
RELATIONS, GRAPHS AND PROGRAMS

by

Jesus N. Ravelo

Technical Monograph PRG-125
ISBN (1-902926-99-6

April1999

Oxford University Computing La.bora.tory
Programming Research Group
Wollson Building, P...kB Road
OxIord OXI 3QD
England

~. . ,.,"')f''''-'·Of'l

! Oy'--~ 1,_.",",0'" r"r('~" 'n"J ,.' .

, '
U,,-,;I0. U'f '\ 'jU"-J

Copyr~ht © 1999 JesUs N. Ravelo

Oxford University Computing Laboratory
Programming Research Group
Wolfson Building, Parks Road
Oxford OX1 3QD
England

Relations, Graphs and Programs

J eSllS N. Ravelo
Linacre College

Micbaelmas Term 1998

A thesis submitted for the degree of

Doctor of Philosophy at the University of Oxford

Abstract

Much emphasis has been placed in recent years on deriving or calculating
programs rather than proving them correct. Adequate calculational frame
works are needed to support such an approach. This thesis explores the use
of a calculus of binary relations to express and reason about graph-theoretical
concepts in the context of program construction. Since graphs playa promi
nent role in algorithmics and have applications in many other fieids l such a
calculational treatment of graphs via relations positively benefits the formal
program construction field.

Phrasing the basics of graph theory with relations allows a formal compact
presentation of well-known facts! as weB as the development of novel proofs
for such facts in a calculational fashion. Such a machinery is combined with
predicate, refinement and fixed-point calculi to derive imperative programs
that solve several graph computational problems. Relations are used to
model graphs and sets as the data manipulated by programs and specifi
cations. The case-studies put forward in this thesis include some generic
problems with instances that correspond to graph algorithms as well as some
individual graph problems. These examples demonstrate the applica.bility
of the framework of relations to calculational graph algorithmics, yet some
dra.wbacks are examined. Potential sources of improvement of this presenta
tion and hints on future research are discussed.

Contents

Acknowledgements ix

1 Introduction 1

1.l Graph Algorithmics . 2

1.2 The Calculus of Relations 3

1.3 The Refinement Calculus . 4

1.4 Outline. 5

2 Relations and Graphs 7

2.1 Basics of the Calculus of Relations 7

2.2 Sets within the Calculus of Relations 13

2.3 Fixed Points 19

2.4 Orderings, Equivalences and Closure 20

2.5 Basic Graph Concepts 25

2.6 Connectedness and Acyclicity 29

2.7 Spanning Trees 37

2.8 Paths 41

3 Computing Closure 49

3.1 All-Pairs Reachability 50

3.2 Fixed-Source Reachability 56

3.3 Related Work . . 62

4 Computing Representatives 65

4.1 Specification. ... 66

4.2 Exploring Some Properties 67

4.3 Developing an Iteration. . 72

4.4 Further Refinement 76

4.5 Fixed-Source Minimum Paths 80

vii

4.6 Fixed-Source Shortest Paths 84

4.7 Fixed-Source Reachability 85

4.8 Related Work . 86

5 Computing Maximal Sets 89

5.1 Specification. . . 89

5.2 Developing an Iteration. 91

5.3 Further Refinement . . . 94

5.4 Maximal Independent Vertex Sets 96

5.5 Connectedness-Preserving Forests 98

5.6 Related Work . 100

6 Computing (more than) Minimum Spanning Trees 103

6.1 Specification..... . 104

6.1 Setting Up an Iteration. 104

6.3 Exploring Some Properties 106

6.4 Kruskal's Algorithm . 113

65 A Little Theory of Cuts .. . 115

6.6 Exploring Some More Properties . 119

6.7 Prim's Algorithm 124

6.8 Related Work 129

7 Computing Strongly Connected Components 133

7.1 Specification..... 134

7.2 A Non-Trivial Invariant 135

7.3 Setting Up the Rest of the Iteration. . 145

7.4 Making the Iteration Progress . 147

7.5 Assembling the Iteration Body. . 152

76 Further Refinement . 157

7.7 Related Work . . . 159

8 Conclusions 161

Bibliography 165

A Two Proofs for Chapter 4 177

A.I The Thinning the Closure Rule 177

A.2 The Extra Invariant . . 182

Acknowledgements

First and foremost, I thank my supervisor Richard Bird for advice and sup
port throughout the whole development of this thesis. I am particularly
grateful to him for the humaneness, patience and encouragement he offered
during the times when emotional support was what I needed most. Thanks
also to Oege de MOOI, Sharon Curtis, Jeremy Gibbons, Pedro Borges and
Alvaro Arenas at the Computing Laboratory for help and encouragement.
:\ly examiners, Carroll Morgan and Roland Backhouse, provided valuable
suggestions and criticisms about the contents and presentation of the thesis.

Acknowledgement is due to the following institutions for financial sponsor
ship and/or practical assistance: CONICIT (Consejo Nacional de Investi
gacion Cientifica y Tecnologica) of VenezueJa l Interarnerican Development
Bank l Universidad Simon BoJ(var, the Overseas Research Students Awards
Scheme of the United Kingdom, and both the Computing Laboratory and
Linacre College at Oxford. The staff at Linacre College added outstanding
friendliness and warmth to the practicalities of their support.

Special mention is due to my advisors at Universidad Simon Bolivar, Cristina
Zoltan and Roger Soler. Their advice and encouragement were decisive for
initiating, and carrying through, this whole adventure. I am also especially
indebted to Elsa, Anne and ~~the Group" at the Oxford University Coun
selling Services for helping me sail through the hardest times.

I thank my family for their everlasting emotional and practical support.
Their love makes life a worthwhile trip. Thanks to Stephen for the love l
good times and dreams we shared during the final year of this stage of my
life. Last but not least, Dlany friends formed the network of support and fun
that always kept me going on. Names are not necessary: you. know who you.

are, thanks! One name must be made explicit since l without her, I would
not be writing this today: Thanks, Martha!

ix

Chapter 1

Introduction

Much attention has been given, o....er the last two decades or so, to the deriva
tion or calculation of correct programs from their specifications, as opposed
to the a posteriori verification of their correctness. Calculational techniques
for program construction have thus become an established important area
of research in computer science. The prime goal of this research field is the
reduction of as many parts as possible of the process of program construc
tion to syntactic manipulation. This requires the use of calculi that suitably
combine precision and conciseness: the former provides the much needed as
surance that the formulae in manipulation model the features of whatever
"reality" we have in mind in a precise manner, while the latter helps to
express such features in a concise manner, thereby avoiding the burden of
having to manipulate gigantic formulae.

This thesis explores the use of a calculus of binary relations to express and
reason about graph properties in the context of imperative program con
struction. Relations are used to model graphs and sets, thereby modelling
the data manipulated by the programs and specifications. Such a calcula
tional treatment of graphs via relations thus links together the areas of graph
algorithmics and formal program construction, which are the main subjects
this work touches upon: on the one hand, a large variety of algorithms linked
to the well-developed subject of graph theory and, on the other hand, calcu
lational tools for the development of imperative programs. Most of the rest
of this introductory chapter is dedicated to surveying briefly the history of
these subjects.

Section 1.1 surveys the area of graph algorithmics, while Section 1.2 deals
with the calculus of binary relations and its application to rea:soning about
graph concepts and properties. The use of calculational techniques for the
construction of imperative programs, which ha:s evolved into the so-called
refinement calculus, a uniform setting for the manipulation of specifications

1

and programs, is surveyed in Section 1.3. Finally, Section 1.4 presents an
outline of the contents of the rest of this thesis.

1.1 Graph Algorithmics

Graph theory is nowadays a prominent tool in the solution of a wide vari
ety of practical problems in many different fields. Much of the theory has
indeed been developed motivated by its practkal applications. This can be
seen in what is recognised as the origin of graph theory, Euler's solution in
1736 of the Konigsberg bridges puzzle [51, 52], and further developments
such as Kirchhoff's theory of trees in 1847 for the study of electrical net
works [86], and Ford and Fulkerson's theory of network flows in 1956 as an
application in operations research [56, 57]. Other fields that have benefited
from graph-theoretical results include chemistry, biology, economics, geog
raphy, architecture, and the social sciences -see e.g. [58]-. In most of the
practical situations that arise in these fields, graphs that model a real-life
problem must be analysed in some way or other, and such graphs tend to
be large and complex. Computer assistance to perform such analyses is then
most "aluable and, consequently, so is the design of efficient algorithms. A
large number of graph algorithms have indeed been developed over the last
few decades, and a class of graph problems for which efficient algorithms
are not likely to be found has been identified: giving birth to the theory of
NP-completeness. Good introductions to graph theory can be found in e.g.
[31, 71], and to graph theory and algorithmics in e.g. [61, 67, 121, 1451.

Most algorithmics textbooks. e.g. [3, 36, 85], dedicate significant space to the
study of graph algorithms. However, their presentations follow, more often
than not, a traditional approach to algorithm design. Algorithms are first
given and afterwards, if at all, shown correct with respect to their specifi
cation. Several well-known graph algorithms, though sometimes compactly
presented, have complicated correctness proofs. Authors must take pains to
present clear proofs and yet, due to the lack of adequate calculational frame
works to do so, their efforts often result in arguments that are still difficult
to read. Calculational frameworks for program construction have proved to
be profitable in revealing the core of the design decisions that lead to the de
velopment of some algorithm or other. Therefore, tackling the large variety
of well-known graph algorithms under a calculational approach seems to be
a goal worth pursuing.

Some graph algorithms are instances of general design paradigms. Kruskal's
algorithm and Prim's algorithm for the computation of minimum spanning
trees [90, 126], and Dijkstra's minimum paths algorithm [43] are examples of
the greedy strategy. Others are designed in very specific and peculiar ways,

2

yet are based on similar structural graph properties. This is the case of a class
of algorithms based on depth-first traversals of the input graph, including a
version of topological sorting, Kosaraju and Sharir's algorithm and Tarjan's
algorithm for the computation of strongly connected components [138, 141L
Tarjan's algorithm for the computation of biconnected components (141], and
many others. A few of these graph algorithmic problems aTe dealt with in this
thesis using the calculational method. Some of them are treated as instances
of more abstract problems while some others are tackled individually.

1.2 The Calculus of Relations

The foundations of the calculus of binary relations has its origins in work
by Augustus de Morgan, Charles S. Peirce and Enrst Schroder during the
second half of the nineteenth century. During the 18505, de Morgan started
work on a theor y of dyadic relations, stating some of the laws that govern the
behaviour of such relations [112]. Peirce elaborated upon de Morgan's work,
drawing inspiration also from Boole's logical algebra, in a series of papers that
started in the 1870s [123, 124]. Schroder further developed Peirce's "Logic
of Relatives" in a systematic fashion in the third volume of his "Algebra der
Logik", published in 1895 [137J.

No particular interest was given to an axiomatic approach to the calculus
of relations nntil Tarski undertook this task. In 1941, Tarski proposed an
axiomatisation for a large part of the calculus 1142J. This led to the devel
opment of relation algebras, devised as models of Tarski's axioms and later
used by Lyndon to show the incompleteness of Tarski's axioms with respect
to the set-theoretical approach to relations [93]. Among many others, Mad
dux has continued research on relation algebras; he has also written a detailed
overview of the origins of the calculus of relations and relation algebras [941.

Relations have also been studied in the context of category theory. Just as
categories were defined as a simple model of the algebra of functions, alle
gories have emerged as enriched categories to model the algehra of relations.
It ha.s been proved that a certain kind of allegories, viz. unitary tabular alle
gories, is axiomatically very close to set-theoretical relations. In other words,
the axioms of a unitary tabular allegory are in some sense, which we will not
detail here, complete. A comprehensive study of allegory theory has been
written by Freyd and Scedrov [59]; also, the book [28J by Bird and de Moor
offers an introd uction to the theory of categories and allegories along with
applications to algorithm design and program construction.

Many other researchers have also used the calculus of binary relations for
programming theory, e.g. [49, 75, 76, 95, 103, 104]. This is due to the fact

3

that modelling specifications and programs as relations provides an adequate
framework in which to treat non-determinism. We use relations, though
in the context of program construction, for a different purpose: to express
and reason about graph concepts and properties. A great deal of research
into using the calculus of binary relations in the realm of graph theory has
already been undertaken , mainly in Germany. The standard reference is
the book [136] by Schmidt and Strohlein, in which a large number of graph
concepts are phrased in terms of relations, and proofs of graph properties are
carried out in an algebraic fashion. This approach to graphs has also been
used within the area of formal program construction to derive programs that
manipulate graphs from relational specifications [18, 19, 20, 83]. Some of
such specifications can be directly executed using RELVIE\V, a programming
system for the manipulation of relations [17J.

Arguing that a calculus of binary relations is too restricted, Moller has devel
oped a calculus of formal languages and n-ary relations to serve the aims of
program construction, in particular, the construction of programs that ma
nipulate graphs [104, 105]. Moller and Russling have shown that within such
a calculus many graph problems can be clearly specified and successfully ma
nipulated to obtain algorithmic solutions [107,131,133, 134J -see also [33J-.
This calculus is indeed well-suited to reason about graphs, whether or not
such reasoning is aimed at developing programs.

1.3 The Refinement Calculus

The use of calculational techniques for the construction of imperative pro
grams is nowadays firmly established. It originated in the late 1960s and early
1970s with precedent-setting work by Floyd, Hoare and Wirth [55, 73, 147],
among others, and, more prominently, by Dijkstra's introduction of predi
cate transformers and their use in the derivation of programs [44, 45]. This
approach to programming has, since then. been further developed and dis
seminated in several textbooks, e.g. [7, 47, 68, 82]. The 1980s then saw the
emergence ofthe refinement calculus, a framework in which specifications are
put together with executable programming constructs in a uniform formal
setting. Its origins go back to Back's [4], being later further developed by
Back himself, Morgan and Morris [5, 6, 114, 115, 117, 119]. The refinement
calculus comprises, first, an extension to Dijkstra's language of guarded com
mands [44, 45] with specification statements and, second, a formal refinement
relation based on weakest-precondition predicate transformers semantics [48].

In this thesis l we will use the notation of Morgan's refinement calculus [115]
for specifying the computational problems we will be dealing with as well
as for presenting the derivations of the corresponding programs. Morgan's

4

specification statement w : [pre, post 1, where w is a list of program vari
ables, and pre and post are propositions, informally means: "If the initial
state satisfies precondition pre, then change only the variables listed in w so
that the resulting final state satisfies postcondition post". The refinement
relation is denoted by ~. Roughly, S ~ P can be interpreted as program
P being correct with respect to specification S, and it is read "P refines
S" or "S is refined by P" . Since specifications and executable programs
reside in the sanle space and can be mixed unrestrictedly, both Sand P
above might be any combination of programming constructs and specification
statements. The general informal interpretation for S ~ P is that, whenever
S is required, P is good enough to fulfil such a need.

It is worth noting that, in presenting our derivations of programs, we will not
make use of detailed laws ofthe refinement calculus, as in [115, 117}. Rather,
we will develop our programs in a style similar to that of the aforementioned
textbooks [7, 47, 68, 82], but presenting t'formal refinement summaries" us
ing the notation of Morgan's calculus. Such summaries could, however, be
meticulously proved valid by means of the detailed refinement laws.

1.4 Outline

Chapter 2, "Relations and Graphs", introduces the calculus of relations} a
few additional notions not inherent in relations but often used in conjunction
with them -such as lattice-theoretical fixed points in general and some clo
sure operators on relations in particular-, and a formalisation within such a
calculational framework of most of the basic graph-theoretical concepts used
in subsequent chapters. Much of the contents of this chapter is well-known
material produced by previous research, but the formalisation of a few graph
theoretical concepts plus a couple of calculational proofs in it appear to be,
to the best of our knowledge, novel. -The final Chapter 8, in page 161,
makes explicit mention of what the novel points of Chapter 2 are.-

Chapters 3 to 7 form the core of what the rest of the title of this thesis, "and
Programs", refers to. Each chapter takes up either single graph computa
tional problems or a family of them in the form of one generic problem. In
each case, the first step that is taken is the formalisation of the corresponding
specification. Such specifications serve as a starter for showing the use this
thesis puts forward for the ca1culus of binary relations in the formal construc
tion of graph algorithms: the preconditions and postconditions are formulae
of the extended predicate calculus that results from adding relational con
structs to it. When refining the specifications to programs, these pre- and
postconditions are manipulated via the calculational facilities provided by
the comhined predicate and relational calculi. Such is the point where the

5

adequacy of the framework of relations to derivational graph algorithmics is
put to the test.

It is worth pointing out that our final programs will handle variables of
type, e.g., "set" or "relation" and, in that respect, might still be considered
abstract non-executable programs. However, these programs will be such
that their further refinement to more concrete ones manipulating sequences,
arrays, matrices, or any other particular construct offered by some or other
imperative programming language should not be a complex, even iflaborious 1

task.

Each of the five "Programs" -chapters is closed with a section that surveys
previous and current work related to its contents. The final Chapter 8 pn}
vides some concluding remarks by summarising and assessing the results
shown in this thesis. Such a discussion is supported by the aforementioned
reviews of related work, in the light of which our results are judged.

6

Chapter 2

Relations and Graphs

This chapter serves two main purposes: to introduce the calculus of binary
relations, and to illustrate the use of such a calculus in modelling graphs as
well as in formalising concepts and proving properties related to graphs.

Section 2.1 introduces the basics of the calculus of binary relations and Sec
tion 2.2 then presents ways in which sets can be modelled with relations. A
brief pass through lattice theory is then made in the following two sections.
Section 2.3 presents fixed points and some of their properties, emphasising
the calculational nature of the presentation. Section 2.4 presents orderings,
equivalences, and a short review of the reflexive-transitive closure and transi
tive closure opel atms on relations. We then embark on the task of presenting,
in Section 2.5 and Section 2.6, several basic graph-theoretical concepts within
the framework of binary relations. Section 2.7 is dedicated to spanning trees
and a novel calculational proof of a well-known property of them. Section 2.8
formaHses the notion of paths in a graph, which will require a brief review of
the treatment of datatypes within the calculus of relations.

Emphasis will be made aU along in the use of calculational methods -see
e.g. [14]-, not only when using relations but also in the context of lattice
theory -as in e.g. [2, Part IJ and [99)- and first-order logic -via predicate
calculus, see e.g. [48, 69J-.

2.1 Basics of the Calculus of Relations

This section is devoted to presenting the basics of the calculus of binary re
lations. We will not be concerned with a strictly axiomatic approach but,
rather, with using relations in a calculational style. More complete introduc
tions to the calculus of binary relations can be found elsewhere [2,28, 32].

7

Category Structure -Composition and Identities- A relation R to
set X from set Y is a subset of the cartesian product X x Y. In such a
case we say that R is of type X t- Y and denote it by R: X t- Y. For
(x,Y)ER we write x(R)y.

Given relations R: X +- Y and S: Y +- Z , their composition R· S is of
type X t- Z and is such that:

x (R· 5) z '" (3 y :: x (R) y /\ y (5) z)

Also , for each set X there is an identity relation idx of type X +- X such
that:

Xl (idx) X2 :::::: Xl = X2

It can be shown that composition is associative:

(R· 5) . T = R (5 T) , (2.1)

and that identity relations act as units of composition:

idx . R = R = R· id\· , (2.2)

where R is of type X +- Y. Type information given by the subscripts of
the identity relations will usually be clear from context. We will thus omit
such subscripts, writing just ·id instead.

Functions will be introduced later in this section as a particular kind of rela
tion and, accordingly, we will also use the right-t(}-left arrow to denote their
type. We prefer to use such an arrow for two reasons. First, it is consistent
with the conventional notation for functional appUcation in which arguments
are given to functions on the right: for function J : X +- Y and y of type
Y, J1J is of type X. Secoud, the types involved in relational composition

and, therefore) also in functional composition take a more natural form: as in
the general case of relations above, for functions J : X +- Y and 9 : Y +- Z
their composition J. 9 is of type X +- Z. 'Ne will thus think of relations
and functions in a rather operational way: as taking arguments, or inputs,
on the right and delivering results, or outputs, on the left.

Statements like X (R) y, with explicit reference to the elements x, y of the
sets involved in the types of relations, are said to be written in a pointwise
or set-theoretical style. On the other hand, statements like (2.1) and (2.2),
expressed in terms of composition and with no reference to elements of the
sets involved, are said to be written in a point-free style. We will prefer
to manipulate relations in the point-free style since point-free calculations
have proved to be, more often than not, more compact than their pointwise
counterparts. However, we will occasionally use the pointwise style when it

8

aids a more intuitive or perhaps more effective presentation of a concept.

Lattice Structure The elements of lattice theory relevant to the calculus
of binary relations can be found botb in 12, Part II and [136, Appendix A].
The former promotes the calculational style we use in this thesis. A complete
introduction to lattice theory can be found elsewhere, e.g. [42].

For sets X and Y, we will denote the collection of all relations of type
X +-- Y by Rei (X, Y). This collection forms a complete Boolean lattice,
i.e. a complete) completely or infinitively distributive, complemented lattice)
(Rel(X, Y), U, n, -, 0, 0) , where U and n denote the union (join) and
intersection (meet) operators, - the complementation (negation) operator)
and 0 and 0 are the empty (bottom) and universal (top) relations.

Inclusion ~ of relations is the partial order induced by the lattice structure:
R>;; S is equivalent to S = R U S and also equivalent to R = R n S. In a
pointwise fashion, the inclusion order satisfies:

R>;; S '" (Vx,y:: x (R) y "" x (S) y)

Strictly speaking, we should use subscripts related to the type of the opera
tions and relations above: UX,Y, 0x,Y, ~x,}' etc. As it was the case for theJ

identity relations) this information will usually be either clear from context
or irrelevant. It will thus be omitted.

The union and intersection operators are characterised by the equivalences
that now follow. Given a bag n of relations and a relation W) we have:

(UR:RE'R.:R)>;;W", (VR RE'R.:R>;;W) (2.3)

W>;;(nR:RE'R.:R) '" (VR RE'R.:W>;;R) (2.4)

In particular:

RUS t;;; W R>;;W /\ S>;;W (2.5)
W t;;; RnS ~ W>;;R /\ W>;;S (2.6)

In the point-free style, operators are usually characterised by this kind of
equivalences called universal properties.

Using the theory of Galois connections -see e.g. (1] or [2, Chapter 51-, mu
tual distribution of union and intersection guarantees the existence of a
subtraction operator - and an implication operator ~ characterised by
the foUowing universal properties:

R-St;;;W",R>;;WuS (2.7)

9

W <;; R"" S '" WnR <;; S (2.8)

The.se operators would exist and be well-defined by the above equations even
in a non-complemented lattice. However, in the presence of complementation,
which satisfies

RnS<;;T '" R<;;TUS, (2.9)

subtraction and implication can be equivalently defined by R - S := R n 5
and R => S := "Ru S. Property (2.9) will be referred to as shunting.

In the point-free style, equations are often proved via the so-called rules of
indirect equality:

R=S '" (Ii W :: R <;; W '" S <;; W) (2.10)

R=S", (liW:: W<;;R '" W<;;S) (2.11)

These rules, combined with universal properties, benefit the construction of
calculational proofs. 10le will illustrate the point by proving the first of the
two following distribution properties of subtraction:

(RUS) -T

R-(SUT)

(R-T) U (S-T)

R-S-T

(2.12)
(2.13)

Proof of (2.12):

Appealing to indirect equality (2.10) we reason, for any relation W, that:

(RUS) -T <;; W

{ universal property of subtraction (2.7) }

RuS <;; WuT

{ universal property of union (2.5) }

R <;; W UT 1\ S <;; W uT

{ universal property of subtraction (2.7), twice}

R-T<;;W 1\ S-T<;;W

{ universal property of union (2.5) }

(R T) U (S T) <;; W

o

We have already seen all we need of the lattice structure on its own. Let us
now turn to the interaction of the lattice and the category structure. Com
position distributes over union, but only weakly distributes over intersection.
For a relation R and a bag of relations S, we have:

R·(US:SES:S) = (US:SES:R·S) (2.14)

10

R·(ns: SES:S) C;; (nS:SES:R·S) (2.15)

Analogous rules hold for right-composition. It follows that the empty relation
is a zero of composition and that composition is monotonic with respect to
inclusion.

It is assumed that composition binds more tightly than union and intersec
tion. Therefore, the above laws for binary union and intersection can be
written thus:

R· (SUT) R·S U R·T

R· (SnT) c:: R·S n R·T

where, e.g., R· 5 U R· T must be read as (R· S) U (R· T) .

Converse The last basic relational operator is the converse operator. For
a relation R: X ~ Y, its converse RC is of type Y oj- X and satisfies the
folJowing:

y (R') x =' x (R) y .

The converse operator is its own inverse, and it interacts with the category
structure by preserving identities and distributing contravariantly over com
position:

ROO = R I idD=id, (R· S)' = S' . R' . (2.16)

Converse distributes over all the operators --constants regarded as nullary
operators- of the lattice structure:

(UR: RE 'R.: R)' = (UR: RE'R.: R'), }

(nR: RE 'R.: R)' = (nR: RE'R.: R'), (2.17)

(S)'=(so), 0'=0, l1'=II;

and it preserves the inclusion order:

Rc;S", R'c;S' (2.18)

Any use of (2.16), (2.17) and (2.18) in what follows will be indicated as
"converse" .

The category structure, the lattice structure and converse interact all to
gether through Dedekind's rule and SchrOder's rules. Dedekind's rule, also
known as the modular law, comes in a left- and a right- version which read
as follows:

R· S n T c; R· (S n R'· T) , (2.19)

11

R- S n T c:: (R n T· SO) . S . (2.20)

Schroder's rules, also called the left-exchange rule and the right-exchange
rule, are:

R·S c:: T _ '/·so c:: 11 (2.21)

R·S c:: T _ W·'/ c:: S (2.22)

The conjunction of the left-exchange rule and the right-exchange rule is
equivalent to the -arguably more compact and more easily memorised
middle-exchange rule:

R·S·T c:: U '" W·U yo c:: 5

This rule is due to Jaap van der vVoude.

Functions A relation R is said to be entire if id ~ RO. R, and it is
said to be simple if R· RO ~ id. Recall the operational interpretation of
relations associated with their type-arrows: relations take inputs on the right
and deliver outputs on the left. Under this interpretation an entire relation is
such that delivers at least one output for each possible input, while a simple
relation delivers at most one output for each input. A (total) function is an
entire and simple relation. The collection of all functions to X from Y will
be denoted by Fun(X, Y) .

Useful properties of functions include the fact that "functionhood" is pre
served by composition and the so-called shunting rules, which now follow.
For every function f and every pair of relations Rand S:

t·RC::S Rc::r·S, (2.23)

R·r c S RC::S·f· (2.24)

The shunting rules can be used to show that equality of functions is equivalent
to inclusion, i.e. for every pair of functions f and g:

t=g fC::g (225)

Extensionality Recall the discussion in page 8 about the pointwise and
point·free styles of manipulating relations. The pointwise style was also
referred to as the set-theoretical style, while the point-free style is that ad
vocated by an axiomatic approach to relations like Tarski 's or the categor
ical/allegorical one. These two approaches can be unified by including a
notion of "points" or "elements" into the point-free style. To introduce such
a notion we need the so-called unit type, denoted by 1 and which represents

12

a singleton set. We choose to denote the unique element of 1 by *. Now,
given a set X, a point or element of X is defined to be a function to X
from 1, i.e. a member of the collection Fun(X, 1). Function {(x,.)} in
Fun(X,I) represents the element x of X.

An important feature ofbiuary relations, being defined as subsets of cartesian
products in set theory, is that of being built up from pairs of elements. These
pairs of elements are I in terms of lattice theory, atoms: immediate successors
of bottom. And a lattice is said to be atomic if every lattice member can be
built up from atoms. For every pair of sets X and Y, the lattice Rel(X, Y)
is indeed atomic, with atoms of the form x· yO for x a point of X and y
a point of Y. This comes down to the fact that, for every R: X +- Y , we
have:

R = (U x, y : x· yO <;; R : x. yO) (2.26)

R;0"" (3x,y::x·y°<;;R) , (2.27)

where x and yare dummies rauging over points of, respectively, X and
Y. -For axiomatic treatments of extensionality within the calculus of binary

relations, see e.g. [130, 135). For a graphical representation of the calculus
of relations with points, see [41].

Note that x· yO ~ R corresponds to the pointwise statement :x (R) y. Also
note that, by shunting of functions (2.24) and properties of converse -(2.16),
(2.18)-, it can be expressed in several equivalent ways:

x. yO ~ R y. X O
~ RO y~RO·x. (2.28)x<;;R·y ""

In particular, the expression x ~ R· y can .be read, uuder the right-ta-Ieft
operational interpretation of relations, as "x is a possible output of R for
input y".

We will write x : X , and will say that x is of type X , to indicate that ::r: is
a point of X. Also, lower-case will be conventionally used to name points.

2.2 Sets within the Calculus of Relations

There are several ways in which the notion of subsets can be incorporated
into the calculus of biuary relations. Two of them identify sets with certain
relations, allowing us to mix sets and relations and, therefore, allowing us
to reason about sets as a particular instance of reasoning about relations. A
third allows powersets to be used within the typing of relations, and exploits
the isomorphism between binary relations and set-valued functions.

13

Vectors The first view of sets as relations makes use of the unit type I l the
singleton set {*}, and it is closely related to the way points or elements are
modelled as functions. Relations of type X f- 1 can be put in a one-to-one
correspondence with subsets of X by identifying relation A: X f- 1 with
set {x Ix (A).). Furthermore, the lattice structure of Rel(X,1) is order
isomorphic to the power-lattice of subsets of X. Following [136], we call
these relations vectors, for their representation as n x 1 boolean matrices if
X is a set of size n. Others call them Jeft-conditiolJS [2, 49, 130], though

their treatment, as well as that of [136], does not make use of 1 and is thus
sligthl}' different. \Ve will write A : Vee X to indicate that A is a relation
of type X <- 1 .

The universaJ relation IT of type X f- 1 models the whole set X . Accord
ingly, we will use X to denote such a relation. Context will always clearly
determine whether X denotes the set X, as in the type of a relation, or the
universal relation IT of appropriate type.

Since elements of a set X were represented as functions of type X f- 1 ,
there is a natural embedding of elements of X into subsets of X, viz. the
embedding of the function space of a certain type into the relation space of
the same type l which corresponds to the formation of singletons.

Extensionality properties (2.26) and (2.27) can be applied to vectors, noting
that the only function of type 1 f- 1, i.e. the only point of 1, is id. Hence,
for a vector A over X the following holds:

A = (ux:x<::A:x), (2.29)

A,. 0 '" (3x:: x<::A) (2.30)

where dummy I ranges over points of X. Somewhat trivial, (2.29) can be
read as H a set is the union of all its elements" .

We will later use the following property of vectors' If x and yare points,
and A and B are vectors, then:

x. yO <;;;; A. EO x<::A A y<::B (2.31)

Coreflexives A second way of modelling subsets as relations uses so-called
coreflexive relations. A relation C of type X f- X is coreflexive if C <;;;; id.
A corefiexive relation C : X f- X can be interpreted as representing subset
{x [x(C) x} of X. Under this interpretation, relational union, relational

intersection and the empty relation correspond to their respective counter
parts in the power-lattice of subsets of X. To obtain an order-isomorphism
between coreflexives and the power-lattice of subsets of X, complementation

14

has to be defined as {;:= id - C and the top element as id. We will write
C : Cor X to indicate that C is a corefiexive of type X t- X .

Coreflexive relations enjoy many properties that do not hold for general rela
tions. For instance, every coreflexive C duplicates and is its own converse,
and its composition to another coreflexive D equals their intersection:

C CC = C·C, = C, C·D=cnD. (2.32)

In the sequel, we will also make use of the following property:

R·C C S R·C <; S·C (2.33)

Isomorphism between Vectors and Coreflexives Both the represen
tation of sets as vectors and the representation of sets as coreflexive relations
are useful. It depends on their intended use which is more convenient.

For example, the existential image under a relation R : X t- Y can be more
readily expressed using vectors. Given a set A: Vee Y , its existential image
under R is just R· A : Vec X . Using coreflexives, the image of A : Cor Y
under R would be id n R· A . il : Cor X .

On the other hand, given relations R: X t--- Y and S: Y t- Z, to restrict
the "middle points" in composition R· S to a certain subset of Y, the
corresponding coreflexive C: Cor Y can be just plugged in by means of com
position: R· C . S. If we choose to use a vector C: Vee Y , we need a more
elaborate expression, like R· (id n C· il)· S or R· (id n C· C')· S .

However, there are occasions in which we have to choose one of the two
representations and have to use it in both kinds of context, i.e. contexts
in which vectors would be more appropriate as well as contexts in which
coreflexives would be the best choice. It is then very useful to have means
of transforming one representation into the other and vice versa. In fact, an
isomorphism between the two representations is witnessed by the operator
¢, defined as follows:

¢R := id n R·R' (2.34)

This operator, when given a relation R: X f- Y, produces a coreflexive
~ R : Cor X that corresponds to the s(}-called range or left-domain of R.
But ¢ has an inverse only when restricted to vectors. Such an inverse is
given by what would be a general vector-range operator: given relation R
typed as above, its vector-range is R· II ; Vee X. The restriction of this
last operation to coreflexives is the inverse of the restriction of ~ to vectors.

15

Formally, for every A : Vee X and every C: Cor X , the following holds:

A~ C·X ¢A ~ C . (2.35)

-Recall that we have overloaded name X to also denote the universal re
lation of Rel(X, 1).- From (2.35), taking the instances A, C :~ 0,0 and
A, C ::::: X, id , we obtain the expected connections between the bottom and
top elements of the lattice of subsets of X in each representation:

¢0 ~ 0 , ¢X ~ id (2.36)

Aware of the fact that this decision is somewhat arbitrary, we will favour
vectors over coreflexives. This is due to the fact that, for a couple of reasons,
expressions over vectors often look more natural. First, the lattice opera
tors of Rel(X, 1) are in one-to-one correspondence with the -conventionally
denoted by the same symbols- operators of the standard power-lattice of
subsets of X. Second, the natural embedding of points as singleton sets
into vectors facilitates a more natural phra.<;ing of membership. -The reader
might be readier to accept this last claim after looking at the definition of a
"non-deterministic selection" statement presented later in this section.

Having made the decision of favouring vectors, our use of coreflexives will
always involve operator ¢ as well as some properties of it. Such properties are
used as rules that aid the translation between expressions involving vectors
and expression involving coreflexives. 'rVe now list them. For every pair of
vectors A and B and every relation R:

AS;;B '" ¢A S;; ¢B , (2.37)

¢(A U B) ~ ¢A U ¢B , (2.38)

¢(A n B) ¢A n ¢B , (2.39)~

R·AS;;B R ¢A S;; ¢B·R. (2.40)-
Note that in the expressions above ¢ has been given a higher precedence
than those of union, intersection and composition. 'rVe will later make use of
the more general fact that 4 distributes over arbitrary unions -from which
(2.38) follows as a particular case-, and we thus state this property explicitly.
For every bag A of vectors, the following holds:

!(UA: AEA: A) (UA:AEA:¢A) (2.41)

To finalise, we present the coreflexive representation of singleton sets. Since
points are simple relations, for every point a we have:

la ~ a·a' (2.42)

16

Non-Deterministic Selection Statement When programming at a level
of abstraction that makes use of sets, picking out an arbitrary element from
a given non-empty set is often needed. Formally, given A: VecX such
that A '# 0, a point a: X such that a ~ A is required. Using ,Morgan's
specification statement --see Section 1.3-, the non-deterministic selection
statement is denoted by a:C;; A and defined as a: [A # 0, a C;; A] , where
a and A must be program variables typed as above. This statement is often

called generalised assignment [1l8J and denoted, in set-theoretical contexts,
using the symbol :E.

Maximal and Minimal Sets We will later make use of the notion of
maximal and minimal sets, represented as vectors I satisfying a certain given
property.

Let P he a predicate on subsets of a given universal set X . Then a subset
A of X is a maximal set satisfying P if for liO superset of A, except itself,
P holds. The definition of minimal sets follows from duality. Formally, with
B a dummy ranging over subsets of X , we define:

mxl (P, A) - (VB:AC;;B:PB=oB=A) (2.43)

mnl (P, A) - (V B : B C;; A : P B =0 B = A) (2.44)

For certain predicates the above formalisations can be simplified. For exam
ple, a predicate P on sets is said to be subset-closed if

AI C;; A2 '* (P A2 '* P AI) .	 (2.45)

In such a case, to see whether A is a maximal P-set not all proper supersets
of A must be checked for non-satisfaction of P. It suffices to check its
"frontier supersets", i.e. the supersets of A that differ from it only by one
element. Formally, with dummy a ranging over elements of X :

mx/(P,A) =0 PA /\ (Va:	 aC;;A: ,P(AUa)) } (2.46)
provided P is subset-closed.

Dually, a predicate P is superset-closed if

AI C;; A2 '* (P AI '* P A2) (2.47)

And the following holds:

mn/(P,A) =0 PA /\ (Va:	 aC;;A: ,PtA-a»)
} (2.48)

provided P is superset-closed.

17

It is worth noting that we could have formalised the more general notion
of maximal and minimal relations, the above then following as a particular
instance. We chose not to do so since we would have found no use for it.

Power Transpose It was briefly mentioned at the beginning of this section
that there is a third way of incorporating the notion of subsets into the
calculus of binary relations. Unlike vectors and coreftexives, representations
that embed the corresponding powersets -or indeed power-lattices- within
the collections Rel(_, _), the notion of powerset will now be included at the
level of the typing of relations. In category-theoretical terms: powersets as
objects rather than ~ collections of arrows.

We start with a pointwise set-theoretical presentation. There is a one-to
one correspondence between binary relations and set·valued functions. It
associates each relation R: X t-- Y to a function AR: PX t-- Y, where
P X is the powerset of X and AR is defined as (AR) y := {x I x (R) y} .

A formalisation in the point-free style now follows. It is first assumed that
for every set X -a set as used iu the types of relations and not in the
sense of vectors or coreftexives-- there exists a set PX, called the powerset
of X, and a relation E: X t-- PX , called the membership relation on X .
Also, it is assumed that for every relation R: X t-- Y there exists a function
AR : PX <- Y , called the power transpose of R, such that:

! = AR Ef = R (2.49)

for every function f : PX t-- Y . The isomorphism between binary relations
and set-valued functions is witnessed by the power-transpose operator A.
-The category-theoretical definition of power allegories, roughly categories
of relations with power transpose, can be found in e.g. [28, Section 4.6].
We will a<;sume that operator A binds more tightly than composition and
all lattice operators.

Two consequences of (2.49) are the so-called cancellation and fusion proper
ties of power transpose. Explicitly spelled out, they read as follows:

E·AR

AR·f

R,
.\(R· J)

(2.50)

(2.51)

where R is an arbitrary relation and f is a function.

We will not make as much use of power transpose as of vectors or coreflexives.
Indeed, its only use has to do with a rather clean way of modelling quotient
sets of equivalence relations within the calculus, presented in Section 2.4 and
used in Chapter 7.

18

Power Transpose in relation to Vectors and Corefiexives First and
foremost, we define a power-point or power-element of X to be a point of
pX. The collection of power-points of any X is, on account of the power
transpose isomorphism (2.49), isomorphic to the collection of vectors on X.
For every a: PX and every A: Vec X, we have:

a = AA E·a = A . (2.52)

To finally bring this section to an end, we present One single property involv
ing all three representations of sets, which will be used in the sequel. For
arbitrary relations Rand S, and vector A, the following holds:

AR·A = AS·A "" R·~A = S·~A (2.53)

2.3 Fixed Points

It was pointed out in Section 2.1 that relations form complete lattices, viz.
Rel(X, Y) for each pair of sets X and Y. Hence, the theorem of Knaster
and Tarski on the existence of extreme fixed points [88, 1431 can he applied.
This theorem states that for every monotonic endofunction F on a complete
lattice the equation F W = W has both a least and a greatest solution
on W. Any solution of the equation above is called a fixed point of F,
while solutions of F W ~ Ware called preEx points of F and solutions
of F W :2 W are called postfix points of F. The Knaster-Tarski theorem
further states that the least fixed point of F coincides with its least prefix
point and, dually, that its greatest fixed point coincides with its greatest
postfix point.

Thus, the least fixed point of monotonic function F exists and is uniquely
determined by stating: first, that it is a fixed point of F and, second, that
it is least among the prefix points of F -a more useful statement than just
saying it is least among the Exed points of F -. We will denote the least
fixed point of F by (/' W : F W), which is characterised hy:

(/,W:FW) F(/,W:FW) , (2.54)

(/,W: FW) ~ V "" FV ~ V (2.55)

In a proof presented in Appendix AI, we will make use of these character
ising properties of least fixed points. Following [99], we will refer to (2.54)
as ~~fixed-point computation" and to (2.55) as "fixed-point induction". A
similar characterisation of the greatest fixed point of F can be obtained by
dualisation, but we will have no use for greatest fixed points.

