
Computing Laboratory

ON SOFTWARE VERIFICATION FOR SENSOR NODES

Doina Bucur

Marta Kwiatkowska

CL-RR-10-25

�
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD

On Software Verification for Sensor Nodes

Doina Bucura, Marta Kwiatkowskab

aOxford University Computing Laboratory, Oxford, OX1 3QD, UK
bOxford University Computing Laboratory, Oxford, OX1 3QD, UK

Abstract

We consider software written for networked, wireless sensor nodes, and specialize software verification techniques for standard

C programs in order to locate programming errors in sensor applications before the software’s deployment on motes. Ensuring

the reliability of sensor applications is challenging: low-level, interrupt-driven code runs without memory protection in dynamic

environments. The difficulties lie with (i) being able to automatically extract standard C models out of the particular flavours of

embedded C used in sensor programming solutions, and (ii) decreasing the resulting program’s state space to a degree that allows

practical verification times.

We contribute a platform-dependent, OS-independent software verification tool for OS-wide programs written in MSP430 em-

bedded C with asynchronous hardware interrupts. Our tool automatically translates the program into standard C by modelling the

MCU’s memory map and direct memory access. To emulate the existence of hardware interrupts, calls to hardware interrupt han-

dlers are added, and their occurrence is minimized with a partial-order reduction technique, in order to decrease the program’s state

space, while preserving program semantics. Safety specifications are written as C assertions embedded in the code. The resulting

sequential program is then passed to CBMC, a bounded software verifier for sequential ANSI C. Besides standard errors (e.g.,

out-of-bounds arrays, null-pointer dereferences), this tool chain is able to verify application-specific assertions, including low-level

assertions upon the state of the registers and peripherals.

Verification for wireless sensor network applications is an emerging field of research; thus, as a final note, we survey current

research on the topic.

Keywords: sensor, TelosB, MSP430, TinyOS, verification, bounded model checking, CBMC

1. Introduction

While small applications for basic embedded systems for a

particular microcontroller can be programmed directly in ma-

chine code, sensor node platforms are typically equipped with a

rather rich set of features, including a radio (and in many cases,

also a wired serial) transceiver, sensing chips and external flash

memory. Programming from scratch each new application for

such sensor platforms is difficult and unmaintainable—be this

programming done in either assembly, or the platform’s own

flavour of embedded C. For example, a basicOscilloscope func-

tionality (i.e., a sensor node periodically sampling a sensor, then

broadcasting a message over the radio every ten readings) in

the elf32-avr binary form for the MicaZ mote1 disassem-

bles into over 12 × 103 lines of executable code in its .text

section alone; similar program sizes are yielded from TelosB2

MSP430 elf files. Programming embedded C instead (for the

platforms’ C compilers, e.g., avr-gcc and msp430-gcc (Un-

derwood, 2003)) does not decrease the code’s complexity—the

Email addresses: doina.bucur@gmail.com (Doina Bucur),

marta.kwiatkowska@comlab.ox.ac.uk (Marta Kwiatkowska)
1Mica motes are based around the Atmel AVR ATmega128L 8-bit micro-

controller (Corp., 2009).
2Telos platforms (e.g., TelosB (Moteiv Corporation, 2004)) are built with

MSP430 (Texas Instruments, 2006), a 16-bit MCU from Texas Instruments.

application will have roughly the same size3.

104 "/Users/doina/tinyos−2.x/tos/chips/msp430/McuSleepC.nc"

 __asm volatile ("bis %0, r2" : : "m"(temp));
 __asm volatile ("" : : : "memory");
 __nesc_disable_interrupt();

{

#line 109

static inline void McuSleepC$McuSleep$sleep(void)

 temp = McuSleepC$msp430PowerBits[McuSleepC$powerState] | 0x0008;

ActiveMessageC

LedsP

Msp430GpioC

GeneralIO

PlatformLedsC

LedsC

HplMsp430GeneralIO

Leds

}

 }
 McuSleepC$computePowerState();
 if (McuSleepC$dirty) {

#line 111

 uint16_t temp;

OscilloscopeAppC

HplMsp430GeneralIOC

23a: ld r24, Z
nescc 23e: sbis 0x0e, 7

236: cpc r17, r1

238: breq .+10

23c: out 0x0f, r24

234: cp r16, r1

240: rjmp .−4

242: rjmp .+6

244: out 0x0f, r1

gcc
msp430−

configurations, wiring

MSP430

TelosB
node

embedded C

MSP430nesC/C modules,
machine code

Figure 1: Example TinyOS program compilation for a TelosB mote. The

nesC compiler, nescc, inlines nesC/C components into MSP430 embedded

C; msp430-gcc then outputs machine code.

Instead of programming sensor applications from scratch,

operating systems have been developed for sensor nodes, such

as TinyOS (Levis et al., 2005) and Contiki. As a result, typically

programmers write application logic in a high-level language,

while calling scheduling and driver functionality from the oper-

ating system. Fig. 1 overviews TinyOS’s tool chain of program

compilation for a TelosB mote. The Oscilloscope application is

3These examples of application complexity come from the basic Os-

cilloscope and MultihopOscilloscope applications, programmed for the

TinyOS (Levis et al., 2005) operating system. Thus, optimizations over these

numbers may be feasible.

Preprint submitted to Systems and Software November 23, 2010

a nesC (Gay et al., 2003) or TOSThreads (Klues et al., 2009)

component interfacing with existing TinyOS components; the

binary program deployable on a TelosB mote is generated by

two discrete stages of program translations, from nesC to in-

lined MSP430 C, to MSP430 machine code.

With this multi-stage style of program compilation in mind,

our task is to design software verification methods and tools

for sensor applications. In this paper, we focus on taking as

input platform-specific embedded C, such as that automatically

generated from higher-level software components in the chain

of compilation from Fig. 1. While we take our case studies from

the standard TinyOS applications, the verification method itself

is OS-independent.

Software verification per se is a compile-time method which,

given a particular program implementation and set of specifi-

cations, unwinds and analyses all of the program’s traces, and

outputs violations of the program’s specifications, if any. Spe-

cific such tools cater for specific programming (and specifica-

tion) languages, and most are limited as to the program features

they support, e.g.:

1. complex data structures are supported by few existing soft-

ware verifiers,

2. infinite-state programs cannot in general be guaranteed

that verification terminates,

3. even finite-state programs, particularly concurrent ones,

give rise to sets of program states which are too large to

be verified within certain time limits.

In what follows, we describe our platform-dependent,

OS-independent software verification tool for OS-wide pro-

grams (on the order of magnitude of 103 LOC) written for

msp430-gcc with asynchronous hardware interrupts. Our tool

automatically translates such a program into standard C by

modelling direct memory access and the MCU’s memory map

in ANSI-C. Calls to hardware interrupt handlers are inserted

into the main application to emulate the existence of hardware

interrupts, and the number of their occurrences is minimized

with a partial-order reduction technique, in order to decrease

the program’s state space, while fully preserving program se-

mantics. Safety specifications are written as C assertions em-

bedded in the code. The resulting sequential program is then

passed to CBMC (Clarke et al., 2004), a bounded software veri-

fier for sequential ANSI C. Besides memory-related errors (e.g.,

out-of-bounds arrays, null-pointer dereferences), the tool chain

verifies application-specific assertions, including low-level as-

sertions upon the state of the registers and peripherals.

We first give background information essential to our ap-

proach in Section 2. This includes the syntax and semantics of

MSP430 embedded C, an overview of (i) the MSP430 micro-

controller, (ii) the TelosB platform, and (iii) CBMC, the soft-

ware verifier for ANSI C that we specialize for our purpose.

2. Background: Platform and embedded language for sen-

sor nodes. CBMC

A variety of hardware platforms are available as sensor

nodes. TelosB motes (Moteiv Corporation, 2004) are based on

the 16-bit Texas Instruments MSP430 microcontroller (Texas

Instruments, 2006); Mica nodes are built around Atmel’s

AVR (Corp., 2009), and MITes nodes around Intel’s 8051 (At-

mel, 2008).

2.1. MSP430, TelosB and msp430-gcc

We consider MSP430, a microcontroller configuration fea-

turing, on a I2C bus, a 16-bit RISC CPU, 48kB Flash memory

(and 10kB RAM), 16-bit registers, two built-in 16-bit timers, a

12-bit analogue-to-digital converter, two universal serial syn-

chronous/asynchronous communication interfaces (USART),

and 64 I/O pins (the latter, together with their connections on

a TelosB mote, overviewed in Fig. 2).

