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A schema mapping is a specification that describes how data from a source schema is to be mapped to a target

schema. Once the data has been transferred from the source to the target, a natural question is whether one can

undo the process and recover the initial data, or at least part of it. In fact, it would be desirable to find a reverse

schema mapping from target to source that specifies how to bring the exchanged data back.

In this paper, we introduce the notion of a recovery of a schema mapping: it is a reverse mapping M′ for a

mapping M that recovers sound data with respect to M. We further introduce an order relation on recoveries.

This allows us to choose mappings that recover the maximum amount of sound information. We call such map-

pings maximum recoveries. We study maximum recoveries in detail, providing a necessary and sufficient condi-

tion for their existence. In particular, we prove that maximum recoveries exist for the class of mappings specified

by FO-TO-CQ source-to-target dependencies. This class subsumes the class of source-to-target tuple-generating

dependencies used in previous work on data exchange. For the class of mappings specified by FO-TO-CQ depen-

dencies, we provide an exponential-time algorithm for computing maximum recoveries, and a simplified version

for full dependencies that works in quadratic time. We also characterize the language needed to express maxi-

mum recoveries, and we include a detailed comparison with the notion of inverse (and quasi-inverse) mapping

previously proposed in the data exchange literature. In particular, we show that maximum recoveries strictly

generalize inverses. We finally study the complexity of some decision problems related to the notions of recovery

and maximum recovery.
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1. INTRODUCTION

A schema mapping is a specification that describes how data from a source schema is to

be mapped to a target schema. In the last years, a lot of attention has been paid to the

development of solid foundations for the problem of exchanging data using schema map-
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Authors’ addresses: M. Arenas, J. Pérez, Department of Computer Science, Pontificia Universidad Católica
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pings [Fagin et al. 2005a; Libkin 2006; De Giacomo et al. 2007]. These developments

are a first step towards providing a general framework for exchanging information, but

they are definitely not the last one. As pointed out by Bernstein [Bernstein 2003], many

information system problems involve not only the design and integration of complex ap-

plication artifacts, but also their subsequent manipulation. This has motivated the need for

the development of a general infrastructure for managing schema mappings.

A framework for managing schema mappings, called model management, was proposed

by Bernstein in [Bernstein 2003]. In this framework, operators like match, merge and

compose are used to manipulate mappings [Bernstein 2003; Melnik 2004; Melnik et al.

2005]. Another important operator that naturally arises in this context is the inverse, which

plays an important role in schema evolution [Bernstein and Melnik 2007]. Once the data

has been transferred from the source to the target, the goal of the inverse is to recover the

initial source data. If a mapping M′ is an inverse of a mapping M, then M′ is an ideal

mapping to bring the data exchanged through M back to the source.

The process of inverting schema mappings turned out to be a nontrivial task [Fagin

2007; Fagin et al. 2008]. In [Fagin 2007], Fagin proposes a first formal definition for what

it means for a schema mapping M′ to be an inverse of a schema mapping M. Roughly

speaking, Fagin’s definition is based on the idea that a mapping composed with its inverse

should be equal to the identity schema mapping. More formally, Fagin introduces in [Fagin

2007] an identity schema mapping Id, suitably adapted for the case of mappings specified

by source-to-target tuple-generating dependencies (st-tgds). Then he says that M′ is an in-

verse of M if M◦M′ = Id. This notion turns out to be rather restrictive, as it is rare that a

schema mapping possesses an inverse. In view of this limitation, in a subsequent work [Fa-

gin et al. 2008], Fagin et al. introduce the notion of a quasi-inverse of a schema mapping.

The idea of the quasi-inverse is to relax the notion of inverse by not differentiating between

source instances that are equivalent for data exchange purposes. Although numerous non-

invertible schema mappings possess natural and useful quasi-inverses [Fagin et al. 2008],

there are still simple mappings specified by st-tgds that have no quasi-inverse. Moreover,

the notions of inverse and quasi-inverse are defined by considering identity mapping Id,

that is only appropriate for mappings that are closed down on the left [Fagin 2007] and,

in particular, for mappings specified by st-tgds. This leaves out numerous mappings of

practical interest.

In this paper, we revisit the problem of inverting schema mappings. Although our moti-

vation is similar to that of previous work, we follow a different approach. In fact, our main

goal is not to define a notion of inverse mapping, but instead to give a formal definition for

what it means for a schema mapping M′ to recover sound information with respect to a

schema mapping M. We call such an M′ a recovery of M. We use a general definition of

schema mapping, where mappings are simply defined as binary relations with pairs (I, J),
where I is a source instance and J is a target instance. Our notion of recovery is applicable

to this general definition of mapping. Given that, in general, there may exist many possible

recoveries for a mapping, we introduce an order relation on recoveries. This naturally gives

rise to the notion of maximum recovery, which is a mapping that brings back the maximum

amount of sound information.

As a motivating example, consider a database with relations Emp(name, works in,

lives in) and DrivesWork(name), the former to store names of employees and the places

where they work and live, and the latter to store the names of employees that drive to
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work. Assume that the information about employees has to be transferred to an indepen-

dent database that contains relation Shuttle(name), that stores the names of employees that

take a shuttle bus to go to work. A schema mapping ME-S between these two databases is

defined by the following dependency:

Emp(x, y, z) ∧ y 6= z ∧ ¬DrivesWork(x) → Shuttle(x). (1)

An example of a reverse mapping M1 that recovers sound information w.r.t. ME-S is

Shuttle(x) → ∃u∃v Emp(x, u, v); it is correct to bring back to relation Emp every em-

ployee in relation Shuttle, but since Shuttle does not store information about the places

where employees work and live, variables u and v are existentially quantified. Further-

more, it is also correct to assume that if an employee name has been brought back from

relation Shuttle, then the places where this employee works and lives are different. Thus,

mapping M2 defined by Shuttle(x) → ∃u∃v (Emp(x, u, v) ∧ u 6= v) is also a correct way

of recovering information w.r.t. ME-S. On the other hand, it is clear that mapping M3

defined by Shuttle(x) → ∃uEmp(x, u, u) is not a correct way of recovering information

w.r.t. ME-S, since M3 assumes that in every recovered instance, every employee in relation

Shuttle works and lives in the same place.

Formally, an instance J is said to be a solution for an instance I under a mapping M if

(I, J) ∈ M, and the space of solutions for I under M is defined as the set of all instances

J such that (I, J) ∈ M. Then if M is a mapping from a source schema to a target schema

and M′ is a reverse mapping from target to source, we say that M′ is a recovery of M if

for every source instance I , the space of solutions for I under the composition of mappings

M and M′ contains I itself. That is, I must be a possible solution for itself under mapping

M◦M′. Under this definition, mappingsM1 andM2 above are recoveries of ME-S, while

mapping M3 is not a recovery of ME-S.

Being a recovery is a sound but mild requirement. Then it would be desirable to have

some criteria to compare alternative recoveries. In our motivating example, if one has to

choose between M1 and M2 as a recovery of M, then one would probably choose M2,

since this mapping says not only that every employee that takes a shuttle bus works and

lives in some place, but also that those places must be different. Intuitively, M2 is more

informative than M1 w.r.t. M. Furthermore, if M4 is a mapping defined by dependency:

Shuttle(x) → ∃u∃v (Emp(x, u, v) ∧ u 6= v ∧ ¬DrivesWork(x)),

then M4 is a recovery of ME-S that is more informative than M2; M4 additionally states

that if an employee is brought back from relation Shuttle, then it is known that she/he

does not drive to work. In general, if M′ is a recovery of M, then the smaller the space

of solutions generated by the composition M ◦ M′, the more informative M′ is about

the initial source instances. We formalize this notion by saying that M′ is at least as

informative as M′′ w.r.t. M, if for every source instance I , the space of solutions for I
under M◦M′ is contained in the space of solutions for I under M◦M′′. This order on

recoveries gives rise to a notion of maximum recovery. Going back to our example, it can

be shown that mapping M4 is a maximum recovery of ME-S.

In this paper, we study the notions of recovery and maximum recovery. The following

are our main technical contributions:

—For the general notion of schema mapping considered in this paper, we provide a nec-

essary and sufficient condition for the existence of a maximum recovery. We use this
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condition to show that maximum recoveries are guaranteed to exist for a large class

of schema mappings, namely for mappings specified by FO-TO-CQ source-to-target

dependencies. An FO-TO-CQ dependency is a formula of the form ∀x̄(ϕS(x̄) →
∃ȳ ψT(x̄, ȳ)), whereϕS(x̄) is a first-order formula over the source schema and ψT(x̄, ȳ)
is a conjunction of relational atoms over the target schema. Notice that every st-tgd is

an FO-TO-CQ dependency. We further show that maximum recoveries exist even if

we enrich the class of FO-TO-CQ dependencies with arbitrary source dependencies,

equality-generating target dependencies and weakly acyclic sets of tuple-generating tar-

get dependencies.

—We provide a detailed comparison between the notions of inverse, quasi-inverse, and

maximum recovery. Most notably, we show that for the class of mappings considered

in [Fagin 2007; Fagin et al. 2008], if a mapping M is invertible, then M′ is an inverse

of M if and only if M′ is a maximum recovery of M. For this class of mappings, we

also show that, if a mapping M is quasi-invertible, then M has a maximum recovery,

and, furthermore, every maximum recovery of M is a quasi-inverse of M.

—In the above example, a maximum recovery for mapping ME-S is obtained just by “re-

versing the arrow” of dependency (1). However, in general the process of computing

maximum recoveries is more involved. For mappings specified by FO-TO-CQ depen-

dencies, we provide an exponential-time algorithm for computing maximum recoveries.

For the case of full FO-TO-CQ dependencies, that is, dependencies that do not use

existential quantifiers in their conclusions, we provide a quadratic-time algorithm for

computing maximum recoveries. It is worth mentioning that these algorithms can also

be used for computing inverses and quasi-inverses. We also investigate the language

needed to express maximum recoveries for mappings specified by FO-TO-CQ depen-

dencies, providing justification for the dependency language used in the output of these

algorithms.

—We study the complexity of some problems related to the notions of recovery and max-

imum recovery. We show that even for the case of st-tgds, testing whether a mapping

M′ is a recovery of a mapping M is undecidable. As a corollary, we obtain the same

undecidability result for the notions of inverse, quasi-inverse and maximum recovery.

When restricted to full st-tgds, we prove lower complexity bounds for this problem: it

is ΠP
2 -complete when M is specified by a set of full st-tgds, and coNP-complete when

both M and M′ are specified by full dependencies.

Organization of the paper. We start by introducing the terminology used in the paper in

Section 2. In Section 3, we formally define the notions of recovery and maximum recovery,

and we develop several tools to study these notions. In particular, we provide in Section 3.2

a necessary and sufficient condition that characterizes the existence of maximum recover-

ies for general mappings. In Section 4, we use the tools developed in Section 3 to study the

problem of the existence of maximum recoveries for the most common mappings used in

practice. We prove positive results in Section 4.1, and some negative results in Section 4.2.

In Section 5, we show how to apply the notion of maximum recovery in a significant prac-

tical situation. We compare the notion of maximum recovery with the previous notions of

inverse and quasi-inverse in Section 6. In Section 7, we provide algorithms for computing

maximum recoveries. In Section 8, we study the language needed to express maximum re-

coveries. Finally, we study in Section 9 the complexity of some decision problems related

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 5

to the notions of recovery and maximum recovery. Concluding remarks are in Section 10.

This article is a substantially extended version of [Arenas et al. 2008]. Besides con-

taining the complete proofs of all the results stated in [Arenas et al. 2008], this version

includes new results. In Section 3.1, we provide characterizations of when a mapping M′

is a maximum recovery of a mapping M. All the results in this section are new. In [Are-

nas et al. 2008], the schema evolution problem was mentioned as a natural application

of the notion of maximum recovery. In this paper, in Section 5, we take a step forward

and formally prove that the notion of maximum recovery can be used to provide a good

solution for this problem. In Section 7, we also include new and simplified versions of

the algorithms for computing maximum recoveries, that exploit an interesting connection

with query rewriting. In the same section, we prove a theorem about the minimum size of

maximum recoveries of mappings given by st-tgds (Theorem 7.5), that was not provided

in [Arenas et al. 2008].

2. PRELIMINARIES

A schema R is a finite set {R1, . . . , Rk} of relation symbols, with each Ri having a fixed

arity ni. Let D be a countably infinite domain. An instance I of R assigns to each relation

symbol Ri of R a finite ni-ary relation RIi ⊆ D
ni . The domain dom(I) of instance I is

the set of all elements that occur in any of the relations RIi . Inst(R) is defined to be the

set of all instances of R. Given instances I, J ∈ Inst(R), we write I ⊆ J to denote that,

for every relation symbol Ri of R, it holds that RIi ⊆ RJi .

As is customary in the data exchange literature, we consider instances with two types

of values: constants and nulls [Fagin et al. 2005a; Fagin 2007; Fagin et al. 2008]. More

precisely, let C and N be infinite and disjoint sets of constants and nulls, respectively, and

assume that D = C ∪ N. If we refer to a schema S as a source schema, then Inst(S)
is defined to be the set of all instances of S that are constructed by using only elements

from C, and if we refer to a schema T as a target schema, then Inst(T) is defined as usual

(instances of T are constructed by using elements from both C and N). In this paper, we

use S to refer to a source schema and T to refer to a target schema.

Given schemas R1 and R2, a schema mapping (or just mapping) from R1 to R2 is a

nonempty subset of Inst(R1)× Inst(R2). As is customary in the data exchange literature,

if S is a source schema and T is a target schema, a mapping from S to T is called source-

to-target mapping (st-mapping), and a mapping from T to S is called target-to-source

mapping (ts-mapping) [Fagin et al. 2008].

If M is a schema mapping from R1 to R2 and I is an instance of R1, then we say that

an instance J of R2 is a solution for I under M, if (I, J) ∈ M. The set of solutions for

I under M is denoted by SolM(I). The domain of M, denoted by dom(M), is defined

as the set of instances I such that SolM(I) 6= ∅. Notice that the symbol dom(·) is used

to denote both the domain of an instance and of a mapping, as this does not create any

confusion in the paper. Furthermore, given schema mappings M12 from R1 to R2 and

M23 from R2 to R3, the composition of M12 andM23 is defined as the usual composition

of binary relations, that is, M12 ◦M23 = {(I1, I3) | ∃I2 : (I1, I2) ∈ M12 and (I2, I3) ∈
M23}. If M12 ◦M23 is nonempty, then there exists a unique mapping M13 from R1 to

R3 such that M13 = M12 ◦M23.
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2.1 Dependencies and definability of mappings

In this paper, CQ is the class of conjunctive queries and UCQ is the class of unions of con-

junctive queries. If we extend these classes by allowing equalities, inequalities or negation

(of atoms), then we use superscripts =, 6= and ¬, respectively. Thus, for example, CQ=

is the class of conjunctive queries with equalities and UCQ¬ is the class of unions of con-

junctive queries with negation. FO is the class of all first-order formulas with equality.

Slightly abusing notation, we use C(·) to denote a built-in unary predicate such that C(a)
holds if and only if a is a constant, that is, a ∈ C. If L is any of the previous query lan-

guages, then LC is the extension of L allowing predicate C(·). For example, CQ 6=,C is

the class of conjunctive queries with inequalities and predicate C(·).

Dependencies. Let L1, L2 be query languages and R1, R2 be schemas with no relation

symbols in common. A sentence Φ over R1 ∪ R2 ∪ {C(·)} is an L1-TO-L2 dependency

from R1 to R2 if Φ is of the form ∀x̄ (ϕ(x̄) → ψ(x̄)), where (1) x̄ is the tuple of free

variables in both ϕ(x̄) and ψ(x̄); (2) ϕ(x̄) is an L1-formula over R1 ∪ {C(·)} if C(·) is

allowed in L1, and over R1 otherwise; and (3) ψ(x̄) is an L2-formula over R2 ∪ {C(·)}
if C(·) is allowed in L2, and over R2 otherwise. We call ϕ(x̄) the premise of Φ, and

ψ(x̄) the conclusion of Φ. If S is a source schema and T is a target schema, an L1-TO-L2

dependency from S to T is called an L1-TO-L2 source-to-target dependency (L1-TO-L2

st-dependency), and an L1-TO-L2 dependency from T to S is called an L1-TO-L2 target-

to-source dependency (L1-TO-L2 ts-dependency).

Three fundamental classes of dependencies for data exchange, and in particular for in-

verting schema mappings, are source-to-target tuple-generating dependencies (st-tgds), full

source-to-target tuple-generating dependencies (full st-tgds) and target-to-source disjunc-

tive tuple-generating dependencies with inequalities and predicate C(·) [Fagin et al. 2005a;

Fagin et al. 2008]. The former corresponds to the class of CQ-TO-CQ st-dependencies, and

the latter is an extension of the class of CQ 6=,C-TO-UCQ ts-dependencies. An FO-TO-CQ

dependency is full if its conclusion does not include existential quantifiers and, thus, the

class of full st-tgds corresponds to the class of full CQ-TO-CQ st-dependencies.

Semantics of dependencies, safeness. Let I be an instance of a schema R = {R1, . . . ,
Rm}. Instance I can be represented as an (R∪ {C(·)})-structure AI = 〈A,RA1 , . . . , R

A
m,

C
A〉, whereA = dom(I) is the universe of AI ,RAi = RIi for i ∈ [1,m] and C

A = A∩C.

