
AVoCS 2007

On CSP refinement tests that run multiple
copies of a process

Gavin Lowe

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.
gavin.lowe@comlab.ox.ac.uk

Abstract

In this paper we consider CSP stable failures refinement checks, where the right hand side of the refinement
contains n copies of a process P . We show that such refinement checks capture precisely those predicates
of the form ∀ f1, . . . , fn ∈ failures(P) q R(f1, . . . , fn) for some n-ary relation R. The construction of the
refinement test is, in general, infinitary; however, we show how, given R, one can often calculate a finite
state refinement check.

Keywords: CSP, stable failures refinement checks, expressiveness, testing harnesses.

1 Introduction

This paper considers particular stable failures refinement checks using divergence-
free CSP processes P . The majority of such checks that one typically considers are
so-called simple refinement checks of the form

Spec vF P,

i.e., where the right hand side of the refinement is simply P , and the left hand side
of the refinement is independent of P . It is well known that these capture precisely
satisfiable failures behavioural specifications [Ros97, Section 3.3], i.e., satisfiable
predicates of the form

∀ f ∈ failures(P) q R(f)

for some unary relation R over stable failures.
Recently, a number of checks have been considered of the form

Spec vF Harness(P),

where Harness(P) is some testing harness that uses multiple copies of P , say n

copies, combined together using CSP operators. For example, the testing harness
might run n copies of P in parallel, maybe with some central controller. We call
such refinement tests n-copy refinement tests.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

One question we ask in this paper is: what predicates over P can we capture
using n-copy refinement tests? The answer is precisely predicates of the form

PropR(P) =̂ ∀ f1, . . . , fn ∈ failures(P) q R(f1, . . . , fn),

for n-ary relations R over stable failures. We call such predicates n-ary failures
predicates. In Section 2, we give some examples of n-ary predicates that have
appeared in the literature.

In Section 3, we show that every n-ary failures predicate can be captured as
an n-copy refinement test. In Section 4 we show the converse: that every n-copy
refinement test captures an n-ary failures predicate.

The construction we give is infinitary in general. In Section 5, we show how
the construction can often be reduced to a finite-state refinement check (at least,
when P itself is finite-state), suitable for carrying out using a model checker such
as FDR [Ros94]. We illustrate the technique on examples in Section 6: we derive
the finite-state checks in a semi-systematic way. Many inexperienced users of FDR
find it difficult to express requirements as refinement checks: techniques, such as
this, for calculating the refinement check should help.

Throughout this paper we restrict attention to non-divergent processes P : diver-
gent processes are normally, ipso facto, incorrect. An advantage of this restriction
is that for non-divergent processes, one can calculate the traces from the stable
failures; hence the relation R may also specify which traces are allowable, so we
can capture both traces and failures requirements within the same mechanism. For
simplicity, we also ignore issues of termination.

Roscoe [Ros05] considers the expressive power of CSP refinement checks more
generally. He considers which predicates over the failures-divergences model may be
captured by refinement checks of the form F (P) v G(P) where F , G are uniformly
continuous CSP contexts. He shows that all predicates that are closed (under the
normal topology over the failures divergences model [Ros97]) can be captured in
this way, and vice versa. He further shows that every closed and refinement-closed
predicate can be captured by a refinement check of the form Spec v G(P), and
vice versa; this includes the form of checks we consider in this paper. Finally, he
shows that every satisfiable, refinement-closed and distributive predicate may be
captured as a simple refinement check, and vice versa. The predicates we consider
in this paper are refinement-closed, but not distributive, hence cannot be captured
as simple refinement checks. He conjectures, in passing, the results of Sections 3
and 4 of this paper, but does not prove them.

We conclude this section with a brief overview of the syntax and semantics of
CSP; for more details, see [Hoa85,Ros97].

CSP is a process algebra for describing programs or processes that interact with
their environment by communication. Processes communicate via atomic events,
from some set Σ. Events are often compound: the event c.x represents the commu-
nication of data x on channel c. {|c|} represents the set of all events on channel c.

The simplest process is STOP , which represents a deadlocked process that can-
not communicate with its environment. The process a → P offers its environment
the event a; if the event is performed, it then acts like P . If c is a channel then
c?a : A → P (a) offers its environment the events from the set {c.a | a ∈ A}; if

the event c.a is performed, the process then acts like P (a). The process b & P is
equivalent to if b then P else STOP : P is enabled only if the boolean guard b is
true.

The process P 2 Q can act like either P or Q, the choice being made by the
environment: the environment is offered the choice between the initial events of P

and Q. By contrast, P u Q may act like either P or Q, with the choice being made
internally, and not under the control of the environment. The processu i ∈ I,R(i) q
P (i) represents an indexed nondeterministic choice between the processes P (i) for
i ∈ I such that R(i) holds. The process P . Q represents a sliding choice or timeout:
the process initially acts like P , but if no event is performed then it can internally
change state to act like Q; we have the following identities: P . Q = (P 2 Q) u
Q = (P u STOP) 2 Q.

The process Chaos(A) is the most nondeterministic, divergence-free process that
performs events from the set A; it can be defined by

Chaos(A) =̂ STOP uux ∈ A q x → Chaos(A).

The process P \A acts like P , except the events from A are hidden, i.e. turned
into internal, invisible events. The process P [[b/a]] acts like P , except the event a

is renamed to b; an indexed version is also available. If c is a channel, then the
process c.P acts like P except every event e in P ’s alphabet, αP , is renamed to c.e:
c.P =̂ P [[c.e/e | e ∈ αP]].

The process P ‖
A

Q runs P and Q in parallel, synchronising on events from A.

By contract, the process P ||| Q runs P and Q in parallel with no synchronisation.
Prefixing binds tighter than each of the binary choice operators, which in turn

bind tighter than the parallel operators.
CSP can be given both an operational and denotational semantics; it is more

common to use the denotational semantics when specifying or describing the be-
haviours of processes, although most tools act on the (congruent) operational se-
mantics.

