
Authentication protocols based on low-bandwidth

unspoofable channels: a comparative survey

L.H. Nguyen∗ and A.W. Roscoe
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
E-mail addresses: {Long.Nguyen, Bill.Roscoe@comlab.ox.ac.uk}

Abstract

One of the main challenges in pervasive computing is how we can establish secure communi-
cation over an untrusted high-bandwidth network without any initial knowledge or a Public Key
Infrastructure. An approach studied by a number of researchers is building security though hu-
man work creating a low-bandwidth empirical (or authentication) channel where the transmitted
information is authentic and cannot be faked or modified. In this paper, we give an analytical
survey of authentication protocols of this type. We start with non-interactive authentication
schemes, and then move on to analyse a number of strategies used to build interactive pair-wise
and group protocols that minimise the human work relative to the amount of security obtained
as well as optimising the computation processing. In studying these protocols, we will discover
that their security is underlined by the idea of commitment before knowledge, which is refined
by two protocol design principles introduced in this survey.

Keywords: authentic empirical channel, commitment schemes and digest functions.

1 Introduction

In this paper, we give a survey of authentication protocols which involve manual transfers of
short authentication strings (SASs) over an assumed empirical or authentication channel as might
be created by one or more human users of the systems being considered. The careful use of
low-bandwidth unspoofable channels offers an interesting alternative solution for the problem of
authentication, as opposed to making use of PKI and/or trusted third parties (TTP).

There have been rapid developments in this field in the last few years, resulting in publications,
international standards and patent applications relating to a variety of such protocols. In the
first few years these protocols were frequently introduced by groups working independently of
each other. For example, Stajano and Anderson [47] were the first to attempt to form a secure
network for a two-party scenario. The new approach was then studied and refined further by many
researchers, most notably Balfanz et al. [3], Creese et al. [9, 10, 11, 12], Gehrmann et al. [13, 14, 15],
Hoepman [17, 18], Vaudenay [53], Čagalj et al. [6], Wong and Stajano [56, 57] and Roscoe and
Nguyen [32, 33, 37, 41, 42, 43, 44] who introduced both pairwise and group authentication protocols
using less human interactions. Creese, Roscoe et al. [9, 10, 11, 12, 41] refer to these human exchanges

∗Corresponding author: Telephone: 0044 (0)7821540971, Fax: 0044 (0)1865 273839, and alternative E-mail ad-
dress: hn2503@gmail.com

1

as empirical channels since the recipient has some empirically based knowledge about the origin of
the message, as opposed to cryptographically based knowledge (e.g. via a PKI) of its origin. We
therefore use this term throughout this survey.

Given the potential importance of this work, we feel that this survey is timely. We consider
one-way protocols, non-interactive in the sense that all communication is one way, and interactive
protocols that work both for pairwise interaction and group formation. We also classify and analyse
these schemes in terms of information binding strategies and their computational efficiency. We
note that there have been several other surveys written by Suomalainen et al. [50], Mashatan and
Stinson [27], and Pasini and Vaudenay [39, 53]. However these authors only consider either pairwise
protocols (bootstrapping security from human interaction or secret shared passwords) or one-way
authentication schemes (both interactive and non-interactive). As we will see, they significantly
differ from ours with respect to the scope and depth of analysis (in terms of security, design and
efficiency). Due to the range of potential implementation technologies in this paper we largely
abstract away the details that are not immediately important to security. We also have imagined
there is a preliminary and insecure group/pairwise set-up protocol (implementation dependent)
that is run either before or simultaneously with the first messages of the secure protocol to agree
on, for example, the number and identities of protocol participants, since the information will
significantly reduce the waiting time in a protocol session.

The development of this novel sort of authentication has arisen from many daily life applications.
For example, in the authentication technology, for parties to agree on the same payment records in
financial transactions, healthcare information in telemedicine, or cryptographic public keys, their
portable devices exchange the data over (insecure) WiFi and then display a short and non-secret
digest of the protocol’s run that the devices’ human owners verbally or visually compare to ensure
they agree on the (public) data, i.e. the latter uses human interactions to prevent fraud such as
identity theft. It is thus easier to implement the solutions, because they do not rely on the needs for
PIN numbers, passwords or trusted third parties (e.g. the government or security infrastructures
distribute ID certificates or private keys to users) which may be too complex and expensive to use
on portable devices.

We explain the notation used in describing the protocols as well as a number of cryptographic
primitives such as a commitment scheme, short/long-hash functions, and digest functions in Sec-
tion 2. A simple model for the computation cost of these cryptographic primitives and an attack
model are provided to assess the complexity and security of these protocols as we move along.

Although the authentication protocols considered here have been independently introduced by a
number of research groups using different notation, this survey will demonstrate that their security
is derived from the idea of commitment before knowledge, formally defined in Section 2.2.1. What
it does is to force protocol participants to be (jointly) committed to some value before knowing
what it is until they reveal their respective shares of the decommitment in a later stage of a
protocol run. This committed value will, in turn, always be instrumental in the computation of the
SASs1 compared by humans, and therefore the parties’ state of knowledge of the SASs is a uniform
distribution, i.e. this is the key to defeating any causal influence such as birthday attacks as well
as ensuring that search and multiple-shot attacks do not gain any advantage over one-shot and
guess attacks. We will see that there are two different approaches of achieving this goal depending
on whether the authenticated information is directly or indirectly bound to SASs, as studied in
sections 4.2 and 4.3 respectively. In particular, the direct information binding strategy will be
refined by two protocol design principles, termed P1 and P2, in sections 4.3 and 5.1.

1The committed value could be either used directly as the SAS or inputted as a private key of a digest function,
a universal hash function or a MAC function.

2

We start with a number of non-interactive one-way authentication schemes that use empirical
channels in different ways, for example: MANA I proposed by Gehrmann, Mitchell and Nyberg [13,
14, 15]. We then see that the scheme neither optimises human effort nor offers as much security
as had previously been believed. We offer an improved version that provides more security for half
the empirical work, using a more general empirical channel.

In Section 4, we look at a variety of pairwise interactive authentication protocols. We see in
order to optimise (i.e. minimise) the amount of human/empirical work done in a protocol, it is
better to handle a single SAS rather than the several used by some protocols. Once the human
work has been optimised, we turn our attention to minimising the computing power required for the
protocols. This is likely to be important in practice because of potential applications in low-power
pervasive computing devices.

While there has been much recent literature on pairwise protocols, we find it strange that apart
from the authors’ group [9, 32, 33, 41] and Valkonen et al. [52] there has been little on group
protocols, although there appear to be many potential applications of these. We will discuss group
protocols in Section 5 as well as presenting a number of newly invented and modified versions
aiming to further improve the processing cost.

In Section 6.1, the computation cost of every protocol will be gathered into three tables that
clearly demonstrate two things:

• Interactive schemes (pairwise or group authentication) can be much more efficient in human
work than non-interactive ones (one-way authentication);

• Although the security of the majority of protocols rely on the commitment before knowledge
idea, the use of direct binding to achieve this goal has a clear advantage in efficiency. This
arises from the potential to use a digest function designed to produce only the small number
of bits required for empirical comparison as opposed to a conventional cryptographic hash
function used in indirect binding.

Many of the protocols described in this paper are taken from earlier literature. However we have
shown how to make minor improvements to some and major improvements to others. We will use
the following notation in protocol descriptions:

• Protocols equivalent to ones from previous literature, though perhaps in different notation,
are just cited: [].

• Protocols that have been modified in minor ways, often by replacing one or more cryptographic
primitive or other data operation, are cited []∗.

• Protocols that are either major modifications to existing ones or just new are marked New.

The protocols in this paper are organised according to their aims (e.g. one-way, pair and group)
and structure (direct versus indirect binding). This does not always make it easy to see the way the
whole topic has been developed in recent years, frequently by several independent groups. Figure 1
shows all protocols both by year of publication, section number where the protocol is described in
this paper and dependence on other work (by citation and directed arrows). For example, an arrow
from protocol A to B indicates that the design of protocol B is influenced by A.

3

Figure 1: Summary of all protocols.

4

This paper, particularly as it covers the differing approaches of several research groups and
since it sits at the boundary of cryptography and protocol design, requires a lot of (new) notation
and definitions. The reader might either choose to study all of this notation in advance, or can
read it to the end of Section 2.1 and then refer back to sections 2.2, 2.3 and 2.4 as needed, i.e. the
reader might go straight to (V-)MANA I protocols and its improved versions in Section 3.2 which
give a concrete goal for the best protocol to achieve.

2 Notation and basic definitions

Parties are identified using capital letters, e.g. A, B, L, S. The intruder or adversary is denoted
I, which in most cases is assumed to try to impersonate a node, such as A, to talk to others or to
intercept messages sent to A. ∀A (or A′) means that a message is sent or received by all parties in
a group G attempting to bootstrap a secure communication between them. In common with much
of the literature we are citing, the combination of two pieces of data will frequently be written
x ‖ y. This will be synonymous with the ordered pair (x, y).

We will assume each node A in a group G of N parties has some information INFOA of length
K bits (K/w = K/32 = M words, here we assume that a word consists of w = 32 bits) that it
wants to have authenticated to other members of the group; this might include:

1. Name and addressing information;

2. Its uncertificated public key or Diffie-Hellman token gxA , this might be a long-term object or
generated freshly for the present protocol run;

3. Contextual information to help identify it, such as its location or human owner, or the owner’s
photograph, video and audio;

4. Information (perhaps certificated) relating to its functionality.

Nothing in this information should be secret since all the protocols we consider will make it public.
INFOA might be attached to A permanently or for the long term; alternately some of it might be
relevant to this particular run only. The goals of the protocols will always consist of authenticating
pairs (A, INFOA) as members of the network. We make the identity A explicit here, and in the
protocols using it, since the identity is vital to an understanding of who is in the group. In practice,
as indicated above, A will normally just be embedded in INFOA. In particular, we assume in these
calculations that the name appears in the K bits referred to here. In addition, we refer to INFOS
as the concatenation in alphabet order of all the distinct pairs parties want to authenticate: NM
words if they are all size M .

If INFOS contains N photographs or similar, it may well be of significant size.

2.1 Communication links

In some cases, the protocols we quote from other papers are changed in appearance because we seek
to use a consistent nomenclature and notation: we do not want a single piece of notation to have
inconsistent meanings. One respect in which previous work varies is in the assumptions made about
the empirical or authentic channels. In this paper, we use different notation for communications
over a normal Dolev-Yao (insecure) channel and those over four types of empirical channels, which
are presented in a descending order of generality.

5

These empirical channels provide authenticity and data integrity, but not confidentiality: it is
assumed that there is enough direct familiarity or physical presence to ensure that the responsibility
of a person for a short message can be immediately ascertained.

• −→N represents the normal Dolev-Yao network, where all messages transmitted between
devices using such a channel can be overheard, deleted or modified by the intruder. Examples
of this channel are the Internet, WiFi, or a local network.

• −→WE , the weak empirical channel, cannot be forged, but it can be blocked, overheard,
delayed or replayed. This is the weaker of the two forms of empirical channel described
in [39, 53]. Typical examples of such channels include telephone conversation, voice mail or
messages, where messages can be delayed, blocked or replayed, but cannot be forged by the
intruder.

• −→t
BE is similar to −→WE except that messages cannot take more than time t to arrive and

cannot be replayed. In other words, no empirical message can be accepted more than t time
units after it was sent. Such a channel might be implemented over a reliable medium with
a known bound on transmission, or over an unreliable one with the addition of some sort
of time-stamp. The latter might make sense if the empirical message is sent by some video
means, but otherwise would add significantly to the communication burden. We will call this
a bounded delay empirical channel.

• −→E is the empirical channel assumed in [32, 33]. Messages transmitted over such a channel
cannot be mistaken or delayed from one to another session. To some extends, this implies
that −→E is a special case of −→t

BE where t is chosen to be some lower bound on the length
of time between one session and a later one. This is the type we use most often. Sometimes
the two-way arrow ←→E is used to indicate (possibly) the same message is transmitted in
both directions.

An example of such a channel is provided by manual data transfers [13, 14, 15], i.e. human
users manually copy data from one to another device via their in/output interfaces such as
screen, monitor and keyboard. In this case, empirical messages cannot be mistaken or delayed
from one to another session because: (1) the humans involved are not away at any time during
a protocol run, and (2) each device normally only has one in/output interface for displaying
or reading data.

• −→SE is similar to a normal empirical channel, but it also provides stall-free transmission.
As a result, a message transmitted over the channel cannot be delayed, removed or blocked
by the intruder. This implies that −→SE is the same as −→t

BE where t ≈ 0. We term
this a strong empirical channel (or a strong authentication channel). This was also defined
in [39, 53]. Face to face human conversation is an example of this channel.

2.2 Cryptographic primitives

We will be using a variety of cryptographic primitives which are related to hashing. Since bit-lengths
of hash functions vary widely, for clarity, they will be classified relative to three common security
properties of a cryptographic hash function, which are inversion-resistance, collision-resistance and
second-preimage-resistance. Sometimes they will be subscripted with the number of output bits.
For example:

6

• longhash(X) and hashB(X) refer to standard cryptographic hash functions [30] which are as-
sumed to be inversion-resistant, collision-resistant and second-preimage resistant. In common
with the literature, we will generally assume that they have at least B = 160 bits.

• hash(X) and hashB/2(X) refer to hash functions which are only assumed to be inversion-
resistant and second-preimage resistant. Note that hash(X) is not required to resist collision
attacks since its output length is B/2 or around 80 bits.

• shorthash(X) or hashb(X) will be functions with sufficiently many bits to offer weak or
short-term versions of these security properties of hash(X) or hashB/2(X). Here b which is
the bit-length of shorthash() is in the range of [16,32].

• digest(k, X) will be a short-output universal hash function or a digest function of X keyed by
k – the specification and purpose of this function will be discussed at length in Section 2.2.2
as well as an additional property often required of the short output hash functions.

• hk(X) will be a universal hash function of X keyed by k.

Usually implemented using hash functions, we will also use a commitment scheme, whose definition
is given below.

2.2.1 Commitment scheme and Commitment before knowledge

Definition 1 A probabilistic commitment scheme, following Vaudenay [53], consists of two map-
pings:

• commit: {0, 1}K × {0, 1}b → {0, 1}B × {0, 1}B

This mapping takes a public K-bit data INFO, a private b-bit random nonce R (e.g. b = 16),
and then internally generates a (B−b)-bit random nonce and produces two B-bit strings (e.g.
B = 160): a commit value c and a decommit value d. This algorithm is nondeterministic
since it uses an internally generated random element of B − b bits.

• open: {0, 1}K × {0, 1}B × {0, 1}B → {0, 1} × {0, 1}b

This mapping takes a public K-bit data INFO, a commit value c and a decommit value d,
and produces an error or success signal together with a b-bit random nonce R. This algorithm
is deterministic, and has the property that whenever there exists an R such that (c, d) is a
possible output for commit(INFO, R), then open(INFO, c, d) yields R.

The following provides more information about commitment schemes as well as the idea of commit-
ment before knowledge and its restricted version called joint commitment before knowledge, which
underlie the security of nearly every protocol discussed in this paper.

A commitment scheme has the following two properties:

• (ǫh, Th)-hiding [53]: no algorithm or adversary I bounded by a time complexity Th can win
the following game by interacting with a challenger C with a probability higher than ǫh.

1. I selects a message INFO and sends INFO to C.

2. C picks a b-bit random nonce R, runs commit on (INFO, R), gets (c, d), and sends c to
I.

3. I yields R′ and wins if R′ = R.

7

When ǫh = 2−b and Th = +∞ we say that the scheme is perfectly hiding, and this is what
we assume in all of the uses of a commitment scheme in this paper.

• (ǫb, Tb)-binding:2 no algorithm or adversary I bounded by a time complexity Tb can win the
following game with a probability higher than ǫb.

1. I selects a message INFO and a b-bit random nonce R.

2. I then runs commit on (INFO, R) and gets (c, d).

3. I later computes (INFO′, d′), where INFO′ 6= INFO but d′ can be either equal to or
different from d, and wins if (INFO′, c, d′) opens to R.

When ǫb = 2−b and Tb = +∞ we say that the scheme is perfectly binding, and this is what
we assume in all of the uses of a commitment scheme in this paper.

The bit-length of R will be short, e.g. b ∈ [16, 20] or even b = 0, in all the protocols considered.
When the random nonce R is null as in the one-way and non-interactive scheme of Pasini-Vaudenay
of Section 3.1, we drop R in the notation for a commitment scheme, i.e. we write commit(INFO).

To prevent brute-force search and birthday attacks, the commitment scheme (i.e. commit())
needs to extend R by a randomly chosen secret nonce R′ of B − b bits so that the combination
R ‖ R′ has the same bit-length as the output of a cryptographic hash function. This implies that a
commitment scheme is designed to be as secure as a standard cryptographic hash function hash160()
or longhash(). In practice, a commitment scheme is usually built from a pseudorandom function
such as a hash function, and therefore they have the same computational complexity. This issue
will be discussed in more detail in Section 2.4.2.

The above security and efficiency properties of a commitment scheme can be demonstrated by
the following construction which was introduced by Pass [40].

• Committing: to bind some public information INFO and a short random secret key R of
b bits together, the algorithm picks another secret random nonce R′ ∈random {0, 1}B−b. It
then sets d = R ‖ R′ and c = longhash(INFO ‖ d), i.e. commit(INFO, R) = c ‖ d. The
committer then publishes the commitment c.

• Decommitting: to decommit or to use open(INFO, c, d) = R, the committer first publishes
the decommitment d. Anyone can extract R from d (i.e. the first b bits), verify whether
c = longhash(INFO ‖ d), and then output success or failure.

Instead of using a cryptographic hash function longhash() as seen in the above construction, a
universal hash function as mentioned in Section 2.2 can be used, i.e. c = longhash(INFO ‖ d) is
replaced with c = hd(INFO). In such a case a similar change needs to be made to decommitting.