This representation is used to define the semantics of FO over source and target instances

(here we assume familiarity with some basic notions of first-order logic).

Let R1 = {S1, . . . , Sm} be a schema and I an instance of R1. If ϕ(x̄) is an FO-formula

over R1 ∪ {C(·)} and ā is a tuple of elements from dom(I), then we say that I satisfies

ϕ(ā), denoted by I |= ϕ(ā), if and only if AI |= ϕ(ā). Whenever it holds that I |= ϕ(ā),
we say that ā is an answer for ϕ over instance I . Furthermore, let R2 = {T1, . . . , Tn} be

a schema with no relation symbols in common with R1, and J an instance of R2. Then

K = (I, J) is an instance of R1 ∪ R2 defined as SKi = SIi and TKj = T Jj , for i ∈ [1,m]
and j ∈ [1, n]. Notice that dom(K) = dom(I) ∪ dom(J). If ϕ(x̄) is an FO-formula

over R1 ∪ R2 ∪ {C(·)} and ā is a tuple of elements from dom(I) ∪ dom(J), then we

say that (I, J) satisfies ϕ(ā), denoted by (I, J) |= ϕ(ā), if and only if AK |= ϕ(ā). As

usual, we say that an instance satisfies a set Σ of dependencies if the instance satisfies each

dependency in Σ.

We impose the following safety condition on L1-TO-L2 dependencies. Recall that an
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FO-formula ϕ(x̄) is domain-independent if its answer depends only on the database in-

stance but not on the underlying domain (see [Fagin 1982] for a formal definition). Let

R1 and R2 be schemas with no relation symbols in common and Φ = ∀x̄ (ϕ(x̄) → ψ(x̄))
an L1-TO-L2 dependency from R1 to R2. Then we say that Φ is domain-independent if

both ϕ(x̄) and ψ(x̄) are domain-independent. The following strategy can be used to eval-

uate Φ: Given instances I , J of R1 and R2, respectively, we have that (I, J) |= Φ if and

only if for every tuple ā of elements from dom(I), if I |= ϕ(ā), then every component of

tuple ā is in dom(J) and J |= ψ(ā). We note that this strategy cannot be used for non

domain-independentL1-TO-L2 dependencies.

Definability of mappings. Let R1 and R2 be schemas with no relation symbols in

common and Σ a set of FO-sentences over R1 ∪ R2 ∪ {C(·)}. We say that a map-

ping M from R1 to R2 is specified by Σ, denoted by M = (R1,R2,Σ), if for every

(I, J) ∈ Inst(R1) × Inst(R2), we have that (I, J) ∈ M if and only if (I, J) |= Σ.

Proviso. In this paper, every set Σ of dependencies is finite, and if Σ is a set

of L1-TO-L2 dependencies, then we assume that every dependency in Σ is domain-

independent (as defined above). Furthermore, we omit the outermost universal quan-

tifiers from L1-TO-L2 dependencies and, thus, we write ϕ(x̄) → ψ(x̄) instead of

∀x̄ (ϕ(x̄) → ψ(x̄)). Finally, for the sake of readability, we write ϕ(x̄, ȳ) → ψ(x̄) in-

stead of (∃ȳ ϕ(x̄, ȳ)) → ψ(x̄) in some examples, as these two formulas are equivalent.

3. RECOVERIES AND THEIR MAXIMA

Let M be a mapping from a schema R1 to a schema R2, and Id the identity schema

mapping over R1, that is, Id = {(I, I) | I ∈ Inst(R1)}. When trying to invert M, the

ideal would be to find a mapping M′ from R2 to R1 such that, M ◦ M′ = Id. If such

a mapping exists, we know that if we use M to exchange data, the application of M′

gives as result exactly the initial source instance. Unfortunately, in most cases this ideal

is impossible to reach. For example, it is impossible to obtain such an inverse if M is

specified by a set of st-tgds [Fagin 2007]. The main problem with such an ideal definition

of inverse is that, in general, no matter what M′ we choose, we will have not one but many

solutions for a source instance under M◦M′.

If for a mapping M, there is no mapping M1 such that M ◦ M1 = Id, at least we

would like to find a schema mapping M2 that does not forbid the possibility of recovering

the initial source data. That is, we would like that for every instance I ∈ dom(M), the

space of solutions for I under M◦M2 contains I itself. Such a schema mapping M2 is

called a recovery of M.

Definition 3.1. Let R1 and R2 be two schemas, M a mapping from R1 to R2 and M′

a mapping from R2 to R1. Then M′ is a recovery of M iff (I, I) ∈ M ◦M′ for every

instance I ∈ dom(M).

Being a recovery is a sound but mild requirement. Indeed, a schema mapping M from

R1 to R2 always has as recoveries, for example, mappings M1 = Inst(R2) × Inst(R1)
and M2 = M−1 = {(J, I) | (I, J) ∈ M}. If one has to choose between M1 and

M2 as a recovery of M, then one would probably choose M2 since the space of possible

solutions for a source instance I under M◦M2 is smaller than under M◦M1. In fact,

if there exists a mapping M3 such that M ◦M3 = Id, then one would definitely prefer

M3 over M1 and M2. In general, if M′ is a recovery of M, then the smaller the space
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of solutions generated by M ◦ M′, the more informative M′ is about the initial source

instances. This notion induces an order among recoveries:

Definition 3.2. Let M be a mapping and M′, M′′ recoveries of M. We say that M′

is at least as informative as M′′ for M, and write M′′ �M M′, iff M◦M′ ⊆ M◦M′′.

Moreover, we say that M′ and M′′ are equally informative for M, denoted by M′ ≡M

M′′, if M′′ �M M′ and M′ �M M′′.

Example 3.3. Let M be an st-mapping specified by st-tgd:

P (x, y) ∧R(y, z, u) → T (x, y, z).

Then the ts-mapping M1 specified by T (x, y, z) → ∃vP (x, v) is a recovery of M, as

well as the ts-mapping M2 specified by T (x, y, z) → P (x, y)∧∃uR(y, z, u). Intuitively,

both M1 and M2 recover sound information given the definition of M. Furthermore, it

can be shown that M1 �M M2, which agrees with the intuition that M2 recovers more

information than M1.

If for a mapping M, there exists a recovery M′ that is at least as informative as any

other recovery of M, then M′ is the best alternative to bring exchanged data back, among

all the recoveries. Intuitively, such a mapping M′ recovers the maximum amount of sound

information. Such a mapping M′ is called a maximum recovery of M.

Definition 3.4. Let M′ be a recovery of a mapping M. We say that M′ is a maximum

recovery of M if for every recovery M′′ of M, it is the case that M′′ �M M′.

Notice that if M1 and M2 are maximum recoveries of a mapping M, then they are

equally informative for M, that is, M1 ≡M M2.

Example 3.5. Consider st-mapping M and ts-mapping M2 from Example 3.3. Intu-

itively, M2 is doing the best effort to recover the information exchanged by M. In fact, it

can be shown that M2 is a maximum recovery of M.

3.1 Characterizing maximum recoveries

In this section, we focus on the problem of characterizing when a mapping M′ is a maxi-

mum recovery of a mapping M. For doing this, we need the notion of reduced recovery.

A mapping M′ is a reduced recovery of M if M′ is a recovery of M and for every

(I1, I2) ∈ M ◦M′, it holds that I2 ∈ dom(M).

Example 3.6. Consider an st-mapping M specified by CQ-TO-CQ 6= st-dependency

A(x, y) → P (x, y) ∧ x 6= y. Notice that there are source instances that are not in the

domain of M. For example, for the instance I1 such that AI1 = {(1, 1), (1, 2)}, we have

that SolM(I1) = ∅ and, thus, I1 /∈ dom(M). Let M′ be the ts-mapping specified by

the ts-dependency P (x, y) → A(x, y). It is easy to see that M′ is a recovery of M, but

not a reduced recovery of M. In fact, the target instance J such that P J = {(1, 2)} has

I1 as solution. Thus, if we consider the source instance I2 such that AI2 = {(1, 2)}, we

conclude that (I2, J) ∈ M and (J, I1) ∈ M′, which implies that (I2, I1) ∈ M ◦M′ and,

hence, that M′ is not a reduced recovery of M since I1 /∈ dom(M).
Consider now the ts-mapping M′′ obtained from M′ by removing from this mapping

all the tuples (J, I) such that I 6∈ dom(M). Then it holds that M′′ is a reduced recovery

of M.
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As shown in Example 3.6, whenever M′ is a recovery of M, one can extract from M′ a

reduced recovery M′′ of M by discarding all the pairs of instances (J, I) of M′ such that

I /∈ dom(M). The obtained reduced recovery M′′ is at least as informative as M′ for M
since M◦M′′ ⊆ M ◦M′. The following lemma formalizes this intuition. It shows that

we can focus on reduced recoveries in order to find maximum recoveries.

LEMMA 3.7. If M′ is a maximum recovery of M, then M′ is a reduced recovery of

M.

PROOF. By contradiction, assume that M′ is a maximum recovery of M and M′ is not

a reduced recovery of M. Then there exists (I1, I2) ∈ M ◦M′ such that I2 6∈ dom(M).
Define mapping M′′ ⊆ M′ as M′′ = {(J, I) ∈ M′ | I ∈ dom(M)}. Given that M′ is a

recovery of M, we have that M′′ is a recovery of M. Moreover,M◦M′′  M◦M′ since

M′′ ⊆ M′ and (I1, I2) 6∈ M ◦M′′. Thus, we have that M′ �M M′′ but M′′ 6�M M′,

which contradicts the fact that M′ is a maximum recovery of M.

From the definition of maximum recovery, one can notice that, in principle, it is difficult

to verify whether a mapping M′ is a maximum recovery of a mapping M, as it requires

comparing M′ with all the other recoveries of M. However, the following proposition

shows two alternative and useful conditions for checking whether a mapping M′ is a max-

imum recovery of a mapping M, and that only depend on the structure of mappings M
and M′. These conditions also show that reduced recoveries are necessary for character-

izing the notion of maximum recovery (notice that in (3), we are also implicitly using the

notion of reduced recovery).

PROPOSITION 3.8. Let M and M′ be mappings. Then the following conditions are

equivalent:

(1) M′ is a maximum recovery of M.

(2) M′ is a reduced recovery of M and M = M◦M′ ◦M.

(3) M′ is a recovery of M and for every (I1, I2) ∈ M ◦ M′, it is the case that ∅  
SolM(I2) ⊆ SolM(I1).

PROOF. In this proof, we assume that M is a mapping from a schema R1 to a schema

R2, and M′ is a mapping from R2 to R1.

(1) ⇒ (2) Assume that M′ is a maximum recovery of M. By Lemma 3.7, we know

that M′ is a reduced recovery of M. Given that M′ is a recovery of M, we have that

(I, I) ∈ M◦M′ for every I ∈ dom(M), which implies that M ⊆ M◦M′ ◦M. Thus,

we only need to show that M◦M′ ◦M ⊆ M. On the contrary, assume that there exists

(I1, J1) ∈ M ◦ M′ ◦ M such that (I1, J1) 6∈ M. Then, there exist instances I2 and

J2 such that (I1, J2) ∈ M, (J2, I2) ∈ M′, and (I2, J1) ∈ M. Note that J1 6= J2 and

I1 6= I2, because we are assuming that (I1, J1) 6∈ M. Let M⋆ be a mapping from R2 to

R1 defined as:

M⋆ = {(J, I) ∈ M′ | I 6= I2} ∪ {(J1, I2)}.

Given that M′ is a recovery of M and (I2, J1) ∈ M, we have that M⋆ is a recovery

of M. Now, consider the pair (I1, I2). We know that (I1, I2) ∈ M ◦ M′, but given

that (I1, J1) 6∈ M and (J1, I2) is the only tuple in M⋆ where I2 appears as the second

component, we have that (I1, I2) 6∈ M ◦M⋆. Thus, M◦M′ 6⊆ M ◦M⋆ and, therefore,

M⋆ �M M′. We obtain a contradiction since M′ is a maximum recovery of M.
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(2) ⇒ (3) Assume that M′ is a reduced recovery of M and M = M ◦ M′ ◦ M,

and let (I1, I2) be in M◦M′. Given that M′ is a reduced recovery of M, we have that

I2 ∈ dom(M) and, therefore, ∅  SolM(I2). Next we show that SolM(I2) ⊆ SolM(I1).
Let J ∈ SolM(I2). Then given that (I1, I2) ∈ M ◦ M′, we have that (I1, J) ∈

M◦M′ ◦M. Thus, given that M = M◦M′ ◦M, we have that (I1, J) ∈ M and, hence,

J ∈ SolM(I1).
(3) ⇒ (1) Assume that M′ is a recovery of M and for every (I1, I2) ∈ M ◦ M′, it

is the case that ∅  SolM(I2) ⊆ SolM(I1). For the sake of contradiction, suppose that

M′ is not a maximum recovery for M. So there exists a recovery M′′ for M such that

M′′ 6�M M′, that is, M◦M′ 6⊆ M ◦M′′. Then there exists a tuple (I, I ′) ∈ M ◦M′

such that (I, I ′) 6∈ M ◦M′′. By hypothesis ∅  SolM(I ′) and, thus, I ′ is an instance in

dom(M). Since M′′ is a recovery for M, then we have that (I ′, I ′) is a tuple in M◦M′′.

Furthermore, there exists an instance J such that (I ′, J) ∈ M and (J, I ′) ∈ M′′. By

hypothesis, we know that SolM(I ′) ⊆ SolM(I), so if (I ′, J) ∈ M then (I, J) ∈ M.

Then we have (I, J) ∈ M and (J, I ′) ∈ M′′, so we conclude that (I, I ′) ∈ M ◦ M′′,

which is a contradiction.

The second condition of the previous theorem is a desirable property for a reverse map-

ping. Intuitively, M′ does not lose information when bringing data back from the target,

if the space of solutions of every instance of the source does not change after computing

M ◦ M′. That is, for every instance I of S, it holds that SolM(I) = SolM◦M′◦M(I)
(or more succinctly, M = M◦M′ ◦M). In general, recoveries do not satisfy this con-

dition, but Proposition 3.8 shows that maximum recoveries satisfy it. And not only that,

it also shows that maximum recoveries are the only reduced recoveries that satisfy condi-

tion M = M ◦M′ ◦M in the space of recoveries for M, thus providing an alternative

characterization of when M′ is a maximum recovery of M.

3.2 A necessary and sufficient condition for the existence of maximum recoveries

An important issue about the notion of recovery is whether for every mapping M, there

always exists a maximum recovery. To answer this question, we introduce the notion of

witness, and use it to provide a necessary and sufficient condition for the existence of a

maximum recovery for a mapping M.

Definition 3.9. Let M be a mapping from a schema R1 to a schema R2 and I ∈
Inst(R1). Then instance J ∈ Inst(R2) is a witness for I under M if for every I ′ ∈
Inst(R1), if J ∈ SolM(I ′), then SolM(I) ⊆ SolM(I ′).

Example 3.10. Consider the st-mapping M given by the set of st-tgds {A(x) →
P (x), B(x) → P (x) ∧ R(x)}, and let I be a source instance such that AI = ∅ and

BI = {a}. Notice that the set of solutions for I under M is the set of all instances J such

that a ∈ P J and a ∈ RJ . Consider now the target instance J⋆ such that P J
⋆

= {a}.

It is easy to see that if a source instance I ′ contains J⋆ as solution, then I ′ also has as

solution every target instance J such that a ∈ P J and a ∈ RJ . Thus, we have that

J⋆ is a witness for I under M, as for every source instance I ′, if J⋆ ∈ SolM(I ′), then

SolM(I) ⊆ SolM(I ′).

Example 3.10 shows that a witness for an instance I under a mappingM is not necessar-

ily a solution for I under M. We say that J is a witness solution for I if J is both a witness

and a solution for I . A witness solution can be considered as an identifier for a space of
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solutions; if J is a witness solution for instances I1 and I2, then SolM(I1) = SolM(I2).
Other identifiers for spaces of solutions have been proposed in the data exchange literature.

For example, for the specific case of st-tgds, we prove in Section 4.1 that the notion of uni-

versal solution introduced in [Fagin et al. 2005a] is stronger than the notion of witness

solution, in the sense that every universal solution is a witness solution but the opposite

does not hold. For other classes of st-dependencies, the notions of universal and witness

solution are incomparable (see Section 4.2 for some examples).

The notion of witness together with the notion of reduced recovery can also be used to

characterize when a mapping M′ is a maximum recovery of M. In fact, the following

lemma shows that witness instances are the building blocks of maximum recoveries.

LEMMA 3.11. Let M and M′ be mappings. The following statements are equivalent:

(1) M′ is a maximum recovery of M,

(2) M′ is a reduced recovery of M, and for every (I1, J) ∈ M and (J, I2) ∈ M′, J is a

witness for I2 under M.

PROOF. In this proof, we assume that M is a mapping from a schema R1 to a schema

R2, and M′ is a mapping from R2 to R1.

