
Authenticating ad hoc networks by

comparison of short digests

L.H. Nguyen and A.W. Roscoe

Oxford University Computing Laboratory
Wolfson Building, Parks Road, OXFORD, OX1 3QD, UK

E-mail addresses: {Long.Nguyen, Bill.Roscoe@comlab.ox.ac.uk}

Abstract

We show how to design secure authentication protocols for a non-standard class of
scenarios. In these authentication is not bootstrapped from a PKI, shared secrets
or trusted third parties, but rather using a minimum of work by human user(s)
implementing the low-bandwidth unspoofable channels between them. We develop
both pairwise and group protocols which are essentially optimal in human effort and,
given that, computation. We compare our protocols with recent pairwise protocols
proposed by, for example, Hoepman and Vaudenay. We introduce and analyse a new
cryptographic primitive – a digest function – that is closely related to short-output
universal hash functions.

1 Introduction

Imagine that a group of people come together and agree that they want to
transfer data between them securely, meaning that they want it to be secret
and of authenticated origin. They all have some pieces of computing hardware
(e.g., a mobile phone or a PDA). Unfortunately none of them knows the unique
name of any of the others’ equipment, and in any case there is no PKI which
encompasses them all. How can they achieve their goal in the context that
their machines are connected by an insecure network (whether created by
WIFI, the internet, telephony, or a mixture of these)?

The conventional answer to this question would be that this goal is unachiev-
able, since it is impossible to prevent some impostor I playing the man-in-
the-middle between the participants. However a little creative thinking can
easily solve the problem: if each person tells the others (using human con-
versation) a public key for his or her machine, they can then use something
like the Needham-Schroeder-Lowe protocol [27] (over the insecure network)

Preprint submitted to Elsevier 16 December 2010



to establish secure and authenticated communication. (If there are more than
two participants then they would either have to adapt that protocol or to use
it multiple times.) They will have bypassed the intruder for the crucial step
of exchanging electronic identities.

The problem with that approach is that it requires too much human effort for
practical purposes. In this paper we introduce some much better methods. The
danger of combinatorial attacks means that we require more subtle analysis
than with traditional authentication protocols, but develop two principles and
the concept of a digest function that together lead to the development of
efficient protocols.

Our protocols were, in the main, developed before we were aware of several
other recent (pairwise) protocols reported in [21,22,37,8]. We compare ours
against these others, comparing both the amount of human and computational
resources required by the different styles.

We introduce a number of different protocols in this paper that are suitable for
many different sizes and types of group, all the way from pairwise connection
between the systems of people who completely trust each other, to a lecture
theatre full or more, for example. This, and the range of potential implementa-
tion technologies, mean that in this paper we largely abstract away the details
that are not immediately important to security. We also have imagined that
there is a preliminary and insecure group set-up protocol (implementation de-
pendent) that is run either before or simultaneously to the first messages of
the secure protocol.

This paper is organised as follows: in the next section we give some arguments
as to why this class of protocols is important, show how protocols for this type
of scenario can be vulnerable to combinatorial attacks, and analyse how others
have solved this problem. In Section 3 we introduce a class of efficient group
formation protocols that rely on trust and which seem particularly appropriate
for a user’s equipment to set up secure communications with a group of simple
devices. In Section 4 we show how to build groups securely even when corrupt
participants are present in the group, using extra computation to dispense
with the need for trust. We then analyse the requirement of the digest function
our protocols use and suggest some implementations. Finally we analyse the
relative efficiency of our protocols and those of [21,22,37,8], and look to future
verification work.

Contribution

The original contribution of this paper is firstly represented by the proto-
cols we introduce, which efficiently solve a problem that we believe to be of

2



great practical importance. The second main contribution is the creation of
efficiently computable digest functions that share some similarities to short-
output uniform families of hash functions and universal hash functions as
originally defined in [38,11], that can be considered perfect for cryptographic
purposes.

2 Background

The use of public key infrastructures, trusted third parties, or shared secrets
will be anywhere from inconvenient to impossible in emerging pervasive com-
puting applications. Equally, even when these are present they frequently only
identify nodes by their ID fields – often completely inappropriate in the world
of lightweight, human-driven communication. We are much more likely to iden-
tify the intended participants by some aspect of their context: for example a
node’s human user or its physical nature and position.

This has been recognised in the development and popularity of the Bluetooth
protocol, though this has been recognised as having significant security flaws.
Unfortunately it has the weakness of only being usable in (usually local) situ-
ations where there is a secret shared password, and is subject to severe off-line
password guessing attacks [23].

It has been widely realised that it is impossible to bootstrap security from
nothing. Nevertheless, as we have discussed above, it is necessary to be able
to bootstrap it from minimal assumptions. So what is it reasonable to assume
exists prior to an attempt to acquire a high-quality security? There have been
(at least) two separate approaches to this. One is to assume that the pair
of parties, who are seeking to exchange a strong secret key, already share
some short or low-entropy secret such as a password. The other assumes the
existence of a low-bandwidth empirical channels that are not susceptible to
spoofing, though they are liable to be overheard or blocked by the intruder. 1

Based on either assumption, the parties can agree on a strong shared secret
from scratch.

The first method, which is based on possessing a shared password, has been
studied extensively in the last decade. Bluetooth itself is such a protocol, but
a weak one as discussed above. The community then came up with various
formal frameworks presented in [3–5,9,10] by Bellare, Pointcheval, Rogaway,

1 In the presence of blocking and overhearing, and the absence of spoofing, there
is a further question: is the channel delayable. We will assume that these channels
are not substantially delayable in the sense that a message blocked in one protocol
run can be delayed until a subsequent one.

3



Canetti, and Krawczyk and others that focus on preventing off-line dictionary
attacks that Bluetooth allows in [23]. These ensure that the only way that
an attacker can find out whether his random guess of the password is correct
or not is by interacting with the legitimate player. Typically these reduce the
probability of a successful attack to that of guessing the password correctly in
a single trial.

The need to keep the password secret in these precludes their use in scenarios
subject to eavesdropping, including the most remote ones since the password
cannot be transmitted without pre-existing security that would render the
protocol redundant.

Taking a different approach that makes use of the empirical channel, in [12–
15] Roscoe, Creese, Goldsmith, Zakiuddin and others attempted to form a
secure network for both two-party and multi-party scenarios. However, as
shown below, their scheme is vulnerable to a combinatorial attack, related
to the birthday paradox. There has been also other work that concentrates
on two-party protocols, presented in [21,22,37,8,2,16] by Hoepman, Vaudenay,
Balfanz, Gehrmann, Mitchell, Nyberg and others.

2.1 Combinatorial attack on a group formation protocol

The following protocol was originally proposed in [14], where shorthash and
longhash are hash functions with short and long outputs, respectively.

Group protocol of Creese, Roscoe, and others

1. ∀A −→N ∀A′ : A,PkA, NA

2. ∀A −→N ∀A′ : {all Messages 1, N ′
A}PkA

3a. A displays : shorthash({all Messages 2d}), number of processes

3b. ∀A −→E ∀A′ : users compare hashes and check numbers

4. ∀A −→N ∀A′ : longhash({all Messages 2d})

Here, ∀A means that a message is sent or received by all parties in the group
G who attempt to achieve a secure link between their laptops or PDAs. PkA

stands for an uncertificated public key for A. The superscript Message 2d

represents the decrypted content of Message 2. In addition, Message 4 in this
protocol does not add any extra security to the scheme, its presence only aims
to provide a confirmation on the shared secret information.

The protocol uses two types of channel:

4



• −→N , the normal Dolev-Yao network where all messages transmitted be-
tween the laptops in this channel can be overheard, deleted or modified by
the intruder.

• Whereas −→E indicates the low-bandwidth empirical channel, typically im-
plemented by human users, which is similar to the authentic channel used
in [21,22], and not susceptible to spoofing.

This protocol introduced, implicitly, the first of two principles which underlie
the new protocols we will be describing in this paper:

P1 Make all the parties who are intended to be part of a protocol run empirically
agree a short-output hash or digest 2 of a complete description of the run.

In all the protocols we introduce in this paper, the “complete description of the
run” is identified with INFOS, the collection of all the information that any
member of the group wishes to have authenticated to it: the concatenation
of pairs of the form (A, INFOA). Once the agreement required in P1 has
occurred then, unless there is a hash or digest anomaly – different nodes in
the group computing the same hash value or digest from different antecedents –
then all the parties agree on all the data transmitted during the protocol.

We can state the impact of P1 in the following theorem. In this, A is the
name of a node that it uses electronically, whereas α and β are the identities
of nodes as perceived in the human world, formally through the outgoing
empirical channels they have. A identity of this second sort might be the
human user of the node or some composition of position and nature. One of
the main purposes of our protocols will be binding “logical identities” such as
A to “empirical identities” such as α.

Theorem 1 (1) Suppose that, in a given protocol, a pair α and β of trust-
worthy nodes empirically agree on a hash value that node α has computed
as hash(INFOS), where INFOS includes (A, INFOA) and no other
binding to the name A. Then if β fails to bind INFOA to A then there
is a hash anomaly.