The conventional understanding of a commitment scheme has been that the committer knows
the value to which he or she is committed. In this paper however we will see several uses of the
commitment idea in which the protocol participants, which can be either the committer or other
parties, do not know the committed value. We will see this can be done by distinguishing carefully
between when nodes are committed without knowledge to a value and when they know it.

The first use of this idea is called commitment before knowledge, which directly influences the
design of the HCBK protocol of Section 5.1, and some of the one-way and non-interactive protocols
in Section 3.

2 We note that there is a lack of explicitness in the binding property of the commitment scheme defined by
Vaudenay [53], since the security specification there fails to bind it to the input message, as was obviously intended.
The definition of commit(INFO, R) there is satisfied by defining the commitment c = longhash(N, r), where N is a
long random nonce internally generated by the committer, and the decommitment d = (N, r).

8

Commitment before knowledge:3 Suppose that, in a partly complete protocol session, a
participant A has sent or received parameters, such that in all successful completions of this
session some term d has the same value, such as for instance d = digest(k, INFOS). Then
A is committed to a value of d at this point in the session.

A knows the value of some term d at a point in a partly complete protocol session if, from
values A has received, A can compute d without having to invert hash functions or decrypt
messages to which A does not hold the decryption key.

A is committed to the value of d before knowing it if the earliest point at which A is committed
to a value of d properly precedes the earliest point at which it knows the value of d.

The same properties also apply to a more restrictive use of the idea, called joint commitment before
knowledge which influences the design of nearly every interactive protocol, i.e. pairwise and group
authentication schemes in sections 4 and 5.

Joint commitment before knowledge: A protocol ensures joint commitment before knowl-
edge for a set of participants if in every sufficiently long partial execution of the protocol, there
is a point at which each of those participants is committed to a value for a term d, but does
not yet know the value of d, and moreover in every successful completion of this partial
execution, the participants are committed to the same value for d.

One simple way to achieve joint commitment before knowledge is as follows: each node is commit-
ted to some value by publishing its commitment, for example, by using the commitment scheme
described above or a cryptographic hash function. The jointly committed value (i.e. SAS) is then
the output of some function, such as summation, exclusive-or, Diffie-Hellman key agreement or
digest functions, applying to all of the values to which every node has been committed.

We will see later that there are two different strategies for achieving (joint) commitment before
knowledge, i.e. direct and indirect information binding approaches which are formally introduced
in Section 4. In addition, the combination of commitment before knowledge and the direct binding
approach will be refined by the principle P2 to design several group authentication protocols in
Section 5.1.

2.2.2 Short-output hash functions and digest functions

A normal cryptographic hash function is chosen so that it has enough bits to be essentially immune
to searching such as the birthday attacks. In this paper, we will see various uses of new functions
that, like cryptographic hash functions, are intended to randomise and convey no useful information
about the preimage. However, their outputs are significantly shorter, since they will always produce
values of short authentication strings (SASs) transmitted over the empirical channels which can be
very limited in bandwidth.

We will see two variants on this idea: the simpler is what we call a shorthash function:
shorthash(). This has a single argument, and is intended to be uniformly or near-uniformly
distributed over its b-bit range as its argument varies. Since the hash output is too short, it is
impossible to have properties such as collision and inversion resistances like in cryptographic hash
functions. What is required instead is the strict avalanche criterion, which states that any number
of bit-changes in the input has an equal (but non-negligible) influence on every bit of the output [55].

3We are grateful to an anonymous referee for wording of this and the idea of joint commitment before knowledge,
which improves the versions in earlier drafts of this paper.

9

In some of the protocols we consider, we need to construct a b-bit digest of INFOS and
some key k. Like shorthash(), digest functions cannot have the usually specified properties of a
cryptographic hash function, namely non-invertability and collision-freeness. On the other hand,
we do require that a high degree of randomness arises from the use of the key k, as set out below
and in [32, 33].

Definition 2 [32, 33] A b-bit digest function: digest : K × M → Y where K, M and Y =
{0...(2b − 1)} are the set of all keys, input messages and digest outputs, and moreover:

• for every m ∈ M and y ∈ Y , Pr{k∈K}[digest(k, m) = y] = 2−b

• for every m, m′ ∈ M (m 6= m′) and θ ∈ R: Pr{k∈K}[digest(k, m) = digest(k ⊕ θ, m′)] ≤ 2−b

The rationale for these two specifications, especially the use of “⊕ θ”, will become apparent when
we analyse group protocols such as the SHCBK protocol in Section 5.1. The digest function
specification is similar to universal hash functions, except the probability of digest collisions relative
to different keys is also considered, i.e. the way digest keys are agreed between nodes in the SHCBK
protocol can be manipulated such that different nodes’ keys may be relatively shifted by a θ known
to the intruder. The inclusion of the θ shift is therefore to ensure that this type of activity can
never benefit the intruder.

Although both shorthash() and digest() are less secure than cryptographic hash functions,
they are potentially faster to compute, thanks to their short outputs. More details about their
comparative speed performance can be found in Section 2.4.2. Designing (universal) hash functions
has an exciting and long history in computer science and cryptography, however there does not
seems to be much literature on the study and exploitation of short output to increase computation
efficiency. Thus we believe that there is a potential of new constructions for digest functions or
adaptation of existing work to acquire computation efficiency, as described below.

As we will see in the majority of direct binding protocols presented in this paper, the SAS is
often the output of a short-output function such as a digest function. For this reason, there have
been a number of algorithms proposed to compute short digest functions [2, 14, 15, 22, 23, 33, 38].
For example, [32, 33] introduced some constructions which exploit the short output of a digest
function to increase computational efficiency. These are adapted from a well-studied universal hash
function construction of Mansour et al. [26] and Krawczyk [20, 21]. The most efficient are based
on Toeplitz matrices of bits or words which are generated out of ǫ-biased distribution sequences
of random bits. In practice, these sequences of bits can be produced by a pseudorandom number
generator, e.g. linear feedback shift registers, as pointed out in [21, 33]. These algorithms have no
restriction on the length of the object (typically INFOS) being digested.

In contrast, other researchers [14, 15, 22, 38] make use of universal hash functions [5, 19, 49]
to compute digest functions. Their algorithms put an upper bound on the input length, and
consequently they have to compress a long input message into a fixed number of bits (say 512 or
256 bits) by using a cryptographic hash function prior to running the algorithms themselves. This
strategy turns out to be neither ideally secure nor cost effective [33]. Alternatively, others [2, 38]
suggest using the first b bits of a cryptographic hash value of a large input message, which is
potentially inefficient and does not necessarily have the precise property we need of being a digest
function.

2.3 Attack model

In Section 2, we have defined the intruder’s power over data transmitted over all kinds of channels
used in the family of protocols. In addition to that, the following are definitions of attacks performed

10

by the intruder.

• A general attack: uses (off-line) combinatorial search, e.g. using the birthday paradox
to search for hash collisions. This can be either interactive or non-interactive. The attack
may consist of multiple protocol runs, and so this is also referred to as multiple-shot or q-shot
attack, where q is the number of protocol runs involved.

• A one-shot attack: is a special case of a general attack, i.e. this only involves a single
protocol run.

We will also use the term combinatorial search to refer to attacks, whether general or one-shot,
which involve combinatorial search, i.e. this is the opposite of a guess attack.

Our aim is to ensure that general or multiple-shot attacks give the intruder no advantage over
a one-shot or guess attack on this family of protocols, i.e. this is similar to the goal of password-
based authentication protocols which have been studied extensively to date, e.g. [4]. This goal is
achieved because once every protocol participant is (jointly) committed before knowledge to some
short authentication strings (SASs, e.g. a digest value transmitted over empirical channels), then
there is not any effective way in which the agents can determine anything about the value – the
agents’ state of knowledge of the SAS is a uniform distribution.

Moreover, in the majority of protocols considered in this paper, SASs are transmitted over
(strong) empirical channels (−→E and −→SE), and so cannot be mistaken or delayed from one to
another session. Hence, the SASs in all protocol runs are themselves independent4 as pointed out
by Vaudenay and other authors [24, 35, 39, 53], and for any q we have:

Pr(a successful q-shot attack) ≤ q × Pr(a successful one-shot attack)

We will see later in Appendix C (Theorem 1) how to formalise the above security argument to
give proofs of security for various protocols introduced in this paper. We note that this security
model is rather conservative because it is only valid when the intruder launch attacks on many
(or perhaps q) different pairs or groups of parties. In practice, once a human has noticed a short
authentication string disagreement, he or she will be suspicious or aware that an attack is taking
place provided implementation is reliably constructed. This will mean that the human will either
allow no more attempts or require longer authentication strings, i.e. extending the SAS by 1 bit after
each mismatch makes the probability of a successful general attack be upper bounded by 2b−1 =∑∞

l=b 2−l, where 2−l is the likelihood of a successful one-shot attack on an optimal implementation
of a l-bit SAS protocol, i.e. we will formally define optimality in human interactions of this type of
protocols in Section 2.4.1.

Since the protocol design can reduce the probability of a successful attack to the chance of a
one-shot attack, for simplicity we will refer successful attacks considered in all protocols to attacks
that only involve a single protocol run, i.e. a one-shot attack. In addition, separate security analysis
will be provided whenever protocols use weak empirical channels −→WE to transmit SASs, which
can be stalled and then replayed in other protocol runs.

We are also interested in chosen plain-text attacks [46] under which the intruder can influence
data trustworthy parties want to authenticate. Although this attack might seem unrealistic, it is
desirable that protocols are immune to it, i.e. it will become useful when we analyse protocol of
Balfanz et al. of Section 3. Since the attack relies on combinatorial manipulation, we refer to it as
a special case of the combinatorial search attack.

4 A bit string X is independent of a bit string Y if for all random variable X of value x and for all random variable
Y of value y: Pr[X = x] = Pr[X = x | Y = y].

11

In authentication protocols where parties only want to authenticate their public-key-like infor-
mation, there is no need to distinguish between honest and dishonest nodes. Conversely, every one
has to be trustworthy in a key agreement protocol, whether it is pairwise or group schemes. More
discussion about this issue could be found at the begin of Section 5.

2.4 Cost model

It seems reasonable to measure the efficiency of the family of protocols in two ways: the amount
of empirical or human effort required to complete them; and the amount of processing required at
the nodes. The following models for human effort and computation cost are adapted from [32, 33].

2.4.1 Human effort

Our main measure of empirical work is the number of bits of the short authentication strings that
are transmitted over the empirical channels. Throughout this paper, we always attempt to optimise
the amount of security one can obtain from a given amount of empirical (human) communication.
The following definition which specifies when a protocol in this area optimises human interactions
relative to a level of security obtained has been justified in the papers of the authors [32, 33, 35]
and Vaudenay [53].

Optimality of human interactions [32, 33, 35, 53]: A protocol using short authentication
strings (SASs) is said to be optimal in human interactions iff there is only a single b-bit
SAS that needs to be empirically communicated, and the probability of a successful one-shot
attack is bounded above by 2−b.

We will see in later sections that this bound is attainable, provided we can discount the probability
of strong cryptographic primitives being broken.

2.4.2 Computation cost model of cryptographic primitives

It is essential to optimise the human work in the families of protocols, but at the same time, we
also want to minimise the computational cost. We are aware that the cost of agreeing a private
key through exponentiation (in Diffie-Hellman’s style) or public key cryptography always overtakes
the cost of bootstrapping authenticity. However, if the authentication phase is carried out early
on lightweight devices prior to key agreement achieved on more powerful devices at a much later
stage, then it is desirable to minimise the computation cost of the authentication protocols done
on lightweight devices, whose computation power can be very limited.

In order to assess the complexity of protocols, we have to have a model of the complexity of
computing cryptographic primitives, such as a cryptographic hash function longhash(), a shorthash
function shorthash(), a digest function, and a commitment scheme.

Let B and W be the number of bits and respectively words required to hold a longhash value.
It is normal that B =160 bits, so we assume W = B/w = 5, here we assume that a word consists of
w = 32 bits. Many researchers [13, 33, 53, 57] suggest 15 or 16 bits are reasonable choices for b, the
width of the digest output, which is rounded up to 1 word in our analysis. We assume that nonces,
keys (used in a commitment scheme and as input of longhash()) and other strong cryptographic
values, such as a commitment c and a decommitment d, have the same bit-length B and therefore
word-length W .

For simplicity, we only look at the Merkle-Damg̊ard construction based hash functions [30]
(i.e. block cipher based and customised functions such as SHA-1, MD5, or Davies-Meyer, Matyas-
Meyer-Oseas and Miyaguchi-Preneel) because they are provably secure given that a one-way and

12

Figure 2: The Merkle-Damg̊ard structure of conventional long-output cryptographic hash func-
tions. Here f() is a one-way and collision-resistant compression function, IV is some public initial
value, and the input message m is partitioned into multiple fixed-size blocks M0, ..., Mx, which are
processed sequentially.

collision-resistant compression function exists, and also this family of hash functions is widely used
in practice.

It is clear that the cost of computing the b-bit output hashb(m) whose design follows the
sequential Merkle-Damg̊ard structure as seen in Figure 2 increases linearly with the length of m,
i.e. the majority of customised cryptographic hash functions in the literature are computed by
calling a “compression” function f() once for every (512-bit) block in sequence.

It also seems clear from Figure 2 that the cost will increase at least linearly with the complexity
of the compression function f() which can be quantified by its output length b. Considering the
type of operation of the Merkle-Damg̊ard structure based hash functions reveals that it always has
an internal state whose bit-length is equal to or greater than the output bit-length. The internal
state is updated by linear or bitwise operators (e.g. Shifting, AND, OR, XOR and rotation) in
each loop of the algorithms to ensure that there is a computation between each message input
bit and each bit of the internal state, i.e. the strict avalanche criterion. This implies that the
computational cost is proportional to the size of the internal state, and a simple cost model of a
b-bit hash function, which we will adopt in this paper, might be:

Cost(hashb(m)) ≈ b × length(m)

Since well-known hash algorithms tend to be fixed width and vary significantly in their individual
costs, it is hard to be too definite about this rule. The computational cost model does not take into
account the number of clock cycles and implementation-specific (i.e. software or hardware), however
it does give an approximate comparison between the cost of computing long and (very) short output
functions, for example, cryptographic hash function versus digest function as can be illustrated in
Table 1. To illustrate the validity of this cost model in practice, one can consider a variable-
length hash function based on the idea of Key Derivation Function (KDF) or Mask Generation
Function. For example, given a 160-bit output hash function such as SHA-1 or MD5, we can use
the concatenation operator to construct a (160 × t)-bit hash function as follows: HASH(m) =
hash(1, m) ‖ hash(2, m) ‖ . . . ‖ hash(t, m). This of course clearly follows the above computational
cost model.

With respect to the cost of computing a digest function. As defined in Section 2.2.2, digest(,)
is a family of shorthash functions indexed by a key k. Even though the key bit-length might be sig-
nificantly longer than the hash output in several constructions of universal hash functions invented
to date [20, 21], it normally does not play any significant part in the computation. Consequently,
key length will not have a big impact on the computation cost. In fact the longer is the key, the

13

Cryptographic primitive Computation cost

longhash(INFO) or hash160(INFO) WM

longhash(k) or hash160(k) W 2

hash(INFO) or hash80(INFO) WM/2

shorthash(INFO) or hashb(INFO) M

digest(INFO) M

commit(INFO, R) WM

open(INFO, c, d) WM

Table 1: In the table, all calculations refer to the cost of computing functions that apply to either
a single INFO of M words or a key k of W words.

fewer the number of random bits we have to generate in our digest function constructions [32, 33, 36]
as well as universal hash function constructions of Krawczyk [20, 21], and subsequently the better.
Hence, we assume the cost model of a digest function or a universal hash function is similar to
a hash function, which is mainly dependent on the lengths of the input message and the digest
output.

A commitment scheme defined in Section 2.2.1 inputs a message of length K bits or ⌈K/w⌉ = M
words and a pair of nonces (R, R′) that add up to B = 160 bits or W words. Since the pair of nonces
play the same index role as key k in digest computation, we assume that a commitment scheme
takes M words as input. These are true in both operations used to calculate a commitment and
open/verify the commitment. We therefore conclude that the computational costs of computing and
verifying a commitment are equal to each other as well as being equal to the cost of computing hash
functions. The latter is true because commitment schemes are normally built from pseudorandom
functions such as hash functions [40]. In practice, a commitment scheme, such as the one introduced
in Section 2.2.1, takes both M -word messages and a 160-bit random nonce as its inputs, i.e. these
are concatenated before being inputted to a cryptographic hash function: longhash(INFO||R).
However, it has been noted that longhash(INFO||R) could be replaced by a universal hash function
keyed by R, i.e. hR(INFO), to reduce the input length, and therefore the computational cost. As
a result, to give a fair comparative analysis which is independent of implementation, we will stick
to the above assumption.

Table 1 summarises the computational cost of all cryptographic primitives introduced in this
section. While the table might suggest that the cost equal this product, what we are actually doing
is ignoring the multiplicative constant because all the computational costs come from the same
model.

Every protocol in this paper, except the first one in Section 5, only uses long or short hash
functions, commitment schemes and/or digest functions. For this reason, we shall apply the simple
model to compute the cost for each of them as we move along. In Section 6.1, all of the compu-
tational costs and human effort will be put into tables summarising the efficiency of each class of
protocols.

3 Non-interactive protocols

We examine some protocols attempting to transmit a, possibly very long, message from one party
to another efficiently in such a way that the origin and integrity of the message are authenticated.

14

These all use just one-way communication and authentication strings and help to illustrate the
power of authenticated empirical channels.

