursively to as, so that it can be used in the immediately following
statement, by meaus of substitution. Notice that, since the recursive call is
applied to the tail of s, we are guaranteed that the recursion will terminate.

For example, suppose we have the following declarations:

s:seq N
r: N

Then the following program fragment will ohtain the sum of the sequence:

it s into v with
{(y — r:=0
[nns — r:=n+ns
ti

Similarly. we obtain the length:

it s into r with
{(}y — r=0
fnns — r:=1+ns
ti

Homomorphisms on initial algebras

To generalise iterators beyond sequences, and to expose the links between the
two examples above, we use recent work in the functional programming commu-
nity, which we summarise in this section. The work is hased on homomorphisms
— functions on recursively-defined data types whose inductive definition mimics
the structure of the type. Further details may be found in [9, 36, 39].

First we give an inforrnal indication of the direction of this wark, before outlining
its formal basis: sinte we are transferring work from functional programming
into the refinement calculus, we give only a brief summary of the results required
rather than the full details, which may be found in the papers cited.
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An infermal approach

Suppose we define a type T by
T=aA|bBT|cTCT .

This uses the previously defined types A, B and € and defines the constructor
functions a, b and ¢, whose types are thus

a:A—-T
b:B—T—T
c: T —=€C—-T—ST.

Each element of T can be thought of as ‘tagged” with & constructor function.

Now, suppose that we wish to define a function on T, which will give as result
an element of some type R, say f : T — R. We can achieve this by defining
three subsidiary fuuctions. each designed to show the effect of f on the disjoint
part of its domain carresponding to each of the constructor functions.

The simplest part of the domain is that formed by a: for this we define
k:A—R

which maps every element of A to an eletnent of . Now to find the effect of f
on an element of T of the form a g, we merely apply f; to a.

The functions corresponding to b and c are slightly more cornplex, but the types
of their domaius are derived from the domains of the constructor functions,
with each instance of T replaced by R (since, as the function is recursively
applied, all of the elements of T in the lower-level structure have already been
transformed to elements of R). So the subsidiary functions we need to define
have the following types:

f:B—R—R
AR C—o R R.

Once we have given the functions f;, f, and %. we can comhine them, using the
so-called ‘banana brackets’ [36], to define a function from T to R:

f=hhf) .

This function f can be applied to any element of T, however it has been con-
structed. Moreover, for any element of T, we can be sure that exactly cne of
the subsidiary functions is applicable.

We will use, as a concrete example running through this section, the type of
non-empty lists of natural numbers. This is defined by

Natlist = SingleN | ConsN Nathst |

using the previously defined type N and the constructors Single and Cons.
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For every function we want to define on Natlist, we need to give two subsidiary
functions to show the effect on a singleton list, and on a longer list. Thus if we
want to map an element of Natlist to its sum, we can define the function in two
parts:

sum(Single n)
sum(Cons n ns)

n
n + sum(ns) .

i

So tbe function sum can be defined:
sum = {id, (+)] -

Similarly, to obtain the product of the elements of a list, we define
product = (id, (=)} .

To add one to every element of a list, we define
e list = (inc, cons — inc) |

where

incn =Single n + 1
cons —incnns = Cons(n+ 1) ns .

Note that tne.hst does not ‘update’ the list, but rather forins a new list of the
desired values.

Applymg these functions to the list (1,2) gives

(id,{+)) 1,2y =1+2=3
Gid, () (1,2) =152 =2
{inc, cons — inc) (1,2) = {1+ 1,24+ 1} = {2,3} .

Formal definitions

It is well-known that recursively-defined types, such as Natlist above, can be
viewed as initial algebras of an appropriate functor. For instance, if we define
the functor F by its action on objects (sets) and functious:

F(A) = N+ (Nx A)
F(f) =id+ (id x ) ,

then
F(Natlist) = N+ (N x Natlist) .

Now the two constructer functions of Nutfist can be combined into a single
function with the join operator

[Single, Cons] : N + (N x Natlist) — Natlis? ,
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and we can deduce that we therefore have an F-algebra, which consists of
F Nattist, Natlist and the function between them [Single, Cons].

For any two F-algebras f : FA— A and ¢ : FB — B, an F-homomorphism from
f to g is an arrow h : A — B snch that

h-f=g Fh,

which expresses equationally that the following diagram cornmutes:

FB B
Fh h
FA A
I

The join [Single, Cons] is actually defined to be the initial algebra of F. It is
therefore possible, given any other F-algebra — say g -— to find a uuique F-
hemomorphism from the initial algebra to g. This concept of the ‘unique ho-
momorphism from an initial algebra’ is the basis of cur iterator construct, and
is called a catamorphism [36]. It is usually written with the ‘banana brack-
ets’ mentioned above: (g). A simple way of thinking about catamorphisms is
that the functions given between the brackets { |} are used as ‘replacements’ for
the constructor functions of the catamorphism’s argument —- a form of ‘organ
transplant’.

In the next secticn we will make explicit the connection between catamorphisms
and the it..ti construct, showing how the assignment of a catamorphism applied
to an element of a datatype can be refined directly to an iterator. But first we
explore the definitions of catamarphisms a little more, showing how they can
be defined in two ways, either in functional programming terms, or with a
collection of recursive equations.

If we consider again the examples above on Natlist we can see two forms of
definition. For instance, the sum function can be defined, using the subsidiary
functions of identity and addition, by

sum = {id, (+]) .
Alternatively, the following equations together define it:

sum (Singlen) = n
sum (Consnns) = n + sum(ns) .

Similarly, the inc_list function, which adds one to each element of a Nathst, is
defined either by

me_list = {inc, cons - snch
or by

fnc_lsi (Single n) = Single (n + 1}
inc_hst (Consn ns) = Cons (n + 1) inc_list(ns) .
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In both of these cases, it is clear that the variant for the recursive definitions is
given by structural induction over the datatype: the recursive call on the RHS
of the definition is applied to the tail of the ariginal argument.

Of course, it is not difficult to obtain the recursive equations from the functional
definition. If a catamorphism ¢ on Netlist is defined by

e={f,a)

then the following recursive equations aiso define ¢:

c(Singlen) = fr
c(Cons nns) = gln, c(ns)} .

5.4 Catamorphisms and the it..ti construct

‘We now give the connection between catamorphisms and the it. ti constryct
which we intraduced earlier. From the definition of it..ti above in terms of
a recursive procedure, we can prove a law which will allow us to carry out
developments where we implement an assignment with an iterater. Note that
we are now returning to work with the sequence type defined at the start of
Section 5.2.

Law 5.2 assignment iterator

If the value to be assighed to a variable is formed by the application of
a catamorphism €o a sequence, then the whole assignment can be imple-
mented with an it..ti construct.

ri={_f,g) s

c
it s into r with
() —r=f
[ azas — r = g(a,as)
ti
Proof

By the definition of it..ti, it is encugh to prove that
r=(f,g)s
I{s, r)

where, as before,

cE

procedure [(value s, result 1) =
if s is
O = re=y
Ja:as — |[ var Lo [(as,[}; r:= g(a, 1) ]|
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We therefore develop the assignment until it is transformed into a recursive

procedure:?

ro={f,9) s
re [{value s,result r) variant V is #s e
{V =#s}
r={f.9)s
o[V =g#s,r=F(s)]
“tagged alternation”
if 5is
() —=r:fs={)AV =4sr1=F(s))]
fatas — r:[s=a:as AV = g5, 7= Fls)]

m

N N

fi

n

“by definition of F, and conversion to recursive form”
r:=f

(1) & by definition of F, and conversion to recursive form”
ri[s=aas AV =435, r=gla, Flas))]

C wvarls
lis=aesAV=4%#s,l=Flas)As=aes A V = #s];
rifs=was AV =#s Al= Flas), 7= g{a, F(as})]
C r:=g{al)
(2)C 1:[V>#as20, 1= Flas))
C  I(as,!)
O

(2)

<

We can use this law to give some very simple examples of iterations over se-

quences. Suppose we have the following declarations:

s :seqN
r:N.

Then we can develop simple iterators by referring directly to the catamorphism-
style definitions of the functions concerned. For example, for the sum of a

sequence:
r:=%Ls
= r:={0,{+)}s
T “assignment iterntor 5.2”

it s into r with
{}y — r:=0
Inns — r:=n+ns
ti

INote that we are using the refinement ruie for recursion frorn Lhe setond edition of Mer-
gan’s lext [44], rather ihan the original formulation — from the first editjon [43} — which

was used in the description of recursjon with exceptions in Chapter 3.
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What we are doing here is to import refinements like

r:=2=xs

= =0 (+))s

directly from other theories: we are able to use the literature on catamorphisms
to simplify the development of our own iterators.

The length of a sequence can also be obtained with an iterator:

1= #s
= “defineasb=14+1"b"
r:=([0,®)s
C  ‘“assignment sterator 5.2°
it s Into r with
() —r:=0
[r:ns — r:=ndns 4
ti
E r:=1+4mns

5.5 Iterafors over more general data types

We now work in a more geueral framework, with an arbitrary recursive data
type. The type we use is defined schernatically by

type T=albX|jcY T.

Thus an etement of T is either a constant, identified by a, or it is the image of
an element of some set X, tagged by b, or it is formed from an element of ¥
and some other element of T and is tagged by ¢. It will become clear how the
definitions and refinement laws can be extended from a type with these three
‘typical’ branches to any other recursive type.

First we extend Definition sequence iterator 5.1.

Definition 5.3 general iterator

If t is any element of the type T defined above, then

it t into r with
a — oaa
fbx —» bbb
Jeyt" — ecc
ti

is defined to mean the same as
Ige,r,

where
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Law 5.4

5.6

procedure I{value ¢, result r) =

if tis
a — aaa
Jbzx — bbb

leytt — ([ var Lo I{t' 1); coe[t'\] ]|
fi

Notice that the local variable is only needed on the third branch, where there
is a recursive occurrence of T' in the type definition. If there were several
occurrences within one hranch, then the same number of local variables would
be required: so a branch

mTT

would correspond to a branch in the definition of the procedure [ which had
the form

mbte— {{(var b, b e I(t, h); T(t2, b); ceclt, t2\h . &) ]] -

Having extended the definition of an iterator itself, we can alse extend the law
which introdnces an iterator as a refinement of an assignment:

asqignment sterator

r={(P,Q,R)t
C
it t into r with
a —+ =P
[bz — r:=Q(r)
Jeyt — ri= Ry, t')
ti

Refinement of branches

Now that we have these laws over more complicated data types, we can use
them 1o develop some more sophisticated examples. The cbservant reader may
be wondering about the point of having “r :=" in each branch of the it..ti
construct. In fact, it is useful to have a program fragment (rather than an
expression) in each branch, because it gives scope for further refinement: in
cases where the expression being assigned to the result variable — for instance,
R{y,t') in the it..ti construct in Law assignment iteralor 5.4 — cannot be
easily evaluated in the target language, the assignment r := R(y,t'} can be
refined until it is code. (In program developments where we are using libraries
of abstract data types, it is also likely that we will want to refine hranches uutil
they can be replaced by calls of library procedures.)
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We give two examples which show the idea of this refinement of branches. The
first is based on an example in a paper about iteratorsin the CLU pregramming
language [32]. The task is to count how many numeric characters ar contained
in a string which might also contain alphabetic characters.

We need to define two disjoint union types for characters, which are either
alphabetic or numeric, and for strings, which are either empty, o contain a
character and a string:

type
Char = alph Alpha | num Numeric
String = empty | ch Char String

(We assume that 4iphe and Numeric have been suitably defined.)
We define first an infix operator @ which will forrn part of the catarnorphism:

(alphc)dn=mn
(nume)®nun=n+1.

Now it is clear that, if count_num is the function which, when applied to a
string, returns the desired number of numeric characters, then

count_num = {0, &) .

We can therefore immediately introduce an iterator, as follows:

t:=(0.8)s

“assignment ilerutor 5.4
it 5 into i with
empty — i:=0
lchees — i:=cDes <
ti

in

Since the expression ¢ @ es is not immediately implementabie, we need to refine
the second branch, which is not difficult using a tagged alternauon:

C “tagged alternation”
if ¢ is num —

itfe=numn, = c® esf (1)
[ cis alph —
i:(e=alpha,i=c®cs (2)

fi

The two branches of the tagged alternation are easily implemented, using the
definition of &:

(HC di=es+1
(2)C 1:=es5 .
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This completes the development, giving overall:

i 1= count_num(s)
C it s into i with
empty — i:=0
[chees — if cisnum — i:
I cisalph — 1i:

fi

es+ 1
s

i

i

ti

Our second example is concerned with the specification of part of a file systern.
One of the components of this system is a record of the last time a file was
accessed. This access list is modelled as a mapping from file Nemes to Dates:

type Map/Index, Value] = empty
| pr Indez Vaiue Map|Indez, Value]

al : Map[Name. Daie]

Periodically, it 15 required to produce, from this access list, two other lists, one
of which is to contain all those files that were last accessed strictly before somne
given date, and the other is to contain the remaining fites which have been
accessed more recently. For convenience, the access dates are to be retained in
both lists.

We can define two functions, keep and reject, which, when applied to a date
and the access list, will return the required lists:

keep : Date — Map[Name, Date] — Map[Name, Date]

keep dt empty = empty

keep dt (pradm) = { keep dt m ifdt>d

prod(keep dt m) if dt < d
reject : Dute — Map[Neme, Date] — Map[Name, Date)

reject dt empty = empty

m;ectdt(prndm):{m‘?“tdtm if dt < d

prnd (reject dt m) if dt > o

Assuming that s and ¢ are the variables in which the results are to be stored, and
that d¢ is the date about which the access list is being divided, our specification
is:

s, t == keep dt al, reject dt of . (1)

The simplest way to implement this, using the theory that we have already
developed, is to divide the multiple assignment into two simple assignments
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joined by sequential composition, and to implement each separately with an
it..ti. This gives the following development:

(1)C it ol into s with
empty — §:= empty
[prndm — ifd>d — s:=m
[ dt<d — s:=prandm
fi
ti;
it al into { with
empty — {:=empty
lprndm — if dt<d — t:=m
| d8>d — t:=pradm
fi
ti

However, a much more interesting development is obtained by re-sxpressing the
problem in functional programming terms, and using results developed by that
community. Functional programmers would immediately recognise both keep
and reject as examples of the filter function, which is defined on lists by

filterp () = () ( ) it
on _ | x:(filterpzs) i px
filter p (z:z5} = {ﬁmrpg:s if-pr.

Now if we define an infix operator G,, a form of ‘conditional cons’, by

zdhprs= x5 ifpx
3 if-~pz,

we can immediately express filter as a catamorphism:
filterp = (), @) .

The final function that needs to be defined is one which divides a list into two
halves, depending on some filtering predicate p:

split p x5 = (filter p 23, filter p x5) |

where p is the negation of p. It is now easy to see that our original problem
can be expressed as

{9,t) := splitp al (2
where the predicate p is defined {on pairs of names and dates) by
p(n,d)=di < d .

Now we have defined split in terms of filter, and filter itself has been expressed
as a catamorphism, but we cannot yet express split directly as a catamorphism,
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which we will need if we are to implement (2) with a single iteration. Using the
version of filter for the Map type, we know that

split p 13 = (filter p x5, filter P zs)
{{empty, @, ) =5, empty, D3] zs) .

We can express this, in a point-free way, as
split p = (empty, &,) 2 (empty, Gp)
where & is the join operator defined by

faglz=(fz.9z2).

Now we can appeal to the functional programming literature for the result that
we need. Specifically, in [10, Section 3.2} and [11, Section 3.1], we find the
so-called banana-split law:

(") & (k) = {{h x &) - unzip)

where unzip is defined in terms of the functor F from the algebra which underlies
the catamorphism, and two projection functions:

unzip = Fr; AFmy .

Now the functor for the Map type is very similar to that for Natlist given above.
Its effect on objects and functions is as follows:

Fa(B)=1+(4xB)
Fa(f) = #dy + (ida X )

In our case the parameter 4 is Index x Value, so
Fr,=ddy + (idjx v X ) fori=1,2.

Now a little algebraic manipulation, in the Squigol fashion, allows us to express
split p as a catamorphism:

{empty. @®p) & (empty, &;)
= “by banana-split taw”

{(lempty, ©;] x [empty. S5]) - (Fmy & Fr2))
= “since {h xk)-{dam)=h-Iak-m"

([empty, ®p] - {idh + (id; v x m))a

[empty, ©5] - (1dy + (tdrav x 72)))

= “since [f,g] - (h+ k}={f-h.g &k

(lempty, ®; - (idrx v x m)) & [empty, @5 - (idixy x m2)])
= “since [f, 9] a[h. k] =[f ok, g2 k]
(empty & empty, &, - (1drv % M) & Bp - ({dry % m2))

splitl p

If we examine the second function in this catamorphism more closely, we can
see that each part of the join expects to be applied to a pair of pairs, the first
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5.7

of which is an (indez, value) pair, and the second is a pair of maps — the result
of the recursive application of the catamorphisin to the remainder of the map.
The full iterator development is now given by:

s,t:= split pal

In

s, ¢ = (empty A empty, @, - {idsx v % 7) & Bp - (idpovw x 7)) af
it ol into s, ¢ with
empty — s, {:= emptly, empty
orndm — s,t:={n,d) @, mi,(n,d} & mg <

N

ti
where m; and mg are the first and second compaonents of the pair m.
The second branch can be developed in the obvious way with an alternation:

C if pinid) — s:=pradm;t:=m

I ~pind) — t:=prndmg,a:=m

Conclusion

In this chapter, we have introduced the iterator construct it..ti, which forms the
basis of our work on iteratars. The construct was based on the idea of a cata-
morphism, but was formally defined as a recursive procedure. Several examples
were given, showing how particular functions can be seen as catamorphisms,
and therefore implemented by an it..ti construct.

In Section 5.5, we explained how the it..ti construct for sequences could be
extended to act on a more general data type. The type T used there is intended
to he a typical example of a type generated by a polynomial functor. This form
of functor — formed from constants, products and coproducts — is general
enough for cur purpeses, and we are guaranteed the existence of an mitial
object in the category of F-algebras (see [38]).

At the start of the chapter, we gave illustrations of three common forms of
iteration: the ‘update in place’, the filter and the scalar result. During the
chapter. we showed how the second and third of these are related to the new
construct: the file-system example in the last section was an example of a filter,
while the sum or the length of a sequence was an example of ascalar result. The
first form of iteration was not explicitly illustrated, but it is not hard to see that
following an it..ti by an assignment of the result back to the original variable
could have the desired effect. For instance, in Section 5.3, we introdnced the
inc_list catamorphism:

ine_list = (inc, cons — inc]

where inc simply forms a singleton list from the increment of its argument.
Suppose that we had to implement the following ‘update in place’ form of
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iteration:
5 1= tnc_list(s) ,

adding one to each element of the non-empty list of numbers s. It is easy to
see that this is achieved by the following program:

var r: Nathst
it s into r with
Singlen — r:=Singlen+1
JCons nns — r:=Cons (n+ 1) ns



Chapter 6

Higher-order programs

We now extend the language of the refinement calculus to cover procedure
variables, explaining first the syntax of the new constructs, then their predicate
transformer semantics. The semantics is given by showing how the normal
Copy Rule semantics for procedure constants can be replaced by an equivalent
formulation, which involves considering procedure meanings as values. We then
show how procedure variables can take these values, and give some refinement
laws.

The basis of this semantic definition is Nammann's work, reported in [48], hut
the well-formedness proof and all of the laws here are original.

The ideas developed here will be used in the next chapter to allow us to define
an encapsulated iterator procedure, which will need to take procedure values
as parameters.

In this chapter, unless otherwise stated, py will be used to represent a procedure

varighle, and pe an expression of procedure type. We will also use semantic
brackets [ ]-

67



6.1.