(1) ⇒ (2) By Lemma 3.7, we know that M′ is a reduced recovery of M and, therefore,

we only need to prove that for every (I1, J) ∈ M and (J, I2) ∈ M′, J is a witness for I2
under M. Assume that I is an instance of R1 such that J ∈ SolM(I). Since (I, J) ∈ M
and (J, I2) ∈ M′, we conclude that (I, I2) ∈ M ◦ M′, and thus, by Proposition 3.8 we

obtain that SolM(I2) ⊆ SolM(I). We have shown that for every I , if J ∈ SolM(I) then

SolM(I2) ⊆ SolM(I) which proves that J is a witness of I2.

(2) ⇒ (1) Assume that M′ is a reduced recovery of M such that, for every (I1, J) ∈ M
and (J, I2) ∈ M′, J is a witness for I2 under M. Next we show that M′ is a maximum

recovery of M.

By Proposition 3.8 and given that M′ is a reduced recovery of M, we know that to prove

the maximality of M′, we only need to show that for every (I1, I2) ∈ M ◦M′, it is the

case that SolM(I2) ⊆ SolM(I1). Take an arbitrary (I1, I2) ∈ M◦M′. Thus, there exists

an instance J of R2 such that (I1, J) ∈ M, (J, I2) ∈ M′. By hypothesis J is a witness

for I2 under M. By the definition of a witness instance and given that J ∈ SolM(I1), we

conclude SolM(I2) ⊆ SolM(I1). This was to be shown.

The previous lemma is used in the next result to provide a necessary and sufficient

condition for the existence of maximum recoveries.

THEOREM 3.12. A mapping M has a maximum recovery iff for every I ∈ dom(M),
there exists a witness solution for I under M.

PROOF. In this proof, we assume that M is a mapping from a schema R1 to a schema

R2, and M′ is a mapping from R2 to R1.

(⇒) Assume that M′ is a maximum recovery of M. Then by Lemma 3.11, for every

(I1, J) ∈ M and (J, I2) ∈ M′, J is a witness for I2 under M. Let I ∈ dom(M). Given

that M′ is a recovery of M, we have that (I, I) ∈ M◦M′. Thus, there exists an instance

J of R2 such that (I, J) ∈ M, (J, I) ∈ M′ and J is a witness for I under M. We

conclude that there exists J ∈ SolM(I) such that J is a witness solution for I under M.

(⇐) Assume that for every instance I ∈ dom(M), there exists JI ∈ SolM(I) such

that JI is a witness for I under M, and let M⋆ be a mapping defined as {(JI , I) | I ∈
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dom(M)}. It is easy to see that M⋆ is a reduced recovery of M. Furthermore, given that

for every (J, I) ∈ M⋆, J is a witness for I under M, we conclude from Lemma 3.11 that

M⋆ is a maximum recovery of M.

4. ON THE EXISTENCE OF MAXIMUM RECOVERIES

In this section, we focus on source-to-target mappings, that is, mappings from a source

schema S to a target schema T. Recall that instances of S are constructed by using only

elements from C (constants), while instances of T are constructed by using elements from

both C and N (constants and nulls). This is the most common class of mappings in the data

exchange literature [Fagin et al. 2005a; Arenas et al. 2004; Fagin et al. 2005; Afrati et al.

2008], and specifically in the literature on inverting schema mappings [Fagin 2007; Fagin

et al. 2008]. We note that the recovery of an st-mapping is a target-to-source mapping.

On the positive side, we prove our main results regarding classes of st-mappings that

admit maximum recoveries. Namely, we show that if M is an st-mapping specified by a

set of FO-TO-CQ dependencies, then M has a maximum recovery. Furthermore, we also

show that the extension of this class with source dependencies, equality-generating target

dependencies and weakly acyclic sets of tuple-generating target dependencies [Deutsch

and Tannen 2003; Fagin et al. 2005a] also admits maximum recoveries (these classes of

dependencies are defined in Section 4.1). These results are in sharp contrast with the results

of [Fagin 2007; Fagin et al. 2008] , where it was shown that even for full st-tgds, inverses

and quasi-inverses are not guaranteed to exist.

On the negative side, we show that if we enrich the conclusion of FO-TO-CQ depen-

dencies by adding inequalities, or disjunction, or negation, the existence of maximum re-

coveries is not guaranteed.

4.1 Positive results

In [Fagin et al. 2005a], the class of universal solutions for st-mappings was identified as

a class of solutions that has good properties for data exchange. These solutions play an

important role in this section. To formally introduce this concept, we review the necessary

terminology from [Fagin et al. 2005a].

Let J1 and J2 be instances of the same schema R. A homomorphism h from J1 to

J2 is a function h : dom(J1) → dom(J2) such that, for every R ∈ R and every tuple

(a1, . . . , ak) ∈ RJ1 , it holds (h(a1), . . . , h(ak)) ∈ RJ2 . Given a set A ⊆ D, we say

that a homomorphism h from J1 to J2 is the identity on A, if h(a) = a for every a ∈
A ∩ dom(J1). Let M be an st-mapping, I a source instance and J a solution for I under

M. Then J is a universal solution for I under M, if for every solution J ′ for I under

M, there exists a homomorphism from J to J ′ that is the identity on C. The next lemma

shows an important relationship between universal and witness solutions.

LEMMA 4.1.

(1) Let M be an st-mapping specified by a set of FO-TO-CQ dependencies and I a source

instance. Then every universal solution for I underM is a witness solution for I under

M.

(2) There exists an st-mapping M specified by a set of st-tgds and a source instance I
such that, I has a witness solution under M that is not a universal solution for I
under M.
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PROOF. In order to prove the first part of the lemma, let M be a st-mapping specified by

a set of FO-TO-CQ dependencies, I a source instance and J be a universal solution for I
under M. Thus, we have that for every source instance I1 and solution J1 for I1 under M,

if there exists a homomorphism from J1 to J2 that is the identity on I1, then (I1, J2) ∈ M
(this is shown in [Fagin et al. 2005a] for the case of st-tgds). We use this property to prove

that J is a witness solution for I under M. Assume that J ∈ SolM(I ′) for an arbitrary

source instance I ′, and let J ′ ∈ SolM(I). Given that J is a universal solution for I , we

know that there is a homomorphism h from J to J ′ that is the identity on C. Thus, we

have that h is the identity on dom(I ′) and, therefore, (I ′, J ′) ∈ M since (I ′, J) ∈ M. We

conclude that SolM(I) ⊆ SolM(I ′). Since I ′ is an arbitrary source instance, we have that

J is a witness for I under M.

For the second part of the lemma, let M = (S,T,Σ) be an st-mapping, where S =
{P (·, ·)}, T = {R(·, ·)} and Σ = {P (x, y) → ∃z(R(x, z) ∧ R(z, y))}. Assume that I
is a source instance defined as P I = {(a, a)}, where a is an arbitrary element of C. It

was shown in [Fagin et al. 2005a] that, every universal solution J for I contains two tuples

(a, b) and (b, a) in RJ , with b ∈ N. Thus, the solution J ′ for I defined as RJ
′

= {(a, a)}
is not a universal solution for I . It is not difficult to see that J ′ is a witness solution for

I . In fact, if a source instance I ′ is such that J ′ ∈ SolM(I ′), then dom(I ′) ⊆ {a} and,

hence, I ′ is either the empty source instance or I ′ = I . In both cases we conclude that

SolM(I) ⊆ SolM(I ′), which implies that J ′ is a witness solution for I .

It is known that for st-mappings specified by FO-TO-CQ dependencies, universal solu-

tions exist for every source instance [Fagin et al. 2005a; Arenas et al. 2004]. Then from

Theorem 3.12 and Lemma 4.1, we obtain the following theorem.

THEOREM 4.2. If M is an st-mapping specified by a set of FO-TO-CQ st-

dependencies, then M has a maximum recovery.

Example 4.3. In [Fagin et al. 2008], it was shown that the schema mapping M speci-

fied by full st-tgd E(x, z) ∧ E(z, y) → F (x, y) ∧M(z) has neither a quasi-inverse nor

an inverse. It is possible to show that the schema mapping M′ specified by:

F (x, y) → ∃u(E(x, u) ∧ E(u, y)),

M(z) → ∃v∃w(E(v, z) ∧ E(z, w)),

is a maximum recovery of M.

Source and target dependencies. Fix source and target schemas S and T. If α is an

FO-sentence over S, then we say that α is a source FO-dependency, and if β is an FO-

sentence over T ∪ {C(·)}, then we say that β is a target FO-dependency. We assume that

both source and target FO-dependencies are domain independent.

Let Σst, Γs, Γt be sets of source-to-target, source, and target FO-dependencies, re-

spectively. We say that an st-mapping M is specified by Σst, Γs, and Γt, and we write

M = (S,T,Σst,Γs,Γt), if M is specified by Σst ∪ Γs ∪ Γt. Given that both Γs and

Γt are sets of domain-independent sentences, we have that (I, J) |= Σst ∪ Γs ∪ Γt if and

only if (I, J) |= Σst, I |= Γs and J |= Γt. Thus, source constraints affect the domain

of an st-mapping, while target constraints affect its set of possible solutions. Notice that

these roles switch when considering ts-mappings. Our next results show that maximum

recoveries have good properties regarding source constraints.
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LEMMA 4.4. Let M1 be an st-mapping and M⋆
1 a maximum recovery of M1. If Γs

is a set of source FO-dependencies and M2 = {(I, J) ∈ M1 | I |= Γs}, then M⋆
2 =

{(J, I) ∈ M⋆
1 | I |= Γs} is a maximum recovery of M2.

PROOF. First we show that M⋆
2 is a recovery of M2. Assume that I ∈ dom(M2).

Then there exists a target instance J such that (I, J) ∈ M1 and (I, J) |= Γs. Thus, we

have that I ∈ dom(M1), and then, given that M⋆
1 is a recovery of M1, it holds that

(I, I) ∈ M1 ◦ M⋆
1. Therefore, there exists a target instance K such that (I,K) ∈ M1

and (K, I) ∈ M⋆
1. Thus, given that I |= Γs, we obtain that (I, I) ∈ M2 ◦M⋆

2. Since I is

an arbitrary source instance in dom(M2), we conclude that M⋆
2 is a recovery of M2.

Given that M⋆
2 is a recovery of M2, from Proposition 3.8 we have that M⋆

2 is a maxi-

mum recovery of M2 if for every (I1, I2) ∈ M2◦M⋆
2, it is the case that ∅  SolM2

(I2) ⊆
SolM2

(I1). Assume that (I1, I2) ∈ M2 ◦M⋆
2. Then there exists a target instance J such

that (I1, J) ∈ M2 and (J, I2) ∈ M⋆
2. Then, we have that (I1, J) ∈ M1 and I1 |= Γs,

and that (J, I2) ∈ M⋆
1 and I2 |= Γs. Since M⋆

1 is a maximum recovery of M1, we obtain

from Proposition 3.8 that ∅  SolM1
(I2) ⊆ SolM1

(I1). Now, notice that if an instance

I |= Γs, then it is straightforward to prove that SolM1
(I) = SolM2

(I) by the construction

of M2. Since I1 |= Γs and I2 |= Γs, then we have that SolM1
(I1) = SolM2

(I1) and

SolM1
(I2) = SolM2

(I2). Given that ∅  SolM1
(I2) ⊆ SolM1

(I1), we conclude that

∅  SolM2
(I2) ⊆ SolM2

(I1). This was to be shown.

Notice that M1 in the above lemma is an arbitrary st-mapping. Thus, we obtain the

following corollary from Theorem 4.2.

PROPOSITION 4.5. If M is an st-mapping specified by a set of FO-TO-CQ st-

dependencies together with a set of source FO-dependencies, then M has a maximum

recovery.

Example 4.6. Let M2 = (S,T,Σst,Γs) be an st-mapping, where S = {A(·, ·, ·)},

T = {B(·, ·), C(·, ·)} and

Σst = {A(x, y, z) → B(x, y) ∧ C(y, z)},

Γs = {A(x, y, z) ∧A(x′, y, z′) → z = z′}.

Notice that Γs is a set of functional dependencies. Consider st-mapping M1 =
(S,T,Σst). Then ts-mapping specified by Σts = {B(x, y) ∧ C(y, z) → ∃uA(x, y, u) ∧
∃wA(w, y, z)} is a maximum recovery of M1. Thus, we have by Lemma 4.4 that ts-

mapping M⋆
2 specified by Σts and Γs is a maximum recovery of M2. We observe that

Σts ∪ Γs is logically equivalent to:

B(x, y) ∧ C(y, z) → A(x, y, z), (2)

A(x, y, z) ∧A(x′, y, z′) → z = z′. (3)

In this case, we obtained what was expected; since Σst is a lossless decomposition of

relation A according to Γs, dependency (2) joins relations B and C to reconstruct the

source instances.

We show in Section 4.2 that, if the full power of FO is allowed in target dependencies,

then maximum recoveries are not guaranteed to exist. For this reason, we focus here on

equality-generating dependencies and weakly acyclic tuple-generating dependencies, that
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are known to have good properties for data exchange. Let R be a schema. An equality-

generating dependency (egd) over R is an FO-sentence ∀x̄(ϕ(x̄) → (xi = xj)), where

ϕ(x̄) is a conjunctive query over R, and xi, xj are among the variables in x̄. A tuple-

generating dependency (tgd) over R is an FO-sentence ∀x̄(ϕ(x̄) → ψ(x̄)), where both

ϕ(x̄) and ψ(x̄) are conjunctive queries over R.

To present the notion of weak acyclicity, we need to introduce some terminology. For a

set Σ of tgds over R, define the dependency graphG of Σ as follows:

(1) add a node (R, i) to G for every relationR ∈ R and every attribute i ≤ nR, where nR
is the arity of R;

(2) add an edge (R, i) → (T, j) to G if there exists a sentence ∀x̄(ϕ(x̄) → ψ(x̄)) in Σ
such that if x ∈ x̄ occurs in the attribute i of R in ϕ, then x occurs in the attribute j of

T in ψ;

(3) add a special edge (R, i) →∗ (T, j) to G if there exists a sentence ∀x̄(ϕ(x̄) → ψ(x̄))
in Σ such that if x ∈ x̄ occurs in the attribute i of R in ϕ, then there exists an existen-

tially quantified variable y that occurs in the attribute j of T in ψ.

We say that a set Σ of tgds is weakly acyclic [Deutsch and Tannen 2003; Fagin et al. 2005a]

if its dependency graph has no cycle through a special edge. Weak acyclicity has shown

to be indispensable for the tractability of some important data exchange problems [Fagin

et al. 2005a; Fagin et al. 2005b; Kolaitis et al. 2006; Gottlob and Nash 2006] and, thus, it

is a common assumption in the area.

In the following theorem, we show that maximum recoveries are guaranteed to exist in

the general setting where target egds and weakly acyclic sets of target tgds are allowed.

THEOREM 4.7. Let M = (S,T,Σst,Γs,Γt) be an st-mapping, where Σst is a set of

FO-TO-CQ st-dependencies, Γs is a set of source FO-dependencies and Γt is the union

of a set of target egds and a weakly acyclic set of target tgds. Then M has a maximum

recovery.

PROOF. Let M = (S,T,Σst,Γs,Γt) be an st-mapping, where Σst is a set of

FO-TO-CQ dependencies, Γs is a set of source dependencies and Γt is the union of a set

of egds and a weakly acyclic set of tgds, and let M1 = (S,T,Σst,Γt). From Lemma 4.4,

we know that in order to prove that M has a maximum recovery, it is enough to show that

M1 has a maximum recovery. Next we prove the latter.

Given that Σst is a set of FO-TO-CQ dependencies and Γt is the the union of a set of

egds and a weakly acyclic set of tgds, for every instance I ∈ dom(M1) we have that (1)

there exists a universal solution J for I underM1, and (2) for every solution J1 for I under

M and instance J2 of T that satisfies Γt, if there exists a homomorphism from J1 to J2

that is the identity on I , then (I, J2) ∈ M (these two properties are proved in [Fagin et al.

2005a] for the case of st-tgds). We use these conditions to prove that M1 has a maximum

recovery.

From Theorem 3.12, we know that to prove M1 has a maximum recovery, it is enough

to show that every I1 ∈ dom(M1) has a witness solution under M1. Let I1 be an instance

of S such that I1 ∈ dom(M1) and J1 a universal solution for I1. Next we show that

J1 is a witness solution for I1. Assume that J1 ∈ SolM1
(I2) for an arbitrary source

instance I2. We need to prove that SolM1
(I1) ⊆ SolM1

(I2). Let J ∈ SolM1
(I1). Given

that J1 is a universal solution for I1, we know that there is a homomorphism h from J1

to J that is the identity on C. Furthermore, given that J ∈ SolM1
(I1), we have that
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J |= Γt. Thus, we conclude that J ∈ SolM1
(I2) since (I2, J1) ∈ M1, J |= Γt and h is

a homomorphism from J1 to J that is the identity on dom(I2) (given that h is the identity

on C and dom(I2) ⊆ C). This concludes the proof of the theorem.

Notice that the positive results of this section do not say anything about the language

needed to express maximum recoveries. In Sections 7 and 8, we study this problem.

4.2 Negative results

In Section 4.1, we prove that FO-TO-CQ st-mappings have maximum recoveries using the

relationship between universal and witness solutions shown in Lemma 4.1. If we go beyond

CQ in the conclusions of dependencies, these notions become incomparable. For example,

consider an st-mapping M1 specified by CQ-TO-CQ 6= dependencies P (x) → ∃y R(x, y)
and S(x) → ∃y (R(x, y) ∧ x 6= y), and let I be a source instance such that P I = {a}.

