Computing Science

PROCEEDINGS OF THE OXFORD UNIVERSITY
COMPUTING LABORATORY STUDENT CONFERENCE
2010

Programme Committee: Sara-Jane Dunn, Joe Loughry, Ivan
Lubenko (chair), Huy Vu

CS-RR-10-22

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD

Contents

Session 1: Verification

1.1

1.2

1.3

1.4

Cost Monadic Logic

Michael Vanden Boom
Alternating Timed Automata over Bounded Time

Mark Jenkins
Compositional Verification of Probabilistic Systems using Learning
Lu Feng
Automated Translation of Timed Automata to Tock CSP

Maneesh Khattrs o

Session 2: Computational Biology

2.1

2.2

2.3

2.4

A model of cardiac defibrillation in the human heart

Miguel Bernabeu, Mikael Wallman and Blanca Rodriguez
Inference of Electrophysiological Parameter Values Based on Endo-
cardial Mapping Data

Mikael Wallman
Towards a Colonic Crypt Model With Realistic, Deformable Geom-
etry

Sara-Jane Dunn L
Multi-Feature Identification in Abdominal CT Scans using Image
Partition Forests

Stuart Golodetz, Irina Voiculescu and Stephen Cameron

Session 3: Software Engineering

3.1

3.2

3.3

3.4

Complexity of Higher-Order Queries

Huy Vu . . 00 o
Principles for designing Out-Of-Band channels in Human-Interactive

Security Protocols

Ronald Kaindao
Local consistency and SAT-solvers on the example of chains of in-

equalities

Justyna Petke
ghttp: a Goroutine-based Web Server Toolkit

James Whitehead I

Session 4: Linguistics

4.1

4.2

Rich morphology as a challenge to current statistical machine trans-
lation systems

Jan A. Botha
Can we learn from a text without understanding the words?
Pia-Ramona Wojtinnek

Session 5: Programming Languages

5.1 Accelerating Dynamic Programming algorithms using Massively Par-
allel Hardware
Luke Cartey
5.2 Navigating the Deep Web with OXPath
Andrew Sellers

Foreword

The annual Oxford University Computing Laboratory student conference is a fo-
rum for the presentation of the graduate research work in the department. It is
clear that the conference has now established itself as an annual institution and
we are continuing to widen its scope to include the breadth and depth of the re-
search in the Computing Laboratory. This year, in particular, submissions from
the Computational Biology group justify this group having a dedicated session for
the first time at the conference.

The conference is an increasing success, with 2010 featuring a large number
of high-quality submissions from most research groups in the laboratory and a
100% increase in submissions from previous years. The 16 abstracts within these
proceedings were selected from a very competitive round of peer-reviewing by
both DPhil students and academic staff. The programme committee compiled
this interesting programme, not without having to make some difficult decisions.

For some presenters, the conference offers an invaluable opportunity to pre-
liminarily share results that will later be presented at international conferences,
workshops and symposia. Conversely for others, having successfully navigated the
peer review process for the first time, this will be a new experience. We hope that
all the presenters, and you, the audience, will find this a useful and far reaching
day.

This day would not have been possible without the assistance of many. Firstly,
we extend our gratitude to our referees for giving up their time to contribute
valuable feedback on all the submissions. Furthermore, we are grateful for the
generosity of the Computing Laboratory in sponsoring the conference and Keble
College for hosting us today. We would also like to thank Dr Mike Spivey for
agreeing to deliver the conference keynote speech. Finally, on behalf of the whole
committee, I would like to thank the presenters, whose work has allowed us to put
together such a diverse and interesting programme.

Ivans Lubenko
Programme Chair

Organisation

Programme Committee

Ivan Lubenko (chair)
Sara-Jane Dunn

Joe Loughry

Huy Vu

Conference Committee

Christopher Broadbent
Sara-Jane Dunn
Shamal Faily

Tom Harper

Steering Committee

Marta Kwiatkowska (Honorary Chair)
Shamal Faily
John Lyle

Referees

Christopher Broadbent, Alastair Donaldson, Sara-Jane Dunn, Shamal Faily, Ivan
Flechais, Matthew Hague, Ralf Hinze, David Hopkins, Peter Jeavons, Ronald
Kainda, Joe Loughry, Ivan Lubenko, Thomas Lukasiewicz, John Lyle, Andrzej
Murawski, Andrew Markham, Pras Pathmanathan, Mike Spivey, Jamie Vicary,
Huy Vu, Jackie Wang, Jim Whitehead, Jonathan Whiteley, James Worrell

Cost Monadic Logic

M. Vanden Boom

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

A fundamental result in the theory of regular languages is the equivalence of monadic
second-order logic (MSO) and finite automata. In the classical setting, a logical sentence
is true or false, and an automaton either accepts or rejects the input. Recently, however,
Colcombet [4] has proposed a quantitative extension to MSO called cost monadic logic (cost
MSO). In this setting, a cost MSO sentence ¢ defines a function [¢] from some domain D
under consideration (e.g. finite/infinite words or trees) to N U {oo}. Informally, this means
that a cost MSO sentence can count some behaviour within the input structure, e.g. the
number of positions labelled with a particular symbol.

Over finite words [4, 3] and finite trees [6], Colcombet and Loding showed that a sentence
of cost monadic logic can be approximated by a cost automaton, a non-deterministic finite
automaton enhanced with a finite set of counters which are initially assigned value 0 and are
then updated at each transition using counter operations increment, reset, and no change.
Unlike so-called “counter automata”, the value of the counters cannot be used to affect
control flow. Instead, the counters are used to assign a value to each structure. For instance,
over finite words the value of a run of a cost automaton is the maximum value achieved by
any counter during the course of the run, and the cost of the word is the minimal value
across all accepting runs. If there are no accepting runs, then the word is assigned the value
oo. Historically, there have been a number of related automaton models including weighted
automata [12], distance automata [7], nested distance-desert automata [9], R-automata [1],
and wBS-automata [2].

