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Abstract.Ontologies and rules play a central role in the development of the Semantic Web. Recent

research in this context focuses especially on highly scalable formalisms for the Web of Data, which

may highly benefit from exploiting database technologies. In this paper, as a first step towards clos-

ing the gap between the Semantic Web and databases, we introduce a family of expressive extensions

of Datalog, called Datalog±, as a new paradigm for query answering over ontologies. The Datalog±

family admits existentially quantified variables in rule heads, and has suitable restrictions to en-

sure highly efficient ontology querying. We show in particular that different versions of Datalog±

generalize the tractable description logic EL and the DL-Lite family of tractable description logics,

which are the most common tractable ontology languages in the context of the Semantic Web and

databases. We also show how stratified negation can be added to Datalog± while keeping ontology

querying tractable. Furthermore, the Datalog± family is of interest in its own right, and can, more-

over, be used in various contexts such as data integration and data exchange. It paves the way for

applying results from databases to the context of the Semantic Web.
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1 Introduction

Ontology languages, rule-based systems, and their integrations play a central role in the development of the

Semantic Web [15]. Although there are a plethora of approaches to tight and loose (or hybrid) integrations

of ontology languages and rule-based systems, and to generalizations of ontology languages by the ability

to express rules, there is literally no previous work on how to generalize database rules and dependencies

so that they can express ontological axioms. This is surprising, especially also because there are recently

strong interests in the Semantic Web community on highly scalable formalisms for the Web of Data, which

would benefit very much from applying technologies and results from databases.

In this paper, we try to fill this gap. We propose and study variants of Datalog that are suited for efficient

ontological reasoning, and, in particular, for tractable ontology-based query answering. We introduce the

Datalog± family of Datalog variants, which extend plain Datalog by the possibility of existential quantifica-

tion in rule heads, and by a number of other features, and, at the same time, restrict the rule syntax in order

to achieve tractability. The goal of this paper is threefold:

• First, we aim at bridging an apparent gap in expressive power between database query languages and

description logics (DLs) as ontology languages, extending the well-known Datalog language in order

to embed DLs.

• Second, we aim at transferring important concepts and proof techniques from database theory to DLs.

For example, it was so far not clear how to enrich tractable DLs by the feature of nonmonotonic

negation. By the results of the present paper, we are now able to enrich DLs by stratified negation via

mappings from DLs to Datalog± with stratified negation.

• Last but not least, we have a genuine interest in studying new fascinating tractable query languages.

We are convinced that these languages are of independent relevance and interest, even without refer-

ence to ontological reasoning. Moreover, we have reasons to believe that the languages that we discuss

may be useful for data exchange [45], and constraint satisfaction for automatic configuration, where

value invention techniques are used [46, 66]. For lack of space, we do not discuss these applications

in detail here.

In addition to playing a key role in the development of the Semantic Web, ontologies are also becoming

more and more important in the database area, for example, in data modeling and information integra-

tion [58]. While much of the research on DLs of the last decade was centered around decidability issues,

there is a current trend towards highly scalable procedures for query answering over ontologies. A family

of well-known DLs fulfilling these criteria is, e.g., the DL-Lite family [31, 72] (which has recently been

further extended in [7]). The following example briefly illustrates how queries can be posed and answered

in DL-Lite.

Example 1 A DL knowledge base consists of a TBox and an ABox. For example, the knowledge that every

conference paper is an article and that every scientist is the author of at least one paper can be expressed

by the axioms ConferencePaper⊑Article and Scientist⊑∃isAuthorOf in the TBox, respectively, while the

knowledge that John is a scientist can be expressed by the axiom Scientist(john) in the ABox. A simple

Boolean conjunctive query (BCQ) asking whether John authors a paper is ∃X isAuthorOf(john, X).

An ABox can be identified with an extensional database, while a TBox can be regarded as a set of

integrity constraints involving, among others, functional dependencies and (possibly recursive) inclusion
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dependencies [44, 1]. An important result of [31, 72] is that the DL-Lite description logics, in particular,

DL-LiteF , DL-LiteR, and DL-LiteA, are not only decidable, but that answering (unions of) conjunctive

queries for them is in LOGSPACE, and actually in AC0, in the data complexity, and query answering in

DL-Lite is FO-rewritable (see below) [31].

In the context of DLs, data complexity is the complexity of query answering over input ABoxes, when

both the TBox and the query are fixed. This scenario is very similar to query answering with well-known

rule-based languages, such as Datalog. It is easy to see that plain Datalog can neither directly express DL-

Lite disjointness constraints (e.g., ConferencePaper ⊑ ¬JournalPaper), nor the functional constraints used

in DL-LiteF (e.g., (funct hasFirstAuthor)). Moreover, as observed in [70], the lack of value creation makes

plain Datalog not very well suited for ontological reasoning with inclusion axioms either (e.g., Scientist ⊑
∃isAuthorOf ). It is thus natural to ask whether Datalog can be suitably modified to nicely accommodate

ontological axioms and constraints such as those expressible in the DL-Lite family. In particular, we have

addressed the following two questions:

Question 1: What are the main modifications of Datalog that are required for ontological knowledge rep-

resentation and query-answering?

Question 2: Are there versions of Datalog that encompass the DL-Lite family of description logics, and

that share the favorable data complexity bounds for query-answering with DL-Lite? If so, how do

they look like?

As an answer to Question 1, we identified the possibility of having existentially quantified variables

in rule heads as the main Datalog extension enabling ontological knowledge representation and reasoning.

Datalog rules extended this way are known as tuple generating dependencies (TGDs), see [14]. Given

that fact inference (let alone conjunctive query answering) under TGDs is undecidable [13, 2], we must

somehow restrict the rule syntax for achieving decidability. We thus require that the rule bodies of TGDs

are guarded. This means that in each rule body of a TGD there must exist an atom, called guard, in which

all non-existentially quantified variables of the rule occur as arguments. An example of a guarded TGD

is P (X) ∧R(X,Y ) ∧Q(Y )→ ∃Z R(Y, Z).
Guarded TGDs form the first Datalog± formalism that we consider. Note that this formalization was

briefly mentioned in [20]. We embark in Section 3 in a detailed analysis of the data complexity of this

formalism. To this aim, we study the behavior of the (oblivious) chase algorithm [65, 14], a well-known

algorithm for constructing a (usually infinite) universal model chase(D,Σ) of a given extensional database

D and a set of guarded TGDs Σ.

As a key lemma, we prove that for each set of guarded TGDs Σ, there exists a constant k such that for

every extensional database D and every atom a generated at some depth level d while chasing D with Σ,

such that whenever the same chase generates an atom b whose arguments are among those of a, then b

must be generated at depth level at most d+ k. Using this lemma, we can show that whenever a Boolean

conjunctive query (BCQ) Q maps homomorphically into chase(D,Σ) then it maps into the initial fragment

of constant depth k × |Q| of chase(D,Σ). This result is a nontrivial generalization of a classical result by

Johnson and Klug [50] on inclusion dependencies, which are a restricted class of guarded TGDs. For the

complexity of fact inference and answering BCQs, we then get the following result:

Theorem: Given a database D and a fixed set of guarded TGDs Σ, deciding whether D∪Σ |=a for facts

a is PTIME-complete and can be done in linear time. Moreover, deciding whether D∪Σ |= Q is not

harder than BCQ evaluation over extensional databases (without guarded TGDs).
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Guarded TGDs are sufficiently expressive to model the tractable description logic EL [8, 9] (see Sec-

tion 9.2), but are still more expressive than actually necessary for modeling DL-Lite. Therefore, in Section 4,

we consider the further restricted class of linear TGDs. These consist of TGDs whose bodies contain only

single atoms (and so are trivially guarded, or TGDs whose bodies contain only guards, called multi-linear

TGDs). Note that this class coincides with the class of inclusion dependencies. A detailed analysis of chase

properties of linear TGDs yields the following results.

Theorem: Given a database D, a fixed set of linear TGDs Σ, and a fixed BCQ Q, deciding whether

D∪Σ |= Q is in AC0. In particular, this problem is FO-rewritable, i.e., Q and Σ can be compiled

into a first-order formula φ such that for each database D, it holds that D∪Σ |= Q iff D |= φ.

In order to capture DL-Lite, we further enrich guarded Datalog by two additional other features: negative

constraints and keys. A negative constraint is a Horn clause whose body is not necessarily guarded and

whose head is the truth constant false which we denote by ⊥. For example, the requirement that a person

ID cannot simultaneously appear in the employee(ID ,Name) and in the retired(ID ,Name) relation can

be expressed by:

employee(X,Y ) ∧ retired(X,Z)→⊥ .

While negative constraints do add expressive power to Datalog, they are actually very easy to handle, and

we show that the addition of negative constraints does not increase the complexity of query answering. We

also allow a limited form of equality-generating dependencies, namely, keys, to be specified, but we require

that these keys be – in a precise sense – not conflicting with the existential rules of the Datalog program.

We lift a result from [27] about non-key-conflicting inclusion dependencies to the setting of arbitrary TGDs

to prove that the keys that we consider do not increase the complexity. With these additions we have a quite

expressive and still extremely efficient version of Datalog±.

Theorem: Query answering with Datalog± based on guarded TGDs (resp., linear TGDs), negative con-

straints, and keys that do not conflict with the TGDs is possible in polynomial time in the data com-

plexity (resp., FO-rewritable).

Let us refer to the above basic version of Datalog± (linear TGDs, negative constraints, and non-con-

flicting keys) as Datalog±0 , and to the guarded version with negative constraints and non-conflicting keys

as Datalog±1 . We are finally able to show in Sections 7 to 9 that all description logics of the well-known

DL-Lite family of description logics [31] smoothly translate into Datalog±0 . The relationships between

Datalog±0 , Datalog±1 , DL-Lite, and EL are summarized in Fig. 1.

Theorem: The description logics DL-LiteX of the DL-Lite family and their extensions with n-ary relations

DLR-LiteX can all be reduced to Datalog±0 .

Example 2 The axioms of the TBox of Example 1 are translated to the TGDs ConfPaper(X)→Article(X)
and Scientist(X)→∃Z isAuthorOf(X,Z), while the axiom of the ABox is translated to the database atom

Scientist(john).

The translation from the DL-Lite family into Datalog±0 is so smooth and natural, that Datalog±0 can

rightly be called a DL. Note that Datalog±0 is strictly more expressive than any of the description logics

of the DL-Lite family. Interestingly, we prove that (at most binary) linear TGDs alone can express useful
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EL

DL-Lite

Datalog±
0

Datalog±
1

Figure 1: Relationships between Datalog±0 , Datalog±1 , DL-Lite, and EL.

ontological relationships such as, e.g., manager(X)→manages(X,X) that are not expressible in any of

the description logics of the DL-Lite family.

In the DL community, there is currently a need for enhancing tractable DLs by some nonmonotonic

negation (where negative information is derived from the absence of positive one). It was asked whether

there is some stratified negation for DLs. Given our translation from DL-Lite to Datalog±, this amounts to

ask whether there is a satisfactory stratified negation for Datalog±, and, in particular:

Question 3: Can we extend the concept of safe stratified negation to guarded TGDs?

In classical Datalog with stratified negation [6], each stratum is finite, and the stratum i+1 can be evaluated

as soon as all facts in stratum i have been derived. With guarded TGDs, this is not so. Given that usually

an infinite number of facts is generated by the chase, each stratum, including the lowest may be infinite,

which means that single strata may at no time be fully computed. The difficulty is then, how long to wait

before deciding that a negative atom in a rule body is satisfied. We solve this problem by making use of

the above-mentioned constant-depth bounds for atom derivations. We define a new version of the chase

that uses a constant-depth bound for establishing whether a negative atom whose arguments all appear

in those of a (positive) rule guard is satisfied. We show that this semantics is stratification-independent,

corresponds to a perfect model semantics, and that query answering can be done in polynomial time for

guarded TGDs and is FO-rewritable for linear TGDs.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries and basic defi-

nitions. Sections 3 and 4 deal with guarded Datalog± and the special case of linear Datalog±, respectively.

In Section 5, we show how negative constraints can be added. In Section 6, we discuss the addition of

keys. Sections 7 to 9 deal with the translation of the DL-Lite family to Datalog±, while Section 10 defines

stratified Datalog±. In Section 11, we discuss related work. Section 12 summarizes the main results and

gives an outlook on future research. Note that detailed proofs of all results are given in Appendices A to G.

2 Preliminaries

In this section, we briefly recall some basics on relational databases, conjunctive queries (CQs), Boolean

conjunctive queries (BCQs), tuple-generating dependencies (TGDs), and the chase procedure relative to

such dependencies.
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2.1 Databases and Queries

As for the elementary ingredients, we assume data constants, nulls, and variables as follows; they serve as

arguments in atomic formulas in databases, queries, and dependencies. We assume (i) an infinite universe

of data constants ∆ (which constitute the “normal” domain of a database), (ii) an infinite set of (labeled)

nulls ∆N (used as “fresh” Skolem terms, which are placeholders for unknown values, and can thus be

seen as variables), and (iii) an infinite set of variables X (used in queries and dependencies). Different

constants represent different values (unique name assumption), while different nulls may represent the same

value. We assume a lexicographic order on ∆ ∪∆N , with every symbol in ∆N following all symbols in ∆.

We denote by X sequences of variables X1, . . . , Xk with k > 0.

We next define atomic formulas, which occur in databases, queries, and dependencies, and which are

constructed from relation names and terms, as usual. We assume a relational schemaR, which is a finite set

of relation names (or predicate symbols, or simply predicates). A position P [i] identifies the i-th argument

of a predicate P . A term t is a data constant, null, or variable. An atomic formula (or atom) a has the

form P (t1, ..., tn), where P is n-ary predicate, and t1, ..., tn are terms. We denote by pred(a) and dom(a)
its predicate and the set of all its arguments, respectively. The latter two notations are naturally extended to

sets of atoms and conjunctions of atoms. A conjunction of atoms is often identified with the set of all its

atoms.

We are now ready to define the notion of a database relative to a relational schema, as well as the syn-

tax and the semantics of conjunctive and Boolean conjunctive queries to databases. A database (instance)

D for a relational schema R is a (possibly infinite) set of atoms with predicates from R and arguments

from ∆. Such D is ground iff it contains only atoms with arguments from ∆. A conjunctive query (CQ)

over R has the form Q(X) = ∃YΦ(X, Y), where Φ(X,Y) is a conjunction of atoms with the variables

X and Y, and eventually constants, but without nulls. Note that Φ(X,Y) may also contain equalities but

no inequalities. A Boolean CQ (BCQ) over R is a CQ of the form Q(). We often write a BCQ as the set

of all its atoms, having constants and variables as arguments, and omitting the quantifiers. Answers to CQs

and BCQs are defined via homomorphisms, which are mappings µ : ∆ ∪ ∆N ∪ X → ∆ ∪ ∆N ∪ X such

that (i) c ∈ ∆ implies µ(c) = c, (ii) c ∈ ∆N implies µ(c) ∈ ∆ ∪ ∆N , and (iii) µ is naturally extended

to atoms, sets of atoms, and conjunctions of atoms. The set of all answers to a CQ Q(X)= ∃YΦ(X,Y)
over a database D, denoted Q(D), is the set of all tuples t over ∆ for which there exists a homomor-

phism µ : X∪Y→∆ ∪∆N such that µ(Φ(X,Y))⊆D and µ(X)= t. The answer to a BCQ Q() over a

database D is Yes, denoted D |=Q, iff Q(D) 6= ∅.

Example 3 Consider an employee database, which stores information about managers, employees, and

departments, where managers may supervise employees and direct departments, and employees may work

in a department. The relational schema R consists of the unary predicates manager and employee as well

as the binary predicates directs , supervises , and works in with obvious semantics. A database D for R is

given as follows:

D= {employee(jo),manager(jo), directs(jo,finance), supervises(jo, ada),
employee(ada),works in(ada,finance)} .

It encodes that Jo is an employee and a manager directing the finance department and supervising Ada,

who is an employee working in the finance department. A CQ is given by Q(X) = manager(X) ∧
directs(X,finance), which asks for all managers directing the finance department, while a BCQ is given

by Q() = ∃X (manager(X) ∧ directs(X,finance)), often simply abbreviated as the set of atoms {man-



6 CL-RR-21-10

ager(X), directs(X, finance)}, which asks whether there exists a manager directing the finance depart-

ment. The set of all answers to the former over D is given by Q(D) = {jo}, while the answer to the latter

is Yes.

2.2 Tuple-Generating Dependencies (TGDs)

Tuple-generating dependencies (TGDs) describe constraints on databases in the form of generalized Datalog

rules with existentially quantified conjunctions of atoms in rule heads; their syntax and semantics are as

follows. Given a relational schema R, a tuple-generating dependency (TGD) σ is a first-order formula of

the form ∀X∀YΦ(X,Y)→∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X, Z) are conjunctions of atoms overR,

called the body and the head of σ, denoted body(σ) and head(σ), respectively. We usually omit the universal

quantifiers in TGDs. Such σ is satisfied in a database D for R iff, whenever there exists a homomorphism

h that maps the atoms of Φ(X,Y) to atoms of D, there exists an extension h′ of h that maps the atoms

of Ψ(X,Z) to atoms of D. All sets of TGDs are finite here.

Example 4 Consider again the employee database D of Example 3. Some constraints on D along with their

encoding as TGDs (where we use “,” to denote the Boolean conjunction “∧”) are as follows:

• every manager is an employee:

manager(M)→ employee(M) ;

• every manager directs at least one department:

manager(M)→ ∃P directs(M,P ) ;

• every employee who directs a department is a manager, and supervises at least another employee who

works in the same department:

employee(E), directs(E,P )→ ∃E′manager(E), supervises(E,E′),works in(E′, P ) ;

• every employee supervising a manager is a manager:

employee(E), supervises(E,E′),manager(E′)→ manager(E) .

It is not difficult to verify that all the above TGDs are satisfied in D. Consider next the database D′ defined

as follows:

D′ = D ∪ {manager(ada)} .

Then, the first and the last TGD listed above are satisfied in D′, while the second and the third TGD are not

satisfied in D′.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases under a set of TGDs

is defined as follows. For a database D for R, and a set of TGDs Σ on R, the set of models of D and Σ,

denoted mods(D,Σ), is the set of all (possibly infinite) databases B such that (i) D⊆B and (ii) every σ ∈Σ
is satisfied in B. The set of answers for a CQ Q to D and Σ, denoted ans(Q,D,Σ), is the set of all tuples

a such that a ∈ Q(B) for all B ∈mods(D,Σ). The answer for a BCQ Q to D and Σ is Yes, denoted D ∪
Σ |=Q, iff ans(Q,D,Σ) 6= ∅. Note that query answering under general TGDs is undecidable [13], even

when the schema and TGDs are fixed [20].
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Example 5 Consider again the employee databases D and D′ of Examples 3 and 4, respectively, and the set

of TGDs Σ of Example 4. Then, D is a model of D and Σ, i.e., D ∈ mods(D,Σ), while D′ is not a model

of D′ and Σ, i.e., D′ 6∈ mods(D′,Σ), since the second and the third TGD of Example 4 are not satisfied in

D′. Trivially, every model of D′ and Σ is a superset of D′. In particular, the following databases B1, B2,

and B3 are models of D′ and Σ:

B1=D′ ∪ {directs(ada,finance), supervises(ada, ada)} ,

B2=D′ ∪ {directs(ada,finance), supervises(ada, bill),works in(bill ,finance)} ,

B3=D′ ∪ {directs(ada, toy), supervises(ada, bill),works in(bill , toy)} .

On the contrary, the following database B4 is not a model of D′ and Σ, since the third TGD of Example 4 is

not satisfied in B4:

B4=D′ ∪ {directs(ada, toy), supervises(ada, tom)} .