SYNTAX

68

6.1 Syntax

The only parametrisation mechanisms allowed are value and result. We allow
procedure types to be named. For example;

type
binproc = proc (value a, b :N)
eomp = proc (value 7,y ; N, result b ; Boolean)

We can declare vartables of procedure type in the normal way, usiug uvamed
types or explicit type expressions:

var
p : binproc
q: proc (value 7,y ; N,result & : Boolearn)

Although the parameters of a procedure type are specilied, it is also possibie for
the bodies of procedures to refer directly to external (global) variables. These
do not have to be specified and this is one of the major technical complications
in the semantics. However, in languages where procedure variables are not
allowed to refer to global variables, the expressive power of procedure variables
is limited.

Procedure constants and variables may he executed. using the keyword call:
call g .

Actual parameters are supplied for the formal parameters, as usual.

When we consider the program fragments which make up procedure expressions.
we see the first significant syntaetic restriction: such expressions must alwayvs
be parametrised. Any variable not mentioned in the expression’s parameter list
must be declared globally, Thus, unless z and y are global variables, we are
not allowed to assign the procedure value z := y + 1 to a procedure variable;
instead we have to use the value (value y: N,result £ : N ez := y+1). Once
again, any exterual variables are not explicitly mentioned.

Naumann gives two further restrictions on the svntax of the language con-
taining procedure variables, which are included at the end of this chapter for
completeness.

Having declared procedure variables, we can assign values to them:
q:=pe
where pe is an expression — parametrised as necessary — of the correct proce-

dure type. However, assignment to procedure variables causes some interesting
problems -— this is investigated further below.
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6.2

Semantics

Notation

Before giving the predicate transformer semantics of procedure variables, we
need to define some notation.

Since keeping track of the state spaces on which the predicate transformers are
acting is one of the key parts of these semantics, we need notation which allows
us to restrict and extend the states. Suppose o is a state, that is a fnnction
from variable names to values. Then o | z is the restriction of & to all variables
except z {which may be a list). So, if y is a state component — in the domain
of ¢ — and distinet from z, then (o | 2).y = o.y.

We also need the inverse image function {z of restriction. Suppose ¢ is a
predicate over state space I: for now, we can regard ¢ as any member of P X,
If z (of type T) is not a component of the state, then ¢ t z is a predicate over
the state space extended by z. It is therefore a set of states — a subset of x T
— and is defined by

gedtz = ag|lz€P .

The extension of state space = by the fresh variable z : T isdenoted by £, x: T.
So ¢ 1z is a predicate over Z,1: T.

The final piece of notation required is also concerned with the state spaces over
which predicate transformers act. Various authors {3, 47] have shown that the
product of two predicate transformers can be used to model their combined
action: in the case, as here, where we simply want to extend the state space of
a predicate transformer, we can take its prodnct with the identity transformer
on the additional components. If f is a predicate transformer over state space
L, and z is not a component of I, then we define f ® 1d; (over T,z : T) by its
action on predicates ¢ over £,z : T:

7€ (f ®id;).¢

E_EV,H(VT|T€¢-T[IH0.I]€¢)-GL:ref.:b)

where v ranges over predicates over X, and r{z v+ o.z] denotes overriding —
agreeing with 7 except at x where it takes value ¢.z. In other words, the weakest
condition for f @ id; to estabiish ¢ from some initial state ¢ is that f should
establish a condition 1 on I from the relevant part ¢ | T of 7, and that every
state T in 4 should satisfy ¢, when joined witk the unchanging component z.
Alternatively, r is the largest postcondition which when extended at = with o.x
lies within ¢.

We note in passing that for predicates (over £,z : T) which are independent of
r — that is of the form & t £ — we have from above that

(f@id:)ats) = (fa)tz,
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and hence

f®id, T g®1d,
implies

fCg.

(The other direction follows directly from monotonicity.) This result will enable
us to prove the transitivity of the order relatiou on procedure values.

Procedures as values

The first step in defining the semantics of procedure variables is to define the
values which such variables may take — we need to determine the set which
corresponds to a procedure type, say proc {value » ;: V, result r : R). We
take this to be the set of tuples {f,v,r,g) where f is a predicate transformer
over {v: V,r: R g: G), gis a list of the global variables of f, v, r and g are
disjoint and the rank! of ¢ is at most that of V and B —- this restriction is
needed to be sure that the set is properly defined in well-founded set theory.
{A procedure value with no parameters is therefore not allowed to refer to any
global variables of procedure type.) Although it is uuusual to see the names of
the parameters in the values. they are needed in the semantic definitions which
come later, and their effect is reduced by the definition of tvpe cquivalence {or
procedure types:

pracedure lype equivalence

We extend the normal rules about type equivalence by explaining when
two procedure types are type equivalent: types proc (value v

V,result r : R) and proc {value ¢/ : V' result r' : R’) are equiva-
lent (written =) exactly when V = V' and R = R’. In other words, the
parameter names are not significant, and neither are the global variables.

Having defined the set of values corresponding to a procedure 1ype, we can now
give the order refation on it, which we represent by L. Basically, this is just
the refinement order on the predicate transformers, but we need to be careful
about the state spaces involved. In the case where both values have the same
formal parameters, we have

Favor, @) C v r k)
iff
(Joud) C(f @i, ,

provided ¢ is distinct from A, Since f is a predicate transformer over v, r and g,
and f' acts over v, v and h, we are extending each predicate transformer to act

I'The rank of a type is the maximum leve! of nesting of Lthe procedure constructar.
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on the same state space, and saying that the two procedure values are refated
when these extensions of their predicate transformer components are related.
It is easy to see that the transitivity of C follows immediately from the result
above.

The definition is only slightly more complicated when there is an overlap be-
tween the global variables of the two procedure values, say P1 and P2. The
globals are then partitioned into three lists, g, A and i. These are respectively
those that appear only in P1, those that appear only in P2, and those that
appear in both. The refinement ordering is defined as follows:

(oo, m (g, E v, (ha))
iff

(f@id) C(f' 2 idy) .

Again, the predicate transformers are extended to a common state space,

We omit the case where renaming of parameters is required.

Procedure calls

We can now proceed to give the meaning of procedure calls. We deal with calls
of procedure constants, procedure variables and explicit procedure expressions
together, since the mechanisms for giving their meanings are very similar, the
only distinction being where the value is stored. For procedure constants, it is
stored in the euvironment; for procedure variables, it is stared in the state; and
for explicit expressions, it does not need to be stored at all. Far constants and
explicit expressions, the rather formidable formula given below is equivalent
to the standard semantics as given by the Copy Rule (with the addition of
parameters).

The motivation for the definitian of eall P(e, w] is obtained by considering
the standard result for procedure constants about the replacement of value
and result parameters by local variables, with assignments to those variables
before and after execution of the procedure body:

feall P{e, w}] =ffvar v,re vi=¢; fi wi=r]

where P is a procedure constant with associated body f whichk has formal
parameters v and r, and ¢ and w contain no occurrences of vor r. As is usual
in such cases, we elide all mentions of the environment 7, where it is of no real
importance: both sides of the above equation shonid really be parametrised by
n and the expression e should be evaluated in n in the derivation below.
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Law 6.2

An almost-standard application of refinement calculus laws shows

wp([var v,rev:=¢; f; wi= 1) &)
= “local variable law: see below”

Yo, eup(v = e fwi=r, (Bt 0,1)
= ‘“sequential composition, assignment”

u,r e up(f w =, (&1 v, 7)[p\e]
= ‘“sequential composition, assignment”

Vu,r e wplf, (¢t v, r)){whr])[vie] .

In order to be houest about the states ou which f acts, we have had to change the
local variable law slightly to be sure that the predicate on which the trausformer
acts is of the correct ‘type”:

introduce local variable

wp(var z ¢ aaa, @)
=Vz e wp(aaa,¢1x)
provided ¢ contains no z

This distinction is not usually needed in the presentation of the local variable
law. (A similar adjustment needs to be made to the introduce local constant
law.)

Now we consider a statement call Ple, w), where P might be a procedure
constant, a procedure variable or an explicit procedure expression. Wherever
it may be stored, the meaming of P is a procedure value, say

(f?v7r’g) -

At the point of call, the state must contain g (the global variables of P) and w
(the actual result parameters). We suppose that the remaiuder of the state is
given by a list ¢. {v and r must not appear in ¢.) Then the meauning of the call
is given by its effect on a predicate ¢, as calculated above:

(Fo.r o ((f @ddy,).(¢ o, r)[w\r]){v\e])

We shall call this formula @, so that we will be able to refer to it later. In
order to justify it, we note that f is a predicate transformer over v, r and g,
and therefore f ® 1d, ; is a predicate transformer over v, r, g, w and t. g isa
predicate over the complete state space — g, w and ¢ — and so (¢t v, r){w\r]
is also a predicate over g, w, ¢, v and r. Thus & is a predicate over g, w and ¢
as required.

We can now use this formunla for call P{e, w) in the definitions of the three
different forms of procedure call mentioned above. The meaming of a procedure
constant is stored in the environment 7, and refers to global variables at the
point of declaration.
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Definition 6.3

Definition 6.4

Definition 6.5

procedure constant call
[call Ple, w)], ¢

gfivlrlg.
nP={,v,r A
3

1t s not hard to see that this definition of call P(e,w) has the same effect as
the traditional Copy Rule for procedure constants.

For an explicit procedure expression there is uo need to store the value at all, and
references to global variabtes refer to the point of use. Here, the environment
1 has been omitted.

explicit procedure expression call

fcall (value v,result r e #)(e, w)].¢

gf,y-
[e] = vir.0) A
d

Finally, the most interesting case is that of a call of a2 procedure variable. Here
the value is stored in the state o.

procedure varable coll
a € [call pv(e, w)].¢

Af,v,r ge

apv={f,0,r g A
ced

In the case of procedure variables, we note that ¢ must contain pv itsell: the
constraint on rank given above means that pv cannot appear in g. We also note
that f, ¢ and ¢ all depend on o: in different states, pv can take on different
procedure values {though the parameters must be of the cemect type} with
different globals referred to, and the remainder of the state, ¢, will depend on
the result parameters used.

Assignment and monotonicity

Having given meaning to calls of procedure variables, we now consider assign-
ments to such variables. The semantic framework which we use to describe



6.2. SEMANTICS

assignments is complex at first sight, but it soon becomes clear that the re-
strictions we make actually have no effect on most datatypes — and we can
therefore inherit all the normal refinement calculus results, rather than having
to re-prove them.

The reason for the unusual semantic framework is the need for monotonic-
ity. Monotonicity is a fundameutal property of all constructs in the refinement
calculus, and is the basis for the development strategy known as ‘stepwise re-
finement’. It is because all the constructs are monotonic that we can refine
specifications in isolation, assemnble the code with (monotonic) constructs, and
remain sure that the resulting program is a valid refinement of the combined
specifications. However, the procedure variable assignment pv := pe has pe as
a sub-program — pv is a variable and not a sub-program, hence not subject to
refinement — but pe T pe’ does not imply that pv := pe C pv := pe'. Thus
assignment to a procedure variable is not monotonic.

Naumann'’s suggestion [48] to solve this problem was to use a geueralised as-
signment statement pv :J pe, defined by analogy with Morgan's Simple Spec-
ification ahbreviation [44, Abbreviation B.1]2. Thbis counstruct assigns to pv
any program wbich is a refinement of the expression pe. Monotonicity of this
construct follows immediately from transitivity of C, and consideration of the
behaviour of some compilers also makes this construct seern reasonable: in the
case wbere pv is merely a pointer to the code of pe, then pv := pe will indeed
establish pv = pe, but compilers often ‘optimize’ programs by making them
more deterministic or by making them terminate more often (by monitored
execution, subscript range checking etc). So it is not clear that pv := pe will
establish pv = pe in such cases anyway. However, as long as the compiler is
correct, it should at least be the case that the value of pv will he at least as
good as pe — that pv J pe.

Although we now have a monotonic construct as desired, it turns out that, in
the traditional powerset model, only very weak refinement laws can be proved
about, :J — for instance, it is no longer the case that pv :J pv and skip are
equivalent: althougb it is easy to show that pv :0J pvr C skip, tbe other
direction is not true. In other words, for some predicate ¢,

wp(akip, ¢} # wp(pv 3 pv), ¢) .

The underlying cause of the prohlems with these laws is that predicates may not
be monotonic with respect to refinement: for instance, pv = 5 is not monotonic
in pv because it is satisfied by § but not by any proper refinement of 5.

The solution to this difficulty proposed by Naumann [48)] is to banish all non-
monotonic predicates, thus restoring tbe important refinement laws. The non-
monotonic predicates are removed by taking as predicates not all possible sets
of states, but only those which are up-closed under the relevant ordering;: if X
is a poset (with respect to <), tben a subset ¢ of X is up-closed exactly when

Va,b:XeacopAa<b=>beg .

?Morgan points oul that the notation is due originally to Jean-Raymond Abrial.
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There are two useful observations we can make about up-closed subsets:

e forany a € X, the set {z: X | o < ¢} is up-closed; and

e if X is discretely ordered (z € yiffz = y), then every subset of X is
up-closed, and every subset of X x X is also up-closed.

The first observation will he useful when we later consider statements about
refinement as state predicates, but the second is important now. Every type
T is interpreted as a pre-ordered set. For most datatypes — all except proce-
dure types — the ordering is simply equality, giving a discretely ordered set.
The second observation above then tells us that, for predicates not involving
procedure variables, the restriction of predicates to np-closed subsets is vacu-
opus — we can still use all the results of the traditional powerset model. It is
only for procedure types that we have to be careful to use up-closed predicates
(in particular, we cannot use equality). Thus for ordinary variables — those
not of procedure type — we use the standard assignment construct with its
usual (substitution) semantics, while for procedure type variables, we use the
generalised assignment :J, which is formally defined below,

Having defined our semantic framework, we now carry out some investigations
to ensure that the framework has the right properties:

e that the standard programming constructs of the refinement calculus
maintain up-closure;

s that the new constructs which deal with procedure variables 2!so maintain
up-closure:

« that the conditious which guarantee that a specificatiou statement main-
tains up-closure are reasonable; and

« that the framework is sufficiently well-behaved that recursive constructs
are well-defined.

Standard programming constructs We deal first with the case where the
postcondition coutains no reference to state variables of procedure type. In
this case, the ordering that concerns us for up-closure is equality, and so we
can appeal to the usual results about the monotonicity of the constructs of the
refinement calculus [44].

For postconditions which do refer to state variables of procedure type, we pro-
ceed by structural induction, For each statement 5, we must shew that if ¢ is an
up-closed set of states, then so too is wp(§, ¢}, given that the subcomponents
of S also preserve up-closure.

From the definition of up-closure, we bave, for a procedure variable pu,

d{pv) is up-closed
if ¢(pr) A pr C pv' = ¢{pv’)
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We now look at the standard programming constructs of the refinement calculus
in turn:

skip
wp(skip, ¢) = ¢
so we have nothing to prove.
abort
wp(abort, ¢) = false
which is up-closed.
sequential composition
wp(oaa; bbb, p) = wp(aaa, wp(bbd, ¢))

Thus the up-closure of wp{aas: bbb, ¢} follows immediately from the up-
closure of ¢ and the inductive hypothesis that aaa and bbb preserve up-
closure.

assignment to a simple (non-procedure) variable z := F;
up(z := B, ¢) = d[z\ E]
up-closure follows directly from the up-closure of ¢.

alternation

uwp(if [ o, - eag, £, ¢)
= VC¢| N
(Ale, = up(aaa,,4)))

We give names to the formulae in the hypothesis and conclusion:

Hl: Va A (Ala; = wplaaa,, ¢}))

H2: pv € pul

H3: (Vpu2 e ¢(puv} A pr C pv2 = ¢(pv))
C1: (V a)lpei\pul|

c2: (Ala. = wp(aaa,, 9)))[pr\prl]

We need to prove that H1A H2A H1= C1 A C2. C1 follows immedi-
ately from H 1, once we insist that no procedure variable may appear iu a
guard. For 2, we can distribute the substitution through the conjunction
to get

Alas => wp(asaey, ¢)[pripvl]) ,

again assuming that pv does not occur in any ¢,. Now let i be any index.
If @, is false, then we can immediately conclude that

a, = wp(aaq,, $}[pr\pvl] .
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If o, is true, then froin H1, we can see that wp{aaq,, ) must also be
true. By the inductive hypothesis, this is an up-closed set, and hence
wp(aaa,, )[pr\prl] must be true, giving us once again

a, = wplaaa., §)[pv\pvl] .

But i was arbitrary, so we can couclude

A(c’! = wyp(aaag,, Gb)[PU\PUl]) 5

and, from that, C2 follows.

New constructs for procedure variables There are two constructs that
we need to consider: assignment and procedure call:

« assignment to a procedure variable pv :2 pe. The generalised assignment
is defined as follows?®:

wp(py ;] pe. $)
= (Vpv' o pv’ J pe = d[pr\pv'])

(pv' must be a fresh variable in this formula.} We call this [ormula 3 (pw)
for arbitrary procedure variable pw. We need to prove

Y{pw) A pw T pwl = ¥(pwl)
given that ¢ is up-closed.

We give names to the various formulae:

Hl:4(pw)  (¥Vpv' e pv' O pe = glpvipy’)
H2. pw C pwl
H3: ¢ is up-closed

C: w(pwl) (¥ po' e pv’ J pe = o{pr\pv'])[puipwl]

We have to prove that H1 A H2 A H3 = €, and we start by re-writing
C, taking the outet substitution inside the quantification:

Coulpwl)  (9pv' e pv' D pe[pw\pwl] = dpripr’|[pu\pwl]) .
Now we choose an arbitrary pv' such that pv’ J pe[pw\pwl]. If such a
pv’ cannot be found, then € is trivially true. Monotonicity of pe tells us

that

pw C pwl = pe C pe[pw\pul] ,

3This definition agrees with that given by Mergan’s Simple Specification abbreviation:

pv :d pe = pu : [pv D pelpripw]] .
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and we know that pw C pwl from H2. So we have
pe T pe[pw'\pwl]
Thus hy transitivity of T, we have
pv' Jpe .
and, by H1,
¢lpripv]
The up-closure of ¢ also tells us that ¢{pv’\pv’] is up-closed. Thus
olpr\pv'] A puw © pul = glpvipv'Ipwipul] .

Both antecedents are true (from above and H2), and so the conclusion ig
true, giving us C as required.

» procedure variable call call pu(e, w}. Although the formula for the weak-
est precondition given in Definition 6.5 is rather formidable. most of the
complications come from the parameter passing. Without that, we simply
have to show that f & id,, , preserves up-closure, given that f does. If the
variable we are considering is pw, then a case analysis gives ns the desired
tesult: if pw appears in the list w, ¢, then f @ id,, . has no effect on it,
and if pw is not in that list, then it is covered by f and the inductive
hypothesis tells us that up-closure is maintained.

Specification statements Since the specification statement is an additional
construct which does not appear in Dijkstra’s language of guarded commands,
we do not have to ensure that it always maintains up-closure. Instead we
can investigate the conditions under which it does so, and insist that those
conditions are met in the new language which includes procedure variables.
The conditions for maintenance of up-closure will be conditions on pre ani
post, where these are the two predicates which form the specification statement.
Specifically, we show that the up-closure of pre and the up-closure of — post —-
or, equivalently, tbe down-closure of post — are sufficient together to guarantee
that wp(w : [pre, post], $) maintains up-closure of &.

We inay assume:

Hl: pv Cpvl
H2: pre
H3: (Ywepost = ¢)tw

We have to prove:

Cl: pre[pv\pvl]
c2: {({¥w » post = ¢} t w)[pvprl]

4Note that the wp definition of a specificatien statement i slightly different from the
standard form given in Chapter 2, as we have tc take account of the state spaces.
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C1 follows directly from H1, H2 and the up-closure of pre.