A result from [10] implies that it is undecidable whether two regular cost functions
(functions definable by cost automata or cost MSO) define exactly the same function. How-
ever, Colcombet introduced in [3] an equivalence relation a defined as follows: for functions
fyg: D — NU{w}, wesay f ~ g iff for all X C D, f(X) is bounded iff g(X) is bounded.
In other words f ~ g means that f and g share similar boundedness properties (even if the
particular values do not agree). For example, if D is the domain of finite words over the
alphabet {a,b}, the function f(u) = |u|, which computes the number of a’s in the word u
is &-equivalent to g(u) = 2 - |u|,, but not ~-equivalent to ¢'(u) = |u|, which computes the
number of b’s (this is witnessed by the set X = {b" : n € N} which is mapped to 0 by f
and g, but has unbounded output via ¢’). For regular cost functions f, g over finite words or
finite trees, Colcombet and Loding showed that it is decidable whether or not f ~ g. Thus,
by weakening the relation from strict equality to this “boundedness preserving relation” ~,
we can regain decidability while still retaining some useful applications.

The applications of this logic and automaton model arise in problems related to the exis-
tence of bounds. Indeed, one of the earliest motivations for studying this type of automaton
came from work on the “star-height problem”: given some regular language L of finite words
and natural number k, decide whether L can be represented by a regular expression which
has at most k nestings of Kleene star operations. Hashiguchi [8] and then Kirsten [9] used
automata with counters to prove this problem decidable. Colcombet and Loding [5] have
used these cost automata to prove the decidability of the star-height problem for regular
languages of finite trees as well. A challenging open question in this area is whether this
result can be extended to the case of infinite trees. Thus, a greater understanding of cost
MSO and cost automata over infinite trees is desirable.

(a) An axial slice through a (b) The corresponding slice
3D abdominal CT scan through the labelled result

Fig. 2. An illustration of the desired results of the automatic feature identification process: (a)
shows the type of image we’re processing; (b) shows the features we hope to identify (aorta = red,
liver = purple, ribs = light green, right kidney = yellow, spinal cord = blue, spine = light blue and
spleen = green).

like properties (extends through every axial slice, reasonably white, reasonably large, etc.).
Via testing on a number of image series, we have found this to be quite a robust approach.
We next use this to identify the spinal cord, ensuring that e.g. it is well within the bounds
of the spine, extends through every axial slice and has a reasonably low grey value and
a reasonable size. We use a multi-layer region growing approach with post-processing to
identify the ribs, again taking the location of the spine into account when doing so.

Identifying blood vessels and organs is more involved, because their grey value distribu-
tions are less distinct with respect to the rest of the image. For example, we identify the
aorta by first filtering for reasonably-sized regions with a relatively high grey value towards
the top-right of the spine. We then find the connected components of the results, pick the
one which extends farthest down the image, remove any particularly dark regions and use
a graph-based, conditional version of a technique called morphological closing [4] to fill in
any holes. Our work on identifying soft-tissue organs is on-going, but we will nevertheless
present a technique that is relatively successful at identifying the kidneys, and discuss our
early approaches to liver and spleen identification.

We have implemented our feature identification algorithms as part of the development
of a cross-platform segmentation, feature identification and 3D visualization tool. Whilst
further work is still required to increase their overall robustness, we believe the initial results
(as illustrated in Figures 1 and 2) are extremely promising. We aim to show our methods
running on a real data set, courtesy of the Churchill Hospital, Oxford.

References

1. A Shimizu et al. Segmentation of multiple organs in non-contrast 3D abdominal CT images.
International Journal of Computer-Assisted Radiology and Surgery, 2(3):135-142, 2007.

2. P Campadelli et al. Automatic Abdominal Organ Segmentation from CT images. FElectronic
Letters on Computer Vision and Image Analysis, 8(1):1-14, 20009.

3. S Golodetz, I Voiculescu, and S Cameron. Region Analysis of Abdominal CT Scans using Image
Partition Forests. In Proceedings of CSTST 08, pages 432—7, Cergy-Pontoise, October 2008.

4. Rafael C Gonzalez and Richard E Woods. Digital Image Processing. Pearson Education, 2nd
edition, 2002.

5. Ziji Wu and John M. Sullivan Jr. Multiple material marching cubes algorithm. International
Journal for Numerical Methods in Engineering, 58(2):189-207, July 2003.

20

Complexity of Higher-Order Queries *

Huy Vu

Computing Laboratory, Oxford University, Parks Road, Oxford, UK
huy.vu@comlab.ox.ac.uk

Higher-order functions play a fundamental role in computer science; they are critical
to functional programs, and in object-oriented programming they play a key role in en-
capsulation. In database systems they have appeared in isolation at several points: query-
transformation plays a role in numerous aspects of databases, including data integration
[LRU96], access control [FGKO07], and privacy [LHR10]. In the context of nested-relational
and functional query languages, the ability to create and pass functions as data plays a role;
the role of higher-order functions is becoming more prominent within XML query languages,
with the next version of the XQuery standard offering explicit support for higher-order fea-
tures [RCDS09].

Still, the combination of database queries and higher-order functions has not been studied
in its own right: in prior work within the database community it appears in conjunction with
other language features and in restricted settings. Within finite model theory the ability
to express database queries within higher-order functions has been studied, but not their
combination. In [BPV10], a straightforward framework for combining relational algebra
with higher-order functional languages is defined, which we refer to as A-embedded query
languages: it is exactly the simply-typed A-calculus with database operators as “constants”
(that is, as built-in functions).

Our prior work [BPV10] focuses on equivalence and containment of terms. In this paper,
we give a full picture of the most basic problem concerning terms in higher-order query lan-
guages: evaluation of “order 0 terms”: terms that evaluate to a database instance. We study
this not only for positive relational algebra, but for any collection of relational operators,
and also consider the impact of higher-order constants that give greater expressiveness, such
as fixpoint operators.

We begin by defining the higher order language studied in this work.

