
RELATIONS, GRAPHS AND PROGRAMS
 

by 

Jesus N. Ravelo 

Technical Monograph PRG-125 
ISBN (1-902926-99-6 

April1999 

Oxford University Computing La.bora.tory 
Programming Research Group 
Wollson Building, P...kB Road 
OxIord OXI 3QD 
England 

~. . ,.,"')f''''-'·Of'l 

! Oy'--~ 1,_.",",0'" r"r('~" 'n"J ,.' . 

, ' 
U,,-, ....;I0. U'f '\ 'jU"-J 



Copyr~ht © 1999 JesUs N. Ravelo 

Oxford University Computing Laboratory 
Programming Research Group 
Wolfson Building, Parks Road 
Oxford OX1 3QD 
England 



Relations, Graphs and Programs 

J eSllS N. Ravelo 
Linacre College 

Micbaelmas Term 1998 

A thesis submitted for the degree of
 
Doctor of Philosophy at the University of Oxford
 

Abstract 

Much emphasis has been placed in recent years on deriving or calculating 
programs rather than proving them correct. Adequate calculational frame
works are needed to support such an approach. This thesis explores the use 
of a calculus of binary relations to express and reason about graph-theoretical 
concepts in the context of program construction. Since graphs playa promi
nent role in algorithmics and have applications in many other fieids l such a 
calculational treatment of graphs via relations positively benefits the formal 
program construction field. 

Phrasing the basics of graph theory with relations allows a formal compact 
presentation of well-known facts! as weB as the development of novel proofs 
for such facts in a calculational fashion. Such a machinery is combined with 
predicate, refinement and fixed-point calculi to derive imperative programs 
that solve several graph computational problems. Relations are used to 
model graphs and sets as the data manipulated by programs and specifi
cations. The case-studies put forward in this thesis include some generic 
problems with instances that correspond to graph algorithms as well as some 
individual graph problems. These examples demonstrate the applica.bility 
of the framework of relations to calculational graph algorithmics, yet some 
dra.wbacks are examined. Potential sources of improvement of this presenta
tion and hints on future research are discussed. 
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Chapter 1 

Introduction 

Much attention has been given, o....er the last two decades or so, to the deriva
tion or calculation of correct programs from their specifications, as opposed 
to the a posteriori verification of their correctness. Calculational techniques 
for program construction have thus become an established important area 
of research in computer science. The prime goal of this research field is the 
reduction of as many parts as possible of the process of program construc
tion to syntactic manipulation. This requires the use of calculi that suitably 
combine precision and conciseness: the former provides the much needed as
surance that the formulae in manipulation model the features of whatever 
"reality" we have in mind in a precise manner, while the latter helps to 
express such features in a concise manner, thereby avoiding the burden of 
having to manipulate gigantic formulae. 

This thesis explores the use of a calculus of binary relations to express and 
reason about graph properties in the context of imperative program con
struction. Relations are used to model graphs and sets, thereby modelling 
the data manipulated by the programs and specifications. Such a calcula
tional treatment of graphs via relations thus links together the areas of graph 
algorithmics and formal program construction, which are the main subjects 
this work touches upon: on the one hand, a large variety of algorithms linked 
to the well-developed subject of graph theory and, on the other hand, calcu
lational tools for the development of imperative programs. Most of the rest 
of this introductory chapter is dedicated to surveying briefly the history of 
these subjects. 

Section 1.1 surveys the area of graph algorithmics, while Section 1.2 deals 
with the calculus of binary relations and its application to rea:soning about 
graph concepts and properties. The use of calculational techniques for the 
construction of imperative programs, which ha:s evolved into the so-called 
refinement calculus, a uniform setting for the manipulation of specifications 
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and programs, is surveyed in Section 1.3. Finally, Section 1.4 presents an 
outline of the contents of the rest of this thesis. 

1.1 Graph Algorithmics 

Graph theory is nowadays a prominent tool in the solution of a wide vari
ety of practical problems in many different fields. Much of the theory has 
indeed been developed motivated by its practkal applications. This can be 
seen in what is recognised as the origin of graph theory, Euler's solution in 
1736 of the Konigsberg bridges puzzle [51, 52], and further developments 
such as Kirchhoff's theory of trees in 1847 for the study of electrical net
works [86], and Ford and Fulkerson's theory of network flows in 1956 as an 
application in operations research [56, 57]. Other fields that have benefited 
from graph-theoretical results include chemistry, biology, economics, geog
raphy, architecture, and the social sciences -see e.g. [58]-. In most of the 
practical situations that arise in these fields, graphs that model a real-life 
problem must be analysed in some way or other, and such graphs tend to 
be large and complex. Computer assistance to perform such analyses is then 
most "aluable and, consequently, so is the design of efficient algorithms. A 
large number of graph algorithms have indeed been developed over the last 
few decades, and a class of graph problems for which efficient algorithms 
are not likely to be found has been identified: giving birth to the theory of 
NP-completeness. Good introductions to graph theory can be found in e.g. 
[31, 71], and to graph theory and algorithmics in e.g. [61, 67, 121, 1451. 

Most algorithmics textbooks. e.g. [3, 36, 85], dedicate significant space to the 
study of graph algorithms. However, their presentations follow, more often 
than not, a traditional approach to algorithm design. Algorithms are first 
given and afterwards, if at all, shown correct with respect to their specifi
cation. Several well-known graph algorithms, though sometimes compactly 
presented, have complicated correctness proofs. Authors must take pains to 
present clear proofs and yet, due to the lack of adequate calculational frame
works to do so, their efforts often result in arguments that are still difficult 
to read. Calculational frameworks for program construction have proved to 
be profitable in revealing the core of the design decisions that lead to the de
velopment of some algorithm or other. Therefore, tackling the large variety 
of well-known graph algorithms under a calculational approach seems to be 
a goal worth pursuing. 

Some graph algorithms are instances of general design paradigms. Kruskal's 
algorithm and Prim's algorithm for the computation of minimum spanning 
trees [90, 126], and Dijkstra's minimum paths algorithm [43] are examples of 
the greedy strategy. Others are designed in very specific and peculiar ways, 
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yet are based on similar structural graph properties. This is the case of a class 
of algorithms based on depth-first traversals of the input graph, including a 
version of topological sorting, Kosaraju and Sharir's algorithm and Tarjan's 
algorithm for the computation of strongly connected components [138, 141L 
Tarjan's algorithm for the computation of biconnected components (141], and 
many others. A few of these graph algorithmic problems aTe dealt with in this 
thesis using the calculational method. Some of them are treated as instances 
of more abstract problems while some others are tackled individually. 

1.2 The Calculus of Relations 

The foundations of the calculus of binary relations has its origins in work 
by Augustus de Morgan, Charles S. Peirce and Enrst Schroder during the 
second half of the nineteenth century. During the 18505, de Morgan started 
work on a theor y of dyadic relations, stating some of the laws that govern the 
behaviour of such relations [112]. Peirce elaborated upon de Morgan's work, 
drawing inspiration also from Boole's logical algebra, in a series of papers that 
started in the 1870s [123, 124]. Schroder further developed Peirce's "Logic 
of Relatives" in a systematic fashion in the third volume of his "Algebra der 
Logik", published in 1895 [137J. 

No particular interest was given to an axiomatic approach to the calculus 
of relations nntil Tarski undertook this task. In 1941, Tarski proposed an 
axiomatisation for a large part of the calculus 1142J. This led to the devel
opment of relation algebras, devised as models of Tarski's axioms and later 
used by Lyndon to show the incompleteness of Tarski's axioms with respect 
to the set-theoretical approach to relations [93]. Among many others, Mad
dux has continued research on relation algebras; he has also written a detailed 
overview of the origins of the calculus of relations and relation algebras [941. 

Relations have also been studied in the context of category theory. Just as 
categories were defined as a simple model of the algebra of functions, alle
gories have emerged as enriched categories to model the algehra of relations. 
It ha.s been proved that a certain kind of allegories, viz. unitary tabular alle
gories, is axiomatically very close to set-theoretical relations. In other words, 
the axioms of a unitary tabular allegory are in some sense, which we will not 
detail here, complete. A comprehensive study of allegory theory has been 
written by Freyd and Scedrov [59]; also, the book [28J by Bird and de Moor 
offers an introd uction to the theory of categories and allegories along with 
applications to algorithm design and program construction. 

Many other researchers have also used the calculus of binary relations for 
programming theory, e.g. [49, 75, 76, 95, 103, 104]. This is due to the fact 
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that modelling specifications and programs as relations provides an adequate 
framework in which to treat non-determinism. We use relations, though 
in the context of program construction, for a different purpose: to express 
and reason about graph concepts and properties. A great deal of research 
into using the calculus of binary relations in the realm of graph theory has 
already been undertaken , mainly in Germany. The standard reference is 
the book [136] by Schmidt and Strohlein, in which a large number of graph 
concepts are phrased in terms of relations, and proofs of graph properties are 
carried out in an algebraic fashion. This approach to graphs has also been 
used within the area of formal program construction to derive programs that 
manipulate graphs from relational specifications [18, 19, 20, 83]. Some of 
such specifications can be directly executed using RELVIE\V, a programming 
system for the manipulation of relations [17J. 

Arguing that a calculus of binary relations is too restricted, Moller has devel
oped a calculus of formal languages and n-ary relations to serve the aims of 
program construction, in particular, the construction of programs that ma
nipulate graphs [104, 105]. Moller and Russling have shown that within such 
a calculus many graph problems can be clearly specified and successfully ma
nipulated to obtain algorithmic solutions [107,131,133, 134J -see also [33J-. 
This calculus is indeed well-suited to reason about graphs, whether or not 
such reasoning is aimed at developing programs. 

1.3 The Refinement Calculus 

The use of calculational techniques for the construction of imperative pro
grams is nowadays firmly established. It originated in the late 1960s and early 
1970s with precedent-setting work by Floyd, Hoare and Wirth [55, 73, 147], 
among others, and, more prominently, by Dijkstra's introduction of predi
cate transformers and their use in the derivation of programs [44, 45]. This 
approach to programming has, since then. been further developed and dis
seminated in several textbooks, e.g. [7, 47, 68, 82]. The 1980s then saw the 
emergence ofthe refinement calculus, a framework in which specifications are 
put together with executable programming constructs in a uniform formal 
setting. Its origins go back to Back's [4], being later further developed by 
Back himself, Morgan and Morris [5, 6, 114, 115, 117, 119]. The refinement 
calculus comprises, first, an extension to Dijkstra's language of guarded com
mands [44, 45] with specification statements and, second, a formal refinement 
relation based on weakest-precondition predicate transformers semantics [48]. 

In this thesis l we will use the notation of Morgan's refinement calculus [115] 
for specifying the computational problems we will be dealing with as well 
as for presenting the derivations of the corresponding programs. Morgan's 
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specification statement w : [pre, post 1, where w is a list of program vari
ables, and pre and post are propositions, informally means: "If the initial 
state satisfies precondition pre, then change only the variables listed in w so 
that the resulting final state satisfies postcondition post". The refinement 
relation is denoted by ~. Roughly, S ~ P can be interpreted as program 
P being correct with respect to specification S, and it is read "P refines 
S" or "S is refined by P" . Since specifications and executable programs 
reside in the sanle space and can be mixed unrestrictedly, both Sand P 
above might be any combination of programming constructs and specification 
statements. The general informal interpretation for S ~ P is that, whenever 
S is required, P is good enough to fulfil such a need. 

It is worth noting that, in presenting our derivations of programs, we will not 
make use of detailed laws ofthe refinement calculus, as in [115, 117}. Rather, 
we will develop our programs in a style similar to that of the aforementioned 
textbooks [7, 47, 68, 82], but presenting t'formal refinement summaries" us
ing the notation of Morgan's calculus. Such summaries could, however, be 
meticulously proved valid by means of the detailed refinement laws. 

1.4 Outline 

Chapter 2, "Relations and Graphs", introduces the calculus of relations} a 
few additional notions not inherent in relations but often used in conjunction 
with them -such as lattice-theoretical fixed points in general and some clo
sure operators on relations in particular-, and a formalisation within such a 
calculational framework of most of the basic graph-theoretical concepts used 
in subsequent chapters. Much of the contents of this chapter is well-known 
material produced by previous research, but the formalisation of a few graph
theoretical concepts plus a couple of calculational proofs in it appear to be, 
to the best of our knowledge, novel. -The final Chapter 8, in page 161, 
makes explicit mention of what the novel points of Chapter 2 are.-

Chapters 3 to 7 form the core of what the rest of the title of this thesis, "and 
Programs", refers to. Each chapter takes up either single graph computa
tional problems or a family of them in the form of one generic problem. In 
each case, the first step that is taken is the formalisation of the corresponding 
specification. Such specifications serve as a starter for showing the use this 
thesis puts forward for the ca1culus of binary relations in the formal construc
tion of graph algorithms: the preconditions and postconditions are formulae 
of the extended predicate calculus that results from adding relational con
structs to it. When refining the specifications to programs, these pre- and 
postconditions are manipulated via the calculational facilities provided by 
the comhined predicate and relational calculi. Such is the point where the 
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adequacy of the framework of relations to derivational graph algorithmics is 
put to the test. 

It is worth pointing out that our final programs will handle variables of 
type, e.g., "set" or "relation" and, in that respect, might still be considered 
abstract non-executable programs. However, these programs will be such 
that their further refinement to more concrete ones manipulating sequences, 
arrays, matrices, or any other particular construct offered by some or other 
imperative programming language should not be a complex, even iflaborious 1 

task. 

Each of the five "Programs" -chapters is closed with a section that surveys 
previous and current work related to its contents. The final Chapter 8 pn}
vides some concluding remarks by summarising and assessing the results 
shown in this thesis. Such a discussion is supported by the aforementioned 
reviews of related work, in the light of which our results are judged. 
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Chapter 2 

Relations and Graphs 

This chapter serves two main purposes: to introduce the calculus of binary 
relations, and to illustrate the use of such a calculus in modelling graphs as 
well as in formalising concepts and proving properties related to graphs. 

Section 2.1 introduces the basics of the calculus of binary relations and Sec
tion 2.2 then presents ways in which sets can be modelled with relations. A 
brief pass through lattice theory is then made in the following two sections. 
Section 2.3 presents fixed points and some of their properties, emphasising 
the calculational nature of the presentation. Section 2.4 presents orderings, 
equivalences, and a short review of the reflexive-transitive closure and transi
tive closure opel atms on relations. We then embark on the task of presenting, 
in Section 2.5 and Section 2.6, several basic graph-theoretical concepts within 
the framework of binary relations. Section 2.7 is dedicated to spanning trees 
and a novel calculational proof of a well-known property of them. Section 2.8 
formaHses the notion of paths in a graph, which will require a brief review of 
the treatment of datatypes within the calculus of relations. 

Emphasis will be made aU along in the use of calculational methods -see 
e.g. [14]-, not only when using relations but also in the context of lattice 
theory -as in e.g. [2, Part IJ and [99)- and first-order logic -via predicate 
calculus, see e.g. [48, 69J-. 

2.1 Basics of the Calculus of Relations 

This section is devoted to presenting the basics of the calculus of binary re
lations. We will not be concerned with a strictly axiomatic approach but, 
rather, with using relations in a calculational style. More complete introduc
tions to the calculus of binary relations can be found elsewhere [2,28, 32]. 
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Category Structure -Composition and Identities- A relation R to 
set X from set Y is a subset of the cartesian product X x Y. In such a 
case we say that R is of type X t- Y and denote it by R: X t- Y. For 
(x,Y)ER we write x(R)y. 

Given relations R: X +- Y and S: Y +- Z , their composition R· S is of 
type X t- Z and is such that: 

x (R· 5) z '" (3 y :: x (R) y /\ y (5) z) 

Also , for each set X there is an identity relation idx of type X +- X such 
that: 

Xl (idx ) X2 :::::: Xl = X2 

It can be shown that composition is associative: 

(R· 5) . T = R (5 T) , (2.1 ) 

and that identity relations act as units of composition: 

idx . R = R = R· id\· , (2.2) 

where R is of type X +- Y. Type information given by the subscripts of 
the identity relations will usually be clear from context. We will thus omit 
such subscripts, writing just ·id instead. 

Functions will be introduced later in this section as a particular kind of rela
tion and, accordingly, we will also use the right-t(}-left arrow to denote their 
type. We prefer to use such an arrow for two reasons. First, it is consistent 
with the conventional notation for functional appUcation in which arguments 
are given to functions on the right: for function J : X +- Y and y of type 
Y, J1J is of type X. Secoud, the types involved in relational composition 

and, therefore) also in functional composition take a more natural form: as in 
the general case of relations above, for functions J : X +- Y and 9 : Y +- Z 
their composition J. 9 is of type X +- Z. 'Ne will thus think of relations 
and functions in a rather operational way: as taking arguments, or inputs, 
on the right and delivering results, or outputs, on the left. 

Statements like X (R) y, with explicit reference to the elements x, y of the 
sets involved in the types of relations, are said to be written in a pointwise 
or set-theoretical style. On the other hand, statements like (2.1) and (2.2), 
expressed in terms of composition and with no reference to elements of the 
sets involved, are said to be written in a point-free style. We will prefer 
to manipulate relations in the point-free style since point-free calculations 
have proved to be, more often than not, more compact than their pointwise 
counterparts. However, we will occasionally use the pointwise style when it 
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aids a more intuitive or perhaps more effective presentation of a concept. 

Lattice Structure The elements of lattice theory relevant to the calculus 
of binary relations can be found botb in 12, Part II and [136, Appendix A]. 
The former promotes the calculational style we use in this thesis. A complete 
introduction to lattice theory can be found elsewhere, e.g. [42]. 

For sets X and Y, we will denote the collection of all relations of type 
X +-- Y by Rei (X, Y). This collection forms a complete Boolean lattice, 
i.e. a complete) completely or infinitively distributive, complemented lattice) 
(Rel(X, Y), U, n, -, 0, 0) , where U and n denote the union (join) and 
intersection (meet) operators, - the complementation (negation) operator) 
and 0 and 0 are the empty (bottom) and universal (top) relations. 

Inclusion ~ of relations is the partial order induced by the lattice structure: 
R>;; S is equivalent to S = R U S and also equivalent to R = R n S. In a 
pointwise fashion, the inclusion order satisfies: 

R>;; S '" (Vx,y:: x (R) y "" x (S) y) 

Strictly speaking, we should use subscripts related to the type of the opera
tions and relations above: UX,Y, 0x,Y, ~x,}' etc. As it was the case for theJ 

identity relations) this information will usually be either clear from context 
or irrelevant. It will thus be omitted. 

The union and intersection operators are characterised by the equivalences 
that now follow. Given a bag n of relations and a relation W) we have: 

(UR:RE'R.:R)>;;W", (VR RE'R.:R>;;W) (2.3) 

W>;;(nR:RE'R.:R) '" (VR RE'R.:W>;;R) (2.4) 

In particular: 

RUS t;;; W R>;;W /\ S>;;W (2.5) 
W t;;; RnS ~ W>;;R /\ W>;;S (2.6) 

In the point-free style, operators are usually characterised by this kind of 
equivalences called universal properties. 

Using the theory of Galois connections -see e.g. (1] or [2, Chapter 51-, mu
tual distribution of union and intersection guarantees the existence of a 
subtraction operator - and an implication operator ~ characterised by 
the foUowing universal properties: 

R-St;;;W",R>;;WuS (2.7) 
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W <;; R"" S '" WnR <;; S (2.8) 

The.se operators would exist and be well-defined by the above equations even 
in a non-complemented lattice. However, in the presence of complementation, 
which satisfies 

RnS<;;T '" R<;;TUS, (2.9) 

subtraction and implication can be equivalently defined by R - S := R n 5 
and R => S := "Ru S. Property (2.9) will be referred to as shunting. 

In the point-free style, equations are often proved via the so-called rules of 
indirect equality: 

R=S '" (Ii W :: R <;; W '" S <;; W) (2.10) 

R=S", (liW:: W<;;R '" W<;;S) (2.11) 

These rules, combined with universal properties, benefit the construction of 
calculational proofs. 10le will illustrate the point by proving the first of the 
two following distribution properties of subtraction: 

(RUS) -T 

R-(SUT) 

(R-T) U (S-T) 

R-S-T 

(2.12) 
(2.13) 

Proof of (2.12): 

Appealing to indirect equality (2.10) we reason, for any relation W, that: 

(RUS) -T <;; W 

{ universal property of subtraction (2.7) } 

RuS <;; WuT 

{ universal property of union (2.5) } 

R <;; W UT 1\ S <;; W uT 

{ universal property of subtraction (2.7), twice} 

R-T<;;W 1\ S-T<;;W 

{ universal property of union (2.5) } 

(R  T) U (S  T) <;; W 

o 

We have already seen all we need of the lattice structure on its own. Let us 
now turn to the interaction of the lattice and the category structure. Com
position distributes over union, but only weakly distributes over intersection. 
For a relation R and a bag of relations S, we have: 

R·(US:SES:S) = (US:SES:R·S) (2.14) 
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R·(ns: SES:S) C;; (nS:SES:R·S) (2.15) 

Analogous rules hold for right-composition. It follows that the empty relation 
is a zero of composition and that composition is monotonic with respect to 
inclusion. 

It is assumed that composition binds more tightly than union and intersec
tion. Therefore, the above laws for binary union and intersection can be 
written thus: 

R· (SUT) R·S U R·T 

R· (SnT) c:: R·S n R·T 

where, e.g., R· 5 U R· T must be read as (R· S) U (R· T) . 

Converse The last basic relational operator is the converse operator. For 
a relation R: X ~ Y, its converse RC is of type Y oj- X and satisfies the 
folJowing: 

y (R') x =' x (R) y . 

The converse operator is its own inverse, and it interacts with the category 
structure by preserving identities and distributing contravariantly over com
position: 

ROO = R I idD=id, (R· S)' = S' . R' . (2.16) 

Converse distributes over all the operators --constants regarded as nullary 
operators- of the lattice structure: 

(UR: RE 'R.: R)' = (UR: RE'R.: R'), }
 
(nR: RE 'R.: R)' = (nR: RE'R.: R'), (2.17)
 

(S)'=(so), 0'=0, l1'=II;
 

and it preserves the inclusion order: 

Rc;S", R'c;S' (2.18) 

Any use of (2.16), (2.17) and (2.18) in what follows will be indicated as 
"converse" . 

The category structure, the lattice structure and converse interact all to
gether through Dedekind's rule and SchrOder's rules. Dedekind's rule, also 
known as the modular law, comes in a left- and a right- version which read 
as follows: 

R· S n T c; R· (S n R'· T) , (2.19) 
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R- S n T c:: (R n T· SO) . S . (2.20) 

Schroder's rules, also called the left-exchange rule and the right-exchange 
rule, are: 

R·S c:: T _ '/·so c:: 11 (2.21) 

R·S c:: T _ W·'/ c:: S (2.22) 

The conjunction of the left-exchange rule and the right-exchange rule is 
equivalent to the -arguably more compact and more easily memorised
middle-exchange rule: 

R·S·T c:: U '" W·U yo c:: 5 

This rule is due to Jaap van der vVoude. 

Functions A relation R is said to be entire if id ~ RO. R, and it is 
said to be simple if R· RO ~ id. Recall the operational interpretation of 
relations associated with their type-arrows: relations take inputs on the right 
and deliver outputs on the left. Under this interpretation an entire relation is 
such that delivers at least one output for each possible input, while a simple 
relation delivers at most one output for each input. A (total) function is an 
entire and simple relation. The collection of all functions to X from Y will 
be denoted by Fun(X, Y) . 

Useful properties of functions include the fact that "functionhood" is pre
served by composition and the so-called shunting rules, which now follow. 
For every function f and every pair of relations Rand S: 

t·RC::S Rc::r·S, (2.23) 

R·r c S RC::S·f· (2.24) 

The shunting rules can be used to show that equality of functions is equivalent 
to inclusion, i.e. for every pair of functions f and g: 

t=g fC::g (225) 

Extensionality Recall the discussion in page 8 about the pointwise and 
point·free styles of manipulating relations. The pointwise style was also 
referred to as the set-theoretical style, while the point-free style is that ad
vocated by an axiomatic approach to relations like Tarski 's or the categor
ical/allegorical one. These two approaches can be unified by including a 
notion of "points" or "elements" into the point-free style. To introduce such 
a notion we need the so-called unit type, denoted by 1 and which represents 
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a singleton set. We choose to denote the unique element of 1 by *. Now, 
given a set X, a point or element of X is defined to be a function to X 
from 1, i.e. a member of the collection Fun(X, 1). Function {(x,.)} in 
Fun(X,I) represents the element x of X. 

An important feature ofbiuary relations, being defined as subsets of cartesian 
products in set theory, is that of being built up from pairs of elements. These 
pairs of elements are I in terms of lattice theory, atoms: immediate successors 
of bottom. And a lattice is said to be atomic if every lattice member can be 
built up from atoms. For every pair of sets X and Y, the lattice Rel(X, Y) 
is indeed atomic, with atoms of the form x· yO for x a point of X and y 
a point of Y. This comes down to the fact that, for every R: X +- Y , we 
have: 

R = (U x, y : x· yO <;; R : x. yO) (2.26) 

R;0"" (3x,y::x·y°<;;R) , (2.27) 

where x and yare dummies rauging over points of, respectively, X and 
Y. -For axiomatic treatments of extensionality within the calculus of binary 

relations, see e.g. [130, 135). For a graphical representation of the calculus 
of relations with points, see [41].

Note that x· yO ~ R corresponds to the pointwise statement :x (R) y. Also 
note that, by shunting of functions (2.24) and properties of converse -(2.16), 
(2.18)-, it can be expressed in several equivalent ways: 

x. yO ~ R y. X O 
~ RO y~RO·x. (2.28)x<;;R·y "" 

In particular, the expression x ~ R· y can .be read, uuder the right-ta-Ieft 
operational interpretation of relations, as "x is a possible output of R for 
input y". 

We will write x : X , and will say that x is of type X , to indicate that ::r: is 
a point of X. Also, lower-case will be conventionally used to name points. 

2.2 Sets within the Calculus of Relations 

There are several ways in which the notion of subsets can be incorporated 
into the calculus of biuary relations. Two of them identify sets with certain 
relations, allowing us to mix sets and relations and, therefore, allowing us 
to reason about sets as a particular instance of reasoning about relations. A 
third allows powersets to be used within the typing of relations, and exploits 
the isomorphism between binary relations and set-valued functions. 
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Vectors The first view of sets as relations makes use of the unit type I l the 
singleton set {*}, and it is closely related to the way points or elements are 
modelled as functions. Relations of type X f- 1 can be put in a one-to-one 
correspondence with subsets of X by identifying relation A: X f- 1 with 
set {x Ix (A).). Furthermore, the lattice structure of Rel(X,1) is order
isomorphic to the power-lattice of subsets of X. Following [136], we call 
these relations vectors, for their representation as n x 1 boolean matrices if 
X is a set of size n. Others call them Jeft-conditiolJS [2, 49, 130], though 

their treatment, as well as that of [136], does not make use of 1 and is thus 
sligthl}' different. \Ve will write A : Vee X to indicate that A is a relation 
of type X <- 1 . 

The universaJ relation IT of type X f- 1 models the whole set X . Accord
ingly, we will use X to denote such a relation. Context will always clearly 
determine whether X denotes the set X, as in the type of a relation, or the 
universal relation IT of appropriate type. 

Since elements of a set X were represented as functions of type X f- 1 , 
there is a natural embedding of elements of X into subsets of X, viz. the 
embedding of the function space of a certain type into the relation space of 
the same type l which corresponds to the formation of singletons. 

Extensionality properties (2.26) and (2.27) can be applied to vectors, noting 
that the only function of type 1 f- 1, i.e. the only point of 1, is id. Hence, 
for a vector A over X the following holds: 

A = (ux:x<::A:x), (2.29) 

A,. 0 '" (3x:: x<::A) (2.30) 

where dummy I ranges over points of X. Somewhat trivial, (2.29) can be 
read as H a set is the union of all its elements" . 

We will later use the following property of vectors' If x and yare points, 
and A and B are vectors, then: 

x. yO <;;;; A. EO x<::A A y<::B (2.31) 

Coreflexives A second way of modelling subsets as relations uses so-called 
coreflexive relations. A relation C of type X f- X is coreflexive if C <;;;; id. 
A corefiexive relation C : X f- X can be interpreted as representing subset 
{x [ x(C) x} of X. Under this interpretation, relational union, relational 

intersection and the empty relation correspond to their respective counter
parts in the power-lattice of subsets of X. To obtain an order-isomorphism 
between coreflexives and the power-lattice of subsets of X, complementation 
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has to be defined as {;:= id - C and the top element as id. We will write 
C : Cor X to indicate that C is a corefiexive of type X t- X . 

Coreflexive relations enjoy many properties that do not hold for general rela
tions. For instance, every coreflexive C duplicates and is its own converse, 
and its composition to another coreflexive D equals their intersection: 

C CC = C·C, = C, C·D=cnD. (2.32) 

In the sequel, we will also make use of the following property: 

R·C C S R·C <; S·C (2.33) 

Isomorphism between Vectors and Coreflexives Both the represen
tation of sets as vectors and the representation of sets as coreflexive relations 
are useful. It depends on their intended use which is more convenient. 

For example, the existential image under a relation R : X t- Y can be more 
readily expressed using vectors. Given a set A: Vee Y , its existential image 
under R is just R· A : Vec X . Using coreflexives, the image of A : Cor Y 
under R would be id n R· A . il : Cor X . 

On the other hand, given relations R: X t--- Y and S: Y t- Z, to restrict 
the "middle points" in composition R· S to a certain subset of Y, the 
corresponding coreflexive C: Cor Y can be just plugged in by means of com
position: R· C . S. If we choose to use a vector C: Vee Y , we need a more 
elaborate expression, like R· (id n C· il)· S or R· (id n C· C')· S . 

However, there are occasions in which we have to choose one of the two 
representations and have to use it in both kinds of context, i.e. contexts 
in which vectors would be more appropriate as well as contexts in which 
coreflexives would be the best choice. It is then very useful to have means 
of transforming one representation into the other and vice versa. In fact, an 
isomorphism between the two representations is witnessed by the operator 
¢, defined as follows: 

¢R := id n R·R' (2.34) 

This operator, when given a relation R: X f- Y, produces a coreflexive 
~ R : Cor X that corresponds to the s(}-called range or left-domain of R. 
But ¢ has an inverse only when restricted to vectors. Such an inverse is 
given by what would be a general vector-range operator: given relation R 
typed as above, its vector-range is R· II ; Vee X. The restriction of this 
last operation to coreflexives is the inverse of the restriction of ~ to vectors. 
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Formally, for every A : Vee X and every C: Cor X , the following holds: 

A~ C·X ¢A ~ C . (2.35) 

-Recall that we have overloaded name X to also denote the universal re
lation of Rel(X, 1).- From (2.35), taking the instances A, C :~ 0,0 and 
A, C ::::: X, id , we obtain the expected connections between the bottom and 
top elements of the lattice of subsets of X in each representation: 

¢0 ~ 0 , ¢X ~ id (2.36) 

Aware of the fact that this decision is somewhat arbitrary, we will favour 
vectors over coreflexives. This is due to the fact that, for a couple of reasons, 
expressions over vectors often look more natural. First, the lattice opera
tors of Rel(X, 1) are in one-to-one correspondence with the -conventionally 
denoted by the same symbols- operators of the standard power-lattice of 
subsets of X. Second, the natural embedding of points as singleton sets 
into vectors facilitates a more natural phra.<;ing of membership. -The reader 
might be readier to accept this last claim after looking at the definition of a 
"non-deterministic selection" statement presented later in this section.

Having made the decision of favouring vectors, our use of coreflexives will 
always involve operator ¢ as well as some properties of it. Such properties are 
used as rules that aid the translation between expressions involving vectors 
and expression involving coreflexives. 'rVe now list them. For every pair of 
vectors A and B and every relation R: 

AS;;B '" ¢A S;; ¢B , (2.37) 

¢(A U B) ~ ¢A U ¢B , (2.38) 

¢(A n B) ¢A n ¢B , (2.39)~ 

R·AS;;B R ¢A S;; ¢B·R. (2.40)-
Note that in the expressions above ¢ has been given a higher precedence 
than those of union, intersection and composition. 'rVe will later make use of 
the more general fact that 4 distributes over arbitrary unions -from which 
(2.38) follows as a particular case-, and we thus state this property explicitly. 
For every bag A of vectors, the following holds: 

!(UA: AEA: A) (UA:AEA:¢A) (2.41) 

To finalise, we present the coreflexive representation of singleton sets. Since 
points are simple relations, for every point a we have: 

la ~ a·a' (2.42) 
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Non-Deterministic Selection Statement When programming at a level 
of abstraction that makes use of sets, picking out an arbitrary element from 
a given non-empty set is often needed. Formally, given A: VecX such 
that A '# 0, a point a: X such that a ~ A is required. Using ,Morgan's 
specification statement --see Section 1.3-, the non-deterministic selection 
statement is denoted by a:C;; A and defined as a: [A # 0, a C;; A] , where 
a and A must be program variables typed as above. This statement is often 

called generalised assignment [1l8J and denoted, in set-theoretical contexts, 
using the symbol :E. 

Maximal and Minimal Sets We will later make use of the notion of 
maximal and minimal sets, represented as vectors I satisfying a certain given 
property. 

Let P he a predicate on subsets of a given universal set X . Then a subset 
A of X is a maximal set satisfying P if for liO superset of A, except itself, 
P holds. The definition of minimal sets follows from duality. Formally, with 
B a dummy ranging over subsets of X , we define: 

mxl (P, A) - (VB:AC;;B:PB=oB=A) (2.43) 

mnl (P, A) - (V B : B C;; A : P B =0 B = A) (2.44) 

For certain predicates the above formalisations can be simplified. For exam
ple, a predicate P on sets is said to be subset-closed if 

AI C;; A2 '* (P A2 '* P AI) .	 (2.45) 

In such a case, to see whether A is a maximal P-set not all proper supersets 
of A must be checked for non-satisfaction of P. It suffices to check its 
"frontier supersets", i.e. the supersets of A that differ from it only by one 
element. Formally, with dummy a ranging over elements of X : 

mx/(P,A) =0 PA /\ (Va:	 aC;;A: ,P(AUa)) } (2.46) 
provided P is subset-closed. 

Dually, a predicate P is superset-closed if 

AI C;; A2 '* (P AI '* P A2) (2.47) 

And the following holds: 

mn/(P,A) =0 PA /\ (Va:	 aC;;A: ,PtA-a») 
} (2.48)

provided P is superset-closed. 
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It is worth noting that we could have formalised the more general notion 
of maximal and minimal relations, the above then following as a particular 
instance. We chose not to do so since we would have found no use for it. 

Power Transpose It was briefly mentioned at the beginning of this section 
that there is a third way of incorporating the notion of subsets into the 
calculus of binary relations. Unlike vectors and coreftexives, representations 
that embed the corresponding powersets -or indeed power-lattices- within 
the collections Rel(_, _), the notion of powerset will now be included at the 
level of the typing of relations. In category-theoretical terms: powersets as 
objects rather than ~ collections of arrows. 

We start with a pointwise set-theoretical presentation. There is a one-to
one correspondence between binary relations and set·valued functions. It 
associates each relation R: X t-- Y to a function AR: PX t-- Y, where 
P X is the powerset of X and AR is defined as (AR) y := {x I x (R) y} . 

A formalisation in the point-free style now follows. It is first assumed that 
for every set X -a set as used iu the types of relations and not in the 
sense of vectors or coreftexives-- there exists a set PX, called the powerset 
of X, and a relation E: X t-- PX , called the membership relation on X . 
Also, it is assumed that for every relation R: X t-- Y there exists a function 
AR : PX <- Y , called the power transpose of R, such that: 

! = AR Ef = R (2.49) 

for every function f : PX t-- Y . The isomorphism between binary relations 
and set-valued functions is witnessed by the power-transpose operator A. 
-The category-theoretical definition of power allegories, roughly categories 
of relations with power transpose, can be found in e.g. [28, Section 4.6].
We will a<;sume that operator A binds more tightly than composition and 
all lattice operators. 

Two consequences of (2.49) are the so-called cancellation and fusion proper
ties of power transpose. Explicitly spelled out, they read as follows: 

E·AR 

AR·f 

R, 
.\(R· J) 

(2.50) 

(2.51) 

where R is an arbitrary relation and f is a function. 

We will not make as much use of power transpose as of vectors or coreflexives. 
Indeed, its only use has to do with a rather clean way of modelling quotient 
sets of equivalence relations within the calculus, presented in Section 2.4 and 
used in Chapter 7. 
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Power Transpose in relation to Vectors and Corefiexives First and 
foremost, we define a power-point or power-element of X to be a point of 
pX. The collection of power-points of any X is, on account of the power
transpose isomorphism (2.49), isomorphic to the collection of vectors on X. 
For every a: PX and every A: Vec X, we have: 

a = AA E·a = A . (2.52) 

To finally bring this section to an end, we present One single property involv
ing all three representations of sets, which will be used in the sequel. For 
arbitrary relations Rand S, and vector A, the following holds: 

AR·A = AS·A "" R·~A = S·~A (2.53) 

2.3 Fixed Points 

It was pointed out in Section 2.1 that relations form complete lattices, viz. 
Rel(X, Y) for each pair of sets X and Y. Hence, the theorem of Knaster 
and Tarski on the existence of extreme fixed points [88, 1431 can he applied. 
This theorem states that for every monotonic endofunction F on a complete 
lattice the equation F W = W has both a least and a greatest solution 
on W. Any solution of the equation above is called a fixed point of F, 
while solutions of F W ~ Ware called preEx points of F and solutions 
of F W :2 W are called postfix points of F. The Knaster-Tarski theorem 
further states that the least fixed point of F coincides with its least prefix 
point and, dually, that its greatest fixed point coincides with its greatest 
postfix point. 

Thus, the least fixed point of monotonic function F exists and is uniquely 
determined by stating: first, that it is a fixed point of F and, second, that 
it is least among the prefix points of F -a more useful statement than just 
saying it is least among the Exed points of F -. We will denote the least 
fixed point of F by (/' W : F W ), which is characterised hy: 

(/,W:FW) F(/,W:FW) , (2.54) 

(/,W: FW) ~ V "" FV ~ V (2.55) 

In a proof presented in Appendix AI, we will make use of these character
ising properties of least fixed points. Following [99], we will refer to (2.54) 
as ~~fixed-point computation" and to (2.55) as "fixed-point induction". A 
similar characterisation of the greatest fixed point of F can be obtained by 
dualisation, but we will have no use for greatest fixed points. 
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Fixed points can be nicely used in a calculational style [99]. We will later 
make me of some fixed-point rules that now follow. First, monotonicity of 
the J1 operator: 

(~W : F	 W) <;; (J,l W : 9 W) ¢o (\I W :: F W <;; 9 W) . (2.56) 

Second. the rolling rule: 

(~W:F(9W» ~ F(J,lW9(FW»	 (2.57) 

Third, the fixed-point exchange rule, which has two variants. We spell out 
the first: 

(I' W : F	 (9 W» ~ (J,l W : F ('Ii W» } 
¢o (\lW:: 9 (F ('Ii W» ~ 'Ii (F (gJ-V)) , (2.58) 

provided functions 9 and 1{ distribute over union. The second variant is 
obtained by replacing equality = with inclusion ~ 1 and it only requires that 
function 9 distributes over union. 