A trace of a process is a sequence of (visible) events that a process can perform.
We write traces(P) for the traces of P . If tr is a trace, then tr |̀ A represents the
restriction of tr to the events in A, whereas tr \ A represents tr with the events
from A removed; concatenation is written “ˆ”; first(tr) represents the first event
of tr.

A stable failure of a process P is a pair (tr, X), which represents that P can
perform the trace tr to reach a stable state (i.e. where no internal events are possible)
where X can be refused, i.e., where none of the events of X is available. We write
failures(P) for the stable failures of P . For a divergence-free process

traces(P) = {tr | (tr, X) ∈ failures(P)}.
The traces T and failures F of a process also satisfy the following healthiness con-
ditions:

F1 T is non-empty and prefix-closed;

F2 (tr, X) ∈ F ∧ Y ⊆ X ⇒ (tr, Y) ∈ F ;

F3 (tr, X) ∈ F ∧ (∀ a ∈ Y q tr 〈̂a〉 /∈ T) ⇒ (tr, X ∪ Y) ∈ F .

Spec is refined by P in the stable failures model if all the behaviours of P are
allowed by Spec:

Spec vF P iff traces(Spec) ⊇ traces(P) ∧ failures(Spec) ⊇ failures(P).

FDR can be used to check this refinement. Note, though, that it considers only
finite-state and finite-alphabet processes. For divergence-free processes —as con-
sidered in this paper— the traces inclusion is implied by the failures inclusion.

2 Examples

In this section we give some examples of n-ary failures predicates that have appeared
in the literature.

2.1 Determinism

The best known such property is that of determinism [Ros97, Section 3.3]. P is
deterministic if, whenever it can perform a after tr, it cannot refuse the a:

∀ tr, a q tr 〈̂a〉 ∈ traces(P) ⇒ (tr, {a}) /∈ failures(P).

This can be re-written as a binary failures predicate as follows:

∀(tr1, X1), (tr2, X2) ∈ failures(P) q ∀ a q tr1 = tr2 〈̂a〉 ⇒ a /∈ X2.

2.2 Refinement-closed failures non-deducibility on compositions

The question of information flow considers whether a high-level user, High, of a
multi-level security system can pass information to a low-level user, Low. Let the
alphabet be partitioned between High’s alphabet H and Low’s alphabet L.

One family of definitions of information flow is Focardi and Gorrieri’s non-
deducibility on compositions [FG95]. The idea is that however High acts, the sys-
tem should appear the same to Low. In particular, process P satisfies failures
non-deducibility on compositions [Foc96], written FNDC(P), if:

∀Hi ∈ CSPH
q LH(P ‖

H

Hi) ≡F P ‖
H

Stop,

where LH(Q) =̂ (Q ‖
H

Chaos(H)) \ H is Roscoe’s lazy abstraction [Ros97, Chap-

ter 12], and CSPH represents all processes with alphabet H.
Unfortunately, this definition suffers from the refinement paradox: there are

processes that satisfy FNDC but that have refinements that do not. Nondetermin-
ism arises in models of systems for two main reasons. Often analysis is carried out
upon designs of systems, rather than concrete implementations; in designs, nonde-
terminism often represents under-specification, which is resolved at a subsequent
stage of the development: we should consider a design secure only if all ways of
resolving the nondeterminism lead to secure implementations. Sometimes nonde-
terminism represents low-level details of a system that one chooses to abstract away
from, e.g. scheduling: in such cases, one should consider a system secure only if all
ways in which that nondeterminism could be resolved causes the system to behave
securely.

In [Low07], I therefore considered the refinement-closure of FNDC. Process
P satisfies refinement-closed, failures non-deducibility on compositions, written
RCFNDC(P), if ∀Q w P q FNDC(Q). It turns out that this property can be
captured as an binary failures predicate, as follows (see [Low07]):

∀(tr1, X1), (tr2, X2) ∈ failures(P) q
tr1 |̀ H 6= 〈〉 ⇒ ∀ l q tr2 = tr1 |̀ L 〈̂l〉 ⇒ l /∈ X1

∧ ∀ l q tr2 〈̂l〉 = tr1 |̀ L ⇒ l /∈ X2.

2.3 Causation

In [ML07], we consider the question of whether an agent in a multi-user system,
with alphabet A, can cause some event e /∈ A to occur. The obvious definition for
non-causation, called traces non-causation, is:

6 ∃ tr q tr 〈̂e〉 ∈ traces(P) ∧ (tr \A)̂ 〈e〉 /∈ traces(P).

In other words, there’s no trace tr after which e can happen, but such that if no
events from A had happened, e would be impossible.

As with FNDC, this property turns out not to be refinement-closed. However,
the refinement-closure can be expressed as an binary failures predicate, as follows:

∀(tr1, X1), (tr2, X2) ∈ failures(P) q
∀ s, t q tr1 = ŝ t̂ 〈e〉 ∧ s |̀ A 6= 〈〉 ∧ tr2 = s \A ⇒ first(t \A 〈̂e〉) /∈ X2.

2.4 Responsiveness

In [RSR04], Reed, Sinclair and Roscoe consider the responsiveness of interoperating
components: whether a component Q when connected to a system P cannot cause P

to deadlock, so that Q can be used as a plugin to P . Let both P and Q have
alphabet J , so that they synchronise on all events. Then an obvious definition of
responsiveness is

∀ tr q (tr, J) ∈ failures(P ‖
J

Q) ⇒ (tr, J) ∈ failures(P).

Unfortunately, again this property is not refinement-closed. However, the authors
show that the refinement-closure of the above property is:

∀(tr, X) ∈ failures(P) q
initsInJ (P/tr)−X 6= {} ⇒ (tr, initsInJ (P/tr)−X) /∈ failures(Q),

where initsInJ (P/tr) =̂ {x | tr 〈̂x〉 ∈ traces(P) ∧ x ∈ J}.