To set this work in context, recall the classic (non-interactive) signature mechanism which works
where there is a PKI. Here, a message INFOA of the sender A is accompanied by the signature
{longhash(INFOA)}sk(A). The receiver knows INFOA really is from A, since he can form the
cryptographic hash of INFOA and discover if it really was A who signed this value with her secret
key sk(A). Although the whole of such a message may be assumed to be sent over a standard
Dolev-Yao channel, there is in fact a closer tie-in with the subject matter of this section than there
might appear to be. For public key encryption and decryption are computationally expensive, there
is a strong incentive to keep the bandwidth of information transmitted under this form of cipher to
a minimum. We might therefore regard a signature as the combination of a large message INFOA

over an insecure channel with the smaller one longhash(INFOA) over an authenticated one.
Since in many cases the empirical channels are human mediated, the chief difference from this

view of signature will be that our empirical channels are much lower bandwidth.

3.1 Long authentication string over the empirical channel

The above analysis of the use of signatures shows they are closely analogous to the following one-
way authentication protocol devised by Balfanz et al. [3]. In this scheme, A wants to authenticate
its information INFOA to B. In the original protocol [3], there is no restriction on the order of
sending and receiving messages 1 and 2.

Balfanz et al. non-interactive protocol, [3]

1. A −→N B : A, INFOA

2. A −→WE B : longhash(A, INFOA)
B verifies the longhash.

Computational cost: WM = 5M

Balfanz et al. [3] did not specify the length of the hash function used. The main issue we have to
decide in analysing this protocol is whether INFOA might have been manipulated by an attacker.
This could be done, for example, by A accepting some piece of externally generated data, such
as images and videos, to include in INFOA. In several implementations, such as the specific one
anticipated by Balfanz et al. [3] where INFOA is simply the public key, this attack may be impos-
sible and here an B/2 = 80-bit hash function suffices. However, we wish to quote a protocol that
is secure in general and, following the below analysis taken from [27, 39, 53], we assume that the
hash length is B = 160 bits. When an intruder can influence some part of INFOA, the intruder
can (off-line) search for a different pair (INFOA, INFO′

A) both yielding the same hash value.
INFOA is then given to A in the information gathering stage, and the intruder sends INFO′

A to
B masquerading as A.

1. A −→N I(B) : A, INFOA

I(A) −→N B : A, INFO′
A

2. A −→WE B : longhash(A, INFOA)

However, this is something which deems infeasible as it must take about 2B/2 = 2160/2 = 280

computation steps on average to find such a cryptographic hash collision, due to the birthday para-
dox. What this implies is that even though the protocol is secure, it is not optimal in the human
work since B or 160 empirical bits only deliver 2B/2 = 280 security level.

As a result of a single longhash whose input and output lengths are M and W words, the
computation cost is of order WM = 5M , thanks to the cost model in Section 2.4.2.

15

In order to improve the number of authenticated bits, Pasini and Vaudenay [39] make use of a
probabilistic commitment scheme to commit to the authenticated information. We note that there
is no random nonce inputted into the commitment scheme used here, the commitment scheme
therefore has to generate a new long nonce (80 bits) every time the commit() function is called.
This is also the only time when an (B/2 = 80)-bit commitment scheme is used. For all other
employments of a commitment scheme, it is always (B = 160)-bit. The (B/2 = 80)-bit hash of the
commitment is then sent over the weak empirical channel.

Pasini-Vaudenay non-interactive protocol, [39]

1. A −→N B : c ‖ d = commit(A, INFOA)
B computes A ‖ INFOA = open(c, d)

2. A −→WE B : hash(c)
B verifies the hash.

Computational cost: MW/2 + W 2/4 = 2.5M + 6.25

Here the hash function is required to be second-preimage-resistant [30] (an intruder cannot find a
second value v′ such that hash(v) = hash(v′) for fixed v) as opposed to collision-resistance required
for the protocol of Balfanz et al. where both v and v′ are allowed to vary.

Pasini and Vaudenay [39] argue that this provides the same degree of authentication as the
Balfanz et al. protocol, namely 2B/2 = 280 computation steps, because the probabilistic commitment
scheme avoids the possibility of a birthday attack. At the point where A is influenced to use the
given INFOA, the intruder cannot know what a nondeterministic component (a hidden random
nonce of B/280 bits = W/2 words) that is injected by A into the commitment scheme will be,
which is vital in obtaining a collision. Binding the information by a commitment scheme has
the advantage of halving the number of empirical bits as well as halving the bit-length of the
commitment scheme due to the nondeterminism introduced. These together reduce the cost to
MW/2 + W 2/4 = 2.5M + 6.25.

More recently, Mashatan and Stinson [27] introduced another scheme which achieves the same
level of security with the same number of empirical bits as the Pasini-Vaudenay protocol but does
not require the use of a commitment scheme. Instead Mashatan and Stinson requires the use of a
hybrid-collision-resistant (80-bit) hash function as defined in [27]. In the following protocol, k is a
long random key of B/2 = 80 bits which is generated by A.

Mashatan-Stinson protocol [27]

1. A −→N B : INFOA ‖ k
2. A −→WE B : hash(INFOA ‖ k)

Computational cost: (M + W/2)W/2 = 2.5M + 6.25

Note that the random key k plays the same role as the non-deterministic component (also of
B/2=80 bits) injected by A into the commitment scheme used in the Pasini-Vaudenay protocol.
This therefore implies that both of these obtain the same level of security. The computational
cost of the Mashatan-Stinson protocol is (M + W/2)W/2 = 2.5M + 6.25, which is the same as the
Pasini-Vaudenay protocol. To the best of our knowledge, the above two protocols are currently
the best non-interactive schemes in terms of the number of empirical bits relative to the level of
security obtained.

The circumstances of non-interactive protocols bring the category of empirical channels →WE ,
as opposed to →E or →SE , into question. For unless the recipient knows (s)he is in a protocol
and confirms it by some explicit or implicit acknowledgement, how can we possibly state that an
empirical message designed for one protocol run cannot be used for a second one? It seems to us
that there are in fact three possibilities:

16

• There is, in fact, no bound on the life of a delayed empirical message. In this case an
intruder can block a succession for messages from A to B, with the chances of success of each
combinatorial search becoming greater as it has more and more empirical messages it can
unblock – as in the birthday attack.

It is clear that in any use of delayable empirical channels, one needs to be certain to ensure
that this type of storage and re-use cannot occur. The feedback in interactive protocols is
one, but in non-interactive channels it is a difficult question: we can avoid re-use through
sequence numbers, but if all but one messages are blocked there is no need for re-use for the
type of intruder strategy described above to work.

• There might be some mechanism which bounds the life of a delayed message. For exam-
ple, given sufficiently synchronised clocks, a time-stamp would produce a real bound on the
delayability of the message.

Alternately there might actually be some feedback mechanism not explicitly mentioned in
the protocol which tells A when her last empirical message has arrived. In the absence of
signature mechanism for B that A can trust (unlikely in the circumstances we are considering)
this feedback mechanism will probably have to be empirical.

• There may in fact be no significant delay possible: we actually have →SE . We discuss that
case below.

It seems fair to remark that since even 80 bits will seem tedious for most humans to compare
carefully, these one-way non-interactive protocols are not likely to find widespread use. Where it is
humans who actually need to do this work: they would need to have a high level of commitment and
possibly a well-designed user interface to ensure user compliance. For example, this is particularly
a difficult task when 20 hexadecimal-digits (or 80 bits) numbers which need to be compared by
humans attempting to set up a secure channels between some wearable sensors and laptops to
upload medical data only differ in one or two positions or digits.

3.2 Short authentication strings over strong empirical channels

Gehrmann, Mitchell and Nyberg [13] took a different approach to preventing combinatorial search.
They use empirical channels to transmit the b-bit output of a check function MACk() together
with a b-bit key that has been instrumental in its computation. As suggested in [13, 14], a check
function MACk() can be implemented by either CBC-MAC or universal hash functions based
on error correcting code, which is potentially less efficient than digest functions as discussed in
Section 2.2.2 and [33].

MANA I (Gehrmann, Mitchell and Nyberg), [13, 14, 15]

1a. A −→N B : A, INFOA

1b. B −→E A : 1-bit committed signal
A picks a b-bit random number k

2. A −→E B : k,MACk(A ‖ INFOA)

Computational cost: WM = 5M

The 1-bit committed signal, which can be implemented by a red line or a single button, is not a
primitive property of empirical channels. It presence in the MANA I protocol aims to signal A that
B has received Message 1 (which could be either original or fake). In the original description of
the MANA I protocol, the pair of parties additionally need to agree on the success of the protocol

17

with the help of some human interactions. Since this is not important with respect to the security
analysis, we ignore the step in our description of the protocol.

To eliminate 1-bit empirical signals in the MANA I protocol, Vaudenay proposes to use a
strong empirical channel (stall-free or instant delivery, and is denoted −→SE) to send the key and
the check-value. Alternatively, we can replace the strong empirical channel with a bounded delay
empirical one (−→t

BE), provided B checks that he has received Message 1 before Message 2 could
have been sent. And thus 2b bits are transmitted in all. This idea turns the protocol into a non-
interactive scheme. In the following description, we will modify the scheme slightly by using a
digest function to compute the check-value. The rest of this analysis applies to both versions.

The V-MANA I protocol, [53, 39]∗

1. A −→N B : A, INFOA

A picks a b-bit random number k
2. A −→SE B : k, digest(k, A ‖ INFOA)

B verifies the digest.

Computational cost: M

Binding INFOA (M words) directly to the SAS makes the protocol efficient because each node
computes a single digest at a cost of M : much cheaper than a long output hash function in
the protocol of Balfanz et al. (5M) and a commitment scheme in the Pasini-Vaudenay protocol
(2.5M +6.25). We note that this measurement only applies to the modified version of the V-MANA
I protocol, where the digest function is used as opposed to CBC-MAC or longhash functions. The
latter if used would rise the cost to MW = 5M as in the MANA I protocol.

The protocol demonstrates that the use of the strong empirical channel, providing stall-free
transmission, will lead to a significant fewer number of empirical bits in non-interactive schemes.
Since the uniform distribution property of the digest function makes it impossible for the intruder
to look for an INFOI digesting to the same value as INFOA in ignorance of k, this protocol comes
close to preventing the intruder from performing any useful combinatorial search.

We note however that the protocol is suboptimal in human work relative to the level of security
obtained. Any one can modify INFOA blindly in the first message and hope that the b-bit digests
come out the same in the second one. This will occur with a probability of at least 2−b irrespective
of the value of the key, which means that 2b empirical bits only guarantee at best a 2b security
level.

Whilst the security proofs of this protocol given in [13, 15, 39] are largely correct, what these
authors have not discovered is that the bit-length they choose for the key (which happens to equal b
in this case) is too short compared to the digest output and the authenticated information INFOA.
As a consequence, it is impossible to construct a digest, MAC or check-value function such that the
probability of any one-shot attack on the protocol is upper bounded by 2−b. Since the weakness has
a very profound impact on all other uses of the digest function, we are going to analyse the (off-line)
computation complexity and its related probability of a successful one-shot attack on this protocol.
We then deduce a longer key is required in order for the digest function to meet its specification.

We term b and r the bit-lengths of the digest output and the key k (in this protocol, b = r = 16
bits). The intruder first chooses some number c different keys {k1, · · · , kc}. Using an off-line brute
force search at the cost of 2bc/2 computation steps he can expect to find two different INFOA and
INFO′

A,5 such that:

∀k ∈ {k1, · · · , kc} : digest(k, A ‖ INFOA) = digest(k, A ‖ INFO′
A)

5It might be clearer if we define H{k1,···,kc}(X) = digest(k1, X) ‖ · · · ‖ digest(kc, X), and if digest is an ideal
digest function, then so is the function H with respect to its c× b output-bits. As there is no limit on the bit-length
of the input X, it normally takes 2cb/2 computation steps to search for a collision, due to the birthday paradox.

18

Assuming that the intruder can influence INFOA that A sends in the first message (i.e. chosen
plain-text attacks), there is then an attack it can attempt.

1. A −→N I(B) : A, INFOA

I(A) −→N B : A, INFO′
A

2. A −→SE B : k, digest(k, A ‖ INFOA)

Recall that in the above protocol, the key length r and digest length b are equal. The following
calculations, where these numbers are kept separate, will allow us to draw more general conclusions.

After sending the first message, A picks a random key k: with probability c
2r , k ∈ {k1, · · · , kc}

and the attack is successful. On the other hand, with probability (2r − c)/2r, k is not in this set
and the attack is only successful with probability (presumably) 2−b(2r − c)/2r.

Overall, at the cost of Θ(2cb/2) the chance of a successful one-shot attack is:

Prr(c) = c × 2−r +
2r − c

2r
× 2−b

When r = b, this is significantly larger than the desired probability of 2−b.
The above vulnerability indicates we need to increase the bit-length r of the key to avoid this

type of attack. When r increases, 2r will quickly become significantly bigger than 2b and this will
allow the likelihood of a successful one-shot attack –Prr(c) – to converge to 2−b. This is however not
feasible in this protocol, since the key must be sent with the digest value over the strong empirical
channel that is severely limited in bandwidth.

An interesting question arises as we want to know how large the bit-length of the key should be
in relation to a fixed amount of information we want to authenticate and the output bit-length of
the digest function. There is a known theoretical bound of Stinson [49] on the bit-length of the key
that can guarantee the digest function (or almost universal hash function) meets its specification:
bit-length(k) ≥ bit-length(INFOA) − b. We should remark that the bound can be met except for
an infinitesimal tolerance in the digest collision probability ǫ for very much smaller lengths than
this, see [34]. However, it always has to be significantly longer than b in practice.

This suggests that we should aim always to have key k noticeably longer than the digest in this
style of protocol. Of course to do this without ruining efficiency in human effort, we need to find
ways of communicating k over a high bandwidth (and insecure) communication link −→N rather
than empirically.

3.3 Improved version of the (V-)MANA I protocol

Given two weaknesses discussed in the previous section, we will present improved versions of the
V-MANA I protocol that optimise the use of the expensive strong empirical channel. These im-
provements can also apply to the MANA I protocol. In other words, human comparison/handling
of a b-bit short authentication string (SAS) always corresponds to probability 2−b of a successful
one-shot attack. Whilst this can only be done at the expense of introducing another (third) message
sent over the Dolev-Yao channel we argue that this is not at all a bad trade-off since our highest
priority is to minimise the empirical cost.

In contrast to the V-MANA I protocol, the key k generated by A in the following protocol can
be as long as we want to ensure that the digest function meets the specification in Section 2.2.2.
In addition, we can weaken the assumption that empirical messages’ transmission is instantaneous
to being of bounded delay as follows.

19

Improved version of the V-MANA I protocol (direct binding) [35]

1. A −→N B : M, longhash(k)
2. A −→t

BE B : digest(k, M)
3. A −→N B : k

Computational cost: M + W 2 = M + 25

Note that the message order here, and in other improved schemes of the V-MANA I protocol, is
more important than in all preceding protocols in this section. We specify that

• To ensure that B was committed without knowledge to key k when Message 2 was sent, B
only accepts Message 2 after t time units or more of receiving Message 1.

• To ensure that B was committed to Message 2 when Message 3 was sent, A only sends
Message 3 after t time units or more of sending Message 2.

Failure to follow these two principles in the implementation of the protocol, each of which uses the
time bound on the empirical channel, can result in attacks that involve combinatorial searching.

Interestingly, we can replace the bounded delay empirical channel and the need to wait by a
simple acknowledgement from B to A. The resulting protocol turns out to be the pairwise (one-way
authentication) version of the HCBK protocol of Section 5 and [41].

Improved version of the MANA I protocol (direct binding) [41, 32, 33, 35]

1a. A −→N B : M, longhash(k)
1b. B −→E A : 1-bit committed signal
2. A −→E B : digest(k, M)
3. A −→N B : k

Computational cost: M + W 2 = M + 25

This scheme is flexible since the digest and key (messages 2 and 3) can be released in any order as
long as A has received the commitment signal from B in the first message. It will often be the case
that a bounded delay empirical channel and a one-bit acknowledgement signal are alternatives in
this style of protocol design/structure.

Since the SAS in these schemes are functionally dependent on the authentic information M ,
we term these as the direct binding version of the Improved (V-)MANA I protocol, i.e. direct
information binding strategy will be formally defined in Section 4. However, the computation cost
is slightly increased to W 2 + M = 25 + M due to the extra longhash required in the first message.

Readers who are interested in the formal security proof as well as variants using indirect binding
and Diffie-Hellman style can find them in Appendix C or [34].

4 Interactive protocols

To authenticate a one-way message, it is obviously convenient to have a non-interactive protocol.
We might observe that such a protocol in which the two human participants have to be active at
the same time to implement a strong empirical channel (non-delayable) is less attractive: it must
be seen as a long way along the road to being interactive.

Interactive protocols, where all parties contribute communications, have two clear advantages
of their own. Firstly they can exchange messages without running the protocol multiple times.
Secondly, as we shall see, the interaction makes it easier to reduce the number of bits that have to
be passed empirically as well as the amount of computation power required at each node.

We show the significance of the idea of joint commitment before knowledge, introduced in Sec-
tion 2.2.1, in providing the same level of security for all protocols presented in this section, i.e. the

20

probability of a successful one-shot attack is upper bounded by 2−b, where b is the bit-length of the
SASs. For this reason, in all pairwise schemes (except the protocols of Hoepman and Wong-Stajano
of Section 4.1), the value of the unique SAS is jointly committed to by both protocol participants.
This therefore leads us to introduce the two following information binding strategies that help us
achieve (joint) commitment before knowledge as well as classifying the many protocols considered
in this survey.

• Indirect information binding: A protocol using a SAS is said to achieve indirect informa-
tion binding if the SAS, jointly committed by every node, is independent of the information
INFOS parties want to authenticate.

Typically, to construct indirect binding protocols considered in this paper, the SAS is the
exclusive-or of random nonces to which every party has been individually committed at the
beginning of each protocol run. In addition, these random nonces are also cryptographically
bound to INFOS.

• Direct information binding: A protocol using a SAS is said to achieve direct information
binding if the SAS, jointly committed by every node, is dependent on the information INFOS
parties want to authenticate.

