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ABSTRACT
While relational algebra and calculus are a well-established
foundation for classical database query languages, it is less
clear what the analog is for higher-order functions, such as
query transformations. Here we study a natural way to add
higher-order functionality to query languages, by adding
database query operators to the λ-calculus as constants.
This framework, which we refer to as λ-embedded query lan-
guages, was introduced in [BPV10]. That work had a re-
stricted focus: the containment and equivalence problems
for query-to-query functions, in the case where only positive
relational operators are allowed as constants. In this work
we take an in-depth look at the most basic issue for such lan-
guages: the evaluation problem. We give a full picture of the
complexity of evaluation for λ-embedded query languages,
looking at a number of variations: with negation and with-
out; with only relational algebra operators, and also with a
recursion mechanism in the form of a query iteration oper-
ator; in a strongly-typed calculus as well as a weakly-typed
one. We give tight bounds on both the combined complexity
and the query complexity of evaluation in all these settings,
in the process explaining connections with Datalog and prior
work on λ-calculus evaluation.

Categories and Subject Descriptors
H.2.3 [Database Management]: Logical Design, Lan-
guages—data models, query languages; F.2.0 [Analysis of
Algorithms and Problem Complexity]: General

General Terms
Theory

1. INTRODUCTION
Higher-order functions play a fundamental role in com-

puter science; they are critical to functional programs, and
in object-oriented programming they play a key role in en-
capsulation. In database systems they have appeared in iso-
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lation at several points: query-transformation plays a role
in numerous aspects of databases, including data integration
[LRU96], access control [FGK07], and privacy [LHR+10]. In
the context of nested-relational and functional query lan-
guages, the ability to create and pass functions using data
plays a role; the role of higher-order functions is becoming
more prominent within XML query languages, with the next
version of the XQuery standard offering explicit support for
higher-order features [RCDS09].

Still, the combination of database queries and higher-
order functions has not been studied in its own right: in prior
work within the database community it appears in conjunc-
tion with other language features and in restricted settings.
Within finite model theory the ability to express database
queries within higher-order functions has been studied (see
Section 7 for a discussion), but not their combination. In
[BPV10], a straightforward framework for combining rela-
tional algebra with higher-order functional languages is de-
fined, which we refer to as λ-embedded query languages: it is
exactly the simply-typed λ-calculus with database operators
as “constants” (that is, as built-in functions).

Example 1. Consider the situation where an informa-
tion source has a relation instance D0. The source exposes
an interface to query D0. But for security reasons, when
the source receives a query Q, it returns the result of Q on a
selection of D0 and returns only two of the columns, a and
b. This could be implemented via the following higher-order
query

τ0 = λQ.πa,bQ(σcD0)

Our prior work [BPV10] focuses on a restricted case of this
framework: where the terms are “degree 2” (variables range
over either databases or queries), and the constants come
from positive relational algebra. The topic of the prior paper
is equivalence and containment of terms. We first showed
that the equivalence problem between terms that evaluate to
(ordinary relational) queries is decidable, isolating the com-
plexity for several subclasses. The main result of [BPV10]
is decidability of a notion of equivalence over terms which
evaluate to query functionals.

In this paper, we give a full picture of the most basic prob-
lem concerning terms in higher-order query languages: eval-
uation of “order 0 terms”: terms that evaluate to a database
instance. We study this not only for positive relational al-
gebra, but for any collection of relational operators, and
also consider the impact of higher-order constants that give
greater expressiveness, such as fixpoint operators.

We start with terms of “degree 1”: those that have vari-
ables ranging only over databases. For terms with only pos-



itive operators and only database variables, it was shown in
[BPV10] that this language is essentially the same as non-
recursive Datalog. Here we extend this to the more general
setting of all relational operators, and to fixpoint operators,
showing equivalence to variants of Datalog. This allows us to
read off the complexity of evaluation via reduction to known
results about Datalog.

We then extend to the first higher-order case: “degree
2”, where terms can have variables ranging over queries.
Here we get tight bounds on the complexity of evaluation
through combining an analysis of the complexity of classi-
cal β-reduction with the results on degree 1. Building on
the degree 2 case, we determine the complexity for general
terms, which can abstract over objects of any order. We use
a technique inspired by Hillebrand and Kannellakis [HK96].
Our results show that the complexity is non-elementary for
the general calculus.

Having found the worst-case complexity for general terms,
we turn to cases that have lower complexity. For example,
we show that the complexity reduces drastically when we
restrict the nesting of higher-order variables in terms.

All of these results are for a “strongly-typed” version of
the λ-calculus, in which all operators and variables must
be annotated with correct types. We look at a weaker
“implicitly-typed” version, and show that the complexity
does not change, even though we can now build queries in
which the arity of the output can grow exponentially with
the input database.

Organization: Section 2 defines the higher-order lan-
guages we investigate, along with relevant database back-
ground. Sections 3 gives the complexity of evaluation
for terms that have λ-abstractions only over relations and
queries. Section 4 deals with evaluation for arbitrary de-
gree for the strongly-typed language, while Section 5 isolates
sublanguages with lower complexity. Section 6 studies the
weakly-typed variant of the language. Section 7 overviews
related work, while Section 8 gives conclusions.

2. DEFINITIONS
We begin by defining the higher order language studied in

this work.

Types.
We fix an infinite linearly-ordered set of attribute names

(or attributes). We associate with each attribute name ai a
range Dom(ai) of possible values, called the attribute range
of ai. For simplicity, we assume all attribute ranges are the
integers Z.

Next we will define the types along with their order, and
their domain.

The basic types are the relational types each given by a
(possibly empty) set of attribute names, T = (a1, . . . , am).
A tuple of a relational type is (as usual) a function from the
attribute names to the attribute range, while an instance of
a relational type is a set of tuples. The type corresponding
to no attributes is denoted {}. We manipulate relational
types by using the standard operations on tuples, such as
concatenation T + T ′ (assuming no overlap of T and T ′)
and the projection πA(T ), for a given set A of attributes in
T . The domain of a relational type is the collection of all
finite instances over the type.

The order of any relational type is 0.
Although we do not consider boolean attributes here, we

do have a “boolean type” – the type with no attributes, de-
noted {}. Note that there are only two instances of type
{}, namely, the empty instance, which we denote with the
boolean value false, and the singleton {}, which we denote
with true.

We will sometimes use positional notation for attributes,
particularly in queries; in a tuple t whose type is a1 . . . am,
ordered using the fixed ordering on attribute names, we
write t.i to denote t.ai.

Higher-order types.
Relational types are the basic building blocks of more

complex types. We define higher-order types by using the
functional type constructor: if T , T ′ are types over the
domain D,D′, then T → T ′ is a type whose domain is

(D′)D, the set of functions from D to D′, and whose order
is order(T → T ′) = max

(
order(T ) + 1, order(T ′)

)
.

We abbreviate a type of the form T1 → ...→ Tm → T ′ as
(T1 × ...×Tm)→ T ′ (an abbreviation only, since we have

no product operation on types). Similarly we will write ele-
ments of such types in their curried form.

Order 1 types are often called query types. We will be
interested in the evaluation problem for terms of query type,
where T ′ above is the boolean type; we call the types of such
terms boolean query types.

