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Abstract

In order to securely monitor user or system activities and detect malicious

attempts across a distributed system, provision of trustworthy audit and logging

services is necessary. Existing audit-based monitoring services, however, are often

prone to compromise due to the lack of guarantees of log integrity, confidentiality,

and availability. This thesis presents several use cases where these properties

are essential, conducts a threat analysis on these use cases, and identifies key

security requirements from the threats and their risks. Then, this thesis proposes

a log generation and reconciliation infrastructure in which the requirements are

satisfied and threats are mitigated.

Applications usually expose a weak link in the way logs are generated and

protected. In the proposed logging system, important application events are

involuntarily recorded through a trustworthy logging component operating inside

a privileged virtual machine. Virtual machine isolation makes it infeasible for

applications to bypass the logging component. Trusted Computing attestation

allows users to verify the logging properties of remote systems, and ensure that

the collected logs are trustworthy.

Despite ongoing research in the area of usable security for distributed sys-

tems, there remains a ‘trust gap’ between the users’ requirements and current

technological capabilities. To bridge this ‘trust gap’, this thesis also proposes

two different types of distributed systems, one applicable for a computational

system and the other for a distributed data system. Central to these systems

is the configuration resolver which maintains a list of trustworthy participants

available in the virtual organisation. Users submit their jobs to the configuration

resolver, knowing that their jobs will be dispatched to trustworthy participants

and executed in protected environments. As a form of evaluation, this thesis sug-

gests how these ideas could be integrated with existing systems, and highlights

the potential security enhancements.
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Chapter 1

Introduction

This chapter provides an overview of the motivation and scope of the thesis, and

highlights the key contributions.

1.1 Motivation

The emergence of different types of distributed systems, and the fast spread

of associated security threats (e.g. adversaries trying to steal sensitive data or

models [14]) makes the provision of trustworthy, audit-based monitoring services

necessary. For instance, these services could monitor and report violation of

service-level agreements [111], or detect events of dubious user behaviour and

take retrospective actions [110]. Existing approaches, however, are often prone

to compromise due to the lack of integrity and confidentiality guarantees of log

data. Not much effort has been made towards protecting and verifying these

security properties upon distributed log generation, collection and reconciliation

(see Section 3.4).

Meanwhile, trusted computing and virtualization have often been suggested

as technologies suitable for enhancing distributed system security. Many re-

searchers [13, 134, 57, 123] have discussed the use of remote attestation for dis-

covering security configurations and establishing trust in remote platforms (see

Section 2.6). One of the key motivations is to explore how trusted computing

can be used to strengthen existing designs for distributed audit and logging, and

to develop trustworthy monitoring services capable of new kinds of functionality

hitherto impossible — such as the verification of trustworthiness of logs collected

from mutually-untrusting security domains.
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Trusted computing solutions, however, do not come without drawbacks. A

wide range of software and hardware is required to properly manage trusted

computing operations like remote attestation and authenticated boot (see Section

2.4). This has often led to criticisms that the administrative tasks involved in

setting up trusted computing applications are too complicated, and usability

issues as such are not being sufficiently considered [108].

There are feasibility issues too when it comes to deploying such applications

in a distributed environment. Moreover, a heavy use of cryptographic operations

usually degrades system performance. An effective way to evaluate whether these

problems are acceptable is to construct a prototype implementation and investi-

gate the areas of potential concern. Part of the motivation is to study security and

usability issues, and provide evidence of feasibility based on prototyping work.

With the growing influence of e-Research, substantial quantities of research

are being facilitated, recorded, and reported by means of distributed systems and

e-Infrastructures [19]. As a result, the scope for malicious intervention continues

to grow, and so do the rewards available to those able to steal the models and

data. Researchers are often reluctant to exploit the full benefits of distributed

computing because they fear the loss of their sensitive data, and the uncertainty

of the generated results [14] (see Section 7.1). It is also a motivation of the thesis

to identify the missing security components and develop potential solutions based

on trusted computing capabilities.

1.2 Scope

Five distinct phases are covered in the thesis:

Requirements Analysis (see Chapter 3) For each use case scenario, a threat

and risk analysis is conducted to study how attackers might exploit the se-

curity vulnerabilities of a logging system. From these, the security require-

ments for distributed audit and logging are identified. Existing solutions

are examined with respect to these requirements and their inadequacies are

analysed.

Design (see Chapters 4 and 5) This part of the thesis proposes the log gen-

eration and reconciliation infrastructure that satisfies the security require-

ments. Trusted computing and virtualization capabilities (in particular,

2



sealed storage and remote attestation) are used extensively to facilitate in-

voluntary log generation and trustworthy reconciliation (and analysis) of

distributed logs.

Prototype Implementation (see Chapter 6) A number of integral security

components are selected from the log reconciliation architecture, and their

prototype implementation is constructed. While doing so, the inherent

security, feasibility and usability of the proposed architecture are evaluated.

Generalisation (see Chapter 7) The security components from the log recon-

ciliation architecture are adapted and extended to solve a more generalised

set of distributed system security problems. Based on these components,

two different types of distributed systems are proposed to facilitate trust-

worthy job execution and data aggregation.

Evaluation (see Chapter 8) Security of the proposed systems are evaluated

against the original requirements. Their interoperability are further eval-

uated through integration with the original use cases and existing grid or

cloud solutions.

1.3 Novel Contributions

The central contribution of the thesis is: (1) the identification of the security

requirements for distributed log generation and reconciliation, (2) the architecture

design of the trustworthy log generation and reconciliation infrastructure, (3) the

prototype implementation of the proposed infrastructure, and implementation

guidelines for trusted computing applications, and (4) the architecture design

of the trustworthy distributed systems and the central configuration verification

server.

Much of the existing research has overlooked the security and interoperability

issues around distributed log generation and reconciliation (see Section 3.4). In

the requirements analysis phase, the key security requirements are identified and

the groundwork for developing trustworthy logging system is provided. These

requirements describe the essential security properties and suggest mechanisms

(and services) required for protecting them.
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From these requirements, a trustworthy log generation and reconciliation in-

frastructure is designed. It facilitates the production and analysis of log data with

strong guarantees of confidentiality and integrity, to an evidential standard (ac-

ceptable for judicial use [73]1) in a variety of contexts. A novel logging paradigm

is proposed where application events are logged involuntarily at the system level

via an isolated, integrity protected logging component. Upon installation of this

infrastructure, each participant will be capable of generating and storing the log

data, and proving to others that these logs are trustworthy (and accurate). More-

over, log owners will be assured that only the processed, anonymised information

will be released to remote users.

The prototype implementation provides strong evidence of feasibility of the

trusted computing ideas discussed in the thesis. In addition, the high-level class

diagrams and implementation details provide a sound guideline for developing

remote attestation and sealing applications. The prototype also uncovers some

of the security and usability issues.

The thesis also proposes two different types of distributed systems — one

suitable for a computational system and the other for a distributed data sys-

tem. Central to these systems is the novel idea of Configuration Resolver, which,

in both designs, is responsible for filtering trustworthy participants and ensur-

ing that jobs are dispatched to those considered trustworthy. Combination of

remote attestation and sealed key approach guarantees that jobs are processed

in protected execution environments without any unauthorised interference, and

returned results are integrity and confidentiality protected.

1.4 Thesis Structure

The rest of the thesis explains these contributions in detail. Chapter 2 covers the

background knowledge required to understand the ideas proposed in the thesis.

Concepts like distributed computing and logging as well as trusted computing

and virtualization are thoroughly explained. Chapter 3 identifies a unifying set of

security requirements for distributed audit and logging based on a threat analysis.

1This publication from NIST lists key regulations and standards (e.g. Federal Information
Security Management Act of 2002, Sarbanes-Oxley Act 2002) that help define organisations’
needs for secure log management.
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These requirements describe the essential logging properties and pin down the

security mechanisms required to protect them.

From these requirements, Chapters 4 and 5 propose a trustworthy log genera-

tion and reconciliation infrastructure. Its advantages as well as the potential areas

of concern are covered through observations. Chapter 6 describes the prototype

implementation constructed for the log reconciliation architecture. It provides

high-level class diagrams and implementation details such as might be used as a

guideline for developing trusted computing applications. Then, using the security

components adapted from the previous infrastructure, Chapter 7 proposes two

different types of distributed systems that satisfy a generalised set of security

requirements. Again, the advantages and the remaining issues are observed.

Chapter 8 evaluates security of the proposed systems using the original re-

quirements as a success criteria. Practicality and interoperability are evaluated

through integration with the use cases and existing distributed systems. Finally,

Chapter 9 summarises the key contributions of the thesis and considers potential

areas of future work.
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Chapter 2

Background Knowledge

This chapter introduces the concepts necessary to understand the ideas proposed

in this thesis.

Sections 2.1 and 2.2 explain the fundamental concepts of logging and dis-

tributed computing. Section 2.3 discusses the distinct challenges of processing

distributed logs, and Sections 2.4 and 2.5 suggest trusted computing and virtu-

alization as potential technologies to solve these problems. Finally, Section 2.6

introduces emerging ideas in this field of work.

2.1 What is a Distributed Virtual Organisation?

The Internet has changed the way people work, research, and do business im-

mensely. This revolution has led to market globalisation that in turn has in-

creased market competition. Those who have survived the competitive market

realised early on that the customers are usually looking for a complete package,

and hence they have collaborated with others to provide the final product (or

service) [19]. Collaboration has also been encouraged among those in pursuit of

more challenging and demanding goals that involve complicated tasks.

Emerging information and communication technologies (like ‘the Grid’ [47])

enable such collaborative activities to take place online. Multiple organisations

come together as one unit by sharing their competencies and resources for the

purpose of commonly identified goals. The fact that this is happening online

characterises it as a virtual organisation [19].

This notion of a virtual organisation runs commonly through many definitions

of what constitutes a distributed (or a grid) system: ‘many disparate logical and
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Figure 2.1: Abstract View of the Virtual Organisation

physical entities that span multiple administrative domains are orchestrated to-

gether as a single logical entity’ [94]. Just as the Internet allows users to share

knowledge and files, a distributed system allows organisations to share hetero-

geneous resources (hardware, applications, data and instrumentation) through

a more informed and timely (quicker, on demand) collaborative support. The

end user interacts with one large virtual computing system capable of running

processes too complex for a single system.

Foster [47] defines the grid as a system that

• integrates and coordinates resources and users from different control do-

mains and addresses the issues of security, policy and payment

• ...using standard, open, general-purpose protocols and interfaces... that

address fundamental issues like authentication, authorisation and resource

access

• ...to deliver nontrivial qualities of service

Distributed systems have often been used among scientists to perform their

own collaborated research, although, in recent years, the focus has shifted to more

interdisciplinary areas that are closer to everyday life, such as healthcare, business

and engineering applications [38]. In consequence, a great deal of research [14,

13, 57, 134, 4] is being conducted to provide more reliable and secure means to

interconnect resources between different organisations.

An abstract view of the virtual organisation is presented in Figure 2.1, which

captures the essence of the definitions above. There are two participant nodes
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coming together to form a virtual organisation, and uniting their individual

databases as a single logical resource: each node consists of external and in-

ternal services responsible for virtualizing the data sources. Further, each node

manages its own local data and logs, and various policies governing them. In

addition, standardised external services enable communication between different

nodes, managing middleware operations such as job submission and user au-

thentication. All user interactions are handled by these external services. This

abstract view is used to motivate example applications and use cases described

in Sections 3.1 and 3.2, respectively.

2.2 Initial Definitions: A Log Event, Audit Log

and Audit Trail

The following three definitions are consistent with the NIST Handbook: An

Introduction to Computer Security [55].

Definition 2.1 ‘A log event’ contains diagnostic information for a single event

as observed by one system or application process on a computer system.

Definition 2.2 ‘An audit log’ (also referred to as just ‘a log’) is a record of log

events generated by one particular process.

Definition 2.3 ‘An audit trail’ is a chronological record of events taken by dif-

ferent processes; several logs may be used to create the complete audit trail devoted

to a system, application or user activity.

Any useful log event would specify the following at a minimum: when the

event occurred, the associated user, the program or command used, and the re-

sult. Such log events are used to generate audit trails at both the application

and operating system levels. System-level audit trails are created by combining

logs generated from system processes, and capture information related to any at-

tempt to log on (or log off), devices used, and the functions performed. Similarly,

application-level trails combine application process logs and largely monitor user

activities: including access, modification, and deletion of files and data. Upon

modification of sensitive data, some applications may require both the ‘before’

and ‘after’ pictures to be logged.
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A complete picture of an activity can be assembled by reconciling audit trails

collected from both the application and system levels. For instance, user activ-

ity may be monitored by collecting audit trails from both levels, filtering events

associated with the user, and sorting them in chronological order. Typically, the

resulting audit trail would reveal commands initiated by the user, identification

and authentication attempts, and files and resources accessed. This notion could

also be extended to a distributed virtual organisation where the user’s actions

across multiple administrative domains would be recorded, reconciled and exam-

ined.

Different types of analysis tools have been developed [115, 130, 138] to assist

administrators interpret and analyse the audit trails. These help to distill useful

information from the raw data, and effectively, reduce the volume of log events.

During a security review, for example, events that appear to be less critical would

be removed from the audit trails. Some are designed to identify a specific order

of events that indicates an unauthorised access attempt — a repeated failure of

log-in attempts, for example, will be detected. Such tools are used to achieve a

number of security objectives [55]:

• reconstruction of events — audit trails can be used to reconstruct events

when a problem occurs; damages can be assessed by reviewing trails of a

system activity to identify how, when and why operations have stopped.

• intrusion detection — audit trails can be used to identify malicious attempts

to penetrate a system or to gain unauthorised access.

• problem analysis — status of processes running in critical applications can

be monitored with real-time auditing.

• individual accountability — proper user behaviour is promoted by logging

and monitoring user activities, and advising users that they are accountable

for their traceable actions.

• dynamic access control — in a distributed data system, a researcher could

discover sensitive information through information flow, perhaps by corre-

lating queries against one system with queries against another; audit trails

can be used to analyse what the researcher already knows from previous

queries, and restrict further access to potential identifiable information.
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In most cases, applications and operating systems voluntarily generate their

own log events and enforce various security policies to protect them. The main

problem with this approach is that any one of their security vulnerabilities could

be exploited to affect the logging mechanisms and compromise the logged data.

A more secure approach would involve logging important application events in-

voluntarily at the system-level via a trustworthy logging component, and making

it infeasible to bypass this component. This is the kind of approach explored in

Chapter 4.

2.3 Processing Distributed Logs and Challenges

The following definitions are consistent with the ISO 7498-2 security standards [65].

Definition 2.4 ‘Data integrity’ is the “property that data has not been altered

or destroyed in an unauthorised manner”.

Definition 2.5 ‘Confidentiality’ is the “property that information is not made

available or disclosed to unauthorised entities, individuals, or processes”.

Definition 2.6 ‘Availability’ is the “property of being accessible and useable upon

demand by an authorised entity”.

The rise of many kinds of distributed systems and associated security threats

makes necessary the provision of trustworthy services for audit and logging. Such

services may be used for forensic examination, for intrusion detection, for proof

of provenance, for post hoc access control policy enforcement, for financial and

business audit and due diligence, for scientific record-keeping, and so on.

These examples have in common requirements upon [121]

• integrity and accuracy of the logs — its generation, and (perhaps archival)

storage; such concerns apply both to the individual log events, and also to

the totality of the logs and audit trails; the assembly or pattern of events.

• confidentiality of the logged data — again, the individual log events may

contain sensitive information; the totality of the log data itself may be

considerably more sensitive.

• availability of the logging services and the logged data.
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• trustworthy reconciliation and analysis of the logs.

In reality, many of the audit-based monitoring services are prone to compro-

mise due to the lack of services to protect the integrity and accuracy of logs

generated (and collected) from different sites. Also, because some of these logs

are highly sensitive, and without the necessary privacy guarantees, neither site

trusts the other to see the raw data.

Many log anonymisation techniques have been proposed to solve the latter

issue [77, 103, 8]; however, adapting such techniques and assuring that these

anonymisation policies will be correctly enforced at a remote site, is a whole new

security issue. Moreover, anonymising the data before release is known to be

a hard problem in general (see Section 7.2.2). The main problem with existing

solutions is that they only provide weak protection for these security properties

upon distributed log generation, access and reconciliation (see Section 3.4).

Foster [47] emphasises that the grid vision requires protocols, as well as in-

terfaces and policies that are not only open and general-purpose, but also stan-

dardised. It seems that various stakeholders, such as the Open Grid Services

Architecture Working Group (OGSA-WG) [90], are aware of the need to stan-

dardise the logging facilities in the grid, yet there is no direct work underway to

find out what exactly needs to be standardised [60].

The idea of the nodes spanning multiple administrative domains makes the

provision of audit-based controls a difficult problem — where the distributed

services and associated logs are often inconsistent [60, 126, 16]. There is a need

for a common approach to reconstruct the thread of work securely.

2.4 Trusted Computing

The feasibility of the audit-based monitoring services largely depends on the

user’s ability to verify the security state of remote logging systems, and retain

control over their logs regardless of the system to which it migrates.

Faced with the prospect of modern PCs (and other devices) having so much

software that their behaviour is unpredictable and easily subverted, the Trusted

Computing Group (TCG) [2] has developed a series of technologies based around

a Trusted Platform Module (TPM) — normally a hardware chip embedded in
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Figure 2.2: Authenticated Boot

the motherboard — which helps to provide two novel capabilities [32]: a cryp-

tographically strong identity and reporting mechanism for the platform, and a

means to measure the software loaded during the platform’s boot process. These

include, for example, the BIOS, bootloader, operating system and applications

(see Figure 2.2). Further details of the TPM’s functionality is defined in the

TPM Main Specification [124] published by the Trusted Computing Group.

Measurements are taken by calculating a cryptographic hash of binaries before

they are executed. Hashes are stored in Platform Configuration Registers (PCRs)

in the TPM. They can only be modified through special TPM ordinals, and the

PCRs are never directly written to; rather, measurements can only be extended

by an entity. This is to ensure that no other entity can just modify or overwrite

the measured value. A 20-byte hash of the new measurement is generated based

on the PCR’s current value concatenated with the new input, and a SHA-1

performed on this concatenated value.

Definition 2.7 A PCR can be either static or dynamic [34]. A static PCR can

reset only when the TPM itself resets — the PCR cannot be reset independently.

Static PCRs are normally used to store the measurements. The thesis refers to a

static PCR whenever a PCR is mentioned. A dynamic PCR, on the other hand,

can be reset independently from the TPM, so long as the process resetting the
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PCR is under sufficient protection1. This thesis refers to such dynamic PCRs as

‘Resettable PCRs’.

In a trustworthy system, every executable piece of code in the authenticated

boot process will be measured and PCRs extended sequentially (transitive trust).

The notion of transitive trust provides a way for a relying party to trust a large

group of entities from a single root of trust: the trust is extended by measuring

the next entity, storing the measurement in the TPM, and passing the control

to the measured entity (see Figure 2.2). Using this extend operation has some

important security implications:

• a single PCR can store the extended result of an unlimited number of mea-

surements;

• the ordering property of SHA-1 provides for a different hash value when

hashing two values in a different order; with this order dependency, an

entity cannot pretend to run after a certain event; and

• an entity is prevented from creating a ‘PCR event log’ that removes the

entity’s own measurement from the log.

Hence, any malicious piece of code (e.g. rootkit) executed during the boot

process will also be recorded and identified. A PCR event log is created during the

boot process and stores all of the measured values (and a description for each)

externally to the TPM. These values can be extended in software to validate

the contents of the event log. The resulting hash can be compared against the

reported, signed PCR value to see if the event log is correct.

2.4.1 Sealed Storage

Trusted computing provides the means to seal (encrypt) data so that it will

only successfully decrypt when the platform measurements are in a particular

state [32]. The seal process takes external data (information the TPM is going

to protect) and a specified PCR value, encrypts the data internally to the TPM

using a storage key, and creates a sealed data package (see Figure 2.3). This

1Only ‘Locality 4’ (trusted hardware) can reset a dynamic PCR — platform hardware en-
sures that only trusted processes have access to Locality 4 [33].
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Figure 2.3: Sealed Storage

storage key binds the encrypted data to the TPM. Typically, the external data

protected is a symmetric key that may be used to encrypt bulk data objects.

An application — responsible for keeping track of this package — sends the

package back to the TPM to recover the data. A nonce, known only to an

individual TPM, is also included in the package to ensure that only the TPM

responsible for creating the package can unseal it.

The whole purpose of sealing is to prevent any unauthorised attempt to unseal

the package. The TPM enforces two restrictions upon decrypting the sealed

package:

• ensures that the package is only available on the platform bound to the

TPM that created it — the TPM checks whether the nonce included in the

package matches the one held internally; and

• compares the current PCR value to the specified PCR value stored in the

sealed package — the operation aborts if these values do not match.

The implication is that the external data only becomes available to an ap-

plication when the correct value (an acceptable platform configuration) is in the

specified PCR. Chapter 5 explores different ways in which sealing can be used to

protect sensitive data from compromised hosts.

2.4.2 Remote Attestation

Sealed storage provides a high degree of assurance that the data is only available

if the acceptable configuration is present. But how does an external application
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— that has not performed the seal operation — know that such a configuration

is present in a remote platform? Trusted computing provides the means to un-

dertake remote attestation [32]: proving to a third party that (in the absence of

hardware tampering) a remote platform is in a particular software state.

Remote attestation involves the TPM reporting PCR value(s) that are dig-

itally signed with TPM-generated ‘Attestation Identity Keys’ (AIKs), and al-

lowing others to validate the signature and the PCR contents. The application

wanting to attest its current platform configuration would call the TPM_Quote

command specifying a set of PCR values to quote, an AIK to digitally sign the

quote, and a nonce to ensure its freshness. The TPM validates the authorisation

secret of the AIK, signs the specified PCRs internally with the private half of the

AIK, and returns the digitally signed quote.

The external application validates the signature by using the public half of

the AIK, and validates the AIK with the AIK credential — a certificate issued by

a trusted Certificate Authority (a ‘Privacy CA’) which states the platform has a

valid TPM. The PCR log entries are then compared against a list of ‘known-good’

values to check if the reported PCRs represent an acceptable configuration. This

list is often referred to as an ‘application whitelist’.

Attestation can be used on a platform that supports authenticated boot (see

above) to verify that only known pieces of software are running on it. Additions

or modifications to any executable will be recorded during the boot process, and

noticed when log entries and PCR values are checked. With such mechanisms in

place, the external application can, in theory, identify whether a remote platform

has been infected with a virus or not.

2.4.3 Runtime Attestation Model

Figure 2.4 gives an overview the Trusted Computing Group’s runtime attestation

model [129]. In a trusted platform, the Platform Trust Services (PTS) provide

the capability to select hardware and software components to be measured dur-

ing the authenticated boot process. They are also responsible for computing the

measurements of the selected components and the creation of an integrity report

containing these measurements. The Verifier checks the incoming integrity re-

ports using the Policy Database, Configuration Management Database (CMDB),
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Figure 2.4: Runtime Attestation Model (Figure 22 from [129])

and Reference Manifest (RM) Database. These databases hold known-good con-

figurations for platforms. If an attesting platform has an unknown or unexpected

configuration, the Verifier informs the Relying Party not to trust this platform.

The proposed systems in Chapters 5 and 7 adapt this runtime attestation

model. Each administrative domain is managed by a central Verifier (referred to

as the configuration resolver) which checks the configurations of the participant

platforms when they first register with the Verifier. Only those verified to be

trustworthy become available to the Relying Party (the end users).

2.4.4 Limitations

Despite the new security primitives introduced by sealing and attestation, there

are a number of issues that need to be addressed before these can be used effec-

tively. One of the fundamental problems of attestation is tracking down the static

identity for software (which is generally dynamic) to measure. After a piece of

software is deployed, its configuration parameters might change, or it might be

repeatedly patched and updated. Moreover, most software and operating systems

they run on constantly change stored data files during execution. Such dynamic

properties of software make it difficult to determine their static identities.

As a possible solution, Sailer et al. [97] have suggested measuring only the

binary or relatively static parts of the platform. The idea is to measure relatively
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static components that are only relevant to the correct operation of a platform.

They argue that a minimised form of identity would remain unchanged over

time. The rest of the components should have a minimal impact on the correct

functioning and security of the platform.

Attesting only the identity of binary data, however, has its own drawbacks.

Haldar et al. [56] state that binary attestation only proves the identity of a plat-

form and not its behaviour. The user still has to interpret the behaviour of the

platform. To improve usability of attestation, they have introduced ‘semantic

remote attestation’ — a technique for verifying the remote behaviour of a plat-

form. A trusted virtual machine reports on the high-level properties of software

running on the platform: these include class hierarchies and Java Virtual Ma-

chine security policies (e.g. access controls on program variables). As a result,

more reliable information becomes available to the users upon making security

decisions.

In an attempt to offer a low-cost security solution, the TPM uses the main

memory of a computer to run trusted (measured) applications. The trusted ap-

plications are measured when they are initially loaded into the memory, and these

measurements are replayed during attestation. While the applications are run-

ning, however, in-memory attacks (such as exploiting a buffer overflow, or over-

writing the program code) [109] might be performed to alter their behaviour, or

steal sensitive data from the memory. The TPM has not been designed to detect

such modifications in the intervening time between measurement and attestation.

Hence, a runtime state of the platform might not be reported accurately through

attestation. Shi et al. [41] describe this issue as the inconsistency between the

‘time-of-use’ and the ‘time-of-attestation’.

Robust memory protection and process isolation seem the obvious solutions to

this problem, yet traditional operating systems only provide weak mechanisms for

both. For instance, with a small amount of effort, a malicious application could

gain full access to the memory space allocated to a TPM-measured application

running under the same user account. Moreover, a successful privilege escalation

attack [86] — whereby a malicious user or process gains access to the administra-

tor’s account — would allow one to modify or replace the measured applications.

To guard against this style of attack, measured applications and their memory
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space need to be strongly isolated and protected in their own compartments.

Only then can we fully exploit the benefits of trusted computing.

2.5 Virtualization

Virtualization is a key technology used in many trusted computing solutions to

provide strong isolation for the trusted (TPM-measured) applications. A com-

binational use of these two technologies is referred to as ‘trusted virtualization’.

Virtualization allows a single physical host to share the computing resources be-

tween multiple operating systems [139]. Each operating system runs in a Virtual

Machine (VM) of its own, where it is made to believe that it has dedicated access

to the hardware. A virtual machine is also referred to as a ‘compartment’.

A thin layer of software called Virtual Machine Monitor (VMM) operates on

top of the hardware to isolate virtual machines and mediate all access to the

physical hardware and peripherals. A virtual machine runs on a set of virtual

devices that are accessed through virtual device drivers. Typically, a highly

privileged monitor virtual machine is created at boot time and serves to manage

other virtual machines. In some implementations, the monitor virtual machine

intercepts all virtual I/O events (before they reach the virtual machine monitor)

and controls the way physical hardware is accessed. This notion of interception

is examined further in Section 4.2 and is used to facilitate involuntary logging of

application events.

Numerous design efforts have been made to remove avoidable inter-virtual-

machine communication mechanisms such as might be exploited to undermine

the isolation guarantees. The aim is to make a virtual machine behave in the

same way (and have the same properties) as a physically isolated machine. In

such designs the virtual machine monitor ensures that all memory is cleared

before being reallocated and each virtual machine has its own dedicated memory

and disk space. Both Intel and AMD processors now provide hardware support

for full, efficient virtualization [75, 53]. With help from these processors, the

virtual machine monitor can simulate a complete hardware environment for an

unmodified operating system to run and use an identical set of instructions as the

host. Hardware virtualization can also speed up the execution of virtual machines

by minimising the virtualization overhead.
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2.5.1 Secure Isolation with Virtualization

The majority of current grid middleware solutions, including the Globus Toolkit [63],

rely on operating systems’ access control mechanisms to manage isolation between

user accounts. For example, operating system enforced access control policies pre-

vent malicious software (installed by a third party unknown to the host) from

gaining unauthorised access to the jobs running under different user accounts.

However, millions of lines of code contained in a mainstream operating system

must be trusted to enforce these policies correctly [10]. A single security bug in

any one of the privileged components might be enough for an attacker to hijack

it, elevate its privileges, and take control of the host and the jobs running inside.

Virtualization, on the other hand, is capable of providing much stronger isola-

tion through the relatively smaller virtual machine monitor and monitor virtual

machine [59]. A malware (through privilege escalation) would have to compro-

mise both components — which are designed to resist such attacks — in order to

break the isolation [50]. In a trustworthy, virtualized system, these two compo-

nents (as well as other trusted software) would be measured during the authen-

ticated boot and their integrity would be reported through attestation. Many

researchers [45, 74] have studied the benefits of separating jobs and trusted ap-

plications in their own virtual machines:

• the job owner has more flexibility in their choice of the operating system

and software (i.e. the execution environment);

• job isolation prevents a rogue job from compromising the host or other jobs

running in the same host;

• in-memory attacks targeted at the trusted applications are made more dif-

ficult; and

• the impact of privilege escalation attacks are limited to the isolation bound-

aries of a virtual machine.

2.5.2 Xen Virtual Machine Monitor

Xen is a virtual machine monitor designed for 32-bit (often called x86 or i386)

and 64-bit Intel architectures [18]. It originated as a research project at the

19



Figure 2.5: Xen Architecture (Adapted from [67])

University of Cambridge Computer Laboratory [89], and is now maintained by

the Xen community as free software. Being an open source project, it provides

flexible means for developers to modify its components, or add new abilities to

them.

This advantage has attracted many researchers to work with Xen to isolate

trusted compartments from those which are untrusted. For example, the Open

Trusted Computing (OpenTC) consortium have recently implemented a ‘Cor-

porate Computing at Home’ prototype [91] based on the Xen virtual machine

monitor. Their prototype serves to demonstrate how trusted virtualization could

be used to prepare a trusted (TPM-measured) compartment, verify its state, and

access the corporate network through the trusted compartment. The systems

proposed in the thesis (see Chapters 4 and 5) are also designed and implemented

with Xen as the virtualization layer. The rest of the section explains the concepts

of Xen that are necessary to understand how these systems work.

The Xen virtual machine monitor runs on top of the bare hardware and con-

trols the way virtual machines (also referred to as ‘domains’ in Xen) access the

hardware and peripherals (see Figure 2.5). A highly privileged monitor virtual
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machine called Domain-0 is created at boot time and manages other guest virtual

machines. Domain-0 is responsible for hosting the application-level management

software.

The Safe Hardware Interface (Safe HW IF) is available through the virtual

machine monitor, and allows the hardware to be exposed in a safe manner. It pro-

vides a restricted environment called ‘I/O space’ which ensures that each device

performs its work isolated from the rest of the system (a bit like virtual machine

isolation). In Xen, events replace hardware interrupts. The Event Channel is

responsible for sending asynchronous events to the virtual machines.

The Device Manager runs inside Domain-0 to bootstrap the device drivers

and broadcast their availability to the guest operating systems, and export con-

figuration and control interfaces. A Native Device Driver is a normal driver that

runs in a Domain-0 (or other privileged virtual machines) with access to the

physical hardware. Each driver is restricted by the I/O space of the safe hard-

ware interface so the damage a faulting device can do to others is limited. A

Front-end Device Driver is a virtual device driver sitting inside a guest virtual

machine. A guest operating system uses the front-end to send I/O requests to

the corresponding Back-end Driver, which is another virtual driver running in-

side Domain-0. The back-end checks the validity of incoming I/O requests and

forwards them to the native driver to access the physical hardware. The back-

ends usually run inside Domain-0 since they need access to the native drivers.