Notice that employee(jo) is true in all models of D′ and Σ; therefore, the BCQ {employee(jo)} evaluates to

true over D′ and Σ. This also holds for the BCQ {directs(ada, X)}, while the BCQ {directs(ada,finance)}
evaluates to false over D′ and Σ, since it is false in the database B3.

We recall that the two problems of CQ and BCQ evaluation under TGDs are LOGSPACE-equivalent

[32, 50, 45, 37]. Moreover, it is easy to see that the query output tuple (QOT) problem (as a decision version

of CQ evaluation) and BCQ evaluation are AC0-reducible to each other. Henceforth, we thus focus only on

the BCQ evaluation problem. All complexity results carry over to the other problems. We also recall that

query answering under TGDs is equivalent to query answering under TGDs with only singleton atoms in

their heads. In the sequel, we thus always assume w.l.o.g. that every TGD has a singleton atom in its head.

2.3 The TGD Chase

The chase was introduced to enable checking implication of dependencies [65], and later also for checking

query containment [50]. It is a procedure for repairing a database relative to a set of dependencies, so that

the result of the chase satisfies the dependencies. By “chase”, we refer both to the chase procedure and

to its output. The TGD chase works on a database through so-called TGD chase rules (for an extended

chase with also equality-generating dependencies (EGDs), see Section 6). The TGD chase rule comes in

two flavors: restricted and oblivious, where the restricted one applies TGDs only when they are not satisfied

(to repair them), while the oblivious one always applies TGDs (if they produce a new result). We focus on

the oblivious one, since it makes proofs technically simpler. The (oblivious) TGD chase rule defined below

is the building block of the chase.

TGD CHASE RULE. Consider a database D for a relational schema R, and a TGD σ on R of the form

Φ(X,Y) → ∃ZΨ(X, Z). Then, σ is applicable to D if there exists a homomorphism h that maps the

atoms of Φ(X,Y) to atoms of D. Let σ be applicable to D, and h1 be a homomorphism that extends h as

follows: for each Xi ∈ X, h1(Xi) = h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where zj is a “fresh” null, i.e.,

zj ∈ ∆N , zj does not occur in D, and zj lexicographically follows all other nulls already introduced. The

application of σ on D adds to D the atom h1(Ψ(X,Z)) if not already in D (which is possible when Z is

empty).

The chase algorithm for a database D and a set of TGDs Σ consists of an exhaustive application of

the TGD chase rule in a breadth-first (level-saturating) fashion, which leads as result to a (possibly infinite)
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chase for D and Σ. Formally, the chase of level up to 0 of D relative to Σ, denoted chase0(D,Σ), is defined

as D, assigning to every atom in D the (derivation) level 0. For every k> 1, the chase of level up to k

of D relative to Σ, denoted chasek(D,Σ), is constructed as follows: let I1, . . . , In be all possible images

of bodies of TGDs in Σ relative to some homomorphism such that (i) I1, . . . , In⊆ chasek−1(D,Σ) and

(ii) the highest level of an atom in every Ii is k − 1; then, perform every corresponding TGD application

on chasek−1(D,Σ), choosing the applied TGDs and homomorphisms in a linear and lexicographic order,

respectively, and assigning to every new atom the (derivation) level k. The chase of D relative to Σ, denoted

chase(D,Σ), is then defined as the limit of chasek(D,Σ) for k →∞.

The (possibly infinite) chase relative to TGDs is a universal model, i.e., there exists a homomorphism

from chase(D,Σ) onto every B ∈mods(D,Σ) [37, 20]. This result implies that BCQs Q over D and Σ can

be evaluated on the chase for D and Σ, i.e., D∪Σ |= Q is equivalent to chase(D,Σ) |= Q.

Example 6 Consider again the employee database D′ of Example 3 and the set of TGDs Σ of Example 4.

Then, in the construction of chase(D′,Σ), we apply first the second TGD of Example 4 to manager(jo)
(resp., manager(ada)), adding directs(jo, z1) (resp., directs(ada, z2)), where z1 and z2 are “fresh” nulls,

and then the third TGD to employee(jo) and directs(jo, z1) (resp., employee(ada) and directs(ada, z2)),
adding supervises(jo, z3) and works in(z3, z1) (resp., supervises(ada, z4) and works in(z4, z2)), where

z3 and z4 are “fresh” nulls. Hence, the construction yields a finite chase chase(D′,Σ), given as follows:

chase(D′,Σ)=D′ ∪{directs(jo, z1), directs(ada, z2),
supervises(jo, z3),works in(z3, z1),
supervises(ada, z4),works in(z4, z2)} .

Here, every atom in D′ is of level 0, the two atoms directs(jo, z1) and directs(ada, z2) are of level 1, and

the other four atoms are of level 2.

3 Guarded Datalog±

We now introduce guarded Datalog± as a class of special TGDs that exhibit computational tractability in

the data, while being at the same time expressive enough to model ontologies. BCQs relative to such TGDs

can be evaluated on a finite part of the chase, which is of constant size when the query and the TGDs are

fixed. Based on this result, the data complexity of evaluating BCQs relative to guarded TGDs turns out to

be polynomial in general and linear for atomic queries.

A TGD σ is guarded iff it contains an atom in its body that contains all universally quantified variables

of σ. The leftmost such atom is the guard atom (or guard) of σ. The non-guard atoms in the body of σ are

the side atoms of σ.

Example 7 The TGD r(X,Y ), s(Y,X,Z)→∃W s(Z,X, W ) is guarded (where s(Y,X,Z) is the guard,

and r(X,Y ) is a side atom), while the TGD r(X,Y ), r(Y, Z) → r(X,Z) is not guarded, since it has no

guard, i.e., no body atom contains all the (universally quantified) variables in the body. Furthermore, it is

easy to verify that every TGD in Example 4 is guarded.

Note that sets of guarded TGDs (with single-atom heads) are theories in the guarded fragment of first-

order logic [4]. Note also that guardedness is a truly fundamental class ensuring decidability. As shown in

[20], adding a single unguarded Datalog rule to a guarded Datalog± program may destroy decidability.
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Figure 2: Chase graph (left side) and guarded chase forest (right side) for Example 8.

In the sequel, let R be a relational schema, D be a database for R, and Σ be a set of guarded TGDs

on R. We first give some preliminary definitions as follows. The chase graph for D and Σ is the directed

graph consisting of chase(D,Σ) as the set of nodes and having an arrow from a to b iff b is obtained from

a and possibly other atoms by a one-step application of a TGD σ ∈Σ. Here, we mark a as guard iff a is the

guard of σ. As a subgraph of the chase graph for D and Σ, the guarded chase forest for D and Σ contains

(i) all atoms a∈D as nodes and (ii) any two atoms a,b∈ chase(D,Σ) as nodes along with an arrow from

a to b iff b is obtained from a and possibly other atoms by a one-step application of a TGD σ ∈Σ with a

as guard. The subtree of an atom a in this forest, denoted subtree(a), is the restriction of the forest to all

descendants of a. The type of an atom a, denoted type(a), is the set of all atoms b in chase(D,Σ) that have

only constants and nulls from a as arguments. Note that the subtree of a in the guarded chase forest depends

only on the set of all atoms in the type of a (and no others).

Example 8 Consider the database D= {r(a, b), s(b)} and the set of TGDs Σ consisting of the following

two TGDs σ1 and σ2:

σ1 : r(X,Y ), s(Y ) → ∃Z r(Z,X) ,
σ2 : r(X,Y ) → s(X) .

The first part of the (infinite) chase graph (resp., guarded chase forest) for D and Σ is shown in Fig. 2, left

(resp., right) side, where the arrows have the applied TGDs as labels (formally not a part of the graph (resp.,

forest)). The number on the upper right side of every atom indicates the derivation level of the atom. The

subtree of r(z1, a) in the guarded chase forest is also shown in Fig. 2, right side. Note also that the type

of r(z1, a) consists of the atoms r(z1, a), s(a), and s(z1).

Given a finite set S⊆∆∪∆N , two sets of atoms A1 and A2 are S-isomorphic (or isomorphic if S = ∅)
iff a bijection β : A1 ∪ dom(A1)→A2 ∪ dom(A2) exists such that (i) β and β−1 are homomorphisms, and

(ii) β(c) = c = β−1(c) for all c ∈ S. Two atoms a1 and a2 are S-isomorphic (or isomorphic if S = ∅)
iff {a1} and {a2} are S-isomorphic. The notion of S-isomorphism (or isomorphism if S = ∅) is naturally

extended to more complex structures, such as pairs of two subtrees (V1, E1) and (V2, E2) of the guarded

chase forest, and two pairs (b1, S1) and (b2, S2), where b1 and b2 are atoms, and S1 and S2 are sets of

atoms.
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Example 9 The two sets of atoms {a1 : r(a, z1, z2),a2 : s(b, z2),a3 : t(z3, z4} and {b1 : r(a, z1, z5), b2 :
s(b, z5),b3 : t(z6, z7)}, where a, b∈∆ and z1, . . . , z7 ∈∆N , are {a, z1}-isomorphic via the bijection β de-

fined by β(ai)=bi, i∈{1, 2, 3}, β(z2)= z5, β(z3)= z6, β(z4)= z7, and β(c)= c for all other c∈∆∪∆N .

Furthermore, let a = r(a, b, z1), where a, b ∈ ∆ and z1 ∈ ∆N . Then, s(b, z3) and s(b, z4) are dom(a)-
isomorphic, while s(b, z3) and s(b, z1) are not (with z3, z4 ∈ ∆N ).

The following lemma shows that if two atoms in the guarded chase forest for D and Σ have S-iso-

morphic types, then their subtrees are also S-isomorphic, which can be proved by induction on the number

of applications of the TGD chase rule to generate the subtrees of the two atoms.

Lemma 1 Let R be a relational schema, D be a database for R, and Σ be a set of guarded TGDs on R.

Let S be a finite set of constants and nulls from ∆∪∆N , and let a1 and a2 be atoms from chase(D,Σ) with

S-isomorphic types. Then, the subtree of a1 is S-isomorphic to the subtree of a2.

The next lemma provides, given an atom a∈ chase(D,Σ), an upper bound for the number of all non-

dom(a)-isomorphic pairs consisting of an atom and a type with arguments from a and new nulls. The result

follows from a simple combinatorial analysis of the number of all possible such pairs.

Lemma 2 Let R be a relational schema, D be a database for R, and Σ be a set of guarded TGDs on R.

Let w be the maximal arity of a predicate in R, δ = (2w)w · 2(2w)w·|R|
, and a∈ chase(D,Σ). Let P be a

set of pairs (b, S), each consisting of an atom b and a type S of atoms c with arguments from a and new

nulls. If |P |>δ, then P contains at least two dom(a)-isomorphic pairs.

We next define the guarded depth of atoms in the guarded chase forest as follows. The guarded depth of

an atom a in the guarded chase forest for D and Σ, denoted depth(a), is the length of the path from D to a

in the forest. Note that this is in general different from the derivation level in the chase (see Example 10).

The guarded chase of level up to k> 0 for D and Σ, denoted g-chasek(D,Σ), is the set of all atoms in the

guarded chase forest of depth at most k.

Example 10 Consider the database D= {r1(a, b)} and the set of TGDs Σ consisting of the following three

TGDs σ1, σ2, and σ3:

σ1 : r3(X,Y ) → r2(X) ,
σ2 : r1(X,Y ) → ∃Z r3(Y, Z) ,
σ3 : r1(X,Y ), r2(Y ) → r1(Y,X) .

The chase graph for D and Σ is shown in Fig. 3. It nearly coincides with the guarded chase forest for D

and Σ, where only the dashed arrow is removed. Every atom is also labeled with its guarded depth and its

derivation level.

The following key lemma shows that for each set of guarded TGDs Σ, there exists a constant k such

that for every database D and every atom a generated at some depth level d while chasing D with Σ, such

that whenever the same chase generates an atom b whose arguments are among those of a, then b must

be generated at depth at most d + k. The main idea behind the proof by contradiction, using the above

Lemmas 1 and 2, is that the subtree of an atom a depends only on a and the type of a, and the number of

non-dom(a)-isomorphic pairs consisting of an atom and its type is bounded by a constant, depending only

onR.
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Figure 3: Guarded depth / derivation level of atoms in the chase graph.

Lemma 3 Let R be a relational schema, D be a database for R, and Σ be a set of guarded TGDs on R.

Let a be a guard in the chase graph for D and Σ, and let b∈ type(a). Then, depth(b) 6 depth(a) + k,

where k depends only onR.

The following lemma shows that BCQs Q can be evaluated using only a finite, initial portion of the

guarded chase forest, whose size depends only on the query Q and the relational schema R. The result

is proved similarly to Lemma 3, showing that every path from D to (the image of) a query atom in the

guarded chase forest, whose length exceeds a certain value (depending on Q and R), has two atoms with

dom(a)-isomorphic subtrees (since two atoms and their types are dom(a)-isomorphic), and thus Q can also

be evaluated “closer” to D.

Lemma 4 Let R be a relational schema, D be a database for R, Σ be a set of guarded TGDs on R, and

Q be a BCQ over R. If there exists a homomorphism µ that maps Q into chase(D,Σ), then there exists a

homomorphism λ that maps Q into g-chasek(D,Σ), where k depends only on Q andR.

Intuitively, the chase of a database relative to a set of guarded TGDs has a “periodicity” of atoms and

their types, as illustrated by the following example.

Example 11 Every derivation level k> 2 of the chase graph for Example 8 in Fig. 8 is given by two atoms

r(zk, zk−1) and s(zk−1), where the type of the former is given by the three atoms r(zk, zk−1), s(zk−1), and

s(zk). This “pattern” repeats indefinitely in the chase, as easily seen. For example, a BCQ Q= {r(X,Y ),
r(Z,X), r(W,Z)} will necessarily map onto three atoms that form a path in the guarded chase forest:

however deep these atoms are in the chase, Q can anyway also be mapped onto the first levels, e.g., onto

{r(z2, z1), r(z3, z2), r(z4, z3)}.

The above lemma informally says that whenever (homomorphic images of) the query atoms are con-

tained in the chase, then they are also contained in a finite, initial portion of the guarded chase forest, whose

size is determined only by the query and the schema. However, it does not yet ensure that also the whole

derivation of the query atoms are contained in such a portion of the forest. This slightly stronger property is

captured by the following definition.
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Definition 1 Let R be a relational schema, and Σ be a set of TGDs on R. Then, we say that Σ has the

bounded guard-depth property (BGDP) iff, for every database D for R and for every BCQ Q, whenever

there exists a homomorphism µ that maps Q into chase(D, Σ), then there exists a homomorphism λ of

this kind such that all ancestors of λ(Q) in the chase graph for D and Σ are contained in g-chaseγg(D,Σ),
where γg depends only on Q andR.

The next theorem shows that, in fact, guarded TGDs have also this stronger bounded guard-depth prop-

erty. The proof of this result is based on the above Lemmas 3 and 4, where the former now also assures that

all side atoms that are necessary in the derivation of the query atoms are contained in a finite, initial portion

of the guarded chase forest, whose size is determined only by Q andR (which is slightly larger than the one

for the query atoms only).

Theorem 5 Guarded TGDs enjoy the BGDP.

By this theorem, deciding BCQs in the guarded case is in P in the data complexity (where all but

the database is fixed) [20]. It is also hard for P, as can be proved by reduction from propositional logic

programming.

Theorem 6 Let R be a relational schema, D be a database for R, Σ be a set of guarded TGDs on R,

and Q be a BCQ overR. Then, deciding D ∪ Σ |= Q is P-complete in the data complexity.

Deciding Boolean atomic queries in the guarded case can even be done in linear time in the data com-

plexity, as the following theorem shows, which holds by a reduction to propositional logic programming.

Note that since general BCQs are not necessarily guarded, they are in general not reducible to atomic queries.

Theorem 7 Let R be a relational schema, D be a database for R, Σ be a set of guarded TGDs on R,

and Q be a Boolean atomic query over R. Then, deciding D ∪ Σ |= Q can be done in linear time in the

data complexity.

4 Linear Datalog±

We now introduce linear Datalog± as a variant of guarded Datalog±, where query answering is even FO-

rewritable in the data complexity. Nonetheless, (an extension of) linear Datalog± is still expressive enough

for representing ontologies, as we will show in Sections 7 and 8 for ontologies encoded in the description

logics of the DL-Lite family (DL-LiteF , DL-LiteR, and DL-LiteA [31, 72]).

A TGD is linear iff it contains only a singleton body atom (i.e., the TGD is of the form ∀X∀YΦ(X,

Y)→ ∃ZΨ(X,Z), where Φ(X,Y) is an atom).

Example 12 Consider again the TGDs of Example 4. As easily verified, the first two are linear, while the

last two are not. Another linear TGD is directs(E,P )→ employee(E), restricting the first argument of the

directs relation to employees.

Observe that linear Datalog± generalizes the well-known class of inclusion dependencies, and that this

generalization is strict, for example, the linear TGD supervises(X,X) → manager(X), which asserts that

all people supervising themselves are managers, is not expressible with inclusion dependencies.
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We next define the bounded derivation-depth property for sets of TGDs, which is strictly stronger than

the bounded guard-depth property (see Definition 1), since the former implies the latter, but not vice versa.

Informally, the bounded derivation-depth property says that whenever (homomorphic images of) the query

atoms are contained in the chase, then they (along with their derivations) are also contained in a finite, initial

portion of the chase graph (rather than the guarded chase forest), whose size depends only on the query and

the schema.

Definition 2 Let R be a relational schema, and Σ be a set of TGDs on R. Then, we say that Σ has the

bounded derivation-depth property (BDDP) iff, for every database D for R and for every BCQ Q over R,

whenever D ∪ Σ |= Q, then chaseγd(D,Σ) |= Q, where γd depends only on Q andR.

Clearly, in the case of linear TGDs, for every a∈ chase(D, Σ), the subtree of a is now determined only

by a itself, while in the case of guarded TGDs it depends on type(a). Therefore, for a single atom, its depth

coincides with the number of applications of the TGD chase rule that are necessary to generate it. That is,

the guarded chase forest coincides with the chase graph. Thus, by Theorem 5, we immediately obtain that

linear TGDs have the bounded derivation-depth property.

Corollary 8 Linear TGDs enjoy the BDDP.

We next recall the notion of first-order rewritability for classes of TGDs. A class of TGDs C is first-

order rewritable (or FO-rewritable) iff for every set of TGDs Σ in C and for every BCQ Q, there exists a

first-order query QΣ such that, for every database D, it holds that D ∪Σ |=Q iff D |=QΣ. Since answering

first-order queries is in AC0 in the data complexity [81], also BCQ answering under FO-rewritable TGDs is

in AC0 in the data complexity.

The following result shows that BCQs Q relative to TGDs Σ with the bounded derivation-depth property

are FO-rewritable. The main ideas behind its proof are informally summarized as follows. Since the deriva-

tion depth and the number of body atoms in TGDs in Σ are bounded, the number of all database ancestors of

query atoms is also bounded. So, the number of all non-isomorphic sets of potential database ancestors with

variables as arguments is also bounded. Take the existentially quantified conjunction of every such ancestor

set where Q is answered positively. Then, the FO-rewriting of Q is the disjunction of all these formulas.

Theorem 9 Let R be a relational schema, D be a database for R, Σ be a set of TGDs on R, and Q be a

BCQ overR. If Σ enjoys the BDDP, then Q is FO-rewritable.

As an immediate consequence of Corollary 8 and Theorem 9, we obtain that BCQs are FO-rewritable in

the linear case.

Corollary 10 Let R be a relational schema, D be a database for R, Σ be a set of linear TGDs on R, and

Q be a BCQ overR. Then, Q is FO-rewritable.