2.4 Orderings, Equivalences and Closure 

The notion of order is pervasive in mathematics and computer science -and is 
present also in the social sciences-. Properties of orderings and equivalence 
relations -as a particular kind of ordering- can be concisely expressed in 
the calculus of binary relations. Some of such characterisations of orderings 
and equivalence relations are presented in this section. Besides, we present 
well-known mechanisms that produce specific kinds of orderings from a given 
relation, viz. the reflexive-transitive closure and the transitive closure. 

Orderings A relation R : X t- X is said to be reBexive if id ~ R, and it 
is said to be transitive if R· R C;;;; R. A relation which is both reflexive and 
transitive is a preorder. It can be easily shown, using properties of converse, 
that a relation R is a preorder if and only if RD is a preorder. It can also be 
shown that if Rand S are preorders, then 50 is their intersection R n S . 
Preorder R is connected if every two elements of X are related either by 
R or by RO 1 i.e. if IT C;;;; R u RO . 

Among well-known graph algorithms are a good many that solve optimisation 
problems, e.g. the computation of shortest paths and the computation of 
minimum spanning trees. We will thus need a formalisation of the notion of 
maximum and minimum elements in later chapters. Let R: X t- X be a 
preorder and take a set A: Vec X . An R-maximum of A is an element of 
A that is at least as good, according to R, as every other element of A. 
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An R-minimum element is an RO-maximum element. Formally, we define 
the set of R-maxima and the set of R-minima of A as follows: 

max (R,A) - (Ux x<;:A /\ A·x'<;:R x) (2.59) 
min (R, A) .- (Ux x <;: A /\ x· A' <;: R x) (2.60) 

where x is a dummy ranging over points of X. Maximum and minimum 
elements might not exist for certain combinations of R and A. However, 
our use of max and min will be limited to instances where R is a COn
nected preorder and A is a finite non-empty set. In such instances, the sets 
max (R, A) and min (R, A) are non-empty. 

Equivalence Relations A preorder Q : X f- X is an equivalence relation 
if it is also symmetric. Relation Q is symmetric if Q" = Q , which is equiva~ 

lent to QO ~ Q. By properties of converse and the aforementioned fact that 
both the converse and the intersection of preorders are also preorders, every 
preorder R gives rise to an equivalence relation: R n Fe . 

Let Q: X +-- X be an equivalence relation. The Q-equivalence class of an 
element x : X is the set of all the elements related to x by Q. We can model 
it by the vectOr Q. x : Vec X and, on account of the power-transposeisomor_ 
pbism (2.52) and fusion law (2.51), also by the power-element AQ· x : P X . 
The quotient set of Q is the partition induced by Q on X that com
prises all the Q-equivalence classes. We model it by the powerset vector 
AQ· X : Vec (PX) -recall, once more, that we have overloaded name X to 
also denote the universal relation of Rel(X, 1) -. Note that the quotient set 
of Q is a set of sets and we have chosen to model such a family by a vector on 
the powerset of X. i.e. the "outer-level" set is modelled by a vector whereas 
the "inner-level" sets are modelled by powerset objects. Such representation 
of quotient sets will be used in Chapter 7, when dealing with the problem of 
computing the strongly connected components of a directed graph. 

In the same manner that X is partitioned by Q to form the quotient set of 
Q , subsets of X can also be partitioned. The Q-quotient of a set .4 : Vee X 

is the partition that comprises the Q-equivalence classes of all the elements 
in A, i.e. AQ· A: Vec (PX). Note the subtlety: tbe quotient set of Q is 
the Q-quotient of the whole set X. The set of all the elements in such 
Q-quotients contains all elements in the source set and probably more. Let 
us formalise this. First, the whole set of elements in a partition of type 
Vee (PX) is obtained by composing the membership relation on its left, i.e. 
by applying (E') to get a vector Vee X . Now, we can show in ODe line that 
the set of elements in the Q-quotient of A always contains A: 

e·AQ·A = Q·A 2 A. 
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The two steps are justified, respectively, by power-transpose cancellation 
(2.50) and reflexivity of equivalence relations. The other inclusion does not 
hold in general, but the above one-line proof also shows that the set of ele
ments in the Q-quotient of A is equal to A if and only if Q . A <;; A holds. 
In such a case, we will say that A fits Q. 

Finally, a couple of facts we will make use of in Chapter 7. First, every 
power-element in a Q-quotient is the Q-equivalence class of some element 
and, consequently, corresponds to a non-empty set: 

AB <;; AQ· A 

{ extensionality (2.29) } 

AB <;; AQ· (U a : a <;; A : a) 

distribution of composition over union (2.14), } 
{ power-transpose fnsion (2.51) 

AB <;; (U a : a <;; A : A(Q· a)) 

{ AB is an atom and, hence, it is irreducible} 

(3 a : a <;; A : AB <;; A(Q· a)) 

inclusion/equality of functions (2.25), } 
{ operator A is an isomorphism 

(3a: a<;;A: B = Q·a) 

'=> { reflexivity of Q, predicate calculus} 

(3a:: B;2a) 

{ extensionality (2.30) } 

B#0. 

Furthermore, if A fits Q, every power-element in the Q-quotient of A 
corresponds to a subset of A _ We reason in one line thus: 

AB <;; AQ· A '=> E· AB <;; E . AQ . A '=> B <;; A 

where the first implication is justified by Leibniz, and power-transpose can
cellation (2.50), twice, plus the assumption that A fits Q justify the second 
implication. For future reference, we label these facts: 

;IB <;; AQ· A '=> B # 0 /\ B <;; A provided A fits Q. (2.61) 

Reflexive-Transitive Closure For every relation R: X t- X there is a 
smallEst preorder that contains R, called the reBexive-transitive closure of 
R and denoted by R* . The universal property that characterises R* follows: 
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for every preorder W, 

RC;;W == R'C;;W. (2.62) 

There are other equivalent characterisations of R· in terms of least fixed 
points. The first one arises rather naturally: R· must be a relation W such 
that it is reflexive -. id ~ ~r -, it is transitive - W· ~V ~ W -, it contains 
R - R ~ W -, and it is the least relation satisfying such requirements. By 
universal property of union (2.3), R'" must then be the least relation W sat
isfying id U R U W· W C;; Wand, hy Knaster-Tarski, such a least prefix 
point coincides with the corresponding least fixed point. Hence, 

R' = (t<W: id U R U W·W) 

The other J.L -characterisations of R· are: 

R' = ("W: id U R.W}
 

R' = (t< W: id U W· R}
 

which can be generalised as follows: 

R'·S = ("W:SUR·W) {2.63} 

S·R' = ("W: S U W.R) {2.64} 

Yet another characterisation of R"', in terms of pointwise statements, is 
the following: x (R"') y is equivalent to the existence of a natural number 
n such that there exist elements Xn,Xn_l, '" XI,XO that satisfy x = Xn , 
(V i : n 2: i > 0 : Xi (R} X.-l} and Xo = y. This is a particular instance of 
a more general and well-known theorem due to Kleene [871. which we choose 
to omit. We will later use this characterisation only as an aid to intuition. 

From the above jJ -characterisations of closure and monotonicity of J.l (2.56) I 

we obtain the fact that the closure operator is monotonic: R· ~ S' follows 
from R ~ S. From the universal property of closure and properties of con
verse, it can be shown that closure commutes with the converse operator: 
R·o = RO•. And from this it follows that R'" is an equivalence relation if 
R is a symmetric relation. 

Closure can be "jumped over". The following three propositions, which are 
collectively called the lea~frog over closure rules, formalise this: 

R'·S = S·T' <= R·S=S·T, {2.65} 

R'·S C;; S·T' <= R·S C;; S'T, (2.66) 

R'·S 2 S·T' <= R,S2S·T. (2.67) 
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To serve as an example of calculations with fixed-point rules we prove the 
first variant. 

Proof of (2.65): 

R"·S = S·T' 

{ closure -(2.63), (2.64)- } 

(I'W: S u R·W) = (I'W: S U W·T) 

fixed-point exchange (2.58) with } 
:F W := S U W, 9 W := R· W, 1i W := W· T;

{= 
proviso on g, 1£ holds since composition distributes { 
over union -(2.14) and its right-analogue

(\fW:: R·(S U W·T) = (S U R·W)·T) 
{= { distribuhon of composition over union, Leibniz } 

R·S = S·T 

o 

The second version of the fixed-point exchange rule (2.58), which deals with 
inclusion instead of equality, can be used to give a similar proof of (2.66) and 
(2.67). The instance T:= id of the middle leap-frog variant (2.66) can be 
strengthened to an equivalence using the fact that id· = id and R ~ R~ . 
This will prove to be useful in future chapters: 

R'· S r;; S R·S r;; S . (2.68) 

Other properties of closure to be used in the sequel, whose proofs we omit, 
now follow. Let Rand S be arbitrary relations, and a and b be points. 
Then: 

(R U S)' = (R". S)' . R' , (2.69) 

(R U S)' = (R' U S)' , (2.70) 

(R· a . bO)' = id U R· a· bO (2.71) 

Finally, if R is a preorder, and a and b are points: 

(R U a· bO U b· aT = R· (id U a· bO U b· aO) . R (2.72) 

Transitive Closure For every relation R : X t- X there is also a smallest 
transitive relation that contains R, called the transitive closure of Rand 
denoted by R+. Characterisations of R+ are analogous to those of R·. Its 

24 



universal property reads as follows: for every transitive retation W I 

RC;W == R+C;W 

The transitive closure relates to the reflexive-transitive closure by the roHow
ing two properties: 

R· = id U R+ , R . R' = R+ = R'· R (2.73) 

And relation R+ can also be given a Kleene-based pointwise characterisation 
similar to the one given above for R*, except that the number n of "inter
mediate points" must not be zero: x (R+) y is equivalent to the existence of a 
positive natural number n such that there exist elements Xn, Xn-I, ... Xl, Xo 

that satisfy X=Xn , (Vi: n::':i>O: x,(R)x,_d and xo=y. 

2,5 Basic Graph Concepts 

This section presents ba.o;;;ic concepts of graph theory using the calculus of 
binary relations as working tool. There is a close connection between graphs 
and binary relations since every graph induces a relation between its vertices 
as well as a relation between its p.ogp.s and its vertices. However, the phras
ing of even the most elementary graph-theoretical notions in a calculational 
framework like ours is by no means standard. And the terminology used 
within graph theory is not standard eithp.f. Hp.nce, every book or article 
devoted to the topic initially sets the terminology preferred by the authors 
since not doing so is likely to confuse readers. This section, as well as the 
rest of this chapter, establishes the basics of graph theory as will be used in 
the rest of this thesis. 

Directed and Undirected Graphs A graph is defined to be a 4-tuple 
(Verl,Edge,xl, x2) where Vert and Edge are sets, and xl and I2 are 

functions of type Vert t- Edge that determine the extreme vertices of an 
edge. This definition does not limit the graph to be directed or undirected, 
that being determined by what relations are built upon the extreme functions 
xl and x2. 

In a directed graph the extreme function xl is interpreted as determin
ing the vertex that an edge leads to whilst x2 determines the vertex an 
edge comes from. To a directed graph we associate a succe~~or rdatioll of 
type Vert t- Vert. If there is an edge leading to a vertex v from another 
-possibly the same- vertex w, then v is said to be a successor of w. The 
succesor relation is thus formally defined to be: 

Suce := xl· x2° . (2.74) 
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On the other hand, in an undirected graph the fuuctions xl and x2 are 
interpreted symmetrically as determining both extremes of an edge. No order 
is imposed upon the two vertices joined by an edge and, so, an undirected 
graph is equipped with a symmetric adjacency relation of type Vert +-- Vert. 
Vertices v and ware adjacent ifthey are the two extremes of an edge, being 
irrelevant whether v is obtained through the function xl and w through 
x2 or vice versa. Hence, we define the adjacency relation to be: 

Adj := xl· x2° U x2· xr (2.75) 

By properties of converse -(2.16), (2.17)-, Adj is indeed a symmetric rela
tion, as expected. A directed graph can be converted into an undirected one 
by taking Adj = Suee U Sueeo 

• 

Subgraphs Let G be a graph (Vert, Edge, xl, x2). A subgraph of G is 
given by a subset l/ of its vertices and a subset E of its edges such that 
every edge in E has its extremes in V. This means that a subgrapb is given 
by a set V: Vec Vert and a set E: Vec Edge such that: 

xl·E <;; V /\ x2·E <;; V. (2.76) 

When a subgraph is formed by the whole set of original vertices, i.e. Vert. 
and any subset E of edges it is called a spanning subgraph. In such a case 
(2.76) i5 trivially satisfied since Vert is the universal relation of Rel( Vert, 1) 
and, hence, the subgraph is uniquely determined by E. We will therefore 
identify spanning subgraphs with their set of edges. 

Consider G to be a directed graph. Then, given E : Vee Edge ~ the successor 
relation of the spanning subgraph of G determined by E is: 

suee E := xl· ¢E· x2° (2.77) 

If G is considered to be undirected~ the adjacency relation of its spanning 
subgraph determined by E is: 

adj E xl . ¢E . x2° U x2· ¢E . xJO . (2.78) 

Coreftllxives are symmetric (2.32) and, thus, properties of converse -(2.16), 
(2.17)- again imply, as with Adj, that relation adj E is symmetric for every 
E. 

Every graph is a spanning subgraph of itself. Consistently, the relations 
associated with a graph G can be expressed as the relations of the trivial 
spanning subgraph of it, viz. the subgraph determined by the whole set of 
edges Edge. The forma] link are the equations Suee = suee Edge and 
Adj = adj Edge, straightforward consequences of (2.36). 
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Given that ¢ L'i monotonic, by (2.37), and that so is composition, we also have 
that succ and adj are monotonic. This means that succ El ~ succ E2 
follows from E1 ~ E2 ; in particular, we have succ E ~ Succ for every E. 
And the same goes for adj. Finally, since f distributes over union (2.41) 
and so does composition, succ and adj do distribute over union as well. 

Parallel Edges and Loops The formalisation of the successor and adja
cency relations of spanning subgraphs can aid the characterisation of other 
graph features. Let G be, again, a graph (Vert, Edge, xl )x2) , take an edge 
e -i.e. a function in Fun(Edge, 1) - and let v and w be, respectively, the 

extreme vertices xl . e and x2· e of e. Then, using a pointwise style, rela
tion succ e is the ,et {(v, w)} and relation adj e is the Set {(v, w), (w, v) }. 
In the point-free style, this corresponds to the following two equalities, which 
we call the atomic successor and atomic adjacency equalities: 

succ e (xl· e) . (x2 . er (2.79) 

adj e (xl· e) . (x2 . er U (x2· e) . (xl· e)' (2.80) 

These "atomic" equalities follow from the definitions of succ (2.77) and 
adj (2.78), the coreflexive representation of Singletons (2.42), and property 
(2.16) of converse. 

Two edges d, e : Edge of G are parallel exactly when succ d = stlce e , if 
G is considered to be directed, and exactly when adj d = adj e , if G is 

considered to be undirected. 

A loop is an edge that connects a vertex with itself. Formally, e: Edge 
is a loop exactly when S!lCC e S; id, lf G is directed, and exactly when 
adj e S; id, if G is undirected. The directed/undirected distinction is 

rather artificial in this case since: 

adje c::; id 

atomic adjacency (2.80); } 
{ atomic successor (2.79), converse (2.16) 

succ e U (succ et S; id 

universal property of union (2.5), } 
{ converse -(2.16), (2.18)

sueee ~ id . 

Simple Graphs Books on graph theory, as mentioned earlier, differ widely 
in terminology, even in what is called a graph. For instance, it is sometimes 
understood that the plain term "graph" is only applied to undirected graphs, 
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directed graphs thus having to be explicitly qualified as such; the opposite 
is not uncommon, I.e. that "graph'1 is implicitly understood to refer to a 
directed graph. From our definition of graph at the beginning of this section, 
it is understood that graphs need always be qualified as either directed or 
undirected. 

Another common assumption is that parallel edges are not allowed. Our 
definition of graph naturally allows the existence of parallel edges. However, 
when there are no parallel edges or their existence is considered irrelevant, 
the graph can be described only by its set of vertices and the relationship 
between them induced by the edges. We call such a graph a simple graph. 

Thus, a simple directed graph is a pair (Veri, Succ) where Succ is any 
relation of type Vert f-- Vert. It is straightforward to construct the unique 
simple directed graph associated with a given directed graph, taking Succ 
as defined above in (2.74). But several directed graphs could have the same 
successor relation and hence the same simple directed graph. due to the 
presence of parallel edges. Likewise, a simple undirected gra.ph is a pair 
( Vert, ,4dj) where Adj is a relation of type Vert <-- Vert that must be 

symmetric. As before, a given undirected graph induces a unique simple 
undirected graph, taking Adj as in (2,75), but a simple undirected graph 
can be obtained from several undirected graphs. 

Incidence Relation and Hypergraphs The incidence relation of a graph 
( Vert, Edge, xl , x2) is the relation of type Vert <-- Edge defined thus: 

Inc := xl U x2 . (2.81) 

This definition does not make a distinction between directed and undirected 
graphs. 

A llypergraph is a 3-tuple (Vert, Edge, Inc) where Inc is any relation of 
type Vert f-- Edge. Every graph induces a unique hypergraph, taking Inc 
as defined in (2.81). But there are hypergraphs that are not induced by any 
graph whatsoever. This is due to the fact that an edge of a hypergraph could 
be related to more than two vertices or to no vertices at all. 

Let H be a hypergraph (Vert, Edge, Inc). The adjacency relation of H is 
defined to be the following relation of type Vert <-- Vert: 

HAdj := Inc· Inc' (2.82) 

The cograph of H is the hypergraph (Edge, Vert, Inc') . 

Let G be a graph. Note that the adjacency relation of G is not equal to 
the adjacency relation of the hypergraph induced by G, reason for which 
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HAdj was given a different name. The cograph of G is defined to be the 
cograph of the hypergraph induced by G. 

2.6 Connectedness and Acyclicity 

The task of presenting graph-theoretical concepts llsing the calculus of binary 
relations is continued in this section with two important notions. First, we 
present the notion of connectedness, which deals with whether or not a graph 
can be traversed from a certain vertex or edge to another. Second, we present 
the notion of acyclicity, which refers to the absence of cycles: traversals of a 
graph that start from a certain vertex and arrive back at the same one. Both 
notions rely on the reachability and joinability relations of a graph, which 
we start the section with, and, also, both notions are related to the concept 
of covering, explored towards the end of the section. 

Reachability and Joinability Let G be a directed graph with SUCCessor 
relation Succ. Since Su.ee relates two vertices when there is an edge between 
them, Suec· relates vertices for which one can traverse the graph using zero 
or more edges to arrive at one of the vertices having started from the other. 
If the vertices of a graph are thought to be railway stations and the edges 
to be railway lines, Succ· models possible destination/origin pairs one could 
travel by train. \Ve will say that vertex v is rea.chable from vertex w 
whenever v (Succ') w holds. The reachabjJity relation of graph G is defined 
accordingly: 

Reach Suec· . (2.83) 

Analogously, if G is an undirected graph with adjacency relation Adj, we 
will say that vertices v and 'Ware joinable whenever v (Adr) w holds. The 
jojnability relation of G is then defined to be: 

Join .= Adj' (2.84) 

These relations can also be defined for spanning subgraphs. The reachability 
and joinability relations of the spanning subgraph determined by set E of 
edges are, respectively: 

reach E (succE)' (2.85) 

join E (odj E)' . (2.86) 

Since succ, adj and closure are monotonic, so are reaeh and join. Also, 
Reach = reach Edge and thus reach E <:; Reach for every E. Ana.logous 
properties hold for join. 
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Strong Connectedness and Connectedness Let G be a directed graph 
with reachability relation Reach. Two vertices of G are strongly connected 
or mutually reacha.ble if each of them is reachable from the other l i.e. if they 
are related by the following strong connectedness relation: 

Sir := Reach n Reacho (2.87) 

A strongly connected graph is a graph in which every pair of vertices are 
strongly connected. And a maximal strongly connected subgraph of G is 
called a strongly connected component of G. Reachability relation Reach 
is a preorder and, therefore, Sir is an equivalence relation -see remark on 
preorders and equivalence relations in page 21-. The Sfr-equivalence classes 
correspond to the sets of vertices of the strongly connected components of 
G. As customary by now I we also define the strong connectedness relation 

induced by a subset E of the set of edges of G: 

.,Ir E := (reach E) n (reach Et . (2.88) 

For the same reasons that Str is an equivalence relation, str always pro
duces equivalence relations. Also, str is monotonic and the following holds: 
Str = str Edge. Hence, str E ~ Str for every E. 

Analogously, let G be an undirected graph with joinability relation Join. 
Two vertices of G are said to be connected if they are joinable, i.e. related 
by Jom. A graph in which every two elements are connected is a connected 
gra.ph, and a maximal connected subgraph of G is a connected component of 
G. Since Join is the reflexive-transitive closure of a symmetric relation, viz. 
Adj , it is an equivalence relation -see remark on closure commuting with 

converse in page 23-. The Join-equivalence classes are the sets of vertices 
of the connected components of G. 

Formally, G is connected exactly when II = Join, which is equivalent to 
n ~ Join. The spanning subgraph of G determined by a set E of its 

edges is connected exactly when n = join E or, equivalently, II ~ join E . 

The fact that join E <; Join holds for every E implies, by transitivity of 
inclusion, that if the spanning subgraph of G determined by E is connected 
then so is G. Hence, a non-connected graph has no connected spanning 
subgraphs whatsoever. However, one can ask a spanning subgraph of a non
connected graph to "do its best", demanding that it preserves the original 
connected components, i.e. demanding that it keeps connected every two 
vertices which are connected in the whole graph. If the graph is connected, 
this requirement amounts to demanding the subgraph to be connected as well. 
We call such a spanning subgraph a connectedness-preserving subgraph. For 
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later use, we give a name to the formal phrasing of this property: 

connpreE Join = join E . (2.89) 

Note that this is equivalent to Join ~ join. E . 

Biconnectedness Ln an undirected graph G, two vertices are biconnected 
if they are connected and remain connected after the elimination of any other 
vertex. A biconnected graph is a graph in which every pair of vertices are 
biconnected. And a biconnected component of G is a maximal biconnected 
subgraph of G. Unlike connectedness and strong connectedness, which par~ 

tition the set of vertices according to the equivalences Sir and Join. respec
tively, biconnectedness does not induce a partition on the vertices. However, 
it does partition the set of edges. For a small example, take a graph with 3 
vertices u, v, wand 2 edges d, e joining, respectively, ti with v J and v with 
1)). Its two biconnected components are determined by the following pairs of 
vertex/edge sets, ({ u, v), (d}) and ({ v, w), {e} ). Vertex v lies in two 
of the biconnected components. Such vertices are called cut-vertices because 
their removal disconnects vertices previously connected. In the example, the 
removal of v disconnects ti and 1)). The edge set is indeed partitioned into 
{{d},{e} } 

An equivalence relation on the edges then seems a more attractive way of for
malising biconnectedness and we dedicate ourselves to such a task. Let G be 
the graph (Vert, Edge, xl, x2) with incidence relation Inc -recall (2.81)-. 
Then take the edge-adjacency relation of G to be the (vertex-)adjacency 
relation (2.82) of the cograph of G, and the edge-joinability relation to be 
its closure: 

EAdj := Inco 
. Inc
 

EJolll := EAdj' .
 

Now, two edges lie on the same biconnected component if they are connected, 
i.e. related via EJoin, and if they remain connected after the removal of 
any vertex. For the latter condition we need to formalise what it is to be 
(edge-)joinable using only some of the vertices. We proceed just as we did for 
spanning subgraphs. Given a set V : Vec Vert, we define the edge-adjacency 
and edge-joinability relations under vertex set V to be: 

eadj V Inco 
• ¢V . Inc
 

ejoin V (eadj V)' .
 

For a vertex v : Vert, its removal from the whole of the vertex set results 
in set fj. Hence, the biconnectedness equivalence, of type Edge f-- Edge, is 
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(nv :: ejoin v) with v ranging over points of Vert. 

Acyclicity A cycle in a graph G corresponds to a traversal of G that j 

having started at a vertex v, say, ends at v again. An empty traversal, 
which trivially starts and ends at the same point j is not considered to be a 
cycle. This notion, as all the others, is formalised differently in the context 
of a directed graph than in the context of an undirected graph. The former 
is simpler than the latter. 

In a directed graph G with successor relation Succ, the existence of a traver
sal between any two given vertices is determined by the reachability relation 
Reach, i.e. Succ· . Similarly, the existence of a non-empty traversal is deter
mined by the transitive closure of the successor relation: Succ+. Hence, the 
existence of a cycle corresponds to Succ+ having a non-empty intersection 
with the identity function. This amounts to saying that G is acyclic exactly 
when Succ+ n id :::: 0. Analogously, the absence of cycles in a spanning 
subgraph of G is formalised by means of the restricted successor relation: 
the spanning subgraph determined by set E of edges is acyclic exactly when 
(suceE)+n id = 0. 

Formalising acyclicity in undirected graphs is rather more challenging. The 
problem is that any traversal in an undirected graph could just be "walked" 
back to the starting vertex by using the same edges in reversed order. For 
example, take the graph formed ouly by vertices 'U, v and edge d joining 11 

and v. The graph can be traversed using path ['U, d, v, d, 'U] which, in spite 
of the fact that it starts and ends in u, does not comply wi th our intuitive 
understanding of a cycle. In an undirected graph G with adjacency relation 
Adj , traversals of G correspond to relation Join, i.e. Adr. From the 

remarks and example above, we can then deduce that, unlike the case for 
directed graphs, neither Join nor Adj+ will be of much help in capturing 
the existence of cycles in G. In every non-trivial undirected graph, non
trivial meaning with at least one edge, relation Adj+ n id is non·empty 
irrespective of the existence of cycles. 

But there is a way out. Suppose there is a cycle in G. Since empty traversals 
do not count as cycles, the set of edges of G involved in the cycle must be 
non-empty. Draw an edge e from such a set. Given that e forms part of a 
cycle, it must be the case that G can be traversed from one of the extremes 
of e to the other without using e. Therefore, the extremes of e must be 
joinable through join e and, so, adj e ~ join e must hold. Conversely, if 
adj e ~ join e holds for any edge e in G, then e must form a cycle with 

some other edges in e and, hence j there is a cycle in G. We conclude that 
an undirected graph G is cyclic if and only if (:I e :: adj e ~ join e) I with 
e ranging over points of Edge, holds. 
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The use we have just made of adj and join will turn out to be of more 
general, and very profitable, use. We will thus give a name to such a rela
tionship now and will explore some of its properties in the next subsection. 
We define a set El of edges to be covered by set E2 of edges if) given any 
pair of vertices adjacent via an edge in El , a traversal that connects them 
via edges in £2 can be found. The covering relatiou, denoted from now on 
by :S, is then formally defined as follows: 

El ::' E2 := adj El c: join E2 . (2.90) 

The above formalisation of the existence of cycles in undirected graphs can 
then be rephrased ..<: G is cyclic if and only if (3 e :: e::' e) holds. 

V'ie will later use the notion of acyclicity in spanning undirected subgraphs. 
In such a ca..<;e, all the edges involved in the formalisation of the existence 
of cycles must be drawn from the set E, say, Df edges of the subgraph. Vile 
define: 

cyclic E - (3e:ec: E : e ::'E-e) (2.91) 

acyclic £ - ~ cyclic E . (2.92) 

Covering We now present a collection of properties of cDvering that will 
be of much use in the sequel. We start with two general properties that 
will allow us to show that the covering relation :S is a preorder. The first 
property corresponds to the relationship between inclusion and covering. Let 
El and E2 be arbitrary sets of edges and assume that El c: E2 holds. 
We then have: 

adj El c: adj E2 c: join E2 , 

where the first inclusion corresponds to adj-monotonicity, and the second fol
lows from definition of join (2.86) and property R <; R· of closure. Hence, 
inclusion implies covering: 

El c: E2 '* El::' E2 (2.93) 

The second property concerns the transformation of adj into join in the 
formal phrasing of covering. Every joinability relation, i.e. join E for any E) 
having been constructed by an application of the reflexive-transitive closure 
operator, is a preorder. It then foHows from the universal property of closure 
(2.62) plus the definition of::' (2.90) that: 

El ::' E2 '" join El c: join E2 . (2.94) 
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We can now prove that the covering relation is a preorder: reflexivity of 
inclusion and (2.93) implies reflexivity of ~, transitivity of inclusion and 
(2.94) implies transitivity of ~ . 

The formalisation of acyclicity in undirected graphs gave rise to the formal
isation of the covering relation. The relationship between the two notions is 
clear in their definitions -(2.90), (2.91)-. But covering is also related to the 
notion of preservation of connectedness in undirected graphs, as formalised by 
connpre (2.89). V,le now make explicit the relationship of covering with the 

connectedness-preserving predicate. Take the definition of connpre (2.89) , 
replace Join with join Edge and replace the equality sign, on account of 
join-rnonotonicity, with inclusion. Property (2.94) above then implies the 
following: 

connpre E =' Edge ~ E . (2.95) 

Let us now analyse how the covering relation interacts wi th union. This is 
worth exploring due to the fact that adj distributes over union: it allows 
exploitation of the universal property of union since adj is placed on the 
left-hand side of ~ in the definition of ~. Let E be a bag of edge sets and 
F be an edge set. We then manipulate as follows: 

(UE: E E E : E) ~ F
 

{ definition of ~ (2.90) }
 

adj (U E : E E E : E) ~ join F
 

{ distribution of adj over union}
 

(UE : E E E : adjE) ~ joinF
 

{ universal property of union (2.3) }
 

('IE: E EE: adjE ~ joinF)
 

{ definition of ~ (2.90) }
 

('IE: EEE: E~F).
 

Hence, union interacts with covering in the same way it does with inclusion: 

IUE:EEE:E)~F (VE:EEE:E~F), (2.96) 

for any bag £. of edge sets and any edge set F. 

Two Gates We bring this section to an end with a crucial property of 
the covering relation :i which we call the Two Gates rule. It concerns, 
as when the formal definition of :i arose, cycles in undirected graphs. As 
previously remarked, cycles are non-empty traversals that start and end at 
the same vertex: they must involve at least one edge. Cycles with only one 
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edge correspond to loops -see page 27-. The Two Gates rule is about cycles 
with at lea.<;t two edges. We first give an informal explanation. Let d and 
e be edges and let E be a set of edges. Suppose that both d fc E and 
e ~ E hold. This means that adding d to E will not make d part of a 

cycle, and the same goes for e. Now suppose that the addition of d to E 
covers e, i.e. that e ~ E U d holds. This means that, after having added 
d to E, subsequent addition of e does create a cycle. And both d and e 

are involved in this cycle. It must then also be the case that the addition of 
e to E covers d, i.e. we can conclude that d ~ E U e must also hold. By 

symmetry, the reverse implication is valid as well. Visualising the cycle that 
d and e form when added to E as the fence of an enclosed field inspired 
the name Two Gates for the rule: d alone or e alone can be "opened" to 
let the sheep break free. 

Vve now state the Two Gates rule formally: 

d:!EUe'" e:!Eud provided d ~ E and e ~ E. (2.97) 

Since union appears on the right-hand side of ~ in the demonstrandum, it 
will be necessary to deal with expressions of the form join (F U f) with F 
an edge set and f an edge. Already formulated properties of closure provide 
a handle for manipulating such expressions: 

join (F U I)
 

= { definition of join (2.86) }
 

(adj (F U I))' 
{ adj distributes over union} 

(adj F U adj I)' 

closure (2.70) with R, S := adj F, adj I; }
{ definition of join (2.86) 

(join F U adj I)' 
{ atomic adjacency (2.80) } 

(join F U (xl' I) . (x2 . It U (x2· I) . (xl· I)')" 

closure (2.72) with R,a,b:= joinF, xl·l, X2'1 ;}
= { atomic adjacency (2.80) again
 

join F . (id U adj I) . join F .
 

This equality we have just proved will be referred to as the incrementality 
property of join. For later reference, we state it explicitly: 

join(FU f) = joinF· (id U adjl)· joinF . (2.98) 
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We will also make use of the following fact: 

f:j F (xl· j). (x2· j)' ~ joinF	 (2.99) 

which follows from the definition of:j (2.90), atomic adjacency (2.80), uni
versal property of union (2.5), properties of converse and symmetry of join
ability relations. 

Now I finally, we proceed to prove the Two Gates rule. 

Proof of (2.97): 

Take vI , v2, wi and w2 to be the extreme vertices of edges d and e, 
i.e. (xl· d), (x2· d), (xl· e) and (x2· e) , respectively. 

We then argue thus: 

d:jEUe 

{ (2.99), extremes of d } 

vI . v2' ~ join (E U e) 

{ (2.98), atomic adjacency (2.80), extremes of e } 

vI· v2' ~ joinE· (id U wI· w2' U w2· wl') . joinE 

{ distribution of composition over union} 

vI . v2° ~ join E . join E U join E . wI . w2" . join E 

U join E . w2 . wl o 
• join E 

atoms are irreducible; join.ability relations duplicate, } 
{ i.e. join E . join E = join E J for being preorders 

vI	 . v2° ~ join E V vi· v2° <;; join E . wl . w2° . join E 

V vI· v2° <;; join E· w2 . wl°· join E 

{ assumption d 1, E cancels first disjunct by (2.99) } 

v!·v2° <;; joinE·wl·w2°·joinE 

V vl· v2° ~ join E . w2 . wl o 
. join E 

property (2.31) of points and vectors, twice; } 
{ converse, symmetry of joinability relations 

(vI ~ joinE'wl 1\ v2 ~ joinE'w2) 

V (vI ~ joinE· w2 1\ v2 ~ joinE· wI) 

property (2.28) of points, four times; } 
{ symmetry of joinability relations again 

(wI ~ join E . vI 1\ w2 ~ join E· v2) 

V (wI! ~ joinE· vI 1\ wI ~ joinE· v2) 

{ as all the ahove, but using assumption e 1, E } 
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e::< Eud 

o 

2.7 Spanning Trees 

Let G be a connected undirected graph. A spanning tree of G 1S a spanning 
subgraph of G which is both acyclic and connected. A well-known fact of 
graph theory is that a spanning subgraph of a given graph G is a spanning 
tree exactly when it is maximally acyclic, and also exactly when it is mini~ 

mally connected. What it is not well-known is a proof of this proposition in 
a calculational style. We will present such a proof in this section. 

Many books on graph theory often restrict propositions and algorithms as 
applicable only to certain kinds of graphs. Spanning trees and their proper~ 

ties are an example of this since only connected graphs can have spanning 
trees -see remark on connected spanning subgraphs in page 30-. Such re
strictions are usually disregarded by stating that propositions and algorithms 
that apply only to, for example, connected graphs can be still applied to a 
non-connected graph by treating each connected component of it separately. 
However satisfactory such a treatment of restrictions might be, it is often 
the case that a good formalism allows the avoidance of such provisos without 
burdening the formalisation of the -then unconditional- statements. This 
happens when the formal phrasing of a restricted statement and its corre
sponding unrestricted OIle do Hot differ much and arc, thus, equally rnanage~ 

able. Spanning trees illustrate this phenomenon: the restriction to connected 
graphs is unnecessary. 

The natural generalisation of spanning trees, aiming at applying the concept 
to any graph, is that of connectedness-preserving forests. A forest is an 
acyclic graph, and a connectedness-preserving subgraph is one that preserves 
connected components. This notion coincides with the original concept when 
applied to a connected graph: a connected-preserving forest of a connected 
graph G is a spanning tree of G, and vice versa. 

Formally, given an undirected graph G, the spanning subgraph induced by 
a subset E of edges of G is a connectedness-preserving forest of G if and 
only if both acyclic E (2.92) and connpre E (2.89) hold. Hence, we define 
the corresponding predicate as follows: 

cpl E acyclic E /\ connpre E (2.100) 

We will now state and prove the aforementioned property of spanning trees 
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but generalised to deal with connectedness-preserving forests. In proving it, 
we will try our best to follow advice from the literature on presentation of 
mathematical arguments [8, 14, 60]. At several stages in the proof we will 
show that purely syntactic considerations suggest the path to follow. 

Proposition 2.101 For an undirected graph G and a subset E ofits edges, 
the following three statements are equivalent: 

(i) E is a connectedness-preserving forest of G, 
(ii) E is a maximal acyclic subgraph of G, 

(iii) E is a minimal connectedness-preserving snbgraph of G. 

Proof: 

First, jet us use (2.100), (2.43) and (2.44) to make a formal note of the three 
statements that are to be proved equivalent: 

(i) acyclic E f\ connpre E 

(II) mxl(acyclic,E) , 

(iii) mnl (connpre, E) 

Recall the definitions of subset-closed (2.45) and superset-closed (2.47) pred
icates. Both cyclic and connpre are superset-closed predicates: superset
closedness of cyclic follows from transitivity of inclusion, the fact that inclu
sion implies covering (2.93), transitivity of covering and predicate calculus; 
superset-closedness of connpre follows from monotonicity of join and tran
sitivity of inclusion. Therefore, acyclic is a subset-closed predicate, since 
it negates cyclic, and connpre is a superset-closed predicate, facts which 
allow us to rephrase the second and third statements, on account of (2.46) 
and (2.48), as follows: 

(ii') acyclic E 1\ (lie: e C;;E: ~acyclic(EUe) 

(iii') wnnpre E 1\ (lie: e C;; E : ~ connpre (E - e) 

Now, the equivalences (i) == (Ii') and (i) == (iii') can, by propositional cal
culus, be respectively simplified to: 

(a) a~yclic E => (connpreE == (lie : eC;;E: ~acyclic(EUe)), 

(b) connpre E => (acyclic E == ( lie eC;;E: ~connpre(E-e)) . 

Hence, a proof of (a) and (b) will do. 