Typically, to construct direct binding protocols considered in this paper, the SAS is the output
of some function applying to INFOS in combination with secret keys individually committed
to by every party at the beginning of a run. This binding strategy is also closely related to
two protocol design principles P1 and P2 introduced later in this survey.

When we study the two strategies in sections 4.2 and 4.3, we find that a direct binding strategy
has a clear advantage in efficiency over an indirect one. This arises from the potential to use a
short output digest function to process the large INFOS as opposed to a conventional long output
cryptographic hash functions. The computational efficiency pay-off of direct binding strategy will
be illustrated each time a protocol with direct binding is introduced, i.e. we will compare its
efficiency explicitly with previous related protocols using indirect binding. The advantage will be
demonstrated clearly when the cost of all schemes are gathered in three tables in Section 6.1.

4.1 Multiple empirical short authentication strings

We intend to describe two pairwise authentication protocols, the first by Hoepman [17, 18] and
the second by Wong and Stajano [56, 57], in this subsection. In these schemes, parties manually
compare or handle two different short authentication strings (SASs) each of b = 16 bits, so 2b =
32 bits in all. We point out an important difference in how these two protocols process INFOS.

Hoepman [18] defines SASs as the outputs of a b-bit (short) hash function shorthash(), as
mentioned in Section 2.2.2. In addition, the Diffie-Hellman tokens gxA/B play the role of both
INFOA/B and long fresh random nonces, and so must be unpredictable and fresh at each session.

21

Hoepman pairwise protocol, [18]

1. A −→N B : longhash(gxA)
1′. B −→N A : longhash(gxB)

Where xY is a long random nonce of Y
2. A −→E B : shorthash(gxA)
2′. B −→E A : shorthash(gxB)
3. A −→N B : gxA

3′. B −→N A : gxB

A and B verify the long and short hashes.
A and B then share the key k = gxAxB

4. A −→N B : longhash(gxAxB)
4′. B −→N A : longhash(gxBxA)

Computational cost: 2(WM + M) = 12M

This protocol offers a good security, i.e. the probability of a successful one-shot attack is bounded
by 2−b, despite the use of b-bit shorthash functions can be explained through the idea of joint
commitment before knowledge: both parties are jointly committed to gxAxB by publishing their
shares of the commitment (i.e. longhash(gxA/B)) in the first messages. It is therefore vital here
that both parties must agree on when to finish inputting the first messages. Once the commitment
phase is over, messages 2, 2’ and 3, 3’ can be sent out in any order without compromising the
security. We will see an example of what goes wrong without (joint) commitment before knowledge
at the start of Section 5.1, which discusses group protocols.6

Since the Diffie-Hellman tokens are the only information parties want to authenticate in this
scheme, we can consider them as INFOA/B whose lengths are therefore M words. Since messages
4 provide shared secret validation (using longhash() function in this case), they can be neglected
in our cost analysis. As a result, each node has to compute 2 longhashes and 2 shorthashes of
Diffie-Hellman tokens. Using our cost model of computing hash functions given in Section 2.4.2,
the computation cost of the Hoepman protocol is of order 2(WM + M) = 12M , where W and 1
are the word-lengths of long and respectively short hash functions.

Taking a different approach, Wong and Stajano [56, 57] propose another scheme which does
not use a shorthash function, but does give the same security as in the Hoepman protocol with an
equal number of empirical bits. The simplification comes with an extra cost of more than doubling
the input size of the longhash() function used in the commitment phase. This is the consequence
of the inclusion of short and long nonces (RY and KY) of b and B − b bits, respectively.

6Hoepman [17] introduced a modified (pairwise) version of the above scheme in which each party can receive
multiple longhashes or commitments from unknown nodes at the very beginning of a run. But (s)he only pairs up
with the one, who provides the matched single shorthash shorthash(X) sent over the empirical channel in the second
message. In this circumstance, A only sends out the shorthash iff he receives the 1-bit commitment empirical signal
from B at the first place and vice versa. Furthermore, these acknowledgement signals must be transmitted over the
empirical channel because they must not be blocked or delayed by the intruder. In this version, A does not need to
know the identity of B during messages 1, so Hoepman refers to it as the anonymous case, whereas the protocol
above applies to the non-anonymous case.

22

Wong-Stajano pairwise protocol, [56]

1. A −→N B : gxA

1′. B −→N A : gxB

2. A −→N B : longhash(A, gxA , gxB , RA, KA)
2′. B −→N A : longhash(B, gxB , gxA , RB, KB)

RY and KY are short and long random nonces of Y
3. A −→E B : RA

3′. B −→E A : RB

4. A −→N B : KA

4′. B −→N A : KB

A and B verify the longhashes.

Computational cost: 2W (2M + W) = 20M + 50

The security of this protocol comes from the intruder’s inability to invert the longhashes, or to
predict the non-determinism introduced by the pair of nonces (RX , KX) at the point when these
are committed to. As in the Hoepman protocol, both parties must receive each others’ commitments
(i.e. longhash) before they reveal their long and short nonces in the third and fourth messages. Once
the commitment phase (sending out the longhashes) is over, messages 3, 3’ and 4, 4’ can also be
transmitted in any order.

With respect to computation cost, while there is no shorthash function, the two longhashes
(with long inputs) that need to be computed at each node result in a significantly larger cost of
2W (2M + W) = 20M + 50 relative to 12M of the Hoepman protocol.

We now make two observations about the structure of this protocol. The high cost of computing
longhash (due to a long input 〈A, gxA , gxB , RA, KA〉 : 2M + W words) can be improved slightly,
as it is sufficient for A to bind gxA to the pair of random nonces (RA, KA). This leads to the
elimination of messages 1 and 2, and indeed the same problem has been independently found and
corrected by the inventors in their revised version of the paper, published in October 2007 [57].
However, they have not noticed that the Diffie-Hellman tokens (gxA and gxB) can play the dual
role of the authentic information and fresh nonces if they are made unpredictable and fresh in each
session. For this reason, we can further eliminate the need for long random nonces KA/B to simplify
the protocol further. A detailed description of our modified version of the protocol will be given in
Section 4.2.

Moreover both the protocols of Hoepman and Wong-Stajano are suboptimal in the amount of
work required by the humans implementing the empirical channel, since they need to compare more
than one string, whereas the same security level, i.e. the same probability of a successful attack,
can be obtained in several ways by them comparing or sending a single SAS of the same length
over the empirical channel. This weakness introduces another major disadvantage. If we want to
generalise these protocols into multi-party versions then the number of different SASs (each party
has to compare or handle manually) would always equal the total number of nodes: an unattractive
prospect for the humans involved!

We end this section with a crucial observation: Hoepman chooses to bind Diffie-Hellman tokens
directly to the SASs. This is not the case in the Wong-Stajano protocol, which is therefore more
expensive in computational cost than the Hoepman protocol. By this we mean that the INFOs
they are trying to authenticate are used directly in the evaluation of the empirically compared
strings in the Hoepman protocol, while those compared in the Wong-Stajano protocol are not.
These two different strategies are termed direct and indirect bindings, and we will explore and
compare them in detail when we study protocols that can optimise human effort in the sections to
come.

23

4.2 Indirect binding

In indirect binding protocols, the SASs, which are jointly committed to and manually communicated
by parties, are functionally independent of the information they want to authenticate. This is the
idea we have briefly seen in the Wong-Stajano protocol, and it appears in many other schemes in
the literature [2, 6, 22, 23, 38, 53, 56, 57]. We will analyse these here. What distinguishes all of
these from the Wong-Stajano protocol is a single SAS which is required to be compared over the
empirical channel as opposed to multiple ones.

While there is no relation between the compared SAS and the authentic information INFO (i.e.
they are completely independent in the sense of probability), the security of the protocols comes
from some mechanism binding some random nonces, which are instrumental in the computation of
SASs, and INFOS together in a secure way. Thus there is a tendency to use commitment schemes
(described in Section 2.2.1) in these protocols to obtain that binding.

4.2.1 Indirect pairwise

We will discuss protocols covering two different circumstances in bootstrapping security. These
were devised by Vaudenay [53] and Čagalj et al. [6] to establish one- and two-way authentication
via one- and two-way empirical channels in a peer-to-peer network. We will extend their schemes
into group versions in Section 5.2.

The following is the description of a pairwise scheme, invented by Vaudenay [53], that authen-
ticates a single message INFOA from the party A to B using a one-way weak empirical channel.

Vaudenay pairwise one-way authentication protocol, [53]

1. A −→N B : INFOA, c
Where c ‖ d = commit(INFOA, RA),
RA is a short random nonce of A.

2. B −→N A : RB

3. A −→N B : d
B computes RA = open(INFOA, c, d)

4. A −→WE B : RA ⊕ RB

B verifies the correctness of RA ⊕ RB

Computational cost: MW = 5M

The protocol delivers the guarantee of authenticity of INFOA, and even with a single b-bit SAS the
probability of a successful one-shot attack is still bounded above by 2−b. This is the consequence
of:

• The exchange guarantees the value for RA, that B has discovered by using the partial function
open(), is the one that A intended.

• The commitment scheme (commit()) has strongly bound the message INFOA to RA at a
point where RA is itself unknown to any attacker.

The above analysis applies to a one-shot attack. If we consider a q-shot attack then we need to take
into account that the unique SAS of this protocol is transmitted over the weak empirical channel,
and so can be stalled and delayed in other protocol runs. With q concurrent runs of A and B,
the number of protocol sessions from the intruder’s view will become q2. Thus, the chance of a
successful q-shot attack is upper bounded by q2/2b as pointed out by Vaudenay [53]. We however
argue that the origin of data transmitted over weak empirical channels cannot be forged, and to take
advantage of the delayability of SASs the intruder will have to launch attacks on multiple instances

24

of the same party A who is responsible for delivering the SASs. The above security analysis is
therefore only valid with a small value of q because humans are highly sensitive to delays, i.e. they
will quickly become aware that an attack is taking place, and so stop any attempt of running the
protocol again as pointed out in Section 2.3. In contrast, if we replace −→WE with −→E then a
SAS cannot be delayed from one to later runs, and so to have a fair chance of a successful attack,
the intruder needs to run 2b concurrent runs of (perhaps different) pair of parties: an 2b-shot attack.

There is a single commitment used (committed by A, and decommitted or opened by B),
hence the computing cost at each node is of order MW = 5M . Here both a commitment c and
a decommitment d have the same length of W words. We note that the cost of XORing two
short random nonces RA and RB is small compared to implementing the commitment scheme, and
therefore is neglected.

Although Vaudenay’s scheme halves the amount empirical communication relative to the proto-
cols of Hoepman and Wong-Stajano, it only provides one-way authentication representing one role
of pairwise schemes in this paper. In practice, we often want to achieve more than this, and that
is why we now consider another protocol performing message authentication in both directions at
the same time. Suppose B has some INFOB and wants to have it authenticated to A, then the
natural way to tackle this problem is to make B commit to its information as done by party A.
This idea, proposed by Vaudenay in Appendix A of [53], fortunately makes the protocol structure
completely symmetrical. It is essentially the same as another protocol which is termed DH-SC and
invented by Čagalj, Čapkun and Hubaux [6].

Čagalj-Čapkun-Hubaux two-way authentication protocol, [6]

1. A −→N B : INFOA, cA

1′. B −→N A : INFOB, cB

Where cY ‖ dY = commit(Y, INFOY , RY),
RY is a short random nonce of Y.

2. A −→N B : dA

2′. B −→N A : dB

Y ′ computes RY = open(Y, INFOY , cY , dY)
3. A ←→E B : RA ⊕ RB

Computational cost: 2WM = 10M

Both of the above protocols use the joint commitment before knowledge principle to precommit two
parties to the XOR of some random short secrets or nonces. This is achieved by parties outputting
their shares of the commitment (of their own random nonces or keys) to each other in the first
messages.

This scheme can be regarded as an upgraded version of the Wong-Stajano protocol of Section 4.1
in two ways. Firstly, the two initial messages in Wong-Stajano have been successfully eliminated.
This is based on the ground that each node A only needs to commit to its INFOA at the beginning,
so he has not to acquire INFOB at the time of computing the commitment. Secondly, the order of
releasing the SAS and the decommitments has been reversed relative to the Wong-Stajano protocol,
because the SAS and the decommitments here correspond to the two different short nonces and
the long nonces in the Wong-Stajano protocol, respectively. As a consequence, parties only need to
manually compare a single SAS, which is the XOR of short nonces RA and RB implicitly derived
from the decommitments.

Regarding computation cost, the two commitments involved in this scheme double the cost
of the protocol of Vaudenay, i.e. it is now 2WM = 10M . On the other hand, if we quantify
the cost relative to the amount of information authenticated then the protocols of Vaudenay and
Čagalj-Čapkun-Hubaux will equal each other. The result illustrates the gain in efficiency of these

25

in comparison with the protocols of Hoepman and Wong-Stajano of Section 4.1.
It is interesting to note that the same technique can be used to improve the human and pro-

cessing cost of the Wong-Stajano protocol. The idea of eliminating the first two messages carrying
gxA/B , removing the long random nonces as well as reducing the number of different SASs to a
single one of b bits in the Wong-Stajano protocol can be demonstrated by our revised scheme. The
scheme achieves the same level of security as the Wong-Stajano protocol of Section 4.1, i.e. the
probability of a successful one-shot attack is bounded by 2−b.

Improved version of the Wong-Stajano protocol New

1. A −→N B : longhash(A, gxA , RA)
1′. B −→N A : longhash(B, gxB , RB)
2. A −→N B : RA||g

xA

2′. B −→N A : RB||g
xB

3. A ←→E B : RA ⊕ RB

Computational cost: 2W (1 + M) = 10M + 10
Since there are two longhashes each node has to compute, the computation cost of this scheme is
2W (1+M) = 10M +10 which is less than a half of the original Wong-Stajano protocol (20M +50).

Another advantage of the protocols of Čagalj-Čapkun-Hubaux and Improved Wong-Stajano is
that the symmetrical structure and a single SAS subsequently led us to realise the possibility of
generalising it into a group version, as described in Section 5.2.

4.2.2 Hybrid protocol

Prior to discussing direct binding protocols, we describe an important scheme bridging the gap
between the two strategies both in terms of protocol structure and computational cost. Pasini and
Vaudenay [38] propose a two-way authentication protocol using the idea of Vaudenay’s one-way
scheme in Section 4.2.1. They make use of a truncated hash function that we have improved to a
digest function and a symmetric empirical channel.

Pasini-Vaudenay two-way authentication protocol, [38]∗

1. A −→N B : INFOA, c
Where c ‖ d = commit(INFOA, kA)
kA is a long random nonce of A

2. B −→N A : INFOB, RB

Where RB is a b-bit random nonce of B.
3. A −→N B : d

B computes kA = open(INFOA, c, d)
4. A ←→E B : RB ⊕ digest(kA, INFOB)

Computational cost: WM + M = 6M

Though the SAS = RB⊕digest(kA, INFOB) depends functionally on INFOB, it is probabilistically
independent of INFOA. This observation makes the scheme stand as a hybrid of direct- and
indirect-binding protocols. Interestingly, the hybrid strategy is also reflected by the differences in
the bit-lengths and the functionality of the two random nonces: RB and kA. RB is protected by
the structure of the protocol from guessing attacks and so can be short, whereas kA is not and so
has to be long; the two influence the final empirical string in different ways.

There is no need to use a commitment scheme to bind INFOB to RB, so each node needs
to compute a digest and either a commitment or a decommitment. The processing cost drops to
WM + M = 6M , thanks to the efficiency of a digest function,7 which is significantly cheaper than

7There should have been no improvement (WM + WM = 10M), if we had not switched to the use of digest

26

the Čagalj-Čapkun-Hubaux protocol (10M) which is the fully indirect binding scheme.

4.3 Direct binding pairwise protocols

The direct binding approach requires the SAS, to which every party is jointly committed without
knowledge, to be dependent on the information they want to authenticate. The Hoepman protocol
that we have already studied falls into this category, but is not optimal in the human work. In this
section and later ones we will discuss a number of other pairwise and respectively group protocols
which are optimal in this respect. It should be noted, however, that any group protocol can be
used to create a group of size 2, and, as we shall see, do so as efficiently as the ones in the present
section.

Direct binding has been shown in two different situations to have an advantage in computation
cost over indirect binding: Hoepman (direct) versus Wong-Stajano, and Pasini-Vaudenay (half
direct or hybrid) versus Čagalj-Čapkun-Hubaux.

Our first task is to formalise the direct binding approach by using the following principle P1 [32,
33].

P1 [32, 33] All the parties intended to be part of a protocol run should agree over an empirical
channel on a short-output hash or digest of all the information that the parties want to
authenticate. This method maximises the security of the authentication for a given amount
of work on the empirical channel, and it leads to protocols that are as efficient computationally
as any alternatives, and frequently considerably more efficient.

In all the protocols we consider, “all the information that the parties want to authenticate” is
identified with INFOS which is the concatenation of N pairs of the form (A, INFOA). Once the
agreement required in P1 has occurred, unless there is a hash or digest anomaly – different nodes
in the group computing the same hash value or digest from different antecedents – clearly all the
parties agree on all the data transmitted during the protocol.

In this section, a number of protocols providing mutual authentication are presented in an
ascending order of computation efficiency and simplicity in protocol design. In addition to the
common use of the direct binding strategy to obtain joint commitment before knowledge, they are all
asymmetrical in structure, which is similar to the one-way authentication protocol of Vaudenay [53]
in Section 4.2.1.

Unlike indirect binding schemes, parties need to generate fresh long random nonces or sub-keys,
which have enough entropy to prevent them from being subject to a combinatorial search, i.e. it is
possible to regard these long fresh sub-keys as the extended versions of short random nonces used
in commitment schemes in indirect binding protocols. On the other hand, the security analysis of
the direct binding schemes is similar to indirect binding ones provided the digest function is ideal,
as specified in Section 2.2.2. In every case, the protocols have the same security (i.e. the probability
of a successful one-shot attack is bounded by 2−b) because nodes (and hence the intruder) do not
know the final value of the digest key k until they are committed to the final value of the digest,
truncated hash or universal hash output, thanks to the joint commitment before knowledge idea
that provides a common theme to this family of protocols.