Observe that all the above results also apply to multi-linear TGDs, which are TGDs with only guards in

their bodies, since here the guarded chase forest can be chosen in such a way that the depth of all its atoms

coincides with their derivation depth. Formally, a TGD σ is multi-linear iff all its body atoms have the same

variables (i.e., σ has the form ∀X∀YΦ(X,Y)→∃ZΨ(X, Z), where Φ(X,Y) is a conjunction of atoms

pi(X,Y), each containing each variable of X and Y).
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5 Adding (Negative) Constraints

In this section, we extend Datalog± by (negative) constraints, which are an important ingredient, in particu-

lar, for representing ontologies.

A negative constraint (or simply constraint) is a first-order formula of the form ∀XΦ(X)→⊥, where

Φ(X) is a (not necessarily guarded) conjunction of atoms. It is often also written as ∀XΦ′(X) → ¬p(X),
where Φ′(X) is obtained from Φ(X) by removing the atom p(X). We usually omit the universal quantifiers,

and we implicitly assume that all sets of constraints are finite here.

Example 13 If the two unary predicates c and c′ represent two classes (also called concepts in DLs), we may

use the constraint c(X), c′(X)→⊥ to assert that the two classes have no common instances. Similarly, if ad-

ditionally the binary predicate r represents a relationship (also called a role in DLs), we may use c(X), r(X,

Y )→⊥ to enforce that no member of the class c participates to the relationship r. Furthermore, if the two

binary predicates r and r′ represent two relationships, we may use the constraint r(X,Y ), r′(X,Y )→⊥
to express that the two relationships are disjoint.

Query answering on a database D under a set of TGDs ΣT (as well as a set of EGDs ΣE as introduced

in the next section) and a set of constraints ΣC can be done effortless by additionally checking that every

constraint σ=Φ(X)→⊥∈ΣC is satisfied in D and ΣT , each of which can be done by checking that the

BCQ Qσ =Φ(X) evaluates to false on D and ΣT . We write D ∪ ΣT |= ΣC iff every σ ∈ΣC is false in D

and ΣT . We thus obtain immediately the following result. Here, a BCQ Q is true in D and ΣT and ΣC ,

denoted D ∪ ΣT ∪ ΣC |= Q, iff (i) D ∪ ΣT |= Q or (ii) D ∪ ΣT 6|= ΣC (as usual in DLs).

Theorem 11 Let R be a relational schema, D be a database for R, ΣT and ΣC be sets of TGDs and

constraints on R, respectively, and Q be a BCQ on R. Then, D ∪ ΣT ∪ ΣC |= Q iff (i) D ∪ ΣT |= Q or

(ii) D ∪ ΣT |= Qσ for some σ ∈ΣC .

As an immediate consequence, we obtain that constraints do not increase the data complexity of answer-

ing BCQs in the guarded (resp., linear) case.

Corollary 12 Answering BCQs on databases under guarded (resp., linear) TGDs and constraints has the

same data complexity as answering BCQs on databases under guarded (resp., linear) TGDs alone.

6 Adding Equality-Generating Dependencies (EGDs) and Keys

In this section, we add equality-generating dependencies (EGDs) to guarded (and linear) Datalog±, which

are also important when representing ontologies. Note that EGDs generalize functional dependencies (FDs)

and, in particular, key dependencies (or keys) [1]. In DL-Lite (see Sections 7 and 8), general EGDs cannot

be formulated, but only keys. Therefore, we mainly focus on keys here. We transfer a result by [27] about

non-key-conflicting (NKC) inclusion dependencies to the more general setting of guarded Datalog±.

However, while adding negative constraints is effortless from a computational perspective, adding EGDs

is more problematic: The interaction of TGDs and EGDs leads to undecidability of query answering even in

simple cases, such that of functional and inclusion dependencies [33], or keys and inclusion dependencies

(see, e.g., [27], where the proof of undecidability is done in the style of Vardi as in [50]). It can even be

seen that a fixed set of EGDs and guarded TGDs can simulate a universal Turing machine, and thus query

answering and even propositional ground atom inference is undecidable for such dependencies. For this
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reason, we consider a restricted class of EGDs, namely, non-conflicting key dependencies (or NC keys),

which show a controlled interaction with TGDs (and negative constraints), such that they do not increase

the complexity of answering BCQs. Nonetheless, this class is sufficient for modeling ontologies.

An equality-generating dependency (or EGD) σ is a first-order formula of the form ∀XΦ(X)→Xi=Xj ,

where Φ(X), called the body of σ, denoted body(σ), is a (not necessarily guarded) conjunction of atoms,

and Xi and Xj are variables from X. We call Xi=Xj the head of σ, denoted head(σ). Such σ is satisfied

in a database D for R iff, whenever there exists a homomorphism h such that h(Φ(X,Y))⊆D, it holds

that h(Xi)=h(Xj). We usually omit the universal quantifiers in EGDs, and all sets of EGDs are finite here.

Example 14 The following formula σ is an equality-generating dependency:

r1(X,Y ), r2(Y, Z)→ Y = Z.

The database D = {r1(a, b), r2(b, b)} satisfies σ, because every homomorphism h mapping the body of σ

to D is such that h(Y )=h(Z). On the contrary, the database D = {r1(a, b), r2(b, c)} does not satisfy σ.

An EGD σ on R of the form Φ(X)→Xi=Xj is applicable to a database D for R iff there exists a

homomorphism η : Φ(X)→D such that η(Xi) and η(Xj) are different and not both constants. If η(Xi)
and η(Xj) are different constants in ∆, then there is a hard violation of σ, and the chase fails. Otherwise,

the result of the application of σ to D is the database h(D) obtained from D by replacing every occurrence

of a non-constant element e∈{η(Xi), η(Xj)} in D by the other element e′ (if e and e′ are both nulls,

then e precedes e′ in the lexicographic order). Note that h is a homomorphism, but not necessarily an

endomorphism of D, since h(D) is not necessarily a subset of D. But for the special class of TGDs and

EGDs that we define in this section, h is actually an endomorphism of D.

The chase of a database D, in the presence of two sets ΣT and ΣE of TGDs and EGDs, respectively,

denoted chase(D,ΣT ∪ ΣE), is computed by iteratively applying (1) a single TGD once, according to the

standard order and (2) the EGDs, as long as they are applicable (i.e., until a fixpoint is reached).

Example 15 Consider the following set of TGDs and EGDs Σ = {σ1, σ2, σ3}:

σ1 : r(X,Y ) → ∃Z s(X,Y, Z),
σ2 : s(X,Y, Z) → Y = Z,

σ3 : r(X,Y ), s(Z, Y, Y ) → X = Y.

Let D be the database {r(a, b)}. In the computation of chase(D,Σ), we first apply σ1 and add the fact

s(a, b, z1), where z1 is a null. Then, the application of σ2 on s(a, b, z1) yields z1 = b, thus turning s(a, b, z1)
into s(a, b, b). Now, we apply σ3 on r(a, b) and s(a, b, b), and by equating a = b, the chase fails; this is a

hard violation, since both a and b are constants in ∆.

6.1 Separability

We now first focus on the semantic notion of separability for EGDs, which formulates a controlled in-

teraction of EGDs and TGDs / (negative) constraints, so that the EGDs do not increase the complexity of

answering BCQs.

Definition 3 LetR be a relational schema, and ΣT and ΣE be sets of TGDs and EGDs onR, respectively.

Then, ΣE is separable from ΣT iff for every database D forR, the following conditions (i) and (ii) are both

satisfied:
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(i) If there is a hard violation of an EGD of ΣE in chase(D,ΣT ∪ΣE), then there is also a hard violation

of some EGD of ΣE in D.

(ii) If there is no chase failure, then for every BCQ Q, it holds that chase(D, ΣT ∪ ΣE) |= Q iff

chase(D,ΣT ) |= Q.

The following result shows that adding separable EGDs to TGDs and constraints does not increase the

data complexity of answering BCQs in the guarded and linear case. It follows immediately from the fact

that the separability of EGDs implies that chase failure can be directly evaluated on D.

Theorem 13 LetR be a relational schema, ΣT and ΣE be fixed sets of TGDs and EGDs onR, respectively,

where ΣE is separable from ΣT , and ΣC be a fixed set of constraints onR. LetQC be the disjunction of all

Qσ with σ ∈ΣC . Then:

(a) If deciding D ∪ ΣT |= Q ∨ QC is feasible in polynomial time for each fixed query Q, then so is

deciding D ∪ ΣT ∪ ΣE |= Q ∨ QC .

(b) If deciding D∪ΣT |= Q∨QC is FO-rewritable for each fixed query Q, then so is deciding D∪ΣT ∪
ΣE |= Q ∨ QC .

6.2 Non-Conflicting Keys

We next provide a sufficient syntactic condition for the separability of EGDs. We assume that the reader is

familiar with the notions of a functional dependency (FD) (which informally encodes that certain attributes

of a relation functionally depend on others) and a key (dependency) (which is informally a tuple-identifying

set of attributes of a relation) [1]. Clearly, FDs are special types of EGDs. A key κ of a relation r can be

written as a set of FDs that specify that κ determines each other attribute of r. Thus, keys can be identified

with sets of EGDs. It will be clear from the context when we regard a key as a set of attribute positions, and

when we regard it as a set of EGDs. The following definition generalizes the notion of “non-key-conflicting”

dependency relative to a set of keys, introduced in [27], to the context of arbitrary TGDs.

Definition 4 Let κ be a key, and σ be a TGD of the form Φ(X,Y)→∃Z r(X,Z). Then, κ is non-conflicting

(NC) with σ iff either (i) the relational predicate on which κ is defined is different from r, or (ii) the positions

of κ in r are not a proper subset of the X-positions in r in the head of σ, and every variable in Z appears

only once in the head of σ. We say κ is non-conflicting (NC) with a set of TGDs ΣT iff κ is NC with every

σ ∈ΣT . A set of keys ΣK is non-conflicting (NC) with ΣT iff every κ∈ΣK is NC with ΣT .

Example 16 Consider the four keys κ1, κ2, κ3, and κ4 defined by the key attribute sets K1 = {r[1], r[2]},
K2 = {r[1], r[3]}, K3 = {r[3]}, and K4 = {r[1]}, respectively, and the TGD σ = p(X,Y ) →
∃Z r(X,Y, Z). Then, the head predicate of σ is r, and the set of positions in r with universally quanti-

fied variables is H = {r[1], r[2]}. Observe that all keys but κ4 are NC with σ, since only K4⊂H. Roughly,

every atom added in a chase by applying σ would have a fresh null in some position in K1, K2, and K3,

thus never firing κ1, κ2, and κ3, respectively.

The following theorem shows that the property of being NC between keys and TGDs implies their

separability. This generalizes a useful result of [27] on inclusion dependencies to the much larger class of

all TGDs. The main idea behind the proof can be roughly described as follows. The NC condition between

a key κ and a TGD σ assures that either (a) the application of σ in the chase generates an atom with a fresh

null in a position of κ, and so the fact does not violate κ (see also Example 16), or (b) the X-positions in
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the predicate r in the head of σ coincide with the key positions of κ in r, and thus any newly generated

atom must have fresh distinct nulls in all but the key position, and may eventually be eliminated without

violation. It then follows that the full chase does not fail. Since the new nulls are all distinct, it also contains

a homomorphic image of the TGD chase. Therefore, the full chase is in fact homomorphically equivalent to

the TGD chase.

Theorem 14 Let R be a relational schema, ΣT and ΣK be sets of TGDs and keys on R, respectively, such

that ΣK is NC with ΣT . Then, ΣK is separable from ΣT .

We conclude this section by stating that in the NC case, keys do not increase the data complexity of

answering BCQs under guarded (resp., linear) TGDs and constraints. This result follows immediately from

Theorems 14 and 13.

Corollary 15 LetR be a relational schema, ΣT and ΣK be fixed sets of TGDs and keys onR, respectively,

where ΣK is NC with ΣT , and ΣC be a fixed set of constraints on R. Let QC be the disjunction of all Qσ

such that σ ∈ΣC . Then:

(a) If ΣT are guarded TGDs, then deciding D ∪ ΣT ∪ ΣK |= Q ∨ QC is feasible in polynomial time.

(b) If ΣT are linear TGDs, then deciding D ∪ ΣT ∪ ΣK |= Q ∨ QC is FO-rewritable.

7 Ontology Querying in DL-LiteF and DL-LiteR

In this section, we show that the description logics DL-LiteF and DL-LiteR of the DL-Lite family [31]

can both be reduced to linear (or multi-linear) Datalog± with (negative) constraints and NC keys, called

Datalog±0 , and that the former are strictly less expressive than the latter. More specifically, we show how

Datalog±0 can be used for answering BCQs in DL-LiteF and DL-LiteR ontologies. We first recall the syntax

and the semantics of DL-LiteF and DL-LiteR. We then define the translation and provide the representation

and expressivity results.

Note that DL-LiteR is able to fully capture the (DL fragment of) RDF Schema [16], the vocabulary

description language for RDF; see [36] for a translation. Hence, Datalog±0 is also able to fully capture (the

DL fragment of) RDF Schema.

The other description logics of the DL-Lite family [31] can be similarly translated into Datalog±0 :

the translation of DL-LiteA into Datalog±0 is given in Section 8, and the translations for the other DLs

are sketched in Section 9. Note that it is mainly for didactic reasons that we start with the simpler DL-LiteF
and DL-LiteR, and we continue with the slightly more complex DL-LiteA.

Intuitively, DLs model a domain of interest in terms of concepts and roles, which represent classes of

individuals and binary relations on classes of individuals, respectively. A DL knowledge base (or ontology)

encodes in particular subset relationships between concepts, subset relationships between roles, the member-

ship of individuals to concepts, the membership of pairs of individuals to roles, and functional dependencies

on roles.

7.1 Syntax of DL-LiteF and DL-LiteR

We now recall the syntax of DL-LiteF (also simply called DL-Lite). As for the elementary ingredients, we

assume pairwise disjoint sets of atomic concepts, abstract roles, and individuals A, RA, and I, respectively.



18 CL-RR-21-10

These elementary ingredients are used to construct roles and concepts, which are defined as follows:

A basic role Q is either an atomic role P ∈RA or its inverse P−. A (general) role R is either a basic role

Q or the negation of a basic role ¬Q. A basic concept B is either an atomic concept A∈A or an existential

restriction on a basic role Q, denoted ∃Q. A (general) concept C is either a basic concept B or the negation

of a basic concept ¬B.

Statements about roles and concepts are expressed via axioms, where an axiom is either (1) a con-

cept inclusion axiom B⊑C, where B is a basic concept, and C is a concept, or (2) a functionality axiom

(funct Q), where Q is a basic role, or (3) a concept membership axiom A(a), where A∈A and a∈ I, or

(4) a role membership axiom P (a, c), where P ∈RA and a, c∈ I. A TBox is a finite set of concept inclusion

and functionality axioms. An ABox is a finite set of concept and role membership axioms. A knowledge

base KB =(T ,A) consists of a TBox T and an ABoxA. CQs and BCQs are defined as usual, with concept

and role membership axioms as atoms (over variables and individuals as arguments).

The description logic DL-LiteR allows for (5) role inclusion axioms Q⊑R, rather than functionality

axioms, where Q is a basic role, and R is a role.

Example 17 Consider the sets of atomic concepts, abstract roles, and individuals A, RA, and I, respec-

tively, given as follows:

A = {Scientist,Article,ConferencePaper, JournalPaper},
RA= {hasAuthor, hasFirstAuthor, isAuthorOf},
I = {i1, i2}.

The following concept inclusion axioms express that (i) conference and journal papers are articles, (ii) con-

ference papers are not journal papers, (iii) every scientist has a publication, and (iv) isAuthorOf relates

scientists and articles:

(i) ConferencePaper⊑Article, JournalPaper⊑Article,

(ii) ConferencePaper⊑¬JournalPaper, Scientist⊑∃isAuthorOf,

(iii) ∃isAuthorOf⊑ Scientist, ∃isAuthorOf −⊑Article.

Some role inclusion and functionality axioms are as follows; they express that (v) isAuthorOf is the inverse

of hasAuthor, and (vi) hasFirstAuthor is functional:

(v) isAuthorOf −⊑ hasAuthor, hasAuthor−⊑ isAuthorOf,

(vi) (funct hasFirstAuthor).

The following are some concept and role memberships, which express that the individual i1 is a scientist

who authors the article i2:

Scientist(i1), isAuthorOf(i1, i2), Article(i2).

7.2 Semantics of DL-LiteF and DL-LiteR

The semantics is defined via standard first-order interpretations. An interpretation I =(∆I , ·I) consists of

a nonempty (abstract) domain ∆I and a mapping ·I that assigns to each atomic concept C ∈A a subset of

∆I , to each abstract role R∈RA a subset of ∆I ×∆I , and to each individual a∈ I an element of ∆I . Here,

different individuals are associated with different elements of ∆I (unique name assumption). The mapping

·I is extended to all concepts and roles by:



CL-RR-21-10 19

• (P−)I = {(a, b) | (b, a)∈P I};
• (¬Q)I = ∆I ×∆I −QI ;

• (∃Q)I = {x∈∆I | ∃y : (x, y)∈QI};
• (¬B)I = ∆I \BI .

The satisfaction of an axiom F in the interpretation I =(∆I , ·I), denoted I |=F , is defined as follows:

(1) I |=B⊑C iff BI ⊆CI ; (2) I |=(functQ) iff (o, o′)∈QI and (o, o′′)∈QI implies o′= o′′; (3) I |=A(a)
iff aI ∈AI ; (4) I |=P (a, b) iff (aI , bI) ∈ P I ; and (5) I |=Q⊑R iff QI ⊆RI . The interpretation I
satisfies the axiom F , or I is a model of F , iff I |=F . The interpretation I satisfies a knowledge base

KB =(T ,A), or I is a model of KB , denoted I |=KB , iff I |=F for all F ∈T ∪A. We say that KB is

satisfiable (resp., unsatisfiable) iff KB has a (resp., no) model. The semantics of CQs and BCQs is as usual

in first-order logic.

7.3 Translation of DL-LiteF and DL-LiteR into Datalog±
0

The translation τ from the elementary ingredients and axioms of DL-LiteF and DL-LiteR into Datalog±0 is

defined as follows:

(1) Every atomic concept A∈A is associated with a unary predicate τ(A) = pA ∈R, every abstract role

P ∈RA is associated with a binary predicate τ(P )= pP ∈R, and every individual i∈ I is associated

with a constant τ(i) = ci ∈∆.

(2) Every concept inclusion axiom B⊑C is translated to the TGD or constraint τ(B⊑C)= τ ′(B) →
τ ′′(C), where

(i) τ ′(B) is defined as pA(X), pP (X,Y ), and pP (Y,X), if B is of the form A, ∃P , and ∃P−,

respectively, and

(ii) τ ′′(C) is defined as pA(X), ∃Z pP (X,Z), ∃Z pP (Z, X), ¬pA(X), ¬pP (X,Y ′), and ¬pP (Y
′,

X), if C is of form A, ∃P , ∃P−, ¬A, ¬∃P , and ¬∃P−, respectively.

(3) The functionality axioms (funct P ) and (funct P−) are under τ translated to the EGDs pP (X,Y ) ∧
pP (X,Y ′)→ Y =Y ′ and pP (X,Y ) ∧ pP (X

′, Y )→ X =X ′, respectively.

(4) Every concept membership axiom A(a) is under τ translated to the database atom pA(ca), and every

role membership axiom P (a, b) to the database atom pP (ca, cb).

(5) Every role inclusion axiom Q⊑R is translated to the TGD or constraint τ(Q⊑R)= τ ′(Q)→ τ ′′(R),
where

(i) τ ′(Q) is defined as pP (X,Y ) and pP (Y,X), if Q is of the form P and P−, respectively, and

(ii) τ ′′(R) is defined as pP (X,Y ), pP (Y,X), ¬pP (X,Y ), and ¬pP (Y,X), if R is of the form P ,

P−, ¬P , and ¬P−, respectively.
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Example 18 The concept inclusion axioms of Example 17 are translated to the following TGDs and

constraints (where we identify atomic concepts and roles with their predicates):

ConferencePaper(X)→Article(X),
JournalPaper(X)→Article(X),
ConferencePaper(X)→¬JournalPaper(X),
Scientist(X)→∃Z isAuthorOf(X,Z),
isAuthorOf(X,Y )→ Scientist(X),
isAuthorOf(Y,X)→Article(X).