19

Fixed points can be nicely used in a calculational style [99]. We will later
make me of some fixed-point rules that now follow. First, monotonicity of
the J1 operator:

(~W : F	 W) <;; (J,l W : 9 W) ¢o (\I W :: F W <;; 9 W) . (2.56)

Second. the rolling rule:

(~W:F(9W» ~ F(J,lW9(FW»	 (2.57)

Third, the fixed-point exchange rule, which has two variants. We spell out
the first:

(I' W : F	 (9 W» ~ (J,l W : F ('Ii W» }
¢o (\lW:: 9 (F ('Ii W» ~ 'Ii (F (gJ-V)) , (2.58)

provided functions 9 and 1{ distribute over union. The second variant is
obtained by replacing equality = with inclusion ~ 1 and it only requires that
function 9 distributes over union.

2.4 Orderings, Equivalences and Closure

The notion of order is pervasive in mathematics and computer science -and is
present also in the social sciences-. Properties of orderings and equivalence
relations -as a particular kind of ordering- can be concisely expressed in
the calculus of binary relations. Some of such characterisations of orderings
and equivalence relations are presented in this section. Besides, we present
well-known mechanisms that produce specific kinds of orderings from a given
relation, viz. the reflexive-transitive closure and the transitive closure.

Orderings A relation R : X t- X is said to be reBexive if id ~ R, and it
is said to be transitive if R· R C;;;; R. A relation which is both reflexive and
transitive is a preorder. It can be easily shown, using properties of converse,
that a relation R is a preorder if and only if RD is a preorder. It can also be
shown that if Rand S are preorders, then 50 is their intersection R n S .
Preorder R is connected if every two elements of X are related either by
R or by RO 1 i.e. if IT C;;;; R u RO .

Among well-known graph algorithms are a good many that solve optimisation
problems, e.g. the computation of shortest paths and the computation of
minimum spanning trees. We will thus need a formalisation of the notion of
maximum and minimum elements in later chapters. Let R: X t- X be a
preorder and take a set A: Vec X . An R-maximum of A is an element of
A that is at least as good, according to R, as every other element of A.

20

An R-minimum element is an RO-maximum element. Formally, we define
the set of R-maxima and the set of R-minima of A as follows:

max (R,A) - (Ux x<;:A /\ A·x'<;:R x) (2.59)
min (R, A) .- (Ux x <;: A /\ x· A' <;: R x) (2.60)

where x is a dummy ranging over points of X. Maximum and minimum
elements might not exist for certain combinations of R and A. However,
our use of max and min will be limited to instances where R is a COn
nected preorder and A is a finite non-empty set. In such instances, the sets
max (R, A) and min (R, A) are non-empty.

Equivalence Relations A preorder Q : X f- X is an equivalence relation
if it is also symmetric. Relation Q is symmetric if Q" = Q , which is equiva~

lent to QO ~ Q. By properties of converse and the aforementioned fact that
both the converse and the intersection of preorders are also preorders, every
preorder R gives rise to an equivalence relation: R n Fe .

Let Q: X +-- X be an equivalence relation. The Q-equivalence class of an
element x : X is the set of all the elements related to x by Q. We can model
it by the vectOr Q. x : Vec X and, on account of the power-transposeisomor_
pbism (2.52) and fusion law (2.51), also by the power-element AQ· x : P X .
The quotient set of Q is the partition induced by Q on X that com
prises all the Q-equivalence classes. We model it by the powerset vector
AQ· X : Vec (PX) -recall, once more, that we have overloaded name X to
also denote the universal relation of Rel(X, 1) -. Note that the quotient set
of Q is a set of sets and we have chosen to model such a family by a vector on
the powerset of X. i.e. the "outer-level" set is modelled by a vector whereas
the "inner-level" sets are modelled by powerset objects. Such representation
of quotient sets will be used in Chapter 7, when dealing with the problem of
computing the strongly connected components of a directed graph.

In the same manner that X is partitioned by Q to form the quotient set of
Q , subsets of X can also be partitioned. The Q-quotient of a set .4 : Vee X

is the partition that comprises the Q-equivalence classes of all the elements
in A, i.e. AQ· A: Vec (PX). Note the subtlety: tbe quotient set of Q is
the Q-quotient of the whole set X. The set of all the elements in such
Q-quotients contains all elements in the source set and probably more. Let
us formalise this. First, the whole set of elements in a partition of type
Vee (PX) is obtained by composing the membership relation on its left, i.e.
by applying (E') to get a vector Vee X . Now, we can show in ODe line that
the set of elements in the Q-quotient of A always contains A:

e·AQ·A = Q·A 2 A.

21

The two steps are justified, respectively, by power-transpose cancellation
(2.50) and reflexivity of equivalence relations. The other inclusion does not
hold in general, but the above one-line proof also shows that the set of ele
ments in the Q-quotient of A is equal to A if and only if Q . A <;; A holds.
In such a case, we will say that A fits Q.

Finally, a couple of facts we will make use of in Chapter 7. First, every
power-element in a Q-quotient is the Q-equivalence class of some element
and, consequently, corresponds to a non-empty set:

AB <;; AQ· A

{ extensionality (2.29) }

AB <;; AQ· (U a : a <;; A : a)

distribution of composition over union (2.14), }
{ power-transpose fnsion (2.51)

AB <;; (U a : a <;; A : A(Q· a))

{ AB is an atom and, hence, it is irreducible}

(3 a : a <;; A : AB <;; A(Q· a))

inclusion/equality of functions (2.25), }
{ operator A is an isomorphism

(3a: a<;;A: B = Q·a)

'=> { reflexivity of Q, predicate calculus}

(3a:: B;2a)

{ extensionality (2.30) }

B#0.

Furthermore, if A fits Q, every power-element in the Q-quotient of A
corresponds to a subset of A _ We reason in one line thus:

AB <;; AQ· A '=> E· AB <;; E . AQ . A '=> B <;; A

where the first implication is justified by Leibniz, and power-transpose can
cellation (2.50), twice, plus the assumption that A fits Q justify the second
implication. For future reference, we label these facts:

;IB <;; AQ· A '=> B # 0 /\ B <;; A provided A fits Q. (2.61)

Reflexive-Transitive Closure For every relation R: X t- X there is a
smallEst preorder that contains R, called the reBexive-transitive closure of
R and denoted by R* . The universal property that characterises R* follows:

22

for every preorder W,

RC;;W == R'C;;W. (2.62)

There are other equivalent characterisations of R· in terms of least fixed
points. The first one arises rather naturally: R· must be a relation W such
that it is reflexive -. id ~ ~r -, it is transitive - W· ~V ~ W -, it contains
R - R ~ W -, and it is the least relation satisfying such requirements. By
universal property of union (2.3), R'" must then be the least relation W sat
isfying id U R U W· W C;; Wand, hy Knaster-Tarski, such a least prefix
point coincides with the corresponding least fixed point. Hence,

R' = (t<W: id U R U W·W)

The other J.L -characterisations of R· are:

R' = ("W: id U R.W}

R' = (t< W: id U W· R}

which can be generalised as follows:

R'·S = ("W:SUR·W) {2.63}

S·R' = ("W: S U W.R) {2.64}

Yet another characterisation of R"', in terms of pointwise statements, is
the following: x (R"') y is equivalent to the existence of a natural number
n such that there exist elements Xn,Xn_l, '" XI,XO that satisfy x = Xn ,
(V i : n 2: i > 0 : Xi (R} X.-l} and Xo = y. This is a particular instance of
a more general and well-known theorem due to Kleene [871. which we choose
to omit. We will later use this characterisation only as an aid to intuition.

From the above jJ -characterisations of closure and monotonicity of J.l (2.56) I

we obtain the fact that the closure operator is monotonic: R· ~ S' follows
from R ~ S. From the universal property of closure and properties of con
verse, it can be shown that closure commutes with the converse operator:
R·o = RO•. And from this it follows that R'" is an equivalence relation if
R is a symmetric relation.

Closure can be "jumped over". The following three propositions, which are
collectively called the lea~frog over closure rules, formalise this:

R'·S = S·T' <= R·S=S·T, {2.65}

R'·S C;; S·T' <= R·S C;; S'T, (2.66)

R'·S 2 S·T' <= R,S2S·T. (2.67)

23

To serve as an example of calculations with fixed-point rules we prove the
first variant.

Proof of (2.65):

R"·S = S·T'

{ closure -(2.63), (2.64)- }

(I'W: S u R·W) = (I'W: S U W·T)

fixed-point exchange (2.58) with }
:F W := S U W, 9 W := R· W, 1i W := W· T;

{=
proviso on g, 1£ holds since composition distributes {
over union -(2.14) and its right-analogue

(\fW:: R·(S U W·T) = (S U R·W)·T)
{= { distribuhon of composition over union, Leibniz }

R·S = S·T

o

The second version of the fixed-point exchange rule (2.58), which deals with
inclusion instead of equality, can be used to give a similar proof of (2.66) and
(2.67). The instance T:= id of the middle leap-frog variant (2.66) can be
strengthened to an equivalence using the fact that id· = id and R ~ R~ .
This will prove to be useful in future chapters:

R'· S r;; S R·S r;; S . (2.68)

Other properties of closure to be used in the sequel, whose proofs we omit,
now follow. Let Rand S be arbitrary relations, and a and b be points.
Then:

(R U S)' = (R". S)' . R' , (2.69)

(R U S)' = (R' U S)' , (2.70)

(R· a . bO)' = id U R· a· bO (2.71)

Finally, if R is a preorder, and a and b are points:

(R U a· bO U b· aT = R· (id U a· bO U b· aO) . R (2.72)

Transitive Closure For every relation R : X t- X there is also a smallest
transitive relation that contains R, called the transitive closure of Rand
denoted by R+. Characterisations of R+ are analogous to those of R·. Its

24

universal property reads as follows: for every transitive retation W I

RC;W == R+C;W

The transitive closure relates to the reflexive-transitive closure by the roHow
ing two properties:

R· = id U R+ , R . R' = R+ = R'· R (2.73)

And relation R+ can also be given a Kleene-based pointwise characterisation
similar to the one given above for R*, except that the number n of "inter
mediate points" must not be zero: x (R+) y is equivalent to the existence of a
positive natural number n such that there exist elements Xn, Xn-I, ... Xl, Xo

that satisfy X=Xn , (Vi: n::':i>O: x,(R)x,_d and xo=y.

2,5 Basic Graph Concepts

This section presents ba.o;;;ic concepts of graph theory using the calculus of
binary relations as working tool. There is a close connection between graphs
and binary relations since every graph induces a relation between its vertices
as well as a relation between its p.ogp.s and its vertices. However, the phras
ing of even the most elementary graph-theoretical notions in a calculational
framework like ours is by no means standard. And the terminology used
within graph theory is not standard eithp.f. Hp.nce, every book or article
devoted to the topic initially sets the terminology preferred by the authors
since not doing so is likely to confuse readers. This section, as well as the
rest of this chapter, establishes the basics of graph theory as will be used in
the rest of this thesis.

Directed and Undirected Graphs A graph is defined to be a 4-tuple
(Verl,Edge,xl, x2) where Vert and Edge are sets, and xl and I2 are

functions of type Vert t- Edge that determine the extreme vertices of an
edge. This definition does not limit the graph to be directed or undirected,
that being determined by what relations are built upon the extreme functions
xl and x2.

In a directed graph the extreme function xl is interpreted as determin
ing the vertex that an edge leads to whilst x2 determines the vertex an
edge comes from. To a directed graph we associate a succe~~or rdatioll of
type Vert t- Vert. If there is an edge leading to a vertex v from another
-possibly the same- vertex w, then v is said to be a successor of w. The
succesor relation is thus formally defined to be:

Suce := xl· x2° . (2.74)

25

On the other hand, in an undirected graph the fuuctions xl and x2 are
interpreted symmetrically as determining both extremes of an edge. No order
is imposed upon the two vertices joined by an edge and, so, an undirected
graph is equipped with a symmetric adjacency relation of type Vert +-- Vert.
Vertices v and ware adjacent ifthey are the two extremes of an edge, being
irrelevant whether v is obtained through the function xl and w through
x2 or vice versa. Hence, we define the adjacency relation to be:

Adj := xl· x2° U x2· xr (2.75)

By properties of converse -(2.16), (2.17)-, Adj is indeed a symmetric rela
tion, as expected. A directed graph can be converted into an undirected one
by taking Adj = Suee U Sueeo

•

Subgraphs Let G be a graph (Vert, Edge, xl, x2). A subgraph of G is
given by a subset l/ of its vertices and a subset E of its edges such that
every edge in E has its extremes in V. This means that a subgrapb is given
by a set V: Vec Vert and a set E: Vec Edge such that:

xl·E <;; V /\ x2·E <;; V. (2.76)

When a subgraph is formed by the whole set of original vertices, i.e. Vert.
and any subset E of edges it is called a spanning subgraph. In such a case
(2.76) i5 trivially satisfied since Vert is the universal relation of Rel(Vert, 1)
and, hence, the subgraph is uniquely determined by E. We will therefore
identify spanning subgraphs with their set of edges.

Consider G to be a directed graph. Then, given E : Vee Edge ~ the successor
relation of the spanning subgraph of G determined by E is:

suee E := xl· ¢E· x2° (2.77)

If G is considered to be undirected~ the adjacency relation of its spanning
subgraph determined by E is:

adj E xl . ¢E . x2° U x2· ¢E . xJO . (2.78)

Coreftllxives are symmetric (2.32) and, thus, properties of converse -(2.16),
(2.17)- again imply, as with Adj, that relation adj E is symmetric for every
E.

Every graph is a spanning subgraph of itself. Consistently, the relations
associated with a graph G can be expressed as the relations of the trivial
spanning subgraph of it, viz. the subgraph determined by the whole set of
edges Edge. The forma] link are the equations Suee = suee Edge and
Adj = adj Edge, straightforward consequences of (2.36).

26

Given that ¢ L'i monotonic, by (2.37), and that so is composition, we also have
that succ and adj are monotonic. This means that succ El ~ succ E2
follows from E1 ~ E2 ; in particular, we have succ E ~ Succ for every E.
And the same goes for adj. Finally, since f distributes over union (2.41)
and so does composition, succ and adj do distribute over union as well.

Parallel Edges and Loops The formalisation of the successor and adja
cency relations of spanning subgraphs can aid the characterisation of other
graph features. Let G be, again, a graph (Vert, Edge, xl)x2) , take an edge
e -i.e. a function in Fun(Edge, 1) - and let v and w be, respectively, the

extreme vertices xl . e and x2· e of e. Then, using a pointwise style, rela
tion succ e is the ,et {(v, w)} and relation adj e is the Set {(v, w), (w, v) }.
In the point-free style, this corresponds to the following two equalities, which
we call the atomic successor and atomic adjacency equalities:

succ e (xl· e) . (x2 . er (2.79)

adj e (xl· e) . (x2 . er U (x2· e) . (xl· e)' (2.80)

These "atomic" equalities follow from the definitions of succ (2.77) and
adj (2.78), the coreflexive representation of Singletons (2.42), and property
(2.16) of converse.

Two edges d, e : Edge of G are parallel exactly when succ d = stlce e , if
G is considered to be directed, and exactly when adj d = adj e , if G is

considered to be undirected.

A loop is an edge that connects a vertex with itself. Formally, e: Edge
is a loop exactly when S!lCC e S; id, lf G is directed, and exactly when
adj e S; id, if G is undirected. The directed/undirected distinction is

rather artificial in this case since:

adje c::; id

atomic adjacency (2.80); }
{ atomic successor (2.79), converse (2.16)

succ e U (succ et S; id

universal property of union (2.5), }
{ converse -(2.16), (2.18)

sueee ~ id .

Simple Graphs Books on graph theory, as mentioned earlier, differ widely
in terminology, even in what is called a graph. For instance, it is sometimes
understood that the plain term "graph" is only applied to undirected graphs,

27

directed graphs thus having to be explicitly qualified as such; the opposite
is not uncommon, I.e. that "graph'1 is implicitly understood to refer to a
directed graph. From our definition of graph at the beginning of this section,
it is understood that graphs need always be qualified as either directed or
undirected.

Another common assumption is that parallel edges are not allowed. Our
definition of graph naturally allows the existence of parallel edges. However,
when there are no parallel edges or their existence is considered irrelevant,
the graph can be described only by its set of vertices and the relationship
between them induced by the edges. We call such a graph a simple graph.

Thus, a simple directed graph is a pair (Veri, Succ) where Succ is any
relation of type Vert f-- Vert. It is straightforward to construct the unique
simple directed graph associated with a given directed graph, taking Succ
as defined above in (2.74). But several directed graphs could have the same
successor relation and hence the same simple directed graph. due to the
presence of parallel edges. Likewise, a simple undirected gra.ph is a pair
(Vert, ,4dj) where Adj is a relation of type Vert <-- Vert that must be

symmetric. As before, a given undirected graph induces a unique simple
undirected graph, taking Adj as in (2,75), but a simple undirected graph
can be obtained from several undirected graphs.

Incidence Relation and Hypergraphs The incidence relation of a graph
(Vert, Edge, xl , x2) is the relation of type Vert <-- Edge defined thus:

Inc := xl U x2 . (2.81)

This definition does not make a distinction between directed and undirected
graphs.

A llypergraph is a 3-tuple (Vert, Edge, Inc) where Inc is any relation of
type Vert f-- Edge. Every graph induces a unique hypergraph, taking Inc
as defined in (2.81). But there are hypergraphs that are not induced by any
graph whatsoever. This is due to the fact that an edge of a hypergraph could
be related to more than two vertices or to no vertices at all.

Let H be a hypergraph (Vert, Edge, Inc). The adjacency relation of H is
defined to be the following relation of type Vert <-- Vert:

HAdj := Inc· Inc' (2.82)

The cograph of H is the hypergraph (Edge, Vert, Inc') .

Let G be a graph. Note that the adjacency relation of G is not equal to
the adjacency relation of the hypergraph induced by G, reason for which

28

HAdj was given a different name. The cograph of G is defined to be the
cograph of the hypergraph induced by G.

2.6 Connectedness and Acyclicity

The task of presenting graph-theoretical concepts llsing the calculus of binary
relations is continued in this section with two important notions. First, we
present the notion of connectedness, which deals with whether or not a graph
can be traversed from a certain vertex or edge to another. Second, we present
the notion of acyclicity, which refers to the absence of cycles: traversals of a
graph that start from a certain vertex and arrive back at the same one. Both
notions rely on the reachability and joinability relations of a graph, which
we start the section with, and, also, both notions are related to the concept
of covering, explored towards the end of the section.

Reachability and Joinability Let G be a directed graph with SUCCessor
relation Succ. Since Su.ee relates two vertices when there is an edge between
them, Suec· relates vertices for which one can traverse the graph using zero
or more edges to arrive at one of the vertices having started from the other.
If the vertices of a graph are thought to be railway stations and the edges
to be railway lines, Succ· models possible destination/origin pairs one could
travel by train. \Ve will say that vertex v is rea.chable from vertex w
whenever v (Succ') w holds. The reachabjJity relation of graph G is defined
accordingly:

Reach Suec· . (2.83)

Analogously, if G is an undirected graph with adjacency relation Adj, we
will say that vertices v and 'Ware joinable whenever v (Adr) w holds. The
jojnability relation of G is then defined to be:

Join .= Adj' (2.84)

These relations can also be defined for spanning subgraphs. The reachability
and joinability relations of the spanning subgraph determined by set E of
edges are, respectively:

reach E (succE)' (2.85)

join E (odj E)' . (2.86)

Since succ, adj and closure are monotonic, so are reaeh and join. Also,
Reach = reach Edge and thus reach E <:; Reach for every E. Ana.logous
properties hold for join.

29

Strong Connectedness and Connectedness Let G be a directed graph
with reachability relation Reach. Two vertices of G are strongly connected
or mutually reacha.ble if each of them is reachable from the other l i.e. if they
are related by the following strong connectedness relation:

Sir := Reach n Reacho (2.87)

A strongly connected graph is a graph in which every pair of vertices are
strongly connected. And a maximal strongly connected subgraph of G is
called a strongly connected component of G. Reachability relation Reach
is a preorder and, therefore, Sir is an equivalence relation -see remark on
preorders and equivalence relations in page 21-. The Sfr-equivalence classes
correspond to the sets of vertices of the strongly connected components of
G. As customary by now I we also define the strong connectedness relation

induced by a subset E of the set of edges of G:

.,Ir E := (reach E) n (reach Et . (2.88)

For the same reasons that Str is an equivalence relation, str always pro
duces equivalence relations. Also, str is monotonic and the following holds:
Str = str Edge. Hence, str E ~ Str for every E.

Analogously, let G be an undirected graph with joinability relation Join.
Two vertices of G are said to be connected if they are joinable, i.e. related
by Jom. A graph in which every two elements are connected is a connected
gra.ph, and a maximal connected subgraph of G is a connected component of
G. Since Join is the reflexive-transitive closure of a symmetric relation, viz.
Adj , it is an equivalence relation -see remark on closure commuting with

converse in page 23-. The Join-equivalence classes are the sets of vertices
of the connected components of G.

Formally, G is connected exactly when II = Join, which is equivalent to
n ~ Join. The spanning subgraph of G determined by a set E of its

edges is connected exactly when n = join E or, equivalently, II ~ join E .

The fact that join E <; Join holds for every E implies, by transitivity of
inclusion, that if the spanning subgraph of G determined by E is connected
then so is G. Hence, a non-connected graph has no connected spanning
subgraphs whatsoever. However, one can ask a spanning subgraph of a non
connected graph to "do its best", demanding that it preserves the original
connected components, i.e. demanding that it keeps connected every two
vertices which are connected in the whole graph. If the graph is connected,
this requirement amounts to demanding the subgraph to be connected as well.
We call such a spanning subgraph a connectedness-preserving subgraph. For

30

later use, we give a name to the formal phrasing of this property:

connpreE Join = join E . (2.89)

Note that this is equivalent to Join ~ join. E .

Biconnectedness Ln an undirected graph G, two vertices are biconnected
if they are connected and remain connected after the elimination of any other
vertex. A biconnected graph is a graph in which every pair of vertices are
biconnected. And a biconnected component of G is a maximal biconnected
subgraph of G. Unlike connectedness and strong connectedness, which par~

tition the set of vertices according to the equivalences Sir and Join. respec
tively, biconnectedness does not induce a partition on the vertices. However,
it does partition the set of edges. For a small example, take a graph with 3
vertices u, v, wand 2 edges d, e joining, respectively, ti with v J and v with
1)). Its two biconnected components are determined by the following pairs of
vertex/edge sets, ({ u, v), (d}) and ({ v, w), {e}). Vertex v lies in two
of the biconnected components. Such vertices are called cut-vertices because
their removal disconnects vertices previously connected. In the example, the
removal of v disconnects ti and 1)). The edge set is indeed partitioned into
{{d},{e} }

An equivalence relation on the edges then seems a more attractive way of for
malising biconnectedness and we dedicate ourselves to such a task. Let G be
the graph (Vert, Edge, xl, x2) with incidence relation Inc -recall (2.81)-.
Then take the edge-adjacency relation of G to be the (vertex-)adjacency
relation (2.82) of the cograph of G, and the edge-joinability relation to be
its closure:

EAdj := Inco
. Inc

EJolll := EAdj' .

Now, two edges lie on the same biconnected component if they are connected,
i.e. related via EJoin, and if they remain connected after the removal of
any vertex. For the latter condition we need to formalise what it is to be
(edge-)joinable using only some of the vertices. We proceed just as we did for
spanning subgraphs. Given a set V : Vec Vert, we define the edge-adjacency
and edge-joinability relations under vertex set V to be:

eadj V Inco
• ¢V . Inc

ejoin V (eadj V)' .

For a vertex v : Vert, its removal from the whole of the vertex set results
in set fj. Hence, the biconnectedness equivalence, of type Edge f-- Edge, is

31

(nv :: ejoin v) with v ranging over points of Vert.

Acyclicity A cycle in a graph G corresponds to a traversal of G that j

having started at a vertex v, say, ends at v again. An empty traversal,
which trivially starts and ends at the same point j is not considered to be a
cycle. This notion, as all the others, is formalised differently in the context
of a directed graph than in the context of an undirected graph. The former
is simpler than the latter.

In a directed graph G with successor relation Succ, the existence of a traver
sal between any two given vertices is determined by the reachability relation
Reach, i.e. Succ· . Similarly, the existence of a non-empty traversal is deter
mined by the transitive closure of the successor relation: Succ+. Hence, the
existence of a cycle corresponds to Succ+ having a non-empty intersection
with the identity function. This amounts to saying that G is acyclic exactly
when Succ+ n id :::: 0. Analogously, the absence of cycles in a spanning
subgraph of G is formalised by means of the restricted successor relation:
the spanning subgraph determined by set E of edges is acyclic exactly when
(suceE)+n id = 0.

Formalising acyclicity in undirected graphs is rather more challenging. The
problem is that any traversal in an undirected graph could just be "walked"
back to the starting vertex by using the same edges in reversed order. For
example, take the graph formed ouly by vertices 'U, v and edge d joining 11

and v. The graph can be traversed using path ['U, d, v, d, 'U] which, in spite
of the fact that it starts and ends in u, does not comply wi th our intuitive
understanding of a cycle. In an undirected graph G with adjacency relation
Adj , traversals of G correspond to relation Join, i.e. Adr. From the

remarks and example above, we can then deduce that, unlike the case for
directed graphs, neither Join nor Adj+ will be of much help in capturing
the existence of cycles in G. In every non-trivial undirected graph, non
trivial meaning with at least one edge, relation Adj+ n id is non·empty
irrespective of the existence of cycles.

But there is a way out. Suppose there is a cycle in G. Since empty traversals
do not count as cycles, the set of edges of G involved in the cycle must be
non-empty. Draw an edge e from such a set. Given that e forms part of a
cycle, it must be the case that G can be traversed from one of the extremes
of e to the other without using e. Therefore, the extremes of e must be
joinable through join e and, so, adj e ~ join e must hold. Conversely, if
adj e ~ join e holds for any edge e in G, then e must form a cycle with

some other edges in e and, hence j there is a cycle in G. We conclude that
an undirected graph G is cyclic if and only if (:I e :: adj e ~ join e) I with
e ranging over points of Edge, holds.

32

The use we have just made of adj and join will turn out to be of more
general, and very profitable, use. We will thus give a name to such a rela
tionship now and will explore some of its properties in the next subsection.
We define a set El of edges to be covered by set E2 of edges if) given any
pair of vertices adjacent via an edge in El , a traversal that connects them
via edges in £2 can be found. The covering relatiou, denoted from now on
by :S, is then formally defined as follows:

El ::' E2 := adj El c: join E2 . (2.90)

The above formalisation of the existence of cycles in undirected graphs can
then be rephrased ..<: G is cyclic if and only if (3 e :: e::' e) holds.

V'ie will later use the notion of acyclicity in spanning undirected subgraphs.
In such a ca..<;e, all the edges involved in the formalisation of the existence
of cycles must be drawn from the set E, say, Df edges of the subgraph. Vile
define:

cyclic E - (3e:ec: E : e ::'E-e) (2.91)

acyclic £ - ~ cyclic E . (2.92)

Covering We now present a collection of properties of cDvering that will
be of much use in the sequel. We start with two general properties that
will allow us to show that the covering relation :S is a preorder. The first
property corresponds to the relationship between inclusion and covering. Let
El and E2 be arbitrary sets of edges and assume that El c: E2 holds.
We then have:

adj El c: adj E2 c: join E2 ,

where the first inclusion corresponds to adj-monotonicity, and the second fol
lows from definition of join (2.86) and property R <; R· of closure. Hence,
inclusion implies covering:

El c: E2 '* El::' E2 (2.93)

The second property concerns the transformation of adj into join in the
formal phrasing of covering. Every joinability relation, i.e. join E for any E)
having been constructed by an application of the reflexive-transitive closure
operator, is a preorder. It then foHows from the universal property of closure
(2.62) plus the definition of::' (2.90) that:

El ::' E2 '" join El c: join E2 . (2.94)

33

We can now prove that the covering relation is a preorder: reflexivity of
inclusion and (2.93) implies reflexivity of ~, transitivity of inclusion and
(2.94) implies transitivity of ~ .

The formalisation of acyclicity in undirected graphs gave rise to the formal
isation of the covering relation. The relationship between the two notions is
clear in their definitions -(2.90), (2.91)-. But covering is also related to the
notion of preservation of connectedness in undirected graphs, as formalised by
connpre (2.89). V,le now make explicit the relationship of covering with the

connectedness-preserving predicate. Take the definition of connpre (2.89) ,
replace Join with join Edge and replace the equality sign, on account of
join-rnonotonicity, with inclusion. Property (2.94) above then implies the
following:

connpre E =' Edge ~ E . (2.95)

Let us now analyse how the covering relation interacts wi th union. This is
worth exploring due to the fact that adj distributes over union: it allows
exploitation of the universal property of union since adj is placed on the
left-hand side of ~ in the definition of ~. Let E be a bag of edge sets and
F be an edge set. We then manipulate as follows:

(UE: E E E : E) ~ F

{ definition of ~ (2.90) }

adj (U E : E E E : E) ~ join F

{ distribution of adj over union}

(UE : E E E : adjE) ~ joinF

{ universal property of union (2.3) }

('IE: E EE: adjE ~ joinF)

{ definition of ~ (2.90) }

('IE: EEE: E~F).

Hence, union interacts with covering in the same way it does with inclusion:

IUE:EEE:E)~F (VE:EEE:E~F), (2.96)

for any bag £. of edge sets and any edge set F.

Two Gates We bring this section to an end with a crucial property of
the covering relation :i which we call the Two Gates rule. It concerns,
as when the formal definition of :i arose, cycles in undirected graphs. As
previously remarked, cycles are non-empty traversals that start and end at
the same vertex: they must involve at least one edge. Cycles with only one

34

edge correspond to loops -see page 27-. The Two Gates rule is about cycles
with at lea.<;t two edges. We first give an informal explanation. Let d and
e be edges and let E be a set of edges. Suppose that both d fc E and
e ~ E hold. This means that adding d to E will not make d part of a

cycle, and the same goes for e. Now suppose that the addition of d to E
covers e, i.e. that e ~ E U d holds. This means that, after having added
d to E, subsequent addition of e does create a cycle. And both d and e

are involved in this cycle. It must then also be the case that the addition of
e to E covers d, i.e. we can conclude that d ~ E U e must also hold. By

symmetry, the reverse implication is valid as well. Visualising the cycle that
d and e form when added to E as the fence of an enclosed field inspired
the name Two Gates for the rule: d alone or e alone can be "opened" to
let the sheep break free.

Vve now state the Two Gates rule formally:

d:!EUe'" e:!Eud provided d ~ E and e ~ E. (2.97)

Since union appears on the right-hand side of ~ in the demonstrandum, it
will be necessary to deal with expressions of the form join (F U f) with F
an edge set and f an edge. Already formulated properties of closure provide
a handle for manipulating such expressions:

join (F U I)

= { definition of join (2.86) }

(adj (F U I))'
{ adj distributes over union}

(adj F U adj I)'

closure (2.70) with R, S := adj F, adj I; }
{ definition of join (2.86)

(join F U adj I)'
{ atomic adjacency (2.80) }

(join F U (xl' I) . (x2 . It U (x2· I) . (xl· I)')"

closure (2.72) with R,a,b:= joinF, xl·l, X2'1 ;}
= { atomic adjacency (2.80) again

join F . (id U adj I) . join F .

This equality we have just proved will be referred to as the incrementality
property of join. For later reference, we state it explicitly:

join(FU f) = joinF· (id U adjl)· joinF . (2.98)

35

We will also make use of the following fact:

f:j F (xl· j). (x2· j)' ~ joinF	 (2.99)

which follows from the definition of:j (2.90), atomic adjacency (2.80), uni
versal property of union (2.5), properties of converse and symmetry of join
ability relations.

Now I finally, we proceed to prove the Two Gates rule.

Proof of (2.97):

Take vI , v2, wi and w2 to be the extreme vertices of edges d and e,
i.e. (xl· d), (x2· d), (xl· e) and (x2· e) , respectively.

We then argue thus:

d:jEUe

{ (2.99), extremes of d }

vI . v2' ~ join (E U e)

{ (2.98), atomic adjacency (2.80), extremes of e }

vI· v2' ~ joinE· (id U wI· w2' U w2· wl') . joinE

{ distribution of composition over union}

vI . v2° ~ join E . join E U join E . wI . w2" . join E

U join E . w2 . wl o
• join E

atoms are irreducible; join.ability relations duplicate, }
{ i.e. join E . join E = join E J for being preorders

vI	 . v2° ~ join E V vi· v2° <;; join E . wl . w2° . join E

V vI· v2° <;; join E· w2 . wl°· join E

{ assumption d 1, E cancels first disjunct by (2.99) }

v!·v2° <;; joinE·wl·w2°·joinE

V vl· v2° ~ join E . w2 . wl o
. join E

property (2.31) of points and vectors, twice; }
{ converse, symmetry of joinability relations

(vI ~ joinE'wl 1\ v2 ~ joinE'w2)

V (vI ~ joinE· w2 1\ v2 ~ joinE· wI)

property (2.28) of points, four times; }
{ symmetry of joinability relations again

(wI ~ join E . vI 1\ w2 ~ join E· v2)

V (wI! ~ joinE· vI 1\ wI ~ joinE· v2)

{ as all the ahove, but using assumption e 1, E }

36

e::< Eud

o

2.7 Spanning Trees

Let G be a connected undirected graph. A spanning tree of G 1S a spanning
subgraph of G which is both acyclic and connected. A well-known fact of
graph theory is that a spanning subgraph of a given graph G is a spanning
tree exactly when it is maximally acyclic, and also exactly when it is mini~

mally connected. What it is not well-known is a proof of this proposition in
a calculational style. We will present such a proof in this section.

Many books on graph theory often restrict propositions and algorithms as
applicable only to certain kinds of graphs. Spanning trees and their proper~

ties are an example of this since only connected graphs can have spanning
trees -see remark on connected spanning subgraphs in page 30-. Such re
strictions are usually disregarded by stating that propositions and algorithms
that apply only to, for example, connected graphs can be still applied to a
non-connected graph by treating each connected component of it separately.
However satisfactory such a treatment of restrictions might be, it is often
the case that a good formalism allows the avoidance of such provisos without
burdening the formalisation of the -then unconditional- statements. This
happens when the formal phrasing of a restricted statement and its corre
sponding unrestricted OIle do Hot differ much and arc, thus, equally rnanage~

able. Spanning trees illustrate this phenomenon: the restriction to connected
graphs is unnecessary.

The natural generalisation of spanning trees, aiming at applying the concept
to any graph, is that of connectedness-preserving forests. A forest is an
acyclic graph, and a connectedness-preserving subgraph is one that preserves
connected components. This notion coincides with the original concept when
applied to a connected graph: a connected-preserving forest of a connected
graph G is a spanning tree of G, and vice versa.

Formally, given an undirected graph G, the spanning subgraph induced by
a subset E of edges of G is a connectedness-preserving forest of G if and
only if both acyclic E (2.92) and connpre E (2.89) hold. Hence, we define
the corresponding predicate as follows:

cpl E acyclic E /\ connpre E (2.100)

We will now state and prove the aforementioned property of spanning trees

37

but generalised to deal with connectedness-preserving forests. In proving it,
we will try our best to follow advice from the literature on presentation of
mathematical arguments [8, 14, 60]. At several stages in the proof we will
show that purely syntactic considerations suggest the path to follow.

Proposition 2.101 For an undirected graph G and a subset E ofits edges,
the following three statements are equivalent:

(i) E is a connectedness-preserving forest of G,
(ii) E is a maximal acyclic subgraph of G,

(iii) E is a minimal connectedness-preserving snbgraph of G.

Proof:

First, jet us use (2.100), (2.43) and (2.44) to make a formal note of the three
statements that are to be proved equivalent:

(i) acyclic E f\ connpre E

(II) mxl(acyclic,E) ,

(iii) mnl (connpre, E)

Recall the definitions of subset-closed (2.45) and superset-closed (2.47) pred
icates. Both cyclic and connpre are superset-closed predicates: superset
closedness of cyclic follows from transitivity of inclusion, the fact that inclu
sion implies covering (2.93), transitivity of covering and predicate calculus;
superset-closedness of connpre follows from monotonicity of join and tran
sitivity of inclusion. Therefore, acyclic is a subset-closed predicate, since
it negates cyclic, and connpre is a superset-closed predicate, facts which
allow us to rephrase the second and third statements, on account of (2.46)
and (2.48), as follows:

(ii') acyclic E 1\ (lie: e C;;E: ~acyclic(EUe)

(iii') wnnpre E 1\ (lie: e C;; E : ~ connpre (E - e)

Now, the equivalences (i) == (Ii') and (i) == (iii') can, by propositional cal
culus, be respectively simplified to:

(a) a~yclic E => (connpreE == (lie : eC;;E: ~acyclic(EUe)),

(b) connpre E => (acyclic E == (lie eC;;E: ~connpre(E-e)) .

Hence, a proof of (a) and (b) will do.

Since t.he formulation of cyclic is simpler than that of acyclic, in the sense
that negation does not enter the formulation of the former 1 we can simplify

38

our demonstranda by cancelling negations and uSing De Morgan's laws to:

(a') acye/icE '* (connpreE == ('Ie: e<;E: cyclic(EUe))),

(b') connpreE '* (eye/icE == (3e: e<;E: connpre(E-e)))

Note that, so far, the proof has been guided mostly by syntactic consid
erations. Statements (ii') and (iii') popped up from the educated guess of
analysing whether the predicates involved were subset/superset-closed, thus
getting formulae syntactically closer to (i). This made (a) and (b) emerge,
which were then transformed into (a') and (b') motivated by syntactic sim
plification -the elimination of a few ocurrences of negation- .

It is also \'lorth remarking that we have not strengthened the demonstran
dum: all expressions have been transformed into equivalent ones. So, no
risks have been taken so far.

We now present proofs of (a') and (b'), which will rely on two claims. Both
proofs wHi make use of the covering relation ~, as linking concept between
acyclicity and connectedness. First, for (a'), assume acyclic E and manipu
late thus:

connpreE

{ property of connpre (2.95) }

Edge:' E

{ complementation: Edge = E UE }
Eu E:' E

{ union/:' (2.96), reflexivity of :::' }

E:'E

{ extensionality (2.29), union/:, (2.96) again}

('Ie: e<;E: e:' E)

{ claim, see (c1) below}

('Ie : e <; E : cyclic (E U e)

Second, for (b'), a')sume cormpre E and then:

cyclic E

{ definition of cyclic (2.91) }

(3e : e<;E, e:,E-e)

{ claim, see (c2) below}

(3e: e<;E: connpre(E-e»)

Let us briefly analyse the calculations above. The first step in the proof of

39

(a') arises from the willingness to use the covering relation ::5, as formal link
between connpre and cyclic. The following two steps are motivated by the
need of bringing E into the picture, and the next by the need of getting
a universal quantification as well. At this stage the syntactic shape of the
formula suggest, by predicate calculus, that the following suffices to complete
the proof:

cyclic (EUe) = e j E
(c1) _

{ provided acyclic E and e ~ E

The proof of (b') is much shorter. The definition of cycl.c is unfolded and
the second claim immediately pops up:

(c2) {connpre(E-e) = ejE-e
provided connpre E and e ~ E

It is now only (el) and (c2) that are left to be proved. We start with (c2)
since its proof is simpler:

connpre (E - e)

{ definition of connpre (2.89) -weaker version- }

Join £; join (E - e)

{ assumption connpre E (2.89) }

joinE £; join(E-e)

{ join! j (2.94) }

E j E-e

{ assumption e £; E implies E = (E - e) U e }

(E-e) U e j E-e

{ union! j (2.96), reflexivity of j }

e ~ E - e

Only (e1) to go. We argue:

cyclic (E U e)

{ definition of cyclic (2.91) }

(3d: d£;EUe: dj (EUe)-d)

{ split range, one-point rule}

(3d: d£;E: d j (Eue)-d) V e j (EUe)-e

{ assumption e £; It implies (E U e) - e = E }

(3d:d£;E:dj(Eue)-d) VejE

40

{ see below}

e::o E

The last step of the calculation above is equivalent to:

(3d:d<;;E:d::o(EUe)-d) '* e::OE.