Constants.
We will fix a set of constants of each type T . Constants

can be thought of as specific instance of the given type;
formally, the semantics is defined with respect to an inter-
pretation of each constant symbol by an object of the appro-
priate type; but we will often abuse notation by identifying
the constant and the object. We study the following sets of
constants:

• All of our signatures will include constants for all in-
stances, referred to as relational constants.

• Our signatures will differ on the set of order 1 constants
– i.e. query constants.

– We use RA+ to denote the operators of Positive
Relational Algebra, which contains the following
constants: (i) for each relational type T contain-
ing attribute a the unary rename operator ρa/b,
which renames the attribute a by b in a given in-
put relation; (ii) for each relational type contain-
ing attributes A the unary operator πA, which
projects an input relation into the subset A of
its attributes; (iii) for each relational type T the
unary operator σc, which selects a subset of the
tuples from a given relation according to the con-
dition c specifying equalities between attributes
and constants or attributes and attributes; (iv)
for any two types T and T ′ the binary operator
1, which returns the cartesian product of two in-
put relations followed by a selection of the tuples
that have the same values on the same attribute
names; (v) for any type T the binary operator ∪,
which returns the union of two input relations of
type T .

Although we will state complexity results for
RA+, union is never essential for the hardness re-
sults.



– RA extends RA+ with the usual difference oper-
ator \, again parameterized by a given relational
type.

– We also consider a signature RAx whose query
constants include the operators πB for every fi-
nite set of attributes B, σc for each condition,
X, and \. Note that here we do not have a dis-
tinct operator for each type. These operators will
work on attributes denoted “positionally”. For-
mally these operations will only be well-defined on
inputs whose signatures are (a1 . . . an) where the
ai are an initial segment of the attribute names
(briefly “initial-segment instances”). Projection
on a subset consisting of k attributes will auto-
matically rename the resulting tuples to be of
type (a1 . . . ak). We use X for the usual cartesian
product operation on positional relations – we re-
serve × for the abbreviation used for types. X is
the curried form of the binary function taking an
instance for schema (a1 . . . an) and an instance for
(a1 . . . ak), returning the product instance of type
(a1 . . . an+k). We can identify attribute names
in projection and selection with integers, writing
them in binary.

We supplement this signature with a variation on
projection where we also allow the variation when
B is a range of the form [p1, p2] which projects all
attributes whose positions are in between p1 and
p2.

The signature RAx will be studied for the weakly-
typed calculus, where the number of attributes
built up by terms can be large.

• Lastly, we will consider the impact of order 2 constants
(that is, query to query functionals), by adding to the
relational algebra signature RA the inflationary fixed
point operators, ifp. For T1 . . . Tm, T ′1 . . . T ′n relational
types, let Ui for i ≤ m abbreviate the query type (T1×
. . . Tm × T ′1 × . . . T ′n)→ Ti.
Then we have an operator ifp having type U1 ×
. . .Um × T ′1 × . . . T ′n → T1. The output of ifp given
queries Q1 . . . Qm with Qi of type Ui and relation
instances I1 . . . In is determined by taking the limit
of the sequences R1

j , where the doubly-indexed se-

quence of instances Rij for i ≤ m and j a number

is formed as follows: Ri0 = ∅ for all i ≤ m and
Rij+1 = Qi(R

1
j , . . . R

m
j , I1 . . . In) ∪Rij .

Simply typed terms.
Higher-order terms are built up from constants in F and

variables in X by using the operations of abstraction and
application:

• every constant is a term of the constant’s type;

• if X is a variable of type T and ρ is a term of type T ′,
then λX. ρ is a term of type T → T ′;

• τ is a term of type T → T ′ and ρ is a term of type T ,
then τ(ρ) is a term of type T ′.

We say that a term τ is closed if it contains no free occur-
rences of variables.

The order of a term τ is the order of its type.
The degree of τ is the maximum order of its subterms.
We also define the size of a term inductively as follows.

The size of a relational constant is the size of the corre-
sponding instance, namely, the number of attributes times
the number of rows. The size of a query constant is the
size of its standard string representation – for each of the
query constants above, the length should be clear; for ex-
ample the size of a named-based projection πA is the length
of the string needed to represent all names in A, while for
positional projection it is the size of a string that represents
all positions or a position range. The size of a variable is
the size of a standard string representation of the type of
the variable. The size of a higher-order term is inductively
defined as 1 plus the sum of the sizes of its top-level sub-
terms.

Example 2. Let R,R′ be two variables of relational type
R = (a, b), and Q be a variable of query type R → R. We
consider an order 1 degree 2 term below.

τ1 = (λQ.λR.Q(Q(R)))
(
π{a,b}

(
λR′.(ρb/c(R

′) 1 ρa/c(R
′))
))

We can see that τ1 is of type R→ R and that it returns all
the pairs of nodes having a path of length 4 between them.
In general, using variables of order 2, we can find paths of
length double exponential in the input size.

Semantics.
Our semantics is simply the standard denotational seman-

tics of the λ-calculus with interpreted constants. Through-
out the definition below, we fix an interpretation for the con-
stants in the signature F as a function I that maps every
constant const ∈ F to its semantics JconstKI . The seman-
tic function JτKI is defined with respect to an extension of
the base interpretation to an interpretation that maps each
free variable in τ to an object of the corresponding type.
The function is defined by induction for terms τ in which
each variable is abstracted only once, and is extended to all
terms by performing renaming in the standard way.

• For every term τ of the form const(τ1, ..., τk), JτKI is
defined as JconstKI

(
Jτ1KI , ..., Jτ1KI

)
.

• Given a term τ of the form λX. ρ(X), JτKI is the func-
tion that maps every object o in the type of X to the
object JρKI[X/o], where I[X/o] extends I by assigning
X to o.

• For τ of the form τ1(τ2), JτKI is the object
Jτ1KI

(
Jτ2KI

)
.

We will generally omit the base interpretation for con-
stants in the remainder of the paper, and just talk about
the evaluation of a term.

In the case where we have constants of order at most
1, this denotational semantics is equivalent to an opera-
tional semantics based on iteratively applying standard λ-
reduction, along with the “built-in” semantics for a term
consisting of a relational operator applied to relational con-
stants. We omit the formalization of this, since an opera-
tional semantics will be implicit in the evaluation algorithms
that witness our subsequent upper bounds.



We let λDB [F ] denote the term language built over con-
stants in signature F . For example λDB [RA+] denotes the
language built over data instance constants plus positive re-
lational operators.

Weakly-typed terms.
In the higher-order language defined above, we give types

for all the variables and constants in terms. The maximal
number of attributes of each term’s type is polynomial in the
term’s size, since the type must be built in to each operator.

We now introduce a weakly-typed language which allows
us to build terms that have types with exponential number
of attributes in their size.

The syntax of weakly-typed terms is defined in the same
way as the syntax of simply-typed terms except that we do
not give types for variables. We only give explicit types for
constants.

Weakly-typed terms are build up from constants in F and
variables in X by using the operations of abstraction and
application: every constant is a term of the constant’s type;
if X is a variable and ρ is a term, then λX. ρ is a term; if τ
and ρ are two terms, then τ(ρ) is a term.