Target instance J1 such that RJ1 = {(a, n)}, with n ∈ N, is a universal solution but not

a witness for I , while target instance J2 such that RJ2 = {(a, a)} is a witness but not

a universal solution for I . In this example, every source instance has a witness solution,

and, thus, M1 has a maximum recovery. In fact, dependencies R(x, y) → P (x) ∨ S(x)
and R(x, y) ∧ x 6= y → S(x) specify a maximum recovery of M1. As a second example,

consider st-mappingM2 specified by CQ-TO-UCQ dependencyP (x) → R(x)∨S(x). In

this case, every source instance has a witness solution, and only the empty source instance

has a universal solution. In fact, dependencies R(x) → P (x) and S(x) → P (x) specify a

maximum recovery of M2.

We have shown examples of mappings that have maximum recoveries and are speci-

fied by dependencies with inequalities and disjunctions in the conclusions. However, the

following proposition shows that this is not a general phenomenon. If we slightly enrich

the language used in the conclusions of FO-TO-CQ dependencies, then the existence of

maximum recoveries is not guaranteed, even if premises are restricted to be conjunctive

queries.

PROPOSITION 4.8. There exist st-mappings specified by (1) CQ-TO-CQ 6=, (2)

CQ-TO-UCQ, and (3) CQ-TO-CQ¬ dependencies, that have no maximum recoveries.

PROOF. (1) CQ-TO-CQ 6=: Let S = {F (·), G(·), H(·)}, T = {R(·, ·)}, and M =
(S,T,Σ) a st-mapping specified by the following set Σ of CQ-TO-CQ 6= st-dependencies:

F (x) → R(x, x),

G(x) → ∃yR(x, y),

H(x) → ∃y(R(x, y) ∧ x 6= y).

Let I1 be an instance of S such that GI1 = {a} and F I1 = HI1 = ∅, where a is an

arbitrary element of C. Next we show that there is no J ∈ SolM(I1) such that J is a

witness for I1 under M. Then by Theorem 3.12 M has no maximum recovery. For the

sake of contradiction, assume that J is a witness solution for I1 under M. Given that J
is a solution for I1, we have that (a, b) ∈ RJ for some b. We need to consider two cases

depending on b. If b = a, then the instance I2 where F I2 = {a} and GI2 = HI2 = ∅ is

such that J ∈ SolM(I2), but it is not the case that SolM(I1) ⊆ SolM(I2). If b 6= a, then

the instance I3 where HI3 = {a} and F I3 = GI3 = ∅ is such that J ∈ SolM(I3), but it is

not the case that SolM(I1) ⊆ SolM(I3).
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(2) CQ-TO-UCQ: Let S = {F (·), G(·), H(·)}, T = {R(·), S(·), T (·)} and M =
(S,T,Σ) a st-mapping specified by the following set Σ of CQ-TO-UCQ st-dependencies:

F (x) → R(x) ∨ S(x),

G(x) → S(x) ∨ T (x),

H(x) → T (x) ∨R(x).

Let I be an instance of S such that F I = {a} and GI = HI = ∅, where a is an arbitrary

element of C. Next we show that there is no J ∈ SolM(I) such that J is a witness for I
under M. For the sake of contradiction, assume that J is a witness solution for I under

M. Given that J is a solution for I , we have that a ∈ RJ or a ∈ SJ . Assume without loss

of generality that a ∈ SJ , and consider instance I1 of S such that GI1 = {a} and F I1 =
HI1 = ∅. Then we have that J ∈ SolM(I1) and, therefore, SolM(I) ⊆ SolM(I1) since J
is a witness solution for I under M. Let J1 be an instance of T such that RJ1 = {a} and

SJ1 = T J1 = ∅. We have that J1 ∈ SolM(I) but J1 6∈ SolM(I1), which contradicts the

fact that SolM(I) ⊆ SolM(I1).
Given that there is no witness solution for I under M, we conclude by Theorem 3.12

that M does not have a maximum recovery.

(3) CQ-TO-CQ¬: Let S = {F (·), G(·), H(·)}, T = {R(·), S(·)}, and M = (S,T,Σ)
a st-mapping specified by the following set Σ of CQ-TO-CQ¬ st-dependencies:

F (x) → R(x),

G(x) → R(x) ∧ S(x),

H(x) → R(x) ∧ ¬S(x).

Let I1 be an instance of S such that F I1 = {a} and GI1 = HI1 = ∅, where a is an

arbitrary element of C. Next we show that there is no J ∈ SolM(I1) such that J is a

witness for I1 under M. For the sake of contradiction, assume that J is a witness solution

for I1 under M. Given that J is a solution for I1, we have that a ∈ RJ . We need to

consider two cases depending on whether a belongs to SJ or not. If a ∈ SJ , then the

instance I2 where GI2 = {a} and HI2 = F I2 = ∅ is such that J ∈ SolM(I2), but

it is not the case that SolM(I1) ⊆ SolM(I2). If a /∈ SJ , then the instance I3 where

HI3 = {a} and F I3 = GI3 = ∅ is such that J ∈ SolM(I3), but it is not the case that

SolM(I1) ⊆ SolM(I3).
Given that there is no witness solution for I1 under M, we conclude by Theorem 3.12

that M does not have a maximum recovery.

We conclude this section by showing that, if the full power of FO is allowed in target

dependencies, then maximum recoveries are not guaranteed to exist.

PROPOSITION 4.9. There exists an st-mapping specified by a set of st-tgds plus a set

of target FO-dependencies that has no maximum recovery.

PROOF. Let S = {F (·), G(·), H(·)}, T = {R(·), S(·), T (·)} and M = (S,T,Σst,Γt)
an st-mapping specified by the following set Σst of st-tgds:

F (x) → R(x),

G(x) → S(x),

H(x) → T (x),
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and the following set Γt of target FO-dependencies:

R(x) → S(x) ∨ T (x).

Let I be an instance of S such that F I = {a} and GI = HI = ∅, where a is an arbitrary

element of C. Next we show that there is no J ∈ SolM(I) such that J is a witness for I
under M. For the sake of contradiction, assume that J is a witness solution for I under

M. Given that J is a solution for I , we have that a ∈ SJ or a ∈ T J (since a ∈ RJ ).

Assume without loss of generality that a ∈ SJ , and consider instance I1 of S such that

GI1 = {a} and F I1 = HI1 = ∅. Then we have that J ∈ SolM(I1) and, therefore,

SolM(I) ⊆ SolM(I1) since J is a witness solution for I under M. Let J1 be an instance

of T such that RJ1 = T J1 = {a} and SJ1 = ∅. We have that J1 ∈ SolM(I) but

J1 6∈ SolM(I1), which contradicts the fact that SolM(I) ⊆ SolM(I1).
Given that there is no witness solution for I under M, we conclude by Theorem 3.12

that M does not have a maximum recovery.

M◦M
′

T

U

T

(a) (b)

M M

(M′)−1
◦M

S S

M
′

U

M
′

Fig. 1. The schema evolution problem.

5. AN APPLICATION OF MAXIMUM RECOVERIES

One of the main reasons for the study of the issues of composing and inverting schema

mappings is to solve the schema evolution problem [Fagin et al. 2005; Fagin 2007]. Two

main scenarios have been identified for this problem, which are shown in Figure 1. In

scenario (a), a mapping M from a schema S to a schema T has already been constructed,

and it has been decided that target schema T will be replaced by a new schema U. In

particular, the relationship between schemas T and U has been given through a mapping

M′. The schema evolution problem is then to provide a mapping from S to U, considering

the metadata provided by M and M′. As pointed out in [Kolaitis 2005], the process of

constructing a schema mapping is time consuming and, thus, one would like to solve the

schema evolution problem by automatically reusing the metadata that is given. In scenario

(a), it is possible to do this by using the composition operator [Fagin et al. 2005; Kolaitis

2005]; the mapping M◦M′ correctly represents the relationship between schemas S and

U.

Scenario (b) in Figure 1 is similar to scenario (a), but in this case it has been decided

to replace source schema S by U. As in (a), the relationship between S and U is given

by a mapping, that is again called M′. The natural question at this point is whether a

combination of mappings M and M′ could be used to provide the right mapping, or at
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least a good mapping, from U to T according to the metadata provided by M and M′. It

has been argued that the combination of the inverse and composition operators can be used

for this purpose, and the mapping (M′)−1 ◦ M has been proposed as a solution for the

schema evolution problem [Fagin 2007], where (M′)−1 represents an inverse of mapping

M′. But, unfortunately, it has not been formally studied to what extend (M′)−1 ◦M is the

right solution for the schema evolution problem. In this section, we address this issue for

the common case of mappings given by st-tgds, and show that if (M′)−1 is the maximum

recovery of M′, then (M′)−1 ◦M is the best solution in a precise sense for the schema

evolution problem.

For the rest of this section, let S be a source schema, T, U target schemas, M =
(S,T,Σ) and M′ = (S,U,Σ′), where Σ and Σ′ are sets of st-tgds. If M⋆ is a mapping

from U to T, what properties should it satisfy in order to be considered a good solution

for the schema evolution problem? Or, in other words, what properties should M⋆ satisfy

to be considered a good representation of the metadata provide by M and M′? Assume

that I is an instance of S, and let J be a solution for I under M′. If J properly represents

the information in I , then one would consider M⋆ a good representation of the metadata

provided by M and M′ if the space of solutions for I under M is the same as the space of

solutions for J under M⋆, that is, SolM(I) = SolM⋆(J). Or, at least, one would expect

that none of the instances in SolM(I) is ruled out by M⋆ when mapping data from J , that

is, SolM(I) ⊆ SolM⋆(J). In this section, we use this simple criterion to compare different

solutions for the schema evolution problem.

To formalize the criterion described above, for every instance I of S, we first need to

choose a particular solution J under M′. A natural candidate for this is the canonical

universal solution [Fagin et al. 2005a], which has been identified in the database literature

as a solution with several desirable properties [Fagin et al. 2005a; Hernich and Schweikardt

2009]. In the following, we show how to compute the canonical universal solution for a

source instance I under the schema mapping M′ = (S,U,Σ′). For every st-tgd in Σ′ of

the form ϕ(x̄) → ∃ȳ ψ(x̄, ȳ), where x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yℓ) are tuples

of distinct variables, and for every k-tuple ā from dom(I) such that I |= ϕ(ā), do the

following. First choose an ℓ-tuple n̄ of distinct fresh values from N, and then include

all the conjuncts in ψ(ā, n̄) in the canonical universal solution for I . Furthermore, the

canonical universal solution only contains tuples that are obtained by applying the previous

procedure [Fagin et al. 2005a].

Example 5.1. Assume that Σ′ = {S(x1, x2) → ∃y1∃y2 (T (x1, y1) ∧ U(x2, y2, y1))}
and that I is a source instance such that SI = {(a, b), (c, d)}. Given that I |= S(a, b),
the above procedure chooses a tuple (n1, n2) of fresh null values, and then it adds tuples

(a, n1) to T and (b, n2, n1) to U in the canonical universal solution J for I under Σ′. In

the same way, given that I |= S(c, d), the procedure chooses a tuple (n3, n4) of fresh null

values, and then it adds tuples (c, n3) to T J and (d, n4, n3) to UJ . Finally, given that

(a, b) and (c, d) are the only tuples from dom(I) for which I satisfies formula S(x, y), we

conclude that T J = {(a, n1), (c, n3)} and UJ = {(b, n2, n1), (d, n4, n3)}.

It is important to notice that the canonical universal solution for I underM′ corresponds

to the naı̈ve chase of I with Σ′ (see Section 6 for more details about the chase procedure).

Thus, we use the term chaseΣ′(I) to denote the canonical universal solution for I under

M′. With this notation, the criterion mentioned above is formalized as follows: A mapping

M⋆ from U to T is said to be a solution for the schema evolution problem for M and M′
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if for every instance I of S, it holds that:

SolM(I) ⊆ SolM⋆(chaseΣ′(I)).

The previous criterion also suggests a way to compare alternative solutions for the schema

evolution problem; the closer the space of solutions SolM⋆(chaseΣ′(I)) is to SolM(I) the

better is M⋆ as a solution for the schema evolution problem. In the following proposition,

we show that under this criterion, the notion of maximum recovery can be used to obtain

the best solution for the schema evolution problem.

PROPOSITION 5.2. Let S be a source schema, T, U target schemas, M = (S,T,Σ)
and M′ = (S,U,Σ′), where Σ and Σ′ are sets of st-tgds. Then there exists a maximum

recovery N of M′ such that:

(1) N ◦M is a solution for the schema evolution problem for M and M′, and

(2) for every solution M⋆ for the schema evolution problem for M and M′, and for every

instance I of S, it holds that:

SolN◦M(chaseΣ′(I)) ⊆ SolM⋆(chaseΣ′(I)).

PROOF. Let N = {(chaseΣ′(I), I) | I ∈ Inst(S)}. Given that dom(M′) = S, we

have that N is a reduced recovery of M′. Moreover, for every (J, I) ∈ N , given that

J = chaseΣ′(I), we have that J is a witness solution for I under M′ by Lemma 4.1 and

the fact that chaseΣ′(I) is a universal solution for I under M′ [Fagin et al. 2005a; Arenas

et al. 2004]. Thus, by Lemma 3.11, we conclude that N is a maximum recovery of M′.

Next we show that N satisfies the two conditions of the proposition.

(1) For every instance I of S, we have that (chaseΣ′(I), I) ∈ N and, thus, we conclude

that SolM(I) ⊆ SolN◦M(chaseΣ′(I)). Thus, we have that N ◦ M is a solution for the

schema evolution problem for M and M′.

(2) Let M⋆ be a solution for the schema evolution problem for M and M′, and I an

instance of S. We need to show that SolN◦M(chaseΣ′(I)) ⊆ SolM⋆(chaseΣ′(I)).
Assume that J ∈ SolN◦M(chaseΣ′(I)). Then there exists an instance I ′ of S such

that (chaseΣ′(I), I ′) ∈ N and (I ′, J) ∈ M. Given that M⋆ is a solution for the schema

evolution problem for M and M′, we have that SolM(I ′) ⊆ SolM⋆(chaseΣ′(I ′)) and,

hence, J ∈ SolM⋆(chaseΣ′(I ′)). But, by definition of N , we have that chaseΣ′(I ′) =
chaseΣ′(I) since (chaseΣ′(I), I ′) ∈ N . Thus, we have that J ∈ SolM⋆(chaseΣ′(I)).
This concludes the proof of the proposition.

Notice that an ideal solution for the schema evolution problem for mappings M and M′

is a mapping M⋆ such that SolM(I) = SolM⋆(chaseΣ′(I)), for every source instance I .

The following corollary of Proposition 5.2 shows that if such a solution exists, then one

can focus on the solutions constructed by using maximum recoveries in order to find an

ideal solution.

COROLLARY 5.3. Let S be a source schema, T, U target schemas, M = (S,T,Σ)
and M′ = (S,U,Σ′), with Σ, Σ′ sets of st-tgds. If there exists an ideal solution for the

schema evolution problem for M and M′, then there exists a maximum recovery N of M′

such that N ◦M is an ideal solution for the schema evolution problem for M and M′.

From Proposition 5.2 and the previous corollary, we conclude that the combination of

the maximum recovery and the composition operator is appropriate to provide a solution
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for the schema evolution problem shown in Figure 1 (b). We also note that maximum

recovery can be replaced neither by inverse nor by quasi-inverse in Proposition 5.2, as it

is known that even for full st-tgds, inverses and quasi-inverses are not guaranteed to exist

[Fagin 2007; Fagin et al. 2008].

6. COMPARISON WITH THE NOTIONS OF INVERSE AND QUASI-INVERSE

In this section, we study the relationship between the notion of maximum recovery and the

notions of inverse and quasi-inverse [Fagin 2007; Fagin et al. 2008].

We start by recalling the definition of inverse proposed in [Fagin 2007]. A mapping M
is closed-down on the left if whenever (I, J) ∈ M and I ′ ⊆ I , it holds that (I ′, J) ∈ M.

In [Fagin 2007], Fagin defines a notion of inverse focusing on mappings that satisfy this

condition. More precisely, let S be a source schema. Fagin first defines an identity mapping

Id as {(I1, I2) | (I1, I2) ∈ Inst(S) × Inst(S) and I1 ⊆ I2}, which is appropriate for

closed-down on the left mappings [Fagin 2007]. Then he says that a ts-mapping M′ is an

inverse of an st-mapping M if and only if M◦M′ = Id.

Since it is rare that a schema mapping possesses an inverse [Fagin et al. 2008], Fa-

gin et al. introduce the notion of a quasi-inverse of a schema mapping in [Fagin et al.

2008]. The idea behind quasi-inverses is to relax the notion of inverse of a mapping by

not differentiating between source instances that are data-exchange equivalent. Let M be

a mapping from a source schema S to a target schema T. Instances I1 and I2 of S are

data-exchange equivalent w.r.t. M, denoted by I1 ∼M I2, if SolM(I1) = SolM(I2).
Furthermore, given a mapping M1 from S to S, mapping M1[∼M,∼M] is defined as

{(I1, I2) ∈ Inst(S) × Inst(S) | ∃(I ′1, I
′
2) : I1 ∼M I ′1, I2 ∼M I ′2 and (I ′1, I

′
2) ∈ M1}.