Nevertheless, they may also run in a virtual machine that is given a physical

device privilege (DF-PHYSDEV) flag.

Once the kernel completes the I/O run, the back-end uses the event channel

to notify the front-end that there is pending data. The guest operating system

then accesses the data using the shared memory mechanisms. The details of the

shared memory mechanisms and the use of virtual drivers are covered in Section

4.2.2.

2.6 Emerging Ideas and Inadequacies

Great strides have been made in using trusted virtualization to design and con-

struct trustworthy components for distributed systems. This section explores

some of the emerging themes from this field of work and identifies their inade-

quacies.
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2.6.1 Attestation Tokens and Sealed Key Approach

The term ‘attestation token’ is commonly used to describe a participant’s cre-

dentials [57, 140]. Typically, it contains the participant’s platform configurations

and the public half of a non-migratable TPM key. The private half is bound

to the platform’s TPM and PCR values corresponding to its trusted computing

base. Information contained in the attestation token should be sufficient for a

user to verify the identity and trustworthiness of the platform.

Lohr et al. [57] combine the Perseus virtualization framework and remote

attestation to create a Trusted Grid Architecture. In the Trusted Grid Architec-

ture, users collect attestation tokens of service providers, and verify their platform

configurations using a locally managed whitelist. Upon job submission, the job

secret is encrypted with a service provider’s public key (obtained from their attes-

tation token), guaranteeing that only a securely configured platform will be able

to access the private key and decrypt it. If the service provider’s trusted com-

puting base has changed, the private key will no longer be accessible to process

the job further.

The virtualization layer is extended to include services that support secure job

transfer and execution. Grid jobs are transferred across an encrypted, integrity-

protected communication channel established with trusted middleware compo-

nents, and their data is written to disk using a secure storage service. The

attestation service uses the attestation token to verify the state of the trusted

software layer prior to submitting the job data. The job data is encrypted us-

ing the public key (obtained from the token) so that only a securely configured

software layer can decrypt it and execute the job.

The Trusted Grid Architecture, however, provides no mechanisms for veri-

fying the job execution environment and the integrity of the returned results.

It also fails to amply isolate the trusted components. Most of their security

controls are enforced in a virtual machine that also contains a large amount of

untrusted software. For example, the grid management service runs in the same

compartment as the storage encryption service. This extra complexity increases

the likelihood of vulnerabilities and makes attestation less meaningful. More-

over, they do not discuss how the users collect the attestation tokens and how

the application whitelists are managed in a distributed environment.
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Due to the lack of useful semantic (including security) information that can

be conveyed through standard binary attestation (see Section 2.4.4), many (see,

for example, [131, 78]) have suggested the use of property-based attestation [9] to

add more security information. Security relevant properties of the platform are

attested rather than the binary measurements of the software and hardware. In

consequence, trust decisions made based on platform configurations are simpli-

fied.

2.6.2 Minimising Trusted Code

The overall trustworthiness and reliability of a participant system depends on the

size and complexity of its trusted computing base — the smaller and simpler the

trusted computing base is, the less probable the compromise in security would

be [81]. Various methods for minimising the trusted computing base have been

discussed [133, 25].

In Cooper and Martin’s architecture [12], the job security manager virtual

machine enforces all foundational security functions for the grid jobs. Their job

security manager and virtual machine monitor form the trusted computing base

within the grid platform. The digital rights management controls are protected

within the job security manager (a dedicated virtual machine), providing en-

hanced protection for encryption keys. By dedicating the security manager to a

single purpose, the complexity of the trusted code is minimised.

This type of compartmented architecture simplifies attestation since the in-

tegrity of a relatively small, simple piece of software is verified against an ap-

plication whitelist. Reducing the complexity of attestation and management of

whitelists is integral for developing trustworthy systems. This thesis also explores

different ways of isolating log security functions in a dedicated virtual machine

and minimising the trusted code.

2.6.3 Grid Middleware Isolation

Cooper and Martin [13] make a strong argument that the complex grid middle-

ware services, which usually have a high likelihood of vulnerabilities, can not be

trusted to secure users’ data and credentials. For example, at least five different

vulnerabilities have been found in the Globus Toolkit [48] that allow unauthorised

users to compromise the middleware [13].
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In their architecture, the middleware stack is isolated in an untrusted com-

partment of its own and is not relied upon to perform trusted operations. As a

result, even if an attacker manages to compromise the middleware, they would

not have gained sufficient privileges to undermine the security of a distributed

system.

2.6.4 Job Isolation

The use of virtual machine isolation has been discussed many times as a solu-

tion to the ‘malicious host’ problem [12, 132, 131]. Typically, a job runs on a

separate virtual machine of its own, where its queries or codes are executed free

from unauthorised interference. The job secrets are decrypted inside the virtual

machine and protected from rogue virtual machines or the host. Job isolation

could also protect the host from rogue jobs [113].

Terra [123] is a virtualization architecture developed on the VMware virtual-

ization platform [118]. VMware is modified to support encrypted and integrity

protected disks. Using their trusted virtual machine monitor, existing applica-

tions can either run in a standard virtual machine, or in a ‘closed-box’ virtual

machine that provides the functionality of running on a dedicated closed plat-

form. The trusted virtual machine monitor protects confidentiality and integrity

of the contents of the closed-box by intercepting the disk I/O requests and en-

crypting the disk sectors. The closed-box is strongly isolated from the rest of the

platform. With hardware memory protection and secure storage mechanisms, the

contents are also protected from a rogue administrator.

The authors suggest that Terra could be used to enable a secure grid platform.

A closed-box would isolate the job and protect its contents from a malicious host.

This closed-box would be capable of accessing its own integrity measurement by

performing a system call through the trusted virtual machine monitor. The job

owner would use this measurement to identify the job execution environment.

2.6.5 Trusted Execution Environment

Cooper and Martin [13] describe an architecture that aims to provide a ‘trusted

execution environment’. In their architecture, a grid job is encrypted and runs

on an integrity protected virtual machine where it cannot be accessed from the
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Figure 2.6: A Trusted Grid Architecture (Adapted from [15])

host platform; the data is safely decrypted inside this virtual machine during ex-

ecution. Remote attestation is used to verify this environment before dispatching

the job.

Their solution works by distributing a job composed of two virtual machines:

the first virtual machine runs the job, and the second enforces the trusted ex-

ecution environment (see Figure 2.6). This second virtual machine, referred to

as the ‘job security manager’, isolates the security layer from the job, and allows

the solution to work seamlessly with all legacy virtualization and middleware

software.

One potential loophole comes from the fact that they are less concerned about

the ‘malicious code’ problem — an untrusted code running on a participant’s

platform. A job owner specifies the virtual machine instance and its security

configurations are not checked before being used. The system relies on virtual-

ization alone to isolate rogue jobs from the host.

The type of attacks a malicious virtual machine can perform would be re-

stricted if virtualization offers complete isolation; but no existing solution guar-

antees this property right now (although, it is the objective of many). For example

in Xen, each virtual machine has two I/O rings, one for sending requests and one

for receiving responses, and these form the inter-virtual-machine communication

mechanism [18]. A rogue job could potentially hijack privileged processes and
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manipulate this communication channel to perform buffer overflow attacks on

the privileged virtual machines.

2.6.6 Sealed Storage

Jansen et al. [69] demonstrate how the Xen virtual machine monitor could be

used to improve existing sealed storage solutions. They modify the virtual ma-

chine monitor to control access to the cryptographic keys used for sealed storage,

ensuring that the keys are only accessible to the authorised virtual machines.

A similar approach is discussed in this thesis to protect the logged data from

unauthorised virtual machines: the sealed storage ensures that only a securely

configured logging service can access the logged data (see Section 4.2.5).

More related work is reviewed in Sections 3.4 and 7.4. Section 3.4 examines

existing logging solutions in detail and discusses their inadequacies. Section 7.4

establishes an emergent consensus view based on the ideas covered here and

identifies the missing pieces.

2.7 Chapter Summary

The concepts necessary to understand the rest of this thesis, including virtual

organisation, secure logging and trusted virtualization have been covered in this

chapter. Also, the emerging ideas for using trusted virtualization to improve

distributed system security have been discussed. The next chapter will explore

motivational examples extracted from a wide range of application domains that

would benefit from running a trustworthy logging system; these examples will be

followed by a threat and risk analysis. Based on the critical threats and their

risks, a unifying set of trustworthy logging requirements will be identified.
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Chapter 3

Requirements

This chapter focuses on deriving security requirements for log generation and

reconciliation — issues associated with building trustworthy distributed systems

(as discussed in Chapter 1) are not considered at this stage.

Section 3.1 explores a number of motivating examples to highlight the security

challenges listed in Section 2.3. Driven by these examples, Section 3.2 sets out a

collection of use case scenarios; for each scenario, their potential security threats

and risks are analysed. From these, Section 3.3 identifies the essential security

requirements as a first step toward designing a trustworthy logging system. Fi-

nally, Section 3.4 discusses the remaining gap between these requirements and

existing solutions.

3.1 Motivating Examples

3.1.1 Healthcare Grids and Dynamic Access Control

An example application arises in the context of a Healthcare Grid [4]. In ‘e-

Health’, many data grids are being constructed and interconnected, both in order

to facilitate the better provision of clinical information, and also to enable the

collection and analysis of data for scientific purposes, such as clinical trials of

new treatments.

For clinical data audited access will in many cases be much more appropriate

than rigid access controls (since some essential access may be very urgent, and

hard to authorise using RBAC-style approaches). A form of ‘traffic flow’ analysis

may itself yield much information about the patient and/or their clinical data,

however, so the access logs themselves are highly privileged. Researchers’ access
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GP Practice (GP ) T1

NHI DOB GP Smoke Risks

1 20/05/88 Dr. Anderson yes overweight

2 30/07/88 Dr. Anderson no allergies

Table 3.1: Data Available from the GP Practice (T1)

Specialist Clinic (SC) T2

NHI Postcode LungCancer

1 OX2 5PS yes

2 OX2 6QA no

Table 3.2: Data Available from the Specialist Clinic (T2)

must also be carefully logged and analysed, lest through multiple queries a re-

searcher manages to reconstruct personal data that identifies an individual [94].

One possible mitigation technique would be to analyse what researchers have

seen from previous queries (using audit trails), and dynamically update the ac-

cess control policies to prevent potential inference attacks.

Consider the following example1 in the context of the abstract view shown

in Figure 2.1. A simplified healthcare grid consists of two nodes: a GP Practice

(GP ) and a Specialist Clinic (SC). A patient from the GP practice is often re-

ferred to the specialist clinic to see a specialist. It is assumed that a single table

at each clinic (T1, T2) is made accessible to a researcher, and that the National

Health Index (NHI) uniquely identifies a patient across the grid to enable the

linking of data. The researcher is carrying out a study that looks at association

between smoking status (T1) and development of lung cancer (T2) in the popu-

lation of Oxfordshire. The researcher has originally been granted full access to

both T1 (at the GP practice) and T2 (at the specialist clinic) to conduct this

research. By joining the data across two clinics, the researcher could gain access

to potential identifiable information about patients: for example, the researcher

could find out that patient 1, born on the 20/05/88 and living in OX2 5PS who

has Dr. Anderson as their GP, is a smoker and has a lung cancer.

1This example has been developed with help from David Power who is involved in the GIMI
project [3] at Oxford, and Peter Lee who is an intern at the Auckland Hospital.
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In a secure grid, as soon as the researcher finds out from querying T2 that

patient 1 has lung cancer, the researcher’s access on T1 for patient 1 would be re-

stricted to, for example, only the NHI and Smoke fields. For the GP practice to

have restricted the researcher’s access rights to information pertaining to patient

1 on T1, would have required the GP practice to collect data access logs from the

specialist clinic to build up a picture of what the researcher already knows, and

to update its own access control policies. This would prevent the researcher from

collecting potential identifiable information. However, in general, the specialist

clinic would never give out patients’ lung cancer status in the form of audit trails

to an untrusted GP practice.

This type of distributed audit approach has been suggested to detect patterns

of behaviour across multiple administrative domains by combining their audit

trails [110]. However, a problem arises from the fact that the log owners do not

trust other sites to see their privileged raw data. This approach will only work if

the log owners can be assured of confidentiality during transit and reconciliation.

3.1.2 The Monitorability of Service-Level Agreements

The provision of service-level agreements (SLAs) and ensuring their monitorability

is another example2 use for trustworthy log generation and reconciliation.

A service-level agreement is a contract between customers and their service

provider. It specifies the levels of various attributes of a service like its availabil-

ity, performance, and associated penalties in the case of violation of the agree-

ment [71]. Consider a case where the client receives no response for a service (for

which they have entered into an agreement) within the agreed interval of time,

complains to the provider that a timely response was not received, and requests

financial compensation. The provider argues that no service request was received

and produces an audit trail for requests in their defense. There is no way for

the client to find out the truth when the provider could have delivered tampered

evidence. The problem is that the service-level agreement is defined in terms

of events that the client cannot directly monitor and must take the word of the

provider about the service availability.

2Initially, Jason Crampton from Royal Holloway has suggested the possible use of trusted
computing to improve monitorability of service-level agreements, recommending his own pub-
lication as a reference [111].
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Skene et al. [111] suggest a way of achieving monitorability with trusted com-

puting capabilities. This involves generating trustworthy logs and providing as-

surance that these logs have been used unmodified for monitoring service-level

agreements. For instance, if the client is able to verify with attestation that

trustworthy logging and reporting services operate at a remote site, then the

client may place conditions on any event of their interest and construct more

useful agreements. This approach needs to guarantee the integrity of all service

request/response logs to an evidential standard (i.e. to a standard acceptable

for judicial usages) upon distributed reconciliation and analysis. A monitoring

service would then be able to generate a reliable report for the client to make

claims.

Likewise, logged data often contains useful evidential information. However,

the inability of a site to verify the integrity of logs collected from other sites and

the lack of guarantees that their own logs are being used unmodified, make it

difficult for one to adapt the usual audit-based monitoring methods.

3.1.3 Distributed Banking Services and a Rogue Trader

A bank provides a collection of services to its traders which they use to assess

buying and selling opportunities for shares. The buying and selling of shares is

heavily regulated with a strong need to log behaviour, and to mirror and repli-

cate the operations. The buying behaviour is driven by a collection of data feeds;

here, the input timing of the data feeds is important to the traders and to the

regulators [104]. Such data feeds are usually replicated from multiple providers

and cross referenced to avoid costly mistakes. The calculation of derivative val-

ues is CPU-intensive and depends on available resources; these must be logged,

managed and audited.

An interesting scenario3 emerges at peak times, when there is a need to out-

source the computation and service provision because internal resources simply

cannot meet the demand. For instance, if the number of trades being passed

through a system suddenly increases by a large amount, a bank might not have

the necessary infrastructure to cope with this spike; hence, there is an inter-

3This distributed banking scenario has been discussed and elaborated with Terence Harmer
from Belfast e-Science Centre.
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est in calling on utility resources from trusted suppliers within the regulatory

framework.

Any decision, any data received, and any data sent must be logged to enable a

complete picture to be assembled later. The French S Generale scandal [125, 26] is

a good example that demonstrates such a need to protect the totality of logs: the

bank lost approximately 4.9 billion Euros closing out positions over three days

of trading. It resulted from fraudulent transactions created by a rogue trader

(who went far beyond his limited authority) within the bank — but the police

explained that they lack the forensic evidence to charge him with fraud.

In a more secure system, the administrator should be able to trace everything

the rogue trader has done by examining the audit trails. These should also be

made available to the police for an accurate investigation. The police should be

assured that they have access to the complete, integrity-protected information.

3.1.4 Privacy in Public Communications Network

Privacy in communication is considered as a valuable asset among the public

network providers — the mobile telephony and internet providers. For some

customers, breach of privacy could lead to severe commercial losses. Regulatory

authorities in many countries are responsible for auditing and regulating the

security levels required for each network provider. This is to ensure that the

essential security mechanisms are operational and that customers’ privacy is being

protected.

Despite various security measures and well-defined standards, there still re-

mains threats like ‘communication interception’ and ‘malicious insiders’ [114].

Non-conformance with the security standards and lack of audit-based monitoring

mechanisms increase the security risks.

Trustworthy audit and logging services could be used during regular security

audits to ensure that certain technical measures are in place and security policies

are being enforced correctly. During non-scheduled audits, if a security breach is

detected, for example, audit trails could be used to determine the cause of the

problem and assess the damages.

Consider an interception case for a mobile telecommunications provider in

Greece [21]. As the Greek authorities and the network provider have revealed,

an unknown trojan horse performed various attacks to compromise a part of the
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core network of the provider. The trojan first activated a lawful interception

component in the infected elements, and intercepted about 100 calls from the

Greek politicians and offices, including the U.S. embassy in Athens and the Greek

prime minister. While doing so, it also turned off several logging procedures to

hide its presence and the traces that show the activation of the interception

component. By exploiting the vulnerabilities of the core system (responsible

for generating logs), the trojan managed to turn off the logging procedures and

bypass the intrusion detection system. This example serves to highlight (1) the

risk of merely relying on the application itself to generate security logs, and (2)

the need for trusted logging execution and process isolation.

3.1.5 Post-Election Investigation

‘e-voting’ and post-election investigation is another area that requires a trustwor-

thy logging system. Since elections do not always go smoothly, it is important

that a voting system preserves forensic evidence that can be used to investigate

various problems [17, 119, 136]. For this purpose, many commercial e-voting

systems generate and maintain audit trails that describe system operations and

voters’ actions.

Unfortunately, the logging components used in current voting systems fall

short in a number of aspects:

• they often record a limited amount of information, missing essential infor-

mation for post investigations [6, 122];

• they provide weak protection for log integrity, making it difficult to verify

whether the audit trails represent accurate and complete information [112];

• being part of the voting system, they do not provide an independent way

of generating logs [100, 136]; and

• they lack protection for the voter’s anonymity upon post investigations [17].

In an ideal system, all interactions between the voter and the voting machine

would be recorded. Based on the integrity and totality protected audit trails, the

voter’s intent would be precisely reconstructed to investigate election disputes.

To preserve the voter’s anonymity, only the privacy protected audit trails would

be made available for post-election investigations.
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Figure 3.1: Use Case — Logging Distributed Data Access

3.2 Use Cases and Threat Analysis

Based on the abstract view of the virtual organisation (see Figure 2.1), this

section presents a number of use cases to identify the potential threats likely to

be faced by the examples above. These use cases are high-level representative of

the integrity, confidentiality and availability requirements that logging services

should satisfy.

3.2.1 Logging Distributed Data Access

The first two use cases come from the healthcare grid example (see Section 3.1.1).

In the first use case (see Figure 3.1), a researcher at the GP practice wishes

to query some patient data held at the specialist clinic. The specialist clinic

defines its own data authorisation policies and logging policies for data access —

the logging policies are used to engage logging mechanisms to record events of

interest. The researcher should only see the patient information for which they

have access rights, and this distributed access should be logged accurately at both

clinics.

Firstly, a data access request is sent from an interactive user tool to the ex-

ternal data access service at the GP practice. This request is submitted to the

external data access service at the specialist clinic, which forwards the request

to the internal authorisation service. The request is evaluated against data au-

thorisation policies and the authorisation decision is returned to the data access
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service for logging purposes — the patient data, however, is only returned if ac-

cess has been permitted. The internal logging service checks the logging policies

to decide whether to log this specific data access. If the logging decision evaluates

to true, the request details and authorisation decision are logged. The patient

data is then sent to the data access service at the GP practice.

A threat and risk analysis has been conducted on the use case using the

Integrating Requirements and Information Security (IRIS) framework [107]. The

IRIS framework has been designed to integrate security and software engineering

with user-centered approaches to security. It provides a detailed meta-model for

integrated requirements and risk management. The IRIS meta-model and risk

management process has been adopted to identify threats and examine associated

risks.

The aim of the analysis is to study how attackers might exploit potential

security vulnerabilities to compromise the log integrity, confidentiality and avail-

ability. The analysis also highlights the challenges of managing audit-based mon-

itoring services.

3.2.1.1 Valuable Assets

Four valuable assets4 are defined in the first step. Each asset is assessed with

respect to integrity, confidentiality and availability (see Definitions 2.4, 2.5, and

2.6).

Log Data Both the integrity and confidentiality of the individual log events as

well as the totality of the logs need to be protected; the availability of

the logged data also needs to be assured upon real-time monitoring and

updates.

Processed Audit Trails The logs, collected from various sites, are reconciled

and processed into meaningful audit trails (see Definition 2.3) for analy-

sis; again, the integrity and confidentiality of these audit trails need to be

protected.

Audit and Logging Services These refer to various logging components and

policies, as well as the system level software components necessary to enable

4These assets are used for identifying threats in all later use cases.
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Figure 3.2: Threat Likelihood (TL), Vulnerability Severity (VS), and Risk Rating
Tables (Adapted from [107])

a trustworthy logging platform; both the integrity and availability of these

software need to be assured.

Job Secrets The integrity of the log access queries and confidentiality of the

user credentials need to be protected.

3.2.1.2 Major Stakeholders

In the second step, four major stakeholders5 are identified:

Privileged Users These are system administrators who have enough privileges

to modify the audit or logging behaviour of a system.

Log Owners Log owners specify what events should be logged and who should

have access to the logged data.

Log Users These are end users who perform analysis on the processed audit

trails.

Intruders These are unauthorised users trying to achieve a number of malicious

objectives: (1) to compromise the logging services, (2) to steal or tamper

with the logged data, (3) to steal the job secrets, and (4) to corrupt the

returned data and end results.

5These stakeholders are also used in all later use cases.
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3.2.1.3 Threat and Risk Analysis

A threat and risk analysis goes through a three-step process of:

1. Identifying vulnerabilities — vulnerabilities are weaknesses in an asset or

group of assets that can be exploited by one or more threats [64].

2. Identifying threats — threats are potential causes of unwanted incidents or

events (sources of harm to vulnerabilities); the attacker, their motive, and

their target characterise threats [64].

3. Identifying risks — risks are combination of the probability (or likelihood)

of events (e.g. attacks exploiting vulnerabilities to compromise an asset)

and their consequences [64].

The IRIS framework applies the Threat Likelihood (TL) and Vulnerability

Severity (VS) tables of IEC 61508 [1], and assigns a Risk Rating based on these

scores (see Figure 3.2). Mindful of the stakeholders’ objectives, potential threats

and their risks are rated for each asset (see Tables 3.3 and 3.4):

Asset: Log Data

V ulnerability Threat TL/V S Risk (Rating)

Jobs are executed
without isolation
and input valida-
tion.

Malicious researchers
might try to cover
up evidence of their
previous queries by
submitting an arbitrary
query/code.

2/2 Deletion, modification,
or arbitrary insertion of
the logs at the specialist
clinic (3).

A large attack
surface of the
middleware in-
stalled on the
system at the
specialist clinic.

Intruders might perform
privilege-escalation at-
tacks on the middle-
ware.

3/3 Intruders could gain suf-
ficient privileges to steal
the log data (1).

Table 3.3: Logging Distributed Data Access — Threats on Log Data
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Asset: Audit and Logging Services

V ulnerability Threat TL/V S Risk(Rating)

Jobs are executed
without isolation
and input valida-
tion.

Malicious researchers
might submit an ar-
bitrary query/code to
compromise the logging
service at the specialist
clinic.

2/3 Logging services could
be configured to miss
the data access requests
(2).

An attack surface
of middleware in-
stalled on the sys-
tem at the special-
ist clinic.

Intruders might perform
privilege-escalation at-
tacks to compromise the
logging service.

3/2 Intruders could gain
sufficient privileges
to change the logging
service configurations
(2).

Table 3.4: Logging Distributed Data Access — Threats on Logging Services

Figure 3.3: Use Case — Dynamic Access Control Policy Update

3.2.2 Dynamic Access Control Policy Update

A system administrator at the GP practice wishes to monitor the access control

policies for patient data being updated (see Figure 3.3). These policies evolve

around the information pertaining to data access logs collected from the specialist

clinic as well as the locally stored logs. Each hospital manages their own policies

governing the log access.

In the first step, a monitoring request is sent from an interactive user tool to

an external service at the GP practice. Having been configured to update the

policies on an hourly basis, the log migration service sends a log access request to
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the external migration service at the specialist clinic. This request is forwarded to

the policy management service at the specialist clinic, which reads the log access

policies and checks whether the GP practice is authorised to access the logs. If

access is permitted, the logs are sent to the migration service at the GP practice.

The reconciliation service uses these logs to update the access control policies.

The summary of the policy updates is then made available to the administrator.

3.2.2.1 Threat and Risk Analysis

This use case is instrumental for identifying threats and their risks that could

potentially lead to compromise of the log confidentiality:

Asset: Log Data

V ulnerability Threat TL/V S Risk(Rating)

Administrators
(at the GP prac-
tice) have full
read access to
collected logs.

Rogue administrators
might freely access
collected logs.

3/3 Disclosure of privileged
log data (1).

Insecure commu-
nication channels.

Intruders might try to
sniff the logs or redirect
the traffic to a malicious
machine (with man-in-
the-middle type of at-
tacks).

2/3 Unauthorised access to
privileged log data (2).

Incompetent soft-
ware/hardware
mechanisms for
filtering unwanted
packets.

Intruders might perform
denial-of-service attacks
on the external migra-
tion service to make the
specialist clinic system
unavailable.

2/3 The specialist clinic sys-
tem could become satu-
rated with external re-
quests and fail to re-
spond to legitimate log
access requests (2).

Table 3.5: Dynamic Access Control — Threats on Log Data
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Asset: Processed Audit Trails

V ulnerability Threat TL/V S Risk(Rating)

Administrators
(at the GP prac-
tice) have full
read access to the
processed audit
trails.

Rogue administrators
might freely access all
information pertaining
to the audit trails.

3/3 Unauthorised access to
patient information (1).

Table 3.6: Dynamic Access Control — Threats on Processed Audit Trails

Asset: Audit and Logging Services

V ulnerability Threat TL/V S Risk(Rating)

An attack surface
of the external log
migration service
at the GP prac-
tice.

Intruders might perform
in-memory (e.g. buffer
overflow) attacks to
compromise the service.

2/3 Behaviour of the service
could be altered; for ex-
ample, to disclose the
collected logs (2).

Configuration files
of all services are
modifiable.

Rogue administrators
(at the GP practice)
might change the ser-
vice configurations with
malicious objectives.

3/3 For instance, the log mi-
gration service could be
configured to copy col-
lected logs in an unen-
crypted local disk (1).

Table 3.7: Dynamic Access Control — Threats on Logging Services
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Figure 3.4: Use Case — Recording Service Requests and Responses

3.2.3 Recording Service Requests and Responses

The next two use cases are consolidated from the example on service-level agree-

ments (see Section 3.1.2). In this scenario, the client wishes to send a request for

a service (see Figure 3.4). Typically, a service would perform some processing

(which may involve a use of the service provider’s data), generate a response, and

send it to the client. These procedures would have to comply with the conditions

stated in the service-level agreements. Both the request and response details

would have to be logged at all relevant points.

An interactive user tool is used to send a service request to the external

request handler. The request handler submits the request to the service provider’s

external response handler, and, at the same time, sends the request details to the

internal logging service. The service provider’s response handler forwards the

request to an internal service, which performs certain operations and generates

a result. Both the incoming request and outgoing response details are forwarded

to the logging service and recorded. The response handler then sends the results

to the client’s request handler, which, in turn, forwards the results to the end

user. The client’s logging service records the response details in association with

the original request.

3.2.3.1 Threat and Risk Analysis

The following analysis demonstrates how insiders might affect the integrity of the

logging services to fabricate the log events being generated:
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Asset: Audit and Logging Services

V ulnerability Threat TL/V S Risk(Rating)

The logging ser-
vice, in both
platforms, can
be modified and
redeployed by
administrators
without the other
knowing.

Rogue administrators
might deploy a modified
logging service that
fabricates the service
request or response
details.

3/3 An inaccurate logging
service could be de-
ployed to record mis-
leading information (1).

Request and re-
sponse handlers,
in both platforms,
can be modified
and redeployed by
administrators.

Rogue administrators
might modify the re-
quest/response handlers
to submit fabricated
details.

2/3 Fallacious logging re-
quests could be submit-
ted from these compo-
nents (2).

Table 3.8: Recording Service Request/Response — Threats on Logging Services

3.2.4 Generating Cross-Domain Audit Trails

Consider a scenario where the client has not received a timely response for a

service. Being convinced that this violates the service-level agreement, the client

wishes to file a claim report based on the cross-domain audit trails of the requested

service.

The information flow is much like the dynamic policy update use case (see

Section 3.2.2). The client’s log reconciliation service processes logs collected both

locally and from the service provider. In consequence, a complete, chronologi-

cal report is generated. This report is used to check whether the service-level

agreement has been violated.

3.2.4.1 Threat and Risk Analysis

The following analysis shows: (1) how various stakeholders might compromise

the log integrity to fabricate the end results, and (2) how intruders might exploit

the system vulnerabilities to compromise the job secret.
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Asset: Log Data

V ulnerability Threat TL/V S Risk(Rating)

Administrators
have full read and
write access to
the logged data.

Rogue administrators,
in both platforms,
might modify, delete, or
insert arbitrary logs to
cover up evidence, or
make false claims.

3/3 Fabrication of the log
data (1).

Table 3.9: Cross-Domain Audit Trails — Threats on Log Data

Asset: Job Secrets

V ulnerability Threat TL/V S Risk(Rating)

An attack surface
of the complex
middleware.

Intruders might try
to perform privilege-
escalation attacks to
compromise the middle-
ware and steal the job
secrets.

2/3 Compromise of middle-
ware; unauthorised ac-
cess to the job secrets
(2).

An attack surface
of the service
provider’s system.

Intruders might try to
exploit security vulnera-
bilities of the system.

2/3 System compromise;
unauthorised access to
the job secrets (2).

Administrators
of the service
provider’s system
have full read and
write access to
the incoming jobs.

Rogue administrators
might modify the log
access query to miss
certain data.

2/3 A modified query could
be executed without the
client knowing (2).

Table 3.10: Cross-Domain Audit Trails — Threats on Job Secrets

3.2.5 Monitoring Lawful Interceptions

The last use case is derived from the public communications network example

(see Section 3.1.4). A system operator of a mobile telecommunication network
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Figure 3.5: Use Case — Monitoring Lawful Interceptions

wishes to initiate tapping, and monitor calls for, a list of phone numbers by ini-

tiating a lawful interception (see Figure 3.5). The Remote-control Equipment

Subsystem (RES) carries out the actual tapping operation, and the Interception

Management System (IMS) initiates it by adding it to the RES database [43]. In

a securely configured lawful interception system, both the RES and IMS compo-

nents should log all calls being tapped. Then, these logs would be used to detect

any unauthorised tap.

Firstly, the system operator sends a tap initiation request to the IMS through

an external service management interface. The IMS verifies whether the operator

has sufficient privileges and logs the authorisation details. If the operator is

authorised, the IMS adds a tap to the RES database and logs this tap insertion.

When tapped phones make (or receive) calls, the RES monitors them on switched

connections, transfers the contents back to the IMS, and logs the details.

