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Abstract. In this paper, we focus our attention on the fragment of
Halpern and Shoham’s modal logic of intervals (HS) that features four
modal operators corresponding to the relations “meets”, “met by”, “be-
gun by”, and “begins” of Allen’s interval algebra (AABB logic). AABB
properly extends interesting interval temporal logics recently investigated
in the literature, such as the logic BB of Allen’s “begun by /begins” rela-
tions and propositional neighborhood logic AA, in its many variants (in-
cluding metric ones). We prove that the satisfiability problem for AABB,
interpreted over finite linear orders, is decidable, but not primitive recur-
sive (as a matter of fact, AABB turns out to be maximal with respect to
decidability). Then, we show that it becomes undecidable when AABB is
interpreted over classes of linear orders that contains at least one linear
order with an infinitely ascending sequence, thus including the natural
time flows N, Z, Q, and R.

1 Introduction

For a long time, the role of interval temporal logics in computer science has been
controversial. On the one hand, it is commonly recognized that they provide a
natural framework for representing and reasoning about temporal properties in
many computer science areas (quoting Kamp and Reyle [11], “truth, as it per-
tains to language in the way we use it, relates sentences not to instants but
to temporal intervals”), including specification and design of hardware compo-
nents, concurrent real-time processes, event modeling, temporal aggregation in
databases, temporal knowledge representation, systems for temporal planning
and maintenance, qualitative reasoning, and natural language semantics [9]. On
the other hand, the computational complexity of most interval temporal logics
proposed in the literature has been a barrier to their systematic investigation
and their extensive use in practical applications. This is the case with the modal
logic of time intervals HS introduced by Halpern and Shoham in [10]. HS makes
it possible to express all basic binary relations that may hold between any pair
of intervals (the so-called Allen’s relations [1]) by means of four unary modal-
ities, namely, (B), (E) and their transposes (B), (E), corresponding to Allen’s
relations “begun by”, “ended by” and their inverses “begins”, “ends”, provided
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that singleton intervals are included in the temporal structure [18]. HS turns
out to be highly undecidable under very weak assumptions on the class of linear
orders over which its formulas are interpreted [10]. In particular, undecidability
holds for any class of linear orders that contains at least one linear order with
an infinitely ascending or descending sequence, thus including the natural time
flows N, Z, Q, and R. In fact, undecidability occurs even without infinitely as-
cending/descending sequences: undecidability also holds for any class of linear
orders with unboundedly ascending sequences, that is, for any class such that
for every n, there is a structure in the class with an ascending sequence of length
at least n, e.g., for the class of all finite linear orders. In [12], Lodaya sharpens
the undecidability of HS showing that the two modalities (B), (E) suffice for un-
decidability over dense linear orders (in fact, the result applies to the class of all
linear orders [9]).

The recent identification of expressive decidable fragments of HS, whose de-
cidability does not depend on simplifying semantic assumptions such as locality
and homogeneity [9], shows that such a trade-off between expressiveness and de-
cidability of interval temporal logics can actually be overcome. The most signifi-
cant ones are the logic BB (resp., EE) of Allen’s “begun by /begins” (resp., “ended
by /ends”) relations [9], the logic AA of temporal neighborhood, whose modal-
ities correspond to Allen’s “meets/met by” relations (it can be easily shown
that Allen’s “before/after” relations can be expressed in AA) [8], and the logic
DD of the subinterval/superinterval relations, whose modalities correspond to
Allen’s “contains/during” relations [14]. In this paper, we focus our attention
on the logic AABB that joins BB and AA (the case of AAEE is fully symmet-
ric). The decidability of BB (resp., EE) can be proved by translating it into the
point-based propositional temporal logic of linear time with temporal modalities
F (sometime in the future) and P (sometime in the past), which has the finite
(pseudo-)model property and is decidable [9]. Unfortunately, such a reduction
to point-based temporal logics does not work for most interval temporal logics
as their propositional variables are evaluated over pairs of points and translate
into binary relations. This is the case with AA. Unlike the case of BB (resp.,
EE), when dealing with AA one cannot abstract away from the left (resp., right)
endpoint of intervals, as contradictory formulas may hold over intervals with the
same right (resp., left) endpoint and a different left (resp., right) one. The decid-
ability of AA, over various classes of linear orders, has been proved by Bresolin
et al. [3] by reducing its satisfiability problem to that of the two-variable frag-
ment of first-order logic over the same classes of linear orders [16]. An optimal
(NEXPTIME) tableau-based decision procedure for AA over the integers has
been given in [5] and later extended to the classes of all (resp., dense, discrete)
linear orders [6], while a decidable metric extension of the future fragment of
AA over the natural numbers has been proposed in [7] and later extended to
the full logic [4]. Finally, a number of undecidable extensions of AA have been
given in [2, 3].

~In [15], Montanari et al. consider the effects of adding the modality (A) to
BB, interpreted over the natural numbers. They show that ABB retains the



simplicity of its constituents, but it improves a lot on their expressive power.
In particular, besides making it possible to easily encode the until operator of
point-based temporal logic (this is possible neither with BB nor with A), ABB
allows one to express accomplishment conditions as well as metric constraints.
Such an increase in expressiveness is achieved at the cost of an increase in com-
plexity: the satisfiability problem for ABB is EXPSPACE-complete (that for A is
NEXPTIME-complete). In this paper, we show that the addition of the modality
(A) to ABB drastically changes the characteristics of the logic. First, decidability
is preserved (only) if AABB is interpreted over finite linear orders, but there is
a non-elementary blow up in complexity: the satisfiability problem is not primi-
tive recursive anymore. Moreover, we show that the addition of any modality in
the set {(D), (D), (E),(E),(0),(O)} (modalities {(O),(O) correspond to Allen’s
“overlaps/overlapped by” relations) to AABB leads to undecidability. This al-
lows us to conclude that AABB, interpreted over finite linear orders, is maximal
with respect to decidability. Next, we prove that the satisfiability problem for
AABB becomes undecidable when it is interpreted over any class of linear orders
that contains at least one linear order with an infinitely ascending sequence, thus
including the natural time flows N, Z, Q, and R. As matter of fact, we prove
that the addition of B to AA suffices to yield undecidability (the proof can be
easily adapted to the case of B). Paired with undecidability results in [2, 3], this
shows the maximality of AA with respect to decidability when interpreted over
these classes of linear orders.

2 The interval temporal logic AABB

In this section, we first give syntax and semantics of the logic AABB. Then,
we introduce the basic notions of atom, type, and dependency. We conclude the
section by providing an alternative interpretation of AABB over labeled grid-like
structures (such an interpretation is quite common in the interval temporal logic
setting).

2.1 Syntax and semantics

Given a set Prop of propositional variables, formulas of AABB are built up from
‘Prop using the boolean connectives - and v and the unary modal operators
(A), (A), (B), (B). As usual, we shall take advantage of shorthands like @; A @3 =
(=01 vV ~92), [A]le = =(A)=@, [Blp = =(B)~@, T=p Vv -p, and L =p A -p,
with p € Prop. Hereafter, we denote by |¢| the size of .