6
0

5
9

5
8

5
1

5
0

4
9

A
D

C
2

A
D

C
1

A
D

C
0

R
E

S
E

T

S
V

S
o
u
t

L
E

D
3

L
E

D
2

P5.4/MCLK

P5.3/UCLK1

P5.2/SOMI1

P5.1/SIMO1

P5.0/STE1

P4.6/TB6

P4.5/TB5

P4.4/TB4

P4.3/TB3

P4.0/TB0

P4.2/TB2

P4.1/TB1

P4.7/TBCLK

P3.7/URXD1

P3.6/UTXD1

P3.5/URXD0

48

47

46

45

44

43

42

41

39

40

38

37

36

35

34

33

LED1

FLASH_HOLD

RADIO_RESET

RADIO_VREF_EN

FLASH_CS

RADIO_CS

RADIO_SFD

UART0RX

UART1TX

UART1RX

P6.3/A3

P6.4/A4

P6.5/A5

P6.6/A6/DAC0

P6.7/A7/DAC1/SVSIN

P1.2/TA1

P1.1/TA0

P1.0/TACLK

P1.3/TA2

P1.4/SMCLK

6

5

4

3

2

12

13

14

15

16

ADC3

ADC4

ADC5

DAC0/ADC6

SVSin/ADC7

PKT_INT

UART1TX

P_DVCC

RADIO_GIO0

RADIO_GIO1

P
1
.5

/T
A

0

P
1
.6

/T
A

1

P
1
.7

/T
A

2

P
2
.0

/A
C

L
K

P
2
.1

/T
A

IN
C

L
K

P
2
.2

P
2
.3

P
2
.4

P
2
.5

P
2
.6

/A
D

C
1
2
C

L
K

P
2
.7

/T
A

0

P
3
.0

P
3
.1

/S
IM

O
0
/S

D
A

P
3
.2

/S
O

M
I0

P
3
.3

/S
C

L

P
3
.4

/U
T

X
D

0

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

H
U

M
_
S

D
A

H
U

M
_
S

C
L

H
U

M
_
P

W
R

G
IO

0

G
IO

1

U
A

R
T

1
R

X

G
IO

2

1
W

ir
e

G
IO

3

U
se

rI
N

T

R
A

D
IO

_
S

I

R
A

D
IO

_
S

O

R
A

D
IO

_
S

C
L

K

U
A

R
T

0
T

X

P
6
.2

/A
2

P
6
.1

/A
1

P
6
.0

/A
0

P
5
.7

/S
V

S
O

U
T

P
5
.6

/A
C

L
K

P
5
.5

/S
M

C
L

K

R
S

T
/N

M
I

TI MSP430

6
1

F1611

Figure 2: The MSP430 F1611 microcontroller as used on TelosB motes. Se-

lected I/O pins and their connections on TelosB motes. Pins such as those

supplying voltage (1 and 62-64) or the two crystal oscillators’ input and output

ports (8-9, 52-53) are not drawn.

A pin’s identifier is three-fold; pin 17, for example, is pin 5

of peripheral port 1 (out of six 8-bit I/O ports), and is a general-

purpose digital I/O pin or a Timer A output pin, from the mi-

crocontroller’s perspective; on TelosB specifically, this pin is

connected to the bidirectional serial data port, HUM SDA, of

the TelosB on-board humidity sensor (which produces a digital

output). Similarly, pins 32-33 are transmit/receive pins for the

first serial port, USART0, and are connected as such to the se-

rial physical port on TelosB. Pins 48-50, or 4 to 6 on peripheral

port 5 (general-purpose digital I/O pins, or clock outputs) are

instead connected to, and control, the three on-board LEDs.

The software is able to access these pins, together with other

peripheral modules and registers, by direct memory access. All

2

on-board memory, including peripherals and the Interrupt Vec-

tor Table, are mapped into a unique address space, with Special

Function Registers and peripheral modules at low addresses, as

in Fig. 3.

0x000F
0x0010
0x00FF
0x0100

0x01FF
0x0200

0x0000

0xFFDF
0xFFE0
 0xFFFF

Interrupt Vector Table

Flash

RAM

16−bit Peripheral Modules

8−bit Peripheral Modules

Special Function Registers

Figure 3: Memory organization for MSP430 microcontrollers.

The MCU’s six 8-bit I/O ports whose pins are shown in Fig. 2

are mapped onto the 0x10-0xFF address space for 8-bit pe-

ripheral modules. E.g., the 8-bit output register for port 5 is

accessed as 0x0031; bits 4-6 in this register control the LEDs.

Thus, when a msp430-gcc (Underwood, 2003) embedded C

program states:

static volatile uint8_t r __asm ("0x0031");

r &= ~(1 << 6);

or in other words

*(volatile uint8_t *)49U |= ~(1 << 6);

this amounts to setting a bit in the 8-bit output register P5OUT of

peripheral port 5 at location 0x0031, where LEDs are accessed,

which turns the yellow LED on. Other essential memory map-

ping examples are shown in Table 1.

Table 1: Individual memory addresses for selected peripheral ports and MCU-

internal registers.

Addr Identifier Description

0x0030 P5IN Port 5 Input

0x0031 P5OUT Port 5 Output

0x0074 U0BR0 USART0 Baud Rate 0

0x0075 U0BR1 USART0 Baud Rate 1

0x0076 U0RXBUF USART0 Receive Buffer

0x0077 U0TXBUF USART0 Transmit Buffer

0x0140 ADC12MEM[16] ADC12 Memory 0-15

0x01A2 ADC12MCTL[16] ADC12 Memory-Control Register 0-15

0x01A0 ADC12CTL0 ADC12 Control Register 0

0x01A2 ADC12CTL1 ADC12 Control Register 1

0x0180 TBCTL TimerB Control Register

0x0190 TBR TimerB Count Register

0x0192 TBCCR0-6 TimerB Compare Register 0-6

Similarly, when a function such as sig ADC VECTOR is de-

clared with the attributes

__attribute((wakeup)) __attribute((interrupt(14)))

the function is an interrupt handler for interrupt line 14 (i.e.,

it wakes the processor from any low power state as the routine

exits).

2.2. TinyOS

TinyOS (Levis et al., 2005) is a mainstream operating sys-

tem for wireless sensor network devices. We give an overview

of TinyOS in order to clarify (i) program structure and (ii) ter-

minology related to the style of concurrency, for our case study

applications.

The operating systems itself, as well as the applications,

are implemented in the nesC (network embedded systems C)

language (Gay et al., 2003); newer applications are coded in

TOSThreads (Klues et al., 2009), TinyOS 2.x’s recent thread li-

brary. NesC software comes in components, either modules or

configurations. Fig. 4 gives an overview of Oscilloscope, a typ-

ical TinyOS nesC application; the LED driver module LedsC is

given a degree of detail. Components have similarities to ob-

jects: they enclose the program’s state and interact through in-

terfaces (Gay et al., 2005). For efficiency, given the language’s

focus on embedded systems, an application’s components, in-

terfaces and memory use are determined at compile-time; there

is no dynamic memory allocation.

HplMsp430GeneralIO

Boot Receive

PlatformLedsC

GeneralIO

AMReceiverC DemoSensorC ActiveMessageC

LedsP

LedsRead<unit16_t> SplitControl

LedsC

Msp430GpioCgeneric module

module

configuration

interface

generic configuration

OscilloscopeAppC

MainC

HplMsp430GeneralIOC

Figure 4: Overview of Oscilloscope, a typical TinyOS nesC application. Mod-

ules, configurations and interfaces. The OscilloscopeAppC module wires exist-

ing components such as the MainC from which nescc generates the program’s

main function, and platform-specific drivers such as that for LEDs.

All lengthy commands in TinyOS (e.g., the sending of a

packet on the radio) are non-blocking; their completion is sig-

nalled by an event (some of which are triggered by a hardware

interrupt), whose handler should be brief, instead posting tasks

to the system’s task queue for further execution. All threads

of control in a TinyOS application are thus rooted in either

an event handler or a task, in a two-level concurrency model:

event handlers run with highest priority and preempt the lower-

priority tasks, which execute most of the program logic. Tasks

run to completion, however, and synchronous code is that which

is only reachable from tasks; asynchronous code is reachable

from at least one event handler. Whenever program variables

are accessible to both synchronous and asynchronous code, a

potential data race ensues.

For a particular application, nesC components are wired to-

gether through their interfaces to form an OS-wide program;

3

nesC is in fact designed under the expectation that a final, in-

lined embedded C program will be generated from all the nec-

essary components.

2.3. CBMC

CBMC (Clarke et al., 2004) is a bounded model-

checker (Clarke et al., 2001) for ANSI-C programs, from

the CProver suite. It takes safety specifications written as C

assert statements, and is roughly geared towards verifying

embedded systems software. Unlike other C model checkers,

CBMC supports a richer subset of the language in what re-

gards data types and data representation, by modelling seman-

tics accurately to the bit level, to the extent that this semantics

is defined by the ANSI C standard4. This allows the tools to

pinpoint program errors related to bit-level operators and arith-

metic overflow, pointer and array operations, arithmetic excep-

tions, user-inserted assertions and assumptions.

To derive an accurate mathematical representation of a (po-

tentially infinite-state) input program, the tool translates the C

input into a side-effect-free, finite-state intermediate represen-

tation:

1. All side-effect assignments are broken into equivalent

statements by introducing auxiliary variables, and all loops

(for, while, backward gotos) are unwound a user-

provided number of times, by replicating the loop body.

2. Function calls are inlined and recursive calls are similarly

unwound.

The resulting program consists of if instructions, assign-

ments, assertions, labels, and forward jumps. This is then trans-

lated into static single assignment form (SSA), a standard inter-

mediate representation in which every program variable is split

into “versions”, i.e., a new program variable is invented for each

assignment to the original (Fig. 5, center). Frequently used for

compiler optimizations, the technique simplifies the analysis of

the variables’ definition and use.

Figure 5: CBMC program transformation into a mathematical model

Two boolean propositional formulas are derived from this

program in SSA form: C for the program itself, and P for the as-

serted expression, as in Fig. 5, right. ANSI-C variables xi of any

data type (including arrays, structures, unions, pointers, and all

basic data types) are now replaced with bit-vector variables, and

4This fact results in a number of issues in the case of C code which relies on,

e.g., the memory alignment of struct fields, which is not standardized; when-

ever a verification run depends on non-standard C, CBMC reports the issue and

we disregard the run.

all mathematical operations performed over program variables

with bit vector operations, by bit blasting (Kroening and Strich-

man, 2008). This transformation is word-width adjustable to,

e.g., 16 bits, to simulate different hardware platforms.