3.2.5.1 Threat and Risk Analysis

This use case serves to highlight potential problems with relying on the system

itself to generate security logs and protect logged data.
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Asset: Log Data

V ulnerability Threat TL/V S Risk(Rating)

An attack surface
of the service
management
interface.

Intruders might perform
privilege-escalation
attacks to access the
logged data.

2/3 Intruders could gain
read and write access
to the logged data; and
for instance, hide unau-
thorised interception of
calls (2).

Administrators
have full read and
write access to
the logged data.

Rogue administrators
might freely modify,
or delete the logs to
hide unauthorised
interceptions.

1/3 Logs could be modi-
fied or deleted, and fail
to indicate unauthorised
taps (3).

Table 3.11: Monitoring Lawful Interceptions — Threats on Log Data

Asset: Logging Services

V ulnerability Threat TL/V S Risk(Rating)

An attack surface
of the external
service manage-
ment interface.

Intruders might perform
in-memory (e.g. buffer
overflow) attacks to
modify behaviour of the
internal services.

3/3 The RES or IMS could
be modified; for exam-
ple, to stop logging tap-
ping transactions (1).

Both the RES
and IMS can
be modified and
redeployed by
administrators.

Rogue administrators
might modify these
components to miss,
or fabricate certain
tapping transactions.

1/3 Inaccurate tapping de-
tails will be logged, and
used later upon audit
(3).

Table 3.12: Monitoring Lawful Interceptions — Threats on Logging Services
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3.2.6 Summary of the Key Threats

This section identifies the common, key security threats from the analysis above

and generalises them:

1. Deletion, Modification or Insertion of the Logs Intruders might try to

cover up evidence of their malicious attempts by manipulating the logs (see

Table 3.3). It is also possible for a rogue insider (with sufficient privileges)

to fabricate the log data (see Table 3.9).

2. Unauthorised Access to the Log Data Intruders might try to steal the

administrator rights to read the privileged log data (see Table 3.3). In-

truders might also try to sniff the logs that are being transferred across an

insecure communication channel (see Table 3.5).

3. Modification of the Logging Service Configuration As shown from Ta-

ble 3.4, rogue (yet legitimate) users or intruders might try to modify the

configuration of the logging service to miss certain transactions.

4. Authorisation Violation Rogue insiders (e.g. administrators) might try to

disclose the privileged log data or the processed audit trails (see Table 3.5).

They might also try to change the behaviour of one of the logging services

to manipulate the way the logs are being generated (see Table 3.8).

5. Denial-of-Service Table 3.5 demonstrates that intruders might try to per-

form denial-of-service attacks on the log owner’s external services and affect

the log availability.

6. Modification of the Logging-Related Services Intruders or rogue insid-

ers might try to modify the behaviour of one of the logging-related services

(e.g. the log migration service) to disclose the log data (see Table 3.7).

Intruders might also try to compromise the logging service and change its

behaviour to miss certain transactions (see Table 3.12).

7. Middleware Compromise Intruders might try to compromise the complex

middleware to gain unauthorised access to the job secrets as well as the

accessed logs (see Table 3.10).
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3.3 Audit and Logging Requirements

The use cases have in common a likely reliance upon technical measures of security

aimed at substantially enhancing protection for log integrity, confidentiality and

availability. This section identifies a unifying set of security requirements based

on the use cases and the threats associated with each.

3.3.1 Involuntary Log Generation

In the use cases discussed above, the applications themselves are often log triggers

(components that trigger logging requests) and responsible for protecting the

logging logic as well as the logged data. Such applications, however, usually

contain design or security flaws that adversaries could exploit to manipulate the

way logging requests are being triggered. Hence, it is important to isolate the

logging component and manage it independently from any other software. The

logging component should always be available to capture application level events

involuntarily. This is to ensure that even if the applications are modified to affect

the behaviour of the log triggers, the system would still generate trustworthy logs

at the system level. Threats 3, 4 and 6 (see Section 3.2.6), which discuss the

possibility of the logging component being misconfigured or compromised, can

be mitigated with this isolation and involuntary generation of logs.

A log user should be able to verify the integrity of these logging properties

and mechanisms in a remote platform without the administrator’s interference.

Ideally, the logging component should be a small and simple piece of software

designed to minimise the attack surface and improve the usability of attestation

(see Section 2.4.4).

Despite the potential security loopholes the applications might have, some of

the security critical decisions made by the applications should be captured in a

trustworthy manner as possible. These should be classified differently — perhaps

by labeling them with a lower trust level — from the logs generated independently

from the applications.

3.3.2 Protected Log Storage

No matter how robust the logging component might be, if an intruder succeeds in

obtaining administrator privileges, they can potentially access, modify or delete
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the logged data directly from the disk.

As a defence-in-depth measure, the log data should be encrypted and integrity-

protected on the physical storage device. Confidentiality should be guaranteed

by encrypting and decrypting the log data as they are being read and written

to the disk. Integrity should be implemented through the means of digital sig-

natures and hashes: Secure Audit Web Service (SAWS) [135], for example, uses

a combination of these techniques to provide a tamper-evident log storage. The

cryptographic keys used in these operations should only be accessible by the

authorised software.

The security mechanisms discussed here should be sufficient to mitigate threats

1 and 2 (see Section 3.2.6), which discuss the possibility of intruders or rogue in-

siders gaining unauthorised access and manipulating the log data. To mitigate

the ‘authorisation violation’ threat (threat 4), one could also consider using a

‘dual control’ mechanism. This is typically implemented by requiring two keys,

or n from m key-shares, to access sensitive log data.

3.3.3 Authorisation Policy Management

Each site should control incoming log access queries by enforcing locally managed

authorisation policies. This requirement is well captured in the healthcare grid

example (see Section 3.1.1), where a form of ‘traffic flow’ analysis might yield

sensitive information about patients, and so the log access should only be granted

to the authorised users. These policies should aim to restrict unauthorised access

and prevent attackers from performing inference attacks. Threat 2 (see Section

3.2.6), which considers intruders gaining unauthorised access to the privileged

log data, can be mitigated using this type of authorisation policy management

service.

3.3.4 Log Migration Service

Due to the number of potential security vulnerabilities, complex middleware ser-

vices can not be relied upon to perform trusted operations (see Section 2.6.3).

Instead, the security controls required for secure job submission and log transfer

should operate within a more trustable migration service. This implies data flow

encryption and signing requirements upon log access and transfer. These are

integral to protecting the job secrets and log data from the untrusted middleware
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stack and from man-in-the-middle type of attacks [141]; these mechanisms would

be responsible for mitigating threat 7 (see Section 3.2.6).

It is also possible for a log owner to deliver fabricated logs, as the service

provider might do in the service-level agreement use case (see Section 3.2.4.1).

To provide a safeguard against such a threat, the migration service should access

the signed logs and the hash from the protected log storage through a secure

channel. This should give sufficient information for an end user to verify the log

integrity and authenticity.

3.3.5 Protected Execution Environment

As shown in Table 3.10, a rogue administrator could modify the log access query

to miss certain logged data. There is also a possibility of an intruder compromis-

ing the host through privilege-escalation attacks, and tampering with the logged

data. To mitigate such threats, the log owner’s platform should provide a pro-

tected, isolated environment where the jobs can execute free from unauthorised

interference. The log user should be able to verify this execution environment

prior to job submission.

The job secrets, including the user credentials and the log access queries,

should not be decrypted and accessed outside the protected environment. Fur-

ther, these secrets should not be modified even within the protected environment.

Unauthorised modification of the execution environment (for example, installing

an unsigned patch) should be detected, and a modified environment should not

be used for job execution.

From the log owner’s perspective, this execution environment should amply

isolate rogue jobs and prevent them from compromising the logs or the logging

services (see Table 3.4). The log owner should specify the software pre-installed

in the execution environment — only allowing those trustworthy to be used for

accessing their database. Presumably such software should perform a thorough

input validation before allowing the query to run.

3.3.6 Log Reconciliation Service

Before granting access to the logs, the log owners should be able to verify the

security state of the requesting log reconciliation service. This verification should

ensure that the logs will be used unmodified, in a protected environment.
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The integrity and confidentiality of the collected logs as well as of the pro-

cessed audit trails (e.g. service-level agreement violation report) should be pro-

tected. Privileged users or intruders should be prevented from stealing sensitive

information or fabricating the results.

To make it difficult for insiders to gain unauthorised access, the reconciliation

service should be installed on an isolated compartment and have robust memory

protection. It should be a small and simple piece of code to minimise the number

of security holes that might be exploited.

These security mechanisms should be sufficient to mitigate threats 2 and

4 (see Section 3.2.6), which consider intruders or rogue administrators gaining

unauthorised access to the logs and audit trails being processed at a remote

collection point.

3.3.7 Blind Log Analysis

Returning to the healthcare example (see Section 3.1.1), imagine that the special-

ist clinic has agreed to share their logs with the GP practice for dynamic access

control. But at the same time they are unwilling to let the administrator at the

GP practice see the actual contents of the logs; or only let part of the data be

seen as a summary information. For example, “the researcher’s access rights on

T1 for a patient with NHI 1, aged 20 and living in OX2 area, have been restricted

to NHI and Smoke fields”. Such anonymisation of end results ensures that the

administrator cannot find out about a patient’s lung cancer status, and yet still

know exactly how the access control policy has been changed for the researcher.

The log owners should be assured that the sensitive information will only

be revealed to an extent that has been agreed and stated in the ‘log privacy

policies’. This requires a mechanism, possibly within the reconciliation service,

to carry out a blind analysis of the collected logs so that the user only sees the

running application and the end results. These results should be just sufficient

for the user to carry out an analysis or to know about important system updates.

3.3.8 Surviving Denial-of-Service Attacks

Denial-of-service attacks [76] could affect the availability of the logs (see Table

3.5). The vulnerability severity would be particularly high in real-time applica-

tions like the dynamic access control system which relies on timely data feeds.
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To survive this type of attack, the log owner’s system should be equipped with

both hardware and software means (including firewalls and switches) to filter un-

wanted requests. The ‘denial-of-service’ threat, as explained in Section 3.2.6, can

be mitigated by deploying these security mechanisms.

3.4 State of the Art and Gap Analysis

Having identified the security requirements, this section analyses the ‘remaining

gap’ between these requirements and the security mechanisms used in existing

solutions.

3.4.1 Log Generation

Tierney and Gunter [20] have developed a logging toolkit, known as Networked

Application Logger (NetLogger), for monitoring behaviour of various elements

of application-to-application communication paths in distributed systems. Net-

Logger provides client libraries (C, C++, Java and Python APIs), which can be

used by software developers to write logging code in their software and generate

application-level logs in a common format. It uses the IETF-proposed Universal

Logger Message (ULM) [7] format for logging and exchanging messages. The

use of a common format (which is plain ASCII text) is intended to simplify the

process of reconciling potentially huge amounts of distributed log data.

In NetLogger, it is the responsibility of the developers to instrument applica-

tions to produce log events by calling methods from the NetLogger API. Typically,

the developers determine security-critical points in the code (subject to logging)

and what information gets logged. The main problem with this type of approach

is that the developers, who may be inexperienced with security practices, could

omit important details or fail to sufficiently pin down the critical points. More-

over, the process of modifying or adding new logging conditions will be inflexible

— every time a logging condition needs to be added, the developers would have

to change the code, recompile the software, and redeploy it.

More problems arise from relying on the application itself to protect the log-

ging code. The danger is that attackers could exploit the attack surface of the

application (e.g. by exploiting a buffer overflow vulnerability) to alter the log-

ging behaviour. The bigger the software, the more likely it is to expose security
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vulnerabilities in its attack surface [81]. Therefore, it is not a good idea to merely

rely on the application itself to log security events — more trustable, independent

logging components are required (see Requirement 3.3.1).

A common problem with state of the art logging services is their lack of flex-

ibility in both the generation and the enforcement of logging conditions [35].

Typically, the logging conditions are already defined in operating system com-

ponents or hard-coded by software developers. Widely used system-level logging

systems like the Event Log subsystem [137] on Windows and Syslog [82] on Linux

all rely on the developers to write the logging triggers. In consequence, modifying

the logging conditions in these systems is difficult for normal users.

To overcome this problem, Vecchio et al. [35] have proposed a secure logging

infrastructure for grid data access that leverages OASIS eXtensible Access Con-

trol Markup Language (XACML) [88] to allow data owners to specify logging

policies dynamically (see Figure 3.6). Such policies allow data owners to specify

conditions that, if satisfied, result in logging of details about a data access.

One of the major concerns with this approach is that a privileged user can

easily alter the system’s logging behaviour by changing these policies. For exam-

ple, considering the threats identified in Section 3.2.3, it is not hard to imagine

a rogue administrator changing the logging conditions to fabricate the service

requests or response details being recorded. Unless a trustworthy monitoring ser-

vice notifies the other party about the modified policies (see Requirement 3.3.1),

it would be difficult to detect changes made in remote systems. Hence, this type of

approach alone can not provide the security guarantees necessary for monitoring

service-level agreements.

Their Auditing Decision Point constructs a logging request context to be

evaluated against the logging policies (see Figure 3.6). If the auditing decision

evaluates to true, the remote Auditing Service is used to record the data access.

The Auditing Service is a .NET web service which simply accepts the logging

requests and stores them locally. Despite their attempt to isolate the Auditing

Service from other software, they do not discuss how the integrity of the Auditing

Service will be protected. If attackers manage to penetrate the web server and

compromise the Auditing Service, they could potentially sniff all logging requests

and tamper with the details.
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Figure 3.6: Flexible Auditing Architecture (Figure 2 from [35])

Cordero and Wagner [17] have proposed a trustworthy logging tool for post-

election investigations. The tool has been designed to record all interactions

between the voter and the voting machine (for example, every button pressed, or

every location on the screen touched by the voter), while still preserving voter

anonymity. As a result, the logs provide a complete record of everything the voter

saw and did in the voting booth. The idea is to facilitate precise reconstruction

and speculation of the voter’s intent in case of election disputes.

They have stressed the importance of providing an independent way of logging

the voter’s actions, and suggested the use of virtual machine isolation to achieve

this (see Figure 3.7). Strong isolation prevents the voting system from bypassing

or manipulating the logging subsystem.

Their approach, however, still fails to achieve full independence — in fact,

they state that they are not sure as to how logging mechanisms could be truly

independent from the voting software. One of the reasons for this is that the

developers are expected to write the logging triggers (that would call the methods

from the logging subsystem) in the voting software. For example, the code that

reads a touch event would call Log.log( "touch", x, y ) to record the x and

y coordinates when the voter touches the screen. Similarly, a logging trigger is
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Figure 3.7: Isolation Ideas for a Logging System (Figure 2 from [17])

added to every voter-visible I/O event to capture the voter’s intent.

Consequently, the surveillance of the logging behaviour is still only as good

as that of the voting system. Intruders, for instance, could exploit the buffer

overflow vulnerability of the voting software and turn off the logging triggers, or

force them to record arbitrary values. Unless the voting system is completely

free of bugs, there will always be an attack surface that could be exploited to

manipulate the internal logging triggers.

To achieve stronger software independence, Garera and Rubin [119] have dis-

cussed the idea of installing the logging system in Domain-0 (the monitor virtual

machine in Xen) to capture all user inputs to the voting machine directly. As a

result, correct inputs (such as candidate selection) are recorded even if the voting

machine is compromised. Their system has been developed at the same time as

the author’s own work and there is some overlap in the proposed logging ideas.

Capturing the I/O events might be sufficient for a less dynamic system like

the voting machine. In systems where applications or guest operating systems

also make important security decisions, however, merely recording I/O events

would be insufficient to generate a comprehensive incident report (see Require-

ment 3.3.1). The thesis proposes a technique for capturing such security decisions

in a trustable manner (see Section 4.2.6).

The threat model of their audit framework assumes those who have privileged

access to the voting machine (such as the administrators) are trusted. However,

as the threats in Tables 3.8 and 3.9 show, rogue administrators could potentially

deploy a modified logging service to fabricate the voting events, or directly access
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the log storage and modify the vote count. Such threats have also prevented the

development of reliable monitoring services for service-level agreements.

To relax this kind of constraint, the thesis discusses the use of trusted comput-

ing to allow the logging system to report its integrity without the administrator’s

interference. Using this integrity reporting mechanism, the log users can ver-

ify the logging properties of a remote system and check whether the logs are

trustworthy.

‘Xenlog’ [95] is another Xen-based logging solution which aims to mitigate

threats associated with exchanging the logs across an unprotected network. The

monitor virtual machine, Domain-0, has been modified to protect the logging

component and central log filesystem. Typically, centralised logging services are

made available through the public network (e.g. Syslog [82]). The danger is that

the data packets could easily be sniffed or the traffic redirected to a malicious

machine. In Xenlog, the centralised logging service and log storage are not ex-

posed to the network; instead, the logs are forwarded internally using a shared

memory mechanism between the guest virtual machines and Domain-0.

One of the concerns with Xenlog, however, is that the isolation of Domain-0

solely is relied upon to protect the log integrity and confidentiality. It does not

provide a secure storage mechanism for the logs. If a rogue job manages to hijack

a privileged process in Domain-0, it would then be able to freely access or tamper

with the logged data. Unencrypted logging requests — being delivered through

the shared memory — would also be vulnerable to this attack. A defence-in-

depth technique is required to mitigate this type of attack: generating a hash

and signature for each log record and encrypting the sensitive information (see

Requirement 3.3.2).

Moreover, there is no security mechanism for verifying the log triggers (guest

applications) and the logging requests. It is then only a matter of compromising

the logging logic inside a guest application to affect the entire logging behaviour.

Stathopoulos et al. [114] have developed a framework for secure logging in

public communication networks. The aim of their work is to detect modification

attacks against log files by generating digital signatures offline, and protecting

these signatures within a trusted ‘regulator authority’. Their framework provides

a powerful mechanism for detecting unauthorised modifications to the stored log

data (assuming these have been generated from trusted sources). However, it
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Figure 3.8: NetLogger

does not prevent a compromised server from modifying the logs before being

signed, or simply inserting arbitrary logs.

3.4.2 Distributed Log Access and Reconciliation

The registry of information enables accounting and auditing in many shared

grid and distributed systems. Traditional monitoring techniques (for recording

resource usage, scheduling tasks, and auditing), however, have often been found

to be inadequate for accounting dynamically distributed resources [68]. The main

problem is that they do not accurately capture true information, and even if they

do, the integrity and confidentiality of the information are not well protected.

This prevents trustable and equitable access to distributed resources.

In NetLogger [20], logs (generated from distributed applications) are scanned

every few seconds and forwarded to a central server (see Figure 3.8). A server

daemon, called ‘netlogd’, collects these logs, sorts, and stores them in a file on the

central server’s local disk. In consequence, applications can log events in realtime

to a single destination over the wide-area network. NetLogger enables flexible and

interactive analysis of these centrally merged audit trails with the provision of

a graphical visualisation tool. Several researchers [54, 29] have discussed the

use of NetLogger to enhance monitoring and troubleshooting services for grid

components.
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The log integrity and confidentiality threats discussed above, however, under-

mine their security model: log access requests are processed without any autho-

risation policy enforcement (see Requirement 3.3.3), and the logs are transferred

across the network unencrypted or integrity protected. Further, there is no at-

tempt to safeguard the logs while they are being collected and processed at the

central reconciliation point (see Requirement 3.3.6).

Similar security problems undermine other monitoring tools such as Account-

ing Processor for Event Logs (APEL) [22], which builds accounting records from

system and gatekeeper logs generated by a site; and Grid Monitoring System

(GMS) [85], a system that captures and stores grid job information in a rela-

tional database, and supports resource usage monitoring and visualising.

Most of the current projects (including the ones mentioned above) have been

developed for computational grids, and they are primarily focused on measuring

usages of the hardware (CPU, memory, disk), the jobs in execution, and the load

of the system. However, there are other important events in the grid that should

also be tracked: for example, who accesses a service or data and when. Service-

oriented events as such are unlikely to be captured with traditional approaches.

To overcome these inadequacies, Alfonso et al. [37] have developed a Dis-

tributed General Logging Architecture for Grid Environments (DiLoS). Their

architecture provides general logging facilities in service-oriented grid environ-

ments to enable tracking of the whole system. One of its application models is

to facilitate accounting for resource-providing services to measure and annotate

who has used which services and to bill users.

In this accounting domain, however, DiLoS does not consider the log integrity

issues covered in Section 3.2.4.1. Without strong security mechanisms to protect

the log integrity, their architecture cannot be relied upon to perform calculating

and billing functions.

Piro et al. [102] have developed a more secure and reliable data grid account-

ing system based on resource usage metering and pricing. All communications

are encrypted [101], but a privileged user may still configure the Home Loca-

tion Register, a component that collects remote usage records for accounting, to

disclose sensitive usage records and compromise confidentiality and privacy (see

Requirements 3.3.6 and 3.3.7). A rogue resource owner may modify the Comput-

ing Element, which measures the exact resource usage, in order to fabricate the
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usage records and prices for profit.

Despite these security weaknesses, not much research has been conducted on

how trusted computing could be used to bridge the gap. The thesis discusses

the use of remote attestation and the sealed key approach (see Section 2.6.1)

to facilitate trustworthy log reconciliation, ensuring log integrity, confidentiality,

and availability (see Chapter 5).

Chuvakin and Peterson [16] discuss some of the challenges of logging in dis-

tributed environments such as those of web services. In the simplest case, where

two machines are talking to each other using a web service, events would be

logged independently on both machines. The challenge is that there is no consis-

tency between these logs generated from loosely coupled services: decisions are

made locally, so what to log (logging policies), how to log (standards and for-

mats), and how to analyse the data are likely to be managed differently by each

service. Hence, a complete view of the overall architecture will not be available.

Additional technologies are required for consistent aggregation and reconciliation

of distributed logs.

3.5 Chapter Summary

Based on a number of motivational examples and use cases associated with each,

a threat and risk analysis has been conducted in this chapter. Then, a unifying

set of trustworthy audit and logging requirements, which pin down the services

and mechanisms necessary to mitigate the key threats, has been identified. In the

final section, the gap between these requirements and existing logging solutions

has been analysed. The next chapter will describe a trustworthy logging system

that has been designed with these requirements in mind.
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Chapter 4

Design: Log Generation

This chapter describes a trustworthy logging system that aims to satisfy the

involuntary log generation and protected log storage requirements.

Section 4.1 gives an overview of the complete log generation and reconciliation

architecture and describes its trusted computing base. Section 4.2 focuses on

the log generation aspects of the architecture and explains how the involuntary

logging and secure log storage mechanisms are orchestrated together. Finally,

Section 4.3 observes some of the remaining issues and challenges of implementing

the logging system.

4.1 Architecture Overview

Mindful of our security requirements (see Section 3.3), this section proposes a

trustworthy log generation and reconciliation architecture based on trusted com-

puting capabilities (covered in Sections 2.4 and 2.5). Upon installation of this

architecture, a participant in a distributed system will be capable of generating

and storing logs, and proving to others that these logs are trustworthy.

Figure 4.1 shows an overview of the logging components which form the

trusted computing base of the proposed architecture. All the log security func-

tions are enforced by the ‘log transit’ component deployed inside the privileged

monitor virtual machine (referred to as Domain-0 in Xen) and the ‘log access

manager’ virtual machine. These are designed to perform a small number of

simple operations to minimise the chance of them containing any security vul-

nerability.
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Figure 4.1: Architecture Overview

Attestation of these two components as well as the ‘Policy Enforcement Point’

(PEP) and the virtual machine monitor is sufficient for one to establish trust with

the logging system, and know that its log security functions have not been sub-

verted. This relatively static and small trusted computing base aims to minimise

any complexity involved in performing remote attestation and improve its usabil-

ity. The importance of establishing a minimised form of static identity has been

covered in Sections 2.4.4 and 2.6.2.

A default setting in Xen requires all guest virtual machines to communicate

with Domain-0 to access the physical hardware. Taking advantage of this, the

log transit monitors all I/O requests and responses inside Domain-0, captures the

events of interest, and records the use of device drivers. Such events are recorded

independently from applications running in the guest virtual machines.

The log access manager virtual machine is responsible for securely collecting

distributed logs and processing them into useful audit trails for analysis:

• The externally facing ‘log migration service’ enforces the security controls

required for safe log transfer across the untrusted middleware stack; this

external service also runs inside the per-job ‘log access virtual machines’

to access the logs and send them back securely to the requestor log access

manager.

• The ‘log reconciliation service’ facilitates trustworthy reconciliation of the

collected logs and processes them into meaningful audit trails; it enables

blind log analysis by enforcing sticky log privacy policies (specified by the log
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owners) during the process; in consequence, only the processed, anonymised

information — for which the log owners have agreed to disclose — are

released to the log users.

These two services are trusted and measured as part of the log access man-

ager. The log migration service also provides the interface necessary for various

analysis tools to specify the log access job requirements. Such end-user tools only

have access to this restricted, minimal interface available through the migration

service: again, in order to reduce the number of security holes which might be

exploited at runtime. After log reconciliation, only the processed results are for-

warded to the analysis tools. The raw data, therefore, never leaves the log access

manager.

When a log access job reaches a participant platform, the policy enforcement

point (inside Domain-0) first checks the security configuration of the job and the

log requestor platform. If the job is trustworthy, a per-job log access virtual

machine is launched to process the job. The second trustworthy service that

runs in the log access virtual machine is the ‘authorisation policy management

service’. Before granting access to the log data, it evaluates the log requestor’s

access rights defined in the authorisation policy. This ensures only the authorised

users access the log data and makes it difficult for attackers to perform inference

attacks.

From the log owners’ perspective, this approach ensures that the security op-

erations like job authentication and authorisation policy enforcement are always

governed by the services they trust. The migration service encrypts the logs upon

their transfer to protect confidentiality. In order to take control of the host plat-

form, a rogue job would have to compromise both the virtual machine monitor

and Domain-0 — components which are designed to resist such attacks.

Meanwhile, the log users are guaranteed that their log access query runs

unmodified in a trustworthy virtual machine, where the logs are always accessed

via trusted middleware services. This should be sufficient for the users to verify

the accuracy and integrity of the collected logs. Any arbitrary alterations of

the job execution environment (i.e. the attested virtual machine image) will

be detected by the policy enforcement point and the users will be informed.

Moreover, strong isolation between the virtual machines prevents a rogue virtual

machine from reading the users’ sensitive data or generated results.
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4.2 Trustworthy Logging System

The rest of the chapter focuses on the ‘log generation’ aspects of the architecture

and describes a logging system based on the shared memory mechanisms of Xen.

Central to the architecture is the independent log transit component, which sits

inside Domain-0 to involuntarily intercept all I/O events and record events of

interest.

4.2.1 Assumptions

This section states two assumptions about the design of the trustworthy logging

system.

1. The privileged virtual machine in Xen, Domain-0, manages all of the back-

end and native device drivers; all other guest virtual machines must com-

municate with Domain-0 to access the physical hardware.

2. There is a mechanism available that allows the system owner to specify the

logging policies — these policies state what I/O events should be logged;

the proposed logging component (referred to as the log transit) uses this

mechanism to determine whether to log a particular event.

4.2.2 Shared Memory Operations in Xen

In addition to the Xen components discussed in Section 2.5.2, this section further

explains how the shared memory is used between the guest virtual machines and

Domain-0 for exchanging I/O requests and responses.

By default a ‘full administrative privilege’ is given to Domain-0 for creat-

ing, inspecting or destroying virtual machines, and managing back-end device

drivers [117]. It is also possible to give a ‘physical device privilege’ (a more re-

stricted privilege) to a back-end driver domain to delegate all the device driver

operations in a separate virtual machine. However, in order to simplify the over-

all workflow, the default setting — whereby Domain-0 manages all device drivers

— is assumed in the proposed logging system (see assumption 1, Section 4.2.1).

The Xen virtual machine monitor provides ‘shared memory’ for guest virtual

machines to communicate with Domain-0: the I/O ring, built on top of the
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Figure 4.2: Using I/O Ring to Request a Data Transfer (Figure 2 from [49])

shared memory mechanism, is used by the front-end (guest domain) and back-

end (Domain-0) device drivers to exchange I/O requests and responses [18].

Two pairs of producer-consumer indexes are used by the device drivers to

update the I/O ring (see Figure 4.2). A front-end places I/O requests onto the

ring, advancing a request-producer index, while a back-end removes these requests

for handling, advancing an associated request-consumer index. I/O responses are

queued onto the same ring, although this time with the back-end as producer and

the front-end as consumer. An example I/O request generated by the front-end

would look like ‘read block 50 from device sda2 into a buffer at 0x5ac102’. The

back-end may reorder requests or responses using a unique identifier assigned to

each. The physical hardware is then accessed through the corresponding native

device driver.

The ‘event channel’ is used by the device drivers to send asynchronous no-

tifications of queued requests or responses [49]. Such notifications are triggered

by the device drivers attached to the opposite end of the bidirectional channel

(meaning each end may notify the other).

Consider a control flow of a guest process reading a file [117]:

1. The guest process invokes read() syscall.
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2. The guest kernel, virtual file system layer, invokes the front-end device

driver for data access.

3. The front-end places a message in the shared memory (I/O ring) and notifies

the back-end device driver using the event channel.

4. The back-end picks up the message from the shared memory and validates

the request.

5. The back-end translates the request and forwards it to the corresponding

native device driver which in turn sends it to the physical device.

6. The physical device returns the data to the native device driver which in

turn sends the data to the back-end.

7. The back-end places the I/O response on the shared memory and notifies

the front-end using the event channel.

8. The front-end picks up the response and passes the data to the guest process

via the virtual file system layer.

Section 4.2.4 explains how these procedures would change with the introduc-

tion of the log transit component.

4.2.3 Network Interface Card Example

Consider a network interface card usage example in Xen. Each guest virtual

machine is provided with a set of virtual network interfaces for network com-

munication [5]. For each virtual interface, a corresponding back-end interface is

created in Domain-0 (or a separate driver domain if it exists) which operates as

a proxy for the virtual interface.

These two interfaces exchange network packets through the shared memory

mechanism. The back-end interfaces are connected to the native device driver

through a virtual network bridge. The native device driver communicates with

the physical network interface card and sends back responses to the back-end.
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Figure 4.3: Xen-based Trustworthy Logging System

4.2.4 Involuntary Log Generation

Under the default setting in Xen, only Domain-0 has access to the physical hard-

ware. As shown in the control flow example (see Section 4.2.2), all data access

requests go through the back-end in Domain-0 before reaching the physical disk.

Similarly, all network requests go through the back-end interfaces before reaching

the physical network interface. In consequence, each physical device is available

through a single access point in Domain-0.

Taking advantage of this, the log transit is designed to operate inside Domain-

0 to involuntarily intercept and log I/O events of interest. As a result, only a small

amount of code running in Domain-0 has control over when and how trustworthy

logs (classified differently from logs generated via other sources) are generated.

The logs are independently generated, solving the common problem of untrusted

applications being relied upon to manage logging operations (see Section 3.4.1).

The remainder of this section describes how the log transit is integrated with the

shared memory mechanisms.

The event channel is configured to automatically notify the log transit when-
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ever a device driver informs the opposite end about an I/O event queued in the

shared memory (see Figure 4.3). As the first component to be notified, the log

transit reads the queued I/O event details before the device driver. The device

driver is notified when the log transit finishes reading the details. Such I/O event

details — intercepted from the shared memory — are processed into a standard

log format, signed, encrypted, and stored in the protected log storage.