This can be proved by assuming d ~ E for arbitrary d and then showing
that the implication

d ::0 (E U e) - d '* e::o E

holds. This statement can be moulded into a more symmetric shape. The
assumptions on d and e, viz. d ~ E and e ~ E, imply the following equal
ities:

(EUe) - d (E-d)Ue and

E (E-d)Ud

Hence, the last implication above can be rewritten as follows:

(*) d::o(E-d)Ue "" e::O(E-d)Ud.

Now, this looks like a job for the Two Gates rule (2.97) with E:~ E - d,
but we would then need its provisos: d to E - d and e to E - d.

On account of the definitions of cyclic (2.91) and acyclic (2.92), the proviso
on d follows from the assumptions acyclic E, which we had not used yet,
and d C;; E.

The proviso on e does not necessarily hold but, in such a case, the consequent
of implication (*) would hold -and thus so would (*) as well- on account of
E - d C;; (E - d) U d, the fact that inclusion implies covering (2.93), and

transitivity of covering. If the proviso on e happens to hold then Two Gates
does the job

And this concludes our proof!

o

2.8 Paths

A basic concept of graph theory we have not dealt with yet is that of paths in
a graph. It was mentioned before that if the vertices of a directed graph with
successor relation Suee are thought to be railway stations and the edges to be
railway lines, then reachability relation Reach I i.e. Succ· I models possible

41

destination/origin pairs one could travel by train. In such a case, paths model
possible routes one could travel by train rather than just destination/origin
pairs.

An analogous situation occurs in undirected graphs with joinability relation
Join, i.e. Adj*, and their paths. We will fonnalise and deal with all the

corresponding details only for the case of directed graphs.

Let G be a directed graph (Veri, Edge l xl, x2) and let 1..t, v be two elements
of Vert. A path to vertex u from vertex v is an alternating sequence of
vertices and edges [vn,en,vn_l,en_], ... v],ellvO] such that U=Vn , v=vo
and (Vi: n ~ i ~ 1: xl·ei =v1 A x2 'ei =Vi-l)' A path to u from v
exists exactly when u is reachable from v, Le. when 1..t (Reach) v holds.
To be able to formally link the existence of paths to reachability relation
Reach we need to manipulate sequences in our mathematical framework.
Fortunately, there is a well-established theory of datatypes within relational
frameworks like ours which we will now shortly review.

The approach to datatypes we will present is based on the theory of cate
gories and allegories. For a thorough presentation of the relational theory
of datatypes, including the relevant theory of categories and allegories along
with applications in the program derivation area, we recommend book [28]
by Biro and de Moor. Some of the history of this approach to datatypes
can be roughly summarised as follows: In the 1980s, Bird and Meertens
worked on a calculus of functions for program derivation which included a
theory for manipulating lists [21, 22, 1001. At the same time, category the
ory had been gaining interest from the computer science community ---see e.g.
[15, 125]-, in particular from the functional programming advocates. These
two trends met by a proof that the theory of lists of the calculus of Bird and
Meertens was governed by more general categorical concepts [140J. Gibbons
then moved on to generalise the theory of lists to cater for various kinds of
trees [62, 63], supported by a general categorical treatment of datatypes that
had been worked out by Malcolm [97, 98]. Such a categorical treatment was
proved to be extendable to the allegorical, or relational, setting by de Moor
[108,109]. Backhouse and his colleagues at Eindhoven were at the time also
exploring an equivalent relational approach to datatypes, yet not relying
on categorical but on lattice-theoretical grounds [2J. -Also, Malcolm's thesis
[97L though developed within the categorical framework, contains beginnings
of the work of Eindhoven on relations.- In both settings, i.e. de Moor's and
Backhouse's, the level of abstraction obtained is high enough to allow concise
reasoning about programs parameterised by datatype constructors, a feature
that has been named polytypism. So-called polytypic programming has been
receiving a lot of attention in recent years, see e.g. [11,29, 65, 78, 110, 120J.

42

We will only apply the general theory to the datatype of paths in a graph.
Therefore, it is not justified to introduce an the general machinery and we
will limit the presentation of the theory to its application to the datatype of
paths.

The Datatype Path We present the datatype Path and some operations
on it using notation of a Gofer/Haskell-like functional programming language
[23, 81, 144J. Let G be a graph (Vert, Edge, xl, x2). The dat.type Path
of G is declared thus:

Path .. = wrap Vert I cons (Vert, Edge, Path) .

This declares wrap and cons to be the constructor functions of Path, of
type Path t- Vert and Path t- Vert x Edge x Path, respectively. Using
the above definition, the path [V2' e2, VI, el, vo] is represented by the expres
sion cons (V2, e2, cons (Vl' el, wrap va)) .

Functions to retrieve the starting and ending vertex of a path can be defined
by pattern-matching as follows:

start (wrap v) v end (wrap v) v

start (cons (v,e,p)) start p end (cons (v,e,p)) v

The declaration of Path does not guarantee that every value of the datatype
actually corresponds to a path in the given graph G. A predicate to check
when this is the case follows:

isPath (wrap v) = True

isPath (cons (v,e,p)) = (xl e v) 1\ (x2e end p) 1\ isPath p .

Products Products are used in the definition of Path above and, thus,
we need to formalise what they are. Binary products are usually taken as
the basic notion on which ternary products are built. We cut short our way
by formalising ternary products directly. Given sets Xl , X2 and X3, we
can form their product Xl x X2 x X3 , which comes equipped with projec
tion functions outl, out2 and out3. Set-theoretically speaking, these are
defined as follows:

Xl x X2 x X3 {(Xl,X"X3) I Xl E Xl, X, E X2, X3 E X3} ,

outl (Xl> X2, X3) = Xl

Qut2 (Xl> X2, X3) = X2

out3 (Xl, X2,X3) = X3

43

Also, given relations R: Xl t- Yl , 8 : X2 t- Y2 and T : XS t- YS, their
product is a relation of type Xl x X2 x XS t- Yl x Y2 x YS defined as:

Rx 8 x T =

outl 0 • R . outl n Qut2°· S . Qut2 n out:r· T . out3 ,

This means that (XI,X2,X3) (R x 8 x T) (Yl,Y2,Y3) is equivalent to the
conjunction of Xl (R) Yl, X2 (8) Y2 and X3 (T) Y3 .

Among the properties of relational product we have:

oul1 . (R x 8 x T) £; R· outl

0"t2 . (R x 8 x T) £; 8· out2

outS· (R x 8 x T) CT· outS

These can be strengthened to equalities when the relations that appear only
in the left-hand side of the inequation are functions. That is:

0,,11 . (R x I x g) R·outl (2.102)

0"t2· (j x 8 x g) 8·out2 (2.103)

o"tS·(jxgxT) T· outS (2.104)

for functions f and 9 -of the appropriate type in each case-. Also, converse
distribute through product:

(R x 8 x T)" = R" x 8° x TO . (2.105)

Folds Functions start and end and predicate isPath above are defined
by structural recursion, a recursion scheme determined by the definition, i.e.
the structure, of the datatype. One can provide STIch a recursion scheme once
and for all by using higher-order functions. Functions providing this kind of
"canned" structural recursion are known as folds or catamorpbisms [28,101].
The functional fold for the datatype Path is parameterised by two functions
I : X t-- Vert and 9 : X t- Vert x Edge x X , for some set X, giving back

a function of type X t- Path defined as follows:

loldp I 9 (wrap v) Iv ,

foldp I 9 (cons (v,e,p» 9 (v, e,foldp I 9 p)

Using this new tool, functions start and end can be defined more concisely:

start loldp id outS (2.106)

end loldp id outl (2.107)

44

Predicate isPath could be defined in a similar way, i.e. by means of functions
only. However, we will make a better use of it if defined as a coreftexive
relation -recall that coreftexive relations model subsets, which in turn are
in a one-to-one correspondence with unitary predicates- and, thus, we need
to generalise the above definition of fold to cater for relations. A point
free description of the functional fold above gives a clear signal of what the
relational fold might look like:

foldp f 9 . !lIrap f ,
foldp f 9 . cons 9 . (id x id x foldp f g)

These equations suggest that, for relations Rand S of appropriate types,
we define:

fo1dp R S . !lIrap R, (2.108)
foldp R S . oons S . (id x id x foldp R S) (2.109)

Armed with this new tool we proceed to define a coreHexive relation that
corresponds to isPath. In general, we can link an arhitrary predicate p to
coreflexive p? by the following equivalence: x (P?) y == x = y 1\ Px. We
thus define:

i.Path? = foldp !lIrap (cons· ok?) , (2.110)

where predicate ok sees to the consistence of the last edge of the path:

ok{v,e,p) (xl e = v) II (x2e = endp) . (2.111)

Before finally proceeding to establish the formal connection between the exis
tence of paths and the reachability relation, we need one more result regard
ing folds, This key result relates the composition of a fold after the COnverse
of a fold to a least fixed point, Using the "morphism" terminology, such a
construction, i.e. the composition of a catamorphism after the con~rse of a
catamorphism, is called a hylomorphism (101}; under the "fold" terminology,
it is sometimes referred to as a mould -a term somewhat jokingly coined
by Gege de Moor-. For the particular case of the datatype Path, the key
result relating moulds to least fixed points reads as follows:

(Joldp R S) . (Joldp T uy = }
2.112

(I'W: R·T' U S·(idxidxW)·U'). ()

Paths and Reachability Finally, we are ready to prove that two vertices
in a directed graph are linked through a path if and only if they are related

45

by the reach ability relation. That is:

end· isPath? . start° - Reach (2.113)

Proof:

Let us start manipulating the left-hand side since, this side being the most
complex, it provides more opportunities for manipulation. We first notice
that there is a mould we can simplify:

isPath? . start°

{definitions of isPath? (2.110) and start (2.106) }

Uoldp wrap (cons· ok?» . (foldp id out3t

{ moulds (2.112) }

(I' W : wrap U cons· ok? . (id x id x W) . out3°)

by converse (2.16) and products -(2.104), (2.105)-: }
(id x id x W)· out3° = (out3' (id x id x W)')'

= (out3· (id x id x W'»' = (W'· out3)'{
= out3'· W

(I' W: wrap U cons' ok? . out3' . W)

{ closure (2.63) }

(cons· ok? . outSo)'" . wrap.

We record this result for later reference:

isPath?· start° = (cons· ok?· out3°)*'· wrap (2.114)

The left-hand side of our demonstrandum (2.113) has thus been simplified
to:

end· (cons· ok?· outSo)'" . wrap

Now, it is worth trying to use the leap-frog over closure rule (2.65). We
could use it either to make end jump to the right over the closure or to
make wrap jump to the left over the closure. The choice of making end
jump is appealing: given that end is a fold, its composition with cons can
be manipulated using (2.109) in an attempt to get the proviso fDr (2.65);
once eqd has leap-frogged, it will, again for being a fold but by means of
(2.108), cancel with wrap. We proceed:

end· cons· ok? . out:r

{ definition of end (2.107) , fold computation (2.109) }

oull . (id x id x end) . ok?· out3'

{products (2.102), end is a function}

46

outl . ok?· out3°
by definition of ok? (2.111) and projection functions:}

v (outl . ok? . out3') p

'" (3e:: (xl e = v) /\ (x2e = endp»{
'" v (xl . x2' . end) p

xl· x!r· end

{ definition of Succ (2.74) }

Stice· end

The main calculation can then be summarised and completed thus:

end· isPath.? . startQ

= { mould into closure above (2.114) }

end· (cons· ok? . out3°)" . wrap

{ leap-frog over closure (2.6fi), proviso proved above}

Succ· . end· wrap

definition of Reach (2.83) ; I
{ definition of end (2.107) , fold computation (2.108)

Reach

And we are dond

o

However simple this result might seem to bel it nicely demonstrates how
our calculational abilities have grown in the last few years. In the most
comprehensive account of graph theory within the framework of the calculus
of binary relations -book [136] by Schmidt and Str6hlein -! this property is
not proved solely by calculational means. Rather, it is proved by a mixture
of calculations, "verbal formality" and induction [136, pages 106-107J. The
key new ingredient i~ the introduction of recursive datatypes into the realm
of relational calculations.

A similar fact, i.e. similar to our (2.113), which shows that the reflexive
transitive closure operator can be defined as a mould on non-empty lists, can
be found in [27, Section 2.4.11.

47

Chapter 3

Computing Closure

We will now proceed with our first steps into calculating graph algorithms.
The graph problems to be treated in this chapter are specified by means of the
reflexive-transitive closure and transitive closure operators -Section 2.4-.
As mentioned in the introductory Chapter II our developments will combine
conventional techniques for the derivation of imperative programs with using
the calculus of binary relations for the expression and manipulation of graph
concepts and properties.

The problems of this chapter can be posed both for directed and undirected
graphs. We will initially pose the problems for directed graphs and, subse
quently, phrase them in terms of a "given relation" that might correspond
either to the successor relation S'/Jcc of a directed graph or to the adjacency
relation Adj of an undirected graph. However, even when dealing with the
abstract "given relation" we will keep the bias towards directed graphs in the
sense that, e.g., we will say "vertex reachable from vertex" instead of "vertex
reachable from, or joinable with, vertex". All such references to directed
graphs must be understood as applicable to undirected graphs as well.

Section 3.1 deals with the problem of computing the transitive closure of a
given relation, which models the all-pairs reachability problem of graphs. The
algorithmic solution obtained corresponds to a well-known algorithm due to
Stephen Warshall [146). Section 3.2 presents another reachability problem:
the fixed-source reachability problem, which requires the computation of the
set of vertices that can be reached from a given initial set of vertices. Section
3.3 reviews some work related to the contents of this chapter.

49

3.1 All-Pairs Reachability

The All-Pairs Reachabjlity problem for directed graphs can be posed as
follows: given a graph with successor relation Succ: Vert t- Vert, com
pute its proper reachability relation Succ+: Vert t- Vert. The statement
v (Succ+) w holds when one can arrive at v starting from w via one or
more edges, as opposed to v (Suce·) w, which accepts traversing zero edges.
Thus, Succ+ is called the proper reachability relation, as opposed to the
-plain- reachability relation Stice·. Our problem should then be called
the All-Pairs Proper Reachability problem. However, we choose to drop the
prefix Ilproper" and state that all references to "reachability" in this section
must be understood as referring to "proper reachability" .

OUf problem can be abstracted from the specific realm of algorithmic graph
theory and he posed simply as: given a relation R: X t- X compute itsl

transitive closure R+: X t- X. However, our informal remarks will keep
referring to the graph model of the problem.

Specification The formal specification reads:

I[var S:X<---X;
S: [true , S = R+] (3.1)

JI
where R: X t- X is a given relation.

Setting Up an Iteration \Ve will develop an iteration, as algorithmic
solution to (3_1), based on a design dne to Stephen Warshall. In the early
19605, Warshall reported his solution [1461 to the problem of computing tbe
transitive closure of an input binary relation -but the presentation used
boolean matrices instead of relations-. He did so by directly presenting the
algorithm followed by its proof of correctness. We will present Warshall's
conception of a solution, not as a straightforwardly presented algorithm, but
as a design. A design that can nowadays be spelled out using calculi for
formal algorithm development.

Warshall's design is based on the successive computation of constrained
reachability relations, working towards smaller constraints until the desired
unconstrained reachability relation is obtained. Such constraints are deter
mined by sets of vertices allowed to be visited as intermediate vertices while
traversing the graph.

Let us first express such constrained reachability relations in a semi-formal
fashion. Recall the discussion on transitive closure in Section 2.4 and then

50

note that relation R+ can thus be semi-formally described as follows:

R+ R U R·R U R·R·R U (3.2)

We want to restrict the traversing of the graph modelled by R in such
a way that intermediate vertices are drawn from a certain given set. Let
A: VecX be such a set. The restriction of intermediate vertices to A must
be reflected in (3.2) at the places where the composition operator is used.
Recan from Section 2.2 the discussion on the convenience of modelling sets
as vectors versus modelling sets as coreflexive relations. The restriction of
"middle points" in compositions to a certain set is the standard example of
situations where coreflexives are better suited than vectors. Hence l we use
operator ~ to describe the restriction of the proper reachability relation R+
to intermediaries drawn from A thus:

R+ restricted to A

R U R·~·R U R·~·R~·R U

If A includes an the vertices of the graph, i.e. if A = X , then ~-isomorphism

(2.36) gives us ¢A = id and we thus get relation R+ as described in (3.2)
back, as indeed expected.

Let us now abandon semi-formality. For setting up an iteration that re
fines (3.1), we need to propose a reasonable invariant and corresponding
guard. One technique for doing so is that of replacing a constant in the
postcondition by a freshly introduced variable -see e.g. [68, Section 16.3] or
[82, Section 4.2]--. Turning the semi-formal description of the restricted R+
above into a funy formal one will help us apply such a technique. We need
to manipulate expression R+ in such a way that a hidden id, which plays
the role of ~A in the unrestricted R+, is brought to light. We use property
(2.73) of transitive closure plus the fundamental property (2.2) of identity
relations to make id pop up, and then we introduce operator ~ via property
(2.36):

R+ = R'· R (R· idj' . R = (R· PT . R (3.3)

This rephrases the postcondition in such a way that the aforementioned tech
nique for proposing invariants can be successfully applied. Replace constant
X by fresh variable A to postulate the following invariant:

lnv := S = (R· ¢A)' . R

and use A 01 X as guard.

To establish the invariant initially, the informal description of restrictions to
R+ above suggests that restriction to 0 is just R. Formally, we reason in

51

one line thus:

(R·¢0)'·R (R· 0)' . R = 0'· R R.

The first step appeals to property (2.36) of the ¢-isomorphism, the second
corresponds to 0 being a zero of composition (2.14), and the third and last
uses the fact that 0' = id. Hence, statement S, A := R, 0 estahlishes the
invariant and can thus be used as initial statement.

We still need to work out a variant. Since variable A is initially set to
o and must be equal to the whole set X on exit of the iteration, it seems
reasonable to postulate A itself to be the variant expression and to postulate
that progress will be guaranteed by its increase. We introd uce a shorthand
for the boolean expression that states that progress has been made:

Pry	 := (A::> Ao) .

In Morgan's refinement calculus, O-suhscripted variables in the postcondition
of specification statements refer to the values of such variables in the initial
state ofthe computation, as opposed to the values in the final state referred to
by the unsubscripted plain variables [115, Chapter 8]. This feature facilitates
expressing the requirement that an iteration must make progress, needed
without exception when setting iterations up. In fact, that is the only use
we will make of O-subscripted variables.

Note that, in Prg above, we have implicitly assumed that X is a finite set
since this is necessary for relation::> to be well-founded -or, more specifi~

cally, as some authors prefer, left-well-founded-.

A summary of the refinement of (3.1) follows:

S:	 [true, S=R+]

introduce local block and initialised iteration}
[;; { according to discussion above

I[var A: VecX;
S,A := R,0;
do A # X -+ S, A : [A # X II Inv , Inv 1\ Pry I od

JI

Developing the Iteration Body We now need to refine the specification
statement left above as body of the iteration. The postcondition states, in
Prg 1 that progress must be guaranteed hy adding to A elements which are
not members of it. We thus explore the statement A::::: A U x, with x an
element such that x <.;;; A , analysing how variable S must be simultaneously

52

updated in order to preserve the invariant. Note that the guard is equivalent
to A being non-empty and, hence, it guarantees the existence of the required
x.	 Assume that Inv holds and then manipulate thus:

((R· ¢A),.R)[A:=AUxJ

{ substitution}

(R· ¢(Aux))'· R
distribution of ¢ over union (2.38) }

{ and of composition over union (2.14)

(Ho ¢A u R· hl' . R
= { closure over union (2.69) with R, S := R· ¢A, R· ¢x }

((R· ¢A)'·R· ¢x)'· (R ¢Al'· R

= { Inv }

(S· ¢x),·S

{ singleton coreflexives (2.42), closure (2.71) }

(id uS· x . XO) • S

{ distributiou of composition over union (2.14) }

S	 U S·x·xo·S.

This calculation shows that the following statement maintains the invariant
while guaranteeing progress, provided x is not a member of A:

S, A := SuS· x . XO • S, A U x .

Therefore, we have refined the iteration body as follows:

S, A : [A # X II Inv , Inv II Pry 1

introduce local block and sequential composition}r;; { according to discussion above

I[var x:X;

x:~ A;

S, A := SuS· x . XO • S, A u x

JI

This completes the algorithmic refinement of specification (3.1). After a
development like the one we have carried out, assembling the whole code
is not necessary for human understanding of the algorithmic solution. The
documented development, as e.g. the contents of this section, is what we
need for that purpose. -See Morgan '8 remarks on documentation, testing
and debugging in [U5, Chapter 19). We also want to point out that, of
course, assembling the code is nevertheless needed, if only for the need to
submit it to a computer for execution.

53

I[var 5:Xt-X;
I[var A:VecX;

S,A := R ,0;

do A/X --+

I[var x: X;
x:~ ::4;
5, A := 5 U 5· x· xo. 5, A u x

JI
od

]1
JI

Figure 3.4: First Algorithmic Solution of (3.1)

Iu the next subsection, our program will be further refined due to some
efficiency considerations. Such refinement will be more readily visualised
using tb.e collected whole program. For that reason -and maybe also out
of the bad habit of wanting to see the whole program?-, we present the
program in Figure 3.4.

Data Refinement The program we have developed requires computation
of the complement of A in the body of the iteration time and time again.
This can be avoided by introducing a fresh variable B: Vee X and keeping
it updated in such a way that it holds the value of A at every point of the
program. Such an incorporation of new variables can be carried out by means
of data refinement using s(}-called coupling invariants: predicates that relate
new variables to old existing variables -see e.g. [115, Chapter 17] or [116]-.
In our easel variable B is introduced via the following coupling invariant:

CI := B = If .

Having defined Cl 1 the transformation of the program can be conducted in
a fairly mechanical way. We explain it briefly.

Assignments to B are attached to every assignment of the program in such
a way that CI is maintained. Inspecting Figure 3.4 l it can be seen that we
only need to add B:= X to the initialisation statement and B := B - x to
the assignment within the iteration. Having enforced the validity of CI in
this way, the non-deterministic selection statement can be correctly replaced
by x:~ B, thereby eliminating the unwanted repeated evaluation of the
complement of A. Efficiency can also be further improved by replacing the
guard with B -I 0 l again a correct transformation due to the validity of CI

II var S: X +-- X;
II	 var B: VecX;

S,B:= R,X;
do Bi0--t

Ilvarx:X;
x:~ B;
S, B := SuS· x . XO . S, B - x

II
od

]1
11

Figure 3.5: Second Algorithmic Solution of (3.1), after Data Refinement

at every point of the program. We claim this new guard is more efficient
since most implementations of sets perform comparisons to the empty set
more rapidly than comparisons to the universal set. After all these transfor
mations, variable A ends up being useless, in the sense that it is only used
for computing new values of itself. It can thus be eliminated. The resulting
program is shown in Figure 3.5.

-This second program could have been obtained directly had we initially
rephrased the postcondition as S = (R· *0)'· R, instead of as indicated
by (3.3), and replaced constant 0 by a variable. The choice of replacing
constant X seemed more natural at the time. Also, it provided U.'3 with a
good opportunity to show a simple example of data refinement.

The particular kind of data refinement we have carried out is also known
as "finite differencing" (122] Or "formal differentiation" [139}, a program re
finement technique that originated from optimising transformations used in
compilers. This technique is also presented in [68, Section 19.2]' where it is
proposed as a transformatiou that can improve the efficiency of an already
correctly developed program -the use we have made of it-, thereby promot
ing the principle of separating the correctness and efficiency concerns. We
will USe this technique again in subsequent chapters.

Further Refinement and Warshall's Algorithm RELVIEW, brieHy
mentioned in Section 1.2, is a programming system in which imperative pro
grams that manipulate variables of type llrelation" can be directly executed.
Thus, the program in Figure 3.5 can be straightforwardly translated into
an executable RELVIEW program. But its translation into a conventional
imperative programming language would not be as direct, since this would

55

require data-refining relation S and set B to the sort of data structures tra
ditionally provided by such languages. This kind of data refinement would
allow us to obtain Warshall's algorithm as it is commonly known. We will
not get into all the details involved in the transformation of our abstract
program into Warshall's algorithm, but only comment ou the most crucial
aspect of it.

Relation S must be data-refined to a boolean matrix M indexed by elements
of X x X , where M[i, jJ is true if and only if i (S) j holds. In such a case,
the assignment to S in the iteration body becomes a simultaneous assign
ment to all the elements of M. However, it can be proved that all the atomic
assignments involved in such a simultaneous assignment are independent, in
the sense that, should such atomic assignments be arbitrarily serialised, the
whole outcome remains the same. A proof of this fact, developed under a
more general algebraic framework of which our reachability problem is just
a particular instance, Can be found in [12, Section 6.2]. -Reference [12] is
further discussed in the final section of this chapter.- A particular seriali
sation of the assignments to the elements of M corresponds to Warshall's
algorithm, which can be obtained from our abstract program on account of
the crucial aforementioned "independence of atomic assignments" fact.

3.2 Fixed-Source Reachability

The Fixed-Source Reachability problem is phrased, for directed graphs, as
follows: given a graph with successor relation Suec: Vert of- Vert and given
a set of vertices V: Vee Vert, compu te the set of vertices reached from V.
This means computing Reach· V : Vec Vert where Reach, as defined by
(2.83) in Section 2.6, is Succ·.

Again, the problem can be posed only in terms of closure: given a relation
R: X +- X and a set A: VecX , compute R··A : VecX

Specification We formalise the specification thus:

II var B: Vee X ;
B: [true, B = R··AJ (3.6)

II
where R : X t- X and A.: Vec X are given relations.

Playing with Fixed Points To proceed with the algorithmic refinement
of (3.6), we will manipulate a good deal the fixed-point expression of R· . A I

i.e. the expression (i' W : A U R· W) .

56

Let us take relation R as an implicit parameter and define function f as
corresponding to the above expression when applied to argument A:

I C := (JJ- W : CuR· W) . (3.7)

Now, our postcondition reads B = fA.

Some properties of f can now be deduced using the calculus of fixed points
presented in Section 2.3. First, we have:

f0 = (;.tW:R·W) = 0,

which follows from the fact that W:= 0 solves the equation R· W = W
and, since 0 is the least relation: it must then be the least solution of the
equation. Also, we have:

IC
{ definition of I (3.7) }

(I'W:CuR·W)

rolling rule (2.57) with }
= { :F W := C U W, g W := R· W

C U (I'W: R·(CUW))

distribution of composition over union (2.14), }
= { definition of I (3.7)

C U I(R·C) .

Hence, we have proved the following two properties:

10 = 0 , (3.8)

I C = Cui (R· C) . (3.9)

We could then propose as invariant:

Bu/C=IA,

using a freshly introduced program variable C. Such an invariant would be,
first, coupled with guard C ,< 0 because of (3.8), second, established initially
by the statement B , C := 0, A and, third, maintained by the statement
B, C := B U C, R· C because of (3.9).

This is all too nice but, if there are cycles in the graph modelled by R, we
have a non-terminating iteration. Take, e.g., R and A to be, respectively,
{(x, x)} and {x}, in which case variable C will invariantly hold the value
{x} and the guard will always be true. It is not surprising that we ended
up with a non-terminating iteration since no variant was considered at all.
In fact, it is very often useful to take, as first hint for the construction

57

of the body of an iteration l statements that decrease -according to some
well-founded relation- the variant in order to guarantee progress. We have
nevertheless showed this first attempt at a solution to learn from it, as well
as to illustrate the kind of manipulation of fixed points we will use to arrive
at a correct solution.

Above, variable B was meant to increasingly accumulate the elements of
fA. Hence, a reasonable candidate for variant could have been B 1 with

progress guaranteed by its increase. But, above, we had no guarantee that the
elements added to B in each iteration were actually increasing the size of B.
The problem is that function f does not know about elements that l having
already been considered l do not need to be taken into account anymore. Let
us define a function 9 that suitably generalises function f in such a manner:

g(B,C) := (I'W: C U (R·W-B)) . (3.10)

We will refer to the first argument of 9 as the set of lIalready generated"
elements, and to the second argument as the set of "seed" elements of the
R-generative process.

Let us now play the game of analysing interesting properties of function 9
and, in particular, its relation to function f . To start with, an empty set of
already generated elements takes us back to function f:

g(0, C) = f C , (3.11)

since V - 0 = V for any relation V. Now, an empty set of seed elements
gives us the following:

g(B,0) = (I'W: R·W-B) = 0,

where l as before when analysing function f I we have that W:= 0 is a
solution of R· W - B = W and it must then he its least solution. After
considering an empty set of seeds, let us analyse the case when we can take
some of the seeds out of the R-generative process and leave the rest for later
consideration:

9 (B, Cl U C2)

{ definition of 9 (3.10) }

(I' W: Cl U C2 U (R· W - B))

-discharge Cl from the rest of the generative process- }
= union/subtraction: U U V = U U (V - U)

{ with U, V:= Cl, C2 U (R . W - B)

(I'W Cl U «C2 U (R·W-B)) - Cl))

fixed-point rolling rule (2.57) with }
FW := Cl U W,

{ 9W := (C2 U (R·W-B)) - Cl
Cl U (/L W: (C2 U (R· (Cl U W) - B)) - C1)

= { distribution of subtraction over union (2.12) }

Cl U (/LW: (C2-C1) U (R·(CIUW)-B-Cl))
= { subtraction/union (2.13) }

Cl U (/LW: (C2 - C1) U (R· (Cl UW) - (BU Cl)))

= { distribution of composition over union (2.14) }
and of subtraction over union (2.12)

Cl U (/LW: (C2-C1) U (R·Cl-(BUC1))
U (R· W - (B U C1)))

= { definition of 9 (3.10) }

Cl U g(BUCl,(C2-C1) U (RoCl-(BUCl)))

In summary, we have:

g(B,0) = 0, (3.12)

9 (B, Cl U C2) =
Cl U g(BUCl,(C2-Cl) U (R·Cl-(BUCl))) (3.13)

Setting Up an Iteration Having analysed some of the properties of func
tion 9 1 we start the refinement of specification (3.6) to an iteration. From
postcondition B = fA, we now postulate an invariant that uses a fresh pro
gram variable C and that also uses function 9 to control elements already
generated and accumulated in variable B. We take:

Inv:= BUg (B, C) = fA.

From property (3.12) it can be seen that an adequate guard is C l' 0. From
property (3.11) it follows that statement B, C:= 0, A can be used to es
tablish the invariant initially. Since the contents of variable B should grow,
starting from 0, until it keeps the whole set fA, we take as variant expres
sion B with progress guaranteed by its augmentation. As in Section 3.1 1 we
use a shorthand for the proposition that states that the iteration is making
progress:

Prg := (B::J Bo) .

Note that set X has again been assumed to be finite, which means we are
only considering graphs with a finite amount of vertices, This makes ::> in
Prg above to be well-founded.

59

Let us summarise the refinement of statement (3.6) so far:

B:ltrue, B = R"·A!

introduce local block and initialised iteration }
!::: { according to discussion above

II	 varC:VecX;
B,C := 0,A;
do C '" 0 -t B, C : I C '" 0 /I Inv , Inv /I Pry I od

II

Developing the Iteration Body To refine the body of the iteration,
progress must be achieved by adding elements to B which are not in it. In
stead of using the addition of one element to B, we will go for the addition
of a non-empty set of elements to B and we will later refine such a gen
eral statement to more specific ones. Thus, we will consider the statement
B ;= BUD where set D is not empty and does not share elements with B.

Let us name these assumptions: (i) D '" 0 and (ii) B n D = 0. To analyse
the maintenance of the invariant under such an assignment, we assume a
simultaneous assignment to variables B and C will do the work. The ex
pression to be assigned to C will be calculated in the process of proving
maintenance of the invariant. Assume Inv holds and then proceed thus:

Inv IB,C:= B U D,Exp I
{ substitution}

BUD U g(BUD,Exp) = fA

{ Inv }

BuD U g(BUD,Exp) = B U g(B,C)
{= { Leibniz }

D	 U g(BUD,Exp) = g(B,C)

assume (iii) D <;: C; hence, C = D U C , }
in:eraction of function 9 with union (3.13)

{ with B, Cl, C2 := B, D, C

D U g(BUD,Exp) =
D U g(BUD, (C-D) U (R·D-(BUD))

{= { Leibniz }

Exp = (C - D) U (R· D - (B U D» .

In the process of calculating the body of the iteration, three assumptions
were imposed on D, viz. (i), (ii) and (iii). Assumption (ii) follows from
assumption (iii) since it can be shown that B n C = 0 is an additional
invariant of the obtained iteration -proof omitted-.

60

Il var B: VeeX;
II var C:VecX;

B,G := 0,A;
do C#0--+

II var D:VeeX;
D:IC#0, D#0 II DC;C];
B,C:= BUD, (C-D) U (R·D-(BUD))

]1
od

JI
JI

Figure 3.14: General Algorithmic Solution of (3.6)

Summarising, the body of the iteration has been refined as foHows:

B, C : IC # 0 II Inv , Inv II Pry]

introduce local block and sequential composition}
~ { according to discussion above

If var D:VeeX;
D:[C#0, D#0 II DC;C];

E,C:= BUD, (C-D) U (R·D-(BUD))

JI

We collect the whole code in Figure 3.14. This general algorithmic solution
can be further refined by choosing specific ways of drawing set D from set
C. We will soon proceed to do so.

Other Alternatives Similar algorithms can be obtained from slightly dif
ferent generalisations of function f. The reader is invited to reproduce the
above development using the following function h instead of g:

h(B,C) = (I'W: (C U R·W)-B))

Refinement to Singleton-Selection Version One way of further re
fining the general algorithmic solution is by choosing D to be a singleton
set, Le. a point. An elementary data refinement can be carried out using
coupling inva.riant x = D to replace variable D with a variable x of type
X. Requirement x =10 is then guaranteed to hold by the type of x since
points are non-empty. The specification statement in the iteration body of

61

II var B: VeeX;
II var G:VeeX;

B,G := 0,A;
doG,e0--+

II	 var x:X;

x:~ c;

B,G:= BUx, (C-x) U (R·x- (BUx))

JI
od

1\
11

Figure 3.15: Singleton-Selection Solution of (3.6)

the general solution then becomes the non-deterministic selection statement
x :~ C. The result is presented in Figure 3.15.

Note that the only use the program makes of the successor relation R of the
graph is through the expression R· x 1 which denotes the set of successor
vertices of vertex x. This suggests the use of an adjacency-lists -or successor
lists- representation for the graph.

The only thing still left to do in order to implement our algorithm in a
conventional programming language is to data-refine the sets to some rep
resentation. Lists can be used for this purpose, assuming all the sets are
finite. In such a case, the order in which vertices are kept in variables Band
C can determine whether the graph is traversed in a depth-first fashion, a

breadth-first fashion, or some other kind.

Refinement to Whole-Selection Version Another possible refinement
of the general solution is obtained by choosing set D to be the whole of set
C , i.e. by refining the specification statement affecting D to D:= C. In

this case variable D can be rendered useless by using C where D is used.
D can thus be eliminated. The solution obtained in this case is shown in
Figure 3.16; it corresponds to traversing the graph in a layered breadth-first
fashion.

3.3 Related Work

The closure problems presented in this chapter have been extensively treated
by others before. Our treatment has been included mainly as a warming

62

l[varB:VecX;
I(var C: VecX;

B,C:= 0,A;

do C",0 -> B,C:= BUC,R·C-(BUC) ad

II
]1

Figure 3.16: Whole-Selection Solution of (3.6)

up exercise that familiarises the reader with our style of development. We
dedicate this section to review previous presentations by other authors.

The all-pairs reachability problem is treated in [12, 16, 54, 136]. Backhonse et
ai. [12] make use of a calculational framework based on regular algebra within
which graphs are modelled by -adjacency- matrices. The more general
setting of regular algebra allows them to treat all-pairs reachability as an
instance of a general problem that also covers the computation of minimum
paths between all pairs of vertices in a weighted graph. Moreover, our whole
derivation is nearly a step-by-step instance of the more general derivation
they present. The key properties of the closure operator of regular algebra
they exploit were first used by Backhouse and Carre in a much broader
study of path-finding problems [1OJ. In fact, the essence of the derivation
of Backhouse et al. in [12) is the same as that of Backhouse and Carre in
[10], except for the use made in the former of more modern calcUlational
techniques for constructing imperative programs. Regarding other authors,
Berghammer's construction [16] of \iVarshall's algorithm is very similar to
ours, and so is the presentation of Feijs and van Ommering (54] except for
the fact that they do not restrict progress of the iteration to singletons. The
treatment of Feijs and van Ommering of all-pairs reachability is then, in
that respect, similar to our treatment of fixed·source reachability! where a
general algorithmic solution is first arrived at and then further refined to
more specific solutions. Finally, in [136, Section 3.2]' Schmidt and Str6hlein
present a correctness proof of Warshall's algorithm using the calculational
framework of binary relations, but their presentation does not make explicit
use of standard techniques for the development of imperative programs.

The fixed-source reachability problem is treated in [12, 16, 105,133]. As
it was the case for all-pairs reachability, Backhouse et al. [12] treat, within
their setting of regular algebra, fixed-source reachability as an instance of a
more general problem that also covers the computation of minimum paths
between a single source vertex and all other vertices of a weighted graph. We
will achieve the same level of generality and a little more in the next chapter,

63

where we deal with a generic problem of computing so-called representatives,
of which fixed-source reachability is an instance. Backhouse et at obtain
both depth-first and breadth-first traversal algorithms that correspond to
our singleton-selection solution, but no layered breadth-first traversal like
our whole-selection solution since they restrict their derivation to selection
of singletons. Berghammer [16], on the other hand, uses the framework of
binary relations but restricts the algorithmic solution to a layered breadth
first traversal. Moller [105J and Russling [133J also derive only a layered
breadth-first traversal algorithm, but within a calculational framework of
n-ary relations. Russling's treatment is more general since it covers a "class
of layer-oriented graph algorithms ll that includes the fixed-source reachability
problem and the fixed-source shortest paths problem, both of which will be
accounted for in our general treatment of computing representatives in the
next chapter.

Out of the realm of imperative programming, Bird and de Moor derive in
[28, Section 6.7J a functional-style algorithm for computing closure that cor
responds to fixed-source reachability. Our use of fixed points is based on
their treatment of closure. Also, building on the fold-unfold categorical ap
proach to datatypes within functional programming -which we briefly met
in Section 2.8, see e.g. [98, 1011-, Gibbons and Jones present in [66, 80]
calculational derivations of functional algorithms that compute breadth-first
traversals of trees. Such traversals could be adaptable to cater for graphs
under a representation of graphs as infinite trees, an idea functional pro
gramming researchers seem to like to play with -see e.g. [53, Section 2.2.2]
and [102, Section 4.4J-.

Chapter 4

Computing Representatives

The contents of this chapter deal with a general problem of computing sets of
representative elements selected from among a given set of candidates. Our
interest in the problem of computing representatives sterns from the fact
that a few graph problems can be specified as instances of it. This chapter
presents a development of general algorithmic solutions to the problem of
computing representatives, and the instantiation of such general solutions to
specific graph algorithms. The results contained in this chapter were partially
reported in [30].

Selection of representative elements is aided by two relations Q and R on
the set of candidates. The first, Q, is an equivalence relation that partitions
the set of candidates in equivalence classes. We will be interested'in choosing
one representative element from each of such classes. The second relation,
R l is a preorder that determines which candidates can represent their class.
A representative element must be a maximum under R of its class. The
set of candidates is specified in terms of a third relation S. The whole set
of candidates is generated with the reflexive-transitive closure of S from a
given initial set of candidates.

Section 4.1 presents a formalisation of the notion of representatives, as well
as a formal specification of the general computational problem we wiJ) be
dealing with. Section 4.2 prepares the ground for the refinement of our
problem to an algorithm by exploring some properties of the formal notions
involved, viz. the selection of representatives and the generation of candi
dates by closure. Section 4.3 then presents the actnal derivation of a general
algorithmic solution and, mimicking the obtention of the two final solutions
to the fixed-source reachability problem in pages 61-62 of Section 3.2, this
general solution is further refined in Section 4.4 to a singleton-selection ver
sion and a whole-selection version. We then dedicate ourselves to the ap
plication of the obtained algorithmic solutions to graph problems. Section

65

4.5 treats the problem of computing minimum paths in a weighted graph;
the well-known algorithm due to Dijkstra [43] is obtained as an instance
of the singleton-selection solution. Section 4.6 treats the problem of com
puting shortest paths in an unweighted graph; unlike the analogue problem
of weighted paths, both the singleton-selection and the whole-selection solu
tions are applicable in this case. Section 4.7 deals again with the fixed-source
reachability problem, showing that the treatment of this problem presented
in Section 3.2 can be obtained as an instance of our treatment of the rep
resentatives problem. Section 4.8 closes the chapter by reviewing related
work.