(2) Suppose furthermore that α would not have agreed the value unless its
own binding was present in INFOS, and that all other bindings than
(A, INFOA) are inconsistent with them being associated with α, then in
the absence of a hash anomaly β can reliably bind (A, INFOA) to α.

Proof. The proof of part (a) is obvious.

The assumption in Part (b) is that each (A, INFOA) contains information

2 A digest function here means a type of short-output hash function that we will
formally specify in Section 3 and analyse in Section 5.

5



that allows the human user to correlate it with potential empirical nodes such
as α. 3 The proof of part (b) then follows since we know that α has announced
some logical identity for itself, and none other than A are possible. Of course,
if the information attached to A is also inconsistent with α, then β can deduce
that α is not reliable.

Since all our protocols will make use of P1 and this theorem, we need not worry
further about the distinction between logical and empirical nodes: these allow
the creation of reliable methods for binding one to the other.

The question that remains with the protocol above is, therefore, whether a
hash anomaly is possible. Since the short hash values in Messages 3a are
compared manually by human effort, and not by computer, the length of the
short hash can only be up to a few digits or characters. It turns out that
it is not hard for an intruder, in a limited amount of time, to search for a
collision that might cause the parties to agree on different secret information;
and thereby to force an anomaly in the sense described above.

The attack can be described as follows: the intruder will run two parallel
sessions with two subsets S1 and S2 that partition the group G of N parties.
During the two parallel runs, the intruder impersonates all parties of subset
S1, by modifying messages sent from subset S1 with different public keys where
she knows the corresponding secret keys, to talk to parties in the other subset,
S2, and vice versa. Therefore, any one in the group G is still thinking that
s/he is running the protocol with the other (N − 1) parties. The intruder
only allows messages to be passed unaltered within each subset, but when a
message is intended to go across the boundary between the two subsets its
content will be changed appropriately.

If S1 = {A,B,C}, S2 = {D,E}, and {N ′
A, N

′
B, N

′
C , N

′
D, N

′
E} are the original

nonces randomly created by all the parties in Messages 2 then the adversary
creates shadow copies of these nodes A′–E ′ as shown in Figure 1, and has to
generate corresponding nonces {N ′′

A, N
′′
B, N

′′
C , N

′′
D, N

′′
E} for their Messages 2. It

seeks to choose these values so that

shorthash(N ′
A, N

′
B, N

′
C , N

′′
D, N

′′
E) = shorthash(N ′′

A, N
′′
B, N

′′
C , N

′
D, N

′
E)

3 This explicitly means that each INFOB contains information that may indicate
that B is likely to be associated with an empirical node β, or may indicate that it
cannot be β if β is trustworthy. For example: if INFOB says that its empirical user
is Bill, then it is likely but not certain it is the Bill we want to connect to, but if
the person we want to connect to us called Long, then we know that B does not
belong to Long.

6



Fig. 1. Birthday attack on a short hash, where the continuous and dashed lines
indicate the Dolev-Yao and empirical channels respectively.

This can be done by picking the nonces N ′′
A, N

′′
B, N

′′
D randomly and then, based

on the birthday paradox, the intruder can search for values of N ′′
C and N ′′

E such
that the hashes come out to be equal to each other. This search, shown in the
figure, can be expected to take time proportional to

√
H, where H is the

number of different short hash values.

If we are to attain our goal of optimising the amount of security obtained from
a given amount of empirical communication (essentially hash width) we need
to eliminate not only birthday attacks like this one but also ones in which
the intruder is able to achieve something if a basic combinatorial search for
a value v such that hash(v) = x succeeds, where x is fixed. Normally, where
cryptographic hashes are used, we choose them long enough so that this type
of attack is pointless (the property of collision resistance); we are going to
have to devise protocols that offer the adversary no opportunity to carry out
searches of the types discussed above.

This example also illustrates that in creating and analysing protocols that
deliver strong security for a minimum of empirical communication, we will
need to go beyond the style familiar from the Dolev Yao model where all
answers tend to be clear “secure” or “insecure”, but is likely to lead to subtle
quantitative reasoning.

2.2 Other peer-to-peer key exchange protocols

In [2,16], Balfanz, Gehrmann, Mitchell and Nyberg proposed two protocols for
key exchange. Both of the schemes, however, require a large number of bits to
be communicated over the authenticated channel and to be compared manu-

7



ally by using human effort. Taking a further step, in [21,22,37,8], Hoepman,
Vaudenay, and Čagalj proposed protocols that can get around the problem of
the bandwidth of the authentic channel. They all share many similarities: for
example, all of them concentrate on the case where there are two parties in a
peer-to-peer network. In addition, they contain the idea of pre-committing two
parties to some random secrets by sending the corresponding cryptographic
hash, in [21,22], or the output of the commitment scheme, in [37,8], to each
other at the start of the protocol.

In [21,22], Hoepman required each party to compute and manually compare
two short authenticated strings that are transmitted over the empirical chan-
nel:

Hoepman pairwise two-way authentication protocol

1. A −→N B : longhash(gxA)

1′. B −→N A : longhash(gxB)

Where xY is randomly picked by Y

2. A −→E B : shorthash(gxA)

2′. B −→E A : shorthash(gxB)

3. A −→N B : gxA

3′. B −→N A : gxB

A and B recompute to verify the long and short hashes.

A and B then share the key k = gxAxB

This is not optimal in the amount of work required by the humans implement-
ing the empirical channel, since the same amount of security (i.e. improbability
of a successful attack) can be obtained in several ways by them comparing a
single string of the same length. We will give two methods for doing this later;
a further one has been devised by Vaudenay [37], and adapted by [8]. Vaude-
nay and Čagalj require a commitment scheme 4 that is at least as secure as

4 The commitment scheme used in this protocol consists of two functions. c ‖ d =
commit(RA, INFOA) and INFOA ‖ RA = open(c ‖ d). The combination of two
pieces of data will frequently be written x ‖ y, this will be synonymous with the
ordered pair (x, y). RA is a short random nonce generated secretly by party A. A
intends to bind RA and INFOA together without revealing RA by publishing the
commitment c. Eventually sending d (the decommitment) reveals RA, and binds
this value firmly to INFOA in the eyes of the receiver. As RA is a short random
nonce, the party A needs to extend RA by adding extra random bits so that the
security of the scheme in term of both binding and hiding is equivalent to a standard
cryptographic hash function.

8



a standard cryptographic hash function. 5 By this we mean that it must be
computationally infeasible to find, with greater than infinitesimal probability,
collisions, or inverses to the “commit” values. It should therefore be assumed
that these values are as hard to compute as, and have as many bits as, a strong
cryptographic hash.

Vaudenay, in common with several other authors in this area, writes the jux-
taposition of two pieces x and y of data as x ‖ y: therefore we use this notation
when discussing their protocols. We do not use this notation in our own pro-
tocols because of the potential for confusing this notation with its common
use as a parallel operator.

Vaudenay pairwise one-way authentication protocol

1. A −→N B : INFOA, c

Where c ‖ d = commit(INFOA, RA),

RA is a short random nonce of A.

2. B −→N A : RB

3. A −→N B : d

B computes RA = open(INFOA, c, d)

4. A −→E B : RA ⊕RB

B verifies the correctness of RA ⊕RB

Note that the final value compared in this protocol is the XOR of the short
entropies devised by A and B. In particular it does not depend functionally
on the information INFOA being sent; in other words it does not follow our
principle P1. The guarantee of authenticity of INFOA that this protocol
delivers is as a consequence of:

• The fact that this exchange guarantees the value for RA that B has discov-
ered from the commit scheme is the one that A intended.

• The way the commit scheme has strongly bound INFOA to RA at a point
where RA is itself unknown to any attacker.

We will see in Section 6 that this indirect binding of INFOA to the final
agreement makes this protocol relatively expensive relative to others we will
introduce.

5 We note that there is a lack of explicitness in the specification of the commitment
scheme in [37], since the security specification there fails to bind it to the message
m, as was obviously intended. The definition there is satisfied by commit(m, r) =
Hash(N, r) = c, and open(m, c) = (N, r), for N a fresh nonce.

9



In this paper, we shall extend the idea of [12–15] in constructing an arbitrary-
sized secure network, but without the trustworthiness of the entire network.
We also believe that the degree of security obtained is essentially optimal for
the amount of empirical (human) communication required.

In the mean time, we also try to reduce disadvantages of [21,22,37,8] with
respect to efficiency when it comes to implementing the commitment scheme
and computing the long and short hashes, or digests.

3 Some protocols for bootstrapping groups

We will introduce our protocols in order they were discovered. The ones pre-
sented in this section are based on one discovered by Roscoe in June 2005. 6

All the protocols we propose in this paper use the principle P1 to bind
(A, INFOA) to empirical identities. It follows that, to achieve this, all we
have to do is to avoid hash or digest anomalies. Our reasoning about these
protocols below is mainly confined to this as Theorem 1 then establishes the
main property we want. In particular, as stated earlier, this means we do not
need to reason about the relationship between empirical and logical nodes,
though of course the (A, INFOA) have to contain sufficient information to
allow the mechanisms assumed by Theorem 1 to occur.