— Types: We fix an infinite linearly-ordered set of attribute names (or attributes). The
basic types are the relational types each given by a (possibly empty) set of attribute
names, 7 = (a1, ..., an). The order of any relational type is 0.

We define higher-order types by using the functional type constructor: if 7,7 are types,
then 7 — 7" is a type whose order is order(7 — 7”) = max(order(7)+1, order(7")).
Order 1 types are often called query types.

— Constants: We will fix a set of constants of each type. Database instances are constants
of relational type. The operators of Relational Algebra are constants of query type.

— Simply typed terms: Higher-order terms are build up from constants and variables by
using the operations of abstraction and application:

e every constant is a term of the constant’s type;

e if X is a variable of type 7 and p is a term of type 7”, then AX. p is a term of type
T—1T

e 7 is a term of type 7 — 7/ and p is a term of type 7, then 7(p) is a term of type
T’

* This is a quick summary of joint work with my supervisor [VB11].

21

The semantics of terms can be found in [BPV10,VB11].
The order of a term 7 is the order of its type. The degree of T is the maximum order of
its subterms.

After defining the terms, we consider the evaluation problem of terms of “degree 1”: those
that have variables ranging only over databases. For terms with only positive operators and
only database variables, it was shown in [BPV10] that this language is essentially the same
as non-recursive Datalog. Here we extend this to the more general setting of all relational
operators, and to fixpoint operators, showing equivalence to variants of Datalog. This allows
us to read off the complexity of evaluation via reduction to known results about Datalog.

We then extend to the first higher-order case: “degree 2”7, where terms can have variables
ranging over queries. Here we get EXPTIME-complete complexity of evaluation through
combining an analysis of the complexity of classical S-reduction with the results on degree 1.

Building on the degree 2 case and a technique inspired by Hillebrand and Kannellakis
[HK96], we determine the complexity for general terms. The problem of evaluating degree k
terms is m-EXPTIME-complete if k = 2m, and is m-EXPSPACE-complete if &k = 2m + 1.
Our results show that the complexity is non-elementary for the general calculus.

Having found the worst-case complexity for general terms, we turn to cases that have
lower complexity. For example, we show that the complexity reduces drastically when we
restrict the nesting of higher-order variables in terms.

All of these results are for a “strongly-typed” version of the A-calculus, in which all oper-
ators and variables must be annotated with correct types. We look at a weaker “implicitly-
typed” version, and show that the complexity does not change, even though we can now build
queries in which the arity of the output can grow exponentially with the input database.

In the future we will find a more precise bound in terms of the nesting depth. We will
explore the behavior of other built-in query transformation and database operations.

We have initiated a study of weakly-typed terms here; in future work we will consider
more powerful operations on indices in weakly-typed terms, with the goal of matching the
expressiveness of XML query languages. We will also study the relationship with polymor-
phic nested relational languages.

Our upper bounds rely on strategies where the interaction between g-reduction and query
evaluation is fairly limited. We are not convinced that this is true for practical evaluation
strategies, and will be looking at interleaved strategies in our implementation.

References

[BPV10] M. Benedikt, G. Puppis, and H. Vu. Positive Higher Order Queries. In PODS, 2010.

[FGKO07] W. Fan, F. Geerts, and X. J. A. Kementsietsidis. Rewriting Regular XPath Queries on
XML Views. In ICDE, 2007.

[HK96] G. Hillebrand and P. Kanellakis. On the expressive power of simply typed and let-
polymorphic lambda calculi. In LICS, 1996.

[LHR*10] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting
queries under differential privacy. In PODS, 2010.

[LRU96] A.Levy, A. Rajaraman, and J. Ullman. Answering Queries using Limited External Query
Processors . In PODS, 1996.

[RCDS09] J. Robie, D. Chamberlin, J. Dyck, and J. Snelson. XQuery 1.1.: An XML Query Lan-
guage , 2009.

[VB11] H. Vu and M. Benedikt. Complexity of higher-order queries. In ICDT, 2011.

22

Principles for designing Out-Of-Band channels
in Human-Interactive Security Protocols

Ronald Kainda

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

1 Introduction

Human-Interactive Security Protocols (HISPs) require users to carry out security critical
tasks with high degrees of accuracy. Users, however, are usually faced with competing tasks
and security is not their primary goal. As a result users are unmotivated to do security
tasks with required attention and accuracy. To minimise the possibility of security failures
without requiring undue effort from users, Out-Of-Band (OOB) channels must be designed
based on a number of principles. Currently proposed methods have inherent weaknesses
including forcing designers to choose between security and usability, being limited to specific
application contexts, and failing to ensure that users carry out security critical tasks with
required attention [1]. This work proposes principles for designing secure and usable OOB
channels that, despite being faced with competing tasks, users are able to carry out security
critical tasks with required attention and accuracy.

2 Principles for designing OOB channels

Principle of commitment This principle can simply be stated as ‘a user is committed
to a particular value/action without knowing what the outcome of such a value or action
will be’. The outcome of a users’ value/action is only revealed after s/he is committed to it.
This principle ensures that users do not get their desired outcome when it is not supposed
to be the case. The principle of commitment requires that a user is provided only with
partial information that allows him/her to commit to a final outcome. For example, manual
copying and entering [2] reveals partial information to a user that he/she uses to make a
commitment by entering it into other devices. The user at this stage does not know whether
this information will be accepted by other devices but it is up to these devices to determine
whether received information is correct or not. By doing so, a user cannot force a device to
accept a value that does not match its own digest.