P is then verified by converting C ∧¬P into conjunctive nor-

mal form (CNF) and then passing it to a SAT solver such as

MiniSAT (Sörensson and Eén, 2005). If this conjuncted for-

mula is satisfiable, there exists a violation of the assertion, and

CBMC returns to the programmer a program trace leading to

the violation, as a debugging tool would do; otherwise, the as-

sertion holds.

In verifying an ANSI-C program by bounded unwinding,

CBMC thus proves a partial guarantee of program properties

(i.e., that bugs are absent for a certain amount of unwinding).

The process is highly automated and scales reasonably well.

3. TOS2CProver: source-to-source transformation

3.1. Overview

Software bugs stem from flaws both in the legacy OS code

base (the lowest levels of which are platform-dependent), and

in the programmer’s applications. By a safe sensor application,

we understand that which exhibits no memory violations, and

whose programmer-inserted assertions hold, if reachable. Note

that a safe application may still contain undiscovered errors, ei-

ther if they require a greater number of loop unwindings, or

if no appropriate assertion was specified. However, our verifi-

cation approach can detect errors deeper in the program, com-

pared to static analysis.

To achieve a homogeneous verification scheme for both

legacy and newly programmed TinyOS code, we contribute,

also in (Bucur and Kwiatkowska, 2010), an automated tool

chain of program transformation and verification as depicted in

Fig. 6. In order for the tool to be independent of the OS-specific

programming paradigm, an initial run of TinyOS’s nescc com-

piler is used to generate an inlined, platform-specific, embed-

ded C program out of nesC and TOSThreads components.

Then, instead of employing the platform’s own compiler to fur-

ther build this into a binary deployable on a mote, the program

is passed to our own tool, tos2cprover, which performs a dual

task:

• In a source-to-source transformation step, it gives a pre-

cise ANSI-C model to all low-level, hardware-managing

language extensions, and instruments the code so as to

emulate the hardware’s functionality: whenever a regis-

ter’s value is filled in from the hardware, the program is

augmented so as to provide such values.

• Then, tos2cprover reads the functions’ attributes and

determines which functions would be called as IRQ han-

dlers in the event of a hardware interrupt, then instruments

the resulting program so that IRQ handlers may be called

whenever hardware interrupts are allowed; this way, the

code also becomes a hardware emulator. A specialized

partial-order reduction (POR) technique is used to mini-

mize the number of occurrences of such calls.

4

GeneralIO

LedsP

 __asm volatile ("" : : : "memory");

assertion instrumentation

(user) (user/CBMC)

Leds

assertion instrumentation

SplitControl

Read<uint16_t>

ActiveMessageC

}

 }
 McuSleepC$computePowerState();
 if (McuSleepC$dirty) {

#line 111

 uint16_t temp;
{

#line 109

104 "/Users/doina/tinyos−2.x/tos/chips/msp430/McuSleepC.nc"

 temp = McuSleepC$msp430PowerBits[McuSleepC$powerState] | 0x0008;

 __nesc_disable_interrupt();

HplMsp430GeneralIO
 __asm volatile ("bis %0, r2" : : "m"(temp));

LedsC

PlatformLedsC

Msp430GpioC

HplMsp430GeneralIOC

OscilloscopeAppC

 sig_ADC_VECTOR();

 uint16_t temp;
 if(McuSleepC_dirty)
 {

 }

 _R2 |= temp;

 McuSleepC_computePowerState();

 temp = McuSleepC_msp430PowerBits[McuSleepC_powerState]

}

{

nescc

inline static void McuSleepC_McuSleep_sleep(void)

 __nesc_disable_interrupt();

dereferences

IRQ instrumentation)

analysis, and

(source transformation,

MSP430 embedded C
nesC/C modules,

configurations, wiring

...

CProver−readable C

CBMC assertion violation

(with program trace)

illegal−address

tos2cprover

Figure 6: Our verification tool chain

Following these transformation and instrumentation steps,

the result is a standard C program which both soundly pre-

serves the functionality of the initial platform-specific program,

and emulates the hardware. The program is instrumented with

user-inserted properties (in the form of assertions, assumptions

and nondeterministic input), and passed to CBMC (which also

introduces a set of assertions) for verification; the unwinding

bounds for the program loops are set individually per loop.

In the remainder of this section, we briefly describe

tos2cprover’s source-transformation step. The instrumenta-

tion of the source with calls to IRQ handlers (and the accom-

panying partial-order reduction technique) are detailed in Sec-

tion 4.

3.2. TOS2CProver: source-to-source transformation

Table 2 exemplifies the source transformations executed

by tos2cprover on a TelosB, MSP430 program. While

msp430-gcc code implicitly assumes an underlying memory

map (as overviewed in Section 2) in which low, constant ad-

dresses have a defined semantics (e.g., writing at 0x0031 pro-

grams the LEDs), tos2cprover models direct memory access

with a header file defining memory as a set of new, global vari-

ables. E.g., uint8 t P5OUT is now the 8-bit output register

for peripheral port 5. All subsequent dereferences of address

0x0031 are replaced by accesses to P5OUT5. As a note, the

Status Register R2 has the General Interrupt Enable (GIE) as

bit 4; if GIE is set, interrupts are enabled.

Then, msp430-gcc’s assembly extensions are modelled into

standard C, as are all other non-standard language features (e.g.,

identifier names are standardized by replacing dollar signs with

underscores, struct and union designated initializers are ex-

panded).

5Note that the variables we introduce are named in accordance with the

MSP430 documentation (Texas Instruments, 2006), but are preceded by an un-

derscore, to avoid name clashes with existing program variables.

4. TOS2CProver: IRQ instrumentation and the partial-

order reduction (POR) technique

4.1. Overview

The nescc-generated program inputted to tos2cprover

does not explicitly call any IRQ handlers; in deployments, the

calls are made from the hardware. Instead, it defines the func-

tions and marks them as interrupt service routines; e.g., in the

case of a TelosB-based Sense, two types of hardware interrupts

are expected: one from the user timer, TimerB, and another

from the 12-bit Analog-to-Digital Converter, ADC. Their han-

dler functions have the signatures:

void sig_TIMERB1_VECTOR(void) __attribute((wakeup))

__attribute((interrupt(24)));

void sig_ADC_VECTOR(void) __attribute((wakeup))

__attribute((interrupt(14)));

The size of the asynchronous code (i.e., code reachable from

either IRQ handler) is substantial: in Sense, out of the 520

reachable functions in the program, 166 are reachable from the

ADC interrupt handler and 185 from the TIMERB0 handler (i.e.,

are asynchronous); 386 (both synchronous and asynchronous

functions) are reachable from main6.

To simulate the presence of interrupts, tos2cprover

needs to instrument the program with explicit, atomic calls

to the handlers of the expected hardware interrupts, e.g.,

sig_ADC_VECTOR(), with each call guarded by a check of the

GIE bit, and each call made atomic by disabling and enabling

interrupts (as TinyOS events always run to completion). A list-

ing is given in Table 3.

A correct, yet naive, approach is to instrument the program

by refactoring it to use threads, and running the IRQ instrumen-

tation (such as that listed in Table 3) as separate threads along-

side a main thread, as in Fig. 7(a). The equivalent sequential

alternative is to add an instrumentation as every second state-

ment in all non-atomic main-reachable code. Since each in-

strumented IRQ call amounts, at model-checking time, to the

6As a note, the style of nesC wiring has as consequence the fact that a num-

ber of functions generated by nescc consist of a simple one-line function call.

5

Table 2: tos2cprover: source-to-source transformation examples for MSP430 code.

MSP430-specific program feature Example tos2cprover transformation

MCU registers and memory map Standard C global variables

unsigned short _R2; (Status Register)

unsigned char _P5OUT; (Port 5 output at 0x0031, by Table 1)

unsigned short _ADC12CTL0; (ADC12 Control Register at 0x01A0)

unsigned short _ADC12MEM[16]; (ADC12 Memory 0-15 at 0x0140)

Fixed-address dereference Global variable access

(uint8_t)49U &= ~(0x01 << 6); _P5OUT &= ~(0x01 << 6);

Fixedly allocated variables Global variable access

uint16_t HplAdc12P$ADC12CTL0 __asm ("0x01A0"); (declaration removed; ADC12CTL0 previously declared)

HplAdc12P$ADC12CTL0 |= 0x0010; _ADC12CTL0 |= 0x0010;

Assembly instructions C instructions

__asm volatile ("eint"); _R2 &= 0x0008;

__asm volatile ("bis %0, r2": :"m"(temp)); _R2 |= temp;

Table 3: The ADC IRQ instrumentation

if (int_enabled()) {

disable_int(); /* _R2 &= ~0x0008; */

sig_ADC_VECTOR();

enable_int(); /* _R2 |= 0x0008; */

}

duplication of all code rooted in the call, we employ two auto-

mated minimization procedures to reduce the number of these

sequential instrumentations, as described in what follows.

(a)

sig_TIMERB0 sig_ADCmain

(b)

main

...

...

...

sig_TIMERB0

sig_TIMERB0

sig_ADC

sig_TIMERB0

Figure 7: (a) Naive refactoring the application to emulate hardware interrupts

by running IRQ handlers concurrently with the main program thread. Solid

lines denote atomic code; TinyOS events interrupt synchronous code and run

to completion. (b) Efficient hardware emulation by partial-order reduction,

resulting in a sequential program of reduced state space; all code is now de

facto atomic. After a further reduction step, this program is passed to CBMC.