The role inclusion and functionality axioms of Example 17 are translated to the following TGDs and EGDs:

isAuthorOf(Y,X)→ hasAuthor(X,Y ),
hasAuthor(Y,X)→ isAuthorOf(X,Y ),
hasFirstAuthor(X,Y ), hasFirstAuthor(X,Y ′)→Y =Y ′.

The concept and role membership axioms of Example 17 are translated to the following database atoms

(where we also identify individuals with their constants):

Scientist(i1), isAuthorOf(i1, i2), Article(i2).

Every knowledge base KB in DL-LiteS , S ∈{F ,R}, is then translated into a database DKB , set of

TGDs ΣKB , and disjunction of queriesQKB as follows: (i) the database DKB is the set of all τ(φ) such that

φ is a concept or role membership axiom in KB , (ii) the set of TGDs ΣKB is the set of all TGDs resulting

from τ(φ) such that φ is a concept or role inclusion axiom in KB , and (iii) QKB is the disjunction of all

queries resulting from constraints and EGDs τ(φ) such that φ is a concept inclusion, or role inclusion, or

functionality axiom in KB (satisfying any query Q occurring inQKB means violating a constraint or EGD).

The following lemma shows that the TGDs generated from a DL-LiteR knowledge base are in fact lin-

ear TGDs, and that the TGDs and EGDs generated from a DL-LiteF knowledge base are in fact linear TGDs

and NC keys, respectively. Here, the fact that the generated TGDs and EGDs are linear and keys, respec-

tively, is immediate by the above translation. Proving the NC property for the generated keys boils down to

showing that keys resulting from functionality axioms (functP ) are NC with TGDs from concept inclusion

axioms B⊑∃P and B⊑∃P−.

Lemma 16 Let KB be a knowledge base in DL-LiteS , S ∈{F ,R}. Then, (a) every TGD in ΣKB is linear.

If KB is in DL-LiteF , and ΣK is the set of all EGDs encoded in QKB , then (b) every EGD in ΣK is a key,

and (c) ΣK is NC with ΣKB .

The next result shows that BCQs addressed to knowledge bases in DL-LiteF and DL-LiteR can be re-

duced to BCQs in linear Datalog±0 . This important result follows from the above Lemma 16 and Theorem 14

(stating that the NC property for keys implies their separability relative to a set of TGDs).

Theorem 17 Let KB be a knowledge base in DL-LiteS , S ∈{F ,R}, and let Q be a BCQ for KB . Then, Q

holds in KB iff DKB ∪ ΣKB |= Q ∨ QKB .

As an immediate consequence, the satisfiability of knowledge bases in DL-LiteF and DL-LiteR can be

reduced to BCQs in Datalog±0 . Intuitively, the theorem follows from the observation that the unsatisfiability

of KB is equivalent to the truth of ⊥ in KB , which is in turn equivalent to DKB ∪ ΣKB |= QKB .
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Theorem 18 Let KB be a knowledge base in DL-LiteS , S ∈ {F ,R}. Then, KB is unsatisfiable iff DKB ∪
ΣKB |=QKB .

The next important result shows that Datalog±0 is strictly more expressive than both DL-LiteF and DL-

LiteR. The main idea behind its proof is to show that neither DL-LiteF nor DL-LiteR can express the TGD

p(X)→ q(X,X).

Theorem 19 Datalog±0 is strictly more expressive than DL-LiteF and DL-LiteR.

8 Ontology Querying in DL-LiteA

We now generalize the results of Section 7 to the description logic DL-LiteA of the DL-Lite family [72]. We

first recall the syntax and the semantics of DL-LiteA. We then define the translation and the representation

and expressivity results.

8.1 Syntax of DL-LiteA

As for the elementary ingredients of DL-LiteA, let D be a finite set of atomic datatypes d, which are associ-

ated with pairwise disjoint sets of data values Vd. Let A, RA, RD, and I be pairwise disjoint sets of atomic

concepts, atomic roles, atomic attributes, and individuals, respectively, and let V =
⋃

d∈DVd.

Roles, concepts, attributes, and datatypes are defined as follows:

• A basic role Q is either an atomic role P ∈RA or its inverse P−. A (general) role R is either a basic

role Q or the negation of a basic role ¬Q.

• A basic concept B is either an atomic concept A∈A, or an existential restriction on a basic role Q,

denoted ∃Q, or the domain of an atomic attribute U ∈RD, denoted δ(U). A (general) concept C is

either the universal concept ⊤C , or a basic concept B, or the negation of a basic concept ¬B, or an

existential restriction on a basic role Q of form ∃Q.C, where C is a concept.

• A (general) attribute V is either an atomic attribute U ∈RD or the negation of an atomic attribute

¬U .

• A basic datatype E is the range of an atomic attribute U ∈RD, denoted ρ(U). A (general) datatype

F is either the universal datatype ⊤D or an atomic datatype d∈D.

An axiom has one of the following forms: (1) B⊑C (concept inclusion axiom), where B is a basic

concept, and C is a concept; (2) Q⊑R (role inclusion axiom), where Q is a basic role, and R is a role; (3)

U ⊑V (attribute inclusion axiom), where U is an atomic attribute, and V is an attribute; (4) E⊑F (datatype

inclusion axiom), where E is a basic datatype, and F is a datatype; (5) (funct Q) (role functionality axiom),

where Q is a basic role; (6) (funct U) (attribute functionality axiom), where U is an atomic attribute; (7)

A(a) (concept membership axiom), where A is an atomic concept and a∈ I; (8) P (a, b) (role membership

axiom), where P is an atomic role and a, b∈ I; and (9) U(a, v) (attribute membership axiom), where U is

an atomic attribute, a∈ I, and v ∈V.

We next define knowledge bases, which consist of a restricted finite set of inclusion and functionality

axioms, called TBox, and a finite set of membership axioms, called ABox. We first define the restriction

on inclusion and functionality axioms. A basic role P or P− (resp., an atomic attribute U ) is an identifying

property in a set of axioms S iff S contains a functionality axiom (funct P ) or (funct P−) (resp., (functU)).
Given an inclusion axiom α of the form X ⊑Y (resp., X ⊑¬Y ), a basic role (resp., atomic attribute) Y
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appears positively (resp., negatively) in its right-hand side of α. A basic role (resp., atomic attribute) is

primitive in S iff it does not appear positively in the right-hand side of an inclusion axiom in S and it does

not appear in an expression ∃Q.C in S . We can now define knowledge bases. A TBox is a finite set T
of inclusion and functionality axioms such that every identifying property in T is primitive. Intuitively,

identifying properties cannot be specialized in T , i.e., they cannot appear positively in the right-hand side of

inclusion axioms in T . An ABox A is a finite set of membership axioms. A knowledge base KB =(T ,A)
consists of a TBox T and an ABox A. As usual, CQs and BCQs use concept and role membership axioms

as atoms (over variables and individuals).

8.2 Semantics of DL-LiteA

The semantics of DL-LiteA is defined in terms of standard typed first-order interpretations. An interpretation

I =(∆I , ·I) consists of (i) a nonempty domain ∆I =(∆I
O,∆

I
V ), which is the disjoint union of the domain

of objects ∆I
O and the domain of values ∆I

V =
⋃

d∈D ∆I
d , where the ∆I

d ’s are pairwise disjoint domains of

values for the datatypes d∈D, and (ii) a mapping ·I that assigns to each datatype d∈D its domain of values

∆I
d , to each data value v ∈Vd an element of ∆I

d (such that v 6=w implies vI 6=wI), to each atomic concept

A∈A a subset of ∆I
O, to each atomic role P ∈RA a subset of ∆I

O ×∆I
O, to each atomic attribute P ∈RD a

subset of ∆I
O ×∆I

V , to each individual a∈ I an element of ∆I
O (such that a 6= b implies aI 6= bI). Note that

different data values (resp., individuals) are associated with different elements of ∆I
V (resp., ∆I

O) (unique

name assumption). The extension of ·I to all concepts, roles, attributes, and datatypes, and the satisfaction

of an axiom α in I = (∆I , ·I), denoted I |=α, are defined by:

• (⊤D)
I = ∆I

V and (⊤C)
I = ∆I

O;

• (¬U)I = (∆I
O ×∆I

V )− UI ;

• (¬Q)I = (∆I
O ×∆I

O)−QI ;

• (ρ(U))I = {v ∈∆I
V | ∃o : (o, v)∈U

I};
• (δ(U))I = {o∈∆I

O | ∃v : (o, v)∈U
I};

• (P−)I = {(o, o′)∈∆I
O ×∆I

O | (o
′, o)∈P I};

• (∃Q)I = {o∈∆I
O | ∃o

′ : (o, o′)∈QI};
• (∃Q.C)I = {o∈∆I

O | ∃o
′ : (o, o′)∈QI , o′ ∈CI};

• (¬B)I = ∆I
O \B

I .

The satisfaction of an axiom α in the interpretation I = (∆I , ·I), denoted I |=α, is defined as follows:

(1) I |=B ⊑ C iff BI ⊆CI , (2) I |=Q⊑R iff QI ⊆RI , (3) I |=E⊑F iff EI ⊆F I , (4) I |=U ⊑V iff

UI ⊆V I , (5) I |=(funct Q) iff (o, q), (o, q′)∈QI implies q= q′, (6) I |=(funct U) iff (o, v), (o, v′)∈UI

implies v= v′, (7) I |=A(a) iff aI ∈AI , (8) I |=P (a, b) iff (aI , bI) ∈ P I , (9) I |=U(a, v) iff (aI , vI) ∈
UI . The interpretation I satisfies the axiom α, or I is a model of α, iff I |=α. We say I satisfies a

knowledge base KB =(T ,A), or I is a model of KB , denoted I |=KB , iff I |=α for all α∈T ∪A. We

say KB is satisfiable (resp., unsatisfiable) iff KB has a (resp., no) model. The semantics of CQs and BCQs

is as usual in first-order logic.

8.3 Translation of DL-LiteA into Datalog±
0

The translation τ from the elementary ingredients and axioms of DL-LiteA into Datalog±0 is defined as

follows:
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(1) Every data value v has a constant τ(v)= cv ∈ ∆ such that the τ(Vd)’s for all datatypes d∈D are

pairwise disjoint. Every datatype d∈D has under τ a predicate τ(d)= pd along with the constraint

pd(X) ∧ pd′(X) → ⊥ for all pairwise distinct d, d′ ∈D. Every atomic concept A∈A has a unary

predicate τ(A)= pA ∈R, every abstract role P ∈RA has a binary predicate τ(P )= pP ∈R, every

attribute U ∈RD has a binary predicate τ(U)= pU ∈R, and every individual i∈ I has a constant

τ(i) = ci ∈∆−
⋃

d∈D τ(Vd).

(2) Every concept inclusion axiom B⊑C is translated to the TGD or constraint τ(B⊑C)= τ ′(B) →
τ ′′(C), where

(i) τ ′(B) is defined as pA(X), pP (X,Y ), pP (Y,X), and pU (X,Y ), if B is of the form A, ∃P ,

∃P−, and δ(U), respectively, and

(ii) τ ′′(C) is defined as pA(X), ∃Z pP (X,Z), ∃Z pP (Z, X), ∃Z pU (X,Z), ¬pA(X), ¬pP (X,Y ′),
¬pP (Y

′, X), ¬pU (X,Y ′), ∃Z pP (X,Z) ∧ pA(Z), and ∃Z pP (Z, X) ∧ pA(Z), if C is of form

A, ∃P , ∃P−, δ(U), ¬A, ¬∃P , ¬∃P−, ¬δ(U), ∃P.A, and ∃P−.A, respectively.

Note that concept inclusion axioms B⊑⊤C can be safely ignored, and concept inclusion axioms

B⊑∃Q.C can be expressed by the two concept inclusion axioms B⊑∃Q.A and A⊑C, where A

is a fresh atomic concept. Note also that the TGDs with two atoms in their heads abbreviate their

equivalent sets of TGDs with singleton atoms in the heads.

(3) The functionality axioms (funct P ) and (funct P−) are under τ translated to the EGDs pP (X,Y ) ∧
pP (X,Y ′)→ Y =Y ′ and pP (X,Y ) ∧ pP (X

′, Y )→ X =X ′, respectively. The functionality axiom

(funct U) is under τ translated to the EGD pU (X,Y ) ∧ pU (X,Y ′)→ Y =Y ′.

(4) Every concept membership axiom A(a) is under τ translated to the database atom pA(ca). Every

role membership axiom P (a, b) is under τ translated to the database atom pP (ca, cb). Every attribute

membership axiom U(a, v) is under τ translated to the database atom pU (ca, cv).

(5) Every role inclusion axiom Q⊑R is translated to the TGD or constraint τ(Q⊑R)= τ ′(Q)→ τ ′′(R),
where

(i) τ ′(Q) is defined as pP (X,Y ) and pP (Y,X), if Q is of the form P and P−, respectively, and

(ii) τ ′′(R) is defined as pP (X,Y ), pP (Y,X), ¬pP (X,Y ), and ¬pP (Y,X), if R is of the form P ,

P−, ¬P , and ¬P−, respectively.

(6) Attribute inclusion axioms U ⊑U ′ and U ⊑¬U ′ are under τ translated to the TGD pU (X,Y ) →
pU ′(X,Y ) and the constraint pU (X,Y )→ ¬pU ′(X,Y ), respectively.

(7) Every datatype inclusion axiom ρ(U)⊑ d is under τ translated to the TGD pU (Y,X)→ pd(X). Note

that datatype inclusion axioms ρ(U)⊑⊤D can be safely ignored.

Every knowledge base KB in DL-LiteA is then translated into a database DKB , set of TGDs ΣKB , and

disjunction of queries QKB as follows: (i) DKB is the set of all τ(φ) such that φ is a membership axiom in

KB along with “type declarations” pd(v) for all their data values; (ii) ΣKB is the set of all TGDs resulting

from τ(φ) such that φ is an inclusion axiom in KB ; and (iii) QKB is the disjunction of all queries resulting

from datatype constraints and from constraints and EGDs τ(φ) such that φ is an inclusion or functionality

axiom in KB .



24 CL-RR-21-10

The following result shows that Lemma 16 carries over to DL-LiteA. That is, the TGDs and EGDs

generated from a DL-LiteA knowledge base are in fact linear TGDs and NC keys, respectively. This follows

from the observation that the new TGDs for DL-LiteA are also linear or equivalent to collections of linear

TGDs, and that the keys are also NC with the new TGDs, due to the restricting assumption that all identifying

properties in DL-LiteA knowledge bases are primitive.

Lemma 20 Let KB be a knowledge base in DL-LiteA, and let ΣK be the set of all EGDs encoded in QKB .

Then, (a) every TGD in ΣKB is linear, (b) every EGD in ΣK is a key, and (c) ΣK is NC with ΣKB .

Consequently, also Theorem 17 carries over to DL-LiteA. That is, BCQs addressed to knowledge bases

in DL-LiteA can be reduced to BCQs in Datalog±0 . Note that here and in the theorem below, we assume that

every datatype has an infinite number of data values that do not occur in KB .

Theorem 21 Let KB be a knowledge base in DL-LiteA, and let Q be a BCQ for KB . Then, Q holds in KB

iff DKB ∪ ΣKB |= Q ∨ QKB .

Similarly, the satisfiability of knowledge bases in DL-LiteA can be reduced to BCQs in Datalog±0 . This

result is formally expressed by the following theorem, which is an extension of Theorem 18 to DL-LiteA.

Theorem 22 Let KB be a knowledge base in DL-LiteA. Then, KB is unsatisfiable iff DKB ∪ΣKB |= QKB .

Finally, Datalog±0 is also strictly more expressive than DL-LiteA, which is formulated by the next theo-

rem, extending Theorem 19 to DL-LiteA.

Theorem 23 Datalog±0 is strictly more expressive than DL-LiteA.

9 Ontology Querying in Other Description Logics

In this section, we show that also the other tractable description logics of the DL-Lite family can be reduced

to Datalog±0 . We also recall that F-Logic Lite is a special case of weakly-guarded Datalog±. Furthermore,

we show that the tractable description logic EL can be reduced to guarded Datalog±.

9.1 Ontology Querying in the DL-Lite Family

A complete picture of the DL-Lite family of description logics (with binary roles) [31] is given in Fig. 4; note

that the arrows with filled lines represent proper generalizations, while the ones with dashed lines encode

generalizations along with syntactical restrictions. In addition to DL-LiteF , DL-LiteR, and DL-LiteA, the

DL-Lite family consists of further description logics, namely, (i) DL-Litecore, which is the intersection of

DL-LiteF and DL-LiteR, (ii) DL-Lite+A, which is obtained from DL-LiteA by adding role attributes and

identification constraints, and (iii) DL-LiteF ,⊓, DL-LiteR,⊓, and DL-Lite+A,⊓, which are obtained from DL-

LiteF , DL-LiteR, and DL-Lite+A, respectively, by additionally allowing conjunctions in the left-hand sides

of inclusion axioms. Furthermore, each above description logic (with binary roles) DL-LiteX has a variant,

denoted DLR-LiteX , which additionally allows for n-ary relations, along with suitable constructs to deal

with them.

Clearly, since DL-Litecore is a restriction of DL-LiteF , it can also be reduced to Datalog±0 . In the fol-

lowing, we show that all the other description logics of the DL-Lite family can similarly be reduced to

Datalog±0 .
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DL-LiteR,⊓

DL-Lite+A,⊓

DL-Lite+A

DL-LiteF DL-LiteR

DL-Litecore

DL-LiteF ,⊓

DL-LiteA

Figure 4: The DL-Lite family of description logics.

A role attribute UR [29] denotes a binary relation between objects and values. Role attributes come

along with: (1) introducing a set of atomic role attributes, (2) extending (general) concepts by expressions

of the form δF (U), ∃δF (UR), and ∃δF (UR)
−, denoting the set of all objects, object pairs, and inverses of

object pairs, respectively, that an atomic (concept) attribute U or an atomic role attribute UR relates to values

of a (general) datatype F , (3) extending basic datatypes by atomic datatypes d and the expression ρ(UR),
denoting the range of the atomic role attribute UR, (4) extending (general) datatypes by basic datatypes

E and their negations ¬E, (5) adding (general) role attributes VR, which are either atomic role attributes

UR or their negations ¬UR, (6) extending basic roles by the expressions δ(UR) and δ(UR)
−, denoting the

set of all object pairs and inverses of object pairs, respectively, that an atomic role attribute UR relates to

values, (7) extending (general) roles by the expressions δF (UR) and δF (UR)
−, denoting the set of all object

pairs and inverses of object pairs, respectively, that an atomic role attribute UR relates to values of a general

datatype F , (8) adding role attribute inclusion axioms UR ⊑ VR and functionality axioms (funct UR), where

UR (resp., VR) is an atomic (resp., a general) role attribute, (9) adding membership axioms UR(a, b, c) for

atomic role attributes UR, and (10) extending the notion of identifying property to also include all atomic

role attributes in functionality axioms. Note that all axioms with concepts ∃Q.C and with concepts and roles

containing the operator δF can be reduced to other axioms without them [29]. The translation τ of DL-LiteA
into Datalog±0 is then extended to the remaining axioms by:

(1) for concept inclusion axioms B⊑C, we additionally define (i) τ ′(B) as pUR
(X,Y, Y ′) and pUR

(Y,X,

Y ′), if B is of the form ∃δ(UR) and ∃δ(UR)
−, respectively, and (ii) τ ′′(C) as ∃Z,Z ′ pUR

(X,Z,Z ′),
∃Z,Z ′ pUR

(Z,X,Z ′), ¬pUR
(X,Z,Z ′), and ¬pUR

(Z,X,Z ′) if C is of the form ∃δ(UR), ∃δ(UR)
−,

¬∃δ(UR), and ¬∃δ(UR)
−, respectively;

(2) functionality axioms (funct UR) are under τ translated to the EGD pUR
(X, Y, Z)∧pUR

(X,Y, Z ′)→
Z =Z ′;

(3) role attribute membership axioms UR(a, b, c) are under τ translated to the database atom pUR
(ca,

cb, cc);



26 CL-RR-21-10

(4) for role inclusion axioms Q⊑R, we additionally define (i) τ ′(Q) as pUR
(X, Y, Y ′) and pUR

(Y,X, Y ′)
if Q is of the form δ(UR) and δ(UR)

−, respectively, and (ii) τ ′′(R) as ∃Z pUR
(X,Y, Z), ∃Z pUR

(Y,X,

Z), ¬pUR
(X,Y, Z), and ¬pUR

(Y,X,Z) if R is of the form δ(UR), δ(UR)
−, ¬δ(UR), and ¬δ(UR)

−,

respectively;

(5) role attribute inclusion axioms UR⊑U ′
R and UR⊑¬U

′
R are under τ translated to the TGD pUR

(X,Y,

Z)→ pU ′
R
(X,Y, Z) and the constraint pUR

(X, Y, Z)→ ¬pU ′
R
(X,Y, Z), respectively; and

(6) datatype inclusion axioms E⊑F are under τ translated to τ ′(E) → τ ′′(F ), where (i) τ ′(E) is de-

fined as pd(X) and pUR
(Y, Y ′, X), if E is of form d and ρ(UR), respectively, and (ii) τ ′′(F ) as

pd(X), pUR
(Z,Z ′, X), ¬pd(X), and ¬pUR

(Z,Z ′, X), if F is of form d, ρ(UR), ¬d, and ¬ρ(UR),
respectively.