For C2, we note that w must be different from pv, since we forbid specification
statements over procedure variables. Hence the tw and the substitution for pv
can be safely interchanged. We therefore need to show that

= post{pv\prl] V ¢[pvi\prl] .

From H3, we know that, for a particular w, either - post holds or ¢ does:

s if = pest holds, then its up-closure and H1 give us - post[pv\pv1]

e if ¢ holds, then its up-closure and H1 give us p[pv\pv1].

In either case, - post{pv\pv1] v ¢{pr\prl] holds, giving the desired result,

Recursion Theset over which we need recursive definitions to be well-defined
is the set of programs, and. by the results above, we can restrict our attention
to programs which preserve up-closure. We need to show that this set, together
with the refinement relation, forms a complete partial order (cpo). and thus
that any monotonic function on the set — a program context — has a least
fixed-point.

So our task is to show that every chain in the set has a least upper bound (in
the set). Suppose that €, is such a chain of increasingly-refined up-closure-
preserving programs. The existence of the least upper bound as a program
follows from standard results, but we need to show that | |, C,.L also preserves
up-closure. In other words, we need

(L, Colldr Az Tz =, CL)bz (1)

Now, hy definition. (|}, C,.L).¢.z = (|, C,.L.¢).x, which is either true or false
for a particular value of z. If it is false, then we are finished, since the antecedent
of (f) is false. If it is true, then, since the C, are increasing, there must be some
7 for which €,.1.¢.x is true. Since C, preserves up-closure, we therefore know
that C,.L.¢.2' is also true, and hence that (| §, C,.1.¢).z", as required. Thus
the least upper bound of the chain preserves up-closure.

Connectives Having examined tbe semantic framework, and noted that it
has the desired properties, it is also interesting 10 look at the predicate connec-
tives to find out which of them maintain the property of upward-closure: when
their arguments are upward-closed, so should their result be. Conjunction and
disjunction of predicates are given set-tbeoretically by union and intersection,
respectively, and these do indeed preserve upward-clesure. However, negation
is more complicated, because the complement of an up-closed set need not be

up-closed. We first define a version of implication which preserves up-closure
by

P=>1y = U(d & {6 is up-ciosed) Ad NP Cop) .
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Now we can define negation In terms of implication:
Sp=¢>D

It is easy to see that > ¢ is the largest up-closed set that is disjoint from ¢. For
discretely-ordered X, = ¢ is simply the set-theoretical complement X — ¢.

Quantifications are defined in terms of the projection operator introduced above:
ce(Qzegi=(Ar|o=1|zeTED)
cge(Vzed)y=(Vr|a=rlzeaT€d)

Now we are in a position where we can prove the following lemma:

Lemma

If ¢ is up-closed, then wp(skip, ®) = wp(pv -3 pv, @)

Proof

wp(pv 2 pr, ¢)
= “definition of : 2"

(Vpv' » p' 1 pv = ¢[pv\ps')
Now wp(skip, @) = ¢. and so we must show that, for any pv'.
¢ ApuCpv' = glpvipr] .

But this follows directly from the definition of up-closure of ¢, and so the lemma
is proved. o

This gives us the equivalence of skip and pv :2 puv.

State predicates involving refinement and some basic laws

The final step before we can prove the correctness of various laws involving
procedure variables is to consider exactly what is meant by state predicates
which use the refinement relation. These might appear for instance in the
pre- or post-condition of a specification statement or in a guard. Wherever
such a predicate may appear, the mechanisin for evaluation is the same: the
two operands should be extended, by taking their product with appropriate
identity transformers, until they both act on the same state space.

For instance, suppose our state comprises the two natural numbers z and y,
and consider the state predicate

Tijfzr=z +1]C (procz:=z+1)
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Law 6.6

The meaniug of the LHS is a predicate transformer over (z,y), whereas the
RHS acts only on 1. In order to compare the two, we take the product with

id,:

for any ¢ (over z and y),

wp(zs: [z =g +1],0) = wp{(z := z+1) R idy, d) ,
which simplifies to

Plz\z + 1) = plz\z + 1] .

Alternatively, suppose there is also a procedure variable pv in the state — for
simplicity, we assume it takes no parameters. To evaluate

zifz=zm+1]Cpv .

we need to find out which variables the current value of pv acts on. Suppose
that

epv={f ..z},

where ¢ is the current state. Thus the current value of pv is a predicate trans-
former f which acts only on z. Then, to evaluate the predicate above, we must
stipulate that y and pv should remain unchanged:

for any ¢ {over £ and ¥),
wp(:: : [I =3+ 1],05) = wp(f ® I.dy,;:m, ¢} -

We are now able to prove three basic laws about the execution of pracedure
variables. The first law that we prove is the simplest one, where the procedure
variable has no parameters:

introduce procedure variable ezecution

: C
we | [Pm’p“:zs”‘pu,past C call py

Proof Inorder to prove this law, we must show that the weakest-precondition
of the left-hand side implies the weakest precondition of the right-hand side.
Looking back at the definitions given earlier, we can see that the right-hand
side gives us

(f ®id).o

where f is the predicate transformer part of the current value of pv — agaiu we
assume no parameters for now — and ¢ is the part of the state on which f does
not act. On the left-hand side, we get, by the definition of wp for a specification
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Law 6.7

statemnent

(w : [pre, post] C pv) A pre
ANwepost =) tw .

Expanding the predicate involving =, we get

for any ¢,

(pre ANwepost = )t w) = (f @id).¥
A pre

A{(Vwepost =} tw .

Taking 3 to be ¢ gives us the required result immediately.

a

procedure variable value assignment

If the procedure variable pv has heen declared as procedure {value v),
then we have the following refinement:

pre

wi w:=ECpv

,post| C call pr(A4) n
provided w : {pre, post] C w := E[v\ 4]

where A contains no v

Proof Suppose that the value of pv in the current state is {f, v,.g}, so f
is a predicate transformer over v and the global variables g. Taking weakest
preconditions on the left of (1), with respect to a predicate ¢ over the whole
state (g and t), we get

Hl: pre
H?2: w:=FC pv
H3: (Ywepost =@ tw,

and on the right we get
C: (Yo ((feid)(to)[u\A]) .

Since v does not appear in A, the universal quantification in C is vacuous, so
our revised goal is

C': o {(f oidh).igtv))e\A]
We can re-express H2 in a more useful way as

Ior any ' over the whole state g and ¢

Wive\Bl = (feid)y¥tv) .
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Law 6.8

Now the antecedent here is equivalent to 1[w\E], so we have
B2 wl\E]= (f @ id)(@ ) .
The proviso to the law can be expressed as

For any n over g and t.
pre A{Ywepost =n)tw = nfw\E[v\4]

The consequent here is equivalent to n{w\ E}[v\ 4], since the only place v can
appear in B{w\E] is in E itself.

Now from H1, H3 and the proviso (witb 7 instantiated to ¢), we get
SuA\E)[v\4] .

By monotenicity of textual substitution and H2' {with % instantialed to ¢), we
get

S[w\E|[v\4] = ((f ® id)).(¢ § v))[v\4] .
Putting these two together. we get €' as required.

a

procedure variable result casignment

If the procedure variable pv has been declared as procedure {result r),
then we have the following refinement:

re
, ;=% Cpo .post| C call puia) (23

provided a : [pre,post] C a:= E

a:

where r does not accur in E.

Proof Suppose that the value of pv in the current state is (f,,r, g), so f
is a predicate transformer over r and the global variables g. Taking weakest
preconditions on the left of (2), with respect to a predicate ¢ over the whole
state (g, o and t), we get

Hl: pre
H2: r=ECpv
H3: (Vaepost=¢)ta,

and on the right we get
C:  (Vre((faidie)(@tr)a\r])
‘The provise can be expressed as

For any i over g, a and ¢,
pre A(Vaepost = n)ta = nla\E]
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H?2 is equivalent to

for any ¢ over the whole state g, a and ¢

WININE]l = (J & iday)(gt7)
which in turn is equivalent to
(HIP\El}tr= (@ ida ) {e fr} .
Taking 3 to be ¢[a\r], we get
(@la\r][P\ED T r = (f R ida ) (larr] T ),
which can be simplified to
(Bla\E]) tr= (f@idy,). (9 F r)a\r] .
By the lemma below, we can simplify this again to
dla\E] = Vr e {f @id,.).(dtr)[a\r] .

From H'1, H3 and the proviso, with 5 instantiated to ¢, we can conclude ¢la\ £,
giving us the desired result.

a

Lemma For any predicates a (over some state) and /3 (over the state extended
with a fresh variable z), if we know that

(et z} = 3(z)
then

a=(Yzep(z)) .

Proof Suppose that
(atz)=pz) .

Then, if ¢ is a state in the set a t z, it must also be in the set 3{z). So, by the
definition of t,

(Flz€a)=(red) . (3)
Now suppose that o is any state in o. We must show that o' € Vz e 5(z). By
the definition of ¥ over cur up-closed sets of states, we therefore need

Nrlo'=1|zeT€f) .

Ccnsider any T such that ¢' = r | 2. Then we know that r|z € a, since ¢’ € a.
Therefore, by (3), we know that * € 3. But r was arbitrary, so we have the
required result about 7, and we can conclude that o' € ¥z « 8{z).

@]
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6.3 Laws for procedure variables

Proofs of these laws follow directly from the definitions.

Law 6.9 procedure verigble value specification
1f the procedure variable pv has been declared as procedure (value f3,
then we have the following refinement:
pre
w ; [prey, post) C pu
provided w : [pre, post] T w : [prey[f\ A], post, o\ Ao]]
where Ag is A[w\uo) and post; contains no f

w: ,post| T call pr(A)

Law 6.10 procedure variable result specification

If the procedure variable pu has been declared as procedure (result f),
then we have the following refinement:
pre

5| £+ [prer, posti{a\f]] C pv

,post| C call pv{a)
provided o : [pre, pest] C a: [pre;, post ]
where f does not occur in pre|, and neither f nor f occur in post .

6.4 Naumann’s syntactic restrictions

Naumann's first restriction, which he called the Global Variable Constraint is
intended to simplify the implementation of procedure variables using stack al-
location, by ensuring that external variables of stored procedures — thase as-
signed to variables or passed as parameters — are visible at every point of call.
Explicitly, he states that

‘no variable free in the body of a procedure assigned to a procedure
variable (or passed as an actual parameter) is bound by var. auz or

Ll

pro’.

{Naumann's var, suz and pro denote local variables, logical constants and pro-
cedure expressions.)

The second constraint ensures the absence of aliasing. It has two parts:

s in calls of procedure constants and procedure expressions, the free vari-
abies of the called procedure do not appear in tbe actual parameter list;

e in calls of procedure variables (and formal procedure lype parameters)
only variahles bound by var may appear as actual result parameters; thus
by the Global Variable Constraint, they are distinct from the externals of
the procedure variable.
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6.5 Conclusion

In this chapter, we have stepped back from the work on iterators to look at how
variables of procedure type can be incorporated into the language of the refine-
ment calculus. The semantics of such variables was descrihed using weakest
preconditions, following Naumann’s work, while the original work in this chap-
ter showed the well-formedness of Naumann’s constructions, and the validity of
several new refinement laws about procedure variables. The work described in
this chapter will form the basis of Cbapter 7.



Chapter 7

Encapsulating iterators

7.1

In this chapter we bring together the work of the previous two chapters —
Chapter 5 on the it..ti construct, and Chapter 6 on procedure variables —
to show how we can encapsulate the iterator construct into a procedure itself.
This euables us to put forward a development method which is based on the
refinemeut calculus and which uses a pre-defined library of abstract data types.
We start by considering the use of procedures as pararneters, based on the
theory of procedure variables, hefore giving an example, and showing how to
encapsulate the iterator construct. Subsequent chapters will show the use of
the libraries of abstract data tvpes on a larger scale.

Procedures as parameters

Now that we have given syntax and semantics to procedure variables, thereby
putting procedure values on the same level as values of other types, it is only
a small extension to allow procedure variahles as parameters, thus permitting
procedure values to be passed to and from other procedures just as other values
are passed.

Syntax

We allow parameters of procedure type to appear in parameter lists [or a pro-
cedure, just as simple (non-procedure) parameters do. These procedural pa-
rameters may be passed hy value, result or value-result. When a procedural

87
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parameter is used, its own paramieters must be specified in the parameter list.!
For example, consider the following procedure definition:

procedure P (value z,y : N; fp : procedure (value v: V),
resalt op : procedure (value w: W))

This declares P to be a procedure which has three value parameters and one
result parameter. Of the value parameters, two are simple parameters {z and
¥y, both numbers) aud the other, fp, is a procedure which itself takes a single
value parameter. When P is called, an actual procedure value of the correct
type must be supplied for fp, just as numeric values must be supplied for z and
y. The result of executing P is commuuicated through the result parameter
op: again the name of an actual procedure variable of the correct type must be
supplied on the call.

It is worth recalling here that Naumann gave some additional syntactic con-
straints in [48) to simplify implementatiou and prevent aliasing. These are
summarised in Section 6.4.

Semantics

We recall that the definition of substitution by value for non-procedure variables
was constructed so that the following equality would hold:

Plvalue f\A]
= |[varie
.= A
! P

where P is a program, f a variable, A a term and ! a fresh local variable. In
order to deal with substitutions for procedure variables, we will use very much
the same approach. However, there is a problem with the program fragment
above, when we replace f by a procedure variable pv; we must also replace !
by a fresh local procedure variable ip. We then have an assighment to Ip, and
we recall that assignmeut to procedure variables is a non-monoctonic construct.
So instead, we want a definition that maintains the following equality:

P[value fp\ AF]
= |[varlpe
Ip:0 AP,
Plfp\ip]

Now fp is a procedure variable, AP a term suitable for assignment to such a
variable — a program fragment — and {p a fresh local procedure variable of
suitable type.

'Remetmber however that global variables are not specified for a procedure Lype.
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The definition of this substitution is as follows:

Definition 7.1 procedure value substitution

Definition 7.2

wp(P[value fp\AP), ¢)
= YXeX AP = up(P,g)[p\X]

1t should be noted that this definition is consistent with the standard definition
of substitution by value: for a variable z of discrete {non-procedural) type, an
assignment £ :J e is equivalent 1o the normal x := e. A similar remark applies
to the definition of result substitution which Follows.

Similarly, the definition of (non-procedural) substitution by result was chosen
to give the following equality:

Plresult r\g]
= |[varle
Plrd;
a:=1

Il

In the case of procedure parameters, r, ¢ and | must all be procedure variables,
and so the assignment to a i5 3 problem. Instead we aim at the following
equality:

Plresult rp\ap]
= llvartps
Plrp\p];
ap:Jlp

1l
Now rp, ap and {p must all be procedure variables of the same type.

The definition of this substitution is as follows:

procedure result substitulion

up(Flresult rp\ap], ¢)
= Vipeuwp(Plrp\ap].(Vapeap Jip = ¢) t ap)

While these definitions give precise semantics to the procedure variable versions
of the two major substitution forms, they are not particulariy user-friendly.
However, as an alternative to using the laws, we can also manipulate the speci-
fication under consideration until it matches the program fragments above, and
then immediately replace it with the appropriate procedure call. Experience
has shown that this is actually more helpful than proposing and proving other
laws using the weakest-precondition definitions.
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7.2 Example

Our first example? of the use of procednres as parameters coucentrates on the
use of value parameters. Later we’ll show how to nse result parameters to
combine two iterators to form a third. We consider the development and use
of a procedure, findmaz, to find the maximum of an array a of elements of
type T, where the ordering relation R is not hard-coded into the proceduce,
but passed as a parameter: for any two values of T, say = and y. the procedure
parameter rp should retarn a boolean value b to show whether or not they are
related; that is, execution of rp will establish & & z R y. The development
of findmaz gives a further example of the use of procedure variables — in the
development of a procedure which has a procedure parameter, that parameter
is treated just as a local procedure variable — while the use of findmar shows
particular procedure values heing passed as actual parameters.

There are two value parameters and one result parameter to findmaz:

findmaz (value o :arrey(0.. N = 1jof T,
rp : procedure (value z.y: T, result i Bool);
result m: T}

The postcondition that we want findmaz to establish is that m is the maximum
value (in the R-ordering) in a:

¥ji:0..NeafjJlRmAmina (1)

The precondition, from which we have to establish (1), must contain the fact
that R is a total order. We must &lso assume that rp computes the relation R,
which can be expressed as follows:

bilbezRyl C . (2)

We note that, in the definition of the iype of vp, the variables z, y and b would
normally be taken as place-holders, but we need to use them in specification
statements. Specifically. we expect predicates about rp, such as (2}, to mclude
specification statements with z, y and b free in the pre- and/or postconditions.

So the specification of findmez is
findmaz = m : [R s a total order A (2), (1)}

For brevity, we omit, from here on, the requirement that R should he a total
order — formally, it should be carried through each precondition.

?The example is taken fram [49] where it is expressed in terms of Hoare triples, rather
than the refinement calculus.
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Standard development steps take us to the following program:

findmaz (value o:array[0.. N —1)of T;
rp : procedure {value z, i : T.result b : Bool);

result m: T)
var i :int »
m,i:=g[0],1;
doit N
var ¢ : Bool »
o: [1,J]; (3)
if ¢ then m = gfs];
fr=i+1
od |,

where the loop invariant I and the postcondition of {3) J are given by:

I=2(b:[besRy)C pA(Vj:0..i-1ea[jlRm)A(min a)
J=(3:0..i-1lea[flRm)A(mina}Ace mRali]) .

Of course, the interesting part of this development for us comes in justifying
the replacement of (3) with a call of rp. Expanding [ and J and removing the
conjuncts which occur in both precondition and postcondition® gives

(L c:[b:[becRY]C rp e mRafi]]
Since rp has both value and result parameters, we need a combination of two

laws given in the last chapter, procedure vamable value specificstion 6.9 and
procedure variable result specification 6.104:

Law 7.3 proeedure vericble value and resull specification

I the procedure variable pv has been declared a5 procedure
{value v,result r), then we have the following refinement:

pre

w,r : [prey, posty [er\r]] C py ,post| C call pp(4,ar)

provided w, ar : [pre, post] C w, ar : [pre;[v\A4], post; [v\ 4] ]

where r does not occur in pre, and neither r nor ry occurs in post, .

Comparing the left-hand side of this rather formidable law with (3), it is not

IFirst the two conjuncts are removed from the postenndition, since they can be derived
from the precondition. Then they are removed from the precondition by simple weakening.
“The law given here is slightly simplified. the full versior is given at the end of this chapler.
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too difficult to match up the variables and predicates:

Law 7.3((3)

w

ar ¢

pre true

v T,y

T b

pre; true

posty cs TRy
pv 17

post ce mRali
A m, a1

The variable freedom provisos do not cause any problem. We need to have r
and g not occurring in post,, which in this case means that & and & mnst not
accur in ¢ < r Ry. We must also have r not occurring in pre;, which here is
true.

Similarly, the side condition is satisfied: in order for the law to be valid, we
need

w, ar - [pre, post] C 1w, or : [pre,[v\ A], post; [v\ 4] ] .
In this case, A is the pair m, 4[1]. and so the condition is
c:lee mRafi])
E c:f(cesRy)lz.v\m.ali]]] |

which is clearly true.