It is assumed that a mechanism is already available for the system owner to

specify what I/O events should be captured by the log transit (see assumption

2, Section 4.2.1). As suggested by Vecchio et al [35], languages like XACML [88]

could be extended to allow the system owner to specify logging policies dynami-

cally. After being notified about the queued I/O event, the log transit evaluates

and enforces these logging policies to determine whether to log that particular

event.

Figure 4.3 demonstrates how the original control flow example (see Section

4.2.2) would change with the log transit in place. When the front-end triggers

the event channel to notify the back-end about an I/O request placed in the

shared memory, the event channel first notifies the log transit about the request.

The log transit accesses the I/O ring, and captures the request details and the

front-end (subject) that has made the request (step 3 in Figure 4.3). From these,

it generates a full, formatted log record:

LogRecord = {LogData}Kenc
, Type , Subject , Timestamp , Hash , {Hash}SK

LogData : records the details of the I/O request or response

Kenc : the symmetric encryption key used for encrypting the LogData

Type : describes the operation type

Subject : the user or virtual machine responsible for triggering the I/O event

Timestamp : the date and time at which the I/O event occurs

Hash : the hash of the full log record

SK : the private key used for signing the Hash

This log record captures the details of the I/O request or response (LogData),

operation Type which defines the type of the I/O event (e.g. data access, net-

work access), Subject which identifies the user or virtual machine responsible

65



for triggering the I/O event, and Timestamp.

Only after this process is finished, the back-end is informed about the I/O

request. Like in the original flow, the back-end then picks up the request (and

removes it) from the I/O ring and communicates with the native device driver to

access the physical disk.

When the data is accessed and returned via the native device driver, the back-

end places the I/O response in the shared memory and triggers the event channel

to inform the front-end about the queued response. Again, the event channel first

informs the log transit to read the response details from the I/O ring (step 12

in Figure 4.3). Knowing the I/O response type and the recipient front-end, the

log transit draws an association between the response and the original request

(captured previously), and generates a log record in the format described above.

4.2.5 Secure Log Storage

The log transit holds a signing key pair generated through the TPM. The private

signing key (SK), used for signing the hash of the full log record (see above),

is sealed to the PCR value that corresponds to the trustworthy authenticated

boot process (see Section 2.4): from the BIOS upwards, the boot loader, the

virtual machine monitor, and the log transit are measured during this process.

The administrator defines this sealing property when the logging system is first

installed.

If any one of these measured software components is tampered with by an

adversary (including a rogue administrator), the signing key will no longer be

accessible as the changes will be measured during the boot process and the PCR

value will be altered. The current PCR value must match the measurement at the

time the key was sealed for access to be authorised by the TPM. Any malicious

code (such as a virus or rootkit) executed during the boot process will also be

identified in this manner. Moreover, the TPM is robust against software-based

attacks trying to steal the private signing key.

Integrity is implemented by storing a hash of every log record generated, and

checking that the hash matches when the log record is retrieved. This hash is

digitally signed using the private signing key to demonstrate the log authenticity

and integrity. Both the Hash and its digital signature ({Hash}SK
) are included

in the log record. The public signature-validation key can be used by external
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applications to verify that the collected logs have been generated from a trust-

worthy logging system, signed by a securely configured log transit component,

and they have been integrity protected.

As illustrated from the healthcare grid example, the log data could contain

sensitive information. Their confidentiality can be ensured by encrypting and

decrypting the privileged log data ({LogData}Kenc) using a symmetric encryption

key (Kenc) as they are written and read from the disk. The encryption key is

also sealed to the PCR value corresponding to the authenticated boot process,

and only accessible by a securely configured log transit component. Again, if any

of the measured software is tampered with, the key will no longer be accessible

to decrypt the log data upon retrieval. This implies that all later log access

operations must also go through the log transit for decryption. The next chapter

explains secure log access operations in detail.

Even if an intruder successfully hijacks administrator privileges inside a guest

virtual machine, the impact of further attacks — for example, trying to access

or tamper with the log data directly from the disk or memory — will be limited

by the isolation boundaries of the virtual machine. The log data stored inside

the dedicated disk or memory space of Domain-0 will still be out of reach. Fur-

thermore, even if an intruder manages to hijack privileged software component

in Domain-0, they will still not be able to unseal the encryption key to read the

private information. Hence, the logs are safeguarded from attacks involving com-

promising untrusted software in Domain-0 or the log transit itself. This would

solve the problem identified in Xenlog (see Section 3.4.1), where a successful priv-

ilege escalation attack inside Domain-0 could lead to compromise of the logging

services and the logged data.

Since the storage device drivers only read and write encrypted and integrity

protected log data, they are not considered to be part of the trusted computing

base. Hence, these are not measured during the authenticated boot process.

4.2.6 Application and OS Level Security Decisions

One of the drawbacks of involuntary log generation, however, is that security

decisions made at the guest application and operating system level will be missed

by the log transit. This is because the log transit intercepts the I/O request and

response details (that require the use of device drivers), whereas the application
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and operating system level security decisions are made independently of the use of

device drivers. Hence, the security decisions never reach the log transit. Instead,

these are likely to be logged and protected by guest applications and operating

systems. Table 4.1 identifies some of the integral security decisions that will be

missed.

To overcome this problem, functionality is added to the log transit for iden-

tifying the ‘logging requests’ triggered from the guest applications and operating

systems, and processing them into the log record format suggested above. Typ-

ically, a log record consists of a subject, operation type, timestamp, and log

message. The log transit searches for such data attributes and patterns from the

incoming I/O disk write requests to identify the logging requests. For instance,

the guest operating systems usually rely on system level logging subsystems —

such as ‘Syslog’ [82] for Unix/Linux and ‘Event Subsystem’ [137] for Windows

— to record security events. Being aware of the common log formats used in

such systems (and their unique properties), the log transit can efficiently iden-

tify logging requests triggered from them. The integrity and confidentiality of

these logs are protected by the secure log storage mechanisms described above.

The user authentication decisions, data authorisation decisions, input validation

results and important virtual machine level system calls are captured using this

approach.

There is a weakness in this approach, however, namely that compromised

applications could send arbitrary logging requests (in the form of disk write re-

quests) to obscure analysis results. The log transit can not identify an individual

application triggering logging requests. For this reason, these logs are considered

to be less trustworthy than the ones generated independently from the guest ap-

plications, and are marked with a lower trust level. It is then up to the end user

to use this trust level information appropriately upon filing audit-based reports.

4.3 Observations

This section explains how the involuntary logging system helps in meeting the

security requirements identified in Section 3.3. The performance and scalability

issues are also discussed.

68



Event Categories Events Captured Security Decisions Missed

Authentication User data access attempt
and response (e.g. username
and password).

User authentication decision,
e.g. user JohnSmith failed to
log on to Outlook.

Authorisation Authorisation policy access
attempt and response.

Data authorisation decision,
e.g. user JohnSmith was
granted read and write access
to File1.

Data access Data access attempt and re-
sponse.

– – –

Changes System, application and
privilege changes; data mod-
ification or deletion attempt
and response.

– – –

Invalid input Inputs entered by the user,
e.g. the keys pressed.

Inputs classified as invalid (or
malicious) by the input valida-
tor.

Program startups
and terminations

Request to load and run an
executable, memory alloca-
tion and access, request to
terminate a process.

– – –

Table 4.1: Security Decisions Missed by the Log Transit

4.3.1 Satisfying the Requirements

The log transit sits inside the monitor virtual machine, and involuntarily inter-

cepts the I/O events and generates log records for the events of interest. Guest

applications and operating systems run inside separate virtual machines and have

no way of bypassing or compromising the log transit. This satisfies the ‘involun-

tary log generation’ requirement (see Requirement 3.3.1).

Upon log storage, a hash and its signature are generated for each log record,

and the log data is encrypted using a symmetric encryption key. Since both the

signing key and encryption key are sealed to the secure state of the log transit,

a compromised log transit will neither be able to generate valid signatures nor

decrypt the logged data. External applications can verify the log integrity by

comparing the hash with a computed hash and validating the signature. These

features fulfill the ‘protected log storage’ requirement (see Requirement 3.3.2).
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The involuntary logging system solves the common security problem of the

developers being relied upon to instrument applications to generate logs and

protect logged data (see Section 3.4.1). The log transit is isolated in the monitor

virtual machine and it generates log records independently from the applications.

These are then securely stored on a dedicated disk space of the monitor virtual

machine.

Attacks on the logged data are made infeasible with this isolation and encryp-

tion. A rogue application, for example, would have to compromise the monitor

virtual machine, the log transit, and the key secrets in order to tamper with the

logged data. Moreover, the authenticated boot and sealed key mechanisms make

it infeasible for a rogue administrator to change the log transit configurations

without being caught.

4.3.2 Further Isolation

Authenticated boot measures the state of the log transit and its settings once at

boot time. Hence, a rogue administrator could still alter the log transit settings

files (such as the logging policies) at runtime to affect the behaviour of the logging

system. Unless the system reboots, these changes will not be reflected on the PCR

value, and remote entities will have no knowledge about it.

One way to reduce this risk is to further isolate the log transit to a virtual

machine of its own, and configuring Domain-0 so that the only operations allowed

on this virtual machine are ‘start’ and ‘terminate’. No external interfaces should

be made available to tweak the configurations or settings. This would ensure that

once the virtual machine is launched (and measured), there is no way even for

administrators to alter its behaviour. The worst they could do is terminate the

virtual machine and turn off the log transit, but this should be easily detectable.

These security properties could be verified with attestation.

This would also be a suitable way of reducing the size of the trusted computing

base. The log transit would run in a relatively small virtual machine dedicated to

itself and perform its normal operations without any change, although the event

channel would have to be configured to inform this virtual machine (instead

of Domain-0) whenever an I/O event occurs. A secure communication channel

would have to be established between the two. Moreover, a virtual TPM [80]

instance would be bound to the log transit virtual machine to secure the log
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data. This virtual TPM would be used to attest and verify the security state of

the log transit virtual machine.

One of the drawbacks of this approach is that it would require more changes

to the Xen virtual machine monitor than the original approach, since the event

channel would have to communicate with the log transit virtual machine directly.

Also, setting up a virtual TPM can introduce further security and usability is-

sues [116].

4.3.3 Performance Degradation

One of the key drivers behind the development of computational distributed

systems is high performance [62]. However, the suggested use of virtualiza-

tion and various cryptographic operations would necessarily incur a performance

penalty [113].

Running a job inside a virtual machine requires extra information flow upon

accessing the hardware. As the control flow example shows (see Section 4.2.2),

each I/O request would go through a number of virtual device drivers before

reaching the physical hardware; the same applies when receiving an I/O response.

A recent study [93] suggests that a typical virtualized, distributed system incurs

20 percent performance penalty over native execution. With the introduction of

native hardware support in all recent CPU architectures [75, 53], however, this

overhead will be minimised in time to come.

Another area of concern is the overhead of the I/O event interception, log data

encryption, and signing operations performed by the log transit. These crypto-

graphic operations will further increase the time it takes for the job to access the

hardware. Without a prototype, it is difficult to accurately measure the perfor-

mance overhead of these operations. However, the use of these operations could

be tailored to fit the security requirements of different systems. For instance,

in the service-level agreement example where log confidentiality is less impor-

tant (see Section 3.1.2), the log transit could be configured to skip encryption.

Generating a hash and its signature would be sufficient to ensure log integrity.

Another alternative to speed up the execution of a job virtual machine is to

accumulate the log records during its execution-time and encrypt them only once

before the virtual machine terminates.
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4.3.4 System Upgrade

Perhaps the most significant overhead is the cost of upgrading existing systems

to enable involuntary log generation. This involves installing the Xen virtual ma-

chine monitor and various logging components, and configuring the event channel

operations. While this is a large change, the advantage of the proposed archi-

tecture is that the guest applications can be used in their own virtual machines

without modification — the logs will be automatically generated through the log

transit component.

4.4 Chapter Summary

An involuntary, trustworthy logging system has been described in this chapter

based on Xen and trusted virtualization. How the proposed system satisfies the

‘involuntary log generation’ and ‘protected log storage’ requirements has been

explained in Section 4.3.1. The next chapter will describe a trustworthy log

reconciliation infrastructure that considers the rest of the security requirements

identified in Section 3.3.
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Chapter 5

Design: Distributed Log
Reconciliation

This chapter proposes a log reconciliation infrastructure which allows log users

to: (1) verify the logging and security properties of a remote system, (2) securely

access distributed logs, and (3) carry out a blind analysis on confidentiality and

integrity protected audit trails. This infrastructure aims to satisfy the trustwor-

thy log reconciliation requirements identified in Section 3.3.

Section 5.1 introduces a ‘central information directory’ which manages the

participants’ logging system configurations. Section 5.2 describes the operations

of the log reconciliation infrastructure in detail. Section 5.3 formally verifies a

log reconciliation protocol described in Section 5.2 using Casper [52]. Finally,

Section 5.4 discusses some of the remaining issues and challenges of developing

the proposed infrastructure.

5.1 The Configuration Resolver

When Diffie and Hellman first introduced public key cryptography, they suggested

that a telephone directory could be extended to publish public keys [24]. For

instance, if one wanted to find person B’s public key, one would look up the

telephone directory, find B’s public key, and send B a message encrypted with the

public key.

Drawing inspiration from this principle, a central information directory is

added to the original abstract view (see Figure 2.1) to publish information about

the participants and their logging system configurations. This extended abstract
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Figure 5.1: Abstract View with the Configuration Resolver

view is presented in Figure 5.1. In the following sections, this information direc-

tory is referred to as the ‘configuration resolver’.

5.1.1 Assumptions

This section states assumptions about the design of the configuration resolver

and the log reconciliation infrastructure.

1. The configuration token, which is submitted by a participant when regis-

tering with the configuration resolver, is sent in an authenticated transport

session.

2. A public key infrastructure is available and this can be used to verify the

identity of the configuration resolver, participants (log owners) and end

users (log users).

3. A log owner’s system supports trusted computing and virtualization; as

minimum, mechanisms like authenticated boot (as described in Section

4.2.5) and remote attestation are enabled in this system.

4. An end user maintains a whitelist of all trusted logging software configura-

tions and are capable of keeping this list up to date.
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5. Similarly, a log owner maintains a whitelist of all trusted user system con-

figurations and are capable of keeping this list up to date.

5.1.2 Participant Registration

To demonstrate the trustworthiness of the logging system installed on the plat-

form, the participant registers with the configuration resolver by submitting a

‘Configuration Token’ (CT) which demonstrates the following properties:

• the logs are generated involuntarily and independently from guest applica-

tions and operating systems,

• the log integrity and totality are protected by the secure storage mecha-

nisms, and

• the logs are reported with their integrity, totality and availability protected,

and without any interference from adversaries.

These properties should be sufficient for a log user to establish trust with

a remote logging system and the various monitoring services that depend on

it. This notion of ‘configuration-discovery’ is inspired by the attestation token

approaches discussed in current research (see Section 2.6.1).

Such a discovery mechanism will be necessary, for example, in economy-based

distributed systems [96, 28] where service-level agreements must be carefully mon-

itored and used to assess financial compensation when they have been violated.

A client can download the configuration tokens from the resolver and verify the

security configurations of the logging software (and the audit-based monitoring

services) running in remote systems before constructing service-level agreements

(see Section 3.1.2).

In fact, the resolver could be used in any of the distributed systems discussed

in Section 3.1 for discovering the security properties of the logs generated at re-

mote sites. For instance, in the rogue trader example (see Section 3.1.3), the

system administrator could use the tokens to verify that the evidential logs col-

lected from remote trading systems have been integrity and totality protected.

Based on these trustworthy logs, they could file an accurate forensic report to

the police for an investigation.
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CT = ( PCR Log, AIK , {cred(AIK)}CA , PK , {cred(PK)}AIK , {Identity}SK
)

PCR Log : the list of the loaded (and measured) applications and their hash values

AIK : the public half of the Attestation Identity Key

{cred(AIK)}CA : the AIK credential issued by the Privacy Certificate Authority

PK : the public half of the non-migratable TPM key

{cred(PK)}AIK : the PK credential signed using the private half of the AIK

{Identity}SK
: the participant’s identity signed using the private half of the TPM key

The token content is shown above. It includes the Attestation Identity Key

(AIK) for the platform, along with a credential issued by the Privacy Certificate

Authority ({cred(AIK)}CA). This AIK is used to sign a credential for the

public key (PK), which states that the key has been sealed to two PCR values

which correspond to (1) a trustworthy authenticated boot process, and (2) log

access virtual machine image files. The full description of the authenticated boot

process (as described in Section 4.2.5) and the virtual machine image files is given

in the PCR Log.

In addition, Identity information is included, signed by the private half of

the sealed public key, demonstrating that the user should use this public key when

submitting log access jobs to this participant. It is assumed that the configuration

token will be sent to the resolver in an authenticated transport session, and so

any timestamp or nonce has not been included (see assumption 1, Section 5.1.1).

The authenticity of the sealed key can be checked by validating the AIK

signature. The trustworthiness of the participant’s logging system can be verified

by comparing the PCR Log to the local whitelist of acceptable configurations (see

Section 2.4.2).

The first PCR value proves that the trustworthy logging system has been re-

sponsible for generating and protecting the log data, allowing the user to have

high confidence in the logs. The second PCR value guarantees the software con-

figuration of the log access virtual machine. This second value is stored in a

resettable PCR (see Definition 2.7) because the virtual machine image is remea-

sured at runtime for integrity verification.
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5.1.3 Functionality

The configuration resolver acts as a token directory in the proposed infrastructure

and offers no other complex functionality. The burden of verifying tokens is left

to the log users. This is attractive from a security perspective, as the resolver

can remain an untrusted component. The worst that a malicious resolver can do

is affect the availability of the infrastructure.

However, the simple resolver does increase the management overhead on each

user node as they will all need the ability to check tokens. This involves main-

taining a list of trustworthy software, a whitelist, and keeping a revocation list of

compromised TPMs and platforms. The security of the infrastructure depends

on the proper management of this information. A suitable compromise might

be to devolve some of this functionality to local proxy-resolvers, which would

perform the token filtering for one specific administrative domain. This keeps

control local to one site, but would decrease the effort at each individual node.

To conform to existing standards, it is imagined that the resolver would be

implemented as a WS-ServiceGroup [127]. Each node would then be a member of

this resolver’s group, and have a ‘ServiceGroupEntry’ that associates them. An

entry would also contain identity information by which the node’s participation in

the resolver is advertised. The membership constraints would be simple, requiring

only a valid token and identity. These tokens would be selected by the identity

information.

It is assumed that there is a public mechanism available (e.g. public key

infrastructure) to verify their identity (see assumption 2, Section 5.1.1). As a

result, the levels of indirection introduced by the Trusted Computing Group [2]

to prevent any loss of anonymity are unnecessary. Hence, the Privacy CA is

not a key component of the system and is not required to protect privacy of the

participants. AIKs can be created as soon as the platform is first installed, and

should very rarely need updating.

5.2 Trustworthy Log Reconciliation

With the new configuration-discovery mechanisms available through the config-

uration resolver, the rest of the security mechanisms and their operations are

described.
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5.2.1 Creation and Distribution of a Log Access Job

All log user interactions are made via the external ‘log migration service’. It

provides the minimal interface (APIs) necessary for development of analysis tools.

Such tools should be designed to allow the user to select acceptable logging system

configurations (from a pre-defined whitelist), and specify the user credentials, the

participant systems to collect the logs from, and the log access query (step 1 in

Figure 5.2). The domain administrators, for example, would use these tools to

reconstruct distributed events and identify malicious user activities or problems.

The migration service first makes a configuration-discovery request by sub-

mitting the identity information of the selected participants. In response, the

resolver sends back the configuration tokens (CT s) of the requested participants

(steps 2 and 3 in Figure 5.2). These tokens are used by the migration service to

(1) ensure that the reported logging system configurations match the configura-

tions measured at the time of authenticated boot, (2) verify the authenticity of

the sealing property, and (3) verify the trustworthiness of the logging system and

log access virtual machine configurations. For each token,

• the signature on the AIK credential ({cred(AIK)}CA) is first checked to

verify that the AIK has been generated by a valid TPM;

• the AIK is used to validate the signature on the public key credential

({cred(PK)}AIK) to verify that reported two PCR values represent the

actual values stored in the TPM, and the private half (SK) is sealed to

these PCR values; and

• then finally, the contents of the PCR Log are compared to the known-good

whitelist entries.

Once all of these security checks have been passed, the migration service

trusts the logging and log access mechanisms available at the participant system

and prepares a log access job for submission. If one of the security checks fails,

however, the participant details and the reasons for failure are presented to the

user. It is then the responsibility of the user to make necessary decisions.

The migration service creates a set of log access jobs for the trustworthy log-

ging systems, each of which contains the user’s credential, log access query, job

description, user’s nonce (NU) and an Attestation Token (AT ) (step 4 in Figure
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Figure 5.2: Creation and Distribution of a Job

5.2). Much like the configuration token, the attestation token contains sufficient

information for the participant systems to verify the state of the user system; the

only difference between the two token structures is that the identity information

is not included in the attestation token:

AT = ( PCR Log, AIK , {cred(AIK)}CA , PK , {cred(PK)}AIK )

The user’s public key credential ({cred(PK)}AIK) identifies the private half

(SK) as being sealed to the PCR value corresponding to a trustworthy authen-

ticated boot process of the user system: the BIOS, bootloader, virtual machine

monitor, monitor virtual machine, and log access manager are measured and

recorded in the PCR. These components form the trusted computing base of the

user system. The sealed private key (SK) is used to sign the log access query

inside the TPM — it will only be accessible for signing if the trusted computing

base has not been modified.

The job secret consists of the user’s credential, log access query and its sig-

nature, and nonce. These are encrypted with the target participant’s public

key (obtained from the configuration token) to prevent an adversary or a com-

promised host from stealing secret information. The encrypted jobs are safely

distributed over the public network (step 5 in Figure 5.2). The middleware stack

— used mainly for resource brokering — can only read the unencrypted job de-

79



scription to identify the target participants and distribute the jobs to their policy

enforcement points.

5.2.2 Operations of a Log Access Virtual Machine

This section explains how the log access job gets processed at one of the target

participant systems. Any security processing required before becoming ready to

be deployed in a per-user log access virtual machine is done through the ‘policy

enforcement point’ inside Domain-0. The PCR value corresponding to the user

system’s authenticated boot process (available from the user’s attestation token)

is compared to the known good-values defined in a whitelist. This is referred to

as ‘integrity-based job authentication’. It verifies that the job has been created

and dispatched from a securely configured log access manager (step 1 in Figure

5.3).

Upon successful attestation, the policy enforcement point measures the log ac-

cess virtual machine image and configuration files, and resets the resettable PCR

with this new measurement — the virtual machine image consists of a security

patched operating system and trustworthy middleware stack (‘authorisation pol-

icy management’ and ‘log migration services’) which provides a common interface

for the job to execute the query and access the logs. These processes, managed

by the policy enforcement point, are trusted and have access to Locality 4 —

trusted hardware that can reset a dynamic PCR.

The policy enforcement point then attempts to unseal the private key (bound

to the trusted computing base and log access virtual machine image) in order

to decrypt the job secret. This key will only be accessible if the participant

system is still running with the trustworthy logging configurations and the virtual

machine image has not been changed. This is intended to guarantee that only a

trustworthy virtual machine has access to the decrypted job secret. The signature

of the log access query is then verified using the user’s public key: a valid signature

proves that the query originates from a trustworthy user system and the encrypted

secret correlates with the attestation token.

If all of these security checks pass, the ‘compartment manager’ launches a

trustworthy virtual machine using the verified image and deploys the decrypted

job to make use of the middleware stack (step 2 in Figure 5.3). Before allowing

the log access query to run, the authorisation policy management service checks
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Figure 5.3: Operations of a Log Access Virtual Machine

whether the user (log requestor) is authorised to run the query on the participant

system (steps 3 and 4 in Figure 5.3). The job is processed further if the conditions

stated in the authorisation policy are satisfied.

The log migration service checks the query for any attempt to exploit vulner-

abilities in the database layer (e.g. SQL injection) before making a request to

the log transit component (in Domain-0) to run the query (step 5 in Figure 5.3).

The log transit decrypts the {LogData}Kenc before returning the LogRecords to

the migration service (see Section 4.2.4 for log record details). Each LogRecord

contains its Hash and digital signature which can be used by the user to verify the

log authenticity and integrity. Since the decryption key (Kenc) is sealed to the

trustworthy authenticated boot process, a compromised log transit (or any other

software) in Domain-0 will not be able to decrypt and read the {LogData}Kenc .

This also prevents a rogue administrator from modifying the log transit configu-

rations to tamper with the LogData before returning them.

During this process, a log Privacy Policy is also selected to protect the

privacy of the log data (step 6 in Figure 5.3). Such a policy, specified by the log
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owner, states what part of the requested LogData is allowed to be disclosed. For

instance, in the dynamic access control example (see Section 3.1.1), the Privacy

Policy will restrict disclosure of the LungCancer status in table T2. Existing

log anonymisation techniques such as FLAIM [8] could be used to specify these

policies. The idea is to sanitise the sensitive data while pertaining sufficient

information for analysis.

A rogue virtual machine situated between the log access manager and the log

transit might try to modify the LogRecords or read the decrypted LogData. Ver-

ifying the log integrity is not an issue since any modification would be detected

when the LogRecord is compared against the stored Hash and the signature is val-

idated. However, this would not stop the rogue virtual machine from constantly

modifying the LogRecord to reduce the log availability. Real-time monitoring

applications that rely on timely data feeds would be affected most by this type of

attack. The log confidentiality could be compromised if the rogue virtual machine

manages to read the LogData and transfer them over the network.

To prevent these attacks, the virtual machine monitor creates an exclusive

and secure communication channel between the two virtual machines using its

shared memory mechanisms (see Section 4.2.2). It ensures that no other virtual

machine on the platform has access to the shared memory region used to transfer

the LogRecords. The two virtual machines notify each other about the queued

log requests and responses via the event channel.

The migration service generates a secure result message (step 8 in Figure 5.3)

containing the LogRecords, log Privacy Policy, and user’s nonce (NU):

Result = {LogRecords , Privacy Policy , NU}Ksession

The result message is encrypted using a symmetric session key (Ksession, cre-

ated locally at the participant system), which, in turn, is encrypted using the

user’s public key (PK) obtained from the attestation token. Since the private

half is protected by the user’s TPM, this is sufficient to ensure the confidentiality

and integrity of the LogRecords being transferred over the network. Moreover,

a compromised user system will not be able to access the private key — sealed

to the trusted computing base of the user system — to decrypt the session key
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and see the log records. The purpose of using a symmetric key is to improve the

overall performance of the cryptographic operations.

The user’s nonce (NU) is sufficient to verify that the Result message has been

generated from a trustworthy virtual machine and an unmodified log access query

has been executed.

5.2.3 Reconciliation of Collected Logs

The result message and the encrypted session key arrives at the policy enforce-

ment point of the user system (step 1 in Figure 5.4). First, it decrypts the session

key using the sealed private key and uses the session key to decrypt the Result

message. The decrypted message is then forwarded to the log migration service

which compares the returned nonce (NU) with the original nonce (step 2 in Figure

5.4). A matching value verifies the integrity of the job execution environment.

The migration service also verifies the authenticity and integrity of each

LogRecord by (1) validating its signature ({Hash}SK
) and (2) comparing the

Hash with a computed hash of the LogRecord. A valid signature proves that the

returned LogRecord has been generated involuntarily through a securely config-

ured log transit component; a matching hash guarantees that the LogRecord has

been integrity protected.

The internal reconciliation service reconciles the logs collected from the se-

lected participants and processes them into meaningful audit trails (steps 3 and 4

in Figure 5.4). During this process, the log Privacy Policy is enforced to hide

the private and potential identifiable information, while still releasing enough

information for the user to carry out useful analysis. Attestation of the user sys-

tem’s log access manager (step 1 back in Figure 5.3) is sufficient to know that

these policies will be enforced correctly. Virtual machine isolation and its robust

memory protection prevent an attacker from accessing the memory space of the

log access manager and reading the raw LogData.

More functionality could be added to the reconciliation service depending on

the application requirements: for example, the dynamic access control system

(described in Section 3.2.2) would benefit from having a function that automati-

cally updates the access control policies using the reconciled audit trails.

Only the anonymised audit trails are returned to the original analysis tool

(step 5 in Figure 5.4). This satisfies the blind log analysis requirement (see Re-
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Figure 5.4: Reconciliation of Collected Logs

quirement 3.3.7). In the dynamic access control example, a summary of the policy

updates would be generated from the anonymised audit trails. The administra-

tor would only see this summary of how the access control policies have been

updated for different users. Virtual machine policy attestation [92], for example,

could be used on the log access manager to guarantee that the audit trails will

not be exported to an unauthorised device.

5.3 Formal Verification of the Security Protocol

Casper [52] is a security protocol modeling application developed at Oxford Uni-

versity Computing Laboratory which takes a formal description (Casper script) of

a protocol and its requirements (specifications) in a simple, abstract language, and

generates a corresponding Communicating Sequential Processes (CSP) model [23].

This CSP model can be checked with the Failures/Divergences Refinement (FDR)

tool [46] to identify possible attacks or to verify that no such attacks exist. Basi-

cally, the generated model is tested against the specifications representing desired

security properties — FDR explicitly enumerates and explores the state space of

the model to check whether insecure traces (sequences of messages) can occur.

Most commonly checked properties in Casper are secrecy and authenticity.

This section presents a security protocol modeled in Casper, which captures
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the essential log access and reconciliation transactions described above. The

specifications describe the desired security properties of the protocol. These are

formally verified using FDR to demonstrate that the confidentiality of the job

secrets and logs are protected in the protocol.

5.3.1 Assumptions

In order to simplify the protocol description, some of the components and their

transactions that are sufficiently obvious are not considered in this protocol.

These are captured as assumptions instead:

1. The Log User (u) already knows about the identify of the Log Owner

(o). This information is used to fetch the PCRQuote(LogOwner) from the

Configuration Resolver (r).

2. A Privacy CA is available to validate the AIKs and generate AIK certifi-

cates.

3. The Privacy CA’s certificate and the AIK certificate is contained in the

PCRQuote for authenticity checking.

4. A middleware stack is responsible for forwarding the job dispatched from

the Log User (u) to the Log Owner (o). However, the middleware is not

modeled here since an Intruder (Ivo) can perform all the attacks that a

rogue middleware is capable of performing.

5.3.2 Free Variables and Processes

#Free Variables

u, o, r : Agent

nu : Nonce

q : LogAccessQuery

log : LogsAndPoliciesAccessed

kuo : SessionKey

cu : Credentials

Creds : Agent -> Credentials

pcrqo, pcrqu : PCRQuote
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PCRQ : Agent -> PCRQuote

pko, pku : PublicKey

PK : Agent -> PublicKey

SK : Agent -> SealedSecretKey

InverseKeys = (kuo, kuo), (PK, SK)

The type of the variables and functions used in the protocol description

are defined first. Free variables u, o, r, all of which are Agents, are instan-

tiated with the actual variables LogUser, LogOwner, ConfigurationResolver,

respectively. The full description of the protocol can be found in Appendix A.

In the protocol description, the variable nu is taken to be of type Nonce and

represents the LogUser’s nonce. PCRQ function returns the PCRQuote of each

Agent. For instance, PCRQ(o) is the PCR quote of the LogOwner and it contains

the platform configuration of the LogOwner and validation data. Functions PK

and SK return the public key and sealed private key of an Agent respectively.

