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Abstract  With the growing influence of e-Science, substantial quantities of re-
search are being facilitated, recorded, and reported by means of distributed com-
puting. As a result, the scope for malicious intervention continues to grow, and so 
do the rewards available to those able to steal the models and data that have signif-
icant commercial value. Researchers are often reluctant to exploit the full benefits 
of distributed computing because they fear the compromise of their sensitive data 
or the uncertainty of the returned results. In this chapter, we propose two types of 
trustworthy distributed systems – one suitable for a computational system and the 
other for a distributed data system. Central to these systems is the novel idea of 
configuration resolver, which, in both designs, is responsible for filtering trust-
worthy hosts and ensuring that jobs are dispatched to those considered trustwor-
thy. Furthermore, the blind analysis server enables statistical analyses to be per-
formed on sensitive raw data – collected from multiple sites – without disclosing it 
to anyone. 
Keywords: trusted computing, trustworthy distributed systems, configuration veri-
fication server, blind data analysis, trustworthy grid 

1 Introduction 

In recent years, distributed systems have enjoyed a huge burst of popularity, most 
chiefly in the commodity computing model described as ‘Cloud Computing’. The 
term applies to a broad range of systems architectures, often categorized under the 
headings of Software/Platform/Infrastructure as a Service – and perhaps also sub-
sumes one of its progenitors ‘Grid computing’.   

A clear driver for such adoption is the benefit of using shared resources: load 
can be balanced across large numbers of hosts, peaks easily accommodated, and 
massive initiatives run as background tasks on systems which would otherwise be 
idle. To these is now added a ‘green’ agenda – that by taking advantage of econo-
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mies of scale and careful location of data centers, the ‘carbon footprint’ of any 
given computational task can be minimized. 

Demand for such models of computing also arises from unprecedented volumes 
of data for processing. Evidence-based science, and basic observations ‘born digi-
tal’ are driving this, as is closer scrutiny of results, giving rise to strong require-
ments on provenance, accurate data acquisition, and integrity in processing. This 
pattern is repeated across government, business, social networking, and more.  
Some applications give rise to more esoteric requirements, such as ‘digital rights 
management’ for all kinds of data, and elaborate rules for combining policies 
where several such managed data sources are merged – perhaps within a ‘blind 
analysis’ combination where neither data owner is permitted to see the other’s raw 
data, but both are interested in the results. 

All of this takes place against a background of ever-increasing sophistication in 
attacks. Precisely because there are so many high-value digital assets being 
brought into existence, there are also many attackers seeking to subvert them. 
There is much money to be made from subverting online business and much polit-
ical capital to be gained from manipulating certain scientific results. Even as 
processes are more transparent, there is ever more motivation to ‘tweak’ results 
just slightly in order to achieve a better result. 

Our focus in this chapter is to explore how technologies allied to Trusted Com-
puting can help to address these challenges, through the use of soundly-based 
practically-feasible architectures and designs. In the following section, we survey 
some motivating examples, and describe our perspective on the special challenges 
they represent: these requirements are summarized in Section 3. In Section 4, we 
present a sketch of the existing technologies for trust and virtualization which will 
form the basis of our architectures. This puts us in a position to discuss in Section 
5 the ways that other authors have proposed for using those technologies in a grid 
context – and the measure of consensus achieved in such accounts so far. Section 
6 surveys the remaining gaps. 

In Section 7 we present our own substantive contribution: designs for trustwor-
thy distributed systems, using in particular our concept of a configuration resolver 
to broker data about acceptable trustworthy system configurations. After this, we 
evaluate those designs against the requirements from Section 3. Section 9 is a dif-
ferent form of evaluation: a consideration of how these technologies could be dep-
loyed within the UK’s National Grid Service. Our conclusions and discussion of 
future work are at Section 10. 

2 Motivating Examples 

The domains of e-Science and e-Health provide us with good examples for moti-
vation: they are somewhat more accessible than many other domains where confi-
dentiality (of designs) is of greater concern. The following examples serve to illu-
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strate the common security problems of sharing computational resources or aggre-
gating distributed data within a virtual organisation. 

2.1 climateprediction.net and Condor Grids 

The first example application arises with the climateprediction.net project 
(climateprediction.net 2009), which functions by distributing a high quality cli-
mate model to thousands of participants around the world. It stands (or falls) on its 
ability to ensure the accuracy of the climate prediction methods and collected data. 
As a politically-charged field it could become a target for moderately sophisti-
cated attackers to subvert the results.  

This project highlights a common dual pair of problems: 
 

1. From the participant’s (resource provider) perspective, the untrusted code runs 
on their trusted system; they need to be convinced that the code is not mali-
cious, and the middleware used by the code (if any) are trustworthy, 

2. From the scientist's perspective, their trusted job is executed in an untrusted 
host without any assurance of the running environment; this host might return 
arbitrary or fabricated results never having run the original code, or steal their 
sensitive models and data.  

Such volunteer computing models represent one of the most challenging possible 
environments for computational integrity – but also one of the greatest possible 
assets for their task.  At its peak, for example, climateprediction.net was by some 
measure the largest computational climate model in the world.  Some tasks are 
amenable to duplication – so that if participants return fake results, these are dis-
covered by comparison with those from elsewhere – but this is plainly a waste of 
computational resources. 

Similar threats undermine the security of a Condor system (Thain, 
Tannenbaum and Livny 2005) which allows relatively smaller jobs to be distri-
buted in a Campus Grid setting (Wallom and Trefethen 2006). To mitigate the 
second problem it provides a digital certificate infrastructure for the scientist to 
identify resource/service providers and vice versa. Without robust mechanisms to 
safeguard the keys from theft, however, this solution offers only a modest im-
provement over legacy architectures. Moreover, rogue administrators might re-
place the compute nodes with malicious ones, tamper with them, or subvert their 
security configurations to steal sensitive data and/or return fabricated results. 

Even grids or clouds constructed from nodes within a managed data-centre are 
subject to the same concerns: the system manager may be subverted by a competi-
tor (through straightforward bribery, or through some sophisticated Trojan). 
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2.2 Healthcare Grids 

In ‘e-Health’, it is not hard to imagine instances where the clinical data is highly 
sensitive, and only the processed subsets may be released; nor is it hard to imagine 
scenarios where reconciliation of data from different sources is needed, but neither 
clinic trusts the other to see the raw data. Such data cannot normally be made 
available outside the healthcare trust where it is collected, except under strict eth-
ics committee guidance, generally involving anonymisation of records before re-
lease (Power, et al. 2002). 

Nevertheless, anonymisation reduces the amount of information available, pre-
cision of estimates and flexibility of analysis; and as a result, bias can be intro-
duced (Duncan and Pearson 1991). For example1, a researcher might be looking at 
association between age, diet and progression of colon cancer, and is aware that 
the risk immensely increases when one reaches the age of 50. Patient records for 
the first two attributes would be accessed through a GP practice and the third 
through a specialist clinic. The National Health Service (NHS) number 
(Freeman 2001) uniquely identifies a patient across the grid to enable the linking 
of data. In this scenario a graph plotted with anonymised age – ‘30-35’, ‘35-40’ ... 
‘65-70’ – is likely to miss out the important micro-trends all together; in fact, 
these would be better-observed with datasets closer to age 50. A supporting graph 
plotted with the actual age, say, between 45 and 55, would show these trends 
more clearly and improve the quality of the results. 

Moreover, this distributed query would require a concrete identifier, such as the 
NHS number, to join patient records collected from the GP and specialist clinic. 
In reality, however, it is unlikely that either would give out such potential identifi-
able information without the necessary confidentiality guarantees. Hashing NHS 
number can provide some assurance but it would still be vulnerable to brute force 
attacks. These problems require a trustworthy application to perform blind recon-
ciliation and analysis of the data from mutually-untrusting security domains: the 
researcher would only see this application running and the end results; the raw da-
ta should never be accessible to the researcher. 