A consistent typing of such a term is any assignment of
types to subterms that is consistent with the typing of the
data constants and the form of query operators; e.g. every
instance of × must have type T → (T ′ → T ′′′) for some
relational types T, T ′, T ′′′, and consistent with function ap-
plication and λ abstraction; e.g. if the type of ρ is T and
the type of τ(ρ) is T ′, then the type of τ must be T → T ′.

Later we will show that these conditions uniquely define
a typing when one exists, and hence we can define the se-
mantics of any typeable weakly-typed term to be that of the
unique simply-typed term that is equivalent to it.

We only consider weakly-typed terms over the signature
RAx, and we denote the resulting language by λ−DB [RAx].

To provide intuition for weakly-typed terms, we consider
the example below.

Example 3. Let D0 be a relational constant with two in-
teger attributes and R1, R2 be two relational variables. We
consider a weakly-typed order 0 degree 1 term below.

τ2 = π{0,1} ((λR2.(R2XR2)) (λR1.(R1XR1)D0))

We infer types for variables R1 and R2 as follows. Since R1

is substituted by D0, its type is the same as the type of D0,
consisting of two integer attributes. This also implies that
the type of R2, which is the same as the type of the subterm
(λR1.(R1XR1)D0), has four integer attributes.

Note that a consistent typing must give a single type to
every variable.

The evaluation problem.
We now define the main problem considered in this paper.

The boolean query evaluation problem takes as input
a well-typed term of boolean query type, along with
a set of relation constants, (i.e. relational instances).
The output is true iff the application of the term on the
instances evaluates to the (unique) nonempty instance of {}.

Of course, there are more general evaluation problems,
which we will need as subproblems. We will be interested

in the combined complexity of the problem, where the size
of the input is the database size plus the term size, as well
as the query complexity, in which the database instance is
fixed. It is easy to see that the complexity when the query
is fixed is in polynomial time for all of our languages.

Note that we consider complexity in the standard Turing
Machine model, and that we do not have any requirement
on the behavior of our evaluation function when terms are
not well-typed. We will consider the evaluation problem for
both simply-typed terms and weakly-typed terms.

Construction trees.
Tree and graph representations of λ-terms are commonly-

used in analyzing reduction strategies for λ calculus. We will
use a parsed representation that we call construction trees
for our terms. The presence of constants requires a slight
variation on prior representations (e.g [Wad71]).

Construction trees are defined only for terms whose
constants have at most two inputs, e.g. relational constants,
query operator constants. We also assume that query
constants c always appear in subterms of the form λR.c(R)
or λR.λS.c(R,S). For a binary constant c such as ∪,1,×,
we often use sct as a notation for c(st).

The construction tree of a term τ is a binary tree.
Each application is represented by an @ node which has
two subtrees. Each λX is represented by a node, called a λ
node. Each constant or variable is represented by a node
labelled with its name.

The tree is inductively built as follows.

1. The root of the tree is the outermost operator.

2. The construction tree of a database constant c (resp.
a variable x) is a single leaf, labelled c (resp. x).

3. The construction tree of an abstraction λx.s consists
of a node labelled λx with a single subtree, which is
the construction tree of s.

4. The construction tree of an application s(t) consists of
a node labelled @ with two subtrees: the left subtree
is the construction tree of s and the right subtree is
the construction tree of t.

5. The construction tree of c(st) with c a binary query
constant consists of c node and two subtrees: the left
subtree is the construction tree of s and the right sub-
tree is the construction tree of t.

6. The construction tree of a unary query constant c(s)
consists of a node c whose only subtree is the construc-
tion tree of s.

Query languages with inductive rules .
Our results will rely on reductions to several query lan-

guages with inductive definitions, most of them variants of
Datalog.

An atom over a relational signature S is an expression
R(x1 . . . xn) where R is an n-ary predicate of S and the xi
are either variables or constants. A pure atom is one in
which all xi are variables.

A positive rule block consists of:



• A relational signature S along with a collection of con-
stants C

• a set of rules of the form A ← φ, where φ is a con-
junction of atoms over S, and A is an atom over S.
A is the head of the rule and φ is the body of the
rule. We will often identify φ with the set of atomic
formulas in it, writing A1(~x1), . . . , An(~xn) instead of
A1(~x1) ∧ . . . ∧ An(~xn). A variable that occurs in the
head of rule r is a free variable of r. Other variables
are bound in r; we write bvars(r) for the bound vari-
ables of r. We require that every free variable occurs
in the body.

• A distinguished predicate P of S which occurs in the
head of a rule, referred to as the goal predicate.

The relational symbols that do not occur in the head of
any rule are the input predicates, while the others are in-
tensional predicates. A predicate P immediately depends
on another predicate P ′ if there is a rule that has P in the
head and P ′ in the body. A rule block is nonrecursive if
this relation is acyclic. We let NRDL denote the language
of nonrecursive rule blocks.

All NRDL queries that we deal with here will be pure:
that is all atoms in the heads of rules with nonempty bodies
are pure.

We also consider the language of nonrecursive Datalog
with negation, abbreviated NRDL¬. This extends the prior
syntax by allowing negation in rule bodies.

For a NRDL¬ query, we can define the rank of an inten-
sional predicate P (with respect to the query, although we
omit the argument), denoted Rk(P ), as follows: the rank of
an input predicate is 0, the rank of an intensional predicate
P is

Rk(P ) = max{Rk(P ′) + 1 : there is a rule with P ′ in
the body and P in the head}

Given a structure D interpreting the input predicates, an
NRDL query Q, and a predicate P of Q, we define the eval-
uation of P in D, denoted P (D), by induction on Rk(P ).
For P an input predicate P (D) is the interpretation of P in
D. For P an intensional predicate with Rk(P ) = k + 1 and
arity l.

• Let Dk be the expansion of D with P ′(D) for all in-
tensional P ′ of rank at most k.

• If r is a rule with P (x1 . . . xl) in the head, ~w the bound
variables of r, and φ(~x, ~w) the body of r let Pr(D) be
defined by:

{~c ∈ Dom(D)l : (Dk, x1 7→ c1 . . . xl 7→ cl) |= ∃~w φ}

We let P (D) denote the union of Pr(D) over all r with P in
the head. The result of a query Q on D is the evaluation of
the goal predicate of Q on D.

Finally, the language of Inflationary Fixed Point logic
over relational signature S, is a collection of blocks of rules
B1 . . . Bj , where each Bi is an NRDL¬ query whose input
predicates consist of ni recursive predicates which can ap-
pear in both heads and bodies, and include all predicates in
the head, along with pi parameter predicates, which occur
only in rule bodies. For the lowest block B1, we must have

the parameter predicates being a subset of the input signa-
ture. For other blocks we must have the parameter predi-
cates be a subset of the recursive predicates in the previous
block. The top level block Bj has a distinguished recursive
predicate, again called the goal. We evaluate a query by in-
duction on j, getting instances for each recursive predicate
in Bj . At stage i, we substitute for each parameter pred-
icate in block Bi with the inductively computed output of
Bi−1, or the input predicates if i = 1. We then iteratively
compute values for the recursive predicates P1 . . . Pni by re-
peating the following assignment until a fixpoint is reached:
Pi := {~x : (∃~y body(Pi)(~x, ~y)) ∨ Pi(~x)}, where body(Pi) is
the disjunction of all bodies of rules with Pi at the head,
with the predicates P1 . . . Pn replaced by the result of the
prior iteration.