For instance, PK(o) represents the LogOwner’s public key, and SK(o) represents

the corresponding private key that has been sealed to the PCR value reported in

PCRQ(o). Note that this sealing property is not really captured in the model —

Casper has not been designed to model such a property.

#Processes

CONFIGURATIONRESOLVER(r,o) knows PCRQ, PK

LOGUSER(u,o,r,q,nu) knows SK(u), Creds(u), PK, PCRQ

LOGOWNER(o,log,kuo) knows SK(o), PK, PCRQ, Creds

Each Agent running in the protocol is represented by a CSP process. The

names of the CSP processes representing the agents are CONFIGURATIONRESOLVER,

LOGUSER, and LOGOWNER. These give names to the roles played by each Agent and

define the variables and functions the agent in question is expected to know at

the beginning of the protocol run. For example, the LogUser is expected to know

their own identity (u), the nonce (nu), the public key (PK) and PCR Quote (PCRQ)

functions, and their own sealed private key (SK(u)) and credential (Creds(u)).
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5.3.3 Protocol Description

#Protocol Description

0. u -> r : o

1. r -> u : PCRQ(o) % pcrqo, PK(o) % pko

[ pcrqo == PCRQ(LogOwner) and pko == PK(LogOwner) ]

2. u -> o : {Creds(u) % cu, q, {q}{SK(u)}, nu}{pko % PK(o)}, PCRQ(u) % pcrqu,

PK(u) % pku

[ cu == Creds(LogUser) and pcrqu == PCRQ(LogUser) and pku == PK(LogUser) ]

3. -> o : u, cu % Creds(u), pcrqu % PCRQ(u)

4. o -> u : {log, nu}{kuo}, {o, u, kuo}{pku % PK(u)}

The protocol description shows the sequence of messages in the protocol.

In message 0, the LogUser (u) sends the identity of the LogOwner (o) to the

Resolver (r). Then in message 1, r responds by sending back o’s PCR quote

(PCRQ(o)) and public key (PK(o)). The first two messages represent the process

of obtaining the log owner’s configuration token from the resolver.

After receiving the quote, u validates the received data against the actual val-

ues expected (pcrqo == PCRQ(LogOwner) and pko == PK(LogOwner)). Since

it is not really possible to model remote attestation in Casper, this validation is

only a close approximation of the process of comparing the reported PCR value

with the known good configurations.

In message 2, u submits a job containing its own credentials (Creds(u)), the

log access query (q) and signature ({q}{SK(u)}), and the nonce (nu). These

represent the job secret and are encrypted using the validated public key of

o (PK(o)). The job also contains u’s PCR quote (PCRQ(u)) and public key

(PK(u)), which represent u’s attestation token. When this message arrives, o

validates the user’s credential and attestation token against the actual values

expected (cu == Creds(LogUser) and pcrqu == PCRQ(LogUser) and pku ==

PK(LogUser)). Again, this is only a close approximation of user authentication

and attestation.

In message 3, o discovers the user’s identity (u) knowing that the user’s cre-

dential, PCR quote, and public key are all valid. Finally, in message 4, o sends

back the accessed logs and privacy policies (log) and the nonce (nu) encrypted
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with a symmetric session key (kuo). This session key is encrypted using the user’s

public key (PK(u)).

5.3.4 Specifications

#Specification

StrongSecret(u, Creds(u), [o])

StrongSecret(u, q, [o])

StrongSecret(u, nu, [o])

StrongSecret(o, log, [u])

StrongSecret(o, kuo, [u])

Agreement(u, o, [q,nu])

Agreement(o, u, [q,log,kuo,nu])

Specifications define the security requirements of the protocol. Specifications

starting with StrongSecret require that in any complete or incomplete runs, cer-

tain data should be secret. For instance, in the first specification (StrongSecret(u,

Creds(u), [o])), u can expect the value of the variable Creds(u) to be a secret

while sharing it with o. This specification would fail if u can take part in a run

(complete or not) where the role o is not taken by the intruder, but the intruder

learns the value Creds(u). Similarly, the next four specifications require the log

access query (q), user’s nonce (nu), the accessed logs (log), and the session key

(kuo) to remain secret.

Agreement specifies the authentication property. For instance, the second

Agreement(o, u, [q,log,kuo,nu]) specifies that o is correctly authenticated

to u, and the agents agree upon q, log, kuo and nu. If u completes a protocol

run with o, then o has previously been running the protocol, apparently with u,

and both agents agreed on the roles they took and the values of the variables q,

log, kuo and nu. The first agreement specifies a similar property between u and

o.

A graphical front-end for FDR, CasperFDR [52], is used to check whether

these security properties are satisfied. First, CasperFDR compiles the Casper

script into a CSP description and creates refinement assertions corresponding

to the specifications. Then, it invokes FDR to verify all the assertions. These
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assertions and verification results are given below:

Assertion SECRET M::SECRET SPEC [T= SECRET M::SYSTEM S

No attack found

Assertion SECRET M::SEQ SECRET SPEC [T= SECRET M::SYSTEM S SEQ

No attack found

Assertion AUTH1 M::AuthenticateLOGUSERToLOGOWNERAgreement q nu

[T= AUTH1 M::SYSTEM 1

No attack found

Assertion AUTH2 M::AuthenticateLOGOWNERToLOGUSERAgreement q log kuo nu

[T= AUTH2 M::SYSTEM 2

No attack found

The first two assertions correspond to the secrecy specifications; the third

assertion corresponds to authentication of the LogUser to the LogOwner; the

fourth assertion corresponds to authentication of the LogOwner to the LogUser.

The verification results show that ‘no attack is found’ and all of the security

properties are satisfied.

5.3.5 Iterative Modeling Process

Even though the verification results show that the final version of the protocol

is free from attacks, a number of possible attacks have been found (and fixed)

during an iterative modeling process.

For instance, in one of the earlier versions of the protocol, the signature of

the log access query ({q}{SK(u)}) was not included as part of the job secret in

message 2 (see above). In consequence, the log owner could not verify whether

the job secret correlated with the log user’s public key. This meant the intruder

could swap the log user’s PCR quote and public key with their own, and read

the log data encrypted with their public key. After observing the possible attack

traces through FDR, the signature of the query was added to the job secret to

solve this problem.
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This iterative process has been useful for identifying potential loopholes as

such, and refining the protocol to minimise the number of loopholes. The security

procedures described in Section 5.2 are based on the final (attack-free) version of

the log reconciliation protocol.

5.4 Observations

This section discusses how the proposed infrastructure fulfills the security re-

quirements presented in Section 3.3. Potential scalability and performance issues

are also discussed.

5.4.1 Satisfying the Requirements

A number of security mechanisms work together to satisfy the ‘authorisation pol-

icy management’, ‘log migration service’, and ‘protected execution environment’

requirements (see Requirements 3.3.3, 3.3.4 and 3.3.5). Remote attestation and

runtime verification of the virtual machine are used to verify the logging system

properties, and securely collect the logs from the verified system. The policy

management and migration services form the middleware stack of the per-job

virtual machine, providing functions for user credential validation and secure log

access.

Before job submission, the log user verifies the security state of these services

using the configuration token, and relies on the sealed key mechanism to guar-

antee the verified execution environment. The log access virtual machine image

is remeasured at runtime to ensure that the private key (required to process the

job further) is only accessible if the state of the services has not changed. Fur-

ther, strong job isolation ensures that the log access query runs free from any

unauthorised interference.

Before allowing the job to run, the policy enforcement point checks the se-

curity configuration of the user’s log reconciliation service. Attestation of the

reconciliation service is sufficient to know that the log privacy policies will be

enforced correctly upon reconciliation, and only the processed, anonymised re-

sults will be released to the end user. These mechanisms are responsible for

meeting the ‘log reconciliation service’ and ‘blind log analysis’ requirements (see

Requirements 3.3.6 and 3.3.7).
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As the gap analysis shows (see Section 3.4.2), existing approaches often lack

mechanisms for verifying the log integrity and confidentiality. With the proposed

infrastructure, the user can verify the log integrity by: (1) verifying the logging

properties of a remote system that generated the logs, and (2) checking the hash

and validating the signature of each log record.

The log owner, before granting access, verifies the security configurations of

the user’s log access manager. A securely configured log access manager will pro-

vide sufficient protection for log confidentiality and privacy upon reconciliation.

The log records are encrypted in a way that only a securely configured log access

manager can decrypt it.

5.4.2 Configuration Token Verification

The trustworthiness of the infrastructure is dependent on the ability for each

user to make the right decision about the security provided by logging systems at

other participant nodes. The identity and security configurations of the logging

systems are reported in the PCR Log contained in the configuration tokens. These

values are then compared to a whitelist of acceptable software.

However, this assumes prior knowledge of all trusted logging software config-

urations (see assumptions 4 and 5, Section 5.1.1), which may not be the case if

the virtual organisation is particularly large. Such a scalability issue is magni-

fied when considering settings files, many of which will have the same semantic

meaning but different measured values. It is difficult to assess how big a problem

this is, but future work may look at using property-based attestation [9] as a

potential solution.

5.4.3 Performance Degradation

Attestation involves expensive public key operations for signing the PCR values

and validating the signatures. It also involves comparing the reported PCR event

log with the whitelist and verifying the trustworthiness of a platform.

In the proposed system, attestation is performed twice upon job submission:

the user system verifies the logging system configurations before dispatching the

job, and the logging system verifies the user system configurations before allowing

the query to run. The fact that the platforms are mutually attesting each other at

runtime is a performance concern. The resulting overhead might be unacceptable
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in realtime applications that depend on timely data feeds. For instance, in the

dynamic access control system (see Section 3.1.1), this delay could prevent the

access control policies from being updated in time, allowing various inference

attacks to succeed.

The attestation service, however, could be configured to minimise the use of

attestation. Since the trusted computing bases of both platforms are designed

to be relatively static, the previous attestation results could be used again and

again up to a given expiry date. A fresh attestation would be performed when the

previous results expire, removing the need to attest every time a job is submitted.

If the trusted computing base changes at a time before the expiry date, the sealed

key mechanism would detect it and inform the verifying platform. The verifying

platform would then request for the latest configuration (or attestation) token to

perform a fresh attestation.

5.4.4 System Upgrade

The most significant overhead of the proposed system is the cost of upgrading

existing nodes to support the new infrastructure. This involves installing the

Xen virtual machine monitor and various logging and per-job virtual machines.

While this is a large change, the advantage of the system is that legacy operating

systems and middleware can still be used in their own virtual machines. The

overall administration task is therefore not so large. Furthermore, virtualization is

increasing in popularity, and it seems likely that the scalability and management

advantages will persuade the participants into upgrading to a suitable system

anyway.

5.4.5 Specifying the Log Privacy Policies

FLAIM [8] has been suggested as a log anonymisation technique that could be

used for specifying the log privacy policies. However, FLAIM (and many other

existing techniques) only provides anonymisation mechanisms suitable for basic

log data structures (for example, network logs). On the other hand, the dynamic

access control example (see Section 3.1.1) is concerned with relations between

different log database queries and complex information flow. Hence, depending on

the application requirements, it would be necessary to expand on techniques like

FLAIM to handle complex log data structures upon specifying privacy policies.
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5.5 Chapter Summary

A trustworthy log reconciliation infrastructure that ensures log integrity, confi-

dentiality and availability has been described in this chapter. How this infras-

tructure satisfies the security requirements (identified in Section 3.3) has been

explained in Section 5.4.1. The next chapter will describe in detail a prototype

implementation that has been constructed based on a number of features selected

from this log reconciliation infrastructure.
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Chapter 6

Prototype Implementation

This chapter describes a prototype implementation of the security features se-

lected from the log reconciliation infrastructure (see Chapter 5). One of the key

motivations is to demonstrate the basic feasibility of the proposed trusted com-

puting ideas, and uncover security and usability issues. A general implementation

strategy for developing trusted computing applications is also discussed.

Section 6.1 gives an overview of the implemented features. Section 6.2 explains

the implementation details using high-level class diagrams. Finally, Section 6.3

discusses the feasibility, security and usability issues raised through the develop-

ment of the prototype.

6.1 Prototype Overview

Based on the security components proposed in the previous chapter, a prototype

implementation has been constructed using the ‘IAIK TCG Software Stack for

the Java (tm) Platform’ [61] (jTSS) as the software building block, and Xen [18]

as the underlying virtualization technology.

6.1.1 Implemented Components and Assumptions

An abstract view of the prototype implementation is shown in Figure 6.1. This

diagram gives a high-level overview of the components that have or have not been

implemented, and those that have been assumed to already exist.

Green represents implemented components whereas red represents uncom-

pleted ones, and dotted grey line represents assumed components. Considering
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Figure 6.1: Prototype Implementation Overview

that the key motivation is to demonstrate feasibility, components that have al-

ready been implemented by others, or that are sufficiently straightforward (in

terms of devising implementation strategies), have been assumed.

In the log user system, the ‘log access manager’ virtual machine and its ‘log

migration service’ have been implemented successfully. The log migration service

has been implemented as a web service offering secure job creation functionalities

to the log user. An open source, Java EE compatible application server called

‘GlassFish’ (version 2.1) [120] has been used for web services development —

GlassFish provides an easy and reliable environment for developing enhanced

web services. A simple ‘whitelist’ of participant system configurations has been

defined using XML. IAIK’s ‘Privacy CA’ (version 0.2) [79] has been configured to

provide the trusted computing protocols necessary for validating the Attestation

Identity Key (AIK) and signing its credential ({cred(AIK)}CA).

The ‘configuration resolver’ has been assumed to provide the ‘configuration

tokens’ to the log user system. Each configuration token contains properly con-

structed AIK credential signed by the Privacy CA, the public key credential

signed with the private AIK, and the PCR event log. Log migration service

functions for performing attestation, creating a job, encrypting the job secret,

and dispatching it to the participant system have all been implemented. The
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intermediary resource broker service has been assumed.

In the target participant (or log owner) system, the ‘log access virtual ma-

chine’ and its ‘log migration service’ have been implemented. A whitelist of log

user system configurations has been defined using XML. Security functions for

performing attestation based on this whitelist and encrypting the accessed logs

with the user’s public key have been implemented.

The task of configuring Domain-0 to support the dynamic launch of a log

access virtual machine has been left out due to the implementation challenges.

Instead, this work is suggested as future work. The log database, log privacy

policies as well as authorisation policies have all been assumed to already exist.

The ‘authorisation policy management service’ has also been assumed to perform

access control operations inside the log access virtual machine.

6.1.2 Selected Features

Given the time constraint, a few integral components and their security features

have been selected for implementation. Each of these features is likely to be

questioned about its feasibility, hence requires a proof-of-concept.

6.1.2.1 Creating and Dispatching Log Access Job

The first set of features have been selected from the workflow associated with

selecting trustworthy logging systems, creating a log access job, and dispatching

it to those selected (see Section 5.2.1):

1. Describing the Whitelist Known good logging system configurations should

be listed to indicate the expected PCR index and software measurements.

2. Selecting Trustworthy Logging Systems Logging systems should be se-

lected by verifying the authenticity of the reported credentials (obtained

from the configuration tokens), and comparing the PCR event logs against

the known good values specified in the whitelist.

3. Creating a Job and Encrypting its Secret For each job being created,

the job secret — user credentials, nonce, log access query — should be

encrypted using the public key (obtained from the configuration token) of

the target participant. The unencrypted part of the job should include the
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user system’s own attestation token. While constructing this token, the

AIK credential should be generated and signed by the Privacy CA, and

the public key credentials should be signed by the private AIK. This should

indicate that the private half is sealed to the PCR corresponding to the user

system’s trusted computing base. The log access query should be signed

using this private key to allow remote systems to verify its authenticity

before running it.

4. Submitting the Job The jobs should be dispatched to the target partic-

ipant systems via a resource brokering service (an assumed component).

This service should only be able to read the job description to figure out

the address of the target participant system.

5. Isolating the Trusted Computing Base The log migration service should

operate inside an isolated, log access manager virtual machine.

6.1.2.2 Operations of the Log Access Virtual Machine

The next set of features have been selected from the workflow associated with

authenticating the log access job, verifying the integrity of the log access virtual

machine, and accessing the logs (see Section 5.2.2).

6. Integrity-Based Job Authentication The authenticity of the PCR quote

and sealed key should be checked first by validating the AIK signature on

the public key credential (obtained from the attestation token). Then, the

PCR event log should be compared to the known good values stated in the

whitelist. The job should be authenticated only if it has been dispatched

from a trustworthy user system.

7. Measuring the Virtual Machine Image Files The log access virtual ma-

chine image and configuration files should be measured at runtime, and the

resettable PCR (see Definition 2.7) should be reset with this new value.

Modifying any one of these files should result in a different value and pre-

vent access to the sealed private key.

8. Decrypting the Job Secret The job secret should be decrypted using the

sealed private key. If any one of the two PCR values change, this key should

no longer be accessible for decryption.
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9. Validating the Signature The signature of the log access query should be

validated with the public key. A valid signature indicates that the query

originates from a trustworthy user system and the encrypted secret corre-

lates with the attestation token.

10. Encrypting the Log Results The accessed logs, privacy policies, and the

user’s original nonce (NU) should be encrypted with a symmetric session

key. This session key, in turn, should be encrypted with the user’s public

key.

6.1.2.3 Verifying the Returned Results

The last set of features have been selected from the workflow associated with

decrypting the log results, and verifying the returned nonce (see Section 5.2.3):

11. Decrypting the Log Results The symmetric session key should be de-

crypted first using the sealed private key, which should only be accessible

if the user system’s trusted computing base has not been modified. This

session key should then be used to decrypt the log results. Finally, the

decrypted nonce should be compared to the original nonce. A matching

value guarantees that the logs have been accessed through a trustworthy

log access virtual machine.

6.2 Implementation Details

The selected features have been implemented using the technologies described

in Section 6.1.1. This section provides a high-level overview of the important

libraries, classes and methods, and explains how these have been orchestrated

together.

6.2.1 Class Diagrams

The following two class diagrams (see Figures 6.2 and 6.3) highlight the important

libraries, classes, methods and files, and describe the relationships between them.

The first diagram describes the structure of the implemented services such as

might be deployed in the log user system.
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Figure 6.2: Class Diagram — Log User System

The structure can be divided into three layers. The bottom layer is the stack

of jTSS libraries — including the TSS Device Driver Library (TDDL), TSS Core

Services (tcs.jar) and TSS Service Provider (tsp.jar) [128] — which provide

the core methods for utilising the TPM and TPM keys.

The middle layer represents the internal services which are used by the

LogMigrationService to perform various trusted computing operations. The

TPMUtils class provides user-friendly methods for using the TPM to perform

cryptographic operations including TPM key access. The AIKRetriever class

provides methods for retrieving an AIK certificate if one exists, or generating one

through the Privacy CA. In the process of generating full AIK information, it

uses TPMUtils to access the AIK and its usage policies from the TPM.

The AttestationManager class provides a complete set of methods for per-

forming attestation. It accepts either ConfigurationToken or AttestationToken,

checks the authenticity of the credentials, and compares the reported PCR event

logs with the whitelist (logging-site-whitelist.xml).

The top layer represents the LogMigrationService and the data objects it

uses. These objects are ConfigurationToken, AttestationToken, and Job. The
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Figure 6.3: Class Diagram — Log Owner System

LogMigrationService provides external web methods for submitting log access

jobs. It uses all of the internal services (middle layer) upon selecting trustworthy

logging sites, generating log access jobs, and dispatching them.

Figure 6.3 describes the services such as might be deployed in the participant

(or log owner) system. The structure is much like that of the user system —

divided into three layers of jTSS libraries, internal classes, and the external web

service.

The dotted grey line represents the assumed classes and data: the log database

and the policies are assumed; the AuthPolicyMgmtService is also assumed to

provide the access control methods. The internal classes provide the same type

of methods as described before. The LogMigrationService offers web methods

for external applications to submit jobs and access the logs. These methods rely

on private methods for authenticating the job and generating secure log results.
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6.2.2 Implemented Features

This section refers back to the selected features (see Section 6.1.2) and explains

the implementation details for each. The first five features are described with

reference to the first, log user system class diagram (see Figure 6.2):

6.2.2.1 Describing the Whitelist

The known good logging site and user system configurations are managed through

a simple whitelist defined using XML.

Here is an example logging-site-whitelist.xml file:

<Whit e l i s t desc=‘Whi t e l i s t o f t rustworthy l ogg ing s i t e s ’>
<KnownGoodValue id=1 desc=‘Log t r a n s i t runs i n s i d e Dom0’>

<ExtendedPCR index=10 desc=‘Authent icated boot ’>
<ExpectedValue desc=‘BIOS’>a7d7da6d80c497a . . . </ ExpectedValue>
<ExpectedValue desc=‘TrustedGrub ’>a760a0de . . . </ ExpectedValue>
<ExpectedValue desc = ‘2 . 6 . 21 . fc8xen ’> e9a35e . . . </ ExpectedValue>
<ExpectedValue desc=‘Dom0−Conf i gF i l e s ’>97b . . . </ ExpectedValue>
<ExpectedValue desc=‘Dom0−fc8 ’>3a8aeb65abc . . . </ ExpectedValue>
<ExpectedValue desc=‘Dom0−LogTransit ’>6ea8 . . . </ ExpectedValue>

</ExtendedPCR>
<ExtendedPCR index=16 desc=‘Log ac c e s s VM Configs ’>

<ExpectedValue desc=‘Con f i gF i l e s ’>a2e57ee0 . . . </ ExpectedValue>
<ExpectedValue desc=‘ROVirtualDiskImage ’>0. . .</ ExpectedValue>

</ExtendedPCR>
</KnownGoodValue>
<KnownGoodValue id=2 desc=‘Log t r a n s i t runs i n s i d e the d r i v e r VM’>

<ExtendedPCR index=10 desc=‘Authent icated boot ’>
<ExpectedValue desc=‘BIOS’>a7d7da6d80c497a . . . </ ExpectedValue>
<ExpectedValue desc=‘TrustedGrub ’>a760a0de . . . </ ExpectedValue>
<ExpectedValue desc = ‘2 . 6 . 21 . fc8xen ’> e9a35e . . . </ ExpectedValue>
<ExpectedValue desc=‘Dom0−Conf i gF i l e s ’>97b . . . </ ExpectedValue>
<ExpectedValue desc=‘Dom0−fc8 ’>3a8aeb65abc . . . </ ExpectedValue>
<ExpectedValue desc=‘DriverVM−Conf i gF i l e s ’>..</ExpectedValue>
<ExpectedValue desc=‘DriverVM−LogTransit ’> . . .</ ExpectedValue>

</ExtendedPCR>
<ExtendedPCR index=16 desc=‘Log ac c e s s VM Configs ’>

<ExpectedValue desc=‘Con f i gF i l e s ’>a2e57ee0 . . . </ ExpectedValue>
<ExpectedValue desc=‘ROVirtualDiskImage ’>0. . .</ ExpectedValue>

</ExtendedPCR>
</KnownGoodValue>

</White l i s t>

A whitelist may contain multiple instances of KnownGoodValue, each of which

is assigned with a unique id and represents an instance of a trustworthy logging

site configuration. A KnownGoodValue has two instances of ExtendedPCR since

the participant’s PCR quote comprises of two measurements. In the given exam-

ple, PCR 10 contains a measurement corresponding to the authenticated boot

process, and resettable PCR 16 contains a measurement corresponding to the log

access virtual machine image.
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Finally, each ExtendedPCR contains the expected hash values. The exact

sequence of the authenticated boot process is also captured in the whitelist —

a single difference in the measurement sequence will alter the computed hash

value. The whitelist of user system configurations, managed by the participant,

is defined in a similar manner.

6.2.2.2 Selecting Trustworthy Logging Systems

LogMigrationService (LMS) provides the LMS.selectTrustworthyLoggingSites()

method, which uses AttestationManager (AM) to determine whether a config-

uration token represents a trustworthy logging site. Attestation involves three

steps:

1. AM.isGoodValue() method compares the PCR event log to the known good

values stated in the logging-site-whitelist.xml.

2. AM.logHashMatchesKeyCredentialHash() checks to see if the software-

computed final hash value matches the actual PCR value quoted in the

public key credential — this is intended to guarantee that the PCR event log

truthfully represents the executables that have been measured and extended

in the specified PCRs.

3. AM.validateKeyCredentialSignature() validates the AIK signature on

the public key credential by decrypting the credential’s validation data with

the public AIK, and compares this decrypted value to a digest.

6.2.2.3 Creating a Job and Encrypting its Secret

LMS.submitLogAccessJob() creates a log access job for each of the selected

participants (logging sites) and dispatches it through the resource broker. During

this process, it uses TPMUtils.encryptData() to encrypt the job secret with the

target participant’s public key, and uses LMS.createAttToken() to create an

attestation token. This method, in turn, uses AIKManager.getFullAIKInfo()

to access the full AIK credential.

If an AIK certificate already exists, it calls getAIKCertificate() to use the

TPMUtils.getAIK() and TPMUtils.getAIKUsagePolicy() methods to fetch the

AIK and its usage policies from the local storage. If a certificate does not exist,
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it calls getAIKCertificateFromPrivacyCA() to generate a new AIK certificate

through the Privacy CA.

In a similar manner TPMUtils.createSealedKey() generates a bound key

pair and seals the private half to the specified PCR. The public key credential

is signed with the private AIK and returned to LogMigrationService. This

credential contains validation information for the AIK signature and the sealing

property.

TPMUtils.signDataInsideTPM() signs the log access query using the sealed

private key, and this signature is also included as part of the job secret. This

method would fail if the PCR value changes, disallowing access to the sealed

key. Job.jobDescription contains information necessary for the middleware to

forward the job correctly to the target participant, and specifies the hardware

and software requirements for running the job.

6.2.2.4 Submitting the Job

A dummy resource brokering service (one of the assumed components) merely

reads Job.jobDescription to find the target participant, and submits the job

using the LMS.submitJob() method of the participant system.

6.2.2.5 Isolating the Trusted Computing Base

LogMigrationService as well as all other classes and libraries shown in Fig-

ure 6.2 are deployed inside an independent guest virtual machine. A dummy

log analysis application accesses the externally-facing web service methods of

LogMigrationService to collect logs from trustworthy logging sites.

6.2.2.6 Integrity-Based Job Authentication

The next five features are described with reference to the second participant (log

owner) system class diagram (see Figure 6.3).

After the job arrives, LMS.authenticateJobUsingAttToken() authenticates

the job based on the integrity report. It uses AttestationManager to determine

whether the job has been dispatched from a trustworthy log user system (see

Section 6.2.2.2 for details). PCR log event (obtained from the attestation token)

is compared with user-system-whitelist.xml, and the authenticity of the PCR

quote is verified during this process.
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6.2.2.7 Measuring the Virtual Machine Files

Before decrypting the job secret, LMS.measureVMImageFiles() resets PCR 16

using TPMUtils.resetPCR(). Then, it measures the virtual machine files at run-

time and extends PCR 16 with the new measurement using TPMUtils.extendPCR()

method.

6.2.2.8 Decrypting the Job Secret

LMS.decryptJobSecret() sends AttestationToken.encryptionKeyLabel (the

label of the public key used to encrypt the secret) to TPMUtils.unbind(), which

uses the label to retrieve the sealed private half and decrypts the job secret. The

decrypted bytes are converted into a JobSecret object before being returned.

If either one of the two PCR values change, the private key will no longer be

accessible for decryption.

6.2.2.9 Validating the Signature

LMS.attTokenCorrelatesToJobSecret() calls TPMUtils.verifySignature(),

which decrypts the signed log access query with the user’s public key and com-

pares it with the original query. A valid signature implies that the attestation

token correlates with the job secret, and the query has been generated from an

integrity-protected user system.

Due to a number of implementation challenges and the time constraints, a

feature that launches the virtual machine from the verified files at runtime has

been left out. Instead, this feature is assumed to run after signature validation

to deploy the job on a trustworthy virtual machine instance.

6.2.2.10 Encrypting the Log Results

LMS.accessLogs() calls AuthPolicyMgmtService.isAuthorisedUser() to check

whether the user is authorised to run the specific log access query — this assumed

method always returns true. Then the query is executed to access the logs and

privacy policies from a dummy database.

Using TPMUtils.encryptData(), the accessed data and the original nonce are

encrypted with a symmetric session key. This session key is encrypted with the

user’s public key. The final LogResult object contains the encryptionKeyLabel
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(public key label), encryptedResults and encryptedSessionKey, and the orig-

inal jobDescription.

6.2.2.11 Decrypting the Log Results

To describe the last feature, the first class diagram (see Figure 6.2) is referenced

again. After the LogResult arrives, the encrypted data and the encryptionKeyLabel

is passed on to the TPMUtils.unbind() method. This method retrieves the sealed

private key with the given key label and decrypts the session key. This session key

is then used to decrypt the logs, privacy policies and nonce. The returned nonce

and the original nonce are converted into HexString before being compared. A

matching value verifies the integrity of the job execution environment.

6.3 Observations

The prototype implementation has been developed over three months, containing

approximately 65001 lines of code. This section discusses the feasibility, security

and usability issues raised from the prototype work, and highlights the potential

areas of concern. Based on the implementation details, a general guideline for

developing remote attestation (and sealing) applications is also suggested.

6.3.1 Feasibility

Considering that the biggest motivation for this work is to demonstrate the feasi-

bility of the proposed log reconciliation infrastructure, the results are promising:

prototype implementations of the selected features have been constructed and

documented successfully (see Section 6.2). These provide strong evidence of fea-

sibility for the trusted computing ideas proposed in Chapter 5.

Several components and their features (for example, the configuration re-

solver) have been assumed on the grounds that their implementation strategies

should be sufficiently straightforward. One exception to this is the ‘runtime

launch of a virtual machine’ feature, which has been left out due to the imple-

mentation challenges involved.

The Open Trusted Computing consortium, in their recently developed ‘Cor-

porate Computing at Home’ prototype [91], have demonstrated how the integrity

1This number does not include the jTSS libraries.
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Figure 6.4: TCG Software Layering Model (Modified Figure4:i from [128])

of the corporate virtual machine could be verified and launched at runtime to

guarantee a trustworthy working environment. Future work may look at adapt-

ing their implementation methods.

6.3.2 Establishing a Guideline

Another motivation for this work is to establish a guideline for developing trusted

computing (in particular, remote attestation and sealing) applications. The high-

level class diagrams (see Figures 6.2 and 6.3) highlight the essential classes and

methods.

These diagrams suggest a three-tier structure: (1) the jTSS libraries that

provide core methods for utilising the TPM, (2) the internal services that contain

the business logic for performing attestation and sealing, and (3) the external

web services and data objects that make use of the internal services to enable

secure job submission. The implementation details give some ideas as to how

these methods should be orchestrated together (see Section 6.2.2). Moreover, an

example whitelist demonstrates some of the essential information that needs to
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be captured and maintained in an application whitelist (see Section 6.2.2.1).

Figure 6.4 shows the Trusted Computing Group’s software layering model [128]

and how the three-tier structure would fit into this model. The jTSS libraries

would fit into the bottom three software layers in the model: TPM Device Driver

Library Interface, TSS Core Service Interface, and the TCG Service Provider

Interface. The external web services would fit into the Application layer, and the

internal services would fit in between the Application and TCG Service Provider

Interface layers.