An identification axiom [30] is of the form (id B I1, . . . , In), with n> 1, where B is a basic concept,

and each Ij , j ∈{1, . . . , n}, is either an atomic attribute or a basic role. Such an axiom encodes that the

combination of properties I1, . . . , In identifies the instances of the basic concept B. The notion of identify-

ing property is then extended to also include all atomic attributes and basic roles that occur in identification

axioms. The translation τ of DL-LiteA into Datalog±0 is extended by mapping each such axiom under τ to

the EGD (which is a slight extension of Datalog±0 to also include I1, . . . , In as a key of a virtual relation

R(B, I1, . . . , In)):

τB(X) ∧
∧n

i=1 τIi(X,Yi) ∧ τB(X
′) ∧

∧n
i=1 τIi(X

′, Yi)→ X =X ′ ,

where (i) τB(X) is defined as pA(X), pP (X,Y ), pP (Y,X), pUR
(X,Y, Y ′), pUR

(Y, X, Y ′), and pU (X,Y ),
if B is of form A, ∃P , ∃P−, ∃δ(UR), ∃δ(UR)

−, and δ(U), respectively, and (ii) τI(X,Y ) is pU (X,Y ),
pP (X,Y ), pP (Y,X), pUR

(X,Y, Y ′), and pUR
(Y,X, Y ′), if I is of form U , P , P−, δ(UR), and δ(UR)

−,

respectively.

The following result shows that Theorems 21 and 22 carry over to DL-Lite+A, i.e., both BCQs addressed

to knowledge bases KB in DL-Lite+A as well as the satisfiability of such KB can be reduced to BCQs in

Datalog±0 . Here and in the following, the database DKB , the set of TGDs ΣKB , and the disjunction of queries

QKB are defined as in Sections 7 and 8, except that we now use the corresponding extended translation τ ,

rather than those of Sections 7 and 8, respectively.

Theorem 24 Let KB be a knowledge base in DL-Lite+A, and let Q be a BCQ for KB . Then, (a) Q holds

in KB iff DKB ∪ ΣKB |= Q ∨ QKB , and (b) KB is unsatisfiable iff DKB ∪ ΣKB |= QKB .

The three description logics DL-LiteF ,⊓, DL-LiteR,⊓, and DL-Lite+A,⊓ are obtained from DL-LiteF , DL-

LiteR, and DL-Lite+A, respectively, by additionally allowing conjunctions in the left-hand sides of inclusion

axioms. These DLs can be encoded by Datalog±0 with multi-linear TGDs. To this end, the translation τ

of DL-LiteF , DL-LiteR, and DL-Lite+A into Datalog±0 is extended by first mapping the left-hand sides of

inclusion axioms to the conjunctions of their previous mappings under τ . Every body atom p(X,Y) in a

TGD σ with variables Y that do not occur in the head of σ is then replaced by a new body atom p′(X),
where p′ is a fresh predicate, along with adding the TGD p(X,Y)→ p′(X).

The next result shows that Theorems 17, 18, and 24 carry over to DL-LiteF ,⊓, DL-LiteR,⊓, and DL-

Lite+A,⊓, i.e., both BCQs addressed to knowledge bases KB in these DLs and the satisfiability of such KB

are reducible to BCQs in Datalog±0 .
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Theorem 25 Let KB be a knowledge base in DL-LiteF ,⊓, DL-LiteR,⊓, or DL-Lite+A,⊓, and let Q be a

BCQ for KB . Then, (a) Q holds in KB iff DKB ∪ ΣKB |= Q ∨ QKB , and (b) KB is unsatisfiable iff

DKB ∪ ΣKB |= QKB .

For each of the above description logics (with binary roles) DL-LiteX , the description logic DLR-LiteX
is obtained from DL-LiteX by additionally allowing for n-ary relations, along with suitable constructs to deal

with them. More concretely, (1) the construct ∃P in basic concepts is generalized to the construct ∃i :R,

where R is an n-ary relation and i∈{1, . . . , n}, which denotes the projection of R on its i-th component; (2)

the construct ∃Q.C in (general) concepts is generalized to the construct ∃i :R.C1 . . . Cn, where R is an n-

ary relation, the Ci’s are (general) concepts, and i∈{1, . . . , n}, which denotes those objects that participate

as i-th component to tuples of R where the j-th component is an instance of Cj , for all j ∈{1, . . . , n}; (3)

one additionally allows for functionality axioms (funct I :R), stating the functionality of the i-th component

of R; and (4) one additionally allows for inclusion axioms between projections of relations R1[i1, . . . , ik] ⊑
R2[j1, . . . , jk], where R1 is an n-ary relation, i1, . . . , ik ∈{1, . . . , n}, ip 6= iq if p 6= q, R2 is an m-ary

relation, j1, . . . , jk ∈{1, . . . ,m}, and jp 6= jq if p 6= q. Since the construct ∃i :R.C1 . . . Cn can be removed

in a similar way as ∃Q.C in the binary case [29], it only remains to define the translation τ into Datalog±0
for the following cases:

(1) for concept inclusion axioms B⊑C, we additionally define (i) τ ′(B) as pR(Y1, . . . , Yi−1, X, Yi+1,

. . . , Yn), if B= ∃i :R, and (ii) τ ′′(C) as ∃Z1, . . . , Zi−1, Zi+1, . . . , Zn pR(Z1, . . . , Zi−1, X, Zi+1,

. . . , Zn) and ¬pR(Y
′
1 , . . . , Y

′
i−1, X, Y ′

i+1, . . . , Y
′
n), if B is of the form ∃i :R and ¬∃i :R, respectively;

(2) every functionality axiom (funct i :R) is under τ mapped to the set of all EGDs pR(Y1, . . . , Yi−1, X,

Yi+1, . . . , Yn)∧pR(Y
′
1 , . . . , Y

′
i−1, X, Y ′

i+1, . . . , Y
′
n)→ Yj =Y ′

j such that j ∈{1, . . . , n} and j 6= i; and

(3) every inclusion axiom R1[i1, . . . , ik] ⊑ R2[j1, . . . , jk] is under τ mapped to the TGD pR1
(X) →

∃Z pR2
(Z′), where Z ′

jl
=Xil for all l∈{1, . . . , k}, and Z is the vector of all variables Z ′

j with

j ∈{1, . . . ,m} − {j1, . . . , jk}.

The next theorem finally shows that Theorem 25 carries over to DLR-LiteF ,⊓, DLR-LiteR,⊓, and DLR-

Lite+A,⊓ (and so also to all less expressive n-ary description logics of the DL-Lite family), i.e., both BCQs

addressed to knowledge bases KB in these DLs and the satisfiability of such KB are reducible to BCQs in

Datalog±0 .

Theorem 26 Let KB be a knowledge base in DLR-LiteF ,⊓, DLR-LiteR,⊓, or DLR-Lite+A,⊓, and let Q be

a BCQ for KB . Then, (a) Q holds in KB iff DKB ∪ ΣKB |= Q ∨ QKB , and (b) KB is unsatisfiable iff

DKB ∪ ΣKB |= QKB .

Finally, observe also that Datalog±0 is strictly more expressive than every description logic of the DL-

Lite family and its extension with n-ary relations, which follows from the next theorem, generalizing Theo-

rems 19 and 23.

Theorem 27 Datalog±0 is strictly more expressive than DL-LiteF ,⊓, DL-LiteR,⊓, DL-Lite+A,⊓, DLR-LiteF ,⊓,

DLR-LiteR,⊓, and DLR-Lite+A,⊓.
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9.2 Ontology Querying in F-Logic Lite and EL

Other ontology languages that are reducible to Datalog± include F-Logic Lite [26], which is a special case

of weakly-guarded Datalog± [20]. We now show that the tractable description logic EL can be reduced to

guarded Datalog±.

The description logic EL has the following ingredients. We assume pairwise disjoint sets of atomic

concepts, abstract roles, and individuals A, RA, and I, respectively. A concept is either the top concept ⊤,

an atomic concept A, an existential role restriction ∃R.C, or a conjunction C ⊓ D, where R is an abstract

role, and C and D are concepts. A TBox is a finite set of concept inclusion axioms C ⊑D, where C and

D are concepts, while an ABox is a finite set of concept and role membership axioms A(c) and R(c, d),
respectively, where A is an atomic concept, R is an abstract role, and c and d are individuals. A knowledge

base KB =(T ,A) consists of a TBox T and an ABox A.

We define a translation τ from EL to Datalog± with guarded TGDs as follows. Atomic concepts,

abstract roles, and individuals are translated under τ in the same way as for DL-Lite. The same applies to

concept and role membership axioms, which produce the database DKB for a given knowledge base KB in

EL. As for concept inclusion axioms C ⊑D, we can w.l.o.g. assume that C contains at most one existential

role restriction ∃R.E, as any other existential role restriction can be replaced by a fresh atomic concept B

along with the concept inclusion axiom ∃R.E⊑B. We then inductively define τX , where X is a variable,

for all concepts by τX(⊤)=⊤ (i.e., logical truth), τX(A)= pA(X), τX(∃R.C) = ∃Z (pR(X,Z)∧τZ(C)),
and τX(C ⊓ D)= τX(C) ∧ τ ′(τX(D)), where τ ′ is a renaming of existentially quantified variables such

that τX(C) and τ ′(τX(D)) have no such variables in common anymore. We finally define the translation τ

for all concept inclusion axioms by τ(C ⊑D)= τ ′X(C)→ τ ′X(D), where τ ′X(C) (resp., τ ′X(D)) is obtained

from τX(C) (resp., τX(D)) by removing (resp., “moving out”) all existential quantifiers. We denote by

ΣKB the resulting set of rules for KB . It is not difficult to verify that ΣKB is in fact a finite set of guarded

TGDs.

The following immediate result finally shows that the tractable description logic EL can be reduced to

guarded Datalog±, i.e., BCQs addressed to knowledge bases in EL can be reduced to BCQs in Datalog±

with guarded TGDs.

Theorem 28 Let KB be a knowledge base in EL, and let Q be a BCQ for KB . Then, Q holds in KB iff

DKB ∪ ΣKB |= Q.

10 Stratified Negation

In this section, we extend Datalog± by stratified negation. We first define the syntax of TGDs with negations

in their bodies (called normal TGDs) and of BCQs with negations (called normal BCQs), and we introduce

a canonical model semantics via iterative chases. We then show that answering safe normal BCQs from

databases under stratified sets of guarded normal TGDs can be done on finite portions of these chases; as a

consequence, it is data-tractable (resp., FO-rewritable) in the guarded (resp., linear) case. We finally define

a perfect model semantics and show that it coincides with the canonical model semantics, and that it is an

isomorphic image of the perfect model semantics of a corresponding normal logic program with function

symbols.

We thus provide a natural stratified negation for query answering over ontologies, which has been an

open problem in the DL community to date, since it is in general based on several strata of infinite models.

By the results of Sections 7 and 8, this also provides a natural stratified negation for the DL-Lite family.
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10.1 Normal TGDs and BCQs

We first introduce the syntax of normal TGDs, which are informally TGDs that may also contain negated

atoms in their bodies. Given a relational schemaR, a normal TGD (NTGD) has the form ∀X∀Y Φ(X,Y)→
∃ZΨ(X, Z), where Φ(X,Y) is a conjunction of atoms and negated atoms over R, and Ψ(X,Z) is a con-

junction of atoms over R. It is also abbreviated as Φ(X,Y) → ∃ZΨ(X,Z). As in the case of standard

TGDs, we can assume that Ψ(X,Z) is a singleton atom. We denote by head(σ) the atom in the head of

σ, and by body+(σ) and body−(σ) the sets of all positive and negative (“¬”-free) atoms in the body of σ,

respectively. We say that σ is guarded iff it contains a positive atom in its body that contains all universally

quantified variables of σ. We say that σ is linear iff σ is guarded and has exactly one positive atom in its

body.

As for the semantics of normal TGDs σ, we say that σ is satisfied in a database D for R iff, whenever

there exists a homomorphism h for all the variables and data constants in the body of σ that maps (i)

all atoms of body+(σ) to atoms of D and (ii) no atom of body−(σ) to atoms of D, then there exists an

extension h′ of h that maps all atoms of head(σ) to atoms of D.

We next add negation to BCQs as follows. A normal Boolean conjunctive query (NBCQ) Q is an

existentially closed conjunction of atoms and negated atoms

∃X p1(X) ∧ · · · ∧ pm(X) ∧ ¬pm+1(X) ∧ · · · ∧ ¬pm+n(X),

where m> 1, n> 0, and the variables of the pi’s are among X. We denote by Q+ (resp., Q−) the set of all

positive (resp., negative (“¬”-free)) atoms of Q. We say Q is safe iff every variable in a negative atom in Q

also occurs in a positive atom in Q.

Example 19 Consider the following set of guarded normal TGDs Σ, expressing that (1) if a driver has a

non-valid license and drives, then he violates a traffic law, and (2) a license that is not suspended is valid:

σ : hasLic(D,L), drives(D),¬valid(L)→ ∃I viol(D, I) ;

σ′ : hasLic(D,L),¬susp(L)→ valid(L) .

Then, asking whether John commits a traffic violation and whether there exist traffic violations without driv-

ing can be expressed by the two safe normal BCQs Q1= ∃X viol(john, X) and Q2 = ∃D, I viol(D, I) ∧
¬drives(D), respectively.

10.2 Canonical Model Semantics

We now define the concept of a stratification for normal TGDs as well as the canonical model semantics

of databases under stratified sets of guarded normal TGDs via iterative chases along a stratification. We

then provide several semantic results around canonical models, and we finally define the semantics of safe

normal BCQs via such canonical models.

We define the notion of stratification for normal TGDs by generalizing the classical notion of stratifica-

tion for Datalog with negation but without existentially quantified variables [6] as follows. A stratification

of a set of normal TGDs Σ is a mapping µ : R → {0, 1, . . . , k} such that for each normal TGD σ ∈ Σ:

(i) µ(pred(head(σ)))>µ(pred(a)) for all a∈ body+(σ);
(ii) µ(pred(head(σ)))>µ(pred(a)) for all a∈ body−(σ).
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We call k> 0 the length of µ. For every i ∈ {0, . . . , k}, we then define Di = {a∈D |µ(pred(a))= i}
and D⋆

i = {a∈D |µ(pred(a))6 i}, as well as Σi = {σ ∈Σ |µ(pred(head(σ)))= i} and Σ⋆
i = {σ ∈Σ |

µ(pred(head(σ)))6 i}. We say that Σ is stratified iff it has a stratification µ of some length k> 0.

Example 20 Consider again the set of guarded normal TGDs Σ of Example 19. It is then not difficult to

verify that the mapping µ where µ(susp)=µ(hasLic) = µ(drives)= 0, µ(valid)= 1, and µ(viol)= 2 is a

stratification of Σ of length 2. Hence, Σ is stratified, and we obtain Σ0= ∅, Σ1= {σ
′}, and Σ2= {σ}.

We next define the notion of indefinite grounding, which extends the standard grounding (where rules

are replaced by all their possible instances over constants) towards existentially quantified variables. A

subset of the set of nulls ∆N is partitioned into infinite sets of nulls ∆σ,Z (which can be seen as Skolem

terms by which Z can be replaced), one for every σ ∈Σ (where Σ is a set of guarded normal TGDs) and

every existentially quantified variable Z in σ. An indefinite instance of a normal TGD σ is obtained from

σ by replacing every universally quantified variable by an element from ∆ ∪ ∆N and every existentially

quantified variable Z by an element from ∆σ,Z . The indefinite grounding of Σ, denoted ground(Σ), is the

set of all its indefinite instances. We denote by HBΣ the set of all atoms built from predicates from Σ and

arguments from ∆ ∪ ∆N . We naturally extend the oblivious chase of D and Σ to databases D with nulls,

which are treated as new data constants; similarly, normal TGDs are naturally extended by nulls.

We are now ready to define canonical models of databases under stratified sets of guarded normal TGDs

via iterative chases as follows. Note that this is slightly different from [21], where we define the canonical

model semantics as iterative universal models. The main reason why we use the slightly stronger definition

here is that it makes canonical models isomorphic to canonical models of a corresponding normal logic

program with function symbols (cf. Corollary 38).

Definition 5 Let R be a relational schema. Given a database D for R under a stratified set of guarded

normal TGDs Σ onR, we define the sets Si along a stratification µ : R → {0, 1, . . . , k} of Σ as follows:

(i) S0= chase(D,Σ0);

(ii) if i> 0, then Si= chase(Si−1,Σ
Si−1

i ), where the set of TGDs Σ
Si−1

i is obtained from ground(Σi)
by (i) deleting all σ such that body−(σ)∩Si−1 6= ∅ and (ii) removing the negative body from the

remaining σ’s.

Then, Sk is a canonical model of D and Σ.

Example 21 Consider again the set of guarded normal TGDs Σ of Example 19 and the database D =
{susp(l), drives(john, c), hasLic(john, l)}. Since Σ0= ∅, Σ1= {σ

′}, and Σ2= {σ} (see Example 20), we

obtain S0=S1=D, and S2 is isomorphic to D ∪ {viol(john, i)}, where i is a null.

Observe that, given a database D and a set of guarded TGDs Σ, the oblivious chase of D and Σ min-

imizes equality between newly introduced nulls, but every TGD σ=Φ(X,Y)→∃ZΨ(X,Z) generates

exactly one new null for every indefinite ground instance of the body of σ satisfied in the oblivious chase.

The following theorem shows that this policy is actually closely related to the least Herbrand model seman-

tics of positive logic programs with function symbols: there exists an isomorphism from the oblivious chase

of D and Σ to the least Herbrand model of a corresponding positive logic programs with function symbols.