3. LOW DEGREE TERMS
We begin with the case of terms having only relation and

query variables; most of the distinguishing factors of λDB
from other higher-order calculi are contained in these cases.

Degree 1 Terms.
Naive evaluation of a degree 1 term would be to simply

substitute all occurrences of a relational variable by their
bodies, and then evaluate the resulting variable-free term
using the fixed semantics of relational calculus. Unfortu-
nately, this would involve an exponential blow up. Instead,
we follow the approach of [BPV10], which reduces the prob-
lem to the evaluation for fragments of Datalog.

Proposition 1. Evaluation of degree 1 terms over RA is
linearly inter-reducible to NRDL¬ evaluation, while for RA+

we can reduce to and from NRDL evaluation.

The following example demonstrates the reduction between
degree 1 terms and Datalogqueries.

Example 4. Let R,R1 and R2 be three relational vari-
ables respectively of type (b, c), (a, b), (a, b, c). We consider
an order 1 degree 1 term below.

τ3 = λR1.λR2.
(
λR.π{a}((R1 1 σc=5(R)))

)
(π{b,c}R2)

The term τ3 is equivalent to the following NRDL query.

Goal(x) ← R1(x, y), R(y, 5)
R(y, z) ← R2(x, y, z)

where R1, R2 are two input predicates and R is an inten-
sional predicate.

This result gives us a PSPACE upper bound for the complex-
ity of evaluating degree 1 terms over RA. The PSPACE upper
bound is tight, even for terms with no negation and no union
[Var82, DEGV01, BPV10], and even for query complexity.

We will need the following simple upper bound when eval-
uating NRDL¬:

Proposition 2. The problem of evaluating an NRDL¬

query P over database D0, where P has N rules of size at
most L, can be done in O(N × |D0|L) time.

Proof. Evaluate the query bottom-up. Since the size
of each rule is bounded by L, the output of each rule
is bounded by |D0|L, and each rule can be evaluated in
O(|D0|L) time.



Degree 2 Terms.
For degree 2, we will make use of our results from degree

1, plus observations inspired by Schubert’s work [Sch01] on
the complexity of normalization for low-degree terms in the
standard λ-calculus.

The following result gives the complexity of degree 2 terms
in the strongly-typed languages λDB [RA] and λDB [RA+].

Theorem 3. The problem of evaluating degree 2 terms
over either RA or RA+ is EXPTIME-complete.

We begin with the upper bound, stating it only for the larger
signature RA.

Proposition 4. The problem of evaluating degree 2
terms over RA is in EXPTIME.

Proof. We perform standard innermost-reduction to re-
duce a degree 2 term to a degree 1 term. In the process,
the size of the term increases exponentially. However, we
observe that the increase is only exponential, and that the
arity of every order 1 output (including intermediate rela-
tions) does not increase. Hence we can evaluate the resulting
NRDL¬ expressions in exponential time.

Proposition 5. The problem of evaluating degree 2
terms is EXPTIME-hard, even for λDB [RA+].

Proof. We will use the union operator in the following
proof, but we can eliminate it by using the standard method
of encoding disjunction with additional arguments for inter-
mediate truth values – a method presented in [GP03, VV98].

We show that the problem is EXPTIME-hard by reducing
from the acceptance problem for an exponential time Deter-
ministic Turing Machine (DTM) M over an input ω with
|ω| = n. The DTM M is defined as a set (Q,Σ,Γ, δ, q0,F)
with:

• Q: a finite set of states,

• Σ: input alphabet - a finite alphabet of symbols,

• Γ ⊇ Σ]{2}: working tape alphabet - a finite alphabet
of symbols,

• δ : (Q \ F )× Γ→ Q× Γ× {01, 00, 10}: the transition
function, where 01 denotes a rightward move of the
head, 10 a leftward move, and 00 no movement of the
head,

• q0 ∈ Q: the initial state,

• F ⊆ Q: a set of final states.

The DTM operates on an infinite tape, which is assumed to
be bounded to the left. Each cell of the tape contains one
symbol from Γ which contains 2, a blank symbol.

We now give a reduction from the acceptance problem of
a DTM that runs in less than 2n steps to our evaluation
problem. Since δ is a partial function, we add δ(q, a) =
(q, a, 00) for all (q, a) such that δ(q, a) = ∅ to extend δ to a
total function. We consider only DTM’s that run in exactly
2n steps. We will check the state of the DTM at step 2n

to know if it accepts or rejects. With this extension of δ,
DTM’s that halt after s steps with s < 2n will stay at the
same configuration from s+ 1 to 2n.

We use the following relations and queries over a database
domain {0, 1}.

• We will use relations of the form
S(p1, . . . , pn, a1, . . . , ak, h, b1, . . . , bm) (shortly,

S(~p,~a, h,~b)) to represent the configuration of M
at a particular time. Each tuple represents a cell of
the tape. Specifically, the attributes of S have the
following roles:

– ~p represents the distance in binary of the cell to
the left end of the tape.

– ~a represents the symbol on that cell in binary.

– h is 1 if the head is on that cell; otherwise h is 0.

– ~b represents the state of M.

• The succinctness of degree 2 terms is used to build a
function τ of size O(n) that takes a relation R of type
T and a query Q of type TQ = T → T , returning

Q2n(R).

τ = τn = λxn−1.λQ.λR.xn−1(Q, xn−1(Q,R))τn−1

. . .

τ0 = λQ.λR.Q(R)

Each τi is of type (T → T )→ T → T (i.e. TQ → TQ).

• T (~b,~a, ~b′, ~a′, c1, c2) is a relation that stores all the tran-

sitions of δ. The roles of ~a, ~a′ and ~b, ~b′ are the same
as their roles in S. In addition, c1 and c2 tell us if the
head moves to the right (c1c2 = 01), moves to the left
(c1c2 = 10), or stays (c1c2 = 00).

• A relation F (~b) is used to store all the final states in
F .

• We use two degree 1 terms to represent succ and diff
over any relation P of type (p1, . . . , pn). Both succ and
diff are of type (p1, . . . , pn) → (p1, . . . , pn, v1, . . . , vn),
which is also denoted by (~p)→ (~p,~v).

We define diff as follows.

diff = λP.
⋃

1≤i≤n

(σpi=0,vi=1(P ∗) ∪ σpi=1,vi=0(P ∗))

with P ∗ = P 1 (ρ~p/~v(P )).

The following term defines succ.

succ = λP.
⋃

1≤i≤n

σC
(
P 1 (ρ~p/~v(P ))

)
with

C = (p1 = v1, . . . , pi−1 = vi−1, pi = 0, vi = 1,
pi+1 = 1, . . . , pn = 1, vi+1 = 0, . . . , vn = 0)

• Using diff and succ, we can define a term ρ0 of type

(~p,~a, h,~b)→ (~p,~a, h,~b) which represents the next con-
figuration of M. If S represents the current tape con-
figuration, ρ0(S) is the next configuration of M. The
term ρ0 is the union of the following three terms. The
first term represents the new description of the cell
which the head is on. The second one represents the
new description of the cell to which the head will go.
The third one represents the description of the cells
which do not change in the transaction.