6.3.3 Security

Security can be analysed from the implemented features and tests. Remote at-

testation has been implemented to: (1) compare the PCR event log with the

whitelist entries, (2) check whether the computed final hash matches the quoted

PCR value, and (3) verify the authenticity of the public key credential by validat-

ing its AIK signature with the public AIK. Step (2) is responsible for checking

the sequence of the authenticated boot process and verifying the integrity of

the PCR event log. These procedures enable a platform configuration reporting

mechanism that is integrity and authenticity protected.

After attestation, the job is encrypted using the participant’s public key and

dispatched via the untrusted, resource brokering service. The sealed key mecha-

nism ensures that only a securely configured platform can decrypt the secret and

process the job further. This security property has been tested by changing one

of the PCR values (for which the private key is bound to) and checking whether

decryption fails. The test results showed that the TPM denied further access to

the private key when one of the values changed and decryption failed.

Another test involved hacking into the Job and JobSecret objects when the

job arrived at the resource brokering service — the test simulated compromised

middleware trying to read the job secret. The job secret, however, was only

visible as an encrypted, unreadable blob data. These results also demonstrated

that the log results (similarly encrypted) will be safeguarded from such attacks.

The prototype implementation has also been useful for identifying potential

issues. One area of concern is the management of the key secrets (or passwords).

Each time a TPM secret key is used, a key secret is used for authentication.

There are many keys and cryptographic operations involved in attestation and
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sealing, and it would be unrealistic to ask the user to enter the secret every time

a key access is required. A more usable solution would ask for the key secret once

and store it somewhere safe for later use. But who provides the safe storage for

these key secrets?

Encrypting the key secret will have the same problems, and the main mem-

ory can not be trusted since it is vulnerable to in-memory attacks. In order to

safeguard the key secret from such attacks, strong isolation between a trusted

(TPM-measured) application and other applications is necessary. Hardware vir-

tualization, for instance, can be used to isolate the trusted application, and pro-

tect the key secrets in a dedicated memory or disk space.

Secure management of the application whitelist is another area of concern.

Since attestation relies on the whitelist having up-to-date entries, if the admin-

istrative software fails to update the entries in a secure and timely manner, the

attestation service could end up verifying untrustworthy configurations as trust-

worthy. Hence, the whitelist entries need to be carefully updated based on the

latest software vulnerability reports and patches. Their integrity also needs to

be protected.

6.3.4 Usability

There are several usability issues raised from the prototyping work. One area of

concern is the complexity of the administrative tasks involved in setting up this

type of architecture. Some of these tasks include:

1. defining a whitelist and keeping the list up-to-date through various software

testing and vulnerability discovery practices;

2. initiating the TPM, and setting up the certificates and trusted computing

protocols;

3. installing Xen virtual machine monitor, configuring Domain-0 settings, and

setting up several log access virtual machine images and

4. installing the three-tier architecture and configuring the policies and set-

tings files.
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Each of these requires prior knowledge of trusted computing and virtualiza-

tion; even a fully trained administrator might find such tasks difficult and time

consuming to complete. Future work may look at minimising the trusted com-

puting components that need to be installed, and automating some of these tasks

so that even an unexperienced administrator could easily install and manage a

secure log reconciliation system.

The end users are no exception. Upon job submission, the users choose accept-

able logging system configurations from looking at the whitelist entries. Hence,

to a certain extent, they too have to deal with the whitelist entries and under-

stand the concepts of sealing and remote attestation. Again, more user-friendly

job submission tools which require minimal knowledge of trusted computing are

needed.

6.4 Chapter Summary

The prototype implementation of the log reconciliation infrastructure has been

described in this chapter, demonstrating its feasibility as well as uncovering some

of the security and usability issues. Implementation guidelines for developing

remote attestation and sealing applications have also been provided. In the next

chapter, the key features of the reconciliation infrastructure will be adapted to

describe two types of trustworthy distributed systems that allow users’ jobs to

be executed in protected, verifiable environments.
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Chapter 7

Generalisation: Trustable Virtual
Organisations

Despite substantial developments in the area of trustworthy distributed systems,

there remains a gap between users’ security requirements and existing trusted

virtualization approaches.

This chapter aims to highlight the missing pieces and suggest possible solu-

tions based on a generalisation approach. A number of security mechanisms from

the ‘log reconciliation infrastructure’ (see Chapter 5) are selected and extended

to solve a generalised set of security problems.

7.1 Security Challenges

A wide range of research is conducted, archived, and reported in the digital econ-

omy. Its influence has grown over the years to include various disciplines from

science through to finance and industrial engineering. In consequence, different

types of distributed systems have been deployed to facilitate the collection, mod-

eling and analysis of the dispersed data, or the sharing of the computational

power.

A problem arises, however, when the models or data contain sensitive infor-

mation or have commercial value, and the scope for malicious attempts to steal

or modify them spreads alarmingly quickly. This is particularly true in many of

the scientific disciplines where researchers — who care about the confidentiality

of their privileged data or the integrity of the collected results — are reluctant

to exploit the full benefits of distributed computing. Some of the malicious ob-
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jectives of attackers include: (1) to steal the job secrets — including the user

credentials, and sensitive models or data, (2) to make unauthorised use of the

distributed resources, (3) to compromise user or participant machines, and (4) to

corrupt the job results.

A virtual organisation will inevitably evolve over time to accommodate new

utilities and services. This dynamic nature makes it extremely difficult to bridge

the ‘trust gap’ between the security requirements and the current technological

capabilities. Submitting a highly privileged job to the distributed resources re-

quires prior knowledge of the security standards of all of the target participant

systems — only those running with acceptable security configurations and patch

levels should be selected to execute the job. However, this still remains as the

trust gap and serves as a barrier to up-take of existing distributed systems.

This chapter proposes two trustworthy distributed systems based on the ideas

generalised from the log reconciliation infrastructure. In both systems, the ‘con-

figuration resolver’ is configured to play a central role in ‘discovery of trustworthy

services’ and ‘secure job submission’. A runtime verification of the integrity of

the job virtual machine guarantees the exact job execution environment.

The rest of the chapter is organised as follows. Section 7.2 discusses three

well-known grid examples to highlight the challenges of forming a virtual organi-

sation. Section 7.3 identifies the key security requirements. Section 7.4 discusses

an emergent consensus view of the trusted virtualization approach, and identi-

fies the missing components. Then, Section 7.5 describes two architectures that

satisfy the requirements, suggesting possible solutions for the missing compo-

nents. Finally, Section 7.6 observes the proposed architectures and discusses the

remaining challenges.

7.2 Motivating Examples

The following examples serve to illustrate the common security problems of shar-

ing computational resources or aggregating distributed data within a virtual or-

ganisation.
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7.2.1 climateprediction.net and Condor Grids

The first example application arises with the climateprediction.net project [58],

which serves to distribute a high quality climate model to thousands of partici-

pants around the world. It stands (or falls) on its ability to ensure the accuracy

of the climate prediction methods and collected data. As a politically-charged

field it could become a target for moderately sophisticated attackers to subvert

the results.

This project highlights a common dual pair of problems:

• From the participant’s perspective, the untrusted code runs on their trusted

system; they need to be convinced that the code is not malicious, and the

middleware used by the code (if any) are trustworthy.

• From the scientist’s perspective, their trusted job is executed in an un-

trusted host without any assurance of the running environment; this host

might return arbitrary or fabricated results never having run the original

code, or steal their sensitive models and data.

Similar threats undermine the security of a Condor [31] system which allows

relatively smaller jobs to be distributed in a Campus Grid setting. To mitigate the

second problem it provides a digital certificate infrastructure for the participant

to identify others. Without robust mechanisms to safeguard the keys from theft,

however, this solution offers only a slight improvement over legacy architectures.

Moreover, a rogue administrator might replace (or tamper with) the compute

nodes with others, or subvert its security configurations to steal data and/or

return contrived results.

7.2.2 Healthcare Grids

In ‘e-Health’, it is not hard to imagine instances where the clinical data is highly

sensitive, and only the processed subsets may be released; nor is it hard to imagine

scenarios where reconciliation of data from different sources is needed, but neither

clinic trusts the other to see the raw data. Such data cannot normally be made

available outside the healthcare trust where it is collected, except under strict

ethics committee guidance, generally involving anonymisation of records before

release [94].
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Nevertheless, anonymisation reduces the amount of information available, pre-

cision of estimates and flexibility of analysis; and as a result, bias can be intro-

duced [39]. For example1, a researcher might be looking at association between

age, diet and progression of colon cancer, and is aware that the risk immensely in-

creases when one reaches the age of 50. Patient records for the first two attributes

would be accessed through a GP practice and the third through a specialist clinic.

The National Health Service (NHS) number [51] uniquely identifies a patient

across the grid to enable the linking of data. In this scenario a graph plotted

with anonymised age — ‘30-35’, ‘35-40’ ... ‘65-70’ — is likely to miss out the

important micro-trends all together; in fact, these would be better-observed with

datasets closer to age 50. A supporting graph plotted with the actual age, say,

between 45 and 55, would show these trends more clearly and improve the quality

of the results.

Moreover, this distributed query would require a concrete identifier, such as

the NHS number, to join patient records collected from the GP and specialist

clinic. In reality, however, it is unlikely that either would give out such potential

identifiable information without the necessary confidentiality guarantees. Hash-

ing NHS number can provide some assurance but it would still be vulnerable to

brute force attacks. These problems require a trustworthy application to perform

blind reconciliation and analysis of the data from mutually-untrusting security

domains: the researcher would only see this application running and the end

results; the raw data should never be accessible to anyone.

7.3 Generalised Security Requirements

Mindful of the security challenges discussed in the above examples, the log recon-

ciliation requirements (see Section 3.3) are adapted and generalised to describe

the key requirements for designing a trustable distributed system:

1. Secure Job Submission Both the integrity and confidentiality of the job

secrets should be protected upon job submission. Attackers should not be

able to steal or tamper with the job secrets while being transferred via

untrusted midddleware services.

1This example has been developed with help from David Power and Mark Slaymaker who
are involved in the GIMI project [3], and Peter Lee who is an intern at the Auckland Hospital.
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2. Authorisation Policy Management When the job arrives at the partici-

pant system, the job owner’s rights should be evaluated against the autho-

risation policies. The job should only be processed further if the job owner

is authorised to run their queries or codes on the participant system.

3. Trustworthy Execution Environment A trustworthy, isolated job execu-

tion environment should be provided — the jobs should be executed free

from unauthorised interference (e.g. attempts to modify the data access

query or the model code), and the confidentiality of the job secrets should

be protected from processes running outside this environment. The user,

before submitting the job, should be able to verify that the trustworthy

execution environment is guaranteed at the participant system. Similarly,

the participant should be ensured that only a fully verified environment is

used in their system for executing the jobs.

4. Job Isolation The jobs should be isolated from each other and from the

host. This is to prevent rogue jobs from compromising the participant

system, or stealing the secrets and results of other jobs running in the same

system. This should also prevent a malicious host from compromising the

job integrity, confidentiality and availability.

5. Protecting the Results The integrity and confidentiality of the results should

be protected.

6. Digital Rights Management In distributed data systems, unauthorised uses

or modification of the sensitive data should be prohibited wherever they are

processed.

7. Blind Analysis of Data The raw data should not be disclosed to the end

user. Only the processed, anonymised results should be made accessible for

analysis.

7.4 Trusted Virtualization Approach

Recently, many researchers have discussed the use of trusted computing and vir-

tualization to fulfill some of these security requirements. In Section 2.6, existing

trusted virtualization approaches were reviewed and the similarities between the
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Figure 7.1: A Consensus View

emerging ideas were identified. This section establishes an ‘emergent consensus

view’ based on these similarities (see Figure 7.1), and demonstrates its short-

comings in the areas of platform configuration management and provision of

trustworthy execution environment.

7.4.1 A Consensus View

Figure 7.1 presents an emergent consensus view of the trusted virtualization ideas

discussed in Section 2.6. An ‘attestation token’ contains a participant’s platform

configurations and the public half of a TPM key. The private half is sealed to

the platform’s trusted computing base. ‘Property-based attestation’ [9] allows

important security properties to be measured and attested. Before job submis-

sion, the attestation token is used to verify the security configurations of remote

platforms.

In a typical attestation scenario, a user would (1) obtain the attestation token

of a participant system, (2) check its security configurations against a locally

maintained whitelist, and (3) dispatch a job to only those known to provide a

‘trustworthy execution environment’.

Between steps (2) and (3), the job would be encrypted with the participant’s

public key (obtained from the attestation token). Since the private half is pro-

tected by the TPM, this encrypted job would be safely distributed over the un-

protected network. This is known as the ‘sealed key approach’.

115



7.4.2 Missing Pieces and Potential Solutions

Having described the consensus view, this section identifies the missing compo-

nents and suggests potential solutions.

The first missing piece is a platform configuration discovery service. In the

Trusted Grid Architecture [57], the users are expected to fetch the attestation

tokens directly from the participants. How the users would actually manage this

process, however, is not considered in depth. Generally, it is assumed that a

central service is already available for the users to discover participants’ platform

configurations. In consequence, various security and management issues associ-

ated with developing a ‘match-making service’ as such are often overlooked.

In the consensus view, the burden of performing attestation and managing

the application whitelists rests with the users. This seems unrealistic in large-

scale distributed systems, however, since the whitelist entries will be modified

and updated constantly. An average user will not have sufficient resources to

cope with these changes. Referring back to the Trusted Computing Group’s run-

time attestation model (see Section 2.4.3), the ‘Configuration Verifier’ is missing

in the consensus view. Some suggest passing on the problem to a trusted third

party [131, 83], but without providing much insights on how this could be imple-

mented or managed.

The ‘configuration resolver’ (introduced in Chapter 5) is a good candidate for

this role. It could be configured to manage the application whitelists and per-

form configuration verification (attestation) on behalf of the users. It would be

responsible for keeping up-to-date whitelists through various vulnerability tests

and data collected. This type of service is described by the Trusted Comput-

ing Group as an aggregation service and has been suggested in a number of

projects [140, 132]. For instance, Sailer et al. [106] encourages the remote users

to keep their systems at an acceptable patch level using a package management

database. This database gets updated whenever a new patch is released, so that

the new versions are added to the whitelist and old versions are removed.

From the participants’ perspective, an ‘integrity-based job authentication’

mechanism is also missing. Only the users (job owners) are capable of verifying

the participants’ platform configurations and execution environments. The plat-

form owners usually rely on a basic digital certificate infrastructure to identify
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the users and authenticate the job virtual machines. This provides no assurance

for the security state of the job virtual machines.

In the context of data grids — where the jobs might try to access sensitive data

— the data owner should have full control over the software used for executing

the query and protecting the accessed data. Virtual machine isolation can only

prevent other rogue virtual machines from stealing the accessed data. If the

job virtual machine itself is malicious, and tries to run malicious queries on the

database, then isolation will not be enough.

Basic encryption and digital signatures are often used to protect the data

once they leave the data owner’s platform [70]. However, considering the number

of connected nodes and the security threats associated with each, these security

measures alone cannot provide the necessary confidentiality, privacy and integrity

guarantees. A more reliable Digital Rights Management system is needed to allow

the data owner to maintain full control over their data. The data access policies

and privacy policies need to be consistently enforced throughout the distributed

system (these are often referred to as ‘sticky policies’ [36]). The end users should

only be able to access the processed, anonymised results which are just sufficient

to perform the requested analysis.

Meanwhile, Australia’s Commonwealth Scientific and Industrial Research Or-

ganisation (CSIRO) has developed the Privacy-Preserving Analytics (PPA) soft-

ware for analysing sensitive healthcare data without compromising privacy and

confidentiality [27]. Privacy-Preserving Analytics allows analysis of original raw

data but modifies output delivered to the researcher to ensure that no individual

unit record is disclosed, or can be deduced from the output. This is achieved by

shielding any directly identifying information and deductive values that can be

matched to an external database. Some of the benefits of being able to access

the raw data are [39]:

• no information is lost through anonymising data prior to release and there

is no need for special techniques to analyse perturbed data;

• it is relatively easier to anonymise the output than modifying a dataset

when it is not known which analyses will be performed; and

• clinical decisions will be based on more reliable information and treatments

can be more tailored to individuals with the likelihood of problems.

117



Privacy-Preserving Analytics (or any other secure analysis tools), combined

with remote attestation, could provide the necessary confidentiality and privacy

guarantees for the data owner to freely share raw data in the virtual organisation.

For instance, attestation could verify that a trustworthy Privacy-Preserving An-

alytics server is responsible for performing data reconciliation and anonymising

the output before releasing the results to the researcher.

7.5 Trustworthy Distributed Systems

This section proposes two types of distributed systems that aim to satisfy the

generalised requirements, and bridge the gaps identified in the consensus view

(see above). The ‘configuration resolver’ plays a central role in both systems,

maintaining an up-to-date directory of trustworthy participants and handling

the job distribution process.

Section 7.5.2 describes the generalised configuration resolver, and how it man-

ages configuration verification and job distribution processes. Based on the new

security primitives that make use of the resolver, Sections 7.5.3 and 7.5.4 describe

a computational system and a distributed data system that are trustworthy.

7.5.1 Assumptions

This section states two assumptions about the design of the proposed distributed

systems.

1. A public key infrastructure is available and this can be used to verify the

identity of the configuration resolver, participants and end users.

2. A participant’s system supports trusted computing and virtualization; as

minimum, mechanisms like authenticated boot and remote attestation are

enabled in this system.

7.5.2 Generalising the Configuration Resolver

Building on the consensus view of the trusted distributed systems, the configura-

tion resolver is added to each administrative domain to manage the trustworthy

participants’ platform configurations and a whitelist of locally acceptable plat-

form configurations (see Figure 7.2). To become part of the trusted domain, a
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Figure 7.2: Consensus View with the Configuration Resolver

participant registers with the local configuration resolver by submitting its Con-

figuration Token (CT ).

CT = ( PCR Log, AIK , {cred(AIK)}CA , PK , {cred(PK)}AIK , {Description}SK
)

PCR Log : the list of the loaded applications and their hash values

AIK : the public half of the Attestation Identity Key

{cred(AIK)}CA : the AIK credential issued by the Privacy Certificate Authority

PK : the public half of the non-migratable TPM key

{cred(PK)}AIK : the PK credential signed using the private half of the AIK

{Description}SK
: the service description signed using the private half of PK

This token includes the Attestation Identity Key (AIK) and an AIK cre-

dential issued by the Certificate Authority ({cred(AIK)}CA). A public key cre-

dential, signed by this AIK, is also included to state that the private half has

been sealed to two PCR values which correspond to (1) a trustworthy authenti-

cated boot process, and (2) per-job virtual machine image files (see Figure 7.3).

The PCR Log contains the full description of the authenticated boot process and

the virtual machine image files. In addition, a service Description is included,

signed by the private half of the sealed public key, demonstrating that the users

should use this public key when submitting jobs to this participant.
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Figure 7.3: Participants’ Trusted Computing Base

The resolver verifies the trustworthiness of the platform by comparing the PCR

Log with the whitelist. If the platform is trustworthy, its configuration token

is added to the resolver’s token repository, ensuring that only the trustworthy

participants are ever advertised through the resolver. This is different to the way

the resolver operates in the log reconciliation architecture, which merely forwards

the tokens to the users — there, the burden of verifying the integrity reports rests

on the users.

As a minimum, the authenticated boot process will measure the BIOS, boot-

loader, virtual machine monitor, and privileged monitor virtual machine. There-

fore, the first PCR value is sufficient to state that the platform is running in a

virtualized environment and its monitor virtual machine is securely managing the

per-job virtual machines (see Figure 7.3). Additionally, the second PCR value

guarantees the exact software and security configurations of a per-job virtual

machine (job execution environment). This second value is stored in a resettable

PCR (see Definition 2.7) since the virtual machine image files are remeasured

and verified at runtime. These security properties allow the user to have strong

confidence in the correctness of the data or computational results returned from

this platform.

Note, in contrast to the reviewed approaches (see Section 7.4.2), the partici-

pant controls the virtual machine instances that are allowed to be used in their

platform for executing the jobs. This is responsible for meeting Requirement 3

(see Section 7.3). However, this also restricts the number of software environ-
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ments that the user can choose from and will affect the overall usability of job

submission.

To improve usability and flexibility, the resolver allows a participant to submit

multiple configuration tokens (for a same platform), all representing the same

authenticated boot process but each sealed to a different per-job virtual machine

image. Such tokens could be used to offer multiple services — by configuring each

software environment to provide a different service — or, offer multiple software

configurations for the same service, giving the user more options to choose from.

The configuration resolver performs a range of security and platform config-

uration management functions through the following services (see Figure 7.2):

• An internal ‘attestation service’ is responsible for performing all attestation

related functions to ensure that only trustworthy participants register with

the resolver.

• An external ‘service publisher’ provides the necessary APIs for the partici-

pants to register and advertise their services through the resolver. It makes

use of the attestation service.

• The users submit jobs through an external ‘job distribution service’, which

selects the most suitable sites by looking at the service Descriptions and

dispatches the jobs to them.

• An external ‘whitelist manager’ allows the domain administrators to effi-

ciently update the whitelist entries.

Each participant becomes a member of the resolver’s WS-ServiceGroup [127]

and has a ServiceGroupEntry that is associated with them. An entry contains

service information by which the participant’s registration with the resolver is

advertised. The configuration tokens are categorised and selected according to

the type of services they advertise. It is assumed that there is a public key

infrastructure available to verify the participant’s identity (see assumption 1,

Section 7.5.1).
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7.5.3 Computational Distributed System

In an idealised computational distributed system, the user would not care about

where their job travels to as long as their sensitive data and results are protected.

It would therefore make sense for the resolver to perform trusted operations like

selecting suitable sites and dispatching jobs on behalf of the Job Owner (JO).

The resolver’s TPM is used to measure the configurations of its external and in-

ternal services, and generate an attestation token (AT (CR)) to attest its security

state to the users.

AT (CR) = ( PCR Log, AIK(CR) , {cred(AIK)}CA , PK(CR) , {cred(PK)}AIK )

PCR Log : the list of the loaded (and measured) applications and their hash values

AIK(CR) : the public half of the resolver’s Attestation Identity Key

{cred(AIK)}CA : the resolver’s AIK credential issued by the Privacy Certificate Authority

PK(CR) : the public half of the resolver’s non-migratable TPM key

{cred(PK)}AIK : the resolver’s PK(CR) credential signed using the private half of the AIK

Much like the tokens described previously, the resolver’s public key credential

({cred(PK)}AIK) identifies the corresponding private key as being sealed to its

trustworthy state. The PCR Log describes the fundamental software stack and

the services that have been measured during the resolver’s authenticated boot

process.

In the user system, all the job security functions are enforced by the ‘job

security manager’ virtual machine (see Figure 7.4): it is designed to perform

a small number of simple security operations to minimise the attack surface.

Attestation of the job security manager, monitor virtual machine and virtual

machine monitor is sufficient to be assured that the job security functions have

not been compromised — these components form the trusted computing base

of the user system. Upon installation of this architecture, the user system will

be capable of securely submitting jobs to the resolver and verifying the returned

results.
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Figure 7.4: Creation and Distribution of Encrypted Job(s)

7.5.3.1 Creation and Distribution of Encrypted Job(s)

All end user interactions are made via the external ‘job factory’. It provides the

minimal interface (APIs) necessary for development of a job submission applica-

tion. Such an application should be designed to allow the user to specify the job

description (requirements), the credentials and the code to be executed.

Imagine that a scientist (the job owner in this scenario) is carrying out an ex-

periment that aims to predict the future climate state. The scientist submits the

prediction model code through their job submission application and specifies the

job description (1, Figure 7.4). The job factory creates a secure job containing

the following attributes (2, Figure 7.4):

Job = ( {Credential, Code, Ksession, NJO}PK(CR) , Job Description )
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Credential : the job owner’s credential

Code : the code to be executed

Ksession : the symmetric session key created by the job factory

NJO : the job owner’s nonce, used for verifying the returned results

PK(CR) : the resolver’s public key, used for encrypting the job secret

Job Description : the description of the required applications and hardware capabilities

A symmetric session key (Ksession) is included as part of the job secret; it will

be used by the participant to encrypt the generated results. This session key

is sealed to the PCR corresponding to the job owner system’s trusted comput-

ing base, to prevent a compromised job security manager from decrypting the

returned results. NJO represents the job owner’s nonce.

Before encrypting the job secret, the trustworthiness of the configuration re-

solver is verified by comparing the PCR Log (attained from the resolver’s at-

testation token) against the locally managed whitelist of known good resolver

configurations. If the resolver is trustworthy, the job secret — containing the

user Credential, Code, session key and nonce — is encrypted with the resolver’s

public key for which the private half is sealed to its trusted state. This ensures

that the secret is only accessible by a securely configured resolver. The job is

then submitted to the resolver’s job distribution service (3, Figure 7.4).

When the job arrives, the distribution service first attempts to decrypt the job

secret with the sealed private key. It then requests configuration tokens from the

resolvers managing other administrative domains (4, Figure 7.4). This request

contains the job requirements, specifying the required application and hardware

capabilities. Such information is obtained from the Job Description.

The recipient resolvers filter their list of tokens, selecting the relevant ones,

and return them to the original resolver. The original resolver uses its internal

attestation service to iterate through each token and verifies the integrity-report

by comparing the PCR values against the local whitelist (5, 6, 7, Figure 7.4).

Only those with acceptable configurations (for running the climate prediction

model code) are selected and merged with the locally filtered tokens.

A job is recreated for each of the selected participants: during this process,

the job secret is encrypted using the target participant’s public key and the Job

Description is extended with the host address (8, Figure 7.4). These jobs are
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Figure 7.5: Operations of a Per-Job Virtual Machine

dispatched to the resource brokers for scheduling, which, in turn, forwards the

jobs to the participants’ policy enforcement points (9, Figure 7.4). Note, the

resource brokers can only read the extended Job Description for identifying

the target participants and scheduling the jobs.

7.5.3.2 Operations of the Trustworthy Execution Environment

Figure 7.5 demonstrates how a job gets processed at one of the participant sys-

tems. Any security processing required before becoming ready to be deployed in

a per-job virtual machine is done through the policy enforcement point. It first

measures the selected per-job virtual machine image (and configuration files), and

resets the resettable PCR with the new value. Typically, this image consists of

a security patched guest operating system and trustworthy middleware stack —

the ‘authorisation policy management service’ and the ‘result factory’ (see Figure

7.5).

In order to decrypt the job secret, the policy enforcement point attempts to

unseal the private key sealed to the participant’s trusted computing base and the

125



virtual machine image. The private key will only be accessible if the platform is

still running with trustworthy configurations and the image files have not been

modified. This is intended to guarantee that only an integrity protected virtual

machine has access to the job secret.

If these security checks are passed, the ‘compartment manager’ allocates the

requested size of memory, CPU time and speed (specified in the Job Description),

launches a virtual machine from the verified image, and deploys the decrypted

job (2, Figure 7.5). Inside this virtual machine, the policy management service

decides whether the scientist is authorised to run their prediction model in the

participant platform. If the conditions are satisfied, the model is executed to

simulate a probabilistic climate forecast (3, 4 Figure 7.5). The result factory

generates a secure message containing the simulation Results (5, Figure 7.5):

R = {Results, NJO}Ksession

The job owner’s nonce (NJO) is sufficient to verify that the results have been

generated from an integrity protected virtual machine and unmodified code has

been executed. The entire message is encrypted with the job owner’s symmetric

session key (Ksession), which is protected by the job owner’s TPM. This prevents

attackers from stealing or tampering with the Results.

7.5.3.3 Collection of Results

At the job owner’s system, the job factory receives the message and decrypts it

using the sealed session key (6, Figure 7.5). Note, if the job factory has been

compromised during the job execution period, the session key will no longer be

accessible as the PCR value (corresponding to the trusted computing base) would

have changed. Hence, a malicious job factory cannot steal the results, or return

fabricated results to the original application.

The decrypted message is forwarded to the job factory which compares the re-

turned nonce (NJO) with the original. A matching value verifies the accuracy and

the integrity of the results. These are then delivered to the scientist’s application.
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7.5.4 Distributed Data System

One of the pieces missing from the consensus view is a trustworthy, privacy-

preserving analysis tool. As a potential solution, a combinational use of the

‘Privacy-Preserving Analytics’ software and attestation has been suggested in

Section 7.4.2 to enable blind analysis of distributed data. This idea is expanded

further to describe a ‘Blind Analysis Server’ (BAS), which allows analyses to

be carried out securely via a remote server (see Figure 7.6): the user submits

statistical queries by means of a job; analyses are carried out on the raw data

collected from trustworthy sites, and only the processed results are delivered to

the user.

The blind analysis server consists of the following components:

• The configuration resolver (see above).

• Privacy Preserving Analysis Tool (PPAT) — it can be any software de-

signed to perform reconciliation on distributed raw data and run analyses

on the reconciled information; it enforces the privacy policies on the pro-

cessed results to protect the privacy of the sensitive data.

• Privacy policies — specify privacy rules governing the release of processed

information; these are defined under strict ethics committee guidance to

comply with legal and ethical undertakings made.

These three components form the trusted computing base of the blind anal-

ysis server. The server attests its security state through an attestation token

(AT (BAS)): the token contains a public key credential signed by the AIK(BAS)

which identifies the private key as being sealed to the PCR value corresponding

to its trusted computing base.

AT (BAS) = ( PCR Log, AIK(BAS) , {cred(AIK)}CA , PK(BAS) , {cred(PK)}AIK )

The rest of the section uses the healthcare grid example (see Section 7.2.2)

to explain how the security operations have changed from the computational

architecture with the blind analysis server in place.
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Figure 7.6: Operations of the Blind Analysis Server

7.5.4.1 Distribution of Job(s) through the Blind Analysis Server

A researcher is carrying out a study that looks at association between age (avail-

able from a GP practice) and progression of colon cancer (from a specialist clinic).

This researcher specifies the analysis requirements via an external analysis tool

to observe how the cancer statuses have changed for patients aged between 45

and 55 (1, Figure 7.6). The analysis tool should provide an appropriate interface

for capturing the information required to run the analysis queries.

These user-specified analysis requirements go through the job factory, which

first verifies the security state of the blind analysis server by comparing the PCR

Log (obtained from the server’s attestation token) against the known good con-

figurations. It then creates a data access job (2, Figure 7.6) for which the secret

is encrypted using the server’s public key (PK(BAS)). The analysis require-

ments are encrypted as part of the job secret. This job is then submitted to the

configuration resolver running inside the analysis server (3, Figure 7.6).

In distributed data systems, the configuration resolver is configured to also

manage the metadata of participants’ databases. Hence, by looking at the re-

searcher’s analysis requirements, the resolver is capable of selecting relevant sites

and constructing distributed database queries. Referring back to the healthcare
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Figure 7.7: Operations of a Data Access VM

example, the resolver selects trustworthy GP and specialist clinic systems to col-

lect the data from, constructs the distributed query, and dispatches a series of

encrypted jobs to their policy enforcement points (4, 5, Figure 7.6).

The unencrypted part of the job now includes the analysis server’s attestation

token (AT (BAS)) which can be used by the job recipients (data owners) to verify

the trustworthiness of the server before processing the jobs. The researcher’s

session key, however, is omitted from this newly formed job secret since this

key will only be used when the analysis server returns the final results to the

researcher.