Principle of unpredictability Users tend to learn and master how a system can be
used with least effort. Over time users end up achieving their primary goals without con-
sciously engaging with the subtasks involved. This phenomena is known as habituation or
user conditioning. Habituation occurs in activities that have non changing task sequences
and following a specific course of actions results in the same outcome every time. Habitu-
ation is bad for security because we want users to carry out security tasks consciously and
accurately. The principle of unpredictability simply states that ‘a user should not be able
to predict the sequence of actions that lead to a particular outcome’. This principle differs
from the principle of commitment in that it focusses on making a sequence of actions un-
predictable while the latter makes it difficult for a user to determine an outcome based on a
particular action. For example, in web browser Secure Socket Layer (SSL) certificate warn-
ings, users know that they have to take one of the two actions (principle of unpredictability

23

violated), either accepting or rejecting a certificate and they also know that accepting results
in continuing to the intended website (principle of commitment violated).

Principle of single interaction path One secure design principle is to ensure that
the path of least resistance is the most secure [3]. For example, Firefox 3.x web browser’s
implementation of allowing users to add exceptions of invalid, expired, or untrusted SSL
certificates requires a user to single-click a rejection of the certificate and at least 4 clicks to
accept the same certificate. The problem, however, is that in most instances users’ desire to
achieve their primary goals outweighs the effort required to accept a certificate. In HISPs,
path of least resistance may mean an insecure route —for example, accepting a digest
without comparing. Moreover, multiple paths to a single goal is likely to cause users difficulty
in understanding an OOB method. The principle of single interaction path demands an
implementation that provides a single path from start to end of a device association process.

Principle of design by context Systems must be designed to work within the context
of operation. This is crucial because different environments pose different challenges on a
system. Context may be classified as social, technological, and environmental. This principle
refers to designing OOB channels within the context of an application in which they may
operate. This requires thinking about specific user interactions, within a specific application
context, that may hinder or help usability and security of OOB channels. Understanding the
context in which an OOB method will operate is crucial to meeting human and contextual
needs. There is a general consensus among researchers that device association process must
be ‘fast’ to complete. However, fast usually means a user must spend as less time as she
considers appropriate. This definition of fast neither provides useful information nor does it
define the term itself. It may, however, be reasonable to think that a user is likely to measure
the appropriateness of time spent on the association process in relation to the time spent
on the primary task.

3 Summary and conclusion

The above principles were demonstrated by two proposed OOB channels. The channels
were subjected to a usability experiment and results compared to studies of other methods.
The comparison showed that the proposed methods are better in terms of effectiveness,
efficiency, and user satisfaction. In addition proposed methods are applicable to a wide
range of contexts without compromising security (See [1] for details on the methods and
study). In summary, HISPs require users to carry out security critical tasks in order to
establish secure device association. While device association is not usually a primary task
for users, security critical tasks must be carried out correctly. Given users’ lack of motivation
and the demands of competing tasks, OOB channels must be designed such that users do
not compromise the desired security.

References

1. R. Kainda, I. Flechais, and A. Roscoe. Information Security Theory and Practice. Security and
Privacy of Pervasive Systems and Smart Devices, volume 6033 of WISTP 2010, Lecture Notes
in Computer Sciences, chapter Secure and Usable Out-Of-Band Channels for Ad hoc Mobile
Device Interactions, pages 308-315. Springer, April 2010.

2. R. Kainda, I. Flechais, and A. Roscoe. Two Heads are Better Than One: Security and Usability
of Device Associations in Group Scenarios. In SOUPS ’10: Proceedings of the 6th symposium on
Usable privacy and security, 2010.

3. K.-P. Yee. User Interaction Design for Secure Systems. In ICICS ’02: Proceedings of the 4th
International Conference on Information and Communications Security, pages 278290, London,
UK, 2002. Springer-Verlag.

24

Local consistency and SAT-solvers

on the example of chains of inequalities

Justyna Petke

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

In the quest to find efficient problem solvers, two separate areas of research have de-
veloped, namely Constraint Programming and Boolean Satisfiability. The first area concen-
trates on solving instances of a Constraint Satisfaction Problem (CSP) which is defined by
a triple (V, D, C) where V is a set of variables, D is a set of domain values for variables in V
and C'is a set of constraints that put restrictions on variable assignments in V. The problem
of deciding whether there is a variable assignment that satisfies a propositional formula is
called the Boolean Satisfiability Problem (SAT). Even though SAT is a subset of CSP, the
usual approaches for solving those two kinds of problems differ [1].

SAT-solvers are considered by many users and researchers to be extremely efficient [1].
Hence some researchers have developed CSP to SAT translations and used a SAT-solver
engine for dealing with general CSPs over large domains [4]. Such translations often produce
huge SAT instances. (The direct encoding, for instance, introduces a Boolean variable for
each possible variable assignment v = a.) However, SAT-based solvers still did quite well
in CSP solver competitions [6]. In our recent paper [2] Peter Jeavons and I answer the
question of why SAT-solvers do so well on families of CSP instances whose satisfiability can
be decided by enforcing k-consistency for some fixed k.

Definition 1. A CSP instance P = (V, D, C) is k-consistent if for every valid assignment
of any k — 1 variables € V and any k" variable v € V, there exists a value for v in D that
satisfies all the constraints.

In particular, we show that modern clause-learning SAT-solvers will simulate the effect of
enforcing k-consistency in expected polynomial time, for any fixed k.

A modern randomised SAT-solver works in the following way: it picks a variable at ran-
dom and assigns it a value. If any clause becomes unit under that assignment, then another
variable assignment is made to satisfy that clause - we call this process unit propagation.
Variable assignments are made until all variables are assigned or some clause becomes false.
In the second case, a new clause is added to the database that explains the conflict (for
instance, the decision learning scheme adds a clause negating some current decision as-
signments) and a certain number of decision assignments is undone. A SAT-solver usually
restarts after a certain number of conflicts - in this case all current decision assignments are
undone.

We phrase our main result in an upper bound on the expected number of restarts of
a randomised SAT-solver before it deduces unsatisfiability of the input instance. For the
direct encoding and the decision learning scheme this bound is O(n?*d?*), where n is the
number of variables in the original CSP instance and d is the maximum domain size.

In order to check how well our bound is met in practice, we considered a family of
unsatisfiable CSP instances which we call chains of inequalities. We have previously shown
that these instances are not solved efficiently by standard constraint solvers [3], but they
can be shown to be unsatisfiable by enforcing (2w — 1)-consistency.