This property is equivalent to

∀(tr1, X1), (tr2, X2) ∈ failures(P) q
∀(tr3, X3) ∈ failures(Q) q ∀x ∈ J q

tr1 = tr2 〈̂x〉 ∧ tr2 = tr3 ⇒ (∃ y ∈ J q y /∈ X2 ∪X3) ∨ x /∈ X3,

which is a binary failures predicate on P .

3 n-copy refinement tests capture all n-ary failures
predicates

In this section, for each n-ary relation R, we show how to construct a testing harness
Harness() and specification Spec such that

∀P q PropR(P) ⇔ Spec v Harness(P).

We begin by showing that, without loss of generality, we can restrict ourselves
to predicates R that satisfy Definitions 3.1 and 3.2, below.

Definition 3.1 We say that R is subrefusal-closed if:

R((tr1, X1), . . . , (trn, Xn)) ∧ (∀ i ∈ 1 . . n q Yi ⊆ Xi) ⇒
R((tr1, Y1), . . . , (trn, Yn)).

We write R(tr1, . . . , trn) as a shorthand for R((tr1, {}), . . . , (trn, {})); this cap-
tures that R allows the traces tr1, . . . , trn. Note that if R is subrefusal-closed, this
is equivalent, to ∃X1, . . . , Xn

q R((tr1, X1), . . . , (trn, Xn)).
Let impossiblei(tr1, . . . , trn) be those events that cannot be appended onto the

end of tri and allow R to be true:

impossiblei(tr1, . . . , trn) =̂ {a | ¬R(tr1, . . . , tri 〈̂a〉, . . . , trn)}.

We omit the arguments of impossiblei when clear from the context.

Definition 3.2 We say that R allows the refusal of impossible events if adding
the elements of impossiblei onto the i’th refusal set maintains R:

R((tr1, X1), . . . , (trn, Xn)) ⇒
R((tr1, X1 ∪ impossible1), . . . , (trn, Xn ∪ impossiblen)).

R being subrefusal-closed and allowing the refusal of impossible events is very
closely related to axioms F2 and F3 of the stable failures model.

Note that all the examples from Section 2 satisfy these conditions (although
finding a subrefusal-closed version of responsiveness was non-trivial). In fact, in
each case we have impossible1(tr1, tr2) = impossible2(tr1, tr2) = {}, for all tr1

and tr2.
If R does not satisfy the stable failures axioms, then we can replace it by the

following relation: 1

R∗ =̂
⋃
{R′ | R′ ⊆ R ∧ R′ is subrefusal-closed and allows

the refusal of impossible events}.
The following two lemmas justify this.

Lemma 3.3 R∗ is subrefusal-closed and allows the refusal of impossible events.

Proof: Direct from the definitions. 2

Lemma 3.4 For all P , PropR(P) ⇔ PropR∗(P).

1 We consider an n-ary relation over failures to be a set of n-tuples of failures, in the standard way.

Proof: The right-to-left implication is immediate, since R∗ ⊆ R.
Suppose PropR(P). Consider the set

R′ =̂ (failures(P))n

(i.e. the n-fold cartesian product of failures(P)). Then R′ is subrefusal-closed and
allows the refusal of impossible events, since failures(P) satisfies axioms F2 and F3
of the stable failures model. And R′ ⊆ R, since PropR(P). Hence R′ ⊆ R∗ and so
PropR∗(P). 2

So without loss of generality, assume that R respects the axioms. We now
describe the construction of the testing harness.

We define the harness as follows:

Harness(P) =̂ c.1.P ||| . . . ||| c.n.P.

For any failure (tr, X) of Harness(P), we write (tr, X) ↓ c.i for the contribution
of the ith copy of P , i.e. 2

(tr, X) ↓ c.i =̂ (tr ↓ c.i, {x | c.i.x ∈ X}).
Then

failures(Harness(P)) =
{(tr, X) | tr ∈ {|c|}∗ ∧ ∀ i ∈ 1 . . n q (tr, X) ↓ c.i ∈ failures(P)}.

We now construct an appropriate specification. We need to consider two cases.
The uninteresting case is when ¬R(〈〉, . . . , 〈〉), and so PropR is unsatisfiable. We
can take Spec = d → STOP , for example, and then

PropR(P) ⇔ false ⇔ Spec v Harness(P),

as required.
The more interesting case is where R(〈〉, . . . , 〈〉) holds. We build a specification

that keeps track of the traces communicated by each of the components, and only
allows appropriate events and refusals.

After the components have performed traces (tr1, . . . , trn), we will allow the
specification to refuse subsets of the following characteristic refusals:

charRefsR(tr1, . . . , trn) =̂
{(X1, . . . , Xn) | R((tr1, X1), . . . , (trn, Xn)) ∧

∀ i ∈ 1 . . n q Xi ⊇ impossiblei(tr1, . . . , trn)}.
We define the specification as follows:

Spec =̂ Spec(〈〉, . . . , 〈〉),
Spec(tr1, . . . , trn) =̂u(X1, . . . , Xn) ∈ charRefsR(tr1, . . . , trn) q

c?i?y : Σ−Xi → Spec(tr1, . . . , tri 〈̂y〉, . . . , trn).

Note that after trace tr, Spec will be in state Spec(tr ↓ c.1, . . . , tr ↓ c.n).
Note also that if R(tr1, . . . , trn) holds, then R((tr1, impossible1), . . . ,

(trn, impossiblen)), since R allows the refusal of impossible events, and so the non-
deterministic choice is over a non-empty set, containing at least (impossible1, . . . ,

impossiblen).

2 If tr is a trace then tr ↓ c.i represents the sequence of data transmitted over channel c.i during tr.

We show that R(tr1, . . . , trn) is indeed satisfied in every reachable state, by
induction on the sum of the lengths of the traces. The base case holds by as-
sumption. For the inductive step, suppose R(tr1, . . . , trn), and pick (X1, . . . , Xn) ∈
charRefsR(tr1, . . . , trn) and y ∈ Σ − Xi. Then by definition of charRefs, y /∈
impossiblei, so R(tr1, . . . , tri 〈̂y〉, . . . , trn).