7.5.4.2 Operations of a Trustworthy Data Access Virtual Machine

Once the job arrives at the clinic, the policy enforcement point checks the security

state of the analysis server using its attestation token (AT (BAS)) — this is

how the job is authenticated at the clinic (1, Figure 7.7). It would detect a

job dispatched from a compromised analysis server and prevent, for example,

the server sending a malicious query. In order to simplify Figure 7.7, the policy

enforcement point (which should be part of the monitor virtual machine) is drawn

inside the virtual machine monitor.
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After authentication, the per-job virtual machine image files are checked for

integrity. The middleware installed on this virtual machine provides a common

interface for the job to access the patient data. For instance, if implemented in

Java, such services would include the Java Database Connectivity, connection

string and Java virtual machine. Again, the private key — sealed to PCR values

corresponding to both the trusted computing base and virtual machine files —

is intended to guarantee that only a trustworthy virtual machine has access to

the decrypted job secret to execute the query (2, Figure 7.7). The result factory

checks the query for any attempt to exploit vulnerabilities in the database layer

(e.g. SQL injection) before execution (3, 4, 5 Figure 7.7).

A secure message containing the accessed data and the researcher’s nonce

(NR) is encrypted with the data owner’s symmetric session key (6, Figure 7.7).

This session key, in turn, is encrypted using the analysis server’s public key

(available through the server’s attestation token). Note, in contrast to the com-

putational architecture, this result message is sent back to the analysis server and

not to the researcher (7, Figure 7.7). The session key can only be decrypted if the

server is still configured to match the original trusted computing base. Hence, a

compromised server will not be able to steal the patient data.

7.5.4.3 Reconciliation of Collected Data

This result message and the encrypted session key arrives at the job distribution

service of the resolver. The session key is decrypted first using the sealed private

key, then the result message is decrypted using this session key. The returned

nonce (NR) is compared with the original to verify that the job has been processed

(and the data has been accessed) through an integrity protected virtual machine.

Internal analysis tool (PPAT) reconciles the collected data and generates as-

sociation between patients’ age and colon cancer progression (8, 9, Figure 7.7).

During this process, the privacy policies are enforced to protect the privacy of

the patient data. Attestation of the analysis server is sufficient to establish that

these policies will be enforced correctly.

The final results are encrypted with the researcher’s session key (obtained

from the original job secret) and sent back to their job security manager (10,

11, Figure 7.7). The researcher studies these anonymised results via the external
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analysis tool, knowing that their integrity has been protected. This is intended

to satisfy Requirements 6 and 7 (see Section 7.3).

7.6 Observations

This section explains how the proposed systems are responsible for meeting the

security requirements defined in Section 7.3. The remaining whitelist manage-

ment, job delegation, and security issues are also discussed.

7.6.1 Satisfying the Requirements

Job submission is a two-step process. Firstly, the job is submitted to the local

configuration resolver where its secret is encrypted using the resolver’s public

key. The sealed key approach ensures that only a securely configured resolver can

decrypt the job secret. Secondly, the resolver selects a trustworthy participant

suitable for running the job; the job secret is encrypted using the public key of

this selected participant and dispatched through an untrusted, public network.

The private half is strongly protected by the participant’s TPM. These features

are responsible for meeting the ‘secure job submission’ requirement.

A combination of the sealed key mechanism and attestation is responsible

for meeting the ‘trustworthy execution environment’, ‘authorisation policy man-

agement’, and ‘job isolation’ requirements. The trustworthiness of the trusted

computing base and per-job virtual machine images of the participant are veri-

fied when they register with the local resolver. In this way, the resolver maintains

a list of trustworthy participants.

The job is dispatched with its secret encrypted using the selected participant’s

public key. The private half is only accessible if neither the trusted computing

base nor the virtual machine image has changed. The integrity of the virtual

machine image is verified with runtime measurement of the files. These features

are intended to guarantee a trustworthy execution environment that contains

a securely configured authorisation policy management service. Moreover, the

verification of the trusted computing base is sufficient to know that the virtual

machine monitor is securely configured to provide strong isolation between the

job virtual machines.
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Virtual machine isolation ensures that the code is executed free from any

unauthorised interference, including threats from rogue administrators to subvert

the results. These results, before being sent back, are encrypted using the job

owner’s symmetric key which is strongly protected by the job owner’s TPM.

These features satisfy the ‘protecting the results’ requirement.

Finally, the provision of the blind analysis server aims to satisfy the ‘digital

rights management’ and ‘blind data analysis’ requirements. The data owners

verify the security state of the blind analysis server before allowing the query to

run. Two properties checked are: (1) the state of the ‘privacy preserving analysis

tool’ installed, and (2) the integrity of the data privacy policies. The accessed

data are encrypted in a way that only a securely configured server can decrypt

the data. These properties provide assurance that the integrity protected policies

will be enforced correctly upon data processing, and only the anonymised results

will be released to the user.

7.6.2 System Upgrades and Whitelist Management

As has been discussed before, the most significant overhead of the proposed sys-

tems is the cost of upgrading existing sites to support the new infrastructure.

This involves installing the configuration resolver (or the blind analysis server)

and its various sub components at each administrative domain, and standardis-

ing the communication mechanisms between them. While this is a large change,

legacy resource discovery services can still be used without modification. Hence,

the user can decide — depending on the level of security required for their jobs

— when to use the resolver for discovering trustworthy participants. This con-

cept is explained further through an example integration with the National Grid

Service [84] in Section 8.2.2.1.

In systems spanning multiple administrative domains, different domains will

likely have different software requirements and whitelist of acceptable configu-

rations. While the administrators for one domain will be competent with the

required list of software and their acceptable configurations for the local users,

they will not know about all the software requirements in other domains. In

consequence, multiple configuration resolvers could introduce availability issues

depending on the level of inconsistency between their whitelists.
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For example, if configuration resolver A is more active in inspecting software

vulnerabilities and updating the whitelist entries than other domains, configura-

tion tokens collected from configuration resolvers B, C, and D are likely to be

classified as untrustworthy by resolver A, and their services will not be advertised

to the users in Domain A. In order to minimise the level of inconsistency, the

whitelist manager (in the resolver) needs to support functions that would enable

efficient discovery and sharing of whitelist updates. The author has been engaged

in a group research project [72] which explores these issues in detail, and suggests

what the content of whitelist entries would be and how entry update messages

would be shared.

7.6.3 Securing the Configuration Resolver

The burden of managing the tokens of trustworthy participants rests on the

configuration resolver. It would also manage a revocation list of compromised

TPMs and platforms. This is ideal from the perspective of the user since locally

maintaining a whitelist and filtering trustworthy sites (for a large-scale distributed

system) would impose too much overhead on the user. However, the resolver

is now being relied upon to perform trusted operations — the user relies on

the resolver to submit jobs securely to the trustworthy participants. Hence, a

compromised resolver could potentially undermine the entire security model of a

distributed system.

It would therefore make sense for the resolver software, especially the ex-

ternally facing services, to be small and simple to minimise the chance of it

containing any security vulnerability. The same idea applies to securing the

blind analysis server. Formal methods can be used to design and implement

these services with a high degree of assurance. For example, FADES (Formal

Analysis and Design approach for Engineering Security) [99] integrates KAOS

(Knowledge Acquisition in autOmated Specifications) with the B specification to

generate security design specifications. A security requirements model built with

KAOS is transformed into equivalent one in B, which is then refined to generate

design specifications conforming to the original requirements. These procedures

help software developers to preserve security properties and detect vulnerabilities

early during requirements.
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As a defence-in-depth measure, external services can be isolated in a separate

compartment (e.g. using virtualization) to limit the impact of any vulnerability

being exploited. Any modification made to the services themselves (e.g. by in-

siders) will be caught when the system is rebooted as the platform configurations

(stored in the PCRs) would change; the private key sealed to this PCR value will

not be accessible to decrypt any incoming secret data.

Assuming that a public key infrastructure is available for verifying the re-

solver’s (or the blind analysis server’s) identity, these security properties should

be sufficient for the user to establish trust with the resolver (see assumption 1,

7.5.1). The trustworthiness of the configuration resolver can be verified using its

attestation token (see Section 7.5.3 for details).

7.6.4 Job Delegation

In practice, the job recipient might delegate some parts of the job on to other

participants — this is known as job delegation. In the Trusted Grid Architec-

ture [57], the user is capable of verifying the service providers’ platform config-

urations against a set of known good values (goodU). Using its job submission

protocol, the user may also check to see if the service provider’s list of known

good values (goodP ) — which specifies all the acceptable configurations of pos-

sible job delegatees — satisfy the condition goodP ⊆ goodU . If this condition is

satisfied, the user submits the job to the provider knowing that the job will only

be delegated to other service providers whose platform configurations also satisfy

goodU . However, the main concern with this type of approach is that the burden

of managing the whitelists (goodP ⊆ goodU) rests on the users and the service

providers.

Although job delegation has not been considered in the proposed systems, the

configuration resolver could be configured to verify the configurations of possible

job delegatees before dispatching the job. Since the resolver already has access to

all the trustworthy participants’ platform configurations (configuration tokens),

it could exchange several messages with the potential job recipient to determine

whether all the possible job delegatees are also trustworthy. This would involve

the job recipient sending a list of identities of the possible delegatees to the

resolver, and the resolver checking to see if all of the possible delegatees are
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registered. The job would only be dispatched if all of the delegatees are also

trustworthy.

The advantage of this approach is that the users and service providers would

not have to worry about maintaining up-to-date whitelists, or attesting and ver-

ifying the trustworthiness of the possible job delegatees.

7.6.5 Relying on the Ethics Committee

In the distributed data system, the ethics committee defines the privacy policies

for different types of analyses supported by the analysis server. This seems more

practical than relying on the data owners to figure out their own sticky policies

when it is not known which analyses might be performed. Moreover, it would be

difficult to reconcile and make sense of such policies collected from different data

sources.

7.7 Chapter Summary

Two types of distributed systems have been described in this chapter based on

the generalised configuration resolver, which, in both designs, is responsible for

managing a token repository of trustworthy participants. The resolver ensures

that jobs are distributed to only those considered trustworthy and executed in

protected, verifiable environments. The next chapter will evaluate these dis-

tributed systems as well as the log generation and reconciliation infrastructure

(see Chapters 4 and 5) against their original security requirements.
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Chapter 8

Evaluation

The potential drawbacks of the proposed systems have been discussed previously

in Sections 4.3, 5.4 and 7.6. This chapter aims to evaluate how well the systems

satisfy their security requirements. The applicability and interoperability will

then be discussed through integration with the original use cases and existing

distributed systems.

Sections 8.1 evaluates security of the log generation and reconciliation infras-

tructure against the original security requirements and the related threats. Its

interoperability is evaluated though integration with the use cases discussed ear-

lier. Similarly, Section 8.2 evaluates security of the distributed systems against

the generalised requirements. Their interoperability is evaluated through inte-

gration with existing grid and cloud systems.

8.1 Log Generation and Reconciliation

8.1.1 Success Criteria: Requirements

Eight key security requirements for trustworthy log generation and reconciliation

were identified in Section 3.3. This section evaluates the security properties

of the proposed system against these requirements and the relevant threats (as

summarised in Section 3.2.6), and to what extent they have been fulfilled.

8.1.1.1 Involuntary Log Generation

This requirement states that the logs should be generated independently of the

applications or operating systems. In the proposed system, the log transit runs
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inside an isolated, privileged virtual machine to intercept I/O events of interest

and generate log records involuntarily. The log transit operates independently

of the guest virtual machines, ensuring that it is always available for log gener-

ation. This isolation prevents intruders or rogue insiders from misconfiguring or

compromising the log transit (threats 3,4 and 6 from Section 3.2.6)

The requirement also states that the security decisions made by the applica-

tions should be captured as trustworthy a manner as possible. The log transit

identifies the security decisions being logged (which are ordinary disk write re-

quests) using common logging expressions. These are reformatted and stored

using the protected storage mechanisms. Since their integrity largely depends on

the state of the applications (log triggers), these are assigned with a lower trust

level.

8.1.1.2 Protected Log Storage

This requirement specifies that the log records should have integrity and confi-

dentiality protected upon storage. The logging system provides secure log storage

mechanisms to safeguard the logs against unauthorised access. A hash is gener-

ated for each log record and signed with a TPM key sealed to the trusted state of

the log transit and other trusted components. If the log transit or any one of the

trusted components is compromised, this key will no longer be accessible for sign-

ing. The public half of the key can be used by external applications to validate

the signature and compare the hash values. A valid signature and matching hash

value verifies the log integrity and authenticity. This signature validation process

is responsible for mitigating the ‘deletion, modification, and arbitrary insertion’

threat (threat 1) as discussed in Section 3.2.6.

Confidentiality is implemented by encrypting the log data with a symmetric

encryption key, which is also sealed to the trusted state of the log transit. This

effectively makes the log transit the only component capable of decrypting the

log data. Untrusted software (including a modified log transit) running inside the

privileged virtual machine will not be able to tamper with the logged data. In

addition, virtual machine isolation prevents rogue virtual machines from reading

the logs stored inside the dedicated disk or memory space of the privileged virtual

machine. These mechanisms mitigate the ‘unauthorised access’ threat (threat 2).
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8.1.1.3 Authorisation Policy Management

Inside the log-access virtual machine, the trusted authorisation policy manage-

ment service enforces the log authorisation policies to control log access. As part

of the middleware stack, its security configurations are always verified by the

policy enforcement point before allowing a job to run. This is achieved by mea-

suring the virtual machine image and verifying its integrity at runtime, before job

execution. If the configuration is different, the private key (sealed to the original

configuration) will not be accessible to decrypt the job secret. This guarantees

that a securely configured policy management service always validates the user’s

access rights before executing the log access query (mitigating the ‘unauthorised

access’ threat from Section 3.2.6).

8.1.1.4 Log Migration Service

This requirement specifies that the log migration service should be responsible for

secure job submission and log transfer. In the proposed system, this externally

facing service has two different roles:

1. operating inside the log access manager (log user system), it is responsible

for selecting trustworthy logging systems, encrypting the job secrets, and

dispatching the jobs to those selected;

2. inside the log access virtual machine (log owner’s platform), it is responsible

for scanning the log access query for attacks on the database, executing the

query through the log transit, and sending back the encrypted log result.

The runtime verification of the log access virtual machine also checks the

integrity of the log migration service. Again, if the configuration changes, the

private key will not be accessible to decrypt the job secret. For both the log

user and the log owner, this ensures that a trusted log migration service always

controls the execution of the query and encryption of the accessed logs. The logs

are encrypted with the user’s public key for which the private half is protected

inside the user’s TPM. This prevents intruders from sniffing the logs that are

transferred across the unprotected, public network (threat 2 from Section 3.2.6).

The complex middleware services are no longer relied upon to perform trusted

operations such as encryption, further mitigating the ‘middleware compromise’

threat (threat 7).
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8.1.1.5 Protected Execution Environment

A configuration token, downloaded from the configuration resolver, contains the

participant’s public key and credential. The private half is sealed to the PCR

values corresponding to the trusted computing base and the log access virtual

machine image. The trustworthiness of these two reported values are verified

against a whitelist, and the authenticity of the sealing property is checked by

validating the public key credential. A log access job, encrypted using this public

key, is then dispatched to the trustworthy logging platform. The sealed key

mechanism ensures that the job is processed inside a virtual machine launched

using the verified image files.

The runtime verification mechanism detects any unauthorised modification of

the image files — altered files will result in a different PCR value, and the private

key will no longer be accessible for decrypting the job secret. Both the user and

the participant are informed when modifications are detected. As a result, the job

always runs inside a protected execution environment, free from any unauthorised

interference. From the participant’s perspective, virtual machine isolation limits

the impact of attacks performed by a rogue job.

8.1.1.6 Log Reconciliation Service

The log owners need to be assured that their logs will be used in a protected

environment without modification. The log owner’s policy enforcement point

verifies the security configurations of the user’s log access manager (including

the reconciliation service) while authenticating the job. This ensures that only

those dispatched from a securely configured log access manager is authenticated

to access the logs and log privacy policy.

When all the log results arrive at the user system, the reconciliation service

processes the collected logs into meaningful audit trails. During this process,

the log privacy policies (defined by the log owners) are enforced to hide private

information from the audit trails. Virtual machine isolation protects the raw data

and the privacy policies from other rogue virtual machines. These mechanisms are

responsible for mitigating the ‘unauthorised access’ and ‘authorisation violation’

threats from Section 3.2.6.
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8.1.1.7 Blind Analysis of the Logs

The log privacy policies are included as part of the log results. Attestation of the

log reconciliation service is sufficient to guarantee that the policies will be enforced

correctly. Only the processed, privacy protected audit trails — still sufficient

for analysis — are returned to the user. The user only sees their application

communicating with the log access manager and the processed audit trails. The

raw data and the privacy policies are never disclosed to the user unless the log

owners allow it.

8.1.1.8 Surviving Denial-of-Service Attacks

A rogue virtual machine sitting between the log access virtual machine and the log

transit could block all the log access requests and reduce availability. Realtime

applications that rely on timely data feeds would suffer most from this type

of attack. This threat is mitigated by establishing a dedicated communication

channel between the log transit (Domain-0) and the log access virtual machine.

The shared memory mechanisms of Xen are used to set up this channel. Other

virtual machines will not be able to access the shared memory and interfere with

the log access requests.

An intruder could also perform denial-of-service attacks on the external log

migration services (see Table 4.1). The system deals with this problem by launch-

ing an independent log access virtual machine for each job, rather than relying

on a single virtual machine to handle all requests. This means even if one virtual

machine becomes a target for an attack, the availability of other virtual machines

will not be affected. These security mechanisms are responsible for mitigating

the ‘denial-of-service’ threat as discussed in Section 3.2.6.

8.1.2 Integration with the Use Cases

Two use cases are selected from Section 3.2 and integrated with the log generation

and reconciliation infrastructure. This example integration demonstrates how the

original workflow would change with the new components in place, and how these

components can be used in real systems to enable trustworthy audit and logging.
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8.1.2.1 Recording Service Requests and Responses

In the use case described in Section 3.2.3, the client sends a service request

to the service provider expecting the response to comply with the service-level

agreement. During this process, the service request and response details are

logged at both the client and service provider platforms.

Imagine that the client and the service provider platforms now have the trust-

worthy logging system installed — implying a fully virtualized platform where

the log transit intercepts I/O events and generates logs involuntarily. Legacy

software would run inside guest virtual machines without any change. The user

would use one of these programs to make a service request to the external request

handler (running on a separate virtual machine). The request handler, in turn,

would submit the request to the service provider’s external response handler.

The request handler would use its virtual network interface to communicate

with the corresponding back-end interface in the monitor virtual machine (see

Section 4.2.3). This back-end would communicate with the physical network in-

terface card (via the native device driver) to submit the service request to the

service provider. During this process, the event channel would first inform the log

transit about the service request. The log transit would read the request details

from the shared memory, process the details into the standard log format, and

store it through the protected log storage mechanism. Such logs would be gen-

erated independently from the guest applications or any privileged applications

running inside the monitor virtual machine. If any important security decisions

are being logged within the user applications, these (disk write operations) would

also be identified by the log transit, and logged through the protected log storage.

When this request arrives at the service provider’s platform, the response

handler would forward it to an internal service (available in a guest virtual ma-

chine) to perform some processing and generate a response. While the response

is being generated, the log transit would intercept all I/O transactions triggered

and record events of interest. For instance, the usage of computational resources

or disk spaces could be logged. In consequence, an accurate record of the full

execution of the requested service would be generated.

The response handler would then send the response back to the client’s orig-

inal request handler, which in turn, would forward it to the user software. The

service provider’s network interface would be used to transmit the response, and
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this transmission would be captured by the service provider’s log transit. Simi-

larly, this response would be received through the client’s network interface, and

the details would be logged by the client’s log transit. As a result, a complete

description of the service request and response would be recorded inside both the

client and service provider’s platforms.

8.1.2.2 Dynamic Access Control Policy Update

Section 3.2.2 describes a healthcare grid use case where the administrator at the

GP practice monitors the access control policies (for patient data) being updated

dynamically. Imagine that the log reconciliation infrastructure is installed in this

healthcare grid, and the platform configurations of the participants (specialist

clinics in this case) are available through the configuration resolver.

All user interactions with the GP system would be made through the external

log migration service. An analysis tool, running on a separate virtual machine,

would be available for the administrator to submit monitoring requests to the log

migration service. Meanwhile, the log migration service would have been config-

ured to automatically update the access control policies on an hourly basis, using

the data access logs collected from the specialist clinic systems. All the infor-

mation necessary for creating and dispatching log access jobs would have been

specified during the installation stage. Such information includes the acceptable

logging system configurations, user credentials, identities of the specialist clinic

systems, and log access query.

The migration service would download the configuration tokens from the con-

figuration resolver — tokens which match the identities of the selected specialist

clinic systems. These tokens would be used to verify the trustworthiness of the

clinic systems and their log access virtual machines. A set of log access jobs

would be created for trustworthy clinic systems. Each job would contain the user

credentials, log access query and its signature, job description, a nonce, and an

attestation token representing the GP system. The job secret would be encrypted

using the public key (obtained from the configuration token) of the target clinic

system.

When the log access job arrives at the specialist clinic system, the policy

enforcement point would first verify the trustworthiness of the GP system using

the attestation token. It would then measure the log access virtual machine
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image and reset the resettable PCR with the new measurement. Any modification

detected would prevent access to the private key and the job secret. The signature

of the query would then be validated to check whether the encrypted secret

correlates with the attestation token.

If all of these security checks pass, a trustworthy virtual machine would be

launched (using the verified image files) to process the decrypted job. The internal

authorisation policy management service would first check whether the user is

authorised to execute the query. If this condition is satisfied, the log migration

service would execute the query through the log transit to access the log records

and log privacy policy. In the example given in Section 3.1.1, this policy would

restrict disclosure of the lung cancer status. Each log record would contain its

hash and digital signature that can be used by the recipient migration service (GP

system) to verify the log integrity and authenticity. The log migration service

would generate a log result message, encrypt it with a symmetric session key

(which would be encrypted using the GP system’s public key), and send it back

to the GP system. The GP system’s original nonce would also be returned as

part of this message.

The GP system’s policy enforcement point would decrypt the returned session

key using its sealed private key. Any modification of the trusted computing base,

including the log reconciliation service, would prevent access to this private key

and decryption of the message. If decryption is successful, the log records, log

privacy policy and nonce would be forwarded to the log migration service. The

returned nonce would be compared with the original, where a matching value

would verify the integrity of the job execution environment. The migration service

would then verify the authenticity and integrity of each log record by validating

its signature, and comparing the hash with a computed hash of the log record.

The reconciliation service would then reconcile the logs collected from multiple

specialist clinic systems, and update the access control policies according to what

users have previously seen from these clinics. The log privacy policies would be

enforced while generating a summary information for this policy update. The

summary would describe how the policies for their patient data have been updated

for different users. Only this privacy protected summary would be forwarded to

the administrator for monitoring.
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8.1.3 Observations

These two examples demonstrate how the proposed infrastructure could be de-

ployed in real systems to facilitate trustworthy log generation and reconcilia-

tion. The problem identified in the original service-level agreement example (see

Section 3.1.2) has been that the integrity and totality of the logs can not be

guaranteed. The first integration shows how these properties could be ensured.

The logging system involuntarily captures all the essential service request and

response details. The protected storage mechanisms ensure that the integrity

and totality of the logs are protected. The sealed key mechanism ensures that

a compromised log transit can not generate valid signatures or tamper with the

logged data, further guaranteeing the log accuracy and integrity. These security

enhancements would enable trustworthy reports to be filed upon violation of

service-level agreements.

In the original healthcare grid example (see Section 3.1.1), the area of concern

has been that the specialist clinics do not trust the GP practice to see their raw

data. This prevents the development of audit-based dynamic access control mech-

anisms. The second integration shows how the log reconciliation infrastructure

could be used to build this trust between the hospitals.

Before allowing the log access query to be executed, the specialist clinic’s

policy enforcement point verifies the security properties of the remote log rec-

onciliation service. The properties checked are: (1) isolation from the rest of

the platform, and (2) correct enforcement of the log privacy policies. These are

sufficient to know that their logs will be confidentiality protected, and only the

processed, anonymised information will be released to the administrator. More-

over, the logs and privacy policies are encrypted in a way that only a securely

configured reconciliation service can ever read them. With this assurance, the

specialist clinic could freely share their sensitive logs with the GP practice.

8.2 Trustworthy Distributed Systems

8.2.1 Success Criteria: Requirements

The generalised set of requirements presented in Section 7.3 is used as success

criteria to evaluate security of two distributed systems proposed in Chapter 7.
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8.2.1.1 Secure Job Submission

This requirement states that both the integrity and confidentiality of the job

secrets should be protected. In both systems, there are two steps involved in

the job submission process. Firstly, the user submits a job to the configuration

resolver, encrypting it with the resolver’s public key. The job factory (of the job

security manager) verifies the trustworthiness of the resolver before encrypting the

job secret. The resolver’s private key — sealed to the resolver’s trusted computing

base — is protected by its TPM, so an intruder, or even a compromised resolver,

would not be able to steal the job secret.

Secondly, using the job description, the resolver selects trustworthy partici-

pants that satisfy the user’s service requirements. A job is created for each of

those selected, and the job secret is now encrypted with the target participant’s

public key; the job description is extended with the host address. The encrypted

job is then dispatched to the target participant via an untrusted middleware

stack. Again, a rogue middleware stack, or any other intruder, would not be

able to steal the job secret since the private key is protected by the participant’s

TPM.

8.2.1.2 Authorisation Policy Management

The runtime verification of integrity of the per-job virtual machine is intended to

guarantee that a securely configured middleware stack, which includes the autho-

risation policy management service, correctly enforces the authorisation policies

on the job. The job owner’s credentials are evaluated against these policies to de-

termine whether the job owner is authorised to run their code in the participant

platform.

8.2.1.3 Trustworthy Execution Environment

The trustworthiness of the participant system and the per-job virtual machines

it offers are verified when the participant first registers with the configuration

resolver. This process involves the resolver’s attestation service comparing the

reported PCR event log with the whitelist of locally accepted platform configu-

rations. Only those verified to be trustworthy are registered.

When a job arrives at the resolver, the job distribution service selects a par-

ticipant suitable for the requested service, and dispatches the job encrypted with
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the target participant’s public key. The sealed key mechanism ensures that if the

participant platform or the virtual machine image has been compromised, the

private key will no longer be accessible to process the job further. This is in-

tended to guarantee that a trustworthy virtual machine, that has all the required

versions of software installed, executes unmodified code to produce accurate re-

sults. This is also attractive from the participant’s perspective, since they can

specify and verify the exact job execution environments that are allowed on their

machine.

8.2.1.4 Job Isolation

This requirement specifies that the jobs should be isolated from each other as well

as from the host. Attestation performed by the configuration resolver is sufficient

to verify that a participant platform is running in a fully virtualized environment,

and its virtual machine monitor is securely configured to provide strong isolation

between the per-job virtual machines.

Then, the sealed key approach guarantees that the job is executed only if

the target platform still holds these isolation properties. In a fully hardware

virtualized environment, each job virtual machine would have its own dedicated

memory and disk space (see Section 2.5). A rogue job would have to compromise

both the virtual machine monitor and the privileged virtual machine to break

this isolation.

8.2.1.5 Protecting the Results

This requires that the integrity and confidentiality of the results should be pro-

tected. In the proposed systems, virtual machine isolation guarantees that the

code is executed free from any unauthorised interference, including attempts by

a rogue job or administrator to subvert the results.

After executing the code, the result factory (running inside the per-job vir-

tual machine) generates a secure result message encrypted with the job owner’s

symmetric session key — a key that is protected by the job owner’s TPM. The

job owner’s nonce (obtained from the job secret) is also included as part of this

message. This nonce is used to verify the integrity of the execution environment.
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8.2.1.6 Digital Rights Management and Blind Data Analysis

In the distributed data system, the blind analysis server is responsible for releasing

only the processed results to the end users and never the raw data. Through

attestation, the data owner verifies the trustworthiness of the blind analysis server

before executing the query and sending back their encrypted data.

Two important security properties are checked during this process: (1) the

security configurations of the ‘privacy preserving analysis tool’ installed; and (2)

the integrity of the data privacy policies. Verification of these properties is suffi-

cient for the data owner to trust the analysis tool to enforce the privacy policies

correctly upon processing the collected data. The final results are encrypted us-

ing the end user’s session key that is protected by the TPM. The end user only

accesses and performs analysis on this processed, anonymised data.

8.2.2 Integration with Grid and Cloud Systems

This section demonstrates how the proposed security mechanisms could be inte-

grated with the UK National Grid Service [84] and Eucalyptus [30]. In doing so,

it identifies some of the important practical and interoperability issues.

8.2.2.1 The National Grid Service

The National Grid Service [84] is a UK academic research grid, intended for

production use of computational and data grid resources spanning multiple insti-

tutions across the country. The aim of the National Grid Service is to provide a

reliable and trusted service using open, standards-based access to the distributed

resources.

The grid consists of four core sites at Oxford, Manchester, Leeds, and STFC-

AL, as well as five partner sites at Cardiff, Bristol, Lancaster, Westminister and

Queens. Each site contributes to the provision of computational or data nodes.

The nodes sitting on the core sites provide transparent access to the resources by

using an identical middleware stack and similar filesystems, whereas the partner

sites provide a more heterogeneous environment.

At each site, the Grid Resource Information Service publishes static and dy-

namic information about the service or resource availability using the GLUE In-

formation Schema [105]. Information from all the sites is collected and aggregated
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Figure 8.1: Integration with the National Grid Service

by the Berkeley Database Information Index system [40] (a central information

repository), which holds information about all services and resources available in

the grid. It queries the Grid Resource Information Service at each site to col-

lect this information. The Lightweight Directory Access Protocol [66] is used for

making the aggregated information available to the users.

As the first step of integration, the configuration resolver would be deployed

at each site to publish a filtered list of configuration tokens (representing trust-

worthy participants) through the Grid Resource Information Service (see Figure

8.1). These tokens would have to be signed by the configuration resolver for

authenticity and to indicate that these represent trustworthy participants.

The central information system would then query the Grid Resource Infor-

mation Service at each site to collect these tokens and make them available to

all the configuration resolvers. In this scenario, the Grid Resource Information

Service would merely act as a proxy between the resolver and the central infor-

mation system. The signatures of the tokens would be validated by the central

information system before aggregating them. The resolvers would have to be

authenticated at the central information system before being granted access to

the aggregated tokens; verification of the resolvers’ attestation tokens would be

sufficient for this purpose. This integration would allow each site, through their

own configuration resolver, to discover all the trustworthy nodes available across

the entire grid.

Imagine a job submission scenario. A researcher, who wishes to run their job
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in the National Grid Service, submits a job to the local configuration resolver.

The resolver first downloads the configuration tokens (that match the service re-

quirements) from the central information system using the Lightweight Directory

Access Protocol. These tokens represent trustworthy participants available in

other sites. It then iterates through each token and verifies the trustworthiness

of the reported configurations by comparing the PCR values against the local

whitelist. Only those with acceptable configurations will be selected and merged

with the tokens from the local site. After this selection process, the resolver com-

municates with the local Resource Broker to discover their resource availability,

and further filters the ones with free resources. Finally, the resolver encrypts the

job with the selected participant’s public key and dispatches it.

8.2.2.2 Eucalyptus

Eucalyptus [30] is an open-source software infrastructure for implementing cloud

computing systems on clusters. It started off as a research project at the Uni-

versity of California, and is now maintained by Eucalyptus Systems [44]. Com-

putational and storage infrastructures that are commonly available to academic

research groups have been used to provide a framework that is modular and open

to experimental studies.