Since the conditions are all satisfied, we can conclude that

(DT “procedure variahle value and result specification 7.3”
call rp{m, a[i], e)

This completes the development. Collecting the code gives the following pro-
grarm:

findmaz (value a:ermay[0.. N - 1lof T,
rp : procedure (value z,y: T, result b: Bool);
result m: T)

">

vart:ini e
m, i = al0],1;
doi# N -+
var ¢: Bool s
call rp{m, a|i), c);
if c then m := a[i;
i=i+1]
od



7.3. AN ITERATOR PROCEDURE 93

7.3

Having defined findmaz, we can now use it in varicus ways. For instance,
suppose we need to find the spread (the difference between the minimnm and the
maximum) of an array of integers. We can achieve this — admittedly not very
eficiently — by calling findmar twice, passing different procedure parameters
to find the maximum and minimum, and then subtracting one result from the
other. Suppose two procedure constants are defined as follows:

procedure lte(value z.y : int, result b : Bool)
Sb=(z<y)

procedure giz{value 1,y : int,result b: Bool)
Zhi=(z2y) -
These can then be passed to findmaz:
spread : int
a3 : array[0..N] of int

gpread = maz(as) — min(as)

C

var mz,mf it e
mz : [mz = maz{as)); (1
mn : [mn = min(as)): (2)

spread := mI — min

(1) C findmaz(as, ite, mz)
(2) C findmazx(as, gte, mn)

Looking in a little more detail at the refinement of (1), we have the following:

(1)= mz:[Vj:0..Neas)j] < mz Amzin as]
C  var lp: procedure (value z.y : int,result b : Bool) »
bilb:bez<ylC
mr:[b:[be s<y|C Ip,Vi:0.. N eas[j] < mzAmsin as)

findmaz(as, lte, mz)

I}

using tbe code expansions for value and result substitutions for procedure
parameters.

An iterator procedure

Having set up all the machinery of procedural parameters, we now consider
iterators over sequences, recalling that an it..¢i construct over a sequence takes
the following form:

it 5 into r with

{(y = r:

[ aigs — r:
ti .

nn
L]

/(s,83)
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Our aim is to encapsulate this construct within a procedure, which will then
form part of a library module specifying the behaviour of sequences:

module Seg
var
3:seq A
procedure segiter(...) = ...

The important gaps remajning in this definition are the parameters to be passed
to segiter and the procedure body, The it..ti construct above clearly has three
important parts which need to be passed as parameters of some sort. The first
{and the easiest) is the variable r in which the result is to be stored. This is
passed to seqifer as a resuit parameter, and we suppose it has type X. The
other two parameters correspond to the two branches of the iteration —— we
must get across the action to be taken if the sequence is empty, and if it is
non-empty. We use procedures for both of these parameters. Dealing first with
the branch for the empty sequence, we pass (by value) a procedure,

ep : procedure (result er : X) ,

which has a single result parameter er, which will store the value z.

For the non-empty brauch, the procedure passed, cp, must take two value pa-
rameters, for the first element of the sequence and the valuc of the iteration
applied to the remainder of the sequence. It also stores its cutput in a resuit
parameter. So we have

cp : procedure {value a: A,a5: X;result er: X) .

Note that the type of the second value parameter is X : this parameter repre-
sents the result of the iteration on the tail of the sequence (as), rather than
as itself. This simply reflects the way the corresponding branch of the it..ti
construct was defined.

Putting this all together, we can give a specification of segiter:

procedure segiter(
value ep: procedure (result er : X),
cp : procedure (value 6 : 4,as : X ; result cr : X);

result r: X) =

it 5 into r with

(y —epir)
[ a:as — cp(n, as,r)
ti

By the definition of it.ti (see sequence iterator 5.1), we can express the body
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of segiter as a recursive procedure I(s, r), where

procedure I(value 5 :seq X,result r: X) =

if sis
() — eplr)
| n:as — varle
Has, i}
epla,l,r)
fi

Looking back at the examples of iterators at the end of Section 5.2, we can
now express them as calls to seqiter. The first example obtained the sum of a
sequence:

it s into r with
{(}) —r:=0
fnns — ri=n+ns
ti

As a call to segiter, this would be

seqiter{ (result er :Nw gr .= 0),
{value a,as : N; result cr : N e cr:= 2 + as),
r

3y,
Similarly, the length of a seqnence was cbtained by

it 5 into r with
(y — r:=0
Jning — r:=1+ns
ti

b

which we can now write as

seqiter( (result er :N e er:=0),
{(value a,as : N;result cr : Ne cr:= 1 + as),
r

These results can be seen as particular cases of the following law. which is easily
obtained by combining the definitior of segiter above witb assignment sterator
3.2

Law 7.4 aessignment seqter

If the value to be assigned to a variable is formed by the application of
a catamorphism to a sequence, tben the whole assignment can be imple-
mented by a call to segiter.
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7.4

r::(If,gD ]

segiter( [result er o er := f),
(value a,as; result cr ¢ cr := g(a, as) ),
r

c

The types of the parameters of the procedure parameters in the call to segiter
are as follows: er, as and cr have the same type as the overall result r, and «
has the same type as each element of the sequence s.

Merging iterators

In Section 7.1, when we gave definitions for procedures as parameters, we de-
fined the meanings of both value and result substitutions for paramcters of
procedure type, but our example in Section 7.2 used only the value substitu-
tion. We now remedy this by showing how to forin an iterator comhinator —
a higher-order procedure which basically merges two iterators to form another.
This combinator uses result parameters of procedure type.

In order to motivate this construction, consider the following problem: suppose
that we have stored a set of values in au array, and that we need to calculate
both the sum of the values and the sum of their squares, in order tc perform
some statistical calculatiou. A naive program would be:

it s into sumn with
{(y — sum:=0
[ nins — sum:=n+ns
ti;
it s into sgsum with
{} — sqsum:=0
[ m:ins — sgsum :=n? + ns
ti

However, it would clearly be more efficient to make just a single pass over the
sequence, producing both of the required values in one go. The iteration will
then take the fcllowing form:

it s into sum, sgsum with
{} — sum, sgsum:=0,0
[ n:ns — sum, sqsum := n + ns.1, n?+ns.2
ti

There are various points 10 note about this:

= instead of a single result parameter, we now hawve a pair; looking hack at
the definition of the iterator as a recursive procedure (sequence sterator
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5.1), we can see that this means simply that the recursive procedure uow
has two result parameters, and that two local variables need to be defined
to store the intermediate results;

® in the secoud brauch of the iterator, which corresponds to the case where
the sequence is uon-empty, we have to refer to the result of the iteration
on the tail of the sequeuce: in the simpler iterators above, we were able
to use ns, but here ns is a pair of values 30 we have to use theprojections
ns.l and ns.2 in the assignment of the second branch.

So our aim is uow to define an iterator combinator, which takes as input two
iterators over a seqnence — in the form of the procedures which form their
branches — and produces as putput another iterator over a sequence, the effect
of which is similar to a paralle! combination of the two inputs. The output
jterator will also be produced in the form of the two procedures which form its
branches. Thus we are aiming to replace a program of the form

var rpl, rp2 : procedure ... o
seqeter(epl, cpl, rl);
seqiter(ep2, ep2,r2)

by a program of the form

mergeiter{epl, cpl, ep2. ep2, rpl, rp2);
seqter(rpl, rp2,(r1,72)) ,

where rpl and rp2 are the two procedures output from the iterator combinator
mergeiter,

It now remains to define the combinator mergeiter. As mentioned above, the
value parameters are the procedures which form the branches of the first it-
erator (epl and cpl) and the second iterator {ep2 and cp2). while the result
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parameters (rep and rep) form the branches of the resulting combined iterator.

procedure mergeitcr
{value epl: procedure (result er : X)
¢pl : procedure (value o : 4,05 : X; result cr: X)
ep2 : procedure {result er: ')
ep2 : procedure {value g : 4,95 : Y; result ¢r: Y)
result rep: procedure (resuplt r: X x )
rcp : procedure (value a: 4. a5: X x ¥
result r2: X x V)
)

rep:J|[var I,me
epl(i};
ep2(m);
r={,m)

[ 5

[var n.oe
epl{a.as.1,n);
cp2(s, 6s.2, 0);
r2:=(n,o)

The observant reader may remember a similar example towards the end of
Chapter 5, where we used the so-called banana-split Jaw to convert two iterators
into a single iterator. The technique used here is very simnilar, except that we can
use procedures to encapsulate the functions required, and we can use mergester
to generate automaticallv the procedures needed for the combined jterator.

We recall that the banana-split law gave us the equivalence of an assignrent
ol the form

z,y:= (f1.91),{f2,92) 5
and one of the form

T,y ={flaf2, gl (ids xm) g2 (ida x m2}])s , (%)
where 2 is the join operator — (f2ag)z = (f £, g 1) — and the 7, are projections.

By assignment segiter 7.4, this second assignment {») can be implemented by
a call to segiter. But our major interest lies in the parameters to this call.

Returning to our exampte, we can write the original specification as
sum, sgsum := {f1,g1] 5, (f2, 92D s ,

where f1 and f2 are both the constant function which returns zero, while g1
and g2 are given by

gliz.y) =z +y
g2z, y) =1 +y .
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So the first parameter to segiter is
{result r :NxNer:=(0,0)) .

The second parameter must encapsulate the second part of the catamorphism
in (*). Expanding the rather complicated function gives

{value a:N,a5 : N xN;result r2: NxNe
r2:= (o +as5.1,a® +25.2)) .

We have thus shown that
sum, sgsum = ([f1. g1} 5, (f2,52) 5

C  “assignment seqiter 7.4"
seqter( (result r:NxNer:=(0,0)),
(value a:N,as : N x N; result r2: Nx N
r2:=(a+as.1,0% + a5.2)),
(sum, sqsum)

).

Now we can introduce local procedure variables, and initialise them to the
required values so that they can be used as parameters to segiter:

C  var lep: pracedure (result r:seq N x seq N)
lep : pracedure {value g : N, as : seq N x seg N;
result r2:seq N xseq N) e

lep,lep : 3 ( (result r:Nx Ner:=(0,0)),
(value 0 : N, s : Nx N;result 72: N xNe
r2:={a+as.1,a° + 03.2))
)

seqiter(lep, lep, (sum, sgsum))

Now, using the definition of mergeiter and the code expansions of value and
result parametrisations given above in Section 7.1, it is possible to show that
the first statement of these twe can be implemented by a call to mergeiter with
the right valne parameters, which will assign procedure values to the resuli
parameters which can then be passed directly to seqiter. The details of this are
gruesome and unenlightening — except as evidence that it can be done —— and
are therefore omitted.

To snmmarise, what we bave done is to define mergeiter, and then to show that
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7.5

Law 7.5

7.6

our original problem can be implemented by the following program:

var lep : procedure (result r : seq N x seq N}
lep : procedure {(vatue a : N, as : seq N x seq N:
result r2:seq N x seq N) »

mergeiter((result r : N o r := 0},
{value a : N, as: N; result cr: N e ¢r = a+ as),
{result r : Ner:=0),
{(value @ : N, as : N; result cr: N & ¢r := a? + as).
lep,
lep):

seqiter (lep, lcp, {sum, sgsum})

As we anticipated, this is simply a call to mergeiter, followed by a call to segitcr.
and the essence of the banana-split law for sequences has been encapsulated.,

A more general law

As promised, we give here the unsimplified version of procedure variable value
and result specification 7.3. The slight generalisation allowed here is that the
value parameter is allowed in the frame of the specification in the second con-
junct of the precondition (with a change to the corresponding sidecondition).

procedure variable value and result specification

If the procedure variable pv has been declared as procedure
(value v, result r), then we have the following refinement:

pre

woar: w, v, r: [pre;, pasti[ar\r]] C pv

,post| = call pu{4, er)

provided w, ar : [pre. post] T w, ar : [prei[v\ 4], post; [w) Ad]]

where r does not aceur in prep, and neither v, r nor ry occur In pasty,
and Ap is A[w, ar\ e, arg|.

Conclusion

In this chapter we have brought together the earlier work on iterators and
procedure variables to sbow how iterators can be ‘packaged’ into procedures in
their own right, using procedural parameters to pass information to the iterator
about the actions to be taken on each branch of the data type. The definitions
of substitutions for procedure parameters are very similar to those for the sinple
non-procedure parameters, with slight adjustments to deal witb assigninents to
procedure variables.
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Chapter 8

Applications 1: exceptions

8.1 Introduction

While developiug theory and notation, it is sometimes all too easy to forget
the original reason for the work that we are doing: our alm is to enable the
development of correct programs from their specifications. This chapter and the
following one are intended therefore to show how real programs are developed
using the notations previonsly introduced.

There was a choice, for these chapters, hetween developing a single large pro-
gram and working on several smaller ones. In the end, it was decided to fotlow
the latter course: although the development of a large program eould show how
the techniques would scale-up to industrial-sized problems, there was the dan-
ger that it would not be possible, in a large development, to see the merits of the
particular techniques proposed for exceptions and iterataors, as they would get.
lost in the mass of development details. So this chapter and the following one
contain several small developments, with some of thern being later combined
into larger programs.

The context in which these sample programs will be developed is that of IBM's
Collection Class Library for C++. This is a set of C++ classes that implement
commonly-used abstract data types, such as sets, maps and sequences. We give
a short summary below of the main features of the Collection Class Library.!

Section 8.2 describes how the exception-handling mechanism introduced earlier

!The motivation for using the Collection Class Library is thatl the author was supparted
by IBM in the early stages of this research.
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can be related to exception handling in C++ and the Collection Class Library.
In general, we give "guidelines’ on how to develop C++ programs, rather than
fully justified ‘laws’, since the justification of such laws would require a formal
semantics for C++, whichb is bevond the scope of this thesis!

Since C++ is not an ideal language for wbich to develop programs in the refine-
ment calculus style, we have found it useful to introduce a few abbreviations
to make the jurp from guarded commands to C++ slightly easier. These are
concerned with the relationship between C++ functions and refinement caiculus
procedures, and are found in Section 8.3 and Appendix A. We also give some
additional laws that are used in the sample developments: rather than disrupt
the developments by giving the laws ‘in-line’, they are collected in this section.

After all this extra notation, we are finally able to show how the individual data
types from the Collection Class Library can be specified. For this purpose, we
take sequences as our example, giving a specification which consists of a state
model, followed by descriptious of the many operations provided in the library
to manipulate sequences. Several sample programs are developed.

Chapter 9 will show bow the iterator mechanism we have described can be used
with the iterator mechanism of the Collection Class Library. Furtler examples
will be developed.

An introduction to the Collection Class Library

IBM’s Collection Class Library for C++ is a set of C++ classes that implement
commonly used abstract data types, including sets, maps, sequences, relations,
trees, stacks, bags, queues and priority quaues. Most collection classes exist
in several forms, depending on whether the collection is sorted. whether ele-
ments can be accessed by keys, whether there is an equality relation defined for
elements aml whether elements must be unique or if multiple occurrences are
allowed.

For each collection class, many operations are defined: each takes the form of
a C++ function, some having side-effects, some giving return values, and some
both. 1If certain preconditions are not met when the operation is called, an
exception may be raised. The informal specification [22] defines what the pos-
sible exceptions are for each function, but not the exact circumstances in which
thev are raised. This important omission is rectified in the formal specifications
later in this chapter, for every relevant exception except for the I0utOfMemory
exception. This exception can be raised by any of the variations of the add
operation when the operating system is sbort of memory. It has to be treated
differently since we cannot describe, at our level of abstraction, exactly when
this will happen. Having experimented with a specification which merely stated
that the add operations could raise this exception non-deterministically, un-
der any circumstances, it was instead decided to omit it completely: the non-
deterministic specification was not particularly helpful since it didn’t describe
when the exception would be raised, and it made developiug programs which
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used the add operation particularly difficult. While not ideal, the pragmatic
solution of not mentioning the IOutOfMemory exception at all means that is
much more practical to use the refinement calculus to argue about the correct-
ness of an implementation, including the circumstances under which any other
exception may be raised. However, the developer must remember to use an-
other form of argniment to reason about the possibility of the operating system
running out of memory, and what actions should be taken if that possibility
arises. This seems to be a case where formalism needs to be combined with
pragmatismt.

The Collection Class Library also has a built-in method of indirectly accessing
the elements of a collection: the user of a collection class, once he has declared
an instance of the class, can declare a ‘cursor’, which is then associated with
that particnlar coilection. This cursor can be used to access the elements of the
collection: there are several operations which take a cursor as input, or return
a cursor as output, and, for ordered collections, there are operations which
access the elements in cursor order. For example, addA sNext takes an element
and a cursor as input; provided that the cursor is valid and associated with the
collection that is being operated on, the element is added to the collection at the
position after that pointed to by the cursor. Altbough the cursor mechanisim
provides a reasonably efficient way of programming, by removing the need to
copy or move possibly large pieces of data, it suffers from omne major drawback:?
whenever the collection is altered in any way, by the addition or removal of
elements. all of the cursers are invalidated — that is, the programmer cannot
rely on their still pointing to the same elements, or even to any elements at all.
However, the description of the sequence library component given below does
nat deal at all with cursors: a decision was made that the cursor behaviour was
not sufficiently linked with either exceptions or iterators to merit its inclusion.
Although the operations which involved cursors could raise exceptivns, there
was no significant difference in the use of exceptions between these operations
and non-cursor operations. Inclusion of cursors weuld have meant a significantly
larger specification, but without significantly more interesting material.

Cursors can be used o program iterations over a data structure, but there is
also a more abstract mechanism, the aliElementsDo operation. Both of these
are described in the next chapter.

Several of the operations found in tbe Collection Class Library also exist in
alternative versions where, instead of a value being supplied to or returned
by the operations, a pointer to the value is used, We have not described any
of these alternative versions, since the focus of our interest is exceptions and
iterators.

2This is the case in the current implementation, at least future versions may change this.
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8.2 Exceptions and the Collection Class Library

In Chapter 3, we introduced a simple exception mechanism and showed how we
could extend the idea of weakest precondition seinantics to give a meaning to
exceptional tenmination, and to justify the laws we stated about the ronstructs.
In Chapter 4. we extended this mechanismi by considering named exceptions,
using procedures to give a form of exception handling, whereby different ac-
tions could he associated with different exceptions. Our task now s to show
how we can nse these ideas to develop C++ programs which use the exception
handling facilities of the Collection Class Library. Since the library makes di-
rect use of the exception mechanism of the C++ language, we look first at this,
before deciding how much of the C++ notation we will model with our excep-
tion handling mechanism. Qur aim is always to develop programs rigorously
using the refinement calculus, and then to transiate them into the target pro-
gramming language — or a subset of it. This translation process defines our
view of a ‘safe’ subset of the programming language. since, although we cannot
possibly guarantee to be able to deveilop formally every conceivable program in
the language, we can guarantee that any program that is the end-product of a
refinement calculus development and a translation will meet its specification.

Exception handling in C++

The C++ exception handling mechanism allows a programmer to recognise when
a function has been cailed in an nnusual situation, and to pass control back to
the caller of the function. The caller is then able to handle the exception in
an approptiate way. The language constructs which implement this exception
handling are:

« throw expressions:
¢ try blocks;

* cateh blocks.

In the body of a function, the programmer can signal an unusual situation
with a throw expression. This expression can contain information to be passed
back to the caller, perhaps an indication of which object caused the exception.
Alternatively it night just be a signal that the unusual situation has arisen.
The concrete syntax consists of the keyword throw, followed by an assignment-
expression. In the context of a declaration of 2obj as an element of a class 4,
the two possible forms of a throw statement might be:

throw {aocbj);
throw IInvalidCursor;



8.2, EXCEPTIONS FOR COLLECTION CLASSES 106

The first of these shows information being passed back to the caller, in this case
the variable name acbj. In the second example, a constant valne is passed.
which is just the name of the exception

Try blocks and catch blocks are used together to show the scope of definition of
some handling routines, and the contents of those rontines. respectively. Thus
a single try block is followed immediately by one or more catch blocks:

try{
statements
}

catch(ex1){
statements
}

catch(ex2){
statements

}

The statements enclosed in braces after the try keyword are the scope of the
succeeding catch blocks: if a function whick is called in these statements throws
an exception which matches any of the catch blocks (ex1 or ex2 above), then
the correspending handler is executed. If the catch block terminates normally.
control passes to the statement after the final handler.