Since the roles of the sub-keys and INFOS are different in digest computation, we will analyse
how sub-keys are combined into a single digest key as we move along.

The following protocol is taken from the Bluetooth whitepaper [2], where kA and kB are long
fresh sub-keys generated by A and B, and truncb() takes the first b bits of its input.

function.

27

Bluetooth 2, [2]

1. A −→N B : INFOA

1′. B −→N A : INFOB

2. B −→N A : longhash(INFOS, kB)
3. A −→N B : kA

3′. B −→N A : kB

kY is a long fresh key of Y
4. A ←→E B : truncb(longhash(f(kA, kB, INFOS)))

Computational cost: W (2M + W) + 2W (M + W) = 20M + 75

In this protocol, the sub-keys of A and B are concatenated with INFOS: f(kA, kB, INFOS) =
kA ‖ kB ‖ INFOS. Since the operator is not commutative, parties have to arrange the sub-keys
in the same order in which the distinct (A, INFOA)s are concatenated into a single INFOS.

The inefficiency in using a truncated hash function will increase the computation cost of the
above “Bluetooth 2” to W (2M +W)+2W (M +W) = 20M +75 as opposed to W (2M +W)+2M =
12M + 25 should we employ a digest function and XOR to combine sub-keys. Unfortunately, the
latter will still be more expensive than the related protocols using indirect binding (the Čagalj-
Čapkun-Hubaux protocol: 10M , and Pasini-Vaudenay: 6M) and the two following schemes, as it
is redundant to bind INFOS and sub-keys together by using both longhash function in Message 2
and in the SAS. Either of them would be sufficient for the obtained security.

Removing this unnecessary binding in Message 2 of Bluetooth 2 can increase its computational
efficiency as well as simplicity (eliminating messages 1 and 1’), since B does not need to know
INFOA (and INFOS) at the point when he is committed to kB. This is what was proposed by
Laur and Nyberg [22, 23]:

Laur-Nyberg protocol pairwise protocol, [22, 23]

1. A −→N B : INFOA, c
Where c ‖ d = commit(kA)

2. B −→N A : INFOB, kB

3. A −→N B : d
B computes kA = open(c, d)

4. A ←→E B : hk∗(INFOS)
Here k∗ = g(kA, kB)

Computational cost: 2WM = 10M

Here hk∗() is a universal hash function [49] of the appropriate length, i.e. b-bit in this case, whose
specification is closely related to a digest function. The impact of removing redundancy can be
seen in the decline of the computation cost of this protocol: W 2 + 2WM = 25 + 10M , which can
be improved further because the Laur-Nyberg protocol has not exploited the short bit-length of
SAS to increase efficiency. In this cost computation, we choose to ignore the cost of computing
g() to combine sub-keys in this calculation, since it is negligible relative to the computation of a
universal hash function, which involves applying a cryptographic hash function to the 2M -word
input message INFOS in the first place, as specified by Laur and Nyberg [22, 23], which results
in a cost of order 2WM = 10M .

Unlike Bluetooth 2, Laur and Nyberg use a different function k∗ = g(kA, kB) = (k1
A · kB) ⊕ k2

A,
using (polynomial) multiplication over a finite field GF(2r/2) to combine sub-keys. Here k1

A and k2
A

are the first and second halves of kA. Not only is this method expensive with long keys compared
to concatenation and exclusive-or as we are going to propose, but also the parties need to agree on
an irreducible polynomial of order r/2 prior to each session.

28

We observe that it would be equally satisfactory to use the combination of kA⊕kB and a digest
function in place of hk∗(INFOS), resulting in an improvement of computational cost (W 2 +2M =
25+2M) which is approximately 5 times cheaper than the Čagalj-Čapkun-Hubaux protocol (10M ,
the related protocol using indirect binding) should M get large. This clearly demonstrates the
advantage in efficiency of direct binding protocols over indirect binding ones.

After this transformation and a replacement of a commit scheme with a longhash, the protocol
becomes similar to the following, which also has the same cost of order 25+2M . This was discovered
independently by the author in the summer of 2006 when we combined ideas used in our SHCBK
protocol (see Section 5.1) and Vaudenay’s protocols (see Section 4.2.1).

Pairwise authentication scheme in Vaudenay’s style New

1.A −→N B : INFOA, longhash(kA)
2.B −→N A : INFOB, kB

3.A −→N B : kA

4.A ←→E B : digest(kA ⊕ kB, INFOS)

Computational cost: W 2 + 2M = 2M + 25

We subsequently discovered that the same ideas could be used to devise a more efficient version of
the Hoepman protocol, which halves (and optimises) the amount of human work while achieving
the same level of security, i.e. the probability of a successful one-shot attack is bounded by 2−b:

Improved Hoepman protocol New

1.A −→N B : longhash(A, gxA)
2.B −→N A : gxB

3.A −→N B : gxA

4.A ←→E B : shorthash(gxA ⊕ gxB)

Computational cost: WM + M = 6M

The main difference between this and the previous schemes is that there is no INFOA/B because the
Diffie-Hellman tokens play the dual-role of both INFOA/B and the long secret keys. In order for the
protocol to be secure, the Diffie-Hellman tokens must be fresh at each session and unpredictable.8

Also because of this, the digest function (an 2-input function) can be replaced by a single input
shorthash function shorthash(); though the combination of this and the exponentiation of Diffie-
Hellman needs to satisfy a specification similar to that of the digest function and the randomising
effect of XOR in combining digest sub-keys.

In comparison with the Hoepman protocol, this requires a single SAS halving the human work.
As in previous protocols, the computation of one longhash and one short hash of Diffie-Hellman
tokens results in a cost of WM +M = 6M : exactly a half of the Hoepman protocol (direct binding,
12M) and significantly lower than the improved version of Wong-Stajano protocol (the related
protocol using indirect binding, 10M + 10) of Section 4.2.1.

It is worth thinking for a moment about how a two-way agreement of a short string or similar
occurs between a pair of people over an empirical channel. There are likely to be few situations
where the string needs to be communicated both ways: all that is necessary is for one party to
communicate it to the other, who checks equality with the data displayed on her machine and then
tells the first of the agreement, i.e. sending a 1-bit committed signal over the empirical channel.
We might therefore structure the above protocol as follows.

8It is possible but not necessary to replace gxA ⊕ gxB with gxAxB in this scheme.

29

Improved Hoepman′ protocol
(One-way empirical channels)

1.A −→N B : longhash(A, gxA)
2.B −→N A : gxB

3.A −→N B : gxA

4.A −→E B : shorthash(gxA ⊕ gxB)
5.B −→E A : 1-bit committed signal

Computational cost: WM + M = 6M
And we could re-structure just about all the protocols in this paper similarly.

Once A has received Message 2 from B, he can send messages 3 and 4 in any order.
Wong and Stajano [57] give a protocol using this separated structure explicitly; it is however

more expensive at W (2M + 1) = 10M + 5 as well as requiring another 1-bit empirical signal in
Message 3:

Wong-Stajano protocol (One-way empirical channel), [57]

1.A −→N B : gxA

2.B −→N A : B, gxB , MACKB
(B, gxA , gxB , RB)

RB and KB are short and long random nonces of B
3.A −→E B : 1-bit committed signal
4.B −→E A : RB

5.B −→N A : KB

6.A −→E B : 1-bit committed signal

Computational cost: W (2M + 1) = 10M + 5
The order of messages 4 and 5 can be interchanged in this protocol. The pair of messages 4 and
6 results in symmetric agreement on RB: in fact they are just an implementation of “A ←→E B :
RB”.

It seems unlikely that the computation cost of the cheapest of these protocols can be reduced
much further. It also seems clear that some sort of cryptographic binding of INFOS to the
empirical message is necessary, and our assumed model of the digest function appears to be a
lower bound on that as we want to bind the whole of INFOS. Similarly, it is clear that for the
joint commitment before knowledge approach to work, we need to have a token randomising the
SAS value and being committed to before any node knows it. This has to be done with strong
cryptography, and the hash function used in, for example, the Laur-Nyberg protocol appears to be
as efficient as possible at doing this.

Another observation we want to make is that in the above protocols the use of a strong crypto-
graphic primitive, such as a hash function or a commitment scheme, to protect the secrecy of long
random nonces or keys, and in the meantime a much shorter (and therefore weaker) function to
digest large INFOS clearly aims to block combinatorial search and guess attacks separately. This
idea is called separation of security concerns as discussed in [35].

5 Group protocols

The majority of work done in bootstrapping security in pervasive computing to date has focused
on pairwise applications in a peer-to-peer network. However, we believe there is a similar potential
for bootstrapping security in larger groups as can be shown by the following example. A group of
people, who are present in the same location, might want to transfer data between them securely,
meaning that they want it to be secret and of authenticated origin. They all have some pieces of
computing hardware (e.g. a mobile phone or a PDA). However, none of them knows the unique

30

name of any of the others’ equipment, and in any case there is no PKI which encompasses them
all.

Work in this area seems so far to have been restricted to the author’s group (including Roscoe,
Creese, Goldsmith and Zakiuddin), and more recently Valkonen et al. This has resulted in several
group protocols presented in [9, 10, 11, 12, 32, 33, 41, 52]. In [32, 33], we identified the main
challenges of bootstrapping group security in pervasive computing, and these can be explained as
follows.

There is a slightly grey area for protocols building groups of more than 2. Should we or
should we not be content if the presence of a corrupt party in a group means that communications
between other trustworthy members of the group are themselves compromised? In some of the
circumstances, where we may wish to use ad-hoc group formation protocols, it would be much
better if the protocols were tolerant of corrupt members. We will, therefore, be careful about our
assumptions on this front. It is obvious any key agreement protocol is at least partially compromised
by the presence of a corrupt participant. However, protocols which merely authenticate public-key-
like information are not automatically compromised: they could be said to be establishing a local
PKI. As we will see, this will be successfully resolved by using the idea of (joint) commitment before
knowledge.

The issue of scalability plays a crucial role in constructing group protocols because of the limited
computation power of lightweight devices, and the fact that the amount of human work required
will inevitably grow as the size of the group does. Our priority is still to optimise the human work
relative to the security obtained. The best we can hope for is the same as in the binary case: it
might be possible for a group to manually compare a single short authentication string (SAS) of b
bits, and obtain the same 2b level of security.

We have already seen that the direct information binding strategy is significantly more efficient
than the indirect binding one for pairwise protocols (i.e. both of these information binding strategies
are instrumental to achieving commitment before knowledge as pointed out in Section 4). In this
section, we will see the same is true for group protocols, namely the HCBK and SHCBK protocols
versus the group version of the indirect binding pairwise protocol of Čagalj-Čapkun-Hubaux. In-
terestingly, it is possible to further improve the efficiency in direct group protocols with a trade-off
between human and computational costs, or by making use of protocol structure of the one-way
scheme of Vaudenay [53].

5.1 Some existing direct binding group protocols

The following protocol introduced by Creese et al. [11] is probably the very first group authentication
protocol in the area of pervasive computing. Here, ∀A means that a message is sent to, or received
by, all parties in the group G attempting to achieve a secure link between their laptops or PDAs.
PkA stands for an uncertificated public key that A wants to authenticate to the group, whereas
TA and NA are A’s fresh nonces. The superscripted expression ‘all Messages 2d’ represents the
concatenation of all the decrypted content of messages 2 in alphabetical order. In addition, messages
4 do not add any extra security to the scheme: its presence aims to provide a confirmation of the
shared secret information, i.e. this is similar in purpose to messages 4 in the Hoepman protocol of
Section 4.1.

31

Group protocol of Creese et al. [11]

1. ∀A −→N ∀A′ : A, PkA, TA

2. ∀A −→N ∀A′ : {all Messages 1, NA}PkA′

3a. A displays : shorthash({all Messages 2d}), number of processes
3b. ∀A −→E ∀A′ : users compare hashes and check numbers

4. ∀A −→N ∀A′ : longhash({all Messages 2d})

The protocol is shown by Roscoe [41, 32, 33] to be vulnerable to a man-in-the-middle and one-shot
attack, related to the birthday paradox. The flaw arises from the short output of the shorthash
function shorthash() used in messages 3a, and the intruder’s ability to manipulate the content of
messages 1 and 2. The details of the attack can be found in [32, 33, 41]. In spite of the attack, the
protocol invented in 2003 introduced implicitly the principle P1 in Section 4.3, which contributes
to the optimisation of not only empirical work but also computational cost.

In summer 2005 [41], Roscoe corrected this flaw by introducing a trustworthy leader L who is
responsible for generating a fresh key kL of order B = 160 bits that is inputted into the digest
function used in this scheme. The following scheme [32, 33] is a slightly simplified version of that
protocol. Here, S represents a typical slave node, and A a typical node (either L or S). init(L, A)
is true if L = A and false otherwise.

Hash Commitment Before Knowledge
HCBK protocol, [32, 33, 41]

0. L −→N ∀S : L
1. ∀A −→N ∀A′ : (A, INFOA)
2a. L −→N ∀S : longhash(kL)
2b. ∀S −→E L : committed
3. L −→N ∀S : kL

4. ∀A −→E ∀A′ : digest(kL, INFOS), init(L, A)

Computational cost: W 2 + NM = 25 + NM

In this scheme, the parties have to agree on the b-bit digest of INFOS and the leader’s key
kL over the empirical channel. In addition, Message 2b has all the slaves communicate to L that
they have received Message 2a, and are committed to their final digest value (though none of the
slaves know it yet). Thus the 1-bit commitment signal must be sent over the unforgeable empiri-
cal channel that cannot be blocked. We will see shortly this represents one side of an interesting
trade-off. As regards computation cost, each node has to compute a single cryptographic hash of
key kL and a b-bit digest value of INFOS, resulting in a cost of order W 2 + NM = 25 + NM .

The protocol is termed HCBK standing for Hash Commitment Before Knowledge, and its se-
curity relies on the trustworthiness of the leader L who generates the single digest key and con-
sequently has control over the final digest value (the readers can find the security analysis of the
HCBK protocol in [32, 33]). We have seen one previous protocol in which one party determines the
final agreed value and there are two stages of commitment/agreement from the other parties (there
the single other party). That is Wong and Stajano’s “one-way empirical channel” protocol [57]
from Section 4.3. In fact if messages 4 and 5 in that protocol are interchanged (a possibility we
noted there), it is not hard to see that it becomes an indirect binding variant on the pairwise HCBK
protocol.

In many circumstances, it is possible for such a leader to emerge (for example as the system
whose owner initiates the protocol). However this is complicated if there may be an untrustworthy
party present, since the leader must be trustworthy for the protocol to have any security.

In order to avoid this problem, the authors designed a protocol in which, provided the protocol

32

has completed successfully, any pair or a sub-group of honest parties will have obtained the authentic
information of each other irrespective of what other (dishonest) parties may have done. In [32, 33]
we identified the following second principle, derived from the leader’s role in the HCBK protocol
and the direct binding strategy in obtaining commitment before knowledge, that essentially makes
parties committed to the final digest value before any of them knows what the value actually is.

P2 A protocol offers the adversary no strategy to force digest agreement to be more likely than
chance if, at some point in every partial run, for some node A,

1. A is committed to a value d such as d = digest(k∗, INFOS); and

2. A has randomly selected a value kA such that:

(a) kA randomises the value of k∗;

(b) no other participant knows the value of kA at this point in the run; and

(c) no input received by A can eliminate A’s randomising effect of kA on k∗.

This is clearly a formalisation and refinement of the (joint) commitment before knowledge concept
that we have used throughout this paper.

In the resulting protocol, every node will plays a role similar to the leader in the HCBK protocol
and thus follow P2: each node A now needs some fresh and unpredictable sub-key kA of B bits to
contribute to the final digest value.

Symmetrised HCBK protocol (SHCBK), [32, 33]

1. ∀A −→N ∀A′ : A, INFOA, longhash(A, kA)
2. ∀A −→N ∀A′ : kA

3. ∀A −→E ∀A′ : digest(k∗, INFOS)
where k∗ is the XOR of all the kA’s for A ∈ G

Computational cost: NW 2 + NM = 25N + NM

This protocol is termed Symmetrised HCBK (or SHCBK) due to the similarity with the HCBK
protocol and its symmetrical structure. In the first messages, the purpose of the inclusion of the
identity A inside the longhash is to prevent an intruder from eliminating A’s randomising effect on
k∗ by simply copying its longhash value, i.e. this follows part 2(c) of principle P2. We note the
same protection is required in the Čagalj-Čapkun-Hubaux protocol. This reflexive attack does not
however work against the HCBK protocol as there is only one cryptographic hash longhash(kL)
generated by the leader. A clear advantage of the SHCBK protocol over the HCBK protocol is
the elimination of one-bit and empirical commitment signals (from all slaves to the leader in the
HCBK protocol).

Since everyone takes responsibility separately for influencing the final digest key k∗ and the
final digest value, neither any one nor any proper subset of G can determine the digest value until
all the sub-keys are revealed in messages 2. Indeed, whatever other parties do, the influence of
a particular node A completely randomises the final digest value. As a result, this authenticates
trustworthy parties to each other irrespective of what others (dishonest nodes) may have done as
long as they agree on the same SAS. In other words, this protocol is tolerant of corrupt parties:
one of the main challenges in designing group protocols as mentioned at the beginning of Section 5.

The use of XOR to combine different sub-keys in the SHCBK protocol was shown to be se-
cure [33]. The intuitive reason behind this choice of the operator is that, thanks to the identities
included in longhashes of messages 1 to avoid a reflexive attack, both final digest keys (denoted
k∗

A and k∗
B) computed at trustworthy parties A and B are uniform random variables that can be

considered independent of all k∗
C introduced by other parties (corrupt or otherwise). k∗

A and k∗
B

33

can either be independent or dependent. When they are independent of each other, the probability
of a digest anomaly is 2−b as defined in the first part of the digest function specification given
in Section 2.2.2. When they are dependent (which they will be – indeed equal – if all nodes are
trustworthy and there is no intruder), the only relation that can occur between them is linear of
the form k∗

B = θ ⊕ k∗
A where the intruder can choose θ, as discussed in [33]. But this again does

not give him any advantage thanks to the second part (in particular “⊕ θ”) of the digest function
specification.