An instance of the chains of inequalities CSP family is specified by two parameters, w
and d. The variables are arranged in groups of size w, each with domain 0,...,d —1. A

25

constraint of arity 2w is imposed on each pair of successive groups, requiring that the sum
of the values assigned to the first of these two groups should be strictly smaller than the
sum of the values assigned to the second. We created ((d — 1) * w + 2) * w such groups to
ensure that the instances generated are unsatisfiable. An instance with w = 2 and d = 2 is
shown diagrammatically in Figure 1.

' N\ ANA

[%) [Xz [s | [%7}
| + | < | + [< | + [< | + |
|II Xz II‘ l\l Ka II| |II Xs I\l ‘II Xa II‘
[Vo [[
S N S NS

Fig. 1. An unsatisfiable chain of inequalities for w=2 and d=2.

We encoded the unsatisfiable chain of inequalities problem as a SAT formula using
the direct encoding, which has a clause for each disallowed assignment specified by the
constraints. We modified a state-of-the-art SAT solver called MiniSAT [5], so that it uses a
random branching strategy and restarts after every conflict. We called this modified solver
simple-MiniSAT. We ran the instances generated on both solvers. MiniSAT solved them very
quickly. Simple-MiniSAT was significantly slower, but still produced much better runtimes
than standard constraint solvers.

Next, we counted the number of restarts of simple-MiniSAT on small instances of the
chains of inequalities family. Using those, we estimated the growth functions for the number
of restarts for w = 2, w = 3 and w = 4 and showed that they are in fact much smaller than
our theoretical upper bounds.

We showed that without being explicitly designed to do so, current clause-learning SAT-
solvers efficiently simulate k-consistency techniques, for all values of k. We gave some ex-
perimental results to show that this feature allows clause-learning SAT-solvers to efficiently
solve certain families of CSP instances which are challenging for conventional constraint
solvers.

References

1. L. Bordeaux, Y. Hamadi, and L. Zhang. Propositional satisfiability and constraint program-
ming: A comparative survey. ACM Computing Surveys, 38(4), 2006.

2. J. Petke and P. Jeavons. Local consistency and SAT-solvers. In Proceedings of CP 2010, volume
6308 of LNCS, pages 398-413. Springer, 2010.

3. J. Petke and P. Jeavons. Tractable benchmarks for constraint programming. Technical Report
RR-09-07, Computing Laboratory, University of Oxford, 2009.

4. N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear CSP into SAT.
Constraints, 14(2):254-272, June 2009.

5. MiniSAT constraint solver. Software available at http://minisat.se/MiniSat.html.

6. Third international CSP solver competition - http://cpai.ucc.ie/08/.

26

ghttp: a Goroutine-based Web Server Toolkit

James Whitehead 11

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

We are investigating disciplined concurrent software design, where systems are com-
posed of discrete processes with well-defined interfaces. As an initial case study, we have
implemented a web server toolkit called ghttp that can be used to construct multi-purpose
scalable web servers. Servers built using our web toolkit comprise single-purpose concurrent
processes connected together to form a process network. An advantage of this structure is
a direct correspondence between the code used to create the server, the resulting process
network, and the manner in which the server handles web requests. As a result of this,
these web servers are more understandable than the equivalent Apache or Lighttpd server
configurations.

GzipFilte

FlateFilter
i e - - -S>~ __---S.

J SimpleAuth H StaticFiles

StaticFiles

AccessLog H ReuseOrClose

Dispatch

Fig. 1. Network topology for web server

Figure 1 shows the process network graph for an example web server built using our
toolkit. Each node in this graph represents a single-purpose component that runs as an in-
dependent process in the resulting program. These processes communicate with each other
solely via message passing over explicit channels, shown as edges between nodes. An ab-
straction of the HTTP connection, including the raw networking socket, incoming request,
and HTTP response object is passed over these channels.

In its resting state, the process network closely mirrors the graph shown in Figure 1.
Once the server starts receiving incoming requests, the system dynamically alters itself to
respond. Each component, upon receiving a request, spawns a new goroutine (lightweight
thread) to handle the request. In this way, these primary component serve as farm processes,
becoming immediately available to receive another request. This helps to ensure that no
single connection is able to monopolize server resources, while providing a high degree of
scalability.

It should be noted that the compression component in this example web server is actually
a collection of three sub-processes. Figure 1 shows these components, Compress, GzipFilter,

27

and FlateFilter, grouped together in a dashed box. As only some clients will be able to
read a compressed response, the Compress component must first check the request headers
to determine if the client supports any compression methods. If so, the connection can be
forwarded to one of the compression components, otherwise it will bypass the compression
step. Although a developer could configure their web server to include these components and
logic independently, the composite component is able to transparently use sub-components
to serve this purpose.

With the HTTP protocol, request and response headers must be output before the
associated content. This allows both the client and server to examine the headers and make
decisions about how to treat the incoming content. Accordingly, components using the ghttp
toolkit must perform their work in two stages. The first stage involves examining the request
and computing any necessary changes to the response, such as setting the status code or
altering headers. In addition, if the component will need to produce or examine the content
of the eventual response, it can request content readers or writers as appropriate. Once the
headers are computed and any response resources are allocated, the component passes the
connection object through to the next portion of the network. Afterwards, in the final stage,
the component uses the content reader/writer to produce or transform the content of the
response. Because operations on these content channels are synchronous, processes in the
content pipeline will eventually block, waiting for another process to read from the pipeline.