4.1 Specification

This section presents a formalisation of the notion of representatives, and a
specification of the problem of computing representatives drawn from a set
of candidates generated by closure.

As mentioned earlier, selection of representatives is defined in terms of an
equivalence relation Q and a preorder R, both of type X {- X with X
the type of candidates. Let Band C be sets of elements of X represented
by vectors -B, C : Vee X -. We say that B is a Set of representatives for set
C if the following holds:

Be.; C II C e.; (QnR)·B II B·WnQ c.;; id. (4.1)

In words, the first conjunct says that all representatives, i.e. all the elements
in B, are drawn from C. The second conjunct says that every element in
C is represented by some element in B, with representation of an element
c by an element b meaning that they are equivalent under Q and that
c is at most b under R. Finally, the third conjunct says that the set

of representatives must have at most one element per Q-equivalence class.
Combining all, set B contains exactly one element per Q-class of C and
such elements are R-maxima of their respective classes.

Henceforth we will use B :'! C to stand for the first two conjuncts of (4.1);
it may be read as "B is a tbinning of C". Both Q and Rare preorders
and, since intersection preserves preorders, so is Q n R. This implies that
~ is reflexive and transitive as well. We also introduce predicate uniq 1

defined such that uniqB stands for the third conjunct of (4.1); we call it
the uniqueness predicate.

The set of candidates from which representatives are to be drawn must also
be specified. We take it to be generated by repeated iteration of a relation
S : X +- X from a given initial set A: Vee X. In other words, the set of

66

candidates is the existential image of A under S· , just like the set that had
to be computed in Section 3.2.

Specification Finally, we formalise the problem of computing representa
tives of a set generated by closure. The specification reads thus:

II var B ,VeeX;
B, [true , uniq B II B:':l S' . A] (4.2)

]1

where Q, R, S : X f- X -noting that Q and R are implicitly used in uniq
and ~ - and A : Vec X are given relations.

4.2 Exploring Some Properties

Construction of an algorithm that solves our problem requires manipulation
of the formal notions involved. In this section we explore the properties of
such notions and then proceed with the actual derivation of an algorithm in
the next section.

The Uniqueness Predicate First, let us recall that uniq was defined as
follows'

uniq B B·B'nQr:;;id. (4.3)

Thus, a set satisfies uniq if and only if it contains at most one element per
Q-equivalence class. Among the sets that can be guaranteed to satisfy uniq
are included the empty set and singleton sets, the latter being represented
by points, i.e. functions:

uniq 0 (4.4)
uniq B provided B is a function . (4.5)

The empty relation and all functions are simple relations, i.e. if W is either
o or a function then W· W' r:;; id. Both (4.4) and (4.5) follow from this
fact.

Knowing that uniq holds for small sets, one could explore under what con
ditions bigger sets satisfying the uniqueness property can be built. Let us
analyse the case of the union of two sets:

uniq (B U C)

{ definition of uniq (4.3) }

(B U C) . (8 U Cj' n Q r:;; id

67

distribution of converse, composition}
{ and intersection over union

(B· SO n Q) u (B C' n Q)
u(C·SOnQ)u(C·conQ)';; id
{ universal property of union (2.3) }

(B·SOnQ,;; id) II (B·C'nQ ~ id)
II (C·SOnQ,;; id) II (C·C'nQ ~ id)

definition of uniq (4.3), twice; second and third }
conjullcts are equivalent by properties of converse

{ -(2.16), (2.17), (2.18)- and by symmetry of Q
uniqB II umqC II (B·C' n Q ,;; id) .

Thus, we have derived the rule:

uniq (B u C) uniq B II uniq C II (B· CO n Q ~ id). (4.6)

In words, union preserves uniqueness if the Q-classes present in both sets
are represented by the same element.

The Thinning Relation Thinning, denoted by ~ was defined as:I

B ~ C := B ~ C II C ,;; (Q n R) . B (4.7)

As was done for the uniqueness predicate, we analyse interaction of the thin
ning relation with union. Specifically, we analyse monotonicity of union with
respect to ~. We proceed thus:

DuB ~ DuC
{ defioition of ~ (4.7) }

DuB ~ DuC II DUC';; (QnR)·(DuB)
{ distribution of composition over union (2.14) }

DuB ~ DuC II DuC ~ (QnR)·D u (QnR)·B

monotonicity of union with respect to }
~ { inclusion, relation Q n R is reflexive

B ~ C II C ~ (Q n R)· B

{ definition of ~ (4.7) }

B~C

Hence, union is indeed monotonic with respect to thinning:

DUB ~ DuC ~ B ~ C (4.8)

68

Property (4.8) is all too nice, but we can do better than that. To explain
what we mean by "better", let us do a little operational reading of (4.8):
to take a thinning of D u C , it suffices to thin C while leaving D intact.
Now, if we are to leave D intact, one would want to be able to thin C
ignoring those Q-classes in C which are present in D. In other words, if
B :9 G - Q . D, under what condItions DUB :9 DuG does hold? Let
us explore this:

DUB:9 DuG
{ repeat of the first two steps of the proof of (4.8) ahove }

DUB c:: DuG II DuG c:: (QnR)·D u (QnR)B
{ universal property of union (2.5), twice}

D c::; DuG II B c:: DuG

II Dc:: (QnR)·D u (QnR)·B

II G c:: (Q n R) . D u (Q n R) . B

{ union, Qn R refle~ive: first and third conjunct hold}

B c::; DuG II G c:: (QnR)·D u (QnR)·B
-expression C - Q . D needs to be included- }
complementation: W ~ (W n V) u (W - V)

{ with W, V:~ G, Q . D

B c:: D u (G n Q·D) u (G-Q·D,)
f\ (G n Q·D) u (G-Q·D) c:: (QnR)·D u (QnR)·B

first conjunct: union; for the second conjunct}
{=o { we claim: G n Q . D c:: (Q n R) . D .

B c:: G-Q·D II G-Q·D c:: (QnR)·B

{ definition of :9 (4.7) }

B :9 G-Q·D

And we can obtain a proviso on C, D from the claim:

C n Q·D

c:: { Dedekind's rule (2.20) }

(C·Do n Q)·D

c:: { assume G· DO c:: R }

(QnR)·D.

Hence, the following rule holds:

DuB :9 DuG {=o B:9 G - Q. D provided G· DO c:: R. (4.9)

69

Generalising Closure The properties of the closure operator we will use
in relation to the representatives problem require a suitable generalisation
of closure. This generalisation closely resembles the one used for the fixed
source reachability problem in Section 3.2 -see page 58-. As in that section,
if function f is defined as follows:

f C := (J' W : C US· W) (4.10)

it then holds that fA = S·· A . In Section 3.2, function f was generalised
to take into account that some elements, having already been considered,
did not need to be generated anymore. For the representatives problem, the
generalisation of f we will make use of takes into account, not that some
elements have already been considered, but that representative elements for
some Q-equivalence classes have already been obtained. We will see that,
under some conditions, the S-generative process does not need to consider
those classes at all anymore. We will now proceed to define and analyse
function g, the generalisation of f; we will, however, abandon the use of f,
preferring the expression S·· C to f C .

Function 9 can be seen as modelling a pruning of the generative process:

g(B,C) -= (J'W: C U (S·W-Q·B)) . (4.11)

As before, we call the second argument of 9 the set of "seed" elements of
the generative process, whilst the first argument corresponds to the set of
"already generated representatives". As before, we record some interesting
properties of g. First:

g(0,C) S· ·C (4.12)

g(B,0) o . (4.13)

Their proofs are as in Section 3.2. Rule (4.12) has a weaker form when
generalised to any set of already generated representatives:

g(B,C) C;; S··C. (4.14)

It follows from property V - U ~ V of subtraction and monotonicity of the
least fixed-point operator J' (2.56). To complement rule (4.13), which deals
with the case of an empty set of seeds, let us seek a rule that deals with the
union of two sets of seeds. Unlike the analogue rule that was used in Section
3.2, no seeds are taken out of the generative process. This will be accounted
for in the key Thinning the Closure rule presented in the next snbsection.
We manipulate thus:

g(B, Cl U C2)

= {definition of 9 (4.11) }

70

(I' W : Cl U C2 U (5· W - Q. B))

fixed-point rolling rule (2.57) with }
= :FW:= Cl U w,

{ 9 W := C2 U (5· W - Q . B)

Cl U (I' W: C2 U (5· (Cl U W) - Q . B))

distribution of composition over union (2.14) }
= { and of subtraction over union (2.12)

Cl U (I' W: C2 U (5· Cl - Q . B) U (5· W - Q . B) I
= { definition of 9 (4.11) }

Cl U 9 (B, C2 U (5 Cl - Q. B)) .

In summary:

9 (B, Cl U C2) = Cl U 9 (B, C2 U (5· Cl - Q. B)). (4.15)

Thinning the Closure A crucial property of function 9 in connection
to the thinning relation :SJ is presented in this subsection. \Ve call it the
Thinning the Closure rule. The validity of this rule relies on the parameters
Q, R and S of the representatives problem satisfying the following two

requirements:

5<;;R, (4.16)

5'(QnR) <;; (QnR)·5 . (4.17)

The first requirement says that the generating relation S gives rise to candi
dates that are no greater under R. Therefore, representative elements, being
R·maxima of their classes, are likely to be produced sooner rather than later.
The second requirement states that relation S is monotonic on the thinning
mediator Q n R. This is better explained using points. Suppose there are
elements x and y such that x (Q n R) y , i.e. they are members ofthe same
class and x is at most as good as y. This means that y can represent x.
Now suppose that an element x' is generated from x, Le. X' (5) x holds.
Then there must be an element y' such that both x' (Q n R) y' and y' (5) Y
hold. This means that y can generate elements that represent every element
generated from x. Therefore, x can be safely disposed of in the presence
of y. These two requirements allow the 5-generative process to be pruned
accordingly.

The Thinning the Closure rule reads:

g(BUD,C-QD) :9 g(B,C)-Q·D }
provided C· D' <;; R , (4.18)

5·D-Q·B <;; C.

71

An informal explanation follows. Suppose that, out of the generative process
with set C as seeds and set B as already selected representatives, we have
chosen a set D that includes some more representatives. We thus want to
ignore tne classes represented in D from now on; this corresponds to the
expression on the right-hand side of the :9-equation. Under some conditions
this can be done by eliminating every class represented in D from the seeds
and induding D among the already chosen representatives; this corresponds
to the left-hand side of the :9-equation. Note that the set on the left-hand
side is considerably smaller than the set on the right-hand side. The provisos
for this thinning to be valid are (a) that any element in D is no smaller under
R than any element in C, and (b) that the immediate successors under S
of elements in D, with the exception of those in classes represented in B,
are already included among the seeds. Requirements (4.16) and (4.17) on
relations Q, Rand S imply that the elements that are being eliminated
from the generative process, either for being in a Q-class of D or for being
generated from elements in a Q-class of D, will be represented either by
elements in D or by elements generated from the immediate S-successors of
D that are included in C.

The proof of this rule is somewhat long and tedious. It is presented in
Appendix A.!.

4.3 Developing an Iteration

We now proceed with the actual derivation of an algorithm that computes
representatives. The specification statement of (4.2) will be refined to an
iteration.

Setting Up the Iteration For the refinement of (4.2) to an iteration, we
take the conjunct uniq B from the postcondition as part of the invariant.
Properties (4.4) and (4.6) suggest that B is initialised to 0 and then re
peatedly augmented. To deal with the rest of the postcondition, we will use
function 9 to repeatedly cut down the set of candidates according to the
classes already represented in B. All told, we propose the following invari
ant, which requires the introduction of a new program variable C for the
record of the changing set of seeds:

Invl - uniqB ,

Inv!! - BUg(B,C):9 S··A,

Inv - Invl /\ Inv!!

72

Assignment B, C := 0, A establishes the invariant due to (4.4), (4.12) and
refleJdvity of :9. Property (4.13) suggests G i 0 as guard. The iteration
will progressively accumulate representatives in variable B. Assuming there
is a finite number of Q-equivalence classes, a reasonable choice for variant
expression is B, with progress guaranteed by its increase. As customary by
now 1 we introduce a shorthand for this:

Prg := (B:::J Bo) .

Note that, in this case, we do not assume that X is a finite set. In fact,
in some of the instances of the representatives problem we will treat in later
sections X will indeed be an infinite set. The guarantee that the increase
of B is bounded comes from assuming that the number of Q-equi.....alence
classes is finite and from lnvl I which guarantees that B holds at most one
member per Q-class.

What we have discussed so far corresponds to the following refinement of the
specification statement of (4.2):

B: [true , uniq B /\ B:9 S' . A I
introduce local block and initialised iteration}

!;; { according to the discussion above

\[var G: VecX;
B,G:=0,A;
do G i 0 -+ B, G : (G i 0 /\ Inv, Inv /\ PrgJ od

II

Developing the Iteration Body We now go for the body of the itera
tion. In order to guarantee progress, variable B should be augmented with
elements of new Q-equivalence classes, Le. classes not yet represented in it.
This is achieved hy assignment B:= BUD provided the following holds:
(i)	 D i 0 and (ii) B· DO n Q = 0. Assuming tbat variable C will also

require updating, we explore maintenance of the invariant by the statement
B,G:= BU D,Exp.

For the first half of the invariant, we reason thus:

Inv! [B,G:= BU D, Exp]

{ substitution}

uniq (B U D)

{ preservation of uniqueness under union (4.6) }

uniq B /\ uniq D /\ (B· DO n Q ~ id)

{ Inv! , assumption (ii) above implies the third coojunct }

73

uniqD .

Hence, we also need (iii) uniq D. Maintenance of the second half of the
invariant will provide us with the right value to assign to C. We reason as
follows:

""

Inv2 [B,C:= BUD, Exp I
{ substitution}

BuD u 9 (B u D, Exp)

{ Inv2, transitivity of :oJ

BuDug(BUD,Exp)

:oJ

}

:oJ

S·· A

Bug(B,C)

{ monotonicity of union with respect to thinning (4.8} } ""
D u g(BUD,Exp) :oJ g(B,C)

assume (iv) D ~ C; hence, C = D u C, }
{ interaction of function 9 with union (4.15)

DUg (B u D, Exp) :oJ DUg (B, C u (S· D - Q. B))

refined monotonicity of union with respect to }
¢" { thinning (4.9) -assume proviso of the rule

g(BUD,Exp) :oJ g(B,CU (S·D-Q·B)) - Q·D

¢"
Thinning the Closure rule (4.18) -assume}

{ its two provisos-, transitivity of ~

g(BUD,Exp) :oJ g(BUD, (C U (S·D-Q·B))-Q·D)

¢" { reflexivity of :oJ }

Exp = (C U (S·D-Q·B))-Q·D .

Two sets of provisos were assumed in the fifth and sixth steps, which will
impose one more restriction on D. \Ve start with the provisos of (4.18),
assumed in the sixth step. The second of them,

S· D - Q . B ~ C U (S· D - Q . B) ,

holds without further restrictions while the first,

(C U (S· D - Q. B)) . DO ~ R, (4.19)

does impose one more requirement on D .""We manipulate thus:

(C U (S· D - Q. B)) . DO

~ { subtraction}

(CUS·D)·Do

~ {R reflexive, requirement (4.16) }

(R· CuR· D) . DO

74

•••

{ distribution of composition over union (2.14) }

R·(C U D)·Do

= { assumption (iv) above}
R.C. DO

,:; {assume (v) C· DO':; R; R transitive}

R.

We have only one proviso left to check, the one of (4.9):

g(B, C U (S·D-Q·B))· DO ,:; R.

It follows from (4.19), which we show as follows:

g(B, C U (S·D-Q·B)). DO

,:; { from function 9 to closure (4.14) }

S·· (C U (S· D Q. B)) . DO

,:; { (4.19) proved above}

S·· R

c {
since R is a preorder l requirement (4.16) and univeISal }
property of closure (2.62) imply that S' ,:; R holds

R·R
,:; { R transitive}

R.

In summary, we have collected five requirements (i)-(v) on D to make state
ment B, C:= BUD I maintain the invariant and guarantee progress:

(i) D i' 0 , (ii) B· DO n Q = 0 (iii) uniq D ,
(iv) Dc;;, C , (v) C·D°':;R.

Requirement (ii) is implied by (iv) due to a third invariant of the developed
iteration: B· Co n Q = 0 , i.e. Band C do not share equivalence classes.
The proof that this is indeed an invariant of the developed iteration is pre
sented in Appendix A.2. All told, we have refined the body of the iteration
a.<; follows:

B, C : [C ,. 0 /I Inu , Inu /I Pry]

introduce local block and sequential composition}
i;; { according to discussion above

75

I[var B: Vee X ;
II var C:VecX;

B,C:= 0,A;
doC?,0-+

II var D:VecX;

D: I C ?' 0, (i) A (iii) A (iv) A (v)] ;

B,C := BUD, (C U (S·D-Q·B)) -Q·D

JI
od

]1
]1

Figure 4.20: General Algorithmic Solution of (4.2)

I[var D:VecX;
D: I c?, 0, (i) A (iii) A (iv) A (v)];
B,C := BUD, (C U (S·D-Q·B))-Q· D

]1

The whole code, our general algorithmic solution to the representatives prob
lem, is collected in Figure 4.20. In the following section, the specification
statement left in the body of the iteration will be further refined, thus ob
taining more specific solutions.

Feasibility Before moving on to the next section, note that the specifica
tion statement yet to be refined might not be feasible: there might be no
values for D that comply with the postcondition, even if Q and R satisfy
the requirements imposed on them so far and C satisfies the precondition.
However, we will see that, in the process of refining the general solution
to more specific ones) some additional requirements will be imposed on the
parameters of our problem, which will make the developed programs feasible.

4.4 Further Refinement

This section continues the development of algorithmic solutions to the repre
sentatives problem. As in the treatment of the fixed-source reachability prob
lem in Section 3.2, we will construct singleton·selection and whole-selection
algorithms by refining the specification statement left jn Figure 4.20.

76

I[Va< B, VeeX;
I[var C: VeeX;

B,C := 0,A;

do Ci0 -t

II x: X;Va<

x :<; max (R, C) ;
B,C:= BUx, (C U (S·x-Q·B))-Q·x

11
od

II
II

Figure 4.22: Singleton-Selection Solution of (4.2)

Refinement to Singleton-Selection Version Set D 1 to be drawn from
C according to condition (iv), can be chosen to be a singleton set. A single

ton set would then trivially satisfy (i), and would also satisfy (iii) on account
of singletons being functions and property (4.5) of uniq. Therefore, only
conditions (iv) and (v) would be required of such a singleton.

This refinement can be formalised by introducing a fresh variable x of type
X to replace D, i.e. by applying data refinement with coupling invariant
x = D. The specification statement in Figure 4.20 wonld then become:

x:	 I C i' 0 , x <; C A C· x' <; R] . (4.21)

This corresponds to choosing x to be an R-maximum element of C. To
guarantee the existence of such a maximum, which amounts to guaranteeing
that statement (4.21) is feasible, it suffices to require that R is a connected
preorder and to make sure that C is always finite. Finiteness of C as an
invariant of the iteration can easily be shown to follow from two further
requirements: that A is finite, and that S is finitary, i.e. that S· x is finite
for every element x.

Under the new requirements, and using definition (2.59), statement (4.21) is
equivalent to:

x :<; max (R, C) .

The resulting algorithm is presented in Figure 4.22.

Refinement to Whole-Selection Version Choosing set D to be a sin
gleton is the extreme where D is chosen to be as small as possibJe. At

77

the other extreme, there is the option of choosing D to be as big as possi
ble. First thing that comes to mind is taking D to be the whole of set C.
This would not necessarily work though, since C might have more than one
element from some Q-equivalence class and D is required to satisfy uniq.

The biggest that D could be is the result of choosing one element per Q
class present in C. If such elements are chosen arbitrarily, D would be
a thinning with R:= II of C that also satisfies uniq; i.e. D would be a
subset of C with exactly one element per Q-equivalence class not preferring
any element to any other in each of the classes.

We thus explore conditions under which the following refinement is valid:

D:	 [C 10 0 , (i) II (iii) II (iv) II (v)] } (
4.23

)
[;; D: [C 10 0 , uniq D II D <;; C II C <;; Q . D] .

The postcondition of the last specification statement requires D to satisfy
uniq and to be such that D ~ C with R:= II. Refinement (4.23), as a

strengthening of the postcondition, follows from:

C 10 0 II uniq D II D <;; C	 II C <;; Q . D } (4.24)
=? (i) II (iii) II (iv) /\ (v) ,

which we now proceed to prove. Conditions (iii) and (iv), viz. uniq D and
D ~ C, follow trivially from the antecedent. It remains to show that (i) and

(v), viz. DIo0 and C·D' <;; R, also do so.

Let us start with (i) D 10 0. Assume the antecedent of (4.24) and then, using
conjuncts C <;; Q. D and C 10 0 , we have that:

D = 0 =? C <;; 0 '" false .

Hence, (i) indeed holds.

Showing (v) C· DO ~ R will impose additional requirements on the param
eters R, S and A of our problem. Using conjunct D ~ C of the antecedent
of (4.24), we have that (v) follows from:

C·C' <;; R.	 (4.25)

This amounts to saying that all the elements of C have the same R-cost.
We call this condition, i.e. (4.25), the R-homogeneityof C. We claim that,
under certain conditions we will derive shortly, R-homogeneity of C is an
invariant of the iteration of our general solution in Figure 4.20. Therefore,
(v) holds. Let us now explore such a claim.

It must be the case that A is R-homogeneous for C to be R-homogeneous

78

initially, i.e. for condition (4.25) to be established by the initialisation state
ment B, C := ... , A. Hence, we require:

A-A' <;: R.	 (4.26)

if it is assumed that C is R-homogeneous at the beginning of the iteration
body, it still holds after the first statement since such statement does not
affect C. It remains to show that the second, and last, statement of the it
eration body preserves R-homogeneityof C, Assuming that the antecedent
of (4.24) holds, and that so does (4.25), we argue thus:

(4.25)	 [B,C:= ... , (CU (S·D-Q·B))-QDJ

sub~titution; distribute subtraction over union (2.12) }
{ takmg W; V := C - Q . D , S· D - Q . B - Q. D

(W U V) . (W U V)' <;: R

hypothesis C <;: Q. D in (4.24) implies that W = 0; }
<= { by subtraction we have V ~ S· D , converse (2.16)

S·D·D'·S' <;: R

<= { hypothesis D <:; C in (4.24), and (4.25) }

S·R·S'<:;R

Hence, R-homogeneity of C is maintained by the iteration body provided
we impose the following as a new requirement on Rand S:

S·R·S' <:; R.	 (4.27)

In words, this new requirement ensures that, if C is R-homogeneous -Le, all
the elements of C have the same R-cost-, then the set of all S-descendants
of the whole of C is also R-homogeneous -i.e, all such descendants also
share a, possibly different, R-cost-.

We	 have thus proved implication (4.24) and} therefore, the validity of re
finement (4.23), under new requirements (4.26) and (4.27). The assignment
statement in the iteration body, which follows the specification statement,
can also be refined. The expression used to assign a new value to C can be
simplified using the new postcondition of the specification statement:

(C	 U (S·D-Q·B))-Q·D
{ distribution of subtraction over union (2.12) }

(C -Q·D) U (S·D-Q·B-Q·D)
{ since C <:; Q. D we have C - Q . D = 0 }

S·D-Q·B-Q·D

79

subtraction/union (2.13) and }
{ distribution of composition over union (2.14)

S· D - Q. (B U D) .

Summarising, the iteration body of the general solution in Figure 4.20 has
been refined to:

II var D: VecX;
D: I C # 0 , uniq D 1\ D r:; C 1\ C r:; Q . D J
B, C := BUD, S . D - Q . (B U D)

II
provided the input set A is R-homogeneous (4.26) and the generator S
preserves R-homogeneity (4.27).

Now note the interesting fact that our last specification statement above can
be refined, by weakening the precondition, to:

D: [true , uniq D 1\ D r:; C 1\ C r:; Q . D I , (4.28)

which is an instance of the very initial specification of the representatives
problem (4.2) using Q,R,S,A,B := Q,II,0,C,D. We choose to refine
(4.28) using the singleton-selection solution of Figure 4.22; for this, note
that requirements (4.16) and (4.17) hold if S = 0.

We thus obtain our final whole-selection version as shown in Figure 4.29,
where the local singleton-selection program of Figure 4.22 has been inserted
after renaming some of the local variables and simplifying some of the ex
pressions involving Rand S, now nand 0. Specifically, local variable
C has been renamed as E, expression max (II, E) -see (2.59)- has been

simplified to E, and expression E U (0· x - Q . D) has been simplified to
E.

4.5 Fixed-Source Minimum Paths

This section shows that the fixed-source minimum paths problem is an in
stance of the representatives problem, and that it satisfies the required con
ditions for the singleton-selection algorithmic solution to apply.

In the fixed-source minimum paths problem, we are provided with a directed
graph (Vert, Edge, xl, x2) and a function weight: R t- Edge that assigns a
weight, or cost, to each edge. We are also given a set V: Vee Vert called the
source. For every vertex w reachable from V, we are required to compute a
path of minimum cost among all the paths to w that start from a vertex in

80

II

I[var B: Vee X ;
I[var G: VeeX;

B,G := 0,A;
doG#0--+

I[var D: VeeX;
If var E:VeeX;

D,E:= 0,G;
do E#0 --+

l[varx:X;
x :<; E;
D,E:= DUx,E-Q·x

II
od

II;
B,G:= BUD, S·D - Q·(BUD)

II
od

JI

Figure 4.29: Whole-Selection Solution of (4.2)

81

V. We formalise the problem making use of the datatype Path and related
functions defined in Section 2.8.

Assume we have the set of all the paths that start in vertices of the source set
V. Partitioning such a set according to the ending vertices of the paths and

drawing one of minimum cost from each class provides the required output.
This corresponds to the instantiation:

X := Path,

and to choosing representatives using the following relations:

pi (Q) p2 e.nd pl = end p2 l (4.30)

pi (R) p2 - cost pl 2: cost p2 (4.31)l

where end is, as in Section 2.8, a function that returns the ending vertex
of a path and cost is a function that returns the sum of the weights of the
edges of a path. For completeness, we spell out the definition of cost:

cost (wrap v) o ,
(4.32) }cost (cons (v,e,p)) weight e + cost p .

Note that a maximum under R is a path of minimum cost. We still need
to instantiate parameters S and A of the general representatives problem.
The set of paths that start in elements of V is isPath?· start" . V which,
according to property (2.114), equals (cons· ok?· out3")' . wrap' V . This
suggests instantiating:

S := cons· ok? . out3°

A '= wrap' V

Using pointwise statements, these instantiations correspond to:

pi (5) p2 (3 v, e : ok (v, e,p2) : pl = cons (v, e, p2)) , (4.33)

p (A) * (3 v : v (V) * : p = wrap v) . (4.34)

Armed with these relations Q, Rand S , we now need to check that require
ments (4.16) and (4.17) hold. This will allow us to use the singleton-selection
solution of the representatives problem presented in Figure 4.22.

We analyse (4.16) thus:

pl (5) p2

{ definition of 5 (4.33))

(3v,e: ok(v,e,p2) : pl = cons (v,e,p2))

82

{ definition of cost (4.32) } '*
(3 e :: cost pi = weight e + cost p2)

{ a...o;sume weights are non-negative}'*
cost pi 2: cost p2

{ definition of R (4.31) }

pi (R)p2 .

Hence, (4.16) holds provided weights are non-negative.

Now for (4.17):

pi' (8) pi 1\ pi (Q n R) p2

{ definitions of Q (4.30), R (4.31) and 8 (4.33) }

(3v,e: ok(v,e,p1): pl'=cons(v,e,p1))

/\ end pi = end p2 1\ cost p1 2 cost p2

second conjunct and definition of ok (2.111) imply lhat }
{ ok (v, e, pi) == ok (v, e, p2), take p2' := cons (v, e, p2)'*

(3v,e: ok{v,e,p1) 1\ ok (v,e,p2) :

pl'=cons(v,e,pl) 1\ p2'=cons(v,e,p2))

A cost pi ~ cost p2

{ definitions of end (2.107) and cost (4.32) } '*
(3v,e: ok (v,e,p2) : p2' = cons (v,e,p2))

/\ end pi' = end p2' 1\ cost pi' 2: cost p2/

{ definitions of Q (4.30), R (4.31) and S (4.33) }

pl'(QnR)p2' 1\ p2'(8)p2.

We have thus proved that this instance of the representatives problem has
as solution the singleton-selection algorithm of Figure 4.22. The result is
Dijkstra's algorithm for the computation of minimum paths [431. Note that
the requirements used to guarantee that the singleton-selection algorithm is
feasible, viz. that R is connected, A is finite and S is finitary, also hold.
The last two ODes do so on account of the assumption that we are only dealing
with graphs whose vertex set and edge set are both finite.

The whole-selection algorithm cannot be used since requirement (4.27) does
not hold.

83

4.6 Fixed-Source Shortest Paths

A simpler version of the fixed-source minimum paths problem is obtained by
uniformly assigning a weight of one to each edge. This means we only care
for the length, i.e. the number of edges, of the paths and we thus speak of
shortest paths rather than minimum paths.

As a particular case of the minimum paths problem, the shortest paths
problem is also an instance of the representatives problem. Requirements
(4.16) and (4.17) hold, as proved in the previous section, and, therefore, the
singleton·selection algorithm can be used to compute shortest paths. Re
quirements (4.26) and (4.27) also hold in this case, as we prove below, which
makes the whole-selection algorithm of Figure 4.29 also applicable for the
computation of shortest paths.

We prove (4.26) thus:

pl (A). 11 • (AO) p2

{ definition of A (4.34), converse}

(3 v : v (V). : pl = wrap v)

11 (3 v : v (V). : p2 = wrap v)

~ { definition of CDSt (4.32) }

cDstpl = 0 11 cDstp2 = 0

~ { definition of R (4.31) }

pl (R) p2 .

For (4.27), we argue as follows:

pl' (S) pl 11 pl (R) p2 11 p2 (SO) p2'

{ definitions of R (4.31) and S (4.33), converse}

cost pl 2 CDSt p2

11 (3v,e: Dk(v,e,pl): pl'= CDns (v,e,p1))

11 (3v,e: Dk(v,e,p2): p2'=cDns(v,e,p2»)

cost of the paths is just their length }
~ { -i.e. weight e = 1 for any edge e-

cost pi 2: cost p2

A cost pi' = cost pi + 1 A cost p2' = cost p2 + 1

~ { arithmetic}

cost pi' 2: cost p2/

{ definition of R (4.31) }

pl' (R) p2'

84

Note that edges are not significant for this problem. The existence of parallel
edges, for instance, is completely irrelevant. This was not the case for the
minimum paths problem, since a pair of parallel edges might have had differ
ent weights and thus determine paths of different costs in spite of "walking"
over the same vertices. Given that edges are not significant for the computa
tion of shortest paths, this problem could have been posed in terms of simple
graphs -see page 28 of Section 2.5- with edges not entering the picture at
all. This would have involved redefining the datatype Path and all its re
Lated functions and we thus chose not to do so. Such a redefinition can be
found in [127, Section 3.2J

4.7 Fixed-Source Reachability

The fixed-source reachability problem, as stated in Section 3.2, is that of
computing the set of vertices that can be reached in a given graph from a
given source set of vertices. Formally, the aim of the problem is the compu
tation of Succ"· V : Vec Vert where Suce: Veri f- Veri is the SllCCessor
relation of the graph and V: Vec Vert is the given source.

We nOw show that the fixed-source reachability problem is an instance of
the problem of computing representatives (4.2). First of all r let us make the
straightforward decision to take X, S, A := Veri, Succ, V. The instantia
tions of S and A give us a set of candidates S·· A that corresponds to the
whole Set we aim to compute, Le. the whole set of vertices reachable from
V . We then need to instantiate Q and R accordingly. Since every vertex

is relevant on its own, no pair of different elements should be set to be equiv
alent, which leads to choosing Q:= id. Such a selection for the equivalence
relation Q makes the uniqueness predicate (4.3) be the constant predicate
that always return true. Also, it makes the thinning relation (4.7) be the
equality relation) irrespective of what preorder R is chosen to be:

B~C

{ definition of ~ (4.7) with Q := id }

B <;; C 1\ C <;; (idnR). B

{ R is reflexive: id <;; R; hence, id n R = id }

B<;;CI\C<;;B
{ inclusion/equality of relations}

B = C.

Hence, the instance X,Q,S,A := Vert) id, Succ, V of the representatives
problem (4.2) corresponds to the fixed-source reachability problem (3.6)
-applying substitution X, R, A := Vert, Succ, V since in Section 3.2 relation

85

R : X f- X was used as the successor relation of the graph and A: Vec X
as the wurce vertex set-.

As pro"ed in the calculation above, taking Q:= id renders preorder R
useless as far as the specification of the problem is concerned. However,
for using the algorithmic solutions we derived before, we need requirements
(4.16) and (4.17) to hold. Also, R must be connected to guarantee that
the singleton-selection solution of Figure 4.22 is feasible. Finally, we also
need additional requirements (4.26) and (4.27) to hold if we want to use
the whole-selection solution of Figure 4.29. Choosing R:= n makes all the
aforementioned conditions valid and, therefore, both the singleton- and the
whole-selection algorithms can be used.

It can be proved that the three algorithmic solutions, i.e. the general one
in Section 4.3 and the two more specific ones in Section 4.4, for this in
stance X, Q, R, S, A := Vert, id, II, Succ, V correspond to the three algorith
mic solutions in Section 3.2 for the fixed-source reachability problem -with
X, R, A := Vert, Succ, V -. However, some formal manipulation is needed
to obtain the exact correspondence. General solution of Figure 4.20 only
requires simplification of (iii) and (v) to true and distribution of subtraction
over union to be transformed into Figure 3.14. Singleton-selection solution of
Figure 4.22 is similarly transformed into Figure 3.15, simplifying max (II, C)
to C. Simplification of the whole-selection solution of Figure 4.29 to obtain
3.16 is somewhat more laborious: the block that declares variable E can
be proved equivalent to assignment D:= C , which then allows discarding
variable D by making direct use of C instead.

4.8 Related Work

The class of graph problems we have treated as instances of the representa
tives problem has been tackled by others using different calculational frame
works. We commented on the work of Backhouse et al. [12], Moller [105J and
Russling [1331 before in Section 3.3.

Backhouse et aL [12) cover our singleton-selection algorithm for the mini
mum/shortest paths problem aud the reachability problem. They weight
the edges with elements of an arbitrary regular algebra, thereby achieving
a higher level of generality. However, we believe our instantiation to real
numbers in Section 4.5 and Section 4.6 can be also proved correct using the
carrier set of a regular algebra. They fail to provide our whole-selection algo
rithm since they restrict their treatment to singleton sets: "The algorithm we
develop is based on an iterative process in which at each iteration Theorem
7.1 is UBed to 'process' one node" [12, page 13] -our emphasis-. However,

86

we believe their "Key Theorem 7.1" can be generalised to cater for arbitrary
sets. Moller first treated the reachahility problem in [105], then with Rus
sling the shortest paths problem in [107] and l later, Russling presented a
"class of layer-oriented graph algorithmsll (133] where he treats both prob
lems in a uniform way -see also [33J-. Their solutions correspond to Our
whole-selection algorithm. They do not deal with the minimum patm prob
lem. Clenaghan has shown that Backhouse et al. 's and Moller and Russling's
approach to this class of graph algorithmic problems can be formally unified
using dynamic algebra [34]; it would be interesting to see how our approach
relates to this work.

A related reference is [50L where van den Eijnde treats, in a calculational
style similar to ours though using non-conventional control structures. a class
of graph problems that includes a so-called ascending reachability problem.

87

Chapter 5

Computing Maximal Sets

In this chapter we deal with the general problem of computing maximal sets
satisfying a certain given predicate. As with the problem of computing rep
resentatives in Chapter 4, our interest in the problem of computing maximal
sets comes from the existence of some instances of it that correspond to graph
problems. The contents of this chapter were first partially reported in {!28]
and later fully reported in [1291·

Section 5.1 presents a formal specification of the general problem of comput
ing maximal sets satisfying a certain predicate P, as weB as some properties
that will be required of P for the development of algorithmic solutions. Sec
tion 5.2 then presents the derivation of an algorithmic solution of the general
problem, and such a solution is further refined in Section 5.3. The properties
of P on which the derivation is based rely on the existence of some auxil
iary predicates and functions that form part of the final algorithm. When
calculating graph instances of the general problem in the rest of the chapter,
the calculus of relations is used to prove such assumed properties of P and
to calculate the auxiliary components for each instance. Section 5.4 presents
the instance of computing maximal independent sets of vertices and Section
5.5 presents the instance of computing maximal sets of edges without cycles,
which corresponds to computing connectedness-preserving forests. As usual,
we close the chapter by reviewing related work in Section 5.6.

5.1 Specification

This section presents a formal specification of the general problem of comput
ing maximal sets satisfying a given predicate P, and the conditions required
of P for the refinement of such a specification to a program.

Let X be some universe, i.e. a set, and let P be a predicate on subsets of

89

it. A subset of X, maximal among the subsets of X for which predicate
P holds, is to be computed. Using the formalisation (2.43) of maximal sets
presented in page 17 of Section 2.2 l the aim is to compute a set A that
satisfies mxl (P, A) .

Specification Our problem is specified as follows:

II var A: Vee X ;
A: [true, mxl (P, A)] (5.1)

]1

Requirements Some properties will be required of predicate P to refine
(5.1) to a program. First, P is assumed to be subset-closed. As stated in
(2.45), and repeated here for convenience, this means:

Al ~ A2 =} (P A2 =} P A1) , (5.2)

where Al and A2 are dummies ranging over subsets of X . Since the empty
set is a subset of every set, a subset-closed predicate that does not hold on
the empty set must be the trivial everywhere-faLse predicate, in which case
our computational problem would have no solution. Our second asumption
does away with such a possibility by stating that P must hold on the empty
set:

P0 . (5.3)

Finall)', it is assumed that P is incremental with respect to a second predi
cate Q in the following sense:

P{AUa) '" PA II Q(A,a) provided a s:;; A (5.4)

where A and a range, respectively, over subsets of X and elements of
X. Provided P is subset-closed, incrementality is no restriction since such

a Q always exists: take Q (A, a) to be P (A U a). However, we are not
interested in arbitrary Q satisfying (5.4) since the efficiency of the program
will depend on such a selection.

Non-trivial subset-closedness, i.e. (5.2) and (5.3), is related to the notion of
matroids used in combinatorial optimisation. Matroids are defined as families
of sets over a certain given universe -or, equivalently, predicates on such
sets, as our P - that satisfy some properties l non· trivial subset-closedness
among them. Matroids are used to develop greedy algorithms -see e.g. [36,
Chapler 17] or [92, Chapter 7]-, very much in the same way that we will use
non-trivial subset-c1osedness of P to refine (5.1) to a program. Hence, the
formal development we present in this chapter can be seen as a derivational

90

presentation of a generic matroid-based greedy algorithm. A full matroid
would also guarantee that all maximal sets are of maximum size, but we do
not need this and} in fact, the instance of independent sets of vertices we will
present in Section 5.4 does not fit the full matroid model.

5.2 Developing an Iteration

We now proceed to derive a program that refines (5.1). The development is
carried out in two stages. First, in this section, the specification is algorith
mically refined to an iteration. Second, guided by some efficiency considera
tions, we will proceed in the next section to transform the state space of the
program by data refinement.

Setting Up the Iteration Heading towards an iteration, we want to pro
pose a reasonable invariant and a corresponding guard from the given post
condition. One technique to do so, which we have already used in previous
chapters, is that of replacing a constant in the postcondition by a fresh
variable. Rewriting our postcondition according to property (2.46) of mxl,
which depends on predicate P being subset-closed, will help us to apply
such a technique. We manipulate the postcondition of (5.1) thus:

mxl (P, A)

{ property of mxl (2.46), P is subset-closed (5.2) }

PA /\ (Va:a<;:A:,P(AUa))

contrapositive -this simplifies the expression since it }
{ eliminates the use of complementation and negation-

P A /\ (Va: P (A U a) : a <;: A) .

\Vith the above rephrasing of the postcondition, introducing a fresh yariable
B to replace the third ocurrence of A gives an invariant with B;;j:. A as
the corresponding guard. Let us introduce the following shorthands for the
invariants:

Inv

Invl

Inv2

-

.