We interpret formulas of AABB in interval temporal structures over finite
linear orders with the relations “meets”, “met by”, “begins”, and “begun by”.
Precisely, given N € N, we define In as the set of all (non-singleton) closed
intervals [x,y], with 0 < x <y < N. For any pair of intervals [x,y],[x’,y’] € In,
Allen’s relations “meets” A, “met by” A, “begun by” B, and “begins” B are
defined as follows:

e  “meets”: [x,y] A[x",y']iff y =x';



e “met by”: [x,y] A[x,y']iff x=y;

e “begun by”: [x,y] B [x',y’] iff x=x" and y’ < y;

e “begins”: [x,y] B[x/,y']if x=x"and y <y’.

Given an interval structure S = (In, A, A, B, B, o), where o: Iy — Z(Prop) is
a labeling function that maps intervals in In to sets of propositional variables,
and an initial interval I, we define the semantics of an AABB formula as follows:

e S Ikaiff aeo(l), for any a € Prop;
o S IE-@iff S,T# ;
o S Ik Vv eiff ;1 @1 or S,1E @o;

e for every relation R e {A,A,B,B}, S,1& (R)o iff there is an interval J € Iy
such that IRJ and S, ] E o.

Given an interval structure § and a formula ¢, we say that S satisfies @ if there
is an interval I in S such that S,1 = @. We say that ¢ is satisfiable if there
exists an interval structure that satisfies it. We define the satisfiability problem
for AABB as the problem of establishing whether a given AABB-formula ¢ is
satisfiable.

2.2 Atoms, types, and dependencies

Let S = (In, A, A, B, B, o) be an interval structure and ¢ be a formula of AABB.
In the sequel, we shall compare intervals in S with respect to the set of subfor-
mulas of ¢ they satisfy. To do that, we introduce the key notions of @-atom and
@-type.

First of all, we define the closure Cl(@) of ¢ as the set of all subformulas
of ¢ and of their negations (we identify —-o with o, ~(A)ax with [A]-«, etc.).
For technical reasons, we also introduce the extended closure Cl* (@), which is
defined as the set of all formulas in CI(¢) plus all formulas of the forms (R)ax
and —(R)«, with Re {A,A,B,B} and « e Cl(¢@).

A @-atom is any non-empty set F € CI* (@) such that (i) for every ac e Cl* (),
we have « € F iff —oc ¢ F and (ii) for every vy =a v f € Cl* (@), we have y € F iff
o € For 3 € F (intuitively, a @-atom is a maximal locally consistent set of formulas
chosen from Cl*(¢)). Note that the cardinalities of both sets CI(¢@) and CI* ()
are linear in the number |@| of subformulas of ¢, while the number of @-atoms
is at most exponential in |@| (precisely, we have |CI(@)| = 2|@]|, [ClT(@)| = 18],
and there are at most 2°!°! distinct atoms).

We also associate with each interval I € S the set of all formulas « € CI* (@)
such that 8, £ «. Such a set is called @-type of I and it is denoted by Typeg(I).
We have that every @-type is a @-atom, but not vice versa. Hereafter, we shall
omit the argument ¢, thus calling a @-atom (resp., a @-type) simply an atom
(resp., a type).

Given an atom F, we denote by Obs(F) the set of all observables of F, namely,

the formulas « € CI(¢) such that « € F. Similarly, given an atom F and a relation
R e {A,A,B,B}, we denote by Reqg(F) the set of all R-requests of F, namely,



Fig. 1. A compass structure.

the formulas o € Cl(@) such that (R)a € F. Note that, for every pair of in-
tervals I = (x,y) and J = (x’,y’) in S, if y = y’ (resp., x = x’) holds, then

Reqa (Types(1)) = Reqa(Types(])) (resp., Rega(Types(1)) = Reqa (Types(])))
follows. Taking advantage of the above sets, we can define the following relations
between atoms F and G:

Rega(F) = Obs(G) UReqg (G)
FA.G  iff Reqp(G) =&
Obs(F) € Regx(G)

FE.C iff {’Rqu(F) = Obs(G) UReqy (G)
Reqg (G) = Obs(F) U Regg (F).

Note that the above relations satisfy a view-to-type dependency, namely, for every
pair of intervals I = [x,y] and I’ = [x’,y’], we have

x"=y Ay'=y+1 implies Types(1) 2> Types(1')
x"=x Ay'=y-1 implies Typeg(l) > Types(1').

2.3 Compass structures

The logic AABB can be equivalently interpreted over the so-called compass struc-
tures [18], namely, over grid-like structures. Such an alternative interpretation
exploits the existence of a natural bijection between the intervals I = [x,y] and
the points p = (x,y) of an N x N grid such that x <y. As an example, Figure
1 depicts five intervals Iy, ..., 14 such that Iy A I1, Ip A Is, Iy B I3, and Iy B L4,
together with the corresponding points py, ..., p4 of a discrete grid (note that the
four Allen’s relations A, A, B, B between intervals are mapped to corresponding
spatial relations between points; for the sake of readability, we name the latter
ones as the former ones).



Definition 1. Given an AABB formula @, a (finite, consistent, and fulfilling)
compass (@-)structure of length N € N is a pair G = (PN, L), where PN is the
set of points p = (x,y), with 0 < x <y < N, and L is function that maps any
point p e PN to a (@-)atom L(p) in such a way that

e for every relation R € {A,A,B,B} and every pair of points p,q € PN such
that p R g, we have Obs(L(q)) € Reqr(L(p)) (consistency);

e for every relation R € {A,A,B,B}, every point p € PN, and every formula
o€ Reqk(/l(p)), there is a point q € PN such that p R q and o€ Obs(ﬁ(q))
(fulfillment ).

It is easy to see that the (finite, consistent, and fulfilling) compass structures
are exactly those structures G = (PN, £), with N € N, that satisfy the following
conditions for all pair of points p,q in G:

i) ifp=(x,y)and q=(y,y+1), then L(p)+*>L(q);

i) ifp=(x,y)and q=(x,y+1), then £(q) 2> L(p);

iil) if p=(y-1,y), then Rega (L(p)) = Uocx<y-1 Obs(L(x,y —1));

iv) if p = (x,N), then Reqa (L(p)) = @ and Reqs(L(p)) = 2.

We say that a compass structure G = (PN, £) features a formula « if there is a

point p € Py such that & € £L(p). We conclude the section with the following
basic result (the proof is straightforward and thus omitted).

Proposition 1. An AABB-formula @ is satisfied by some finite interval struc-
ture iff it is featured by some finite @-compass structure.