Since t.he formulation of cyclic is simpler than that of acyclic, in the sense 
that negation does not enter the formulation of the former 1 we can simplify 
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our demonstranda by cancelling negations and uSing De Morgan's laws to: 

(a') acye/icE '* (connpreE == ('Ie: e<;E: cyclic(EUe))), 

(b') connpreE '* (eye/icE == (3e: e<;E: connpre(E-e))) 

Note that, so far, the proof has been guided mostly by syntactic consid
erations. Statements (ii') and (iii') popped up from the educated guess of 
analysing whether the predicates involved were subset/superset-closed, thus 
getting formulae syntactically closer to (i). This made (a) and (b) emerge, 
which were then transformed into (a') and (b') motivated by syntactic sim
plification -the elimination of a few ocurrences of negation- . 

It is also \'lorth remarking that we have not strengthened the demonstran
dum: all expressions have been transformed into equivalent ones. So, no 
risks have been taken so far. 

We now present proofs of (a') and (b'), which will rely on two claims. Both 
proofs wHi make use of the covering relation ~, as linking concept between 
acyclicity and connectedness. First, for (a'), assume acyclic E and manipu
late thus: 

connpreE 

{ property of connpre (2.95) } 

Edge:' E 

{ complementation: Edge = E UE } 
Eu E:' E 

{ union/:' (2.96), reflexivity of :::' } 

E:'E 

{ extensionality (2.29), union/:, (2.96) again} 

('Ie: e<;E: e:' E) 

{ claim, see (c1) below} 

('Ie : e <; E : cyclic (E U e) 

Second, for (b'), a')sume cormpre E and then: 

cyclic E
 

{ definition of cyclic (2.91) }
 

(3e : e<;E, e:,E-e)
 

{ claim, see (c2) below}
 

(3e: e<;E: connpre(E-e»)
 

Let us briefly analyse the calculations above. The first step in the proof of 

39 



(a') arises from the willingness to use the covering relation ::5, as formal link 
between connpre and cyclic. The following two steps are motivated by the 
need of bringing E into the picture, and the next by the need of getting 
a universal quantification as well. At this stage the syntactic shape of the 
formula suggest, by predicate calculus, that the following suffices to complete 
the proof: 

cyclic (EUe) = e j E
(c1) _

{ provided acyclic E and e ~ E 

The proof of (b') is much shorter. The definition of cycl.c is unfolded and 
the second claim immediately pops up: 

(c2) {connpre(E-e) = ejE-e 
provided connpre E and e ~ E 

It is now only (el) and (c2) that are left to be proved. We start with (c2) 
since its proof is simpler: 

connpre (E - e) 

{ definition of connpre (2.89) -weaker version- } 

Join £; join (E - e) 

{ assumption connpre E (2.89) } 

joinE £; join(E-e) 

{ join! j (2.94) } 

E j E-e 

{ assumption e £; E implies E = (E - e) U e } 

(E-e) U e j E-e 

{ union! j (2.96), reflexivity of j } 

e ~ E - e 

Only (e1) to go. We argue: 

cyclic (E U e)
 

{ definition of cyclic (2.91) }
 

(3d: d£;EUe: dj (EUe)-d)
 

{ split range, one-point rule} 

(3d: d£;E: d j (Eue)-d) V e j (EUe)-e 

{ assumption e £; It implies (E U e) - e = E } 

(3d:d£;E:dj(Eue)-d) VejE 
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{ see below}
 

e::o E
 

The last step of the calculation above is equivalent to: 

(3d:d<;;E:d::o(EUe)-d) '* e::OE. 

This can be proved by assuming d ~ E for arbitrary d and then showing 
that the implication 

d ::0 (E U e) - d '* e::o E 

holds. This statement can be moulded into a more symmetric shape. The 
assumptions on d and e, viz. d ~ E and e ~ E, imply the following equal
ities: 

(EUe) - d (E-d)Ue and
 

E (E-d)Ud
 

Hence, the last implication above can be rewritten as follows: 

(*) d::o(E-d)Ue "" e::O(E-d)Ud. 

Now, this looks like a job for the Two Gates rule (2.97) with E:~ E - d, 
but we would then need its provisos: d to E - d and e to E - d. 

On account of the definitions of cyclic (2.91) and acyclic (2.92), the proviso 
on d follows from the assumptions acyclic E, which we had not used yet, 
and d C;; E. 

The proviso on e does not necessarily hold but, in such a case, the consequent 
of implication (*) would hold -and thus so would (*) as well- on account of 
E - d C;; (E - d) U d, the fact that inclusion implies covering (2.93), and 

transitivity of covering. If the proviso on e happens to hold then Two Gates 
does the job 

And this concludes our proof! 

o 

2.8 Paths 

A basic concept of graph theory we have not dealt with yet is that of paths in 
a graph. It was mentioned before that if the vertices of a directed graph with 
successor relation Suee are thought to be railway stations and the edges to be 
railway lines, then reachability relation Reach I i.e. Succ· I models possible 
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destination/origin pairs one could travel by train. In such a case, paths model 
possible routes one could travel by train rather than just destination/origin 
pairs. 

An analogous situation occurs in undirected graphs with joinability relation 
Join, i.e. Adj*, and their paths. We will fonnalise and deal with all the 

corresponding details only for the case of directed graphs. 

Let G be a directed graph (Veri, Edge l xl, x2) and let 1..t, v be two elements 
of Vert. A path to vertex u from vertex v is an alternating sequence of 
vertices and edges [vn,en,vn_l,en_], ... v],ellvO] such that U=Vn , v=vo 
and (Vi: n ~ i ~ 1: xl·ei =v1 A x2 'ei =Vi-l)' A path to u from v 
exists exactly when u is reachable from v, Le. when 1..t (Reach) v holds. 
To be able to formally link the existence of paths to reachability relation 
Reach we need to manipulate sequences in our mathematical framework. 
Fortunately, there is a well-established theory of datatypes within relational 
frameworks like ours which we will now shortly review. 

The approach to datatypes we will present is based on the theory of cate
gories and allegories. For a thorough presentation of the relational theory 
of datatypes, including the relevant theory of categories and allegories along 
with applications in the program derivation area, we recommend book [28] 
by Biro and de Moor. Some of the history of this approach to datatypes 
can be roughly summarised as follows: In the 1980s, Bird and Meertens 
worked on a calculus of functions for program derivation which included a 
theory for manipulating lists [21, 22, 1001. At the same time, category the
ory had been gaining interest from the computer science community ---see e.g. 
[15, 125]-, in particular from the functional programming advocates. These 
two trends met by a proof that the theory of lists of the calculus of Bird and 
Meertens was governed by more general categorical concepts [140J. Gibbons 
then moved on to generalise the theory of lists to cater for various kinds of 
trees [62, 63], supported by a general categorical treatment of datatypes that 
had been worked out by Malcolm [97, 98]. Such a categorical treatment was 
proved to be extendable to the allegorical, or relational, setting by de Moor 
[108,109]. Backhouse and his colleagues at Eindhoven were at the time also 
exploring an equivalent relational approach to datatypes, yet not relying 
on categorical but on lattice-theoretical grounds [2J. -Also, Malcolm's thesis 
[97L though developed within the categorical framework, contains beginnings 
of the work of Eindhoven on relations.- In both settings, i.e. de Moor's and 
Backhouse's, the level of abstraction obtained is high enough to allow concise 
reasoning about programs parameterised by datatype constructors, a feature 
that has been named polytypism. So-called polytypic programming has been 
receiving a lot of attention in recent years, see e.g. [11,29, 65, 78, 110, 120J. 
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We will only apply the general theory to the datatype of paths in a graph. 
Therefore, it is not justified to introduce an the general machinery and we 
will limit the presentation of the theory to its application to the datatype of 
paths. 

The Datatype Path We present the datatype Path and some operations 
on it using notation of a Gofer/Haskell-like functional programming language 
[23, 81, 144J. Let G be a graph (Vert, Edge, xl, x2). The dat.type Path 
of G is declared thus: 

Path .. = wrap Vert I cons (Vert, Edge, Path) . 

This declares wrap and cons to be the constructor functions of Path, of 
type Path t- Vert and Path t- Vert x Edge x Path, respectively. Using 
the above definition, the path [V2' e2, VI, el, vo] is represented by the expres
sion cons (V2, e2, cons (Vl' el, wrap va)) . 

Functions to retrieve the starting and ending vertex of a path can be defined 
by pattern-matching as follows: 

start (wrap v) v end (wrap v) v 

start (cons (v,e,p)) start p end (cons (v,e,p)) v 

The declaration of Path does not guarantee that every value of the datatype 
actually corresponds to a path in the given graph G. A predicate to check 
when this is the case follows: 

isPath (wrap v) = True 

isPath (cons (v,e,p)) = (xl e v) 1\ (x2e end p) 1\ isPath p . 

Products Products are used in the definition of Path above and, thus, 
we need to formalise what they are. Binary products are usually taken as 
the basic notion on which ternary products are built. We cut short our way 
by formalising ternary products directly. Given sets Xl , X2 and X3, we 
can form their product Xl x X2 x X3 , which comes equipped with projec
tion functions outl, out2 and out3. Set-theoretically speaking, these are 
defined as follows: 

Xl x X2 x X3 {(Xl,X"X3) I Xl E Xl, X, E X2, X3 E X3} , 

outl (Xl> X2, X3) = Xl 

Qut2 (Xl> X2, X3) = X2 

out3 (Xl, X2,X3) = X3 
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Also, given relations R: Xl t- Yl , 8 : X2 t- Y2 and T : XS t- YS, their 
product is a relation of type Xl x X2 x XS t- Yl x Y2 x YS defined as: 

Rx 8 x T = 

outl 0 • R . outl n Qut2°· S . Qut2 n out:r· T . out3 , 

This means that (XI,X2,X3) (R x 8 x T) (Yl,Y2,Y3) is equivalent to the 
conjunction of Xl (R) Yl, X2 (8) Y2 and X3 (T) Y3 . 

Among the properties of relational product we have: 

oul1 . (R x 8 x T) £; R· outl
 

0"t2 . (R x 8 x T) £; 8· out2
 

outS· (R x 8 x T) CT· outS
 

These can be strengthened to equalities when the relations that appear only 
in the left-hand side of the inequation are functions. That is: 

0,,11 . (R x I x g) R·outl (2.102) 

0"t2· (j x 8 x g) 8·out2 (2.103) 

o"tS·(jxgxT) T· outS (2.104) 

for functions f and 9 -of the appropriate type in each case-. Also, converse 
distribute through product: 

(R x 8 x T)" = R" x 8° x TO . (2.105) 

Folds Functions start and end and predicate isPath above are defined 
by structural recursion, a recursion scheme determined by the definition, i.e. 
the structure, of the datatype. One can provide STIch a recursion scheme once 
and for all by using higher-order functions. Functions providing this kind of 
"canned" structural recursion are known as folds or catamorpbisms [28,101]. 
The functional fold for the datatype Path is parameterised by two functions 
I : X t-- Vert and 9 : X t- Vert x Edge x X , for some set X, giving back 

a function of type X t- Path defined as follows: 

loldp I 9 (wrap v) Iv ,
 
foldp I 9 (cons (v,e,p» 9 (v, e,foldp I 9 p)
 

Using this new tool, functions start and end can be defined more concisely: 

start loldp id outS (2.106) 

end loldp id outl (2.107) 
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Predicate isPath could be defined in a similar way, i.e. by means of functions 
only. However, we will make a better use of it if defined as a coreftexive 
relation -recall that coreftexive relations model subsets, which in turn are 
in a one-to-one correspondence with unitary predicates- and, thus, we need 
to generalise the above definition of fold to cater for relations. A point
free description of the functional fold above gives a clear signal of what the 
relational fold might look like: 

foldp f 9 . !lIrap f , 
foldp f 9 . cons 9 . (id x id x foldp f g) 

These equations suggest that, for relations Rand S of appropriate types, 
we define: 

fo1dp R S . !lIrap R, (2.108) 
foldp R S . oons S . (id x id x foldp R S) (2.109) 

Armed with this new tool we proceed to define a coreHexive relation that 
corresponds to isPath. In general, we can link an arhitrary predicate p to 
coreflexive p? by the following equivalence: x (P?) y == x = y 1\ Px. We 
thus define: 

i.Path? = foldp !lIrap (cons· ok?) , (2.110) 

where predicate ok sees to the consistence of the last edge of the path: 

ok{v,e,p) (xl e = v) II (x2e = endp) . (2.111) 

Before finally proceeding to establish the formal connection between the exis
tence of paths and the reachability relation, we need one more result regard
ing folds, This key result relates the composition of a fold after the COnverse 
of a fold to a least fixed point, Using the "morphism" terminology, such a 
construction, i.e. the composition of a catamorphism after the con~rse of a 
catamorphism, is called a hylomorphism (101}; under the "fold" terminology, 
it is sometimes referred to as a mould -a term somewhat jokingly coined 
by Gege de Moor-. For the particular case of the datatype Path, the key 
result relating moulds to least fixed points reads as follows: 

(Joldp R S) . (Joldp T uy = } 
2.112

(I'W: R·T' U S·(idxidxW)·U'). ( ) 

Paths and Reachability Finally, we are ready to prove that two vertices 
in a directed graph are linked through a path if and only if they are related 
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by the reach ability relation. That is: 

end· isPath? . start° - Reach (2.113) 

Proof: 

Let us start manipulating the left-hand side since, this side being the most 
complex, it provides more opportunities for manipulation. We first notice 
that there is a mould we can simplify: 

isPath? . start° 

{definitions of isPath? (2.110) and start (2.106) } 

Uoldp wrap (cons· ok?» . (foldp id out3t 

{ moulds (2.112) } 

(I' W : wrap U cons· ok? . (id x id x W) . out3°) 

by converse (2.16) and products -(2.104), (2.105)-: } 
(id x id x W)· out3° = (out3' (id x id x W)')' 

= (out3· (id x id x W'»' = (W'· out3)'{ 
= out3'· W
 

(I' W: wrap U cons' ok? . out3' . W)
 

{ closure (2.63) }
 
(cons· ok? . outSo)'" . wrap. 

We record this result for later reference: 

isPath?· start° = (cons· ok?· out3°)*'· wrap (2.114) 

The left-hand side of our demonstrandum (2.113) has thus been simplified 
to: 

end· (cons· ok?· outSo)'" . wrap 

Now, it is worth trying to use the leap-frog over closure rule (2.65). We 
could use it either to make end jump to the right over the closure or to 
make wrap jump to the left over the closure. The choice of making end 
jump is appealing: given that end is a fold, its composition with cons can 
be manipulated using (2.109) in an attempt to get the proviso fDr (2.65); 
once eqd has leap-frogged, it will, again for being a fold but by means of 
(2.108), cancel with wrap. We proceed: 

end· cons· ok? . out:r 

{ definition of end (2.107) , fold computation (2.109) } 

oull . (id x id x end) . ok?· out3' 

{products (2.102), end is a function} 
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outl . ok?· out3° 
by definition of ok? (2.111) and projection functions:} 

v (outl . ok? . out3') p 

'" (3e:: (xl e = v) /\ (x2e = endp»{ 
'" v (xl . x2' . end) p
 

xl· x!r· end
 

{ definition of Succ (2.74) } 

Stice· end 

The main calculation can then be summarised and completed thus: 

end· isPath.? . startQ
 

= { mould into closure above (2.114) }
 

end· (cons· ok? . out3°)" . wrap
 

{ leap-frog over closure (2.6fi), proviso proved above} 

Succ· . end· wrap 

definition of Reach (2.83) ; I 
{ definition of end (2.107) , fold computation (2.108) 

Reach 

And we are dond 

o 

However simple this result might seem to bel it nicely demonstrates how 
our calculational abilities have grown in the last few years. In the most 
comprehensive account of graph theory within the framework of the calculus 
of binary relations -book [136] by Schmidt and Str6hlein -! this property is 
not proved solely by calculational means. Rather, it is proved by a mixture 
of calculations, "verbal formality" and induction [136, pages 106-107J. The 
key new ingredient i~ the introduction of recursive datatypes into the realm 
of relational calculations. 

A similar fact, i.e. similar to our (2.113), which shows that the reflexive
transitive closure operator can be defined as a mould on non-empty lists, can 
be found in [27, Section 2.4.11. 
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Chapter 3 

Computing Closure 

We will now proceed with our first steps into calculating graph algorithms. 
The graph problems to be treated in this chapter are specified by means of the 
reflexive-transitive closure and transitive closure operators -Section 2.4-. 
As mentioned in the introductory Chapter II our developments will combine 
conventional techniques for the derivation of imperative programs with using 
the calculus of binary relations for the expression and manipulation of graph 
concepts and properties. 

The problems of this chapter can be posed both for directed and undirected 
graphs. We will initially pose the problems for directed graphs and, subse
quently, phrase them in terms of a "given relation" that might correspond 
either to the successor relation S'/Jcc of a directed graph or to the adjacency 
relation Adj of an undirected graph. However, even when dealing with the 
abstract "given relation" we will keep the bias towards directed graphs in the 
sense that, e.g., we will say "vertex reachable from vertex" instead of "vertex 
reachable from, or joinable with, vertex". All such references to directed 
graphs must be understood as applicable to undirected graphs as well. 

Section 3.1 deals with the problem of computing the transitive closure of a 
given relation, which models the all-pairs reachability problem of graphs. The 
algorithmic solution obtained corresponds to a well-known algorithm due to 
Stephen Warshall [146). Section 3.2 presents another reachability problem: 
the fixed-source reachability problem, which requires the computation of the 
set of vertices that can be reached from a given initial set of vertices. Section 
3.3 reviews some work related to the contents of this chapter. 
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3.1 All-Pairs Reachability 

The All-Pairs Reachabjlity problem for directed graphs can be posed as 
follows: given a graph with successor relation Succ: Vert t- Vert, com
pute its proper reachability relation Succ+: Vert t- Vert. The statement 
v (Succ+) w holds when one can arrive at v starting from w via one or 
more edges, as opposed to v (Suce·) w, which accepts traversing zero edges. 
Thus, Succ+ is called the proper reachability relation, as opposed to the 
-plain- reachability relation Stice·. Our problem should then be called 
the All-Pairs Proper Reachability problem. However, we choose to drop the 
prefix Ilproper" and state that all references to "reachability" in this section 
must be understood as referring to "proper reachability" . 

OUf problem can be abstracted from the specific realm of algorithmic graph 
theory and he posed simply as: given a relation R: X t- X compute itsl 

transitive closure R+: X t- X. However, our informal remarks will keep 
referring to the graph model of the problem. 

Specification The formal specification reads: 

I[ var S:X<---X; 
S: [ true , S = R+ ] (3.1) 

JI 
where R: X t- X is a given relation. 

Setting Up an Iteration \Ve will develop an iteration, as algorithmic 
solution to (3_1), based on a design dne to Stephen Warshall. In the early 
19605, Warshall reported his solution [1461 to the problem of computing tbe 
transitive closure of an input binary relation -but the presentation used 
boolean matrices instead of relations-. He did so by directly presenting the 
algorithm followed by its proof of correctness. We will present Warshall's 
conception of a solution, not as a straightforwardly presented algorithm, but 
as a design. A design that can nowadays be spelled out using calculi for 
formal algorithm development. 

Warshall's design is based on the successive computation of constrained 
reachability relations, working towards smaller constraints until the desired 
unconstrained reachability relation is obtained. Such constraints are deter
mined by sets of vertices allowed to be visited as intermediate vertices while 
traversing the graph. 

Let us first express such constrained reachability relations in a semi-formal 
fashion. Recall the discussion on transitive closure in Section 2.4 and then 
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note that relation R+ can thus be semi-formally described as follows: 

R+ R U R·R U R·R·R U (3.2) 

We want to restrict the traversing of the graph modelled by R in such 
a way that intermediate vertices are drawn from a certain given set. Let 
A: VecX be such a set. The restriction of intermediate vertices to A must 
be reflected in (3.2) at the places where the composition operator is used. 
Recan from Section 2.2 the discussion on the convenience of modelling sets 
as vectors versus modelling sets as coreflexive relations. The restriction of 
"middle points" in compositions to a certain set is the standard example of 
situations where coreflexives are better suited than vectors. Hence l we use 
operator ~ to describe the restriction of the proper reachability relation R+ 
to intermediaries drawn from A thus: 

R+ restricted to A 

R U R·~·R U R·~·R~·R U 

If A includes an the vertices of the graph, i.e. if A = X , then ~-isomorphism 

(2.36) gives us ¢A = id and we thus get relation R+ as described in (3.2) 
back, as indeed expected. 

Let us now abandon semi-formality. For setting up an iteration that re
fines (3.1), we need to propose a reasonable invariant and corresponding 
guard. One technique for doing so is that of replacing a constant in the 
postcondition by a freshly introduced variable -see e.g. [68, Section 16.3] or 
[82, Section 4.2]--. Turning the semi-formal description of the restricted R+ 
above into a funy formal one will help us apply such a technique. We need 
to manipulate expression R+ in such a way that a hidden id, which plays 
the role of ~A in the unrestricted R+, is brought to light. We use property 
(2.73) of transitive closure plus the fundamental property (2.2) of identity 
relations to make id pop up, and then we introduce operator ~ via property 
(2.36): 

R+ = R'· R (R· idj' . R = (R· PT . R (3.3) 

This rephrases the postcondition in such a way that the aforementioned tech
nique for proposing invariants can be successfully applied. Replace constant 
X by fresh variable A to postulate the following invariant: 

lnv := S = (R· ¢A)' . R 

and use A 01 X as guard. 

To establish the invariant initially, the informal description of restrictions to 
R+ above suggests that restriction to 0 is just R. Formally, we reason in 
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one line thus: 

(R·¢0)'·R (R· 0)' . R = 0'· R R. 

The first step appeals to property (2.36) of the ¢-isomorphism, the second 
corresponds to 0 being a zero of composition (2.14), and the third and last 
uses the fact that 0' = id. Hence, statement S, A := R, 0 estahlishes the 
invariant and can thus be used as initial statement. 

We still need to work out a variant. Since variable A is initially set to 
o and must be equal to the whole set X on exit of the iteration, it seems 
reasonable to postulate A itself to be the variant expression and to postulate 
that progress will be guaranteed by its increase. We introd uce a shorthand 
for the boolean expression that states that progress has been made: 

Pry	 := (A::> Ao) . 

In Morgan's refinement calculus, O-suhscripted variables in the postcondition 
of specification statements refer to the values of such variables in the initial 
state ofthe computation, as opposed to the values in the final state referred to 
by the unsubscripted plain variables [115, Chapter 8]. This feature facilitates 
expressing the requirement that an iteration must make progress, needed 
without exception when setting iterations up. In fact, that is the only use 
we will make of O-subscripted variables. 

Note that, in Prg above, we have implicitly assumed that X is a finite set 
since this is necessary for relation::> to be well-founded -or, more specifi~ 

cally, as some authors prefer, left-well-founded-. 

A summary of the refinement of (3.1) follows: 

S:	 [true, S=R+] 

introduce local block and initialised iteration}
[;; { according to discussion above 

I[	 var A: VecX; 
S,A := R,0; 
do A # X -+ S, A : [ A # X II Inv , Inv 1\ Pry I od 

JI 

Developing the Iteration Body We now need to refine the specification 
statement left above as body of the iteration. The postcondition states, in 
Prg 1 that progress must be guaranteed hy adding to A elements which are 
not members of it. We thus explore the statement A::::: A U x, with x an 
element such that x <.;;; A , analysing how variable S must be simultaneously 
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updated in order to preserve the invariant. Note that the guard is equivalent 
to A being non-empty and, hence, it guarantees the existence of the required 
x.	 Assume that Inv holds and then manipulate thus: 

((R· ¢A),.R)[A:=AUxJ 

{ substitution} 

(R· ¢(Aux))'· R 
distribution of ¢ over union (2.38) } 

{ and of composition over union (2.14) 

(Ho ¢A u R· hl' . R 
= { closure over union (2.69) with R, S := R· ¢A, R· ¢x } 

((R· ¢A)'·R· ¢x)'· (R ¢Al'· R 

= { Inv }
 
(S· ¢x),·S
 

{ singleton coreflexives (2.42), closure (2.71) } 

(id uS· x . XO) • S 

{ distributiou of composition over union (2.14) } 

S	 U S·x·xo·S. 

This calculation shows that the following statement maintains the invariant 
while guaranteeing progress, provided x is not a member of A: 

S, A := SuS· x . XO • S, A U x . 

Therefore, we have refined the iteration body as follows: 

S, A : [ A # X II Inv , Inv II Pry 1 

introduce local block and sequential composition}r;; { according to discussion above 

I[	 var x:X;
 
x:~ A;
 
S, A := SuS· x . XO • S, A u x
 

JI
 

This completes the algorithmic refinement of specification (3.1). After a 
development like the one we have carried out, assembling the whole code 
is not necessary for human understanding of the algorithmic solution. The 
documented development, as e.g. the contents of this section, is what we 
need for that purpose. -See Morgan '8 remarks on documentation, testing 
and debugging in [U5, Chapter 19). We also want to point out that, of 
course, assembling the code is nevertheless needed, if only for the need to 
submit it to a computer for execution.
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I[	 var 5:Xt-X; 
I[	 var A:VecX;
 

S,A := R ,0;
 
do A/X --+
 

I[	 var x: X; 
x:~ ::4; 
5, A := 5 U 5· x· xo. 5, A u x 

JI 
od 

]1 
JI 

Figure 3.4: First Algorithmic Solution of (3.1) 

Iu the next subsection, our program will be further refined due to some 
efficiency considerations. Such refinement will be more readily visualised 
using tb.e collected whole program. For that reason -and maybe also out 
of the bad habit of wanting to see the whole program?-, we present the 
program in Figure 3.4. 

Data Refinement The program we have developed requires computation 
of the complement of A in the body of the iteration time and time again. 
This can be avoided by introducing a fresh variable B: Vee X and keeping 
it updated in such a way that it holds the value of A at every point of the 
program. Such an incorporation of new variables can be carried out by means 
of data refinement using s(}-called coupling invariants: predicates that relate 
new variables to old existing variables -see e.g. [115, Chapter 17] or [116]-. 
In our easel variable B is introduced via the following coupling invariant: 

CI := B = If . 

Having defined Cl 1 the transformation of the program can be conducted in 
a fairly mechanical way. We explain it briefly. 

Assignments to B are attached to every assignment of the program in such 
a way that CI is maintained. Inspecting Figure 3.4 l it can be seen that we 
only need to add B:= X to the initialisation statement and B := B - x to 
the assignment within the iteration. Having enforced the validity of CI in 
this way, the non-deterministic selection statement can be correctly replaced 
by x:~ B, thereby eliminating the unwanted repeated evaluation of the 
complement of A. Efficiency can also be further improved by replacing the 
guard with B -I 0 l again a correct transformation due to the validity of CI 



II var S: X +-- X; 
II	 var B: VecX; 

S,B:= R,X; 
do Bi0--t 

Ilvarx:X; 
x:~ B; 
S, B := SuS· x . XO . S, B - x 

II 
od 

]1 
11 

Figure 3.5: Second Algorithmic Solution of (3.1), after Data Refinement 

at every point of the program. We claim this new guard is more efficient 
since most implementations of sets perform comparisons to the empty set 
more rapidly than comparisons to the universal set. After all these transfor
mations, variable A ends up being useless, in the sense that it is only used 
for computing new values of itself. It can thus be eliminated. The resulting 
program is shown in Figure 3.5. 

-This second program could have been obtained directly had we initially 
rephrased the postcondition as S = (R· *0)'· R, instead of as indicated 
by (3.3), and replaced constant 0 by a variable. The choice of replacing 
constant X seemed more natural at the time. Also, it provided U.'3 with a 
good opportunity to show a simple example of data refinement.

The particular kind of data refinement we have carried out is also known 
as "finite differencing" (122] Or "formal differentiation" [139}, a program re
finement technique that originated from optimising transformations used in 
compilers. This technique is also presented in [68, Section 19.2]' where it is 
proposed as a transformatiou that can improve the efficiency of an already 
correctly developed program -the use we have made of it-, thereby promot
ing the principle of separating the correctness and efficiency concerns. We 
will USe this technique again in subsequent chapters. 

Further Refinement and Warshall's Algorithm RELVIEW, brieHy 
mentioned in Section 1.2, is a programming system in which imperative pro
grams that manipulate variables of type llrelation" can be directly executed. 
Thus, the program in Figure 3.5 can be straightforwardly translated into 
an executable RELVIEW program. But its translation into a conventional 
imperative programming language would not be as direct, since this would 
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require data-refining relation S and set B to the sort of data structures tra
ditionally provided by such languages. This kind of data refinement would 
allow us to obtain Warshall's algorithm as it is commonly known. We will 
not get into all the details involved in the transformation of our abstract 
program into Warshall's algorithm, but only comment ou the most crucial 
aspect of it. 

Relation S must be data-refined to a boolean matrix M indexed by elements 
of X x X , where M[i, jJ is true if and only if i (S) j holds. In such a case, 
the assignment to S in the iteration body becomes a simultaneous assign
ment to all the elements of M. However, it can be proved that all the atomic 
assignments involved in such a simultaneous assignment are independent, in 
the sense that, should such atomic assignments be arbitrarily serialised, the 
whole outcome remains the same. A proof of this fact, developed under a 
more general algebraic framework of which our reachability problem is just 
a particular instance, Can be found in [12, Section 6.2]. -Reference [12] is 
further discussed in the final section of this chapter.- A particular seriali
sation of the assignments to the elements of M corresponds to Warshall's 
algorithm, which can be obtained from our abstract program on account of 
the crucial aforementioned "independence of atomic assignments" fact. 

3.2 Fixed-Source Reachability 

The Fixed-Source Reachability problem is phrased, for directed graphs, as 
follows: given a graph with successor relation Suec: Vert of- Vert and given 
a set of vertices V: Vee Vert, compu te the set of vertices reached from V. 
This means computing Reach· V : Vec Vert where Reach, as defined by 
(2.83) in Section 2.6, is Succ·. 

Again, the problem can be posed only in terms of closure: given a relation 
R: X +- X and a set A: VecX , compute R··A : VecX 

Specification We formalise the specification thus: 

II var B: Vee X ; 
B: [true, B = R··AJ (3.6) 

II 
where R : X t- X and A.: Vec X are given relations. 

Playing with Fixed Points To proceed with the algorithmic refinement 
of (3.6), we will manipulate a good deal the fixed-point expression of R· . A I 

i.e. the expression (i' W : A U R· W) . 
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Let us take relation R as an implicit parameter and define function f as 
corresponding to the above expression when applied to argument A: 

I C := (JJ- W : CuR· W) . (3.7) 

Now, our postcondition reads B = fA. 

Some properties of f can now be deduced using the calculus of fixed points 
presented in Section 2.3. First, we have: 

f0 = (;.tW:R·W) = 0, 

which follows from the fact that W:= 0 solves the equation R· W = W 
and, since 0 is the least relation: it must then be the least solution of the 
equation. Also, we have: 

IC 
{ definition of I (3.7) }
 

(I'W:CuR·W)
 

rolling rule (2.57) with }
= { :F W := C U W, g W := R· W 

C U (I'W: R·(CUW)) 

distribution of composition over union (2.14), } 
= { definition of I (3.7)
 

C U I(R·C) .
 

Hence, we have proved the following two properties: 

10 = 0 , (3.8) 

I C = Cui (R· C) . (3.9) 

We could then propose as invariant: 

Bu/C=IA, 

using a freshly introduced program variable C. Such an invariant would be, 
first, coupled with guard C ,< 0 because of (3.8), second, established initially 
by the statement B , C := 0, A and, third, maintained by the statement 
B, C := B U C, R· C because of (3.9). 

This is all too nice but, if there are cycles in the graph modelled by R, we 
have a non-terminating iteration. Take, e.g., R and A to be, respectively, 
{(x, x)} and {x}, in which case variable C will invariantly hold the value 
{x} and the guard will always be true. It is not surprising that we ended 
up with a non-terminating iteration since no variant was considered at all. 
In fact, it is very often useful to take, as first hint for the construction 
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of the body of an iteration l statements that decrease -according to some 
well-founded relation- the variant in order to guarantee progress. We have 
nevertheless showed this first attempt at a solution to learn from it, as well 
as to illustrate the kind of manipulation of fixed points we will use to arrive 
at a correct solution. 

Above, variable B was meant to increasingly accumulate the elements of 
fA. Hence, a reasonable candidate for variant could have been B 1 with 

progress guaranteed by its increase. But, above, we had no guarantee that the 
elements added to B in each iteration were actually increasing the size of B. 
The problem is that function f does not know about elements that l having 
already been considered l do not need to be taken into account anymore. Let 
us define a function 9 that suitably generalises function f in such a manner: 

g(B,C) := (I'W: C U (R·W-B)) . (3.10) 

We will refer to the first argument of 9 as the set of lIalready generated" 
elements, and to the second argument as the set of "seed" elements of the 
R-generative process. 

Let us now play the game of analysing interesting properties of function 9 
and, in particular, its relation to function f . To start with, an empty set of 
already generated elements takes us back to function f: 

g(0, C) = f C , (3.11) 

since V - 0 = V for any relation V. Now, an empty set of seed elements 
gives us the following: 

g(B,0) = (I'W: R·W-B) = 0, 

where l as before when analysing function f I we have that W:= 0 is a 
solution of R· W - B = W and it must then he its least solution. After 
considering an empty set of seeds, let us analyse the case when we can take 
some of the seeds out of the R-generative process and leave the rest for later 
consideration: 

9 (B, Cl U C2) 

{ definition of 9 (3.10) } 

(I' W: Cl U C2 U (R· W - B) ) 

-discharge Cl from the rest of the generative process- } 
= union/subtraction: U U V = U U (V - U)

{ with U, V:= Cl, C2 U (R . W - B) 

(I'W Cl U «C2 U (R·W-B)) - Cl)) 



fixed-point rolling rule (2.57) with } 
FW := Cl U W,

{ 9W := (C2 U (R·W-B)) - Cl 
Cl U (/L W: (C2 U (R· (Cl U W) - B)) - C1) 

= { distribution of subtraction over union (2.12) } 

Cl U (/LW: (C2-C1) U (R·(CIUW)-B-Cl)) 
= { subtraction/union (2.13) } 

Cl U (/LW: (C2 - C1) U (R· (Cl UW) - (BU Cl))) 

= { distribution of composition over union (2.14) } 
and of subtraction over union (2.12) 

Cl U (/LW: (C2-C1) U (R·Cl-(BUC1)) 
U (R· W - (B U C1)) ) 

= { definition of 9 (3.10) } 

Cl U g(BUCl,(C2-C1) U (RoCl-(BUCl))) 

In summary, we have: 

g(B,0) = 0, (3.12) 

9 (B, Cl U C2) = 
Cl U g(BUCl,(C2-Cl) U (R·Cl-(BUCl))) (3.13) 

Setting Up an Iteration Having analysed some of the properties of func
tion 9 1 we start the refinement of specification (3.6) to an iteration. From 
postcondition B = fA, we now postulate an invariant that uses a fresh pro
gram variable C and that also uses function 9 to control elements already 
generated and accumulated in variable B. We take: 

Inv:= BUg (B, C) = fA. 

From property (3.12) it can be seen that an adequate guard is C l' 0. From 
property (3.11) it follows that statement B, C:= 0, A can be used to es
tablish the invariant initially. Since the contents of variable B should grow, 
starting from 0, until it keeps the whole set fA, we take as variant expres
sion B with progress guaranteed by its augmentation. As in Section 3.1 1 we 
use a shorthand for the proposition that states that the iteration is making 
progress: 

Prg := (B::J Bo) . 

Note that set X has again been assumed to be finite, which means we are 
only considering graphs with a finite amount of vertices, This makes ::> in 
Prg above to be well-founded. 
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Let us summarise the refinement of statement (3.6) so far: 

B:ltrue, B = R"·A! 

introduce local block and initialised iteration }
!::: { according to discussion above 

II	 varC:VecX; 
B,C := 0,A; 
do C '" 0 -t B, C : I C '" 0 /I Inv , Inv /I Pry I od 

II 

Developing the Iteration Body To refine the body of the iteration, 
progress must be achieved by adding elements to B which are not in it. In
stead of using the addition of one element to B, we will go for the addition 
of a non-empty set of elements to B and we will later refine such a gen
eral statement to more specific ones. Thus, we will consider the statement 
B ;= BUD where set D is not empty and does not share elements with B. 

Let us name these assumptions: (i) D '" 0 and (ii) B n D = 0. To analyse 
the maintenance of the invariant under such an assignment, we assume a 
simultaneous assignment to variables B and C will do the work. The ex
pression to be assigned to C will be calculated in the process of proving 
maintenance of the invariant. Assume Inv holds and then proceed thus: 

Inv IB,C:= B U D,Exp I 
{ substitution} 

BUD U g(BUD,Exp) = fA 

{ Inv } 

BuD U g(BUD,Exp) = B U g(B,C) 
{= { Leibniz } 

D	 U g(BUD,Exp) = g(B,C) 

assume (iii) D <;: C; hence, C = D U C , } 
in:eraction of function 9 with union (3.13) 

{ with B, Cl, C2 := B, D, C 

D U g(BUD,Exp) = 
D U g(BUD, (C-D) U (R·D-(BUD)) 

{= { Leibniz } 

Exp = (C - D) U (R· D - (B U D» . 

In the process of calculating the body of the iteration, three assumptions 
were imposed on D, viz. (i), (ii) and (iii). Assumption (ii) follows from 
assumption (iii) since it can be shown that B n C = 0 is an additional 
invariant of the obtained iteration -proof omitted-. 
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Il var B: VeeX; 
II var C:VecX; 

B,G := 0,A; 
do C#0--+ 

II var D:VeeX; 
D:IC#0, D#0 II DC;C]; 
B,C:= BUD, (C-D) U (R·D-(BUD)) 

]1 
od 

JI 
JI 

Figure 3.14: General Algorithmic Solution of (3.6) 

Summarising, the body of the iteration has been refined as foHows: 

B, C : IC # 0 II Inv , Inv II Pry] 

introduce local block and sequential composition} 
~ { according to discussion above 

If var D:VeeX; 
D:[C#0, D#0 II DC;C];
 
E,C:= BUD, (C-D) U (R·D-(BUD))
 

JI 

We collect the whole code in Figure 3.14. This general algorithmic solution 
can be further refined by choosing specific ways of drawing set D from set 
C. We will soon proceed to do so. 