3 Security Requirements 

The motivational examples have in common a likely reliance upon technical 
measures of security aimed at substantially enhancing protection for job/result in-
tegrity and confidentiality. Mindful of the security challenges discussed from 

                                                           
1 This example has been developed with help from David Power and Mark Slaymaker who are 
involved in the GIMI project (Simpson, et al. 2005), and Peter Lee who is an intern at the Auck-
land Hospital. 
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these examples, this section identifies a set of security requirements for designing 
trustworthy distributed systems. 
 

1. Secure Job Submission Both the integrity and confidentiality of the job secrets 
should be protected upon job submission. Attackers should not be able to steal 
or tamper with the job secrets that are being transferred via untrusted midddle-
ware services. 

2. Authorisation Policy Management When the job arrives at the participant 
system, the job owner's rights should be evaluated against the authorisation pol-
icies. The job should only be processed further if the job owner is authorised to 
run their queries or codes on the participant system. 

3. Trustworthy Execution Environment A trustworthy job execution environ-
ment should be provided – the jobs should be executed free from any unautho-
rised interference (e.g. attempts to modify data access query or model code), 
and the confidentiality of the job secrets should be protected from processes 
running outside this environment. The user, before submitting the job, should 
be able to verify that this trustworthy execution environment is guaranteed at 
the participant system. Similarly, the participant should be ensured that only a 
verified, integrity protected environment is used in their system for executing 
the jobs. 

4. Job Isolation The jobs should be isolated from each other and from the host. 
This is to prevent rogue jobs from compromising the host, or stealing the se-
crets and results of other jobs running in the same host. Job isolation should al-
so prevent a malicious host from compromising the job integrity, confidentiali-
ty and availability. 

5. Protecting the Results The integrity and confidentiality of the results should 
be protected from adversaries, malicious hosts and jobs trying to corrupt/read 
the results.   

6. Digital Rights Management In distributed data systems, unauthorised access 
or modification of sensitive data should be prohibited wherever they may be 
processed. 

7. Blind Analysis of Data The raw data should not be disclosed to the end user. 
Only the processed, anonymised results should be made accessible for analysis. 

4 Trusted Computing and Virtualization 

The security requirements strongly indicate the need for the user to verify integrity 
of remote job execution environments, and the data owner to retain control over 
their data regardless of the system to which it migrates. 

Faced with the prospect of modern PCs (and other devices) having so much 
software that their behaviour is unpredictable and easily subverted, the Trusted 



6  

Computing Group (TCG Backgrounder 2006) has developed a series of technolo-
gies based around a Trusted Platform Module (TPM) – a hardware chip embedded 
in the motherboard – which helps to provide two novel capabilities (Grawrock 
2006): a cryptographically strong identity and reporting mechanism for the plat-
form, and a means to measure the software loaded during the platform's boot 
process. These include, for example, the BIOS, bootloader, operating system and 
applications (see Figure 1). Further details of the TPM's functionality is defined in 
the TPM Main Specification (TPM Main Specification Version 1.2 2003) pub-
lished by the Trusted Computing Group. 

 
 

 
 

Figure 1 Authenticated Boot 
 
Measurements are taken by calculating a cryptographic hash of binaries before 

they are executed. Hashes are stored in Platform Configuration Registers (PCRs) 
in the TPM. They can only be modified through special TPM ordinals, and the 
PCRs are never directly written to; rather, measurements can only be extended by 
an entity. This is to ensure that no other entity can just modify or overwrite the 
measured value. A 20-byte hash of the new measurement is generated based on 
the PCR's current value concatenated with the new input, and a SHA-1 performed 
on this concatenated value.  

A PCR can be either static or dynamic. A static PCR can reset only when the 
TPM itself resets – the PCR cannot be reset independently. Static PCRs are nor-
mally used to store the measurements. The chapter refers to a static PCR whenever 
a PCR is mentioned. A dynamic PCR, on the other hand, can be reset indepen-
dently from the TPM, so long as the process resetting the PCR is under sufficient 
protection. We refer to such dynamic PCRs as ‘resettable PCRs’.  

In a trustworthy system, every executable piece of code in the authenticated 
boot process will be measured and PCRs extended sequentially (transitive trust). 
The notion of transitive trust provides a way for a relying party to trust a large 
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group of entities from a single root of trust: the trust is extended by measuring the 
next entity before it is loaded, storing the measurement in the TPM, and passing 
the control to the measured entity (see Figure 1). 

Hence, any malicious piece of code (e.g. a rootkit) executed during the boot 
process will also be recorded and identified. A ‘PCR event log’ is created during 
boot process and stores all of the measured values (and a description for each) ex-
ternally to the TPM. These values can be extended in software to validate the con-
tents of the event log. The resulting hash can be compared against the reported, 
signed PCR value to see if the event log is correct. 

4.1 Sealed Storage 

Trusted computing provides the means to seal (encrypt) data so that it will only 
successfully decrypt when the platform measurements are in a particular state 
(Grawrock 2006). The seal process takes external data (information the TPM is 
going to protect) and a specified PCR value, encrypts the data internally to the 
TPM using a storage key, and creates a sealed data package. 

An application – responsible for keeping track of this package – sends the 
package back to the TPM to recover the data. A nonce, known only to an individ-
ual TPM, is also included in the package to ensure that only the TPM responsible 
for creating the package can unseal it. 

The whole purpose of sealing is to prevent any unauthorised attempt to unseal 
the package. The TPM enforces two restrictions upon decrypting the sealed pack-
age: 

  

• ensures that the package is only available on the TPM that created it – the TPM 
checks whether the nonce included in the package matches the one held inter-
nally; and 

• compares the current PCR value to the specified PCR value stored in the sealed 
package – the operation aborts if these values do not match.  

 
The implication is that the external data only becomes available to an applica-

tion when the correct value (an acceptable platform configuration) is in the speci-
fied PCR. Section 7 discusses the use of sealing to protect sensitive data from a 
malicious/compromised host. 
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4.2 Remote Attestation 

Sealed storage provides a high degree of assurance that the data is only available if 
the acceptable configuration is present. But how does an external application – 
that has not performed the seal operation – know that such a configuration is 
present in a remote platform? Trusted computing provides the means to undertake 
remote attestation (Grawrock 2006): proving to a third party that (in the absence 
of hardware tampering) a remote platform is in a particular software state. 

Remote attestation involves the TPM reporting PCR value(s) that are digitally 
signed with TPM-generated ‘Attestation Identity Keys’ (AIKs), and allowing oth-
ers to validate the signature and the PCR contents. The application wanting to at-
test its current platform configuration would call the TPM_Quote command spe-
cifying a set of PCR values to quote, an AIK to digitally sign the quote, and a 
nonce to ensure its freshness. The TPM validates the authorisation secret of the 
AIK, signs the specified PCRs internally with the private half of the AIK, and re-
turns the digitally signed quote. 

The external application validates the signature by using the public half of the 
AIK, and validates the AIK with the AIK credential – a certificate issued by a 
trusted Certificate Authority (a ‘Privacy CA’) which states the platform has a valid 
TPM. The PCR log entries are then compared against a list of ‘known-good’ val-
ues to check if the reported PCRs represent an acceptable configuration. This list 
is often referred to as an ‘application whitelist’.  

Attestation can be used on a platform that supports authenticated boot (see Fig-
ure 1) to verify that only known pieces of software are running on it. Additions or 
modifications to any executable will be recorded during the boot process, and no-
ticed when log entries and PCR values are checked. With such mechanisms in 
place, the external application can, in theory, identify whether a remote platform 
has been compromised by a malware or not. 

4.3 Runtime Attestation Model 

Figure 2 gives an overview the Trusted Computing Group's runtime attestation 
model (TCG 2006). In a trusted platform, the Platform Trust Services (PTS) pro-
vide the capability to select hardware and software components to be measured 
during the authenticated boot process. They are also responsible for computing the 
measurements of the selected components and the creation of an integrity report 
containing these measurements. The Verifier checks the incoming integrity reports 
using the Policy Database, Configuration Management Database (CMDB), and 
Reference Manifest (RM) Database. These databases hold known-good configura-
tions for platforms. If an attesting platform has an unknown or unexpected confi-
guration, the Verifier informs the Relying Parties not to trust this platform. 