There is a slightly grey area for protocols building groups of more than 2:
should we or should we not be content if the presence of a corrupt party in a
group means that communications that result between trustworthy members
of the group are themselves compromised? In some of the circumstances where
we may wish to use ad hoc group formation protocols it would be much better
if the protocols were tolerant of corrupt members. We will therefore be careful
about our assumptions on this front.

It is obvious that any protocol which creates a shared secret is at least par-
tially compromised by the presence of a corrupt participant. However protocols
which merely authenticate public-key-like information to nodes are not glob-
ally compromised in the same way: they could be said to be establishing a
local PKI.

In this section we will assume that there is one participant I in the protocol
whom all agree is trustworthy. This could be because all participants are known
to be trustworthy, because I has some special status amongst them, or because
I is the only one requiring authentication. I will be called the “initiator”, and
the other nodes will be termed “slaves”. We will first give a protocol that is

6 In the notation of this section, that was HCBK3.

10



designed for the case where there are empirical channels both from all nodes
to I and from I to all nodes. (It will be obvious that in some aspects the
protocol might work more naturally if there were empirical channels between
all nodes.)

A crucial component of this and subsequent protocols is a digest function
that takes two arguments: digest(k,M). The first is a key that we will try to
ensure varies randomly over a large space. The second is the data that is being
“digested”, typically the aggregate of all the information that is published
by the nodes in the protocol, as suggested by Theorem 1. The width of the
digest b (i.e. the number of bits it produces) will always be the number we
want to communicate along the empirical channel. Therefore we will seek to
minimise b subject to obtaining a given measure of security. Of course, avoiding
hash/digest anomalies will always be something that we can only do up to a
certain probability, since a pure guess will have a 1 in H chance, where H = 2b.
What we want to do is to ensure that as the key k varies:

(1) digest(k,M) is uniformly distributed for any fixed M .
(2) And for any fixed θ and M 6= M ′:

Pr(digest(k,M) = digest(k ⊕ θ,M ′)) =
1

2b

The rationale for these two specifications will become apparent when we anal-
yse the protocols we introduce below.

We will assume for the time being that we have a digest function meeting this
specification, or at least one that meets it up to some notion of cryptographic
certainty. We will show how to implement such a function in Section 5.

We now describe our first protocol that avoids hash/digest anomalies. In the
following S represents a typical slave node, A a typical node (either I or S),
longhash is a strongly collision-resistant and inversion-resistant hash function
and digest is a digest function as described above. init(I, A) is true if I = A
and false otherwise.

Hash Commitment Before Knowledge, HCBK protocol

0. I −→N ∀S : I

1. ∀A −→N ∀A′ : (A, INFOA)

2a. I −→N ∀S : longhash(kI)

2b. ∀S −→E I : committed

3. I −→N ∀S : kI

4a. ∀A displays : digest(kI , INFOS), init(I, A)

4b. ∀A −→E ∀A′ : Users compare and check presence of I

11



The meanings of these messages are as follows:

• Message 1 publishes the information that all the nodes want to have at-
tached to them, via the insecure channel. Therefore they do not know upon
receiving it that it is accurate.

• Message 2a has I devise a key kI with sufficient entropy that longhash(kI),
which it publishes here, has no more than an infinitesimal likelihood of any
combinatorial attack on it succeeding.

• Message 2b has all the slaves communicate to I over the empirical chan-
nel 7 that they have received Message 2a and are therefore committed to
their final digest value (though none of them know it yet).

• Message 3 has I publish the key kI after it has received commitments from
all members of the group over the empirical channels. All slaves now have
the duty to check if the values of Messages 2a and 3 are consistent.

• Message 4a has all the nodes compute what should be the same digest
value.

• Message 4b has them compare these values: this could be done either
through the single point of contact at I or more generally. Once a node
knows that all have agreed this value it has completed the protocol and
can enter group mode. It also guarantees that one of the nodes doing the
agreeing has been playing the initiator role.

3.1 HCBK protocol analysis

Thanks to Theorem 1, all we have to show is that our protocol prevents
hash/digest anomalies.

(1) Digest anomalies are not impossible, since the intruder can partition G
into two parts, and feed both of them different sets of values. It would
then act as an empirically silent “initiator” in one of these subgroups.
Picking a random value for the key will give the intruder a 2−b chance of

7 The commitments must be transmitted over the unforgeable empirical channel
because if it were not the case then the intruders could stand in the middle of the
network to block all Messages 1 and 2 sent between the initiator and the slaves, and
to fake the commitment signals from these slaves to the initiator. Once I hears the
faked commitment signals, it then reveals the secret hash key kI to the adversary,
who now can start another run with all the slaves, the adversary will play the role
of the initiator in the second run, but because it knows the hash key, and therefore
it can constructively manipulate the information in messages 1 and 2 for his own
purposes such that the final digest values of both the slaves in the second run and
the real initiator in the first run come out to be the same, even though they have
different antecedents. This attack is similar to the one described in details in the
appendix.

12



the two digest values agreeing, thanks to the specification of the digest
function. Our hope is that it is impossible for an attacker to have a better
chance than this. To demonstrate this we analyse the positions the various
nodes are in when they first become committed to their final digest value.

(2) I is committed when, following its acceptance of Messages 1, it creates the
key kI . A slave S is effectively committed once it has accepted Message
2a, even though at that stage it cannot know what the digest value is. For
it has all information other than kI , and it has longhash(kI), meaning
that there is no better than an infinitesimal chance that it will accept a
different k′I in Message 3.

Thanks to the first part of the definition of a digest function, no party
other than the initiator can know the final digest value it will use with
any certainty at all: as far as they are concerned this value is still drawn
from a uniform distribution over all digest values.

(3) So let us examine the state the network is in just before I publishes kI in
Message 3. The trustworthy node I is the only one that actually knows
enough to compute the final digest – in particular no intruder can know
the digest value dI that I will compute in Message 4a. Furthermore, I
knows – and therefore we know – that each slave S has been committed
to some final digest value dS. Some or all of the dS may be different from
dI , and even equal ones may be based on different antecedents. But since
all of the slave nodes S know the second argument INFOSS to their use
of digest before the intruder knows kI , it follows from the specification
above that, unless INFOSS = INFOSI , the probability that dI = dS is
2−b.

(4) It follows that if, in Message 4, the various nodes go on to compare
precisely these values and two of them have different values for INFOS,
no matter what the intruder might have done, it will give him no better
than the 2−b chance that we have aimed for of them digesting to the same
value.

(5) There is still one potential avenue of attack open: can the intruder change
the mind of one or more participants about the final digest value so that
it equals the others. The only way it could do this would be to make
them abandon this run and bring them to the point in a subsequent run
where they are ready to agree the final digest.

This would be impossible with the initiator. I is the final determiner
of its own digest value by constructing kI . So re-starting it would not
give greater than 2−b chance of achieving any particular value. Also, and
conclusively, the initiator expects to get empirical signals in Message 2b
from the slaves, and these would not be available from the slaves.

On the other hand, if a slave S could be re-started after dI was known,
then the intruder could perform a combinatorial search for a value k′I
which would yield the digest value dI (with the combination of INFO′

A

of which he wants to persuade S), then a potential attack is open provided
the second empirical Message 2b from S to I can be blocked. This would

13



lead to an attack. 8 We therefore make the following specification for the
implementation of the protocol:

The implementation must be designed so that agreement is impossible
between final digest values other than those whose commitment has been
signalled by the Messages 2b that I received.

The most obvious way of achieving this is via timing limits: an upper
bound on the time between I sending Message 3 and agreeing Message
4, and a lower bound between I receiving a Message 2b from S and S
sending another Message 2b. One could also use run numbers that are
included in empirical communications, but of course that would add to
the empirical effort.

On the assumption that the above is achieved, we conclude that the
nodes will never seek to agree final digest values to which they were
committed later than the issue of Message 3 by I. Therefore our protocol
achieves its goal of limiting the chance of a successful attack to at most
2−b.

3.2 Modified versions of HCBK

We will call the above protocol HCBK1, standing for Hash Commitment Be-
fore Knowledge, the principle on which it works. Recall its goal: to agree a set
of information of the form {(A, INFOA) | A ∈ G} amongst the members of
G, and hence authenticate each such INFOA belonging to a trustworthy A
to the node that is declaring it.

If the nodes are programmed to allow any size of group, there is nothing to stop
a node controlled by the intruder joining into HCBK1. The result would be
that the members of G have some INFO for nodes that are outside the group
defined by the empirical channels. This is fine provided they do not assume
that all the nodes that have participated in the run are in the intended group,
or a check is performed after the run.

An alternative, which only makes sense if all the nodes in the group are as-
sumed to be trustworthy, is for each node to check that the number of partic-
ipants corresponds to the expected number. Since each one is present, it then
follows no-one else is. We will call this protocol HCBK2.

If each INFOA contains a way of sending A data privately, say a public
key (which needs not be certificated or long term) or a Diffie-Hellman token,
then we could replace the broadcast Message 3 by some means of propagating
kI securely. This could take the form of a separate message from I to each
S, or some tree of propagation amongst the S rooted at I. Upon successful

8 For details of the attack, please see the appendix.

14



completion of the protocol the group would then have a shared secret, namely
kI . Since it is vital that a shared secret is not shared with untrustworthy nodes,
variants of this form are only useful on the assumptions that (a) all members
of G are trustworthy and (b) that the number of participants is checked as in
HCBK2. Clearly this represents a class of potential variant protocols, but we
name them all under the heading of HCBK3.