3 Decidability and complexity of the satisfiability
problem for AABB over finite linear orders

In this section, we prove that the satisfiability problem for AABB interpreted
over finite linear orders is decidable, but not primitive recursive. In order to
do that, we use a technique similar to [15], namely, we fix a formula ¢ and
a finite compass structure G = (Pn, £) satisfying ¢ and we show that, under
suitable conditions, G can be reduced in length while preserving the existence
of atoms featuring . For the sake of brevity, we call contraction the operation
that reduces the length of a given compass structure G while preserving the
existence of atoms featuring ¢. Such an operation has been introduced in its
simple variant in [15] and it precisely consists of removing the portion of the
compass structure G included between two distinguished rows yo and y; and
selecting a subset of atoms from the upper row y; that match with the atoms
of the lower row yg. Hereafter, we refer the reader to Figure 2 for an intuitive
account of the contraction operation (the colored nodes represent the atoms
associated with the points of G). According to the definition given in [15], the
contraction operation is applicable whenever the set of atoms of the lower row
Yo is included in the set of atoms of the upper row y; (the arrows in Figure 2
represent a matching function f between the atoms of the lower row yg and the
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Fig. 2. Contraction of a compass structure.

atoms of the upper row yi). Such a condition on the set of atoms associated with
the rows yg and y; guarantees the correctness of the contraction operation with
respect to the definition of consistent and fulfilling compass structure, provided
that the use of the modal operator (A) is avoided. However, in the presence of the
modal operator (A), things get more involved, since some points p = (x,y1) from
the upper row y; (e.g., the one labeled by F4 in Figure 2) might be necessary in
order to fulfill the A-requests enforced by other points p’ = (x/,y’), with x’ =y,
and y’ > yi. In the following, we describe a suitable variant of the contraction

operation which is applicable to models of AABB formulas.

Let us fix an AABB formula ¢ that is featured by a finite compass structure
G = (PN, £). Without loss of generality, we can assume that ¢ is of the form
(¢ A [B]L) v ((BYd) v ({(B){A)d) and, furthermore, it belongs to the atom
associated with the point p = (0,1) at the bottom of the structure G. Before
turning to our main result, we need to introduce some preliminary notation and
terminology.

For every 1 <y < N, we denote by Rowg(y) the row y of G, namely,
the set of all points p = (x,y) of G. We associate with each row y the set
Shadingg(y) = L(Rowg(y)), which consists of the atoms associated with the
points in Rowg(y). Clearly, for every pair of atoms F, G in Shadingg(y), we have
Rega (F) = Reqa(G). We also associate with the row y the function Countg(y),
which maps an atom F to the number Countg(y)(F) of F-labeled points in
Rowg (y). )

In order to deal with A-requests, we need to introduce the notion of cover
of a compass structure. Intuitively, this is a selection of points that fulfills all
A-requests coming from other points (hence the points in a cover should not
disappear during the operation of contraction). Formally, a cover of a compass
structure G = (PN, £) is a subset C of Py that satisfies the following two condi-
tions:

o if (x,y)eCand x<y-1, then (x,y-1) € C as well;



e for every point q = (y - 1,y) € PN, the set Reqz (£(q)) coincides with the
union of the sets Obs(L(p)) for all p = (x,y—-1) € C.

Given a cover C of G, we extend the notations Rowg(y), Shadingg(y), and
Countg(y) respectively to Rowgc(y), Shadingg|c(y), and Countgc(y), having
the obvious meaning (e.g., Rowg|c(y) is the set of all points of G along the row
y that also belong to C). Moreover, we say that a cover is minimal if it does not

include properly any other cover. We can easily verify that every minimal cover
C of G = (PN, £) satisfies

Ro’wg|c(N) =g

(1)
|’R0wg|c(y)| -1< |R0wg‘c(y - 1)| < |R0wg|c(y)| + |(p|

The following proposition shows that, under suitable conditions, a given com-
pass structure G can be reduced in length while preserving the existence of atoms
featuring @. Note that such a result can be thought of as a strenghtening of the

original “contraction lemma” for structures over the signature A,B,B (indeed,
if the logic does not allow the modal operator (A), then the empty set is the
unique minimal cover of any compass structure G and hence the proposition be-
low becomes equivalent to Lemma 3.2 in [15]). For the sake of brevity, hereafter
we use < to denote the componentwise partial order between functions that map

atoms to natural numbers, i.e., f < g iff f(F) < g(F) holds for all atoms F.

Proposition 2. Let G = (PN, L) be a compass structure that features a formula
© in its bottom row. If there exist a cover C of G and two rows yo and yy1 in G,
with 1 <yg <y <N, such that

i)  Shadingg(yo) € Shadingg(y1),

ii) Countg(Yo) > Countgic (Y1),
then there exists a compass structure G’ of length N’ < N that features @.

On the grounds of Proposition 2, it makes sense to restrict ourselves to the
minimal models of @ and, in particular, to those compass structures G = (PN, £)
that feature @ (= (¢ A [B]L) v ((B)p) v ({B){A)d)) in the bottom row and
that cannot be contracted. The above argument leads to a non-deterministic
procedure that decides whether a given formula ¢ is satisfied by a (contraction-
free) interval structure S. The pseudo-code of such an algorithm is given in
Figure 3: the variable A represents the value N —y + 1, where N is the length of
the model G to be guessed and y is the current row (note that we cannot use y
in place of A since there is no a priori bound on the length N of the model), the
variable Fa represents the atom associated with the rightmost point p = (y—1,y)
along the current row y, the variable S represents an over-approximation of the
set Shadingg(y), and the variable Ca represents the function Countgc(y) for a
suitable cover C of G (note that the content of such a variable can be guessed
because the sum of its values is bounded in virtue of Equation 1).

The decidability of the satisfiability problem for AABB interpreted over finite
linear orders is thus reduced to a proof of termination, soundness, and complete-
ness for the algorithm given in Figure 3 as formally stated by Theorem 1 (its



let ¢ be an input formula B

let ¢ be (¢ A [B]L) v ({(B)d) v ((B){A)d)

proc CheckRows( Fa:54,Ca,

Fa+1,5a+1,Cast

Shi1 < Sar1U{Fas1}

if there is Fe S}, such that FA4 T,
then return false

SNy « {F: Cas1(F) >0}

if Regx (Fa) #UObs(SXY)
then return false

f « any function from SZ+1 to Sa

if there is Fe S%,, such that f(F)E4F
then return false

Ma <« {(F,i) : FeSa,1<i< Ca(F)}

MA, < {(F,i) : FeSh 1, 1<1<Cas1(F)}

g < any injective function

from M, to M},

if there is (F,i1) e M and (F',i") = g(F,1)
such that F»E,b F’
then return false

return true

proc CheckContraction( ]F:l’ 551, Cé’ o )

2,90,CA

if Sp #+ @ and there is 1 < A’ < A such that
Sa U{FA} S SA’ U{FA/} and Cp > CA’
then return true

return false

main

A1

F1 < any ¢-atom F such that
Reqp (F) = Reqp (F) = Reqp (F) =2

S1 <« any set of p-atoms F such that
Reqa (F) = Reqg (F) = @, Reqg (F) @

C; < the function C:S;U{F;} — N such
that C(F)=0 for all Fe S; u{F,}

while SA # @ or @ ¢ Fa
Fas1 < any @-atom F

such that Reqy (F) =2
Sat+1 < any set of p-atoms F

such that Reqg(F) + @
Cat+1 < any C:Sa1U{Fas1} — N such

0< C(Fas1)<1

that { X +C(F) > ZHFACA(F)
do YrC(F) < Z¢Ca(F) + o]
if not CheckRows( Fa,5a,Ca, )

Fa+1,Sa+1,Caq1
then return false

if CheckContraction(Fl’sl’Cl’ )
Fat1,Sa+41,Caqr

then return false

A—A+1

return true

Fig. 3. Decision algorithm for the satisfiability problem over finite linear orders.

proof is reported in the Appendix). As a matter of fact, termination relies on
the following crucial lemma, which is often attributed to Dickson.