Conversely, if R(tr1, . . . , trn) and R(tr1, . . . , tri 〈̂y〉, . . . , trn) hold, then
Spec(tr1, . . . , trn) allows c.i.y since y /∈ impossiblei. Hence Spec allows trace tr

precisely when ∀ tr′ ≤ tr q R(tr′ ↓ c.1, . . . , tr′ ↓ c.n).
It is then easy to see that Spec(tr1, . . . , trn) allows the components to refuse

precisely those (X1, . . . , Xn) such that R((tr1, X1), . . . , (trn, Xn)): each such tuple
of refusals is included within (X1 ∪ impossible1, . . . , Xn ∪ impossiblen), which is a
characteristic refusal since R allows the refusal of impossible events; and all tuples
of refusals allowed by Spec satisfy R since R is subrefusal-closed. Hence

failures(Spec) = {(tr, X) | tr ∈ {|c|}∗ ∧ R((tr, X) ↓ c.1, . . . , (tr, X) ↓ c.n)
∧ ∀ tr′ ≤ tr q R(tr′ ↓ c.1, . . . , tr′ ↓ c.n)}.

Hence, comparing the failures of Spec and Harness(P),

PropR(P)⇔Spec vF Harness(P),

as required.

4 n-copy refinement tests capture only n-ary failures
predicates

We now show that every n-copy refinement test corresponds to an n-ary failures
predicate of the form PropR(P). Consider an n-copy refinement test of the form
Spec v H(P) where H(P) is an arbitrary harness that contains n copies of P .

The crucial point to observe is that for each CSP operator, each failure of the
resulting process results from (at most) one failure of each component. Therefore,
each failure of H(P) results from (at most) one failure of each copy, i.e., a total of
(at most) n failures of P . Therefore, the set of failures of H(P) will be of the form

{(tr, X) | ∃(tr1, X1), . . . , (trn, Xn) ∈ failures(P) q
S((tr, X), (tr1, X1), . . . , (trn, Xn))},

where S captures the semantic equations corresponding to how the harness is con-
structed.

Hence H(P) will refine Spec iff

∀(tr1, X1), . . . , (trn, Xn) ∈ failures(P) q
∀(tr, X) q S((tr, X), (tr1, X1), . . . , (trn, Xn)) ⇒ (tr, X) ∈ failures(Spec).

This is of the form PropR(P) if we define R((tr1, X1), . . . , (trn, Xn)) to be the
predicate expressed by the second line of the above formula.

5 Making it feasible

The construction in Section 3 produced a specification process that will, in general,
be infinite state. In this section, we describe how to reduce the refinement check to

one that is finite state, at least for finite state P , and so can be carried out using a
model checker such as FDR.

What we will do is put a scheduler process in parallel with the harness and
specification processes from the previous section. That is, we produce a scheduler
process Sched and define

Harness ′(P) =̂ Sched ‖
{|c|}

Harness(P),

Spec′ =̂ Sched ‖
{|c|}

Spec.

For later convenience, we will allow the alphabet of Sched to contain events out-
side {|c|}. We will then consider refinements of the form

Spec′ vF Harness ′(P).

In many cases, we will be able to calculate a finite state process that is equivalent
to Spec′. Further, the use of the scheduler will normally mean that the state space
of Harness ′(P) is considerably smaller than that of Harness(P).

We present, in Definition 5.1, sufficient conditions on Sched for the above refine-
ment to hold precisely when PropR(P) is true.

Definition 5.1 Let Sched be a deterministic process whose traces are some set S

such that:
(i) For all traces tr1, . . . , trn corresponding to failures where R does not hold, S

includes a corresponding trace, i.e.:

∀ tr1, . . . , trn, X1, . . . , Xn
q ¬R((tr1, X1), . . . , (trn, Xn)) ⇒

∃ tr ∈ S q ∀ i ∈ {1 . . n} q tr ↓ c.i = tri.

In other words, Sched allows the harness to get into a state where each falsity
of R could be demonstrated.

(ii) For all failures (tr ↓ c.1, X1), . . . , (tr ↓ c.n,Xn) where R does not hold, Sched
allows the harness to demonstrate the falsity of R; it does this by allowing
all events in some (possibly different) sets X ′

1 ⊆ X1, . . . , X
′
n ⊆ Xn such that

¬R((tr ↓ c.1, X ′
1), . . . , (tr ↓ c.n,X ′

n)).

tr ∈ S ∧ ¬R((tr ↓ c.1, X1), . . . , (tr ↓ c.n,Xn)) ⇒
∃X ′

1 ⊆ X1, . . . , X
′
n ⊆ Xn

q ¬R((tr ↓ c.1, X ′
1), . . . , (tr ↓ c.n,X ′

n)) ∧
∀ i ∈ 1 . . n q ∀ a ∈ X ′

i
q tr 〈̂c.i.a〉 ∈ S.

Intuitively, it is the events in the X ′
i that demonstrate the falsity of R: for

example, in the case of determinism, R((tr1, X1), (tr2, X2) is false whenever
tr1 = tr2 〈̂a〉 and a ∈ X2 for some a; so we can take X ′

2 = {a} and X ′
1 = {}.

If Harness′(P) refuses the events of the X ′
i then that refusal can be attributed

to P rather than the scheduler.

From now on, we assume that we have fixed a suitable scheduler Sched , as in the
above definition; in Section 6, we show that this is straightforward for the examples
of Section 2. As Sched is deterministic with traces S,

failures(Sched(S)) = {(tr, X) | tr ∈ S ∧ ∀x ∈ X q tr 〈̂x〉 /∈ S}.
Let Harness ′(P) and Spec′(P) be as above. The following theorem proves the

above claim.

Theorem 5.2 PropR(P) ⇔ Spec′ vF Harness ′(P).