Let S0 be an instance of S that represents the input ω.
Then, τ(ρ0, S0) will represent the state of the DTMM after
2n steps.

We define ρ = τ(ρ0, S0) 1 F . It is easy to see that ρ 6= ∅
iff M accepts ω within 2n steps.

Proposition 6. The problem of evaluating degree 2
terms remains EXPTIME-hard when we fix either the rela-
tional constants or the types of all variables and constants
in the term.

Proof. First we consider the case where the relational
constants are fixed. In the EXPTIME-hardness above, we
only use relational constants S0 to encode the input tape
ω. We assume that the type of S0 is {0, 1}m and S0 =
{t1, . . . , tn}. We use a single attribute relation instance D0

with values 0 and 1.
Now we can code S0 by the following expression:

S0 =
⋃

1≤i≤n

(
σ ~A=ti

(ρA/A1
(D0) 1 . . . 1 ρA/Am(D0))

)
where ~A = {A1, . . . , Am} is a set of different attribute
names of integer type.

When the types are fixed, we use queries to rep-
resent elements of D1. A binary relation instance
Next = {〈1, 2〉, 〈2, 3〉, . . . , 〈n − 1, n〉} stores an ordered set
of n elements. The query variables of type mapping from
the domain {1, . . . , n} to the domain {0, 1} will range over
a domain of 2n size. We also can easily represent basic or-
dering operators on this domain. Thus we still can code an
ordered set which has an exponential number of elements.
The other steps are similar to the EXPTIME-hardness proof
above.

Adding recursion.
We now study the effect of the order 2 constant, ifp, to

the evaluation problem of low degree terms.
The proposition below shows that ifp evaluation can be

reduced to evaluation with terms of degree 2 and only the
standard relational query constants. It gives an alternative
proof of Proposition 5, as explained below.

Proposition 7. Evaluation of a degree 2 term in
λDB [RA] or in λDB [RA+] containing ifp is polynomially
reducible to evaluation of a degree 2 term over the same
signature without ifp.

Proof. Let n be the size of the relational constants and
the term. Since the size of any intermediate relational in-
stance formed is bounded by O(2n), we can calculate the
least fixed point value ifp(Q,D0) for any query Q and fixed

D0 of size at most n by Q′2
n

(D0), where Q′ is the modifi-
cation of Q to union with its input. Moreover, there is a
small degree 2 term that transforms any query Q of a given
query type to Q′ and there is a degree 2 term of size O(n)
that iterates any given Q on any given R (depending only on
the types of Q and R) 2n times – as shown in Proposition 5.
Thus we can transform a term formed from ifp by replacing
subterms ifp(ρ, ρ′) with a degree 2 term applied to ρ and ρ′.
Doing this iteratively gives the desired transformation.

The result above implies that the complexity of evaluating
terms of degree from 2 does not change when ifp is included

– hence it is EXPTIME-complete.

From well-known results on query languages with re-
cursion, we see that the ifp constant does have some
impact on the complexity of degree 1 evaluation.

Proposition 8. Evaluation of a degree 1 term in
λDB [RA+] or in λDB [RA] containing ifp is EXPTIME-
complete.

The upper bound is inherited from the degree 2 case.
Hardness follows from the EXPTIME-hardness of Datalog
in query complexity [DEGV01], and the fact that Datalog
can easily be embedded in ifp.

4. ARBITRARY DEGREE TERMS
The main purpose of this section is to show the following

theorem.

Theorem 9. The problem of evaluating degree k terms
is:

• m-EXPTIME-complete if k = 2m, i.e. k is even,

• m-EXPSPACE-complete if k = 2m+ 1, i.e. k is odd.

Note: 0-EXPSPACE denotes PSPACE and 0-EXPTIME de-
notes PTIME.

4.1 Upper bounds for evaluating degree k
terms

Let expnm be 2 to the m-hyperexponential of n, i.e. 22.
.2

n

with a tower of m 2’s. m-EXPTIME below refers to the class
of functions that run in time expn

O(1)

m , and similarly for m-
EXPSPACE. Based on the techniques in [HK96], we give the
following upper bound.

Proposition 10. The problem of evaluating degree k
terms is:

• in m-EXPTIME if k = 2m,

• in m-EXPSPACE if k = 2m+ 1.

Proof. • We show that the problem of evaluating
degree k terms with k = 2m and m ≥ 0 is in m-
EXPTIME.

We use m-hyperexponential time to reduce a degree
2m term τ to a degree m term τ ′. Similarly to the
EXPTIME evaluation of degree 2 terms, we can evalu-
ate τ ′ in m-hyperexponential time: simply reduce to
degree 1, blowing up the size but not the arity, and
then apply the evaluation strategy for degree 1. Thus,
the problem is in m-EXPTIME.

• Now we show that the problem of evaluating degree k
terms with k = 2m+ 1 and m ≥ 0 is in m-EXPSPACE.

We use m-hyperexponential time to reduce a de-
gree (2m + 1) term τ to a degree (m + 1) term τ ′.
Since τ ′ is of degree (m + 1), its variables are of
order at most m which can be non-deterministically
guessed using m-hyperexponential space. Since τ ′ is
m-hyperexponential in the size of τ , we can use m-
hyperexponential space to represent guesses of all the
variables in τ ′. Then we can also evaluate τ ′ in m-
hyperexponential space by a top-down algorithm.



The argument here relies on reduction to the order 2 case
via β-reduction, plus a few properties of the constants. The
same argument is easily seen to hold for the extension with
recursion.

4.2 Coding ordered sets by degree k terms
Before showing the lower bound, we describe how to use

degree k terms to code a k-hyperexponential set.
Let X be a term of type T 0 and Y be a term of type

T 0 → T 0. We define iteration functions that return Y expnk

when applying over X.

Proposition 11. Given X of type T 0 and of order k0
and Y of type T 1 = T 0 → T 0, there exists a term of degree
k0 + k that returns Y expnk (X).

Proof. We build these terms as follows.

Subterm

τ2n = λx2n−1.λx
1.λx0.x2n−1(x1, x2n−1(x1, x0))τ2n−1

. . .

τ20 = λx1.λx0.x1(x0)

. . .

τ in = λxin−1.λx
i−1 . . . λx0.

xin−1(xi−1, . . . , x1, xin−1(xi−1, . . . , x0))τ in−1

. . .

τ i0 = λxi−1 . . . λx0.xi−1(xi−2, . . . , x0)

where each subterm τ ij with 2 ≤ i ≤ k and 0 ≤ j ≤ n has

type T i defined as below:
T 2 = T 1 → T 1 = T 1 → T 0 → T 0

T i = T i−1 → T i−1 = T i−1 → . . .→ T 0 → T 0

From that we define a term as follows.

ρkn = λY.λX.(((τknτ
k−1
n ) . . . τ2n)Y )X

This term takes two terms X,Y and returns Y expnk (X).