Lemma 1 (Dickson’s Lemma). Let (N¥, <) be the k-dimensional vector space
over N equipped with the componentwise partial order <. Then, (N*,<) admits
no infinite anti-chains, namely, every subset of N that consists of pairwise <-
incomparable vectors must be finite.

Theorem 1. The satisfiability problem for AABB, interpreted over finite linear
orders, is decidable.

We conclude the section by analyzing the complexity of the satisfiability
problem for AABB. In [15], Montanari et al. show that the satisfiability problem
for ABB is EXPSPACE-complete. Here we prove that, quite surprisingly, the
satisfiability problem for AABB (in fact, also that for the fragment AAB) has
much higher complexity, precisely, it is not primitive recursive.

Theorem 2. The satisfiability problem for AAB, and hence that for AABB,
interpreted over finite linear orders, is not primitive recursive.

The proof of Theorem 2 is given in the Appendix and it is based on a reduction
from the reachability problem for lossy counter machines, which is known to have



strictly non-primitive recursive complexity [17], to the satisfiability problem for
AAB. In particular, it shows that there is an AAB formula that defines a set
of encodings of all possible computations of a given lossy counter machine. The
key ingredients of the proof are as follows. First, we represent the value c(t)
of each counter c, at each instant t of a computation, by means of a sequence
consisting of exactly c(t) unit-length intervals labeled by c. Then, we guarantee
that suitable disequalities of the form c(t+1) < c(t) +h, with h e {-1,0, 1}, hold
between the values of the counter ¢ at consecutive time instants. This can be
done by enforcing the existence of a surjective partial function g from the set of
c-labeled unit-length intervals corresponding to the time instant t to the set of c-
labeled unit-length intervals corresponding to the next time instant t+1. Finally,
we exploit the fact that surjective partial functions between sets of unit-length
intervals can be specified in the logic AAB.

4 Undecidabiliy is the rule, decidability the exception

We conclude the paper by proving that AABB, interpreted over finite linear
orders, is maximal with respect to decidability. The addition of a modality for
any one of the remaining Allen’s relations, that is, of any modality in the set
{{D), (D), (E),(E),(0),{(0O)}, indeed leads to undecidability. The proof of the
following theorem is given in the Appendix.

Theorem 3. The satisfiability problem for the logic AABBD (resp., AABBD,
AABBE, AABBE, AABBO, AABBO), interpreted over finite linear orders, is
undecidable.

It is possible to show that the satisfiability problem for AABB (in fact, this
holds for its proper fragment AAB) becomes undecidable if we interpret it over
any class of linear orders that contains at least one linear order with an infinitely
ascending sequence. It follows that, in particular, it is undecidable when AABB
is interpreted over natural time flows like N, Z, Q, and R.

We first consider the satisfiability problem for AAB interpreted over N. By
definition, ¢ is satisfiable over N if there exists an interval structure of the form
S = (Iw,A,A,B,0), with I, = {[x,y] : 0<x<y<w}and o:1, - Z(Prop),
that satisfies it. A straightforward adaptation of the proof of Theorem 2 (see
the proof of Theorem 4 in the Appendix) shows that an undecidable variant of
the universal reachability problem for lossy counter machines, called “structural
termination” [13], is reducible to the satisfiability problem for AAB interpreted
over interval structures of the form S = (I, A, A, B, o). It immediately follows
that the latter problem is undecidable as well. Such a negative result can be
easily transferred to any class of linear orders that contains at least one linear
order with an infinitely ascending sequence.

Theorem 4. The satisfiability problem for the logic AAB, and hence that for
the logic AABB, interpreted over over any class of linear orders that contains at
least one linear order with an infinitely ascending sequence is undecidable.



5 Conclusions

In this paper, we proved that the satisfiability problem for AABB, interpreted
over finite linear orders, is decidable, but not primitive recursive. We also showed
that all proper extensions of AABB with a modality corresponding to one of
the remaining Allen’s relations yields undecidability, thus proving maximality
of AABB with respect to finite linear orders. Moreover, we proved that the
satisfiability problem for AAB (in fact, the proof for AAB can be adapted to the
case of AAB), interpreted over any class of linear orders that contains at least
one linear order with an infinitely ascending sequence, is undecidable. The same
results obviously hold for AAE and AAE, provided that we replace the infinitely
ascending sequence by an infinitely descending one. As Bresolin et al. already
proved that the extension of AA with the operator (D) (resp., (D), (O), (O)) is
undecidable [2, 3], maximality of AA, interpreted over any class of linear orders
that contains at least one linear order with an infinitely ascending/descending
sequence, immediately follows. As a matter of fact, this is the first case in the
interval temporal logic setting where the decidability /undecidability of a logic
depends on the class of linear orders over which it is interpreted.
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A Appendix

In this appendix, we report the proofs that have been omitted in the previous
sections.

A.1 Proof of Proposition 2

Proposition 2. Let G = (PN, L) be a compass structure that features a formula
© in its bottom row. If there exist a cover C of G and two rows yo and yy1 in G,
with 1 <yp <y <N, such that

i)  Shadingg(yo) € Shadingg(y1),
i1) Countg(yo) > Countgc(y1),

then there exists a compass structure G’ of length N’ < N that features @.

Proof. Suppose that C is a cover of G and that 1 < yg <y; < N are two rows sat-
isfying the hypothesis of the proposition. Then we know that there is a function
f:{0,...,y0—1} = {0,...,y1 — 1} such that

i) for every point p = (x,yg) along the row yg, the corresponding point q =
(f(x),y1) along the row y; satisfies £(q) = L(p);

ii) for every point q = (x’,y1) along the row y; that also belongs to the cover
C, there is a point p = (x,Yp) along the row yo such that f(x) = x" (and
hence, from the previous property, £(q) = L(p)).

Let k =y1—yo, N’ = N=k (< N), and Py be the portion of the grid that consists
of all points p = (x,y), with 0 < x <y < N’. We extend the above function f to a
function that maps points in Py to points in Py as follows:

e ifp=(x,y), with 0 <x <y <yp, then we simply let f(p) =p;
e ifp=(x,y), with 0 <x<ypg <y, then we let f(p) = (f(x),y +k);
e if p=(x,y), with yo < x <y, then we let f(p) = (x + k,y + k).

We denote by L' the labeling of PN such that, for every point p € PN/, L'(p) =
L(f(p)) and we denote by G’ the resulting structure (PN, L") (see Figure 2). We
have to prove that G’ is a consistent and fulfilling compass structure that features
@ (see Definition 1). As a preliminary remark, we recall that, by hypothesis, the
bottom row of G, and hence the bottom row of G', features the formula .
Moreover, since the above definition of matching function f is a specialization
of the definition given in [15], the proof that G’ is consistent and fulfilling with
respect to the relations A, B, and B is the exactly same as the proof of Lemma
3.2 of [15]. In that proof, it is also implicitly shown that G’ is consistent with
respect to the relation A. Thus, in order to conclude the proof, it is sufficient to
show that G’ is fulfilling with respect to the relation A.