The connection will eventually arrive at the Output component, which serializes the re-
sponse meta-data, such as status code and headers, and transmits them to the client. It then
begins reading the content of the response from the content pipeline, with those components
being re-activated as necessary. Figure 2 illustrates the process network for the components
that server compressed files, along with the content pipeline that is constructed. The content
pipeline is indicated with dashed arrows labelled with paired writers and readers.

staticWriter/gzipReader gzipWriter/outputReader

- Y _ - ~
W’{ Compress }—q GzipFilter I Output [—»

Fig. 2. Server processing of compressed static files

The synchronous nature of the content pipeline and the delay in writing the body of
the response ensures content is only generated as it is ready to be transmitted. This avoids
the need to store large amounts of response data in memory or overcommitting resources to
a potentially unreliable client connection. If a client disconnects prior to transmission, the
associated sub-network gracefully terminates.

The construction of the ghttp web server toolkit has provided us with an example of
a concurrent system that is composed of discrete processes that interact via well-defined
interfaces. The processes are connected to create processing pipelines for various types of
HTTP requests. Content generation and transformation is accomplished by constructing
dynamic pipelines, enabling lazy commitment of resources when servicing requests. The
semantic properties of these pipelines is enforced using the statically-typed nature of the Go
programming language. Future work includes designing a systems-level server that manages
high contention of shared resources.

28

Rich morphology as a challenge to current statistical
machine translation systems

Jan A. Botha

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Morphological variation among different natural languages is often ignored in Statistical
Machine Translation (SMT) research. Instead, translation is treated as a mapping of words
and phrases from one language to another [4], without taking cognisance of word-internal
structure. This approach has worked reasonably well where languages exhibit sufficient sim-
ilarity, but is ill-suited for language pairs with substantial morphological divergence, e.g.
Turkish and English.

The training data used to estimate the probabilistic translation models is inherently
sparse. This sparsity is even more acute for a language with complex morphology, where a
very large number of different word forms may be derived from the same base word, e.g. the
German fahren (to drive/ride) gives rise to fahre, fihrst and fahrt, corresponding to I, you
(sing.) and you (pl.) drive. In practice, this means it is hard or impossible to produce correct
translations in cases where a particular word form was observed rarely or not at all in the
training data. For languages with sufficiently complex morphology, this problem cannot be
solved by simply using more training data.

By modelling morphological structure, we have something to fall back on when called
upon to translate a previously unseen word. Ideally, the morphemes in observed words should
be leveraged to produce novel words that were not observed in training, as shown in this
French example:

Observed during training Generated (not observed)

(I hear) jentends

. = nous entendons (we hear)
(we reply) nous répondons

As a starting point, we can use an off-the-shelf tool to split words into morphemes,
e.g. [3]. This gives us a basic model of morphology. We will treat this as a black box for
the moment and consider the challenges that arise when integrating such a model into an
existing translation system.

One can view translation approximately as a two-step process: First, given an input
sentence in the source language, the system generates multiple candidate translations in the
target language. The goal here is translational equivalence, i.e. that the candidate words
and phrases convey the same meaning as those in the source sentence. No attention is paid
to how fluent the full sentences are in terms of the target language. This is the focus of
the second step, where a best candidate is chosen according to fluency. This judgement is
made by scoring candidate sentences against a so-called language model (LM) of the target
language. The LM, typically an n-gram model, is oblivious to the source language.

It should be clear that the integration of morphology affects both of these steps. We
briefly describe two approaches, one applied to each step.

Firstly, we applied a clustering method [1] to refine a popular translation grammar [2]
such that it is capable of modelling the kind of word formation exemplified in the example
above. This allows novel words to be output in step 1. In particular, added non-terminal
categories constrain the combination of morphemes so that illegitimate words do not form,
which happens under the unrefined grammar:

29

X — en+ +able+ X
X — +d
X — +ly address

en+ +able+ +d *en+ +able+ +ly address

(a) Non-sensical words can be produced when using a single non-terminal category.

X — en+ +able+ X3
X3 — +d
X — +ly address

en+ +able+ +d

(b) Constraining the grammar with labelled rules can avoid the problem.

Fig. 1. Grammar fragments and possible derivations they allow when using a single category (top)
vs. multiple categories (bottom).

The main results from an evaluation on Dutch—French were that this approach success-
fully generated words outside of the training vocabulary, that the clustering method learnt
extensive and interesting fragments of Dutch morphology, but that translation quality was
worse than that of the original system.

A major source of error was the fact that the segmentation of all text into morphemes
introduced errors into the bilingual word alignments from which the grammars are induced.

But bad alignments are only part of the story. Another factor is how the integration of
morphology affects step 2 of the translation process. This motivates us to study the role of
the LM in isolation of the alignment problem. The isolation is achieved by extracting a gram-
mar from unsegmented text, after which the resulting grammar rules are morphologically
segmented.

As in the previous case, the candidate sentences generated under these conditions are
sequences of morphemes. Instead of simply scoring the sentences against an LM trained on
segmented text, we are seeking better ways of measuring the fluency. We expect a back-off
approach to be a useful starting point for this: we allow fluency to be measured in terms of
words (obtained by rejoining the appropriate morpheme sequences), but for rare or previ-
ously unseen words, we fall back onto measuring fluency in terms of the actual morpheme
sequences. This way, the appropriate level of representation can be chosen dynamically.

References

1. BLunsoMm, P., CaLLiSON-BURCH, C., ConN, T., DYER, C., GRAEHL, J., LOPEZ, A., BOTHA,
J. A., EIDELMAN, V., NGUYEN, T., WANG, Z., WEESE, J., Buzek, O., AND CHEN, D. Models
of Synchronous Grammar Induction, final report, Language Engineering Workshop. Tech. Rep.
(in preparation), Johns Hopkins University, 2010.

2. CHIANG, D. Hierarchical Phrase-Based Translation. Computational Linguistics 33, 2 (June
2007), 201-228.

3. CREUTZ, M., AND LAGUS, K. Unsupervised models for morpheme segmentation and morphology
learning. ACM Transactions on Speech and Language Processing 4, 1 (2007), 1-34.

4. LopPEz, A. Statistical machine translation. ACM Computing Surveys 40, 3 (2008), 1-49.

30

Can we learn from text without understanding the
words?