The robust security achieved here comes at the expense of increased computation cost relative
to the HCBK protocol: each node now has to compute N longhashes (one for generating its own
Message 1 and N − 1 for checking the coherence of what other nodes send) as opposed to the
single longhash value of the HCBK protocol. The computation cost of the SHCBK protocol is
thus NW 2 + NM = 25N + NM . This is the other side of the trade-off mentioned above: we
have gained in increased corruption tolerance and the loss of the empirical commit signal, but lost
computational efficiency.

Though designed as group protocols, both the HCBK and SHCBK protocols can be easily
turned into pairwise ones. If we replace the two-way empirical channels used in the HCBK protocol
with one-way channels from the slaves to the leader then we will have a one-way authentication
group protocol: all the slaves are authenticated to the leader.

5.2 Indirect binding group protocol

We have claimed that the direct binding approach (the HCBK and SHCBK protocols) remains
more efficient in group protocols than indirect binding as it was in pairwise ones. The argument is
true because it is more efficient to have the SAS created from the presumed large INFOS rather
than it is to have each INFOA bound to random nonces by full-power cryptography to resist
combinatorial search. In order to illustrate this advantage, we will generalise the (symmetrical)
indirect binding pairwise scheme of Čagalj, Čapkun and Hubaux [6] in Section 4.2.1 into a group
protocol. The level of security achieved by this scheme is the same as the SHCBK protocol: (1)
tolerant of corrupt parties; and (2) the probability of successful one-shot attack is upper bounded
by 2−b, here b is still the bit-length of the single SAS transmitted over the empirical channel.

Indirect-binding group protocol New

1. ∀A −→N ∀A′ : INFOA, cA

Where cA ‖ dA = commit(A, INFOA, RA),
RA is randomly picked by A.

2. ∀A −→N ∀A′ : dA

A′ computes RA = open(A, INFOA, cA, dA)
3. ∀A −→E ∀A′ :

⊕
A∈G

RA

Computational cost: NWM = 5NM

From the protocol, we can see that all of the INFOAs must be committed separately: each node
always has to commit once (for its own INFO), and de-commit or open N − 1 times to verify the
commitments of all other parties. This results in a computation cost of order NWM = 5NM ,
which is approximately W = 5 times as expensive as either HCBK or SHCBK.

An important observation we want to make is that in this scheme any untrustworthy party
I can fool other participants of group G into accepting different versions of its own INFO, i.e.
INFOI and INFO′

I . This can be easily done if I sends the commitments of different versions of
its INFO relative to the same short random nonce RI to others in the first messages.

34

1. I −→N A : INFOI , cI

I −→N B : INFO′
I , c

′
I

Here :
cI ‖ dI = commit(I, INFOI , RI),
c′I ‖ d′I = commit(I, INFO′

I , RI)
A ←→N B : INFOA/B, cA/B

2. I −→N A : dI

I −→N B : d′I
A ←→N B : dA/B

3. ∀A −→E ∀A′ : RI ⊕ RA ⊕ RB

Thus parties still agree the XOR of all short nonces manually in the third messages. However,
we do not consider this as a valid attack because we do not care whether we get the right or wrong
information about an untrustworthy node in an authentication protocol. Conversely, if we want
to turn this into a key agreement protocol then the first assumption we have to make is that all
participants are honest, as discussed at the start of this section.

5.3 Modified versions of the HCBK and SHCBK protocols

The difference in computational efficiency between the SHCBK and HCBK protocols raises the
question of whether it is possible to reduce the amount of computation processing in the SHCBK
protocol without compromising its security, i.e. being tolerant of corrupt parties and the probability
of a successful one-shot attack is bounded by 2−b. A small improvement turns out to be possible
if we make use of a technique used in Vaudenay’s one-way scheme and direct binding pairwise
protocols in sections 4.2.1 and 4.3. On the one hand, this can slightly reduce the number of
commitments or longhashes at each node. On the other hand, it makes the schemes asymmetrical
in structure. This will be explained as follows.

Suppose there are N−1 leaders Ls out of a total of N parties, where each leader has to generate
a fresh sub-key, and compute and send its longhash over the normal network. The single node left is
the unique slave S, who transmits its fresh sub-key kS to other nodes over the clear after receiving
longhashes from every leader. Below A is a typical node which is either S or L.

De-symmetrised SHCBK protocol, [52]∗

0. S −→N ∀L : S
1. ∀L −→N ∀A : INFOL, longhash(L, kL)
2. S −→N ∀L : INFOS , kS

3. ∀L −→N ∀A : kL

4. ∀A −→E ∀A′ : digest(k∗, INFOS)
where k∗ is the XOR of all the kA’s for A ∈ G

Computational cost: (N − 1)W 2 + NM = 25N + NM − 25

We discovered this shortly after the SHCBK protocol. It was also independently invented by Valko-
nen, Asokan and Nyberg [52], who were not aware of the SHCBK protocol and neither addressed
the issue of tolerance of untrustworthy parties nor the use of an efficient (short-output) digest
function.

As can be seen from the protocol, while there is no commitment attached to the sub-key kS

of the slave, the fact that it is the only one treated in this way guarantees that it will not be
manipulated by the intruder. This is as resistant to corrupt participants as the SHCBK protocol,

35

but of course separate arguments are required in considering a pair of trustworthy ones, depending
on whether one of them is the single slave or not.

At the expense of introducing the role of the slave and making the protocol asymmetrical, the
total number of longhashes per node declines to N − 1 which corresponds to a processing cost of
(N − 1)W 2 + NM = 25N + NM − 25. This is cheaper than the SHCBK protocol by W 2 = 25
units per node, though we suspect that the asymmetry introduced into the communication regime
will in practice mean that it is no better: nodes will spend more time waiting. Nevertheless, it
illustrates the possibility of further improving the computation efficiency by careful analysis.

Unfortunately, it appears impossible to employ the same technique to decrease the number of
longhashes any further. Once there are two or more slaves in a single run, the scheme will be
vulnerable to a man-in-the-middle attack in which the intruder impersonates all the slaves to talk
to all the leaders and vice versa. Intuitively, this is because principle P2 has been violated: any
slave, who sends its kA before having kB (or a commitment like longhash(kB)) for each other B,
is revealing its last piece of information too soon before it is committed to the final digest value.
An example of this attack, applied to the case of one leader and two slaves, can be demonstrated
in Appendix B.

We can however reduce computational cost if we are prepared to weaken our corruption tolerance
requirement towards that of the HCBK protocol. With the addition of 1-bit empirical commitment
signals like those in the HCBK protocol and allowing the number of leaders l to vary between 2
and N , we propose a hybrid protocol. In other words, rather than having a single leader generating
the digest key by itself as in the HCBK protocol, we will now have l leaders generating l sub-keys,
here l ∈ [2, N]. The effect is that all of the leaders would have to be corrupt for the protocol to fail,
otherwise the probability of a successful one-shot attack is upper bounded by 2−b. For example,
if everyone trusts A or B, then it may be appropriate to choose both as leaders, meaning that all
nodes have to compute l = 2 longhashes.

Below, S represents a slave, L is a leader, and A is either a slave or a leader. SL is the set
of l leaders’ identities broadcast to every one in Message 0 by a single node T , who knows this
information.

Hybrid HCBK protocol New

0. T −→N ∀A : SL
1. ∀A −→N ∀A′ : A, INFOA

2a. ∀L −→N ∀A : longhash(L, kL)
2b. ∀S −→E ∀L :1-bit committed signal
3. ∀L −→N ∀A : kL

4. ∀A −→E ∀A′ : digest(k∗, INFOS), leader(SL, A)
Where k∗ is the XOR of all the kL’s for L ∈ SL

Computational cost: lW 2 + NM = 25l + NM

The protocol is termed the Hybrid Hash Commitment Before Knowledge (HHCBK) protocol be-
cause it applies to the hybrid case and is in effect a hybrid of the HCBK and SHCBK protocols.

One problem here is establishing which of the nodes are to be leaders in such a way that this
does not add greatly to the empirical communication burden of the protocol.

Suppose that the set SL of leaders is actually established by insecure communications between
the nodes. One way to make the protocol secure would be to have all nodes agree not only the
digest but also the set of leaders with each other and with their systems’ views on this subject:
we assume that leader(SL, A) indicates whether A is a leader or not. Post hoc this establishes
agreement on who the leaders are a very strong way, but with a lot of leaders it could be expensive.

Imagine a weaker rule: a leader has no duty to check on the leader information from others,

36

and a slave only has to convince himself that there is, amongst leaders who announce themselves,
at least one leader who is trustworthy. This is perhaps surprisingly sufficient.

To see this note that slaves A and B, and a trustworthy leader L (amongst those identified by
A) have all agreed the digest. We should consider a number of possibilities, all of which could be
brought about by the intruder and the weaker use of the leader information.

• A’s final digest was not influenced by sub-key kL. In this case, the probability of A’s and L’s
digests agreeing is no more than 2−b, by P2 applied to L.

• A’s final digest was influenced by sub-key kL, as was B’s. In this case, we can use the same
argument that applies to the HCBK protocol.

• A’s final digest was influenced by kL, but B’s was not. In this case, final digest keys k∗
A and

k∗
B are independent.

Of course, in order for the digests to agree, it is necessary that the nodes as opposed to their
human users know who all the leaders are. What the argument above shows is that it is not always
necessary for the humans to check every detail of this.

It is interesting to see the trade-off between the preliminary security assumption and the com-
putation cost of lW 2 + NM = 25l + NM in this protocol. What this formula tells us is if we want
to improve the computation cost of the protocol, we need to decrease the number of leaders l in
the group G, and in effect increase the trustworthiness requirement from each leader.

6 Conclusions and further work

In this section, we tabulate efficiency analysis of the various protocols discussed in this paper,
discuss the results and other topics relevant to these classes of protocol as well as looking ahead to
work that still needs to be done.

6.1 Efficiency

In this section, we tabulate the efficiency of all the protocols we have described according to the two
measures we have used throughout: the amount of empirical communication and the computation
effort required for the cryptographic primitives. More complex models might take into account
the amount of high bandwidth required and a measure of the concurrency that is possible between
nodes, but we do not go into that level of detail.

We group them into three tables: non-interactive (one-way) authentication, interactive mutual
authentication and group protocols.

Our main measure of empirical work is the number of bits that each user has to compare. Of
course we do not imagine that they will compare actual bits, but some more friendly representation
of the data! There is also a trade-off between how much work it is to compare information and the
degree of certainty we have that human users will actually do the work required of them. At one
extreme we can imagine the leader in an HCBK network announcing the final digest and asking
the rest of the humans present to put up their hand if the value displayed on their PDA’s does not
agree; at the other we can imagine that an implementation allowing the connection of a credit card
to a merchant might require the customer to type the merchant’s digest into his card (or a device
holding it) so the card can do the comparison itself. But both these last issues are implementation
dependent and orthogonal to the logical structure of the underlying protocol, so we will stick to our
simple measure. In those protocols that require the extra confirmation message over the empirical

37

channel (MANA I, Wong-Stajano, HCBK, HHCBK etc) we write “b+1” as the amount of empirical
effort.

In these tables we have used the simple cost model of hash and digest functions described in
Section 2.4.2: the cost is proportional to the product of the length of the information being digested
and the width of the output.

The non-interactive protocols are shown in Table 2. There is a relationship between how much
we assume of the empirical channel and how much work is required over it. Unlike later tables, we
might note that the levels of security are not the identical in the protocols listed: here B = 160
and B/2 = 80 are examples of the numbers of bits required to make a hash function strongly and
weakly collision resistant, it is assumed that 2−b = 2−16 likelihood of one-shot attacker success
is sufficiently small in all cases (except the first two protocols), but for reasons discussed earlier
the (V-)MANA I protocols do not attain this. Of course, one might want to change any of these
numbers for good reason, but we believe that the relative differences of them will not be greatly
different if this is done. Therefore, the lessons about relative cost that this table teaches us will
remain true.

The same will, naturally, be true of the other tables. The reader is advised to regard constants
like 160 = B, 32 = w, 16 = b and 25 = (160/32)2 = (B/w)2 = W 2 as “variable constants”, where
exact numbers are given for illustrative purposes.

The other tables cover pairwise protocols and groups. For the latter, in each case we get another
pairwise protocol by setting N = 2: these are all competitive in the pairwise table.

It is also necessary to point that since most direct binding protocols invented by other authors
to date do not use a digest function to produce SASs, we will therefore illustrate the difference by
giving the computation cost of both cases in 3 tables. The truncated longhash or universal hash
functions ([49] that require a longhash function to compress large messages into a fixed number of
bits initially) will be denoted (longhash).

Following the principle P1 and the use of the digest function, direct binding protocols are
much more efficient than indirect binding ones as can be seen from all three tables: about up to
B/w = W = 5 times more efficient should M get large. The larger M (the length of INFOS)
is, the more accurate this effect (this is not necessarily a clear advantage for direct binding in the
case of the Hoepman and Wong-Stajano protocols because the information parties want to have
authenticated only includes one or two Diffie-Hellman tokens that are quite small). This is likely
to be the case whenever

(i) A large amount of authenticated information is being passed from one participant to another.
We might note in this connection that direct binding protocols are a more efficient way of
doing this than any method that the nodes are likely to use once a secure connection is up
and running, since the latter is likely to use either conventional symmetric cryptography or
standard length hash functions.

(ii) Large amounts of information needs to be passed to enable the users of the network to be able
to associate the logical members of the network either to other human users (e.g. photographs)
or function (e.g. manufacturer’s certificate).

(iii) There are many nodes present in a group: INFOS can be expected to expand proportionately
to this.

With respect to group protocols we recall that there is a trade-off between processing cost and the
amount of corruption resistance required as well as with eliminating the 1-bit confirmation message.

38

Protocol Binding Human Computation cost
work(bit)

Balfanz et al. Direct B=160 (→WE) WM = 5M

Pasini-Vaudenay Indirect B/2=80(→WE) MW
2 +W 2

4 =2.5M+6.25

Mashatan-Stinson Direct B/2=80 (→WE) (M + W/2)W/2 = 2.5M+6.25

MANA I (CBC-MAC) Direct 2b+1=33 (→E) WM = 5M

V-MANA I (digest) Direct 2b = 32 (→SE) M

Improved MANA I Direct b + 1 = 17 (→t
E) M + W 2 = M + 25

Improved MANA I Indirect b + 1 = 17 (→t
E) W (M + W) = 5M + 25

Improved MANA I Direct(D-H) b + 1 = 17 (→t
E) WM + M = 6M

Improved V-MANA I Direct b = 16 (→t
BE) M + W 2 = M + 25

Improved V-MANA I Indirect b = 16 (→t
BE) W (M + W) = 5M + 25

Improved V-MANA I Direct(D-H) b = 16 (→t
BE) WM + M = 6M

Table 2: One-way authentication protocols

Protocol Binding Human Computation cost
work(bit)

Hoepman Direct 2b = 32 2(WM + M) = 12M

Improved Hoepman Direct b =16 WM + M = 6M

Improved Hoepman′ Direct b + 1=17 WM + M = 6M
(one-way empirical)

Wong-Stajano Direct b + 1=17 W (2M + 1) = 10M + 5
(one-way empirical)

Wong-Stajano Indirect 2b=32 2W (2M + W) = 20M + 50

Improved Wong-Stajano Indirect b =16 2W (M + 1) = 10M + 10

Vaudenay (→WE) Indirect b =16 WM = 5M

Čagalj-Čapkun-Hubaux Indirect b =16 2WM = 10M

Pasini-Vaudenay (longhash) Hybrid b =16 WM + WM = 10M

Pasini-Vaudenay (digest) Hybrid b =16 WM + M = 6M

Bluetooth 2 (longhash) Direct b =16 W (2M+W)+2W (M + W)=20M+75

Bluetooth 2 (digest) Direct b =16 W (2M+W)+2M=12M+25

Laur-Nyberg (longhash) Direct b =16 W 2 + 2WM = 10M + 25

Laur-Nyberg (digest) Direct b =16 W 2 + 2M = 2M + 25

Vaudenay-style (digest) Direct b =16 W 2 + 2M = 2M + 25

Table 3: Interactive pairwise two-way authentication protocols (unless indicated they all use two-
way empirical channels: ←→E)

39

Protocol Binding Human Computation cost
work(bit)

Indirect binding Indirect 16 WNM = 5NM

HCBK Direct b + 1=17 NM + W 2 = NM + 25

SHCBK Direct b =16 NM + NW 2 = NM + 25N

De-symmetrised
SHCBK(longhash) Direct b =16 WNM+W 2(N -1)=5NM+25(N -1)

De-symmetrised
SHCBK (digest) Direct b =16 NM+W 2(N -1)=NM+25(N -1)

Hybrid HCBK Direct b + 1 =17 NM + W 2l = NM + 25l

Table 4: Group authentication protocols (they all use empirical channels: −→E)

6.2 Short-term public key cryptography

We anticipate that in many, probably a majority, of the practical uses of the classes of protocol
described in paper, one of the main objectives is the bootstrapping of a means of secret and
authenticated communication between the parties. In almost all such cases, we expect that this
will be done by establishing a symmetric session key to be used in conjunction with some encryption
algorithm in a way that gives both secrecy and authentication.

One cannot establish such a session key directly in the INFOAs, since all such information is
public following the protocol run. Rather, as anticipated in many of the protocols and discussion
earlier in this paper, we can expect that this is done either by including public keys in the INFOAs,
or alternatively Diffie-Hellman tokens. Of course Diffie-Hellman tokens can then be combined
directly into session keys, whereas public keys have to be used properly to establish authenticated
session keys.