Then a ts-mapping M′ is a quasi-inverse of an st-mapping M if (M◦M′)[∼M,∼M] =
Id[∼M,∼M].

The definitions of inverse and quasi-inverse are appropriate for closed-down on the left

mappings. In fact, some counterintuitive results are obtained if one removes this restriction.

For example, let S = {P (·)}, T = {R(·)} and M be a mapping from S to T specified

by dependency ∀x (P (x) ↔ R(x)). In this case, mapping M′ specified by ∀x (R(x) ↔
P (x)) is an ideal inverse of M since M◦M′ = Id = {(I, I) | I ∈ Inst(S)}. However,

M′ is neither an inverse nor a quasi-inverse of M (although it is a maximum recovery of

M). Moreover, the definitions of inverse and quasi-inverse are only appropriate for total

mappings, that is, mappings M such that dom(M) is the set of all source instances. In

fact, as shown in the following proposition, if an st-mapping M is not total, then M is

neither invertible nor quasi-invertible.

PROPOSITION 6.1. Let M be a mapping from a source schema S to a target schema

T. If M is not a total mapping, then M is neither invertible nor quasi-invertible.

PROOF. Assume that M is not a total mapping, that is, there is an instance I of S

for which SolM(I) = ∅. We first show that M is not invertible. By hypothesis, for

every mapping M′ ⊆ Inst(T) × Inst(S), it holds that there is no instance I ′ such that

(I, I ′) ∈ M ◦ M′, and, therefore, M ◦ M′ 6= Id. Thus, we conclude that M is not

invertible.

Second, we show that M is not quasi-invertible. Let M′ be a mapping from T to S.

Given that SolM(I) = ∅, it holds that Sol(M◦M′)[∼M,∼M](I) = ∅. In fact, if we assume

that (I, I1) ∈ (M ◦ M′)[∼M,∼M], then there exist instances I ′ and I ′1 of S such that

I ∼M I ′, I1 ∼M I ′1 and (I ′, I ′1) ∈ M ◦ M′. But if I ∼M I ′, then it holds that
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SolM(I ′) = SolM(I) = ∅. Thus, we conclude that SolM◦M′(I ′) = ∅, which contradicts

the fact that (I ′, I ′1) ∈ M ◦ M′. On the contrary, we have that (I, I) ∈ Id[∼M,∼M]
since I ∼M I and (I, I) ∈ Id. Thus, we have that (M◦M′)[∼M,∼M] 6= Id[∼M,∼M].
Therefore, we conclude that M is not quasi-invertible.

From the discussion in the previous paragraph, to compare the notions of maximum

recovery, inverse and quasi-inverse, we need to focus on the class of total st-mappings that

are closed-down on the left. This class includes, for example, the st-mappings specified

by UCQ 6=-TO-CQ st-dependencies. Our first result is a corollary of Propositions 3.22 and

3.24 in [Fagin et al. 2008] and Theorem 4.2.

PROPOSITION 6.2. There exists an st-mapping M specified by a set of full st-tgds that

is neither invertible nor quasi-invertible, but has a maximum recovery.

This result combined with the following theorem, shows that the notion of maximum re-

covery strictly generalizes the notion of inverse.

THEOREM 6.3. Let M be a total st-mapping that is closed-down on the left, and as-

sume that M is invertible. Then M′ is an inverse of M iff M′ is a maximum recovery of

M.

PROOF. (⇒) Let M′ be an inverse of M. Then (I1, I2) ∈ M ◦ M′ if and only if

I1 ⊆ I2 and, thus, M′ is a recovery of M since I1 ⊆ I1. Thus, from Proposition 3.8, we

know that M′ is a maximum recovery of M if and only if for every (I1, I2) ∈ M◦M′, it

is the case that ∅  SolM(I2) ⊆ SolM(I1). But if I1 ⊆ I2, we immediately conclude that

∅  SolM(I2) ⊆ SolM(I1) since M is a closed down on the left and total st-mapping.

(⇐) Let M′ be a maximum recovery of M. In order to show that M′ is an inverse of

M, we need to show that (I1, I2) ∈ M ◦ M′ if and only if I1 ⊆ I2. First, assume that

I1 ⊆ I2. Given that I2 is a source instance and M′ is a recovery of M, we know that

(I2, I2) ∈ M◦M′. Thus, given that M is closed-down on the left, we have that (I1, I2) ∈
M◦M′. Second, assume that (I1, I2) ∈ M◦M′. Given that M is invertible, there exists

an inverse M′′ of M. Then M′′ is a recovery of M. Thus, given that M′ is a maximum

recovery of M, we have that M ◦ M′ ⊆ M ◦ M′′. We infer that (I1, I2) ∈ M ◦ M′′

since (I1, I2) ∈ M ◦M′, which implies that I1 ⊆ I2 since M′′ is an inverse of M. This

concludes the proof of the proposition.

The exact relationship between the notions of quasi-inverse and maximum recovery is

shown in the following theorem. It is worth emphasizing that if an st-mapping M is quasi-

invertible, then it admits a maximum recovery and, furthermore, every maximum recovery

of M is also a quasi-inverse of M.

THEOREM 6.4.

(1) Let M be a total st-mapping that is closed-down on the left, and assume that M
is quasi-invertible. Then M has a maximum recovery and, furthermore, M′ is a

maximum recovery of M iff M′ is a quasi-inverse and a recovery of M.

(2) There exists an st-mapping M specified by a set of st-tgds and a ts-mapping M′

specified by a set of ts-tgds such that, M′ is a quasi-inverse of M but not a maximum

recovery of M.

To prove the proposition, we need the following lemma. Recall that an st-mapping M
has the (∼M,∼M)-subset property if, for every pair of source instances I1, I2 such that
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SolM(I2) ⊆ SolM(I1), there exist instances I ′1 and I ′2 such that I1 ∼M I ′1, I2 ∼M I ′2
and I ′1 ⊆ I ′2. An inspection of the proof of Theorem 3.19 in [Fagin et al. 2008], reveals

that the (∼M,∼M)-subset property is still a necessary condition for quasi-invertibility for

arbitrary st-mappings. We state this result in the following lemma, and we also include a

proof here using our notation. In this proof, we use (I1, I2) ∼M (I ′1, I
′
2) to indicate that

I1 ∼M I ′1 and I2 ∼M I ′2.

LEMMA 6.5. [Fagin et al. 2008] Let M be an arbitrary st-mapping. If M is quasi-

invertible, then M has the (∼M,∼M)-subset property.

PROOF. Assume that M′ is a quasi-inverse of M, and let (I1, I2) be a pair of source

instances such that SolM(I2) ⊆ SolM(I1). We need to prove that there exist source

instances I ′1 and I ′2 such that (I1, I2) ∼M (I ′1, I
′
2) and I ′1 ⊆ I ′2. Given that I2 ∼M I2

and I2 ⊆ I2, we have that (I2, I2) ∈ Id[∼M,∼M]. Thus, given that M′ is a quasi-

inverse of M, we have that (I2, I2) ∈ (M ◦ M′)[∼M,∼M] and, therefore, there exists

a pair of instances (I3, I4) such that (I2, I2) ∼M (I3, I4) and (I3, I4) ∈ M ◦M′. Then

there exists a target instance J such that (I3, J) ∈ M and (J, I4) ∈ M′. Now, given

that I2 ∼M I3 and (I3, J) ∈ M, we obtain that (I2, J) ∈ M. Since SolM(I2) ⊆
SolM(I1), it also holds that (I1, J) ∈ M, and then (I1, I4) ∈ M ◦M′. Thus, given that

(I1, I4) ∼M (I1, I4), we obtain that (I1, I4) ∈ (M ◦ M′)[∼M,∼M]. Therefore, since

(M◦M′)[∼M,∼M] = Id[∼M,∼M], there exist a pair of source instances (I5, I6) such

that (I1, I4) ∼M (I5, I6) and I5 ⊆ I6. Finally, given that I2 ∼M I4 and I4 ∼M I6,

we have that (I1, I2) ∼M (I5, I6). Thus, we conclude that there exists a pair of source

instances (I5, I6) such that (I1, I2) ∼M (I5, I6) and I5 ⊆ I6. This concludes the proof of

the lemma.

PROOF OF THEOREM 6.4. Recall that M′ is a quasi-inverse of M if (M ◦ M′)[∼M

,∼M] = Id[∼M,∼M], that is, if the following statements are equivalent for every pair of

instances I1 and I2:

(a) There are instances I ′1 and I ′2 such that (I1, I2) ∼M (I ′1, I
′
2) and I ′1 ⊆ I ′2.

(b) There are instances I ′′1 and I ′′2 such that (I1, I2) ∼M (I ′′1 , I
′′
2 ) and (I ′′1 , I

′′
2 ) ∈ M◦M′.

Now to prove (1), let M be an st-mapping that is closed-down on the left, and assume that

M is quasi-invertible. From Theorem 3.12, to prove that M has a maximum recovery,

we need to prove that M has witness solutions for every source instance. Assume that

M′ is a quasi-inverse of M, and let I be an arbitrary source instance. By the definition

of quasi-inverse, and given that (I, I) ∼M (I, I) and I ⊆ I (condition (a)) we know that

there exist I1 and I2 such that (I, I) ∼M (I1, I2) and (I1, I2) ∈ M ◦M′ (condition (b)).

Then, there is a target instance J such that (I1, J) ∈ M and (J, I2) ∈ M′. We claim that

J is a witness solution for I . First note that, since I ∼M I1 and (I1, J) ∈ M, we have that

J ∈ SolM(I). Now assume that there is an instance I ′ such that J ∈ SolM(I ′), we must

prove that SolM(I) ⊆ SolM(I ′). Given that J ∈ SolM(I ′) and (J, I2) ∈ M′, we obtain

that (I ′, I2) ∈ M ◦ M′. Thus, (I ′, I) ∼M (I ′, I2) and (I ′, I2) ∈ M ◦ M′ (condition

(b)) and, hence, there exists a pair of source instances (K1,K2) such that (I ′, I) ∼M

(K1,K2) and K1 ⊆ K2 (condition (a)). Given that M is closed-down on the left, we

obtain that SolM(K2) ⊆ SolM(K1), and then from (I ′, I) ∼M (K1,K2) we conclude

that SolM(I) ⊆ SolM(I ′). This was to be shown.
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Now, we show that, provided that M is quasi-invertible, it holds that every maximum

recovery of M is also a quasi-inverse of M. Let M′ be a maximum recovery of M, we

have to show that condition (a) holds if and only if condition (b) holds.

(a) ⇒ (b): Let I1 and I2 be source instances, and assume that there exist instances I ′1
and I ′2 such that (I1, I2) ∼M (I ′1, I

′
2) and I ′1 ⊆ I ′2. Given that M is quasi-invertible, we

have that M is a total st-mapping and, hence, I ′2 ∈ dom(M). Then given that M′ is a

maximum recovery of M, we have that (I ′2, I
′
2) ∈ M◦M′. Thus, since M is closed-down

on the left and I ′1 ⊆ I ′2, we obtain (I ′1, I
′
2) ∈ M ◦M′, which proves that (b) holds.

(b) ⇒ (a): Let I1 and I2 be source instances, and assume that (I1, I2) ∼M (I ′′1 , I
′′
2 ) and

(I ′′1 , I
′′
2 ) ∈ M ◦M′. Given that M′ is a maximum recovery of M, we have by Proposi-

tion 3.8 that SolM(I ′′2 ) ⊆ SolM(I ′′1 ). Thus, given that (I1, I2) ∼M (I ′′1 , I
′′
2 ), we conclude

that SolM(I2) ⊆ SolM(I1). Now, given that M is quasi-invertible, by Lemma 6.5 we

know that M satisfies the (∼M,∼M)-subset property. Then from SolM(I2) ⊆ SolM(I1),
we obtain that there exist instances I ′1 and I ′2 such that, (I1, I2) ∼M (I ′1, I

′
2) and I ′1 ⊆ I ′2,

which was to be shown.

It only left to show that, if M′ is both a quasi-inverse and a recovery of M, then M′ is

a maximum recovery of M. Assume then that M′ is a quasi-inverse and a recovery of M,

and let (I1, I2) ∈ M ◦M′. From Proposition 3.8 and the facts that M′ is a recovery of

M and M is a total mapping, to prove that M′ is a maximum recovery of M, we need to

show that SolM(I2) ⊆ SolM(I1). Given that (I1, I2) ∼M (I1, I2) and (I1, I2) ∈ M◦M′

(condition (b) above), there exists a pair (I ′1, I
′
2) such that (I1, I2) ∼M (I ′1, I

′
2) and I ′1 ⊆

I ′2 (condition (a) above). Now, given that M is closed-down on the left, we obtain that

SolM(I ′2) ⊆ SolM(I ′1) and, therefore, SolM(I2) ⊆ SolM(I1) since (I1, I2) ∼M (I ′1, I
′
2).

We now prove statement (2) of Theorem 6.4. Let M be specified by st-tgds P (x) →
T (x) andR(x) → T (x), and M′ specified by ts-tgd T (x) → P (x). M′ is a quasi-inverse

for M (see [Fagin et al. 2008]), but M′ is not a maximum recovery of M given that,

for example, for the source instance I such that RI = {a} and P I = ∅, we have that

I ∈ dom(M) but (I, I) 6∈ M ◦M′.

6.1 On necessary and sufficient conditions for the existence of inverses and

quasi-inverses

In Section 3, we identify a necessary and sufficient condition for the existence of max-

imum recoveries. For the case of the inverse (quasi-inverse), a condition called subset

property ((∼M,∼M)-subset property) was identified in [Fagin et al. 2008] as necessary

and sufficient for testing invertibility (quasi-invertibility), for the case of st-mappings spec-

ified by st-tgds. In this section, we first show that the subset property ((∼M,∼M)-subset

property) is not a sufficient condition for testing invertibility (quasi-invertibility) if one

goes beyond st-tgds. Then we show that these conditions can be extended to the class of

total and closed-down on the left st-mappings, by combining them with any necessary and

sufficient condition for the existence of maximum recoveries.

An st-mapping has the subset property if for every pair of instances I1, I2 such that

SolM(I2) ⊆ SolM(I1), it holds that I1 ⊆ I2. An st-mapping M has the (∼M,∼M)-
subset property if for every pair of instances I1, I2 such that SolM(I2) ⊆ SolM(I1), there

exist instances I ′1 and I ′2 such that I1 ∼M I ′1, I2 ∼M I ′2 and I ′1 ⊆ I ′2.

PROPOSITION 6.6. There exist total and closed-down on the left st-mappings specified

by (1) CQ-TO-CQ 6=, and (2) CQ-TO-UCQ dependencies, that satisfy both the subset and
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(∼M,∼M)-subset property and are neither invertible nor quasi-invertible.

PROOF. We start by showing that there exist st-mappings that are total, closed-down on

the left and specified by CQ-TO-CQ 6=, CQ-TO-UCQ dependencies, that satisfy the subset

property but are not invertible.

(1) CQ-TO-CQ 6=: Let S = {F (·), G(·), H(·)}, T = {R(·, ·, ·, ·)} and M = (S,T,Σ)
an st-mapping specified by the following set Σ of CQ-TO-CQ 6= st-dependencies:

F (x) → ∃y1∃y2∃y3(R(x, y1, y2, y3) ∧ y1 6= y2),

G(x) → ∃y1∃y2∃y3(R(x, y1, y2, y3) ∧ y1 6= y3),

H(x) → ∃y1∃y2∃y3(R(x, y1, y2, y3) ∧ y2 6= y3).

First, we show that M satisfies the subset property. Let I1 and I2 be source instances. We

have to show that, if SolM(I2) ⊆ SolM(I1) then I1 ⊆ I2. Assume then that SolM(I2) ⊆
SolM(I1). Let n1, n2 be two elements in N such that n1 6= n2, and let J1 be a target

instance such that:

RJ1 = F I2 × {n1} × {n2} × {n1} ∪ (GI2 ∪HI2) × {n1} × {n1} × {n2}.

Clearly J1 ∈ SolM(I2), and then J1 ∈ SolM(I1). Thus, for every a ∈ F I1 , there exists

a tuple (a, b1, b2, b3) in RJ1 such that b1 6= b2, which implies that a ∈ F I2 (by definition

of J1 and the fact that all the tuples in (GI2 ∪HI2) × {n1} × {n1} × {n2} do not satisfy

condition b1 6= b2). We conclude that F I1 ⊆ F I2 . Similarly, we can use instances J2:

RJ2 = GI2 × {n1} × {n1} × {n2} ∪ (F I2 ∪HI2) × {n1} × {n2} × {n1},

and J3:

RJ3 = HI2 × {n1} × {n2} × {n1} ∪ (F I2 ∪GI2) × {n1} × {n2} × {n2},

to show that GI1 ⊆ GI2 and HI1 ⊆ HI2 , respectively. We conclude that I1 ⊆ I2.

We show now that M is not invertible. From Theorem 6.3 and the fact that M is closed-

down on the left, to prove that M is not invertible, it is enough to prove that M does not

have a maximum recovery. Let I1 be the instance such that F I1 = {a} and GI1 = HI1 =
∅, where a is an arbitrary element of C. Next we show that there is no J ∈ SolM(I1)
such that J is a witness for I1, which implies by Theorem 3.12 that M does not have a

maximum recovery. On the contrary, assume that I1 has a witness solution J1. Given that

(I1, J1) ∈ M, we have that RJ1 contains a tuple (a, b1, b2, b3) with b1 6= b2. We consider

two cases depending on the values of b2 and b3. First, assume that b2 = b3. Then we have

that b1 6= b3. Consider source instance I2 such that GI2 = {a} and F I2 = HI2 = ∅.