This protocol works because, following its successful completion, we know
(with likelihood 1−2−b) that kI has only been sent to trustworthy participants,
namely it really is a secret unknown outside the group G.

Recall that these protocols depend crucially on the initiator I being trustwor-
thy: a corrupt initiator could use a birthday attack essentially like the one we
described earlier.

One situation where this is definitely not an issue is when the slave devices
themselves have no need of security, as when the user of the initiator is seeking
to connect his or her laptop to a number of wireless peripheral devices. That
person must be sure that the connection is precisely to those devices that are
trusted because of their context, labelling etc. In that case there is no need
for empirical channels from the initiator to the slave devices. All we require
is that these devices can signal the initiator (probably via some display that
the initiator’s user can see) to convey Message 2b and the digest value from
Message 4.

This would work for all three of the variants described above: HCBK1, 2
and 3. We will call the resulting, simplified protocols AHCBK1,2 and 3, on
the grounds that they are definitely asymmetric. (The original protocols are
neither properly symmetric, thanks to the role of the initiator, nor asymmetric,
since their overall goals are symmetric.)

4 Symmetrised group protocol

The main protocol we present in this section was devised by the authors in
February 2006.

The protocols in the previous section all rely crucially upon I being trustwor-
thy: what are we to do if there is no node that is uniformly trusted or it is hard
to select one, but we still want a local PKI which authenticates the INFOAs
of all trustworthy nodes? What we would like to achieve instead, is that a suc-
cessful run of the protocol correctly authenticates all the trustworthy parties
to each other irrespective of what the others may have done.

15



In order to do this we identify the following second principle, derived from the
design of HCBK1:

P2 A node A is safe from effective manipulations of its final hash or digest d
to equal others in a hash anomaly provided that there is a point at which
the following things are both true.

(a) A is committed to its final value d = digest(k∗, INFOS), though it may
not yet know it.

(b) There is a value kA which A knows, randomising the calculation of k∗,
which (i) no other party can know and (ii) no other party can have used
in the protocol in a way that has influenced A’s final digest d.

Note that this is true of the initiator I and the value kI in HCBK1 at the point
where I has just sent Message 2a. In that protocol I is completely committed
to its digest at the point longhash(kI) is revealed, so no other node can have
used longhash(kI) in a message; the purpose of clause (ii) above will become
apparent later when more than one node is responsible for the value of the
digest key.

Before we can establish anything formally, we need to be precise about the idea
used above that kA randomises the calculation of k∗. We will assume that A
calculates k∗ by some formula from kA and perhaps some values communicated
to it by other nodes in the protocol – necessarily values it is committed to at
the point discussed in P2. Thanks to assumption (b)(ii) we know all those
values are independent of kA. What we mean by “randomises k∗” is that if kA

varies uniformly and randomly across its range then k∗ also varies uniformly
and randomly across its own, for other values being fixed.

The most straightforward way of achieving randomisation is for A to calculate
k∗ as the XOR of the set of kA’s it wants to construct it from.

The fact that this definition is symmetric is an advantage in group protocols
because it does not matter what order each node records the same group in.
From here on we will assume that this XOR method is used, and in fact we
have already taken account of this in the definition of a digest function: it lies
behind the “⊕ θ” in the second part.

In HCBK, P1 applies to the initiator relative to kI , which is the only contribu-
tor to the final digest key. That protocol relies on much more subtle reasoning
in respect of the slave nodes, as shown by our reasoning in the previous section
and the principle of Messages 2 and 4 being aligned that we had to adopt. If
the slave nodes had been able to follow P2, there would have been no need
for this.

Our second sort of protocol is designed so that all nodes can rely independently
on P2. Therefore each node will now need some value made up specially for

16



this purpose, which is fresh and unpredictable. Let us call this value kA. The
protocol is now:

Symmetrised HCBK protocol

1. ∀A −→N ∀A′ : A, INFOA, longhash(A, kA)

2. ∀A −→N ∀A′ : kA

3. ∀A −→E ∀A′ : users compare Digest(k∗, INFOS)

where k∗ is the XOR of all the kA’s for A ∈ G

The following notes explain these messages.

• Message 1: introduces the information, INFOA, each party A wants to
authenticate and a long hash of its key kA. The identity A is included in this
longhash to ensure that the intruder posing as C 6= A cannot simply copy
A’s key kA by copying its longhash value to negate A’s randomising effect
on k∗, which leads to a reflection attack. 9 After this message each node
should have all the information it requires about the other nodes except for
the values kA, and furthermore should be committed to each of these values
in the sense that when told the kA’s it will be able to check each one.

At the point when the sending and receiving of this message is complete,
it follows that every node A is committed to some final digest value dA,
knows one of the antecedents (kA) of this final digest that no-one else does.
It is certain at this point that no party other than A can know the final
digest – and very likely that A doesn’t know it either. The distinction be-
tween being committed to a value and knowing it is immensely important.
From this we know that P2 applies.

• Message boundary: There has to be some moment at which a node de-
cides it has finished inputting new Message 1’s. This might be determined
by some timeout, or some message sent from one of the nodes (empirically
or over the general network). It is clearly in nodes’ interest that they all
make correct decisions on this, for otherwise they will not agree. One can
imagine them attempting to synchronise by agreeing on a hash of the Mes-
sage 1’s they know about over the Dolev-Yao channel: that might well serve

9 We could build a check into our protocol by saying that no node A accepts its
own value of longhash(kA) from another user, however, putting the name in makes
it clearer. The same reflection attack was also reported in the papers of Čagalj and
others [8], and that is why their pairwise protocol concatenates a single bit (0 and
1) in front of each INFO. The same thing is done with the two-way authentication
scheme of Vaudenay [37], but he did not make it clear why. Fortunately, the reflection
attack does not work against HCBK as there is only a single cryptographic hash
generated by the initiator, longhash(kI).

17



a useful purpose since it would guard against involving humans in empirical
communication when there is no point.

Whatever mechanism they choose does not matter provided it does not
involve them revealing the keys kX ’s to each other. For it is absolutely vital
that none of them accepts any further Message 1 after its own key kX is
revealed.

• Message 2: Each node broadcasts its unguessable key to all other nodes
once it is committed to its final digest value. Having received all these keys,
each node can check the correctness of all the long hashes received from
Messages 1. If there is any thing unmatched regarding the long hash values,
the node will abort and presumably tell the rest of the group that this has
happened.

Essentially these broadcasts expand the longhashes of the Messages 1 into
something the nodes can understand.

• Message 3: has the members of G display and compare the value of digests
through the empirical channel. Notice that, like both the previous protocols
we have considered, this digest follows P1 and includes the whole data of
the protocol.

4.1 Protocol analysis

We shall call this the SHCBK protocol, for Symmetrised Hash Commitment
Before Knowledge. The final result is that the members of G are authenticated
to each other as the owner of the information they have introduced. In order
to prove that the protocol securely achieves its goal of authenticating the
(A, INFOA)s, it is thanks to Theorem 1, that we prove the following theorem.

Theorem 2 Suppose a protocol calls for the agreement on the digest value
d = digest(k∗, INFOS). Suppose further that the trustworthy node A makes
a contribution kA towards its own calculation of k∗A via XOR, and that each
other trustworthy node B calculates its k∗B as a similar XOR.

Then if P2 applies to A and the value k∗A then the likelihood that
digest(k∗A, INFOSA) = digest(k∗B, INFOSB), for a second trustworthy node
B for which (k∗A, INFOSA) 6= (k∗B, INFOSB) is 2−b.

Proof. As we have argued above, whatever other (dishonest) nodes pick for
their kC ’s, these values cannot be related to either k∗A or k∗B, thanks to the use
of XOR and the identities included in longhash(A, kA) and longhash(B, kB)

18



in Messages 1 that avoid a reflexive attack. 10 As a result, the actual values of
both k∗A and k∗B are uniform random variables whose values no node knew at
the point where they agreed to finish inputting the first messages.

Clearly the intruder cannot prevent A having kA in its XOR, nor can it prevent
B from having kB. It can, if it chooses prevent one or other of A and B having
the other’s key in the set it XORs. It is easy to see that unless it allows them
each to have the other’s key the values k∗A and k∗B are themselves independent
uniform random variables as kA and kB vary. In this case, by the first part of
the specification of a digest function, the digest values digest(k∗A, INFOSA)
and digest(k∗B, INFOSB) are independent with the probability of 2−b of being
equal whether INFOSA and INFOSB are equal or not.

So we can concentrate on the case where each gets to see the other’s key. In
that case, there is no need for the intruder to allow A and B to see the same
set of other kC ’s. If all other nodes are under the control of the intruder, we
will have k∗A = kA⊕kB⊕φ and k∗B = kA⊕kB⊕ψ for values φ and ψ controlled
by the intruder. So there will be a value θ = φ ⊕ ψ, independent of kA and
kB and possibly picked by the intruder such that k∗A = k∗B ⊕ θ as these values
vary randomly.