FULFILLMENT OF A-REQUESTS. Let p = (x,y) be a point in G’ and let « be a
subformula in Regz (L' (p)). The following cases arise:



1. x<ygandy <yp. Insuch a case, we have f(p) = p and, since G is a (fulfilling)
compass structure, there exists a point p’ = (x’,y’) such that p A p’ and
o€ Obs(L(p")). Moreover, since x’ < x < yg, we have f(p’) = p’ and hence
f(p)=p Ap'=f(p') and oce Obs(L'(p")).

2. x<yp and y > yo. In such a case, we define p’ = (x,y"), where x’ = f(x) and
Yy’ =y +Kk, in such a way that L'(p) = L(f(p)) = L(p'). By construction, we
have £(x',y1) = L(f(x),y1)) = L(x,Yo) and hence, from basic properties of
types, Rega(L'(p)) = Rega(L(p')) = Reqa(L(x',y1)) = Rega (L(x,Yo0))-
Now, since &« € Reqz (L(x,Yo)) and G is a (fulfilled) compass structure, we
know that there is a point p” = (x”,y”) in G such that (x,yo) A p” and
o € Obs(L(p")). Moreover, since y” = x < yp, we have f(p”) = p”, from
which we obtain p” A p and oce Obs(L'(p")).

3. x > yp (and hence y > yp). In such a case, we have f(p) = (x + k,y + k)
and, since G is a (fulfilling) compass structure, there is a point p’ = (x’,y’)
such that f(p) A p’ and o € Obs(L(p’)). Note that y’ = x +k > y;. We
further distinguish between three subcases. If x’ > y1, then we simply define
p” = (x' - k,y’ - k) in such a way that p’ = f(p”) and hence p A p” and
a € Obs(L'(p")). Otherwise, if x" < y; and (x',y1) € C (namely, (x’',y1)
is a point inside the cover C of G), then, from the properties satisfied by
the function f, we know that there is x”" < yp such that f(x") = x'. We
thus define p”’ = (x”,y’ — k) in such a way that f(p”’) = p’, from which we
obtain p A p” and & € Obs(L(p")) = Obs(L'(p"")). Finally, if x’ < y; but
(x",y1) ¢ C, then, by definition of cover, we know that there exists another
point (X', y1) along the same row such that o € Obs(L(X’,y1)). We can then
use an argument similar to the previous case to devise the fulfillment of the
A-request « in G'. O

A.2 Proof of Theorem 1

Theorem 1. The satisfiability problem for AABB, interpreted over finite linear
orders, is decidable.

Proof. We prove that the non-deterministic algorithm described in Figure 3 ter-
minates on every input formula ¢ and it returns true iff ¢ is satisfied by some
finite interval structure. It is convenient to divide the proof into three parts: first,
we prove termination (i.e., every computation of the algorithm terminates), then
soundness (i.e., if there is a computation of the algorithm that returns true on
¢, then ¢ is satisfiable), and finally completeness (i.e., if ¢ is satisfiable, then
there is a computation on ¢ that returns true).

TERMINATION. Let ¢ be an input formula and suppose, by way of contradic-
tion, that there is a non-terminating computation of the algorithm. In particular,
this means that the function CheckContraction returns false on all sequences
of arguments F1,S1,Cy, ..., Fa,Sa, Ca. Therefore, for all pair of positive natural
numbers A’ < A, one of the following conditions must hold:



L. Sau{Fa} ¢Saru{Far},
9. Ca$Car

We now recall that there only exist finitely many distinct ¢-atoms and hence
finitely many distinct sets So. This implies that there is an infinite sequence of
indices A; < Ay < ... such that, for all i >1i’, So, = Sa,, and hence, by previous
assumptions, Ca, # Ca,,. Similarly, since every function Ca, dominates (with
respect to the componentwise partial order <) only finitely many functions Ca,,,
with i’ < 1, we can find an infinite subsequence 1; < i < ... of indices for which the
functions Ca, , Cay,, - (thought of as vectors in the k-dimensional space N¥)
turn out to be pairwise <-incomparable. This is in contradiction with Lemma 1
and therefore the algorithm must terminate.

SOUNDNESS.  We consider a successful computation of the algorithm on a for-
mula ¢ and we show that there is a finite compass structure G = (Pn, £) that
features ¢, where the length N coincides with the value of the variable A at the
end of the computation. For every 1 < A <N, we denote by Fa, Sa, and Cx the
content of the omonimous variables which are guessed during the computation.
Moreover, we use y (resp., y — 1) as a shorthand for the value N - A+ 1 (resp.,
N - (A+1)-1). Below, we specify the atom L£(x,y) associated with each point
p = (x,y) of the compass structure G = (Pn, L) by exploting an induction on
y = N-A+1 (that is, starting from the lower rows and going upward). While
doing this, we also build a cover C of G in such a way that the two conditions
Shadingg(y) € Sa U{Fa} and Countgc(y)(F) = Ca(F) are guaranteed for every
row y = N-A+1 and every atom F. Let us consider a point p = (x,y), with
0<x<y<Nandy=N-A+1:

e If x=y-1, then we let L(p) = Fao. Moreover, we let p belong to the set C
iff CA(FA) =1 (we can shortly write [Cn {p}| = Ca(Fa)). Note that, when
y = 1, we have Shadingg(y) = {Fa} € Sa U {Fa}, and Countgc(y)(L(p)) =
Ca(Fa) <1 =_Countg(y)(L(p)).

e If x <y -1, then, by exploiting the inductive hypothesis, we assume that
both £(q) and Cn{q} are specified for all points q = (x’,y — 1) along the
row y — 1 and we accordingly define L(p) and Cn {p}, as follows. First, we
denote by f:S%,; — Sa and g: Ma — MJ,; the two functions that
have been guessed during the execution of the procedure CheckRows on
arguments (Fa,Sa,Ca, Fa+1,S5a+1,Cay1) (the sets SL .1, Ma, and M}, are
defined as in the body of the procedure). Then, given an atom F, we shortly
denote by Cg,l the set of all F-labeled points that lie along the row y — 1
and belong to the cover C. From the inductive hypothesis, we know that
|C5_1| = Countgjc(y — 1)(F) = Cas1(F) and hence, by construction, there is
a bijection hf_; from the set C_; to the set of all pairs (F,i) in M},
with 1 <1< Cas1(F) (we fix a unique bijection hj,_; for each row y - 1 and
for each atom F). We now let q = (x,y — 1) (i.e., the point just below p)
and we distinguish between two cases, depending on whether g’l(hg_l(q))
is defined or not (recall that the inverse g~ of the injective function g is
a partial surjective function from M}, to Ma). If g‘l(hg_l(q)) is defined



and equal to the pair (F';i") € Ma, then we let L(p) = F/ and p € C.
Otherwise, if g‘l(hs_l(q)) is not defined, then we let £(p) = f(£(q)) and
p ¢ C. Note that, if we apply the above definitions of £(p) and Cn {p} for
all points p along the same row y, we then obtain Shadingg(y) € Sau{Fa}
and Countgc(y)(F) = Ca(F) for all atoms F.