We have that J1 ∈ SolM(I2), but it is not the case that SolM(I1) ⊆ SolM(I2), which

contradicts the fact that J1 is a witness solution for I1. Second, assume that b2 6= b3, and

consider source instance I3 such that HI3 = {a} and F I3 = GI3 = ∅. We have that

J1 ∈ SolM(I3), but it is not the case that SolM(I1) ⊆ SolM(I3), which contradicts the

fact that J1 is a witness solution for I1. This concludes the proof that the mapping M
specified by CQ-TO-CQ 6= st-dependencies is not invertible.

(2) CQ-TO-UCQ: Let S = {F (·), G(·), H(·)}, T = {R(·), S(·), T (·)} and M =
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(S,T,Σ) an st-mapping specified by the following set Σ of CQ-TO-UCQ dependencies:

F (x) → R(x) ∨ S(x),

G(x) → S(x) ∨ T (x),

H(x) → T (x) ∨R(x).

We show first that M satisfies the subset property. Let I1 and I2 be source instances.

Then we have to show that, if SolM(I2) ⊆ SolM(I1) then I1 ⊆ I2. For the sake of

contradiction, assume SolM(I2) ⊆ SolM(I1) and I1 6⊆ I2. Then either F I1 6⊆ F I2 , or

GI1 6⊆ GI2 , or HI1 6⊆ HI2 . Assume first that F I1 6⊆ F I2 . Then there exists an element a
such that a ∈ F I1 but a /∈ F I2 . Let J be a solution for I2 such that RJ = F I2 , SJ = ∅
and T J = GI2 ∪ HI2 . Now, for every solution J ′ ∈ SolM(I1), we have that a ∈ RJ

′

or a ∈ SJ
′

. Thus, given that a /∈ RJ and SJ = ∅, we obtain that J /∈ SolM(I1), and

then SolM(I2) 6⊆ SolM(I1), which contradicts our initial assumption. By using a similar

argument, we can show that if GI1 6⊆ GI2 then SolM(I2) 6⊆ SolM(I1), and if HI1 6⊆ HI2

then SolM(I2) 6⊆ SolM(I1), which also lead to a contradiction.

In the proof of Proposition 4.8, we show that the above set of CQ-TO-UCQ dependen-

cies does not have a maximum recovery. Thus, from Theorem 6.3, we conclude that M is

not invertible.

To conclude the proof of the proposition, we show that examples of CQ-TO-CQ 6=

and CQ-TO-UCQ dependencies satisfy the (∼M,∼M)-subset property but are not quasi-

invertible. In this proof, we need the following facts. Let M be an arbitrary st-mapping.

Given that I ∼M I for every source instance, if M satisfies the subset property, then M
also satisfies the (∼M,∼M)-subset property. Furthermore, if M satisfies the subset prop-

erty, then I1 ∼M I2 if and only if I1 = I2. Thus, if M satisfies the subset property, we

have that M has an inverse if and only if M has a quasi-inverse.

We now prove that the both examples satisfy the (∼M,∼M)-subset property but are

not quasi-invertible. We know that both mappings satisfy the subset property, which by

the above discussion implies that both mappings satisfy the (∼M,∼M)-subset property.

Furthermore, we also know that both mappings are not invertible and, therefore, they are

not quasi-invertible by the above discussion and the fact that both mappings satisfy the

subset property. This concludes the proof of the proposition.

It turns out that by using the machinery developed for maximum recoveries, it is possi-

ble to provide necessary and sufficient conditions for the existence of inverses and quasi-

inverses.

PROPOSITION 6.7. Let M be a total st-mapping that is closed-down on the left.

(1) M is invertible iff M has a maximum recovery and satisfies the subset property.

(2) M is quasi-invertible iff M has a maximum recovery and satisfies the (∼M,∼M)-
subset property.

The proposition is a corollary of Lemmas 6.8 and 6.9 below.

LEMMA 6.8. Let M be a total st-mapping that is closed-down on the left. The follow-

ing statements are equivalent:

(1) M is quasi-invertible.

(2) M has a maximum recovery and satisfies the (∼M,∼M)-subset property.
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(3) For every source instance I1, there exists J ∈ SolM(I1) such that, for every instance

I2 such that J ∈ SolM(I2), there exists a pair (I ′1, I
′
2) ∼M (I1, I2) such that I ′2 ⊆ I ′1.

PROOF. (1) ⇒ (2). It follows directly from Lemma 6.5 and Theorem 6.4.

(2) ⇒ (3). Assume that M has a maximum recovery. Then by Theorem 3.12, we have

that M has witness solutions for every source instance (note that M is a total mapping).

That is, for every source instance I1, there exists a target instance J ∈ SolM(I1) such

that, for every source instance I2 such that J ∈ SolM(I2), it is the case that SolM(I1) ⊆
SolM(I2). Thus, given that M satisfies the (∼M,∼M)-subset property, we obtain that

there exists (I ′1, I
′
2) such that (I1, I2) ∼M (I ′1, I

′
2) and I ′2 ⊆ I ′1. We conclude that (3)

holds.

(3) ⇒ (1). For every source instance I , let UI be the set of all target instances J ∈
SolM(I) that satisfy condition (3), and M′ = {(J, I) | I is a source instance and J ∈ UI}.

Notice that (I, I) ∈ M◦M′ for every source instance I . Next we show that M′ is a quasi-

inverse of M, that is, we show that (M ◦ M′)[∼M,∼M] = Id[∼M,∼M]. Let (I1, I2)
be an arbitrary pair of source instances. First, assume that there exists a pair (I ′1, I

′
2) such

that (I1, I2) ∼M (I ′1, I
′
2) and I ′1 ⊆ I ′2. We need to show that there exists a pair (I ′′1 , I

′′
2 )

such that (I1, I2) ∼M (I ′′1 , I
′′
2 ) and (I ′′1 , I

′′
2 ) ∈ M ◦ M′. Given that M is closed-down

on the left, (I ′2, I
′
2) ∈ M ◦ M′ and I ′1 ⊆ I ′2, we conclude that (I ′1, I

′
2) ∈ M ◦ M′ and,

therefore, we can take I ′′1 to be I ′1 and I ′′2 to be I ′2. Second, assume that there exists a pair

(K1,K2) such that (I1, I2) ∼M (K1,K2) and (K1,K2) ∈ M◦M′. We need to prove that

there exists a pair (K ′
1,K

′
2) such that (I1, I2) ∼M (K ′

1,K
′
2) and K ′

1 ⊆ K ′
2. Given that

(K1,K2) ∈ M◦M′, there exists a J such that (K1, J) ∈ M and (J,K2) ∈ M′. Thus, by

definition of M′, we have that J ∈ UK2
. Hence, given that J ∈ SolM(K1), we obtain that

there exists a pair (K ′
1,K

′
2) such that (K1,K2) ∼M (K ′

1,K
′
2) and K ′

1 ⊆ K ′
2. Therefore,

from the fact that (I1, I2) ∼M (K1,K2), we conclude that (I1, I2) ∼M (K ′
1,K

′
2) and

K ′
1 ⊆ K ′

2. This concludes the proof of the lemma.

LEMMA 6.9. Let M be a total st-mapping that is closed-down on the left. The follow-

ing statements are equivalent:

(1) M is invertible.

(2) M has a maximum recovery and satisfies the subset property.

(3) For every source instance I1, there exists J ∈ SolM(I1) such that, for every instance

I2 such that J ∈ SolM(I2), it holds that I2 ⊆ I1.

PROOF. (1) ⇒ (2). Assume that M is invertible, and let M′ be an inverse of M. By

Theorem 6.3, we know that M′ is a maximum recovery of M. It remains to prove that M
satisfies the subset property. Suppose that SolM(I2) ⊆ SolM(I1), then we need to prove

that I1 ⊆ I2. Given that (I2, I2) ∈ M ◦ M′, there exists a target instance J such that

(I2, J) ∈ M and (J, I2) ∈ M′. Thus, given that SolM(I2) ⊆ SolM(I1), we have that

(I1, J) in M. We conclude that (I1, I2) ∈ M◦M′, which implies that I1 ⊆ I2 since M′

is an inverse of M.

(2) ⇒ (3). As we pointed out in the proof of Proposition 6.6, if M satisfies the subset

property, then M satisfies the (∼M,∼M)-subset property and for every pair of source

instances I1, I2, it holds that I1 ∼M I2 if and only if I1 = I2. Thus, (2) ⇒ (3) is a direct

consequence of the implication (2) ⇒ (3) of Lemma 6.8.

(3) ⇒ (1). For every source instance I , let UI be the set of all target instances J ∈
SolM(I) that satisfy condition (3), and let M′ = {(J, I) | I is a source instance and
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J ∈ UI}. Notice that (I, I) ∈ M◦M′ for every source instance I . Next we show that M′

is an inverse of M, that is, we show that for every pair of source instances I1, I2, it holds

that (I1, I2) ∈ M◦M′ if and only if I1 ⊆ I2. First, assume that (I1, I2) ∈ M◦M′. Then

there exists a target instance J such that (I1, J) ∈ M and (J, I2) ∈ M′. By definition

of M′, we have that J ∈ UI2 . Thus, given that J ∈ SolM(I1), we obtain that I1 ⊆ I2.

Second, assume that I1 ⊆ I2. Then given that (I2, I2) ∈ M ◦M′ and M is closed-down

on the left, we obtain that (I1, I2) ∈ M◦M′. This concludes the proof of the lemma.

As a corollary of Lemma 6.9, we obtain that an extension of the notion of witness so-

lution can be used to provide a necessary and sufficient condition for invertibility. Given

an st-mapping M, we say that a target instance J is a strong witness for a source instance

I under M, if for every source instance I ′ such that J ∈ SolM(I ′), it holds that I ′ ⊆ I .

Notice that if a mapping M is closed-down on the left and J is a strong witness for I , then

J is a witness for I .

COROLLARY 6.10. A total and closed-down on the left st-mapping M is invertible iff

every source instance has a strong witness solution under M.

7. COMPUTING MAXIMUM RECOVERIES

In Section 4.1, we show that every st-mapping specified by a set of FO-TO-CQ depen-

dencies has a maximum recovery, but up to this point we have not said anything about

the language needed to express it. In this section, we show that every st-mapping speci-

fied by a set of FO-TO-CQ dependencies has a maximum recovery specified by a set of

CQC-TO-FO dependencies. In fact, we provide an algorithm that computes maximum

recoveries for st-mappings specified by FO-TO-CQ dependencies. Our algorithm runs in

exponential time when mappings are given by sets of FO-TO-CQ dependencies, and can

be adapted to run in quadratic time when the input is a mapping specified by a set of full

FO-TO-CQ dependencies.

7.1 Preliminaries

In this section, we introduce the basic terminology used in our algorithm, and we also

present some results that are important in its formulation.

Our algorithm is based on query rewriting and, thus, we start by reviewing some basic

results about it. Let M = (S,T,Σ) be an st-mapping such that Σ is a set of FO-TO-CQ

dependencies, and let Q be a query over schema T. Given a source instance I , the set of

certain answers of Q over I under M is the set of tuples that belong to the evaluation ofQ
over every possible solution for I under M. We denote this set by certainM(Q, I). Thus,

certainM(Q, I) =
⋂

J∈SolM(I)

Q(J).

Then a query Q′ is said to be a rewriting of Q over the source if Q′ is a query over S such

that for every I ∈ Inst(S), it holds that Q′(I) = certainM(Q, I). That is, to obtain the

set of certain answers of Q over I under M, we just have to evaluate its rewriting Q′ over

instance I .

The computation of a rewriting of a conjunctive query is a basic step in the algorithm pre-

sented in this section. This problem has been extensively studied in the database area [Levy

et al. 1995; Abiteboul and Duschka 1998] and, in particular, in the data integration context
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[Halevy 2000; 2001; Lenzerini 2002]. In particular, the class of CQ-TO-CQ dependen-

cies corresponds to the class of GLAV mappings in the data integration context [Lenzerini

2002], and, as such, the techniques developed to solved the query rewriting problem for

GLAV mappings can be reused in our context. It is important to notice that most of the

query rewriting techniques have been developed for two sub-classes of GLAV mappings,

namely GAV mappings, which essentially corresponds to the class of mappings specified

by full CQ-TO-CQ dependencies [Lenzerini 2002], and LAV mappings, which are map-

pings specified by CQ-TO-CQ dependencies of the formR(x1, . . . , xk) → ψ(x1, . . . , xk),
where R is a source predicate [Lenzerini 2002]. However, it is possible to reuse a large

part of the work in this area as a GLAV mapping can be represented as the composition of

a GAV and a LAV mapping.

Example 7.1. Assume that M is specified by dependency:

R(x) ∧ S(x) → ∃y T (x, y).

Then M is equivalent to the composition of a GAV mapping specified by dependency

R(x) ∧ S(x) → U(x) and a LAV mapping specified by dependency U(x) → ∃y T (x, y),
where U is an auxiliary relation.

More formally, let M be a mapping specified by a set of CQ-TO-CQ dependencies and

Q a conjunctive query over the target of M. Then one can obtain a rewriting of Q over

the source as follows. First, one constructs, as in the above example, a GAV mapping M1

and a LAV mapping M2 such that M = M1 ◦ M2. Second, one obtains a rewriting Q′

of Q over the source of M2 by adopting one of the algorithms proposed in the literature

for query rewriting for LAV mappings [Levy et al. 1996; Duschka and Genesereth 1997;

Pottinger and Halevy 2001]. Finally, one obtains a rewriting Q′′ of Q′ over the source

of M1, which is the desired rewriting of Q, by simply unfolding Q′ according to the

dependencies of mapping M1 [Lenzerini 2002].

It should be noticed that the time complexity of the rewriting procedure described above

is exponential in the size of the mapping and the query, and that this procedure can also be

used for the case of mappings specified by FO-TO-CQ dependencies. If M is specified

by a set of FO-TO-CQ dependencies, then by using the same idea as in Example 7.1, it

is possible to show that M is equivalent to the composition of a mapping M1 specified

by a set of full FO-TO-CQ dependencies and a LAV mapping M2. Thus, given that the

query unfolding process can be carried out over a set of full FO-TO-CQ dependencies in

the same way as for GAV mappings, the process described above can be used to compute

in exponential time the rewriting of a target conjunctive query over the source of M.

For the sake of completeness, in this paper we propose a novel exponential-time algo-

rithm that given a mapping M specified by a set of FO-TO-CQ st-dependencies and a

conjunctive query Q over the target schema, produces a rewriting of Q over the source of

M. This algorithm does not follow the approach described above, as it directly uses the

dependencies specifying M to construct a query rewriting (it does not decompose M into

the composition of two mappings). In particular, the time complexity of the algorithm is

exponential, so it could be used as an alternative query rewriting algorithm.

LEMMA 7.2. There exists an algorithm QUERYREWRITING that given an st-mapping

M = (S,T,Σ), with Σ a set of FO-TO-CQ dependencies, and a conjunctive queryQ over

schema T, computes a domain-independent FO query Q′ that is a rewriting of Q over the
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source. The algorithm runs in exponential time and its output is of exponential size in the

size of Σ and Q.

PROOF. The proof of the lemma is given in electronic Appendix A.1.

Another notion that would be used in the proof of correctness of our algorithm (and also

in other proofs in the following sections), is the notion of chase. This notion is tightly

related with certain answers and rewriting of queries [Fagin et al. 2005a; Arenas et al.

2004]. Assume that M = (S,T,Σ) is an st-mapping, where Σ is a set of FO-TO-CQ

dependencies. Let I be an instance of S, and let JI be an instance of T constructed

as follows. For every dependency σ ∈ Σ of the form ϕ(x̄) → ∃ȳ ψ(x̄, ȳ), with x̄ =
(x1, . . . , xm), ȳ = (y1, . . . , yℓ) tuples of distinct variables, and for every m-tuple ā of

elements from dom(I) such that I |= ϕ(ā), do the following. Choose an ℓ-tuple n̄ of

distinct fresh values from N, and include all the conjuncts of ψ(ā, n̄) in JI . We call

instance JI the chase of I with Σ, and write JI = chaseΣ(I). In [Fagin et al. 2005a], the

authors prove several properties of chaseΣ(I). In particular, the authors showed that if Q
is a conjunctive query over T, then the set of certain answers of I under M is equal to

the set of tuples in Q(chaseΣ(I)) that only contains constant values. We denote this last

set of tuples by Q(chaseΣ(I))↓. Thus, we have that certainM(Q, I) = Q(chaseΣ(I))↓.

Notice that if Q′ is a rewriting over the source of a conjunctive query Q, then it holds that

Q′(I) = Q(chaseΣ(I))↓.

7.2 Computing maximum recoveries in the general case

In this section, we propose an algorithm that, given a mappings M specified by a set of

FO-TO-CQ dependencies, returns a maximum recovery of M.