These iterators will be used to capture both a large amount
of space and a large amount of time: we will use them to
scan through a large domain, allowing us to code a huge
tape. Later on we will use them to iterate a state transition
function a large number of times. We start with the first ap-
plication, using iterators to code a set of k-hyperexponential
elements. Actually, we do not code all the elements. We only
code one element and provide a term that generates all the
other ones.

Proposition 12. We can efficiently construct an order
m − 2 term Cellm−2 over RA+ of some type ∆m−2 and an
order m − 1 term succm−2 of type ∆m−2 → ∆m−2 such
that by iterating succm−2 on Cellm−2, we get a set Sm−2

of objects. We also can build boolean equality and inequal-
ity functions =m−2 and diffm−2 to compare the objects in
Sm−2. With respect to the semantics of diffm−2, Sm−2 con-
tains expnm distinct objects.

Proof. Base case (m=2): Let D1, . . . ,Dn+1 be n +
1 single attribute relational constants respectively of type
(a1), . . . , (an), b. Each Di contains two tuples 〈0〉 and 〈1〉,
i.e. Di = {〈0〉, 〈1〉} with 1 ≤ i ≤ n + 1. We build up an
instance D0 using the term D1 1 . . . 1 Dn+1.

Now D0 contains every tuple of n+1 attributes over {0, 1}.
We will be interested in instances for which there is exactly
one tuple that projects onto every combination of boolean
values for the first n attributes. Such an instance will rep-
resent a function from 2n to 2, hence a number bounded by
22n . The initial position Cell0 satisfies the last attributes of
all the 2n tuples equivalent to 0. We now describe succ0.
Consider a number in 22n as a sequence of 2n bits. succ0
should find the first bit that is 0 and flip it to 1. Then we
build =0 and diff0.

Induction case: We now show how to inductively de-
fine Cellk+1, succk+1, =k+1, and diffk+1 from Cellk, succk,
=k, and diffk. We define Cellk+1 as a degree k + 1 term
of type ∆k → T0 with T0 = (u). Intuitively, Cellk+1 al-
ways returns {〈0〉} when applying to an element of the

set {Cellk, succk(Cellk), . . . , (succk)exp
n
k+2(Cellk)}. Using it-

erators from Proposition 11, we define succk+1, =k+1, and
diffk+1.

4.3 Lower bounds for degree k terms
Using Proposition 11, Proposition 12 and the techniques

inspired by [HK96, Mai92], we can show that the preceding
upper bounds are tight.

Proposition 13. The problem of evaluating degree k
terms is:

• m-EXPTIME-hard if k = 2m,

• m-EXPSPACE-hard if k = 2m+ 1.

Proof. We give the intuition of the proof for both parts
of the proposition.

• To show that the problem of evaluating degree k terms
with k = 2m is m-EXPTIME-hard, we reduce the sat-
isfiability of an m-hyperexponential time DTM over
an input of m-hyperexponential size to this problem.
We use a set of order m − 1 terms to represent con-
figurations of m-hyperexponential size. Then we use
an order m term to simulate transitions from a con-
figuration to the next configuration. Lastly, we use a
term of degree 2m to repeat that order m term m-
hyperexponential times.

• To show that the problem of evaluating degree k terms
with k = 2m + 1 is m-EXPSPACE-hard, we reduce
the satisfiability of an m-hyperexponential space DTM
over an input of m-hyperexponential size to this prob-
lem. We use a set of order m − 1 terms to represent
configurations of m-hyperexponential size. Then we
use an order m term to simulate transitions from a
configuration to the next configuration. Lastly, we use
a term of degree 2m + 1 to repeat that order m term
m-hyperexponential times.

Similarly to Proposition 6, we can show that the complex-
ity of evaluation does not change in some particular cases.

Proposition 14. When we fix either the relational con-
stants or the arities of all relational types occurring in the
term the hardness results in Proposition 13 do not change.

The results above imply that we can not find an integer num-
ber N such that the evaluation problem is in N -EXPTIME.
That is:



Corollary 15. The evaluation problem for higher-order
terms has non-elementary complexity.

5. REDUCING THE COMPLEXITY OF
EVALUATION

We consider particular cases where we can achieve better
bounds for the complexity of evaluation.

Linear higher-order terms.
Linear Datalog queries (see, e.g. [DEGV01]) disallow

repeated occurrences of an intensional predicate in a rule
body. The following generalizes this to terms of arbitrary
degree.

A closed term τ is linear iff τ does not contain two
occurrences of the same variable. The following result is
clear:

Theorem 16. A linear term τ ∈ λDB [F ] can be trans-
formed in linear time to an equivalent expression in the term
algebra over F , using standard β-reduction.

Proof. We can reduce τ to an equivalent degree 0 term
τ ′ tractably via substitution. By the definition of linear
terms, the size of τ ′ is the same as the size of τ .

Thus, evaluating a linear term τ ∈ λDB [F ] has the same
complexity as evaluating an expression in F , which is NP-
complete for RA+ and PSPACE-complete for RA.

Un-nested terms.
In linear terms we never repeat variables. However, we

notice that the source of non-elementary hardness in evalu-
ation in the previous section comes from the ability to re-
peat variables in a particular way: nesting one occurrence of
a variable inside another. By means of construction trees,
we define a restricted class of terms in which the nesting
of functions is limited. A variable x ∈ t is self-nested if x
occurs in two subtrees s, t of the construction tree of t and
two roots of s and t are linked to the same @ node.

A term is un-nested if it does not contain any self-
nested variable. Intuitively, a term is un-nested if a vari-
able never occurs as an argument of itself in the term.
For example, λQD.Q(Q(D) has a self-nested variable, but
λQD1D2.Q(D1) 1 Q(D2) is un-nested.

We show that the un-nested case is simpler, using two
reductions. In the first, we reduce un-nested terms to degree
1 terms using only polynomial space.

Proposition 17. There is a PSPACE algorithm that re-
duces a degree k term τk of size n to a degree 1 term τ1.
The height of the construction tree of τ1 is bounded by O(n).

Proof. Given a degree k term τk and its construction
tree ξ, we go top-down through ξ to find pairs of a vari-
able X and the subtree T to which the variable maps. We
store those pairs (X,T ) in a list named L. This produces
a function L, which will not change in the recursive process
defined below.

Now we are ready to give the algorithm, Reduction
which takes as input a node C in a tree T and returns a
new term:

• If C is a constant of arity 2 (e.g. ∪) or an @ node
with a right-child of order 0. Let Cl and Cr be the

left and right children respectively. In this case return
a tree rooted at C with subtrees Reduction(Cl,T )
and Reduction(Cr, T ). If C is a unary operator with
child C′ we return a tree rooted at C with single child
Reduction(C′,T ).

• If C is an @ node with a right-child of order ≥ 1, then
its left child must be of the form λX with a child C′′

whose type matches the type of the right-child; in this
case return Reduction(C′′,T ).

• If C is a variable node X of order from 2
then return Reduction(root(L(X)),L(X)).

• If T does not have variables of order above 1
then return T .