In essence, Eucalyptus gives the end user a full control of the virtual machines

used for executing their code. Amazon EC2’s [98] SOAP and ‘Query’ have been

emulated to provide the necessary interfaces to start, access, and terminate the

job virtual machines. Currently, it supports virtual machines that run on Xen

virtual machine monitor [89].

Eucalyptus consists of four high-level components, each of which has been

implemented as a stand-alone web service (see Figure 8.2). The Node Controller

controls the virtual machine instances that run on the host it is attached to.

The Cluster Controller is a resource brokering service that communicates with

the Node Controllers to gather information about their resource availability, and

schedule virtual machine executions on the first Node Controller that has free

resources. The Storage Controller implements Amazon’s S3 interface, providing

mechanisms to store and access virtual machine images and user data. The

Cloud Controller provides the entry-point to the cloud system for end users and
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Figure 8.2: Eucalyptus Design (Figure 1 from [30])

administrators. It communicates with the Cluster Controllers to find out about

the resource availability and make high-level scheduling decisions.

Imagine that Eucalyptus is used to construct a distributed, academic research

system, where the resources are provided to the authenticated users at low (or

zero) cost. This cloud system would then have same security problems as existing

academic grid systems — the uncertainty of the security configurations of the

hosts, and of the confidentiality and integrity of the results (see Section 7.1).

Some of the proposed security mechanisms could be integrated into Eucalyptus

to solve these problems.

In the modified design (see Figure 8.3), the configuration resolver operates

inside the trusted Cloud Controller and manages a list of the acceptable known-

good configurations of the hosts. It would be a simple whitelist containing trust-

worthy configurations of Xen virtual machine monitor, its privileged virtual ma-

chine (Domain-0), and a set of standardised security components running inside.

From the user’s perspective, all other Eucalyptus components are untrusted.

The user submits a job and a virtual machine instance (which is their trusted

job execution environment) separately to the configuration resolver; a signed log,

describing the applications installed on the virtual machine, is also submitted.

The resolver first inspects the security configurations of this virtual machine by

comparing the log with its security policies (possibly a virtual machine whitelist).

150



Figure 8.3: Integration with Eucalyptus (Modified Figure 1 from [30])

Suggesting implementation strategies or analysing overheads for managing such

policies is beyond the scope of this example.

After the virtual machine is authenticated, the Cloud Controller makes re-

quests to the Cluster Controllers to send an ‘initiate execution environment’

request to the Node Controller that has sufficient resources to host the virtual

machine. The selected Node Controller forwards the virtual machine instance to

Domain-0 of the host that in turn measures the virtual machine instance, and

resets a resettable PCR with the new measurement. It then generates a key pair

and seals the private half to the PCR values corresponding to its Xen configu-

rations and the virtual machine instance. The public key and its credential are

included as part of the the host’s configuration token which is generated on the

fly, and sent back to the resolver via the Cluster Controller.

The return of the configuration token indicates that the job execution en-

vironment is ready to be launched, and the selected host is expecting a job.

The resolver’s attestation service verifies the trustworthiness of this execution

environment by comparing the PCR event log (obtained from the token) with

the whitelist of secure Xen configurations and the hash of the original virtual
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machine instance. If the environment is trustworthy, the resolver encrypts the

job using the public key (from the token) of the selected host, and dispatches it

through the public network.

The untrusted components — the Cluster Controller, Node Controller and

various networks — will not be able to read the job secret since the private key is

protected by the host’s TPM. Moreover, if either the host’s Xen configuration or

the virtual machine instance has been modified, the private key will no longer be

accessible to decrypt the job. If any modification is detected, the Cloud Controller

will be informed, and it will search for another host with free resources. Once

the job execution environment is launched successfully, the resolver informs the

user about the selected host and the state of the virtual machine.

8.2.3 Observations

As has been observed several times, there would be a significant overhead in-

volved in upgrading the participant systems to support trusted computing and

virtualization. Various security virtual machines will have to be installed and

the virtual machine monitor will have to be configured to manage these securely.

Although this is a large change, the advantage of the discussed approach is that

legacy components like the Grid Resource Information Service and the central

information system can be used with only small modification.

Moreover, many existing cloud systems [11, 42], including Eucalyptus, already

support virtualization and submission of job virtual machines. With the recent

introduction of hardware support for virtual machine execution (see Section 2.5),

it seems likely that future developments will also make use of virtualization. The

administrative tasks involved in upgrading such systems would be much smaller.

Despite the security enhancements, the use of the configuration resolver will

increase the number of messages being exchanged upon job submission. In the

National Grid Service integration, the user submits a job to the local configuration

resolver rather than to the Resource Broker. The resolver requests configuration

tokens from the central information system, filters the trustworthy participants,

and checks their resource availability through the Resource Broker. Once these

checks are done, it encrypts the job with the selected participant’s public key and

submits the job on the user’s behalf.
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These extra message sends and cryptographic operations will affect the over-

all performance of job submission. However, for those wanting to submit perfor-

mance critical jobs, the legacy services will still be available for use. Such jobs can

be submitted directly through the local Resource Broker and skip all the trusted

computing operations (see Figure 8.1). Usability will not be affected as much

since the user relies on the resolver to carry out attestation and job submission.

The role of the configuration resolver is slightly different in the Eucalyptus

integration. It no longer manages the token repository, rather, the token is gen-

erated on the fly by the selected host and sent back to the resolver. The resolver

merely verifies the trustworthiness of the host using the token and dispatches the

encrypted job if the host is trustworthy. The reason for this change is that the

user submits their own virtual machine instance, and so the host’s configuration

token (which reflects on the state of this virtual machine) can only be generated

after the host receives the virtual machine instance.

The main advantage of the discussed approach is that the user would only

have to trust the Cloud Controller and the resolver running inside. The user

would verify the identity and the trustworthiness of the Cloud Controller (through

attestation) prior to job submission. If the Cloud Controller is trustworthy, then

the user may submit their job knowing that its secret will be safeguarded from

all other middleware components, and their virtual machine instance will be

launched at a trustworthy host.

As a possible mechanism for authenticating the virtual machine instances,

‘virtual machine level whitelisting’ has been suggested. This would probably in-

volve managing a list of acceptable baseline configurations, and performing a log

based inspection on the changes made to each virtual machine. The challenge is

that these virtual machines will be used for different applications, implying that

different software will be installed (or removed) depending on their requirements.

To keep track of these changes and detect undesirable configurations, a trustwor-

thy logging system would need to be installed and monitor the virtual machines.

The administrators should be informed about the changes that conflict with the

cloud’s security policies (application whitelists).
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8.3 Chapter Summary

In this chapter, the proposed systems have been evaluated against their security

requirements and related threats, demonstrating how well these requirements are

satisfied. Their applicability and interoperability has also been discussed through

example integration with the original use cases and existing cloud and grid sys-

tems. The next chapter will summarise the key contributions and conclude this

thesis.
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Chapter 9

Conclusion and Future Work

This chapter summarises the key contributions described within the thesis and

considers potential areas of further work. Section 9.1 summarises the key con-

tributions and their significance. Section 9.2 outlines the scope for future work.

Finally, Section 9.3 concludes the thesis.

9.1 Summary of the Contributions

9.1.1 Audit and Logging Requirements

Secure management of logs in distributed systems is often considered a task of low

priority. However, it becomes more critical when the logs have security properties

in their own right. The thesis presents several use cases (see Section 3.2) where log

integrity, confidentiality and availability are essential, and these properties need

to be protected upon log generation and reconciliation. A threat and risk analysis,

conducted on these use cases, shows how attackers might exploit potential security

holes. The analysis also highlights the unique security challenges when managing

logs in a distributed environment.

Trustworthy audit and logging requirements (see Section 3.3) identify the

security properties that need to be ensured and the mechanisms required to miti-

gate the threats discussed earlier. These requirements also pin down the services,

such as the log migration and reconciliation services, that would be required to

develop trustworthy monitoring applications for distributed systems.

155



9.1.2 Involuntary Logging System

Operating systems and their applications are often relied upon to record security

critical events and protect the logged data. The main problem with this approach

is that a single bug in the application might be sufficient for an attacker to subvert

the logging system and compromise the logged data (see Section 3.4.1). The thesis

proposes a new ‘involuntary logging’ paradigm to tackle this problem.

The proposed system generates logs independently from guest applications

via an isolated logging component (see Section 4.2.4). This component, referred

to as the ‘log transit’, sits inside the privileged virtual machine to capture I/O

events of interest and record them through the protected storage mechanisms.

Integrity is implemented by storing a hash (and its signature) of every record and

checking that the hash matches when the log record is retrieved. Confidentiality

is guaranteed by encrypting and decrypting the log records as they are written

and read from the disk.

The key advantage of this system is that the applications have no control

over the log transit, and have no way of bypassing it. Moreover, the sealed key

approach ensures that the signing key and encryption key will only be available

to a securely configured log transit. Any modification of the trusted computing

base or log transit will be detected, preventing a further generation of signed logs,

or decryption of the logged data. The system satisfies both the ‘involuntary log

generation’ and ‘protected log storage’ requirements (see Section 8.1.1).

9.1.3 Trustworthy Log Reconciliation

Many existing audit-based monitoring services are prone to compromise due to

the lack of mechanisms for verifying the integrity and accuracy of the logs. In

some applications the logs contain sensitive information, and without the nec-

essary confidentiality guarantees, the log owners do not trust other sites to see

their raw data. In order to bridge this security gap, the thesis proposes a log rec-

onciliation infrastructure that would enable audit-based monitoring with strong

guarantees of the log integrity and confidentiality.

Upon deployment of the infrastructure, each participant will be capable of

generating and storing log data, and proving to the users that these logs are

trustworthy. A directory service, the ‘configuration resolver’, is used to collect

the configuration tokens from the participants and make them available to the
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log users. The user system downloads configuration tokens to verify the trust-

worthiness of the logging systems installed on participant platforms; the log ac-

cess jobs are dispatched to only those considered trustworthy. The job secrets

are encrypted with the public keys of the selected participants. The sealed key

mechanism protects the private halves by storing them on the target partici-

pants’ TPMs. This ensures that the job secrets are safeguarded from untrusted

middleware services.

Before granting access to the logs, the participant system verifies the security

state of the user’s log reconciliation service. A securely configured service would

enforce the log privacy policies correctly and release only the anonymised results.

Runtime verification of the log access virtual machine is intended to guarantee a

strongly isolated, trustworthy job execution environment. Again, the sealed key

mechanism ensures that only the integrity verified virtual machine can decrypt

the job and execute the query. These security properties are sufficient for the user

to know that the query has been executed without any unauthorised interference.

A matching hash value and a valid signature verify log integrity and the

fact that logs have been generated by a trustworthy log transit. The reconcili-

ation service allows the user to see the processed results for analysis, while still

withholding access to privileged raw log data. This is referred to as ‘blind log

analysis’ within the thesis. The security protocol has been formally verified using

Casper [52] (see Section 5.3).

9.1.4 Implementation Strategies

The thesis also describes a prototype implementation of the features selected from

the log reconciliation infrastructure (see Chapter 6). The prototype implemen-

tation provides strong evidence of feasibility for the trusted computing ideas (in

particular, remote attestation and sealed key approach) proposed. Some of the

key implemented features are:

1. an XML based whitelist, which demonstrates how a hierarchical structure

could be used to store the known good PCR values effectively;

2. a remote attestation service, which compares the PCR event log (obtained

from a configuration token) with the whitelist, and verifies the token au-

thenticity to determine whether the platform is trustworthy;
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3. a virtual machine verification mechanism, which measures the log-access

virtual machine instance at runtime, and prevents access to the sealed pri-

vate key (for job decryption) if the files have been modified.

The high-level class diagrams (see Section 6.2) provide a baseline for devel-

oping applications for remote attestation and sealing. These indicate that a

‘three-tier structure’ might be suitable. The bottom layer would comprise of

the jTSS libraries that provide core TPM methods, the middle layer of inter-

nal services containing the logic for attestation and sealing, and the top layer

of external web services. Figure 6.4 shows how these would fit into the Trusted

Computing Group’s software layering model [128]. The implementation details

further indicate how these classes and methods could be orchestrated together.

9.1.5 Trustworthy Distributed Systems

In many disciplines, the models and data contain significant commercial or intel-

lectual value. These often become targets for various attacks, usually associated

with the compromise of the sensitive information or modification of the results

(see Section 7.1). Such threats have discouraged researchers (in these sectors)

from exploiting the full potential of distributed computing.

The thesis proposes two different types of trustworthy distributed systems

(see Chapter 7) — one applicable for a computational system and the other for

a distributed data system. Central to the distributed systems is the novel idea

of the ‘configuration resolver’. In both designs, this is responsible for filtering

trustworthy participants and ensuring that the jobs are dispatched to only those

considered trustworthy.

The job secrets (models and data) are encrypted with the public key of the

trustworthy participant, and safely distributed over the unprotected network.

The private half will only be accessible if the security configurations of the partici-

pant’s trusted computing base and the virtual machine image remain unchanged.

Runtime verification of the virtual machine integrity guarantees a trustworthy

execution environment.

In the distributed data system, the configuration resolver operates inside the

blind analysis server, and, together, they provide a trustworthy environment to

run statistical analyses on the raw data without disclosing it to anyone. Attesta-

tion of the blind analysis server is sufficient to establish that only the processed,
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anonymised results will be released to the user. The main advantages are that

no information is lost through anonymisation (prior to release of data), and in

consequence, analyses are carried out on more accurate datasets, producing high-

quality results.

9.2 Future Work

9.2.1 Making Use of Trustworthy Logs

The thesis focuses more on describing how audit and logging works, rather than

looking at what type of analysis could be performed using the logged data. As

future work, it would be interesting to explore security applications that would

benefit from having access to the trustworthy logs, and study how the involuntary

logging mechanisms could be adapted to satisfy their requirements.

For example, cloud systems like Eucalyptus [30] could benefit from trustwor-

thy logging. Since the cloud user is given a full control of the virtual machine in-

stance, the user could install unverified applications or lower the security settings

on the virtual machine. This is an obvious threat to the job and to the host. A re-

liable, runtime monitoring service could be used to monitor such events, enforce

the security policies (defined by the cloud owner), and detect any undesirable

changes.

Future work may look at integrating the involuntary logging system with

Eucalyptus to monitor security setting changes and installation (or removal) of

applications. It would report on any event that violates the security policies.

Although, deciding exactly what events should be logged and how these security

policies should be defined (and enforced) will be a challenging task.

9.2.2 Performance Analysis

Security benefits of trusted computing do not come without performance impli-

cations. All the cryptographic and virtual machine operations introduced by the

logging system will affect the system’s overall performance. As high performance

is one of the key drivers behind the development of computational distributed

systems, the new security mechanisms sit uneasily with these aspirations.
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Despite several suggestions for improving performance (see Section 4.3.3), a

more accurate assessment would be necessary to analyse the performance impli-

cations and devise enhancement strategies. Hence, future work should consider

constructing a prototype implementation of the logging system, deploying it on

an open cloud system, and measuring the performance overhead. A simple test

would involve submitting identical jobs to two different hosts, one with the log-

ging system installed and one without, and measuring the difference in execution

time.

9.2.3 Generalising the Logging System

One of the drawbacks of the logging system is that it requires trusted virtual-

ization and installation of several logging components. As the prototype work

illustrates (see Chapter 6), trusted virtualization encompasses a wide range of

software and hardware, so each participant would have to cope with a highly

varied environment. Unless trusted virtualization becomes ubiquitous (which it

might do in the long run), this upgrade overhead will serve as a strong barrier to

uptake of the logging system.

As a possible short term solution, the logging components could run without

trusted virtualization support. For instance, existing operating system kernels

could be modified to intercept all I/O events before they reach the device drivers,

or use special drivers, and generate logs independent to user applications.

Instead of relying on virtual machine isolation, operating system level isolation

techniques like ‘sandboxing’ [17] could be used to isolate the jobs and user appli-

cations from the kernel. In scenarios where privilege escalation or insider attacks

are less likely, sandboxing would provide sufficient isolation. It would prevent

normal users (e.g. researchers) from accidentally, or even maliciously, changing

the logging policies and settings. In systems where threats are less critical, this

would be a suitable compromise between security and upgrading cost.

9.2.4 Trustworthy Distributed System Prototype

Despite ongoing research and prototyping efforts [57, 13, 87], no real ‘trustworthy

distributed system’ has been constructed yet. As the first step towards developing

a real system, the proposed security components could be implemented based on

the ideas suggested in Chapter 6. These components could then be integrated
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with existing distributed systems like the National Grid Service [84] using the

approaches discussed in Section 8.2.2.1.

For instance, the central information system in the National Grid Service

could be extended to collect configuration tokens from the Grid Resource Infor-

mation Service at each site, and make them available to the attestation services.

Participant platforms would have to support authenticated boot and provide

configuration tokens upon domain registration.

While enhancing grid security, this work will also help uncover practicality,

usability and performance issues, and demonstrate whether the security require-

ments (see Section 7.3) are fully satisfied by the proposed systems.

9.3 Conclusion

A wide range of research is conducted, archived, and reported in the digital

economy. Different types of distributed systems have been deployed over the years

to facilitate the collection and modeling of the dispersed data, or the sharing of

the computational resources.

A problem arises, however, when the models or data have commercial value.

They often become targets for attack, and may be copied or modified by malicious

parties. In many scientific disciplines, the researchers — who care about confi-

dentiality of the sensitive information, or integrity of the results — are unwilling

to make full use of distributed computing due to these security issues [14]. The

deployment of many kinds of distributed systems and associated threats makes

provision of trustworthy audit and logging services necessary.

The thesis explores a number of use cases where the log integrity, confidential-

ity, and availability are essential, and proposes a log generation and reconciliation

infrastructure that provides strong protection for these properties. The involun-

tary logging system generates logs independently from guest applications through

a strongly isolated, integrity protected logging component. Upon installation of

the complete infrastructure, each participant will be capable of generating logs

and proving to others that the logs are trustworthy.

To bridge the ‘trust gap’ between the scientists’ requirements and current

technologies, the thesis proposes two types of distributed systems. Both pro-

vide the means to verify the security configurations of the participant platforms
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through a central configuration verification server. The jobs are dispatched to

only those considered trustworthy, and are guaranteed to run in protected exe-

cution environments.

Future work may look at implementing some of these security components,

and integrating them with existing grid or cloud systems. As well as enhanc-

ing the system security, this work will help uncover practicality, usability and

performance issues of the proposed trusted computing approaches.
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Jonathan S. Reducing TCB size by using untrusted components: small kernels versus
virtual-machine monitors. In EW11: Proceedings of the 11th workshop on ACM SIGOPS
European workshop, page 22, New York, NY, USA, 2004. ACM.

[60] I. Foster and H.Kishimoto and A.Savva. The Open Grid Services Architec-
ture, version 1.5. http://www.ogf.org/Public_Comment_Docs/Documents/Apr-2006/

draft-ggf-ogsa-spec-1.5-008.pdf, 2006.

166

http://www.fsel.com/documentation/fdr2/fdr2manual.pdf
http://www.ogf.org/Public_Comment_Docs/Documents/Apr-2006/draft-ggf-ogsa-spec-1.5-008.pdf
http://www.ogf.org/Public_Comment_Docs/Documents/Apr-2006/draft-ggf-ogsa-spec-1.5-008.pdf


[61] IAIK. Trusted Computing for the Java(tm) Platform. http://trustedjava.

sourceforge.net/, 2009.

[62] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infras-
tructure, chapter 2: Computational Grids. Morgan-Kaufman, 1999.

[63] Ian Foster and Carl Kesselman and Gene Tsudik and Steven Tuecke. A
security architecture for computational grids. In Proceedings of the 5th ACM conference
on computer and communications security, pages 83–92, New York, NY, USA, 1998.
ACM.

[64] ISO/IEC. Information technology – Security techniques - Management of information
and communications technology security - Part 1, ISO 13335-1:2004.

[65] ISO/IEC. Information Processing Systems - Open Systems Interconnection - Basic
Reference Model - Part 2: Security Architecture, ISO 7498-2: 1989.

[66] J. Hodges and and R. Morgan. Lightweight Directory Access Protocol (v3): Tech-
nical Specification, 2002.

[67] A. Mejlholm J. Kloster, J. Kristensen. Efficient Memory Sharing in Xen Virtual
Machine Monitor. Master’s thesis, Aalborg University, January 2006.

[68] James Broberg and Srikumar Venugopal and Rajkumar Buyya. Market-
oriented Grids and Utility Computing: The State-of-the-art and Future Directions. Jour-
nal of Grid Computing, 6(3):255–276, September 2008.

[69] Bernhard Jansen, HariGovind V. Ramasamy, and Matthias Schunter. Flex-
ible integrity protection and verification architecture for virtual machine monitors. In
Second Workshop on Advances in Trusted Computing, 2006.

[70] Jesus Luna and Marios D. Dikaiakos and Theodoros Kyprianou and Angelos
Bilas and Manolis Marazakis. Data Privacy considerations in Intensive Care Grids.
In Global Healthgrid: e-Science Meets Biomedical Informatics, 138, pages 178—187. IOS
Press, 2008.

[71] Jon Maclaren Rizos and Jon Maclaren and Rizos Sakellariou and Krish T.
Krishnakumar. Towards Service Level Agreement Based Scheduling on the Grid. In
Proceedings of the 2 nd European Across Grids Conference, pages 100–102, 2004.

[72] Jun Ho Huh and John Lyle and Cornelius Namiluko and Andrew Martin.
Application Whitelists in Virtual Organisations. Future Generation Computer Systems,
2009. Submitted.

[73] Karen Kent and Murugiah Souppaya. Guide to Computer Security Log Manage-
ment. NIST Special Publication 800-92, September 2006.

[74] Katarzyna Keahey, Karl Doering, and Ian Foster. From sandbox to playground:
Dynamic virtual environments in the grid. In 5th International Conference on Grid
Computing (Grid 2004). IEEE Computer Society, 2004.

[75] Keith Adams and Ole Agesen. A comparison of software and hardware techniques for
x86 virtualization. In Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, pages 2–13, New York, NY,
USA, 2006. ACM.

[76] Lee Garber. Denial-of-Service Attacks Rip the Internet. Computer, 33(4):12–17, 2000.

[77] Patrick Lincoln, Phillip Porras, and Vitally Shmatikov. Privacy-preserving
sharing and correction of security alerts. In 13th conference on USENIX Security Sym-
posium, pages 17–17, 2004.

167

http://trustedjava.sourceforge.net/
http://trustedjava.sourceforge.net/


[78] Wenbo Mao, Fei Yan, and Chunrun Chen. Daonity: grid security with behaviour
conformity from trusted computing. In Ari Juels, Gene Tsudik, Shouhuai Xu, and
Moti Yung, editors, STC, pages 43—46. ACM, 2006.

[79] Martin Pirker. IAIK/OpenTC PrivacyCA documentation. http://trustedjava.

sourceforge.net/index.php?item=pca/apki, March 2009.

[80] Melvin J. Anderson and Micha Moffie and Chris I. Dalton. Towards Trust-
worthy Virtualisation Environments: Xen Library OS Security Service Infrastructure.
Technical report, HP Labs, April 2007.

[81] Michael Howard, Jon Pincus, and Jeannette M. Wing. Measuring Relative
Attack Surfaces, chapter 8, pages 109–137. Springer US, December 2005.

[82] Mick Bauer. Paranoid penguin: syslog configuration. Linux J., 2001(92):10, 2001.

[83] Aarthi Nagarajan, Vijay Varadharajan, and Michael Hitchens. Trust man-
agement for trusted computing platforms in web services. In STC ’07: Proceedings of the
2007 ACM workshop on Scalable trusted computing, pages 58–62, New York, NY, USA,
2007. ACM.

[84] Neil Geddes. The National Grid Service of the UK. e-Science and Grid Computing,
International Conference on, 0:94, 2006.

[85] Hee-Khiang Ng, Quoc-Thuan Ho, Bu-Sung Lee, Dudy Lim, Yew-Soon Ong,
and Wentong Cai. Nanyang campus inter-organization grid monitoring system. Tech-
nical report, Grid Operation and Training Center, School of Computer Engineering -
Nanyang Technological University, 2005.

[86] Niels Provos and Markus Friedl and Peter Honeyman. Preventing Privilege
Escalation. In 12th USENIX Security Symposium, pages 231–242, Washington, DC, USA,
2003.

[87] Nuno Santos and Krishna P. Gummadi and Rodrigo Rodrigues. Towards
Trusted Cloud. HotCloud ’09 Workshop, June 2009.

[88] Oasis Access Control TC. XACML 2.0 Specification. http://docs.oasis-open.

org/xacml/2.0/, 2005.

[89] University of Cambridge Computer Laboratory. The xen virtual machine mon-
itor. http://www.cl.cam.ac.uk/research/srg/netos/xen/, 2008.

[90] Open Grid Services Architecture. Open Grid Services Architecture WG (OGSA-
WG). http://forge.gridforum.org/projects/ogsa-wg, December 2003.

[91] Open TC. Corporate Computing at Home Instructions. http://ftp.suse.com/pub/

projects/opentc/, July 2008.

[92] Paul England. Practical Techniques for Operating System Attestation. In Trusted
Computing - Challenges and Applications, 4968/2008, pages 1–13. Springer Berlin /
Heidelberg, 2008.

[93] Paul Ruth and Xuxian Jiang and Dongyan Xu and Sebastien Goasguen. Vir-
tual Distributed Environments in a Shared Infrastructure. Computer, 38(5):63–69, 2005.

[94] D. J. Power, E. A. Politou, M. A. Slaymaker, and A. C. Simpson. Towards
secure grid-enabled healthcare. SOFTWARE PRACTICE AND EXPERIENCE, 2002.

168

http://trustedjava.sourceforge.net/index.php?item=pca/apki
http://trustedjava.sourceforge.net/index.php?item=pca/apki
http://docs.oasis-open.org/xacml/2.0/
http://docs.oasis-open.org/xacml/2.0/
http://www.cl.cam.ac.uk/research/srg/netos/xen/
http://forge.gridforum.org/projects/ogsa-wg
http://ftp.suse.com/pub/projects/opentc/
http://ftp.suse.com/pub/projects/opentc/


[95] Nguyen Anh Quynh and Yoshiyasu Takefuji. A central and secured logging data
solution for xen virtual machine. In 24th IASTED International Multi-Conference PAR-
ALLEL AND DISTRIBUTED COMPUTING NETWORKS, Innsbruck, Austria, Febru-
ary 2006.

[96] Rajkumar Buyya and David Abramson and Srikumar Venugopal. The Grid
Economy. In The IEEE 93, 3, pages 698–714, 2005.

[97] Reiner Sailer and Xiaolan Zhang and Trent Jaeger and Leendert van
Doorn. Design and implementation of a TCG-based integrity measurement architec-
ture. In SSYM’04: Proceedings of the 13th conference on USENIX Security Symposium,
pages 16–16, Berkeley, CA, USA, 2004. USENIX Association.

[98] Reuven M. Lerner. At the forge: Amazon web services. Linux J., 2006(143):12, 2006.

[99] Riham Hassan and Shawn Bohner and Sherif El-Kassas and Michael
Hinchey. Integrating Formal Analysis and Design to Preserve Security Properties. In
Hawaii International Conference on System Sciences, 0, pages 1–10, Los Alamitos, CA,
USA, 2009. IEEE Computer Society.

[100] Ronald L. Rivest and John P. Wack. On the notion of “software independence” in
voting systems. Royal Society of London Philosophical Transactions Series A, 366:3759–
3767, October 2008.

[101] Rosario M. Piro. DataGrid Accounting System - Basic concepts and current status.
Workshop on e-Infrastructures, May 2005.

[102] Rosario M. Piro and Andrea Guarise and Albert Werbrouck. An Economy-
based Accounting Infrastructure for the DataGrid. In Fourth International Workshop on
Grid Computing, pages 202–204, November 2003.

[103] Ruoming Pang and Vern Paxson. A High-Level Programming Environment for
Packet Trace Anonymization and Transformation. In ACM SIGCOMM Conference, pages
339–351, Germany, 2003.

[104] S. Ahmad and T. Taskaya-temizel and D. Cheng and L. Gillam and S. Ahmad
and H. Traboulsi and J. Nankervis. Financial Information Grid - an ESRC e-Social
Science Pilot. In Proceedings of the Third UK eScience Programme All Hands Meeting,
pages 1–9, Nottingham, UK, 2004. EPSRC.

[105] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. Konya,
M. Litmaath, P. Millar, J. Navarro. GLUE Specification v. 2.0.
http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.

glue-wg/docman.root.drafts.archive/doc15023, February 2009.

[106] Reiner Sailer, Trent Jaeger, Xiaolan Zhang, and Leendert van Doorn.
Attestation-based policy enforcement for remote access. In CCS ’04: Proceedings of
the 11th ACM Conference on Computer and Communications Security, pages 308—317,
New York, NY, USA, 2004. ACM.
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Appendix A

The Log Reconciliation Protocol

#Free Variables
u, o, r : Agent

nu : Nonce

q : LogAccessQuery

log : LogsAndPoliciesAccessed

kuo : SessionKey

cu : Credentials

Creds : Agent -> Credentials

pcrqo, pcrqu : PCRQuote

PCRQ : Agent -> PCRQuote

pko, pku : PublicKey

PK : Agent -> PublicKey

SK : Agent -> SealedSecretKey

InverseKeys = (kuo, kuo), (PK, SK)

#Processes
CONFIGURATIONRESOLVER(r,o) knows PCRQ, PK

LOGUSER(u,o,r,q,nu) knows SK(u), Creds(u), PK, PCRQ

LOGOWNER(o,log,kuo) knows SK(o), PK, PCRQ, Creds

#Protocol Description
0. u -> r : o

1. r -> u : PCRQ(o) % pcrqo, PK(o) % pko

[ pcrqo == PCRQ(LogOwner) and pko == PK(LogOwner) ]

2. u -> o : {Creds(u) % cu, q, {q}{SK(u)}, nu}{pko % PK(o)}, PCRQ(u) % pcrqu,

PK(u) % pku

[ cu == Creds(LogUser) and pcrqu == PCRQ(LogUser) and pku == PK(LogUser) ]

3. -> o : u, cu % Creds(u), pcrqu % PCRQ(u)

4. o -> u : {log, nu}{kuo}, {o, u, kuo}{pku % PK(u)}

#Specification
StrongSecret(u, Creds(u), [o])

StrongSecret(u, q, [o])

StrongSecret(u, nu, [o])

StrongSecret(o, log, [u])

StrongSecret(o, kuo, [u])
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Agreement(u, o, [q,nu])

Agreement(o, u, [q,log,kuo,nu])

#Actual variables
LogUser, LogOwner, ConfigurationResolver, Ivo : Agent

Nu, Nm : Nonce

Query : LogAccessQuery

LogResult : LogsAndPoliciesAccessed

Kuo : SessionKey

InverseKeys = (Kuo, Kuo)

#Functions
symbolic PK, SK, PCRQ, Creds

#System
CONFIGURATIONRESOLVER(ConfigurationResolver, LogOwner)

LOGUSER(LogUser, LogOwner, ConfigurationResolver, Query, Nu)

LOGOWNER(LogOwner, LogResult, Kuo)

#Intruder Information
Intruder = Ivo

IntruderKnowledge = {LogUser, LogOwner, Ivo, Nm, ConfigurationResolver, PCRQ, PK,

Creds(Ivo), SK(Ivo)}
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