PA,

(Va: P(AUa)

Invl /\ Inv2

a<;:B) ,

We now need to work out a variant. For that, we first remark that the
invariant implies A ~ B , since for any element x we have:

x <;: A AUx=A "" P(AUx) "" x<;:B

91

The two implications are justified by Invl and Inv2, respectively. ThereR

fore r provided the invariant holds, the negation of the guard, B = A , is
equivalent to B ~ A and it thus satisfies:

B= A B-A=0	 (5.5)

It then seems reasonable to choose B - A as variant, with progress guaran~

teed by its decrease. We introduce, as customary by now, a shorthand for
progress:

Prg := (B-A C Bo-Ao) .

Set	 X is assumed to be finite to guarantee well-foundedness.

We will have completed the global structure of the iteration after working
out a way to establish the invariant initially. Recall that P was assumed
to hold on the empty set (5.3); hence, an assignment of the empty set to
A will do for Invl. Assigning the whole universe X to B will make the

consequent of Inv2 equivalent to true and, hence, will make Inv2 hold.

The statement of (5.1) is then formally refined thus:

A:	 [true, mxl(P, A) 1
introduce local block and initialised iteration}

[;; { according to discussion above

II	 var B: Vee X ;
A,B := 0,X;
do B ¥ A --> A, B : [B t A fI Inv , Inv /\ Prg I od

JI

Developing the Iteration Body We now proceed to refine the iteration
body. The variant must be decreased by suhtracting elements from B - A .
This can be done by taking an element x in B - A and either subtracting
it from B or adding it to A. It is therefore promising to explore the effect of
assignments A:= A U x and B:= B - x on the invariant. Thus, assume
the invariant holds and also assume that x ~ B - A --recall (5.5), which
makes the existence of such an x feasible if the guard holds-.

Let	 us first study augmentation of A:

Inv! [A := A U x]

{ substitution}

P (A U x)

92

Pis Q-incremental (5.4), _}

{ assumption on x implies x s;: A

PA A Q(A,x)

{ Invl }

Q(A,x) ,

and

Inv2 [A := A U x]

{ substitution}

(Va: P(Auxua): a ~ B)
¢= { union, P is subset-closed (5.2), predicate calculus}

(Va: P(Aua) : a ~ B)
{ Inv2 }

true .

Now the same analysis for the diminishing of B; the first part of the invariant
Invl is Dot affected, and

Inv2 [B := B - x I

{ sub6titution }

(Va: P(AUa): a~B-x)

{ subtraction 1 atoms}

(Va: P(AUa): a~B /\ a,<x)

{ distribution of universal quantification over conjunction}

(Va: P(AUa): a~B) /\ (Va: P(AUa): aix)

{ Inv2; contrapositive }

(Va: a=x: .P(Aua)

{ one-point rule}

,P(AUx)

Pis Q-incremental (5.4), }

{ assumption on x implies x ~ A

,PA V ,Q(A,x)

{ Invl }

.Q(A,x) .

Nicely symmetricl According to whether Q (A) x) bolds, the invariant is
maintained by one assignment or the other. This suggests the use of an
alternation. Accordingly, we refine the statement of the iteration body as

93

II	 var A:VecX;
II	 var B:VecX;

A,B := 0,X;

do B", A -->

II	 var x:X;
x :~ B- A;
if Q(A,x)-->A:=AUx
~ ~Q(A,x) --> B:= B-x
Ii

JI
od

II
JI
Figure 5.6: First Algorithmic Solution of (5.1)

follows:

A, B : I B '" A II Inv , Inv II Prg)

introduce local block and alternation}
[;; { according to discussion above

II	 var x: X;

X :<; B - A;

if Q(A,x) --> A:= A u x

~ ~Q(A,x) --> B:= B-x

Ii

JI

This completes the algorithmic refinement. Figure 5.6 shows the collected
code.

5.3 Further Refinement

Some efficiency considerations lead us to further develop the program of
Figure 5.6 in this section. Two new variables will be incorporated by means
of data refinement.

More Requirements At this stage we will need further assumptions on
predicate Q. These assumptions will seem to come out of the blne) but
we remark that they arose from analysing instances of the general program.

In the same way, the given restrictions on P -non-trivial subset-c1osedness
and incrementality- were abstracted from an initial attempt to carry out
the above general development for an instance rather than for the general
problem. Thus, these added constraints on Q must be taken in the same
spirit in which initial constraints on P were taken.

It is assumed that predicate Q can be expressed in terms of another predicate
Q' and a function f. Additionally, f is assumed to be incremental with

respect to an operator ffi. Formally:

Q (A, a) - Q'(J A,a) (5.7)

f (A u a) =fAffia. (5.8)

Function f takes a set in Vee X to an element of a new type Y. Hence,
Q' is a predicate on Y x X and operator ffi takes a pair in Y x X to an

element in Y. Function application is assumed to bind more tightly than
operator ffi, so that fA ffi a above must be read as (J A) ffi a .

Data Refinem.ent Let us now motivate the two Dew variables by analysing
the program of Figure 5.6. We will then define a suitable coupling invariant
for their introduction.

First, reevaluation of B - A on every iteration seems expensive. This can
be avoided by introducing a fresh program variable C to hold its value. Such
a variable wiIl also make the guard become less costly. Thus, the first half of
our coupling invariant is:

CII C=B-A

Second, due to (5.7), one can safely assume that the cost of evaluating Q is
shared by the cost of Q' and the cost of f . This prompts us to introduce a
program variable y to hold the value of fA, which reduces evaluation of Q
in the alternation to that of Q' snlely. Updates of y will be made by means
of €a, thanks to incrementality of f (5.8), Hence, the second conjunct of
the coupling invariant is:

CI2 := y = fA

Armed with coupling invariant CI1 1\ C12, we now give an overview of
how to conduct the transformation of the program. Assignments to e,y
are attached to every assignment of the program in such a way that the
coupling invariant is maintained. Both branches of the alternation induce
the same assignment on C, viz. C:= C - x, which can then be moved
out of the alternation. By (5.5), the guard can become C 10. The non

95

I[var A:VecX;
I[var C:VecX; y:Y;

A,C,y := 0,X,j0;

do C oF 0 --+

I[varx:X;
x :~ C; C := C - x ;
if Q'(y,x) --+ A,y:= AUx, yEf>x
o ~Q'(y,x) --+ skip
Ii

II
od

JI

II

Figure 5.9: Second Algorithmic Solution of (5.1), after Data Refinement

deterministic assignment to variable x becomes just x:~ C . The main role
of y is its use in the guards of the alternation. All the above transformations
render variable B useless, and it is thus eliminated.

The data-refined solution is shown in Figure 5.9.

5.4 Maximal Independent Vertex Sets

In this section and the next, we will instantiate the general algorithmic so
lution of Figure 5.9 to graph problems. The properties imposed on P must
be shown to hold for the specific predicate in each case. Following the cal
culational spirit of algorithmics we aim to promote, components Q, Q',j, EB
for each instance will be calcula,ted instead of given a priori.

This section deals with the problem of computing maximal independent ver
tex sets of undirected graphs. Two vertices of an undirected graph are
said to be independent if they are not adjacent. An independent set of
vertices is one in which any two elements are independent. Formally, for
graph (Veri, Edge, xl, x2) with adjacency relation Adj : Yeri +- Veri, and
set V: Vee Vert we define:I

indep V y.yo nAdj <; 0.	 (5.10)

It is easy to show that the empty set is independent. The same goes for
showing that a singleton set v is independent if there are no loops -as defined
in page 27 of Section 2.5- incident on the vertex v. Thus, small independent

96

sets are easy to find. A more interesting problem is that of finding maximal
independent sets, which corresponds to the instance X, P:= Vert, indep of
(5.1).

Checking the Requirements First, it must be shown that indep is non~

trivially subset-closed. Property (5.2) follows from the monotonicity prop
erties of all the operators involved --converse, composition and intersection
with respect to inclusion. The empty relation 0 is a zero of both composition
and intersection; hence, (5.3) also holds.

We check the incrernentality property, whilst also calculating an adequate
instance for the auxiliary predicate Q, thus:

indep (Vuv)

{ definition of indep (5.10) }

(V u v) . (V u vt n Adj \:: 0

distribution of converse, composition}

{ and intersection over union

(V . V' n Adj) U (V· v' n Adj)

u	 (v·V' n Adj) u (v·v' n Adj) \:: 0
{ universal property of union (2.3) }

(V . V' n Adj \:: 0) II (V· v' n Adj \:: 0)
/\	 (v· V' n Adj \:: 0) II (v· v' n Adj \:: 0)

definition of indep (5.10); second and third }
conjuncts are equivalent by properties of converse

{ -(2.16), (2.17), (2.18)- and by symmetry of Adj

indep V II (v· V' n Adj <;; 0) II (v· v' n Adj \:: 0)

This provides us with a predicate Q that fulfills requirement (5.4) for the
instance P:= indep, viz. the One given by the last two conjuncts above.
To search for Q' and f as required by (5.7) the middle conjunct is further
manipulated; such manipulation applies to the last conjunct as well:

v' Y' n Adj \:: 0

{ complementation shunting (2.9) }

v. yo \:: Adj

{ Schroder's left-exchange rule (2.21) }

Adj. V <;; v
{ complementation}

v	 <;; Adj, V .

97

Thus, to comply with (5.7) we take:

fV .- Adj· V (and, therefore, f0 Vert) ,

Q'(W, v) vC;W 1\ v <l Adj· v .

Operator EB can also be derived, given the above definition of f 1 to make
(5.8) hold. Using distributivity of composition over union and De Morgan's
rule we obtain:

W Ell v := W - Adj· v .

Note that the form of Q' and EB suggest the use of adjacency lists to rep
resent the graph. The resulting program could be further improved but we
will not go into such detail.

5.5 Connectedness-Preserving Forests

This section treats the problem of computing maximal acyclic edge sets in an
undirected graph, which corresponds to computing connectedness-preserving
forests, as an instance of our general problem. Again, we calculate comp(}
nents Q, Q',f, EEl instead of first giving them and then proving them correct
according to the requirements imposed on P.

Let G be an undirected graph. Recall from Section 2.7 that connectedness
presenting forests generalise spanning trees and that, as stated by Proposi
tion 2.101, a spanning subgraph of G is a connectedness-preserving forest
if and only if it is a maximal acyclic subgraph. Since spanning subgraphs
are uniquely determined by their sets of edges, we can formally state that a
subset E of the edge set of G is a connectedness-preserving forest of G if
and only if mxl (acyclic, E) holds. Predicate acyclIc was defined by (2.92)
in terms of predicate cyclic (2.91) in page 33 of Section 2.6. For convenience,
we repeat such definitions here:

acyclic E =: ..., cyclic E (5.11)1

cyclic E '" ('3 e : e C; E : e :' E - e) . (5.12)

As it was the case for independent sets of vertices in the previous section,
small acyclic sets of edges are easily found. The empty set is acyclic. A
singleton e is acyclic unless it is a loop. Finding a maximal acyclic edge set
is a more challenging problem which, computationally, corresponds to the
instance X,P:= Edge, acyclic of specification (5.1).

98

Checking the Requirements \Ve now proceed to verify that the algo
rithmic solution presented in Figure 5.9 applies to this instance by verifying
that predicate acyclic adequately meets the requirements. We will capitalise
on facts used in Section 2.6 and in the proof of Proposition 2.101, in pages
38-41 of Section 2.7.

Subset-closedness of acyclic was shown and used in page 38. That does
away with (5.2). Definitions of acyclic (5.11) and cyclic (5.12) and the
empty range rule of predicate calculus imply (5.3). To show incrementality
of acyclic 1 we will make use of fact (cl) in page 40. Assume e ~ E and
then manipulate thus;

acyclic (E u e)
{ acyclic is subset-closed (5.2), E <;; E U e }

acyclic E /\ acyclic (E u e)

(cl), the proviso ~ given by the first conjunct and}
{ assumption e ~ E, acyclic negates cyclic (5.11)

acyclic E /\ e f, E

Therefore l taking Q (E, e) := e t. E makes the incrementality requirement
(5.4) hold for P:= acyclic. Unfolding the definitiou of ~ (2.90) expands
Q (E, e) as adj e Sf: join E and, then, the following definitions suggest
themselves to make property (5.7) hoM:

f - join (and, therefore, f 0 = id) ,

Q'(Pt,e) adj e Sf: PI .

For defining operator aJ in such a way that (5.8) holds, we borrow fact (2.98)
from Section 2.6 where it was used to prove the Two Gates rule;

Join (E u eJ = join E . (id U adj e) . join E

Hence, we define:

PI aJ e := PI· (id U adje)' PI.

Variable y of the general program in Figure 5.9 gets to hold an equivalence
relation in this instance. A common way of implementing equivalence rela
tions is through the partitions that correspond to their quotient sets. The
well-known Union-Find problem of manipulating partitions has been thor
oughly studied and efficient implementations are available -see [36, Chap
ter 221 for a review-. Its operations can be expressed, using the related
equivalence relations instead of the partitions themselves, as follows'

Same (PI, a, b) := a·b" <;; PI

99

Union (Pt, a, b) Pi . (id U a' b' U b· a') . Pt

where operation Same is built on, and corresponds to the use given to,
Find. Due to atomic adjacency (2.80), components QI and EEl calculated
above can be defined in terms of, respectively, Same and Union using the
extreme vertices (xl· e) and (x2· e) of edge e as parameters.

5.6 Related Work

First, ",oe remark again on the relationship of the general development pre
sented in this chapter to the field of combinatorial optimisation, as com
mented on at the end of Section 5.1. Our algorithmic solutions in Figure
5.6 and Figure 5.9 are general matroid-based greedy algorithms which we
have formally develop using a calculational style, a style of presentation not
commonly found in the optimisation or algorithmics litera.ture -see e.g. [36,
Chapter 171 or [92, Chapter 71-. The contents of this thesis are only slightly
connected to the broad area of optimisation algorithms. Specifically, only the
maximisation aspect of the problem of computing representatives in Chap
ter 4, the relationship to matroids and greedy algorithms of this chapter,
and the treatment of the problem of computing minimum spanning trees
in Chapter 6 witness such a connection. Bird, Curtis and de Moor have
treated optimisation algorithms in a derivational style, using the calculus
of binary relations and the categorical approach to datatypes, extensively
[24, 25,26,28,37, 38, 39, 111J.

Russling treats the problem of computing maximal independent vertex sets
in [131]. Unlike our computation of one of such sets, Rnssling deals with the
computation of the family of all maximal independent sets of a given graph.
At the end of the development, he remarks that "for practical use the algo
rithm should be implemented by standard backtracking techniques". Such
an implementation could be realised using a logic programming language like
Prolog [35]. Regarding this possibility, there is an interesting remark in [114,
Section 8] about guarded commands, backtracking and Prolog, which could
be elaborated upon to formally link our development to an implementation
that can prodnce all maximal independent sets or that can backtrack over
the production of one maximal independent set until it fulfills some other
required condition. This is a nice thought in relation to C.A.R. Hoare's
promoted ideal of unifying different theories and paradigms of programming
[74, 76].

Berghammer treats the problem of computing spanning trees in [16], for a
connected input graph. In relation to our generalisation of spanning trees as
connectedness-preserving forests, the connectedness restriction of the jnput

100

graph is in Our opinion unnecessary, as no greater manipulability is gained in
general by such an assumption -see our remarks on this kind of restrictions in
page 37-. Berghammer further restricts the graph, not only to be connected,
but also to have a non-empty set of edges. Both decisions seem to be guided
by the willingness to obtain a particular kind of algorithmic solution, viz.
one akin to Prim's algorithm for the compu tat ion of minimum spanning trees
[126], which was originally designed to cater only for connected graphs with
non-empty vertex sets. Our solution is, on the other hand, akin to Kruskal's
algorithm for the computation of minimum spanning trees [90]. \Ve tackle
both such minimisation algorithms, for unrestricted input graphs, in Chapter
6. A final difference between [16] and our treatment is that Berghammer
presents the problem in terms of simple graphs -under the terminology used
in this document; see page 28 of Section 2.5-, thus not dealing with edges
as separate entities in the graph, while we take edges to be the relevant
component of graphs in the definition of spanning trees.

101

Chapter 6

Computing (more than)
Minimum Spanning Trees

We have already looked at spanning trees of undirected graphs and their
formalisation within the calculus of relations -Section 2.7-. If a weight, or
cost, is assigned to each edge of an undirected graph, then every spanning tree
of it also gets a cost: the sum of the weights of all the edges it comprises. An
interesting problem with many practical applications is that of computing
spanning trees of minimum cost. This problem is tackled in this chapter
under our relational-calculational approach.

Most, if not all, introductions to graph algorithmics include a sectioD on
the problem of computing minimum spanning trees, usually presenting two
well-known algorithms that solve this problem: one due to Kruskal [90], and
another commonly attributed to Prim [126] though actually invented earlier
by Jarnik [79]. We will present the construction of both algorithms.

When the notion of spanning trees was formalised in Section 2.7, we actually
did so for the more general notion of connectedness-preserving forests. The
former were then indirectly treated as an instance of the latter and the re
striction of dealing only with connected graphs was sent away. Likewise, this
chapter only makes use of the formal concept of connectedness-preserving
forests and, therefore, we could have more accurately titled it as "Comput
ing Minimum Connectedness-Preserving Forests". We chose not to do so for
marketing reasons.

Section 6.1 presents a formal specification of the problem. Section 6.2 pos
tulates an appropriate combination of invariant, guard and variant that al~

together set up an iteration that refines the initial specification. Section 6.3
then presents an initial exploration of properties of the postulated invariant.
Such properties allow us to construct Kruskars algorithm in Section 6.4.
The construction of Prim's algorithm requires some more graph concepts

103

and further properties of the invariant. These are presented in Section 6.5,
which offers a little calculational theory of cuts in a graph, and in Section
6.6, which explores connections between the invariant and the existence of
certain cuts. Section 6.7 then presents the construction of Prim's algorithm.
Finally, Section 6.8 reviews related work.

6.1 Specification

This section presents the formal specification of our computational problem.
We are given an undirected graph (Vert, Edge, xl ,x2) along with a func
tion weight: R +- Edge, which is assumed to provide non-negative weights.
What the computation must deliver is a subset E: Vee Edge that comprises
a connectedness-preserving forest, i.e. such that cpj E (2.100) holds, and
that has minimum cost, as determined by function weight, among all other
such forests.

The function assigning a cost to each set of edges is:

cost E := (+ e : e ~ E : weight e) , (6.1)

where e ranges over elements of type Edge. The predicate that determines
whether a set of edges is a connectedness-preserving forest of minimum cost
is defined as follows:

mincpj E cpj E A (VF: cpj F: costE:S costF) , (6.2)

where F ranges over vectors of type Vee Edge.

The formal specification of our problem then simply reads thus:

II var E: Vec Edge;
E: I true , mincpj E]

II
(6.3)

6.2 Setting Up an Iteration

Initial steps to refine specification (6.3) are taken in this section by providing
the necessary ingredients to set up a correct iteration: invariant, guard and
variant.

To start with, we observe the similarity of the problem that occupies us in
this chapter and the problem in Section 5.5 of computing plain -as opposed
to minimum-cost- connectedness-preserving forests. The latter was solved
as an instance of the generic problem of computing maximal sets: a maximal

104

acyclic set of edges is a connectedness-preserving forest. The output of the
program obtained in Section 5.5 then satisfies the first conjunct of mincpj
in the postcondition of (6.3) and, therefore, it Seems reasonable to attempt
a reuse of the generic development presented in Chapter 5. We will indeed
reuse the invariants therein to cater for the first conjunct of mincpj.

We thus postulate appropriate instances of the invariants of Chapter 5 as
given by the substitution P, AJ B := acyclic, E, D:

Inv1 acyclic E ,

Inv2 - ('te: acyclic(EUe) : c <:;, D) .

Fresh program variable D is also used in the guard D f E . This takes care
of the first half of the postcondition, i.e. invariants lnvl and Inv2 along
with the negation of the guard imply mxl (acyclic, E) and, by Proposition
2.101, this is equivalent to cp! E .

The second conjunct of mincpj in the postcondition adds the minimum-cost
quality to the maximal forest that must be delivered as output. -From now
on, we will call an acyclic set of edges a forest, whether it is maximal or
not.-- As dictated by the development of Chapter 5, forest E is initialised as
empty and is then gradually augmented until no more additions are possible,
which event signals that we have computed a maximal forest. We now need
this maximal forest to be of minimum cost. First thought that might come to
mind: maintain a minimum-cost forest all along, i.e. state as a third invariant
that E must be of minimum-cost. Second thought: minimum-cost among
what other forests? A minimum-cost forest among all forests is certainly
not what we want since, having assumed that edge weights are non-negative,
such a forest could only be the empty one or forests consisting exclusively
of edges with weight zero. A minimum-cost forest compared to the maximal
forests does not make senSe either, since a non~maximal forest is likely to
be of lesser cost than a maximal forest irrespectively of this leading to the
obtention of a finally minimum-cost maximal forest or not. This last remark
provides the key insight: we want to gradually grow a forest in such a way
that it leads to a maximal forest of minimum-cost, i.e. to a forest for which
mincp! holds.

We then formalise our third invariant as follows:

Inv3 .= (3M: E <:;, M : mincp! M) ,

and give the usual name to the whole invariant:

Inv := Inv1 f\ Inv2 f\ Inv3 .

Now we must prove that the whole postcondition will hold at the end of the

105

iteration. We argue thus:

Inv	 /\ D = E

~ { Inv!, Inv2 and guard as in Chapter 5 }

mxl (acyclic, E) /\ Inv3

{ definition of Inv3, predicate calculus}

(3M: E ~ M : mxl (acyclic, E) /\ mincpf M)

by definitions of mincpf (6.2) and cpf (2.100), }
{ we have that mincpf M ~ acyclic M

(3M: E ~ M : mxl (acycl,c, E) /\ acyclic M /\ mincpf M)

definition of mxl (2.43) with P, A := acyclic, E }
~ { and instantiation with B := M

(3M : E ~ M : M = E /\ mincpf M)

{ one-point rule}

mincpf E .

As for the rest of the set-up of the iteration, we do not fix the initialisation
statement yet since it will vary from Kruskal's to Prim's algorithm. However,
we remark that the initialisation statement from Chapter 5 works for the
third invariant as well. We borrow the variant from Chapter 5 and define:

Prg := (D - E C Do - Eo)

The first refinement step has been completed:

E:	 I true , mincpf E]

introduce local block and iteration}

[;; { according to discussion above

II	 var D: Vee Edge ;
E, D : I true, Inv I ;
do D", E -> E, D : (D '" E /\ Inv , Inv /\ Prg I od

II

6.3 Exploring Some Properties

This section investigates properties that will allow us to refine the specifica
tion statements left in the set-up of the iteration. After this section, we will
be able to construct Kruskal's algorithm, but Prim's algorithm will require
further elaboration in later sections.

106

As expected, the investigation starts with an analysis of what can be taken
from the development carried out in Chapter 5. The relevant properties that
gave rise to the general iteration body there were proved in pages 92·93. The
appropriate instances l using substitution P, A, B := acyclic, E, D as before
plus x := e and Q (E, e) := e 1, E , read as follows:

(Invl /\ Inv2)[E:= EUe] ¢o Invl /\ Inv2 /\ e 1, E (6.4)
(Invl /\ Inv2) [D:= D - eJ ¢o Invl /\ Inv2 /\ e j E (6.5)

provided that e ~ D - E , which also guarantess that the iteration makes
progress according to Prg.

Our current problem uses one more invariant, viz. Inv3. Hence, we need
to explore how the assignments involved in properties (6.4) and (6.5) above
interact with this third invariant.

Extending the Diminishing of D We start out with (6.5) since it is
much simpler to deal with. This is due to the fact that assignments to
variable D do not affect Inv3. Therefore, we can straightaway state that:

Inv [D := D - e] ¢o Inv /\ e j E /\ e c;;, D - E . (6.6)

Extending the Augmentation of E Tackling (6.4) is not as triviaL It
will occupy us for all the rest of this section. We need to investigate under
what conditions Inv3 [E := E Ue J follows from Inv3. Let us proceed to
do so.

Assume Inv3 taking M' as witness and, therefore, onCe the definition of
mincpj (6.2) has been expanded, we have that the following holds:

Er;;,M' /\ cpjM' /\ (\IF:cpjF:costM'5ocostF). (6.7)

Since we are aiming to extend proposition (6.4), we also assume its provisos,
in particular:

ef,E /\ er;;,D-E (6.8)

We now bave to prove Inv3 [E := E U e] , which, again unfolding delinition
of mincpj (6.2) , reads thus:

(3 M : E U e r;;, M : cpj M

/\ (\I F : cpj F : cost M 50 cost F)) .} (69)

Assumption (6.7) says that E is included in a minimum-cost connectedness
preserving forest M'. If new edge e is also included in M', we are done.

107

But, if e is not in M', we need a different witness to make (6.9) hold.
Somewhat naively, one could first think of M 1 U e, but this is clearly not
a forest due to the acyclicity property of M' being maximaL It is more
reasonable to try to exchange edge e for some other edge m included in
M' , i.e. to analyse under what circumstances (M' - m) U e serves as a
witness for (6.9), with m being some edge in M'.

We will now proceed with such an aualysis. Hence, from now on assume that
edges e and m are such that:

e ~ M' /\ m s;;: M' (6.10)

which implies the following:

e S; M' - m /\ m s;;: M' U e , (6.11)

1M' m) U e ~ (M' U e) m . (6.12)

Conditions for (M' - m) U e to satisfy each of the three conjuncts in (6.9),
i.e. the range and the two conjuncts in the body, will be calculated.

Inclusion in New Witness Regarding the range of (6.9), we have that:

EUe t;; (M' -m) U e mt;;E	 (6.13)

This can be proved using basic properties of the lattice structure of the
calculus of relations, and using also the facts that E S; M' and e S; E as
given by, respectively, (6.7) and (6.8).

New Witness as a CP Forest For the first conjunct in the body of (6.9),
we manipulate as follows:

cpl «M' - m) U e)

{ definition of cpl (2.100) , (6.12) }

acyclic «M' - m) U e) II connpTe (M' U e) - m)

property (el) in page 40 with E, e :~ M' - m, e and
property (c2) in page 40 with E, e :~ M' U e, m;
provisos given by (6.11) and by the middle conjunct of
(6.7) since, by subset- and superset-closedness:

cpt M' ~ acyclic M' /\ connpre M'
~ acyclic (M' - m) II connpre (M' U e)

e	 t M' - m II m:5 (M' U e) - m

{ (6.12) }

e	 t M'-m II m:5 (M'-m) Ue

108

by (6.7) and (6.10) we have acyclic M' and m <; M' , }
definition of acyclic (2.92) then gives m f, M' - m;
this and the first conjunct give the provisos for the{
Two Gates rule (2.97) with d, e, E := m, e, M' - m

e :z5 M' - m /\ e ~ (M' - m) U m

{ by (6.10) we have m <; M' ,so (M' - m) U m = M' }

e t M 1
- m 1\ e ~ M'

since e ~ Edge and inclusion implies covering (2.93) }
we have e ~ Edge i by (6.7) we have connpre M'
and by (2.95) we tben bave Edge ~ M'; tbe second {
conjunct then follows from transitivity of ~

e f, M' - m (6.14)

New Witness with Minimum-Cost Finally, the second conjunct in the
body of (6.9) is manipulated thus:

('IF: cpfF: cost «M'-m) U e) S costF)

(~) middle conjunct of (6.7), instantiation; }
{ (<=) third conjunct of (6.7), transitivity of S

cost «M' - m) U e) S cost M'

{ definition of cost (6.1), assumptions (6.10) }

cost M' - weight m + weight e :s cost M'
{ arithmetic}

weight e :s. weight m . (6.15)

Does There Exist a New Witness? We have calculated sufficient and
necessary conditions for (M' - m) U e to be a witness of existential quantifi
cation (6.9). These conditions are the right-hand side of equivalence (6.13),
and propositions (6.14) and (6.15). We collect these three requirements in a
single formula:

m S; E A e ~ M' - m 1\ weight e :S weight m . (6.16)

But the question still arises whether such a wituess actually exists. More
specifically, we need to prove that, if e is not included in M', there exists
an edge m in M' that satisfies (6.16).

Let us first appeal to some intuitive reasoning in order to find our way to
wards a formal proof regarding the existence of such an edge m. Forest M'
is a connectedness-preserving one. Therefore, the extremes of e must be

109

conne<:ted through a path in M', a path which would become a cycle if we
added e to M'. Hence, the edge m we want to pick out from M ' must
come from such a path in order to avoid the creation of a cycle. That is what
the second conjunct of (6.16) states: that once m is out of the way, the
presence of e does not endanger the absence of cycles. But, does such an m
exist? Yes t the path at issue must be non-empty and some of its edges must
not be included in E since, if all the path in M' connecting the extremes
of e were in E, then e should be creating a cycle when added to E. And
this is not the case, as guaranteed by e L E in (6.8).

Let us now phrase the above reasoning in a fully formal fashion. First, we
have that e ~ M'. This fact was used in the last step of the calculation
leading to (6.14), and its proof is in the justification of that step. This
statement, e ~ M' , is the formal counterpart of the existence of a path in
M' connecting the extremes of e. But there might be more to just such a

path in M' I i.e. there might be several other edges in M' not included in
the path connecting e. Let us get rid of such edges. Vie reason as follows:
There must be a minimal set N included in M' such that e.::S N. Its
existence follows from the fact that we have assumed our gr aphs to be finite
and they thus comprise finite sets of edges. Hence, edges can be drawn from
M' while preserving property (e~) until no more edges can be taken out
without violating this property.

Therefore, we know that there exists a set N such that:

N c:; M' 1\ e::o N 1\ (V n : n c:; N : e L N - n) (6.17)

-Note t.hat N must comprise exactly the set of edges in the path connecting
the extremes of e I and that N is actually the unique minimum set included
in M ' satisfying (e .::S) rather than just a minimal one, but we do not need
to use such a fact.

When reasoning informally, we said that not all the path connecting the ex
tremes of e could be included in E, since this would contradict assumption
e i E given by (6.8). We now prove that claim formally:

N-E = 0
{ 0 least relation, universal property of subtraction (2.7) }

NC:;E
=} { inclusion implies covering (2.93) }

N::oE
=} {middle conjunct of (6.17), transitivity of covering}

e ::0 E

{ first conjunct of assumption (6.8) }

110

false .

Hence,

N-E-I0. (6.18)

And we claim that any edge m drawn from N - E will fulfil our needs, i.e.
(6.16). For the time being, we only claim that:

(Vm : m <;; N - E : m <;; M' /I
. } (619) m satisfies the first two conjuncts of (6.16))

We will deal with the third and I,,-,t conjunct of (6.16) later.

Proof of (6.19):

Assume m ~ N - E . Hence, m is included both in N and in E and, also
using the first conjunct of (6.17)' we have thus obtained both m ~ M' and
the first conjunct of (6.16): m <;; E.

V\t'e now observe that acyclic N must hold, due to the fact that acyclic M'
holds by the middle conjunct of (6.7), that N <;; M' holds by (6.17) and
that acyclic is su bset-closed. Hence, since m is included in N 1 on account
of the third conjunct of (6.17) and of aeyclicN, we have:

ef,N-m /I mf,N-m (6.20)

Also, we have N = (N - m) U m which, by substitution in the middle
conjunct of (6.17), gives:

e j (N - m) U m .

The Two Gates rule (2.97) can now be applied with d, e, E := e, m, N - m
and (6.20) "-' provisos, to obtain:

m j (N -m) U e .

Inclusion of N in M' by (6.17), plus the fact that inclusion implies covering
(2.93) and transitivity of covering, then implies:

m j (M' - m) U e . (6.21)

We are now ready to prove that m satisfies the second conjunct of (6.16):

e ~ M'-m

{ reflexivity of j, union/j (2.96) }

(M' - m) U e j M' - m

{ (6.21), transitivity of j }
'*
111

m ::s M' - m

second conjuDct of (6.7) implies acyclic M 1
, }

{ m included in M', definition of acyclic (2.92)

false

o

Finishing Off the Augmentation of E To finalise, we deal with the
third and last requirement on m in (6.16): weight e :S weight m. We will
now proceed to postulate conditions that will guarantee its validity and,
with ~hem, finish off the rule for the maintenance of the whole invariant
under a.ugmentation of E.

As indicated by proviso (6.8) on edge e, set D - E must be the source from
where e is drawn. If we can prove that m must also belong to D - E , then
requiring e to be of minimum weight in D - E guarantees the satisfaction
of the third requirement on m.

Up to this point, reasoning about the maintenance of [nuS has been based
solely upon the assumption that Inv3 holds initially. Now) we will also need
the assumption that Invl and Inv2 hold. The key property still left to be
proved is:

(Vm:mC;:;M'-E mC;:;D). (6.22)

For ease of reference, we write out here the incrementality property (5.4) of
Chapter 5 as instantiated in Section 5.5:

acyclic (F U J) '" acyclic F /I f f, F provided f c;:; F. (6.23)

Proof of (6.22).'

M 1Assume m ~ - E. Then,

mC;:;D

¢" {Inv2}

acyclic (E U m)

{ (6.23) with F, f := E, m , assumption m c;:; E, Invl }
mf,E.

And this last proposition is shown to hold thus:

m~E

112

first conjunct of Inv3 (6.7) and assumption }
Tn ~ E imply E ~ M' - m I inclusion implies "* { covering (2.93), transitivity of covedng

m:5 MI-m

second conjunct of Inv3 (6.7) implies acyclic M' , }
{ assumption m S; M' definition of acyclic (2.92)l

false .

o

We then have, by (6.19) and (6.22), that any edge in N - E also belongs to
D - E. Hence, if e is of minimum weight in D - E and m is drawn from
N - E , it must be the case that m satisfies the third conjunct of (6.16).

We conclude that, if preoeder R: Edge +- Edge is defined as

e1 (R) e2 := weight eI S weight 02 ,

and edge e is drawn from the set min (R, D - E) then, on account of (6.19)
and (6.22), the following holds:

('t m : m <; N - E m C;; M' /I m satisfies all of (6.16)). (6.24)

Finally, we can state the sought after counterpart of (6.6):

Inv [E:= E U e I ¢ Inv /I e" E /I e C;; min (R, D - E) . (6.25)

It follows from all the discussion above but, crucially, from the statements
that guarantee the existence of a witness for Inv3: (6.18) and (6.24).

6.4 Kruskal's Algorithm

The exploration carried out in the previous section is good enough for the
construction of Kruskal's algorithm, which we proceed to do in this section.
We do so by refining the specificatjon statements left at the end of Section
6.2 as initialisation and iteration body.

Since the initialisation statement of Chapter 5 works for the new invariant
[nu3 as weIl, we reuse it:

E, D: [true, Inv I [;; E,D:= 0,Edge

The key properties spelt out in Section 6.3 that will be put to use in refining

113

the specification statement of the iteration body are (6.6) and (6.25):

[nv [D := D - e] ¢= Inv II e:! E II e t; D - E ,

[nv[E:= EUe] ¢= Inv II eiE II et;min(R,D-E)

Only two remarks before developing the iteration body:

(i)	 In Chapter 5 it was proved that the guard D # E is equivalent to
D - E # 0, provided the invariant holds. -See (5.5) and apply sub
stitution A, B := E, D.- Hence, the precondition of the iteration body
guarantees the existence of elements in D - E .

(ii)	 Set min (R, D - E) is included in set D - E. Hence, if an edge be
longs to the former, it also belongs to the latter. Furthermore, given
that R is a connected preorder, min (R, D - E) is non-empty when
ever D - E is non-empty.

Therefore, the following is a valid refinement:

E, D : [D # E II Inv , Inv II Peg]

introduce local block and alternation }
!;; { according to discussion and properties above

I[var e: Edge;
e :t; min (R, D - E) ;
if e:! E --t D := D e
~ e i E --t E:= E U e
fi

II
This completes our first approximation to Kruskal's algorithm as a refinement
of specification (6.3). Figure 6.26 shows the collected code. Note how similar
it is to the program in Figure 5.6.

Data Refinement The similarity between the approximation to Kruskars
algorithm in Figure 6.26 and the first algorithmic solution to the general
problem of Chapter 5 in Figure 5.6 allows us to apply to the former the
same data refinement that was applied to the latter in Section 5.3. We
use suitable instances of the coupling invariants GIl and Cl2 in page 95,
viz. those obtained via A 1 B := E, D plus C, y := F, Pt and, from Section
5.5, f:= join. Hence 1 the coupling invariants that introduce new program
variables F and Pt are:

GIl := F = D - E ,

GI2 := Pt = joinE .

114

II	 var E: Vec Edge;
II	 var D: Vee Edge;

E, D := 0, Edge;
do D#E->

II	 var e: Edge;
e :<;; min (R, D - E) ;
if e::: E -> D:= D - e
o e f, E -> E:= E U e
Ii

II
od

II

JI

Figure 6.26: First Approximation to Kruskal's Algorithm,
"" Algorithmic Solution of (6.3)

The transformation of the program is carried out just as explained in Section
5.3, using the instances of auxiliary predicate Q' and operator ffi that were
calculated in Section 5.5:

Q'(Pt,e) -adje'lPt,

Pt Ell e ~ Pt· (id U adj e) . Pt .

Also, as suggested at the end of Section 5.5, operations Same and Union
of the well-known Union-Find problem are used to implement Q' and ffi.

The resulting program, our version of Krnskal's algorithm, is shown in Figure
6.27.

6.5 A Little Theory of Cuts

In this section we develop a little theory of cuts: partitions of size tWD of the
vertex set of a graph. This will aid an extension of the rules of maintenance
of the invariant in Section 6.3 in a way that will help us to construct Primls
algorithm.

Cuts, Respecting and Crossing Let G be a graph (Vert, Edge, xl, x2) .
A cut of G is just a partitioning of Vert into two disjoint sets: (V, V) for
some V: Vee Vert. We identify a cut with either one of its halves, the other
being uniquely determined through complementation.

115

II	 var E: Vee Edge;
I[var F: Vee Edge; Pt: Vert <- Vert ;

E, F, Pt := 0, Edge, id ;

do F#0-+

II	 var e: Edge;
e :<:;; min (R, F); F:= F - e ;
if Same (Pt, xl'e, x2·e) -+ skip

~ Same (Pt, xl'e, x2·e) -+
E,Pt:= EUe, Union(Pt,xl'e,x2'e)

Ii

II
od

II
]I

Figure 6.27: Kruskal's Algorithm, after Data Refinement,
as Algorithmic Solution of (6.3)

A set of edges can either respect or cross a cut V. It respects the cut if all of
its edges have both extremes either in V or in V. An alternative phrasing
of this is saying that if one extreme of an edge is in V, so must be the other
extreme. A set of edges crosses the cut if it does not respect it, which means
that some of its edges have one extreme in V and the other in V. Formally,
given E: Vee Edge and a cut V: Vee Vert, we define:

respect (E, V) adjE·V<:;;V, (6.28)

cross (E, V) ~ respect (E, V) . (6.29)

These definitions are consistent with the freedom of identifying cuts with
either one of its components. Schroder's right-exchange rule (2.22) and sym
metry of adjacency relations entails such consistency for respect:

respect (E, V) '" respect (E, V)

Consistency for cross then follows from (6.29) and propositional calculus.

A set of edges respects a cut if all its edges respect it, while a set of edges
crosses a cut if at least one of its edges crosses it. Extensionality and dis
tributivity over union allows a formal proof of this fact:

respect (E, V)

{ definition of respect (6.28) , extensionality (2.29) }

adj (Ue : e <:;; E : e) . V <:;; V

116

{ distribution of adj and composition over union}

(Ue: e<;E: adje·V) <; V

universal property of union (2.3), }

{ definition of respect (6.28)

('Ie: e <; E : respect (e, V) .

Using de Morgan's laws of predicate calculus we also get the corresponding
statement for cross:

respect (E, V) == ('Ie: e <; E : respect (e, V» (6.30)
cross(E, V) == (3e: e <; E: cross(e,v» (6.31)

Paths also Respect Cuts By definition, respect (E, V) tells us that both
extremes of each edge in E lie on the same side of the cut V. This implies
that each path built from edges in E should also remain on only one side
of the ent. And vice versa: if each E-path stays in only one half of the
cut then, in particular, so do E-paths of unitary length, Le. those given by
adj E . Formally:

respect (E, V) == joinE· V <; V . (6.32)

It follows from property (2.68) of closure with R, S := adj E, V .

A cut built from a base set V through E-paths is respected by E:

respect (E , join E . V) . (6.33)

This follows from (6.32) and transitivity of joinability relations.