The probability that digest(k∗A, INFOSA) = digest(k∗B, INFOSB) when
INFOSA 6= INFOSB is then 2−b by the second part of the digest specifica-
tion, presented in Section 3.

Note that this result, coupled with Theorem 1, establish that B should be
in a position to associate (A, INFOA) with the empirical identity that owns
A confidently, even if nodes other than the two of them are not trustworthy.
Thus SHCBK does indeed authenticate the INFOA’s of trustworthy nodes to
each other even if corrupt nodes are in G.

It is important to note that our protocols do not supply evidence that nodes
are trustworthy: mutual trust has to be brought into the protocol from outside,
or possibly be established subsequent to the protocol run based on nodes’ later
communications.

Calling the basic protocol SHCBK1, it can be extended by a count of nodes to
create SHCBK2 for the case where all nodes are assumed to be trustworthy.
Asymmetric versions are also possible; they use more computational effort
than the asymmetric versions of HCBK, but avoid the commit signals required
there.

10 In fact, of course, the intruder can use any function derived from A’s or B’s own
longhash, as a kC , but since it has no way of relating these longhashes back to kA

and kB, such values are no better than independent for cryptographic purposes.

19



5 Digest functions

The specification of the digest function given in Section 3 has similarities to
universal hash functions originally proposed by Carter and Wegman in [11,38]
although our specification is more restrictive because of the presence of θ (the
two definitions are the same if θ is fixed to 0). 11 However, there does not
seem to have been much work on the short-output universal hash functions
and trying to exploit short outputs to decrease the amount of computation
compared to calculating long-output hashes. Most work on cryptographic hash
functions concentrates on ones that are collision- and inversion-resistant: these
properties are not required of our digest functions, which is just as well since
the low number of output bits render them unachievable.

What we are going to do in this section is to give a very brief analysis of
what has been done in the literature in constructing functions with similar
purposes. We then move on to propose our own ideal digest framework, and
develop ideas for efficiently implementing it in both hardware and software
using pseudo-random number generation (PRNG).

5.1 Background information

There are some important points we wish to make about the computation
of the digest values. In order to make things simple and secure, the parties
need to sort all of the pairs {A, INFOA} in alphabetic order say, before they
concatenate all of them into INFOS. It is also normal to require that all the
names A and public keys (if in INFOA) are distinct.

Our second comment relates to the randomising effects of the digests. It would
be a great mistake to compute digest(k∗, INFOS) as some function of k∗ and
some similar length digest′(INFOS), which it might be tempting to do. This
is because an intruder could then – during the exchanges of Message 1 –
manipulate the sets INFOSA heard by the different nodes A provided they
will all compute the same digest′(INFOSA). The fact that the intruder cannot
predict at this stage what the final digests will be (not knowing k∗) would be

11 Our style of use of digest functions is very different from that of [38,36] since
our keys vary dynamically and randomly at run time, whereas in the calculation
of message authentication codes (MACs) they are fixed for all time. As has been
demonstrated in the proof of Theorem 2, the way in which our keys are agreed
between nodes at run time can be manipulated by an attacker in a way that means
that different nodes’ keys may be relatively shifted by a θ known to the attacker.
The inclusion of the θ shift in our definition of a digest is to ensure that this type
of activity can never benefit the intruder.

20



irrelevant, since it would know they will all calculate the same value. As a
result, what we need to compute is the keyed digest of INFOS with respect
to key, k∗, with k∗ fundamentally embedded in the calculation.

With this in mind, a number of different schemes for computing the digest
values have been proposed by Pasini, Vaudenay, Gehrmann and others in
[31,16,7]. Pasini, Vaudenay, Gehrmann in [31,16] as well as the Bluetooth
white-paper [7] suggested the following scheme:

Digest(k∗, INFOS) = truncb (hash(k∗ ‖ INFOS))

where hash is a cryptographic hash function such as SHA, TIGER or a block
cipher such as DES. The truncb() function truncates to the leading b bits.
We make two observations about this. The first is that the definition of an
inversion- and collision-free hash function does not normally specify the dis-
tribution of individual groups of bits: if h(x) is such a function then so is
h′(x) = 〈1〉b.h(x), which would clearly be useless in their protocol as ∀x and
∀k∗ we have:

Digest(k∗, x) = trunc(h′(k∗ ‖ x)) = trunc(〈1〉b.h(k∗ ‖ x)) = 〈1〉b

It follows that the standard specification of a hash function is useless in es-
tablishing that the above function comes close to our specification: a specific
analysis would be required for any particular function proposed. The second
observation is that computing a longhash that operates on long words is cer-
tainly expensive and does not exploit the short bit-length output of the digest
function. We will discuss the relative complexity of hashing and digests in
Section 6.

Taking a different approach, Gehrmann and Nyberg in [17] proposed using an
error-correcting code such as the Reed-Solomon code to construct the digest
function. This has the advantage of having a coherent mathematical structure
but on the other hand the algorithm limits the bit-length of the input message
to some fixed number such as 128 or 256. As a consequence, to digest any sig-
nificant amount of data, the algorithm must firstly compress the input message
into that number of bits by using a cryptographic hash which is inefficient as
discussed above. This feature also makes the scheme be potentially vulnerable
to attacks should the intruder find (off line) a collision on the cryptographic
hash. The reason for this weakness is that the input message is not entirely
linked to the key in computation as discussed in the second paragraph of this
section.

In summary, both these approaches rely on applying a standard hash function
to an object at least as large as INFOS, something which is much less efficient

21



than necessary. Their disadvantage will grow as the size of the group (and
hence the size of INFOS) increases, and this will be discussed in Section 6.

5.2 Matrix product construction of a digest function

Let us recall the formal specification of the digest function: as we vary the key
k∗, we always have:

(1) digest(k∗,M) is uniformly distributed for any fixed M .
(2) And for any fixed θ and M 6= M ′:

Pr(digest(k∗,M) = digest(k∗ ⊕ θ,M ′)) =
1

2b

In order to satisfy the above specification, we need to have the probability of
digest(k∗,M)[i] = digest(k∗ ⊕ θ,M ′)[i] be equal to 1

2
for i = 1, . . . , b when

M 6= M ′, and that the probabilities for different i are independent. 12 This
means that a change in any non-zero number of bits of M must have a distinct
random effect on every bit of the output. 13

Suppose we want to construct a b-bit digest of a (K − 1)-bit message M .
The first thing we do is to pad M with an extra 1-bit at the end, so its
length becomes K with Mk = 1. We can build an idealised digest function
as follows. Let us consider the following idealised framework: for i = 1, . . . , b
and j = 1, . . . , K, suppose that Ri,j are independent uniform boolean-valued
random variables (UBRV’s) based on k∗. 14 Using matrix product, we define:

digest(k∗,M) = M �R

where the symbol � represents the binary product of the vector M and the
matrix R. This is, of course, the same as the b inner products of M and the

12 digest(k∗,M)[i] denotes the ith bit of the digest value digest(k∗,M).
13 This requirement is similar to the strict avalanche criterion [1], used in the design
of S-Box of DES [39] and customised hash functions such as SHA or TIGER that
guarantees any single or multiple changes in input bits have a random effect on
every output bit.
14 For them to be truly independent k∗ would have to have far more bits than it
actually does. That is why we call this the idealised digest. In the ideal model we
will, for simplicity, identify the Ri,j with distinct bits determined by i and j of the
corresponding k∗. In practice we should aim to have them only subtly dependent,
and in ways that are impossible to predict without knowledge of k∗. We will discuss
this issue later.

22



columns of R. This is equivalent to

∀i ∈ {1, . . . , b} : di =
K⊕

j=1

(Ri,j ∧Mj)

and

digest(k∗,M) = [d1, . . . , db]

di is the ith bit of digest(k∗,M), and Mj is the jth bit of the input M .

Theorem 3 The definition above satisfies the specification of a digest function
provided that the Ri,j are derived from k∗ linearly (i.e. Ri,j(k

∗
1⊕k∗2) = Ri,j(k

∗
1)⊕

Ri,j(k
∗
2)).

Proof. This proof relies heavily on the standard fact that if U and V are any
independent boolean random variable, and U is a UBRV, then U ⊕ V is also
a UBRV.

The first use of this principle comes in the proof that digest(k∗,M) is uni-
formly distributed. We know by construction that all the bits of this digest
are independent (since the sets of the Ri,j they are based on are disjoint). It
follows that digest(k∗,M) is uniformly distributed if all its bits di are. That
in turn follows because di = Ri,K ⊕ X, where the first term comes because
we have assumed MK = 1 and the second comes from the rest of the terms of
the inner product creating di. Since Ri,K is clearly independent of X and is
UBRV, it follows that di is UBRV.

So suppose we have fixed M 6= M ′ and θ. To prove the second part of
the specification we need to show that the probability that digest(k∗,M) =
digest(k∗ ⊕ θ,M ′) is 2−b. The left- and right-hand sides of this equation are
dA and dB respectively, and let the Ri,j derived from these two keys be, re-
spectively RA

i,j and RB
i,j.