By exploiting the fact that every call to the procedure CheckConsistency
is successful, we can easily verify that, for every pair of points p,q in G, the
following conditions hold:

i) ifp=(xy)and q=(y,y+1), then L(p)+*>L(q);

ii) ifp=(x,y)and q=(x,y +1), then £L(q)+*>L(p);

iif) if p=(y - 1,y), then Rega (£(p)) = Uncx<y-1 Obs(L(x,y ~1));
iv) if p = (x,N), then Reqa (L(p)) = @ and Reqz(L(p)) = 2.

This shows that G is a (consistent and fulfilling) compass structure that features
@ in its bottom row. Therefore, by Proposition 1, we can conclude that the input
formula ¢ is satisfied over a finite interval structure.

COMPLETENESS. As for completeness, we consider a finite labeled interval
structure S = (In,A,A,B,B, o) that satisfies ¢. By Proposition 1, we know
that there is a (consistent and fulfilling) compass structure G = (In,£) that
features the formula @ = (¢ A [B]L) v ({B)$) v ({B){A)d) in its bottom row.
Let us also fix a minimal cover C of G. We can exploit the existence of G and C
to devise the existence of a successful computation of the algorithm. Precisely,
we let the guessed contents for the variables Fa, Sa, and Ca be, respectively,
the atom L(p) associated with the rightmost point p = (y - 1,y) along the
row Yy = N - A+ 1, the set of atoms associated with the non-rightmost points
p = (x,y), with x <y - 1, along the same row y = N - A+ 1, and the function
Countg|c(y) that maps every atom F to the number of F-labeled points along
the row y that also belong to the cover C. On the grounds of Equation 1, it is
clear that the above defined values can be correctly guessed at each iteration
of the main loop. Moreover, for each call to the procedure CheckRows with
arguments (Fa,Sa, Ca,Fas1,Sa+1,Car1), we assume that the variables f and g
are guessed as follows:

e fis any function between atoms such that, for every F e Sao,1 U{Fa;1}, there
exist two points p = (x,y — 1) and g = (x,y), with 0 < x <y - 1, satisfying
L(p) = F and £(q) = f(F) (note that such a function f exists since, by
construction, F € Sa,1 U {Fa_1} = Shadingg(y — 1) and f(F) € SA u{Fa} =
Shadingg(y), where y = N - A +1);

e g is any injective function from Ma = {(F,i) tFeSp l<icx CA(F)}
to Mi,; = {(F,1) : FeSi,;,1 <1< Capi(F)} such that, for every pair
(F,1) € Ma, the cover C contains two points p = (x,y) and q = (x,y - 1)
satisfying £(p) = F and £(q) = F/, with g(F,1) = (F/,1") (note that such an
injective function g exists since, by construction, Ca(F) = Countgc(y)(F)
and Ca41(F’) = Countgc(y - 1)(F')).



The above definitions guarantee that every call to the procedure CheckRows
terminates by returning true. As for the calls to the procedure CheckContrac-
tion, we can assume, without loss of generality, that G has minimal length. In
particular, by Proposition 2, this means that, for every pair of rowsy=N-A+1
and y' = N-A"+1, with 1 <A’ < A <N (hence Sp # @), at least one of the
following two conditions holds:

1. Sau{Fa} = Shadingg(y) ¢ Shadingg(y’) = Sar u{Far},
2. Ca =Countgic(y) # Countgic(y’) = Car.

This immediately implies that every call to the procedure CheckContraction
terminates by returning true. Finally, since the algorithm terminates, the for-
mula @ must belong to the atom Fyn associated with the point p = (0,1) of G.
We have just shown that there is a successful computation of the algorithm. O

A.3 Proof of Theorem 2

Theorem 2. The satisfiability problem for AAB, and hence that for AABB,
interpreted over finite linear orders, is not primitive recursive.

Proof. We first give a precise notion of lossy (Minsky) counter machine. This is
a triple of the form A = (Q,k, ), where Q is a finite set of control states, k is
the number of counters (whose values range over N), and § is a function that
maps each state g € Q to a transition rule having one of the following forms:

1. i< 1i+1; goto q’, for some 1 <i<kand q’ € Q, meaning that, whenever
A is at state q, it increases the counter 1 and it moves to state q’;

2. if i =0 then goto q’ else i « i-1; goto q”, for some 1 <1<k and
q’,q"” € Q, meaning that, whenever A is at state q and the value of the
counter 1is 0 (resp., greater than 0), it moves to state g’ (resp., it decrements
the counter i and it moves to state q’).

In addition, from each configuration (q,z) € Q x N¥, a lossy counter machine
A can non-deterministically activate an internal (lossy) transition and move to
a configuration (q,z"), with z’ < z (the relation < is defined componentwise on
the values of the counters, as in Lemma 1). A computation of A is any sequence
of configurations that respects the obvious semantics of the transition relation.
The rechability problem for a lossy counter machine A = (Q,k,d) consists of de-
ciding, given two configurations (qseurce, Zsource) and (Utarget, Ztarget), Whether
or not there is a computation that takes A from (Qsource, Zsource) t0 (Qtarget,
Ziarget)- Below, we show how to reduce the reachability problem for lossy counter
machines to the satisfiability problem for the logic AAB.

Let us fix a lossy counter machine A4 = (Q,k,5) together with a source con-
figuration (qsource; Zsource) and a target configuration (qiarget,Ztarget). Without
loss of generality, we can assume that Zsource = Ztarget = 0 = (0,...,0) (indeed,
if this were not the case, we can modify A by introducing some fresh control
states po,P1,.. and p{,pj, ..., some increment-transitions that take the machine
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Fig. 4. Encoding of part a computation of a lossy counter machine.

from (pg,0) to (Gsources Zsource ), and some decrement-transitions that take the
machine from (qtarget; Ztarget) t0 (pg,0)). Moreover, we can assume that qqrge:
is a sink state, namely, the only state accessible from qqrget S Qtarget itself.