This provides a strong justification for using the oblivious chase in the above canonical model semantics of

databases under stratified sets of guarded normal TGDs.
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Given a set of guarded TGDs Σ, the functional transformation of Σ, denoted Σf , is obtained from Σ
by replacing each TGD σ=Φ(X,Y)→∃ZΨ(X,Z) in Σ by the generalized TGD σf =Φ(X,Y)→Ψ(X,

fσ(X,Y)), where fσ is a vector of function symbols fσ,Z for σ, one for every variable Z in Z. Observe

that σf now contains function symbols, but no existential quantifiers anymore. Furthermore, for every

database D, it holds that D∪Σf is a positive logic program with function symbols, which has a canonical

semantics via unique least Herbrand models. The notions of databases, queries, and models are naturally

extended by such function symbols. An additional restriction on the notion of isomorphism is that nulls

c∈∆σ,Z are associated with terms of the form fσ,Z(x,y).

Theorem 29 LetR be a relational schema, D be a database forR, and Σ be a set of guarded TGDs onR.

Then, there exists an isomorphism from chase(D,Σ) to the least Herbrand model M of D and Σf .

The following result shows that canonical models of databases D under stratified sets of guarded normal

TGDs Σ are in fact also models of D and Σ, which is a minimal property expected from the notion of

“canonical model”. The proof is done by induction along a stratification of Σ, showing that every Si is a

model of D and Σ⋆
i , using the chase construction of every Si. Thus, in particular, the canonical model Sk

of D and Σ is a model of D and Σ⋆
k =Σ.

Proposition 30 Let R be a relational schema, D be a database for R, and Σ be a stratified set of guarded

normal TGDs onR. Let S be a canonical model of D and Σ. Then, S is also a model of D and Σ.

In general, there are several canonical models of databases D under stratified sets of guarded normal

TGDs Σ. The next result shows that they are all isomorphic. It is proved by induction along a stratification

of Σ, showing that for any two constructions of canonical models S0, . . . , Sk and T0, . . . , Tk, it holds that

every Si is isomorphic to Ti, using the chase construction of every Si and Ti. Thus, in particular, the two

canonical models Sk and Tk of D and Σ are isomorphic.

Proposition 31 Let R be a relational schema, D be a database for R, and Σ be a stratified set of guarded

normal TGDs onR. Let U and V be two canonical models of D and Σ. Then, U is isomorphic to V .

We finally define the semantics of safe normal BCQs addressed to databases D under stratified sets of

guarded normal TGDs Σ via their canonical models as follows. A BCQ Q evaluates to true in D and Σ,

denoted D∪Σ |=strat Q, iff there exists a homomorphism that maps Q to a canonical model Sk of D

and Σ. A safe normal BCQ Q evaluates to true in D and Σ, denoted D ∪ Σ |=strat Q, iff there exists a

homomorphism from Q+ to a canonical model of D and Σ, which cannot be extended to a homomorphism

from some Q+ ∪{a}, where a∈Q−, to the canonical model of D and Σ. Note that the fact that every

canonical model of D and Σ is isomorphic to all other canonical models of D and Σ (cf. Proposition 31)

assures that the above definition of the semantics of safe normal BCQs does not depend on the chosen

canonical model and is thus well-defined.

Example 22 Consider again the set of guarded normal TGDs Σ and the two normal BCQs Q1 and Q2 of

Example 19. Let the database D be given as in Example 21. Then, by the canonical model S2 shown in

Example 21, Q1 and Q2 are answered positively and negatively, respectively.
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10.3 Query Answering

As we have seen in the previous section, a canonical model of a database and a stratified set of guarded

normal TGDs can be determined via iterative chases, where every chase may be infinite. We next show that

for answering safe normal BCQs, it is sufficient to consider only finite parts of these chases. Based on this

result, we then show that answering safe normal BCQs in guarded (resp., linear) Datalog± with stratified

negation is data-tractable (resp., FO-rewritable).

We first give some preliminary definitions as follows. Given a set of atoms S, a database D, and a set of

guarded normal TGDs Σ, we denote by chaseS(D,Σ) a slightly modified oblivious chase where the TGD

chase rule is applicable on a guarded normal TGD σ iff the homomorphism h maps every atom in body−(σ)
to an atom not from S, and in that case, the TGD chase rule is applied on the TGD obtained from σ by

removing the negative body of σ. Then, g-chase l,S(D,Σ) denotes the set of all atoms of depth at most l in

the guarded chase forest.

The next result shows that safe normal BCQs Q can be evaluated on finite parts of iterative guarded

chase forests of depths depending only on Q andR. Its proof is similar to the proof of Lemma 4. The main

difference is that the atoms of Q may now belong to different levels of a stratification, and one also has to

check that the negative atoms do not match with any atom in a canonical model.

Theorem 32 LetR be a relational schema, D be a database forR, Σ be a stratified set of guarded normal

TGDs on R, and Q be a safe normal BCQ over R. Then, there exists some l> 0, which depends only on

Q and R, such that D∪Σ |=strat Q iff Q evaluates to true on Sk, where the sets Si, i∈{0, . . . , k}, are

defined as follows:

(i) S0 = g-chase l(D,Σ0);
(ii) if i > 0, then Si = g-chase l,Si−1(Si−1,Σi).

The following result shows that answering safe normal BCQs in guarded Datalog± with stratified nega-

tion is data-tractable. Like in the negation-free case, not only homomorphic images of the query atoms are

contained in finite portions of iterative guarded chase forests, but also the whole derivations of these images.

That is, the theorem is proved similarly as Theorems 5 and 6; the main difference is that the finite portion

of the guarded chase forest is now computed for each level of a stratification, and that we now also have to

check that the negative atoms cannot be homomorphically mapped to a canonical model.

Theorem 33 LetR be a relational schema, D be a database forR, Σ be a stratified set of guarded normal

TGDs on R, and Q be a safe normal BCQ over R. Then, D∪Σ |=strat Q is decidable in polynomial time

in the data complexity.

The next result shows that answering safe normal BCQs in linear Datalog± with stratified negation is FO-

rewritable. Its proof extends the line of argumentation in Theorem 9 and Corollary 10 by stratified negation

and safe normal BCQs.

Theorem 34 Let R be a relational schema, D be a database for R, Σ be a stratified set of linear normal

TGDs onR, and Q be a safe normal BCQ overR. Then, Q is FO-rewritable.
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10.4 Perfect Model Semantics and Independence from Stratification

We now introduce the perfect model semantics of guarded Datalog± with stratified negation, and prove

that it coincides with the canonical model semantics, and that it is an isomorphic image of the perfect

model semantics of the corresponding normal logic program with function symbols. This gives strong

evidence that the canonical model semantics of guarded Datalog± is quite natural; it also implies that the

canonical model semantics is independent of a concrete stratification.

The perfect model semantics of databases D and a stratified set of guarded normal TGDs Σ is defined via

a preference relation≪ on the models of D and Σ that are isomorphic images of models of D and Σf . We

first define the strict and reflexive relations ≺ and 4 on ground atoms (having terms with function symbols

as arguments). Given a set of guarded normal TGDs Σ, the relations ≺ and 4 on the set of all ground atoms

are the smallest relations that satisfy (i) to (iv):

(i) µ(head(σ)) 4 µ(a) for every σ ∈ ground(Σf ) and every a∈ body+(σ),
(ii) µ(head(σ)) ≺ µ(a) for every σ ∈ ground(Σf ) and every a∈ body−(σ),

(iii) ≺ and 4 are transitively closed, and

(iv) ≺ is a subset of 4.

We are now ready to define the preference relation≪ on isomorphic images of models of D and Σf , as

well as the perfect model semantics of D and Σ as a collection of isomorphic such images that are preferred

to all others.

Definition 6 LetR be a relational schema, D be a database forR, and Σ be a set of guarded normal TGDs

on R. For isomorphic images M,N ⊆HBΣ of two models Mf and Nf of D and Σf , respectively, we say

that M is preferable to N , denoted M≪N , iff (i) M is not isomorphic to N and (ii) for every a∈Mf −Nf ,

there exists some b∈Nf −Mf such that a≺ b (which is also denoted Mf≪Nf ). Given an isomorphic

image M ⊆HBΣ of a model of D and Σf , we say that M is a perfect model of D and Σ iff M≪N for all

isomorphic images N ⊆HBΣ of models of D and Σf such that N is not isomorphic to M .

The following lemma shows that the preference relation≪ is well-defined.

Lemma 35 Let R be a relational schema, D be a database for R, and Σ be a set of guarded normal

TGDs on R. Let M
f
1 , M

f
2 , N

f
1 , and N

f
2 be models of D and Σf , let M ⊆HBΣ (resp., N ⊆HBΣ) be an

isomorphic image of M
f
1 and M

f
2 (resp., N

f
1 and N

f
2 ). Then, M

f
1 ≪N

f
1 iff M

f
2 ≪N

f
2 .

The following result shows that in the negation-free case, perfect models of D and Σ are isomorphic to

the least model of D and Σf . Hence, by Theorem 29, they are also isomorphic to the oblivious chase of D

and Σ.

Proposition 36 Let R be a relational schema, D be a database for R, and Σ be a set of guarded TGDs on

R. Then, M is a perfect model of D and Σ iff M is an isomorphic image of the least model of D and Σf .

The next result shows how perfect models of D and Σ can be iteratively constructed. Here, given a

stratification µ : R → {0, 1, . . . , k} of Σ, we define HB i (resp., HB⋆
i ) as the set of all a∈HBΣ with

µ(pred(a))= i (resp., µ(pred(a))6 i).
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Proposition 37 Let R be a relational schema, D be a database for R, and Σ be a set of guarded nor-

mal TGDs on R with stratification µ : R → {0, 1, . . . , k}. Let S⊆HB⋆
i and S′⊆HB⋆

i+1 such that

S′ ∩ HB⋆
i =S. Then, for all i∈{0, 1, . . . , k−1}, S′ is a perfect model of D⋆

i+1 and Σ⋆
i+1 iff (i) S is a

perfect model of D⋆
i and Σ⋆

i , and S is an isomorphic image of a model Sf of D⋆
i and (Σ⋆

i )
f , and (ii) S′ is

an isomorphic image of the least model of Sf ∪Di+1 and (Σf
i+1)

Sf
.

Observe that the perfect model of the normal logic program D∪Σf is given by Mk, where M0 is the

least model of D0 ∪Σ
f
0 , and every M i+1, i∈{0, 1, . . . , k− 1}, is the least model of M i ∪Di+1 ∪ (Σ

f
i+1)

M i
.

Hence, as an immediate corollary of Propositions 36 and 37, we obtain that the perfect model of D and Σ is

an isomorphic image of the perfect model of D and Σf .

Corollary 38 Let R be a relational schema, D be a database for R, and Σ be a stratified set of guarded

normal TGDs on R. Then, M is a perfect model of D and Σ iff M is an isomorphic image of the perfect

model of D and Σf .

The following theorem shows that the perfect model semantics coincides with the canonical model

semantics. It is proved using Theorem 29 and Propositions 36 and 37. Since perfect models are independent

of a concrete stratification, the theorem also implies that the same holds for the canonical model semantics.

Theorem 39 Let R be a relational schema, D be a database for R, and Σ be a stratified set of guarded

normal TGDs onR. Then, M is a canonical model of D and Σ iff M is a perfect model of D and Σ.

11 Related Work

In this section, we give a short overview of several approaches to ontology querying. The main motivation

behind our research is the Semantic Web. We recall that the vision of the Semantic Web [15] has led in the

recent years to a new way of conceiving information systems, deeply integrated into the Web and its seman-

tics; in the Semantic Web, the information present on the Web is annotated, so as to be machine-readable; in

this way, such information can be integrated and especially queried in information systems, and not merely

searched by keywords. This requires a precise sharing of terms by means of an ontology, so that the se-

mantics of terms across different sources is clear. Moreover, by using ontologies, it is possible to perform

automated reasoning tasks in order to infer new knowledge from the raw information residing at the source

on the Web. Underneath the ontology, a data layer represents the raw data present on the Web, in an inher-

ently heterogeneous way. The World Wide Web Consortium (W3C) defines several standards, including the

Resource Description Framework (RDF) for the data layer; the Web Ontology Language (OWL), based on

description logics (DLs); for the ontology layer; the Rule Interchange Format (RIF), currently being defined

as a standard, for the rule layer. The RIF does not provide a common semantics; instead, it aims at offering

a common exchange format for rules, given that numerous languages already exist.

We start by discussing the features of DLs employed in Semantic Web reasoning. We review a few

works in database theory that are deeply related to Semantic Web reasoning, highlighting the role of the

chase formal tool. Datalog is a well-known language for knowledge bases, and we show how its extensions

(including the languages presented in this paper) can play a prominent role in ontological querying. We

discuss different rewriting techniques, which have been the subject of several relevant researches on onto-

logical querying. We then discuss different approaches to integrate rules and ontologies. After reviewing

some ontology reasoning systems, we close by discussing the issue of whether to consider infinite models

for the theories constituted by the ontologies.
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Description Logics. The ontology layer is highly important in the Semantic Web, and a vast corpus of

literature has been produced on it. DLs have been playing a central role in ontology reasoning. DLs are

decidable fragments of first-order logic, based on concepts (classes of objects) and roles (binary relations

on concepts); several variants of them have been thoroughly investigated, and a central issue is the trade-

off between expressive power and computational complexity of the reasoning services. In DL reasoning, a

knowledge base usually consists of a TBox (terminological component, i.e., ontology statements on concepts

and roles) and an ABox (assertional component, i.e., ontology statements on instances of concepts and

roles); the latter corresponds to a data set.

The DL SHOIQ [48] is one of the most expressive DLs, and it is at the basis of the ongoing standard-

ization of OWL 2, a new version of OWL. Reasoning in SHOIQ is computationally expensive, and several

more tractable languages have been proposed in the Semantic Web community. Among such fragments we

mention DLP, EL++, ELP, and the DL-Lite family.

DLP [47] is a Horn fragment of OWL, i.e., it is existential-free. Differently from logic programs,

which adopt the closed-world assumption [73], it adopts the open-world assumption (like OWL does),

thus being monotonic. The description logic EL++ [9] is an extension of EL [8, 9] (which allows for

conjunction and existential restriction) by nominals, concrete domains, general concept inclusion, and role

inclusion; reasoning in EL++ is PTIME-complete. ELP [56] introduces additional features, including role

inclusion, local reflexivity, role disjointness, concept product, and qualified role inclusion; reasoning in

ELP is PTIME-complete. The DL-Lite family [31, 72] of description logics focuses on conjunctive query

answering under an instance and a set of DL-Lite assertions that constitute the ontology; query answering

in DL-Lite languages is in AC0 in the data complexity, due to FO-rewritability of all languages in the DL-

Lite family. Notice that linear Datalog± (with negative constraints and non-conflicting keys) can capture

DL-Lite, while guarded Datalog± can capture EL.

Database Schemata, Ontologies, and Chase. Classic database constraints, as well as more involved ones,

can be employed in modeling complex schemata and ontologies. Interestingly, the well-known inclusion

dependencies [1], common constraints in relational databases, are quite useful in expressing ontologies;

for instance, in [22, 24], they are employed together with key dependencies to represent an extension of

Entity-Relationship schemata; FO-rewritable subclasses of such schemata are defined by means of graph-

based conditions. Notice that the linear TGDs that we use in this paper to capture the DL-Lite family are

in fact inclusion dependencies. The notion of chase [65, 50, 27] of a database against a set of inclusion

dependencies is crucial in ontological query answering; such notion has been extended to TGDs [45, 37].

It is important to notice that, in most practical cases in ontological reasoning, the chase does not terminate;

the first work to tackle the problem of a non-terminating chase was [50]. In data exchange, the chase is

necessarily finite; weakly-acyclic sets of TGDs is the main class of sets of TGDs that guarantees chase

termination [45], later extended by [67, 37]. However, this is not appropriate for ontological databases.

Datalog Extensions. Datalog [1] is a powerful language, but it has some inherent limitations in modeling

ontologies, as clearly discussed in [70]. To overcome such limitations, existential quantification was intro-

duced in Datalog (Horn) rules in the form of value invention [66, 18]. Datalog rules with value invention

are, in fact, TGDs. Interestingly, EL (which is PTIME-complete; see above) can be expressed by guarded

Datalog±. Indeed, guarded Datalog± is more general than EL, as it allows for conjunction of arbitrary

predicates in rule bodies (provided that guardedness holds). Local reflexivity can also be easily represented

with linear TGDs. Guarded Datalog± is extended by weakly-guarded Datalog± in [20]. The restrictions on

the body of guarded TGDs (and of weakly-guarded sets of TGDs [20] as well) cannot express, for instance,



36 CL-RR-21-10

the concept product [79]; they also cannot capture assertions having a compositions of roles in the body,

which are inherently non-guarded. However, a paradigm called stickiness, on which sticky Datalog± and its

variants are based, allows for such rules. Sticky sets of TGDs [23, 25] are defined by means of a condition

based on variable marking. Like DL-Lite, some of the variants of sticky Datalog± are FO-rewritable, and

therefore tractable. Sticky Datalog± also properly extends DL-Lite.

The work [43] presents an interesting class of logic programs with function symbols, disjunction, con-

straints, and negation under the answer set semantics; it is shown that consistency checking and brave

reasoning are EXPTIME-complete in this setting, and some lower-complexity fragments are presented.

In [26], the ontology language F-logic Lite is presented. It is a limited version of F-Logic [51], which

is a well-known object-oriented formalism. An F-logic Lite schema is represented as a fixed set of TGDs

using meta-predicates and a set of ground facts. For a comparison to Datalog±, we refer to [20].

Recent works concentrate on general semantic characterization of sets of TGDs. The notion of rewriting

is strictly connected to that of FINITE UNIFICATION SET (FUS). A FUS is semantically characterized as a set

of TGDs that enjoy the following property: for every conjunctive query q, the rewriting qΣ of q obtained by

backward-chaining through unification, according to the rules in Σ, terminates. We refer the reader to [11]

for a formal definition. Notice that under certain conditions, as specified in [11], a FUS can be combined

with a BOUNDED TREEWIDTH SET (BTS), i.e., a set of TGDs such that the chase under such TGDs has

bounded treewidth, while retaining decidability of query answering.

Query Rewriting. Rewritability is a widely used technique for ontology querying. DL-Lite languages,

as we mentioned above, are FO-rewritable, and the rewriting algorithms for them are based on backward

resolution, as others developed for dealing with Entity-Relationship schemata [19] and inclusion dependen-

cies [28]. Such rewriting algorithms produce rewritings as union of conjunctive queries, which are evidently

first-order. The work in [71] instead goes beyond first-order rewritability by proposing a Datalog rewriting

algorithm for the expressive DL ELHIO¬, which comprises a limited form of concept and role negation,

role inclusion, inverse roles, and nominals, i.e., concept that are interpreted as singletons; conjunctive query

answering in ELHIO¬ is PTIME-complete in data complexity, and the proposed algorithm is also optimal

for other ontology languages such as DL-Lite – in the case of DL-Lite, it produces first-order rewritings in-

stead of Datalog rewritings. Other rewriting techniques for PTIME-complete languages (in data complexity)

has been proposed for the description logic EL [78, 54, 55, 64]. Another approach to rewriting is a com-

bination of rewriting according to the ontology and to the data; this was proposed in [52, 53] for DL-Lite.

This technique achieves better performances in cases where the rewriting according to the ontology alone is

very large.

Integration of Rules and Ontologies. The integration of rules with ontologies has recently raised sig-

nificant interest in the research community, as it allows for combining the high expressive power of rule

language with the interoperability provided by ontologies. This is different from the approach of this paper,

where we concentrate on the ontology alone (expressed as rules), aiming at attaining the highest expres-

sive power with the least computational cost. Essentially, we can classify the approaches to this integration

into two categories: loose coupling (or strict semantic separation), and tight coupling (or strict semantic

integration).