Proof: If ¬PropR(P) then there exist f1 = (tr1, X1), . . . , fn = (trn, Xn) ∈
failures(P) such that ¬R(f1, . . . , fn). By condition (i) of Definition 5.1, there is
some tr ∈ S such that ∀ i ∈ 1 . . n q tr ↓ c.i = tri. Let X ′

1, . . . , X
′
n be as in condi-

tion (ii) of Definition 5.1, and let f ′
i =̂ (tri, X

′
i), for i ∈ 1 . . n; so ¬R(f ′

i , . . . , f
′
n).

Then f ′
i ∈ failures(P), for i ∈ 1. .n, by Axiom F2. Let X =̂ {c.i.x | i ∈ 1. .n, x ∈ X ′

i}
and f =̂ (tr, X). Then f ∈ failures(Harness ′(P)).

Now, (tr |̀ {|c|}, X) /∈ failures(Spec), by construction. Also, for each i ∈ 1. .n, for
every a ∈ X ′

i, we have tr 〈̂c.i.a〉 ∈ S, by definition of the X ′
i. Hence (tr, {c.i.a}) /∈

failures(Sched), and so f /∈ failures(Spec′). Hence Spec′ 6vF Harness ′(P).

Conversely, if Spec′ 6vF Harness ′(P) then there is some f = (tr, X) ∈
failures(Harness ′(P)) such that f /∈ failures(Spec′). Then tr ∈ traces(Sched) and
so tr ∈ S. We show that ¬R(f ↓ c.1, . . . , f ↓ c.n). Suppose, otherwise. Then (tr |̀
{|c|}, X) ∈ failures(Spec), by construction. Now, tr ∈ S so (tr, {}) ∈ failures(Sched)
and so f ∈ failures(Spec′), giving a contradiction.

Hence ¬R(f ↓ c.1, . . . , f ↓ c.n). Let X ′
1, . . . X

′
n be as in condition (ii) of Def-

inition 5.1. Let fi =̂ (tr ↓ c.i,X ′
i), for i = 1 . . n. Then ¬R(f1, . . . , fn). Now,

X ′ =̂ {c.i.x | i ∈ 1 . . n, x ∈ X ′
i} ⊆ X, so (tr, X ′) ∈ failures(Harness ′(P)). Sched

is not refusing any of the events of X ′
i, by definition of the X ′

i; hence those events
must be refused by c.i.P , so fi ∈ failures(P), for i = 1 . . n. Hence ¬PropR(P).

2

6 Examples

In this section we use the technique of the previous section to produce finite-state
refinement checks for some of the properties from Section 2.

6.1 Determinism

Recall that for determinism we have

R((tr1, X1), (tr2, X2)) =̂ ∀ a q tr1 = tr2 〈̂a〉 ⇒ a /∈ X2.

We define a scheduler that alternates between c.1 and c.2, performing the same
event on each:

Sched =̂ c.1?x → c.2.x → Sched ,

Note that Sched is deterministic, and satisfies the conditions of Definition 5.1: for
condition (i), note that Sched includes a trace corresponding to all cases where
R is false (i.e., where tr ↓ c.1 = tr ↓ c.2̂ 〈a〉, for some a); for condition (ii), if
tr ↓ c.1 = tr2 ↓ c.2̂ 〈a〉, we can take X ′

1 = {} and X ′
2 = {a}, and note that Sched

allows c.2.a.
Note that

charRefs(tr, tr) = (P Σ)2,
charRefs(tr 〈̂a〉, tr) = {(X1, X2) | a /∈ X2}.

Hence we can calculate a finite form for Spec ‖ Sched , as follows (we omit the
synchronisation set {|c|} from the parallel operator, for brevity):

Spec(tr, tr) ‖ Sched

=
〈
step laws: Spec chooses over all pairs of refusals

〉
uX ∈ P Σ q c.1?y : Σ−X → (Spec(tr 〈̂y〉, tr) ‖ c.2.y → Sched)

=

〈
by consideration of initial refusals;
step laws: Spec does not allow c.2.y to be refused

〉
c.1?y → c.2.y → (Spec(tr 〈̂y〉, tr 〈̂y〉) ‖ Sched) u STOP .

Hence for all tr, Spec(tr, tr) ‖ Sched is equivalent to

Spec′ = c.1?y → c.2.y → Spec′ u STOP .

(Formally, this is by the Unique Fixed Point rule [Ros97, Section 1.3].) To sum-
marise, P is deterministic if

Spec′vF Sched ‖ (c.1.P ||| c.2.P).

This is Lazić’s test from [Laz99].

6.2 RCFNDC

Recall that for RCFNDC we have

R((tr1, X1), (tr2, X2)) =̂ tr1 |̀ H 6= 〈〉 ⇒ ∀ l q tr2 = tr1 |̀ L 〈̂l〉 ⇒ l /∈ X1

∧ ∀ l q tr2 〈̂l〉 = tr1 |̀ L ⇒ l /∈ X2.

We define the scheduler to force the same L events to be performed on c.1 and
c.2, in either order, and also allow H events on c.1:

Sched =̂ c.1?h : H → Sched
2 c.1?l : L → Sched1(l)
2 c.2?l : L → Sched2(l),

Sched1(l) =̂ c.2.l → Sched ,

Sched2(l) =̂ c.1.l → Sched .

Note that Sched is deterministic, as required. Further, when R((tr1, X1), (tr2, X2))
is false, we have tr2 = tr1 |̀L 〈̂l〉 or tr2 〈̂l〉 = tr1 |̀L for some l; it is easy to construct a
corresponding trace of Sched where the equal events of tr1 |̀L and tr2 are performed
consecutively, in either order. Also, condition (ii) of Definition 5.1 is satisfied: a
failure of the first disjunct in the definition of RCFNDC would correspond to a trace
that would lead to the state Sched2(l), which allows c.1.l, as required; the second
disjunct in the definition of RCFNDC is similar.