At the start of each catch block, there is a parenthesised expression which
declares the type of abject that the exception handler may catch, and opticnally
a variable name to identify the objert thrown within the succeeding code. The
rules to determine which caich block is executed are:

if the object thrown matches the type of the catch expression of the first
block, contrel passes to that block;

if the object thrown does not match the type of the catch expression of
the first block, then subsequent blocks are searched for a matching type;

# the special catch expression cateh(...) will match any thrown expression
{and should therefore only appear in the last of a sequence of catch blocks);

if no match is found, the search is continued in all enclosing try blocks
and then in the caller of the current funciion;

# if no match is found after all this. a call to the terminate() function is
made.

C++ exceptions and the refinement calculus

In its very simplest form, C++ exception handling is not very difficult to incor-
porate into the refinement calculus development method, as we bave extended
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it to cover exceptional postconditions. The restriction that we put on the gen-
eral scheme outlined above is that we don’t allow objects to be passed to catch
hiocks.® Instead we insist that the catch expression which determmes which
exceptions are caught by a block should consist of a type name, and that type
should be a single element type (forrmed from a class with no data or methods).
So we might have:

Exceptionl class { /* ... no methods ... */ }
try {
throw Exceptionl;

}
catch (Exceptionl) { ... }

Another restriction that we place on the general C++ exception mechanism is
that we do not cover the case where the catch argument is a public base class (ie
subtype) of the thrown class object: we insist that the catch argnment should
be exactiy equal to the thrown cbject.

Having described the very restricted form of C++ exception handling which we
are going to use, we are uow in a position to show how we can develop programs
in our extended version of the refinement calculus, and then transliterate them
into C++.

Using the rnles given in previous chapters for exits, we aim to develop a pro-
gram which has the form

[ handler £1 = aga
E2 2 bbb

EnZnnne
22z

]

Assuming all the subprograms (sas to nnn, and zzz) are cods, we would be
finished, since we can transliterate this into C++ as:

class Et { /= ... &/ };
clags E2 { /& ... */ };

class En { /= ... »/ };

void main{} {

3As was mentioned in Chapter 4, we cauld model this, but the Collection Class Library
exception mechanism does not include this feature, so we do not need to consider it.
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try { zzz }
catch (E1) { aaa }
catch (E2) { bbb }

catch (En) { nan }

S0 each exception Ei i3 declared as a class with no members, and the handlers
become catch blocks while the main program body zzz becomes a try block.

A simple development with exceptions

In this section, we give a formal development of a C++ program which contains
exceptions. The example is very closely based on a sample program from the
IBM C++ Refercnce Manual [22]. The original program is shown in Fignre 8.1
overleaf. but we will slightly alter some of the input and output statements to
simplify the development.

QOur starting point is the following specification:
var n: N
o:R
r: good | bod
Z=n=0Ar=bad
NZ=n#0ro=1fnAT=good
o,r: [V NZ|

If n is non-zero, the output ¢ is to be set to the reciprocal of n. The respense
code r indicates whether or not the output is a valid reciprocal.

The devclopment starts by introducing an exception block and duplicating the
normal postcondition as an exceptional posteondition:

C  “erceptional specificalion 3.4”

o,r:(true,Z v NZ > ZVv NZ| <

1

Using the law for sequeutial composition. we can split this into two:

C  “sequential composition 3.13"
o,r:[true,n £ 0> Z v NZ]; (1)
o,7:[n#0,ZVvNZ>ZVNZ (2}

The second branch is implemented by choosing the non-exceptional route:

(2)C  “take normal dranch 3.57
o,r:[n#£0,Zv NZ)

0,7 :[n#0,NZ]
o,r:{n#0,n#0A0=1/nAT = good]
o,r := 1/n, good

0N
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oo o e ok ok o ok o s o kR R R ok
L

The folloving example illustrates the basic use of try, catch,
and throw. The program prompts for a numerical user ipput and
determines the input's reciprocal. Before it attempts te print
the reciprocal to standard output, it checks that the inpnt
value is nonzero, to avoid a division by zero. If the input is
Zero, an exception is thrown, and the catch block catches the
exception. If the input is monzero, the reciprecal is printed
to standard output.

*
L e P Ry e L L e L L Py

#include <iostream.h>
#include <stdlib.h>

clasa IsZero { /* ... */ };
void ZeroCheck( int i )
{
if (i==0)
throw IsZero();
1
void main()
{
double a;
cout << "Enter a number: ";
cin >> a;
try
i
ZeroCheck( a );
cout << "Reciprocal is " << 1.0/a << endl;
}
catch ( islera )
{
cout << "Zero ipput is not wvalid" << endl;
exit(1);
}
exit (0); -
}

Figure 8.1: IBM’s original program showing the use of exceptions
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The first branch is developed by introducing an alternation, before deciding
whether to aim for the normal or exceptional postcondition.

B)C fn=0-

o,rin=0,n#0> 2V NZ| (3
In#0—
e.r:n#0n£0> Zv NZ] (4}

fi

The first branch of the alternation is implemented by choosing the exceptional
posteondition -- any attempt to develop the normal postcondition would lead
to a miracle,

(3) C  “tuke eceepliona! branch 3.6”

0,7:[n=0.2V NZ); a
exit

C or:(n=¢272]

C r:=tad

The sccond branch of the alternation is easily implemented by choosing the
normal postcondition, and noticing that we are already finished!

(4)C  “take normal branch 3.5”

o.ri[n#Gn#0
C =skip

Collecting the code together we get

o,r:[Z v NZj
.

if n=0—r:=bad; exit
[ »r#0—skip
B;

o, 7 = 1/n, good

We can re-structure this slightly by using a handler:

C  “introduce handler 4.4”
[ handler IsZero = r := bad »
if n=0— raise(lsZero)
I n#0—skip
fi;
o,r:=1/n, good

]

We now translate to C++, using the translation guidelines introdnced above,
and include a few extra statements to reveal the results of the calculation on
the console, and to set return codes,
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#include <iostream.h>
#include <atdlib.h>

class IsZerc { /» ... »/ };
void main()
{

double n;

cout << "Enter a number: ";
cin >> n;
try
{
if (n==0) throw IsZero(};
o =1.0/n; r = good;
cout << "r is " << r << endl;
cout << "o is " << o << endl;
}
catch ( IsZero )
{
T = bad;
cout << "r is " << r << endl;
exit(1);
}
exit(0);

8.3 Additional notation and laws

The end-product of the refinement calculus development method is a program
in the language of Dijkstra’s guarded commands [17]. It is relatively straightfor-
ward to translate such a program into a language such as Pascal or Modnla-2 for
compilation and execution. However, the Collection Class Library is designed
for the C++ language, and the mappimg from guarded commands to C++ is not
quite so simple. We have taken a pragmatic view where possible, since the focus
of our work is on exceptions and iterators in the refinement calculus, not on
the particular problems caused by the choice of C++ as the target programming
language.

Appendix A contains details of the mismatch between C++ functions and the
usual procedures of the refinement calculus. However, this mismatch occurs in
only one place in the case studies in thig chapter, and so the new notation is
not very significant.

More importantly, we give some additional laws of the refinement calculus,
which will be used in the example developments.
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Law 8.1

Law 8.2

Law 8.3

Additional laws

The standard refinement calculus development technique is to mmanipulate the
specification. using the laws of the calculus, until we have a program consisting
of executable code. In our case, because we intend to use the Cellection Class
Library, we can use the copy rule to replace a procedure body with a procedure
call, so we will be aiming either towards executable code, or towards fragments
of program which match {with suitable paramctrisation) the bodies of proce-
dures delined in the library modules. As we follow this development method,
it is clear that tlie presence of exceptious in the specifications of the collection
class operations means that we need to use the laws from Chapter 4 which
show how to manipulate exit, raise and else constructs in the context of ihe
standard programming constructs. We also need to perform some developinent
steps which seem strange at first -— their purpose is to change the program
fragment we are currently working on so that it corresponds to a procedure
body. This gives rise to the need for some additional laws, which are easy ta
verify using weakest preconditions.

We need another law to show how the else construct interacts with sequential
composition.

else distribution

(aas: bbb} > ece
C  aaa; (bbb > ece) provided cce © aga; cce

We can implement a specification statement whose postcondition consists of a
disjunction, by intreducing an exception block and taking the disjuncts as the
normal and exceptional postconditions of an extended specification statement
inside the block.

disjunction-else

w (o, 0Vl
=1

w: o, 8> 7

We can turn a specification into a choice between guarded commands, using
any program at all in the new branch, if we know that the branch will never be
taken:

superfluous choice

w: [, 4]
E vy —w:fed
J -~ - gaa
provided a = v
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Law 8.4

8.4

It is sometimes convenient to transform a guarded specification statement into
one where the guard has been absorbed:

absorb guard

a— w:[J,7]
= wile= B alw\uel An]
provided wo is not free in o

A collection class specification

Having set up all the extra notational machinery that we need. we are now able
to give a specification of a sample collection class. for which we use sequences.
We first describe all of the operations on sequences, and then give a small
example to show how the new pieces of notation introduced above can be used.
As was mentioned above. there is one omission from the description below: wo
do not concern ourselves with the I0utDfMemory exception. This is au exception
which can he raised by any of the odd operations, reflecting the possibility that
the operating system might report that it has run out of memory. We would
not be able to describe the exact circumnstances under which this might happen.
and including the possibility of runuing out of memory makes the specification
unnecessarily complicated.

The sequence class

The only state variable is the sequence itself.?

module ISeq[Flement] =
var
s - seqElement]|

There are four different ways to edd an element to the sequence. In the simplest
case, the new element is added to the end of the scquence, and a return code
indicates whether the operation has completed successfully.®

procedure add{e : Elemnent,result r: Boolean) =
s.ri=35" (e}, true

We have explicit operations to add the new element to the beginning or end of
the sequence.

procedure addAsFirst(e : Element) =

s:=(e) s
procedure addAsLast(e : Element) =
s:=5 " (e}

1As in Z, our sequences are indexed from 1 to the length of the sequence.
5For brevity, we assume thal all parameters are passed by value, unleas explicitly noled
otherwise.
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We can also specify the position at which we want the element to be added. If
this position is invalid, an exception is raised. Otherwise, the uew element is
added at the specified position, with subsequent elements being ‘shunted down’
as required. (1 and | are functions which return parts of a sequence: s T n
gives the first n elements of a sequence s, and s | » returns the seqnence with
the first n elements removed.)

procedure addAtPasition{i : N. e : Element) =
1 <i<#s+1 =5 =sT{i—1)"{e) sl (i—-1)
[ (i =0)V (i>4#s+1) — raise{[PositionInvalid Exceplion)

The anyElement operation returns a randomly-chosen element of the sequence.
provided that the sequence is not empty.

procedure anyElement{result e : Element) =
s#{) o e:[ecrans]
| s ={) — raise(EmptyEzception)

We can examine the clement at any particular position in the sequence.

procedure elementAtPosition(1 : N result e : Element) =
1< < s —+ei=51
[ ¢=0)v{i>#s) - raise(IPostioninvehd Brception)

We can look at the first rlement of the sequence, provided that the sequence is
not empty.

procedure firstElemeni(result e : Element) =
s#E(} 2 e=51
| s ={(} — raise(JEmptyFzception)

There are several enquiry operations for sequences. For compatibility with
other classes in the Collection Class Library, the operations isBeunded and
:3Full are provided: since this class is not bounded, the former operation always
returns False. Similarly the sequence can never he full. The isEmpty operation
determines whether the sequence is currently empty.

procedure isBounded(result r : Boolean) =
r = false

procedure isFull(result r : Boolean) =
r = false

procedure isEmply{result r : Boolean} =

r=(s={))
We can access the last element of the sequence, provided that the sequence is
not empty.

procedure lastElesnent(result e : Element)
s# () = e=3(#e)
[ s ={} — raise(JEmptyEzception)
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Since this class provides a data type of unbounded sequences, the operatiaon
which might be expected to return the maximum number of elements that Lhe
sequence can contain will always raise an exception.

procedure mazNumberOfElements(result » : N) =
raise( {NofBounded Exception)

We can determine the current size of the sequence.

procedure nuberQfElements(result n: N) =

ni=fs

There are two forins of ‘multiple removal’ operations: the first removes all of the
elements of the sequence unconditionally, and so the sequence becomes empty.
The second forni removes all those elements of the sequeuce which satisfy a
given property. Here we model this property as a set of elements, and use the
squash function to ‘close up’ the gaps in the sequence which are caused by the
removal of those elements in the set.

procedure removeAlll =
#:={}

procedure removeAli2(b : P EBlement) =
s := squash(s & b)

There are three ways 1o remove a single element from the sequence: by specify-
ing which element is to be removed, or by taking the first or Jest element. An
exception is raised if the position is not valid. or if the sequence is empty.

procedure removedtPosstion(i : N) =
1<i<H#e s =st(i-1)"sd¢
[ (i=0)V(i>4#s) — raise([PositionfnvahdEzception)

procedure removeFirat =
s#E(Y +s:=38]1
[ s=(} — raise(/EmptyFrceplion)

procedure removelast =
s#E{) dsi=st{ps-1)
1 s={) — raise(/EmptyFEzception)

Example

‘We now show how programs can be developed using the specification of a library
module, such as the sequence module above. We follow the usual technique
of using the procedure rules to replace a procedure body by a cali {with the
appropriate parametrisation), but some unusual development steps have to be
taken because the procedure specifications above give the possibility of raising
an exception. Although this example is fairly simple, it shows the techniques
needed to intreduce the exceptions.
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We will wark on a sequence of numbers, and we will expect some sort of return
code:

s:seq N
r: OK | TooSmall

The specification of our problem is

Spec =
il #5222 58, r=(s1#s-1))1L0OK
[ #s<2 —r:= TooSmaell
i .

If the sequence s has at least two elements, then the first and last elements are
removed. Otherwise, s is left unchanged and a return code indicates that the
sequernce 18 too small.

The implemencation that we are aimning at involves using removeFirst and
removelast to take off the first and last elements of s. 1f the sequence is
empty, then obviously a call to the first operation will immediately fail. How-
ever, if s is a singleton sequence, then a call to one of these procedures will
succeed and then the other will fail. So we need to store the initial value of s
in a local variable, so that it can be restored later, if necessary. Thas the first
development step is to introduce the local variable I, and a logical constant for
the initial value of s: we also work with naked guarded cornmands rather than
alternations, since this matches the library procednre definitions:

Spec

C wvarl:seqNe
con S
l:=s;

{I=S8}#s>2 3s.r=(t#s-1 L 1,0K
(ﬂ {I=8}#s<2 - sr:[r= TooSmall A 5 = 5]

The next step of the development 1s to introduce an exception block, and to
change the non-deterministic choice into an ‘else’ construct:

C  “chotce-elsc 3.107
{t=S8}#s22 as,ri=(sT#s-1)11,0K
{t=8}Y#3<2 = 9,r:[r = TooSmall A s = 5]
The assignment of OK to r can be moved to the end of the exception block:

C  “else distribution 4.9"
{I=8}#3>2 9s:=(st#s-1)]1

{I=8}#3<2 3 s,7r:(r= TooSmall n5 =5
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r.= 0K

The exceptional construct is split into two with sequential composition. using
the somewhat complicated law introduced earlier (page 24).

C  “sequential composition 3.12°

(=8)s#£{) »s:={stHs—1)

{{=8}#s<2 2 s,r:[r= TooSmall A s = 5]

{t=5Ys#{} =s:=(s]1)

{1=8}#s5<1 2 9,r:[r= TooSmall A s = 5]
(The use of this law is justified by noting that

U=8 #5225 =(st#s—1) |1

c
{I=58}s#{) > s:=(s14#s5-1);
{I=5}s# (3 »s:=(s] 1)

and that

{I=S}#s<2— s, r:|r= TooSmallan s = 5]
C

{t=5}s# () —ssi=(st#s-1)
{t=8}#s<1 o s,r:[r= TooSmall A5 = §]

as required.)

T'he program now looks very promising because the two halves of the sequential
composition are similar to the specifications of the removelast and removeFirst
operations, respectively. Converting each exceptional branch into an assign-
ment. then removing the unnecessary assumptions, and slightly re-writing the
guards makes the match even more clear:

@c s#{() 2s:=5]1
> s={) = r,s:= TooSmall,!

me s#{) 2s=st#s-1
> #3<2 o r,5:= TooSmall, 1

T “strengthen guard”
s#E() os:=st#a-1
> s={() 2 r,s:= TooSmall, 1
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We can make the natch to the library specifications complete by definiug a
handler for the exception which is raised when the operations are applied to au
empty sequence For this we need to return to the top level of the developmeut:

Spec
L “introdure hondler 4.57
var | seq N e
==
| bandler JEmptyErception = r.s := TooSmali, ! e
s} rsi=sT#s-1
[ 9 =¢{) — raise [EmplyErception);
(s#{)2+s=5]1
[ s = () -+ raise {EmptyEzception);
r:.= 0K
I

Notice that the handler for JEmptyFEzception should actually be declared twice:
however the handlers are identical and so the declarations can be merged.

Finally we use the copy rule to insert calls to the removelast and removeFirst
operations, to give the following program:

var {:seqN s

{:=s;

[ bandler IEmptyErception = r.s ;= TooSmall,l »
s.removeLast.
s.removeFirst,
r:= 0K

‘What’s missing?

This completes our specification of the sequence class, but we should be honest
and admit that there are a few parts of the commercially-available class that
we have not specified:

+ We have not given a specification of the iterator operation allElementsDo:
this would not be too difficult, but we have concentrated on exceptions
in this chapter. The next chapter shows how to use the allElementsDo
operation.

¢ We have not described the addAllFrom operation, which allows the user
to form a combinaticn of two coilections, by adding the elements of a
second collection to the current one. It should be possible to specify this
in terms of an iteration over the second collection, hut there are some
interesting questions: for instance, what happens if an exception is raised
(perhaps because of lack of memory) midway through the iteration? The
manual is very unclear on this!
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» As mentioned earlier, we have not described the use of cursors, or the
1QutQOfMemory exception. We have also uot described the operations
which use pointers.

8.5 Sample developments

We can now give some larger sample developtnents which use the specification
set. out above.

Mapping a function

In order to show how we can use the specification of the sequence class above,
we start by developiug a program to transform a given text, i, a sequence of
words, into another text, s, by applying an as-yet-unspecified function f to
each elenient of t. The development will be tackled in two different ways: using
ordinary sequeuce operations iu this chapter, and using iterators in the next
chapter.

The specificatiou of the problem stipulates that the sequences should have the
same length, and that f should be applied to each element of t to produce the
corresponding element of s.

var s, ¢ : [Seq[ Word)

8 {{#s = #OAV 1L #tesi=f(tj)
The first step is to mtroduce a local variable and split the specificaton statement
intc an initialisation, followed by what will become a loop:

C wvar::Ne
TS @s=OAESHOAY  Liesi=f(t)) e
5,1 {true, []; (1)
v.i: ([ A= #E) (2)

The iuitialisation is easily implemented as two assignments:
(HE s.i:={)0
and the assignment to s is implemented with a call to the removedll procedure:
C s.removedlll,

=0

Returning to {2), we can see that the iteration is guarded by @ # #t, which
we can tepresent as 1 # t.numberQfElements!, remembering® that this is an

5See Appendix A.
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abbreviation for the dectaration of a local variable, say numT, followed by a
call to t.numberOfElements with the result stored in numT, and the nse of
t £ numT as the real guard:’

(T “ilerution”
do i # t.numberOfElements! —»
1 i
1##t'og#z—i<#t—w} 4

5.4

od

Since it is clear that we will need to increment 1, we use the following assignment
law on the loop body:

C  “following ess:gnment”
) |' f IfNe +1] )
Trlig e 0 Ht - i) <H—i ]!
ii=i+1

(3)

It is tempting to implemnent the first hall of tbe loop body with a simple assign-
ment:

(MC s:=s"(ft(i+1)) .

but this would lead to troubie, siuce the only way we can access the {1 + 1ith
clement of ¢ is 1o vse the elementAtPosition operation. In order to nuse it
successfully, we need to be sure that the supplied position --- # + 1 in this case
— lies within the bounds of the sequence. So here we need 1 < i + 1 < #¢.
Therefore, a development that proceeded straight to an assignment as above
would soon run into problems. So instead, we introduce another local variabie
to store the relevant eletnent of £:

(3)C var w: Word »
I I +1]
ig#0<#t -+ l) <H#Ht—1

w,s:

C  “sequential composilion”
7 f
w8 | . , r#E#t ; <
AR L Shie
I
w,s: sE#E I[N+ 1) {4)
w=¢(i+1}

The first half of this is implemented by introdncing a nondeterministic choice.
We know from tbe precondition that the first branch of the choice must be
taken, so we have complete freedom of choice for the second branch. We choose
to raise an exception so that 1bis construct matches exactly the specification of

7In the body of the Ipop, we cantioue to use #1, since these occurrences are not in code,
and will disappear later in the dewelopment
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t.elementdtPosition (i + 1, w).