The initial call is Reduction(root(ξ), ξ). The output of
Reduction(root(ξ), ξ) is the construction tree of an equiv-
alent term τ1 without variables of order more than 1. An
implementation needs to explore only one branch at a time.
Thus the algorithm requires polynomial space. During each
call to Reduction, we only replace a variable at most once
by a subtree of the original tree. Thus the height of the
output construction tree is bounded by O(n).

From the proposition above, we can use a PSPACE algorithm
to reduce an un-nested term of size n to an NRDL¬ query Q.
The rank of the predicates in Q is bounded by O(n) because
the height of the construction tree is bounded. Since during
the reduction we do not combine query constants, the length
of the rules is still bounded by n. We now show that this
NRDL¬ query can be evaluated using O(n) space.

Proposition 18. There is an evaluation algorithm for
NRDL¬ queries which uses space polynomial in the maxi-
mal rank of the predicates and the maximal length of the
rules.

The proof uses the standard top-down algorithm for evalu-
ating NRDL¬ queries.

The two propositions above directly imply the following
result.

Theorem 19. The evaluation problem for un-nested
terms in λDB [RA] is in PSPACE.

The same argument reducing to the degree 1 case can be
used for ifp, yielding the following:

Proposition 20. The evaluation problem for un-nested
terms in λDB [RA] containing ifp is in EXPTIME.

Fixing parameters in the problem.
We look at several parameters in the evaluation problem:

for example fixing the relational constants and the size of the
variables, which is the size of standard string representations
of the types of the variables.

To reduce the complexity of evaluating degree 1 terms, it
is sufficient to fix only the arities of variables.

Proposition 21. When we fix the arities of the rela-
tional variables, the evaluation problem for degree 1 terms
is NP-complete for RA+ and RA.



The proof of the upper bound is simply via “bottom-up”
evaluation of the corresponding NRDL¬ rules. The lower
bound follows since we can still code conjunctive queries of
arbitrary size.

However, to reduce the complexity of degree above 1
terms, we need to fix both the relational constants and the
size of the variables.

Proposition 22. When we fix all the relational constants
and the size of all the variables, the evaluation problem
for degree 2 terms is NP-complete for RA+, and PSPACE-
complete for RA.

Proof. NP-hardness is obvious from Proposition 21, and
similarly PSPACE-hardness for RA follows from classical re-
sults. So we show membership.

Let D be the set of values that appear in the term, in-
cluding in the input data. For any type T , let T � D be the
restriction of T to values in D, defined inductively. For a
relational type T = (a1 . . . an), it is the type obtained by re-
placing the range of each ai with the intersection of its range
with D. (T → T ′) � D is (T � D) → (T ′ � D). Since D
is finite, each T � D has only finitely many elements. Once
the arity of base relations and the number of arguments to
query types are fixed, the number of elements is uniformly
bounded and independent of the type. Similarly, for any
term τ of type T we define its restriction τ � D, which will
be of type T � D.

An extension guess for order 0 term τ is a mapping tak-
ing every variable of τ of type T to an object of type
T � D. A guess g is extended to all subterms of τ by setting
g(τ1(τ2)) = g(τ1)(g(τ2)) and g(λQτ) = g(τ), and propa-
gating through relational operators homomorphically. This
extension can be done in NP for RA+, since it requires just
evaluating the relational operators. Similarly it can be done
in PSPACE for RA.

A guess g is correct if for every subterm of the form
(λR.τ1)(τ2) we have g(R) = g(τ2), and similarly for query
variables. It is easy to see that a correct guess must map τ
to its evaluation, and that there is a correct guess for every
term.

Our algorithm exhaustively checks all extension guesses
for correctness until it finds a correct one (which it must, by
the above). The number of guesses is fixed, and checking for
correctness requires calculating the extension and checking
the equality of every such R and τ2. Calculating the exten-
sion is in the required class, as noted above. A correctness
check requires only linearly many checks of variables. Since
the possible values of variables are fixed, each equivalence
check can be done in constant time.

The following proposition is easily generalized from the
proposition above.

Proposition 23. When we fix all the relational constants
and the size of all the variables, the evaluation problem
is NP-complete for RA+, and in PSPACE for RA (hence
PSPACE-complete for RA when the degree is at least 2).

Given that each of our languages subsume conjunctive
queries, NP combined complexity is a reasonable goal. Our
focus on combined and query complexity is justified by the
fact that once a term of query type is fixed, the complexity of

normalization is fixed, and hence the evaluation complexity
is the same as the data complexity of the corresponding lan-
guage of ground terms over the signature (which will be just
the data complexity of NRDL, NRDL¬, ifp, respectively).
Hence:

Proposition 24. The evaluation problem for fixed terms
of query type for any of our signatures can be done in poly-
nomial time.

6. EVALUATING WEAKLY-TYPED DE-
GREE 1 TERMS

Our upper bounds in degree 2 relied heavily on the fact
that we could not build up terms of high arity, and in par-
ticular we could only build up relational instances of size
exponential in the input. This is in contrast with XML
query languages like XQuery, which allows the formation of
doubly-exponential sized outputs.

We now study evaluation for the weakly-typed languages,
which do allow the building of doubly-exponential sized ob-
jects. We will be concerned with the evaluation problem
only for terms that have a consistent typing. Although there
can be multiple consistent typings for a term (e.g. consider
λS.D0 for D0 a relational constant) it is easy to show that the
evaluation of order 0 terms does not depend on the typing.
Nevertheless, we will need some results on the complexity of
the typing problem as the basis of our algorithms.

First we consider the typing problem for weakly-typed
degree 1 terms.

Proposition 25. There exists a PTIME algorithm that
takes a weakly-typed degree 1, order 0 term and determines
whether it has a consistent typing, returning a typing if it
does have one.

Proof. We give an algorithm working on the construc-
tion tree of the term that give types for all subterms or
reports that there is no consistent type. The algorithm it-
erates the following process until all subterms are typed or
inconsistency is detected:

• If we find a subterm rooted at a constant where all chil-
dren have types, then do the following: If the constant
is incompatible with the typing of its children (e.g. a
selection selects an index that is bigger than the ar-
ity of the term it selects from), then inconsistency is
detected and the algorithm terminates. Otherwise the
typing is propagated to the subterm in the obvious way
(e.g. if τ1 has type m and τ2 type n, τ1Xτ2 has type
m+ n.).

• For a subterm of the form (λRτ)τ ′, if we have a type
for τ ′ we propagate it to R.

Since one additional subterm will be typed in every iteration,
the algorithm terminates in PTIME.

One can also see that any typing must satisfy the inductive
rule given by the algorithm, hence:

Proposition 26. There is at most one consistent typing
for a weakly-typed degree 1 term of order 0.

The next proposition shows that the complexity of evaluat-
ing degree 1 weakly-typed terms matches the simply-typed
case.



Proposition 27. Degree 1 weakly-typed terms can be
evaluated in PSPACE.

Proof. We give a recursive function Eval which takes
as arguments a subterm of a given term τ and a set S =
{(c1, v1) . . . (cn, vn)}, with ci positions in binary and vi a
value in the active domain of the term. By the evaluation
of the subterm ρ, we mean its unique evaluation during a
reduction of τ (i.e. when free variables in ρ are replacement
by the relations to which they are applied in an innermost
reduction). We will arrange that Eval returns true exactly
when there is some tuple in the evaluation of ρ whose pro-
jection onto each position ci is vi. n can be 0, as it is for
the top-level call, representing a request to see if the original
term τ evaluates to a non-empty instance.