Other Alternatives Similar algorithms can be obtained from slightly dif
ferent generalisations of function f. The reader is invited to reproduce the 
above development using the following function h instead of g: 

h(B,C) = (I'W: (C U R·W)-B)) 

Refinement to Singleton-Selection Version One way of further re
fining the general algorithmic solution is by choosing D to be a singleton 
set, Le. a point. An elementary data refinement can be carried out using 
coupling inva.riant x = D to replace variable D with a variable x of type 
X. Requirement x =10 is then guaranteed to hold by the type of x since 
points are non-empty. The specification statement in the iteration body of 
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II var B: VeeX; 
II var G:VeeX; 

B,G := 0,A; 
doG,e0--+ 

II	 var x:X;
 
x:~ c;
 
B,G:= BUx, (C-x) U (R·x- (BUx)) 

JI 
od 

1\ 
11 

Figure 3.15: Singleton-Selection Solution of (3.6) 

the general solution then becomes the non-deterministic selection statement 
x :~ C. The result is presented in Figure 3.15. 

Note that the only use the program makes of the successor relation R of the 
graph is through the expression R· x 1 which denotes the set of successor 
vertices of vertex x. This suggests the use of an adjacency-lists -or successor 
lists- representation for the graph. 

The only thing still left to do in order to implement our algorithm in a 
conventional programming language is to data-refine the sets to some rep
resentation. Lists can be used for this purpose, assuming all the sets are 
finite. In such a case, the order in which vertices are kept in variables Band 
C can determine whether the graph is traversed in a depth-first fashion, a 

breadth-first fashion, or some other kind. 

Refinement to Whole-Selection Version Another possible refinement 
of the general solution is obtained by choosing set D to be the whole of set 
C , i.e. by refining the specification statement affecting D to D:= C. In 

this case variable D can be rendered useless by using C where D is used. 
D can thus be eliminated. The solution obtained in this case is shown in 
Figure 3.16; it corresponds to traversing the graph in a layered breadth-first 
fashion. 

3.3 Related Work 

The closure problems presented in this chapter have been extensively treated 
by others before. Our treatment has been included mainly as a warming
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l[varB:VecX; 
I( var C: VecX; 

B,C:= 0,A;
 
do C",0 -> B,C:= BUC,R·C-(BUC) ad
 

II 
]1 

Figure 3.16: Whole-Selection Solution of (3.6) 

up exercise that familiarises the reader with our style of development. We 
dedicate this section to review previous presentations by other authors. 

The all-pairs reachability problem is treated in [12, 16, 54, 136]. Backhonse et 
ai. [12] make use of a calculational framework based on regular algebra within 
which graphs are modelled by -adjacency- matrices. The more general 
setting of regular algebra allows them to treat all-pairs reachability as an 
instance of a general problem that also covers the computation of minimum 
paths between all pairs of vertices in a weighted graph. Moreover, our whole 
derivation is nearly a step-by-step instance of the more general derivation 
they present. The key properties of the closure operator of regular algebra 
they exploit were first used by Backhouse and Carre in a much broader 
study of path-finding problems [1OJ. In fact, the essence of the derivation 
of Backhouse et al. in [12) is the same as that of Backhouse and Carre in 
[10], except for the use made in the former of more modern calcUlational 
techniques for constructing imperative programs. Regarding other authors, 
Berghammer's construction [16] of \iVarshall's algorithm is very similar to 
ours, and so is the presentation of Feijs and van Ommering (54] except for 
the fact that they do not restrict progress of the iteration to singletons. The 
treatment of Feijs and van Ommering of all-pairs reachability is then, in 
that respect, similar to our treatment of fixed·source reachability! where a 
general algorithmic solution is first arrived at and then further refined to 
more specific solutions. Finally, in [136, Section 3.2]' Schmidt and Str6hlein 
present a correctness proof of Warshall's algorithm using the calculational 
framework of binary relations, but their presentation does not make explicit 
use of standard techniques for the development of imperative programs. 

The fixed-source reachability problem is treated in [12, 16, 105,133]. As 
it was the case for all-pairs reachability, Backhouse et al. [12] treat, within 
their setting of regular algebra, fixed-source reachability as an instance of a 
more general problem that also covers the computation of minimum paths 
between a single source vertex and all other vertices of a weighted graph. We 
will achieve the same level of generality and a little more in the next chapter, 
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where we deal with a generic problem of computing so-called representatives, 
of which fixed-source reachability is an instance. Backhouse et at obtain 
both depth-first and breadth-first traversal algorithms that correspond to 
our singleton-selection solution, but no layered breadth-first traversal like 
our whole-selection solution since they restrict their derivation to selection 
of singletons. Berghammer [16], on the other hand, uses the framework of 
binary relations but restricts the algorithmic solution to a layered breadth
first traversal. Moller [105J and Russling [133J also derive only a layered 
breadth-first traversal algorithm, but within a calculational framework of 
n-ary relations. Russling's treatment is more general since it covers a "class 
of layer-oriented graph algorithms ll that includes the fixed-source reachability 
problem and the fixed-source shortest paths problem, both of which will be 
accounted for in our general treatment of computing representatives in the 
next chapter. 

Out of the realm of imperative programming, Bird and de Moor derive in 
[28, Section 6.7J a functional-style algorithm for computing closure that cor
responds to fixed-source reachability. Our use of fixed points is based on 
their treatment of closure. Also, building on the fold-unfold categorical ap
proach to datatypes within functional programming -which we briefly met 
in Section 2.8, see e.g. [98, 1011-, Gibbons and Jones present in [66, 80] 
calculational derivations of functional algorithms that compute breadth-first 
traversals of trees. Such traversals could be adaptable to cater for graphs 
under a representation of graphs as infinite trees, an idea functional pro
gramming researchers seem to like to play with -see e.g. [53, Section 2.2.2] 
and [102, Section 4.4J-. 



Chapter 4 

Computing Representatives 

The contents of this chapter deal with a general problem of computing sets of 
representative elements selected from among a given set of candidates. Our 
interest in the problem of computing representatives sterns from the fact 
that a few graph problems can be specified as instances of it. This chapter 
presents a development of general algorithmic solutions to the problem of 
computing representatives, and the instantiation of such general solutions to 
specific graph algorithms. The results contained in this chapter were partially 
reported in [30]. 

Selection of representative elements is aided by two relations Q and R on 
the set of candidates. The first, Q, is an equivalence relation that partitions 
the set of candidates in equivalence classes. We will be interested'in choosing 
one representative element from each of such classes. The second relation, 
R l is a preorder that determines which candidates can represent their class. 
A representative element must be a maximum under R of its class. The 
set of candidates is specified in terms of a third relation S. The whole set 
of candidates is generated with the reflexive-transitive closure of S from a 
given initial set of candidates. 

Section 4.1 presents a formalisation of the notion of representatives, as well 
as a formal specification of the general computational problem we wiJ) be 
dealing with. Section 4.2 prepares the ground for the refinement of our 
problem to an algorithm by exploring some properties of the formal notions 
involved, viz. the selection of representatives and the generation of candi
dates by closure. Section 4.3 then presents the actnal derivation of a general 
algorithmic solution and, mimicking the obtention of the two final solutions 
to the fixed-source reachability problem in pages 61-62 of Section 3.2, this 
general solution is further refined in Section 4.4 to a singleton-selection ver
sion and a whole-selection version. We then dedicate ourselves to the ap
plication of the obtained algorithmic solutions to graph problems. Section 
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4.5 treats the problem of computing minimum paths in a weighted graph; 
the well-known algorithm due to Dijkstra [43] is obtained as an instance 
of the singleton-selection solution. Section 4.6 treats the problem of com
puting shortest paths in an unweighted graph; unlike the analogue problem 
of weighted paths, both the singleton-selection and the whole-selection solu
tions are applicable in this case. Section 4.7 deals again with the fixed-source 
reachability problem, showing that the treatment of this problem presented 
in Section 3.2 can be obtained as an instance of our treatment of the rep
resentatives problem. Section 4.8 closes the chapter by reviewing related 
work. 

4.1 Specification 

This section presents a formalisation of the notion of representatives, and a 
specification of the problem of computing representatives drawn from a set 
of candidates generated by closure. 

As mentioned earlier, selection of representatives is defined in terms of an 
equivalence relation Q and a preorder R, both of type X {- X with X 
the type of candidates. Let Band C be sets of elements of X represented 
by vectors -B, C : Vee X -. We say that B is a Set of representatives for set 
C if the following holds: 

Be.; C II C e.; (QnR)·B II B·WnQ c.;; id. (4.1) 

In words, the first conjunct says that all representatives, i.e. all the elements 
in B, are drawn from C. The second conjunct says that every element in 
C is represented by some element in B, with representation of an element 
c by an element b meaning that they are equivalent under Q and that 
c is at most b under R. Finally, the third conjunct says that the set 

of representatives must have at most one element per Q-equivalence class. 
Combining all, set B contains exactly one element per Q-class of C and 
such elements are R-maxima of their respective classes. 

Henceforth we will use B :'! C to stand for the first two conjuncts of (4.1); 
it may be read as "B is a tbinning of C". Both Q and Rare preorders 
and, since intersection preserves preorders, so is Q n R. This implies that 
~ is reflexive and transitive as well. We also introduce predicate uniq 1 

defined such that uniqB stands for the third conjunct of (4.1); we call it 
the uniqueness predicate. 

The set of candidates from which representatives are to be drawn must also 
be specified. We take it to be generated by repeated iteration of a relation 
S : X +- X from a given initial set A: Vee X. In other words, the set of 
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candidates is the existential image of A under S· , just like the set that had 
to be computed in Section 3.2. 

Specification Finally, we formalise the problem of computing representa
tives of a set generated by closure. The specification reads thus: 

II var B ,VeeX; 
B, [ true , uniq B II B:':l S' . A ] (4.2) 

]1 

where Q, R, S : X f- X -noting that Q and R are implicitly used in uniq 
and ~ - and A : Vec X are given relations. 

4.2 Exploring Some Properties 

Construction of an algorithm that solves our problem requires manipulation 
of the formal notions involved. In this section we explore the properties of 
such notions and then proceed with the actual derivation of an algorithm in 
the next section. 

The Uniqueness Predicate First, let us recall that uniq was defined as 
follows' 

uniq B B·B'nQr:;;id. (4.3) 

Thus, a set satisfies uniq if and only if it contains at most one element per 
Q-equivalence class. Among the sets that can be guaranteed to satisfy uniq 
are included the empty set and singleton sets, the latter being represented 
by points, i.e. functions: 

uniq 0 (4.4) 
uniq B provided B is a function . (4.5) 

The empty relation and all functions are simple relations, i.e. if W is either 
o or a function then W· W' r:;; id. Both (4.4) and (4.5) follow from this 
fact. 

Knowing that uniq holds for small sets, one could explore under what con
ditions bigger sets satisfying the uniqueness property can be built. Let us 
analyse the case of the union of two sets: 

uniq (B U C)
 
{ definition of uniq (4.3) }
 

(B U C) . (8 U Cj' n Q r:;; id
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distribution of converse, composition} 
{ and intersection over union 

(B· SO n Q) u (B C' n Q) 
u(C·SOnQ)u(C·conQ)';; id 
{ universal property of union (2.3) } 

(B·SOnQ,;; id) II (B·C'nQ ~ id) 
II (C·SOnQ,;; id) II (C·C'nQ ~ id) 

definition of uniq (4.3), twice; second and third } 
conjullcts are equivalent by properties of converse 

{ -(2.16), (2.17), (2.18)- and by symmetry of Q 
uniqB II umqC II (B·C' n Q ,;; id) . 

Thus, we have derived the rule: 

uniq (B u C) uniq B II uniq C II (B· CO n Q ~ id). (4.6) 

In words, union preserves uniqueness if the Q-classes present in both sets 
are represented by the same element. 

The Thinning Relation Thinning, denoted by ~ was defined as:I 

B ~ C := B ~ C II C ,;; (Q n R) . B (4.7) 

As was done for the uniqueness predicate, we analyse interaction of the thin
ning relation with union. Specifically, we analyse monotonicity of union with 
respect to ~. We proceed thus: 

DuB ~ DuC 
{ defioition of ~ (4.7) } 

DuB ~ DuC II DUC';; (QnR)·(DuB) 
{ distribution of composition over union (2.14) } 

DuB ~ DuC II DuC ~ (QnR)·D u (QnR)·B 

monotonicity of union with respect to } 
~ { inclusion, relation Q n R is reflexive 

B ~ C II C ~ (Q n R)· B
 
{ definition of ~ (4.7) }
 

B~C
 

Hence, union is indeed monotonic with respect to thinning: 

DUB ~ DuC ~ B ~ C (4.8) 
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Property (4.8) is all too nice, but we can do better than that. To explain 
what we mean by "better", let us do a little operational reading of (4.8): 
to take a thinning of D u C , it suffices to thin C while leaving D intact. 
Now, if we are to leave D intact, one would want to be able to thin C 
ignoring those Q-classes in C which are present in D. In other words, if 
B :9 G - Q . D, under what condItions DUB :9 DuG does hold? Let 
us explore this: 

DUB:9 DuG 
{ repeat of the first two steps of the proof of (4.8) ahove } 

DUB c:: DuG II DuG c:: (QnR)·D u (QnR)B 
{ universal property of union (2.5), twice} 

D c::; DuG II B c:: DuG
 

II Dc:: (QnR)·D u (QnR)·B
 
II G c:: (Q n R) . D u (Q n R) . B
 

{ union, Qn R refle~ive: first and third conjunct hold} 

B c::; DuG II G c:: (QnR)·D u (QnR)·B 
-expression C - Q . D needs to be included- } 
complementation: W ~ (W n V) u (W - V)

{ with W, V:~ G, Q . D 

B c:: D u (G n Q·D) u (G-Q·D,) 
f\ (G n Q·D) u (G-Q·D) c:: (QnR)·D u (QnR)·B 

first conjunct: union; for the second conjunct}
{=o { we claim: G n Q . D c:: (Q n R) . D . 

B c:: G-Q·D II G-Q·D c:: (QnR)·B 

{ definition of :9 (4.7) } 

B :9 G-Q·D 

And we can obtain a proviso on C, D from the claim: 

C n Q·D
 

c:: { Dedekind's rule (2.20) }
 

(C·Do n Q)·D
 
c:: { assume G· DO c:: R }
 

(QnR)·D.
 

Hence, the following rule holds: 

DuB :9 DuG {=o B:9 G - Q. D provided G· DO c:: R. (4.9) 
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Generalising Closure The properties of the closure operator we will use 
in relation to the representatives problem require a suitable generalisation 
of closure. This generalisation closely resembles the one used for the fixed
source reachability problem in Section 3.2 -see page 58-. As in that section, 
if function f is defined as follows: 

f C := (J' W : C US· W) (4.10) 

it then holds that fA = S·· A . In Section 3.2, function f was generalised 
to take into account that some elements, having already been considered, 
did not need to be generated anymore. For the representatives problem, the 
generalisation of f we will make use of takes into account, not that some 
elements have already been considered, but that representative elements for 
some Q-equivalence classes have already been obtained. We will see that, 
under some conditions, the S-generative process does not need to consider 
those classes at all anymore. We will now proceed to define and analyse 
function g, the generalisation of f; we will, however, abandon the use of f, 
preferring the expression S·· C to f C . 

Function 9 can be seen as modelling a pruning of the generative process: 

g(B,C) -= (J'W: C U (S·W-Q·B)) . (4.11) 

As before, we call the second argument of 9 the set of "seed" elements of 
the generative process, whilst the first argument corresponds to the set of 
"already generated representatives". As before, we record some interesting 
properties of g. First: 

g(0,C) S· ·C (4.12) 

g(B,0) o . (4.13) 

Their proofs are as in Section 3.2. Rule (4.12) has a weaker form when 
generalised to any set of already generated representatives: 

g(B,C) C;; S··C. (4.14) 

It follows from property V - U ~ V of subtraction and monotonicity of the 
least fixed-point operator J' (2.56). To complement rule (4.13), which deals 
with the case of an empty set of seeds, let us seek a rule that deals with the 
union of two sets of seeds. Unlike the analogue rule that was used in Section 
3.2, no seeds are taken out of the generative process. This will be accounted 
for in the key Thinning the Closure rule presented in the next snbsection. 
We manipulate thus: 

g(B, Cl U C2)
 

= {definition of 9 (4.11) }
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(I' W : Cl U C2 U (5· W - Q. B) ) 

fixed-point rolling rule (2.57) with } 
= :FW:= Cl U w,

{ 9 W := C2 U (5· W - Q . B) 

Cl U (I' W: C2 U (5· (Cl U W) - Q . B) ) 

distribution of composition over union (2.14) } 
= { and of subtraction over union (2.12) 

Cl U (I' W: C2 U (5· Cl - Q . B) U (5· W - Q . B) I 
= { definition of 9 (4.11) } 

Cl U 9 (B, C2 U (5 Cl - Q. B)) . 

In summary: 

9 (B, Cl U C2) = Cl U 9 (B, C2 U (5· Cl - Q. B)). (4.15) 

Thinning the Closure A crucial property of function 9 in connection 
to the thinning relation :SJ is presented in this subsection. \Ve call it the 
Thinning the Closure rule. The validity of this rule relies on the parameters 
Q, R and S of the representatives problem satisfying the following two 

requirements: 

5<;;R, (4.16) 

5'(QnR) <;; (QnR)·5 . (4.17) 

The first requirement says that the generating relation S gives rise to candi
dates that are no greater under R. Therefore, representative elements, being 
R·maxima of their classes, are likely to be produced sooner rather than later. 
The second requirement states that relation S is monotonic on the thinning 
mediator Q n R. This is better explained using points. Suppose there are 
elements x and y such that x (Q n R) y , i.e. they are members ofthe same 
class and x is at most as good as y. This means that y can represent x. 
Now suppose that an element x' is generated from x, Le. X' (5) x holds. 
Then there must be an element y' such that both x' (Q n R) y' and y' (5) Y 
hold. This means that y can generate elements that represent every element 
generated from x. Therefore, x can be safely disposed of in the presence 
of y. These two requirements allow the 5-generative process to be pruned 
accordingly. 

The Thinning the Closure rule reads: 

g(BUD,C-QD) :9 g(B,C)-Q·D } 
provided C· D' <;; R , (4.18) 

5·D-Q·B <;; C. 
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An informal explanation follows. Suppose that, out of the generative process 
with set C as seeds and set B as already selected representatives, we have 
chosen a set D that includes some more representatives. We thus want to 
ignore tne classes represented in D from now on; this corresponds to the 
expression on the right-hand side of the :9-equation. Under some conditions 
this can be done by eliminating every class represented in D from the seeds 
and induding D among the already chosen representatives; this corresponds 
to the left-hand side of the :9-equation. Note that the set on the left-hand 
side is considerably smaller than the set on the right-hand side. The provisos 
for this thinning to be valid are (a) that any element in D is no smaller under 
R than any element in C, and (b) that the immediate successors under S 
of elements in D, with the exception of those in classes represented in B, 
are already included among the seeds. Requirements (4.16) and (4.17) on 
relations Q, Rand S imply that the elements that are being eliminated 
from the generative process, either for being in a Q-class of D or for being 
generated from elements in a Q-class of D, will be represented either by 
elements in D or by elements generated from the immediate S-successors of 
D that are included in C. 

The proof of this rule is somewhat long and tedious. It is presented in 
Appendix A.!. 

4.3 Developing an Iteration 

We now proceed with the actual derivation of an algorithm that computes 
representatives. The specification statement of (4.2) will be refined to an 
iteration. 

Setting Up the Iteration For the refinement of (4.2) to an iteration, we 
take the conjunct uniq B from the postcondition as part of the invariant. 
Properties (4.4) and (4.6) suggest that B is initialised to 0 and then re
peatedly augmented. To deal with the rest of the postcondition, we will use 
function 9 to repeatedly cut down the set of candidates according to the 
classes already represented in B. All told, we propose the following invari
ant, which requires the introduction of a new program variable C for the 
record of the changing set of seeds: 

Invl - uniqB , 

Inv!! - BUg(B,C):9 S··A, 

Inv - Invl /\ Inv!! 
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Assignment B, C := 0, A establishes the invariant due to (4.4), (4.12) and 
refleJdvity of :9. Property (4.13) suggests G i 0 as guard. The iteration 
will progressively accumulate representatives in variable B. Assuming there 
is a finite number of Q-equivalence classes, a reasonable choice for variant 
expression is B, with progress guaranteed by its increase. As customary by 
now 1 we introduce a shorthand for this: 

Prg := (B:::J Bo) . 

Note that, in this case, we do not assume that X is a finite set. In fact, 
in some of the instances of the representatives problem we will treat in later 
sections X will indeed be an infinite set. The guarantee that the increase 
of B is bounded comes from assuming that the number of Q-equi.....alence 
classes is finite and from lnvl I which guarantees that B holds at most one 
member per Q-class. 

What we have discussed so far corresponds to the following refinement of the 
specification statement of (4.2): 

B: [ true , uniq B /\ B:9 S' . A I 
introduce local block and initialised iteration}

!;; { according to the discussion above 

\[	 var G: VecX; 
B,G:=0,A; 
do G i 0 -+ B, G : ( G i 0 /\ Inv, Inv /\ PrgJ od 

II 

Developing the Iteration Body We now go for the body of the itera
tion. In order to guarantee progress, variable B should be augmented with 
elements of new Q-equivalence classes, Le. classes not yet represented in it. 
This is achieved hy assignment B:= BUD provided the following holds: 
(i)	 D i 0 and (ii) B· DO n Q = 0. Assuming tbat variable C will also 

require updating, we explore maintenance of the invariant by the statement 
B,G:= BU D,Exp. 

For the first half of the invariant, we reason thus: 

Inv! [B,G:= BU D, Exp] 

{ substitution} 

uniq (B U D) 

{ preservation of uniqueness under union (4.6) } 

uniq B /\ uniq D /\ (B· DO n Q ~ id) 

{ Inv! , assumption (ii) above implies the third coojunct } 

73 



uniqD . 

Hence, we also need (iii) uniq D. Maintenance of the second half of the 
invariant will provide us with the right value to assign to C. We reason as 
follows: 

"" 

Inv2 [B,C:= BUD, Exp I 
{ substitution} 

BuD u 9 (B u D, Exp) 

{ Inv2, transitivity of :oJ 

BuDug(BUD,Exp) 

:oJ 

} 

:oJ 

S·· A 

Bug(B,C) 

{ monotonicity of union with respect to thinning (4.8} } "" 
D u g(BUD,Exp) :oJ g(B,C) 

assume (iv) D ~ C; hence, C = D u C, } 
{ interaction of function 9 with union (4.15) 

DUg (B u D, Exp) :oJ DUg (B, C u (S· D - Q. B)) 

refined monotonicity of union with respect to }
¢" { thinning (4.9) -assume proviso of the rule

g(BUD,Exp) :oJ g(B,CU (S·D-Q·B)) - Q·D 

¢" 
Thinning the Closure rule (4.18) -assume} 

{ its two provisos-, transitivity of ~ 

g(BUD,Exp) :oJ g(BUD, (C U (S·D-Q·B))-Q·D) 

¢" { reflexivity of :oJ } 

Exp = (C U (S·D-Q·B))-Q·D . 

Two sets of provisos were assumed in the fifth and sixth steps, which will 
impose one more restriction on D. \Ve start with the provisos of (4.18), 
assumed in the sixth step. The second of them, 

S· D - Q . B ~ C U (S· D - Q . B) , 

holds without further restrictions while the first, 

(C U (S· D - Q. B)) . DO ~ R, (4.19) 

does impose one more requirement on D .""We manipulate thus: 

(C U (S· D - Q. B)) . DO 

~ { subtraction} 

(CUS·D)·Do 

~ {R reflexive, requirement (4.16) } 

(R· CuR· D) . DO 
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••• 

{ distribution of composition over union (2.14) } 

R·(C U D)·Do 

= { assumption (iv) above} 
R.C. DO 

,:; {assume (v) C· DO':; R; R transitive} 

R. 

We have only one proviso left to check, the one of (4.9): 

g(B, C U (S·D-Q·B))· DO ,:; R. 

It follows from (4.19), which we show as follows: 

g(B, C U (S·D-Q·B)). DO 

,:; { from function 9 to closure (4.14) } 

S·· (C U (S· D  Q. B)) . DO 

,:; { (4.19) proved above} 

S·· R 

c { 
since R is a preorder l requirement (4.16) and univeISal } 
property of closure (2.62) imply that S' ,:; R holds 

R·R 
,:; { R transitive} 

R. 

In summary, we have collected five requirements (i)-(v) on D to make state
ment B, C:= BUD I maintain the invariant and guarantee progress: 

(i) D i' 0 , (ii) B· DO n Q = 0 (iii) uniq D , 
(iv) Dc;;, C , (v) C·D°':;R. 

Requirement (ii) is implied by (iv) due to a third invariant of the developed 
iteration: B· Co n Q = 0 , i.e. Band C do not share equivalence classes. 
The proof that this is indeed an invariant of the developed iteration is pre
sented in Appendix A.2. All told, we have refined the body of the iteration 
a.<; follows: 

B, C : [ C ,. 0 /I Inu , Inu /I Pry] 

introduce local block and sequential composition}
i;; { according to discussion above 
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I[	 var B: Vee X ; 
II var C:VecX; 

B,C:= 0,A; 
doC?,0-+
 

II var D:VecX;
 
D: I C ?' 0, (i) A (iii) A (iv) A (v) ] ;
 
B,C := BUD, (C U (S·D-Q·B)) -Q·D
 

JI 
od 

]1 
]1 

Figure 4.20: General Algorithmic Solution of (4.2) 

I[	 var D:VecX; 
D: I c?, 0, (i) A (iii) A (iv) A (v) ]; 
B,C := BUD, (C U (S·D-Q·B))-Q· D 

]1 

The whole code, our general algorithmic solution to the representatives prob
lem, is collected in Figure 4.20. In the following section, the specification 
statement left in the body of the iteration will be further refined, thus ob
taining more specific solutions. 

Feasibility Before moving on to the next section, note that the specifica
tion statement yet to be refined might not be feasible: there might be no 
values for D that comply with the postcondition, even if Q and R satisfy 
the requirements imposed on them so far and C satisfies the precondition. 
However, we will see that, in the process of refining the general solution 
to more specific ones) some additional requirements will be imposed on the 
parameters of our problem, which will make the developed programs feasible. 

4.4 Further Refinement 

This section continues the development of algorithmic solutions to the repre
sentatives problem. As in the treatment of the fixed-source reachability prob
lem in Section 3.2, we will construct singleton·selection and whole-selection 
algorithms by refining the specification statement left jn Figure 4.20. 
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I[	 Va< B, VeeX; 
I[	 var C: VeeX;
 

B,C := 0,A;
 
do Ci0 -t
 

II x: X;Va< 

x :<; max (R, C) ; 
B,C:= BUx, (C U (S·x-Q·B))-Q·x 

11 
od 

II 
II 

Figure 4.22: Singleton-Selection Solution of (4.2) 

Refinement to Singleton-Selection Version Set D 1 to be drawn from 
C according to condition (iv), can be chosen to be a singleton set. A single

ton set would then trivially satisfy (i), and would also satisfy (iii) on account 
of singletons being functions and property (4.5) of uniq. Therefore, only 
conditions (iv) and (v) would be required of such a singleton. 

This refinement can be formalised by introducing a fresh variable x of type 
X to replace D, i.e. by applying data refinement with coupling invariant 
x = D. The specification statement in Figure 4.20 wonld then become: 

x:	 I C i' 0 , x <; C A C· x' <; R] . (4.21) 

This corresponds to choosing x to be an R-maximum element of C. To 
guarantee the existence of such a maximum, which amounts to guaranteeing 
that statement (4.21) is feasible, it suffices to require that R is a connected 
preorder and to make sure that C is always finite. Finiteness of C as an 
invariant of the iteration can easily be shown to follow from two further 
requirements: that A is finite, and that S is finitary, i.e. that S· x is finite 
for every element x. 

Under the new requirements, and using definition (2.59), statement (4.21) is 
equivalent to: 

x :<; max (R, C) . 

The resulting algorithm is presented in Figure 4.22. 

Refinement to Whole-Selection Version Choosing set D to be a sin
gleton is the extreme where D is chosen to be as small as possibJe. At 
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the other extreme, there is the option of choosing D to be as big as possi
ble. First thing that comes to mind is taking D to be the whole of set C. 
This would not necessarily work though, since C might have more than one 
element from some Q-equivalence class and D is required to satisfy uniq. 

The biggest that D could be is the result of choosing one element per Q
class present in C. If such elements are chosen arbitrarily, D would be 
a thinning with R:= II of C that also satisfies uniq; i.e. D would be a 
subset of C with exactly one element per Q-equivalence class not preferring 
any element to any other in each of the classes. 

We thus explore conditions under which the following refinement is valid: 

D:	 [ C 10 0 , (i) II (iii) II (iv) II (v) ] } (
4.23

) 
[;; D: [ C 10 0 , uniq D II D <;; C II C <;; Q . D ] . 

The postcondition of the last specification statement requires D to satisfy 
uniq and to be such that D ~ C with R:= II. Refinement (4.23), as a 

strengthening of the postcondition, follows from: 

C 10 0 II uniq D II D <;; C	 II C <;; Q . D } (4.24) 
=? (i) II (iii) II (iv) /\ (v) , 

which we now proceed to prove. Conditions (iii) and (iv), viz. uniq D and 
D ~ C, follow trivially from the antecedent. It remains to show that (i) and 

(v), viz. DIo0 and C·D' <;; R, also do so. 

Let us start with (i) D 10 0. Assume the antecedent of (4.24) and then, using 
conjuncts C <;; Q. D and C 10 0 , we have that: 

D = 0 =? C <;; 0 '" false . 

Hence, (i) indeed holds. 

Showing (v) C· DO ~ R will impose additional requirements on the param
eters R, S and A of our problem. Using conjunct D ~ C of the antecedent 
of (4.24), we have that (v) follows from: 

C·C' <;; R.	 (4.25) 

This amounts to saying that all the elements of C have the same R-cost. 
We call this condition, i.e. (4.25), the R-homogeneityof C. We claim that, 
under certain conditions we will derive shortly, R-homogeneity of C is an 
invariant of the iteration of our general solution in Figure 4.20. Therefore, 
(v) holds. Let us now explore such a claim. 

It must be the case that A is R-homogeneous for C to be R-homogeneous 
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initially, i.e. for condition (4.25) to be established by the initialisation state
ment B, C := ... , A. Hence, we require: 

A-A' <;: R.	 (4.26) 

if it is assumed that C is R-homogeneous at the beginning of the iteration 
body, it still holds after the first statement since such statement does not 
affect C. It remains to show that the second, and last, statement of the it
eration body preserves R-homogeneityof C, Assuming that the antecedent 
of (4.24) holds, and that so does (4.25), we argue thus: 

(4.25)	 [B,C:= ... , (CU (S·D-Q·B))-QDJ 

sub~titution; distribute subtraction over union (2.12) } 
{ takmg W; V := C - Q . D , S· D - Q . B - Q. D 

(W U V) . (W U V)' <;: R 

hypothesis C <;: Q. D in (4.24) implies that W = 0; } 
<= { by subtraction we have V ~ S· D , converse (2.16) 

S·D·D'·S' <;: R
 

<= { hypothesis D <:; C in (4.24), and (4.25) }
 

S·R·S'<:;R 

Hence, R-homogeneity of C is maintained by the iteration body provided 
we impose the following as a new requirement on Rand S: 

S·R·S' <:; R.	 (4.27) 

In words, this new requirement ensures that, if C is R-homogeneous -Le, all 
the elements of C have the same R-cost-, then the set of all S-descendants 
of the whole of C is also R-homogeneous -i.e, all such descendants also 
share a, possibly different, R-cost-. 

We	 have thus proved implication (4.24) and} therefore, the validity of re
finement (4.23), under new requirements (4.26) and (4.27). The assignment 
statement in the iteration body, which follows the specification statement, 
can also be refined. The expression used to assign a new value to C can be 
simplified using the new postcondition of the specification statement: 

(C	 U (S·D-Q·B))-Q·D 
{ distribution of subtraction over union (2.12) } 

(C -Q·D) U (S·D-Q·B-Q·D) 
{ since C <:; Q. D we have C - Q . D = 0 } 

S·D-Q·B-Q·D 
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subtraction/union (2.13) and } 
{ distribution of composition over union (2.14) 

S· D - Q. (B U D) . 

Summarising, the iteration body of the general solution in Figure 4.20 has 
been refined to: 

II var D: VecX; 
D: I C # 0 , uniq D 1\ D r:; C 1\ C r:; Q . D J 
B, C := BUD, S . D - Q . (B U D) 

II 
provided the input set A is R-homogeneous (4.26) and the generator S 
preserves R-homogeneity (4.27). 

Now note the interesting fact that our last specification statement above can 
be refined, by weakening the precondition, to: 

D: [ true , uniq D 1\ D r:; C 1\ C r:; Q . D I , (4.28) 

which is an instance of the very initial specification of the representatives 
problem (4.2) using Q,R,S,A,B := Q,II,0,C,D. We choose to refine 
(4.28) using the singleton-selection solution of Figure 4.22; for this, note 
that requirements (4.16) and (4.17) hold if S = 0. 

We thus obtain our final whole-selection version as shown in Figure 4.29, 
where the local singleton-selection program of Figure 4.22 has been inserted 
after renaming some of the local variables and simplifying some of the ex
pressions involving Rand S, now nand 0. Specifically, local variable 
C has been renamed as E, expression max (II, E) -see (2.59)- has been 

simplified to E, and expression E U (0· x - Q . D) has been simplified to 
E. 

4.5 Fixed-Source Minimum Paths 

This section shows that the fixed-source minimum paths problem is an in
stance of the representatives problem, and that it satisfies the required con
ditions for the singleton-selection algorithmic solution to apply. 

In the fixed-source minimum paths problem, we are provided with a directed 
graph (Vert, Edge, xl, x2) and a function weight: R t- Edge that assigns a 
weight, or cost, to each edge. We are also given a set V: Vee Vert called the 
source. For every vertex w reachable from V, we are required to compute a 
path of minimum cost among all the paths to w that start from a vertex in 
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II 

I[ var B: Vee X ; 
I[ var G: VeeX; 

B,G := 0,A; 
doG#0--+ 

I[ var D: VeeX; 
If var E:VeeX; 

D,E:= 0,G; 
do E#0 --+ 

l[varx:X; 
x :<; E; 
D,E:= DUx,E-Q·x 

II 
od 

II; 
B,G:= BUD, S·D - Q·(BUD) 

II 
od 

JI 

Figure 4.29: Whole-Selection Solution of (4.2) 
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V. We formalise the problem making use of the datatype Path and related 
functions defined in Section 2.8. 

Assume we have the set of all the paths that start in vertices of the source set 
V. Partitioning such a set according to the ending vertices of the paths and 

drawing one of minimum cost from each class provides the required output. 
This corresponds to the instantiation: 

X := Path, 

and to choosing representatives using the following relations: 

pi (Q) p2 e.nd pl = end p2 l (4.30) 

pi (R) p2 - cost pl 2: cost p2 (4.31)l 

where end is, as in Section 2.8, a function that returns the ending vertex 
of a path and cost is a function that returns the sum of the weights of the 
edges of a path. For completeness, we spell out the definition of cost: 

cost (wrap v) o , 
(4.32) }cost (cons (v,e,p)) weight e + cost p . 

Note that a maximum under R is a path of minimum cost. We still need 
to instantiate parameters S and A of the general representatives problem. 
The set of paths that start in elements of V is isPath?· start" . V which, 
according to property (2.114), equals (cons· ok?· out3")' . wrap' V . This 
suggests instantiating: 

S := cons· ok? . out3°
 

A '= wrap' V
 

Using pointwise statements, these instantiations correspond to: 

pi (5) p2 (3 v, e : ok (v, e,p2) : pl = cons (v, e, p2)) , (4.33) 

p (A) * ( 3 v : v (V) * : p = wrap v) . (4.34) 

Armed with these relations Q, Rand S , we now need to check that require
ments (4.16) and (4.17) hold. This will allow us to use the singleton-selection 
solution of the representatives problem presented in Figure 4.22. 

We analyse (4.16) thus: 

pl (5) p2 

{ definition of 5 (4.33) ) 

(3v,e: ok(v,e,p2) : pl = cons (v,e,p2)) 
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{ definition of cost (4.32) } '* 
( 3 e :: cost pi = weight e + cost p2 ) 

{ a...o;sume weights are non-negative}'* 
cost pi 2: cost p2 

{ definition of R (4.31) }
 

pi (R)p2 .
 

Hence, (4.16) holds provided weights are non-negative. 

Now for (4.17): 

pi' (8) pi 1\ pi (Q n R) p2 

{ definitions of Q (4.30), R (4.31) and 8 (4.33) } 

(3v,e: ok(v,e,p1): pl'=cons(v,e,p1)) 

/\ end pi = end p2 1\ cost p1 2 cost p2 

second conjunct and definition of ok (2.111) imply lhat } 
{ ok (v, e, pi) == ok (v, e, p2), take p2' := cons (v, e, p2)'* 

(3v,e: ok{v,e,p1) 1\ ok (v,e,p2) : 

pl'=cons(v,e,pl) 1\ p2'=cons(v,e,p2)) 

A cost pi ~ cost p2 

{ definitions of end (2.107) and cost (4.32) } '* 
(3v,e: ok (v,e,p2) : p2' = cons (v,e,p2)) 

/\ end pi' = end p2' 1\ cost pi' 2: cost p2/ 

{ definitions of Q (4.30), R (4.31) and S (4.33) } 

pl'(QnR)p2' 1\ p2'(8)p2. 

We have thus proved that this instance of the representatives problem has 
as solution the singleton-selection algorithm of Figure 4.22. The result is 
Dijkstra's algorithm for the computation of minimum paths [431. Note that 
the requirements used to guarantee that the singleton-selection algorithm is 
feasible, viz. that R is connected, A is finite and S is finitary, also hold. 
The last two ODes do so on account of the assumption that we are only dealing 
with graphs whose vertex set and edge set are both finite. 

The whole-selection algorithm cannot be used since requirement (4.27) does 
not hold. 
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4.6 Fixed-Source Shortest Paths 

A simpler version of the fixed-source minimum paths problem is obtained by 
uniformly assigning a weight of one to each edge. This means we only care 
for the length, i.e. the number of edges, of the paths and we thus speak of 
shortest paths rather than minimum paths. 

As a particular case of the minimum paths problem, the shortest paths 
problem is also an instance of the representatives problem. Requirements 
(4.16) and (4.17) hold, as proved in the previous section, and, therefore, the 
singleton·selection algorithm can be used to compute shortest paths. Re
quirements (4.26) and (4.27) also hold in this case, as we prove below, which 
makes the whole-selection algorithm of Figure 4.29 also applicable for the 
computation of shortest paths. 