We now consider all states reachable from Sched ‖ Spec(〈〉, 〈〉). Throughout the
following, suppose tr1 |̀ L = tr2. We need to consider five cases; in the first three
cases, R is true for all X1 and X2 with the given traces, so Spec nondeterministically
chooses over all values of X1 and X2. We can calculate as follows.

Sched ‖ Spec(tr1, tr2) =c.1?h : H → (Sched ‖ Spec(tr1 〈̂h〉, tr2))
2 c.1?l : L → (Sched1(l) ‖ Spec(tr1 〈̂l〉, tr2))
2 c.2?l : L → (Sched2(l) ‖ Spec(tr1, tr2 〈̂l〉))

 u STOP .

If tr1 |̀ H = 〈〉:
Sched1(l) ‖ Spec(tr1 〈̂l〉, tr2) =

c.2.l → (Sched ‖ Spec(tr1 〈̂l〉, tr2 〈̂l〉)) u STOP ,

Sched2(l) ‖ Spec(tr1, tr2 〈̂l〉) =
c.1.l → (Sched ‖ Spec(tr1 〈̂l〉, tr2 〈̂l〉)) u STOP .

If tr1 |̀ H 6= 〈〉 then Spec can’t refuse respectively c.2.l and c.1.l in the following
cases:

Sched1(l) ‖ Spec(tr1 〈̂l〉, tr2) = c.2.l → (Sched ‖ Spec(tr1 〈̂l〉, tr2 〈̂l〉)),
Sched2(l) ‖ Spec(tr1, tr2 〈̂l〉) = c.1.l → (Sched ‖ Spec(tr1 〈̂l〉, tr2 〈̂l〉)).

So we can define Spec′ as follows; the two clauses correspond to Sched ‖
Spec(tr1, tr2) with tr1 |̀ H 6= 〈〉 and tr1 |̀ H 6= 〈〉, respectively; the other cases
have been absorbed into these clauses.

Spec′ =̂

c.1?h : H → Spec′′

2 c.1?l : L → (c.2.l → Spec′ u STOP)
2 c.2?l : L → (c.1.l → Spec′ u STOP)

 u STOP ,

Spec′′ =̂

c.1?h : H → Spec′′

2 c.1?l : L → c.2.l → Spec′′

2 c.2?l : L → c.1.l → Spec′′)

 u STOP .

This is equivalent to, but defined rather differently from, the test in [Low07] 3 .

6.3 Causation

Recall that for causation we have

R((tr1, X1), (tr2, X2)) =̂
∀ s, t q tr1 = ŝ t̂ 〈e〉 ∧ s |̀ A 6= 〈〉 ∧ tr2 = s \A ⇒ first(t \A 〈̂e〉) /∈ X2.

Without loss of generality, we may assume that t, in the above equation, does not
start with an event from A: any such event could be transferred onto the end of s.

Let B =̂ αP − A. We introduce a fresh event, ping, to indicate the start of t;
this event also makes it easier to define the scheduler as a deterministic process,
as required. The scheduler alternates the same B events on c.1 and c.2, and also
allows A events on c.1; these events correspond to s in the definition of R. After at
least one A event has occurred (state Sched ′) we allow a ping after a c.1.b event,
that b being first(t\A 〈̂e〉). We then (state Sched ′′(b)) allow arbitrary events on c.1,
corresponding to the rest of t, and also allow c.2.b.

Sched =̂ c.1?a : A → Sched ′ 2 c.1?b : B → c.2.b → Sched ,

Sched ′ =̂ c.1?a : A → Sched ′

2 c.1?b : B → (c.2.b → Sched ′ 2 ping → Sched ′′(b))

Sched ′′(b) =̂ c.1?d : αP → Sched ′′(b) 2 c.2.b → STOP .

3 The test in [Low07] schedules the two processes in a slightly different way; further, it allows additional
H events between corresponding c.1.l and c.2.l events, and so has a slightly larger search space.

Note that R((tr1, X1), (tr2, X2)) is false only when, for some s and t, tr1 =
ŝ t̂ 〈e〉 ∧ s |̀ A 6= 〈〉 ∧ tr2 = s \ A. Such a trace is reflected by the traces of Sched
that end in state Sched ′′(b). Note also that condition (ii) of Definition 5.1 is satisfied.
The only non-trivial case to check is after a trace as above; taking X ′

2 = {b}, we
can check that c.2.b is available both in state Sched ′′(b) and directly after the c.1.b

event in state Sched ′.
In the appendix we show that Sched ‖ Spec is equivalent to the following pro-

cess.

Spec1 =̂ (c.1?a : A → Spec2 2 c.1?b : B → (c.2.b → Spec1 u STOP)) u STOP ,

Spec2 =̂

c.1?a : A → Spec2

2 c.1?b : B → if b 6= e

then c.2.b → Spec2 . ping → Spec3(b, b)
else c.2.e → Spec2 2 ping → Spec3(e, e)

 u STOP ,

Spec3(b, c) =̂ if c 6= e

then (c.1?d : αP → Spec3(b, d) 2 c.2.b → STOP) u STOP
else c.1?d : αP → Spec3(b, d) . c.2.b → STOP .

This is similar to the test from [ML07].

6.4 Responsiveness

Recall that for responsiveness we have

R((tr1, X1), (tr2, X2)) =̂
∀(tr3, X3) ∈ failures(Q) q ∀x ∈ J q

tr1 = tr2 〈̂a〉 ∧ tr2 = tr3 ⇒ (∃ y ∈ J q y /∈ X2 ∪X3) ∨ x /∈ X3.

The techniques we have described so far talk about a single process P . However,
R in this case talks about both P and Q. It turns out that the techniques extend
directly to predicates of the form

∀ f1 ∈ failures(P1), . . . , fn ∈ failures(Pn) q R(f1, . . . , fn),

where some of the Pi may be the same, by considering a harness of the form 4

(c.1.P1 ||| . . . ||| c.n.Pn) ‖ Sched .