= “superflugus cheice 8.3"
1<i+1<H#t Swi=ti+1)
[ (0=:+1)V{i+1>#¢t) > raise([PositioninvatidException

C  t.elementAtPosition(s + 1, w)

Returning to the second half of the sequential composition. we can expand the
definition of f and it is then easy to see that it can be implemented by appl: ing
f to w, and then appending w to the end of s.

#s =3
<t #s=14+1
()= w,5: | Vi:1l.ies5=Ff{t]), i+1<#t
i3 #t Yi:il.i+1es3=f(tj)
w=t{i+1)
C wme=flu)
s:=5 {w) <
C  s.addAsLast{w)

This completes the first development of the problemn. Collecting the code gives
the following program, where we have also defined a dummoy handler for the
exception, even thongh we know that the exception can never be raised wichin

the block -— this is to prevent an over-zealous compiler complaining that there
is an undefined procedure:

[ bandler IPosition/nualidEzception = skip »
vari:Ne
s.removeAlll;
=0
do i # t.numberOfElements! —
var w: Word »
t.elementAtPosition(i + 1, w);

w:= flw); (=)
s.addd sLasi(w);
=141

od
hy

The assignment marked («) is still not code. since we don't yet know the defi-
nition of the function f.

A particular function

The development above is clearly generic, in that we do not specify what func-
tion should be applied to each element of the list. We now lock at a particular
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function f, which is motivated by an exercise from a standard programming
text.® We do not go into any great detail in the development. sioce the prob-
lem does not make any great use of exceptions, which are our chief concern
in this chapter. However, several of the refinement steps arc motivated by the
need to use operations from the sequence collection class for manipulating the
seqnences involved, and this is the purpose of including the development here:
we can see how the development has to be geared towards these class operations.

The problemn requireinents are as follows: we are given a text ¢ in the form of
a sequence of words, and two lists of words a and b. The task is to transform
the text t into a text s by replacing each occurrence of a word a. with the
corresponding word b,. Thus, for instance, if a is {one, two, three) and b is
{eleven. twelve, thirteen), then a text (it, is, lwo, minutes, past, three) would be
transformed to (st. s, fwelve, minutes, past, thirteen). Clearly we can use the
‘nap’ code developed ahove, and the only work left is to define the function f
which will serve in this case, and then to develop code to replace the assignment
marked (*) in the development of the previous section. From the informal
statement of requirements, we can see that the function f that we are interested
in is the one which maps a word onto its transform:

procedure transform(in : Word, result out : Word) =
out ;= f(in)

where
f: Word 5 Word

1 e P
Y ; Word Of(w)={z)(ﬂ v tgi;;ﬁ:

Expressing this as a specification, we get the starting point for our development:

out := f(n)

in € rana in & rana
‘ i v .
out = b(a"in) out = in
The algorithin chosen is a sequential search, where a local variable p ia intro-
duced, the pnrpose of which is to store an index such that, if in dees actually
appear in a. then p will point to it, and if tn doesn’t appear in ¢ then p will
be set to one more than the length of a. Once p has been set to this valne,

it is simple to achieve the desired postcondition with an alternation. using the
elementAtPosition operation,?

L out;

C wvarp:Ns
|{mErana ingrana .
p[( m:np)v(p=#a+l)]' (5)

in€rana mn frana
out : ) ] ¥ ,
iIm=ap p=#a+1
The problem appears in [55] as exercise 1.7, where it is expressed in terms of arrays rather
than sequences.

PAs in the previous example, superfluous choice 8.3 is also required ta introduce the
‘superfluous’ branch of elemeniAtPonton.
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in € rana v ingrana a
out = b{a~ln) oul = in

C if 1<p < #a = b.elementAtPosstron(p, out)
lp=#a+1 = out=in
fi

Setting p to the correct index value is achieved with an iteration, which uses
yet another local variable v to store the most recently accessed element of o,

(5)C  var v: Word
TE(l<p<#a+a{ingallp-1])
Al<p<#a=u=alp])"

pi=1

a.clementAtPosition(p, v);

dop##a+lrin#v
if 1< p<#a—1 9 a.elementAtPosition(p + L, t]
U p=+#a — skip
fi ;

p:$p+1
od

This completes the development of the procedure transform. The collected cade
shows three calls to the elementAtPosition operation from the sequence class:

var p: N, v: Word
pi=1
a.elementAtPosition(p. v);
dop#E#at+tinine o
if 1<p<#a—-1 — a.elementAtPosition(p +1.1v)

l p=+#a — skip
b ;
p=p+1

od;

if 1<p<#a > belementAtPogition(p, out)
J z=#a+1 = out:=in

fi

8.6 Conclusion

In this chapter, we have completed our study of exceptions. Chapter 3 started
with a very abstract approach, which simply differentiated between normal and
exceptional termination. Then, in Chapter 4, we extended this by introducing
handlers and multiple exceptions. We have now shown how to relate these ideas
to the very specific exception mechanisms which exist in the Collection Class
Library. We gave a specification of one of tbe classes, and showed how it is
possible to develop programs which use that specification, In particular, we
showed several developments which use the exception-handling mechanisms of
the Collecticn Class Library.



Chapter 9

Applications 2: iterators

9.1

9.2

Introduction

We investigate in this chapter how we can apply the ideas about iterateors which
were introduced in earlier chapters to the development of programs which use
the iterator Jacility of the Collection Class Library. We are therefore not par-
ticularly concerned with exceptions in this chapter.

Our applications wn this cbapter are based on the sequence Collection Class
intreduced in the last chapter: this has the advantage that we do not need to
go through a long specification before we actually get to tbe more interesting
sections on how the itetator concepts are used with the class.

We start by giving an introduction to the iterator mechanisms available in
the Collection Class Library. By taking a slightly unnsual definition of the
sequence type, we then show how one of these mechanisms can be related to
the it.ti construct. We give some examples to show how programs can be
developed using iterators over sequences, and we finish by returning to the
sequence example — mapping a function — from the previous chapter.

Iterators in the Collection Class Library

The Collection Class Library incorporates two iteration methods: a method
which uses cursors and a method which uses iterator functions. We will descrihe
the cursor method briefly, and then concentrate on the use of iterator functions,

124
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because rhis is the method that relates best to onr it. ti construct.

Iterating using cursors

An iteration over a collection can be achieved using the standard cursor oper-
ations, and the C++ for comstruct. Consider the {ollowing example.

1Set <int> coll;
ISet <int>::Cursor current{coll);
for { current.setToFirst{); current.isValid(};
current.setToNext())
{
/o
coll.elementat (current);
/i
}

¢o11 is first declared to be a set of integers, and current is declared (using
the nested class Cureor) as a cursor for the set cell. The for constrnct is
initialised with current.setToFirst, continues as long as current.isValid
is true. and uses current.setToNext Lo advance to the next element. In the
body of the for construct, coll.elementAt(current) is used lo obtain (a
relerence to) the element pointed to by current.

In order to make programming slightly easier, the Collection Class Library
provides a macro forCursor:

#define forCursor (c¢) A\
for ({c).setToFirst(}: \
{c).isValid(); \

{c).setToNext ()}
With coll and current defined as above, the program now becormes

forCursor(current)

1{
o
coll.elementAt{current}
/oL

}

There are warnings in the manual {22} about nat adding or removing elements
from a collection during an iteration, ‘or all elements may not be visited once’.
One reason for this is that any addition or removal from a collection causes the
invalidation of all cursors.
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This is all that we will say about iteration using cursers, other than to note the
similarity with the iteration schemes of various object-oriented languages (see
Section 10.2).

Iteration using iterator functions

The second, and more intetesting, method of iteration in the Callection Class
Library is to use the allElementsDo operation. The Collection Class Library
reference manual [22] gives two reasons why the cursor method might not be
acceptable:

¢ [or unordered collections, it might be stylistically undesirable to have an
explicit {yet arbitrary) order; and

® it is possible that it might be more efficient to carry out an iteration in
an arbitrary order, using something other than cursors. For instance, if a
tree implementation is being used, a recursive descent iteration mmight be
more efficient, despite the extra function calls.

In order to use the allElementeDo operation, the user has to supply a function
which is to be applied to each elemment of the collection in turn. For ordered
collections. the iteration order is the same as the arder of the collection, and,
for unordered collections, the iteration order is arhitrary. The function to be
applied to each element of the colleciiou also gives a Boolean return value. This
value can be used to terminate the iteration prematurely, since the iteration will
only move on to the next element if this return value is true.

For example, the sequence class contains the following declaration:

Boolean allElementsDec {Boolean (sfunction} (Element&, voide),
voide additionalArgument = 0) ;

This function could be used to sum the elements of a sequence of integers as
follows:

typedef ISeq <int> IntSeq ;

Boolean sumUpFunction (int constd i, void+ sum){
*(int*)sum += 1i;
return True;

IntSeq 8;

NN

int sum = G;

s.allElementsDo (sumUpFunction, ksum)
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9.3

The sumUpFuncticn is declared: it takes two parameters. an integer i and the
cumulative total sum. Its effect is te add 1 to the total. A sequence, 3. ofintegers
is declared. The variable sum is initialised to (. and then allElementsDo is
applied to s with sumUpFunction as the function to be applied to each elernent.
and the result stored in sum.

In what follows. we will make no use of the Boolean value returned by the
function supplied as a parameter to allElementsDe, but it could clearly be
used to provide au exit mechanism from the middle of an iteration.

One of the drawbacks of this method of iteration can be seen in the above
example: if the function to be applied to each element requires additional argu-
ments, pechaps an accumulation parameter, these must be supplied 25 a secand
parameter to allElementsDo, aud they are therefore not well cncapsulated. Tn
the example above, we have to supply sum as the extra paramcter. The Col-
lection Class Library provides vet another way of perfartning iteration to get
around this: there is a form of the al1ElementsDe operation which takes as
its parameter an ‘iterator class'. rather than the function to be applied to each
clement. These iterator classes :must contain a function called applyTo, and the
class mnust be derived from an abstract base class IIterator. Now additional
argunents that are needed for the iteration can be passed as arguents to the
constructor of the derived iterator ciass. However, we will not be using this
form of allFlementsDo.

Collection Class iterators and it..ti

We must now explain how we can relate the iterator mechanism <escribed
above — allFlementsDe with an iterator function -— to the it.ti construct
from Chapter 5. We will describe this relationship, just as we described the
mapping from guarded command programs with exceptions and handlers to
C++ programs. in terms of an informal collection of guidelines, rather than any
formally-defined translation.

The key to the relationship between allFlementsDo and it..ti lies in our view
of the type underlying the sequence class. The traditional view — and the one
taken in Section 5.2 — is that sequences are constructed as either empty or by
applying the Cons function to an element and another sequence:

type seq A = Empty | Cons A (seq 4) -

When seen tike this, sequences are often called ‘Cons-lists’. However, for reasons
that will become clear, it is much more convenient for us to use an alternative,
but isomorphic, view, where we treat a sequence as a ‘Snoc-list’|11, Ckapter 1]:

type seqA4 = Empty [ Snoc (seq A} A .

With this complementary definition of the sequence type, it..ti constructs now
take a correspondingly different form, with the branches as always correspond-
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ing to the branches of the type definition: we can find the sum of a sequence s
with

it 5 into r with
Empty <+ r:=0
[I Snocnsn S ri=ns+4

ti,
or the length of a sequence with

it 5 into r with
Empty —+r:=10
[ Snocnsn =+ ri=mns+1

[

Now we rhust show how to encode this it..Li in terms of aliElementsDo. The
technique used is to treat r, the result variable of the iteration, as an ‘accumu-
lation parameter’: the initialisation of this parameter is derived from the Empty
branch, while the function to be passed 1o al1ElementsDo is derived from the
Snoc branch by replacing occurrences of the front of the sequence — ns in the
examnples above — with the result variable, and making the last element of the
sequence — n above — a value parameter to the function.

Examples may make this transformation a little clearer. The smnmation itera-
tor above becomes

r=9q;
s.allElementsDo {value n, value-result r . T = T + n) ;

where we have used Lhe standard refinement calculus descriptions of parameter
passing mechanisms, rather than C++'s inore cryptic * and & The initialisation
r = 0 is taken directly from the Empty branch, while the function r = r + n
comes from the Snoc branch, r := ns + n, with ns replaced in our vsual way
by the result variable r.

Similarly, the length iterator above becomes

r=20;
s.allElementsDo (value n, value-result r . r = r + 1) ;

Generalising slightly, we obtain the following guidelines for implementing an
it..ti construct over a Snoc-list, s:

it s into r with
Empty —r:=c¢
| Smocesa — r:= f(as,a)
ti

is transliterated into C++ as
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9.4

r=c¢;
s.allElementsDo {(value a, value-result r . r = f(r,a)) ;

The reason for treating sequences as Snoc-lists rather than Cons-lists is so that
the accumulation will *start at the right end’. In functional programming terms.,
our definition of it..ti {once the recursion is removed) corresponds to a foldr.
rather than a fold{: we therefore needed a definition of the sequence type which
madtclies this.

A simple development

We can now return to the example of Section 8.5, and fulfil the promise made
there to repeat the development, this time using iterators. The specification of
the problem is that a sequence ¢ should be transformed to ancther sequence 5.
by applying an as-yet-unspecified function f to each element!.

var s, t : ISeq| Word]
s:((#s=F) AV LAtess=fitd) (1

It turns out that this development using iterators is much simpler than the one
given earlier, siuce all the details of local variables and do..od constructs are
neatly encapsulated in the iterator construct. The first step is to re-express the
specification as a catamorphism:

()= s:=([ml,m2)¢,
where

mi() = Empty
m2asa = Snocas (fa) .

So we can immediately implemeut the catamorphism with an it. ti:

C  “assignment iterator 5.2, Snoc version"”
it ¢ into s with
Empty - 5 := Empty
[} Snecasa — s :=Snocas(f a)
ti

We can translate this into C++, using the guidelines above and the definition
of s.removeAlll:

8.removedlll ;
t.allElementsDo { value a, value-result s . s = Sooc s (f a) )

1Both sequences happen to contain words, bui 1hat is not relevant here.
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9.5

9.6

Once it is known which function f is required for a particular development,
it is clear that the C++ function passed to t.allElementsDa can he further
developed. Indeed, it i3 likely that it will he necessary to use another hbrary
operation, such as s.add, to add the new element to the end of the sequence s
as it is being constructed. However, these are not our concerns here.

More complex types

We conclude this chapter with a brief description of how the above scheme for
translation to the Collection Class Library might be extended to more complex
tvpes such as trees. There is an ohvious reason why the schewne cannot deal
with trees in its present form: the trick of accumulating the result of a foldr in
a variable cannot work with a type like trees because there is more than one
recursive occurrence on the right hand side — we need to accumulate the result
of applying the function in gnestion to the left sub-tree and to the right sub-
tree, so we need two local variables. Of course, at the next level of unwinding,
we need four variables. and so on.

However, we can get round this problem by splitting the prohlem into two parts:
first we flatten the tree, then we iterate over the flattened structure. Of course,
the flattened structure shonld be of a type for which we can easily convert to
a call of allElementsDa. such as Snoc-lists. We can often appeal to the fusicn
law {11, Equation 2.12] as & way of transforming a catamorphism over trees to
one over the new type, such as Snoc-lists.

Of course, we should also consider the question of efficiency: this approach
to the implementalion of iterators over complex structures — by flattening
the structures and iterating over the flattened version — is only going to he
acceptable if we can maintain the efficiency of an algorithm on the flattened
structures when it is translated back to the more complex structure. This iz
a topic which remaing open for further research, which will inevitahly involve
an investigation into the relationship between data refinement and the it..ti
construct.

Conclusion

In this chapter, we have shown how the iterator construct introduced earlier
can be related to the iterator mechanism which is built into the Collection
Class Library. For sequences, we showed how treating a sequence as a Snoc-list
meant that there was an easy way to turn an it..ti conat ruct into an initialisation
followed by a call of the al1Element sDo operation, We have seen that the it .ti
construct is actually very flexible, since we can choose whatever ‘view' of the
type is most convenient. This choice can he made at a late stage, as it does not
need to be fixed.
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Chapter 10

Related work and conclusions

10.1

In this final chapter. we set our work in context by surveyving other published
work on exceptions and iterators. We suggest some areas for future work, and
end by drawing some conclusions.

Related work on exceptions

In this section, we look at the varieties of exception mechanisms available in
a selection of programming languages. hefore examining some proposed tech-
niques for the formalisation of these mechanisms.

A variety of exception mechanisms

When we looked, in Chapter 3, at why exceptions were needed in program
development, we mentioned two models of exception handling: the termination
model and the resumption model. These models reflect the different views of the
actions possible when an exception is raised or signalled — whether the signaller
should be ended and control passed to a handling routine, or whether control
should be passed to the handler and then back to the original signaller at the
point where the exception was raised, after some sort of attempt to ‘clean up’. In
fact, when we examiue the literature, we find a few other proposals for possible
actions: the signalling procedure ¢ould be ‘re-tried’ from the beginning, or the
exception could be propagated to allow a higher level of procedure to respond to
the error. This wide choice of actions is reflected in the variety of mechanisms

132
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available for exceptions in programming languages. Some languages permit
more than one sort of response, while others restrict what is allowed. In general,
the more complex mechanisms are, not surprisingly. the cause for mare complex
formalisations.

Exception handling in PL/I [33] is based on the resumption model. For some
built-in exceptions, it is possible to specify that an operation should be re-tried.
though this feature is not extended to user-defined exceptions. Exceptions are
automatically propagated until an appropriate handler is found, and the scope
of exceptions is global.

In contrast, exception handhing in CLU [31] is based on the termination model.
and exceptions must be explicitly propagated along the invocation chain. The
language allows only statements and procedures to raise exceptions, not expres-
sions. These exceptions can be parametrised, and, since exceptions that might
be raised hy a procedure must appear in its declaration, a certain amount of
type-checking is possible.

Goodenough [20] has proposed a notation for exceptions that is extremely flex-
ible, allowing scveral forms of response to the raising of an exception including
both resumption and termination. The exceptions raised are neither typed nor
parametrised.

Ada's exception mechanism {see for example [8]) is based on the termination
model, and here too exceptions are non-typed and non-parametrised. Excep-
tions are not declared in procedure headings, and so compilers are unable to
do much checking. Ada’s meckanism is fairly complex and therefore difficult to
formalise.

Yemini and Berry [37] have proposed an interesting scheme which is more am-
bitious than most of the others, and claims to cover all of the possible responses
to the raising of an exception. They base their ideas on the so-called ‘replace-
ment madel’: by viewing a program as an expression, with side-effects allowed
in expression evaluation, they see the raising of an exception in an expression
as corresponding to a sub-expression which could not be fully evaluated. The
handler of an exception produces a result which can be used m one of two ways:
it can either replace the result of the sub-expression (thus giving the effect of
a resumption), or it can replace the result of the whole expression which raised
the exception (a termination) — hence the name ‘replacement model’. The
authors' concerns with modularity and orthogonality lead to a very powerful
and flexible mechanism.