Pia-Ramona Wojtinnek

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Whichever Al or natural language processing task we start with - we always run into the
same problem. If only we could put more of all that knowledge that we humans have into
the computer - then they could do some wonderful things! It could search the web for the
most suitable mobile contract, translate some French publication, summarize an elaborate
text or even converse with us! If only GOOGLEtranslate! knew that German “Fliigel” can
mean “grand piano” as well as “wing”, and that a piano is something you play on, then it
wouldn’t suggest that I “played on the wing” yesterday! Consequently, a lot of effort has
been put into building lexical and world-knowledge resources. However, manual acquisition
cannot scale up - the most widely used lexical resource WordNet, for example, contains word
senses and subclass or part-of relations of about 120,000 concepts and took more than 10
years to build. Therefore, our ultimate goal should be to automatically acquire knowledge
from text.

We aim to approach this bottleneck by automatically building knowledge networks di-
rectly from text using state-of-the-art linguistic analysis tools. The basic idea is simple: say
you were given a huge collection of text about zoodies and tollties in the style of following
and you were asked to represent all you can gather about this domain in a structure.

A zoodie roonged tushly. The goan tollties then soufed into the reef. That made the zoodie
fretch the tollties foudly and it mooted the reef, which glousted the freet.

You don’t know what is going on, but you will gather that there are things (zoodie,
tollties, reef, freet), relations (soufed into, fretch etc.) and attributes (tushly, goan, foudly).
To get a good overall overview, you might draw a network with the objects as nodes,
connected by the relations and modified by the attributes, which gives you a good starting
point to answer questions about this world. And this is how we build our structure: the
linguistic analysis tools do not understand the words, but the grammar and we use their
automatic analysis to build such a knowledge network on a domain that we are interested
in. Fig 1 shows a sample network based on few M.Sc. Handbooks paragraphs. This type of
knowledge network can be built for any domain (as the only prerequisite is a text collection)
and also in any language as long as equivalent linguistic analysis tools are available. For
details of the building method see [1].

We evaluate our knowledge networks on two tasks - semantic relatedness and text simi-
larity, the first of which is described below. As a starting point, we have built large, general-
purpose networks using the British National Corpus (BNC) as text collection. It is one of
the largest English corpora and contains about 5.8 million sentences from a wide range of
sources and topics, ensuring broad coverage of our resulting networks. Our currently largest
network is based on 4 million sentences of the BNC, contains 50 million nodes, and took
approximately 10 days to build including the linguistic analysis.

One of the tasks that we evaluate our knowledge network on is semantic relatedness
and similarity. The objective is to give a numeric measure of the closeness of the meaning
of terms. For example, pound and quid are synonmous, pound and dollar are similar and
pound and profit are topically related. The core assumption of any statistical approaches to

31

dissertation

ma

".
i normally
= @

—_—

Fig. 1. Subgraph displaying a few concepts and relations from sample network.

this task is that words with similar meaning tend to occur in similiar contexts such as that
they tend to co-occur with the same words. For example, as pound and quid would both
occur with spend or pay. In general, the more fine-grained similarities we want to discover,
the smaller and more specific the context need to be. In our case, we measure the similarity
of terms by the similarity of their local networks around the corresponding nodes in the
network. In other words, we assume that nodes which are semantically similar overlap in
the nodes they are strongly connected to. The way in which we measure this overlap consists
two steps. In the first step we use a technique called spreading activation to determine the
local network around the target words and measure the importance of each contained node
to the word. This means we put a certain amount of activation into each target node and
let this activation spread over the links [1]. In this way, the nodes around the target nodes
receive different levels of activation, giving a measure of their importance. In the second step
we construct vectors from the nodes and their activation levels and use a vector similarity
measurement to retrieve the score of their context similarity. Our initial results on gold
standard collection of word pairs and their similarity scores are promising and our approach
may be able to compete with methods based on manually acquired knowledge resources
such as WordNet.

References
1. WoOJTINNEK, P.-R., HARRINGTON, B., RUDOLPH, S., AND PULMAN, S. Conceptual knowledge

acquisition using automatically generated large-scale semantic networks. Tech. rep., Oxford
University Computing Laboratory, April 2010.

32

Accelerating Dynamic Programming algorithms using
Massively Parallel Hardware

Luke Cartey

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

1 Introduction

Dynamic programming is a popular and simple technique for improving performance in al-
gorithms that adhere to two key principles: a) optimal substructure and b) overlapping
sub-problems. An excellent example of dynamic programming is the Levenshtein distance
algorithm, a solution to the edit-distance problem for determining the number of opera-
tions required to transform one string to another. It is typically defined using the following
recursion equations:

x ify=0
_)y ife=0
U y) =\ (e —1,y— 1) if s[z] = t[y]

min(d(z —1,y),d(z,y —1),d(x — 1,y — 1)) + 1 otherwise

Each result d(z,y) is used a number of times; applying dynamic programming we can either
tabulate the results or memoise the results as they are computed.

Dynamic programming is typically used where performance is an important factor; for
example, many applications in scientific computing make use of the improvements offered
by dynamic programming. An important set of examples are the statistical applications
in Bioinformatics, including the Smith- Waterman algorithm for alignment and the Viterbi
algorithm, associated with Hidden Markov Models.

2 Automatic parallelisation of Dynamic Programming

GPUs are increasingly accessible for general purpose computing, with extensive tool-chains
now available [2, 1, 3]. However, accessibility does not imply usability, and the intricacies of
the custom hardware caused by the drive for improved graphics performance, the differences
between GPUs and the paradigm shift of programming for massively parallel hardware all
contribute to a notoriously difficult platform for direct development.

Recent attempts have been made to stem this complexity through use of embedded lan-
guages [5]. Our approach is slightly different; rather than trying to integrate some measure
of parallelism into an existing language or attempting to build a general purpose language,
we are researching the value of domain-specific languages for the GPU. By limiting the scope
of our language, we can take a much more reasoned approach to parallelisation.