For all i ∈ {1, . . . , b}, we then have:

dA
i =

K⊕
j=1

(RA
i,j ∧Mj)

dB
i =

K⊕
j=1

(RB
i,j ∧M ′

j)

We can see that the ith bit, ti, of digest(k∗A,M)⊕ digest(k∗B,M
′) is equal to:

23



ti = (digest(k∗A,M)⊕ digest(k∗B,M
′)) [i]

= dA
i ⊕ dB

i

=

 K⊕
j=1

(RA
i,j ∧Mj)

⊕

 K⊕
j=1

(RB
i,j ∧M ′

j)


=

K⊕
j=1

(
(RA

i,j ∧Mj)⊕ (RB
i,j ∧M ′

j)
)

=
⊕

{j∈{1..K}|Mj∧M ′
j}

(RA
i,j ⊕RB

i,j)

⊕
⊕

{j∈{1..K}|Mj∧¬M ′
j}
RA

i,j

⊕
⊕

{j∈{1..K}|¬Mj∧M ′
j}
RB

i,j

It quickly follows from k∗A = k∗B ⊕ θ and the linearity of the derivation of the
Ri,j that any failure of independence between RA

i,j and RB
k,l can only happen

when i = k and j = l. 15 This means that the three random variables from
which ti is formed above are independent. Our assumption that M 6= M ′

means that the sets over which the last two are “summed” cannot both be
empty. Whichever one is nonempty must (as the ⊕ of independent UBRVs)
itself be a UBRV.

Since the ti’s are themselves independent in our ideal model, it follows that
the probability that the two digests are equal is precisely equal to 2−b.

It was stated in [29,20] that the completely random matrix R could be replaced
by a Toeplitz matrix – one with constant diagonal thanks to the relation
Ri,j = Ri+1,j+1 – where the same calculation was used to create a universal
hash function, decreasing the required number of random bits from K × b to
only K + b− 1. The same is true for digest functions and we will present the
relatively complex proof of this in a subsequent paper.

15 In practice, if one wants to use a linear pseudo-random bit generator to derive
Ri,j , then there will exist linear relations between any bit and some (says r) of its
preceding bits in the random output stream, for example: bn+r = f(bn . . . bn+r−1),
where f() is a linear function. However, it is possible to make these relations highly
unpredictable if we make the linear function/structure of the random number gen-
erator depend on the value of the key or part of it which is unknown to the intruder
and every one else at the point when INFOS is committed. So what we might
expect is as follows: bn+r = Fx(bn . . . bn+r−1), here x is derived directly from the
key k∗. And the effect of this as well as the detailed construction will be analysed
more extensively in a subsequent paper.

24



Fig. 2. Hardware implementation of a digest function.

This suggests that, in order to get a good digest, we need to get close to this
ideal model with either a completely random matrix or a Toeplitz one. The
most obvious way to do this is to use the k∗ value to seed a suitable pseudo-
random number generator (PRNG) as has been suggested by Krawczyk in
[24,25] but otherwise follow the ideal model. Since the problem of deciding
whether a typical stream is truly random or pseudo random has been well
studied, for example there are a number tests for randomness that must be
satisfied by any standard pseudo random number generation [19,26], it follows
that if we use a good PRNG (one known to satisfy these tests) with a seed
which is of the size of a typical cryptographic random number (say 160 or
200 bits), then for cryptographic purposes it should be essentially as good
as the ideal model. In the following sections we will see two approaches to
calculating the digest: the first is a hardware implementation of exactly this
idea; the second is an approximation to this using operations that can be
executed efficiently using standard microprocessor operations.

5.3 Hardware implementation

Suppose we are given input data INFOS with bit-lengthK. Suppose r = m∗b
is some multiple of the desired output length b. We first need to generate
(K/m)+b pseudo-random numbers each of length r, seeded by k∗, in a register
R on designated clock cycles. One possibility, illustrated in Figure 2, is to use
one or more linear feedback shift registers (LFSR) discussed in [24,25,19] to
produce pseudo-random numbers, each seeded with the whole of k∗ or some
linear function of it. We then initialise a shift register S, and an accumulator
register A, both with length r to standard values, possibly 0. The random

25



number generators are designed to produce r bits on each cycle in a register
R.

On each designated clock cycle, the register S is shifted by m bits, introducing
the next m bits of INFOS or some standard values, possibly 0, if INFOS
is already complete. By this means the whole of INFOS will have passed
entirely though S after (K/m)+ b cycles. Also on each designated clock cycle,
we enable the replacement of the accumulator register A by the previous value
bitwise-exclusive-or-ed with the bitwise-and of the registers R and S.

A = A⊕ (R ∧ S)

After the (K/m) + b cycles are completed, we partition the register A into b
groups of m consecutive bits. The bits of each of the said b groups are then
exclusive-or-ed to a single bit. Finally, the juxtaposition of the said b bits will
form the digest value. That way each input bit has contributed once to each bit
of the digest as in the software implementation. In addition, the only operators
we use here are Shifting, XOR and AND, so this makes implementation done
very fast in hardware.

The efficiency of the implementation can be improved if we switch to using
a Toeplitz matrix of random values rather than the completely random one
discussed above, since this dramatically reduces the number of pseudo-random
bits required to be generated in the scheme. 16

If, as suggested above, the random bits are generated by LFSRs, then the
outputs generated are linear functions of k∗. This means that this type of
pseudo-random number generator, as well being very well understood and well
behaved (see [19], for example), has the linearity property used in Theorem 3.
We intend to discuss further ideas for the creation of PRNGs in a sequel to
this paper.

5.4 Software implementation

The above calculation can, of course, be run in software as well as hardware.
However, it would take many clock cycles without the implementation of spe-
cial operations. In this section we show that a good approximation can be
calculated using standard integer multiplication for half or whole word block
implemented in most microprocessors rather than a customised hardware. Let

16 More explicitly, what this means is that instead of producing r fresh random bits
from PRNG each cycle, we now only need to shift the register R by m bits to the
left and fill the m most least significant bits, which are undefined after shifting is
done, by a new m random bits per each cycle.

26



us divide INFOS into b-bit blocks [m1, . . . ,mt=K
b
]. We then generate pseudo

random b-bit blocks ri based on k∗. 17 If we define

S =
t⊕

i=1

(mi × ri)

The integer multiplications mi × ri lead S to have 2b bits. We finally set

digest(k∗, INFOS) = S1 ⊕ S2

where S1 and S2 are two halves of S.

We note that multiplication together with XORing let every bit of the input
influence every bit of the output very much uniformly. Unfortunately, there
may be some asymmetry due to the carry bits in multiplication. Furthermore,
in software implementation, only 16 random bits of ri influence how each bit
of mi maps into the 16 bits of the digest output while the ideal model suggests
there should be 162. In other word, the analogues of the Rij from the ideal
model we are using cannot be completely independent.

To increase this independence we could additionally add one or more terms of
the form r′′i ∗ (r′i ∧mi), where r′i and r′′i are different series of pseudo-random
numbers, to our accumulator. Increasing the amount of calculation like this
could move us closer to our idealised model, and the number of terms of the
form r′′i ∗(r′i∧mi) used represents a trade-off between the efficiency and quality
of the digest. Further work is required to decide if this is worthwhile.

6 Efficiency

It seems reasonable to measure the efficiency of protocols in this class in two
ways: the amount of empirical, or human, effort required to complete them;
and the amount of processing required at the nodes.

6.1 Empirical work

The major item of work for the humans is probably the sending and receipt
of the final digest value, and the effort required to check equality. In the case

17 Any high quality pseudo-random generator could be used here. Similar to the
hardware implementation, we can use a linear feedback shift register seeded with
k∗, or several seeded with parts of k∗, this can be implemented extremely fast in
either software or hardware.

27



where a user can broadcast empirically to all other nodes (as with a set of
people in a room), the most efficient way of performing this check is for one
person to announce his/her value d0 and the rest to check that their values all
equal d0. Depending on circumstances they might then each have to announce
definite equality, or only announce inequality.

It seems clear, as argued in [37] and [34], that it is impossible to bound the
intruder’s chance of success to 2−b by comparing (explicitly or implicitly) less
than b bits of information. Given pre-knowledge of the size of the group, the
size check in protocols labelled 2 and 3 is essentially free; it seems impossible
to account for the difficulty of performing it in other circumstances (though
in the protocols with an initiator it simply means that the number of Message
2b’s received by I corresponds with the number of nodes’ INFOs that are
digested).

It therefore seems that all our protocols are essentially optimal in the amount
of security they provide for a given amount of human effort, except that in the
non symmetrised cases (HCBK) there is the work involved in the sending and
receipt of Message 2b, which is a constant and certainly less than the effort
required for Message 4. We will see shortly that this represents one side of an
interesting trade-off.