We prove (4.26) thus: 

pl (A). 11 • (AO) p2 

{ definition of A (4.34), converse} 

( 3 v : v (V). : pl = wrap v ) 

11 (3 v : v (V). : p2 = wrap v) 

~ { definition of CDSt (4.32) } 

cDstpl = 0 11 cDstp2 = 0 

~ { definition of R (4.31) } 

pl (R) p2 . 

For (4.27), we argue as follows: 

pl' (S) pl 11 pl (R) p2 11 p2 (SO) p2' 

{ definitions of R (4.31) and S (4.33), converse} 

cost pl 2 CDSt p2 

11 (3v,e: Dk(v,e,pl): pl'= CDns (v,e,p1)) 

11 (3v,e: Dk(v,e,p2): p2'=cDns(v,e,p2») 

cost of the paths is just their length } 
~ { -i.e. weight e = 1 for any edge e-

cost pi 2: cost p2 

A cost pi' = cost pi + 1 A cost p2' = cost p2 + 1 

~ { arithmetic} 

cost pi' 2: cost p2/ 

{ definition of R (4.31) } 

pl' (R) p2' 
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Note that edges are not significant for this problem. The existence of parallel 
edges, for instance, is completely irrelevant. This was not the case for the 
minimum paths problem, since a pair of parallel edges might have had differ
ent weights and thus determine paths of different costs in spite of "walking" 
over the same vertices. Given that edges are not significant for the computa
tion of shortest paths, this problem could have been posed in terms of simple 
graphs -see page 28 of Section 2.5- with edges not entering the picture at 
all. This would have involved redefining the datatype Path and all its re
Lated functions and we thus chose not to do so. Such a redefinition can be 
found in [127, Section 3.2J 

4.7 Fixed-Source Reachability 

The fixed-source reachability problem, as stated in Section 3.2, is that of 
computing the set of vertices that can be reached in a given graph from a 
given source set of vertices. Formally, the aim of the problem is the compu
tation of Succ"· V : Vec Vert where Suce: Veri f- Veri is the SllCCessor 
relation of the graph and V: Vec Vert is the given source. 

We nOw show that the fixed-source reachability problem is an instance of 
the problem of computing representatives (4.2). First of all r let us make the 
straightforward decision to take X, S, A := Veri, Succ, V. The instantia
tions of S and A give us a set of candidates S·· A that corresponds to the 
whole Set we aim to compute, Le. the whole set of vertices reachable from 
V . We then need to instantiate Q and R accordingly. Since every vertex 

is relevant on its own, no pair of different elements should be set to be equiv
alent, which leads to choosing Q:= id. Such a selection for the equivalence 
relation Q makes the uniqueness predicate (4.3) be the constant predicate 
that always return true. Also, it makes the thinning relation (4.7) be the 
equality relation) irrespective of what preorder R is chosen to be: 

B~C 

{ definition of ~ (4.7) with Q := id } 

B <;; C 1\ C <;; (idnR). B 

{ R is reflexive: id <;; R; hence, id n R = id } 

B<;;CI\C<;;B 
{ inclusion/equality of relations}
 

B = C.
 

Hence, the instance X,Q,S,A := Vert) id, Succ, V of the representatives 
problem (4.2) corresponds to the fixed-source reachability problem (3.6) 
-applying substitution X, R, A := Vert, Succ, V since in Section 3.2 relation 
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R : X f- X was used as the successor relation of the graph and A: Vec X 
as the wurce vertex set-. 

As pro"ed in the calculation above, taking Q:= id renders preorder R 
useless as far as the specification of the problem is concerned. However, 
for using the algorithmic solutions we derived before, we need requirements 
(4.16) and (4.17) to hold. Also, R must be connected to guarantee that 
the singleton-selection solution of Figure 4.22 is feasible. Finally, we also 
need additional requirements (4.26) and (4.27) to hold if we want to use 
the whole-selection solution of Figure 4.29. Choosing R:= n makes all the 
aforementioned conditions valid and, therefore, both the singleton- and the 
whole-selection algorithms can be used. 

It can be proved that the three algorithmic solutions, i.e. the general one 
in Section 4.3 and the two more specific ones in Section 4.4, for this in
stance X, Q, R, S, A := Vert, id, II, Succ, V correspond to the three algorith
mic solutions in Section 3.2 for the fixed-source reachability problem -with 
X, R, A := Vert, Succ, V -. However, some formal manipulation is needed 
to obtain the exact correspondence. General solution of Figure 4.20 only 
requires simplification of (iii) and (v) to true and distribution of subtraction 
over union to be transformed into Figure 3.14. Singleton-selection solution of 
Figure 4.22 is similarly transformed into Figure 3.15, simplifying max (II, C) 
to C. Simplification of the whole-selection solution of Figure 4.29 to obtain 
3.16 is somewhat more laborious: the block that declares variable E can 
be proved equivalent to assignment D:= C , which then allows discarding 
variable D by making direct use of C instead. 

4.8 Related Work 

The class of graph problems we have treated as instances of the representa
tives problem has been tackled by others using different calculational frame
works. We commented on the work of Backhouse et al. [12], Moller [105J and 
Russling [1331 before in Section 3.3. 

Backhouse et aL [12) cover our singleton-selection algorithm for the mini
mum/shortest paths problem aud the reachability problem. They weight 
the edges with elements of an arbitrary regular algebra, thereby achieving 
a higher level of generality. However, we believe our instantiation to real 
numbers in Section 4.5 and Section 4.6 can be also proved correct using the 
carrier set of a regular algebra. They fail to provide our whole-selection algo
rithm since they restrict their treatment to singleton sets: "The algorithm we 
develop is based on an iterative process in which at each iteration Theorem 
7.1 is UBed to 'process' one node" [12, page 13] -our emphasis-. However, 
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we believe their "Key Theorem 7.1" can be generalised to cater for arbitrary 
sets. Moller first treated the reachahility problem in [105], then with Rus
sling the shortest paths problem in [107] and l later, Russling presented a 
"class of layer-oriented graph algorithmsll (133] where he treats both prob
lems in a uniform way -see also [33J-. Their solutions correspond to Our 
whole-selection algorithm. They do not deal with the minimum patm prob
lem. Clenaghan has shown that Backhouse et al. 's and Moller and Russling's 
approach to this class of graph algorithmic problems can be formally unified 
using dynamic algebra [34]; it would be interesting to see how our approach 
relates to this work. 

A related reference is [50L where van den Eijnde treats, in a calculational 
style similar to ours though using non-conventional control structures. a class 
of graph problems that includes a so-called ascending reachability problem. 
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Chapter 5 

Computing Maximal Sets 

In this chapter we deal with the general problem of computing maximal sets 
satisfying a certain given predicate. As with the problem of computing rep
resentatives in Chapter 4, our interest in the problem of computing maximal 
sets comes from the existence of some instances of it that correspond to graph 
problems. The contents of this chapter were first partially reported in {!28] 
and later fully reported in [1291· 

Section 5.1 presents a formal specification of the general problem of comput
ing maximal sets satisfying a certain predicate P, as weB as some properties 
that will be required of P for the development of algorithmic solutions. Sec
tion 5.2 then presents the derivation of an algorithmic solution of the general 
problem, and such a solution is further refined in Section 5.3. The properties 
of P on which the derivation is based rely on the existence of some auxil 
iary predicates and functions that form part of the final algorithm. When 
calculating graph instances of the general problem in the rest of the chapter, 
the calculus of relations is used to prove such assumed properties of P and 
to calculate the auxiliary components for each instance. Section 5.4 presents 
the instance of computing maximal independent sets of vertices and Section 
5.5 presents the instance of computing maximal sets of edges without cycles, 
which corresponds to computing connectedness-preserving forests. As usual, 
we close the chapter by reviewing related work in Section 5.6. 

5.1 Specification 

This section presents a formal specification of the general problem of comput
ing maximal sets satisfying a given predicate P, and the conditions required 
of P for the refinement of such a specification to a program. 

Let X be some universe, i.e. a set, and let P be a predicate on subsets of 
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it. A subset of X, maximal among the subsets of X for which predicate 
P holds, is to be computed. Using the formalisation (2.43) of maximal sets 
presented in page 17 of Section 2.2 l the aim is to compute a set A that 
satisfies mxl (P, A) . 

Specification Our problem is specified as follows: 

II var A: Vee X ; 
A: [ true, mxl (P, A) ] (5.1) 

]1 

Requirements Some properties will be required of predicate P to refine 
(5.1) to a program. First, P is assumed to be subset-closed. As stated in 
(2.45), and repeated here for convenience, this means: 

Al ~ A2 =} (P A2 =} P A1) , (5.2) 

where Al and A2 are dummies ranging over subsets of X . Since the empty 
set is a subset of every set, a subset-closed predicate that does not hold on 
the empty set must be the trivial everywhere-faLse predicate, in which case 
our computational problem would have no solution. Our second asumption 
does away with such a possibility by stating that P must hold on the empty 
set: 

P0 . (5.3) 

Finall)', it is assumed that P is incremental with respect to a second predi
cate Q in the following sense: 

P{AUa) '" PA II Q(A,a) provided a s:;; A (5.4) 

where A and a range, respectively, over subsets of X and elements of 
X. Provided P is subset-closed, incrementality is no restriction since such 

a Q always exists: take Q (A, a) to be P (A U a). However, we are not 
interested in arbitrary Q satisfying (5.4) since the efficiency of the program 
will depend on such a selection. 

Non-trivial subset-closedness, i.e. (5.2) and (5.3), is related to the notion of 
matroids used in combinatorial optimisation. Matroids are defined as families 
of sets over a certain given universe -or, equivalently, predicates on such 
sets, as our P - that satisfy some properties l non· trivial subset-closedness 
among them. Matroids are used to develop greedy algorithms -see e.g. [36, 
Chapler 17] or [92, Chapter 7]-, very much in the same way that we will use 
non-trivial subset-c1osedness of P to refine (5.1) to a program. Hence, the 
formal development we present in this chapter can be seen as a derivational 
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presentation of a generic matroid-based greedy algorithm. A full matroid 
would also guarantee that all maximal sets are of maximum size, but we do 
not need this and} in fact, the instance of independent sets of vertices we will 
present in Section 5.4 does not fit the full matroid model. 

5.2 Developing an Iteration 

We now proceed to derive a program that refines (5.1). The development is 
carried out in two stages. First, in this section, the specification is algorith
mically refined to an iteration. Second, guided by some efficiency considera
tions, we will proceed in the next section to transform the state space of the 
program by data refinement. 

Setting Up the Iteration Heading towards an iteration, we want to pro
pose a reasonable invariant and a corresponding guard from the given post
condition. One technique to do so, which we have already used in previous 
chapters, is that of replacing a constant in the postcondition by a fresh 
variable. Rewriting our postcondition according to property (2.46) of mxl, 
which depends on predicate P being subset-closed, will help us to apply 
such a technique. We manipulate the postcondition of (5.1) thus: 

mxl (P, A) 

{ property of mxl (2.46), P is subset-closed (5.2) } 

PA /\ (Va:a<;:A:,P(AUa)) 

contrapositive -this simplifies the expression since it } 
{ eliminates the use of complementation and negation-

P A /\ (Va: P (A U a) : a <;: A) . 

\Vith the above rephrasing of the postcondition, introducing a fresh yariable 
B to replace the third ocurrence of A gives an invariant with B;;j:. A as 
the corresponding guard. Let us introduce the following shorthands for the 
invariants: 

Inv 

Invl 

Inv2 

-

.

PA, 

(Va: P(AUa) 

Invl /\ Inv2 

a<;:B) , 

We now need to work out a variant. For that, we first remark that the 
invariant implies A ~ B , since for any element x we have: 

x <;: A AUx=A "" P(AUx) "" x<;:B 
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The two implications are justified by Invl and Inv2, respectively. ThereR 

fore r provided the invariant holds, the negation of the guard, B = A , is 
equivalent to B ~ A and it thus satisfies: 

B= A B-A=0	 (5.5) 

It then seems reasonable to choose B - A as variant, with progress guaran~ 

teed by its decrease. We introduce, as customary by now, a shorthand for 
progress: 

Prg := (B-A C Bo-Ao) . 

Set	 X is assumed to be finite to guarantee well-foundedness. 

We will have completed the global structure of the iteration after working 
out a way to establish the invariant initially. Recall that P was assumed 
to hold on the empty set (5.3); hence, an assignment of the empty set to 
A will do for Invl. Assigning the whole universe X to B will make the 

consequent of Inv2 equivalent to true and, hence, will make Inv2 hold. 

The statement of (5.1) is then formally refined thus: 

A:	 [ true, mxl(P, A) 1 
introduce local block and initialised iteration}

[;; { according to discussion above 

II	 var B: Vee X ; 
A,B := 0,X; 
do B ¥ A --> A, B : [ B t A fI Inv , Inv /\ Prg I od 

JI 

Developing the Iteration Body We now proceed to refine the iteration 
body. The variant must be decreased by suhtracting elements from B - A . 
This can be done by taking an element x in B - A and either subtracting 
it from B or adding it to A. It is therefore promising to explore the effect of 
assignments A:= A U x and B:= B - x on the invariant. Thus, assume 
the invariant holds and also assume that x ~ B - A --recall (5.5), which 
makes the existence of such an x feasible if the guard holds-. 

Let	 us first study augmentation of A: 

Inv! [A := A U x] 

{ substitution} 

P (A U x) 
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Pis Q-incremental (5.4), _}
 
{ assumption on x implies x s;: A
 

PA A Q(A,x)
 

{ Invl }
 

Q(A,x) , 

and 

Inv2 [ A := A U x] 

{ substitution} 

(Va: P(Auxua): a ~ B) 
¢= { union, P is subset-closed (5.2), predicate calculus} 

(Va: P(Aua) : a ~ B) 
{ Inv2 } 

true . 

Now the same analysis for the diminishing of B; the first part of the invariant 
Invl is Dot affected, and 

Inv2 [ B := B - x I
 
{ sub6titution }
 

(Va: P(AUa): a~B-x)
 

{ subtraction 1 atoms}
 
(Va: P(AUa): a~B /\ a,<x)
 

{ distribution of universal quantification over conjunction} 

(Va: P(AUa): a~B) /\ (Va: P(AUa): aix) 

{ Inv2; contrapositive } 

(Va: a=x: .P(Aua) 

{ one-point rule} 

,P(AUx)
 

Pis Q-incremental (5.4), }
 
{ assumption on x implies x ~ A
 

,PA V ,Q(A,x)
 

{ Invl }
 

.Q(A,x) .
 

Nicely symmetricl According to whether Q (A) x) bolds, the invariant is 
maintained by one assignment or the other. This suggests the use of an 
alternation. Accordingly, we refine the statement of the iteration body as 
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II	 var A:VecX; 
II	 var B:VecX;
 

A,B := 0,X;
 
do B", A -->
 

II	 var x:X; 
x :~ B- A; 
if Q(A,x)-->A:=AUx 
~ ~Q(A,x) --> B:= B-x 
Ii 

JI 
od 

II 
JI 
Figure 5.6: First Algorithmic Solution of (5.1) 

follows: 

A, B : I B '" A II Inv , Inv II Prg ) 

introduce local block and alternation}
[;; { according to discussion above 

II	 var x: X;
 
X :<; B - A;
 
if Q(A,x) --> A:= A u x
 
~ ~Q(A,x) --> B:= B-x
 
Ii
 

JI 

This completes the algorithmic refinement. Figure 5.6 shows the collected 
code. 

5.3 Further Refinement 

Some efficiency considerations lead us to further develop the program of 
Figure 5.6 in this section. Two new variables will be incorporated by means 
of data refinement. 

More Requirements At this stage we will need further assumptions on 
predicate Q. These assumptions will seem to come out of the blne) but 
we remark that they arose from analysing instances of the general program. 



In the same way, the given restrictions on P -non-trivial subset-c1osedness 
and incrementality- were abstracted from an initial attempt to carry out 
the above general development for an instance rather than for the general 
problem. Thus, these added constraints on Q must be taken in the same 
spirit in which initial constraints on P were taken. 

It is assumed that predicate Q can be expressed in terms of another predicate 
Q' and a function f. Additionally, f is assumed to be incremental with 

respect to an operator ffi. Formally: 

Q (A, a) - Q'(J A,a) (5.7) 

f (A u a) =fAffia. (5.8) 

Function f takes a set in Vee X to an element of a new type Y. Hence, 
Q' is a predicate on Y x X and operator ffi takes a pair in Y x X to an 

element in Y. Function application is assumed to bind more tightly than 
operator ffi, so that fA ffi a above must be read as (J A) ffi a . 

Data Refinem.ent Let us now motivate the two Dew variables by analysing 
the program of Figure 5.6. We will then define a suitable coupling invariant 
for their introduction. 

First, reevaluation of B - A on every iteration seems expensive. This can 
be avoided by introducing a fresh program variable C to hold its value. Such 
a variable wiIl also make the guard become less costly. Thus, the first half of 
our coupling invariant is: 

CII C=B-A 

Second, due to (5.7), one can safely assume that the cost of evaluating Q is 
shared by the cost of Q' and the cost of f . This prompts us to introduce a 
program variable y to hold the value of fA, which reduces evaluation of Q 
in the alternation to that of Q' snlely. Updates of y will be made by means 
of €a, thanks to incrementality of f (5.8), Hence, the second conjunct of 
the coupling invariant is: 

CI2 := y = fA 

Armed with coupling invariant CI1 1\ C12, we now give an overview of 
how to conduct the transformation of the program. Assignments to e,y 
are attached to every assignment of the program in such a way that the 
coupling invariant is maintained. Both branches of the alternation induce 
the same assignment on C, viz. C:= C - x, which can then be moved 
out of the alternation. By (5.5), the guard can become C 10. The non
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I[	 var A:VecX; 
I[	 var C:VecX; y:Y;
 

A,C,y := 0,X,j0;
 
do C oF 0 --+
 

I[	 varx:X; 
x :~ C; C := C - x ; 
if Q'(y,x) --+ A,y:= AUx, yEf>x 
o ~Q'(y,x) --+ skip 
Ii 

II 
od 

JI
 
II
 

Figure 5.9: Second Algorithmic Solution of (5.1), after Data Refinement 

deterministic assignment to variable x becomes just x:~ C . The main role 
of y is its use in the guards of the alternation. All the above transformations 
render variable B useless, and it is thus eliminated. 

The data-refined solution is shown in Figure 5.9. 

5.4 Maximal Independent Vertex Sets 

In this section and the next, we will instantiate the general algorithmic so
lution of Figure 5.9 to graph problems. The properties imposed on P must 
be shown to hold for the specific predicate in each case. Following the cal
culational spirit of algorithmics we aim to promote, components Q, Q',j, EB 
for each instance will be calcula,ted instead of given a priori. 

This section deals with the problem of computing maximal independent ver
tex sets of undirected graphs. Two vertices of an undirected graph are 
said to be independent if they are not adjacent. An independent set of 
vertices is one in which any two elements are independent. Formally, for 
graph (Veri, Edge, xl, x2) with adjacency relation Adj : Yeri +- Veri, and 
set V: Vee Vert we define:I 

indep V y.yo nAdj <; 0.	 (5.10) 

It is easy to show that the empty set is independent. The same goes for 
showing that a singleton set v is independent if there are no loops -as defined 
in page 27 of Section 2.5- incident on the vertex v. Thus, small independent 
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sets are easy to find. A more interesting problem is that of finding maximal 
independent sets, which corresponds to the instance X, P:= Vert, indep of 
(5.1 ). 

Checking the Requirements First, it must be shown that indep is non~ 

trivially subset-closed. Property (5.2) follows from the monotonicity prop
erties of all the operators involved --converse, composition and intersection
with respect to inclusion. The empty relation 0 is a zero of both composition 
and intersection; hence, (5.3) also holds. 

We check the incrernentality property, whilst also calculating an adequate 
instance for the auxiliary predicate Q, thus: 

indep (Vuv)
 

{ definition of indep (5.10) }
 

(V u v) . (V u vt n Adj \:: 0
 
distribution of converse, composition} 

{ and intersection over union 

(V . V' n Adj) U (V· v' n Adj) 

u	 (v·V' n Adj) u (v·v' n Adj) \:: 0 
{ universal property of union (2.3) } 

(V . V' n Adj \:: 0) II (V· v' n Adj \:: 0) 
/\	 (v· V' n Adj \:: 0) II (v· v' n Adj \:: 0) 

definition of indep (5.10); second and third } 
conjuncts are equivalent by properties of converse 

{ -(2.16), (2.17), (2.18)- and by symmetry of Adj 

indep V II (v· V' n Adj <;; 0) II (v· v' n Adj \:: 0) 

This provides us with a predicate Q that fulfills requirement (5.4) for the 
instance P:= indep, viz. the One given by the last two conjuncts above. 
To search for Q' and f as required by (5.7) the middle conjunct is further 
manipulated; such manipulation applies to the last conjunct as well: 

v' Y' n Adj \:: 0
 
{ complementation shunting (2.9) }
 

v. yo \:: Adj 

{ Schroder's left-exchange rule (2.21) } 

Adj. V <;; v 
{ complementation} 

v	 <;; Adj, V . 
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Thus, to comply with (5.7) we take: 

fV .- Adj· V (and, therefore, f0 Vert) , 

Q'(W, v) vC;W 1\ v <l Adj· v . 

Operator EB can also be derived, given the above definition of f 1 to make 
(5.8) hold. Using distributivity of composition over union and De Morgan's 
rule we obtain: 

W Ell v := W - Adj· v . 

Note that the form of Q' and EB suggest the use of adjacency lists to rep
resent the graph. The resulting program could be further improved but we 
will not go into such detail. 

5.5 Connectedness-Preserving Forests 

This section treats the problem of computing maximal acyclic edge sets in an 
undirected graph, which corresponds to computing connectedness-preserving 
forests, as an instance of our general problem. Again, we calculate comp(}
nents Q, Q',f, EEl instead of first giving them and then proving them correct 
according to the requirements imposed on P. 

Let G be an undirected graph. Recall from Section 2.7 that connectedness
presenting forests generalise spanning trees and that, as stated by Proposi
tion 2.101, a spanning subgraph of G is a connectedness-preserving forest 
if and only if it is a maximal acyclic subgraph. Since spanning subgraphs 
are uniquely determined by their sets of edges, we can formally state that a 
subset E of the edge set of G is a connectedness-preserving forest of G if 
and only if mxl (acyclic, E) holds. Predicate acyclIc was defined by (2.92) 
in terms of predicate cyclic (2.91) in page 33 of Section 2.6. For convenience, 
we repeat such definitions here: 

acyclic E =: ..., cyclic E (5.11)1 

cyclic E '" ( '3 e : e C; E : e :' E - e) . (5.12) 

As it was the case for independent sets of vertices in the previous section, 
small acyclic sets of edges are easily found. The empty set is acyclic. A 
singleton e is acyclic unless it is a loop. Finding a maximal acyclic edge set 
is a more challenging problem which, computationally, corresponds to the 
instance X,P:= Edge, acyclic of specification (5.1). 
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Checking the Requirements \Ve now proceed to verify that the algo
rithmic solution presented in Figure 5.9 applies to this instance by verifying 
that predicate acyclic adequately meets the requirements. We will capitalise 
on facts used in Section 2.6 and in the proof of Proposition 2.101, in pages 
38-41 of Section 2.7. 

Subset-closedness of acyclic was shown and used in page 38. That does 
away with (5.2). Definitions of acyclic (5.11) and cyclic (5.12) and the 
empty range rule of predicate calculus imply (5.3). To show incrementality 
of acyclic 1 we will make use of fact (cl) in page 40. Assume e ~ E and 
then manipulate thus; 

acyclic (E u e) 
{ acyclic is subset-closed (5.2), E <;; E U e } 

acyclic E /\ acyclic (E u e) 

(cl), the proviso ~ given by the first conjunct and} 
{ assumption e ~ E, acyclic negates cyclic (5.11) 

acyclic E /\ e f, E 

Therefore l taking Q (E, e) := e t. E makes the incrementality requirement 
(5.4) hold for P:= acyclic. Unfolding the definitiou of ~ (2.90) expands 
Q (E, e) as adj e Sf: join E and, then, the following definitions suggest 
themselves to make property (5.7) hoM: 

f - join (and, therefore, f 0 = id) , 

Q'(Pt,e) adj e Sf: PI . 

For defining operator aJ in such a way that (5.8) holds, we borrow fact (2.98) 
from Section 2.6 where it was used to prove the Two Gates rule; 

Join (E u eJ = join E . (id U adj e) . join E 

Hence, we define: 

PI aJ e := PI· (id U adje)' PI. 

Variable y of the general program in Figure 5.9 gets to hold an equivalence 
relation in this instance. A common way of implementing equivalence rela
tions is through the partitions that correspond to their quotient sets. The 
well-known Union-Find problem of manipulating partitions has been thor
oughly studied and efficient implementations are available -see [36, Chap
ter 221 for a review-. Its operations can be expressed, using the related 
equivalence relations instead of the partitions themselves, as follows' 

Same (PI, a, b) := a·b" <;; PI 
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Union (Pt, a, b) Pi . (id U a' b' U b· a') . Pt 

where operation Same is built on, and corresponds to the use given to, 
Find. Due to atomic adjacency (2.80), components QI and EEl calculated 
above can be defined in terms of, respectively, Same and Union using the 
extreme vertices (xl· e) and (x2· e) of edge e as parameters. 

5.6 Related Work 

First, ",oe remark again on the relationship of the general development pre
sented in this chapter to the field of combinatorial optimisation, as com
mented on at the end of Section 5.1. Our algorithmic solutions in Figure 
5.6 and Figure 5.9 are general matroid-based greedy algorithms which we 
have formally develop using a calculational style, a style of presentation not 
commonly found in the optimisation or algorithmics litera.ture -see e.g. [36, 
Chapter 171 or [92, Chapter 71-. The contents of this thesis are only slightly 
connected to the broad area of optimisation algorithms. Specifically, only the 
maximisation aspect of the problem of computing representatives in Chap
ter 4, the relationship to matroids and greedy algorithms of this chapter, 
and the treatment of the problem of computing minimum spanning trees 
in Chapter 6 witness such a connection. Bird, Curtis and de Moor have 
treated optimisation algorithms in a derivational style, using the calculus 
of binary relations and the categorical approach to datatypes, extensively 
[24, 25,26,28,37, 38, 39, 111J. 

Russling treats the problem of computing maximal independent vertex sets 
in [131]. Unlike our computation of one of such sets, Rnssling deals with the 
computation of the family of all maximal independent sets of a given graph. 
At the end of the development, he remarks that "for practical use the algo
rithm should be implemented by standard backtracking techniques". Such 
an implementation could be realised using a logic programming language like 
Prolog [35]. Regarding this possibility, there is an interesting remark in [114, 
Section 8] about guarded commands, backtracking and Prolog, which could 
be elaborated upon to formally link our development to an implementation 
that can prodnce all maximal independent sets or that can backtrack over 
the production of one maximal independent set until it fulfills some other 
required condition. This is a nice thought in relation to C.A.R. Hoare's 
promoted ideal of unifying different theories and paradigms of programming 
[74, 76]. 

Berghammer treats the problem of computing spanning trees in [16], for a 
connected input graph. In relation to our generalisation of spanning trees as 
connectedness-preserving forests, the connectedness restriction of the jnput 
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graph is in Our opinion unnecessary, as no greater manipulability is gained in 
general by such an assumption -see our remarks on this kind of restrictions in 
page 37-. Berghammer further restricts the graph, not only to be connected, 
but also to have a non-empty set of edges. Both decisions seem to be guided 
by the willingness to obtain a particular kind of algorithmic solution, viz. 
one akin to Prim's algorithm for the compu tat ion of minimum spanning trees 
[126], which was originally designed to cater only for connected graphs with 
non-empty vertex sets. Our solution is, on the other hand, akin to Kruskal's 
algorithm for the computation of minimum spanning trees [90]. \Ve tackle 
both such minimisation algorithms, for unrestricted input graphs, in Chapter 
6. A final difference between [16] and our treatment is that Berghammer 
presents the problem in terms of simple graphs -under the terminology used 
in this document; see page 28 of Section 2.5-, thus not dealing with edges 
as separate entities in the graph, while we take edges to be the relevant 
component of graphs in the definition of spanning trees. 
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Chapter 6 

Computing (more than) 
Minimum Spanning Trees 

We have already looked at spanning trees of undirected graphs and their 
formalisation within the calculus of relations -Section 2.7-. If a weight, or 
cost, is assigned to each edge of an undirected graph, then every spanning tree 
of it also gets a cost: the sum of the weights of all the edges it comprises. An 
interesting problem with many practical applications is that of computing 
spanning trees of minimum cost. This problem is tackled in this chapter 
under our relational-calculational approach. 

Most, if not all, introductions to graph algorithmics include a sectioD on 
the problem of computing minimum spanning trees, usually presenting two 
well-known algorithms that solve this problem: one due to Kruskal [90], and 
another commonly attributed to Prim [126] though actually invented earlier 
by Jarnik [79]. We will present the construction of both algorithms. 

When the notion of spanning trees was formalised in Section 2.7, we actually 
did so for the more general notion of connectedness-preserving forests. The 
former were then indirectly treated as an instance of the latter and the re
striction of dealing only with connected graphs was sent away. Likewise, this 
chapter only makes use of the formal concept of connectedness-preserving 
forests and, therefore, we could have more accurately titled it as "Comput
ing Minimum Connectedness-Preserving Forests". We chose not to do so for 
marketing reasons. 

Section 6.1 presents a formal specification of the problem. Section 6.2 pos
tulates an appropriate combination of invariant, guard and variant that al~ 

together set up an iteration that refines the initial specification. Section 6.3 
then presents an initial exploration of properties of the postulated invariant. 
Such properties allow us to construct Kruskars algorithm in Section 6.4. 
The construction of Prim's algorithm requires some more graph concepts 
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and further properties of the invariant. These are presented in Section 6.5, 
which offers a little calculational theory of cuts in a graph, and in Section 
6.6, which explores connections between the invariant and the existence of 
certain cuts. Section 6.7 then presents the construction of Prim's algorithm. 
Finally, Section 6.8 reviews related work. 

6.1 Specification 

This section presents the formal specification of our computational problem. 
We are given an undirected graph (Vert, Edge, xl ,x2) along with a func
tion weight: R +- Edge, which is assumed to provide non-negative weights. 
What the computation must deliver is a subset E: Vee Edge that comprises 
a connectedness-preserving forest, i.e. such that cpj E (2.100) holds, and 
that has minimum cost, as determined by function weight, among all other 
such forests. 

The function assigning a cost to each set of edges is: 

cost E := (+ e : e ~ E : weight e) , (6.1) 

where e ranges over elements of type Edge. The predicate that determines 
whether a set of edges is a connectedness-preserving forest of minimum cost 
is defined as follows: 

mincpj E cpj E A (VF: cpj F: costE:S costF) , (6.2) 

where F ranges over vectors of type Vee Edge. 

The formal specification of our problem then simply reads thus: 

II var E: Vec Edge; 
E: I true , mincpj E ] 

II 
(6.3) 

6.2 Setting Up an Iteration 

Initial steps to refine specification (6.3) are taken in this section by providing 
the necessary ingredients to set up a correct iteration: invariant, guard and 
variant. 

To start with, we observe the similarity of the problem that occupies us in 
this chapter and the problem in Section 5.5 of computing plain -as opposed 
to minimum-cost- connectedness-preserving forests. The latter was solved 
as an instance of the generic problem of computing maximal sets: a maximal 
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acyclic set of edges is a connectedness-preserving forest. The output of the 
program obtained in Section 5.5 then satisfies the first conjunct of mincpj 
in the postcondition of (6.3) and, therefore, it Seems reasonable to attempt 
a reuse of the generic development presented in Chapter 5. We will indeed 
reuse the invariants therein to cater for the first conjunct of mincpj. 

We thus postulate appropriate instances of the invariants of Chapter 5 as 
given by the substitution P, AJ B := acyclic, E, D: 

Inv1 acyclic E , 

Inv2 - ('te: acyclic(EUe) : c <:;, D) . 

Fresh program variable D is also used in the guard D f E . This takes care 
of the first half of the postcondition, i.e. invariants lnvl and Inv2 along 
with the negation of the guard imply mxl (acyclic, E) and, by Proposition 
2.101, this is equivalent to cp! E . 

The second conjunct of mincpj in the postcondition adds the minimum-cost 
quality to the maximal forest that must be delivered as output. -From now 
on, we will call an acyclic set of edges a forest, whether it is maximal or 
not.-- As dictated by the development of Chapter 5, forest E is initialised as 
empty and is then gradually augmented until no more additions are possible, 
which event signals that we have computed a maximal forest. We now need 
this maximal forest to be of minimum cost. First thought that might come to 
mind: maintain a minimum-cost forest all along, i.e. state as a third invariant 
that E must be of minimum-cost. Second thought: minimum-cost among 
what other forests? A minimum-cost forest among all forests is certainly 
not what we want since, having assumed that edge weights are non-negative, 
such a forest could only be the empty one or forests consisting exclusively 
of edges with weight zero. A minimum-cost forest compared to the maximal 
forests does not make senSe either, since a non~maximal forest is likely to 
be of lesser cost than a maximal forest irrespectively of this leading to the 
obtention of a finally minimum-cost maximal forest or not. This last remark 
provides the key insight: we want to gradually grow a forest in such a way 
that it leads to a maximal forest of minimum-cost, i.e. to a forest for which 
mincp! holds. 

We then formalise our third invariant as follows: 

Inv3 .= (3M: E <:;, M : mincp! M) , 

and give the usual name to the whole invariant: 

Inv := Inv1 f\ Inv2 f\ Inv3 . 

Now we must prove that the whole postcondition will hold at the end of the 
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iteration. We argue thus: 

Inv	 /\ D = E 

~ { Inv!, Inv2 and guard as in Chapter 5 } 

mxl (acyclic, E) /\ Inv3 

{ definition of Inv3, predicate calculus} 

(3M: E ~ M : mxl (acyclic, E) /\ mincpf M) 

by definitions of mincpf (6.2) and cpf (2.100), } 
{ we have that mincpf M ~ acyclic M 

(3M: E ~ M : mxl (acycl,c, E) /\ acyclic M /\ mincpf M) 

definition of mxl (2.43) with P, A := acyclic, E } 
~ { and instantiation with B := M 

(3M : E ~ M : M = E /\ mincpf M ) 

{ one-point rule} 

mincpf E . 

As for the rest of the set-up of the iteration, we do not fix the initialisation 
statement yet since it will vary from Kruskal's to Prim's algorithm. However, 
we remark that the initialisation statement from Chapter 5 works for the 
third invariant as well. We borrow the variant from Chapter 5 and define: 

Prg := (D - E C Do - Eo) 

The first refinement step has been completed: 

E:	 I true , mincpf E ]
 

introduce local block and iteration}

[;; { according to discussion above 

II	 var D: Vee Edge ; 
E, D : I true, Inv I ; 
do D", E -> E, D : ( D '" E /\ Inv , Inv /\ Prg I od 

II 

6.3 Exploring Some Properties 

This section investigates properties that will allow us to refine the specifica
tion statements left in the set-up of the iteration. After this section, we will 
be able to construct Kruskal's algorithm, but Prim's algorithm will require 
further elaboration in later sections. 
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As expected, the investigation starts with an analysis of what can be taken 
from the development carried out in Chapter 5. The relevant properties that 
gave rise to the general iteration body there were proved in pages 92·93. The 
appropriate instances l using substitution P, A, B := acyclic, E, D as before 
plus x := e and Q (E, e) := e 1, E , read as follows: 

(Invl /\ Inv2)[E:= EUe] ¢o Invl /\ Inv2 /\ e 1, E (6.4) 
(Invl /\ Inv2) [D:= D - eJ ¢o Invl /\ Inv2 /\ e j E (6.5) 

provided that e ~ D - E , which also guarantess that the iteration makes 
progress according to Prg. 

Our current problem uses one more invariant, viz. Inv3. Hence, we need 
to explore how the assignments involved in properties (6.4) and (6.5) above 
interact with this third invariant. 

Extending the Diminishing of D We start out with (6.5) since it is 
much simpler to deal with. This is due to the fact that assignments to 
variable D do not affect Inv3. Therefore, we can straightaway state that: 

Inv [D := D - e] ¢o Inv /\ e j E /\ e c;;, D - E . (6.6) 

Extending the Augmentation of E Tackling (6.4) is not as triviaL It 
will occupy us for all the rest of this section. We need to investigate under 
what conditions Inv3 [E := E Ue J follows from Inv3. Let us proceed to 
do so. 

Assume Inv3 taking M' as witness and, therefore, onCe the definition of 
mincpj (6.2) has been expanded, we have that the following holds: 

Er;;,M' /\ cpjM' /\ (\IF:cpjF:costM'5ocostF). (6.7) 

Since we are aiming to extend proposition (6.4), we also assume its provisos, 
in particular: 

ef,E /\ er;;,D-E (6.8) 

We now bave to prove Inv3 [E := E U e ] , which, again unfolding delinition 
of mincpj (6.2) , reads thus: 

( 3 M : E U e r;;, M : cpj M 

/\ (\I F : cpj F : cost M 50 cost F) ) .} (69) 

Assumption (6.7) says that E is included in a minimum-cost connectedness
preserving forest M'. If new edge e is also included in M', we are done. 
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But, if e is not in M', we need a different witness to make (6.9) hold. 
Somewhat naively, one could first think of M 1 U e, but this is clearly not 
a forest due to the acyclicity property of M' being maximaL It is more 
reasonable to try to exchange edge e for some other edge m included in 
M' , i.e. to analyse under what circumstances (M' - m) U e serves as a 
witness for (6.9), with m being some edge in M'. 

We will now proceed with such an aualysis. Hence, from now on assume that 
edges e and m are such that: 

e ~ M' /\ m s;;: M' (6.10) 

which implies the following: 

e S; M' - m /\ m s;;: M' U e , (6.11) 

1M'  m) U e ~ (M' U e)  m . (6.12) 

Conditions for (M' - m) U e to satisfy each of the three conjuncts in (6.9), 
i.e. the range and the two conjuncts in the body, will be calculated. 

Inclusion in New Witness Regarding the range of (6.9), we have that: 

EUe t;; (M' -m) U e mt;;E	 (6.13) 

This can be proved using basic properties of the lattice structure of the 
calculus of relations, and using also the facts that E S; M' and e S; E as 
given by, respectively, (6.7) and (6.8). 