Formalising exception mechanisms

There have been several attempts at formalising some of these exception mech-
anisms. In many cases, this has meant imposing restrictions on the mechanism
and providing formal semantics for only a part of it, ar making significant pro-
posals for change. For instance, Luckham and Polak [33] have attempted to give



10.1. RELATED WORK ON EXCEPTIONS 134

axiomatic semantics to the exception mechantsms in Ada, and have only suc-
ceeded by making major changes: banning automatic propagation of exceptions
and insisting that they are propagated explicitly to invokers, for example,

Yemini [56} has given an axiomatisation of the exception mechanism based on
the replacement model, which involves only two new proof rules in addition to
those of the block-structured language in which the mechanism is used. The
simplicity of the axiomatisation is praobably due to the use of procedures and
the concern with orthogonality of program constrncts.

Turning now to predicate transformer semantics, Cristian showed [15, 16] how
a semantics could be given to a deterministic programming language with ex-
ceptious. His technique involved viewing programs as multi-exit structures, and
thereby giving their meaning with sets of predicate transformers. Writing wp,
for Cristian’s wp, we have in his notation,

» wplF,;, a) denotes the weakest precondition under which program P
is guaranteed to terminate normally, satisfying the predicate a. This is
simply the usual Dijkstra predicate transformer wp( P, a); and

» wp.(P, e, a) similarly denotes the weakest precondition under which P is
guaranteed to terminate at exit point e, satisfying a.

According to Cristian, the meaning of a program F was given by the predicate
transformers wp.(F,;,e) and wp (P, e, @) for all possible exit points e.

However, if we try to use Cristian’s technique on our own language which in-
cludes non-determinacy, exception blocks and an exit command, we soon ruu
into problems. Following Cristian’s ideas, we find that the meaning of a pro-
gram P is given by the two predicate transformers

wp(P,; ,a) and wp,(F,exit,a).

However, the separation of the meaning of P into two separate predicate trans-
formers is the root cause of the problem. Consider the program

@ = skip || exit

in which [ denotes nondeterministic choice.! Since we cannot guarantee that
@ will terminate successfully, wp.(Q,;,a) = false. Similarly, since we cannot
guarantee that the exit will be taken, wp (@, exit,ex) = false. So Cristian’s
semantics for @ is given by these two {constant) predicate transformers.

Now consider instead the program [@]. We know that, for successful termina-
tion,

ch(I[QEs 3 ,&) =a

since the exit in @ will be caught by the exception block. This exposes the
problem with Cristian’s approach: we cannot give the imeaning of [Q] in terms

!The language for which Cristian gave a semantics in [16] did not include this operator.
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{only) of the meaning of @, since a does not appear in the latter. The problem
is that, with the two separate predicate transformers, we cannot express thar @
is guaranteed to terminate, either normally or exceptionally: we can say only
that it cannot be guaranteed to terminate in either state in particular.

Apart from Cristian's work, there have also been one or two cther attempts to
generalise predicate transformers to deal with exceptions. At the start of this
work, we were awarc of Cristian’s approach; but smce then we have encauntered
three others, two dating from the 1980s and the other contemparaneous with
our own work.

In an unpublished report (6], Back and Kartiunen discussed how Dijkstra’s
weakest precondition predicate transformer (17) cauld be generalised: instead
of giving the semantics of a language by a fanction

w : Stat = (Cond — Conid)

{where Stat is the set of all statements of the language. and Cond denotes
the set of all possible pre- and postconditions). they intreduced the idea of a
multiple-argument predicate transformer:

w: Stot = (Cond™ — Cond)

They used this notion to give setantics for statements with multiple exit points:

w(SY( &, ..., Qm)is the weakest precondition which guarantees that
execution of § will terminate at one of the exit points of §, such that,
if exit h, is reached, then condition €, will hold, for ¢ = 1,..., m.

After showing how Dijkstra's so-called ‘healthiness conditions’ may be gener-
alised to multiple-argument predicate transformers, they defined a simple and
celegant language for multi-exit statements (see also [2]), and used this to give se-
mantics to a language with goto statements, by transforming it to the language
with multi-exit statements.

Their work is slightly more general than our work of Chapter 3, in that it allows
for statements with any uumber of exat points rather than just the two, normal
and exceptional. that we deal with. We prefer however to deal with multiple
exits using a procedure mechanism, thus keeping the extra semantic structure
to a minimum. They also do not treat recursion. More significant is the fact
that they deal only with a programming language, rather than a refinement
calculus, and so there is no notion of refinement of programs containing multi-
exit statements.

In ancther report, pnblished slightly later, [37], Manasse and Nelson give a
similar definition of a weakest precondition of two arguments, though their work
is not primarily concerned with exception handling, but the transformation of
high-level control structures into Jow-level instruction sequerces.

Another related piece of work [29] has heen carried out at approximately the
same titne as our own. Following the work of Lukkien [34], which gave an
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operational (trace-based) semantics for the guarded command language, Leino
and van de Srepscheut give a similar semantics for a language with exceptions,
by adding a state variable to indicate whether a statement has terminated
normally or exceptionally, a construction isomorphic to our use of a pair of
postconditions. From this trace semantics, they derive a weakest precondition
semantics, with a defiuition, very similar to ours, of wp{$) as a function of two
arguments, for normal and exceptioual termination.

They explore the algebraic properties of wp in terms of arbitrary functions of
two arguments, but are not concerned, as we are, with the refinement of pro-
grams containing exits. Indeed, the use of explicit specifications is a significant
advantage when considering rules for rigorous program development that must
refer to “assertions established within a program fragment™. With specifications
available, those assertions are explicit parts of the program; without them, rules
for reasoning about a complete block must refer to the reasoning employed with
respect to its constituents, rather than simply te the constitueuts themselves,

We could use the procedure-based exception mechanismn of Chapter 4 to de-
scribe the construct aaa < 8bb introduced in [29], which either executes aaa
successfully, or leaves gea via an exit and continues with bbb, This structure
is easily modelled as

[ bandler H = bbb o
eaa’
I

where, rather than “exit”, the body aaa’ uses “raise K", but is otherwise
identical to aaa.

Of course, the benefits of a “<-calculus”, so nicely explored in [29], are not
s0 accessible when the relatively heavy mechauism of procedures is used. But
the procedure-based mechanism is perhaps easier to adapt to the sometimes
perverse demands of existing practice, and thus might be necessary anyway.

Related work on iterators

Several programmiug languages include some sort of iterator mechanism, and
we review a selection of them in this section. There has been much less work on
formalising jterators — that is, providing a formal semantics and a mechanism
by which an iterator construct can be proved correct. Where such work has
been carried out for a particular langnage, it is mentioned below.

Alphard

The Alphard language (52], developed at CMU in the late 1970s, has two iteratar
constructs:
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» a for construct which is used for iteration over a complete data structurc:
and

« 3 first construct which is used {primarily) for search loops.

We will concentrate on the for constrnct, remarking only that execution of the
first construct invoives traversing a data structure until an element is found
which meets some condivion, and then performing some action. (Il no element
satisfving the condition is found, an alternative action can be taken.} The for
constrnct takes the following form:

for z : gen(y) while 3(z) do ST{x,y, z) .

A local variable z is declared, which will take, in turn. the valnes spucified by
the generator gen{y). For cach value of z which satisfies the constraint 4, the
loop body ST is executed. Clearly, the heart of the far construct lies in the idea
of the geuerator gen{y). so we look a little more closely at thi§. A generator is
a ‘form’ (the Alphard term for abstract data type) obeying cortain conditions:
it must provide two Boolean-valued functions &init and &next, which have the
side-effect that their invocation will produce 2 sequence of values to be bound
to the loop variable. For both functions, the Boolean value returned indicates
whether there are clements remaining which have yet to be iterated over.

Thus the meaning of the for construct can be given:

begin local 7 : gen(y);
7+ r.&init;
while © cand J(z) do
(ST(z.y,z); 7 + z.&next)
end

where 7 is a compiler-generated Boolean variable, « denotes assignment . and
cand denotes the ‘conditional conjunction’ operator.

A simpte exarnple of an Alphard generator is the upto generator, which produces
the sequence of numbers between a lower bound b and an upper bound uh —
that is, {ib, 8 + 1, ..., ub}, or the empty sequeuce if ub < lb.

form upto(lb, ub : inieger) extends k : integer =
beginform
speciflcations
inherits {allbut «);
function
&mit{u : upto) returns (b : boolean),
&next(u : upta) returns (b : boolean);
implementation
body &init = (u.k + u.lb; b+ ulb < u.ud);
body &next = (u.k + uwk + 1; b + uk < wub),
endform
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Tbis generator can be used in a for statement. For instance, summing the first
n integers 15 achieved by:

sum « 0; for 7 : upto(l,n} do sum + sum +j .

It is possible to add verification information to an Alphard form, using an in-
variant clause, an initially clause, and pre- and postconditions for each functicu.
1t is also possible to give a concrete version of the state, and to give a repre-
sentation function relating the concrete to the abstract view. Proof obligations
can then be given to ensure the correctness of the form: this means ensuring
that invariants are maintained by abstract and concrete operations, and that
initial states correspond. Since a generator is just & special sort of form, it is
possible to apply these proof rules to a generator. Using the expansion of the
for construct given above, it is also possible to obtain a proof rule for the con-
struct. However it is rather unwieldy. Because of this, there are various simpler
proaf rules for the for construct, which can be used when the generator satisfies
certain conditions. In practice, many generators do satisfy these conditions, so
the full form of the proof rule is seldom needed. Thus the effort of the proof
is transferred from the verification of the for construct, to verification that the
generator obeys the necessary conditions.

When comparing the Alphard generator with our own it..ti construct, we can
see two immediate differences from our own work. Firstly, we have hidden all
the details of how to ‘move on’ to the next element of the collection, by using a
recursive procedure. Thus tbe user of the iterator has no need to know anythiug
about the internal details of the object over which he is iterating, beyond its
definision. Secondly, we have considerable Hexibility with the it..ti construct:
as noted in Chapter 9, we have the freedom to choose whatever ‘view’ is most
convenient of the type of the variable to be jterated over. However, in Alphard,
once the &next function is defined, the iteration order is fixed. On the other
hand, it should be noted that the Alphard mechanism has the advautage that
it is easy to describe a generator that produces only part of some structure to
be iterated over — perhaps every other element of a list. While possible, this
would be more convoluted with it..ti.

CLU

At around the same time that Alphard was being developed at CMU, Barbara
Liskov's team at MIT was developing a language called CLU [30]. One of
the guiding principles behind CLU was that it should support abstraction in
program construction [32]. The language contains mechanisms to suppaort three
forms of abstraction:

» procedural abstraction — supported by procedures;

» data abstraction — supported by the use of clusters, the CLU term for
abstract data type; and
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« control abstraction — as well as the usnal if and while constructs. 1ter-
ators can be defined.

An iterator is therefore a procedure-like construct. at the same level s proce-
dures and clnsters. Like Alphard, iterators are used in conjunction with for
statements: as the iterator produces elements of a data structure one at a time.
so the for statement consumes them.

The syutax of the definition of an iterator in CLU is:

id = iter [parms] args [yields] [signals] [where]
routine_body
end d .

The yields clause specifies the number, order and types of the objects which
will be delivered at each stage of the iteration. Within the reutine_body. a yreld
statement is used to present the caller {(a for statement) with the next element.
(The stgnuls clanse specifies which exceptions may be raised. and the where
clause specifies own variables.)

The CLU for statement takes the following form:
for [idy,..] in invecebion do bedy end ,

where wnwocation is the invocation of an iterator. Unlike Alphard. where the
looping mechanism is found in the for statement, in CLU the looping must be
explicitly programmed in the body of the iterator.? Each time a yield state-
ment 18 executed in the iterator’s body, the objects yielded are assigned to the
variables declared in the for statement, and the body of the for statement is
executed. Then the iterator body is resumed at the point immediately follow-
ing the yield statement. The for statement terminates on termination of the
iterator.

For instance. we can define an iterator to yield the characters of a string. one
at a timc:

string_chars = iter (s : string) yields [char);
indez :int = 1;
hmit : int = string$size{s);
while index < hmit do
yield(string$fetch(s, indez));
indez = index + 1:
end;

end string_chars;

3n fact, it is usual to use another, more primitive, for statement in the body of an iteralor.
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We can then use this iterator to discover how many numeric characters a string
contains:

count_numeric = proc(s : string) returns(int);
count » int == 0;
for c: char in strng_chars(s) do
if cher_ts_numeric{c)
then count := count + 1;
end;
eud;
return(count);
end count_numeric

In her thesis [53], Wing gave a method for specifyiug iterators, which has re-
cently been extended to iterators for concurrent and distributed systems [54).
Wing's technique for specifying CLU iterators involves adding assertions to an
iterator, similar to those used for a procedure, to give pre- and postconditions
for each invocation. However, unlike a procedure, an iterator’s specification is
concerned with more than just two states — as well as the overall first and last
states, there are the intermediate states for each invocatiou. There also needs
to be a distinction hetween two kinds of termination for iterators — the ‘real’
termination when all the elements have been yielded, and the suspension that
occurs after each yield. The assertions refer to state variables which can be
decorated with subscripts pre and post, as well as a special state object (ie an
auxiliary variable) first, which flags when we are in the very first state, and
history variables which ‘remember’ values between invocations.

Both of the remarks made above when comparing Alphard iterators to the it..ti
construct still hold true for CLU iterators: the user has to program explicitly
the method of progress through the collection, and the it..ti is more flexible.
However there is more generality here, iu that it is possible for the user of
the CLU iterator to write a yield statement which returns a more complex
expression than simply the current object in the collection — for instance, each
yield statement might return a pair of consecutive characters in the sequence,
allowing a for statement to calculate the frequency of pairs of characters. This
would be considerably more complex using an it..ti.

On the verification side, while Wing's assertions and associated proof rules do
allow the verification of a CLU iterator, the proof is at a very low level, dealing
with the intermediate states during the iteration as well as the overall pre- and
postconditions. In contrast, the effort of verification for the it..ti construct is at
a much higher level, involving the reformulation of the postcondition as a cata-
morphism. Once this has been done, implementation as an it..ti is immediate,
by assignment iterator 5.2, or a similar law for other types.
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Object-oriented languages

In recent years, many object-criented environments have introduced libraries of
abstract data types, often including container classes. These container classes,
which describe such types as sets, bags, trees, etc.. often contain some sort of
iteration mechanism, whereby the user can traverse the data structure. How-
ever, these mechanisms are often based on the notion of a cursor, with the user
having to supply cursor manipulation routines. As an example, we will describe
the jteration mechanisms available in Eiffel [40].

The FEiffel library contains an Iteration Library which consists of classes which
encapsulate various iteration mechanisms over arbitrary data structnres — lin-
ear iteration, two-way iteration, tree iteration (preorder, postorder or inorder).
These iterations are defined in terms of two sorts of deferred routines - - these
are routines which are called in the iterator, but not actually defined until the
iterator is used: traversal rontines and operation routines. The traversal rou-
tines are concerned with cursors, and need only be defined once for each duta
type. The operation routines are concerned with the particular actions to be
taken as part of each iteration, and so can be given different valnes to achieve
different iterations.

For example, the LINEAR_ITERATION library class contains the following
do_until routine:

do_until(s : TRAVERSABLE(T)) is
— — Starting at the beginning of s, apply action to every item of s
- —up to and including the first one satisfving test.
require
traversable_ezists : 3 # Void,;
traversable_satisfied : fnvariant_value(s)
do
from
start(s): prepare(s)
invariant
invariant_value(s)
until
off (s) or else test(s)
loop
actfon(s);
forth{s)
end;
if not off (s) then action(s) end;
wrapup(s)
ensure
not off (s} implies fest(s)
end — —do_until

In this iteration, the traversal routines are start, forth and off, and the opera-
tion rontines are prepare, action, test and wrapup.
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In order to iterate over an object s which is a FIXED LIST. we can use an
integer index position to represent the cursor, and the traversal routines hecome:

e start(s) — position ;= 1
o forth(s) -~ position := position + 1

o off (s) — position > count, where count gives the number of occupied
places in 5.

The Eiffe] renaming mechanism is used to allow two different iterations over
the same structure, by renaming the operation routines as they are imported.

There are difficulties with the cursor approach to iterators, not least the prob-
lems of nested iterations. when it is not easy to keep track of several cursors.
and the problem of robust iterations, wheu elements may be added or removed
during an iteration. There has been work reported to solve these problems: [23]
proposes a CLU-like mechanism for Eiffel and [24] does the same for C++, while
[26] is concerned with robust iterators in a C++ class library.

The chief disadvantage of the Alphard mechanism and the more receut proposals
for object-oriented languages is that they require the user of the iterater to
supply routines to control the iteration. This means that knowledge of the
data structure’s implementation is required, thus negating one of the primary
advantages of using the iterator in the first place, The CLU mechanism is much
cleaner in that respect, but the complications in the proof obligations caused by
the suspend/resume semantics are non-trivial. Lamb has proposed [27] the use
of trace specifications for the specification of Alphard-style iterators. He also
mentions the use of procedure parameters, and shows how traces can be used
to give ‘partial specifications’ of iterators which use procedure parameters.

However, the maiu difference between the it..t1 construct and all of the refated
work mentioned in this section is in the level of abstraction and the level of
mathemmatical maturity required for their use: the iteration schemes for Al-
phard, CLU and Eiffel all require the user of the iterator to supply routines
which need knowledge of the internal structure of the type of the variable being
iterated over. The user of the it..ti can work at a more abatract level, hut
needs to be more mathematically mature: while the average programmer can
easily understand the ideas of iuitialising and advancing a cursor, he may have
more difficulty with catamorphisms! However. he would prohahly benefit from
thinking more deeply about the constructors of both the type of the variable
to be iterated over and the target type of the iteration,

Further work

There are several directions in which it would be possible to extend the work
described in this thesis, and we now investigate a few of them.
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Exception handling and parameters

In Section 4.4, we mentioued the idea of passing parameters to exceplion han-
dlers. This feature already exists in some programming languages such as CLU
[31]. It would not be very difficult to extend our handler mechauism - based
as it is on the idea of procedures — to cover this possibility, using the standard
{by wvalue) procedure-passing mechanism for procedures.

Exception handling in other programming languages

In Chapter 8, we showed how the exception-handling mechanism mtroduced
in Chapter 1 could be mapped to the C++ language and the Collertion Class
Library. It would be interesting also to investigate how to develop programs
in other languages with different exception-handling ruechanisms. For instance.
Burns and Wellings [13, Chapter 6] describe the exception-handling nechanisms
in the Ada95 and C++ languages and a proposed mechanism for C [28]. These
mechanisms are classified, together with those for CHILL, CLU and Mesa, in
terms of the scope of a handler, whether exception propagation oceurs, whether
the resumption or terminatiou model is used, and whether paramelers can be
passed to a handler. An attempt to formalise these mechanisms using our
framework could make an interesting comparison.

Iterators in other languages

In a similar vein, it would be possihle to examine the iterator mechanisms of
various programming languages to see how easy it would be to map our it..ti
construct onto different target languages.

Tterators and optimisation

The functional programming literature {e.g. [i1, Chapters 7-10]) contains de-
tailed studies of the application of catamorphisms to so-called ‘optimisation
problems’. Siuce the it..ti coostruct is based on catamorphisms, it should be
possible to re-cast these problems in the refinement calculus framework. This
alternative approach might yield further insights into this important application
area.