9 

 
 

Figure 2 TCG’s Runtime Attestation Model 
 

The proposed systems in Section 7 are inspired by this runtime attestation 
model. Each administrative domain is managed by a central Verifier – which we 
have called the ‘configuration resolver’ – that checks the configurations of the par-
ticipant platforms when they first register with the Verifier. Only those verified to 
be trustworthy become available to the Relying Party (the end users).  

4.4 Virtualization 

Virtualization is a key technology used in many trusted computing solutions to 
provide strong isolation for the trusted (TPM-measured) applications – this com-
bination is referred to as ‘trusted virtualization’. Virtualization allows a single 
physical host to share the computing resources between multiple operating sys-
tems (Sugerman, Venkitachalam and Lim 2001) (Xen 2005). Each operating sys-
tem runs in a Virtual Machine (VM) of its own, where it is made to believe that it 
has dedicated access to the hardware. A virtual machine is also referred to as a 
‘compartment’. 

A thin layer of software called a Virtual Machine Monitor (VMM) operates on 
top of the hardware to isolate virtual machines and mediate all access to the physi-
cal hardware and peripherals. A virtual machine runs on a set of virtual devices 
that are accessed through virtual device drivers. Typically, a highly privileged 
‘monitor virtual machine’ is created at boot time and serves to manage other vir-
tual machines. 

Numerous design efforts have been made to remove avoidable inter-virtual-
machine communication mechanisms such as might be exploited to undermine the 
isolation guarantees. The aim is to make a virtual machine behave in the same way 
(and have the same properties) as a physically isolated machine. In such designs 
the virtual machine monitor ensures that all memory is cleared before being real-
located and each virtual machine has its own dedicated memory and disk space. 
Both Intel and AMD processors now provide hardware support for full, efficient 
virtualization (Adams and Agesen 2006) (Strongin 2005). With help from these 
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processors, the virtual machine monitor can simulate a complete hardware envi-
ronment for an unmodified operating system to run and use identical sets of in-
structions as the host. Hardware virtualization can also speed up the execution of 
virtual machines by minimising the virtualization overhead. 

The majority of current grid middleware solutions, including the Globus Tool-
kit (Foster, et al. 1998), rely on operating systems’ access control mechanisms to 
manage isolation between user accounts. For example, operating system enforced 
access control policies prevent malicious software (installed by a third party un-
known to the host) from gaining unauthorised access to the jobs running under dif-
ferent user accounts. However, millions of lines of code contained in a mainstream 
operating system must be trusted to enforce these policies correctly (Sadeghi and 
Stüble 2004). A single security bug in any one of the privileged components might 
be enough for an attacker to hijack it, elevate its privileges, and take control of the 
host and the jobs running inside. 

Virtualization, on the other hand, is capable of providing much stronger isola-
tion through the relatively smaller virtual machine monitor and monitor virtual 
machine (Hohmuth, et al. 2004). A malware (through privilege escalation) would 
have to compromise both components – which are designed to resist such attacks 
– in order to break the isolation (Stumpf, et al. 2007). In a trustworthy, virtualized 
system, these two components (as well as other trusted software) would be meas-
ured during authenticated boot and their integrity would be reported through attes-
tation. 

A few authors (Figueiredo, Dinda and Fortes 2003) (Keahey, Doering and 
Foster 2004) have discussed the benefits of isolating the jobs and trusted applica-
tions in their own virtual machines:    
 

• job isolation prevents a rogue job from compromising the host or other jobs 
running in the same host; 

• in-memory attacks aimed at modifying the behavior of the trusted applications 
are made more difficult; and 

• privilege-escalation attacks are limited to the isolation boundaries of a virtual 
machine. 

5 An Emergent Consensus View 

Great strides have been made in using trusted virtualization to design security ar-
chitectures that aim to satisfy the requirements identified in Section 3. This section 
identifies similarities between these trusted virtualization approaches, establishes 
an ‘emergent consensus view’ (see Figure 3), and demonstrates its shortcomings 
in the areas of platform configuration discovery/verification and provision of 
trustworthy execution environment. 
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Figure 3 A Consensus View 

5.1 Attestation Tokens and Sealed Key Approach 

The term ‘attestation token’ is commonly used to describe a participant's creden-
tials (Löhr, Ramasamy and Sadeghi 2007) (Yau, et al. 2008). Typically, it contains 
the participant’s platform configurations and the public half of a non-migratable 
TPM key. The private half is bound to the platform’s TPM and PCR values cor-
responding to its trusted computing base. Information contained in an attestation 
token should be sufficient for a user to verify the identity and trustworthiness of 
the platform.  

Löhr et al (Löhr, Ramasamy and Sadeghi 2007) combine the Perseus virtualiza-
tion framework and remote attestation to propose a Trusted Grid Architecture. In 
the Trusted Grid Architecture, users collect attestation tokens of service providers, 
and verify their platform configurations using a locally managed whitelist (see 
Figure 3). Upon job submission, the job secret is encrypted with a service provid-
er’s public key (obtained from their attestation token), guaranteeing that only a se-
curely configured platform will be able to access the private key and decrypt it. If 
the service provider's trusted computing base has changed, the private key will no 
longer be accessible to process the job further. 

The virtualization layer is extended to include services that support secure job 
transfer and execution. Grid jobs are transferred across an encrypted, integrity-
protected communication channel established with trusted middleware compo-
nents, and their data is written to disk using a secure storage service. The attesta-
tion service uses the attestation token to verify the state of the trusted software 
layer prior to submitting the job data. The job data is encrypted using the public 
key (obtained from the token) so that only a securely configured software layer 
can decrypt it and execute the job. 
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The Trusted Grid Architecture, however, provides no mechanism for verifying 
integrity of the job execution virtual machine and the returned results. It also fails 
to isolate amply the trusted components. Most of its security controls are enforced 
in a virtual machine that also contains a large amount of untrusted software. For 
example, the grid management service runs in the same compartment as the sto-
rage encryption service. This extra complexity increases the likelihood of vulnera-
bilities and makes attestation less meaningful. Moreover, the paper does not dis-
cuss how the users collect the attestation tokens and how the application whitelists 
are managed in a distributed environment. 

Due to the lack of useful semantic (including security) information that can be 
conveyed through the standard binary attestation, many (Vejda, et al. 2008) (Mao, 
Yan and Chen 2006) have suggested the use of ‘property-based attestation’ 
(Sadeghi and Stuble, Property-based Attestation for Computing Platforms 2004) to 
report more security-relevant information. Security-relevant properties of the plat-
form are attested rather than the binary measurements of the software. In conse-
quence, trust decisions made based on integrity-reports are simplified. 

5.2 Grid Middleware Isolation 

Cooper and Martin (2006) make a strong argument that the complex grid middle-
ware services, which usually have a high likelihood of vulnerabilities, can not be 
trusted to secure the users’ data and credentials. For example, at least five differ-
ent vulnerabilities had been found in the Globus Toolkit (Foster, et al. 1998) that 
allow unauthorised users to compromise the middleware (Cooper and Martin 
2006). 

In the architecture proposed by Cooper and Martin, the middleware stack is iso-
lated in an untrusted compartment of its own and is not relied upon to perform 
trusted operations. As a result, even if an attacker manages to compromise the 
middleware, they would not have gained sufficient privileges to undermine the se-
curity of a distributed system. 

5.3 Job Isolation 

The use of virtual machine isolation has been discussed many times as a solution 
to the ‘malicious host problem’ (Cooper and Martin 2006) (Wang and Wang 
2008) (Vejda, et al. 2008). Typically, a job runs on a separate, dedicated virtual 
machine, where its code is executed free from unauthorised interference. The job 
secrets are decrypted inside the virtual machine and protected from rogue virtual 
machines or host. From a participant’s perspective, job isolation could also protect 
their host from rogue jobs (Pradheep, et al. n.d.). 
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Terra (Garfinkel, et al. 2003) is a virtualization architecture developed on the 
VMware virtualization platform (Sugerman, Venkitachalam and Lim 2001). VM-
ware is modified to support encrypted and integrity protected disks. Using their 
trusted virtual machine monitor, existing applications can either run in a standard 
virtual machine, or in a ‘closed-box’ virtual machine that provides the functionali-
ty of running on a dedicated closed platform. The trusted virtual machine monitor 
protects confidentiality and integrity of the contents of the closed-box by inter-
cepting the disk I/O requests and encrypting the disk sectors. The closed-box is 
strongly isolated from the rest of the platform. Hardware memory protection and 
secure storage mechanisms intend to protect the contents from rogue administra-
tors. 