4.2. Decreasing the state space with a partial-order reduction

technique

The first state-space minimization procedure is a partial or-

der reduction (POR) technique (or model checking using repre-

sentatives) (Clarke et al., 2000), a general method to reduce the

state space of a concurrent program to be model checked. Ap-

plied to the original embedded C code, it calculates a smaller C

program for CBMC to verify; the technique reduces the number

of interleavings between threads of behaviour by exploiting the

fact that a number of different interleavings are equivalent and

indistinguishable to the model checking algorithm, and thus it

suffices to check a single interleaving representative. An im-

age of the transformation of the program as a result of the POR

technique is given in Fig. 7(b).

To achieve this, we take the concurrent C program refactor-

ing as in Fig. 7(a) and give it a standard formalization, over

which we then apply a specialized POR algorithm, as follows.

System formalization. We define by state s ∈ S a valuation of

all program variables before or after a C statement7 or an ex-

plicitly atomic section. Then, we define the transition set T to

contain state tuples, T ⊆ S × S ; we write α ∈ T or s
α
→ s′ for a

single transition; a path π is a sequence of transitions. Tran-

sitions intuitively model C statements (including assertions),

atomic sections, and the program’s control flow: when exe-

cuted from a state s, a transition α leads the program into a new

state s′. As an example of this formalization, the simplified,

inlined fragment of Sense from Fig. 8 (refactored with a con-

current ADC interrupt handler as in Fig. 7(a)) is formalized in

Fig. 9 (left).

A transition α from T is called enabled in state s if ∃s′ ∈

S .s −→ s′, with the set of transitions enabled in s denoted by

enabled(s). E.g., enabled(s0) = {α1, β} in Fig. 9 (left). Then,

the Kripke structure equivalent to the concurrent program is

M = (S ,T, {s0}), with s0 the unique initial state of the program.

This we call the full-state graph, as T models all possible inter-

leavings between the program’s threads.

As usual, our POR technique aims at constructing from the

full-state transition relation T a second, smaller such relation

7For tos2cprover, the atomicity grain of the C program is at the level of C

statement: a colon-terminating statement in the inlined C program is considered

atomic; the statement may correspond to more than one basic assignment.

6

Figure 8: Fragment of a sensor application pre-POR, with a concurrent ADC IRQ. Transition labels are noted on the side. The fragment is extracted from code

originally in the SchedulerBasicP nesC system component

NO_TASK = 0xFF, RES_IDLE, _ADC12IV, _ADC12IFG;

assert (state == RES_IDLE);

if (head != NO_TASK)

{

}

__nesc_atomic_end(n);

_ADC12IV = 0;

_ADC12IFG = 0;

unsigned short AdcStreamP_readDone = 5U,

uint8_t next[8U], head, tail, state;

/* global variables */
/* function SchedulerBasicP_postTask */

next[tail] = AdcStreamP_readDone;

main sig_ADC

/* function SchedulerBasicP_taskLoop */

head = next[head];

next[head] = NO_TASK;

assert(head != NO_TASK);

__nesc_atomic_t n = __nesc_atomic_start();

α1:

α0:

α2:

α3:

:β

Figure 9: (left) Formalization in terms of states and transition set of the con-

current program in Fig. 8; (right) A sound reduction of the program by our

method

s0

sini

α0

s1

α1

α2

s2

α3

s3

s f in

r3

r2

r0

r1

α1

α0

α2

α3

β

β

β

β

β

β

sini

α0

s0

s1

α1

α2

s2

α3

s3

s f in

r3

r2

r1

α1

α2

α3

β

by selecting for each state s ∈ T only a subset ample(s) of its

enabled transitions,

ample(s) ⊆ enabled(s)

This reduced set of transitions should satisfy a soundness con-

dition: when ample(s) replaces enabled(s), the soundness of

the model checking algorithm must be preserved.

Calculating the ample set. The basis for soundly calculating

ample(s) relies on an independence relation between transi-

tions (Clarke et al., 2000). This independence relation I ⊆ T×T

is a symmetric relation satisfying, for any s ∈ S and for any

(α, β) ∈ I, two conditions:

Enabledness The two transitions may execute in either or-

der from any state s. I.e., if α, β ∈ enabled(s), then

α ∈ enabled(β(s)).

Commutativity Executing either of the two possible transition

sequences starting in any state s leads to the same end

state. I.e, if α, β ∈ enabled(s), then α(β(s)) = β(α(s)).

The dependency relation D is the complement of I; two transi-

tions which are not independent are then dependent.

With these definitions, the sound reduction from enabled(s)

to ample(s) must satisfy the constraints upon ample(s) (based

on (Clarke et al., 2000)) listed in Table 4.

Table 4: Constraints upon reducing enabled(s) to ample(s) for a sound partial-

order reduction. As program cycles are subsequently bound and unwound, a

constraint upon cycles is not necessary.

C0 ample(s) = ∅ iff enabled(s) = ∅.

C1 Along every path of the full-state graph starting in s, a

transition dependent on a transition α from ample(s)

must be preceded by α. This effectively allows the

deferring of transitions.

We then apply the constraints in Table 4 to the reduction of

the sample program in Fig. 9 (left). To start with, we note,

from the listing in Fig. 8 by applying the definition of indepen-

dence above, that α0, α2 and α3 are independent from β; e.g.,

executing either α0β or βα0 from any initial variable valuation

leads to the same end values for variables state, next, etc.

Intuitively, the independent pairs of transitions are those which

cannot cause data races. α1 and β are dependent, with a data

race over next.

Take initial program state sini with enabled(sini) = {α0, β}. By

C0, ample(sini) cannot be empty; it must have at least one tran-

sition. Eliminating β (and thus, the entire branch
β
−→ r0

α0

−→)

from ample(sini) is legal by C1, with no constraints imposed on

the full-state graph. Similar reasoning can be applied for s1 and

s2. Any reduction of states r1−3 is illegal by C0.

7

In s0, with the dependence relation between α1 and β discov-

ered above, C1 gives the constraint that β could only be elim-

inated from ample(s0) if, in the full-state graph starting in s0,

any occurrence of α1 is preceded by a β. Since this is not the

case for the α1 enabled in s0, β must remain in ample(s0).

Fig. 9 (right) gives the resulting, sound ample sets for all

program states. This demonstrates that only two IRQ instru-

mentations need to be considered when verifying this program

(with the second not needed in practice). Thus, the body of the

concurrent program in Fig. 8 can soundly be rewritten as:

assert (state == RES_IDLE);

if (head != NO_TASK)

{

}

__nesc_atomic_end(n);

_ADC12IV = 0;

_ADC12IFG = 0;

/* function SchedulerBasicP_taskLoop */

head = next[head];

next[head] = NO_TASK;

assert(head != NO_TASK);

__nesc_atomic_t n = __nesc_atomic_start();

/* function SchedulerBasicP_postTask */

next[tail] = AdcStreamP_readDone;

More intuitively, tos2cprover instruments the main pro-

gram with the following reduced set of IRQ calls:

• A call for, e.g., sig_ADC_VECTOR() appears before each

statement containing a read of a variable raced between the

ADC interrupt and main. This is sound, but overapproxi-

mated: the statement may execute in an atomic context, in

which case the call is not reachable.

• A call also appears (i) before the beginning of those atomic

sections where a data race may happen, or (ii) in the

MCU’s interruptible sleep.

This first POR-based minimization step results in, e.g., in the

case of Sense, a total number of 91 IRQ calls between the two

types of IRQs, as opposed to a number two orders of magnitude

higher in a naive refactoring (i.e., Fig. 7 (a)).

4.3. Improving POR’s overapproximated race criterion by

reachability checks

A final analysis step is used to further minimize the instru-

mentation count described in Section 4. To remove some of

the degree of overapproximation in assessing the atomicity of

code, tos2cprover inputs the instrumented program to CBMC

for a preliminary run which checks the reachability of each

IRQ instrumentation: the verification of a claim of the form

assert(0); inserted in the body of the interrupt routine will

fail when the assertion is reachable.

This step leaves, e.g., Sensewith a manageable set of 8 reach-

able IRQ calls. This CBMC run is inexpensive, with verifica-

tion times per claim in the range of 8 to 78 seconds. This order-

of-magnitude reduction is due to tos2cprover having thus far

overapproximated the race criterion—many of the IRQ instru-

mentations prove to be unreachable within a bounded check,

e.g., in situations when they run at program points when inter-

rupts are disabled, or when the code is explicitly atomic.

5. Assertions, nondeterminism and assumptions. Unwind-

ing bounds for CBMC

This section describes the instrumentation of the program

with assertions, assumptions and nondeterminism, and the set-

ting of bounds for program unwinding by CBMC.

5.1. Assertions, nondeterminism and assumptions

Our tool chain verifies, for each inputted program, two types

of assertions. For both existing TinyOS code base and any

new applications, assertions may be manually inserted by the

programmer and are preserved as such in the transformed pro-

gram source. These application-based assertions can be either

hardware-aware, e.g.

assert(_P5OUT & 0x0008);

or high-level, (e.g., asserting upon the value of a local variable).

Furthermore, CBMC automatically inserts memory-

violation assertions guarding both bounds of all array

accesses, null-pointer dereferences, and other exceptions

such as arithmetic division by zero. E.g., as function

SchedulerBasicP pushTask(uint8 t id) writes upon the

task queue:

SchedulerBasicP_m_next[SchedulerBasicP_m_tail]=id;

with id unsigned, CBMC will generate the upper-bound asser-

tion:

Claim SchedulerBasicP_pushTask.1:

array ‘SchedulerBasicP_m_next’ upper bound

(unsigned int)SchedulerBasicP_m_tail < 8

For Sense, 132 memory-violation assertions are thus gener-

ated8. Advantageously, this generation is completely automatic,

with CBMC analysing an array’s declaration to find the in-

dex bounds; SafeTinyOS (Cooprider et al., 2007), for exam-

ple, has programmers explicitly type-annotate arrays with ac-

cess bounds instead.