We first show how to encode a generic computation (q1,21) ... (qn,zn) of A
into an interval structure S = (In,A, A, B, B, o). To do that, we first introduce
|Q| + k propositional variables that label unit-length intervals (i.e., intervals of
the form [x,x+1]): the first |Q| propositional variables will be identified with the
control states of A, while the last k propositional variables, denoted cq, .., ¢k, will
be identified with the k counters of A. We then divide the underlying domain
{0,...,N} of the interval structure S into exactly n + 2 intervals Iy = [0,%q],
Il = [X17X2], vy In = [Xn7Xn+1]7 In+1 = [Xn+1,N:|, with 1 = X1 <..<Xn41 = N-1
and x¢11—X¢ = 1+ Y i< Ze (1) for all 1 <t <n (hence the length N of the interval
structure S is exactly 2 + N+ Y1 cyen Li<ick 2t (1)). The intervals Iy, ..., I will
be used to encode, respective,y the configurations (q1,2z1), ..., (qn,Zn) of the
computation of A, while the two additional intervals Iy and I,,; will be used
as to correctly move between the various intervals via the modal operators (A)
and (A). Finally, we let the labeling function o associate a unique propositional
variable in Qu{cy, ..., cx } with each unit-length subinterval of Iy, forall 1 <t < n,
as follows:

i)  the subinterval [x,x + 1] is labeled by the control state qy;

ii) for every 1 <1<k, the number of ci-labeled intervals of the form [x,x + 1],
with x¢ < X < X¢41, coincides with the value Z¢(i) of the counter i

(note that there may exist different encodings of the same computation of A).
As an example, Figure 4 represents part of an encoding of a computation for a
lossy counter machine A with two control states, whose occurrences are repre-
sented by black-colored and white-colored intervals, and three counters, whose
values are represented by the numbers of occurrences of intervals colored, respec-
tively, by red, blue, and green (the meaning of the dashed arrows is explained
below).

The next ingredient of the reduction is the specification of all encodings of all
computations of A by means of a suitable AAB formula. In particular, we are
interested into enforcing disequalities between counters of the form zi,1(i) <



z¢(1) + h, with h e {-1,0,1}. We first explain how this is done in the case h = 0.
By definition, enforcing a constraint of the form Z,1(1) < Z¢(1) is equivalent
to enforcing the existence of a surjective partial function g; from the set of
ci-labeled subintervals of I; to the set of ci-labeled subintervals of Ii,1. As an
example, the dashed arrow labeled by g3 in Figure 4 represents one instance of a
surjective partial function representing a constraint of the form z,1(3) < z¢(3).
In its turn, each partial function g; can encoded by a set of gi-labeled intervals
of the form [x, g(x)], where g; is viewed as a fresh propositional variable, x; <
X < Xgy1 < (%) < Xg42, and o([x,x +1]) = 0([g(x), g(x) + 1]) = ci. The relevant
properties of these gi-labeled intervals are then translated into a suitable formula
@ evaluated on the interval I;. Precisely, we let

05 = [BI[Al(gi ~ @3 A [Bl-gi A (B)ci A (Adei) A
[BIAI(93 A (Aei — (AN(A)gi)

where @3 = (B){A)Vaea @ A [B]([A]Vaea @ = [B][A] Agea —a) for any given
set A (e.g., A = Q) of propositional variables (note that (pi! holds at a interval ]
iff J contains exactly one unit-length subinterval labeled by some propositional
variable a € A). Intuitively, the first line of the formula 3 enforces the condition
that the set of gi-labeled intervals that start inside I; represent a partial function
from the ci-labeled subintervals of I; to the ci-labeled subintervals of 1,1, while
the second line gurantees that such a partial function is surjective.

In a similar way, one can specify the constraints of the form zy1 (1) < z¢(1) - 1
(resp., Zt+1(1) < Z¢(i) + 1) by means of a formula (pf’_1 (resp., (pf’“): this is
done by excluding from the domain (resp., from the range) of the surjective
partial function g; exactly one ci-labeled subinterval of I (resp., I41), which
is then distinguished by using an additional propositional variable dec (resp.,
inc). Precisely, we let
@77 = [BI[Al(9i —» 93 A [B]-gi A (B)(ci A —dec) A (A)ci) A
[BI[Al(03 A (A)ei — (A)(A)gi) A
El

Plaec)
IAl(gi = 93 A [Bl=gi A (B)ei A (A)(ci A —inc)) A
JIAI(03 A (A)(ci A =inc) — (A)A)gi) A
A)(@f A [Aled A i)

5
1l

(B

(B

(

Now, we rewrite each transition rule 5(q) of A into a formula (p‘zl7 which is

defined by case analysis as follows:

1. if 8(q) is arule of the form i < i+1; goto q’, then we let q)i’l be the formula
(A" A (Pf’ﬂ A Ny (P]-S;

2. if8(q) is arule of the form if i=0 then goto q’ else i< i-1; goto q”,
then we let @5 be ([B][A]-ci - ¢5,) A ((B){Aci » @3 ,), where

©50=(Ad" A Arcick @5 and 951 = (A)d” A @77 A Ay 9F).



We can specify the set of all encodings of all computations of A by means of
the following formula (here we shortly denote by C the set of k propositional
variables ¢q, ..., Ck):

o4 = [U((ATA(ATA[BIL > V an A =(arb))a
aeQuC a+beQuC

[U]([A]i v [AlL v (B)T — A ﬁa) A
aeQuCu{inc,dec}

Ul A ((Bla » (AA)eY) A
qGQ\{Qtargez}

(u>(<B>(qsource A [A] /\ _‘C) A <A)(qtarget A [A] /\ _‘C))-
ceC ceC

where [U]x is a shorthand for ... and (U) is its dual. Intuitively, the first two
lines of the formula % guarantees that all unit-length intervals, but the first
and the last ones, are associated with exactly one propositional variable in QuC
and, possibly, with the variables inc and dec; the third line of the formula ¢@*
defines a valid computation (q1,z1), ..., (dn,zn) of A; finally, the fourth line
requires that the first configuration (q1,2;) coincides with the source configu-
ration (qsource,0) and the last configuration (qn,zm ) coincides with the target
configuration (qtgrget,0). Therefore, we can conclude that @* is satisfiable iff
A admits a computation from (qsource;0) t0 (qtarget,0). This shows that the
satisfiability problem for the logic AAB is not primitive recursive. O

A.4 Proof of Theorem 3

Theorem 3. The satisfiability problem for the logic AABBD (resp., AABBD,
AABBE, AABBE, AABBO, AABBO ), interpreted over finite linear orders, is
undecidable.

Proof. First of all, we recall the definitions for the Allen’s relations “contains”

D, “during” D, “ended by” E, “ends” E, “overlaps” O, and “overlapped by” O:
e “contains”: [x,y] D [x',y'] iff x <x' <y’ <y;

e “during”: [x,y] D [x,y']iff x' <x<y<y’;
e “ended by ”: [x,y] E[x',y'] iff x <x" and y' = y;

e “ends”: [x,y] E[x,y']iff x' <x and y’ =vy;

e “overlaps”: [x,y] O [x",y'] iff x<x' <y and y <y’;

e “overlapped by”: [x,y] O [x/,y’] iff x' <x and x <y’ < y.

The semantics of the corresponding formulas (D), (D), (E)e, (E)a, (O)e, and
(O)ec is defined, as usual, for a given interval structure S and a given interval
as follows: for any relation R € {D,D,E,E,O0,0}, we write S,I £ (R)e iff there
is an interval J € Iy such that IRJ and S, = «.