The authors suggest that Terra could be used to enable a secure grid platform. 
A closed-box would isolate the job and protect its contents from a malicious host. 
This closed-box would access its own integrity measurement by performing a sys-
tem call through the trusted virtual machine monitor. The job owner would use 
this measurement to verify the integrity of the job execution environment. 

5.4 Trusted Execution Environment 

Cooper and Martin’s architecture (2006) aims to provide a ‘trusted execution envi-
ronment’. A grid job is encrypted and runs on an integrity protected virtual ma-
chine where it cannot be accessed from the host platform; the data is safely de-
crypted inside this virtual machine during execution. Remote attestation is used to 
verify this environment before dispatching the job. 

Their solution works by distributing a job composed of two virtual machines: 
the first virtual machine runs the job, and the second enforces the trusted execu-
tion environment. This second virtual machine, referred to as the ‘job security 
manager’, isolates the security layer from the job, and allows the solution to work 
seamlessly with all legacy virtualization and middleware software. 

One potential loophole comes from the fact that they are less concerned about 
the ‘malicious code’ problem – untrusted code running on a participant's platform. 
The job owner specifies the virtual machine instance and its security configura-
tions are not checked before being used. The system relies on virtualization alone 
to isolate rogue jobs from the host. 

The type of attacks a malicious virtual machine can perform would be re-
stricted if virtualization offers complete isolation but, no existing solution guaran-
tees this property right now (although, it is the objective of many). For example, in 
Xen, each virtual machine has two rings, one for sending requests and one for re-
ceiving responses, and these form the inter-virtual-machine communication me-
chanism (Barham, et al. 2003). A rogue job could potentially hijack a privileged 
process and manipulate this communication channel to perform buffer overflow 
attacks on the privileged virtual machine. 
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6 Missing Pieces and Potential Solutions 

Having described the consensus view, this section identifies the missing compo-
nents and suggests potential solutions. 

The first missing piece is a platform configuration discovery service. In the 
Trusted Grid Architecture (Löhr, Ramasamy and Sadeghi 2007), the users are ex-
pected to collect the attestation tokens directly from the participants. How the us-
ers would actually manage this process, however, is not considered in depth. Gen-
erally, it is assumed that a central service is already available for the users to 
discover participants’ platform configurations. In consequence, various security 
and management issues associated with developing a ‘match-making service’ as 
such are often overlooked. 

In the consensus view, the burden of performing attestation and managing the 
application whitelists rests with the users. This seems unrealistic in large-scale dis-
tributed systems, however, since the whitelist entries will be modified and updated 
constantly. An average user will not have sufficient resources to cope with these 
changes. Referring back to the Trusted Computing Group’s runtime attestation 
model (see Section 4.3), the ‘Configuration Verifier’ is missing in the consensus 
view. Some suggest passing on the problem to a trusted third party (Vejda, et al. 
2008) (Nagarajan, Varadharajan and Hitchens 2007), but further elaboration is 
needed. 

Something like the Configuration Verifier could be configured to centrally 
manage the application whitelists and perform configuration verification (attesta-
tion) on behalf of the users. It would be responsible for keeping up-to-date whitel-
ists through various vulnerability tests and data collected. This type of service is 
described by the Trusted Computing Group as an aggregation service and has been 
suggested in a number of projects (Yau, et al. 2008)  (Wang and Wang 2008). For 
instance Sailer et al (Sailer, et al. 2004) encourage the remote users to keep their 
systems at an acceptable patch level using a package management database. This 
database gets updated whenever a new patch is released, so that the new versions 
are added to the whitelist and the old versions are removed. 

From the participants’ perspective, an ‘integrity-report based job verification’ 
mechanism is also missing. Only the users (job owners) are capable of verifying 
the participants’ platform configurations, and not vice versa. The participant 
usually relies on a basic digital certificate to identify the users and authenticate the 
job virtual machines. This provides no assurance for the security state of the job 
virtual machines. 

In the context of data grids – where the jobs might try to access sensitive data – 
the data owner should have full control over the software used for executing the 
query and protecting the accessed data. Virtual machine isolation can only prevent 
other rogue virtual machines from stealing the accessed data. If the job virtual ma-
chine itself is malicious and tries to run malicious queries on the database, then 
isolation will not be sufficient. 
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Basic PKI-based encryption and digital signatures are often used to protect the 
data once they leave the data owner's platform (Luna, et al. 2008). However, con-
sidering the number of connected nodes and the security threats associated with 
each, these security measures alone cannot provide the necessary confidentiality, 
privacy and integrity guarantees. A more reliable Digital Rights Management sys-
tem is needed to allow the data owner to maintain full control over their data. The 
data access policies and privacy policies need to be consistently enforced through-
out the distributed system. The end user should only be able to access the 
processed, anonymised results which are just sufficient to perform the requested 
analysis. 

Meanwhile, Australia’s Commonwealth Scientific and Industrial Research Or-
ganisation (CSIRO) has developed the Privacy-Preserving Analytics (PPA) soft-
ware for analysing sensitive healthcare data without compromising its privacy 
(O'Keefe 2008). Privacy-Preserving Analytics allows analysis of original raw data 
but modifies output delivered to the researcher to ensure that no individual unit 
record is disclosed, or can be deduced from the output. This is achieved by shiel-
ding any directly identifying information and deductive values that can be 
matched to an external database. Duncan and Pearson (1991) discuss the benefits 
of being able to access the raw data: 

 

• no information is lost through anonymising data prior to release and there is no 
need for special techniques to analyse perturbed data; 

• it is relatively easier to anonymise the output than modifying a dataset when it 
is not known which analyses will be performed; and 

• clinical decisions will be based on more reliable information and treatments can 
be more tailored to individuals with the likelihood of problems. 

Privacy-Preserving Analytics (or any other secure analysis tools available), 
combined with remote attestation, could provide the necessary confidentiality and 
privacy guarantees for the data owner to freely share their raw data in the virtual 
organisation. For instance, attestation could verify that a trustworthy Privacy-
Preserving Analytics server is responsible for performing data reconciliation and 
anonymising the output before releasing the results to the researcher. 

7 Trustworthy Distributed Systems 

We propose two types of distributed systems that aim to satisfy the security re-
quirements (see Section 3), and bridge the gaps identified in the consensus view 
(see above). A configuration management server called the ‘configuration resolv-
er’ plays a central role in both systems, maintaining an up-to-date directory of 
trustworthy participants and handling the job distribution process. 
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Section 7.1 describes how the configuration resolver manages configuration ve-
rification and job distribution processes. Based on the new security primitives that 
make use of the resolver, Sections 7.2 and 7.3 describe a computational system 
and a distributed data system that are trustworthy. 

 
 

 
 

Figure 4 Consensus View with the Configuration Resolver 

7.1 The Configuration Resolver 

Building on the consensus view of the trusted distributed systems, a central confi-
guration management server is added to each administrative domain to manage the 
trustworthy participants’ platform configurations and a whitelist of locally accept-
able platform configurations (see Figure 4). This configuration management server 
is referred to as the ‘configuration resolver’. To become part of the trusted do-
main, a participant registers with the local configuration resolver by submitting its 
Configuration Token (CT). The token content is shown below. 
 