The Collection Class Library

Turuing to the Collection Class Library, there are at least two areas that require
further work before the aim of using the Kbrary in a formal development, process
can be realised. The first problem is the use of cursors, since our specification
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of the sequence class in Chapter 8 did uot include any mention at all of cur-
sors. Although several attempts were made to describe the cursor mechanism
formally, it was not possible to find a well-structured description, such that the
specification of any other library module also involving cursors would be able
to re-use the cursor description in the sequence class. The second problem was
referred to in the Intreduction — pointers. The difficulty of formally developing
programs which use the pointer mechanism of a programming language retnains
an open problem, aud an important one. For efficiency reasons, programmers
are always going to want to program with pointers, and it is the task of the
formal methods community to provide thein with a formal basis for doing so.

Automation

All of the developments in this thesis have been carried out by hand, without
the asdistance of any automation. However, 1t is clear that refinement calculus
development methods are likely to be adopted on a large scale by industry only
when there is significant tool support. Thus the addition of our new constructs
to existing refinement caleulus tools [14) would be a great aid in promoting their
use.

Case studies

Finally, more experience is needed in the use of all the language coustructs
introduced in this thesis: exceptions, exception handlers, iterators, procedure
variables, and so on. It is by working on case studies that we will be able to
propose (and later prove correct) laws which will simplify the developments
that use these constructs. As Naumann put it [49], ‘it remains to gain more
experience with development of higher order programs in refinement calculi, in
order to find more convenient notations and derived laws’.

Conclusions

The work described in this thesis has extended the refinement calenlus ta cover
two new areas — exceptious and iterators. The motivation for the work came
from IBM's Collection Class Library, and it is against this that we can measure
its success.

For exceptions, we built up a formalised exception mechanism, in stages, from
a fairly abstract start where we simply made a distinction between normal and
exceptional termination, and gave a semantic framework in which refinement
laws could be proved correct (Chapter 3). We then extended this by allowing
the user to differentiate between different exceptional terminations m a sin-
gle program, associating appropriate actions with each exception. To achieve
this, Chapter 4 introduced a mechanism for handling exceptions, based on the
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use of procedures. The connection back to the Collection Class Library was
made in Chbapter 8 where a specification of a sample class — sequences — was
given, and the Collection Class Library exception mechanism was related to
the procedure-based mechanism previousiy described. Several programs were
developed formally, making use of the refinement. laws which had been proposed
and proved correct. We can therefore regard the work on exceptions as reason-
ably successful, in that it achieved its aim of formalising the Collection Class
Library’s exception mechanism. Moreover. the ideas introduced should be easy
to transfer to different languages. allowing the formalisation of other exception
mechanisms.

For iterators, we tock our inspiration from the field of functional programmming.
In particular, we based the it..ti construct in Chapter 5 on catamorphisms.
although it was formally defined as a recursive procedure. Having worked ini-
tially with sequences, we also showed how iterators coutd be defined over more
general types, and gave examples showing the it..ti construct in use for de-
veloping programs. The second of these examples also showed how a resuit
from fonctional prograinming ahout catamorphisms — the banana-split law —
could be used to assist in an iterator-hased development. Since our goal was
to describe iterators for the Collection Class Library, we then needed a way to
encapsnlate the it..ti construct so that it could be defined in a library class. to
be used as required. This meant that it would be necessary to pass procedure
values to the library pracedure, corresponding to the branches of the iterator.
Although the usual parameter mechanisms for the refinement calmulus do not
cover procedure parameters, we were able 1o use the work of Nanmann as a ba-
sis for a description of procedures as values. Once again, weakest precondition
semarntics allowed ns to propose and prove correct various laws. In Chapter 7.
we used this work to devclop a theory of procedures as parameters and to pro-
vide an eucapsulation of the iterator construct so that it could be placed in
a library. Finally, Chapter @ brought us back to the Collection Class Library.
as we showed how an iterator for the sequence rlass described eatlier could be
formalised with an it..ti construct. This involved taking a slightly unnsual def-
inition of the seqnence type, so that the recursion of the it..ti could be mapped
to a foldr. The success in formalising the Collection Class Library’s iterator
mechanism is perhaps not so striking as that for exceptions, as il is depeudent
on finding a definition for the type which corresponds to a foldr. However, for
types which do have such a definition. the formalisation works well. Moreover,
the it..ti construct remains well-defined for types which do not have such a
definition, and the results and laws on procedures variables have mnch wider
application.
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Appendix A

Procedures and C++ functions

As was mentioned in Section 8.3, we encounter a problem when modelling the
C++ collection classes in the refinement calculus, due to the fact that the C++
language does not distinguish between procedures and functions. Although the
refinement calculus language considers only procedures, many of the collection
classes contain operations which are enquiries on the state variables — in C++,
these are functions which give return values and therefore can be used as ex-
pressions. For example, as well as the normal operations such as add and delete
which alter state variables, the sequence class also contains such operations as
numberQfElements, whicl returns the number of elements in a sequence. If
we stay strictly within the refinement calcuius notation, we must model the
operation as a procedure with a result parameter:

procedure numberOfElements(result n : N) =

ni=Fs .

Now, how can we use a procedure such as this? As usual when we intend to
use a procedure, we manipulate our program until it ‘matches’ the body of the
procedure {with suitable substitutions for parameter passing). In the simplest
possible case, suppose we needed to develop code to implement

I = Fts

where s is a sequence. This is easy: we use the result-assignment law to refine
this to a call of the procedure numberOfElements with z as the result parameter:

C s.numberOfElements(z)

When we come to transliterate to C++, the obvious way to code up the result
parameter is as an assignment. So we finish up with
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x = s.number0JfElements
However, things are not so simple if the expression on the right of the assignrment
is slightly more complex:

Ti=Ffs+1

Now we have to introduce a local variable, which we use (o store the result of
a call to numberOfElements:

C varle
s.numberOfElements(1):
z:=1+1

This is transliterated to C++ as

—
[

= g.number0fElements;
x = 141

whereas the program which we would really like to develop is
x = s.numberUfElements + 1 R

using the result of the function call as a sub-¢xpression in the expression being
assigned.

One possible solution to this problem would be to extend the refinement cal-
culus notation with some forin of ‘calculus of functions’. Although this is an
interesting idea, il is not very relevant to the main topic of our work, and we
therefore reject it. Indeed. it is a non-trivial problem, and could potentially
lead to non-deterministic expressions in the langnage. Instead. we adopt a
pragmatic solution, which allows us to specify these operations as prucedures,
in the normal refinement calculus fashion, and then to develop programs whicl,
use them as though they were functions, in the natnral C++ way.

The solution is based on an abbreviation, which we will explain by developing
code for the specification mentioned above:

T:=H#s+1.

We notice that the body of numberOfElements consists simply of an assignment
to the result parameter n, Under these circumstances, if the expression being
assigned in the procedure body (here ‘#35°) appears as a sub-expression on the
right-hand side of an assignment dyring a development, or within the guard of
an alternation, we allow ourselves to replace it by the procednre name decorated
with an exclamation mark, numberOfElements! So we can write

= s+ 1

LR

= numberOfElements! + 1 |
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This is transliterated to C++ in the obvious way.

This abbreviation cuts out some of the details of the development: essentially,
we are saved [rom introducing a local variable to store the result of the ‘enquiry
procedure’. If we were being totally formal, this local variable would become a
local variable in the C++ code, which we could then optimise away by uoting
that, since the enquiry operation has na effect on the state variables, we are
justified in replacing any cccurrence of the local variable in an immediately-
following expression with an inline evaluation of the enquiry.

The Full details of these abbreviations are given below. In all of them, P is taken
to be a procedure without side-effects which has a single result parameter, with
a specification of the following form, where £ is an expression:

procedure P(result r) =
r:=FE .

Abbreviation A.1 ossignment abbreviation definition

P! may be used as an expression in the right-hand side of an assignment,
standing for a declaration of a fresh local variable !, a call of P with [ as
the result parameter, followed by the assignment with ! n place of P!:
r:=ezp(P) = |[var le

P

T = ezp{l)

1l

The associated law which allows us to introduce this abbreviation iuto an as-
signment is:
Law A.2 assignment abbreviation

If F is an expression, and P is defined by
procedure P{result r} =

r:=FE
then
z:=F
C
= F[E\ P

Abbreviation A.3 alternation guard obbreviation definition

P! may be used as an expression in the gnard of an alternation, standing
for a declaration of a fresh local variable I, a call of P with i as the result
parameter, followed by the alternation with I in place of P!
if(JisG(PY—=B}A
Z|[varle
Bl
if{{ieG()—=B)A
I
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The law which allows us to introduce this abbreviation inte the guard of an
alternation is:

Law A.4 alternation abbreviation

if(isG —B)Af
C
it ([ie GIE\ Pl B) R

The form of the abbreviation when P!is used in the guard of an iteracion is
slightly inore complex and may not actnally be needed.

Abbreviation A.5 {teration guard abbreviation definition

P! may be used as an expression in the guard of an iteration, standing
for a declaration of a fresh local variable I, a call of P with { as the result
parameter, foliowed by the iteration with { in place of P!, and a call of P
after the iteration hody:
do (] ée G,{P)} - B,) od
= |[varle
Py
do (] i  G,(I}) = B,; P(1)) od
1l

S0 our example above now becomes
r:=#s5+1
c
1 = s.numberQfElements! + 1 |

which is transliterated to C++ as
X = s.number0fElements + 1

This abbreviation is used most frequently with the enquiry procedures in the
specification of sequences in Chapter 8.



Appendix B

Summary of laws

For easy reference, ail of the laws, definitions and abbreviations from elsewhere
in the thesis are gathered together in this appendix.

Chapter 3

Law 3.1 program after ezil

A program following exit has no effect.

exit; aze = exit

(Equality of programs means semantic equivalence, that is, mutnal refine-
ment.)

Law 3.2 ezit ending dlock

An exit at the end of an exception block has no effect.

[eea; exit] = [zaa]

Law 3.3 exception-free block

Exception blocks have no effect on exception-free programs.

faaa] = aaa provided oo 15 excephion-free
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Law 3.4 ezxceptional specification

An exceptional specification can be formed by duplicating the postcondi-
tion of a non-exceptional specification statement, and surronnding it with
an exception block.

w: o gl =[w: [a.d> 3]

Law 3.5 take normal branch

A specification statement can be implemented by taking the normal
branch uncouditionally.

w:fe, > Cw:la,d]

Law 3.6 take ezceptional branch

A specification statement can be implemented by achieving the excep-
tional postcondition, and then performing an exit.

wila, 8> ) C w:a,v); exit

Law 3.7 else notation

Specifications and the ‘else’ notation

w:le, 8>y =w:la.f)>w:|a,qv]

Law 3.8 take normal branch

An ‘else’ construct can he implemented by taking the first branch uncon-
ditionally.

gas > b0 T gaa

Law 3.9 take exceptional branch

An ‘else’ construct can be implemented by taking the second branch un-
conditionally, followed by an exit.

aaz > bbb T bbb; exit
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Law 3.10 chosce-else

A nondeterministic choice between two programs which do not contain
exceptiond is equivalent to an exception block containing the programs as
branches of an ‘else’ construct.

aga [| bbb = [aaa > bbb] provided caa and bbb are excephon-free

Law 3,11 introduce trivial else

An exit-exception pair can be introduced by offering the trivial choice
between equal altecnatives {corollary to choice-else 3.10).

cae = [aas > gaa] provided gaa 15 ezception-free

Law 3.12 sequential composition

Distribute sequential composition through ‘else’.

aaa > bbb

C

(ecc > bbb) ; {ddd > eee) provided ana T cce; ddd
and bbb C ccc; ece

Law 3.13  segquential composition

Splitting a specification with sequential composition.

w:le, B> 1]
cC

w:la,d>q];
w:[d,4> 9]

Law 3.14 recursion

Let e be an integer-valued expression, V' a logical constant, aaa a pro-
gram, and P a monotonic program-to-program function, and assume that
neither aae nor P contains V. Then if

{e=V)aaa C P({0 < e < V}aaa)
we can conclude

gaa C mu D« P(D) um .
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1a7

Law 3.15

Law 3.16

Law 4.1

Law 4.2

Law 4.3

iteration

w:jo,aA-G >

C

de ¢ —
wifaAG,aA(0<e<e) >

od

loap intraduction

w: e, 4

£

loop
wila.an(0<e<e) >

end |

Chapter 4

handler definition

A declaration
handler H = hhh
i3 an abbreviation for

procedure H = hhk; exit .

ratse definition
Raising an exception
raise H
is an abbreviation for
H 3

a call of procedure H.

sequential compesition and mise

ana; bbb
= [ handler H = bbh o
aan; raise H

| provided aaa and bbb are exit-free
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Law 4.4 introduce handler
[ P(aaa; exit) ]

= [ handler ¥ = aaa »
P(raise H)
1

Law 4.5 introduce handler
[ P(aaa > (bbd; ece)) ]

= [ handler H = ccc o
‘Placa || (bbb; raise H))

Law 4.6 tatroduce handler to choice

aga [| bbb

= [ bandler ff = bbb«
aga
[ raise H

Law 4.7 ruise-sequential composition

raise H
= raise H; aao

Law 4.8 disjunciion-else distribution

wilo, By V.V By

C [
w: o, ]
>
w: e, o]
>
w: [a, Bn]

provided naa and bbb are exit-frce
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Law 4.9 else distribution

{aaa; bbb) > ccc
= (aas > cce); bbb

Law 4.10 else distribution

(oaa; bbb) > ccc
C  {eaa > cec) - (bbb > ecc) provided cce C aaa; cec

Chapter 5
Definition 5.1 sequence iterator

An iteration over a sequence s of the following form

it s into r with

{) — bbb

a:as — cec
[
is defined as
I{s,7) ,
where
procedure [(value s result r) =

if s is

{y — bbb
[ a:as — |[ var s f{as.8); coclas\1] ]|

Law 5.2 assignment iterotor

If the value to be assigned to a variable is formed by the application of
a catamorphism to a sequence, then the whole assignment can be imple-
mented with an it...ti construct.

ri=_f.g) s
c
it s into r with
{) —r=J
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Definition 5.3 general iterator

H t is any element of the type T defined above, then

it ¢t into r with
a — aaa
Ibz — bbb
eyt — cec
3]

is defined to mean the same as
I(tv r) 1
where

procedure [(value {,result r) =

if tis
a — aaa
[bx —» bbb

Jeyt — |[ var 1o X(t'1); ccc[t'\]] ]I

Law 5.4 assignment sterator

r:=(P,Q,R)¢t

it ¢ into r with
E — r:=PF
jbz — r:=Q(z)
eyt — r:=R(y,t)

[51

Chapter 6

Definition 8.1 procedure type equivalence

We extend the normai rules about type equivalence by explaining when
two procedure types are type equivalent; types proc (velue v

V,result r : R) and proc (value v’ : V' result r' : R') are equiva-
lent (written =) exactly when V = V' and R = R'. In other words, the
parameter nammes are not significant, and neither are the global variables.



APPENDIX B. SUMMARY OF LAWS 161

Law 6.2

Definition 6.3

Definition 6.4

Definition 6.5

Law 6.6

Law 6.7

ntroduce locel variable

wp(var z ® aga, §)

=¥z wup(aso, ¢ tz)
provided ¢ contains no 1

procedure constant coll

[call Pie, w)], .4

3f.u,r.ge

n.P={f,vrgA
¢

explicil procedure ezpression call

[call (value v, result r e pl{e, w)].e

Q‘I,go
fpl = iomigd A
Y

procedure variable coll

o € [call pu(e. w)].¢

Af,u,r,ge

G'.p?)= (fi",!r!g) A
aecd

introduce procedure variable eTecution

: C
w:|? [pre, post] C pr ,post| C eall pv
pre

procedure varigble value assignment

If the procedure variable pv has been declared as proeedure (value v),
then we have the following refinement:

. pre
w.[w::Egpv.post C eall pv(A4)

provided w : {pre, post] C w := E[v\ A]
where A contains no v
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Law 6.8 procedure variable resull assignment
If the procedure variable pv has been declared as procedure (result 7),
then we have the following refinement:

pre

r=EC ,post| C call pv(a)

a:
provided o : [pre,post) Ca:= E

where r does not accur in E.

Law 8.9 procedure variable value specification

If the procednre variable pv has been declared as procedure {value f),
then we have the following refinement:

w: pre
T w: {prey, posty ] C pu

provided w : [pre, post] C w : [preg[f\ 4], post; [fo\Ac])

whete Ag is A[w\uwy] and post; contains no f

,post| T call pu(A)

Law 6.10 procedure varigbie result specification

If the procedure variable pv has been declared as procedure (result f),
then we have the following refinement:

. pre
N [pre1, posty [a\f]] C pv ,post} £ calt pv(a)
provided a : [pre, posi} C a : [pre, posty)

where f does not occur in pre;, and neither f nor fp occur in post;.

Chapter 7

Definition 7.1 procedure value substitution

wp(P|value o\ AP), ¢)
= YX&X AP = wp(P,8)[fr\X]
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Debnition 7.2 procedure resull subslitulion

wp{ P[result rp\ap), ¢}
= Yipe wp(Plrp\ap),(Yap e ap J ip = ¢} 1 ap)

Law 7.3 procedure voriable value and result specification

I the procedure variable pv has been declared as procedure
(value v, result r}. then we have the following refinement:

. pre
w, @r: w, 7 ; [pres, posty[ar\r]] T p ,post| T call pv(A, ar)
provided w, ar : [pre, post] C w, ar : [preg[v\ 4], post; [v\A] ]

where r does nol occur in pre;, and neither = nor rp ocenrs in post, .

Law 7.4 assignment segiter

If the value to be assigned to a variable is formed by the application of
a catamorphism to a sequence, then the whole assignment can be imple-
mented by a call to segiter.

r=0{f,g) s
seqiter{ (result ere er:=f),

(value @, es; result cr s ¢er ;= g{a,as)),
,

Law 7.5 procedure varteble value and result specification

If the procednre variable pv has heen declared as procedure
(value v,result r), then we have the following refinement:

pre
:  post| C call pu{d
w,ar [w,u,r:[pm,,post;[ar\r]] Cpv 'ws} C calt puid, ar)

promded w, ar : [pre, post] T w, ar = [pre; [v\A], post; [t 4o)]

where r does not oceur in pre;, and neither v, r nor ry occur in post;,
and Ay is Aw, ar\uy, era).
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Law 8.1

Law 8.2

Law 8.3

Law 8.4

Abbreviation A.1

Chapter 8

else distribution

(saa; bbb) > cec
C  aaa; (bbb » cce)

disjunction-else

wla,fVq]

vl B > 4]

superfluous choice
w: [a, f]

c ¥ 2w:lag)
f =y = ace

ahsord guard

a - w39
= w:la=j alw\u) A4l

Appendix A

assignment abbreviation definition

provided cce C eog; ccc

provided a = ¥

provided wyg 13 not free in o

Pl may be used as an expression in the right-hand side of an assignment,
standing for a declaration of a fresh local variable {, a call of P with [ as
the result parameter, followed by the assignment with ! in place of P!

r:=ep(P) = |[ var e
P{i);

z = ezp(])

Il
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Law A.2 assignment abbreviction

If F is an expression, and P is defined by
procedure P(result r}) =

r=F
then
r:.=F
-
z:= F[E\ P} .

Abbreviation A.3 alternation guard abbreviation definition

P! may be used as an expression in tbe guard of an alternation, standing
for a declaration of a fresh local variable I, a call of P with I as the result
parameter, followed by the alternation with { in place of P!
if (Jie G{P)— B} i
= |[varle
P{l);
if(Jie G B,)f
I

Law A.4 alternation abbreviation
if (JiseG. —B) 8

C
if (i GJE\ P> B) &

Abhbreviation A.5 iteretion guard abbreviation definition

P! may be used as an expression in the guard of an iteration, standing
for a declaration of a fresh local variable I, a call of P with{ as the result
parameter, followed by the iteration with ! in place of Pl. and a call of P
after the iteration body:

do (] i s G,(P!) =+ B,) od
S| varis
P();
do (] ie G.(I) = B,; P(I)) od
Il