Our domain for this paper is optimisation problems; in particular those formulated with
the optimal sub-structure condition typical of dynamic programming algorithms. Not all
algorithms with this condition are amenable to parallelisation; the problem must split into
a sufficient number of sub-problems that can be solved concurrently.

Consider again our example of the Levenshtein distance - an example with a Bioinfor-
matics counterpart, the Smith-Waterman algorithm, used widely for sequence alignment,

33

and typically needed to analyse millions of sequences, each consisting of thousands of char-
acters. If we compare the strings “kitten” and “knitting”, the recursions can be tabulated,
where the arrows represent the dependencies between cells:

kin|li|t|t|i|n|g
01112¢31415¢67718
k|1j011§243141{5{617
i12$41+1+1+2+314¢5+¢6
t131272121112¢31415
t|413131312111213+¢4
e 5t+4+4+41313¢12¢3+¢4
ne6+5+41514+414¢2+¢3

In a serial computation, we would compute each cell in turn, in an order that appro-
priately resolves the marked dependencies. In a massively parallel environment we must
find a degree of concurrency that supports the large number of processors available. In this
application, we can observe that cells along the diagonal are independent of each other, and
can therefore be evaluated concurrently.

We have developed a prototype that determines for a recursion, using static analysis, a
suitable candidate for GPU implementation from a fixed set of parallel schemes. A candidate
is described by the partitions which the tabulation for the function can be split into, where
partitions are defined by a partition function on parameters. The partition function gives
each partition a unique partition value; partitions may only depend on partitions with lower
values, which can be used with a base case analysis to prove termination.

To confirm that the equation only depends on lower valued partitions, we compare the
partition value of the original call against the partition value of each recursive call. It is then
safe to evaluate any cells with matching partition values concurrently, on the condition that
all cells with lower partition values have already been computed. In the example a suitable
partition function is P¢(z,y) = « + y; it describes the diagonals where cell computation is
independent and encodes that a diagonal depends on the diagonals to the left.

This analysis is possible because we posit a simple language and one where we interpret
rather than compile the recursions, to allow ourselves the luxury of performing the analysis
with known, fixed bounds on each variable. The overhead of interpretation in this approach
is negligible for the long execution-time of desirable applications for the GPU.

3 Future Work

As part of our wider research we are developing domain-specific languages for the support
of statistical algorithms in Bioinformatics. We have developed HMMingbird [4], a language
and compiler for Hidden Markov Models which contains a fixed set of algorithms; we hope
to use this research to extend the language to allow custom algorithms.

References

ATT Stream Technology. http://www.amd.com/stream.

NVIDIA CUDA Compute Unified Device Architecture - Programming Guide, 2010.

KHRONOS. OpenCL. http://www.khronos.org/opencl/.

LUkge CARTEY. Domain Specific Languages for Massively Parallel Processors, Transfer Report.
http://www.hmmingbird.co.uk/downloads/transferreport.pdf, 2010.

5. TARDITI, D., PURI, S., AND OGLESBY, J. Accelerator: using data parallelism to program GPUs
for general-purpose uses. In ASPLOS-XII (2006).

L s

34

Navigating the Deep Web with OXPath

Andrew Sellers

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

The interactive nature of modern web interfaces exacerbates an unfortunate problem:
the dynamic nature of these user interfaces, driven by client and server-side scripting (e.g.
AJAX), creates challenges for automated processes to access this information with the tech-
niques developed for extracting static web content. The deep web, the part of the web
accessible only through such web interfaces, contains significant amounts of useful infor-
mation; while each individual piece of information is readily available on some webpage,
their manual extraction and aggregation is often impractical due to the number of possible
combinations—forcing us to accept far from optimal solutions.

Extracting and aggregating web information is not a new challenge. Previous approaches,
in the overwhelming majority, either (1) require service providers to deliver their data in
a structured fashion (e.g. the Semantic Web); or, (2) “wrap” unstructured information
sources to extract and aggregate relevant data. The first case levies requirements that ser-
vice providers have little incentive to adopt, which leaves us with wrapping. Wrapping a
web site, however, is often tedious, since many AJAX-enabled web applications reveal the
relevant data only through user interactions. Previous work does not adequately address web
page scripting. Even when scripting is considered, the simulation of user actions is neither
declarative nor succinct, but rather relies on imperative scripts.

XPath is the language of choice to query node sets in static XML or HTML trees.
However, many current Web applications, such as GMail or FaceBook, extensively rely on
scripting and HTML events to implement complex user interactions that are not adequately
expressible in XPath.

Contribution. We introduce OXPath, an extension of XPath 1.0, to allow the declar-
ative specification of user interactions with (scripted) web applications. We show that just
four concise extensions over XPath enable OXPath to deal with scripted web applications
while retaining XPath’s declarativity and succinctness. Underlying these extensions is OX-
Path’s ability to access the dynamic DOM trees of a current browser engine, reflecting all
changes caused by scripting: (1) The simulation of user actions, such as filling form fields
or hovering over a details button, enables interaction with AJAX applications which modify
the DOM dynamically. (2) Selection based on dynamically computed CSS attributes allows
navigation based on presentation, e.g. to the first green section title. (3) For expressing the
interaction with forms, navigation exclusively relying on visible fields is essential. (4) Ex-
traction markers allows identification of relevant pieces for extraction.

Example. The following gives a flavour of OXPath, displaying an expression for finding
the cheapest flight information on the popular travel site kayak.com:

{http://www.kayak.com/flights /}//field()[5]/{$origin}
/following: :field() [@type="text 1[1]/{$destination}
/following::field()[last()]1/{click /}
//tbody[@class~='flightresult’'][1]:<flight>/tr[2]

[td[2]/a:<price=string(.)>] [td[4]:<airline=string(.)>]

In this example, we simulate user events with actions, such as {click /}, select only
visible fields with the node-test field(), and identify data to be extracted with extraction
markers such as <flight>. Next, we explain these in more detail.

35