CT = ( PCR Log , AIK , {cred(AIK)}CA  , PK , {cred(PK)}AIK , {Description}SK ) 

 
This token includes the Attestation Identity Key (AIK) and an AIK credential 

issued by the Certificate Authority ({cred(AIK)}CA). A public key credential, 
signed by this AIK, is also included to state that the private half has been sealed to 
two PCR values which correspond to (1) a trustworthy authenticated boot process, 
and (2) per-job virtual machine image files (see Figure 5). The PCR Log contains 
the full description of the authenticated boot process and the virtual machine im-
age files. In addition, a service Description is included, signed by the private half 
of the sealed public key, demonstrating that the users should use this public key 
when submitting jobs to this participant. 
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The resolver verifies the trustworthiness of the platform by comparing the 
PCR Log with the whitelist. If the platform is trustworthy, its configuration token 
is added to the resolver’s token repository, ensuring that only the trustworthy par-
ticipants are ever advertised through the resolver. There, the burden of verifying 
the integrity reports rests on the resolver.  

 
 

 
 

Figure 5 Participants’ Trusted Computing Base 
 
As a minimum, the authenticated boot process will measure the BIOS, boot-

loader, virtual machine monitor, and privileged monitor virtual machine. There-
fore, the first PCR value is sufficient to state that the platform is running in a vir-
tualized environment and its monitor virtual machine is securely managing the 
per-job virtual machines (see Figure 5). Additionally, the second PCR value guar-
antees the exact software and security configurations of a per-job virtual machine 
(job execution environment). This second value is stored in a resettable PCR (see 
Section 4) since the virtual machine image files are re-measured and verified at 
runtime. These security properties allow the user to have strong confidence in the 
correctness of the data or computational results returned from this platform. 

Note, in contrast to the reviewed approaches (see Section 6), the participant 
controls the virtual machine instances that are allowed to be used in their platform. 
This is responsible for meeting Requirement 3 (see Section 3). However, this also 
restricts the number of software environments that the user can choose from, and 
will affect the overall usability of job submission. 

To improve usability and flexibility, the resolver allows a participant to submit 
multiple configuration tokens (for a same platform), all representing the same au-
thenticated boot process but each sealed to a different per-job virtual machine im-
age. Such tokens could be used to offer multiple services by configuring each 
software environment to provide a different service, or to offer multiple software 
environments for a single service, providing the user with more options. 
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The configuration resolver performs a range of security and platform configu-
ration management functions through the following services (see Figure 4): 

 

• an internal ‘attestation service’ is responsible for performing all attestation re-
lated functions to ensure that only trustworthy participants register with the re-
solver; 

• an external ‘service publisher’ provides the necessary APIs for the participants 
to register and advertise their services through the resolver. It makes use of the 
attestation service; 

• the users submit jobs through an external ‘job distribution service’, which se-
lects the most suitable sites by looking up the service Descriptions and dis-
patches the jobs to them; and  

• an external ‘whitelist manager’ allows the domain administrators to efficiently 
update the whitelist entries. 

 
Each participant becomes a member of the resolver’s WS-ServiceGroup 

(Maguire and Snelling 2004) and has a ServiceGroupEntry that is associated 
with them. An entry contains service information by which the participant’s regis-
tration with the resolver is advertised. The configuration tokens are categorised 
and selected according to the type of services they advertise. It is assumed that 
there is a public key infrastructure available to verify the participant’s identity. 

7.2 Computational Distributed System 

In an idealised computational distributed system, the user would not care about 
where their job travels to as long as their sensitive data and results are protected. It 
would therefore make sense for the resolver to perform trusted operations like se-
lecting suitable sites and dispatching jobs on behalf of the Job Owner (JO). The 
resolver’s TPM is used to measure the configurations of its external and internal 
services, and generate an attestation token (AT(CR)) to attest its security state to 
the users:  

 
AT(CR) = ( PCR Log , AIK(CR) , {cred(AIK)}CA  , PK(CR) , {cred(PK)}AIK ) 
 
Much like the configuration token described previously, the resolver's public 

key credential ({cred(PK)}AIK) identifies the corresponding private key as being 
sealed to its trustworthy state. The PCR Log describes the fundamental software 
stack and the services that have been measured during the resolver’s authenticated 
boot process. 

In the user system, all the job security functions are enforced by the ‘job securi-
ty manager’ virtual machine (see Figure 6): it is designed to perform a small num-
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ber of simple security operations to minimise the attack surface. Attestation of the 
job security manager, monitor virtual machine and virtual machine monitor is suf-
ficient to be assured that the job security functions have not been compromised – 
these components form the trusted computing base of the user system. Upon in-
stallation of this architecture, the user system will be capable of securely submit-
ting jobs to the resolver and verifying the returned results. 

 
 

 
 

Figure 6 Creation and Distribution of an Encrypted Job 

7.2.1 Creation and Distribution of an Encrypted Job 

All end user interactions are made via the external ‘job factory’. It provides the 
minimal interface (APIs) necessary for development of a job submission applica-
tion. Such an application should be designed to allow the user to specify the job 
description (requirements), the credentials, and the code to be executed. 

Imagine that a scientist (the job owner in this scenario) is carrying out an expe-
riment that aims to predict the future climate state. The scientist submits the pre-
diction model code through their job submission application and specifies the job 
description (1, Figure 6). The job factory creates a secure job containing the fol-
lowing attributes (2, Figure 6): 

 
Job = ( {Credential, Code, Ksession, NJO}PK(CR)  , Job Description ) 
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A symmetric session key (Ksession) is included as part of the job secret; it will 

be used by the participant to encrypt the generated results. This session key is 
sealed to the PCR corresponding to the user system’s trusted computing base; this 
prevents a compromised job security manager from decrypting the returned re-
sults. NJO represents the job owner's nonce. 

Before encrypting the job secret, the trustworthiness of the resolver is verified 
by comparing the PCR Log (obtained from the resolver’s attestation token, 
AT(CR)) against the locally managed whitelist of known good resolver configura-
tions. If the resolver is trustworthy, the job secret – containing the user Creden-
tial, Code, session key and nonce – is encrypted with the resolver’s public key. 
This sealed key approach ensures that the secret is only accessible by a securely 
configured resolver. The job is then submitted to the local resolver’s job distribu-
tion service (3, Figure 6). 

When the job arrives, the distribution service first attempts to decrypt the job 
secret with the sealed private key. Then it communicates with the local resource 
broker – that is linked to the VO-level central information service – to discover re-
source availability. It requests configuration tokens – for those with available re-
sources – from the resolvers managing other administrative domains (4, Figure 6). 
This request contains the job requirements, specifying the required software and 
hardware capabilities. Such information is obtained from the Job Description. 

The resolvers from other domains select the tokens that match the job require-
ments and return them to the local resolver. The local resolver uses its internal at-
testation service to iterate through each token and verifies the integrity-report by 
comparing the PCR values against the local whitelist (5, 6, 7, Figure 6). Only 
those with acceptable configurations (for running the climate prediction model 
code) are selected and merged with the locally filtered tokens. Finally, the most 
suitable participant is selected from this merged list to run the job. 

The job is recreated for the selected participant: during this process, the job se-
cret is encrypted using the target participant’s public key, and the Job Descrip-
tion is extended with the host address (8, Figure 6). These jobs are dispatched to 
the job-manager of the selected participant that reads the unencrypted Job De-
scription and schedules the job. On its turn, the job is forwarded to the partici-
pant’s policy enforcement point (9, Figure 6). Note, middleware services such as 
the job-manager can only read the extended Job Description for scheduling the 
jobs. 

7.2.2 Operations of the Trustworthy Execution Environment 
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Figure 7 Operations of a Per-Job Virtual Machine 
 

Figure 7 demonstrates how the job gets processed at the participant system. Any 
security processing required before becoming ready to be deployed in a per-job 
virtual machine is done through the policy enforcement point. It first measures the 
selected per-job virtual machine image (and the configuration files), and resets the 
resettable PCR with the new value. Typically, this image consists of a security 
patched operating system and trustworthy middleware stack – the ‘authorisation 
policy management service’ and the ‘result factory’ (see Figure 7). 

In order to decrypt the job secret, the policy enforcement point attempts to un-
seal the private key sealed to the participant’s trusted computing base and the vir-
tual machine image. The private key will only be accessible if the platform is still 
running with trustworthy configurations and the image files have not been mod-
ified. This is intended to guarantee that only an integrity protected virtual machine 
has access to the job secret. 