We can replace the above R, above, by a ternary relation that includes failures
of Q as its third component:

R′((tr1, X1), (tr2, X2), (tr3, X3)) =̂
∀x ∈ J q tr1 = tr2 〈̂a〉 ∧ tr2 = tr3 ⇒ (∃ y ∈ J q y /∈ X2 ∪X3) ∨ x /∈ X3.

We can then consider a harness of the form:

Harness(P,Q) = (c.1.P ||| c.2.P ||| c.3.Q) ‖ Sched .

4 One way to reduce this more general harness to the previous type is to define

AnyP = choose?i : 1 . . n → Pi,

Sched ′ = c.1.choose.1.P1 → . . . → c.n.choose.n.Pn → Sched ,

Harness′ = (c.1.AnyP ||| . . . ||| c.n.AnyP) ‖ Sched ′.

It is then clear that the behaviours of Harness′ are the same as those of the above harness, except with the
addition of the choose events.

Note that R′ is false only when tr1 = tr2 〈̂a〉 and tr2 = tr3, so we mainly force
the processes to perform the same events. However, after such traces, many different
refusals X2 and X3 make R′ false, so, following condition (ii) of Definition 5.1, we
allow all events on c.2 and c.3, but allow the processes to proceed only if the events
match:

Sched =̂ c.1?x → Sched ′(x),

Sched ′(x) =̂ c.2?y → x = y & c.3.x → Sched 2 c.3?y → x = y & c.2.x → Sched .

Note that whenever Sched returns to its initial state, the same events have been
performed on the three channels.

In the appendix, we show that Sched ‖ Spec is equivalent to Spec0, below:

Spec0 =̂ c.1?x → Spec1(x) u STOP ,

Spec1(x) =̂ (c.2?y → Spec2(x, y) 2 c.3?y → Spec3(x, y))

.

(
u y ∈ J q (c.2.y → Spec2(x, y) 2 c.3.y → Spec3(x, y))
u c.3.x → (c.2.x → Spec0 u STOP)

)
,

Spec2(x, y) =̂ x = y & c.3.x → Spec0 u STOP ,

Spec3(x, y) =̂ x = y & c.2.x → Spec0 u STOP .

The refinement test from [RSR04] is somewhat different from this: there Q is
synchronised directly with the second copy of P so as to combine their refusals;
further, the clause “x /∈ X3” in the definition of R′ is dealt with using a clever trick
on the right hand side of the refinement check, rather than within the specification
(in state Spec1(x), above).

7 Discussion

In this paper we have shown that refinement checks of the form Spec v Harness(P),
where Harness(P) runs n copies of P , capture precisely those predicates of the form
∀ f1, . . . , fn ∈ failures(P) q R(f1, . . . , fn). Further, we have shown how a finite-state
refinement check can be calculated in many common cases.

All of the examples we have considered have been binary failures predicates
on P , i.e., have n = 2 (the question of responsiveness is ternary when Q’s behaviour
is included). A somewhat artificial example of a non-binary failures predicate is
“after every trace, at most two different events are possible”:

∀(tr1, X1), (tr2, X2), (tr3, X3) ∈ failures(P) q ∀ tr, a, b, c q
tr1 = tr 〈̂a〉 ∧ tr2 = tr 〈̂b〉 ∧ tr3 = tr 〈̂c〉 ⇒ a = b ∨ a = c ∨ b = c.

A corresponding refinement test can be derived as for the earlier examples.
It is interesting to ask why the natural examples are all binary. All of the

examples consider whether P behaves in the same way in two different circum-
stances: determinism asks whether P always behaves in the same way; RCFNDC
asks whether P behaves in the same way when High is active or inactive; causation
asks whether an event e becomes available as the result of action in A; responsive-
ness asks whether P has the same deadlocking behaviours when Q is plugged in
as when P is allowed to communicate freely. It seems fairly clear that one needs
to consider two behaviours of P to decide such properties. However, it seems very

difficult to find interesting properties that require one to consider more than two
behaviours.

It is also interesting to note that most of the predicates (all except determinism)
are the refinement closures of more basic properties. It seems that properties of
the form considered in the previous paragraph naturally give rise to predicates that
are not refinement-closed, and so one normally needs to consider the refinement
closure. This question deserves further study. Calculating the refinement-closure of
such predicates is not straightforward, so it would be useful to have some general
techniques.

It would be interesting to try to extend the work of this paper to capture more
general predicates over multiple failures of a process. Following the above discussion,
sensible predicates to consider would be those of the form

∀ f ∈ failures(P) q ∃ f ′ ∈ failures(P) q R(f, f ′).

Of course, such predicates are not, in general, refinement-closed, so any refinement
check would need to use a copy of P on the left hand side of the refinement.

Acknowledgements

I would like to thank the anonymous referees for useful comments on this paper.

References

[FG95] Riccardo Focardi and Roberto Gorrieri. A classification of security properties. Journal of
Computer Security, 1995.

[Foc96] Riccardo Focardi. Comparing two information flow security properties. In Proceedings of 9th IEEE
Computer Security Foundations Workshop, pages 116–122, 1996.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[Laz99] Ranko Lazić. A Semantic Study of Data Independence with Applications to Model Checking.
D.Phil., Oxford University, 1999.

[Low07] Gavin Lowe. On information flow and refinement-closure. In Proceedings of the Workshop on
Issues in the Theory of Security (WITS ’07), 2007.

[ML07] Toby Murray and Gavin Lowe. Authority analysis for least privilege environments. In To appear in
Proceedings of Foundations of Computer Security and Automated Reasoning for Security Protocol
Analysis (FCS-ARSPA’07), 2007.

[Ros94] A. W. Roscoe. Model-checking CSP. In A Classical Mind, Essays in Honour of C. A. R. Hoare.
Prentice-Hall, 1994.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.