It is known that the simple process of “reversing the arrows” of source-to-target de-

pendencies does not necessarily produce inverses as conclusions of different dependencies

may be related [Fagin 2007]; a conclusion of a dependency may be implied by the conclu-

sions of other dependencies. The algorithm presented in this section first searches for these

relations among conclusions of dependencies, and then suitably composes the premises of

related dependencies and “reverses the arrows” to obtain a maximum recovery. Let us

give some intuition with an example. Consider a mapping M specified by the FO-TO-CQ

dependencies:

ϕ1(x1, x2) → ∃v(P (x1, v) ∧R(v, x2)), (4)

ϕ2(y1, y2) → P (y1, y2), (5)

ϕ3(z1, z2) → R(z1, z2), (6)

where ϕ1, ϕ2, and ϕ3 are arbitrary FO formulas with two free variables. In this case,

the conjunction of the conclusions of (5) and (6) implies the conclusion of (4) when y2 is

equal to z1 and both are existentially quantified. The idea behind the algorithm is to make

explicit these types of relationships. For instance, we could replace (4) by the dependency:

ϕ1(u1, u2) ∨ ∃y2∃z1
(
ϕ2(u1, y2) ∧ ϕ3(z1, u2) ∧ y2 = z1

)
→

∃v(P (u1, v) ∧R(v, u2)). (7)

It can be proved that the set of dependencies obtained by replacing formula (4) by (7)

is logically equivalent to the initial set of dependencies. After making explicit these types

of relationships between dependencies, the algorithm “reverses the arrows” to obtain a
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maximum recovery. When “reversing the arrows”, we also need to impose an additional

constraint. In the above example, given that (4) is a non-full dependency, when revers-

ing (5) the algorithm needs to force variable y2 in P (y1, y2) to take values only from

the set C, that is, we have to use dependency P (y1, y2) ∧ C(y2) → ϕ2(y1, y2) instead of

P (y1, y2) → ϕ2(y1, y2). This is because, given a source instance I such that I |= ϕ1(a, b),
dependency (4) could be satisfied by including a tuple of the form P (a, n) in a target in-

stance, where n ∈ N, and value n should not be passed to a source instance by a recovery

(see Proposition 8.1 for a formal justification for the use of predicate C(·)). In fact, as

a safety condition, the algorithm presented in this section uses predicate C(·) over each

variable that passes values from the target to the source. Summing up, the following set of

dependencies defines a maximum recovery of the mapping M above:

P (y1, y2) ∧ C(y1) ∧ C(y2) → ϕ2(y1, y2),

R(z1, z2) ∧ C(z1) ∧ C(z2) → ϕ3(z1, z2),

∃v(P (u1, v) ∧ R(v, u2)) ∧ C(u1) ∧ C(u2) → ϕ1(u1, u2) ∨

∃y2∃z1

`

ϕ2(u1, y2) ∧ ϕ3(z1, u2) ∧ y2 = z1

´

.

The following algorithm uses a query rewriting procedure to find the types of relation-

ships between dependencies described above. In fact, in the above example, the formula:

ϕ1(u1, u2) ∨ ∃y2∃z1
(
ϕ2(u1, y2) ∧ ϕ3(z1, u2) ∧ y2 = z1

)
, (8)

that appears as the premise of (7), makes explicit the relationship between the conclusion

∃v(P (u1, v)∧R(v, u2)) of FO-TO-CQ dependency (4) and dependencies (4), (5) and (6).

But not only that, it can be shown that (8) is a rewriting of ∃v(P (u1, v) ∧ R(v, u2)) over

the source schema (according to dependencies (4), (5) and (6)).

In the algorithm, if x̄ = (x1, . . . , xk), then C(x̄) is a shorthand for C(x1)∧· · ·∧C(xk).

Algorithm MAXIMUMRECOVERY(M)

Input: An st-mapping M = (S,T,Σ), where Σ is a set of FO-TO-CQ dependencies.

Output: A ts-mapping M′ = (T,S,Σ′), where Σ′ is a set of CQC-TO-FO dependencies

and M′ is a maximum recovery of M.

(1) Start with Σ′ as the empty set.

(2) For every dependency σ ∈ Σ of the form ϕ(x̄) → ∃ȳψ(x̄, ȳ), do the following:

(a) Let Q be the conjunctive query defined by ∃ȳψ(x̄, ȳ).
(b) Use QUERYREWRITING(M, Q) to compute an FO formula α(x̄) that is a rewrit-

ing of ∃ȳψ(x̄, ȳ) over the source.

(c) Add dependency ∃ȳψ(x̄, ȳ) ∧ C(x̄) → α(x̄) to Σ′.

(3) Return M′ = (T,S,Σ′).

THEOREM 7.3. Let M = (S,T,Σ) be an st-mapping, where Σ is a set of FO-TO-CQ

dependencies. Then MAXIMUMRECOVERY(M) computes a maximum recovery of M in

exponential time in the size of Σ, which is specified by a set of CQC-TO-FO dependencies.

PROOF. From Lemma 7.2, it is straightforward to conclude that the algorithm

runs in exponential time. Assume that M′ = (T,S,Σ′) is the output of
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MAXIMUMRECOVERY(M). We first show that M′ is a recovery of M, that is, we show

that for every instance I of S, it holds that (I, I) ∈ M ◦M′.

We show now that (chaseΣ(I), I) ∈ M′ and, thus, since (I, chaseΣ(I)) ∈ M, we

obtain that (I, I) ∈ M ◦ M′. Let σ′ ∈ Σ′, we need to show that (chaseΣ(I), I) |= σ′.

Assume that σ′ is of the form ∃ȳψ(x̄, ȳ) ∧ C(x̄) → α(x̄), and that ā is a tuple of values

such that chaseΣ(I) |= ∃ȳψ(ā, ȳ) ∧ C(ā). We have to show that I |= α(ā). Now,

consider the conjunctive query Qψ defined by formula ∃ȳψ(x̄, ȳ). Since C(ā) holds and

chaseΣ(I) |= ∃ȳψ(ā, ȳ), we obtain that ā ∈ Qψ(chaseΣ(I))↓. Thus, by the properties

of the chase, we know that ā ∈ certainM(Qψ, I). Consider now the query Qα defined

by formula α(x̄). By the definition of MAXIMUMRECOVERY, we know that Qα is a

rewriting of Qψ over schema S, and then certainM(Qψ , I) = Qα(I). Thus, we have that

ā ∈ Qα(I), and then I |= α(ā) which was to be shown.

To complete the proof, we show that if (I1, I2) ∈ M ◦ M′, then ∅  SolM(I2) ⊆
SolM(I1). Thus, by Proposition 3.8 and since M′ is a recovery of M, we obtain that M′

is a maximum recovery of M. Let (I1, I2) ∈ M ◦ M′, and J⋆ an instance of T such

that (I1, J
⋆) ∈ M and (J⋆, I2) ∈ M′. Notice first that dom(M) = Inst(S), and then

∅  SolM(I2). Therefore, we only have to prove that SolM(I2) ⊆ SolM(I1). Let J ∈
SolM(I2), we need to show that J ∈ SolM(I1). Let σ ∈ Σ be a dependency of the form

ϕ(x̄) → ∃ȳψ(x̄, ȳ), and assume that I1 |= ϕ(ā) for some tuple ā of constant values. We

show next that J |= ∃ȳψ(ā, ȳ). Since I1 |= ϕ(ā) we know that for every J ′ ∈ SolM(I1),
it holds that J ′ |= ∃ȳψ(ā, ȳ). In particular, it holds that J⋆ |= ∃ȳψ(ā, ȳ). By the definition

of the algorithm, we know that there exists a dependency ∃ȳψ(x̄, ȳ)∧C(x̄) → α(x̄) in Σ′,

such that α(x̄) is a rewriting of ∃ȳψ(x̄, ȳ) over S. Then since J⋆ |= ∃ȳψ(ā, ȳ), ā is a tuple

of constant values, and (J⋆, I2) |= Σ′, we know that I2 |= α(ā). Now consider the queries

Qψ and Qα defined by formulas ∃ȳψ(x̄, ȳ) and α(x̄), respectively. Since I2 |= α(ā),
we know that ā ∈ Qα(I2). Furthermore, we know that Qα(I2) = certainM(Qψ, I2), and

then ā ∈ certainM(Qψ, I2). In particular, since J ∈ SolM(I2), we know that ā ∈ Qψ(J),
from which we conclude that J |= ∃ȳψ(ā, ȳ). We have shown that for every σ ∈ Σ of

the form ϕ(x̄) → ∃ȳψ(x̄, ȳ), if I1 |= ϕ(ā) for some tuple ā, then J |= ∃ȳψ(ā, ȳ). Thus,

we have that (I1, J) |= Σ and therefore J ∈ SolM(I1). This concludes the proof of the

theorem.

From Theorems 6.3 and 6.4, we have that if Σ is an invertible (quasi-invertible) set of

st-tgds, then MAXIMUMRECOVERY computes an inverse (quasi-inverse) of Σ. In [Fagin

et al. 2008], algorithms for computing inverses and quasi-inverses are proposed for the case

of mappings given by st-tgds. It is important to notice that our algorithm works not only

for st-tgds but also for the larger class of FO-TO-CQ dependencies. For the latter class, it

is not clear how to extend the algorithms from [Fagin et al. 2008] to produce inverses and

quasi-inverses, as the notion of generator used in these algorithms (Definition 4.2 in [Fagin

et al. 2008]) becomes undecidable for FO-TO-CQ dependencies.

The next lemma shows that when the input of algorithm MAXIMUMRECOVERY is a

mapping M specified by a set of st-tgds, then its output is a maximum recovery of M
specified by a set of CQC-TO-UCQ= dependencies. The proof of the lemma follows

directly from the proof of Lemma 7.2.

LEMMA 7.4. Let M = (S,T,Σ) be an st-mapping such that Σ is a set of st-tgds, and

Q a conjunctive query over schema T. Then algorithm QUERYREWRITING(M, Q) in

Lemma 7.2 has as output a query Q′ in UCQ= that is a rewriting of Q over the source.
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Thus, if the input of our algorithm is a mapping given by a set Σ of st-tgds, it computes a

maximum recovery given by a set Σ′ of CQC-TO-UCQ= dependencies. In general, the set

Σ′ computed by our algorithm could be of exponential size in the size of Σ. The following

result shows that this exponential blow-up could not be avoided.

THEOREM 7.5. There exists a family of st-mappings {Mn = (Sn,Tn,Σn)}n≥1, such

that Σn is a set of st-tgds of size linear in n, and every set Σ′ of CQC-TO-UCQ= ts-

dependencies that specifies a maximum recovery of Mn is of size Ω(2n).

PROOF. Let Sn = {R(·), A1(·), B1(·), . . . , An(·), Bn(·)}, Tn = {P1(·), . . . , Pn(·)},

and Σn the set of st-tgds:

R(x) → ∃y(P1(y) ∧ · · · ∧ Pn(y)),

A1(x) → P1(x),

B1(x) → P1(x),

...

An(x) → Pn(x),

Bn(x) → Pn(x).

Let Mn = (Sn,Tn,Σn) and assume that M′ = (Tn,Sn,Σ
′) is a maximum recovery

of Mn, where Σ′ is a set of CQC-TO-UCQ= ts-dependencies. We first prove some facts

about Σ′. Through the proof, we let a be a fixed element in C, and IR a source instance

such that RIR = {a} and AIR

i = BIR

i = ∅ for every i ∈ {1, . . . , n}. Since M′ is a

recovery of Mn, we have that (IR, IR) ∈ Mn ◦ M′. Thus, there exists an instance J⋆

such that (IR, J
⋆) |= Σn and (J⋆, IR) |= Σ′. We show first that the domain of J⋆ is

composed only by null values. On the contrary, assume that there exists a constant element

b ∈ C such that b ∈ dom(J⋆). Then it holds that b ∈ P J
⋆

k for some k ∈ {1, . . . , n}.

Consider a source instance I ′ such that AI
′

k = BI
′

k = {b}, RI
′

= ∅, and AI
′

i = BI
′

i = ∅

for every i ∈ {1, . . . , n} with i 6= k. The target instance J ′ where P J
′

k = {b} and P J
′

i = ∅
for every i ∈ {1, . . . , n} with i 6= k, is such that (I ′, J ′) ∈ Mn. Notice that J ′ ⊆ J⋆.

Now since Σn is a set of st-tgds, we know that Mn is closed-up on the right, obtaining

that (I ′, J⋆) ∈ Mn. Thus, given that (J⋆, IR) ∈ M′ we have that (I ′, IR) ∈ Mn ◦M′.

This last fact contradicts Proposition 3.8 since M′ is a maximum recovery of Mn and

SolMn
(IR) 6⊆ SolMn

(I ′).
We claim now that it must exist a dependency σ ∈ Σ′ such that J⋆ satisfies the premise

of σ. Assume that this is not the case. Then since Σ′ is a set of CQC-TO-UCQ= formulas,

it would be the case that (J⋆, I∅) |= Σ′, where I∅ is the empty source instance. Thus, we

have that (IR, I∅) ∈ Mn ◦M′ which, by Proposition 3.8, contradicts the fact that M′ is

a maximum recovery of Mn since SolMn
(I∅) 6⊆ SolMn

(IR). Assume now that σ is a

dependency in Σ′ whose premise is satisfied by J⋆. We show next that the premise and

the conclusion of σ must be Boolean formulas. On the contrary, assume that σ is of the

form ϕ(x̄) → ψ(x̄), where x̄ is a tuple of m variables with m > 0. Since we are assuming

that J⋆ satisfies the premise of σ, there exists an m-tuple b̄ such that J⋆ |= ϕ(b̄). We

know that ϕ(x̄) is a domain independent formula, then it holds that every component of b̄
is in dom(J⋆). We have shown before that dom(J⋆) is composed only by nulls and, thus,

every component of b̄ is a null value. Now, since (J⋆, IR) |= σ and J⋆ |= ϕ(b̄), it must

be the case that IR |= ψ(b̄). We also know that ψ(x̄) is domain independent, then every
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component of b̄must be in dom(IR), which leads to a contradiction since dom(IR) = {a}
and a ∈ C. In the rest of the proof, we let Σ′′ ⊆ Σ′ to be the set of all the dependencies σ
of the form ϕ → ψ such that J⋆ |= ϕ, where ϕ and ψ are Boolean formulas. Notice that

Σ′′ 6= ∅.

We have the necessary ingredients to show that Σ′ is of size Ω(2n). Consider for

every n-tuple d̄ = (d1, . . . , dn) ∈ {0, 1}n, the set of source relation symbols Sd̄ =
{U1(·), . . . , Un(·)} such that Ui = Ai if di = 0 and Ui = Bi if di = 1. We now

show that for each of the 2n tuples d̄, there must exist a dependency σ ∈ Σ′′ of the form

ϕ → ψ such that ψ has a disjunct that mentions exactly the relation symbols in Sd̄. This

is enough to show that Σ′ is of size Ω(2n). Fix a tuple d̄ and consider a source instance Id̄
such that for every U ∈ Sn, if U ∈ Sd̄ then U Id̄ = {a}, otherwise U Id̄ = ∅. Since M′ is

a maximum recovery of Mn, there exists a target instance Jd̄ such that (Id̄, Jd̄) |= Σn and

(Jd̄, Id̄) |= Σ′. Let JP be a target instance such that P JP

i = {a} for every i ∈ {1, . . . , n}.