New Witness as a CP Forest For the first conjunct in the body of (6.9), 
we manipulate as follows: 

cpl «M' - m) U e) 

{ definition of cpl (2.100) , (6.12) } 

acyclic «M' - m) U e) II connpTe (M' U e) - m) 

property (el) in page 40 with E, e :~ M' - m, e and 
property (c2) in page 40 with E, e :~ M' U e, m; 
provisos given by (6.11) and by the middle conjunct of 
(6.7) since, by subset- and superset-closedness: 

cpt M' ~ acyclic M' /\ connpre M' 
~ acyclic (M' - m) II connpre (M' U e) 

e	 t M' - m II m:5 (M' U e) - m 

{ (6.12) } 

e	 t M'-m II m:5 (M'-m) Ue 
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by (6.7) and (6.10) we have acyclic M' and m <; M' , } 
definition of acyclic (2.92) then gives m f, M' - m; 
this and the first conjunct give the provisos for the{ 
Two Gates rule (2.97) with d, e, E := m, e, M' - m 

e :z5 M' - m /\ e ~ (M' - m) U m 

{ by (6.10) we have m <; M' ,so (M' - m) U m = M' } 

e t M 1 
- m 1\ e ~ M' 

since e ~ Edge and inclusion implies covering (2.93) } 
we have e ~ Edge i by (6.7) we have connpre M' 
and by (2.95) we tben bave Edge ~ M'; tbe second { 
conjunct then follows from transitivity of ~ 

e f, M' - m (6.14) 

New Witness with Minimum-Cost Finally, the second conjunct in the 
body of (6.9) is manipulated thus: 

('IF: cpfF: cost «M'-m) U e) S costF) 

(~) middle conjunct of (6.7), instantiation; } 
{ (<=) third conjunct of (6.7), transitivity of S 

cost «M' - m) U e) S cost M' 

{ definition of cost (6.1), assumptions (6.10) } 

cost M' - weight m + weight e :s cost M' 
{ arithmetic} 

weight e :s. weight m . (6.15) 

Does There Exist a New Witness? We have calculated sufficient and 
necessary conditions for (M' - m) U e to be a witness of existential quantifi
cation (6.9). These conditions are the right-hand side of equivalence (6.13), 
and propositions (6.14) and (6.15). We collect these three requirements in a 
single formula: 

m S; E A e ~ M' - m 1\ weight e :S weight m . (6.16) 

But the question still arises whether such a wituess actually exists. More 
specifically, we need to prove that, if e is not included in M', there exists 
an edge m in M' that satisfies (6.16). 

Let us first appeal to some intuitive reasoning in order to find our way to
wards a formal proof regarding the existence of such an edge m. Forest M' 
is a connectedness-preserving one. Therefore, the extremes of e must be 
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conne<:ted through a path in M', a path which would become a cycle if we 
added e to M'. Hence, the edge m we want to pick out from M ' must 
come from such a path in order to avoid the creation of a cycle. That is what 
the second conjunct of (6.16) states: that once m is out of the way, the 
presence of e does not endanger the absence of cycles. But, does such an m 
exist? Yes t the path at issue must be non-empty and some of its edges must 
not be included in E since, if all the path in M' connecting the extremes 
of e were in E, then e should be creating a cycle when added to E. And 
this is not the case, as guaranteed by e L E in (6.8). 

Let us now phrase the above reasoning in a fully formal fashion. First, we 
have that e ~ M'. This fact was used in the last step of the calculation 
leading to (6.14), and its proof is in the justification of that step. This 
statement, e ~ M' , is the formal counterpart of the existence of a path in 
M' connecting the extremes of e. But there might be more to just such a 

path in M' I i.e. there might be several other edges in M' not included in 
the path connecting e. Let us get rid of such edges. Vie reason as follows: 
There must be a minimal set N included in M' such that e.::S N. Its 
existence follows from the fact that we have assumed our gr aphs to be finite 
and they thus comprise finite sets of edges. Hence, edges can be drawn from 
M' while preserving property (e~) until no more edges can be taken out 
without violating this property. 

Therefore, we know that there exists a set N such that: 

N c:; M' 1\ e::o N 1\ (V n : n c:; N : e L N - n) (6.17) 

-Note t.hat N must comprise exactly the set of edges in the path connecting 
the extremes of e I and that N is actually the unique minimum set included 
in M ' satisfying (e .::S) rather than just a minimal one, but we do not need 
to use such a fact.

When reasoning informally, we said that not all the path connecting the ex
tremes of e could be included in E, since this would contradict assumption 
e i E given by (6.8). We now prove that claim formally: 

N-E = 0 
{ 0 least relation, universal property of subtraction (2.7) } 

NC:;E 
=} { inclusion implies covering (2.93) } 

N::oE 
=} {middle conjunct of (6.17), transitivity of covering} 

e ::0 E 

{ first conjunct of assumption (6.8) } 
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false . 

Hence, 

N-E-I0. (6.18) 

And we claim that any edge m drawn from N - E will fulfil our needs, i.e. 
(6.16). For the time being, we only claim that: 

(Vm : m <;; N - E : m <;; M' /I 
. } (619) m satisfies the first two conjuncts of (6.16)) 

We will deal with the third and I,,-,t conjunct of (6.16) later. 

Proof of (6.19): 

Assume m ~ N - E . Hence, m is included both in N and in E and, also 
using the first conjunct of (6.17)' we have thus obtained both m ~ M' and 
the first conjunct of (6.16): m <;; E. 

V\t'e now observe that acyclic N must hold, due to the fact that acyclic M' 
holds by the middle conjunct of (6.7), that N <;; M' holds by (6.17) and 
that acyclic is su bset-closed. Hence, since m is included in N 1 on account 
of the third conjunct of (6.17) and of aeyclicN, we have: 

ef,N-m /I mf,N-m (6.20) 

Also, we have N = (N - m) U m which, by substitution in the middle 
conjunct of (6.17), gives: 

e j (N - m) U m . 

The Two Gates rule (2.97) can now be applied with d, e, E := e, m, N - m 
and (6.20) "-' provisos, to obtain: 

m j (N -m) U e . 

Inclusion of N in M' by (6.17), plus the fact that inclusion implies covering 
(2.93) and transitivity of covering, then implies: 

m j (M' - m) U e . (6.21) 

We are now ready to prove that m satisfies the second conjunct of (6.16): 

e ~ M'-m
 

{ reflexivity of j, union/j (2.96) }
 

(M' - m) U e j M' - m
 

{ (6.21), transitivity of j }
'* 
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m ::s M' - m 

second conjuDct of (6.7) implies acyclic M 1 
, } 

{ m included in M', definition of acyclic (2.92) 

false 

o 

Finishing Off the Augmentation of E To finalise, we deal with the 
third and last requirement on m in (6.16): weight e :S weight m. We will 
now proceed to postulate conditions that will guarantee its validity and, 
with ~hem, finish off the rule for the maintenance of the whole invariant 
under a.ugmentation of E. 

As indicated by proviso (6.8) on edge e, set D - E must be the source from 
where e is drawn. If we can prove that m must also belong to D - E , then 
requiring e to be of minimum weight in D - E guarantees the satisfaction 
of the third requirement on m. 

Up to this point, reasoning about the maintenance of [nuS has been based 
solely upon the assumption that Inv3 holds initially. Now) we will also need 
the assumption that Invl and Inv2 hold. The key property still left to be 
proved is: 

(Vm:mC;:;M'-E mC;:;D). (6.22) 

For ease of reference, we write out here the incrementality property (5.4) of 
Chapter 5 as instantiated in Section 5.5: 

acyclic (F U J) '" acyclic F /I f f, F provided f c;:; F. (6.23) 

Proof of (6.22).' 

M 1Assume m ~ - E. Then, 

mC;:;D 

¢" {Inv2} 

acyclic (E U m) 

{ (6.23) with F, f := E, m , assumption m c;:; E, Invl } 
mf,E. 

And this last proposition is shown to hold thus: 

m~E 
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first conjunct of Inv3 (6.7) and assumption } 
Tn ~ E imply E ~ M' - m I inclusion implies "* { covering (2.93), transitivity of covedng 

m:5 MI-m 

second conjunct of Inv3 (6.7) implies acyclic M' , } 
{ assumption m S; M' definition of acyclic (2.92)l 

false . 

o 

We then have, by (6.19) and (6.22), that any edge in N - E also belongs to 
D - E. Hence, if e is of minimum weight in D - E and m is drawn from 
N - E , it must be the case that m satisfies the third conjunct of (6.16). 

We conclude that, if preoeder R: Edge +- Edge is defined as 

e1 (R) e2 := weight eI S weight 02 , 

and edge e is drawn from the set min (R, D - E) then, on account of (6.19) 
and (6.22), the following holds: 

('t m : m <; N - E m C;; M' /I m satisfies all of (6.16) ). (6.24) 

Finally, we can state the sought after counterpart of (6.6): 

Inv [E:= E U e I ¢ Inv /I e" E /I e C;; min (R, D - E) . (6.25) 

It follows from all the discussion above but, crucially, from the statements 
that guarantee the existence of a witness for Inv3: (6.18) and (6.24). 

6.4 Kruskal's Algorithm 

The exploration carried out in the previous section is good enough for the 
construction of Kruskal's algorithm, which we proceed to do in this section. 
We do so by refining the specificatjon statements left at the end of Section 
6.2 as initialisation and iteration body. 

Since the initialisation statement of Chapter 5 works for the new invariant 
[nu3 as weIl, we reuse it: 

E, D: [true, Inv I [;; E,D:= 0,Edge 

The key properties spelt out in Section 6.3 that will be put to use in refining 
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the specification statement of the iteration body are (6.6) and (6.25): 

[nv [D := D - e] ¢= Inv II e:! E II e t; D - E , 

[nv[E:= EUe] ¢= Inv II eiE II et;min(R,D-E) 

Only two remarks before developing the iteration body: 

(i)	 In Chapter 5 it was proved that the guard D # E is equivalent to 
D - E # 0, provided the invariant holds. -See (5.5) and apply sub
stitution A, B := E, D.- Hence, the precondition of the iteration body 
guarantees the existence of elements in D - E . 

(ii)	 Set min (R, D - E) is included in set D - E. Hence, if an edge be
longs to the former, it also belongs to the latter. Furthermore, given 
that R is a connected preorder, min (R, D - E) is non-empty when
ever D - E is non-empty. 

Therefore, the following is a valid refinement: 

E, D : [ D # E II Inv , Inv II Peg] 

introduce local block and alternation }
!;; { according to discussion and properties above 

I[	 var e: Edge; 
e :t; min (R, D - E) ; 
if e:! E --t D := D  e 
~ e i E --t E:= E U e 
fi 

II 
This completes our first approximation to Kruskal's algorithm as a refinement 
of specification (6.3). Figure 6.26 shows the collected code. Note how similar 
it is to the program in Figure 5.6. 

Data Refinement The similarity between the approximation to Kruskars 
algorithm in Figure 6.26 and the first algorithmic solution to the general 
problem of Chapter 5 in Figure 5.6 allows us to apply to the former the 
same data refinement that was applied to the latter in Section 5.3. We 
use suitable instances of the coupling invariants GIl and Cl2 in page 95, 
viz. those obtained via A 1 B := E, D plus C, y := F, Pt and, from Section 
5.5, f:= join. Hence 1 the coupling invariants that introduce new program 
variables F and Pt are: 

GIl := F = D - E , 

GI2 := Pt = joinE . 
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II	 var E: Vec Edge; 
II	 var D: Vee Edge; 

E, D := 0, Edge; 
do D#E-> 

II	 var e: Edge; 
e :<;; min (R, D - E) ; 
if e::: E -> D:= D - e 
o e f, E -> E:= E U e 
Ii 

II 
od 

II
 
JI
 

Figure 6.26: First Approximation to Kruskal's Algorithm, 
"" Algorithmic Solution of (6.3) 

The transformation of the program is carried out just as explained in Section 
5.3, using the instances of auxiliary predicate Q' and operator ffi that were 
calculated in Section 5.5: 

Q'(Pt,e) -adje'lPt,
 

Pt Ell e ~ Pt· (id U adj e) . Pt .
 

Also, as suggested at the end of Section 5.5, operations Same and Union 
of the well-known Union-Find problem are used to implement Q' and ffi. 

The resulting program, our version of Krnskal's algorithm, is shown in Figure 
6.27. 

6.5 A Little Theory of Cuts 

In this section we develop a little theory of cuts: partitions of size tWD of the 
vertex set of a graph. This will aid an extension of the rules of maintenance 
of the invariant in Section 6.3 in a way that will help us to construct Primls 
algorithm. 

Cuts, Respecting and Crossing Let G be a graph (Vert, Edge, xl, x2) . 
A cut of G is just a partitioning of Vert into two disjoint sets: (V, V) for 
some V: Vee Vert. We identify a cut with either one of its halves, the other 
being uniquely determined through complementation. 
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II	 var E: Vee Edge; 
I[	 var F: Vee Edge; Pt: Vert <- Vert ;
 

E, F, Pt := 0, Edge, id ;
 
do F#0-+
 

II	 var e: Edge; 
e :<:;; min (R, F); F:= F - e ; 
if Same (Pt, xl'e, x2·e) -+ skip 

~ Same (Pt, xl'e, x2·e) -+ 
E,Pt:= EUe, Union(Pt,xl'e,x2'e) 

Ii 

II 
od 

II 
]I 

Figure 6.27: Kruskal's Algorithm, after Data Refinement, 
as Algorithmic Solution of (6.3) 

A set of edges can either respect or cross a cut V. It respects the cut if all of 
its edges have both extremes either in V or in V. An alternative phrasing 
of this is saying that if one extreme of an edge is in V, so must be the other 
extreme. A set of edges crosses the cut if it does not respect it, which means 
that some of its edges have one extreme in V and the other in V. Formally, 
given E: Vee Edge and a cut V: Vee Vert, we define: 

respect (E, V) adjE·V<:;;V, (6.28) 

cross (E, V) ~ respect (E, V) . (6.29) 

These definitions are consistent with the freedom of identifying cuts with 
either one of its components. Schroder's right-exchange rule (2.22) and sym
metry of adjacency relations entails such consistency for respect: 

respect (E, V) '" respect (E, V) 

Consistency for cross then follows from (6.29) and propositional calculus. 

A set of edges respects a cut if all its edges respect it, while a set of edges 
crosses a cut if at least one of its edges crosses it. Extensionality and dis
tributivity over union allows a formal proof of this fact: 

respect (E, V) 

{ definition of respect (6.28) , extensionality (2.29) } 

adj (Ue : e <:;; E : e) . V <:;; V 
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{ distribution of adj and composition over union} 

(Ue: e<;E: adje·V) <; V
 

universal property of union (2.3), }
 
{ definition of respect (6.28)
 

('Ie: e <; E : respect (e, V) .
 

Using de Morgan's laws of predicate calculus we also get the corresponding 
statement for cross: 

respect (E, V) == ('Ie: e <; E : respect (e, V» (6.30) 
cross(E, V) == (3e: e <; E: cross(e,v» (6.31) 

Paths also Respect Cuts By definition, respect (E, V) tells us that both 
extremes of each edge in E lie on the same side of the cut V. This implies 
that each path built from edges in E should also remain on only one side 
of the ent. And vice versa: if each E-path stays in only one half of the 
cut then, in particular, so do E-paths of unitary length, Le. those given by 
adj E . Formally: 

respect (E, V) == joinE· V <; V . (6.32) 

It follows from property (2.68) of closure with R, S := adj E, V . 

A cut built from a base set V through E-paths is respected by E: 

respect (E , join E . V) . (6.33) 

This follows from (6.32) and transitivity of joinability relations. 

Monotonicity Properties For any cut V l predicate respect (_, V) is 
subset-closed. This fact follows from monotonicity of adj and transitivity of 
inclusion. The contrapositive rule of propositional calculus then implies that 
cr055 (_, V) is superset-closed. FormallYl 

El <; E2 '* ('IV:: respect (E2, V) '* respect (El, V) 

El <; E2 '* ('IV:: cross (El, V) '* cross (E2, V) 

These statements, which can be seen as u~ to =:}11 antimonotonicity and 
monotonicity properties, can be extended to "j to ~n statements. Fur
thermore, the extension allows a strengthening to equivalences: 

El ~ E2 ('IV:: respect (E2,v) '* respect (El,v») , (6.34)
 
El ~ E2 ('IV:: cross(El,v) '* cross (E2,v)) . (6.35)
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These two properties are equivalent by the contrapositive rule of propositjonaI 
calculus. It then suffices to prove only one. 

Proof of (6.34): 

For (=}), we argue thus: 

EI ~ E2
 

{ definition of ~ (2.90) }
 

adj EI c:; join E2
 

~ { monotonicity of composition} 

('t V :: adj EI . V c:; join E2 . V) 

~ { transitivity of inclusion} 

('tV::joinE2·VC:;V ~ adjEI·V c:; V) 

{ (6.32), definition of respect (6.28) } 

('tV:: respect (E2, V) ~ respect (EI,v)) . 

For C~), a more elaborate manipulation is needed. Assume the right-hand 
side holds and then proceed as follows: 

EI ~ E2 

{ extensionality (2.29), union/~ (2.96) } 

('t e : e c:; EI : e ~ E2 ) 

{ one-edge covering (2.99) } 

('te: eC:;EI ~ (xl·e)·(x2·e)' c:; joinE2) 

{ shunting of functions (2.24) } 

('t e : e c:; EI : xl . e c:; join E2 . x2 . e ) 

by (6.33), E2 respects join E2 . x2 . e, by assumption, } 
<= { El then respects it as well; definition of respect (6.28) 

('t e : e c:; EI : xl . e c:; adj EI . join E2 . x2 . e) 

<= { monotonicity of adj l reflexivity of joinability relations} 

('t e : e c:; EI : xl . e c:; adj e . x2 . e ) 

{ shunting of functions (2.24) } 

('te: eC:;EI: (xl·e)·(x2·e)' c:; adje) 

{ atomic adjacency (2.80), union} 

true. 

o 
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Crossing For 1ater use, we give a name to the set of all edges that cross a 
given cut: 

crossing V := (ue: cross (e,v) : e) (6.36) 

6.6 Exploring Some More Properties 

As a follow-up to Sectiou 6.3, this section presents a deeper exploration of 
the iuvariants on which the construction of Kruskal's algorithm was based. 
Such an exploration results on the obtention of a fourth invariant, essential 
for the construction of Prim's algorithm. 

Augmentation of E and Cuts Recall rule (6.25): 

Inv [E := E U e I ¢= Inv /\ e i E /\ e ~ min (R, D - E) 

Kruskal's algorithm, as stated in tbis rule, augments E with a global min
imum e, Le. minimum within D - E. Prim's algorithm makes use of the 
fact that the new edge e can be selected as a local minimum, Le. minimum 
within a subset of D - E, provided such a subset complies with certain 
restrictions. 

This is the point where the theory of cuts is put to use. We know that in order 
to safely add e to E it must be the case that e i E. By cut-monotonicity 
(6.34), this is equivalent to the existence of a cut V, say, respected by E 
and crossed bye. The set of edges that cross such a cut V is a safe set, in 
the sense that selecting e to be of minimum weight within it guarantees we 
are heading towards a minimum·cost connectedness- preserving forest in the 
same way that selecting a global minimum edge does. Formally: 

Inv [E := E U e I ¢= 
(6.37)

Inv /\ (3 V: respect (E, V) e ~ min (R, crossing V) ) . } 

Also, it is the case that the crossing of such a cut is a subset of D - E , i.e. 
it is the case that: 

(1;1 V : respect (E, V) . crossing V ~ D - E) ¢= Inv. (6.38) 

We first prove this last proposition because we will need it in the proof of 
rule (6.37). 
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Proof of (6.38); 

Assume Inv. Then, for any cut V, argue thus: 

crossing V <; D - E 

{ extensionality}
 

('Ie: e <;; crossing V : e <;; D - E )
 

{ definition of crossing (6.36) , subtraction}
 

('Ie: cross (e,v) e <;; D A e <;; E)
 

<= { Inv2 }
 

('Ie: cross (e, V) : acyclic (E U e) A e <;; E >
 

{ incrementality of acyclic (6.23), Inv! }
 

('Ie: cross (e,v) : e 1, E A e <;; E )
 
{ distribution of universal quantification over conjunction} 

('Ie: cross (e, V) : e 1, E> A ('Ie: cross (e, V) : e <;; E > 

contrapositive, twice; respect is the negation of } 
{ cross (6.29); extensionality of respect (6.30) 

('Ie: e ~ E : respect (e,v) > A respect (E,v) 

{ cut-monotonicity (6.34) } 

respect (E, V) . 

o 

We now proceed to prove rule (6.37). The proof will reuse a good deal of the 
reasoning presented in Section 6.3. 

Proof of (6.37); 

Assume the antecedent, i.e. 

Inu A (3 V : respect (E, V) : e <;; min (H, crossing V) > . 

The assumption on e, by definition of min (2.60) 1 entails e S; crossing V .
 
The rest of the assumptions, viz. Inv and the assumption on E I then give us,
 
by proposition (6.38) proved above, that e <;; D - E. Also, by definition of 
crossing (6.36) 1 we have cross (e, V) and, then, the assumption on E plus 

cut-monotonicity (6.34) imply e 1, E. All of this allow us to use property 
(6.4) to conclude (Inv! A Inv2) [E := E U e] . 

Proving Inv3 [E := E Ue I is, as in Section 6.3, the tricky part. Recall that 
the big issue was proving the existence of a witness for existential quantifi
cation (6.9) in the case that e was not included in M'. And also recall that 
the existence of such a witness followed from the existence of an edge m in 
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M' satisfying (6.16). Such an edge m was proved to exist as a consequence 
of several facts. First, (6.18): 

N-E 01 Iil; 

second, (6.19): 

('1m: m ~ N - E : m ~ M' /I 

m satisfies the first two conjuncts of (6.16)) 

and, finally, (6.22): 

('1m: m<;M'-E: m~D) 

The first two properties show the existence of edges in M 1 satisfying the first 
two conjuncts of (6.16). The last property show that such edges must also 
belong to D - E, which implies that, were e selected to be of minimum 
weight in D - E , each edge m in N - E would satisfy the third and last 
conjunct of (6.16): welghte ~ weightm. 

In our new circumstances, all we need to prove is: 

(N - E) n crossing V 01 Iil . (6.39) 

This is snfficient since, from property (6.19) above, edges that are drawn from 
(N - E) n crossing V belong to M' and satisfy the first two conjuncts of 

(6.16). Since edge e has now been chosen to be of minimum weight in 
crossing V , such edges would also satisfy the third conjunct of (6.16). 

We now prove (6.39). The only other property of N we will need to borrow 
from Section 6.3 is the following: e:::> N, the middle conjunct of (6.17). We 
manipUlate thus: 

(N - E) n crossing V 01 Iil 
{ extensionality (2.30) } 

(:3n :: n ~ (N - E) n crossing V) 

{ intersection, subtraction, definition of crossing (6.36) } 

(:3n :: n ~ N /I n ~E /I cross (n,v) } 

assumption respect (E, V), for extenSionality} 
of respect (6.30) and contrapositive rule, is 
equivalent to ('Ie: cross (e, V) : e ~ E) ;{ 
hence, the third conjunct implies the second 

(:3 n :: n ~ N /I cr088 (n, V) }
 

{ extensionality of cross (6.31) }
 

cross (N, V)
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{= { assumption cross ie, V), cut-monotonicity (6.35) } 

e -j N 

{ property of N referred to above, from (6.17) } 

true . 

o 

We are now ready to use new rule (6.37) for augmentation of E. Note 
that the assignment statement involved not only maintains the invariant, 
but also guarantees that the iteration makes progress. Progress, as defined 
by Pry I is achieved if E is augmented with edges drawn from D - E . Due 
to proposition (6.38), this is indeed the case. 

A New Invariant Old rule (6.25) -repeated at tbe beginning of this 
section- required set D - E to be non-empty, which is guaranteed by the 
guard D", E at the entry point of the iteration. New rule (6.37) requires 
a stronger precondition, the existence of a cut respected by E and with a 
non-empty crossing: 

(3 V : respect (E, V) : crossing V '" 0 ) 
{ (6.38), intersection} 

(3 V : respect (E, V) : (D - E) n crossing V # 0) 
{ extensionality, intersection, definition of crossing (6.36) } 

(3V: respect(E,v): (3e: er:;,D-E: cross (e,v)) 

{ quantifications exchange} 

(3 e : e r:;, D - E : (3 V : respect (E, V) cross (e, V) ) 

{ cut-monotonicity (6.34) } 

(3 e : e r:;, D - E : e L E) . (6.40) 

Since the guard already guarantees D - E =I=- 0, it would suffice to require 
the following new invariant Inv4 to make (6.40) hold at the entry point of 
the iteration: 

Inu4 := (I;f e : e r:;, D - E : e L E) . 

We now dedicate ourselves to the task of working out a way to establish 
Inv4 . In Kruskal's algorithm, each edge drawn from D - E is added to E 

or taken out from D depending on whether it satisfies, respectively, (~ E) 
or (-j E). It seems reasonable to try to establisb Inv4 by subtracting from 
D all edges that satisfy (-j E) at once. We cbeck up on our intuition by 
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the following formal manipulation: 

Inv4 [D := D - D' ]
 

{ definition of Inv4 , substitution}
 

(\Ie; e t; D - D' - E : e f, E)
 

{ subtraction)
 
(\Ie; et;D-E 1\ et;D': ef,E) 

( contrapositive ) 

(\Ie; et;D-E 1\ e::,E: et;D') 
( universal property of union (2.3) ) 

(Ue: et;D-E 1\ e::,E: e) t; D' (6.41) 

Hence, Inv4 can indeed he established by subtracting from D a set D' that 
satisfies (6.41). We take D' to be the smallest possible set: 

D' := (u e : e t; D - E 1\ e::, E : e) . 

Define the new global invariant to be: 

Inv' := Inv A Inv4 . 

We have already got at our disposal rules for the maintenance and establish
ment of Inv. Those rules can be used to establish Inv, and D' can then be 
subtracted from D to establish Inv4 . Such a subtraction would not affect 
the validity of Invl or Inv3 since they do not mention D, but the validity 
of Inv2 might be at risk. We will now show that such a subtraction from 
D maintains Inv2. 

For showing that Inv2 is maintained by the subtraction of D' from D, 
we will reuse rule (6.5) for the diminishing of D, which was borrowed from 
Chapter 5; 

(Inv1 1\ Inv2) [D := D - eJ {= Inv1 1\ Inv2 1\ e::, E , 

witb the added proviso that e t; D - E holds. We are specifically inter
ested in the core of this implication regarding Inv2, spelled out as follows, 
where the additional proviso has been incorporated into the antecedent of 
the implication: 

Inv2 [D ;= D - eJ {= 

} (6.42) Inv1 1\ Inv2 1\ e::, E l\et;D-E . 

We now argue as follows: 

Inv2 [D:= D - D'] 
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{ definition of 10"2, substitution}
 

(Ve : acyclic (E U e) : e t; D - D')
 

{ subtraction, complementation} 

(Ve: acyclic(Eue) : e t; D f\ D't; e) 

{ extensionality (2.29), universal property of union (2.3) } 

(Ve: acyclic(Eue): et; D f\ (Vd: dt; D': dt;e)) 

assume D1::j:. 0 to allow distribution of } 
{ conjunction over universal quantification 

(Ve : acyclic (E U e) : (V d : d t; D' : e t; D f\ d t; e) ) 

{ complementation, subtraction} 

(Ve : acyclic (E U e) : (V d : d t; D' : e t; D - d) ) 

{ quantifications exchange, definition of 10"2 } 

(V d : d t; D' : 10"2 ID := D - d]) 

¢o { (6.42) with e:= d } 

(V d : d t; D' : Inv1 f\ Iov2 f\ d:s E f\ d ~ D - E) 

assumption D' =I 0 again to distribute } 
{ conjunction over universal quantification 

Inv1 f\ Iov2 f\ (V d : d t; D' : d:s E f\ d ~ D - E) 

{ by definition of D' the third conjunct is true} 

Iov1 f\ Iov2 . 

Assumption D'::j:. 0 was needed a couple of times in the calculation above 
but, since Inv2 [D := D - 0] is equivalent to Inv2 , the rule is valid whether 
D' is empty or not: 

In"2 ID:= D - D'] ¢o Iov1 f\ 10"2 . (6.43) 

We conclude from (6.43), plus the manipulation on 10"4 ID := D ~ D'] 
above, that subtracting D' from D establishes Inv l if Inv holds initially: 

In"' ID := D - (u e : e t; D - E f\ e:s E : e) 1 <= Iov. (6.44) 

6.7 Prim's Algorithm 

Now, enough machinery is available to us for constructing Prim's algorithm. 
As with Kruskal's algorithm, we start off' with the iteration that was set up in 
Section 6.2, but using invariant Inv' instead of Inv. Since Inv' is stronger 
than Inv. it is correct to keep the same guard. The refinement yet to be 
carried out is that of the specification statements left as initialisation and 
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The initialisa.tion statement from Chapter 5 and rule (6.44) are combined 
thus: 

E, D : [true, Inv' I 
~ { introduce sequential composition} 

E, D : (true, InvJ; E, D : [ Inv, Inv' I 
i;; { initialisation from Chapter 5, (6.44) } 

E, D := 0, Edge; D := D - (Ue : e r:;, D - E 1\ e ::, E : e) 

{ consecutive assignments } 

E, D := 0, Edge - (u e : e r:;, Edge 1\ e ~ 0 : e) 

= { definition of ~ (2.90) } 

E, D := 0, Edge - (u e : adj e r:;, id : e) 

In the last step, definition of ::, (2.90) was expanded to show that the ini
tially disposable edges are the loops of the graph -as defined in Section 2.5- . 
It is often assumed that the input graph does not have loops. 

The iteration body is constructed via rules (6.37) and (6.44): 

E, D : [ D t E 1\ Inv' , Inv' 1\ Pry I 
introduce sequential composition; if progress is aChieved} 

i;; { by the first statement, the second must not spoil it 

E, D : [ D t E 1\ Inv' , Inv 1\ PrgJ ; 

E, D : [ Inv , Inv' 1\ (D - E r:;, Do - Eo) ) 

(6.37), note that the calcnlation leading to (6.40) } 
i;; shows that DiE 1\ Inv' implies the existence 

{ of the required cut; (6.44), progress is not spoiled 

I[ val" V: Vec Vert ; 
V: (D t E 1\ Inv' , respect (E, V) 1\ crossing V t 0 ] ; 
I[ var e:Edge; 

e :~ min (R, crossing V) ; 
E := EUe 

11 
JI; 
D := D - (U e : e r:;, D - E 1\ e ~ E : e) 

We have fina.lIy got our first approximation to Prim's algorithm a.~ a refine
ment of specification (6.3). The whole code collected in Figure 6.45. 
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II	 var E: Vec Edge; 
Il	 var D: Vec Edge;
 

E,D:= 0, Edge - (Ue: adje c: id: e);
 
do DolE --+
 

II	 var V: Vec Vert ; 
V	 : IDol E II Inv' , respect (E, V) II crossing V # 0 I ; 
I[	 var e: Edge; 

e :~ min (R, crossing V) ; 
E := EUe 

JI 
]1 ; 
D := D - (U e : e c: D - E II e::5 E : e) 

od 

JI 
JI 

Figure 6.45:	 First Approximation to Prim's Algorithm, 
as Algorithmic Solution of (6.3) 

Data Refinement There is a good deal of inefficiency in our first approx
imation to Prim's algorithm, which we now proceed to do away with via 
data refinement. We first put forward, as temporary propositions l desired 
conditions on the new program variables. These propositions are then used 
to postulate the definitive conjuncts of the coupling invariant, 

The biggest efficiency problem in sight is the computation of an appropriate 
cut in the iteration body. Maintaing a cut with the right characteristics all 
the way through clears this up. New program variable W is introduced to 
serve as such a cut. Therefore, it must satisfy: 

Pi respect (E, W) . 

Cut W can be thought of as the vertex set of the forest grown so far E. 
Below1 when refining condition P 1 , it will indeed be defined to be the vertex 
set of E via the incidence relation Inc of the graph -as defined by (2.81) in 
Section 2.5-. We also need W to have a non-empty crossing for it to prove 
useful when the cut is required in the iteration body. However, imposing that 
the non-empty crossing condition must hold all the time would be too strong 
a requirement. For instance t after growing the whole required output we can 
reasonably expect W to contain all the vertices of the graph, i.e. expect 
W = Vert to hold. In such a case the crossing of W is empty. There are 

also extreme cases, e.g. dealing with a graph that has an empty edge set, 
where every crossing is empty. We settle this issue by requiring the crossing 
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of W to be non-empty only if W does not comprise all the vertex set: 

P2 := cro99ing W = 0 '* W = Vert . 

This is all we need of new variable W. 

To comply with P 1 , we can maintain W as the vertex set of E, i.e. as 
Inc· E . There Illight be isolated vertices in the graph, so we cater for them 

by postulating the weaker: 

CIl Inc· E e; W . 

It is not difficult to show that PI follows from CIl. Using definition (6.28) 
of respect, we argue thus: 

odjE·W
 

e; { property of adj and Inc }
 

(Inc· E) . (Inc· E)' . W
 

e; {universal relation of type 1 +- 1 is id }
 

Inc' E
 

e; {GIl}
 

W. 

But there is a problem: W is allowed too much freedom. For instance, GIl 
~and PI and P2 - can be met by assigning Vert to W. So, we tighten 
W up by allowing into it only vertices connected through E, provided they 

are originally connected in the input graph: 

CI2 tV . WO n Join ~ join E 

To avoid recomputations from scratch of the crossing of W, the second 
biggest source of inefficiency in the program of Figure 6.45, a new program 
variable F is introduced to maintain it. Requirement P2 is then proposed 
as definitive, but after expressing it in terms of F: 

CIS F = crossing W ,
 

CI4 F=0'* W=Vert
 

Finally, the whole coupling invariant: 

CIl 1\ CI2 1\ CIS 1\ CI4CI 

We now describe how the program in Figure 6.45 is transformed using GI as 
coupling invariant. We take a light approach under which the transformations 
are explained without providing the fully formal proofs. 

The initialisation of E as the empty forest is extended with assignment 

127
 



W, F:~ 0,0 to establish CIl, CI2 and CIS. Immediately after, condi
tional Don-emptiness of F is achieved with an iteration that grows W up 
to the establishment of Cf4 : 

do F = 0 f\ W '" Vert -t
 
II var v: Vert ;
 

v:~ W; 
W, F:= W U v, crossing v 

JI
 
od
 

The negation of C14 was taken as guard, and the iteration body maintains 
the initially established other three conjuncts of CI. Finiteness of Vert 
guarantees termination since W is augmented in each iteration. 

The guard of the main iteration is replaced according to the following fact: 

IfiV' f\ CI ~ (D = E '" W = Vert) . 

Hence, lV ¥=- Vert becomes the new guard. We can then dispose of variable 
D as it is rendered useless by this transformation. 

In the iteration body, the specification statement affecting V could be re
placed by V:= W, as Pl holds on account of Cll and crossing W '" 0 
also holds on account of the guard, CI3 and C14. However, since variable 
V is only used to select the new edge e, and that selection statement can 

be replaced after assignment V:= lV by e :~ min (R, F) on account of 
CIS, variable V is simply eliminated. 

Drawing e from F implies that it crosses W, and predicate cross enjoys 
the following property: 

cross (e, W) '" (3 v, w v· W 
O C;; adj e v C;; W f\ w C;; W) , 

where dummies v and w range over points of Vert. Therefore, when adding 
e to E, augmenting W with the W -extreme of e maintains CI1 and 
CI2. We use an auxiliary variable v and assignment v := lV n Inc· e to 

get hold of the required W-extreme of e. An implementation can improve 
on this by storing in F each edge paired up with its "outer ll extreme. To 
maintain CIS, variable F is updated according to this crossing-rule: 

crossing (W U v) 

(crossing W - Inco 
. v) U (Inc o 

. v n Inco 
. (W - v)) 

provided v ~ W . 

After such an updating, the crossing F might have become empty -if a 
connected component of the graph has just been completed-. The same 
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auxiliary iteration used in the initialisation must be used here to reestablish 
Cf4. 

The transformation of the program has been completed. But we now point 
out the fact that variable W has been used as W =1= Vert in guards and as 
~V in most other expressions. It is thus more convenient to have a program 
variable that holds the complement of W. This is so because comparisons 
to the empty set are often, if not always, implemented more efficiently than 
comparisons to the universal set, and because recomputations via comple
mentation are then avoided. Hence, we introduce a new program variable 
W' using W' = W as coupling invariant. Variable W can be eliminated 

after replacing all its uses by expressions on W', and we then rename W' 
as W to avoid the prime symbol. 

The resulting program, our version of Prim's algorithm, is shown in Figure 
6.46. 

Originally, Prim's algorithm was designed to deal with input graphs that 
were connected and had a non-empty vertex set. We set ourselves the task 
of "redesigning" Prim's algorithm to cater for any graph. The development, 
though admittedly long, is quite pleasant, as much of it is guided b)' hints 
given out by the formulae in manipulation. An instance of "syntactic hints" 
is the postcondition required of local variable V in the first solution: it gave 
rise to the proposal of P1 and P2 as means of achieving the elimination of 
V . It is even more pleasant to see that the complexity added by accepting 

unrestricted graphs is not significant. Suppose the input graph is connected 
and its vertex set is non-empty. Connectedness then implies that only Vert 
and 0, which actually identify the same cut, have empty crossings. There is 
thus no need for the procedure GetCrossing. The initial call to GetCrossing 
can be replaced by one execution of its iteration body: non-emptiness of Vert 
guarantees at least one round of the iteration while connectedness guarantees 
that one round suffices. The second call to GetCrossing, within the main 
iteration body, can be plainly removed as the crossing will not become empty 
unless W has been emptied a.~ well. Therefore, only the calls to GetCrossing 
would be affected by restricting the input graph. The rest of the program, 
to us the most complex part of it all, remains just the same. 

6.8 Related Work 

We only know of two derivations of minimum spanning tree algorithms: Bird 
and de Moor's [25], where Kruskal's algorithm is obtained as an instance of 
a generic algorithmic solution to a certain kind of optimisation problems; 
and Berghammer et al.'s [20], where Prim's algorithm is derived via calcu
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I[	 var E: VecEdge; 
II	 var W: Vec Vert; F: Vec Edge;
 

E, W, F := 0, Vert,0 ;
 
GetCrossing (W, F) ;
 
doW;f0--> 

II	 var e: Edge;
 
e:~ min (R,F) ;
 
II var v: Vert;
 

v := "IV n Inc· e ; 
E, W:= E U e, W - v ; 
F := (F - Inc'· v) U (Inc'· v n Inc'· W) 

]1 
II ; 
GetCrossing (W, F) 

od 

II 
II 
with proc GetCrossing (in out W : Vec Vert, F: Vee Edge) 

do F= 0/\ W;f0 --> 
II var v: Vert; 

v:~ W; 
W, F:= W - v, crossing v 

]1 
od 

Figure 6,46: Prim's Algorithm, after Data Refinement, 
as Algorithmic Solution of (5.3) 
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lations with binary relations and standard methods for the development of 
imperative programs. 