If these security checks are passed, the ‘compartment manager’ allocates the 
requested size of memory, CPU time and speed (specified in the Job Descrip-
tion), launches a virtual machine from the verified image, and deploys the de-
crypted job (2, Figure 7). Inside this virtual machine, the policy management ser-
vice decides whether the scientist is authorised to run their prediction model in the 
participant platform. If the conditions are satisfied, the model is executed to simu-
late a probabilistic climate forecast (3, 4, Figure 7). The result factory generates a 
secure message containing the simulation Results (5, Figure 7): 
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R = {Results, NJO}Ksession 
 

The job owner’s nonce (NJO) is sufficient to verify that the results have been 
generated from an integrity protected virtual machine and unmodified code has 
been executed. The entire message is encrypted with the job owner’s symmetric 
session key (Ksession), which is protected by the job owner’s TPM. This prevents 
attackers from stealing or tampering with the Results. 

7.2.3 Verification of the Results 

At the job owner’s system, the job factory receives the message R and decrypts it 
using the sealed session key (6, Figure 7). Note, if the job factory has been mod-
ified during the job execution period, the session key will no longer be accessible 
as the PCR value (corresponding to the trusted computing base) would have 
changed. Hence, a compromised job factory can neither read the Results nor re-
turn fabricated Results to the original application. 

The decrypted message is forwarded to the job factory which compares the re-
turned nonce (NJO) with the original. A matching value verifies the accuracy and 
the integrity of the results. These are then delivered to the scientist’s application. 

7.3 Distributed Data System 

One of the pieces missing from the consensus view is a trustworthy, privacy-
preserving analysis tool. As a potential solution, some combination of the ‘Priva-
cy-Preserving Analytics’ software and attestation has been discussed in Section 6 
to enable blind analysis of distributed data. This section expands on the idea and 
describes a ‘Blind Analysis Server’ (BAS) that allows analyses to be carried out 
securely via a remote server (see Figure 8): the user submits statistical queries by 
means of a job; analyses are carried out on the raw data collected from trustworthy 
sites, and only the processed results are delivered to the user. 

The blind analysis server consists of the following components: 

• The configuration resolver (see above). 
• ‘Privacy Preserving Analysis Tool’ (PPAT) – this can be any software designed 

to reconcile distributed raw data and run analyses on the reconciled informa-
tion; the tool enforces privacy policies on the processed results to protect the 
privacy of the sensitive data.     

• ‘Privacy Policies’ – specify privacy rules governing the release of processed in-
formation; these are defined under strict ethics committee guidance to comply 
with legal and ethical undertakings made. 
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We imagine that an ethics committee would define the privacy policies for dif-
ferent types of analyses supported by the blind analysis server. This would be 
more practical than relying on the data owners to figure out their own sticky poli-
cies when it is not known which analyses might be performed. Moreover, it would 
be difficult to reconcile and make sense of such policies collected from different 
data sources. 

The three components mentioned above form the trusted computing base of the 
blind analysis server. The server attests its security state through an attestation to-
ken (AT(BAS)):  

 
AT(BAS) = ( PCR Log , AIK(BAS) , {cred(AIK)}CA  , PK(BAS) , {cred(PK)}AIK ) 

 
This attestation token contains a public key credential signed by the AIK(BAS) 

which identifies the private key as being sealed to the PCR value corresponding to 
its trusted computing base. 

The rest of the section uses the healthcare grid example (see Section 2.2) to ex-
plain how the security operations have changed from the computational architec-
ture with the blind analysis server in place. 

7.3.1 Distribution of Job(s) through the Blind Analysis Server 

 
 

Figure 8 Operations of the Blind Analysis Server 
 

A researcher is carrying out a study that looks at association between age (data 
available from a GP practice) and progression of colon cancer (data available from 
a specialist clinic). The researcher specifies the analysis requirements via an ex-
ternal analysis tool to observe how the cancer status has changed for patients aged 
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between 45 and 55 (1, Figure 8). The analysis tool should provide an appropriate 
interface for capturing the information required to run the analysis queries. 

The job factory, after receiving the analysis requirements, verifies the security 
state of the blind analysis server by comparing the PCR Log (obtained from the 
server’s attestation token, AT(BAS)) against the known good configurations. It 
then creates a data access job (2, Figure 8) and encrypts the secret using the serv-
er’s public key (PK(BAS)). The analysis requirements are encrypted as part of the 
job secret. This job is then submitted to the configuration resolver running inside 
the analysis server (3, Figure 8). 

The resolver is configured to manage the metadata of the participants’ databas-
es. Hence, by looking at the researcher’s analysis requirements, the resolver is ca-
pable of selecting relevant sites and constructing distributed data access queries. 
The resolver selects trustworthy GP and specialist clinic systems to collect the da-
ta from and constructs a distributed query. The analysis server’s sealed private key 
is used to sign the distributed query inside the TPM – it will only be accessible for 
signing if the trusted computing base has not been modified. This query as well as 
its signature is included in the job secret. The resolver dispatches a series of en-
crypted jobs to the policy enforcement points of the selected GP and specialist 
clinic systems (4, 5, Figure 8). 

The unencrypted part of the job now includes the analysis server’s attestation 
token (AT(BAS)) which can be used by the job recipients (data owners) to verify 
the trustworthiness of the server before processing the jobs. The researcher’s ses-
sion key is omitted from the job secret since this key will only be used when the 
analysis server returns the final results to the researcher. 

7.3.2 Operations of a Trustworthy Data Access Virtual Machine 

 
 

Figure 9 Operations of a Data Access Virtual Machine 
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Once the job arrives at the clinic, the policy enforcement point checks the security 
state of the analysis server using its attestation token (AT(BAS)) – this is how the 
job is authenticated at the clinic (1, Figure 9). It would detect a job dispatched 
from a compromised analysis server and prevent, for example, the server sending 
a malicious query. To simplify Figure 9, the policy enforcement point (which 
should be part of the monitor virtual machine) is drawn inside the virtual machine 
monitor. 

After job authentication, the per-job virtual machine image files are checked 
for integrity. The middleware stack installed on this virtual machine provides a 
common interface for the job to access the patient data. For instance, if imple-
mented in Java, such services would include the Java Database Connectivity, con-
nection string and Java virtual machine. Again, the sealed private key – bound to 
the PCR values corresponding to both the trusted computing base and virtual ma-
chine files – is intended to guarantee that only a trustworthy virtual machine has 
access to the decrypted job secret to execute the query (2, Figure 8). The signature 
of the query is verified using the analysis server’s public key (obtained from 
AT(BAS)): a valid signature proves that the query originates from a trustworthy 
analysis server and the encrypted secret correlates with the attestation token. The 
result factory checks the query for any attempt to exploit vulnerabilities in the da-
tabase layer (e.g. SQL injection) before executing it (3, 4, 5, Figure 8). 

A secure message containing the accessed data and the researcher’s nonce (NR) 
is encrypted with the data owner’s symmetric session key (6, Figure 9). This ses-
sion key, in turn, is encrypted using the analysis server’s public key (obtained 
from the server’s attestation token). Note, in contrast to the computational archi-
tecture, this result message is sent back to the analysis server and not to the re-
searcher (7, Figure 9). The session key can only be decrypted if the analysis serv-
er’s trusted computing base has not changed. Hence, a compromised server will 
not be able to steal the patient data. 

7.3.3 Reconciliation of Collected Data 

This result message and the encrypted session key arrive at the job distribution 
service of the resolver. First, the session key is decrypted using the sealed private 
key; the session key is then used to decrypt the result message. The returned nonce 
(NR) is compared with the original to verify that the job has been processed (and 
the data has been accessed) through an integrity protected virtual machine. 

The internal analysis tool (PPAT) reconciles the collected data and generates 
association between the patients’ age and colon cancer progression (8, 9, Figure 
9). During this process, the privacy policies are enforced to protect privacy of the 
patient data. Attestation of the analysis server is sufficient to establish that these 
policies will be enforced correctly. 