Monotonicity Properties For any cut V l predicate respect (_, V) is
subset-closed. This fact follows from monotonicity of adj and transitivity of
inclusion. The contrapositive rule of propositional calculus then implies that
cr055 (_, V) is superset-closed. FormallYl

El <; E2 '* ('IV:: respect (E2, V) '* respect (El, V)

El <; E2 '* ('IV:: cross (El, V) '* cross (E2, V)

These statements, which can be seen as u~ to =:}11 antimonotonicity and
monotonicity properties, can be extended to "j to ~n statements. Fur
thermore, the extension allows a strengthening to equivalences:

El ~ E2 ('IV:: respect (E2,v) '* respect (El,v») , (6.34)

El ~ E2 ('IV:: cross(El,v) '* cross (E2,v)) . (6.35)

117

These two properties are equivalent by the contrapositive rule of propositjonaI
calculus. It then suffices to prove only one.

Proof of (6.34):

For (=}), we argue thus:

EI ~ E2

{ definition of ~ (2.90) }

adj EI c:; join E2

~ { monotonicity of composition}

('t V :: adj EI . V c:; join E2 . V)

~ { transitivity of inclusion}

('tV::joinE2·VC:;V ~ adjEI·V c:; V)

{ (6.32), definition of respect (6.28) }

('tV:: respect (E2, V) ~ respect (EI,v)) .

For C~), a more elaborate manipulation is needed. Assume the right-hand
side holds and then proceed as follows:

EI ~ E2

{ extensionality (2.29), union/~ (2.96) }

('t e : e c:; EI : e ~ E2)

{ one-edge covering (2.99) }

('te: eC:;EI ~ (xl·e)·(x2·e)' c:; joinE2)

{ shunting of functions (2.24) }

('t e : e c:; EI : xl . e c:; join E2 . x2 . e)

by (6.33), E2 respects join E2 . x2 . e, by assumption, }
<= { El then respects it as well; definition of respect (6.28)

('t e : e c:; EI : xl . e c:; adj EI . join E2 . x2 . e)

<= { monotonicity of adj l reflexivity of joinability relations}

('t e : e c:; EI : xl . e c:; adj e . x2 . e)

{ shunting of functions (2.24) }

('te: eC:;EI: (xl·e)·(x2·e)' c:; adje)

{ atomic adjacency (2.80), union}

true.

o

118

Crossing For 1ater use, we give a name to the set of all edges that cross a
given cut:

crossing V := (ue: cross (e,v) : e) (6.36)

6.6 Exploring Some More Properties

As a follow-up to Sectiou 6.3, this section presents a deeper exploration of
the iuvariants on which the construction of Kruskal's algorithm was based.
Such an exploration results on the obtention of a fourth invariant, essential
for the construction of Prim's algorithm.

Augmentation of E and Cuts Recall rule (6.25):

Inv [E := E U e I ¢= Inv /\ e i E /\ e ~ min (R, D - E)

Kruskal's algorithm, as stated in tbis rule, augments E with a global min
imum e, Le. minimum within D - E. Prim's algorithm makes use of the
fact that the new edge e can be selected as a local minimum, Le. minimum
within a subset of D - E, provided such a subset complies with certain
restrictions.

This is the point where the theory of cuts is put to use. We know that in order
to safely add e to E it must be the case that e i E. By cut-monotonicity
(6.34), this is equivalent to the existence of a cut V, say, respected by E
and crossed bye. The set of edges that cross such a cut V is a safe set, in
the sense that selecting e to be of minimum weight within it guarantees we
are heading towards a minimum·cost connectedness- preserving forest in the
same way that selecting a global minimum edge does. Formally:

Inv [E := E U e I ¢=
(6.37)

Inv /\ (3 V: respect (E, V) e ~ min (R, crossing V)) . }

Also, it is the case that the crossing of such a cut is a subset of D - E , i.e.
it is the case that:

(1;1 V : respect (E, V) . crossing V ~ D - E) ¢= Inv. (6.38)

We first prove this last proposition because we will need it in the proof of
rule (6.37).

119

Proof of (6.38);

Assume Inv. Then, for any cut V, argue thus:

crossing V <; D - E

{ extensionality}

('Ie: e <;; crossing V : e <;; D - E)

{ definition of crossing (6.36) , subtraction}

('Ie: cross (e,v) e <;; D A e <;; E)

<= { Inv2 }

('Ie: cross (e, V) : acyclic (E U e) A e <;; E >

{ incrementality of acyclic (6.23), Inv! }

('Ie: cross (e,v) : e 1, E A e <;; E)

{ distribution of universal quantification over conjunction}

('Ie: cross (e, V) : e 1, E> A ('Ie: cross (e, V) : e <;; E >

contrapositive, twice; respect is the negation of }
{ cross (6.29); extensionality of respect (6.30)

('Ie: e ~ E : respect (e,v) > A respect (E,v)

{ cut-monotonicity (6.34) }

respect (E, V) .

o

We now proceed to prove rule (6.37). The proof will reuse a good deal of the
reasoning presented in Section 6.3.

Proof of (6.37);

Assume the antecedent, i.e.

Inu A (3 V : respect (E, V) : e <;; min (H, crossing V) > .

The assumption on e, by definition of min (2.60) 1 entails e S; crossing V .

The rest of the assumptions, viz. Inv and the assumption on E I then give us,

by proposition (6.38) proved above, that e <;; D - E. Also, by definition of
crossing (6.36) 1 we have cross (e, V) and, then, the assumption on E plus

cut-monotonicity (6.34) imply e 1, E. All of this allow us to use property
(6.4) to conclude (Inv! A Inv2) [E := E U e] .

Proving Inv3 [E := E Ue I is, as in Section 6.3, the tricky part. Recall that
the big issue was proving the existence of a witness for existential quantifi
cation (6.9) in the case that e was not included in M'. And also recall that
the existence of such a witness followed from the existence of an edge m in

120

M' satisfying (6.16). Such an edge m was proved to exist as a consequence
of several facts. First, (6.18):

N-E 01 Iil;

second, (6.19):

('1m: m ~ N - E : m ~ M' /I

m satisfies the first two conjuncts of (6.16))

and, finally, (6.22):

('1m: m<;M'-E: m~D)

The first two properties show the existence of edges in M 1 satisfying the first
two conjuncts of (6.16). The last property show that such edges must also
belong to D - E, which implies that, were e selected to be of minimum
weight in D - E , each edge m in N - E would satisfy the third and last
conjunct of (6.16): welghte ~ weightm.

In our new circumstances, all we need to prove is:

(N - E) n crossing V 01 Iil . (6.39)

This is snfficient since, from property (6.19) above, edges that are drawn from
(N - E) n crossing V belong to M' and satisfy the first two conjuncts of

(6.16). Since edge e has now been chosen to be of minimum weight in
crossing V , such edges would also satisfy the third conjunct of (6.16).

We now prove (6.39). The only other property of N we will need to borrow
from Section 6.3 is the following: e:::> N, the middle conjunct of (6.17). We
manipUlate thus:

(N - E) n crossing V 01 Iil
{ extensionality (2.30) }

(:3n :: n ~ (N - E) n crossing V)

{ intersection, subtraction, definition of crossing (6.36) }

(:3n :: n ~ N /I n ~E /I cross (n,v) }

assumption respect (E, V), for extenSionality}
of respect (6.30) and contrapositive rule, is
equivalent to ('Ie: cross (e, V) : e ~ E) ;{
hence, the third conjunct implies the second

(:3 n :: n ~ N /I cr088 (n, V) }

{ extensionality of cross (6.31) }

cross (N, V)

121

{= { assumption cross ie, V), cut-monotonicity (6.35) }

e -j N

{ property of N referred to above, from (6.17) }

true .

o

We are now ready to use new rule (6.37) for augmentation of E. Note
that the assignment statement involved not only maintains the invariant,
but also guarantees that the iteration makes progress. Progress, as defined
by Pry I is achieved if E is augmented with edges drawn from D - E . Due
to proposition (6.38), this is indeed the case.

A New Invariant Old rule (6.25) -repeated at tbe beginning of this
section- required set D - E to be non-empty, which is guaranteed by the
guard D", E at the entry point of the iteration. New rule (6.37) requires
a stronger precondition, the existence of a cut respected by E and with a
non-empty crossing:

(3 V : respect (E, V) : crossing V '" 0)
{ (6.38), intersection}

(3 V : respect (E, V) : (D - E) n crossing V # 0)
{ extensionality, intersection, definition of crossing (6.36) }

(3V: respect(E,v): (3e: er:;,D-E: cross (e,v))

{ quantifications exchange}

(3 e : e r:;, D - E : (3 V : respect (E, V) cross (e, V))

{ cut-monotonicity (6.34) }

(3 e : e r:;, D - E : e L E) . (6.40)

Since the guard already guarantees D - E =I=- 0, it would suffice to require
the following new invariant Inv4 to make (6.40) hold at the entry point of
the iteration:

Inu4 := (I;f e : e r:;, D - E : e L E) .

We now dedicate ourselves to the task of working out a way to establish
Inv4 . In Kruskal's algorithm, each edge drawn from D - E is added to E

or taken out from D depending on whether it satisfies, respectively, (~ E)
or (-j E). It seems reasonable to try to establisb Inv4 by subtracting from
D all edges that satisfy (-j E) at once. We cbeck up on our intuition by

122

the following formal manipulation:

Inv4 [D := D - D']

{ definition of Inv4 , substitution}

(\Ie; e t; D - D' - E : e f, E)

{ subtraction)

(\Ie; et;D-E 1\ et;D': ef,E)

(contrapositive)

(\Ie; et;D-E 1\ e::,E: et;D')
(universal property of union (2.3))

(Ue: et;D-E 1\ e::,E: e) t; D' (6.41)

Hence, Inv4 can indeed he established by subtracting from D a set D' that
satisfies (6.41). We take D' to be the smallest possible set:

D' := (u e : e t; D - E 1\ e::, E : e) .

Define the new global invariant to be:

Inv' := Inv A Inv4 .

We have already got at our disposal rules for the maintenance and establish
ment of Inv. Those rules can be used to establish Inv, and D' can then be
subtracted from D to establish Inv4 . Such a subtraction would not affect
the validity of Invl or Inv3 since they do not mention D, but the validity
of Inv2 might be at risk. We will now show that such a subtraction from
D maintains Inv2.

For showing that Inv2 is maintained by the subtraction of D' from D,
we will reuse rule (6.5) for the diminishing of D, which was borrowed from
Chapter 5;

(Inv1 1\ Inv2) [D := D - eJ {= Inv1 1\ Inv2 1\ e::, E ,

witb the added proviso that e t; D - E holds. We are specifically inter
ested in the core of this implication regarding Inv2, spelled out as follows,
where the additional proviso has been incorporated into the antecedent of
the implication:

Inv2 [D ;= D - eJ {=

} (6.42) Inv1 1\ Inv2 1\ e::, E l\et;D-E .

We now argue as follows:

Inv2 [D:= D - D']

123

{ definition of 10"2, substitution}

(Ve : acyclic (E U e) : e t; D - D')

{ subtraction, complementation}

(Ve: acyclic(Eue) : e t; D f\ D't; e)

{ extensionality (2.29), universal property of union (2.3) }

(Ve: acyclic(Eue): et; D f\ (Vd: dt; D': dt;e))

assume D1::j:. 0 to allow distribution of }
{ conjunction over universal quantification

(Ve : acyclic (E U e) : (V d : d t; D' : e t; D f\ d t; e))

{ complementation, subtraction}

(Ve : acyclic (E U e) : (V d : d t; D' : e t; D - d))

{ quantifications exchange, definition of 10"2 }

(V d : d t; D' : 10"2 ID := D - d])

¢o { (6.42) with e:= d }

(V d : d t; D' : Inv1 f\ Iov2 f\ d:s E f\ d ~ D - E)

assumption D' =I 0 again to distribute }
{ conjunction over universal quantification

Inv1 f\ Iov2 f\ (V d : d t; D' : d:s E f\ d ~ D - E)

{ by definition of D' the third conjunct is true}

Iov1 f\ Iov2 .

Assumption D'::j:. 0 was needed a couple of times in the calculation above
but, since Inv2 [D := D - 0] is equivalent to Inv2 , the rule is valid whether
D' is empty or not:

In"2 ID:= D - D'] ¢o Iov1 f\ 10"2 . (6.43)

We conclude from (6.43), plus the manipulation on 10"4 ID := D ~ D']
above, that subtracting D' from D establishes Inv l if Inv holds initially:

In"' ID := D - (u e : e t; D - E f\ e:s E : e) 1 <= Iov. (6.44)

6.7 Prim's Algorithm

Now, enough machinery is available to us for constructing Prim's algorithm.
As with Kruskal's algorithm, we start off' with the iteration that was set up in
Section 6.2, but using invariant Inv' instead of Inv. Since Inv' is stronger
than Inv. it is correct to keep the same guard. The refinement yet to be
carried out is that of the specification statements left as initialisation and

124

The initialisa.tion statement from Chapter 5 and rule (6.44) are combined
thus:

E, D : [true, Inv' I
~ { introduce sequential composition}

E, D : (true, InvJ; E, D : [Inv, Inv' I
i;; { initialisation from Chapter 5, (6.44) }

E, D := 0, Edge; D := D - (Ue : e r:;, D - E 1\ e ::, E : e)

{ consecutive assignments }

E, D := 0, Edge - (u e : e r:;, Edge 1\ e ~ 0 : e)

= { definition of ~ (2.90) }

E, D := 0, Edge - (u e : adj e r:;, id : e)

In the last step, definition of ::, (2.90) was expanded to show that the ini
tially disposable edges are the loops of the graph -as defined in Section 2.5- .
It is often assumed that the input graph does not have loops.

The iteration body is constructed via rules (6.37) and (6.44):

E, D : [D t E 1\ Inv' , Inv' 1\ Pry I
introduce sequential composition; if progress is aChieved}

i;; { by the first statement, the second must not spoil it

E, D : [D t E 1\ Inv' , Inv 1\ PrgJ ;

E, D : [Inv , Inv' 1\ (D - E r:;, Do - Eo))

(6.37), note that the calcnlation leading to (6.40) }
i;; shows that DiE 1\ Inv' implies the existence

{ of the required cut; (6.44), progress is not spoiled

I[val" V: Vec Vert ;
V: (D t E 1\ Inv' , respect (E, V) 1\ crossing V t 0] ;
I[var e:Edge;

e :~ min (R, crossing V) ;
E := EUe

11
JI;
D := D - (U e : e r:;, D - E 1\ e ~ E : e)

We have fina.lIy got our first approximation to Prim's algorithm a.~ a refine
ment of specification (6.3). The whole code collected in Figure 6.45.

125

II	 var E: Vec Edge;
Il	 var D: Vec Edge;

E,D:= 0, Edge - (Ue: adje c: id: e);

do DolE --+

II	 var V: Vec Vert ;
V	 : IDol E II Inv' , respect (E, V) II crossing V # 0 I ;
I[var e: Edge;

e :~ min (R, crossing V) ;
E := EUe

JI
]1 ;
D := D - (U e : e c: D - E II e::5 E : e)

od

JI
JI

Figure 6.45:	 First Approximation to Prim's Algorithm,
as Algorithmic Solution of (6.3)

Data Refinement There is a good deal of inefficiency in our first approx
imation to Prim's algorithm, which we now proceed to do away with via
data refinement. We first put forward, as temporary propositions l desired
conditions on the new program variables. These propositions are then used
to postulate the definitive conjuncts of the coupling invariant,

The biggest efficiency problem in sight is the computation of an appropriate
cut in the iteration body. Maintaing a cut with the right characteristics all
the way through clears this up. New program variable W is introduced to
serve as such a cut. Therefore, it must satisfy:

Pi respect (E, W) .

Cut W can be thought of as the vertex set of the forest grown so far E.
Below1 when refining condition P 1 , it will indeed be defined to be the vertex
set of E via the incidence relation Inc of the graph -as defined by (2.81) in
Section 2.5-. We also need W to have a non-empty crossing for it to prove
useful when the cut is required in the iteration body. However, imposing that
the non-empty crossing condition must hold all the time would be too strong
a requirement. For instance t after growing the whole required output we can
reasonably expect W to contain all the vertices of the graph, i.e. expect
W = Vert to hold. In such a case the crossing of W is empty. There are

also extreme cases, e.g. dealing with a graph that has an empty edge set,
where every crossing is empty. We settle this issue by requiring the crossing

126

of W to be non-empty only if W does not comprise all the vertex set:

P2 := cro99ing W = 0 '* W = Vert .

This is all we need of new variable W.

To comply with P 1 , we can maintain W as the vertex set of E, i.e. as
Inc· E . There Illight be isolated vertices in the graph, so we cater for them

by postulating the weaker:

CIl Inc· E e; W .

It is not difficult to show that PI follows from CIl. Using definition (6.28)
of respect, we argue thus:

odjE·W

e; { property of adj and Inc }

(Inc· E) . (Inc· E)' . W

e; {universal relation of type 1 +- 1 is id }

Inc' E

e; {GIl}

W.

But there is a problem: W is allowed too much freedom. For instance, GIl
~and PI and P2 - can be met by assigning Vert to W. So, we tighten
W up by allowing into it only vertices connected through E, provided they

are originally connected in the input graph:

CI2 tV . WO n Join ~ join E

To avoid recomputations from scratch of the crossing of W, the second
biggest source of inefficiency in the program of Figure 6.45, a new program
variable F is introduced to maintain it. Requirement P2 is then proposed
as definitive, but after expressing it in terms of F:

CIS F = crossing W ,

CI4 F=0'* W=Vert

Finally, the whole coupling invariant:

CIl 1\ CI2 1\ CIS 1\ CI4CI

We now describe how the program in Figure 6.45 is transformed using GI as
coupling invariant. We take a light approach under which the transformations
are explained without providing the fully formal proofs.

The initialisation of E as the empty forest is extended with assignment

127

W, F:~ 0,0 to establish CIl, CI2 and CIS. Immediately after, condi
tional Don-emptiness of F is achieved with an iteration that grows W up
to the establishment of Cf4 :

do F = 0 f\ W '" Vert -t

II var v: Vert ;

v:~ W;
W, F:= W U v, crossing v

JI

od

The negation of C14 was taken as guard, and the iteration body maintains
the initially established other three conjuncts of CI. Finiteness of Vert
guarantees termination since W is augmented in each iteration.

The guard of the main iteration is replaced according to the following fact:

IfiV' f\ CI ~ (D = E '" W = Vert) .

Hence, lV ¥=- Vert becomes the new guard. We can then dispose of variable
D as it is rendered useless by this transformation.

In the iteration body, the specification statement affecting V could be re
placed by V:= W, as Pl holds on account of Cll and crossing W '" 0
also holds on account of the guard, CI3 and C14. However, since variable
V is only used to select the new edge e, and that selection statement can

be replaced after assignment V:= lV by e :~ min (R, F) on account of
CIS, variable V is simply eliminated.

Drawing e from F implies that it crosses W, and predicate cross enjoys
the following property:

cross (e, W) '" (3 v, w v· W
O C;; adj e v C;; W f\ w C;; W) ,

where dummies v and w range over points of Vert. Therefore, when adding
e to E, augmenting W with the W -extreme of e maintains CI1 and
CI2. We use an auxiliary variable v and assignment v := lV n Inc· e to

get hold of the required W-extreme of e. An implementation can improve
on this by storing in F each edge paired up with its "outer ll extreme. To
maintain CIS, variable F is updated according to this crossing-rule:

crossing (W U v)

(crossing W - Inco
. v) U (Inc o

. v n Inco
. (W - v))

provided v ~ W .

After such an updating, the crossing F might have become empty -if a
connected component of the graph has just been completed-. The same

128

auxiliary iteration used in the initialisation must be used here to reestablish
Cf4.

The transformation of the program has been completed. But we now point
out the fact that variable W has been used as W =1= Vert in guards and as
~V in most other expressions. It is thus more convenient to have a program
variable that holds the complement of W. This is so because comparisons
to the empty set are often, if not always, implemented more efficiently than
comparisons to the universal set, and because recomputations via comple
mentation are then avoided. Hence, we introduce a new program variable
W' using W' = W as coupling invariant. Variable W can be eliminated

after replacing all its uses by expressions on W', and we then rename W'
as W to avoid the prime symbol.

The resulting program, our version of Prim's algorithm, is shown in Figure
6.46.

Originally, Prim's algorithm was designed to deal with input graphs that
were connected and had a non-empty vertex set. We set ourselves the task
of "redesigning" Prim's algorithm to cater for any graph. The development,
though admittedly long, is quite pleasant, as much of it is guided b)' hints
given out by the formulae in manipulation. An instance of "syntactic hints"
is the postcondition required of local variable V in the first solution: it gave
rise to the proposal of P1 and P2 as means of achieving the elimination of
V . It is even more pleasant to see that the complexity added by accepting

unrestricted graphs is not significant. Suppose the input graph is connected
and its vertex set is non-empty. Connectedness then implies that only Vert
and 0, which actually identify the same cut, have empty crossings. There is
thus no need for the procedure GetCrossing. The initial call to GetCrossing
can be replaced by one execution of its iteration body: non-emptiness of Vert
guarantees at least one round of the iteration while connectedness guarantees
that one round suffices. The second call to GetCrossing, within the main
iteration body, can be plainly removed as the crossing will not become empty
unless W has been emptied a.~ well. Therefore, only the calls to GetCrossing
would be affected by restricting the input graph. The rest of the program,
to us the most complex part of it all, remains just the same.

6.8 Related Work

We only know of two derivations of minimum spanning tree algorithms: Bird
and de Moor's [25], where Kruskal's algorithm is obtained as an instance of
a generic algorithmic solution to a certain kind of optimisation problems;
and Berghammer et al.'s [20], where Prim's algorithm is derived via calcu

129

I[var E: VecEdge;
II	 var W: Vec Vert; F: Vec Edge;

E, W, F := 0, Vert,0 ;

GetCrossing (W, F) ;

doW;f0-->

II	 var e: Edge;

e:~ min (R,F) ;

II var v: Vert;

v := "IV n Inc· e ;
E, W:= E U e, W - v ;
F := (F - Inc'· v) U (Inc'· v n Inc'· W)

]1
II ;
GetCrossing (W, F)

od

II
II
with proc GetCrossing (in out W : Vec Vert, F: Vee Edge)

do F= 0/\ W;f0 -->
II var v: Vert;

v:~ W;
W, F:= W - v, crossing v

]1
od

Figure 6,46: Prim's Algorithm, after Data Refinement,
as Algorithmic Solution of (5.3)

130

lations with binary relations and standard methods for the development of
imperative programs.

Bird and de Moor, encouraged by the view that tbe structure of data can dic
tate the structure of programs, focus in 125] on the derivation of optimisation
algorithms under the allegorical approach to datatypes. For this reasoD, the
minimum spanning tree instance problem is specified in terms of lists right
from the beginning, unlike our presentation with sets that could be fnrther
developed towards an implementation using Lists at a later stage. Kruskal's
algorithm interests Bird and de Moor due to its optimisation nature and
not to its graph-theoretical character. The graph properties involved in the
instantiation of their generic solution [25, Section 8] are not dealt with calcu
lationally, but only semi-formally. Their full formalisation would correspond
to parts of our Section 5.5 and this chapter.

Related to Bird and de Moor's work, in the matter of the categorical treat
ment of datatypes, Gibbons [641 has proposed a data type that models a
restricted kind of graphs, viz. directed acyclic graphs with ordered edges
-Le. the incoming and outgOing edges of a vertex form a list rather than a
set-. Its application seems to be, as far as it is shown in [64], limited and
we know of no further exploration of its applicability.

The derivation of Prim's algorithm by Berghammer and his coHeagues in [20]
is a follow-up to Berghammer's [16], reviewed in Chapter 5. As in the former
treatment of unweighted spanning trees, the input graph is required once
more to be connected and with a non-empty edge set. Also, the mainderiva
tion is again worked out in tenus of simple graphs, hence not dealing with
edges -except as represented by atomic symmetric adjacency relations-. But
this time their first algorithmic solution is later data-refined to a program
in terms of full graphs as we understand them, i.e. plain undirected graphs.
Edges can thus be given a weight and the minimisation aspect of the problem
can be tackled. The simple graphs and the normal graphs, in their terminol
ogy graphs and multigraphs, respectively, are linked by a Galois connection
-see e.g. [1] or [2, Chapter 5]- between the lattice of edge sets and the lattice
of symmetric adjacency relations. This is related to our adj, which produces
adjacency relations from edge sets and which distributes through arbitrary
unions, a sufficient and necessary condition for a function hetween lattices
to be the lower adjoint of a Galois connection.

In relation to the contents of our Section 6.3, Berghammer et al. make further
use of Galois connections when proving their "Edge Replacement" lemma [20,
Section 6.4, Lemma 31]. The proof is carried out in a very compact fashion
by exploiting the properties of a Galois connection involving the subgraphs
of a fixed spanning tree. This corresponds to what took us so rnuch time

131

proving the existence of a witness in Section 6.3. At the time of writing,
we have not been able to get a handle on this second Galois connection)
but it is certainly an attractive way of shortening the proofs of this chapter
and very probably of getting a deeper understanding of other features of
connectednes&-preserving forests like e.g. those explored in Section 2.7. We
thus intend to get down to it in future work.

132

Chapter 7

Computing Strongly Connected
Components

This chapter presents the derivation of an algorithm that computes the
strongly connected components of a directed graph. Tackling this problem in
the context of the present thesis, which aims to show the applicability of the
calculus of relations to the derivation of graph algorithms, was motivated by
two previous exercises in dealing with this non-trivial algorithmic problem in
a methodical fashion: Dijkstra's "exercise in orderly program composition"
(46] --see also [45, Chapter 25]- and Kruseman Aretz's "exercise in program
presentation" as a tribute to Dijkstra (89). The programs therein presented
are akin to Tarjan's famous algorithm for the computation of strongly con
nected cnmponents by means of a depth-first traversal of the graph [141J.

Dijkstra's essay offers a derivation which, however, "contains a few 'surprises'
... without an elaborate heuristic justification" [46, page 22]. It has to be
noted that at the time this essay was written, the mid 19705, calculational
methods had not yet found their way into the field of program development.
It is thus not surprising that the graph properties involved are not treated
calculationally at all and, without a formalism allowing uninterpreted ma
nipulation of formulae representing graph concepts, "surprises" were likely to
come up. Kruseman Aretz's essay, written about a decade and a half later,
offers a clearer presentation of the algorithm that benefits from abstracting
data-representation details, using sets and lists instead of arrays intricately
representing the relevant data. Nevertheless, the algorithm is not derived
but merely presented, albeit in an orderly and quite beautiful fashion.

We hope that the contents of this chapter live up to the expectations of state
of-the-art program development as a follow-up to Dijkstra's and Kruseman
Aretz's work. In the introduction to his essaYl Kruseman Aretz points out
that he expects llthat the presentation can be transformed into a derivation"

133

-our emphasis- and that he hopes this will "be done in the future" [89,
page 251]_ It pleases us to have moved on a little closer to such hopes, in spite
of our derivation being admittedly rife with many long tricky calculations.
We believe, however, that our derivation represents a stepping-stone towards
a nice and compact derivational presentation.

In what follows, Section 7.1 presents a formal specification of the problem.
Section 7.2 then sets the scene for the derivation of an iterative algorithm by
proposing an invariant. The invariant is somewhat complex and comprises
a good number of conjuncts; hence, emphasis will be laid on justifying how
each of the conjuncts was deduced. Section 7.3 offers the rest of the set
up of the iteration: guard, initialisation statement, and variant. Means of
making the iteration progress are dealt with in Section 7.4 by examining four
different ways of decreasing the variant. Section 7.5 assembles the body of
the iteration, thereby completing the program we offer as a refinement of
the initial specification, and Section 7.6 provides some comments on further
refinement and implementation details. Section 7.7 closes the chapter with
a review of related work

7.1 Specification

Strong connectedness, within the calculational framework of binary relations,
was presented in page 30 of Chapter 2. For the sake of convenience, we re
call and relabel some relevant definitions here. Let G be a directed graph
(Vert, Edge, xl , x2). Definitions (2.74) and (2.83) of the successor and reach
ability relations of G, which are used to construct the strong connectedness
relation of G , as well as definition (2.87) of the strong connectedness relation
itself state that:

Succ xl . x2 Q (7.1)

Reach Succ· (7.2)

Str Reach n ReachQ (7.3)

Relation Str is an equivalence relation on Vert that relates: mutually reach
able, i.e. strongly connected, vertices.

In page 21 of Chapter 2, we showed a way of modelling quotient sets of
equivalence relations as powerset vectors. The set of strongly connected
components of G is precisely the quotient set of Str: Vert +-- Vert and,
therefore, our problem can be formally specified as follows:

II var SC: Vee (PVert) ;
SC: [true , SC = AStr· Vert] (7.4)

]1

134

We now proceed with its refinement to a program.

7.2 A Non-Trivial Invariant

This section proposes a reasonable invariant to develop an iteration that re
fines the specification of our problem. As mentioned in the introduction, the
invariant we will end up with is rather complex, comprising several canjuncts.
We embrace the task of justifying every conjunct by explicit reference to the
underlying reasoning that puts them forward.

Before embarking On our main task, some definitions from Chapter 2 are ex
ported and relabelled. The successor, reachability and strong connectedness
relations of graph G can be restricted to make use of only a subset of edges.
As defined in (2.77), (2.85) and (2.88), these relations are:

succF ~ xl· ¢F· xW , (7.5)

reach F = (succ F)" (7.6)

str F (reach F) n (reach Ft (7.7)

where F is the vector on Edge that models the subset of edges one is allowed
to traverse.

We now go for the invariant.

The Subgraph Seen So Far To begin with, it is most reasonable to
expect that the vertices and edges must be incrementally examined. Thus, at
each execution of the iteration body only some of the vertices and some of the
edges have been inspected. These vertices and edges determine the subgraph
of G that has been seen so far. How much is known about the st.rongly
connected components of G must be in accordance with such a subgraph,
and that is what we lay bare on our first invariant. We get it by replacing
constants Vert and Edge in the postcondition of (7.4) by freshly introduced
variables V: Vee Vert and E: Vee Edge that reflect the subgraph seen so
far:

PI := SC = 11.(sIr E) . V ,

i.e. SC is the (str E)-quotient of V. Note that constant Edge is hidden
in (7.4). The fact Str = sIr Edge suffices to unveil it.

It is also reasonable to assume that V and E determine a consistent sub
graph of G. As formalised in (2.76), this means that both extreme vertices

135

of edges in E must be in V. This provides us with two more invariants:

P2 xl . E C;; V

P3 x2·EC;;V

Furthermore, we require the partition Be to be consistent in the sense that
the vertices it contains should be exactly those contained in V and no more.
This is formalised by the expression E· Be = V, which is equivalent to
stating that V fits str E -see remarks on partitioning sets by equivalence
relations and the whole set of elements in such partitions in pages 21-22
of Section 2.4-. Hence, we ask V to fit str E invariantly through our
iteration· to-be:

P4 strE·V C;; V

And this is the end of the consistency requirements on the subgraph given
by VandE.

\Ve want to point out that, by the end of this section, we will have collected
invariants named Invl , Inv2, et cetera. Those will be the definitive ones.
We have named the above invariants Pl, P2, P3 and P4 since there is
quite some juggling ahead of us before we decide on the final invariants,

An adequate guard for our provisional invariants Pl, P2, P3 and P4
could be ,(v = Vert A E = Edge) . But we will postpone this issue until
the next section, after the final invariants have been decided on.

Final Components and Intermediate Components According to pro
posed invariant PI , program variable Be holds some "nearly strongly con
nected" components of G computed out of V and E. We now wonder
whether some of these components are final, i.e. full strongly connected com
ponents of G, and under what conditions they are so. The remaining com
ponents in Be, i.e. the ones still in construction, we will call intermediate.

In order to analyse conditions that determine which components in Be are
final and which are intermediate, we partition the set of inspected vertices
V into two sets:

Ql V = VI U Vi A VI n Vi = 0 .

Sets Vf and Vi are, respectively, meant to comprise the vertices of final
components and intermediate components in Be. We will also make use of
an analogous partition of set E:

Q2 E=ElUEi A ElnEi=0.

136

Set Ef is meant to comprise the edges that have determined the final compo
nents computed so far, whereas Ei contains the rest of the inspected edges.

Partitioning the vertices as in Q1, on account of Pi and distributivity of
composition over union, implies that:

se = A(slr E) . Vf U A(sir E) . Vi	 (7.8)

Each half of parti tion se as stated in this equation should be consistent in
the same sense as of condition P4 , i.e. both Vf and Vi should fit str E .
Hence, we require:

Q3 sirE· Vf <; Vf ,

Q4 sir E· Vi <; Vi .

Note that Q1, Q3 and Q4 imply, and thus take care of, invariant P4 .

Final Components We now want to examine under what conditions the
first half of se as stated in (7.8) corresponds to final components) i.e. under
what conditions the following holds:

A(slr E) . Vf = ASlr· Vf	 (7.9)

This we manipulate as follows:

(7.9)

<=	 { power transpose, vectors and coreflexives (2.53) }
sir E . ¢ Vf = Sir· ¢ Vf

{ str E ~ Str 1 monotonicity of composition}

Sir· ¢ Vf <; sir E . ¢ Vf

{ coreflexives (2.33) }

Sir· ¢ Vf <; sir E

~set Ef is meant to be the relevant subset of E }
<= as regards the final components and we thus need

{ to introduce it- Ef ~ E, monotonicity of str

Sir· ¢ Vf <; sir Ef

{ definition of sir (7.7), intersection (2.6) }

Sir· ¢ Vf <; reach Ef 1\ Sir· ¢ Vf <; (reach Efl'· (7.10)

We now deal with the first conjunct:

Sir· ¢ Vf <; reach Ef

<= { definition of Sir (7.3) , intersection}

Reach· ¢ Vf <; reach Ef

137

corefiexives included in id -this prepares us to apPlY}
¢ the leap-frog over closure rule without making an

{ unreasonable strengthening of the demonstrandum-

Reach· ¢ Vf <;; ¢Vf . reach Ef (7.11)

¢
definitions of Reach (7.2) and reach (7.6) , }

{ leap-frog over closure (2.66)

Succ . ¢ Vf <;; ¢ Vf . succ Ef

definitions of Succ (7.1) and succ (7.5), monotonicity }
¢ { of composition, coreflexives duplicate (2.32)

x2' . ¢ Vf <;; ¢Ef . x2' A xl· ¢Ef <;; ¢ Vf . xl (712)

This last proposition will be taken as invariant of the loop. \Ve now show
that this suffices for Vi and £1 to determine the final components in Be,
as the second conjunct of (7.10) also follows from it:

Sir· ¢ Vf

definition of Sir (7.3) , distribution of composition}
<;; { over intersection -right-analogue of (2.15)

Reach· ¢ Vf n Reach'· ¢ Vf

(7.11) above follows from (7.12), }
<;; { coreflexives included in id

¢ Vf . reach Ef n Reach'

<;; { Dedekind's rule (2.19), symmetry of coreftexives (2.32) }

¢ Vf . (reach Ef n ¢ Vf . Reach')

<;; { intersection, coreflexives duplicate (2.32) }

¢ Vf . Reach'

{ converse (2.16), symmetry of coreftexives (2.32) }

(Reach· ¢ Vf)'

c { (7.11) above again, converse (2.18) }

(¢ Vf . reach Ef)'

<;; { coreBexives included in id, converse (2.18) }

(reach Ef)' .

Hence, (7.12) does imply both conjuncts of (7.10). To postulate the two con
ditions in (7.12) as invariants, we use property (2.40) for the transformation
of coreflexive expressions into vector expressions and, since they will not be
further manipulated, we name them as definitive invariants:

Invl x2'· Vf <;; Ef

Inv2 xl· Ef <;; Vf

138

In the calculation that led to these two conditions, several design decisions
were made. To start with, it was decided to deal with tbe first conjunct
of (7.10) before the second; tben, the following two steps strengthened tbe
demonstrandum to arrive at (7.11). As mentioned in the hints, detecting
a possible application of the leap-frog over closure rule gave rise to such
a strengthening. Symmetric decisions could have been made by initially
choosing the second conjunct of (7.10). Using properties of converse -(2.16),
(2.18)- and symmetry of botb Str and corefiexives, the subsequent weak
ening of Str to Reach would have led to the closure being leap-frogged
rightwards instead of leftwards. We would have obtained a mirror image of
Invl and Inv2, with the roles of xl and x2 interchanged. There are no

obvious reasons to favollI either of these two options over the other and we
thus stick to our initial choice.

We finalise the issue of the final components by showing that Q3 is also im
plied by Inul and Inu2. First, definition of Succ (7.1), Inul and Inv2 im
ply Suce· VI ~ VI. Then, definition of Reach (7.2) and property (2.68) of
closure give us Reach· VI <;; VI. Finally, definition of Str (7.3) and inter
section imply Str· VI <;; VI, and the fact that str E <;; Str then implies
Q3

The final components have been dealt with: Q3 and (7.9) hold under Con
ditions Invl and Inv2.

Intermediate Components We now deal with the intermediate compo
nents, Le. the second half of se as stated in equation (7.8). We have seen
that edges in Ej determine the final components. On top of that, we would
like them to play no role in the computation of the rest of the components.
Hence, we now search for conditions that make the intermediate components
dependent solely on edges in Ei, i.e. conditions under which the foliowing
holds:

A(.tr E) . Vi = A(str Ei) . Vi .	 (7.13)

We proceed, with a manipulation quite similar to the one of (7.9), thus:

(7.13)
¢=	 { power transpose, vectors and coreHexives (2.53) }

.tT E· ¢ Vi = str Ei . ¢ Vi

{ E:2 Ei , monotonicity of str and composition}
str E· ¢ Vi <;; str Ei . ¢ Vi

{ coreHexives (2.33) }

str E· ¢ Vi <;; str Ei

139

{ definition of str (7.7) , intersection (2.6) }

strE· ¢ Vi <;: reachEi 1\ strE· ¢ Vi <;: (reach Ei)". (7.14)

Unlike with (7.10), we now choose to continue the calculation with the second
conjunct:

str E . ¢ Vi <;: (reach EI)"

converse -(2.16), (2.18)-, }

{ symmetry of str E and corefiexives

¢ Vi . str E <;: reach Ei

~ { definition of str (7.7), intersection}

¢ Vi . reach E <;: reach Ei

coreflexives included in id -as before, thiS}
~ { prepares us to apply the leap-frog rule

¢ Vi . reach E <;: reach Ei . ¢ Vi (7.15)

~ { definition of reach (7.6) , leap-frog over closure (2.67) }

¢ Vi . succ E <;: succ Ei . ¢ Vi

definition of succ (7.5) , monotonicity of }
~ { composition, coreflexives duplicate (2.32)

¢ Vi . xl . ¢E <;: xl· ¢Ei 1\ ¢Ei . x2' <;: x2'· ¢ Vi

converse -(2.16), (2.18)-, }
{ symmetry of corellexives (2.32)

¢Vi·xl·¢E <;: xl·¢E, 1\ x2·¢Ei <;: ¢Vi·x2. (7.16)

Again, this last proposition will be taken as invariant of the loop, but we still
need to show that the first conjunct of (7.14) also follows from (7.16):

str E . ¢ Vi

definition of str (7.7), distrihution Of}c { composition over intersection (2.15)

reach E· ¢ Vi n (reach E)"· ¢ Vi

corefiexives included in id; converse (2.16), }
<;: { symmetry of corellexives (2.32)

reach E n (¢ Vi . reach E)"

<;: { (7.15) ahove follows from (7.16), converse (2.18) }

reach E n (reach Ei . ¢ Vi)"

{ converse (2.16), symmetry of corellexives (2.32) }

reach E n ¢ Vi . (reach Ei)"

<;: { Dedekind's rule (2.19), symmetry of corellexives (2.32) }

4Vi . (¢ Vi . reach E n (reach Ein

140

~ { intersection, corellexives duplicate (2.32) }

¢ Vi . reach E

~ { (7.15) above again}

reach Ei . ¢ Vi

~ { corellexives included in id }

reach Ei .

Therefore, (7.16), to be taken as invariant, suffices for both conjuncts of
(7.14) to hold. However, we will postulate only the second conjunct of (7.16)
as invariant since the first follows from Inv2, as we now show:

¢ Vi . xl . ¢E ~ xl . ¢Ei

split E by Q2, distribution of ~ and composition over }
{ union -(2.14)' (2.38)-, universal property of union (2.5)

¢Vi . xl . ¢EI ~ xl . ¢Ei /I ¢ Vi . xl . ¢Ei ,; xl . ¢Ei

coreflexive version of Inv2; second conjunct }
{= { is true since coreflexives are included in id

¢ Vi . ¢ VI· xl ~ xl· ¢Ei
{ corellexives versus vectors -(2.32), (2.39)- }

¢(Vi n Vf) . xl ,; xl . ¢Ei

{ left-hand side is empty by Q1 and (2.36) }

true .