6.2 Assumptions about processing cost

Let W and B be the number of words and respectively bits required to hold a
long hash value: in [37], Vaudenay suggests perhaps B =160 bits, so we assume
W = 5. He also suggests that 15 or 16 bits are reasonable choices for b, the
width of the digest which is 1 word in this case, and we will adopt that too.
We also assume that nonces and other strong cryptographic values have the
same length B. Aside from the protocols labelled 3, the only processing effort
required in implementing our protocols is the computation of long hashes and
digests. In order to assess the complexity of our protocols we have to have a
model of the complexity of computing hashes and digests. It is clear that the
cost of computing the b-bit output hashb(INFOS) increases linearly with the
length of INFOS. It also seems clear that it will increase significantly with
b, and a simple model in which each word of a running temporary value of
length b is combined with each input word suggests our overall model might
be b × length(INFOS), as indeed does the idealised model presented in the
previous section. Therefore we will adopt that assumption in the following
analysis. Since well-known hash algorithms tend to be fixed width, and vary
significantly in their individual costs, it is hard to be too definite about this
rule. Our analysis of SHA-256 shows it to have a cost perhaps 20 times that
of the digest algorithm we described above, based on the random number

28



generator quoted in the footnote earlier.

6.3 Processing cost of HCBK and SHCBK

It follows that the total processing cost of the non-symmetrised protocols
labelled less than 3, with a group of size N and where the word-length of all
the INFOs is M , at every node is

W ×W +M = 25 +M

This results from one longhash (both the input and output lengths are of W
in words) and one digest (the input length is M words and the b-bit output
is 1 word) computed by each party.

In the symmetrised case there is more work to do since now each node has
to check N − 1 long hashes and create one. 18 Therefore the above quantity
increases to

N ×W ×W +M = 25N +M

This, of course, is the other side of the trade-off mentioned above.

6.4 Comparison with the processing cost of Vaudenay’s and Čagalj’s schemes

Vaudenay’s protocol [37], in its basic form, relates only to the transmission
of a message from one party to another. In order to compare it with ours we
need either to restrict our protocols to this function or to expand Vaudenay’s
so that it achieves the broadcast of a message from each member of a group
to each other. We can do both of these things.

We will assume that the commit scheme, used in [37] to commit a message of
length M and a nonce RA of length b bits = 1 word, takes max(M,W ) words
as input. Since the security of the scheme is equivalent to a cryptographic hash,
it seems to require randomisation that introduces additional nondeterminism
to that introduced by RA. This is equivalent to adding a hidden variable of
length W − b. We will assume, for ease of calculation, that M ≥W .

18 In both our symmetrised scheme and the two-way authentication protocol of
Vaudenay [37], the inputs of the longhash and the commit scheme include an identity
or a single bit to avoid a reflection attack. However, as both of them are very short,
we ignore them in our analysis.

29



With W = 5 it follows that for transmission of a single message of size M this
protocol requires, at each of the two nodes, 19 processing of order

M ×W = M × 5

Our symmetrised protocol does this in 25 +M .

We observe that both Vaudenay’s and Čagalj’s protocols can be extended to
a group protocol that achieves the same goal as our schemes: each node has to
commit once and open (or decommit) N − 1 times, and no digest is required.
(The users will finally compare the XOR of one short random string per node.)
If M is the total size of all the INFOs in our protocols, then the equivalent
message that each party in Vaudenay’s or Čagalj’s group version commits to
will be of length M

N
. In order for the commit scheme to have an equal level of

security as our long hash, the lengths of both the random data of the input
of the commit scheme and its output need to be W as discussed above. As
a result, the processing cost of each party in Vaudenay’s group version is
approximately

N ×W ×
(
M

N

)
= M ×W = 5×M

As M is the concatenation of N public information INFOA, we have:

M = N × wordLength(INFOA)

So the difference between Vaudenay’s group protocol and SHCBK is:

5M − (25N +M) = 4×M − 25×N

= 4×N × wordLength(INFOA)− 25×N

= 4×N × (wordLength(INFOA)− 6.25)

As the word length of INFOA will be always much longer 20 than 6.25 words
that is equivalent to only 200 bits, this will normally be significantly more
expensive than our protocols.

It seems clear that our protocols are the more efficient in terms of computa-
tional power because we followed P1: we have only had to bind the messages

19 It might be clearer to point out that W is also the word length of both the com-
mitment c, and the decommitment d. In Vaudenay’s scheme A has to compute the
function commit(), whereas B computes open(). Both of the functions are equivalent
in term of computation cost.
20 For example: INFOA should at least contains a public key of A, which is 1024
bits or 32 words already.

30



cryptographically to the level required for human interaction. Both Vaudenay
and Čagalj chose to bind the messages to random values earlier, which would
have been subject to a combinatorial attack had he not done so with more
complex cryptography. The probability of a successful attack on either their
protocols or ours is essentially 2−b.

7 Conclusions and future work

In this paper, we have analysed the strengths and weaknesses of a number
of protocols that form a secure network using empirical channels. We have
introduced two new classes of such protocol: one (HCBK) that relies on a
trustworthy initiator, and one (SHCBK) that allows arbitrary group members
to be corrupt. The efficiency of these two classes (aside from the “committed”
signals for HCBK) is as good as the best from other, independently discovered
protocols, in terms of human effort. There is every reason to believe that this
is optimal, since 2−b from b bits communicated is exactly what one would be
confident of obtaining against any protocol using a man-in-the-middle attack.

We have shown how the principles P1 and P2 lead to the design of correct
protocols, in which we avoid combinatorial attacks creating digest anomalies
by distinguishing carefully between when a node is committed to a value and
when it knows it.

We have shown how data can be digested much faster than it can be hashed,
and begun to develop a satisfying theory of digest functions as well as building
some possible implementations of them that rely on the properties of pseudo-
random numbers. In a subsequent paper we will analyse the properties of digest
functions in much more depth, including giving the proof of the applicability
of Toeplitz matrices in the ideal model.

We have briefly introduced the concept of a local PKI, that is in effect the
result of the run of one of our protocols, since they bind information such
as public keys, identities and context together in an authenticated way. It is
natural to ask how one can extend this analogy to allow for adding nodes,
forming the union of two such groups etc. This of course raises interesting
questions of how trust based on confidence in particular (initiator) nodes or
perhaps subgroups of G can extend in transitive ways. This will be a topic for
future research.

It is natural to ask how protocols of this form fit into the standard models and
analysis tools for cryptographic protocols. The answer is that our protocols
are rather outside the standard models for two orthogonal reasons. The first is
that they are group protocols with an arbitrary number of participants: most

31



methods are only fully developed for protocols with a small fixed number.

The second is that they are intended to counter a much stronger attacker
model than exists in the standard models: one who can perform combinatorial
searches. We are developing a modified version of the standard CSP model
for protocols that incorporates such a strong attacker and expect to report on
that in a subsequent paper.

The availability of protocols such as these immediately suggests a wide range of
potential applications across a wide range of domains. We see future research
and development in this area as important. One topic that will be important
here is that of how humans can, efficiently and reliably, compare digests. There
is likely to be a tension between ease of use and ensuring compliance with the
protocol. One way to compare two digests is to inspect them visually and
press “OK” or “ABORT” as appropriate. This is easy but humans can easily
press “OK” without actually checking. On the other hand, one machine in the
group may display the digest, which has to be typed into all the others, which
check if it corresponds to their own values. This is more work but cannot be
circumvented. Therefore human factors work will be important if this type of
protocol is to be used widely.

Acknowledgements

Long Nguyen’s work on this paper was supported by studentships from Qine-
tiQ Trusted Information Management. Roscoe’s was partially supported by
funding from the US Office of Naval Research.

We thank Michael Goldsmith, Sadie Creese and Irfan “Zak” Zakiuddin for
their influence on the development of earlier ideas on this subject, and contin-
uing discussions. It was Zak who originally pushed the area of bootstrapping
from minimal assumptions. We thank Richard Brent for helping us understand
pseudo-random numbers.

We are grateful to anonymous referees whose detailed comments allowed us
to greatly improve the paper.

References

[1] See: http://en.wikipedia.org/wiki/Avalanche effect

[2] D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to strangers:
Authentication in Ad Hoc Wireless Networks. In Symposium on Network and
Distributed Systems Security, San Diego, California, USA, 2002.

32



[3] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution.
Advances in Cryptology - Crypto 1993, LNCS vol. 773, Springer-Verlag, pp.
232-249, 1993.

[4] M. Bellare, R. Canetti and H. Krawczyk. A Modular Approach to the Design
and Analysis of Authentication and Key Exchange Protocols. 30th STOC, 1998.

[5] M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange
Secure against Dictionary Attacks. Advances in Cryptology - Eurocrypt 2000,
LNCS vol. 1807, Springer-Verlag, pp. 139-155, 2000.

[6] See: www.bluetooth.com/developer/specification/specification.asp

[7] Simple Pairing White Paper. See:
www.bluetooth.com/NR/rdonlyres/0A0B3F36-D15F-4470-85A6-F2CCFA26F70F/0/
SimplePairing WP V10r00.pdf

[8] M. Čagalj, S. Čapkun, and J. Hubaux. Key agreement in peer-to-peer wireless
networks. Proceedings of the IEEE, Special Issue on Security and Cryptography,
vol. 94, no. 2, February 2006.