Finally, a decision needs to be taken with regard to the con-

tents of those registers and buffers whose values are filled in by

the hardware and not the software. For example, reading the

current time in a TelosB application takes the form of read-

ing the user timer’s count register, TBR (mapped at address

0x0190), which holds the number of clock periods elapsed

since the last timer interrupt, and which is automatically in-

cremented from the hardware at every clock period. In another

example, the 8-bit U0RXBUF buffer (mapped at 0x0076) holds

the latest byte received from the network. A similar discussion

holds for setting TOS_NODE_ID, the variable which holds the

node’s address, and which is programmed at deployment time.

Clearly, the actual values in such registers drive the pro-

gram’s further behaviour. We set their values in either of two

ways:

8The names of functions, variables and assertion identifiers in all our code

examples are those generated by nescc: the original nesC function or variable

name is preceded by a list of nesC component names, which helps in recovering

the C code’s counterpart in the original nesC code.

8

• The register involved is assigned a nondeterministic (i.e.,

any) value, and the verification procedure explores all the

ensuing possibilities.

• The register is assumed to have a particular value, or to

have any value within a small, specified set.

5.2. Unwinding bounds for CBMC

As a final step in our tool chain, the transformed program

annotated with assertions is passed to CBMC (configured for

16-bit words), and each claim is verified one at a time, for scal-

ability. The runs need to have an unwinding depth specified;

this can be either identical for all loops and recursions, or—

ideally—selectively refined for each. Some of the loops are ob-

viously of fixed iterations; e.g., out of only 16 loops in Sense,

the loop:

do {

*resultBuffer++ =

Msp430Adc12ImplP_HplAdc12_getMem(i);

}

while(++i < length);

is always bounded at 16 iterations (the size of the ADC12 con-

version memory)9. Other loops, on the other hand, are clearly

unbounded, such as the main OS scheduler loop in function

SchedulerBasicP Scheduler taskLoop. For our bench-

marks, in the following, we make a visual inspection of the

program’s loops (as reported by CBMC), determine bounds for

the loops which are clearly bounded, and experiment with un-

winding depth for the rest. For the purpose of determining the

reachability of instrumented IRQ calls (described in Section 4),

we set the depth for the unbounded loops to the minimum, 1.

6. Verification and results

For our tests, we settle on the existing applications in the

apps directory from TinyOS’s source tree; we pick applica-

tions which wire TelosB components of different functionality,

as summarized in Table 5.

We detail the size and complexity of the test cases in terms

of (i) the number of lines of code in the cleanly reformat-

ted program outputted by tos2cprover, (ii) the number of

unique loops for which CBMC needs to have configured an

unwinding depth, (iii) the number and type of expected hard-

ware interrupts, together with qualitative measures of the size

of the code duplication incurred during the IRQ instrumenta-

tion phase, such as the count of asynchronous functions, and

that of ensuing data races. As a side note, the program gener-

ated by nescc and inputted to tos2cprover is not fully op-

timized; for our test cases, this input program contained code

of no end functionality, such as that rooted in the IRQ handlers

for the non-user timer, TIMERA0/1; tos2cprover skips instru-

menting the program with such IRQ calls. On another hand, for

9A few loops are bounded, but not worthy of exploring, and are thus com-

mented out. An example is the initial clock calibration, which busy waits for

thousands of clock periods.

TestDissemination we preserved the code for the UART0RX/TX

interrupts, and instrumented the program with the respective

calls: UART functionality may not be wired through to the top

application component, but supports the CC2420 radio.

Finally, Table 5 gives the number of IRQ instrumentations

calculated as in Section 4, and the number of automatically gen-

erated, memory-violation assertions; most of the assertions are

array bounds checks, with a number of null-pointer dereference

checks.

In the remainder of this section, we give an overview of our

verification runs, and discuss the tool’s scalability.

6.1. Out-of-bounds array access, null-pointer dereference, and

application-based assertions

We ran our MSP430 test cases through the verification

tool chain, having set to any value the contents of the

TimerB count register TBR, the 16 ADC12 sensor memory

buffers ADC12MEM[], and the transmit and receive buffers

U0TXBUF/ U0RXBUF.

Any verification run is parameterized by the following mea-

sures:

• The number of IRQ calls added per iteration of the sched-

uler main loop. While tos2cprover calculates the pro-

gram points at which an IRQ of a certain type can be

called, a verification run may include all, none, or any su-

perset of these calls. This is settled empirically on a per-

application basis: one TIMERB0 interrupt is sufficient to

explore the workings of Blink, and similarly for ADC and

Sense; for any network communication, on the other hand,

an interrupt arrives for any byte received, which induced

us to allow more UART0 transmit or receive interrupts per

loop.

• The unwinding bound for the infinitely looping

SchedulerBasicP Scheduler taskLoop function.

Given some understanding of the task loop functionality,

and the number of IRQ calls per loop, we again settle the

number empirically, per-application.

• The number of assertions checked in one verification run;

this number can be either one (and CBMC is configured

with the assertion’s identifier) or all; as checking one as-

sertion at a time scales better, we automated our tool to

iterate through all of the program’s assertions.

All our verification runs of the memory violations in the test

cases from Table 5 came up negative, when allowed two task

loops and one IRQ per loop (in the case of Blink and Sense)

and up to eight loops and eight IRQs per loop for TestDissem-

ination. We then artificially triggered positive runs in TestDis-

semination, i.e., we sent a null pointer to a requestData call

in the DisseminationEngineImplP module from TinyOS’s

network library (the comments are ours):

static void

DisseminationEngineImplP_sendObject(uint16_t key)

{

9

Table 5: TelosB-based test cases

Blink Sense TestDissemination

functionality timer sensor, timer CC2420 radio, timer

lines of code, number of loops 3340, 8 7181, 16 13388, 31

memory-violation assertions 35 132 747

expected interrupts TIMERB0 TIMERB0, ADC TIMERB0, PORT1, PORT2, UART0RX, UART0TX

reachable functions total: 248, TIMERB0: 114 total: 520, TIMERB0: 185,

ADC: 166

total: 1022, TIMERB0: 364, PORT1: 153, PORT2:

25, UART0RX: 268, UART0TX: 16

potentially raced global

variables

TIMERB0: 6 TIMERB0: 7, ADC: 11 TIMERB0: 15, PORT1: 13, PORT2: 0, UART0RX: 19,

UART0TX: 0

IRQ instrumentations initial 21, minimized to 4 initial 92, minimized to 8 initial 422, minimized to 30

void *object;

uint8_t objectSize = 0;

[..]

// send a zero instead of &objectSize

object = DisseminationEngineImplP_DisseminationCache_

requestData(key, 0);

}

Since the final requestData method does no sanity check

on the pointer it receives:

inline static void *

DisseminatorP_0_DisseminationCache_requestData

(uint8_t *size)

{

*size = sizeof(DisseminatorP_0_t);

[..]

}

the assertion then generated by CBMC to check the sanity of

the pointer:

Claim DisseminatorP_0_DisseminationCache_requestData.1:

line 7503 function

DisseminatorP_0_DisseminationCache_requestData

dereference failure: NULL pointer

!(SAME-OBJECT(size, NULL))

fails.

6.2. Constant-address dereference

A potential, secondary source of errors in embedded software

is that of dereferencing constant memory addresses. While null

pointers may still be erroneous (as exemplified by Section 6.1),

dereferencing constant, low pointers is generally expected from

embedded code. To enforce a degree of safety when derefer-

encing constants is involved, we state that all dereferencing of

constants must be limited to constants from those memory-map

sections which pertain to peripheral control (I/O locations), and

not to other sections.

To this end, in the process of program transformation,

tos2cprover reports to the programmer the list of encoun-

tered memory dereferences, and translates the constant address

implicated to its section in the memory map, e.g., for the line:

*(volatile uint8_t *)49U ^= 0x01 << 6;

we report

-> DEREF at 49/0x31 in the 8-bit Peripheral Module

in *(volatile uint8_t *)(49U)

and for a fixedly allocated variable:

static volatile uint8_t r __asm ("0x0019");

r |= 1 << 1;

we report

-> DEREF at 25/0x19 in the 8-bit Peripheral Module

with fixed-address variable r

In some cases (particularly for dereferences of address 0x0),

an inspection of this report is advisable to sort any null point-

ers from legitimate peripheral access. A similar approach is

taken by SafeTinyOS (Cooprider et al., 2007), which has pro-

grammers explicitly mark legal dereferences of constants with

a trusted type, and thus make null-pointer dereferences visible.

6.3. Cost of verification

The cost of showing that a TinyOS application is safe lies

partially in (i) inspecting the program’s loops to settle on an

unwinding bound for each, (ii) inspecting the list of expected

hardware interrupts to decide on the number of IRQ instrumen-

tations necessary, and (iii) inspecting the report on dereferenc-

ing constant addresses. Mostly, however, the cost lies with the

verification time: the time it takes the model checker to unwind

the program (i.e., the program unwinding time), generate and

simplify its boolean formula, and have this verified by the SAT

solver (i.e., the decision procedure runtime).

Fig. 10 exemplifies the verification times for a repre-

sentative subset of memory-violation assertions from Sense.