In our environment where we desire low power consumption and perhaps simple processors, the
large modulus calculations needed to perform either Diffie-Hellman or public-key cryptography are
unattractive. It is worth noting however that there are opportunities for efficiencies in the use of
public keys arising from the style in which we use them.

In a PKI, it is public keys themselves that are used for long-term authentication. Any breach
of such a key will have disastrous long-term consequences. However, in our usage, public keys can
be fresh for every run of a protocol and are only used once or twice in the initial set-up phase. So
provided we can be confident that a public key cannot be broken during the length of a session,
we can be sure that the communication in that session are properly authenticated, and that any
computing power directed at cryptanalysing it subsequently can only reveal the secrets of a single
session.

The generation of fresh public/private key pairs can, or course, be done in advance of a ses-
sion or a collection of them might be “loaded” periodically onto a device that does not have the
computational power to generate them. (This would, naturally, have to be from a trusted source –
perhaps it is even an extra function built into the device’s power supply!)

In any event, a security assessment of a particular application may well, because of the short-
term nature of public keys, require shorter (and therefore easier to use) public keys than in a
PKI.

40

6.3 Conclusions

It this paper we have surveyed the literature on a new and – we believe – important style of
protocol, examining non-interactive, interactive and group protocols. We have also discovered
that, even though groups of these protocols have been invented independently and presented in
different notation, the basic principle of commitment before knowledge underlies all of those that
either attain or nearly attain the optimal empirical performance.

Very different from any other families of security or cryptography protocols, human interactions
play a central and very important role in the security of the authentication schemes presented in
this survey. For this reason, we have tried to rigorously analyse how much human effort (measured
in the number of bits the humans have to keep in their minds) is required, and more importantly
whether it is optimal with respect to the obtained level of security. And we are glad to claim that
the result has been very positive in all three types of authentication protocols.

On the one hand, our aim of this survey is to summarise and categorise all existing protocols
invented so far into comprehensive groups. On the other hand, we also try to give the readers
a better of view of where this research area is heading to, and what can be done to make these
protocols usable in practice.

6.4 Future research

After running a successful session of one of the group protocols, the group has essentially boot-
strapped a local PKI. If such a local PKI is going to be more than short term, we are going to have
to address issues such as how to add extra nodes, form the union of two groups, and excluding
nodes. In other words how does one maintain a local PKI? An initial, but somewhat inefficient,
approach to this is described by Valkonen et al. [52].

The nature of the protocols we have described, and especially the need to take the combinatorial
search power of attackers into account when quantifying security, apparently fall outside the range
of the successful tools for protocol analysis produced in the last decade or so. If this new class
of protocols is to be as important as we believe it is important either that these tools or their
methodologies are developed or new tools created to handle them. It may well be appropriate to
use or adapt probabilistic model checkers such as PRISM [1] for this purpose.

Another interesting possibility is to apply and extend our existing work in authentication proto-
cols in pervasive computing into other security applications such as electronic polling/voting (phys-
ical envelopes) [31], auction protocols (anonymous physical broadcast channel) [48] and e-cash [8]
where human interaction is also employed but little if any investigation has been undertaken to
analytically quantify and optimise them.

And finally, designing efficient ways of comparing the SAS manually in different circumstances
(and applications) is also very important for the future of these protocols. As a result, this area
has received much attention from many different research groups [16, 25, 28, 29, 45, 51] recently.

Acknowledgements

Long Nguyen’s work on this paper was supported by studentships from QinetiQ Trusted Information
Management.

Roscoe’s work on this paper was partially supported by funding from the US Office of Naval
Research.

We are grateful to anonymous referees whose detailed comments allowed us to greatly improve
the paper.

41

A The importance of empirical display of leader(L, A) in the Hy-
brid HCBK protocol

In order to demonstrate if the information leader(L, A) were not to be communicated over the
empirical channel the HHCBK protocol would suffer from an attack, we shall look at the situation
where there are two users A and B. The intruder invents INFO′

X for each of them in which it
says X is a leader, i.e. A will receives INFO′

B saying that B is the leader and vice versa. In fact
neither A nor B act as a leader, and the intruder is able to send hash keys to A and B such that
the final digests computed at A and B agree, i.e. each believes the other to be the leader. Of
course this works equally well with any two disjoint sets of “leaders”. This attack works when the
attacker can block the 1-bit commitment signal sent via the empirical channel. Otherwise both
A and B will realise something wrong going on as both of them are not supposed to receive any
commitment as neither of them created any longhash. This will depend on whether commitment
signals are directed at only specific leaders in Message 2b, which is specified in this protocol to save
the amount of human work, however real life implementations might vary significantly from our
specification.

B Attack on group protocol with two slaves

In this appendix, we demonstrate why the “De-symmetrised SHCBK” protocol of Section 5.3 cannot
be weakened further to have two slaves, even when all the nodes in the protocol are trustworthy.

Suppose that there is a leader L trying to authenticate its information INFOL to two slaves A
and B. In the first run α of the protocol, the intruder I impersonates slaves A and B to commu-
nicate with the leader L, and comes up with two random keys k′

A and k′
B.

1.α. L −→N I(A, B) : INFOL, longhash(kL)
2.α. I(A) −→N L : k′

A

I(B) −→N L : k′
B

3.α. L −→N I(A, B) : kL

After L sends out its own key kL, the intruder can determine the final digest value of run α that
L is going to compare over the empirical network in Message 4. Let us assume that kS = k′

A ⊕ k′
B.

To fool slaves A and B into thinking that a fake INFO′
L is authentic, the intruder needs to find

k′
S such that the digests of both runs come out to be the same:

digest(kL ⊕ kS , INFOL) = digest(kL ⊕ k′
S , INFO′

L)

This should not take a long time as the bit-length of the digest output is short. Once he successfully
searches for k′

S , he starts the second run β. In this run, he impersonates the leader L to talk to
slaves A and B as well as modifying the their keys as follows

1.β. I(L) −→N A, B : INFO′
L, longhash(kL)

2.β. A −→N I(B, L) : kA

B −→N I(A, L) : kB

I(A) −→N B : kB ⊕ k′
S

I(B) −→N A : kA ⊕ k′
S

3.β. I(L) −→N A, B : kL

After the key kL is revealed to A and B, all three nodes should be able to empirically agree on two

42

equal digests that have different antecedents. In other words, the slaves accept INFO′
L faked by

the intruder.

4.β. A, B −→E L : digest(kL ⊕ k′
S , INFO′

L)
A ←→E B : digest(kL ⊕ k′

S , INFO′
L)

4.α. L −→E A, B : digest(kL ⊕ kS , INFOL)

The digests of all three nodes will agree despite them not agreeing on INFOL.
Note that not only does the above attack work when we XOR digest sub-keys as in the SHCBK

protocol, but also with any other ways to combine them. This is because the intruder will always
be able to predetermine the final digest value before any slave is committed to the digest. Since
a digest value is short, it is feasible for the intruder to search for digest sub-keys that map to the
digest value regardless of how nodes choose to combine them.

C Improved MANA I protocols and their security analysis

In this Appendix, we will present another two versions of the Improved MANA I protocols, which
are termed the indirect binding and Diffie-Hellman style (or D-H style) protocols.

C.1 Indirect binding and D-H style versions of the Improved MANA I protocols

An alternative solution for Improved V-MANA I is to use a commitment scheme to bind INFOA to
a b-bit random nonce R, which is generated by A and released over the bounded empirical channel.
This therefore makes use of the indirect information binding strategy, as can be seen below.

Improved version of V-MANA I (indirect binding) [35]

1. A −→N B : INFOA, c
(c, d) = commit(INFOA, R)

2. A −→t
BE B : R

3. A −→N B : d

Computational cost: W (M + W) = 5M + 25

The order and time constraints of messages’ arrival in this scheme must be the same as in the
direct binding version of Improved V-MANA I protocol. However, the large INFOA is processed
by a long-output commitment scheme, which is more expensive than a digest function, and thus
the cost goes up to an order of W (M + W) = 25 + 5M , i.e. an approximate (W = 5)-fold increase
compared to the direct binding version.

This protocol might be regarded as the non-interactive version of the pairwise (indirect binding)
protocol of Vaudenay [53] of Section 4.2.

As in the direct binding version of the Improved MANA I protocol, we can replace the bounded
delay empirical channel with a simple acknowledgement to have the following scheme.

Improved MANA I protocol (indirect binding) [35]

1a. A −→N B : INFOA, c
(c, d) = commit(INFOA, R)

1b. B −→E A : 1-bit committed signal
2. A −→E B : R
3. A −→N B : d

Computational cost: W (M + W) = 5M + 25

43

Next we describe another improved scheme, whose structure resembles the pairwise (direct binding)
authentication protocol of Hoepman [17, 18] of Section 4.1.

In the following description, k is a long secret key (160-bit) of A that corresponds to his Diffie-
Hellman token gk he wants to authenticate. In order for the following protocol to be secure, the
Diffie-Hellman token gk must be fresh at each session, unpredictable and kept secret to A when its
longhash and b-bit shorthash are revealed in the first two messages.

Improved V-MANA I protocol (D-H style) [35]

1. A −→N B : longhash(gk)
2. A −→t

BE B : shorthash(gk)
3. A −→N B : gk

Computational cost: WM + M = 6M

The main difference between this and the direct/indirect binding versions is that there is no INFOA

sent in Message 1 because the Diffie-Hellman token, revealed in Message 3, plays the dual-role of
both INFOA and the long secret key. This results in a cost of order WM + M = 6M .

C.2 Security analysis of the Improved (V-)MANA I protocols

We adapt the Bellare-Rogaway security model where an intruder can control on which node a new
protocol instance is launched. Below we define the two kinds of adversaries used in our security
analysis.

1. A general adversary can launch multiple instances of participants (A and B in these
protocols). As commonly the case in the literature, the number of times that (s)he can
launch an instance of any participant is limited by a finite number, for example QA for A
and QB for B. The time complexity of this adversary is bounded by a finite number say T .
This is the kind of adversary we want to prove the protocols resist in the security analysis
presented here.

2. A one-shot adversary is a special case of the general adversary where the number of each
participant’s instances he can launch is at most once, i.e. QA = QB = 1.

We are going to prove that the Improved (V-)MANA I protocols are secure against a one-shot
attack in the first step, and then use Theorem 1 stated below to lift the one-shot attack’s security
ananlysis to a general attack’s security analysis.

The following theorem is the combined result of Lemma 6 of [53] and Theorem 5 of [39] of
Vaudenay and Pasini.

Theorem 1 [35, 39, 53] We consider a general attack such that the number of instances of A
(respectively B) is at most QA (respectively QB).

If there exists a one-shot attack against the three improved versions of the (V-)MANA I protocol
which has success probability p in a time T , then the general attack is successful with probability
P ≤ p · QA in a time QAT .

In the following and all subsequent security proofs, we only consider the case when the intruder
cannot influence keys and random nonces, generated by party A whose instances are possibly
launched by the intruder, and which are instrumental in the computation of SASs. This assumption
must be made, for otherwise the intruder could easily fool B into accepting a fake INFO′

A by
searching for a digest or shorthash collision. Examples are long key k in the direct binding version

44

of the Improved (V-)MANA I protocol, and short nonce R and commitment value c in the indirect
binding ones. Note that we believe that the same assumption has also been made by Vaudenay in
his proof of this theorem, i.e. Lemma 6 of [53].

Proof An instance of A is compatible with an instance of B if B’s instance succeeded and received
all messages in the right order, where Message 2 is transmitted over the empirical channels from
the corresponding A’s instance.

The number of possible compatible pairs of instances is upper bounded by QAQB, which can
be reduced to QA in the Improved (V-)MANA I protocols because

• In the three versions of the Improved MANA I protocol, the single SAS (i.e. digest or random
nonce) transmitted over empirical channels by definition in Section 2.1 cannot be mistaken,
replayed or delayed from one to another session.

• In the three versions of the Improved V-MANA I protocol, B can always be offline. As a
result, the intruder can simulate all instances of B and picks one who will make the attack
succeed.

When an attack is successful, there should exist one compatible pair of instances of A and B which
(1) have or compute the same SAS value sent over the empirical channel; and (2) do not share the
same public data INFOA on which they try to agree.

Note that the SASs’ values of all compatible pairs of instances are uniformly distributed and
independent 9 from one another; because the SASs are randomised by either random keys (k in
direct binding), random nonces (R in indirect binding), or random Diffie-Hellman tokens (gk in
the Diffie-Hellman style version). All of these random elements, which are instrumental in the
computation of SASs, are unknown to (and are not influenced by) the intruder at the point when
they were generated by A’s instances thanks to the above assumption. (This argument remains
true even when data INFOAs are controlled by the intruder due to the use of digest functions).

We know that the probability of a successful one-shot attack on each compatible pair of instances
is limited to p in a time T (e.g. a successful attack means A and B agree on the same digest or
SAS of different preimage data INFOAs). We further know that the SASs communicated in those
compatible pairs of instances are themselves independent. We therefore have that the general
adversary is successful with probability P ≤ p · QA in a time QAT .

C.2.1 Security analysis of the direct binding Improved (V-)MANA I protocol

In the following theorem, the notation (ǫc, Tc)-collision-resistant indicates that the success proba-
bility of finding a hash collision is upper bounded by ǫc in a time Tc. Similarly (ǫi, Ti)-inversion-
resistant indicates that the success probability of inverting a hash value is upper bounded by ǫi in
a time Ti.

Theorem 2 [35] Given that longhash() is (ǫc, Tc)-collision-resistant and (ǫi, Ti)-inversion-resistant,
a general attack with number of A’s (respectively B’s) instances bounded by QA (respectively QB)
is successful against the direct binding versions of Improved (V-)MANA protocol with probability
2−bQA(1 + ǫi + ǫc) in a time QA(Ti + Tc).

The following proof applies to the direct binding version of the Improved V-MANA I protocol,
but it can be slightly modified to cope with the direct binding version of the Improved MANA I
protocol.

9See Footnote 4 for what independence means.

45

Proof We first find the probability of a successful one-shot attack.
A one-shot intruder has no advantage of sending fake INFO′

A and longhash(k′) to B (mas-
querading as A) after the digest is released in Message 2. Therefore, after INFOA and longhash(k)
are sent in Message 1 where k is a private, fresh and long (160-bit) key generated by A in each ses-
sion and is unknown to any one including the intruder, there are three possibilities that can happen:
(1) with probability ǫc the intruder can find a hash collision in a time Tc; (2) with probability ǫi the
intruder can invert the hash value in a time Ti; and (3) with probability 1− ǫc − ǫi neither can the
intruder find a hash collision nor invert the hash value. Note that the above analysis is only correct
when we assume that given any INFOA and longhash(k), it is infeasible to gain any advantage
in predicting the value of digest(k, INFOA) without the knowledge of key k, i.e. the digest value
should be uniformly distributed even in the presence of INFOA and longhash(k). There is no
need to consider the 2nd-preimage-resistance property of a hash function since the intruder does
not know key k generated by the honest party A in Message 1.

1. With probability ǫc in a time Tc, the adversary can search (off-line) for two distinct keys k′

and k′′ for which longhash(k′) = longhash(k′′). The adversary then sends an arbitrarily data
INFO′

A (INFO′
A 6= INFOA) and longhash(k′) to B (masquerading as A).

Game against the Improved V-MANA I (direct binding)– hash collision

1. A −→N I(B) : INFOA, longhash(k)
I(A) −→N B : INFO′

A, longhash(k′)
2. A −→SE B : digest(k, INFOA)

3. A −→N I(B) : k

Winning condition: digest(k, INFOA) = digest(k′, INFO′
A) or

digest(k, INFOA) = digest(k′′, INFO′
A)

Prior to sending a key to B in Message 3 the adversary checks to see whether or not
digest(k, INFOA) = digest(k′, INFO′

A), and/or digest(k, INFOA) = digest(k′′, INFO′
A).

In the first case (which has probability 2−b), the adversary sends k′ to B. In the second case
(which also has probability 2−b), the adversary sends k′′ to B. We conclude that a one-shot
attack has probability 2ǫc2

−b of success in a time Tc.

2. With probability ǫi in a time Ti, the adversary can find a preimage k′ such that longhash(k′) =
longhash(k). The adversary then replaces INFOA with an arbitrarily data INFO′

A (INFO′
A 6=

INFOA) in Message 1.

Game against the Improved V-MANA I (direct binding)– hash inversion

1. A −→N I(B) : INFOA, longhash(k)
I(A) −→N B : INFO′

A, longhash(k)
2. A −→SE B : digest(k, INFOA)

3. A −→N I(B) : k

Winning condition: digest(k, INFOA) = digest(k, INFO′
A) or

digest(k, INFOA) = digest(k′, INFO′
A)

Prior to sending a key to B the adversary checks to see whether or not digest(k, INFOA) =
digest(k, INFO′

A), and/or digest(k, INFOA) = digest(k′, INFO′
A). As in the previous case,

a one-shot attack has probability 2ǫi2
−b of success in a time Ti.

46

3. On the other hand, with probability 1 − ǫi − ǫc in a time Ti + Tc neither can the adversary
search for a hash collision nor invert the hash value. Thus the adversary has to select a
random pair (k′, INFO′

A) where INFOA 6= INFO′
A.

Game against Improved V-MANA I (direct binding)
No hash collision and no hash inversion

1. A −→N I(B) : INFOA, longhash(k)
I(A) −→N B : INFO′

A, longhash(k′)
2. A −→E B : digest(k, INFOA)

3. A −→N I(B) : k
I(A) −→N B : k′

Winning condition: INFOA 6= INFO′
A and

digest(k, INFOA) = digest(k′, INFO′
A)

Clearly, the probability of success of this case is (1 − ǫi − ǫc)2
−b in a time Ti + Tc thanks to

the digest specification.