[Ros05] A. W. Roscoe. On the expressive power of CSP refinement. Formal Aspects of Computing,
17(2):93–112, 2005.

[RSR04] J. N. Reed, J. E. Sinclair, and A. W. Roscoe. Responsiveness of interoperating components. Formal
Aspects of Computing, 16:394–411, 2004.

A Details of derivations

In this appendix we give details of the derivations of a couple of the specification
processes from Section 6.

A.1 Causation

We consider all the reachable states of Sched ‖ Spec from Section 6.3. Firstly,
suppose tr2 = tr1 \ A, tr1 |̀ A = 〈〉 and b ∈ B. Then in both the following cases,
Spec allows all refusals.

Sched ‖ Spec(tr1, tr2) =(
c.1?a : A → (Sched ′ ‖ Spec(tr1 〈̂a〉, tr2))
2 c.1?b : B → (c.2.b → Sched ‖ Spec(tr1 〈̂b〉, tr2))

)
u STOP ,

c.2.b → Sched ‖ Spec(tr1 〈̂b〉, tr2) =
c.2.b → (Sched ‖ Spec(tr1 〈̂b〉, tr2 〈̂b〉)) u STOP .

Now suppose tr2 = tr1 \ A, tr1 |̀ A 6= 〈〉, b ∈ B and b 6= e. In the first two cases
below, Spec allows all refusals, but in the third, Spec does not allow c.2.e to be
refused.

Sched ′ ‖ Spec(tr1, tr2) =(
c.1?a : A → (Sched ′ ‖ Spec(tr1 〈̂a〉, tr2))
2 c.1?b : B → (c.2.b → Sched ′ 2 ping → Sched ′′(b) ‖ Spec(tr1 〈̂b〉, tr2))

)
u STOP ,

c.2.b → Sched ′ 2 ping → Sched ′′(b) ‖ Spec(tr1 〈̂b〉, tr2) =
c.2.b → (Sched ′ ‖ Spec(tr1 〈̂b〉, tr2 〈̂b〉))
. ping → (Sched ′′(b) ‖ Spec(tr1 〈̂b〉, tr2)),

c.2.e → Sched ′ 2 ping → Sched ′′(b) ‖ Spec(tr1 〈̂e〉, tr2) =
c.2.e → (Sched ′ ‖ Spec(tr1 〈̂e〉, tr2 〈̂e〉))
2 ping → (Sched ′′(e) ‖ Spec(tr1 〈̂e〉, tr2)).

Finally, suppose tr2 < tr1 \ A, b is the first event in tr1 \ A after tr2, tr1 |̀ A 6= 〈〉;
in the “then” branch, below, Spec allows all refusals, but in the “else” branch, Spec

doesn’t allow c.2.b to be refused.

Sched ′′(b) ‖ Spec(tr1, tr2) =
if last tr1 6= e

then

(
c.1?d : αP → (Sched ′′(b) ‖ Spec(tr1 〈̂d〉, tr2))
2 c.2.b → STOP

)
u STOP

else c.1?d : αP → (Sched ′′(b) ‖ Spec(tr1 〈̂d〉, tr2)) . c.2.b → STOP .

We can therefore use the specification Spec1 from Section 6.3 (the processes
Spec1, Spec2 and Spec3(b, c) correspond, respectively, to the first, third, and sixth
processes above, with c = last tr1 in the final case).

A.2 Responsiveness

We consider all reachable states of Sched ‖ Spec(〈〉, 〈〉, 〈〉) from Section 6.4. In the
following state, Spec allows all refusals.

Sched ‖ Spec(tr, tr, tr) = c.1?x → (Sched ′(x) ‖ Spec(tr 〈̂x〉, tr, tr)) u STOP .

In the following state, Spec cannot allow refusals X2 and X3 such that x ∈ X3 and
X2 ∪X3 ⊇ J .

Sched ′(x) ‖ Spec(tr 〈̂x〉, tr, tr)
=
〈
step laws

〉
uX2, X3 ∈ P J, x /∈ X3 ∨ X2 ∪X3 ⊂ J q

c.2?y : J −X2 → (x = y & c.3.x → Sched ‖ Spec(tr 〈̂x〉, tr 〈̂y〉, tr))
2 c.3?y : J −X3 → (x = y & c.2.x → Sched ‖ Spec(tr 〈̂x〉, tr, tr 〈̂y〉))

=
〈
by consideration of initial refusals

〉
(

c.2?y → (x = y & c.3.x → Sched ‖ Spec(tr 〈̂x〉, tr 〈̂y〉, tr))
2 c.3?y → (x = y & c.2.x → Sched ‖ Spec(tr 〈̂x〉, tr, tr 〈̂y〉))

)
.u y ∈ J q (c.2.y → (x = y & c.3.x → Sched ‖ Spec(tr 〈̂x〉, tr 〈̂y〉, tr))

2 c.3.y → (x = y & c.2.x → Sched ‖ Spec(tr 〈̂x〉, tr, tr 〈̂y〉))

)
u c.3.x → (c.2.x → Sched ‖ Spec(tr 〈̂x〉, tr, tr 〈̂x〉))

In the following case, Spec allows all refusals

x = y & c.3.x → Sched ‖ Spec(tr 〈̂x〉, tr 〈̂y〉, tr) =
x = y & c.3.x → (Sched ‖ Spec(tr 〈̂x〉, tr 〈̂x〉, tr 〈̂x〉)) u STOP ,

and similarly with the roles of c.2 and c.3 reversed, and without the initial guard.
We therefore obtain the specification Spec0 from Section 6.4.

	Introduction
	Examples
	Determinism
	Refinement-closed failures non-deducibility on compositions
	Causation
	Responsiveness

	n-copy refinement tests capture all n-ary failures predicates
	n-copy refinement tests capture only n-ary failures predicates
	Making it feasible
	Examples
	Determinism
	RCFNDC
	Causation
	Responsiveness

	Discussion
	References
	Details of derivations
	Causation
	Responsiveness