The final results are encrypted with the researcher’s session key (obtained from 
the original job secret) and sent back to their job security manager (10, 11, Figure 
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9). The researcher studies these anonymised results via the external analysis tool, 
knowing that the results are accurate and their integrity has been protected. 

8 Observations 

This section explains how the proposed distributed systems are responsible for 
meeting the security requirements identified in Section 3, and bridging the gaps 
identified in Section 6. Remaining performance, whitelist management, and job 
delegation issues are also discussed. 

8.1 Satisfying the Requirements 

Job submission is a two-step process. First, a job is submitted to the local configu-
ration resolver; the job secret is encrypted using the resolver’s public key. The 
sealed key approach ensures that only a securely configured resolver can decrypt 
the job secret. Second, the resolver selects a trustworthy participant suitable for 
running the job; the job secret is encrypted using the public key of this selected 
participant and dispatched through an untrusted public network. The private half is 
strongly protected by the participant’s TPM. These features are responsible for 
meeting the ‘secure job submission’ requirement (see Requirement 1). 

A combination of the sealed key mechanism and attestation is responsible for 
meeting the ‘trustworthy execution environment’, ‘authorisation policy manage-
ment’, and ‘job isolation’ requirements (see Requirements 2, 3, 4). The trustwor-
thiness of the trusted computing base and per-job virtual machine images of the 
participant are verified when they register with the local resolver. In this way, the 
resolver maintains a list of trustworthy participants. 

The job is dispatched with its secret encrypted using the selected participant’s 
public key. The private half is only accessible if neither the trusted computing 
base nor the virtual machine image has changed. The integrity of the virtual ma-
chine image is verified with runtime measurement of the files. These features are 
intended to guarantee a trustworthy execution environment that contains a secure-
ly configured authorisation policy management service. Moreover, the verification 
of the trusted computing base is sufficient to know that the virtual machine moni-
tor is securely configured to provide strong isolation between the job virtual ma-
chines. 

Virtual machine isolation ensures that the code is executed free from any unau-
thorised interference, including threats from rogue administrators to subvert the 
results. These results, before being sent back, are encrypted using the job owner’s 
symmetric key that is strongly protected by the job owner’s TPM. These features 
satisfy the ‘protecting the results’ requirement (see Requirement 5). 
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Finally, the provision of the blind analysis server aims to satisfy the ‘digital 
rights management’ and ‘blind data analysis’ requirements (see Requirements 6, 
7). The data owners verify the security state of the blind analysis server before al-
lowing the query to run. Two properties checked are: (1) the state of the ‘privacy 
preserving analysis tool’ installed, and (2) the integrity of the data privacy poli-
cies. The accessed data is encrypted in a way that only a securely configured serv-
er can decrypt the data. These properties provide assurance that the integrity pro-
tected policies will be enforced correctly upon data processing, and only the 
anonymised results will be released to the user. 

8.2 Filling in the Missing Pieces 

In Section 6, we identified the missing components from existing trusted virtuali-
zation approaches. This section explains how these missing components are dealt 
with in the proposed systems. 

Many of the existing work on trusted distributed systems – likes of the Trusted 
Grid Architecture (Löhr, Ramasamy and Sadeghi 2007), trusted delegation for 
grid (Cooper and Martin 2006) and Terra (Garfinkel, et al. 2003) – expect the end 
user to collect the attestation tokens (or PCR quotes) from participant machines 
and make trust decisions. Typically, this requires the user to (1) manage an appli-
cation whitelist of trustworthy system configurations, (2) discover available partic-
ipant machines and download their attestation tokens, and (3) verify their security 
configurations and make trust decisions. We argue that this requirement is unrea-
listic given the dynamic nature of large-scale distributed systems. 

In the proposed systems, the configuration resolver manages all of the above 
operations on the user’s behalf, taking away the burden of performing attestation 
and managing application whitelists from the user. The participants’ security con-
figurations are verified when they first register with the resolver, and only those 
considered trustworthy are listed and used. 

After identifying the local resolver, the user can submit their jobs without wor-
rying about attestation or what the security configurations mean to them. All the 
user has to do is specify the job description and their security preferences, and 
submit their jobs to the correct resolver. The resolver will find trustworthy partici-
pants that satisfy the user’s preferences and dispatch the jobs on the user’s behalf. 
This shift in responsibility (of performing attestation) should also improve overall 
usability. 

Another missing piece is the integrity-report based job verification mechanism 
for the participant. In most of the existing work, the participant relies on basic PKI 
to identify users and authenticate job virtual machines; however, this provides no 
information about the security state of the job virtual machines. 

In the proposed systems, the participant creates baseline virtual machine im-
ages which are allowed to be deployed on their machine, and seals the private-half 
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of the TPM-key to the image files. This sealed key approach, together with run-
time verification of the image files, guarantees the integrity of the job virtual ma-
chines. With these mechanisms in place, the participant can be assured that only 
those securely configured are ever used on their machine as baseline images for 
executing the jobs. 

8.3 Performance Degradation 

One of the key drivers behind the development of computational distributed sys-
tems is high performance (Foster and Kesselman 1999). However, the suggested 
use of virtualization and various cryptographic operations necessarily incur a per-
formance penalty (Pradheep, et al. 2005).  

Running a job inside a virtual machine requires extra information flow upon 
accessing the hardware. Each I/O request would go through a number of virtual 
device drivers before reaching the physical hardware; the same applies when re-
ceiving an I/O response. A recent study (Ruth, et al. 2005) suggests that a typical 
virtualized, distributed system incurs 20 percent performance penalty over native 
execution. With the introduction of native hardware support in all recent CPU ar-
chitectures (Adams and Agesen 2006) (Strongin 2005), however, this overhead 
can be minimised with time to come. 

Moreover, attestation involves expensive public key operations for signing the 
PCR values and validating the signatures. It also involves comparing the reported 
PCR event log against the whitelist entries and verifying the trustworthiness of a 
platform. 

To improve performance, the attestation service (of the configuration resolver) 
could be configured to minimise the use of attestation. Since the trusted compu-
ting base of the participant platform is designed to be relatively static, the previous 
attestation results could be used again and again up to a given expiry date. A fresh 
attestation would be performed when the previous results expire, avoiding the 
need to attest every time a job is submitted. If the trusted computing base changes 
at a time before the expiry date, the sealed key mechanism would detect it and in-
form the resolver. The resolver would then request for the latest configuration to-
ken to perform a fresh attestation. 

8.4 Whitelist Management 

In systems spanning multiple administrative domains, different domains will like-
ly have different software requirements and whitelist of acceptable configurations. 
While the administrators for one domain will be competent with the required list 
of software and their acceptable configurations for the local users, they will not 
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know about all the software requirements in other domains. In consequence, mul-
tiple configuration resolvers could introduce availability issues depending on the 
level of inconsistency between their whitelists. 

For example, if configuration resolver A is more active in inspecting software 
vulnerabilities and updating the whitelist entries than other domains, configuration 
tokens collected from configuration resolvers B, C, and D are likely to be classi-
fied as untrustworthy by resolver A, and their services will not be advertised to the 
users in Domain A. In order to minimise the level of inconsistency, the whitelist 
manager (in the resolver) needs to support functions that would enable efficient 
discovery and sharing of whitelist updates. The authors participated in research 
(Huh, et al. 2009) that explores these issues in detail, and suggests what the con-
tent of whitelist entries should be and how entry update messages should be 
shared. 

8.5 Job Delegation  

In practice, the job recipient might delegate some parts of the job on to other par-
ticipants – this is known as job delegation. In the Trusted Grid Architecture (Löhr, 
Ramasamy and Sadeghi 2007), the user is capable of verifying the service provid-
ers’ platform configurations against a set of known good values (goodU). Using its 
job submission protocol, the user may also check to see if the service provider’s 
list of known-good values (goodP) – which specifies all the acceptable configura-
tions of possible job delegatees – satisfy the condition goodP ⊆ goodU. If this 
condition is satisfied, the user submits the job to the provider knowing that the job 
will only be delegated to other service providers whose platform configurations 
also satisfy goodU. However, the main concern with this type of approach is that 
the burden of managing the whitelists (goodU, goodP) rests on the users and the 
service providers. 