We conclude that any one-shot adversary in a time Ti + Tc has the following probability of success

p ≤ 2ǫc2
−b + 2ǫi2

−b + (1 − ǫc − ǫi)2
−b = 2−b(1 + ǫc + ǫi)

We now can apply Theorem 1 to deduce that any general adversary has probability 2−bQA(1+ǫc+ǫi)
of success in a time QA(Ti + Tc).

C.2.2 Security analysis of the indirect binding Improved (V-)MANA I protocol

Theorem 3 [35] Given that a commitment scheme is (ǫh, Th)-hiding and (ǫb, Tb)-binding, a gen-
eral attack with number of A’s (respectively B’s) instances bounded by QA (respectively QB) is
successful against the indirect binding versions of Improved (V-)MANA protocols with probability
(ǫh + ǫb)QA in a time QA(Tb + Th).

Proof There are two possibilities that a one-shot attacker can do after receiving INFO and c in
Message 1 from A:

• Leaving c unchanged, the intruder sends INFO′
A and c to B (masquerading as A) where

INFO′
A 6= INFOA. With probability ǫb in a time Tb, the intruder can come up with a

d′ (which can be either the same as or different from d revealed in Message 3) such that
open(INFO′

A, c, d′) = R thanks to the binding property of a commitment scheme.

• With probability ǫh in a time Th, the intruder can guess the value of R from INFOA and c,
and then compute (c′, d′) such that open(INFO′

A, c′, d′) = R thanks to the hiding property
of a commitment scheme.

We can apply Theorem 1 to deduce that any general intruder has a success probability QA(ǫb + ǫh)
in a time QA(Th + Tb).

C.2.3 Security analysis of the Improved V-MANA I protocol in Diffie-Hellman style

Theorem 4 [35] Given that longhash() is (ǫc, Tc)-collision-resistant and (ǫi, Ti)-inversion-resistant,
a general attack with number of A’s (respectively B’s) instances bounded by QA (respectively QB)
is successful against the Improved V-MANA I protocol in Diffie-Hellman (D-H) style with proba-
bility 2−bQA(1 + ǫc) in a time QA(Tc + Ti).

47

Proof As in the proof of Theorem 2, there are three possibilities which can happen after A releases
Message 1 and we also assume that given longhash(gk) it is infeasible for the intruder to gain any
advantage in predicting the value of shorthash(gk).

1. With probability ǫc in a time Tc, the adversary can search for two distinct D-H tokens gk′

and gk′′
for which longhash(gk′

) = longhash(gk′′
). The adversary then sends longhash(gk′

)
to B (masquerading as A).

Game against the Improved V-MANA I (D-H style)– hash collision

1. A −→N I(B) : longhash(gk)

I(A) −→N B : longhash(gk′
)

2. A −→SE B : shorthash(gk)

3. A −→N I(B) : gk

Winning condition: shorthash(gk) = shorthash(gk′
) or

shorthash(gk) = shorthash(gk′′
)

A one-shot attack has probability 2ǫh2−b of success in a time Tc.

2. With probability ǫi in a time Ti, the adversary can find a preimage gk′
such that longhash(gk) =

longhash(gk′
). The adversary then replaces gk with gk′

in Message 3 and hopes that they
produce the same b-bit hash output. Therefore, the probability of success is ǫi2

−b in a time
Ti.

Game against the Improved V-MANA I (D-H style)– hash inversion

1. A −→N B : longhash(gk)
2. A −→SE B : shorthash(gk)

3. A −→N I(B) : gk

I(A) −→N B : gk′

Winning condition: shorthash(gk) = shorthash(gk′
)

3. On the other hand, with probability 1 − ǫi − ǫc in a time Ti + Tc neither can the adversary
search for a hash collision nor invert the hash value. Thus the adversary has to select a
random D-H token gk′

and send longhash(gk′
) to B in Message 1 (masquerading as A).

Game against Improved V-MANA I (D-H style)
No hash collision and no hash inversion

1. A −→N I(B) : longhash(gk)

I(A) −→N B : longhash(gk′
)

2. A −→SE B : shorthash(gk)

3. A −→N I(B) : gk

I(A) −→N B : gk′

Winning condition: shorthash(gk) = shorthash(gk′
)

Clearly, the probability of success of this case is (1 − ǫi − ǫc)2
−b.

We conclude that any one-shot adversary in a time Ti + Tc has the following probability of success

p ≤ 2ǫc2
−b + ǫi2

−b + (1 − ǫc − ǫi)2
−b = 2−b(1 + ǫc)

48

We now can apply Theorem 1 to deduce that any general adversary has a success probability
2−bQA(1 + ǫc) in a time QA(Ti + Tc).

References

[1] See: http://www.prismmodelchecker.org/

[2] Simple Pairing Whitepaper, Bluetooth Special Interest Group, 2006. See:
www.bluetooth.com/NR/rdonlyres/
0A0B3F36-D15F-4470-85A6-F2CCFA26F70F/0/SimplePairing WP V10r00.pdf

[3] D. Balfanz, D. Smetters, P. Stewart and H. Wong, Talking to strangers: Authentication in
ad-hoc wireless networks, in: Proceedings of the 9th Annual Symposium on Network and Dis-
tributed System Security (NDSS), 2002.

[4] M. Bellare and P. Rogaway, Entity authentication and key distribution, in: Advances in Cryp-
tology - Crypto 1993, Lecture Notes in Computer Science, Vol. 773, D.R. Stinson, ed., Springer,
1993, pp. 232-249.

[5] J. Bierbrauer, T. Johansson, G.A. Kabatianskii and B.J.M. Smeets, On families of hash func-
tions via geometric codes and concatenation, in: Advances in Cryptology - Crypto 1993, Lecture
Notes in Computer Science, Vol. 773, D.R. Stinson, ed., Springer, 1993, pp. 331-342.

[6] M. Čagalj, S. Čapkun and J. Hubaux, Key agreement in peer-to-peer wireless networks, in:
Proceedings of the IEEE Special Issue on Security and Cryptography 94(2) (2006), A. Mazzeo,
ed., 467-478.

[7] J.L. Carter and M.N. Wegman, Universal classes of hash functions, Journal of Computer and
System Sciences 18(2) (1979), 143-154.

[8] D. Chaum, Secret-ballot receipts: true voter-verifiable elections, Security and Privacy Maga-
zine, IEEE, 2(1) (2004), 38-47.

[9] S.J. Creese, M.H. Goldsmith, R. Harrison, A.W. Roscoe, P. Whittaker and I. Zakiuddin,
Exploiting empirical engagement in authentication protocol design, in: Proceedings of the 2nd
International Conference on Security in Pervasive Computing (SPC 2005), Lecture Notes in
Computer Science, Vol. 3450, D. Hutter and M. Ullmann, eds., Springer, 2005, pp. 119-133.

[10] S.J. Creese, M.H. Goldsmith, A.W. Roscoe and M. Xiao, Bootstrapping multi-party ad-hoc
security, in: Proceedings of the 2006 ACM Symposium on Applied Computing, H.M. Haddad,
ed., 2006, pp. 369-375.

[11] S.J. Creese, M.H. Goldsmith, A.W. Roscoe and I. Zakiuddin, The attacker in ubiquitous
computing environments: Formalising the threat model, in: Proceedings of the 1st Workshop
on Formal Aspects in Security and Trust, 2003. IIT-CNR Technical Report.

[12] S.J. Creese, M.H. Goldsmith, A.W. Roscoe and I. Zakiuddin, Security properties and mecha-
nisms in human-centric computing, in: Proceedings of Workshop on Security and Privacy in
Pervasive Computing, 2004.

[13] C. Gehrmann, C. Mitchell and K. Nyberg, Manual authentication for wireless devices, RSA
Cryptobytes, 7(1) (2004), 29-37.

49

[14] C. Gehrmann and K. Nyberg, Security in personal area networks, in: Security for Mobility,
C.J. Mitchell, ed., IEE, London, 2004, pp. 191-230.

[15] ISO/IEC 9798-6, C. Mitchell, ed., 2003, Information technology – Security techniques – Entity
authentication – Part 6: Mechanisms using manual data transfer.

[16] M.T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik and E. Uzun, Loud and clear: Human-
verifiable authentication based on audio, in: Proceedings of the 26th IEEE International Con-
ference on Distributed Computing Systems (ICDCS 2006), 2006, pp. 10-33.

[17] J.-H. Hoepman, Ephemeral pairing on anonymous networks, in: Proceedings of the 2nd In-
ternational Conference on Security in Pervasive Computing (SPC 2005), Lecture Notes in
Computer Science, Vol. 3450, D. Hutter and M. Ullmann, eds., Springer, 2005, pp. 101-116.

[18] J.-H. Hoepman, Ephemeral pairing problem, in: Proceeding of the 8th International Conference
on Financial Cryptography, Lecture Notes in Computer Science, Vol. 3110, A. Juels, ed.,
Springer, 2004, pp. 212-226.

[19] G.A. Kabatianskii, B. Smeets and T. Johansson, On the cardinality of systematic authen-
tication codes via error-correcting codes, IEEE Transactions on Information Theory, 42(2)
(1996), 566-578.

[20] H. Krawczyk, LFSR-based hashing and authentication, in: Advances in Cryptology - Crypto
1994, Lecture Notes in Computer Science, Vol. 839, Y. Desmedt, ed., Springer, 1994, pp.
129-139.

[21] H. Krawczyk, New hash functions for message authentication, in: Advances in Cryptology - Eu-
rocrypt 1995, Lecture Notes in Computer Science, Vol. 921, L.C. Guillou and J.-J. Quisquater,
eds., Springer, 1995, pp. 301-310.

[22] S. Laur and K. Nyberg, Efficient mutual data authentication using manually authenticated
strings, in: Proceedings of the 5th International Conference on Cryptology and Network Se-
curity (CANS 2006), Lecture Notes in Computer Science, Vol. 4301, D. Pointcheval, ed.,
Springer, 2006, pp. 90-107.

[23] S. Laur, N. Asokan and K. Nyberg, Efficient mutual data authentication using manually au-
thenticated strings: Extended version, in: Cryptology ePrint Archive, Report 2005/424, 2006.

[24] A.Y. Lindell, Comparison-based key exchange and the security of the numeric comparison
mode in Bluetooth v2.1, in: Proceedings of the Cryptographers’ Track at the RSA Conference
2009 on Topics in Cryptology, Lecture Notes in Computer Science, Vol. 5473, M. Fischlin, ed.,
Springer, 2009, pp. 66-83.

[25] A. Madhavapeddy, D. Scott, R. Sharp and E. Upton, Using camera phones to enhance human-
computer interaction, in: Proceedings of the 6th International Conference on Ubiquitous Com-
puting, (UbiComp 2004), 2004, pp. 1-2.

[26] Y. Mansour, N. Nisan and P. Tiwari, The computational complexity of universal hashing, in:
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, 1990, pp. 235-243.

[27] A. Mashatan and D.R. Stinson, Non-interactive two-channel message authentication based on
hybrid-collision resistant hash functions, in: IET Information Security 1(3) (2007), 111-118.

50

[28] R. Mayrhofer and M. Welch, A human-verifiable authentication protocol using visible laser
light, in: Proceedings of the 2nd International Conference on Availability, Reliability and Se-
curity (ARES), 2007, pp. 1143-1148.

[29] J.M. McCune, A. Perrig and M.K. Reiter, Seeing is believing: Using camera phones for human-
verifiable authentication, International Journal of Security and Networks 4(1/2) (2009), 43-56.

[30] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Applied Cryptography, CRC
Press, ISBN: 0-8493-8523-7, 1996.

[31] T. Moran and M. Naor, Polling with physical envelopes: A rigorous analysis of a human-centric
protocol, in: Advances in Cryptology - Eurocrypt 2006, Lecture Notes in Computer Science,
Vol. 4004, S. Vaudenay, ed., Springer, 2006, pp. 88-108.

[32] L.H. Nguyen and A.W. Roscoe, Efficient group authentication protocol based on human in-
teraction, in: Proceedings of the Joint Workshop on Foundation of Computer Security and
Automated Reasoning Protocol Security Analysis (FCS-ARSPA 2006), 2006, pp. 9-31.

[33] L.H. Nguyen and A.W. Roscoe, Authenticating ad-hoc networks by comparison of short digests,
Information and Computation 206(2-4) (2008), 250-271.

[34] L.H. Nguyen and A.W. Roscoe, New combinatorial bounds for universal families of hash func-
tions, in: Cryptology ePrint Archive, Report 2009/153, 2009.

[35] L.H. Nguyen and A.W. Roscoe, Separating two roles of hashing in one-way message authentica-
tion, in: Proceedings of the Joint Workshop on Foundations of Computer Security, Automated
Reasoning for Security Protocol Analysis and Issues in the Theory of Security (FCS-ARSPA-
WITS 2008), 2008, pp. 195-210.

[36] L.H. Nguyen, Authentication protocols in pervasive computing, D.Phil. Thesis, University of
Oxford, 2010.

[37] ISO/IEC 9798-6 (revision), L.H. Nguyen, ed., 2010, Information Technology – Security Tech-
niques – Entity authentication – Part 6: Mechanisms using manual data transfer.

[38] S. Pasini and S. Vaudenay, SAS-based authenticated key agreement, in: Proceedings of the 9th
International Conference on Theory and Practice of Public-Key Cryptography (PKC 2006),
Lecture Notes in Computer Science, Vol. 3958, M. Yung, Y. Dodis, A. Kiayias and T. Malkin,
eds., Springer, 2006, pp. 395-409.

[39] S. Pasini and S. Vaudenay, An optimal non-interactive message authentication protocol, in:
Proceedings of the Cryptographers’ Track at the RSA Conference 2006 on Topics in Cryptology,
Lecture Notes in Computer Science, Vol. 3860, D. Pointcheval, ed., Springer, 2006, pp. 280-294.

[40] R. Pass, On deniability in the common reference string and random oracle model, in: Advances
in Cryptology - Crypto 2003, Lecture Notes in Computer Science, Vol. 2729, D. Boneh, ed.,
Springer, 2003, pp. 316-337.

[41] A.W. Roscoe, Human-centred computer security, 2005. See:
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/113.pdf.

[42] A.W. Roscoe and L.H. Nguyen, Security in computing networks, WO Patent 2007052045.

51

[43] A.W. Roscoe, B. Chen and L.H. Nguyen, Improvements in communications security, WO
Patent 2008078101.

[44] A.W. Roscoe and L.H. Nguyen, Improvements related to the authentication of messages, WO
Patent 2009153585.

[45] N. Saxena, J.-E. Ekberg, K. Kostiainen and N. Asokan, Secure device pairing based on a
visual channel, in: Proceedings of the 2006 IEEE Symposium on Security and Privacy, 2006,
pp. 306-313.

[46] N. Smart, Cryptography, An Introduction, McGraw-Hill, ISBN 0-0770-9987-7 (PB), 2002.

[47] F. Stajano and R. Anderson, The resurrecting duckling: Security issues for ad-hoc wireless
networks, in: Proceedings of the 7th International Workshop on Security Protocols, Lecture
Notes in Computer Science, Vol. 1796, B. Christianson, B. Crispo, J. A. Malcolm and M. Roe,
eds., Springer, 1999, pp. 172-194.

[48] F. Stajano and R. Anderson, The cocaine auction protocol: on the power of anonymous
broadcast, in: Proceedings of the 3rd International Workshop on Information Hiding, Lecture
Notes in Computer Science, Vol. 1768, A. Pfitzmann, ed., Springer, 2000, pp. 434-447.

[49] D.R. Stinson, Universal hashing and authentication codes, in: Advances in Cryptology - Crypto
1991, Lecture Notes in Computer Science, Vol. 576, J. Feigenbaum, ed., Springer, 1992, pp.
74-85.

[50] J. Suomalainen, J. Valkonen and N. Asokan, Security associations in personal networks: A
comparative analysis, in: Proceedings of the 4th European Workshop on Security and Privacy in
Ad-hoc and Sensor Networks 2007, Lecture Notes in Computer Science, Vol. 4572, F. Stajano,
C. Meadows, S. Capkun and T. Moore, eds., Springer, 2007, pp. 43-57.

[51] E. Uzun, K. Karvonen and N. Asonka, Usability analysis of secure pairing methods, in: Pro-
ceedings of the 11th International Conference on Financial Cryptography and Data Security
(FC 2007) and the 1st International Workshop on Usable Security (USEC 2007), Lecture
Notes in Computer Science, Vol. 4886, S. Dietrich and R. Dhamija, eds., Springer, 2008, pp.
307-324.

[52] J. Valkonen, N. Asokan and K. Nyberg, Ad-hoc security associations for groups, in: Proceed-
ings of the 3rd European Workshop on Security and Privacy in Ad-hoc and Sensor Networks,
Lecture Notes in Computer Science, Vol. 4357, L. Butty, V.D. Gligor and D. Westhoff, eds.,
Springer, 2006, pp. 150-164.

[53] S. Vaudenay, Secure communications over insecure channels based on short authenticated
strings, in: Advances in Cryptology - Crypto 2005, Lecture Notes in Computer Science, Vol.
3621, V. Shoup, ed., Springer, 2005, pp. 309-326.

[54] M.N. Wegman and J.L. Carter, New hash functions and their use in authentication and set
equality, Journal of Computer and System Sciences 22(3) (1981), 265-279.

[55] A.F. Webster and S.E. Tavares, On the design of S-Boxes, in: Advances in Cryptology - Crypto
1985, Lecture Notes in Computer Science, Vol. 218, H.C. Williams, ed., Springer, 1986, pp.
523-534.

52

[56] F.-L. Wong and F. Stajano, Multi-channel protocols, in: Proceedings of the 13th International
Workshop on Security Protocols, Lecture Notes in Computer Science, Vol. 4631, B. Christian-
son, B. Crispo, J.A. Malcolm and M. Roe, eds., Springer, 2005, pp. 128-132.

[57] F.-L. Wong and F. Stajano, Multi-channel security protocols, IEEE Pervasive Computing 6(4)
(2007), 31-39.

53