Loose coupling. In loose coupling, the rules layer consists of a (usually) nonmonotonic language while

the ontology layer is expressed in OWL/RDF flavor. The two layers do not have particular restrictions, as

their interaction is forced to happen through a “safe interface”: rule bodies contain calls to DL predicates,

allowing for a mix of closed- and open-world semantics. An example of this approach are dl-programs,
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together with several extension [41, 42, 39, 40, 62, 63, 82], including probabilistic dl-programs, fuzzy

dl-programs, and HEX-programs (which allow for different external sources of knowledge with different

semantics). More in detail, HEX programs [41, 42] extend the framework of dl-programs so that they can in-

tegrate several sources of knowledge, possibly under different semantics. Probabilistic dl-programs [62] ex-

tend dl-programs by probabilistic uncertainty, while, similarly, fuzzy dl-programs [63] consider dl-programs

with fuzzy vagueness. A framework for aligning ontologies is added on top of dl-programs in [82]. The

work in [83] extends dl-programs to handle priorities. Defeasible reasoning is combined with DLs in [5];

in this work, like in the above cited ones, the DL layer serves merely as an input for the default reasoning

system; a similar approach is followed in the TRIPLE rules engine [80].

Tight coupling. In the tight coupling approach, the existing semantics of rule language is adapted di-

rectly in the ontology layer. The above cited DLP [47] is an example of this, as well as the undecidable

SWRL [49]; [47] showed a mutual reduction between inference in a fragment of the DL SHOIQ and a

subset of Horn programs. Between DLP and SWRL, several other works extend the expressiveness while

retaining decidability, dealing with this trade-off in different ways. Among hybrid approaches, in which

DL knowledge bases act as input sources, we find the works [38, 59, 74, 75]. The paper [38] combines

plain Datalog (without negation or disjunction) with the DL ALC, obtaining a language called AL-log. In

AL-log, concepts in an ALC knowledge base (the structural component) enforce constraints in rule bodies

of a Datalog program (the relational component). Levy and Rousset in [59] present the CARIN framework,

which combines the DL ALCNR with logic programs in a similar fashion, allowing also roles to enforce

constraints on rules (unlike [38] which allows only concepts to impose constraints). Such interaction leads

to undecidability easily, but in [59] two decidable fragments are singled out. Another work along the same

lines is [69]. Rosati’s r-hybrid knowledge bases [74, 75] combine disjunctive Datalog (with classical and

default negation) with ALC based on a generalized answer set semantics; besides the satisfiability problem,

also that of answering ground atomic queries is discussed. This formalism is the basis for a later one, build-

ing upon it, called DL+ log [76]. Another approach is found in [68], in the framework of hybrid MKNF

knowledge bases, based on the first order variant of Lifschitz’s logic MKNF [60]. Other recent approaches

to combine rules and ontologies through uniform first-order nonmonotonic formalisms are found in [61, 17].

Systems. Several systems perform reasoning services on ontologies in various flavors. The CEL sys-

tem [10] is based on EL+, i.e., EL with the addition of role inclusion; CEL can perform subsumption in

polynomial time, thus aiming at tractable reasoning on large knowledge bases. SNOMED [34] is also based

on EL, with the restriction of having acyclic TBoxes only. Snorocket [57] is based on EL++, and achieves

good scalability without the restrictions of SNOMED. The research on DL-Lite has also given raise to sys-

tems, in particular QuOnto [3] and Mastro [31]; both such systems rewrite queries into SQL according to a

DL-Lite TBox, thus taking advantage of the optimizations of an underlying RDBMS.

Finite Controllability. Finally, we have considered in this paper entailment under arbitrary (finite or infi-

nite) models; when this coincides with entailment under finite models only, it is said that finite controllabil-

ity [50, 77, 12] holds.

12 Conclusion

We have introduced a family of expressive extensions of Datalog, called Datalog±, as a new paradigm

for query answering and reasoning over ontologies. The Datalog± family admits existentially quantified
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variables in rule heads, and has suitable restrictions to ensure highly efficient ontology querying. These

languages are rather attractive, as they are simple, easy to understand and analyze, decidable, and they have

good complexity properties. Furthermore, for ontological query answering and reasoning, they turn out to be

extremely versatile and expressive: in fact, guarded Datalog± can express the tractable description logic EL,

and languages as simple as linear Datalog± with negative constraints and NC keys (both simple first-order

features) can express the whole DL-Lite family of tractable description logics (including their generalizations

with n-ary relations), which are the most popular tractable ontology languages in the context of the Semantic

Web and databases. We have also shown how nonmonotonic stratified negation (a desirable expressive

feature that DLs are currently lacking) can be added to Datalog±, while keeping ontology querying and

reasoning tractable.

Datalog± is the first approach to a generalization of database rules and dependencies so that they can

express ontological axioms, and it is thus a first step towards closing the gap between the Semantic Web and

databases. Datalog± paves the way for applying decades of research in databases, e.g., on data integration

and data exchange, to the context of the Semantic Web, where there is recently a strong interest on highly

scalable formalisms for the Web of Data.

The Datalog± family is of interest in its own right; it is still a young research topic, and there are many

challenging research problems to be tackled. One interesting topic is to explore how Datalog± can be made

even more expressive. For example, many DLs allow for restricted forms of transitive closure or constraints.

Transitive closure is easily expressible in Datalog, but only through non-guarded rules, whose addition to

decidable sets of rules may easily lead to undecidability. Hence, it would be interesting to study under which

conditions, closure can be safely added to various versions of Datalog±. Furthermore, for those logics where

query answering is FO-rewritable, the resulting FO-query is usually very large. A topic for future work is

to study from a theoretical and a practical point of view how such FO-rewritings can be optimized. Finally,

it would also be interesting to explore how other forms of nonmonotonic negation, such as negation under

the well-founded and the answer set semantics, can be added to Datalog±.

Appendix A: Proofs for Section 3

Proof of Lemma 1. We give a proof by induction on the number of applications of the TGD chase rule to

generate subtree(a1) and subtree(a2).

Basis: We apply the TGD chase rule to generate a child of a1 and a2 in the subtrees. The side atoms in such

applications are contained in type(a1) and type(a2), respectively. Suppose that we are adding an atom b1

as a child of a1, applying a TGD σ ∈Σ, and using as side atoms S1⊆ type(a1). Then, there exists another

set S2⊆ type(a2) that is S-isomorphic to S1. Hence, we can apply σ to a2 using S2 as side atoms, and we

obtain an atom b2 as a child of a2, which is S-isomorphic to b1. Thus, we can extend the S-isomorphism

between type(a1) and type(a2) to an S-isomorphism between type(a1) ∪ {b1} and type(a2) ∪ {b2} by

assigning to every fresh null in b1 the corresponding fresh null in b2.

Induction: By the induction hypothesis, type(a1)∪P1 and type(a2)∪P2 are S-isomorphic, where every Pi,

i∈{1, 2}, is the set of atoms introduced in subtree(ai) during the first k applications of the TGD chase rule.

The proof is now analogous to the one of the basis, replacing every type(ai), i∈{1, 2}, by type(ai) ∪ Pi,

and considering the (k + 1)-th application of the TGD chase rule. �

Proof of Lemma 2. As for the atoms b, at most w arguments from a and at most w nulls in the two extreme

cases may be used as arguments in b. We thus obtain 2w possible symbols, which can be placed into at most
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Figure 5: Construction in the proof of Lemma 3.

w argument positions. Hence, the number of all non-dom(a)-isomorphic atoms b is given by (2w)w. As for

the types S, since 2w possible symbols can be placed into at most w argument positions of |R| predicates,

we obtain at most (2w)w·|R| different atoms, and δ = 2(2w)w·|R|
is the number of all its subsets. In summary,

the number of all pairs as stated in the theorem is bounded by δ = (2w)w · 2(2w)w·|R|
. �

Proof of Lemma 3. Let k=(2w)w · 2(2w)w·|R|
, where w is the maximal arity of a predicate in R. Suppose

depth(b) > depth(a) + k for one atom b in the type of a. That is, the path P in the guarded chase

forest leading to b has a length greater than k from the depth of a. Suppose first b contains no nulls. By

Lemma 2, there are two isomorphic atoms h and h′ (in this order) on P with isomorphic types (see Fig. 5).

By Lemma 1, the subtree of h is isomorphic to the subtree of h′. But then b is also in the subtree of h,

on a path Q that is at least one edge shorter than P , which contradicts the assumption that P is the path

leading to b. Suppose next the set of nulls N in b is nonempty, and consider the common predecessor c of

a and b of largest depth. By Lemma 2, there are two N -isomorphic atoms h and h′ (in this order) on P

with N -isomorphic types (see Fig. 5). Since b is in the type of a, it cannot contain new nulls compared to a.

Since c is the common predecessor of a and b of largest depth, b also cannot contain new nulls compared

to c, and thus compared to h and h′. So, b is in the types of both h and h′. By Lemma 1, the subtree of

h is N -isomorphic to the subtree of h′. But then b is also in the subtree of h, on a path Q that is at least

one edge shorter than P , which contradicts the assumption that P is the path leading to b. In summary, all

atoms in the type of a can be obtained on paths of length at most k. �

Proof of Lemma 4. Let k = n · δ, where n = |Q|, δ = (2w)w · 2(2w)w·|R|
, and w is the maximal arity

of a predicate in R. Suppose there exists a homomorphism that maps Q into chase(D,Σ). Let µ be a

homomorphism of this kind such that depth(µ) =
∑

q∈Q depth(µ(q)) is minimal. We now show that

µ(Q) is contained in g-chasek(D, Σ). Towards a contradiction, suppose the contrary. Consider the tree

consisting of all atoms in µ(Q) and their ancestors in the guarded chase forest for Σ and D. Since µ(Q) is

not contained in g-chasek(D,Σ), this tree must contain a path P of length greater than δ of which all inner

nodes (i.e., without start and end node) do not belong to µ(Q) and have no branches (i.e., have exactly one

outgoing edge). Let a be the start node of P . By Lemma 2, there are two dom(a)-isomorphic atoms h and

h′ on P with dom(a)-isomorphic types. By Lemma 1, subtree(h) is dom(a)-isomorphic to subtree(h′).
Thus, we can remove h and the path to h′, obtaining a path that is at least one edge shorter. Let ι be the

homomorphism mapping subtree(h′) to subtree(h), and let µ′ = µ ◦ ι. Then, µ′ is a homomorphism that

maps Q into chase(D,Σ) such that depth(µ′) < depth(µ), which contradicts µ being a homomorphism of

this kind such that depth(µ) is minimal. This shows that µ(Q) is contained in g-chasek(D,Σ). �
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Figure 6: Construction in the proof of Lemma 4.

Proof of Theorem 5. Let Q be a BCQ. Assume there exists a homomorphism µ such that µ(Q) ⊆
chase(D,Σ), which amounts to say that D ∪ Σ |= Q. By Lemma 4, there exists a homomorphism λ

such that λ(Q) ⊆ g-chasen·δ(D,Σ), where n = |Q|, δ = (2w)w · 2(2w)w·|R|
, and w is the maximal arity

of a predicate in R. We now show that all ancestors of λ(Q) in the chase graph for D and Σ are contained

in g-chase(n+1)·δ(D,Σ). Take any guard a in g-chasen·δ(D,Σ). By Lemma 3, for each b ∈ type(a), it

holds that depth(b) 6 depth(a)+ δ. Hence, with a generic breadth-first application of the TGD chase rule,

we do not need to go beyond level (n+ 1) · δ to find all side atoms of atoms in g-chasen·δ(D,Σ). �

Proof of Theorem 6. As for membership in P, by the proof of Theorem 5, we obtain the following polyno-

mial decision algorithm. We first construct g-chase(n+1)·δ(D,Σ), where n = |Q|, δ = (2w)w · 2(2w)w·|R|
,

and w is the maximal arity of a predicate inR, and we then evaluate Q on g-chase(n+1)·δ(D,Σ).
To prove hardness for P, we give a logspace reduction from the P-complete problem of deciding whether

a propositional logic program with at most two body atoms in its rules logically implies a propositional

atom [35]. Let L be a propositional logic program with at most two body atoms in its rules, and let p be a

propositional atom. So, L is a finite set of rules of the form h ← b1 ∧ b2, where h is a propositional atom,

and each bi is either the propositional constant true, denoted ⊤, or a propositional atom ai. Then, we define

R, D, Σ, and Q as follows:

R= {program, query , holds};

D= {program(h, b1, b2) | h← b1 ∧ b2 ∈ L} ∪ {query(p)} ∪ {holds(⊤)};

Σ = {program(X,Y, Z) ∧ holds(Y ) ∧ holds(Z) → holds(X);
query(X) ∧ holds(X)→ q};

Q= q.

Observe that only D depends on L and p, while R, Σ, and Q are all fixed. Observe also that D can be

computed in logspace from L and p. It is then not difficult to verify that L logically implies p iff D∪Σ |= Q.

�

Proof of Theorem 7. By the proof of Theorem 5, we can evaluate Q on g-chase(n+1)·δ(D,Σ), where

n = |Q|, δ = (2w)w · 2(2w)w·|R|
, and w is the maximal arity of a predicate in R, which can be done as

follows. For every atom a∈D, we construct the tree of all potential descendants in the guarded chase forest

of depth up to (n + 1) · δ. Since |Σ| is constant, every node in this tree has only a constant number of

children. Thus, the tree can be constructed in constant time, and the number of applied instances of TGDs

in it is constant. Hence, the union S of all applied instances of TGDs in the trees of descendants of all a∈D
can also be constructed in linear time. Observe now that S is a propositional logic program, and the nodes
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of the guarded chase forest of depth up to (n+ 1) · δ are all atoms that are logically implied by D ∪ S. Let

S′ be obtained from S by adding all rules a → q such that (i) a is a potential node in the guarded chase

forest and (ii) Q can be homomorphically mapped to a. Clearly, S′ can also be constructed in linear time.

Then, D ∪ Σ |= Q iff D ∪ S′ |= q, where the latter can be decided in linear time [35]. In summary, this

shows that deciding D ∪ Σ |= Q can be done in linear time in the data complexity. �

Appendix B: Proofs for Section 4

Proof of Theorem 9. Let γd (which depends only on Q and R) be the depth of the derivation of Q. Let

β be the maximum number of body atoms in a TGD in Σ. Then, every atom in the chase is generated

by at most β atoms, of which β − 1 are side atoms. The derivation of a is therefore contained in all its

ancestors; among those, there are at most βγd at level 0. If we consider the whole query Q (with |Q| = n),

the number of level 0-ancestors of its atoms is at most n · βγd . An FO-rewriting for Q is thus constructed

as follows. Take all possible sets of n · βγd atoms using predicates in R and having constants from Q

and (at most n · βγd · w, where w is the maximal arity of a predicate in R) nulls as arguments. Then,

considering them as a database B, compute chaseγd(B,Σ). Finally, whenever Q can be homomorphically

mapped to chaseγd(B,Σ), take all atoms in B, transform the nulls into distinct variables, and make the

logical conjunction φ out of the resulting atoms. The existential closure of the logical disjunction of all such

conjunctions φ is the rewriting of Q relative to Σ, denoted QΣ. Observe now that D |= QΣ iff D ∪ Σ |= Q

(i.e., chase(D,Σ) |= Q): this is because every conjunction in QΣ corresponds to some derivation of n atoms

(soundness), and every derivation of n atoms in the levels of the chase up to γd (i.e., all those sufficient to

check whether chase(D,Σ) |= Q) corresponds to a conjunction in QΣ (completeness). �

Appendix C: Proofs for Section 6

Proof of Theorem 13. (a) Immediate by the definition of separability.

(b) Assume that Q, ΣT , and QC can be rewritten into the first-order formula Φ such that for each database

D, it holds that D ∪ ΣT |= Q ∨ QC iff D |=Φ. Now, let Ψ be the disjunction of all negated EGDs ¬σ with

σ ∈ΣE . Then, D ∪ ΣT ∪ ΣE |= Q ∨ QC iff D |= Φ ∨Ψ. �

Proof of Theorem 14. The proof in [27] (Lemma 3.8) uses the restricted chase (where a TGD does not

fire whenever it is satisfied). We construct a somewhat different proof for the oblivious chase, which is

used in the present paper. We do this for self-containedness, and also because it is quite instructive to

see how the oblivious chase works for TGDs and NC keys. Note that, alternatively, one can just exploit

the result shown in [27] (Lemma 3.8) stating that when D satisfies ΣK , then the restricted chase of D

relative to ΣT ∪ ΣK is equal to the restricted chase of D relative to ΣT alone. We observe that the latter is

homomorphically equivalent to the oblivious chase chase(D,ΣT ). Hence, chase(D,ΣT ∪ ΣK) does not

fail, and chase(D,ΣT ) is a universal model of D ∪ ΣT ∪ ΣK .

We use the standard chase order adopted in this paper: whenever the chase has generated a new atom by

some TGD, it applies all applicable keys (EGDs). We show that the oblivious chase converges with such an

order. Let R be a relational schema, ΣT be a set of TGDs on R, ΣK be a set of NC keys on R, and D be a

database forR. Assume D satisfies ΣK . By Definition 3, it suffices to show that

(1) when chasing the TGDs in ΣT over D using the oblivious chase, the keys in ΣK never lead to a hard

violation, and
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(2) for every database D and BCQ Q, it holds that chase(D,ΣT ) |= Q iff chase(D,ΣT ∪ ΣK) |= Q.

Suppose that, in the process of constructing the oblivious chase, a TGD σ = Φ(X,Y)→∃Z r(X,Z) fires.

Take any key κ∈ΣK for r, where K is the corresponding set of positions of relation r. Then, since the

set Hσ of positions in head(σ) occupied by universally quantified variables is not a proper superset of the

set K, there are only two possible cases: (i) K=Hσ: in this case, κ is actually the only key that can fire!

By our particular chase order, this key is immediately applied and just eliminates the new atom a generated

by σ, because a has fresh nulls in all positions but those of K. (ii) At least one position in K is occupied

by an existentially quantified variable in head(σ): then, the new fact a generated by the application of

σ contains a fresh null in a position in K, and therefore it cannot violate the key κ. It follows that the

oblivious chase only eliminates some facts generated by some TGDs, and converges to a possibly infinite

fixpoint Ω without ever producing a hard violation. By results of [37], the resulting chase(D,ΣT ∪ΣK) is a

universal model for D∪ΣT ∪ΣK . It is also an endomorphic image of chase(D,ΣT ) via the endomorphism

θ : chase(D,ΣT )→ chase(D,ΣT ∪ΣK), where θ is defined by the union of all substitutions performed by

those keys that are applied. Hence, chase(D,ΣT ) and chase(D,ΣT∪ΣK) are homomorphically equivalent,

and thus satisfy the same BCQs. �

Appendix D: Proofs for Section 7

Proof of Lemma 16. Clearly, every TGD generated from KB is linear, which already shows (a). Further-

more, every EGD generated from functionality axioms in KB is obviously a key, which then shows (b).