Bird and de Moor, encouraged by the view that tbe structure of data can dic
tate the structure of programs, focus in 125] on the derivation of optimisation 
algorithms under the allegorical approach to datatypes. For this reasoD, the 
minimum spanning tree instance problem is specified in terms of lists right 
from the beginning, unlike our presentation with sets that could be fnrther 
developed towards an implementation using Lists at a later stage. Kruskal's 
algorithm interests Bird and de Moor due to its optimisation nature and 
not to its graph-theoretical character. The graph properties involved in the 
instantiation of their generic solution [25, Section 8] are not dealt with calcu
lationally, but only semi-formally. Their full formalisation would correspond 
to parts of our Section 5.5 and this chapter. 

Related to Bird and de Moor's work, in the matter of the categorical treat
ment of datatypes, Gibbons [641 has proposed a data type that models a 
restricted kind of graphs, viz. directed acyclic graphs with ordered edges 
-Le. the incoming and outgOing edges of a vertex form a list rather than a 
set-. Its application seems to be, as far as it is shown in [64], limited and 
we know of no further exploration of its applicability. 

The derivation of Prim's algorithm by Berghammer and his coHeagues in [20] 
is a follow-up to Berghammer's [16], reviewed in Chapter 5. As in the former 
treatment of unweighted spanning trees, the input graph is required once 
more to be connected and with a non-empty edge set. Also, the mainderiva
tion is again worked out in tenus of simple graphs, hence not dealing with 
edges -except as represented by atomic symmetric adjacency relations-. But 
this time their first algorithmic solution is later data-refined to a program 
in terms of full graphs as we understand them, i.e. plain undirected graphs. 
Edges can thus be given a weight and the minimisation aspect of the problem 
can be tackled. The simple graphs and the normal graphs, in their terminol
ogy graphs and multigraphs, respectively, are linked by a Galois connection 
-see e.g. [1] or [2, Chapter 5]- between the lattice of edge sets and the lattice 
of symmetric adjacency relations. This is related to our adj, which produces 
adjacency relations from edge sets and which distributes through arbitrary 
unions, a sufficient and necessary condition for a function hetween lattices 
to be the lower adjoint of a Galois connection. 

In relation to the contents of our Section 6.3, Berghammer et al. make further 
use of Galois connections when proving their "Edge Replacement" lemma [20, 
Section 6.4, Lemma 31]. The proof is carried out in a very compact fashion 
by exploiting the properties of a Galois connection involving the subgraphs 
of a fixed spanning tree. This corresponds to what took us so rnuch time 
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proving the existence of a witness in Section 6.3. At the time of writing, 
we have not been able to get a handle on this second Galois connection) 
but it is certainly an attractive way of shortening the proofs of this chapter 
and very probably of getting a deeper understanding of other features of 
connectednes&-preserving forests like e.g. those explored in Section 2.7. We 
thus intend to get down to it in future work. 
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Chapter 7 

Computing Strongly Connected 
Components 

This chapter presents the derivation of an algorithm that computes the 
strongly connected components of a directed graph. Tackling this problem in 
the context of the present thesis, which aims to show the applicability of the 
calculus of relations to the derivation of graph algorithms, was motivated by 
two previous exercises in dealing with this non-trivial algorithmic problem in 
a methodical fashion: Dijkstra's "exercise in orderly program composition" 
(46] --see also [45, Chapter 25]- and Kruseman Aretz's "exercise in program 
presentation" as a tribute to Dijkstra (89). The programs therein presented 
are akin to Tarjan's famous algorithm for the computation of strongly con
nected cnmponents by means of a depth-first traversal of the graph [141J. 

Dijkstra's essay offers a derivation which, however, "contains a few 'surprises' 
... without an elaborate heuristic justification" [46, page 22]. It has to be 
noted that at the time this essay was written, the mid 19705, calculational 
methods had not yet found their way into the field of program development. 
It is thus not surprising that the graph properties involved are not treated 
calculationally at all and, without a formalism allowing uninterpreted ma
nipulation of formulae representing graph concepts, "surprises" were likely to 
come up. Kruseman Aretz's essay, written about a decade and a half later, 
offers a clearer presentation of the algorithm that benefits from abstracting 
data-representation details, using sets and lists instead of arrays intricately 
representing the relevant data. Nevertheless, the algorithm is not derived 
but merely presented, albeit in an orderly and quite beautiful fashion. 

We hope that the contents of this chapter live up to the expectations of state
of-the-art program development as a follow-up to Dijkstra's and Kruseman 
Aretz's work. In the introduction to his essaYl Kruseman Aretz points out 
that he expects llthat the presentation can be transformed into a derivation" 
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-our emphasis- and that he hopes this will "be done in the future" [89, 
page 251]_ It pleases us to have moved on a little closer to such hopes, in spite 
of our derivation being admittedly rife with many long tricky calculations. 
We believe, however, that our derivation represents a stepping-stone towards 
a nice and compact derivational presentation. 

In what follows, Section 7.1 presents a formal specification of the problem. 
Section 7.2 then sets the scene for the derivation of an iterative algorithm by 
proposing an invariant. The invariant is somewhat complex and comprises 
a good number of conjuncts; hence, emphasis will be laid on justifying how 
each of the conjuncts was deduced. Section 7.3 offers the rest of the set
up of the iteration: guard, initialisation statement, and variant. Means of 
making the iteration progress are dealt with in Section 7.4 by examining four 
different ways of decreasing the variant. Section 7.5 assembles the body of 
the iteration, thereby completing the program we offer as a refinement of 
the initial specification, and Section 7.6 provides some comments on further 
refinement and implementation details. Section 7.7 closes the chapter with 
a review of related work 

7.1 Specification 

Strong connectedness, within the calculational framework of binary relations, 
was presented in page 30 of Chapter 2. For the sake of convenience, we re
call and relabel some relevant definitions here. Let G be a directed graph 
( Vert, Edge, xl , x2). Definitions (2.74) and (2.83) of the successor and reach
ability relations of G, which are used to construct the strong connectedness 
relation of G , as well as definition (2.87) of the strong connectedness relation 
itself state that: 

Succ xl . x2 Q (7.1 ) 

Reach Succ· (7.2) 

Str Reach n ReachQ (7.3) 

Relation Str is an equivalence relation on Vert that relates: mutually reach
able, i.e. strongly connected, vertices. 

In page 21 of Chapter 2, we showed a way of modelling quotient sets of 
equivalence relations as powerset vectors. The set of strongly connected 
components of G is precisely the quotient set of Str: Vert +-- Vert and, 
therefore, our problem can be formally specified as follows: 

II var SC: Vee (PVert) ; 
SC: [ true , SC = AStr· Vert ] (7.4) 

]1 
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We now proceed with its refinement to a program. 

7.2 A Non-Trivial Invariant 

This section proposes a reasonable invariant to develop an iteration that re
fines the specification of our problem. As mentioned in the introduction, the 
invariant we will end up with is rather complex, comprising several canjuncts. 
We embrace the task of justifying every conjunct by explicit reference to the 
underlying reasoning that puts them forward. 

Before embarking On our main task, some definitions from Chapter 2 are ex
ported and relabelled. The successor, reachability and strong connectedness 
relations of graph G can be restricted to make use of only a subset of edges. 
As defined in (2.77), (2.85) and (2.88), these relations are: 

succF ~ xl· ¢F· xW , (7.5) 

reach F = (succ F)" (7.6) 

str F (reach F) n (reach Ft (7.7) 

where F is the vector on Edge that models the subset of edges one is allowed 
to traverse. 

We now go for the invariant. 

The Subgraph Seen So Far To begin with, it is most reasonable to 
expect that the vertices and edges must be incrementally examined. Thus, at 
each execution of the iteration body only some of the vertices and some of the 
edges have been inspected. These vertices and edges determine the subgraph 
of G that has been seen so far. How much is known about the st.rongly 
connected components of G must be in accordance with such a subgraph, 
and that is what we lay bare on our first invariant. We get it by replacing 
constants Vert and Edge in the postcondition of (7.4) by freshly introduced 
variables V: Vee Vert and E: Vee Edge that reflect the subgraph seen so 
far: 

PI := SC = 11.(sIr E) . V , 

i.e. SC is the (str E)-quotient of V. Note that constant Edge is hidden 
in (7.4). The fact Str = sIr Edge suffices to unveil it. 

It is also reasonable to assume that V and E determine a consistent sub
graph of G. As formalised in (2.76), this means that both extreme vertices 
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of edges in E must be in V. This provides us with two more invariants: 

P2 xl . E C;; V
 

P3 x2·EC;;V
 

Furthermore, we require the partition Be to be consistent in the sense that 
the vertices it contains should be exactly those contained in V and no more. 
This is formalised by the expression E· Be = V, which is equivalent to 
stating that V fits str E -see remarks on partitioning sets by equivalence 
relations and the whole set of elements in such partitions in pages 21-22 
of Section 2.4-. Hence, we ask V to fit str E invariantly through our 
iteration· to-be: 

P4 strE·V C;; V 

And this is the end of the consistency requirements on the subgraph given 
by VandE. 

\Ve want to point out that, by the end of this section, we will have collected 
invariants named Invl , Inv2, et cetera. Those will be the definitive ones. 
We have named the above invariants Pl, P2, P3 and P4 since there is 
quite some juggling ahead of us before we decide on the final invariants, 

An adequate guard for our provisional invariants Pl, P2, P3 and P4 
could be ,(v = Vert A E = Edge) . But we will postpone this issue until 
the next section, after the final invariants have been decided on. 

Final Components and Intermediate Components According to pro
posed invariant PI , program variable Be holds some "nearly strongly con
nected" components of G computed out of V and E. We now wonder 
whether some of these components are final, i.e. full strongly connected com
ponents of G, and under what conditions they are so. The remaining com
ponents in Be, i.e. the ones still in construction, we will call intermediate. 

In order to analyse conditions that determine which components in Be are 
final and which are intermediate, we partition the set of inspected vertices 
V into two sets: 

Ql V = VI U Vi A VI n Vi = 0 . 

Sets Vf and Vi are, respectively, meant to comprise the vertices of final 
components and intermediate components in Be. We will also make use of 
an analogous partition of set E: 

Q2 E=ElUEi A ElnEi=0. 
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Set Ef is meant to comprise the edges that have determined the final compo
nents computed so far, whereas Ei contains the rest of the inspected edges. 

Partitioning the vertices as in Q1, on account of Pi and distributivity of 
composition over union, implies that: 

se = A(slr E) . Vf U A(sir E) . Vi	 (7.8) 

Each half of parti tion se as stated in this equation should be consistent in 
the same sense as of condition P4 , i.e. both Vf and Vi should fit str E . 
Hence, we require: 

Q3 sirE· Vf <; Vf ,
 

Q4 sir E· Vi <; Vi .
 

Note that Q1, Q3 and Q4 imply, and thus take care of, invariant P4 . 

Final Components We now want to examine under what conditions the 
first half of se as stated in (7.8) corresponds to final components) i.e. under 
what conditions the following holds: 

A(slr E) . Vf = ASlr· Vf	 (7.9) 

This we manipulate as follows: 

(7.9) 

<=	 { power transpose, vectors and coreflexives (2.53) } 
sir E . ¢ Vf = Sir· ¢ Vf 

{ str E ~ Str 1 monotonicity of composition} 

Sir· ¢ Vf <; sir E . ¢ Vf
 

{ coreflexives (2.33) }
 

Sir· ¢ Vf <; sir E
 

~set Ef is meant to be the relevant subset of E } 
<= as regards the final components and we thus need 

{ to introduce it- Ef ~ E, monotonicity of str 

Sir· ¢ Vf <; sir Ef 

{ definition of sir (7.7), intersection (2.6) } 

Sir· ¢ Vf <; reach Ef 1\ Sir· ¢ Vf <; (reach Efl'· (7.10) 

We now deal with the first conjunct: 

Sir· ¢ Vf <; reach Ef
 

<= { definition of Sir (7.3) , intersection}
 

Reach· ¢ Vf <; reach Ef
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corefiexives included in id -this prepares us to apPlY} 
¢ the leap-frog over closure rule without making an 

{ unreasonable strengthening of the demonstrandum-

Reach· ¢ Vf <;; ¢Vf . reach Ef (7.11) 

¢ 
definitions of Reach (7.2) and reach (7.6) , } 

{ leap-frog over closure (2.66) 

Succ . ¢ Vf <;; ¢ Vf . succ Ef 

definitions of Succ (7.1) and succ (7.5), monotonicity } 
¢ { of composition, coreflexives duplicate (2.32) 

x2' . ¢ Vf <;; ¢Ef . x2' A xl· ¢Ef <;; ¢ Vf . xl (712) 

This last proposition will be taken as invariant of the loop. \Ve now show 
that this suffices for Vi and £1 to determine the final components in Be, 
as the second conjunct of (7.10) also follows from it: 

Sir· ¢ Vf 

definition of Sir (7.3) , distribution of composition}
<;; { over intersection -right-analogue of (2.15)

Reach· ¢ Vf n Reach'· ¢ Vf 

(7.11) above follows from (7.12), } 
<;; { coreflexives included in id 

¢ Vf . reach Ef n Reach' 

<;; { Dedekind's rule (2.19), symmetry of coreftexives (2.32) } 

¢ Vf . (reach Ef n ¢ Vf . Reach') 

<;; { intersection, coreflexives duplicate (2.32) } 

¢ Vf . Reach' 

{ converse (2.16), symmetry of coreftexives (2.32) } 

(Reach· ¢ Vf)' 

c { (7.11) above again, converse (2.18) } 

(¢ Vf . reach Ef)' 

<;; { coreBexives included in id, converse (2.18) } 

(reach Ef)' . 

Hence, (7.12) does imply both conjuncts of (7.10). To postulate the two con
ditions in (7.12) as invariants, we use property (2.40) for the transformation 
of coreflexive expressions into vector expressions and, since they will not be 
further manipulated, we name them as definitive invariants: 

Invl x2'· Vf <;; Ef
 

Inv2 xl· Ef <;; Vf
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In the calculation that led to these two conditions, several design decisions 
were made. To start with, it was decided to deal with tbe first conjunct 
of (7.10) before the second; tben, the following two steps strengthened tbe 
demonstrandum to arrive at (7.11). As mentioned in the hints, detecting 
a possible application of the leap-frog over closure rule gave rise to such 
a strengthening. Symmetric decisions could have been made by initially 
choosing the second conjunct of (7.10). Using properties of converse -(2.16), 
(2.18)- and symmetry of botb Str and corefiexives, the subsequent weak
ening of Str to Reach would have led to the closure being leap-frogged 
rightwards instead of leftwards. We would have obtained a mirror image of 
Invl and Inv2, with the roles of xl and x2 interchanged. There are no 

obvious reasons to favollI either of these two options over the other and we 
thus stick to our initial choice. 

We finalise the issue of the final components by showing that Q3 is also im
plied by Inul and Inu2. First, definition of Succ (7.1), Inul and Inv2 im
ply Suce· VI ~ VI. Then, definition of Reach (7.2) and property (2.68) of 
closure give us Reach· VI <;; VI. Finally, definition of Str (7.3) and inter
section imply Str· VI <;; VI, and the fact that str E <;; Str then implies 
Q3 

The final components have been dealt with: Q3 and (7.9) hold under Con
ditions Invl and Inv2. 

Intermediate Components We now deal with the intermediate compo
nents, Le. the second half of se as stated in equation (7.8). We have seen 
that edges in Ej determine the final components. On top of that, we would 
like them to play no role in the computation of the rest of the components. 
Hence, we now search for conditions that make the intermediate components 
dependent solely on edges in Ei, i.e. conditions under which the foliowing 
holds: 

A(.tr E) . Vi = A(str Ei) . Vi .	 (7.13) 

We proceed, with a manipulation quite similar to the one of (7.9), thus: 

(7.13) 
¢=	 { power transpose, vectors and coreHexives (2.53) } 

.tT E· ¢ Vi = str Ei . ¢ Vi 

{ E:2 Ei , monotonicity of str and composition} 
str E· ¢ Vi <;; str Ei . ¢ Vi 

{ coreHexives (2.33) }
 

str E· ¢ Vi <;; str Ei
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{ definition of str (7.7) , intersection (2.6) } 

strE· ¢ Vi <;: reachEi 1\ strE· ¢ Vi <;: (reach Ei)". (7.14) 

Unlike with (7.10), we now choose to continue the calculation with the second 
conjunct: 

str E . ¢ Vi <;: (reach EI)"
 

converse -(2.16), (2.18)-, }
 
{ symmetry of str E and corefiexives
 

¢ Vi . str E <;: reach Ei
 

~ { definition of str (7.7), intersection}
 

¢ Vi . reach E <;: reach Ei
 

coreflexives included in id -as before, thiS} 
~ { prepares us to apply the leap-frog rule

¢ Vi . reach E <;: reach Ei . ¢ Vi (7.15) 

~ { definition of reach (7.6) , leap-frog over closure (2.67) } 

¢ Vi . succ E <;: succ Ei . ¢ Vi 

definition of succ (7.5) , monotonicity of } 
~ { composition, coreflexives duplicate (2.32) 

¢ Vi . xl . ¢E <;: xl· ¢Ei 1\ ¢Ei . x2' <;: x2'· ¢ Vi 

converse -(2.16), (2.18)-, } 
{ symmetry of corellexives (2.32) 

¢Vi·xl·¢E <;: xl·¢E, 1\ x2·¢Ei <;: ¢Vi·x2. (7.16) 

Again, this last proposition will be taken as invariant of the loop, but we still 
need to show that the first conjunct of (7.14) also follows from (7.16): 

str E . ¢ Vi 

definition of str (7.7), distrihution Of}c { composition over intersection (2.15) 

reach E· ¢ Vi n (reach E)"· ¢ Vi 

corefiexives included in id; converse (2.16), }
<;: { symmetry of corellexives (2.32) 

reach E n (¢ Vi . reach E)" 

<;: { (7.15) ahove follows from (7.16), converse (2.18) } 

reach E n (reach Ei . ¢ Vi)" 

{ converse (2.16), symmetry of corellexives (2.32) } 

reach E n ¢ Vi . (reach Ei)" 

<;: { Dedekind's rule (2.19), symmetry of corellexives (2.32) } 

4Vi . (¢ Vi . reach E n (reach Ein 
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~ { intersection, corellexives duplicate (2.32) }
 
¢ Vi . reach E
 

~ { (7.15) above again}
 

reach Ei . ¢ Vi
 

~ { corellexives included in id }
 

reach Ei . 

Therefore, (7.16), to be taken as invariant, suffices for both conjuncts of 
(7.14) to hold. However, we will postulate only the second conjunct of (7.16) 
as invariant since the first follows from Inv2, as we now show: 

¢ Vi . xl . ¢E ~ xl . ¢Ei 

split E by Q2, distribution of ~ and composition over } 
{ union -(2.14)' (2.38)-, universal property of union (2.5) 

¢Vi . xl . ¢EI ~ xl . ¢Ei /I ¢ Vi . xl . ¢Ei ,; xl . ¢Ei 

coreflexive version of Inv2; second conjunct }
{= { is true since coreflexives are included in id 

¢ Vi . ¢ VI· xl ~ xl· ¢Ei 
{ corellexives versus vectors -(2.32), (2.39)- } 

¢( Vi n Vf) . xl ,; xl . ¢Ei 

{ left-hand side is empty by Q1 and (2.36) } 

true . 

We thus only postulate the vector-version, via property (2.40), of the second 
conjunct of (7.16): 

[nv3 x2·Ei'; Vi. 

Note again the design decision of first dealing with the second conjunct of 
(7.14) by strengthening it to (7.15). It is the opposite decision to the one 
that was taken when dealing with the final components. Had we used for 
the intermediate components the same strategy that was used for the final 
components, we would have arrived at the xl-x2 mirror images ofthe COll

ditions that were actually obtained. \Ve will not get into details, but point 
out that such mirror images would form a "difficult" invariant if conjoined 
to Invl and Inv2, in the sense that the iteration would then not be able 
to explore edges in a one-by-one manner. This led to using the opposite 
strategy when dealing with the intermediate components and, thus, to Inv3 
as defined above. 

As it happened with Q3 before, assumption Q.4 can now be shown to 
follow from the new invariant. The argument is similar, albeit slightly more 
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elaborate) to the one that showed Q3 from [nvl and Inv2. First, use 
definition of succ (7.5) and (7.16), which we have proved to follow from Inv2 
and InuS, to show that (succ E)O . ¢ Vi ~ ¢ Vi . (succ E)O . Translate this 
into a vector expression with the aid of (2.40) to obtain (s'Ucc £)0 . Vi S;;; Vi. 
Then, use definition of reach (7.6) and property (2.68) of closure to get 
(reachEY· Vi ~ Vi. Definition of str (7.7) and intersection then imply 
str E· Vi ~ Vi, i.e. Q4. 

Finally: the jntermediate components have also been dealt with: Q4 and 
(7.13) hold under condition Inv3 -and Inv2 -. 

The x- V-E Equations So far, our only definitive invariants are [nvl, 
[nv2 and [nuS, all of which express relationships between the extremes of 

the edges inspected so far and the vertices inspected so far. These are what 
we call x- V -E equations. Left behind were two other such equations, which 
constrained the subgraph seen so far to be consistent: P2 and PS. In the 
light of equations [nvl to [nuS these can be simplified and we dedicate 
ourselves to such a task now. 

We first deal with P2 thus: 

xl· E ~ V
 

{ splits given by QI and Q2 }
 

xl· (EjUEi) ~ Vju V,
 

distribution of composition over union (2.14), } 
{ universal property of union (2.5) 

xl . Ej ~ Vj U Vi f\ xl· Ei ~ Vj U Vi 

{ Inv2 makes first conjunct true} 

xl . Ei ~ Vj U V, (7.17) 

{ union}"" 
xl·Ei~Vi 

Hence, provisional invariant P2 can be disposed of by taking: 

Inv4 xl· Ei ~ Vi . 

However) the question arises whether the last step of the calculation above, 
the only strengthening step, was sensible, in the sense of pu tting at risk the 
feasibility of the conjoined invariants. Discussion of this is delayed until after 
dealing with P3, which we proceed to do at once: 

x2·E ~ V
 
{ splits given by QI and Q2 }
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x2 . (Ef U Ei) C; Vf U Vi 

distribution of composition over union (2.14L } 
{ universal property of union (2.5) 

x2 . Ef C; Vf U Vi 1\ x2· Ei C; Vf U Vi 

{ Inv3 makes second conjunct true} 

x2 . Ef C; Vf U Vi 

Hence, we can dispose of P3 by postulating: 

Inv5 x2·Ef C; Vfu Vi 

Since [nv5 is equivalent to P3 l no risk has been taken this time. 

We now go back to qnestioning the strengthening of (7.17) into Inv4. Had 
we taken the former as invariant, no doubts would be cast on the replacement 
of P2 by it since both statements are equivalent. If we can show that from 
a computation state in which (7.17) holds a hannless assignment statement 
establishes Inv4 , we will have shown that feasibility of (7.17) implies feasi
bilityof Inv4 and, hence, that the strengthening in dispute is safe. We call 
such an assignment harmless if all other invariants are maintained. 

The restriction imposed by Inv4 is that the xl-extremes of Ei must lie in 
Vi , instead of unrestrictedly in Vj U Vi. Were this not true, one could try a 

simple transferral of the offending edges to Ej to solve the problem. Consider 
the set F defined to be Ei n xl o 

. Vf , i.e. the set of edges in Ei with 
xl-extremes in Vf. We claim that assignment Ef, Ei := Ef U F , Ei - F 
establishes Inv4 if (7.17) holds initiallYl and that it also maintains invariants 
Invl to Inv:J as well as Inv5. The proof of this claim boils down to 
some non-interesting juggling with the calculus of relations that the reader 
must already be familiar with -rules of the lattice structure and shunting of 
fUDctions is all it takes-; we thus omit it. The only provisional invariant at 
risk under the assignment at issue is Q2, but this is trivially maintained as 
the assignment just shuffles the partition. 

We must remark that any other strengthening, viz. reducing the right-hand 
side of (7.17) to Vf or reducing the right-hand side of Inv5 to either Vf 
or Vi, would have given rise to infeasible or to lldifficult" invariants. 

To summarise l we have done away with provisional invariants P2 and P3 
by postulating Inu4 and Inv5, which complete the set of x- V-E equations. 

Finishing Off Let us review what has happened to the provisional invari
ants up to this point, and then proceed to finish with the ones not yet taken 
care of. Out of the P-invariants only P1 still needs to be dealt with, since we 
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have just seen P2 and PS leaving, and P4 follows from the Q-invariants. 
Out of the Q-invariants only Ql and Q2 remain, since QS and Q4 were 
taken care of by the first three definitive invarlants Invl to Inv3. 

Due to the introduction of sets VI, Vi, EI and Ei, it seems reasonable 
to get rid of the sets we started out with: V and E. This calls, in order 
to sort PI out, for partitioning SC as \vell into, say, SCI and SCi, which 
would hold each half of SC as stated by equation (7.8). But such halves are 
expressed in terms of E, which we want to get rid of. This problem is solved 
by appealing to (7.9) and (7.13), which hold on account of Inv! to I"v3 and 
which give us AStr· VI and A(str Ei) . Vi as the corresponding halves 
for SCf and SCi. 

Variable SC was fixed in the specification as the program variable to hold 
the final result of the computation and, therefore, it cannot be sent away the 
way V and E were. Since it is clear that the SCI-half would be the one 
accumulating the final result, we can refrain from introducing SCI and keep 
SC to play its role. Hence, we take care of PI by introducing program 
variable SCi and postulating: 

1nv6 SC = ASt,·· VI
 

1nv7 SCi = A(str Ei) . Vi
 

As for Ql and Q2, we only need to scrap the bits that refer to the discarded 
V and E and keep: 

1nv8 :- VI n Vi = 0
 
1nv9 .= EI n Ei = 0
 

We have finally completed our toy ninefold invariant. As usual, we will let 
Inv denote the conjunction of Invl to Inv9. 

Before moving on to the next section, we need to remark that, in spite of 
having discharged variables V and E, we will stilI use them in the rest of the 
chapter. However, they will only represent abbreviations for the expressions 
VI U Vi and EI U Ei, respectively, instead of being program variables. 

This makes all the recorded facts about V and E in this section still valid, 
with the exception of Pi and (7.8) due to the fact that the role of variable 
SC was changed later. In particular, we will make use of (7.9) and (7.13), 
which imply the following alternative phrasings of Inv6 and Inv7: 

1nv6' SC = A(str E) . VI 

111v7' SCi = A(st,· E)· Vi 
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Invl x2"· VI s EI 
Inv2 xl ·EI s VI 
Inv3 x2·Ei s Vi 
Inv4 xl· Ei s Vi 
Inv5 x2 . EI s VI u Vi 
Inv6 SC ~ /l.Slr· VI 
Inv7 SCi ~ /I.(slr Ei) . Vi 
Inv8 VI n Vi ~ 0 
Inv9 E/nEi ~ 0 

Inv6'  SC ~ /1.( sir E) . VI 
Inv7' - SC, ~ /1.(sir E) . Vi 

Figure 7.18: The Ninefold Invariant 

A summary of the whole invariant is shown in Figure 7.18. 

7.3 Setting Up the Rest of the Iteration 

This section presents the other three important components of the design of 
an iteration: guard, initialisation statement and variant. 

Conjunct Inv6 of the invariant implies the postcondition if conjoined to 
VI ~ Vert. Hence, we take VI i' Vert as guard. 

All nine conjuncts of the invariant are easily established by assigning the 
empty relation to every variable. This is consistent with the operational 
view that the variables hold values related to the subgraph seen so far since, 
initially! nothing has been seen. 

According to the guard and the initialisation, variable VI is empty at the 
heginning and must grow until it holds all the vertices of the graph. This 
suggests VI itself as variant along with J as well-founded relation. -As 
usual, we assume both the vertex set and the edge set of the input graph to be 
finite.- However, this is too naive a variant, since expecting VI to increase 
on each iteration ignores the computation plan underlying the design of the 
invariant: the progressive construction of intermediate components until they 
can become final components. It is more sensible to expect that on each 
iteration one of the following occurs: 

•	 the set of final vertices is augmented due to the realisation that the 
construction of an intermediate component has been finished and it 
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must then be passed to the set of final components -this would also 
involve changes in the sets of final edges, intermediate vertices and 
intermediate edges, but we focus on the augmentation of Vf as the 
central indication of progress in this case- ; 

•	 keeping the set of final vertices fixed, the set Ef is augmented as 
the result of detecting edges that do not and will not contribute to 
the make-up of non-final components, be they intermediate or not yet 
started; 

•	 keeping the sets of final vertices and edges fixed, new vertices are added 
to Vi in order to make the construction of intermediate components 
progress; or 

•	 keeping the sets of final vertices, final edges and intermediate vertices 
fixed ~ new edges are added to Ei also in order to make the construction 
of intermediate components progress. 

We then postulate (Vf, Ef, Vi, Ei) as variant expression using the well
founded lexical ordering induced by ~, i.e. progress will be guaranteed as 
follows: 

Prg '= (Vf => Vfo) 

V (Vf=Vfo 1\ Ef=>Efo) 

V ((Vf,EJ) = (Vfo,Efo) 1\ Vi=>Vi o) 

V ((Vf,Ef, Vi) = (Vfo,Efo, Viol 1\ Ei => Eio) 

As customary by now, after setting up the iteration, we present a summary 
of how the initial specification statement in (7.4) has been refined so far: 

SC: [ true , SC = AStr, Veri I 
introduce local block and initialised iteration}

i;; { according to discussion above 

I[ var SCi: Vec (P Veri) ; 
Vf, Vi : Vec Veri; Ef, Ei : Vec Edge; 

SC,SCi, Vf, Vi, Ef,Ei := 0,0,0,0,0,0; 
do Vf,< Vert --+ SC, SCi, Vf, Vi, Ef, Ei : 

I Vf ,< Vert 1\ Inv, Inv 1\ Prg I 
od 
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7.4 Making the Iteration Progress 

Armed with invariant, guard and variant, we proceed in this section to de
velop preliminaries for the iteration body. These preliminaries correspond to 
the exploration of means of making progress, as determined by the variant, 
whilst maintaining the invariant. 

Augmenting VI Augmentation of the set VI is the prime way to make 
progress, as it also entails augmentation of the set of completely computed 
strongly connected components of the graph. We assume VI is augmented as 
the result of finalising the construction of one of the intermediate components, 
which is then transferred to the set of final components. Conditions under 
which this is feasible can be calculated. 

An assignment of the form V/:= VI u W guarantees augmentation of VI 
if W is such that: 

W ,. 0 /\ W n VI = 0 (7.19) 

We want W to be the set of vertices comprising one of the intermediate 
components, Le. comprising an element of SCi. Such an element would be 
a power-element of type P Veri which, by the power-transpose isomorphism 
(2.52), should correspond to a unique vector over Vert: our sought after W. 
We thus take W to be such that AW ~ SCi. This gives us, on account of 
Inv7' , property (2.61) of quotient sets, and Q4 ,tbat W,. 0 and W ~ Vi 
bold. Requirements (7.19) on Ware then fulfilled because VI and Vi are 
disjoint by Inv8 . 

Transferral of the selected component AW involves shifting, not only the 
vertices W, but also some edges as well. We name the set of such edges F 
and assume it must be a subset of Ei 1 Le. F ~ Ei. An appropriate value 
for F can be calculated as part of the analysis of the invariants. 

From all the above, we conclude that the assignment under which mainte
nance of the invariants must be analysed is: 

SC, SCi, VI, Vi, EI, Ei 

:= SCUAW,SCi-AW, VluW, Vi-W,ElUF,Ei-F 

For the sake of compactness, we will denote the result of applying the sub
stitution above to Invl by aInvl, and the same goes for Inv2, Inv3, 
et cetera. 

We first proceed with the x- V-E invariants. We only show the results of 
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the calculations, carried out using rules of the lattice structure: 

alnvl x2'· IV ,;; Ef u F
 

alnv2 xl . F ,;; Vf u IV
 

alnv3 x2 . (Ei - F) ,;; IV
 

alnv' xl . (Ei - F) ,;; IV
 

8Inv5 x2 . F ,;; Vf U Vi
 

Adding the aforementioned -reasonable- assumption F ~ Ei , we then ob
tain, first, that the last one holds: 

8Inv5 true 

and, second, that two of the others give the value F must have: 

8Inv2 1\ alnv' F = Ei n xl'· IV . 

Finally, with the value of F having been determined, the remaining two 
x- V -E equations provide conditions under which the transferral of W to 
the set of final components is viable: 

8rnvl 1\ arnv3 x2' . IV ,;; E 1\ x2'· IV n Ei ,;; xl'· IV . 

In words, all the outgoing edges of W have been inspected. And, either 
these are in Ef, in which case they lead into final components by Inv2, 
or they lead back into ~V, which shows W is not connected to any other 
intermediate component. 

As for the rest of the invariants, Inv6 and Inv7 are maintained without ad
ditional assumptions. A fully formal proof of this claim would call for a little 
calculus of equivalence classes in order to make the presentation attractive. 
We only argue informally as follows. An' was drawn from SCi. By Inv71 

this means W is a (str E)-class included in set Vi. After the assignment 
statement at issue, which shuffles Vf, Vi I Ef and Ei, the full set of in
spected edges E remains invariant but W is then included in Vf. Hence, 
IV is still a (str E)-class though not included in Vi but in Vf. Preser

vation of Inv6' and Inv71 requires, therefore, that An" is subtracted from 
SCi and added to SC. Assuming the conditions for the maintenance of the 
x- V -E invariants shown above, since such invariants imply the equivalence 
between Inv6 and Inv6', and between Inv7 and Inv7', we conclude that 
Inv6 and Inv7 are thus also maintained under such conditions. 

Maintenance ofthe disjointness invariants InvB and Inv9 is straightforward. 
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Augmenting Ef According to the variant, if Vf cannot be augmented as 
above, we ought to try augmenting set Ef without altering Vf. An increase 
in Ef can be accomplished by an assignment of the form Ef:= Ej U e , 
where e is an edge such that e ~ Ej. Even though the variant allows Vi 
and Ei to be changed in this case, it is worth first exploring the effect of 
altering only Ef . It turns out that no other change is necessary. 

Again, the effect of the assignment above on the invariants will be denoted 
by aInvl l aInu%! , and so on. The x- V·E invariants impose conditions on 
the extremes of e. Inv3 and Inv4 are not affected by the assignment at 
issue. For the others, we obtain: 

&lnvl - true, 

&lnv2 - xl . e <;: VI , 

&lnv5 - x2 . e <;: VI U Vi 

The xl-extreme of e must then be in Vj, and its x2-extreme must be either 
in Vj or in Vi since atoms are irreducible. But, were the x2-extrerne of e 
included in VI, shunting function x2 by (2.23) would entail e <;: x2"· VI 
and, therefore, edge e should be in EI by Invl , contradicting our original 
assumption that, in order to make progress, e had been drawn from EI. 
We thus conclude that maintenance of the invariant requires: 

xl . e <;: Vf II x2· e <;: Vi . 

Further information on the set from which e originates can be deduced. 
Since e must not belong to Ej, it must come either from Ei or from E. 
Were e drawn from Ei , the fact that its xl-extreme should be in Vj would 
contradict Inv4 since VI and Vi are disjoint. Hence, it must be the case 
that e <;: E . 

Invariants Inv6, Inv7 and Inv8 are trivially maintained since the variables 
involved are not altered. Inv9 is also maintained due to e being taken from 
E. 

Augmenting Vi We now explore augmentation of set Vi. This must be 
achieved via an assignment of the form Vi:= Vi U v , where v is a vertex 
not in Vi. Since VI cannot be altered and must be kept disjoint from Vi, 
vertex v must come from V. Again, we first explore the possibility of not 
altering Ei in spite of such an alteration being allowed by the variant and, 
again, it turns out that such a change is not necessary. 

Invariants Invl and Inv2 are unaffected by the assignment at issue. Inv3, 
Inv4 and Inv5 are easily shown to be maintained since their left-hand sides 

are unaltered a:s their right-hand sides increase. Inv6 is unaffected, whereas 
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1nv7 requires a change on variable SCi that we derive below. 1nv8 is 
maintained since v comes from V ,and 1nv9 is unaffected. 

For the maintenance of 1nv7, the required change on SCi is worked out as 
follows: 

Inv7 [SCi, Vi := SCi', Vi U v] 

{ substitution} 

SCi' = A(slr Ei) . (Vi U v) 

distribution of composition over union (2.14); } 
{ power-transpose fusion (2.51), v is a function 

SCi' = A(slr Ei) . Vi U A(str Ei . v) 

{ Inv7 } 
SCi' = SCi U A(slr Ei . v) . 

By 1m3 and 1nv4, both extremes of edges in Ei are explored vertices 
included in Vi. Since new vertex v comes from the set of unexplored 
vertices V, its (str Ei)-class should be a singleton that comprises only v 
itself. This is the kind of manipulation we had in mind when we pointed out 
before that a Little calculus of equivalence classes would enhance the quality 
of the presentation. As a modest example, we show the proof of this claim 
in full: 

str Ei . v = v
 

{ str Ei is reflexive}
 

strEi·v<;;;v
 
.;= { definition of sir (7.7), intersection}
 

reach Ei . v <;;; v
 

{ definition of reach (7.6) , closure (2.68) }
 

stice Ei . v <;;; v
 

definitions of suee (7.5) an<!.J (2.34) , }
 
.;= { intersection, v included in V
 

xl . Ei . Eio . x2° . V <;;; v 

.;= { 0 is a zero of composition and is the least relation} 

Eio . x2° . V <;;; 0 
Schroder's right-exchange rule (2.22), converse (2.16), } 
the universal relation of type 1 f- 1 is the identity

{ relation and, therefore, it is the case that 0' = id 

x2·Ei~V 

{ Inv3, union} 
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troe . 

Hence, new vertex 11 should indeed form a new singleton intermediate com
ponent. We then finally conclude that, in this case, the appropriate as
signment statement to achieve progress without spoiling the invariant is 
SCi, Vi := SCi U ,\v, Vi U v . 

Augmenting Ei To close this section, we deal with the last choice for 
making the iteration progress: increasing Ei whilst keeping VI, El and 
Vi fixed. Such an increase must be achieved with edges not in Ei or EI ) 

in order both to guarantee progress and to maintain disjointness of final and 
intermediate edges. Hence, assigmentEi:= Ei U e with e ~ E is explored. 