We thus only postulate the vector-version, via property (2.40), of the second
conjunct of (7.16):

[nv3 x2·Ei'; Vi.

Note again the design decision of first dealing with the second conjunct of
(7.14) by strengthening it to (7.15). It is the opposite decision to the one
that was taken when dealing with the final components. Had we used for
the intermediate components the same strategy that was used for the final
components, we would have arrived at the xl-x2 mirror images ofthe COll

ditions that were actually obtained. \Ve will not get into details, but point
out that such mirror images would form a "difficult" invariant if conjoined
to Invl and Inv2, in the sense that the iteration would then not be able
to explore edges in a one-by-one manner. This led to using the opposite
strategy when dealing with the intermediate components and, thus, to Inv3
as defined above.

As it happened with Q3 before, assumption Q.4 can now be shown to
follow from the new invariant. The argument is similar, albeit slightly more

141

elaborate) to the one that showed Q3 from [nvl and Inv2. First, use
definition of succ (7.5) and (7.16), which we have proved to follow from Inv2
and InuS, to show that (succ E)O . ¢ Vi ~ ¢ Vi . (succ E)O . Translate this
into a vector expression with the aid of (2.40) to obtain (s'Ucc £)0 . Vi S;;; Vi.
Then, use definition of reach (7.6) and property (2.68) of closure to get
(reachEY· Vi ~ Vi. Definition of str (7.7) and intersection then imply
str E· Vi ~ Vi, i.e. Q4.

Finally: the jntermediate components have also been dealt with: Q4 and
(7.13) hold under condition Inv3 -and Inv2 -.

The x- V-E Equations So far, our only definitive invariants are [nvl,
[nv2 and [nuS, all of which express relationships between the extremes of

the edges inspected so far and the vertices inspected so far. These are what
we call x- V -E equations. Left behind were two other such equations, which
constrained the subgraph seen so far to be consistent: P2 and PS. In the
light of equations [nvl to [nuS these can be simplified and we dedicate
ourselves to such a task now.

We first deal with P2 thus:

xl· E ~ V

{ splits given by QI and Q2 }

xl· (EjUEi) ~ Vju V,

distribution of composition over union (2.14), }
{ universal property of union (2.5)

xl . Ej ~ Vj U Vi f\ xl· Ei ~ Vj U Vi

{ Inv2 makes first conjunct true}

xl . Ei ~ Vj U V, (7.17)

{ union}""
xl·Ei~Vi

Hence, provisional invariant P2 can be disposed of by taking:

Inv4 xl· Ei ~ Vi .

However) the question arises whether the last step of the calculation above,
the only strengthening step, was sensible, in the sense of pu tting at risk the
feasibility of the conjoined invariants. Discussion of this is delayed until after
dealing with P3, which we proceed to do at once:

x2·E ~ V

{ splits given by QI and Q2 }

142

x2 . (Ef U Ei) C; Vf U Vi

distribution of composition over union (2.14L }
{ universal property of union (2.5)

x2 . Ef C; Vf U Vi 1\ x2· Ei C; Vf U Vi

{ Inv3 makes second conjunct true}

x2 . Ef C; Vf U Vi

Hence, we can dispose of P3 by postulating:

Inv5 x2·Ef C; Vfu Vi

Since [nv5 is equivalent to P3 l no risk has been taken this time.

We now go back to qnestioning the strengthening of (7.17) into Inv4. Had
we taken the former as invariant, no doubts would be cast on the replacement
of P2 by it since both statements are equivalent. If we can show that from
a computation state in which (7.17) holds a hannless assignment statement
establishes Inv4 , we will have shown that feasibility of (7.17) implies feasi
bilityof Inv4 and, hence, that the strengthening in dispute is safe. We call
such an assignment harmless if all other invariants are maintained.

The restriction imposed by Inv4 is that the xl-extremes of Ei must lie in
Vi , instead of unrestrictedly in Vj U Vi. Were this not true, one could try a

simple transferral of the offending edges to Ej to solve the problem. Consider
the set F defined to be Ei n xl o

. Vf , i.e. the set of edges in Ei with
xl-extremes in Vf. We claim that assignment Ef, Ei := Ef U F , Ei - F
establishes Inv4 if (7.17) holds initiallYl and that it also maintains invariants
Invl to Inv:J as well as Inv5. The proof of this claim boils down to
some non-interesting juggling with the calculus of relations that the reader
must already be familiar with -rules of the lattice structure and shunting of
fUDctions is all it takes-; we thus omit it. The only provisional invariant at
risk under the assignment at issue is Q2, but this is trivially maintained as
the assignment just shuffles the partition.

We must remark that any other strengthening, viz. reducing the right-hand
side of (7.17) to Vf or reducing the right-hand side of Inv5 to either Vf
or Vi, would have given rise to infeasible or to lldifficult" invariants.

To summarise l we have done away with provisional invariants P2 and P3
by postulating Inu4 and Inv5, which complete the set of x- V-E equations.

Finishing Off Let us review what has happened to the provisional invari
ants up to this point, and then proceed to finish with the ones not yet taken
care of. Out of the P-invariants only P1 still needs to be dealt with, since we

143

have just seen P2 and PS leaving, and P4 follows from the Q-invariants.
Out of the Q-invariants only Ql and Q2 remain, since QS and Q4 were
taken care of by the first three definitive invarlants Invl to Inv3.

Due to the introduction of sets VI, Vi, EI and Ei, it seems reasonable
to get rid of the sets we started out with: V and E. This calls, in order
to sort PI out, for partitioning SC as \vell into, say, SCI and SCi, which
would hold each half of SC as stated by equation (7.8). But such halves are
expressed in terms of E, which we want to get rid of. This problem is solved
by appealing to (7.9) and (7.13), which hold on account of Inv! to I"v3 and
which give us AStr· VI and A(str Ei) . Vi as the corresponding halves
for SCf and SCi.

Variable SC was fixed in the specification as the program variable to hold
the final result of the computation and, therefore, it cannot be sent away the
way V and E were. Since it is clear that the SCI-half would be the one
accumulating the final result, we can refrain from introducing SCI and keep
SC to play its role. Hence, we take care of PI by introducing program
variable SCi and postulating:

1nv6 SC = ASt,·· VI

1nv7 SCi = A(str Ei) . Vi

As for Ql and Q2, we only need to scrap the bits that refer to the discarded
V and E and keep:

1nv8 :- VI n Vi = 0

1nv9 .= EI n Ei = 0

We have finally completed our toy ninefold invariant. As usual, we will let
Inv denote the conjunction of Invl to Inv9.

Before moving on to the next section, we need to remark that, in spite of
having discharged variables V and E, we will stilI use them in the rest of the
chapter. However, they will only represent abbreviations for the expressions
VI U Vi and EI U Ei, respectively, instead of being program variables.

This makes all the recorded facts about V and E in this section still valid,
with the exception of Pi and (7.8) due to the fact that the role of variable
SC was changed later. In particular, we will make use of (7.9) and (7.13),
which imply the following alternative phrasings of Inv6 and Inv7:

1nv6' SC = A(str E) . VI

111v7' SCi = A(st,· E)· Vi

144

Invl x2"· VI s EI
Inv2 xl ·EI s VI
Inv3 x2·Ei s Vi
Inv4 xl· Ei s Vi
Inv5 x2 . EI s VI u Vi
Inv6 SC ~ /l.Slr· VI
Inv7 SCi ~ /I.(slr Ei) . Vi
Inv8 VI n Vi ~ 0
Inv9 E/nEi ~ 0

Inv6' SC ~ /1.(sir E) . VI
Inv7' - SC, ~ /1.(sir E) . Vi

Figure 7.18: The Ninefold Invariant

A summary of the whole invariant is shown in Figure 7.18.

7.3 Setting Up the Rest of the Iteration

This section presents the other three important components of the design of
an iteration: guard, initialisation statement and variant.

Conjunct Inv6 of the invariant implies the postcondition if conjoined to
VI ~ Vert. Hence, we take VI i' Vert as guard.

All nine conjuncts of the invariant are easily established by assigning the
empty relation to every variable. This is consistent with the operational
view that the variables hold values related to the subgraph seen so far since,
initially! nothing has been seen.

According to the guard and the initialisation, variable VI is empty at the
heginning and must grow until it holds all the vertices of the graph. This
suggests VI itself as variant along with J as well-founded relation. -As
usual, we assume both the vertex set and the edge set of the input graph to be
finite.- However, this is too naive a variant, since expecting VI to increase
on each iteration ignores the computation plan underlying the design of the
invariant: the progressive construction of intermediate components until they
can become final components. It is more sensible to expect that on each
iteration one of the following occurs:

•	 the set of final vertices is augmented due to the realisation that the
construction of an intermediate component has been finished and it

145

must then be passed to the set of final components -this would also
involve changes in the sets of final edges, intermediate vertices and
intermediate edges, but we focus on the augmentation of Vf as the
central indication of progress in this case- ;

•	 keeping the set of final vertices fixed, the set Ef is augmented as
the result of detecting edges that do not and will not contribute to
the make-up of non-final components, be they intermediate or not yet
started;

•	 keeping the sets of final vertices and edges fixed, new vertices are added
to Vi in order to make the construction of intermediate components
progress; or

•	 keeping the sets of final vertices, final edges and intermediate vertices
fixed ~ new edges are added to Ei also in order to make the construction
of intermediate components progress.

We then postulate (Vf, Ef, Vi, Ei) as variant expression using the well
founded lexical ordering induced by ~, i.e. progress will be guaranteed as
follows:

Prg '= (Vf => Vfo)

V (Vf=Vfo 1\ Ef=>Efo)

V ((Vf,EJ) = (Vfo,Efo) 1\ Vi=>Vi o)

V ((Vf,Ef, Vi) = (Vfo,Efo, Viol 1\ Ei => Eio)

As customary by now, after setting up the iteration, we present a summary
of how the initial specification statement in (7.4) has been refined so far:

SC: [true , SC = AStr, Veri I
introduce local block and initialised iteration}

i;; { according to discussion above

I[var SCi: Vec (P Veri) ;
Vf, Vi : Vec Veri; Ef, Ei : Vec Edge;

SC,SCi, Vf, Vi, Ef,Ei := 0,0,0,0,0,0;
do Vf,< Vert --+ SC, SCi, Vf, Vi, Ef, Ei :

I Vf ,< Vert 1\ Inv, Inv 1\ Prg I
od

II

7.4 Making the Iteration Progress

Armed with invariant, guard and variant, we proceed in this section to de
velop preliminaries for the iteration body. These preliminaries correspond to
the exploration of means of making progress, as determined by the variant,
whilst maintaining the invariant.

Augmenting VI Augmentation of the set VI is the prime way to make
progress, as it also entails augmentation of the set of completely computed
strongly connected components of the graph. We assume VI is augmented as
the result of finalising the construction of one of the intermediate components,
which is then transferred to the set of final components. Conditions under
which this is feasible can be calculated.

An assignment of the form V/:= VI u W guarantees augmentation of VI
if W is such that:

W ,. 0 /\ W n VI = 0 (7.19)

We want W to be the set of vertices comprising one of the intermediate
components, Le. comprising an element of SCi. Such an element would be
a power-element of type P Veri which, by the power-transpose isomorphism
(2.52), should correspond to a unique vector over Vert: our sought after W.
We thus take W to be such that AW ~ SCi. This gives us, on account of
Inv7' , property (2.61) of quotient sets, and Q4 ,tbat W,. 0 and W ~ Vi
bold. Requirements (7.19) on Ware then fulfilled because VI and Vi are
disjoint by Inv8 .

Transferral of the selected component AW involves shifting, not only the
vertices W, but also some edges as well. We name the set of such edges F
and assume it must be a subset of Ei 1 Le. F ~ Ei. An appropriate value
for F can be calculated as part of the analysis of the invariants.

From all the above, we conclude that the assignment under which mainte
nance of the invariants must be analysed is:

SC, SCi, VI, Vi, EI, Ei

:= SCUAW,SCi-AW, VluW, Vi-W,ElUF,Ei-F

For the sake of compactness, we will denote the result of applying the sub
stitution above to Invl by aInvl, and the same goes for Inv2, Inv3,
et cetera.

We first proceed with the x- V-E invariants. We only show the results of

147

the calculations, carried out using rules of the lattice structure:

alnvl x2'· IV ,;; Ef u F

alnv2 xl . F ,;; Vf u IV

alnv3 x2 . (Ei - F) ,;; IV

alnv' xl . (Ei - F) ,;; IV

8Inv5 x2 . F ,;; Vf U Vi

Adding the aforementioned -reasonable- assumption F ~ Ei , we then ob
tain, first, that the last one holds:

8Inv5 true

and, second, that two of the others give the value F must have:

8Inv2 1\ alnv' F = Ei n xl'· IV .

Finally, with the value of F having been determined, the remaining two
x- V -E equations provide conditions under which the transferral of W to
the set of final components is viable:

8rnvl 1\ arnv3 x2' . IV ,;; E 1\ x2'· IV n Ei ,;; xl'· IV .

In words, all the outgoing edges of W have been inspected. And, either
these are in Ef, in which case they lead into final components by Inv2,
or they lead back into ~V, which shows W is not connected to any other
intermediate component.

As for the rest of the invariants, Inv6 and Inv7 are maintained without ad
ditional assumptions. A fully formal proof of this claim would call for a little
calculus of equivalence classes in order to make the presentation attractive.
We only argue informally as follows. An' was drawn from SCi. By Inv71

this means W is a (str E)-class included in set Vi. After the assignment
statement at issue, which shuffles Vf, Vi I Ef and Ei, the full set of in
spected edges E remains invariant but W is then included in Vf. Hence,
IV is still a (str E)-class though not included in Vi but in Vf. Preser

vation of Inv6' and Inv71 requires, therefore, that An" is subtracted from
SCi and added to SC. Assuming the conditions for the maintenance of the
x- V -E invariants shown above, since such invariants imply the equivalence
between Inv6 and Inv6', and between Inv7 and Inv7', we conclude that
Inv6 and Inv7 are thus also maintained under such conditions.

Maintenance ofthe disjointness invariants InvB and Inv9 is straightforward.

148

Augmenting Ef According to the variant, if Vf cannot be augmented as
above, we ought to try augmenting set Ef without altering Vf. An increase
in Ef can be accomplished by an assignment of the form Ef:= Ej U e ,
where e is an edge such that e ~ Ej. Even though the variant allows Vi
and Ei to be changed in this case, it is worth first exploring the effect of
altering only Ef . It turns out that no other change is necessary.

Again, the effect of the assignment above on the invariants will be denoted
by aInvl l aInu%! , and so on. The x- V·E invariants impose conditions on
the extremes of e. Inv3 and Inv4 are not affected by the assignment at
issue. For the others, we obtain:

&lnvl - true,

&lnv2 - xl . e <;: VI ,

&lnv5 - x2 . e <;: VI U Vi

The xl-extreme of e must then be in Vj, and its x2-extreme must be either
in Vj or in Vi since atoms are irreducible. But, were the x2-extrerne of e
included in VI, shunting function x2 by (2.23) would entail e <;: x2"· VI
and, therefore, edge e should be in EI by Invl , contradicting our original
assumption that, in order to make progress, e had been drawn from EI.
We thus conclude that maintenance of the invariant requires:

xl . e <;: Vf II x2· e <;: Vi .

Further information on the set from which e originates can be deduced.
Since e must not belong to Ej, it must come either from Ei or from E.
Were e drawn from Ei , the fact that its xl-extreme should be in Vj would
contradict Inv4 since VI and Vi are disjoint. Hence, it must be the case
that e <;: E .

Invariants Inv6, Inv7 and Inv8 are trivially maintained since the variables
involved are not altered. Inv9 is also maintained due to e being taken from
E.

Augmenting Vi We now explore augmentation of set Vi. This must be
achieved via an assignment of the form Vi:= Vi U v , where v is a vertex
not in Vi. Since VI cannot be altered and must be kept disjoint from Vi,
vertex v must come from V. Again, we first explore the possibility of not
altering Ei in spite of such an alteration being allowed by the variant and,
again, it turns out that such a change is not necessary.

Invariants Invl and Inv2 are unaffected by the assignment at issue. Inv3,
Inv4 and Inv5 are easily shown to be maintained since their left-hand sides

are unaltered a:s their right-hand sides increase. Inv6 is unaffected, whereas

149

1nv7 requires a change on variable SCi that we derive below. 1nv8 is
maintained since v comes from V ,and 1nv9 is unaffected.

For the maintenance of 1nv7, the required change on SCi is worked out as
follows:

Inv7 [SCi, Vi := SCi', Vi U v]

{ substitution}

SCi' = A(slr Ei) . (Vi U v)

distribution of composition over union (2.14); }
{ power-transpose fusion (2.51), v is a function

SCi' = A(slr Ei) . Vi U A(str Ei . v)

{ Inv7 }
SCi' = SCi U A(slr Ei . v) .

By 1m3 and 1nv4, both extremes of edges in Ei are explored vertices
included in Vi. Since new vertex v comes from the set of unexplored
vertices V, its (str Ei)-class should be a singleton that comprises only v
itself. This is the kind of manipulation we had in mind when we pointed out
before that a Little calculus of equivalence classes would enhance the quality
of the presentation. As a modest example, we show the proof of this claim
in full:

str Ei . v = v

{ str Ei is reflexive}

strEi·v<;;;v

.;= { definition of sir (7.7), intersection}

reach Ei . v <;;; v

{ definition of reach (7.6) , closure (2.68) }

stice Ei . v <;;; v

definitions of suee (7.5) an<!.J (2.34) , }

.;= { intersection, v included in V

xl . Ei . Eio . x2° . V <;;; v

.;= { 0 is a zero of composition and is the least relation}

Eio . x2° . V <;;; 0
Schroder's right-exchange rule (2.22), converse (2.16), }
the universal relation of type 1 f- 1 is the identity

{ relation and, therefore, it is the case that 0' = id

x2·Ei~V

{ Inv3, union}

150

troe .

Hence, new vertex 11 should indeed form a new singleton intermediate com
ponent. We then finally conclude that, in this case, the appropriate as
signment statement to achieve progress without spoiling the invariant is
SCi, Vi := SCi U ,\v, Vi U v .

Augmenting Ei To close this section, we deal with the last choice for
making the iteration progress: increasing Ei whilst keeping VI, El and
Vi fixed. Such an increase must be achieved with edges not in Ei or EI)

in order both to guarantee progress and to maintain disjointness of final and
intermediate edges. Hence, assigmentEi:= Ei U e with e ~ E is explored.

The effect on the x- V-E invariants gives conditious on the extremes of e.
[nvl, [nv2 and [nvS do not mention Ei and are thus unaffected. For
[nv3 and [nv4 , the following holds;

aInv3 x2 . e ~ Vi

aInv4 xl . e ~ Vi

As for the rest of the invariants, [nv6 is not affected, [nv7 requires reorgan
ising the intermediate components as explained below, [nvB is not affected,
and [n119 is maintained for having drawn e from E.

Regarding [nv7, as equivalence relation str Ei grows, some equivalence
ch"lSes in the partition SCi might need to be merged. The fact that both
extremes of new edge e must lie, as stated above, in Vi means that e con
nects, in one direction, two intermediate components in SCi. If these two
components were already connected in the opposite direction, a cycle has
been created and, therefore, the components in such a cycle must be merged
into a single component. The calculations regarding this are very knotty and
we only give an overview.

We start by spelling out the key property of str involved in this manipula
tion. If F is an edge set and I is an edge, then:

sir (F U n = sir F U C· Co } (7.20)
where C = reachF· xl· f n (reachF)o. x2· f .

Set C comprises the union of aU the (str F)-components chained ina cycle
under reach (F U J) , if such a cycle exists, tbat is. If no such cycle ha.s been
created, C turns out to be empty.

Properly (7.20) provides a bandle on aInv7. Let W be C [F, f := Ei, eJ .
This means W is the new intermediate SCi-component that should result

151

from merging those components chained into a cycle by new edge e. Hence,
augmenting Ei with e requires the following updating of SCi:

if W = 0 --. skip
~ W # 0 --. SCi := (SCi - A(str Ei) . W) u AW
fi

The expression A(str Ei) . W above denotes the sub-partition in SCi that
must be merged into the single AW. The set of such components can be
equivalently expressed in terms of only SCi and W thus:

(u c : c <;; SCi A E· C <;; W : c) ,	 (7.21)

where c is a dummy that ranges over elements of PVert.

7.5 Assembling the Iteration Body

The previous section explored means of making the iteration progress, but
we still need to assemble the odds and ends into a correct iteration body.
Correct meaning that it refines the specification statement left in our last
refinement step in page 146;

SC, SCi, VI, Vi, EI, Ei: [VI # Vert A Inv, Inv A Prg I . (722)

This will give shape to a program that correctly refines the initial specification
(7.4). And we wiH consider this program our final program, yet further
refinement and some implementation details will be briefly discussed in the
next and last section.

Preconditions for Progress Each of the four ways to make progress was
subject to some conditions on the various pieces of data used. We gather
such conditions in the list that follows:

(i) Augmentation of	 VI requires the existence of an intermediate compo
nent W, i.e. for which AW <;; SCi holds, such that x2°· W <;; E
and x2°· W n Ei ~ xr· W .

(ii) Augmentation of EI requires the existence of an unexplored edge e,
i.e. for which e <; E holds, with extremes such that xl· e <; VI and
x2·e<;Vi.

(iii) Augmentation of Vi requires the existence of an unexplored vertex v,
i.e. for which v <; V holds.

(iv) Augmentation of Ei requires the existence of an unexplored edge e,
i.e. for which e ~ E holds, with extremes such that xl· e ~ Vi and
x2· e ~ Vi .

152

We now analyse this List to gain a better understanding on how to fit together
the progress-making statements.

First, a connection is drawn between case (i) and cases (ii) and (iv). Case (i)
requires the existence of a component W such that x2"· ~V ~ E , which is
equivalent to x2°· W - E being empty and means that all outgoing edges
of W have been explored. Cases (ii) and (iv), on the other hand, require
an unexplored outgoing edge of Vi. Since Vi comprises all the vertices in
partition SCi, such an edge must go out from, I.e. have its x2-extreme in,
an intermediate component. Formally:

x2'e <;; Vi

{ Q4, reflexivity of str E }

x2· e <;; strE· Vi

{ Inv7', power-transpose cancellation (2.50) }

x2 . e <;; E . SCi

{ extensionality (2.29) }

x2 . e <;; E· (U c : c <;; SCi : c)

distribution of composition over}
{ union, atoms are irreducible

(3 c ; c <;; SCi x2 . e <;; E· c)

change of quantification dummy lV := E . c, }
{ power-transpose isomorphism (2.52)

(3 W : AW <;; SCi : x2· e <;; W)

shunting of functions (2.23); both cases (ii) a~ (iv) }
require e to be unexplored -i.e. included in E - ,

{ universal property of intersection (2.6), subtraction

(3 W : AW <;; SCi: e <;; x2'· W - E) . (7.23)

Therefore, cases (Ii) and (iv) also require, as case (i) does, tbe existence of
an intermediate component W, with the difference that now x2"· W - E
should be non-empty and an edge drawn from it is needed.

After this observation, we proceed with the actual assembly of cases for the
body of the iteration. Recall that we are in the process of dealing with
tbe specification stat.ement (7.22). Therefore, the guard VI # Vert can be
counted in as a precondition.

No Intermediate Components Having seen t.hat (i), (ii) and (iv) all
require the existence of an intermediate component, only (iii) is applicable
when SCi is empty. To apply (iii) it is required that V is non-empty, which
indeed follows from SCi being empty as we now argue. First note that

153

SCi is empty if and only if Vi is empty; this can be formally shown using
[nv7. Partition SCi being empty tben implies V being equal to VI, and
VI does not contain all the vertices of the graph on account of the guard.

Hence, V # Vert holds and, tbus, so does Vol 0 .

We conclude that the following Hnaked" guarded statement does the job when
there are no intermediate components at all:

SCi = 0 --+ II	 var v: Vert ;

v :~ V; SCi, Vi := Av, v

II
Note that we have made use of the fact that Vi is empty on account of SCi
being empty.

An Intermediate-to-Final Component Case (i) is dealt with straight
forwardly by assembling its precondition and progress-making statement in
a guarded command of the following form:

(3W:AW<;;SCi x2'·W-E=0

/\ x2'· W n Ei <;; xl'· W)

--+ I[var W: Vee Vert ;
F : Vee Edge ;

II

Some Intermediate-nat-Final Components To tackle cases (ii) and
(iv) we use the fact that the requirement on the x2-extreme of new edge e
is equivalent to (7.23). This means there must be an intermediate component
W that is not final yet. Not final on account of its set of outgoing edges

not having been fully explored, Le. x2°· W - E being non-empty. Picking
such a component plus one of its unexplored outgoing edges gets us prepared
to handle cases (ii) and (iv). However, such cases only apply when the other
extreme, Le. the xl-extreme, of the edge is in VI or in Vi, and there is the
third possibility of it being in V. This third potential situation is handled
via a combination of (iii), whereby the unexplored new vertex is added to
the family of intermediate components, and (iv), regarding the new vertex
as already a member of Vi.

All the above is formally arranged in a guarded statement as follows:

(3W: AW<;;SCi: x2'·W-E#0)

--+ \I var W: Vee Veri;
e : Edge; v: Vert ;

W : [true , 1\W <;: SCi " x2°· W - E "f 0] ;

e :~ x2°· W - E; v := xl· e ;

if v <;: VI --+

o v <;: Vi --+

Dv<;:V--+

Ii

JI

In the third brauch of the inner alternation, where (iii) ilnd (iv) are combined,
the rather complex progress-making statement of case (iv) can be simplified.
This is due to the fact that, having just added via (iii) the xl ~extreme of
e to Vi, no need of merging components arises. Formally, this corresponds
to W as used by case (iv) in pages 151-152 being empty. The result of
this simplification is shown in Figure 7.24, where the body of the iteration is
assembled.

Finishing Off The three guards of the "naked" guarded commands we
have given are complete, this meaning that their disjunction is equivalent
to true. The guarded commands at issue can therefore be joined in an
alternation that correctly refines the specification statement of the body of
our iteration. The whole alternation is presented in Figure 7.24.

For proving that the disjunction of the guards holds, we will make use of
contracted graphs. Let G be a graph and Q be an equivalence relation on
its vertex set. The Q-contraction of G is a graph whose vertices are the
Q-equivalence classes and whose edges are those edges of G not incident on
Q-equivalent vertices. The extremes of edges in the Q-contracted graph of
G are the Q-classes to which their extremes belong in G. It is a fact that,

for every equivalence relation Q, if G is finite then so is its Q-contraction.

The particular use we need of contractions is that determined by the equiva
lence relation stT Ei on the input graph. In such a contracted graph, there
cannot be cycles linked by edges in Ei: the existence of a cycle of such a
form would imply that the vertices in the cycle form a bigger (8tT Ei)-class
when united, contradicting the assumption that each vertex in the cycle was
a (sir Ei)-class in the first place.

Let us now prove that the guards are complete. Assume neither tbe second
guard nor the third guard holds. This means:

(VW: AW<;:SCi: x2°·W-E"f0

V x2°· W n Ei Ii: xl ° . W)

155

if SCi = 0 ---+
II var v: Vert;

v :~ V; SCi, Vi := Av, v

JI
~ (3W : AW ~ SCi: x2"· W - E = 0

II x2'· W n Ei ~ xl'· w) ---+

II var W: Vee Vert ;

F : Vee Edge ;
W:	 I true, AW ~ SCi II x2'· W - E = 0

II x2'· W n Ei ~ xl'· WI;
F := Ei n xl°· W i
SC,SCi:= SCUAW,SCi-AW;

Vj, Vi, Ej,Ei := Vj U W, Vi -W, Ej U F, Ei-F

JI

~ (3 W : AW ~ SCi: x2'· W - E 'I 0) ---+

II var W: Vee Vert ;

e : Edge; v: Vert ;

W: [true, AW ~ SCi II x2'· W - E 'I 0 I;
e :~ x2°· W - E; v := xl . e ;
if v ~ Vj ---+ Ej:= Ej U e
~ v ~ Vi ---+ W := reach Ei . xl . e

n (reachEi),·x2·e;
if W = 0 ---+ skip
~ W'I0 ---+

SCi := (SCi - A(str Ei) . W) U AW
Ii·,
Ei := Ei U e

~ v ~ V ---+ SCi, Vi, Ei := SCi U Av, Vi U v, Ei U e;
Ii

JI
Ii

Figure 7.24: Alternation that refines the specification
statement of the iteration body (7.22)

156

(VW: AW <;; SCi : x2°·W-E = 0)

By predicate calculus, this implies:

(VW: AW <;; SCi : x2°·W n Ei 'l xr·W) (7.25)

We will now show that the first guard must hold as follows: Were it the case
that SCi -i' 0 holds, (7.25) would entail the existeoce of an infinite chain of
(str Ei)-classes linked by edges in Ei. This would contradict the fact that
the (str Ei)-contracted graph is finite and acyclic. Hence, we will conclude
that the first guard, i.e. SCi = 0, must hold if the other two guards do not.

We now proceed to construct the above-referred infinite chain. SUppose
SCi -i' 0. Then take an element AWo in SCi. By Inv7, set Wo must be

a (str Ei)-class and, by (7.25), there must be an outgoing edge of Wo in
Ei not leading back into fifO' Invariant Inv4 guarantees that such an edge
must go to a vertex in Vi and, therefore, into an element AWl, different
to AIVo, in SCi. The reasoning carried out for AWo applies to AWl as
well, i.e. it must be the case that WI is a (str Ei)-class for which some
outgoing edge in Ei leads into a different AW2 in SCi 1 et cetera. Hence,
we can construct an infinite chain [AWo 1 AMlj , AH-'2, ... J that implies the
aforementioned contradiction and thus shows the completeness of the three
guards in Figure 7.24.

7.6 Further Refinement

Up to this point we have arrived at an abstract program that we offer as
final. The level of abstraction determined by its use of sets, be it. in the
form of powersets or vectors, is no different to that of the programs that
were offered as final in previous chapters. However, some pieces of it are
even "less executable" than the average abstract program dealt with in this
thesis, e.g. the guards of the second and third branches of the alternation
in Figure 7.24. This section puts forward means of further refining our final
program towards an implementation, but without providing all the detailed
technicalities.

Data-Refining SCi Variable SCi holds the partition of set Vi of vertices
in conformity with the strong connectedness relation determined by set Ei
of edges. Without further provisos, partition SCi can have any shape. We
might say that it can be as "disorganised" as it wants, and this fact may
become a burden for the efficient evaluation of the guards of the main, i.e.
outermost, alternation. Imposing some order upon the shape of SCi solves
this problem, the order being that its components must be linked sequentially

157

without rightward references. More specifically, data-refining SCi to a list
in which all outgoing Ei-edges from any component must lead into the same
component, except for one edge that must lead into the immediate component
on its left, unless no such component exists.

Such. data refinement guarantees that the head of the "listified" SCi, the
head being the leftmost component, absorbs all its own outgoing Ei-edges
into itself. Formally, for the vector W that corresponds to the component
at the head of the list, the following holds:

x2° . W n Ei ~ xl"· W

Therefore, the second and third guards of the main alternation can be im
plemented just by inspecting whether all the outgoing edges of the head
component have been explored. By the same token, the specification state
ments that open the branches of these same guards can be implemented just
by picking the head of the list.

In the body of the third branch of the main alternation, another simplification
is brought about by this data refinement. Specifically, in the middle branch
of the alternation within it, i.e. the branch with v ~ Vi as guard. The value
therein assigned to W comes down to the set of vertices comprising the
initial segment of the list up to the component where the xl-extreme of e,
i.e. v, resides. Such a value is uever empty and the innermost alternation
can thus be disposed of retaining only its second branch, which now should
just contract the above-referred initial segment into one single component.

In all other assignments to SCi, it is simple to enforce the nG-rightward
references list structure.

Avoiding Computation of Complements and More Throughout the
program, repeated use is made of the expressions V and E -though the lat
ter is disguised as (-E) , which corresponds to (n E) -. As the reader might
recall, neither V nor E are variables of the program, but only abbrevia
tions for Vf U Vi and Ef U Ei 1 respectively, which means that computing
the complemented expressions above can be quite expensive.

Introduction via data refinement of two new variables V' and E' with cou
pling invariant (V' = VI U Vi f\ E' = EI U Ei) does away with the cost
of computing complements. All assignments to Vf, Vi 1 Ef and Ei are
extended with appropriate assignments to V' and E'.

Introduction of E' also brings even better news: variables Ef and Ei, as
well as local variable F, can be eliminated since they become useless! The
only place where Ei is used for computing values to be assigned to other

158

variables is in the middle branch of the inner alternation. As remarked above
when data-refining SCi., the value assigned to W in the branch at issue can
be computed without using Ei.. The value assigned to SCi in the same
branch can also be computed without the help of Ei by using expression
(7.21).

Driving Back Home Recall the introduction to this chapter, which re
marks that our motivation for tackling the problem of computing strongly
connected components came from two previous pieces of work by Dijkstra
and Kruseman Aretz. The program obtained after all the simplifications
mentioned in this section is very similar to the programs offered in Dijkstra's
[45, Chapter 25] and [46], before arrays are brought in, and in Kruseman
Aretz's [89], except for not having data-refined SC along with SCi into a
list.

7.7 Related Work

Tarjan's algorithm for the computation of the strongly connected components
of a directed graph [141] is much better known than the algorithmic solutions
offered by Dijkstra and Kruseman Aretz in their respective essays. The
correctness of Tarjan's algorithm relies on structural properties of what he
calls a palm tree: a subtree of the input graph created by depth-first traversal.
Tarjan also numbers the vertices of the graph according to the order in which
the palm tree is constructed, and attaches a second numbering to each vertex
in conformity with some other structural properties of the tree.

Kruseman Aretz points out that in his solution "also a depth-first graph
traversal is present" and supports his claim with "symptom[s) for it". Also,
he considers that the vertex numbering is "overspecific" and "obscures 'l im
portant characteristics of the algorithm [89, page 259]. We agree with his
claim on the presence of a depth-first traversal in his solution, yet hold the
opinion that it would be pleasant to see such a link being made "obvious"
by some kind of formal structure. As regards the vertex numbering, we also
side with Kruseman Aretz, yet note the fact that the properties of palm
trees on which such a numbering is based have proved useful in the design
of many other algorithms. These include Tarjan's algorithm for the com
putation of biconnected components [141}, Kosaraju and Sharir's algorithm
for the computation of strongly connected components [I 38], Hopcroft and
Tarjan's algorithm for testing the planarity of a graph and building its pla
nar embedding [771, and a few others. Since the correctness proofs of all
these algorithms make use of properties of palm trees, it seems that a good
deal of work must be done to support Kruseman Aretz's claim of the "over

159

specificity" and llobscnrity" brought about by palm trees in a more general
context. Again, we remark that we sympathise with his claim, bnt also note
that there is a long way to go before adequate presentations of all the afore
mentioned algorithms are built via suitable abstractions that send away palm
trees yet still connect the whole algorithmic family.

Apart from the already mentioned essays by Dijkstra, tbe only two other ref
erences we know of that offer derivational presentations of algorithms based
on depth-first traversals are Gries and Jinynn Xue's [701 and Madhukar et
al. 's [96]. Both presentations are, in spirit, similar. They use the same stan
dard techniques for development of imperative programs we make use of, but
no graph-oriented formal calcnli for the manipulation of the properties their
algorithms rely on. Therefore, their manipulation of preconditions, post
conditions, invariants and so on is carried out in a conventional fasbion, or
simply omitted by referencing standard books on graph theory. No calcu
lations regarding graph properties are present at all. It seems that adding
to their work the kind of manipulations with relations we put forward in
this thesis is worth researching. We also remark that the derivations in both
articles are based on Tarjan's palm trees.

A related reference is that of King and Launchbury's implementation of
depth-first traversal grapb algorithms in a functional programming language
[84, 91]. Derivations of the programs are not given, but compact and nice
correctness proofs in a calculational style are. The possibility of tnrning such
correctness proofs into derivations is worth exploring.

160

Chapter 8

Conclusions

This thesis has presented a small portion of graph theory and aJgorithmics
using the calculus of binary of relations as working tool. The goals we initially
set up have been, in our opinion, successfully achieved l yet nevertheless with
some drawbacks. This final chapter offers a summary of the results obtained
in this thesis and an appraisal of their worth. Hints on further research are
given.

Relations and Graphs Chapter 2 presented the basics of graph theory
within the calculational framework of binary relations. A considerable part
of its contents is the result of previous research, most of it gathered in [136],
but the treatment of a few concepts and properties, viz. the biconnectedness
equivalence relation, the formalisation of acyclicity in undirected graphs and
its linkage to connectedness through the covering relation, and the manip
ulation of paths under the allegorical approach to datatypes, appears to be
original work. We are quite pleased with these results and we believe the
exploration of graph theory with the calculus of relations is a task worth
continuing.

We feel particularly contented with the covering relation defined in Section
2.6 and the exploitation of its properties thus far. Vrle first came across it
when dealing with the acyclicity instance of the general algorithm for the
computation of maximal sets in Chapter 5. Its further application to linking
acyclicity with connectedness in Section 2.7, and to reasoning about edge
replacement in spanning trees in Section 6.3 and about cuts and crossings
in Section 6.5 was positively satisfying. Still, our understanding of the Link
between all these concepts can benefit from a deeper exploration of the cov
ering relation, striving for more compact presentations of its linking role.
The covering relation makes USe of function adj which, on account of its
distributivity over arbitrary unions, as briefly mentioned in Section 6.8, is
the lower adjoint of a Galois connection between the lattice of edge sets and

161

the lattice of symmetric relations on the vertex set of any given undirected
graph. Most, if not all, of the properties of the covering relation are related
to this fact. A good starting point for this suggested further exploration is
the study of the covering relation in the context of pair algebras [9].

The study of paths under the allegorical approach to datatypes can also be
extended by researching its connection to the modelling of paths within the
calculus of n-ary relations of Moller [104, 1051.

Calculational Graph Algorithmics Chapters 3 to 7, the bulk of this
thesis, were concerned with the derivation of programs that solve graph
computational problems. These derivations were carried out by combin
ing predicate, refinement and relational calculi. This combination allowed
the treatment of algorithmic principles as well as graph properties in a cal
culational fashion. We think we have succeded in proving the applicability
of the framework of binary relations to the derivation of graph algorithms.
Nonetheless, there is a good deal of room for improvement in the work we
have prl'sented, which we will comment on as we summarise the achievements
in the cnntents of these chapters.

Chapter 3 presented, as a warming-up exercise, the derivation of graph algo
rithms that correspond to the computation of the reflexive-transitive closure
of given input relations. These algorithms had. been treated derivationally
by others before [12, 133, 136], but we showed an innovative use of the fixed
point calculus for obtaining these algorithms first presented in [30J.

The general problem of computing representatives in Chapter 4 dealt with
a class of graph algorithms also related to closure that includes the mini
mum paths, shortest paths, and reachability problems -the last one was also
treated in Chapter 3-. All the different algorithmic solutions to this class of
graph problems previously derived by others [12, 1331 were successfully cov
ered once and for all. In Chapter 5, two graph algorithms were constructed
as instances of a general problem of computing maximal sets. These two
chapters are in tune with one of the main goals of the mathematics of pro
gram construction, viz. the successful abstraction of key concepts involved in
the design of an algorithm that permits eliminating unnecessary detail and
allows its derivation as an instance of a generic family of algorithms. Such
a generic approach is highly beneficial since the doors remain open to the
obtention of new instances. In the case of Chapter 5, as remarked in Section
5.1, every matroid provides a new instance of the general problem and its
algorithmic solution. The discovery of more instances can be aided by other
calculi, as regards proving that such new candidates satisfy the requirements
of the generic family.

162

Chapters 6 and 7 are both the main source of satisfaction and of dissatisfac
tion of our tackling of calculational graph algorithmics. On the one hand,
satisfaction comes from the fact that they present our biggest case-studies
thus far, especially Chapter 7, and the derivations therein presented are suc
cessful in so far as algorithmic solutions are actually obtained by deduction
and calculation. On the other hand, the length and knottiness of the calcu
lations is dissatisfying. It is not fair to put this down to the cODlplexity of
the problems therein treated. Neither do we think this is evidence against
the applicability of the calculus of relations to graph algorithmics. We be
lieve this comes down to not having been able to come up yet with adequate
abstractions of the key graph-theoretical and algorithmic features involved;
such abstractions would aid a more compact presentation. Some thoughts
on potential sources of improvement follow.