The x axis is labeled with identifiers of assertions: e.g.,

SchedulerBasicP pushTask.1 is the first assertion within

the body of function SchedulerBasicP pushTask (i.e., in

the original nesC code, function pushTask from component

SchedulerBasicP). When more than two assertions are gen-

erated for a single function, we note that verification times are

similar for all these assertions, and only depict the first and the

10

Figure 10: Verification times for selected memory-violation assertions in Sense

 0 10 20 30 40 50 60

memset.1

AdcStreamP_Init_init.1

HplAdc12P_HplAdc12_getCtl0.1

SchedulerBasicP_popTask.1

SchedulerBasicP_popTask.2

McuSleepC_McuSleep_sleep.1

HplAdc12P_HplAdc12_getCtl0.2

HplAdc12P_HplAdc12_getMem.1

Msp430Adc12ImplP_HplAdc12_conversionDone.1

Msp430Adc12ImplP_HplAdc12_conversionDone.2

HplAdc12P_HplAdc12_setMCtl.1

HplAdc12P_HplAdc12_setMCtl.2

HplAdc12P_HplAdc12_getMem.20

Msp430Adc12ImplP_HplAdc12_conversionDone.3

SchedulerBasicP_isWaiting.1

SchedulerBasicP_pushTask.1

HplAdc12P_HplAdc12_getCtl0.3

HplAdc12P_HplAdc12_setMCtl.3

HplAdc12P_HplAdc12_setMCtl.4

HplAdc12P_HplAdc12_getMCtl.1

RoundRobinResourceQueueC_0_RoundRobinQueue_isEnqueued.1

RoundRobinResourceQueueC_0_RoundRobinQueue_isEnqueued.2

RoundRobinResourceQueueC_0_RoundRobinQueue_isEmpty.1

RoundRobinResourceQueueC_0_RoundRobinQueue_isEmpty.2

RoundRobinResourceQueueC_0_clearEntry.1

RoundRobinResourceQueueC_0_clearEntry.2

RoundRobinResourceQueueC_0_RoundRobinQueue_enqueue.1

RoundRobinResourceQueueC_0_RoundRobinQueue_enqueue.2

ArbitratedReadStreamC_0_Resource_granted.1

VirtualizeTimerC_0_Timer_stop.1

VirtualizeTimerC_0_Timer_stop.5

ArbitratedReadStreamC_0_Resource_granted.3

ArbitratedReadStreamC_0_Resource_granted.4

AdcStreamP_SingleChannel_multipleDataReady.1

AdcStreamP_SingleChannel_singleDataReady.1

AdcStreamP_SingleChannel_singleDataReady.2

VirtualizeTimerC_0_updateFromTimer_runTask.1

VirtualizeTimerC_0_updateFromTimer_runTask.6

AdcStreamP_readStreamDone_runTask.1

AdcStreamP_readStreamFail_runTask.2

Verification time (minutes) per assertion

D
e
c
is

io
n
 p

ro
c
e
d
u
re

 ru
n
tim

e
 2

P
ro

g
ra

m
 u

n
w

in
d
in

g
 tim

e
 2

D
e
c
is

io
n
 p

ro
c
e
d
u
re

 ru
n
tim

e
P

ro
g
ra

m
 u

n
w

in
d
in

g
 tim

e

last. Two verification runs are given for each assertion (each

run in terms of both program unwinding time and of decision

procedure runtime); both runs are configured with one IRQ call

per scheduler main loop; the first run unwinds the loop once,

and the second twice.

The CBMC runs are configured for 16-bit words, without
making use of CBMC’s unwinding assertions feature, and with
unwinding bounds set per loop (as described in Section 5.2, one
higher than the number of loop iterations, e.g., written as a list
of loop number:loop bound:

--unwindset 0:9,1:2,2:2,3:2,4:9,6:1,7:17,8:17,9:9,[..]

To give an idea of the complexity of the boolean

program formula, for, e.g., the verification of claim

SchedulerBasicP_popTask.1 (an assertion over array

SchedulerBasicP_m_next’s upper bound), the program for-

mula has 80786 assignments, and a set of 18 independent ver-

ification conditions (i.e. logical formulae) are generated by

CBMC from the C program with annotated assertions. Table 6

gives a fragment of such a verification condition for the func-

tion where the above claim resides; on the left is the original C

code for the function; on the right is the relevant succession of

assignments of bit vectors in CBMC’s program translation into

verification conditions. Both listings end with giving the final

claim, in C and boolean form, respectively.

When solving the overall program formula after bit blasting,

the conjunctive normal form is a 357610-variable, 1058725-

clause formula.

We note that most assertions are verified in a speedy man-

ner, using close to zero time in the decision procedure, and a

constant time for program unwinding. There are, however, no-

table exceptions for which the verification time explodes—we

used these time-consuming runs to bound CBMC’s unwinding

depth: for, e.g., TestDissemination, some five-scheduler-loops

verification runs took up to 55 minutes. Such costly verifica-

tion runs are generally expected for OS-wide networked appli-

cations, due to the large state space added to the program by the

network communication drivers.

11

Table 6: Fragment of verification condition for Sense

__inline static uint8_t SchedulerBasicP_popTask(void)

{

if(SchedulerBasicP_m_head != SchedulerBasicP_NO_TASK)

{

uint8_t id = SchedulerBasicP_m_head;

SchedulerBasicP_m_head =

SchedulerBasicP_m_next[SchedulerBasicP_m_head];

[..]

SchedulerBasicP_m_next[id] = SchedulerBasicP_NO_TASK;

return id;

}

else

return SchedulerBasicP_NO_TASK;

}

[..]

--

Claim SchedulerBasicP_popTask.1:

line 5859 function SchedulerBasicP_popTask

array ‘SchedulerBasicP_m_next’ upper bound

(unsigned int)SchedulerBasicP_m_head < 8

\guard#6 == !(SchedulerBasicP_m_head#8 != 255)

id@2#1 == SchedulerBasicP_m_head#8

SchedulerBasicP_m_head#9 ==

SchedulerBasicP_m_next#12[SchedulerBasicP_m_head#8]

[..]

SchedulerBasicP_m_next#13 ==

(SchedulerBasicP_m_next#12 WITH [id@2#1:=255])

return_value_SchedulerBasicP_popTask$2@2#1 == id@2#1

return_value_SchedulerBasicP_popTask$2@2#3 == 255

return_value_SchedulerBasicP_popTask$2@2#4 ==

(!\guard#6 ? return_value_SchedulerBasicP_popTask$2@2#1

: return_value_SchedulerBasicP_popTask$2@2#3)

[..]

--

!\guard#4 && !\guard#8 && !\guard#10 =>

(unsigned int)SchedulerBasicP_m_head#11 < 8

7. Related Work

7.1. Runtime safety

Most existing solutions to detect software errors in sensor op-

erating systems act at runtime, are (unlike our method) strictly

OS-dependent and platform-independent, and are intended to

be used for deployed applications: the code is instrumented

such that a statement which is semantically unsafe under its

current execution context is detected before it is executed, and

a certain diagnosis or recovery measure is taken (which usually

consists in reporting the error and rebooting, as summarized in

Table 7). While a necessary solution to ensure safe execution in

all execution contexts, runtime error detection for deployments

is potentially followed by the expensive redeployment of soft-

ware, and could instead be preceded by compile-time means of

error detection to save on redeployment efforts.

Safe TinyOS (Cooprider et al., 2007) detects memory and

type violations in deployed TinyOS code, and transfers control

to a fault handler, which either reboots or powers down after

sending a concise failure report to its base station. The failure

report identifies the error type and its source code location (but

does not give an execution trace clarifying the context which

caused the error); the failure report is used to debug the code

post-deployment. While the method allows the safe execution

of existing TinyOS code, with little programmer effort and run-

time overhead, debugging every error encountered involves the

software’s redeployment.

A drawback of Safe TinyOS’s Deputy code instrumenter is

the fact that, unlike our automatic instrumentation with asser-

tions, SafeTinyOS programmers must explicitly type-annotate

e.g., a void *payload array with access bounds COUNT(len).

The resulting program is first translated into C by the nesC com-

piler, and then into a program instrumented with, e.g., calls to a

failure routine if(i >= len) deputy_fail(). Statements

accessing a fixed address such as 0x0031 also need manual

trusted cast annotations, TC(). Like SafeTinyOS though (and

unlike earlier SafeTinyOS versions), we do not change the C

data representation in the verification process.

Neutron (Chen et al., 2009) adds a welcome update to Safe

TinyOS, for applications coded in TinyOS’s TOSThreads API:

instead of rebooting the node as a corrective measure to a mem-

ory violation, Neutron groups the application’s threads into re-

covery groups, and selectively restarts the threads in certain

recovery units. Furthermore, it allows the preservation of the

values held in “precious” memory locations between thread

restarts.

The interface contracts (Archer et al., 2007) write

specification-like type annotations which define the “correct”

use of TinyOS 1.x nesC interfaces, just as Safe TinyOS anno-

tates memory for safe use. In cases when the semantics of the

interface dictates it being stateful, the contract is expressed in

terms of the state of the interface: for the interface command

Timer.start(), the contract states as precondition the fact

that the timer’s state must be IDLE, and as a postcondition that

the state of the timer changes (i.e., to ONE SHOT) if the com-

mand’s return value is SUCCESS. In other cases, the interface is

stateless and the pre- and postconditions are imposed upon the

command’s arguments, which can themselves become stateful.