The effect on the x- V-E invariants gives conditious on the extremes of e. 
[nvl, [nv2 and [nvS do not mention Ei and are thus unaffected. For 
[nv3 and [nv4 , the following holds; 

aInv3 x2 . e ~ Vi
 

aInv4 xl . e ~ Vi
 

As for the rest of the invariants, [nv6 is not affected, [nv7 requires reorgan
ising the intermediate components as explained below, [nvB is not affected, 
and [n119 is maintained for having drawn e from E. 

Regarding [nv7, as equivalence relation str Ei grows, some equivalence 
ch"lSes in the partition SCi might need to be merged. The fact that both 
extremes of new edge e must lie, as stated above, in Vi means that e con
nects, in one direction, two intermediate components in SCi. If these two 
components were already connected in the opposite direction, a cycle has 
been created and, therefore, the components in such a cycle must be merged 
into a single component. The calculations regarding this are very knotty and 
we only give an overview. 

We start by spelling out the key property of str involved in this manipula
tion. If F is an edge set and I is an edge, then: 

sir (F U n = sir F U C· Co } (7.20) 
where C = reachF· xl· f n (reachF)o. x2· f . 

Set C comprises the union of aU the (str F)-components chained ina cycle 
under reach (F U J) , if such a cycle exists, tbat is. If no such cycle ha.s been 
created, C turns out to be empty. 

Properly (7.20) provides a bandle on aInv7. Let W be C [F, f := Ei, eJ . 
This means W is the new intermediate SCi-component that should result 
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from merging those components chained into a cycle by new edge e. Hence, 
augmenting Ei with e requires the following updating of SCi: 

if W = 0 --. skip 
~ W # 0 --. SCi := (SCi - A(str Ei) . W) u AW 
fi 

The expression A(str Ei) . W above denotes the sub-partition in SCi that 
must be merged into the single AW. The set of such components can be 
equivalently expressed in terms of only SCi and W thus: 

( u c : c <;; SCi A E· C <;; W : c) ,	 (7.21) 

where c is a dummy that ranges over elements of PVert. 

7.5 Assembling the Iteration Body 

The previous section explored means of making the iteration progress, but 
we still need to assemble the odds and ends into a correct iteration body. 
Correct meaning that it refines the specification statement left in our last 
refinement step in page 146; 

SC, SCi, VI, Vi, EI, Ei: [ VI # Vert A Inv, Inv A Prg I . (722) 

This will give shape to a program that correctly refines the initial specification 
(7.4). And we wiH consider this program our final program, yet further 
refinement and some implementation details will be briefly discussed in the 
next and last section. 

Preconditions for Progress Each of the four ways to make progress was 
subject to some conditions on the various pieces of data used. We gather 
such conditions in the list that follows: 

(i) Augmentation of	 VI requires the existence of an intermediate compo
nent W, i.e. for which AW <;; SCi holds, such that x2°· W <;; E 
and x2°· W n Ei ~ xr· W . 

(ii) Augmentation of EI requires the existence of an unexplored edge e, 
i.e. for which e <; E holds, with extremes such that xl· e <; VI and 
x2·e<;Vi. 

(iii) Augmentation of Vi requires the existence of an unexplored vertex v, 
i.e. for which v <; V holds. 

(iv) Augmentation of Ei requires the existence of an unexplored edge e, 
i.e. for which e ~ E holds, with extremes such that xl· e ~ Vi and 
x2· e ~ Vi . 
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We now analyse this List to gain a better understanding on how to fit together 
the progress-making statements. 

First, a connection is drawn between case (i) and cases (ii) and (iv). Case (i) 
requires the existence of a component W such that x2"· ~V ~ E , which is 
equivalent to x2°· W - E being empty and means that all outgoing edges 
of W have been explored. Cases (ii) and (iv), on the other hand, require 
an unexplored outgoing edge of Vi. Since Vi comprises all the vertices in 
partition SCi, such an edge must go out from, I.e. have its x2-extreme in, 
an intermediate component. Formally: 

x2'e <;; Vi 

{ Q4, reflexivity of str E } 

x2· e <;; strE· Vi 

{ Inv7', power-transpose cancellation (2.50) } 

x2 . e <;; E . SCi 

{ extensionality (2.29) } 

x2 . e <;; E· (U c : c <;; SCi : c ) 

distribution of composition over} 
{ union, atoms are irreducible 

( 3 c ; c <;; SCi x2 . e <;; E· c ) 

change of quantification dummy lV := E . c, } 
{ power-transpose isomorphism (2.52) 

(3 W : AW <;; SCi : x2· e <;; W ) 

shunting of functions (2.23); both cases (ii) a~ (iv) } 
require e to be unexplored -i.e. included in E - ,

{ universal property of intersection (2.6), subtraction 

(3 W : AW <;; SCi: e <;; x2'· W - E) . (7.23) 

Therefore, cases (Ii) and (iv) also require, as case (i) does, tbe existence of 
an intermediate component W, with the difference that now x2"· W - E 
should be non-empty and an edge drawn from it is needed. 

After this observation, we proceed with the actual assembly of cases for the 
body of the iteration. Recall that we are in the process of dealing with 
tbe specification stat.ement (7.22). Therefore, the guard VI # Vert can be 
counted in as a precondition. 

No Intermediate Components Having seen t.hat (i), (ii) and (iv) all 
require the existence of an intermediate component, only (iii) is applicable 
when SCi is empty. To apply (iii) it is required that V is non-empty, which 
indeed follows from SCi being empty as we now argue. First note that 
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SCi is empty if and only if Vi is empty; this can be formally shown using 
[nv7. Partition SCi being empty tben implies V being equal to VI, and 
VI does not contain all the vertices of the graph on account of the guard. 

Hence, V # Vert holds and, tbus, so does Vol 0 . 

We conclude that the following Hnaked" guarded statement does the job when 
there are no intermediate components at all: 

SCi = 0 --+ II	 var v: Vert ;
 
v :~ V; SCi, Vi := Av, v
 

II 
Note that we have made use of the fact that Vi is empty on account of SCi 
being empty. 

An Intermediate-to-Final Component Case (i) is dealt with straight
forwardly by assembling its precondition and progress-making statement in 
a guarded command of the following form: 

(3W:AW<;;SCi x2'·W-E=0
 
/\ x2'· W n Ei <;; xl'· W)
 

--+ I[ var W: Vee Vert ; 
F : Vee Edge ; 

II 

Some Intermediate-nat-Final Components To tackle cases (ii) and 
(iv) we use the fact that the requirement on the x2-extreme of new edge e 
is equivalent to (7.23). This means there must be an intermediate component 
W that is not final yet. Not final on account of its set of outgoing edges 

not having been fully explored, Le. x2°· W - E being non-empty. Picking 
such a component plus one of its unexplored outgoing edges gets us prepared 
to handle cases (ii) and (iv). However, such cases only apply when the other 
extreme, Le. the xl-extreme, of the edge is in VI or in Vi, and there is the 
third possibility of it being in V. This third potential situation is handled 
via a combination of (iii), whereby the unexplored new vertex is added to 
the family of intermediate components, and (iv), regarding the new vertex 
as already a member of Vi. 

All the above is formally arranged in a guarded statement as follows: 

(3W: AW<;;SCi: x2'·W-E#0) 



--+ \I var W: Vee Veri; 
e : Edge; v: Vert ; 

W : [ true , 1\W <;: SCi " x2°· W - E "f 0 ] ;
 
e :~ x2°· W - E; v := xl· e ;
 
if v <;: VI --+
 
o v <;: Vi --+
 
Dv<;:V--+
 
Ii
 

JI
 
In the third brauch of the inner alternation, where (iii) ilnd (iv) are combined, 
the rather complex progress-making statement of case (iv) can be simplified. 
This is due to the fact that, having just added via (iii) the xl ~extreme of 
e to Vi, no need of merging components arises. Formally, this corresponds 
to W as used by case (iv) in pages 151-152 being empty. The result of 
this simplification is shown in Figure 7.24, where the body of the iteration is 
assembled. 

Finishing Off The three guards of the "naked" guarded commands we 
have given are complete, this meaning that their disjunction is equivalent 
to true. The guarded commands at issue can therefore be joined in an 
alternation that correctly refines the specification statement of the body of 
our iteration. The whole alternation is presented in Figure 7.24. 

For proving that the disjunction of the guards holds, we will make use of 
contracted graphs. Let G be a graph and Q be an equivalence relation on 
its vertex set. The Q-contraction of G is a graph whose vertices are the 
Q-equivalence classes and whose edges are those edges of G not incident on 
Q-equivalent vertices. The extremes of edges in the Q-contracted graph of 
G are the Q-classes to which their extremes belong in G. It is a fact that, 

for every equivalence relation Q, if G is finite then so is its Q-contraction. 

The particular use we need of contractions is that determined by the equiva
lence relation stT Ei on the input graph. In such a contracted graph, there 
cannot be cycles linked by edges in Ei: the existence of a cycle of such a 
form would imply that the vertices in the cycle form a bigger (8tT Ei)-class 
when united, contradicting the assumption that each vertex in the cycle was 
a (sir Ei)-class in the first place. 

Let us now prove that the guards are complete. Assume neither tbe second 
guard nor the third guard holds. This means: 

(VW: AW<;:SCi: x2°·W-E"f0
 
V x2°· W n Ei Ii: xl ° . W )
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if SCi = 0 ---+ 
II var v: Vert; 

v :~ V; SCi, Vi := Av, v 

JI 
~ (3W : AW ~ SCi: x2"· W - E = 0
 

II x2'· W n Ei ~ xl'· w) ---+
 
II var W: Vee Vert ;
 

F : Vee Edge ; 
W:	 I true, AW ~ SCi II x2'· W - E = 0 

II x2'· W n Ei ~ xl'· WI; 
F := Ei n xl°· W i 
SC,SCi:= SCUAW,SCi-AW;
 
Vj, Vi, Ej,Ei := Vj U W, Vi -W, Ej U F, Ei-F
 

JI
 
~ (3 W : AW ~ SCi: x2'· W - E 'I 0) ---+
 

II var W: Vee Vert ;
 
e : Edge; v: Vert ; 

W: [ true, AW ~ SCi II x2'· W - E 'I 0 I; 
e :~ x2°· W - E; v := xl . e ; 
if v ~ Vj ---+ Ej:= Ej U e 
~ v ~ Vi ---+ W := reach Ei . xl . e 

n (reachEi),·x2·e; 
if W = 0 ---+ skip 
~ W'I0 ---+ 

SCi := (SCi - A(str Ei) . W) U AW 
Ii·, 
Ei := Ei U e 

~ v ~ V ---+ SCi, Vi, Ei := SCi U Av, Vi U v, Ei U e; 
Ii 

JI 
Ii 

Figure 7.24: Alternation that refines the specification 
statement of the iteration body (7.22) 
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(VW: AW <;; SCi : x2°·W-E = 0) 

By predicate calculus, this implies: 

(VW: AW <;; SCi : x2°·W n Ei 'l xr·W) (7.25) 

We will now show that the first guard must hold as follows: Were it the case 
that SCi -i' 0 holds, (7.25) would entail the existeoce of an infinite chain of 
(str Ei)-classes linked by edges in Ei. This would contradict the fact that 
the (str Ei)-contracted graph is finite and acyclic. Hence, we will conclude 
that the first guard, i.e. SCi = 0, must hold if the other two guards do not. 

We now proceed to construct the above-referred infinite chain. SUppose 
SCi -i' 0. Then take an element AWo in SCi. By Inv7, set Wo must be 

a (str Ei)-class and, by (7.25), there must be an outgoing edge of Wo in 
Ei not leading back into fifO' Invariant Inv4 guarantees that such an edge 
must go to a vertex in Vi and, therefore, into an element AWl, different 
to AIVo, in SCi. The reasoning carried out for AWo applies to AWl as 
well, i.e. it must be the case that WI is a (str Ei)-class for which some 
outgoing edge in Ei leads into a different AW2 in SCi 1 et cetera. Hence, 
we can construct an infinite chain [AWo 1 AMlj , AH-'2, ... J that implies the 
aforementioned contradiction and thus shows the completeness of the three 
guards in Figure 7.24. 

7.6 Further Refinement 

Up to this point we have arrived at an abstract program that we offer as 
final. The level of abstraction determined by its use of sets, be it. in the 
form of powersets or vectors, is no different to that of the programs that 
were offered as final in previous chapters. However, some pieces of it are 
even "less executable" than the average abstract program dealt with in this 
thesis, e.g. the guards of the second and third branches of the alternation 
in Figure 7.24. This section puts forward means of further refining our final 
program towards an implementation, but without providing all the detailed 
technicalities. 

Data-Refining SCi Variable SCi holds the partition of set Vi of vertices 
in conformity with the strong connectedness relation determined by set Ei 
of edges. Without further provisos, partition SCi can have any shape. We 
might say that it can be as "disorganised" as it wants, and this fact may 
become a burden for the efficient evaluation of the guards of the main, i.e. 
outermost, alternation. Imposing some order upon the shape of SCi solves 
this problem, the order being that its components must be linked sequentially 
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without rightward references. More specifically, data-refining SCi to a list 
in which all outgoing Ei-edges from any component must lead into the same 
component, except for one edge that must lead into the immediate component 
on its left, unless no such component exists. 

Such. data refinement guarantees that the head of the "listified" SCi, the 
head being the leftmost component, absorbs all its own outgoing Ei-edges 
into itself. Formally, for the vector W that corresponds to the component 
at the head of the list, the following holds: 

x2° . W n Ei ~ xl"· W 

Therefore, the second and third guards of the main alternation can be im
plemented just by inspecting whether all the outgoing edges of the head 
component have been explored. By the same token, the specification state
ments that open the branches of these same guards can be implemented just 
by picking the head of the list. 

In the body of the third branch of the main alternation, another simplification 
is brought about by this data refinement. Specifically, in the middle branch 
of the alternation within it, i.e. the branch with v ~ Vi as guard. The value 
therein assigned to W comes down to the set of vertices comprising the 
initial segment of the list up to the component where the xl-extreme of e, 
i.e. v, resides. Such a value is uever empty and the innermost alternation 
can thus be disposed of retaining only its second branch, which now should 
just contract the above-referred initial segment into one single component. 

In all other assignments to SCi, it is simple to enforce the nG-rightward
references list structure. 

Avoiding Computation of Complements and More Throughout the 
program, repeated use is made of the expressions V and E -though the lat
ter is disguised as (-E) , which corresponds to (n E) -. As the reader might 
recall, neither V nor E are variables of the program, but only abbrevia
tions for Vf U Vi and Ef U Ei 1 respectively, which means that computing 
the complemented expressions above can be quite expensive. 

Introduction via data refinement of two new variables V' and E' with cou
pling invariant (V' = VI U Vi f\ E' = EI U Ei) does away with the cost 
of computing complements. All assignments to Vf, Vi 1 Ef and Ei are 
extended with appropriate assignments to V' and E'. 

Introduction of E' also brings even better news: variables Ef and Ei, as 
well as local variable F, can be eliminated since they become useless! The 
only place where Ei is used for computing values to be assigned to other 
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variables is in the middle branch of the inner alternation. As remarked above 
when data-refining SCi., the value assigned to W in the branch at issue can 
be computed without using Ei.. The value assigned to SCi in the same 
branch can also be computed without the help of Ei by using expression 
(7.21). 

Driving Back Home Recall the introduction to this chapter, which re
marks that our motivation for tackling the problem of computing strongly 
connected components came from two previous pieces of work by Dijkstra 
and Kruseman Aretz. The program obtained after all the simplifications 
mentioned in this section is very similar to the programs offered in Dijkstra's 
[45, Chapter 25] and [46], before arrays are brought in, and in Kruseman 
Aretz's [89], except for not having data-refined SC along with SCi into a 
list. 

7.7 Related Work 

Tarjan's algorithm for the computation of the strongly connected components 
of a directed graph [141] is much better known than the algorithmic solutions 
offered by Dijkstra and Kruseman Aretz in their respective essays. The 
correctness of Tarjan's algorithm relies on structural properties of what he 
calls a palm tree: a subtree of the input graph created by depth-first traversal. 
Tarjan also numbers the vertices of the graph according to the order in which 
the palm tree is constructed, and attaches a second numbering to each vertex 
in conformity with some other structural properties of the tree. 

Kruseman Aretz points out that in his solution "also a depth-first graph 
traversal is present" and supports his claim with "symptom[s) for it". Also, 
he considers that the vertex numbering is "overspecific" and "obscures 'l im
portant characteristics of the algorithm [89, page 259]. We agree with his 
claim on the presence of a depth-first traversal in his solution, yet hold the 
opinion that it would be pleasant to see such a link being made "obvious" 
by some kind of formal structure. As regards the vertex numbering, we also 
side with Kruseman Aretz, yet note the fact that the properties of palm 
trees on which such a numbering is based have proved useful in the design 
of many other algorithms. These include Tarjan's algorithm for the com
putation of biconnected components [141}, Kosaraju and Sharir's algorithm 
for the computation of strongly connected components [I 38], Hopcroft and 
Tarjan's algorithm for testing the planarity of a graph and building its pla
nar embedding [771, and a few others. Since the correctness proofs of all 
these algorithms make use of properties of palm trees, it seems that a good 
deal of work must be done to support Kruseman Aretz's claim of the "over
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specificity" and llobscnrity" brought about by palm trees in a more general 
context. Again, we remark that we sympathise with his claim, bnt also note 
that there is a long way to go before adequate presentations of all the afore
mentioned algorithms are built via suitable abstractions that send away palm 
trees yet still connect the whole algorithmic family. 

Apart from the already mentioned essays by Dijkstra, tbe only two other ref
erences we know of that offer derivational presentations of algorithms based 
on depth-first traversals are Gries and Jinynn Xue's [701 and Madhukar et 
al. 's [96]. Both presentations are, in spirit, similar. They use the same stan
dard techniques for development of imperative programs we make use of, but 
no graph-oriented formal calcnli for the manipulation of the properties their 
algorithms rely on. Therefore, their manipulation of preconditions, post
conditions, invariants and so on is carried out in a conventional fasbion, or 
simply omitted by referencing standard books on graph theory. No calcu
lations regarding graph properties are present at all. It seems that adding 
to their work the kind of manipulations with relations we put forward in 
this thesis is worth researching. We also remark that the derivations in both 
articles are based on Tarjan's palm trees. 

A related reference is that of King and Launchbury's implementation of 
depth-first traversal grapb algorithms in a functional programming language 
[84, 91]. Derivations of the programs are not given, but compact and nice 
correctness proofs in a calculational style are. The possibility of tnrning such 
correctness proofs into derivations is worth exploring. 
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Chapter 8 

Conclusions 

This thesis has presented a small portion of graph theory and aJgorithmics 
using the calculus of binary of relations as working tool. The goals we initially 
set up have been, in our opinion, successfully achieved l yet nevertheless with 
some drawbacks. This final chapter offers a summary of the results obtained 
in this thesis and an appraisal of their worth. Hints on further research are 
given. 

Relations and Graphs Chapter 2 presented the basics of graph theory 
within the calculational framework of binary relations. A considerable part 
of its contents is the result of previous research, most of it gathered in [136], 
but the treatment of a few concepts and properties, viz. the biconnectedness 
equivalence relation, the formalisation of acyclicity in undirected graphs and 
its linkage to connectedness through the covering relation, and the manip
ulation of paths under the allegorical approach to datatypes, appears to be 
original work. We are quite pleased with these results and we believe the 
exploration of graph theory with the calculus of relations is a task worth 
continuing. 

We feel particularly contented with the covering relation defined in Section 
2.6 and the exploitation of its properties thus far. Vrle first came across it 
when dealing with the acyclicity instance of the general algorithm for the 
computation of maximal sets in Chapter 5. Its further application to linking 
acyclicity with connectedness in Section 2.7, and to reasoning about edge 
replacement in spanning trees in Section 6.3 and about cuts and crossings 
in Section 6.5 was positively satisfying. Still, our understanding of the Link 
between all these concepts can benefit from a deeper exploration of the cov
ering relation, striving for more compact presentations of its linking role. 
The covering relation makes USe of function adj which, on account of its 
distributivity over arbitrary unions, as briefly mentioned in Section 6.8, is 
the lower adjoint of a Galois connection between the lattice of edge sets and 
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the lattice of symmetric relations on the vertex set of any given undirected 
graph. Most, if not all, of the properties of the covering relation are related 
to this fact. A good starting point for this suggested further exploration is 
the study of the covering relation in the context of pair algebras [9]. 

The study of paths under the allegorical approach to datatypes can also be 
extended by researching its connection to the modelling of paths within the 
calculus of n-ary relations of Moller [104, 1051. 

Calculational Graph Algorithmics Chapters 3 to 7, the bulk of this 
thesis, were concerned with the derivation of programs that solve graph 
computational problems. These derivations were carried out by combin
ing predicate, refinement and relational calculi. This combination allowed 
the treatment of algorithmic principles as well as graph properties in a cal
culational fashion. We think we have succeded in proving the applicability 
of the framework of binary relations to the derivation of graph algorithms. 
Nonetheless, there is a good deal of room for improvement in the work we 
have prl'sented, which we will comment on as we summarise the achievements 
in the cnntents of these chapters. 

Chapter 3 presented, as a warming-up exercise, the derivation of graph algo
rithms that correspond to the computation of the reflexive-transitive closure 
of given input relations. These algorithms had. been treated derivationally 
by others before [12, 133, 136], but we showed an innovative use of the fixed
point calculus for obtaining these algorithms first presented in [30J. 

The general problem of computing representatives in Chapter 4 dealt with 
a class of graph algorithms also related to closure that includes the mini
mum paths, shortest paths, and reachability problems -the last one was also 
treated in Chapter 3-. All the different algorithmic solutions to this class of 
graph problems previously derived by others [12, 1331 were successfully cov
ered once and for all. In Chapter 5, two graph algorithms were constructed 
as instances of a general problem of computing maximal sets. These two 
chapters are in tune with one of the main goals of the mathematics of pro
gram construction, viz. the successful abstraction of key concepts involved in 
the design of an algorithm that permits eliminating unnecessary detail and 
allows its derivation as an instance of a generic family of algorithms. Such 
a generic approach is highly beneficial since the doors remain open to the 
obtention of new instances. In the case of Chapter 5, as remarked in Section 
5.1, every matroid provides a new instance of the general problem and its 
algorithmic solution. The discovery of more instances can be aided by other 
calculi, as regards proving that such new candidates satisfy the requirements 
of the generic family. 
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Chapters 6 and 7 are both the main source of satisfaction and of dissatisfac
tion of our tackling of calculational graph algorithmics. On the one hand, 
satisfaction comes from the fact that they present our biggest case-studies 
thus far, especially Chapter 7, and the derivations therein presented are suc
cessful in so far as algorithmic solutions are actually obtained by deduction 
and calculation. On the other hand, the length and knottiness of the calcu
lations is dissatisfying. It is not fair to put this down to the cODlplexity of 
the problems therein treated. Neither do we think this is evidence against 
the applicability of the calculus of relations to graph algorithmics. We be
lieve this comes down to not having been able to come up yet with adequate 
abstractions of the key graph-theoretical and algorithmic features involved; 
such abstractions would aid a more compact presentation. Some thoughts 
on potential sources of improvement follow. 

Chapter 6 made a good deal of use of the general derivation in the preceding 
chapter. Rather than reusing, adapting and extending the results of Chapter 
5, it might weB be the case that the general development can be carried 
out with such extra features already under consideration. This would allow 
the obtention of the algorithms of Chapter 6 as plain instances of the general 
solution. We believe this is true both of the minor adaptation that catered for 
Kruskal's algorithm and of the larger adaptation and extension that catered 
for Prim's algorithm. Clearly, this calls for further research. Besides, the 
graph properties involved could be dealt with more concisely by searching 
for better abstractions. This relates to the previous remarks on the covering 
relation since, for instance, as briefly commented on in Section 6.8, Galois 
connections can make edge replacement in spanning trees be treated in a 
more succint fashion. 

Chapter 7 includes a number of lengthy calculations as well as several proper
ties treated only by l'verbal formality". Again, we think this can be improved 
by continuing the search for a more compact expression of the core of the 
graph properties and algorithmic principles the problem involves. We lay 
stress once more on our belief that this is not a drawback of the calculus of 
relations itself in relation to graph algorithmics. On the contrary, we are quite 
pleased with the fact that relational calculations allowed the "discovery" of 
the main features of Dijkstra's derivational treatment of the same problem 
in [46]. It seems to us that the framework of relations provides a solid foun
dation on which to build the required further abstractions. An instance of 
this -and a somewhat trivial one- is the little calculus of equivalence classes 
referred to in Section 7.4. 

Some Final Remarks We close this chapter -and this thesis!- with a 
few concluding remarks and some other incidental observations. 
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It must be admitted that we needed some training in derivational program
ming and this thesis served such a purpose considerably. Consequently, we 
must confess that, in most cases, we developed the derivations with an al
gorithmic solution in mind. However, we had only roughly sketched ideas of 
such solutions and the final details were always calculated. Still, we exerted 
ourselves for deducing or explicitly presenting the reasons that gave rise to 
every design decision. \Ve believe we have succeded in such an endeavour, 
even when we were obviously heading for a specific kind of final solution as, 
e.g., when deriving Kruskal's and Prim's algorithms for the computation of 
minimum spanning trees. 

We think we have positively helped graph algorithmics to move towards a 
more modern, and clearer, presentation of its often intricate details. There 
is still an awful lot of work to be done, not only for the vast number of 
other graph algorithmic problems not tackled in this thesis or in the other 
references we have given, but also for the need of further improvement on the 
presentation of the few problems treated here, especially those in Chapters 
6 and 7. 

As a somewhat incidental remark, we comment on an interesting and some
what amusing article by Harary and Read on "The Null-Graph", i.e. the 
graph with no vertices and, hence, no edges [72]. They show how many weI!
known authors on graph theory advocate for the admittance Or rejection of 
this "paradoxical beast" as a graph. Our -·very- limited knowledge of graph 
theory has not yet given us any signs of the null-graph being troublesome. 
Accordingly, we would uvote" for its acceptance as a graph. All the graph 
concepts, properties and algorithms presented in this thesis apply to the null
graph without this leading to any contradictions or paradoxes. Particularly 
interesting is the case of Prim's algorithm, whose first step requires draw
ing an arbitrary vertex of the input graph and, hence, cannot deal with the 
null-graph. As remarked in Section 6.7, we are pleased to have designed a 
version of Prim's algorithm applicable to the null-graph as well as to non
connected graphs, the other characteristic of input graphs most versions of 
Prim's algorithm reject. 

Another incidental observation regards finiteness of graphs. In all our algo
rithmic chapters, the graphs were assumed to be finite in order to guarantee 
termination of the derived programs. Functional programming languages 
with lazy evaluation [23, 81, 144J are well-known for being able to manip
ulate infinite data structures as easily as finite ones. In many cases, the 
correctness of functional programs is independent of whether the data struc
tures being manipulated are finite or infinite. The techniques used in func
tional programming for reasoning about such data structures could well help 
extending graph algorithms to deal with the infinity case. 
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Appendix A 

Two Proofs for Chapter 4 

This appendix presents the proofs of two statements that were left unproved 
in Chapter 4. These statements are, first, the key Thinning the Closure 
rule and, second, the extra invariant of the general algorithmic solution to 
the representatives problem. Each proof is presented in a section of this 
appendix. 

A.I The Thinning the Closure Rule 

This section presents the proof of the Thinning the Closure rule (4.18). For 
the sake of convenience, we repeat and re-label the rule here: 

g(BUD, C-Q·D) ~ g(B,C) -Q·D 

provided C· D' <;; R } (A.l) 
S·D-Q·B <;; C 

Some Lemmas To prove (A.I), we will make use of some properties of 
function 9 1 which we now present as lemmas. 

First, we state the monotonicity properties of g. Take the definition of 
9 (4.11), and note that both union and composition are monotonic while 
subtraction is antimonotonic on its second argument. Combining this with 
monotonicity of the least fixed-point operator jJ. (2.56) , we obtain that 9 is 
antimonotonic on its first argument and monotonic on its second. 

The second lemma reads as follows: 

g(B,C) = g(B,C)-Q·D provided	 C n Q . D = 0 , } (A.2) 
D<;;B. 
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To prove it, we choose to start manipulating the right-hand side -since it is 
more complex that the left-hand side and it thus offers more opportunities 
for "simplification"- and argue as follows: 

g(B,C)-Q·D 
{ definition of 9 (4.11), fixed-point computation (2.54) } 

(C U (S·g(B,C) - Q·B)) - Q·D 
{ distribution of subtraction over union (2.12) } 

(C-Q·D) U (S·g(B,C) - Q·B - Q·D) 

subtraction/union (2.13) and } 
{ distribution of composition over union (2.14) 

(C-Q·D) U (S·g(B,C) - Q·(BUD)) 

by properties of the lattice structure: } 
first proviso is equivalent to C - Q . D = C , 

{ second proviso is equivalent to BuD = B 

C U (S·g(B,C) - Q·B) 

= {definition of 9 (4.11), fixed-point computation (2.54) } 

9 (B, C) 

Our third and final lemma corresponds to the following two inequalities: 

g(B,C) 2 C, (A.3) 

g(B,C) 2 S·g(B,C) - Q·B (A.4) 

Both of them are shown to hold by applying fixed-point computation (2.54) 
to the left-hand side via the definition of 9 (4.11), and then reducing the 
union thus obtained to just one of its operands. 

The Main Proof Let us now deal with the big task, the proof of (A.l). 
By definition of the thinning relation Ol (4.7) , we need to prove, 

9(B U D, C - Q. D) ~ 9 (B, C) - Q . D , (A.5) 

g(B,C)-Q·D ~ (QnR)· g(BUD, C- Q·D). (A.5) 

The first demonstrandum (A.5) is easily shown in only two steps, 

9 (B U D, C - Q . D) 

(A.2) with B,C,D ,= BUD, C-Q·D, D;} 
{ the provisos hold trivially 

9 (B U D, C - Q . D) - Q. D 

~ { monotonicity properties of g 
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The second demonstrandum (A.6) will take much longer. To prove it, im
mediate intuition suggests that we move Q. D to the right-hand side by 
universal property of subtraction (2.7), and that we then apply fixed-point 
induction (2.55) on 9 (B, C). Unfortunately, by doing so we would arrive 
at a false statement. In order to achieve a safe application of fixed-point 
induction, we will pull out a "rabbW' based on the following property of 
subtraction: 

V-u = v-(V'nU) provided V c:; V' (A.7) 

Using this property to transform the left-hand side of (A.B), with a suitably 
chosen V', will allow us to proceed as intuition hinted initially. We argue 
thus: 

(kG) 
{ introduce Wi, W2 := 9 (B, C), 9 (B U D, C - Q. D) } 

Wi -Q·D c:; (QnR)· W2 

-apply "rabbit" on the left-hand side- } 
(A.7) with V,V',U:= Wi, (QnR)· Wi, Q·D;

{ the proviso holds on account of reflexivity of Q n R 
Wi - «QnR)' Wi n Q. D) c:; (QnR)· W2 

{ universal property of subtraction (2.7) } 

Wi c:; (Q n R) W2 U ( Q n R) . Wi n Q. D) 

introduce } 
Vi, V2.:~ (QnR)· Wi n Q·D, (QnR)· W2;

{ commutatlvlty of UllIon 
Wi c:; Vi U V2
 

definitions of Wi and 9 (4.11) , }
 
<= { fixed-point induction (2.55) 

C U (5· (Vi U V2) - Q. B) c:; Vi U V2 

distribution of composition over union (2.14) } 
{ and of subtraction over union (2.12) 

C U (5· Vi - Q. B) U (5' V2 - Q. B) c:; Vi U V2 

{ universal property of union (2.3) } 

C c:; Vi U V2 (A.8) 

1\ 5· Vi - Q. B c:; Vi U V2 (A.9) 

1\ 5 . V2 - Q. B c:; Vi U V2 (A.IO) 

Hence, it suffices to show these three conjuncts to complete the proof of the 
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Thinning the Closure rule. 

For (A.8), we argue as follows, starting with the right-hand side: 

VI u V2 
:2 { definitions of VI and V2, reflexivity of Q n R } 

(WI n Q . D) U W2 

:2 { apply property (A.3) of 9 both to WI and W2 } 
(C n Q·D) U (C-Q·D) 

{ complementation} 

C. 

We now proceed to show (A.9). Note that the provisos of the Thinning the 
Closure rule (A. 1) have not been used yet. They are only needed in the 
-longL calculation that proves (A.9), which now follows: 

S· VI - Q. B
 

{ definition of VI }
 

S·«QnR)·WI nQ·D)-Q·B
 

Dedekind's-,"ule (2.20) with }c;; { R, S, T .- Q, D, (Q n R) . WI 

S· (QnR). WI·D" n Q). D - Q·B 

C;; { definition of WI, property (4.14) of 9 } 

S· ((QnR)·S··C·D" n Q). D - Q·B 

C;; { first proviso! } 

S· ((QnR)·S··R n Q). D - Q·B 

since R is a preorder, requirement (4.16) on Rand S }c { entails S· C;; R by universal property of closure (2.62) 

S· ((QnR)·R·R n Q). D - Q·B 

by intersection and transitivity of R }
C;; { we have that (Q n R) . R . R C;; R
 

S·(RnQ)·D - Q·B
 

C;; { requirement (4.17) on Q, Rand S }
 

(QnR) ·S·D - Q·B
 

by intersection and transitivity of Q we } 
C;; have that (Q n R) . Q C;; Q , subtraction 

{ antimonotonic on its second argument 
(QnR) ·S·D - (QnR) ·Q·B 

C;; { property of subtraction: W· V - W . U C;; W· (V - U) } 
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(QnR)·(5·D-Q.B) 
<;; { second proviso! } 

(QnR)·C 

(A.S) proved above, }<;; { distribution of composition over union (2.14) 

(Q n R) . VI U (Q n R) . V2 

= { definitions of VI and V2 } 

(QnR)·((QnR)·WI n Q·D) U (QnR)·(QnR)·W2 
distribution of composition over intersection (2.15), }

<;; { transitivity of Qn R 

((Q n R) . WI n (Q n R) . Q. D) U (Q n R) . W2 

by intersection and transitivity of Q }c { we have that (Q n R) . Q <;; Q 
((Q n R) . WI n Q. D) U (Q n R) . W2 

{ definitions of VI and V2 } 

VI U V2 . 

We finalise the whole proof by showing (A.lO): 

5· V2 - Q·B 

= { definition of V2 } 
5 . (Q n R) . W2 - Q. B 

<;; { requirement (4.17) On Q, R and S } 

(QnR) ·5· W2 - Q·B 
by intersection and transitivity of Q we } 

c have that (Q n R) . Q <;; Q, subtraction
{ antimonotonic on its second argument 

(QnR)·5· W2 - (QnR)·Q·B 
<;; { property of subtraction: W· V - W . U <;; W· (V - U) } 

(QnR)·(5· W2-Q·B) 

complementation: W = (W n V) U (W  V) } 

= 
with wy := 5· W2  Q . B , Q . D; 

{ distribution of composition over union (2.14) 
-this helps to reach the goal VI U V2 in two halves

(Q n R) . ((5· W2  Q. B) n Q. D) 

U (QnR)·(5·W2-Q·B-Q·D) 
{ introduce names Uland U2 for the two halves} 

U1 U U2 . 
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Hence, it suffices to show that UI £:: VI and U2 £:: V2 hold. The key to 
proving hath inclusions is property (A.4) of g. The first half is proved as 
follows: 

UI 
definition of UI , } 

£:: monotonicity properties of 9 entail W2 ~ Wi 
{ -transforming W2 into Wi will take us to Vi

(QnR)·«S· WI-Q·B) n Q·D)
 

£:: { definition of WI , (A.4) }
 

(QnR)·(WI nQ·D)
 

£:: { distribution of composition over intersection (2.15) } 

(QnR)·WI n (QnR)·Q·D 
by intersection and transitivity of Q we have }

£:: { that (Q n R) . Q £:: Q, definition of VI 
VI . 

For the second half we argue: 

U2 
definition of U2, suhtraction/union (2.13) and} 

{ distribution of composition over union (2.14) 

(QnR)· (S· W2 - Q. (BUD)) 

£:: { definition of W2, (A.4) } 

(QnR)· W2 
{ definition of V2 } 

V2 . 

Done! 

A.2 The Extra Invariant 

When deriving the general algorithmic solution in Figure 4.20, an invariant 
with two conjuncts was proposed and used to guide the construction of the 
iteration. However, towards the end of the development, in page 75, a third 
extra invariant was made use of: 

1nv3 B·Co nQ=0. 

We now show that Inv3 is indeed an invariant of the developed iteration. 
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Initial Establishment The initialisation statement B, C := 0, A estab
lishes [nuS due to 0 being a zero of both composition and intersection. 

Maintenance Regarding the iteration bodYr since its first statement af
fects only variable D, it suffices to show that [nvS is maintained by the 
assignment: 

B,G:= BUD, (G U (S·D-QB))-Q·D . (11..11) 

Before analysing the effect of this assignment on [nvS, we take two prelim
inary steps. 

First, we present a different phrasing of [nvS which will be more comenient 
to manipulate: 

GB'nQ=0 (A.12) 

This is equivalent to [nvS by properties of converse and symmetry of Q. 
Second, we transform the expression assigned to variable C in (All) as 
follows: 

(G U (S·D-Q·B)) -Q·D 

= { distribution of subtraction Over union (2.12) } 

(G-Q·D) U (S·D-Q·B-Q·D) 

subtraction/union (2.13) and } 
= { distribution of composition over union (2.14) 

(G-Q·D) U (S·D - Q·(BUD)) 

= { introduce names WI and W2 } 

WI U W2 . 

Finally, we prove that assignment (All) maintains [nuS by showingit main
tains (A.12). Assume (A.12) holds and tben argue thus: 

Left-hand side of (A.12) [B, C := BUD, WI U W2 ] 

= { substitution} 

(WI U W2) . (B U D)' n Q 
distribution of composition, converse } 

= { and intersection over union 

(WI B' n Q) U (WI· D' n Q) U (W2· (B U D)' n Q) 

first operand is empty due to the following: } 
= { by subtraction we have WI <;; C, (A.12) 

(WI· D' n Q) U (W2· (B U D)' n Q) 
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by subtraction we have }
<;; { WI <;; Q. D and W2 <;; Q. (B U D) 

(Q . D . D' n Q) U (Q. (B U D) . (B U D)' n Q) 

<;; { Dedekind's rule (2.20) twice} 

(Q·D n Q·D)·D' 

U (Q·(BUD) n Q.(BUD))· (BUD)' 

{ complementation} 

o . 
Done! 