Since Allen’s “contains” relation D (resp., Allen’s “during” relation D) is defin-

able in terms of Allen’s “begun by” and “ended by” relations B and E (resp., in



terms of Allen’s “begins” and “ends” relations B and E), to prove the theorem it
is sufficient to show that the extension of AABB with any modal operator among
(D), (D), (O), and (O) has an undecidable satisfiability problem over finite lin-
ear orders. To do that, we will reduce the (undecidable) reachability problem
for non-lossy (Minsky) counter machines to the satisfiability problem for each
of the relevant extensions of AABB. One can think of these reductions as slight
modifications of the proof of Theorem 2, where inequalities between counter val-
ues of the form zy41(1) < Z¢(i) + h are replaced by more restrictive constraints
of the form Z,1 (1) = Z¢ (1) + h. Thus, from now on, we use the same notation as
in the proof of Theorem 2. Replacing inequalities of the form Z¢1(1) <z (i) +h
by corresponding equalities Z¢41(1) = Z¢ (1) + h amounts at enforcing all partial
surjective functions g; that match ci-labeled subintervals of Iy with ci-labeled
subintervals of I¢;1 to be in fact bijections. Therefore, given a counter machine
A, the set of possible encodings of the (unique, non-lossy) computation of A4 is
specified in terms of a new formula (p;:‘on_lossy, which is obtained from @# (i.e.,
the formula introduced at the end of the proof of Theorem 2) by adding new
conjuncts of the form @7 for all indices 1 <1i < k. Each of these conjuncts @} pre-
cisely requires the partial surjective function g; matching ci-labeled subintervals
of Iy with ci-labeled subintervals of I¢;; to be, in addition, total and injective.
In the sequel, we define the conjuncts ¢ within the various logics AABBD,
AABBD, AABBO, and AABBO, and we briefly discuss their semantics.

Locic AABBD. For every 1 <1<k, we define

97 = [UI((A) (i A ~dec) > (A)gs) A
[U]({B)g: A [BI[B]-gi - [D]-gs).

Intuitively, the first line of the formula ¢] requires that every subinterval of
I which is labeled with c¢i, but not with dec, is matched with a ci-labeled
subinterval of 1,1, that is, the function g is total. The second line of the formula
tries to avoid the existence of pairs of gi-labeled intervals that end in the same
time point, that is, the function g; is injective; in fact, it enforces a stronger
condition, namely, that there exist no intervals I, ], K such that (i) both I and
] are labeled by gi, (ii) I is the maximal interval that begins K, and (iii) J
is contained in, but does not begin or end, K. Even though the latter condition
discards some valid encodings of the non-lossy computation of A (precisely, those
that feature gi-labeled intervals contained one into each other), we can easily see
that there exist equivalent encodings that guarantee that all gi-labeled intervals
are pairwise overlapping or non-intersecting. Under such an assumption, the
second line of the formula 7 turns out to be equivalent to the condition that
all gi-labeled intervals end in pairwise distinct time points.

Locic AABBD. The encoding of the equality constraints in the logic AABBD
is analogous to that for the logic AABBD. Precisely, for every 1 <1 <k, we define
07 = [U((A)(ci A ~dec) — (A)gi) A
[Ul((B)g: A [B][B]-gi — [D]-gi).



As a matter of fact, the above formula defines exactly the same models as those
of the AABBD formula ¢} introduced before.

Locic AABBO. For every 1<i<k, we define

97 = [UJ({(A)(ci A =dec) — (A)gi) A
[U]((B)gi A [B][B]-gi — [O]-g1).

The semantics of the above formula is similar to the previous one. The only
difference now is that the second line avoids the existence of gi-labeled intervals
that are overlapping (rather than contained one into each other). By using ar-
guments analogous to the previous cases, one can show that such an assumption
is not too restrictive, since it still captures some valid encodings of the non-lossy
computation of A.

Locic A&BBO. The definitions and the arguments for the encoding in the
logic AABBO are symmetric to those for the logic AABBO:

97 = [UJ({(A)(ci A =dec) — (A)gi) A
[U]((B)gi A [BI[B]-gi — [O]-g:).

A.5 Proof of Theorem 4

Theorem 4. The satisfiability problem for the logic AAB, and hence that for
the logic AABB, interpreted over over any class of linear orders that contains at
least one linear order with an infinitely ascending sequence is undecidable.

Proof. We first reduce an undecidable variant of the universal reachability prob-
lem for lossy counter machines to the satisfiability problem for the logic AAB
interpreted over structures of the form S = (I, A, A, B, ). The variant of the
universal reachability problem we focus on is called structural termination and
it consists of deciding, given a lossy counter machine A = (Q,k,d) and a pair of
control states qsource and qtarget, Whether every computation of A that stars at
state qsource, With any abitrary assignment for the counters, eventually reaches
the state qiarget, again with some arbitrary assignment for the counters. Given
the results in [13], it is clear that the problem of structural termination is unde-
cidable.

In order to reduce the above problem to a satisfiability problem for the logic
AAB, we use a technique similar to that of Theorem 2 and we encode an infinite
computation (q1,2z1) (qz2,2Z2) ... of A, with g1 = qsource and ¢ # qearger for all
t > 1, into a suitable interval structure over the domain (N, <). Precisely, we
divide (N, <) into an infinite sequence of intervals I = [0,x1], I3 = [x1,x2], ...,
where 1 =x1 < Xz... and X¢41 —X¢ = 1+ 145 Ze (1) for all t > 1. Then, we proceed
exactly like in the proof of Theorem 2, by introducing suitable propositional

variables and the auxiliary formulas (p%!7 @3, etc. Finally, we represent the set



of all infinite computations of A that start in qseurce and avoid qgrger by means
of the following formula:

et = [U]((A)T AATA[B]IL = V aar A =(an b)) A
acQuC a+beQuC

[U.]([A]i v [AlL v (B)T — ﬁa) A

aeQuCu{inc,dec}

WA (B = AAG) A (Wdsouree A [Ul-Guarer

Clearly, (pAiis satisfiabiable over a right-infinite interval structure of the form
S = (Iw,A,A,B,0) iff there is an initial configuration of the form (qsource,Z),
with z € N¥, for which the lossy counter machine A never halts.

We conclude the proof by showing how the above undecidability result can be
transferred to all right-infinite interval structures, that is, to all structures of the
form S = (I, A, A, B, o), where I contains intervals over a fixed linear order (L, <)
that embeds (N,<). To do that, we introduce a fresh propositional variable #
and a suitable formula ¢4 that enforces the following property: the set of all
left-endpoints of #-labeled intervals of 1 is an infinite and discrete subordering
of (L, <) (hence, it embeds (N, <)). Precisely, we let

Gy = (W# A [UI(# > [A[AI#) A (U)(# > (A(A)((A)# A [BI[A]l-#))

(intutively, the above formula enforces that (i) there is at least one interval
labeled by #, (ii) for every pair of intervals I,] that start at the same point,
either both I and J are labeled by # or neither I nor J are labeled by #, and (iii)
the set of left-endpoints of #-labeled intervals, equipped with the underlying
order, is right-infinite and nowhere dense, namely, discrete). Finally, in order
to correctly encode the set of relevant computations of A inside the interval
structure S = (I, A, A, B, 0), it is sufficient to restrict the quantifications in the
above formula @* to range only over those intervals that satisfy # A (A)#. O
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