This detects incorrect ordering of interface commands at run-

time, e.g., a SendMsg.send() with a message buffer for which

no SendMsg.sendDone() event was received to complete a

previous send. On a related note, similar, stateful interface con-

tracts are set over nesC commands and events in (Menrad et al.,

2009); noting that state transitions, as programmed for interface

contracts, can become lengthy, it devises an equivalent, more

readable statechart notation, with the view towards a future au-

tomated (static) verification for all TinyOS interfaces.

NodeMD (Krunic et al., 2007) detects runtime errors in Man-

tisOS multithreaded, synchronous code. AVR-based applica-

tions are instrumented to check the stack pointer SP for over-

12

Table 7: Runtime diagnosis and recovery solutions to software errors

Scheme (OS) Scope of errors Measure

Safe TinyOS, Neutron (TinyOS) out-of-bounds array access, invalid-pointer

dereference, integer-to-pointer cast

report error location, reboot; Neutron:

with state preservation

Interface contracts (TinyOS) pre-/postconditions for nesC interface use LED-signal error location

NodeMD (MantisOS) stack overflow, deadlock, livelock, application

assertions

report execution trace, remote queries

flows at function-call time, and for the violation of application-

specific assertions. The checks for deadlock and livelock in-

volve a manually added timer to verify that each thread goes

through its duty cycle.

7.2. Hybrid approaches: runtime safety by emulation

An important hybrid approach between runtime and static

error detection consists of combining runtime safety systems

(such as Safe TinyOS) with cycle-accurate hardware emulators

such as Avrora (Titzer et al., 2005), MSPsim (Eriksson et al.,

2007), and WSim (Fraboulet et al., 2007). A hardware em-

ulator precisely simulates a platform in terms of its running

assembly instructions; beside analyses of power and memory

consumption, a precise timing analysis is also possible, given

appropriate timing attached to the instructions. An overview of

the current hardware support of emulators for sensor nodes is

given in Table 8.

While this combination does not provide full error traces the

way a model-checking technique would, it does report the call

stack at the point of the error, the way Safe TinyOS would; thus,

real-time safety does not necessarily need to act at deployment-

time.

7.3. Verification and simulation

A weak form of static error detection is simulation. While

it does not prove any guarantee on the program’s behaviour,

testing allows for error detection and is particularly realistic in

the case of e.g., TOSSIM (Levis et al., 2003), which accurately

(yet not cycle-accurately) simulates TinyOS applications from

their implementation.

TinyOS’s nesC compiler has a basic built-in data-race de-

tector, which warns when a global variable is updated from

non-atomic asynchronous code without having been explic-

itly tagged with norace. While writing atomic asynchronous

code is good practice for nesC, failure to do so only potentially

causes a race, as programmers may have used other syncroniza-

tion idioms (i.e., guards on variables). A suitable context model

for race checking (Henzinger et al., 2004) then contributed an

algorithm for the elimination of such false positives.

A degree of compile-time verification is reported by Bu-

cur and Kwiatkowska (2009). While its scope is limited

to TOSThreads applications written in C, it avoids some

of the costs of system-wide verification by writing mod-

els for the interfaces to system calls (in the style of the

runtime interface contracts Archer et al. (2007)). Calling

amRadioReceive(&msg, ...) from the application is mod-

elled so that it preserves its original behaviour: the call returns

any of a set of error codes, and msg receives (possibly non-

deterministic) data. Then, the method calls the SA model

checker for multithreaded C programs to verify the program-

mer’s application on its own; the errors verified pertain to inter-

face use, or are application-specific.

SMT solvers are used as backends to ANSI-C model check-

ers, instead of SAT solvers in (Cordeiro et al., 2009a,b, 2010),

to verify bounded instances of ANSI-C programs, such as those

generated by BMC frontends. Satisfiability Modulo Theories

(SMT) solvers employ decision procedures which check the

satisfiability of a quantifier-free formula in a first-order logic.

To make SMT-based bounded model checkers applicable to

checking realistic C, (Cordeiro et al., 2009b) provides trans-

lations from ANSI-C programs to SMT formulas as precisely

as bit-accurate SAT-based procedures, and positively compares

the performance of their model checker to that of CBMC and a

previous SMT-based CMBC. New encodings are provided into

existing SMT theories from ANSI-C scalar data types (with ac-

curate arithmetic overflow and underflow), arrays and pointers,

structures and unions; the test cases include array-heavy ANSI-

C benchmarks such as sorting algorithms and Linux device-

controlling applications. (Cordeiro et al., 2010) adds a state-

space-reducing technique for the same verification method; this

looks at the modifications undergone by the system since its last

verification, and submits them to a partly static, partly dynamic

“continuous” verification process, guided by a set of test cases

for coverage.

Closer to our domain of sensor software, (Cordeiro et al.,

2009a) gives a single case study of a verification approach

to part of a platform-specific embedded C monitoring soft-

ware. This approach splits the 3500-LOC monitoring applica-

tion, written as a set of modules, into platform-dependent and

platform-independent modules; like our method, all platform-

dependent syntax is translated to standard C. The method then

statically verifies platform-dependent modules, one by one, us-

ing the co-verification feature of CBMC, together with a Ver-

ilog model of the microcontroller and against the standard

CProver-inserted assertions to check the sanity of the interac-

tion between software and hardware. A system-wide checking

procedure is simulated on a hardware emulator. The method’s

advantages mostly lie in its ability to make good use of CBMC’s

hardware co-verification; its disadvantages lie in the amount of

manual input needed to decide between the different verifica-

tion schemes for different software modules, and in its potential

13

Table 8: Sensor platform emulators

Emulator (OS) Microcontrollers Other chipsets

WSim (OSless) TI MSP430, Atmel AVR

ATMega128

Chipcon CC1100, CC2420; Maxim

serial ID DS2411; LEDs

MSPsim (Contiki OS) TI MSP430 TelosB peripherals

Avrora (OSless) Atmel AVR ATMega128 Mica2 peripherals

lack of generality.

Recent contributions. Other verification or high-coverage val-

idation methods tackle the more difficult problem of static de-

bugging for sensor network protocols.

KleeNet (Sasnauskas et al., 2010) is a recent debugging en-

vironment for the high-coverage testing of networked sensor

applications (case studied for Contiki OS), with the aim of dis-

covering bugs that result from node interaction (by writing dis-

tributed assertions about the state of the network) and nondeter-

ministic network events (such as loss, duplication and corrup-

tion of packets, or node failures). The latter aspects are espe-

cially difficult to observe in traditional testing mechanisms, or

require manual effort by the developers to generate them.

The base technique for KleeNet’s testing is the exploration

of program paths in the virtual machine KLEE (Sasnauskas

et al., 2010): a distributed program is simulated in standard

fashion until data flagged as ’symbolic’ is reached (e.g., the

contents of a network packet; this may be set to a nondeter-

ministic value); at these points, the execution is branched (in

the fashion of explicit-state model checking, with nodes forked

on demand) and resumed for each such branch. This technique

is then extended by KleeNet with failure models for both nodes

and network communication, and assertions are written in dis-

trbuted fashion, e.g., for a node A which just adds node B as a

parentID in its routing table, the assertion:

if (parentID != NULL) {

assert(NODE(parentID, ’’isChild’’, myID));

}

states that B should also have A registered as a child. parentID

and myID are variables local to A, while isChild is a function

called on B.

KleeNet itself is platform-independent, but each sensor net-

work OS requires a frontend to KLEE. It was able to discover

four bugs in Contiki’s TCP/IP stack, one of which deadlocked

a network node.

On a similar note to KleeNet, T-Check (Li and Regehr,

2010) uses random walks and execution-driven, depth-bounded

explicit-state model checking. It builds on the TOSSIM (Levis

et al., 2003) simulator for TinyOS, and inherits its emulation

of hardware at the TinyOS interface, rather than at the hard-

ware register level; this precludes safety specifications related

to, e.g., register contents, timing or interrupt preemption, but

gains scalability. T-Check does, however, report that it “found

TOSSIM to be too high-level to support effective bug-finding”,

which led to its “extending the ADC, serial, and SPI subsystems

to model more low-level behavior”, i.e. modelling the relevant

interrupts, as in our work. Network and node nondeterminism

is introduced, together with a TinyOS-specific nondeterminism

related to event ordering. Their model checking is a stateless,

depth-bounded, depth-first search with a partial order reduc-

tion based on the static presumption that a pair of transitions

on different sensor nodes is independent unless the events are

a matched send/receive pair. Both safety and liveness proper-

ties are checked against, the latter heuristically, by looking for

sufficiently long program traces violating the property; a num-

ber of bugs are found in the TinyOS serial driver and some tree

protocols.

Anquiro (Mottola et al., 2010) is a model-checking based

verification tool for Contiki applications; as a plus over our

tos2cprover-based tool, it allows for a software engineer-

ing solution to slice the application code up to a desired level,

e.g., either including code interfacing to the hardware as in

our method, or remodelling network communication, similar

to (Bucur and Kwiatkowska, 2009). LTL specifications are in-

putted to the Bogor model checker, and Anquiro is able to find

a network configuration in which a dissemination protocol does

not reach all nodes.

Other approaches. Insense (Sharma et al., 2009) designs a

novel language for programming wireless sensor networks ap-

plications, which then compiles into Contiki C source code.