• For a subterm of the form σp=vρ we return Eval(ρ, S ∪
{(p, v)}). For σp1=p2ρ we guess a value v from the
active domain of the term and return the conjunction
of Eval(σp1=vρ, S) and Eval(σp2=vρ, S).

• For a subterm ρ1Xρ2 we calculate the arity of ρ1 as
m1. Letting S1 be the subset of S consisting of pairs
(ci, vi) with ci ≤ m1. We return the conjunction of
Eval(ρ1, S1) and Eval(ρ2, S − S1).

• For a subterm ρ1\ρ2 we return Eval(ρ1, S)\Eval(ρ2, S).

• For a subterm π[l,u]ρ we return

Eval(ρ, {(c1+l, v1) . . . (cn+l, vn)}).

• For a subterm ρ1∪ρ2 we return the union of Eval(ρ1, S)
and Eval(ρ2, S).

• For a subterm D0, where D0 is a data constant, we sim-
ply calculate the projection of

∧
i σci=viD0 and return

true iff this is nonempty.

• Finally, for a subterm consisting of a relational variable
R, we let ρ1 be the subterm to which R is applied in
τ ; we return Eval(ρ1, S).

The size of the call stack will grow proportionally to the
height of the parse tree of the term, and hence is polynomi-
ally bounded. Each step of the algorithm can be done in NP.
Hence the resulting algorithm will use polynomial space.

Furthermore, the algorithm uses a stack of height h
bounded by the nesting-depth of the term, with each stack
element requiring space at most d·m, where d is the maximal
size needed to represent an element of the active domain of
the term and m is the sum of the sizes of positions in the
term. In particular, the time used by the algorithm is at
most h · 2d·m.

For a term τ of degree k = 2 we proceed by applying
β-reduction to get to a term of degree 1. d and m do not
change during the reduction process, while the height of the
resulting degree 1 term is bounded by 2|τ |.

Hence we have:

Proposition 28. Degree 2 weakly-typed terms can be
evaluated in EXPTIME.

We believe that this approach can be used to show that the
worst case complexity of evaluation for the weakly-typed cal-
culus is the same as that of the strongly-typed one in higher
degrees; further exploration of weakly-typed languages is left
for future work.

7. RELATED WORK
Our work is closely related to a line of research from

the 90’s in functional databases [HKM93, BF79, OBBT89],
aiming at the unification of database query languages with
functional programming. Paris Kannelakis and collabora-
tors investigated embeddings of relational query languages
into typed λ-calculi. See [HKM93, HK94], and for a good
compendium see the ph.d. thesis of Hillebrand [Hil94]). The
goal is to code the operational semantics of relational query
languages in the standard reduction operations of the host
calculus. [HKM93, HK94] give polynomial time encod-
ings of standard languages, including query languages with
recursion mechanisms, within variants of the λ-calculus.
Databases are encoded in terms, using a particular encoding.
They deal with both a strongly-typed version of the calcu-
lus, and a polymorphic version (see section 2.1. of [Hil94]).
In particular, they show that a standard object-oriented cal-
culus can be embedded into the polymorphic version of the
calculus. They also determine the data complexity of evalu-
ation for queries that can be encoded in both the strongly-
typed and polymorphic variants of the calculus.

Formally, our language is quite different from those in this
prior line, since in our languages we do not reduce query-
ing to β-reduction. We simply combine querying and re-
duction: relational operators are treated as fixed constants,
with their usual semantics, and we deal with database in-
stances as constants, not via any encodings. Our results are
orthogonal to those in prior work in a very strong sense:
the results of [Hil94] are about terms that code queries (a
subset of λ-terms) and isolate the data complexity of such
terms. Our results are about all terms, and concern the com-
bined complexity, with the lower bounds holding for query
complexity. Indeed, the data complexity of the query lan-
guages we study is always polynomial time. This formal
distinction notwithstanding, the proof techniques we use to
analyze high-degree terms extends the ideas of Hillebrand,
Kannelakis, and Mairson. Our results show that the im-
pact of database query constants is localised to low degrees
(roughly, to degree equal to the max order of the constants).
In fact, we expect that our results could be extended to give
a bound on a calculus over arbitrary constants in terms of
the complexity of the constants, but we have not explored
(or seen) a formalisation of this.

Our work also relates to prior studies of the complexity of
nested relational calculus and XML query languages. The
Monad Algebra of [TBW92] is presented as a variant of
λ-calculus over a type system capturing nested relational
structures; one cannot abstract over queries, but one can
build up functions from relations via nesting. Koch has
shown that these languages are equivalent (modulo cod-
ing issues) to the functional XML query language XQuery
[Koc06]. [Koc06] has also isolated the complexity of these

languages within TA[2O(n), O(n)].
In comparison to our languages these are limited in expres-

siveness by lacking higher-order abstraction; on the other
hand, when compared to our strongly-typed calculus they
have some additional succinctness, gained from being able
to build up larger and larger intermediate data items of the
same type. Our weakly-typed language makes up some of
this difference – indeed, this was one of the motivations for
introducing it. However, our results show that merely build-
ing up high-arity data items is not sufficient, unless you have
sufficient expressive power to manipulate them. In future



work we will investigate what exactly needs to be added to
the weakly-typed language in order to match the expressive-
ness of Monad Algebra.

Our complexity bounds in low degree do not have an ex-
act match with prior languages. One intuition for this is:
what you can code using database constants and relational
operators differs from what you can code either without any
constants (as in the ordinary λ-calculus) or what you can
code with XML operators.

8. CONCLUSIONS
Table 1 summarizes the main complexity results in the

paper, excluding those for the weakly-typed languages. We
have shown that the evaluation problem has non-elementary
complexity, as one might expect from prior results in the λ-
calculus. Restrictions on nesting lead to drastic reductions –
indeed, a more precise bound in terms of the nesting depth
should be derivable from our techniques. Since the upper
bounds rely only on an analysis of reduction and the com-
plexity of evaluation of the term algebra over the constants,
one can easily accommodate other built-in query transfor-
mation and database operations.

Deg Sig. General Un-nested

1
RA,RA+ PSPACE NA

RA+ifp EXPTIME NA

2
RA,RA+ EXPTIME PSPACE

RA+ifp EXPTIME EXPTIME

2m+ 1
RA,RA+ m-EXPSPACE PSPACE

RA+ifp m-EXPSPACE EXPTIME

2m
RA,RA+ m-EXPTIME PSPACE

RA+ifp m-EXPTIME EXPTIME

Table 1: Complexity of Evaluation

We have initiated a study of weakly-typed terms here; in
future work we will consider more powerful operations on
indices in weakly-typed terms, with the goal of matching
the expressiveness of XML query languages. We will also
study the relationship with polymorphic nested relational
languages.

Our upper bounds rely on strategies where the interaction
between β-reduction and query evaluation is fairly limited.
We are not convinced that this is true for practical evalua-
tion strategies, and will be looking at interleaved strategies
in our implementation.
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