It thus only remains to prove (c). Since every key in ΣK is defined on a role, the only TGDs that are po-

tentially interacting with ΣK are those derived from concept inclusion axioms in KB of the form B⊑∃P
and B⊑∃P−, when a functionality axiom (functP ) is in KB . In such cases, we have a TGD whose head

is of the form ∃Z pP (X,Z) or ∃Z pP (Z,X), and a key of the form P (Y3, Y1), P (Y3, Y2) → Y1=Y2. In

both cases, (1) the set of key positions {pP [1]} is not a proper subset of the set of X-positions {pP [1]}
and {pP [2]}, respectively, and (2) the existentially quantified variable Z appears only once in the head of

the TGD. That is, the key is non-conflicting with the two TGDs. In summary, ΣK is non-conflicting with

ΣKB . �

Proof of Theorem 17. By Lemma 16, the set ΣK of all EGDs encoded in QKB is a set of keys that

is non-conflicting with ΣKB . By Theorem 14, ΣK is separable from ΣKB . Obviously, Q holds in KB

iff DKB ∪ΣKB ∪ΣK ∪ΣC |= Q, where ΣC is the set of all constraints encoded in QKB . As argued in

Section 5, the latter is equivalent to DKB ∪ΣKB ∪ΣK |= Q ∨ QC , where QC is the disjunction of all

queries resulting from ΣC . By the definition of separability (cf. Definition 3), the latter is equivalent to

DKB ∪ΣKB |= Q ∨ QKB . �

Proof of Theorem 18. Observe that KB is unsatisfiable iff the BCQ Q= ∃X A(X) holds in KB ′=KB ∪
{A⊑B, A⊑¬B}, where A and B are fresh atomic concepts. By Theorem 17, the latter is equivalent to

DKB
′ ∪ ΣKB

′ |= Q ∨ QKB
′ . This is in turn equivalent to DKB

′ ∪ ΣKB
′ |= QKB

′ , that is, DKB ∪ ΣKB |=
QKB . �

Proof of Theorem 19. The TGD p(X)→ q(X,X) can neither be expressed in DL-LiteF nor in DL-LiteR,

since the TGDs of concept and role inclusion axioms can only project away arguments, introduce new nulls

as arguments, and change the order of arguments in the predicates for atomic concepts and abstract roles,
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and the EGDs for functionality axioms can only produce an atom q(c, c) from q(n, c) and/or q(c, n), where

n is a null, if q(c, c) was already there before. �

Appendix E: Proofs for Section 8

Proof of Lemma 20. Obviously, every TGD generated from KB is linear or equivalent to a collection of

linear TGDs, and every EGD generated from functionality axioms in KB is a key, which already proves (a)

and (b). As for (c), we extend the proof of Lemma 16 from DL-LiteF to DL-LiteA. As for the TGDs that

are potentially interacting with the keys, DL-LiteA newly produces TGDs for role and attribute inclusion

axioms Q⊑R and U ⊑V , respectively, as well as for concept inclusion axioms B⊑C, where C may

contain general concepts of the form ∃Q.D with basic roles Q and general concepts D. However, by the

assumption that all role and attribute functionality axioms can only be expressed on primitive roles and

attributes, respectively, the keys are trivially non-conflicting with the new TGDs in the translation from DL-

LiteA. Therefore, the interesting cases (i.e., those where keys are potentially conflicting with TGDs) are

exactly the same as in the proof of Lemma 16, and the rest of the proof goes in the same way. �

Proof of Theorem 21. The proof is verbally nearly identical to the proof of Theorem 17; it only differs in

using Lemma 20 instead of Lemma 16. �

Proof of Theorem 22. The proof is verbally nearly identical to the proof of Theorem 18; it only differs in

using Theorem 21 instead of Theorem 17. �

Proof of Theorem 23. The proof is verbally nearly identical to the proof of Theorem 19, referring only to

DL-LiteA instead of DL-LiteF . �

Appendix F: Proofs for Section 9

Proof of Theorem 24. We extend the proofs of Theorems 21 and 22 to DL-Lite+A. Observe first that, as

for role attributes, the extended translation τ produces linear TGDs and keys. Furthermore, the keys also

have the NC property, since (a) by the assumed restriction on DL-Lite+A, all the atomic role attributes in

functionality axioms (funct UR) do not occur positively in the right-hand sides of role attribute inclusion

axioms, and (b) the key positions resulting from (funct UR) are not a proper subset of the X-positions in

the TGD heads generated from δ(UR), δ(UR)
−, ∃δ(UR), ∃δ(UR)

−, and ρ(UR). The extended translation

τ for identification axioms (id B I1, . . . , In) lies slightly outside Datalog±0 , since the produced EGD is not

really a key, but it can intuitively be considered as a key of the virtual relation R(B, I1, . . . , In). It also has

the NC property, since by the assumed restriction on DL-Lite+A, all the atomic attributes and basic roles in

identification axioms do not occur positively in the right-hand sides of inclusion axioms. �

Proof of Theorem 25. Immediate by Theorems 17, 18, and 24, respectively, as the only difference is that

we now have multi-linear TGDs instead of linear ones. �

Proof of Theorem 26. Immediate by Theorem 25, since also the extended translation τ produces only linear

TGDs and NC keys. In particular, the NC property of keys follows from the restriction of DLR-LiteF ,⊓,

DLR-LiteR,⊓, and DLR-Lite+A,⊓, respectively, that all n-ary relations R in functionality axioms (funct i :R)
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do not appear positively in the right-hand sides of concept inclusion axioms and of the newly introduced

inclusion axioms between projections of relations. �

Proof of Theorem 27. Following the same line of argumentation as in the proof of Theorem 19, it can be

shown that the TGD p(X)→ q(X,X) cannot be expressed in any of the DLs stated in the theorem. �

Appendix G: Proofs for Section 10

Proof of Theorem 29. By induction along the construction of chase(D,Σ), we define an isomorphism ι

from chase(D,Σ) to a subset of M as follows. For every c∈∆∪∆N that occurs in D, we define ι(c)= c.

Trivially, ι maps D⊆ chase(D,Σ) isomorphically to D⊆M . Consider now any step of the construction

of chase(D,Σ), and let C be the result of the construction thus far. Suppose that ι maps C ⊆ chase(D,Σ)
isomorphically to a subset of M . Suppose that the next step in the construction of chase(D,Σ) is the

application of the TGD σ=Φ(X,Y)→∃ZΨ(X,Z), which produces the atom Ψ(x,N) from the atoms in

Φ(x,y). We then extend ι by mapping the vector N of nulls N ∈∆σ,Z , where the Z’s are the existentially

quantified variables in σ, to the vector fσ(x,y) of terms fσ(x,y). Notice that ι is injective, since every

pair (x,y) uniquely determines the atoms in Φ(x,y) and thus at most one application of the TGD σ. Since

ι(Φ(x,y)) is a subset of M , and M is a model of D and Σf , also ι(Ψ(x,N)) must belong to M . Hence,

ι also maps the result of applying σ on C to a subset of M . We can thus construct an isomorphism ι from

chase(D,Σ) to a subset M ′ of M . But since M ′ is also a model of D and Σf , as otherwise the construction

of chase(D,Σ) would be incomplete, and since M is the least model of D and Σf , we obtain M ′=M .

Thus, ι maps chase(D,Σ) isomorphically to M . �

Proof of Proposition 30. Let a stratification of Σ be given by µ : R → {0, 1, . . . , k}. By induction on

the stratification µ, we now show that for any construction of a canonical model S0, . . . , Sk, every Si is a

model of D and Σ⋆
i . Thus, in particular, the canonical model Sk of D and Σ is a model of D and Σ⋆

k =Σ.

Observe first that (⋆) if S
j
i , where j ∈{0, . . . , i} and i∈{0, . . . , k}, is the set of all atoms a∈Si such that

µ(pred(a))6 j, then every S
j
i coincides with Sj .

Basis: Since S0= chase(D,Σ0), and chase(D,Σ0) is a universal model of D and Σ0, in particular, S0 is a

model of D and Σ0=Σ⋆
0.

Induction: Suppose that Si−1 is a model of D and Σ⋆
i−1; we now show that also Si is a model of D and Σ⋆

i .

Recall first that Si= chase(Si−1,Σ
Si−1

i ). We have to show that (i) D can be homomorphically mapped to

Si and (ii) every σ ∈Σ⋆
i is satisfied in Si. As for (i), since Si−1 is a model of D and Σ⋆

i−1 by the induction

hypothesis, D can be homomorphically mapped to Si−1. Since Si= chase(Si−1, Σ
Si−1

i ) is a universal

model Si−1 and Σ
Si−1

i , it follows that Si−1 can be homomorphically mapped to Si. In summary, D can be

homomorphically mapped to Si. As for (ii), consider any σ ∈Σ⋆
i . Then, σ ∈Σj for some j ∈{0, . . . , i},

and since (1) Sj = chase(Sj−1,Σ
Sj−1

j ) is a universal model of Sj−1 and Σ
Sj−1

j (or Sj = chase(D,Σ0) is a

universal model of D and Σ0, if j=0) and (2) S
j−1
j coincides with Sj−1, by (⋆), it follows that σ is satisfied

in Sj , and since Sj coincides with S
j
i , by (⋆), it follows that σ is also satisfied in Si. �

Proof of Proposition 31. Let a stratification of Σ be given by µ : R → {0, 1, . . . , k}. By induction on the

stratification µ, we now show that for any two constructions of canonical models S0, . . . , Sk and T0, . . . , Tk,
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it holds that Si is isomorphic to Ti, for every i∈{0, . . . , k}. Thus, in particular, the two canonical mod-

els Sk and Tk of D and Σ are isomorphic.

Basis: Clearly, S0= chase(D,Σ0) and T0= chase(D,Σ0) are isomorphic.

Induction: Suppose that Si−1 and Ti−1 are isomorphic; we now show that also Si and Ti are isomorphic.

Since Si−1 and Ti−1 are isomorphic by the induction hypothesis, Σ
Si−1

i is isomorphic to Σ
Ti−1

i . Following

the construction of the chase, the isomorphism between Si−1 and Ti−1 can then be extended to an isomor-

phism between Si= chase(Si−1,Σ
Si−1

i ) and Ti= chase(Ti−1,Σ
Ti−1

i ). �

Proof of Theorem 32. Let l=n · δ, where n= |Q+|+1, δ=(2w)w · 2(2w)w·|R|
, and w is the maximal arity

of a predicate inR. The result is proved in the same way as Lemma 4, except that the atoms of Q may now

belong to different levels of a stratification (and thus the path P of length greater than δ for the proof by

contradiction must be completely inside one level of the stratification), and one also has to check that the

negative atoms (since Q is safe, their arguments are fully determined, once some candidates for the images

of the positive atoms under the homomorphism are found) do not match with any of the atoms in a canonical

model of D and Σ (which is done separately for each negative atom). �

Proof of Theorem 33. The result is proved in the same way as Theorem 6, which follows from Theorem 5.

The main difference is that the finite part of the guarded chase forest is now computed for each level of

a stratification, and that we now also have to check that the negative atoms cannot be homomorphically

mapped to a canonical model. We first compute a stratification of Σ, which is possible in constant time.

We then compute sets similar to the Si’s, i∈{0, . . . , k}, of Theorem 32. But to obtain all side atoms, by

Theorem 5, with a slightly larger depth, namely, l=(n+1) · δ, where n= |Q+|+1, δ=(2w)w · 2(2w)w·|R|
,

and w is the maximal arity of a predicate in R. By the proof of Theorem 6, this and the evaluation of Q+

and all Q+ ∪{a}, where a∈Q−, over Sk is possible in polynomial time. �

Proof of Theorem 34. We use the same line of argumentation as in the proofs of Theorem 9 and Corol-

lary 10, except that we now determine first a stratification µ of Σ and then iteratively (for each possible

collection of database atoms with nulls as arguments) the guarded chase forest of bounded depth (which

depends only on Q andR) for every level of µ, and we also check that the negative atoms do not match with

any of the atoms in the thus generated canonical model. �

Proof of Lemma 35. Since M ⊆HBΣ is an isomorphic image of both M
f
1 and M

f
2 , it follows that M

f
1

and M
f
2 are isomorphic. Similarly, also N

f
1 and N

f
2 are isomorphic, and the two subrelations of ≺ that are

obtained from ≺ by restriction to M
f
1 ×N

f
1 and M

f
2 ×N

f
2 are isomorphic. �

Proof of Proposition 36. (⇒) Let M be a perfect model of D and Σ. That is, (i) M ⊆HBΣ is an isomorphic

image of a model Mf of D and Σf and (ii) M ≪ N for all isomorphic images N ⊆HBΣ of models of D

and Σf such that N is not isomorphic to M . Towards a contradiction, suppose that Mf is not a minimal

model of D and Σf . That is, there exists a minimal model Nf of D and Σf such that Nf ⊂Mf . Thus,

Mf −Nf 6= ∅. However, since ≺ is empty, M≪N does not hold, and since N is not isomorphic to M ,

this contradicts M being a perfect model of D and Σ. This shows that Mf is a minimal model of D and Σf .

(⇐) Let M be an isomorphic image of the least model Mf of D and Σf , and let N be any isomorphic

image of a model Nf of D and Σf such that N is not isomorphic to M . Since Mf ⊂Nf , it follows

that Mf −Nf = ∅. Hence, since M is not isomorphic to N , it holds that M≪N . This shows that M is a

perfect model of D and Σ. �
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Proof of Proposition 37. Consider any i∈{0, 1, . . . , k−1}.
(⇒) Suppose that S′ is a perfect model of D⋆

i+1 and Σ⋆
i+1. That is, (1) S′ is an isomorphic image of a

model Mf of D⋆
i+1 and (Σ⋆

i+1)
f and (2) S′≪N for all isomorphic images N ⊆HB⋆

i+1 of models of D⋆
i+1

and (Σ⋆
i+1)

f such that N is not isomorphic to S′. Hence, (1) S is an isomorphic image of a model Sf of D⋆
i

and (Σ⋆
i )

f and (2) S≪N for all isomorphic images N ⊆HB⋆
i of models of D⋆

i and (Σ⋆
i )

f such that N is

not isomorphic to S. That is, (i) S is a perfect model of D⋆
i and Σ⋆

i . Furthermore, as for (ii), since S′ is

an isomorphic image of a model Mf of D⋆
i+1 and (Σ⋆

i+1)
f , it follows that S′ is an isomorphic image of a

model Mf of Sf ∪Di+1 and (Σf
i+1)

Sf
. We now show that Mf is also minimal. Towards a contradiction,

suppose that Mf is not minimal. That is, there exists a minimal model Nf of Sf ∪Di+1 and (Σf
i+1)

Sf
such

that Nf ⊂Mf . It thus follows that Mf −Nf 6= ∅. Observe that Nf is also a model of D⋆
i+1 and (Σ⋆

i+1)
f .

Since Mf ∩ (HB⋆
i )

f =Nf ∩ (HB⋆
i )

f , where (HB⋆
i )

f is the natural extension of HB⋆
i by function symbols,

S′≪N does not hold, where N is an isomorphic image of Nf . But, since N is not isomorphic to S′, this

contradicts S′ being a perfect model of D⋆
i+1 and Σ⋆

i+1. This shows that Mf is also minimal.

(⇐) Suppose that (i) S is a perfect model of D⋆
i and Σ⋆

i , and S is an isomorphic image of a model Sf

of D⋆
i and (Σ⋆

i )
f , and (ii) S′ is an isomorphic image of a minimal model Mf of Sf ∪Di+1 and (Σf

i+1)
Sf

.

Thus, S′ is also an isomorphic image of a model Mf of D⋆
i+1 and (Σ⋆

i+1)
f . We now show that S′ is a perfect

model of D⋆
i+1 and Σ⋆

i+1. That is, S′≪N for all isomorphic images N of models Nf of D⋆
i+1 and (Σ⋆

i+1)
f

such that N is not isomorphic to S′. Recall that S′≪N iff for every a∈Mf −Nf , some b∈Nf −Mf

exists with a≺ b. Clearly, by (i), if a∈ (Mf −Nf )∩ (HB⋆
i )

f , then (⋆) some b∈ (Nf −Mf )∩ (HB⋆
i )

f

exists with a≺ b. W.l.o.g., both Mf and Nf are minimal, and thus Mf ∩ (HB⋆
i+1)

f and Nf ∩ (HB⋆
i+1)

f

are obtained from Sf =Mf ∩ (HB⋆
i )

f and T f =Nf ∩ (HB⋆
i )

f , respectively, by iteratively applying an

immediate consequence operator via (Σf
i+1)

Sf
and (Σf

i+1)
T f

, respectively. Let a0, a1, . . . be the ordered

sequence of all elements in (Mf −Nf )∩ (HB⋆
i+1)

f such that for every i∈{0, 1, . . .}, it holds that ai is de-

rived before ai+1. Then, a0 ∈ (M
f −Nf )∩ (HB⋆

i+1)
f is justified either by some a∈ (Mf −Nf )∩ (HB⋆

i )
f

with a0 4 a (as argued above, this implies (⋆)) or by some b ∈ (Nf − Mf )∩ (HB⋆
i )

f with a0≺ b.

Similarly, every ai ∈ (M
f −Nf ) ∩ (HB⋆

i+1)
f is justified either by some aj ∈ (M

f −Nf )∩ (HB⋆
i+1)

f

with j ∈ {0, 1, . . . , i− 1} and ai 4 aj , (by induction on a0, a1, . . . , this implies (⋆) with a= aj),

by some a∈ (Mf −Nf )∩ (HB⋆
i )

f with ai 4 a (as argued above, this implies (⋆)), or by some b ∈
(Nf −Mf )∩ (HB⋆

i )
f with ai≺ b. In summary, this shows that for every a ∈ Mf −Nf , there exists

some b∈Nf −Mf such that a≺ b. �

Proof of Theorem 39. Let µ : R → {0, 1, . . . , k} be a stratification of Σ. Let S0= chase(D,Σ0) and

Si+1= chase(Si,Σ
Si

i+1) for i∈{0, 1, . . . , k− 1}. Recall that Sk is the canonical model of D and Σ. We

now show by induction on i∈{0, 1, . . . , k} that Si − (Di+1 ∪ · · · ∪Dk) is a perfect model of D⋆
i and Σ⋆

i .

Hence, in particular, Sk is a perfect model of D⋆
k =D and Σ⋆

k =Σ.

Basis: By Theorem 29, S0 − (D1 ∪ · · · ∪Dk) is an isomorphic image of the least model of D0 and Σf
0 . By

Proposition 36, it thus follows that S0 − (D1 ∪ · · · ∪Dk) is a perfect model of D0=D⋆
0 and Σ0=Σ⋆

0.

Induction: By the induction hypothesis, S′
i =Si − (Di+1 ∪ · · · ∪ Dk) is a perfect model of D⋆

i and Σ⋆
i ,

which also implies that S′
i is an isomorphic image of a model S

f
i of D⋆

i and (Σ⋆
i )

f . By Theorem 29, Si+1

is an isomorphic image of the least model of Si and (Σf
i+1)

Si . Thus, S′
i+1=Si+1 − (Di+2 ∪ · · · ∪ Dk)

is an isomorphic image of the least model of S′
i ∪ Di+1 and (Σf

i+1)
S′
i . Hence, S′

i+1 is also an isomorphic

image of the least model of S
f
i ∪Di+1 and (Σf

i+1)
S
f
i . By Proposition 37, S′

i+1 is a perfect model of D⋆
i+1

and Σ⋆
i+1. �
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In Proc. DL-2010, 2010.

[58] M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS-2002, pp. 233–246, 2002.

[59] A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in CARIN. Artif. Intell.,

104(1/2):165–209, 1998.

[60] V. Lifschitz. Non-monotonic databases and epistemic queries. In Proc. IJCAI-1991, pp. 381–386,

1991.

[61] T. Lukasiewicz. A novel combination of answer set programming with description logics for the

Semantic Web. IEEE Trans. Knowl. Data Eng., 22(11):1577–1592, 2010.

[62] T. Lukasiewicz. Probabilistic description logic programs. Int. J. Approx. Reas., 45(2):288–307, 2007.

[63] T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics for the Semantic

Web. Fundam. Inform., 82(3):289–310, 2008.

[64] C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description logic EL using a

relational database system. In Proc. IJCAI-2009, pp. 2070–2075, 2009.

[65] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies. ACM Trans.

Database Syst., 4(4):455–469, 1979.

[66] D. Mailharrow. A classification and constraint-based framework for configuration. Artificial Intelli-

gence for Engineering Design, Analysis and Manufacturing, 12(4):383–397, 1998.

[67] B. Marnette. Generalized schema-mappings: from termination to tractability. In Proc. PODS-2009,

pp. 13–22, 2009.

[68] B. Motik and R. Rosati. A faithful integration of description logics with logic programming. In Proc.

IJCAI-2007, pp. 477–482, 2007.

[69] B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. J. Web Sem., 3(1):41–60,

2005.



CL-RR-21-10 51

[70] P. F. Patel-Schneider and I. Horrocks. A comparison of two modelling paradigms in the Semantic Web.

J. Web Sem., 5(4):240–250, 2007.
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