With the aim of simplifying the complexity of both program-

ming and the verification of the resulted programs, the language

hides from the programmer all language constructs regarding

concurrency (e.g., for the various existing WSN-programming

API: processes, threads, asynchronous events) and thread syn-

chronization. An Insense application is instead programmed

as a set of components, sharing no states and communicat-

ing through typed, synchronous channels. Selected hardware

is modelled (similarly to our (Bucur and Kwiatkowska, 2009))

as Insense components and matching channels. For the pur-

pose of verification, the components and channels are trans-

lated into Promela and model checked against LTL properties

by SPIN (Holzmann, 2003); their cases are limited to the verifi-

cation of properties of single channel operations in their trans-

lation from Insense to SPIN, such as “A send operation does not

return until data has been written to a receiver’s buffer”.

FSMGen (Kothari et al., 2008) takes another approach to er-

ror detection in TinyOS programs: it statically analyzes the

program and derives automatically a finite-state machine to de-

scribe the high-level application logic, thus aiding the program-

mer’s understanding of the application code. The method is

thoroughly applied over the demo applications available with

14

TinyOS.

8. Conclusions

We have contributed a tool10 and novel approach towards the

static software verification of embedded C sensor applications.

Operating-system-wide sensor programs with an added explicit

emulation of hardware interrupts are automatically given pre-

cise standard C models for the MCU’s direct memory access,

and are then minimized in state space with the aid of a partial-

order reduction technique. Safety specifications written as as-

sertions and bounds for the program loops are inputted together

with the program into CBMC, which is then able to verify the

program and report error traces. While no new bugs have been

found, we were able to reproduce known bugs in a TinyOS

driver, and we list as our main achievement the efficient, fully

automatic method and tool bridging embedded C compilers for

sensor platforms with the state of the art tools in C software

verification.

References

Archer, W., Levis, P., Regehr, J., 2007. Interface contracts for TinyOS. In: Pro-

ceedings of the international conference on Information Processing in Sen-

sor Networks (IPSN). ACM, pp. 158–165.

Atmel, 2008. Atmel 8051 microcontrollers hardware manual.

www.atmel.com.

Bucur, D., Kwiatkowska, M., 2009. Bug-free sensors: The automatic verifica-

tion of context-aware TinyOS applications. In: Proceedings of the European

conference on Ambient Intelligence (AmI). Vol. LNCS 5859. Springer Ver-

lag, pp. 101–105.

Bucur, D., Kwiatkowska, M., 2010. Software verification for TinyOS. In: In-

formation Processing in Sensor Networks (IPSN). ACM, pp. 400–401.

Chen, Y., Gnawali, O., Kazandjieva, M., Levis, P., Regehr, J., 2009. Surviv-

ing sensor network software faults. In: Proceedings of the Symposium on

Operating System Principles (SOSP). ACM.

Clarke, E., Kroening, D., Lerda, F., 2004. A tool for checking ANSI-C pro-

grams. In: TACAS. Vol. 2988 of LNCS. Springer, pp. 168–176.

Clarke, E. M., Biere, A., Raimi, R., Zhu, Y., 2001. Bounded model checking

using satisfiability solving. Formal Methods in System Design 19 (1), 7–34.

Clarke, E. M., Grumberg, O., Peled, D. A., 2000. Model Checking. MIT Press.

Cooprider, N., Archer, W., Eide, E., Gay, D., Regehr, J., 2007. Efficient mem-

ory safety for TinyOS. In: Proceedings of the conference on Embedded Net-

worked Sensor Systems (SenSys). ACM, pp. 205–218.

Cordeiro, L., Fischer, B., Chen, H., Marques-Silva, J., 2009a. Semiformal

verification of embedded software in medical devices considering stringent

hardware constraints. In: Proceedings of the International Conference on

Embedded Software and Systems.

Cordeiro, L., Fischer, B., Marques-Silva, J., 2009b. SMT-based bounded

model checking for embedded ANSI-C software. In: Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering

(ASE). pp. 137–148.

Cordeiro, L., Fischer, B., Marques-Silva, J., 2010. Continuous verification of

large embedded software using SMT-based bounded model checking. In:

Proceedings of IEEE International Conference and Workshops on the Engi-

neering of Computer-Based Systems (ECBS). pp. 160–169.

Corp., A., 2009. 8-bit AVR microcontroller with 128K bytes in-system pro-

grammable Flash. www.atmel.com, doc2467.pdf.

Eriksson, J., Dunkels, A., Finne, N., Österlind, F., Voigt, T., 2007. MSPsim –

an extensible simulator for MSP430-equipped sensor boards. In: Proceed-

ings of the European Conference on Wireless Sensor Networks (EWSN),

Poster/Demo session.

10Documentation and repository at http://www.daimi.au.dk/~doina/svtos.php.

Fraboulet, A., Chelius, G., Fleury, E., 2007. Worldsens: development and pro-

totyping tools for application specific wireless sensors networks. In: Pro-

ceedings of the 6th international conference on Information processing in

sensor networks (IPSN). ACM, pp. 176–185.

Gay, D., Levis, P., Culler, D., 2005. Software design patterns for TinyOS.

In: Proceedings of the ACM SIGPLAN/SIGBED conference on Languages,

compilers, and tools for embedded systems (LCTES). ACM, pp. 40–49.

Gay, D., Levis, P., von Behren, R., 2003. The nesC language: A holistic ap-

proach to networked embedded systems. In: ACM SIGPLAN conference

on Programming Language Design and Implementation (PLDI). ACM, pp.

1–11.

Henzinger, T. A., Jhala, R., Majumdar, R., 2004. Race checking by context

inference. In: Proceedings of the conference on Programming Language

Design and Implementation (PLDI). ACM Press, pp. 1–13.

Holzmann, G. J., 2003. The SPIN Model Checker: Primer and Reference Man-

ual. Addison-Wesley.

Klues, K., Liang, C.-J., Paek, J., Musăloiu, R., Govindan, R., Terzis, A., Levis,

P., 2009. TOSThreads: Safe and Non-Invasive Preemption in TinyOS. In:

Proceedings of the ACM conference on Embedded Networked Sensor Sys-

tems (SenSys). ACM.

Kothari, N., Millstein, T., Govindan, R., 2008. Deriving state machines from

TinyOS programs using symbolic execution. In: Proceedings of the inter-

national conference on Information Processing in Sensor Networks (IPSN).

IEEE, pp. 271–282.

Kroening, D., Strichman, O., 2008. Decision Procedures: An Algorithmic Point

of View. Springer.

Krunic, V., Trumpler, E., Han, R., 2007. NodeMD: Diagnosing node-level

faults in remote wireless sensor systems. In: Proceedings of the interna-

tional conference on Mobile Systems, Applications and Services (MobiSys).

ACM, pp. 43–56.

Levis, P., Gay, D., Handziski, V., Hauer, J.-H., Greenstein, B., Turon, M., Hui,

J., Klues, K., Sharp, C., Szewczyk, R., Polastre, J., Buonadonna, P., Nach-

man, L., Tolle, G., Culler, D., Wolisz, A., 2005. T2: A second generation OS

for embedded sensor networks. Tech. Rep. TKN-05-007, Technische Uni-

versität Berlin.

Levis, P., Lee, N., Welsh, M., Culler, D. E., 2003. TOSSIM: Accurate and

scalable simulation of entire TinyOS applications. In: Proceedings of the

ACM conference on Embedded Networked Sensor Systems (SenSys). pp.

126–137.

Li, P., Regehr, J., 2010. T-Check: bug finding for sensor networks. In: Pro-

ceedings of the 9th International Conference on Information Processing in

Sensor Networks (IPSN). ACM, pp. 174–185.

Menrad, V., Garcia, M., Schupp, S., 2009. Improving TinyOS developer

productivity with statecharts. In: Proceedings of the Workshop on Self-

organising wireless sensor and communication networks.

Moteiv Corporation, 2004. Telos. Ultra low power IEEE 802.15.4 compliant

wireless sensor module. Revision B : Humidity, Light, and Temperature sen-

sors with USB. http://www.moteiv.com.

Mottola, L., Voigt, T., Österlind, F., Eriksson, J., Baresi, L., Ghezzi, C., 2010.

Anquiro: Enabling efficient static verification of sensor network software.

In: Proceedings of Workshop on Software Engineering for Sensor Network

Applications (SESENA) ICSE(2).

Sasnauskas, R., Landsiedel, O., Alizai, M. H., Weise, C., Kowalewski, S.,

Wehrle, K., 2010. KleeNet: discovering insidious interaction bugs in wire-

less sensor networks before deployment. In: Proceedings of the 9th Inter-

national Conference on Information Processing in Sensor Networks (IPSN).

pp. 186–196.

Sharma, O., Lewis, J., Miller, A., Dearle, A., Balasubramaniam, D., Morrison,

R., Sventek, J., 2009. Towards verifying correctness of wireless sensor net-

work applications using Insense and SPIN. In: Proceedings of the 16th In-

ternational SPIN Workshop on Model Checking Software. Springer-Verlag,

Berlin, Heidelberg, pp. 223–240.

Sörensson, N., Eén, N., 2005. MiniSat — a SAT solver with conflict-clause

minimization. In: Eighth International Conference on Theory and Applica-

tions of Satisfiability Testing (SAT). Vol. 3569 of LNCS. Springer-Verlag.

Texas Instruments, 2006. MSP430x1xx family — user’s guide (Rev. F).

www.ti.com.

Titzer, B. L., Lee, D. K., Palsberg, J., 2005. Avrora: scalable sensor network

simulation with precise timing. In: Proceedings of the 4th international sym-

posium on Information processing in sensor networks (IPSN), Demo ses-

sion. IEEE Press, pp. 67–72.

15

Underwood, S., 2003. Mspgcc—A port of the GNU tools

to the Texas Instruments MSP430 microcontrollers.

http://mspgcc.sourceforge.net/manual.

16