Chapter 6 made a good deal of use of the general derivation in the preceding
chapter. Rather than reusing, adapting and extending the results of Chapter
5, it might weB be the case that the general development can be carried
out with such extra features already under consideration. This would allow
the obtention of the algorithms of Chapter 6 as plain instances of the general
solution. We believe this is true both of the minor adaptation that catered for
Kruskal's algorithm and of the larger adaptation and extension that catered
for Prim's algorithm. Clearly, this calls for further research. Besides, the
graph properties involved could be dealt with more concisely by searching
for better abstractions. This relates to the previous remarks on the covering
relation since, for instance, as briefly commented on in Section 6.8, Galois
connections can make edge replacement in spanning trees be treated in a
more succint fashion.

Chapter 7 includes a number of lengthy calculations as well as several proper
ties treated only by l'verbal formality". Again, we think this can be improved
by continuing the search for a more compact expression of the core of the
graph properties and algorithmic principles the problem involves. We lay
stress once more on our belief that this is not a drawback of the calculus of
relations itself in relation to graph algorithmics. On the contrary, we are quite
pleased with the fact that relational calculations allowed the "discovery" of
the main features of Dijkstra's derivational treatment of the same problem
in [46]. It seems to us that the framework of relations provides a solid foun
dation on which to build the required further abstractions. An instance of
this -and a somewhat trivial one- is the little calculus of equivalence classes
referred to in Section 7.4.

Some Final Remarks We close this chapter -and this thesis!- with a
few concluding remarks and some other incidental observations.

163

It must be admitted that we needed some training in derivational program
ming and this thesis served such a purpose considerably. Consequently, we
must confess that, in most cases, we developed the derivations with an al
gorithmic solution in mind. However, we had only roughly sketched ideas of
such solutions and the final details were always calculated. Still, we exerted
ourselves for deducing or explicitly presenting the reasons that gave rise to
every design decision. \Ve believe we have succeded in such an endeavour,
even when we were obviously heading for a specific kind of final solution as,
e.g., when deriving Kruskal's and Prim's algorithms for the computation of
minimum spanning trees.

We think we have positively helped graph algorithmics to move towards a
more modern, and clearer, presentation of its often intricate details. There
is still an awful lot of work to be done, not only for the vast number of
other graph algorithmic problems not tackled in this thesis or in the other
references we have given, but also for the need of further improvement on the
presentation of the few problems treated here, especially those in Chapters
6 and 7.

As a somewhat incidental remark, we comment on an interesting and some
what amusing article by Harary and Read on "The Null-Graph", i.e. the
graph with no vertices and, hence, no edges [72]. They show how many weI!
known authors on graph theory advocate for the admittance Or rejection of
this "paradoxical beast" as a graph. Our -·very- limited knowledge of graph
theory has not yet given us any signs of the null-graph being troublesome.
Accordingly, we would uvote" for its acceptance as a graph. All the graph
concepts, properties and algorithms presented in this thesis apply to the null
graph without this leading to any contradictions or paradoxes. Particularly
interesting is the case of Prim's algorithm, whose first step requires draw
ing an arbitrary vertex of the input graph and, hence, cannot deal with the
null-graph. As remarked in Section 6.7, we are pleased to have designed a
version of Prim's algorithm applicable to the null-graph as well as to non
connected graphs, the other characteristic of input graphs most versions of
Prim's algorithm reject.

Another incidental observation regards finiteness of graphs. In all our algo
rithmic chapters, the graphs were assumed to be finite in order to guarantee
termination of the derived programs. Functional programming languages
with lazy evaluation [23, 81, 144J are well-known for being able to manip
ulate infinite data structures as easily as finite ones. In many cases, the
correctness of functional programs is independent of whether the data struc
tures being manipulated are finite or infinite. The techniques used in func
tional programming for reasoning about such data structures could well help
extending graph algorithms to deal with the infinity case.

164

Bibliography

[1]	 C.J. Aarts. Galois connections presented calculationally. Graduating
Dissertation, Eindhoven l.1niversity of Technology, 1992. Available from
http://yww.vin.tue.nl/win/cs/vp/.

[2J	 C.J. Aarts, R.C. Backhouse, P.F. Hoogendijk, E. Voermans, and
J.C.S.P. van der Woude. A relational theory of datatypes. Working
document, 1992. Available from http://vvv.win,tue.nl/win/cs/wp/.

[3)	 A.V. Aha, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis
of Computer Algorithm!3. Series in Computer Science and Information
Processing. Addison-Wesley, 1974.

[41	 R-J.R. Back. Correctness preserving program refinements: Proof the
ory and applications. Tract 131 l Mathematisch Centrum, Amsterdam,
1980.

[5]	 R.-J .R. Back. A calculus of refinements for program derivations. Acta
Informatica, 25:593-624, 1988.

[6]	 R.-J.R Back and J. von Wright. Refinement Calculus. Graduate Texts
in Computee Science. Springer-Verlag, 1998.

[7J	 R.C. Backhouse. Program Construction and Verification. International
Series in Computer Science. Prentice Hall, 1986.

[81	 R.C. Backhouse. Making formality work for us. EATCS Bulletin,
38:219--249,1989.

[9J	 R.C. Backhouse. Pair algebras and Galois connections. Information
Processing Letters, 67(4):169--175, 1998.

[10)	 RC. Backhouse and B.A. Carre. Regular algebra applied to path
finding problems. Journal of the Institute of Mathematics and its Ap
plications, 15:161-186, 1975.

165

[11]	 RC. Backhouse, H. Doornbos, and P.F. Hoogendijk. A class of com
muting relators. Department of Mathematics and Computing Science,
Eindhoven University of Technology, 1992. Available from
http://vvv.wiD.tue.nl/vin/cs/wp/.

[12]	 RC. Backhouse, J.P.H.W. van den Eijnde, and A.J.M. van Gasteren.
Calculating path algorithms. Science of Compu.ter Programming,
22(1-2):3-19, 1994. Earlier version in [13].

[13]	 RC. Backhouse and A.J.M. van Gasteren. Calculating a path algo
rithm. In R.S. Bird, e.c. Morgan, and J.e.p. Woodcock, editors, Math
ematics of Program Construction, Lecture Notes in Computer Science
669, pages 32-44. Springer-Verlag, 1992.

[14]	 RC. Backhouse, guest editor. Special issue on the calculational
method. Information Processing Letters, 53(3), 1995.

[15]	 M. Barr and C. Wells. Category Theory for Computing Science. Inter
national Series in Computer Science. Prentice Hall, 2nd edition, 1995.

[16]	 R. Berghammer. Combining relation calculus and the Dijkstra-Gries
method for deriving relational programs. To appear in Journal for
Information Sciences, 1999.

1I 7]	 R. Berghammer, R. Behnke, and P. Schneider. Relational programs in
the RELVIEW system, 1997. Available from
bttp://vvv.informatik.uni-kiel.de/Nprogsys/relviev.btml.

[18]	 R Berghammer, T.F. Gritzner, and G. Schmidt. Prototyping relational
specifications using higher-order objects. In J. Heering, K. Meinke,
B. Moller, and T. Nipkow, editors, Higher Oraer Algebra, Logic ana
Term Remting, Lecture Notes in Computer Science 816. Springer~

Verlag, 1993.

[19]	 R. Berghammer and B. von Karger. Algorithms from relational speci
fications. Chapter 8 of [32J, pages 131-149.

[20]	 R. Berghammer, B. von Karger, and A. Wolf. Relation-algebraic deriva
tion of spanning tree algorithms. In J. Jeuring, editor, Mathematics of
Program Construction, Lecture Notes in Computer Science 1422, pages
23-43. Springer, 1998.

[21J	 R.S. Bird. An introduction to the theory of lists. In M. Broy, ed
itor, Logic of Programming ana Calculi of Discrete Design, NATO
ASI Series F: Computer and Systems Sciences, Volume 36, pages 3-42.
Springer-Verlag, 1987.

166

[221	 R.S. Bird. A calculus of functions for program derivation. In D.A.
Thrner, editor, Research Topics in Functional Progmmming, Univer
sity of Tex:as at Austin Year of Programming Series, pages 287-308.
Addison-Wesley, 1990.

[23)	 R.S. Bird. Introduction to Functional Programming using Haskell. In
ternational Series in Computer Science. Prentice Hall, 2nd edition,
1998.

[24]	 R.S. Bird and O. de Moor. From dynamic programming to greedy
algorithms. In B. Moller, H. Paetsch, and S. Schumann, editors, Formal
Program Development, Lecture Notes in Computer Science 755, pages
43-61. Springer-Verlag, 1992.

[251	 R.S. Bird and O. de Moor. Solving optimisation problems with cata
morphisms. In R.S. Bird, C.C. Morgan, and J.e.p. Woodcock, editors,
Mathematics 0/ Program Construction, Lecture Notes in Computer Sci
ence 669, pages 45-66. Springer-Verlag, 1992.

[26J	 R.S. Bird and O. de Moor. List partitions. Fom,"1 Aspects of Comput
ing, 5(1):61-78, 1993.

[27]	 R.S. Bird and O. de Moor. Relational program derivation and context
free language recognition. In A.W. Roscoe, editoT l A Classical Mind:
Essays in Honour of C.A.R. Hoare, International Series in Computer
Science, pages 17-35. Prentice Hall, 1994.

[28]	 R.S. Bird and O. de Moor. Algebra of Programming. International
Series in Computer Science, IOOth Title. Prentice Hall, 1997.

[291	 R.S. Bird, O. de Moor, and P.F. Hoogendijk. Generic functional pro
gramming with types and relations. Journal of Functional Program
ming, 6(1):1-28, 1996.

[30)	 R.S. Bird and J.N. Ravelo. On computing representatives. Information
Processing Letters, 63(1):1-7,1997.

[31J	 B. Bollob"". Graph Theory. Graduate Texts in Mathematics 63.
Springer-Verlag, 1979.

[32J	 C. Brink, W. Kahl, and G. Schmidt, editors. Relational Methods in
Computer Science. Advances in Computing Science. Springer, 1997.

[33]	 T. Brunn, B. Moller, and M. Russling. Layered grapb traversals and
hamiltonian path problems - An algebraic approach. In J. Jeuring l edi
tor l Mathematics of Program Construction, Lecture Notes in Computer
Science 1422, pages 96-121. Springer, 1998.

167

[34]	 K. Clenaghan. Calculational graph algorithmics: Reconciling two ap
proaches with dynamic algebra. Report CS-R9518, CW!, 1995.

[35]	 W.F. Clocksin and C.S. Mellish. Progmmming in Prolog. Springer.
Verlag, 4th edition, 1994.

[36J	 T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo
rithms. The MIT Electrical Engineering and Computer Science Series.
MIT Press, 1990.

[37]	 S. Curtis. Partitions revisited. Qualifying dissertation for transfer to
DPhil status, Oxford University Computing Laboratory, 1993. Avail·
able from
http://vvv.comlab.ox.ac.uk/oucl/publications/books/algebra/.

[38]	 S. Curtis. A Relational Approach to Optimization Problems. DPhil the
sis, Oxford University Computing Laboratory, Programming Research
Group, 1996. Available as Technical Monograph PRG-122 and also
from
http://vvv.comlab.ox.ac.uk/oucl/publications/books/algebra/.

[39]	 S. Curtis. Dynamic programming: A different perspective. In R.S. Bird
and L. Meertens, editors, Algorithmic Languages and Calculi, pages 1
23. lFIP, Chapman & Hall, 1997.

[40J	 S. Curtis and G. Lowe. A graphical calculus. In B. Moller, editor, Math
ematics 0/ Progmm Construction, Lecture Notes in Computer Science
947, pages 214-231. Springer-Verlag, 1995.

[41J	 S. Curtis and G. Lowe. Proofs with graphs. Science 0/ Computer
Programming, 26:197-216, 1996. Earlier version in [40].

[42J	 B.A. Davey and H.A. Priestley. Introduction to Lattices and Or
der. Cambridge Mathematical Textbooks. Cambridge University Press,
1990.

[43]	 E,W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1, 1959.

[44]	 E.W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications 0/ the A CM, 18(8):453-457,
1975.

[45]	 E.W. Dijkstra. A Discipline 0/ Programming. Series in Automatic
Computation. Prentice Hall, 1976.

168

[46]	 E.W. Dijkst.ra. Finding the maximum strong components of a directed
graph (EWD376). In Selected Writings on Computing: A Personal
Perspective, Texts and l.'10nographs in Computer Science, pages 22-30.
Springer-Verlag, 1982.

[471	 E.W. Dijkstra and W.H.J. Feijen. A Method of Programming. Addison
Wesley, 1988.

[48J	 E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Se
mantics. Texts and Monographs in Computer Science. Springer-Verlag,
1990.

[49]	 R.:r..f. Dijkstra. Relational calculus and relational program semantics.
Report CS-R9408, University of Groningen, Department of Mathemat
ics and Computing Science, 1994.

[50]	 J.P.H.W. van den Eijnde. Conservative fixpoint functions on a graph.
In RS. Bird, C.C. Morgan, and J.C.P. Woodcock, editors, Mathemat
ics of Program Construction, Lecture Notes in Computer Science 669,
pages 80-99. Springer-Verlag, 1992.

[51]	 L. Euler. Solutio problematis ad geometriam situs pertinentis. Com
mentarii Academiae Scientarum Imperialis Petropolitanae, 8:128-140,
1736.

[52J	 L. Euler. The Konigsberg bridges. Scientific American, 189(1):66-70,
1953.

[531	 L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes
with embedded functions (or, Programs from outer space). In Prin
ciples of Programming Languages. ACM Press, 1996. Available from
http://vvv-cse.uta.edu/-fegaras/fegaras.html.

[54J	 L.M.G. Feijs and R.C. van Gmmering. Abstract derivation of transi
tive closure algorithms. Information Processing Letters, 63(3):159-164,
1997.

[55J	 RW. Floyd. Assigning meanings to programs. In J.T. Schwartz, editor,
Mathematical Aspects of Computer Science. American Mathematical
Society, 1967.

[56J	 L.R. Ford and D.R Fulkerson. Maximal flow through a network. Cana
dian Journal of Mathematics, 8:39!t-404, 1956.

[57)	 L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

169

[58]	 L.R. Foulds. Graph Theory Application•. Springer-Verlag, 1992.

[59]	 P. Freyd and A. Soedrov. Categories, Allegories. Mathematical Library,
Volume 39. North-Holland, 1990.

[60J	 A.J.M. van Gasteren. On the Shape of Mathematical Arguments. Lec
ture Notes in Computer Science 445. Springer-Verlag, 1990.

[61]	 A. Gibbons. Algorithmic Graph Theory. Cambridge University Press,
1985.

[62]	 J. Gibbons. Algebras for Tree Algorithms. DPhil tbesis, Oxford Uni
versity Computing Laboratory, Programming Research Group, 1991.
Available as Technical Monograph PRG-94.

[631	 J. Gibbons. Upwards and downwards accumulations on trees. In R.B.
Bird, e.c. Morgan, and J.e.p. \\7oodcock, editors, Mathematics of
Program Construction, Lecture Notes in Computer Science 669, pages
122-138. Springer-Verlag, 1992.

[64]	 J. Gibbons. An initial-algebra approach to directed acyclic graphs.
In B. Moller, editor, Mathematics of Program Construction, Lecture
Notes in Computer Science 947, pages 282-303. Springer-Verlag, 1995.

[65J	 J. Gibbons. Polytypic downwards accumulations. In J. Jeuring, edi
tor, Mathematics of Program Construction, Lecture Notes in Computer
Science 1422, pages 207-233. Springer-Verlag, 1998.

[66]	 J. Gibbons and G. Jones. The under-appreciated unfold. To appear in
International Conference on F'tmdional Programming, 1998. Ayailable
nom http://~vv.brookes.ac.uk/-p0071749/home.htm1.

[67]	 M. Gondran and M. Minoux. Graphs and Algorithms. Jobn Wiley &
Sons, 1984.

168]	 D. Gries. The Science of Programming. Texts and Monographs in
Computer Science. Springer-Verlag, 1981.

[69]	 D. Gries and F.B. Schneider. A Logical Approach to Discrete Math.
Texts and Monographs in Computer Science. Springer-Verlag l 1994.

[70]	 D. Gries and Jinyun Xue. The Hopcroft-Tarjan planarity algorithm,
presentation and improvements. Technical Report TR88-906, Depart
ment of Computer Science l Cornell University, 1988. Available from
http://wvv.cs.comell.edu/.

[71]	 F. Harary. Graph Theory. Addison-Wesley, 1969.

170

[72] F. Harary and RC. Read. Is the null-graph a pointless concept' In
R.A. Bari and F. Harary, editors, Graphs and Combinatorics, Lecture
Notes in Mathematics 406, pages 37-44. Springer-Verlag, 1973.

[73] C.A.R. Hoare. An axiomatic basis for computer programming.
munications of the ACM, 12(10):576--580, 583, 1969.

Com

[74) C.A.R. Hoare. Unified theories of programming. In M. Broy and
B. Schieder I editors, Mathematical Methods in Program Development,
NATO ASI Series F: Computer and Systems Sciences, Volume 158,
pages 313-367. Springer, 1997.

[75] C.A.R Hoare, l.J. Hayes, He Jifeng, C.C. Morgan, A.W. Roscoe, J.W.
Sanders, I.H. Sorenson, J.M. Spivey, and B.A. Sufrin. Laws of pro
gramming. Communications of the ACM, 30:672-686, 1987.

[76J C.A.R Hoare and He Jifeng. Unifying Theories of Programming.
ternational Series in Computer Science. Prentice Hall, 1998.

In

[77] J.E. Hopcroft and R.E. Tarjan. Efficient planarity testing. Journal of
the ACM, 21(4):549-568,1974.

[78] P. Jansson and J. Jeuring. PolyLib - A library of polytypic functions.
Chalmers University of Technology, 1998. Available from
http://vvw . cs. chalmers. serpatrikj/paly/.

[791 V. Jarnik. 0 jistem problemu minimalnim.
vedecke Sploecnosti, 6:57-63, 1930.

Pmca Momvske Prirodo

[80] G. Jones and J. Gibbons. Linear-time breadth-first tree algorithms:
An exercise in the arithmetic of folds and zips. Computer Science
Report 71, University of Auckland, 1993. Available from
http~//~.brookes.ac.uk/-p0071749/home.htmQ.

[81] M.P. Jones. The implementation of the Gofer functional program
ming system. Research Report YALEU/DCS/RR-1030, Yale Univer
sity, 1994. Available from
http://~.cs.nott.ac.uk/Department/Sta1f/mpj/.

[82] A. Kaldewaij. Programming: The Derivation of Algorithms. Interna
tional Series in Computer Science. Prentice Hall, 1990.

[83J B. von Karger and R. Berghammer. Computing kernels in directed
bichromatic graphs. Infonnation Processing Letters, 62(1), 1997.

[84) D.J. King and J. Launchbury. Structuring depth-first search algorithms
in HaskelL In Proceedings of the 22nd A CM Symposium on Principles
of Programming Languages, USA, 1995.

[85]	 J.H. Kingston. Algorithms and Data Structures: Design, Correctness,
Analysis. International Computer Science Series. Addison-Wesley, 2nd
edition, 1997.

[86]	 G. Kirchhoff. Ueber die Aufl6sung der Gleichungen, auf welche man bei
der Untersuchung der linearen Vertheilung galvanischer Strome gefiihrt
wird. Annalen der Physik und Chemie, 72:497-508, 1847.

[87J	 S.C. Kleene. Introduction to Metamathematics. Bibliotheca Mathe
matica, volume 1. North-Holland, 1952.

[88]	 B. Knaster. Un theoreme sur les fonctions d'ensembles. Annates de la
Societe Polonaise de Mathematique, 6:133-134, 1928.

[89]	 F.E.J. Kruseman Aretz. Maximal strong components: An exercise
in program presentation. In W.H.J. Feijen, A.J.M. van Gasteren,
D. Gries, and J. Misra, editors, Beauty is Our Business: A Birth
day Salute to Edsger W. DijkstTa, Texts and Monographs in Computer
Science, pages 251-261. Springer-Verlag, 1990.

[90J	 lB. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical
Society, 7, 1956.

[91)	 l Launchbury. Graph algorithms with a functional flavour. In J. Jeur
iug and E. Meijer, editors, Advanced Functional Programming, Lecture
Notes in Computer Science 925, pages 308-331. Springer-Verlag, 1995.

[92]	 E.L. Lawler. Combinatonal Optimization: Networks and Matroids.
Holt, Rinehart and Winston, 1976.

[93J	 RC. Lyndon. The representation of relational algebras. Annals of
Mathematics, 51:707-729, 1950.

[94]	 RD. Maddux. The origin of relation algebras in the development and
axiomatization of the calculus of relations. Studia Logica, 50(3-4):421
455, 1991.

[95]	 RD. Maddux. Relation-algebraic semantics. Theoretical Computer
Science, 160:1-85, 1996.

[96]	 K. Madhukar, D. Pavan Kumar, C. Pandu Ragan, and R. Sundar.
Systematic design of an algorithm for biconnected components. Science
of Computer Programming, 25:63-77, 1995.

[97]	 G.R. Malcolm. Algebraic Data Types and Program Transformation.
PhD thesis, Rijksuniv~rsiteit Groningen, 1990.

[98] G.R. Malcolm. Data structures and program transformation. Science
of Computer Programming, 14(2-3):255-279, 1990.

[99] Mathematics of Program Construction Group. Fixed-point calculus.
Information Proce"ing Letters, 53(3):131-136, 1995.

[100]	 L. Meertens. Algorithmics - Towards programming as a mathematical
activity. In M. Broy, editor, Logic of Programming and Calculi of
Discrete Design. Springer-Verlag, 1987.

[101]	 E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In J. Hughes, editor,
Functional Programming Languagej and Computer Architecture, Lec
ture Notes in Computer Science 523, pages 124-144. Springer-Verlag,
1991.

[l02J	 E. Meijer and J. Jeuring. Merging monads and folds for functional pro
gramming. In J. Jeuring and E. Meijer, editors, Advanced Functional
Programming, Lecture Notes in Computer Science 925, pages 228--266.
Springer-Verlag, 1995. Available from http://Wli'V.cs.ruu.nlrerik/.

[103]	 A. Mili, J. Desharnais, and F. Mili. Computer Program Construction.
Oxford University Press, 1994.

[104J	 B. Moller. Relations as a program development language. In
B. Moller, editor, Constructing Programj from Specijicationj. North
Holland, 1991.

[105J	 B. Moller. Derivation of graph and pointer algorithms. In B. Moller,
H. Partsch, and S. Schumann, editors, Formal Program Development,
Lecture Notes in Computer Science 755, pages 123-160. Springer
Verlag, 1992.

[106]	 B. Moller and M. Russling. Shorter paths to graph algorithms. In R.S.
Bird, e.c. Morgan, and J.c.P. Woodcock, editors, Mathematics of
Program Construction, Lecture Notes in Computer Science 669, pages
250-268. Springer-Verlag, 1992.

[107J	 B. Moller and M. Russling. Shorter paths to graph algorithms. Science
of Computer Programming, 22(1-2):157-180, 1994. Earlier version in
[106J.

[108]	 O. de Moor. Categories, Relations and Dynamic Programming. DPhil
thesis, Oxford University Computing Laboratory, Programming Re
search Group, 1992. Available as Technical Monograph PRG-98.

173

[109]	 O. de Moor. Categories, relations and dynamic programming. Mathe
matical Structures in Computing Science, 4:33--69, 1994.

[110]	 O. de Moor. An exercise in polytypic program derivation: repmin,
1995.	 Available from
http://wvv.comlab.ox.ac.uk/oucl/publications/books/algebra/.

[111]	 O. de Moor. A generic program for sequential decision processes. In
M. Hermenegildo and D.S. Swierstra, editors, Programming Languages:
Implementations, Logics, and Programs, Lecture Notes in Computer
Science 982, pages 1-23. Springer-Verlag, 1995.

[112]	 A. de Morgan. On the syllogism: IV, and on the logic of relations.
Transactions of the Cambridge Philosophical Society, 10:331-358,1864.
Reprinted in [113J.

[113]	 A. de Morgan. On the Syllogism, and Other Logical Writings. Yale
University Press, 1966.

[114]	 e.c. Morgan. The specification statement. ACM Transactions on
Programming Languages and Systems, 10(3):403-419, 1988. Reprinted
in [118].

[115J	 e.c. Morgan. Programming from Specifications. International Series
in Computer Science. Prentice Hall, 2nd edition, 1994.

[1I6J	 e.c. Morgan and P.R.B. Gardiner. Data refinement by calculation.
Acta Informatica, 27:481-503, 1990. Reprinted in [118).

[117J	 e.c. Morgan and K.A. Robinson. Specification statements and refine
ment. IBM Journal of Research and Development, 31(5):546-555, 1987.
Reprinted in [118).

[1I8J	 e.C. Morgan and T.N. Vickers, editors. On the Refinement Calculus.
FACIT Series in Computer Science. Springer-Verlag, 1994.

[119J	 1M. Morris. A theoretical basis for stepwise refinement and the pro
gramming calculus. Science of Computer Programming, 9(3):287-306,
1987.

[120J	 D.A. Naumann. Beyond Fun: Order and membership in polytypic im
perative programming. In J. Jeuring, editor, Mathematics of Program
Construction, Lecture Notes in Computer Science 1422, pages 286-314.
Springer-Verlag, 1998.

[121J	 M. Ortega and O. Meza. Grafos y Algoritmos. Equinoccio, Ediciones
de la Universidad Simon Bolivar, 1993.

174

(122]	 R. Paige and S. Koenig. Finite differencing of computable expressions.
ACM Tt-ansactions on Programming Languages and Systems, 4(3):402
454, 1982.

[123]	 C.S. Peirce. Description of a notation for the logic of relatives, re
sulting fcorn an amplification of the conceptions of Boole's calculus of
logic. Memoirs of the American Academy of Sciences, 9:317-378 l 1870.
Reprinted in [1241·

[124]	 C.S. Peirce. Collected Papers. Harvard University Press, 1933.

[125]	 B.C. Pierce. Basic Category Theory for Computer Scientists. Founda
tions of Computing Series. !\HT Press, 1991.

[126]	 R.C. Prirn. Shortest connection networks and some generalizations.
Bell System Technical Journal, 36, 1957.

[1271	 J.N. Ravelo. A class of graph algorithms. Qualifying dissertation for
transfer to DPhil status, Oxford University Computing Laboratory,
1996. Available from
http://vwv.comlab.ox.ac.uk/oucl/publications/books/algebrat.

[1281	 J.N. Ravelo. Calculating with relations for graph algorithmics. Pre
sented at RelMiCS'97 -3rd International Seminar on the Use of Re
Lational Methods in Computer Science-, Hammamet, Thnisia, 6-10
January 1997. Available from
http://~.comlab.ox.ac.uk/oucl/people/jesus.ravelo.html.

[129]	 J.N. Ravelo. Two graph algorithms derived. To appear in Acta Infor
matica, 1999. Earlier version in [128].

[130]	 F.J. Rietman. A note on extensionality. In J. van Leeuwen, editor,
Proceedings Computer Science in the Netherlands 91, pages 468-483,
1991.

[131]	 M. Russling. An algebraic treatment of graph and sorting algorithms.
In Proceedings of the 14th International SCCC Conference, Chile, 1994.

[132]	 M. Russling. A general scheme for breadtb-first graph traversal. In
B. Moller, editor, Mathematics of Program Construction, Lecture Notes
in Computer Science 947, pages 380-398. Springer-Verlag, 1995.

[133]	 M. Russling. Deriving a class of layer-oriented graph algorithms. Sci
ence	 of Computer Programming, 26:117-132, 1996. Earlier version in
[132].

175

[1341	 M. Russling. Deriving General Schemes for Classes of Graph Algo
rithms. PhD thesis, Univcrsitiit Augsburg, 1996. Published in the
series	 "Augsburger ~'Iathematisch-Naturwissenschaftliche Schriften" I

WiBner.

[1351	 G. Schmidt and T. Strohlein. Relation algebras: Concept of points and
representability. Discrete Mathematics, 54:83-92, 1985.

[136J	 G. Schmidt and T. Strohlein. Relations and Graphs: Discrete Math
ematics for Computer Scientists. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1993.

[137]	 E. Schroder. Vorlesungen liber die Algebra der Logik (Exacte Logik),
volume 3: "Algebra und Logik der Relative". Teubner, Leipzig, 1895.

[138]	 M. Sharir. A strong-connectivity algorithm and its applications in data
Bow analysis. Computers and Mathematics with Applications, 7(1),
1981.

[139J	 M. Sharir. Some observations concerning formal differentiation of set
theoretic expressions. ACM Transactions on Progmmming Languages
and Systems, 4(2):196-225, 1982.

[140]	 J.M. Spivey. A categorical approach to the theory oflists. In J.L.A. van
de Snepscheut, editor , Mathematics of Progmm Construction, Lecture
Notes in Computer Science 375, pages 399-408. Springer-Verlag, 1989.

[141]	 R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146-160, 1972.

(142)	 A. Tarski. On the calculus of relations. Journal of Symbolic Logic,
6(3):73-89, 1941.

[143]	 A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285-309, 1955.

[144]	 S. Thompson. Haskell: The Craft of Functional Programming.
Addison-Wesley, 1996.

[145J	 K. Thulasiraman and M.N.S. Swamy. Graphs: Theory and Algorithms.
John Wiley and Sons, 1992.

[146]	 S. Warshall. A theorem on boolean matrices. Journal of the ACM,
9(1):11-12, 1962.

[147]	 N. Wirth. Program development by stepwise refinement. Communiro
lions of the ACM, 14(4):221-227, 1971.

176

Appendix A

Two Proofs for Chapter 4

This appendix presents the proofs of two statements that were left unproved
in Chapter 4. These statements are, first, the key Thinning the Closure
rule and, second, the extra invariant of the general algorithmic solution to
the representatives problem. Each proof is presented in a section of this
appendix.

A.I The Thinning the Closure Rule

This section presents the proof of the Thinning the Closure rule (4.18). For
the sake of convenience, we repeat and re-label the rule here:

g(BUD, C-Q·D) ~ g(B,C) -Q·D

provided C· D' <;; R } (A.l)
S·D-Q·B <;; C

Some Lemmas To prove (A.I), we will make use of some properties of
function 9 1 which we now present as lemmas.

First, we state the monotonicity properties of g. Take the definition of
9 (4.11), and note that both union and composition are monotonic while
subtraction is antimonotonic on its second argument. Combining this with
monotonicity of the least fixed-point operator jJ. (2.56) , we obtain that 9 is
antimonotonic on its first argument and monotonic on its second.

The second lemma reads as follows:

g(B,C) = g(B,C)-Q·D provided	 C n Q . D = 0 , } (A.2)
D<;;B.

177

To prove it, we choose to start manipulating the right-hand side -since it is
more complex that the left-hand side and it thus offers more opportunities
for "simplification"- and argue as follows:

g(B,C)-Q·D
{ definition of 9 (4.11), fixed-point computation (2.54) }

(C U (S·g(B,C) - Q·B)) - Q·D
{ distribution of subtraction over union (2.12) }

(C-Q·D) U (S·g(B,C) - Q·B - Q·D)

subtraction/union (2.13) and }
{ distribution of composition over union (2.14)

(C-Q·D) U (S·g(B,C) - Q·(BUD))

by properties of the lattice structure: }
first proviso is equivalent to C - Q . D = C ,

{ second proviso is equivalent to BuD = B

C U (S·g(B,C) - Q·B)

= {definition of 9 (4.11), fixed-point computation (2.54) }

9 (B, C)

Our third and final lemma corresponds to the following two inequalities:

g(B,C) 2 C, (A.3)

g(B,C) 2 S·g(B,C) - Q·B (A.4)

Both of them are shown to hold by applying fixed-point computation (2.54)
to the left-hand side via the definition of 9 (4.11), and then reducing the
union thus obtained to just one of its operands.

The Main Proof Let us now deal with the big task, the proof of (A.l).
By definition of the thinning relation Ol (4.7) , we need to prove,

9(B U D, C - Q. D) ~ 9 (B, C) - Q . D , (A.5)

g(B,C)-Q·D ~ (QnR)· g(BUD, C- Q·D). (A.5)

The first demonstrandum (A.5) is easily shown in only two steps,

9 (B U D, C - Q . D)

(A.2) with B,C,D ,= BUD, C-Q·D, D;}
{ the provisos hold trivially

9 (B U D, C - Q . D) - Q. D

~ { monotonicity properties of g

178

The second demonstrandum (A.6) will take much longer. To prove it, im
mediate intuition suggests that we move Q. D to the right-hand side by
universal property of subtraction (2.7), and that we then apply fixed-point
induction (2.55) on 9 (B, C). Unfortunately, by doing so we would arrive
at a false statement. In order to achieve a safe application of fixed-point
induction, we will pull out a "rabbW' based on the following property of
subtraction:

V-u = v-(V'nU) provided V c:; V' (A.7)

Using this property to transform the left-hand side of (A.B), with a suitably
chosen V', will allow us to proceed as intuition hinted initially. We argue
thus:

(kG)
{ introduce Wi, W2 := 9 (B, C), 9 (B U D, C - Q. D) }

Wi -Q·D c:; (QnR)· W2

-apply "rabbit" on the left-hand side- }
(A.7) with V,V',U:= Wi, (QnR)· Wi, Q·D;

{ the proviso holds on account of reflexivity of Q n R
Wi - «QnR)' Wi n Q. D) c:; (QnR)· W2

{ universal property of subtraction (2.7) }

Wi c:; (Q n R) W2 U (Q n R) . Wi n Q. D)

introduce }
Vi, V2.:~ (QnR)· Wi n Q·D, (QnR)· W2;

{ commutatlvlty of UllIon
Wi c:; Vi U V2

definitions of Wi and 9 (4.11) , }

<= { fixed-point induction (2.55)

C U (5· (Vi U V2) - Q. B) c:; Vi U V2

distribution of composition over union (2.14) }
{ and of subtraction over union (2.12)

C U (5· Vi - Q. B) U (5' V2 - Q. B) c:; Vi U V2

{ universal property of union (2.3) }

C c:; Vi U V2 (A.8)

1\ 5· Vi - Q. B c:; Vi U V2 (A.9)

1\ 5 . V2 - Q. B c:; Vi U V2 (A.IO)

Hence, it suffices to show these three conjuncts to complete the proof of the

179

Thinning the Closure rule.

For (A.8), we argue as follows, starting with the right-hand side:

VI u V2
:2 { definitions of VI and V2, reflexivity of Q n R }

(WI n Q . D) U W2

:2 { apply property (A.3) of 9 both to WI and W2 }
(C n Q·D) U (C-Q·D)

{ complementation}

C.

We now proceed to show (A.9). Note that the provisos of the Thinning the
Closure rule (A. 1) have not been used yet. They are only needed in the
-longL calculation that proves (A.9), which now follows:

S· VI - Q. B

{ definition of VI }

S·«QnR)·WI nQ·D)-Q·B

Dedekind's-,"ule (2.20) with }c;; { R, S, T .- Q, D, (Q n R) . WI

S· (QnR). WI·D" n Q). D - Q·B

C;; { definition of WI, property (4.14) of 9 }

S· ((QnR)·S··C·D" n Q). D - Q·B

C;; { first proviso! }

S· ((QnR)·S··R n Q). D - Q·B

since R is a preorder, requirement (4.16) on Rand S }c { entails S· C;; R by universal property of closure (2.62)

S· ((QnR)·R·R n Q). D - Q·B

by intersection and transitivity of R }
C;; { we have that (Q n R) . R . R C;; R

S·(RnQ)·D - Q·B

C;; { requirement (4.17) on Q, Rand S }

(QnR) ·S·D - Q·B

by intersection and transitivity of Q we }
C;; have that (Q n R) . Q C;; Q , subtraction

{ antimonotonic on its second argument
(QnR) ·S·D - (QnR) ·Q·B

C;; { property of subtraction: W· V - W . U C;; W· (V - U) }

180

(QnR)·(5·D-Q.B)
<;; { second proviso! }

(QnR)·C

(A.S) proved above, }<;; { distribution of composition over union (2.14)

(Q n R) . VI U (Q n R) . V2

= { definitions of VI and V2 }

(QnR)·((QnR)·WI n Q·D) U (QnR)·(QnR)·W2
distribution of composition over intersection (2.15), }

<;; { transitivity of Qn R

((Q n R) . WI n (Q n R) . Q. D) U (Q n R) . W2

by intersection and transitivity of Q }c { we have that (Q n R) . Q <;; Q
((Q n R) . WI n Q. D) U (Q n R) . W2

{ definitions of VI and V2 }

VI U V2 .

We finalise the whole proof by showing (A.lO):

5· V2 - Q·B

= { definition of V2 }
5 . (Q n R) . W2 - Q. B

<;; { requirement (4.17) On Q, R and S }

(QnR) ·5· W2 - Q·B
by intersection and transitivity of Q we }

c have that (Q n R) . Q <;; Q, subtraction
{ antimonotonic on its second argument

(QnR)·5· W2 - (QnR)·Q·B
<;; { property of subtraction: W· V - W . U <;; W· (V - U) }

(QnR)·(5· W2-Q·B)

complementation: W = (W n V) U (W V) }

=
with wy := 5· W2 Q . B , Q . D;

{ distribution of composition over union (2.14)
-this helps to reach the goal VI U V2 in two halves

(Q n R) . ((5· W2 Q. B) n Q. D)

U (QnR)·(5·W2-Q·B-Q·D)
{ introduce names Uland U2 for the two halves}

U1 U U2 .

lSI

Hence, it suffices to show that UI £:: VI and U2 £:: V2 hold. The key to
proving hath inclusions is property (A.4) of g. The first half is proved as
follows:

UI
definition of UI , }

£:: monotonicity properties of 9 entail W2 ~ Wi
{ -transforming W2 into Wi will take us to Vi

(QnR)·«S· WI-Q·B) n Q·D)

£:: { definition of WI , (A.4) }

(QnR)·(WI nQ·D)

£:: { distribution of composition over intersection (2.15) }

(QnR)·WI n (QnR)·Q·D
by intersection and transitivity of Q we have }

£:: { that (Q n R) . Q £:: Q, definition of VI
VI .

For the second half we argue:

U2
definition of U2, suhtraction/union (2.13) and}

{ distribution of composition over union (2.14)

(QnR)· (S· W2 - Q. (BUD))

£:: { definition of W2, (A.4) }

(QnR)· W2
{ definition of V2 }

V2 .

Done!

A.2 The Extra Invariant

When deriving the general algorithmic solution in Figure 4.20, an invariant
with two conjuncts was proposed and used to guide the construction of the
iteration. However, towards the end of the development, in page 75, a third
extra invariant was made use of:

1nv3 B·Co nQ=0.

We now show that Inv3 is indeed an invariant of the developed iteration.

182

Initial Establishment The initialisation statement B, C := 0, A estab
lishes [nuS due to 0 being a zero of both composition and intersection.

Maintenance Regarding the iteration bodYr since its first statement af
fects only variable D, it suffices to show that [nvS is maintained by the
assignment:

B,G:= BUD, (G U (S·D-QB))-Q·D . (11..11)

Before analysing the effect of this assignment on [nvS, we take two prelim
inary steps.

First, we present a different phrasing of [nvS which will be more comenient
to manipulate:

GB'nQ=0 (A.12)

This is equivalent to [nvS by properties of converse and symmetry of Q.
Second, we transform the expression assigned to variable C in (All) as
follows:

(G U (S·D-Q·B)) -Q·D

= { distribution of subtraction Over union (2.12) }

(G-Q·D) U (S·D-Q·B-Q·D)

subtraction/union (2.13) and }
= { distribution of composition over union (2.14)

(G-Q·D) U (S·D - Q·(BUD))

= { introduce names WI and W2 }

WI U W2 .

Finally, we prove that assignment (All) maintains [nuS by showingit main
tains (A.12). Assume (A.12) holds and tben argue thus:

Left-hand side of (A.12) [B, C := BUD, WI U W2]

= { substitution}

(WI U W2) . (B U D)' n Q
distribution of composition, converse }

= { and intersection over union

(WI B' n Q) U (WI· D' n Q) U (W2· (B U D)' n Q)

first operand is empty due to the following: }
= { by subtraction we have WI <;; C, (A.12)

(WI· D' n Q) U (W2· (B U D)' n Q)

183

by subtraction we have }
<;; { WI <;; Q. D and W2 <;; Q. (B U D)

(Q . D . D' n Q) U (Q. (B U D) . (B U D)' n Q)

<;; { Dedekind's rule (2.20) twice}

(Q·D n Q·D)·D'

U (Q·(BUD) n Q.(BUD))· (BUD)'

{ complementation}

o .
Done!