[9] R. Canetti and H. Krawczyk. Analysis for Key-Exchange Protocols and Their
Use for Building Secure Channels. Advances in Cryptology - Eurocrypt 2001,
LNCS vol. 2045, Springer-Verlag, pp. 453-474, 2001.

[10] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally
Composable Password-Based Key Exchange. Advances in Cryptology -
Eurocrypt 2005, LNCS vol. 3494, Springer-Verlag, pp. 404-421, 2005.

[11] J. L. Carter and M. N. Wegman. Universal Classes of Hash Functions. Journal
of Computer and System Sciences, 18 (1979), pp. 143-154.

[12] S. J. Creese, M. H. Goldsmith, R. Harrison, A. W. Roscoe, P. Whittaker,
and I. Zakiuddin. Exploiting empirical engagement in authentication protocol
design. In D. Hutter and M. Ullmann, editors, Proceedings of 2nd International
Conference on Security in Pervasive Computing (SPC ′05) volume 3450 on
LNSC, Boppard, Germany, April 2005. Springer.

[13] S. J. Creese, M. H. Goldsmith, A. W. Roscoe, and M. Xiao. Bootstrapping
multi-party ad-hoc security. In Proceedings of IEEE Security Track, 2006.

[14] S. J. Creese, M. H. Goldsmith, A. W. Roscoe, and I. Zakiuddin. The attacker
in ubiquitous computing environments: Formalising the threat model. In T.
Dimitrakos and F. Martinelli, editors, Workshop on Formal Aspects in Security
and Trust, Pisa, Italy, September 2003. IIT-CNR Technical Report.

[15] S. J. Creese, M. H. Goldsmith, A. W. Roscoe, and I. Zakiuddin. Security
properties and mechanisms in human-centric computing. In P. Robinson,
H, Vogt, and W. Wagealla, editors, Privacy, Security and Trust within the
Context of Pervasive Computing, Kluwer International Series in Engineering
and Computer Science. Springer, 2004. Proceedings of Workshop on Security
and Privacy in Pervasive Computing, Wien, April 2004.

33



[16] C. Gehrmann, C. Mitchell, and K. Nyberg. Manual Authentication for Wireless
Devices. RSA Cryptobytes, vol. 7, no. 1, pp. 29-37, 2004.

[17] C. Gehrmann and K. Nyberg. Security in personal area networks. In C. J.
Mitchell, editor, Security for Mobility, pp. 191-230. IEE, London, 2004.

[18] O. Goldreich and L. A. Levin. A Hard-Core Predicate for all One-Way
Functions. Annual ACM Symposium on Theory of Computing, 1989, pp. 25-
32.

[19] S. W. Golomb. Shift Register Sequences. ISBN: 0894120484, Aegean Park Press,
1981.

[20] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A Pseudorandom
Generator from any One-way Function. SIAM J. Comput., 1999.

[21] Jaap-Henk Hoepman. Ephemeral Pairing on Anonymous Networks. In D.
Hutter and M. Ullmann, editors, 2nd International Conference on Security in
Pervasive Computing (SPC ′05), vol. 3450 on LNSC, pp. 101-116, Boppard,
Germany, April 2005. Springer.

[22] Jaap-Henk Hoepman. Ephemeral Pairing Problem. In 8th Int. Conf. Fin.
Crypt., LNCS 3110, Springer, pp. 212-226.

[23] M. Jakobsson and S. Wetzel. Security Weaknesses in Bluetooth. CT-RSA 2001,
LNCS vol. 2020, Springer-Verlag, pp. 176-191, 2001.

[24] H. Krawczyk. LFSR-based Hashing and Authentication. CRYPTO 1994, LNCS
vol. 839, pp. 129-139.

[25] H. Krawczyk. New Hash Functions For Message Authentication. EUROCRYPT
1995, LNCS vol. 921, pp. 301-310.

[26] D. Knuth. The Art of Computer Programming. Vol 2, Seminumerical
Algorithms, Third Edition (Reading, Massachusetts: Addison-Wesley, 1997),
ISBN 0-201-89684-2.

[27] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol
using FDR. Tools and Algorithms for the Construction and Analysis of Systems,
LNCS vol. 1055, Springer Verlag, pp. 147-166, 1996.

[28] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton
Computer Science Notes. Princeton University Press. January, 1996

[29] Y. Mansour, N. Nisan, and P. Tiwari. The Computational Complexity of
Universal Hashing. Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, pp. 235-243. May 1990.

[30] L. H. Nguyen and A. W. Roscoe. Efficient group authentication protocol based
on human interaction. Proceedings of Workshop on Foundation of Computer
Security and Automated Reasoning Protocol Security Analysis, pp. 9-31, August
2006.

34



[31] S. Pasini and S. Vaudenay. SAS-based Authenticated Key Agreement. Public
Key Cryptography - PKC’06: The 9th international workshop on theory and
practice in public key cryptography, LNCS vol. 3958, pp. 395-409, Springer,
2006.

[32] S. Pasini and S. Vaudenay. An Optimal Non-interactive Message Authentication
Protocol. Topics in Cryptology - CT-RSA’06: The Cryptographers’ Track at the
RSA Conference 2006, LNCS vol. 3860, pp. 280-294, Springer, 2006.

[33] T. Peyrin and S. Vaudenay. The Pairing Problem with User Interaction. SEC
2005, pp. 251-266.

[34] A. W. Roscoe. Human-centred computer security. See:
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/113.pdf,
2005.

[35] F. Stajano and R. Anderson. The resurrecting duckling: Security issues for
ad-hoc wireless networks. Security Protocols 1999, LNCS vol. 1976, Springer-
Verlag, pp. 172-194, 1999.

[36] D. R. Stinson. Universal Hashing and Authentication Codes. Advances in
Cryptology - Crypto 1991, LNCS vol. 576, Springer-Verlag, pp. 74-85, 1992.

[37] S. Vaudenay. Secure Communications over Insecure Channels Based on Short
Authenticated Strings. Advances in Cryptology - Crypto 2005, LNCS vol. 3621,
Springer-Verlag, pp. 309-326, 2005.

[38] M. N. Wegman and J. L. Carter. New Hash Functions and Their Use in
Authentication and Set Equality. Journal of Computer and System Sciences,
22, pp. 265-279, 1981.

[39] A. F. Webster and S. E. Tavares. On the Design of S-Boxes. CRYPTO 1985,
LNCS vol. 218, Springer Verlag (1986), pp. 523-534.

[40] Ford-Long Wong, F. Stajano. Multi-channel Protocols. Proceedings of the 13th
International Workshop on Security Protocols, Cambridge, England, 20-22 Apr
2005, LNCS.

Appendix A: Further assumption required for HCBK

In order to make the HCBK protocol secure we require that the non-initiator
nodes are never allowed to get involved in other runs between the acknowl-
edgement signal sent in Message 2b and the final agreement on the short digest
value. Otherwise the protocol will be vulnerable to a subtle attack, discovered
by Roscoe in [34], that again makes use of combinatorial search if it is possible
for the intruder to block the empirical channel.

We shall consider the situation where there are two nodes, the initiator A and
the non-initiator B. So in the first run α, the protocol looks like this:

35



0.α. A −→N B : A

1.α. A −→N B : A, INFOA

B −→N I(A) : B, INFOB

I(B) −→N A : B, INFO′
B

2.a.α. A −→N B : longhash(kA)

2.b.α. B −→E A : B’s acknowledgement

3.α. A −→N I(B) : kA

I(A) −→N B : k′A

As can be seen from the run α, in Message 1 and 3, the original information
INFOB and kA have been replaced by the fake INFO′

B and k′A. This leads
the protocol to three negative consequences:

• When B receives the incorrect key k′A in Message 3, B cannot verify the
correctness of the longhash sent in Message 2. So B rejects it and aborts
the run.

• In the mean time, the intruder obtains the original key, and therefore can
determine the final value dα of the digest in this run.

• Also note that the initiator, A, does not have any idea about the status of
the current run, so s/he just keeps waiting for Message 4a from B.

Meanwhile, the intruder starts a second run with B, posing as A:

0.β. I(A) −→N B : A

1.β. I(A) −→N B : A, INFOA

B −→N I(A) : B, INFOB

At this point the intruder knows all the information that B will use in run β
to compute the digest, except that run’s key k′′A. It can therefore search for
an k′′A that will digest, together with that information, to dα. If it succeeds it
continues:

36



2.a.β. I(A) −→N B : longhash(k′′A)

2.b.β. B −→E A : The signal will be blocked by the intruder.

3.β. I(A) −→N B : k′′A

One of the main features in this run is that the acknowledgement signal sent
over the empirical channel from B to A in Message 2.b.β is blocked by the
intruder. This avoids the possibility that the trustworthy initiator might spot
this message and realise that an attack is taking place.

After receiving k′′A from Message 3.β, B will be able to check the correctness
of the longhash sent in this run. The flaw of the protocol becomes apparent
when B, thinking she is in the run β, displays and compares the digest of the
run β with the digest of A in the run α over the empirical channel.

4.a.β. B −→E A : digest(k′′A, {INFOA, INFOB})

4.a.α. A −→E B : digest(kA, {INFOA, INFO
′
B})

So in the end, A and B agree the equality of two digest values that have
different antecedents.

37