Although job delegation has not been considered in the proposed systems, the 
configuration resolver could be configured to verify the configurations of possible 
job delegatees before dispatching the job. Since the resolver already has access to 
all the trustworthy participants’ platform configurations (configuration tokens), it 
could exchange several messages with the potential job recipient to determine 
whether all the possible job delegatees are also trustworthy. This would involve 
the job recipient sending a list of identities of the possible delegatees to the resolv-
er, and the resolver checking to see if all of the possible delegatees are registered. 
The job would only be dispatched if all of the delegatees are also trustworthy. 

The advantage of this approach is that the users and service providers would 
not have to worry about maintaining up-to-date whitelists, or attesting and verify-
ing the trustworthiness of the possible job delegatees. 
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9 Example Integration with the UK National Grid Service  

This section demonstrates how the proposed security components ‘could’ be inte-
grated with the UK National Grid Service (Geddes 2006). Some of the important 
practicality and interoperability issues are also uncovered. 

9.1The National Grid Service Overview 

The National Grid Service is a UK academic research grid, intended for produc-
tion use of computational and data grid resources spanning multiple institutions 
across the country. The aim of the National Grid Service is to provide a reliable 
and trusted service using open, standards-based access to the distributed resources. 

The grid consists of four core sites at Oxford, Manchester, Leeds, and STFC-
AL, as well as five partner sites at Cardiff, Bristol, Lancaster, Westminister and 
Queens. Each site contributes to the provision of computational or data nodes. The 
nodes sitting on the core sites provide transparent access to the resources by using 
an identical middleware stack and similar filesystems, whereas the partner sites 
provide a more heterogeneous environment. 

Each site consists of several Computing Elements (CEs) which are the front 
ends to a number of worker nodes (resource providers). The CEs provide gatekee-
per and job-manager functionality. A gatekeeper receives a job from a resource 
broker and calls a job-manager to submit the job to a worker node through the 
Portable Batch System. Each CE uses its own information service, known as the 
Grid Resource Information Service (GRIS), to publish static and dynamic infor-
mation about the resource availability. The GLUE Information Schema 
(Andreozzi, et al. 2009) is used for publishing such information. At each site, a 
LDAP directory called the Grid Index Information Service (GIIS) is used to col-
late information from many GRISs. Information from all the sites is collected and 
aggregated by the Berkeley Database Information Index system (Berkeley 
database information index v5 2009) (a central information repository), which 
holds information about all services and resources available in the grid. It queries 
the GIIS at each site to collect this information. The LDAP is used for making the 
aggregated information available to the users. 
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9.2 Integration 

 
 

Figure 10 Example Integration with the UK National Grid Service 
 
As the first step of integration, the configuration resolver would be deployed at 

each site to publish a filtered list of configuration tokens (representing trustworthy 
participants) through the GIIS (see Figure 10). These tokens would have to be 
signed by the configuration resolver for authenticity and to indicate that these 
represent trustworthy participants. 

The central information repository would then query the GIIS at each site to 
collect these tokens and make them available to all the configuration resolvers. In 
this scenario, the GIIS would merely act as a proxy between the resolver and the 
central information repository. The signatures of the tokens would be validated by 
the central information repository before aggregating them. The resolvers would 
have to be authenticated at the central information repository before being granted 
access to the aggregated tokens; verification of the resolvers’ digital certificates 
and attestation tokens would be sufficient for this purpose. This integration would 
allow each site, through their own configuration resolver, to discover all the trust-
worthy nodes available across the entire grid. 

Consider a job submission scenario. A researcher, who wishes to run their job 
in the National Grid Service, submits a job to the local configuration resolver. 
First, the resolver communicates with the local resource broker to discover re-
source availability through the central information repository. Note, this is a ‘push 
architecture’ where the resource broker polls all CEs (through the central informa-
tion repository) to find out about the availability of the worker nodes. The resolv-
er, using the LDAP, downloads the configuration tokens for those with available 
resources from the central information repository. Tokens that match the job re-
quirements are returned, representing trustworthy, relevant participants available 
in other sites. The resolver then iterates through each token and verifies the trust-
worthiness of the reported configurations by comparing the PCR values against 
the local whitelist. Only those with acceptable configurations will be selected and 
merged with the tokens from the local site. Finally, the resolver selects the most 
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suitable participant, encrypts the job secret with the selected participant’s public 
key, and dispatches it. 

The encrypted job secret and session key as well as the extended job require-
ments are sent to the CE to which the selected worker node is connected. The job-
manager of this CE reads the unencrypted job requirements and schedules the job 
to the selected worker node. The middleware services as such will not be able to 
read the encrypted job secret and session key. 

When these arrive at the worker node, its policy enforcement point first at-
tempts to decrypt the job secret. The sealed key approach ensures that the private 
key is only accessible if the node is still running with trustworthy configurations. 
Then an integrity protected virtual machine is launched to provide an isolated, 
protected job execution environment. The sensitive models run within this virtual 
machine, and the generated results are encrypted using the session key and re-
turned to the researcher. 

9.3 Observations 

There would be a significant overhead involved in upgrading the participant sys-
tems to support trusted computing and virtualization. Various security virtual ma-
chines will have to be installed and the virtual machine monitor will have to be 
configured to manage these securely. Although this is a large change, the advan-
tage of the discussed approach is that legacy components like the GIIS and the 
central information repository can be used with only small modification. 

Moreover, many existing cloud systems (Nurmi, et al. 2009) (Amazon Elastic 
Compute Cloud n.d.) (Enomaly - Product Overview n.d.) already support virtuali-
zation and submission of job virtual machines. With the recent introduction of 
hardware support for virtual machine execution (see Section 4.4), it seems likely 
that future developments will also make use of virtualization. The administrative 
tasks involved in upgrading such systems would be much smaller. 

Despite the security enhancements, the use of the configuration resolver will 
increase the number of messages being exchanged upon job submission. The user 
submits a job to the local configuration resolver rather than to the Resource Bro-
ker. The resolver requests configuration tokens from the central information repo-
sitory and filters the trustworthy participants. Once these checks are done, it en-
crypts the job with the selected participant’s public key and submits the job on the 
user’s behalf. 

These extra messages and cryptographic operations will affect the overall per-
formance of job submission. However, for those wanting to submit performance 
critical jobs, the legacy services are still available for use. Such jobs can be sub-
mitted directly to the local Resource Broker and skip all the trusted computing op-
erations (see Figure 10). Usability will not be affected as much since the user re-
lies on the resolver to carry out attestation and job submission. 
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10 Conclusion 

A wide range of research is conducted, archived, and reported in the digital econ-
omy. Different types of distributed systems have been deployed over the years to 
facilitate the collection and modeling of the dispersed data, or the sharing of the 
computational resources. A problem arises, however, when the models or data 
have commercial value. They then become lucrative targets for attack, and may be 
copied or modified by adversaries. Despite ongoing research in the area of distri-
buted system security, there remains a ‘trust gap’ between the users’ requirements 
and current technological capabilities. 

To bridge this ‘trust gap’, we proposed two different types of distributed sys-
tems, one applicable for a computational system and the other for a distributed da-
ta system. Central to these systems is the configuration resolver, which maintains 
a list of trustworthy participants available in the virtual organisation. Users submit 
their jobs to the configuration resolver, knowing that their jobs will be dispatched 
to trustworthy participants and executed in protected environments. As a form of 
evaluation, we suggested how these ideas could be integrated with the UK Nation-
al Grid Service, and highlighted the potential security enhancements. 

As high performance is one of the key drivers behind the development of com-
putational distributed systems, the proposed security mechanisms sit uneasily with 
these aspirations. Despite several suggestions for improving performance (see 
Section 8.2), a more accurate assessment would be necessary to analyse the per-
formance implications and devise enhancement strategies. Hence, future work 
should consider constructing a prototype implementation of the proposed compo-
nents, integrating them with existing systems like the National Grid Service, and 
measuring the performance overhead. This work will also help uncover other inte-
roperability and usability issues. 
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