It is straightforward to see that JP ⊆ Jd̄. It is also easy to see that, if θ is a boolean

query in CQC over Tn, then JP |= θ. To see this just take a homomorphism h from the

conjunctions of θ to the facts in JP such that h(x) = a for every existential variable in θ,

and note that C(h(x)) holds for every variable since a ∈ C. Thus, given that queries in

CQC are monotone and JP ⊆ Jd̄, we have that Jd̄ |= θ for every CQC boolean query θ
over Tn. In particular, we have that for every ϕ → ψ ∈ Σ′′, it holds that Jd̄ |= ϕ. Then

it must hold that Id̄ |= ψ for every ϕ → ψ ∈ Σ′′. This last fact implies that for every

ϕ → ψ ∈ Σ′′, there exists a formula α such that α is one of the disjunctions of ψ and

Id̄ |= α (recall that ψ is a query in UCQ=). Let Γ be a set containing all such formulas

α, that is, α is a formula in Γ if and only if there exists a dependency ϕ → ψ ∈ Σ′′ such

that α is a disjunction in ψ and Id̄ |= α. Note that every α ∈ Γ is a CQ= Boolean query,

and since Id̄ |= α, it could not be the case that α mentions relation symbols of Sn outside

Sd̄. We now show that one of the queries in Γ mentions exactly the relation symbols in

Sd̄. On the contrary, assume that for every α ∈ Γ, it is the case that α mentions a proper

subset of the relation symbols of Sd̄. Consider for every α ∈ Γ a fresh constant value cα,

and a source instance Iα such that for every U ∈ Sn, we have U Iα = {cα} if the relation

symbol U is mentioned in α, and U Iα = ∅ otherwise. It is clear that Iα |= α for every

α ∈ Γ. Let IΓ =
⋃

α∈Γ Iα. Notice that for every α ∈ Γ, it holds that IΓ |= α. Recall that

for every ϕ→ ψ ∈ Σ′′, there exists a formula α ∈ Γ such that α is one of the disjunctions

of ψ. Hence, we obtain that IΓ |= ψ for every ϕ → ψ ∈ Σ′′. We also know that J⋆ |= ϕ
for every ϕ → ψ ∈ Σ′′, obtaining that (J⋆, IΓ) |= Σ′′. Notice that Σ′′ contains all the de-

pendencies of Σ′ such that J⋆ satisfies their premises and, thus, (J⋆, IΓ) |= Σ′. Then since

(IR, J
⋆) |= Σn and (J⋆, IΓ) |= Σ′, we have that (IR, IΓ) ∈ Mn ◦M′. We show now that

SolMn
(IΓ) 6⊆ SolMn

(IR), which contradicts Proposition 3.8. Notice first that for every

target instance J ∈ SolMn
(IR), there exists an element c ∈ dom(J) such that c ∈ P Ji for

every i ∈ {1, . . . , n}. We prove that there exists an instance in SolMn
(IΓ) that does not

satisfy this last property. Consider for every α ∈ Γ the target instance Jα = chaseΣn
(Iα),

and let JΓ =
⋃

α∈Γ Jα. It is easy to see that JΓ ∈ SolMn
(IΓ). Notice that since ev-

ery α ∈ Γ mentions a proper subset of the relation symbols of Sd̄, there exists an index

i ∈ {1, . . . , n} such that AIα

i = BIα

i = ∅, and then there exists an index i ∈ {1, . . . , n}

such that P Jα

i = ∅. Moreover, since dom(Jα) ∩ dom(Jα′) = ∅ for every pair of distinct

elements α, α′ of Γ, we obtain that there is no element c ∈ dom(JΓ) such that c ∈ P JΓ

i for

every i ∈ {1, . . . , n}. Thus, JΓ /∈ SolMn
(IR) implying that SolMn

(IΓ) 6⊆ SolMn
(IR)
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which leads to the contradiction mentioned above. We have shown that there exists a for-

mula α ∈ Γ such that α mentions exactly the relation symbols in Sd̄. Thus, there exists

a dependency σ ∈ Σ′′ ⊆ Σ′ such that the conclusion of σ has a disjunct that mentions

exactly the relation symbols in Sd̄. This last property holds for every one of the 2n distinct

tuples d̄, which implies that Σ′ is of size exponential in the size of Σn.

7.3 Computing maximum recoveries in the full case

Recall that a full FO-TO-CQ dependency does not include any existential quantifiers in its

conclusion. In this section, we show that for mappings given by full FO-TO-CQ depen-

dencies, maximum recoveries can be computed in polynomial time. This result is based in

the fact that given a query composed by a single atom and with no existentially quantified

variables, one can compute a rewriting of that query in quadratic time. This is formalized

in the following lemma, where ‖Σ‖ denotes the size of Σ.

LEMMA 7.6. There exists an algorithm QUERYREWRITINGATOM that given an st-

mapping M = (S,T,Σ), with Σ a set of FO-TO-CQ dependencies, and a conjunctive

query Q over schema T composed by a single atom and with no existential quantifiers,

computes in time O(‖Σ‖2) a domain-independent FO query Q′ that is a rewriting of Q
over the source. Moreover, if Σ is a set of full FO-TO-CQ st-dependencies where each

dependency has a single atom in its conclusion, then the algorithm runs in time O(‖Σ‖).

PROOF. The proof of the lemma is given in electronic Appendix A.2.

By using algorithm QUERYREWRITINGATOM, we can compute in quadratic time a

maximum recovery for mappings given by full dependencies.

Algorithm MAXIMUMRECOVERYFULL(M)

Input: An st-mapping M = (S,T,Σ), where Σ is a set of full FO-TO-CQ dependencies,

each dependency with a single atom in its conclusion.

Output: A ts-mapping M′ = (T,S,Σ′), where Σ′ is a set of CQ-TO-FO dependencies

and M′ is a maximum recovery of M.

(1) Start with Σ′ as the empty set.

(2) For every atom R(x̄) that is the conclusion of a dependency in Σ, do the following:

(a) Let Q be the conjunctive query defined by R(x̄).
(b) Use QUERYREWRITINGATOM(M, Q) to compute an FO formula α(x̄) that is a

rewriting of R(x̄) over the source.

(c) Add dependencyR(x̄) → α(x̄) to Σ′.

(3) Return M′ = (T,S,Σ′).

THEOREM 7.7. Let M be an st-mapping specified by a set Σ of full FO-TO-CQ

st-dependencies, each dependency with a single atom in its conclusion. Then

MAXIMUMRECOVERYFULL(M) computes a maximum recovery of M in time O(‖Σ‖2),
which is specified by a set of CQ-TO-FO dependencies.

PROOF. Since Σ is a set of full FO-TO-CQ st-dependencies, each dependency with a

single atom in its conclusion, algorithm QUERYREWRITINGATOM(M, Q) runs in linear

time. Thus, it is straightforward to see that algorithm MAXIMUMRECOVERYFULL runs in

quadratic time. The correctness of the algorithm follows from the proof of Theorem 7.3.

We only notice here that the output of algorithm MAXIMUMRECOVERYFULL does not
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include predicate C(·). Since Σ is a set of full dependencies, chaseΣ(I) is composed only

by constant values and, thus, C(·) is not needed in the proof of Theorem 7.3.

Notice that in Theorem 7.7, we assume that every dependency has a single atom in its

conclusion. Nevertheless, this theorem can be extended to the general case; from a set

Σ of arbitrary full FO-TO-CQ st-dependencies, one can obtain as follows an equivalent

set Σ′ of full FO-TO-CQ st-dependencies having a single atom in the conclusion of each

constraint. For every dependency ϕ(x̄) → ψ(x̄) in Σ and atom R(ȳ) in ψ(x̄), where

ȳ ⊆ x̄, the dependency ϕ(x̄) → R(ȳ) is included in Σ′. Thus, to apply Theorem 7.7 to

Σ, we first construct Σ′ from Σ and then apply procedure MAXIMUMRECOVERYFULL.

It is important to notice that Σ′ could be of quadratic size in the size of Σ and, hence, by

the fact that algorithm QUERYREWRITINGATOM runs in linear time and the definition of

procedure MAXIMUMRECOVERYFULL, it follows that a maximum recovery for a mapping

specified by an arbitrary set of full FO-TO-CQ st-dependencies can be computed in cubic-

time.

As for the general case, from Theorems 6.3 and 6.4, we know that this algorithm com-

putes an inverse (quasi-inverse) if Σ is an invertible (quasi-invertible) set of full st-tgds.

The algorithm in [Fagin et al. 2008] for computing an inverse of a set Σ of full st-tgds

returns a set Σ′ of CQ 6=-TO-CQ dependencies of exponential size in ‖Σ‖. The algorithm

in [Fagin et al. 2008] for computing a quasi-inverse of a set Σ of full st-tgds returns a set Σ′

of CQ 6=-TO-UCQ dependencies which is also of exponential size in ‖Σ‖. In both cases,

our algorithm works in quadratic time and returns a set Σ′ of CQ-TO-UCQ= dependencies

which is of quadratic size in ‖Σ‖.

7.4 Computing maximum recoveries for mappings with source dependencies

We conclude this section by showing how algorithm MAXIMUMRECOVERY can be ex-

tended to handle arbitrary source constraints.

By using Lemma 4.4, we can extend algorithm MAXIMUMRECOVERY to handle

source constraints. Given an st-mapping M = (S,T,Σst,Γs), where Σst is a set of

FO-TO-CQ st-dependencies (from S to T) and Γs is a set of source FO-dependencies

(over S), algorithm MAXIMUMRECOVERY can be used to produce a maximum recovery

M⋆
1 = (T,S,Σts) for st-mapping M1 = (S,T,Σst), where Σts is a set of CQC-TO-FO

ts-dependencies from T to S, and then M⋆ = (T,S,Σts,Γs) is output as a maximum

recovery of M.

8. THE LANGUAGE OF MAXIMUM RECOVERIES

Given a mapping M specified by a set of FO-TO-CQ dependencies, algorithm MAX-

IMUMRECOVERY produces a maximum recovery of M that is specified by a set of

CQC-TO-FO dependencies. In this section, we study some properties of the language

needed to express maximum recoveries, which provide justification for the language used

in the output of algorithm MAXIMUMRECOVERY. Moreover, we also show that the ex-

tension of this algorithm to handle target constraints is not immediate, as there exists a

mapping specified by a set of FO-TO-CQ dependencies plus a set of target egds that has

no maximum recovery specified by a set of FO-sentences, and the same holds for a weakly

acyclic set of target tgds.

A first question about the output of MAXIMUMRECOVERY is whether predicate C(·)
is really needed. In [Fagin et al. 2008], it is proved that C(·) is needed when computing
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quasi-inverses of st-mappings specified by st-tgds, if quasi-inverses are expressed using

st-tgds with inequalities in the premises and disjunction in the conclusions. Here we show

that C(·) is needed when computing maximum recoveries for st-mappings specified by

st-tgds, even if we allow the full power of FO to express maximum recoveries.

PROPOSITION 8.1. There exists an st-mapping M = (S,T,Σ) specified by a set Σ of

st-tgds that has no maximum recovery specified by a set of FO-sentences over S ∪ T not

using predicate C(·).

PROOF. The proof of the proposition is given in electronic Appendix B.1.

In Section 4, it is proved that adding disjunction, inequalities or negation to the con-

clusions of FO-TO-CQ dependencies generates st-mappings that do not necessarily have

maximum recoveries. Hence, it would be desirable to stay in the class of FO-TO-CQ de-

pendencies when dealing with maximum recoveries. In particular, it would be desirable to

have an algorithm that takes as input a set Σ of FO-TO-CQ st-dependencies, and produces

a set Σ′ of FOC-TO-CQ ts-dependencies which is a maximum recovery of Σ. Thus, a sec-

ond important question about the algorithm MAXIMUMRECOVERY is whether it could be

modified to produce a set of FOC-TO-CQ ts-dependencies as output. Unfortunately, the

following proposition shows that this could not be the case, even if we allow disjunction in

the conclusions of the output dependencies.

PROPOSITION 8.2. There exists an st-mapping specified by a set of FO-TO-CQ st-

dependencies that has no maximum recovery specified by a set of FOC-TO-UCQ ts-

dependencies.

PROOF. The proof of the proposition is given in electronic appendix B.2.

From the proof of Proposition 8.2 , we obtain that there exists an st-mapping specified

by a set of CQ 6=-TO-CQ dependencies that has no maximum recovery specified by a set

of FOC-TO-UCQ dependencies.

A third question about the output of MAXIMUMRECOVERY is whether the full power

of FO is really needed in the conclusions of the dependencies returned by the algorithm.

For example, could it be the case that CQC-TO-UCQ=,¬ dependencies suffice to specify

maximum recoveries for st-mappings specified by FO-TO-CQ dependencies? Theorem

8.3 below shows that this could not be the case. In fact, we show that for L and L′ frag-

ments of FO (satisfying some regularity conditions), if CQC-TO-L′ dependencies suffice

to specify maximum recoveries for mappings given by L-TO-CQ dependencies, then L′

must be at least as expressive as L.

In Theorem 8.3, we use the following terminology. We say that a fragment L of FO

is closed under conjunction and existential quantification, if for every pair of formulas ϕ
and ψ in L, there exist formulas α and β in L such that, α is equivalent to ϕ ∧ ψ and β is

equivalent to ∃xϕ. Furthermore, we say that L is closed under free-variable substitution,

if for every formula ϕ(x̄) in L and substitution µ for x̄, there exists a formula α(µ(x̄)) in

L that is equivalent to ϕ(µ(x̄)). Notice that all the fragments of FO used in this paper are

closed under conjunction, existential quantification and free-variable substitution. Finally,

we say that an FO-sentence Φ is nontrivial if Φ is neither a contradiction nor a valid

sentence.

THEOREM 8.3. Let L and L′ be fragments of FO that are closed under conjunction,

existential quantification and free-variable substitution. If there exists a nontrivial sentence
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Φ in L that is not equivalent to any sentence in L′, then there exists an st-mapping specified

by a set of L-TO-CQ st-dependencies that has no maximum recovery specified by a set of

CQC-TO-L′ ts-dependencies.

PROOF. The proof of the theorem is given in electronic appendix B.3.

In Section 7, we show that algorithm MAXIMUMRECOVERY can be extended to han-

dle arbitrary source constraints. In Theorem 4.7, we show that if an st-mapping M is

specified by a set of FO-TO-CQ dependencies, a set of target egds and a weakly acyclic

set of target tgds, then M has a maximum recovery. Thus, a natural question is whether

MAXIMUMRECOVERY can be extended to this class of mappings with target dependen-

cies. Unfortunately, the following proposition shows that the extension of the algorithm to

handle target constraints is by no means immediate.

PROPOSITION 8.4.

(1) There exists an st-mapping M specified by a set of st-tgds plus a set of target egds that

has no maximum recovery specified by a set of FO-sentences.

(2) There exists an st-mapping M specified by a set of st-tgds plus a weakly acyclic set of

target tgds that has no maximum recovery specified by a set of FO-sentences.

PROOF. The proof of the proposition is given in electronic Appendix B.4.

9. COMPLEXITY RESULTS

In [Fagin 2007], two problems are identified as important decision problems for the notion

of inverse: (1) to check whether a mapping M is invertible, and (2) to check whether

a mapping M2 is an inverse of a mapping M1. These questions are considered in the

context of st-tgds in [Fagin 2007], where they are also relevant for the notion of quasi-

inverse [Fagin et al. 2008]. In this context, the problem of verifying whether a mapping

M has a maximum recovery becomes trivial, as every mapping specified by this type of

dependencies admits a maximum recovery. In fact, this question is also trivial for the

larger class of mappings specified by FO-TO-CQ dependencies. The goal of this section

is to show that the problem of verifying, given mappings M and M′, whether M′ is a

maximum recovery of M is undecidable. To this end, we prove a stronger result, namely

that undecidability still holds if maximum recovery is replaced by the weaker notion of

recovery in the previous problem. We start by considering mappings specified by full st-

tgds.

PROPOSITION 9.1. The problem of verifying, given mappings M = (S,T,Σ) and

M′ = (T,S,Σ′), where Σ is a set of full st-tgds and Σ′ is a set of ts-tgds, whether M′ is

a recovery of M is ΠP
2 -complete. Moreover, if Σ′ is a set of full ts-tgds, then this problem

is coNP-complete.

We note that the problem considered in the above proposition becomes undecidable if Σ is

a set of full FO-TO-CQ dependencies (this is a straightforward consequence of the unde-

cidability of the problem of verifying whether an FO sentence is finitely satisfiable [Libkin

2004]). For this reason, in this section we focus on st-tgds. To prove the proposition, we

start by showing a simple but useful lemma.

LEMMA 9.2. Let M be an st-mapping specified by a set of st-tgds. Assume that M′ is

a ts-mapping such that whenever (I1, I2) ∈ M ◦M′, it holds that I1 ⊆ I2. Then M′ is

an inverse of M iff M′ is a recovery of M
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PROOF. The proof of the lemma is given in electronic Appendix C.1.

To prove Proposition 9.1, we also need to introduce some terminology and prove a tech-

nical lemma. Let Σ be a set of CQ-TO-CQ dependencies from a schema R1 to a schema

R2 and I an instance of R1. We denote by kΣ the maximum, over all members ϕ ∈ Σ,

of the number of conjuncts that appear in the premise of ϕ, and by |I| the total number of

tuples in I , that is, |I| =
∑

R∈R1
|RI |, where |RI | is the number of tuples in RI . More-

over, we define the notion of I being N-connected as follows. Let GI = (VI , EI) be a

graph such that: (1) VI is the set of all tuples t ∈ RI , for some R ∈ R1, and (2) a tuple

(t1, t2) ∈ EI if and only if there exists a null value n ∈ N that is mentioned both in t1 and

t2. Then I is N-connected if the graphGI is connected. An instance I1 is an N-connected

sub-instance of I , if I1 is a sub-instance of I and I1 is N-connected. Finally, I1 is an

N-connected component of I , if I1 is an N-connected sub-instance of I and there is no

N-connected sub-instance I2 of I such that I1 is a proper sub-instance of I2.

LEMMA 9.3. Let M = (S,T,Σ) and M′ = (T,S,Σ′) be schema mappings, where

Σ is a set of full st-tgds and Σ′ is a set of ts-tgds. Then M′ is a recovery of M if and only

if for every source instance I such that |I| ≤ kΣ · kΣ′ and N-connected component K of

chaseΣ′(chaseΣ(I)), there exists a homomorphism from K to I that is the identity on C.

PROOF. The proof of the lemma is given in electronic Appendix C.2.

PROOF OF PROPOSITION 9.1. First, we assume that Σ′ is a set of full ts-tgds, and we show

that the problem of verifying whether M′ is not a recovery of M is NP-complete. From

Lemma 9.3 and the fact that Σ′ is a set of full ts-tgds, we have that M′ is not a recovery of

M if and only if there exists a source instance I such that |I| ≤ kΣ · kΣ′ and there exists

a tuple in chaseΣ′(chaseΣ(I)) which is not in I . The latter is an NP property; to check

whether it holds, it is enough to guess an instance I such that |I| ≤ kΣ ·kΣ′ , and then guess

the chase steps that produce a tuple which is not in I . Thus, we have that the problem of

verifying whether M′ is not a recovery of M is in NP.

To show that the problem is coNP-hard we use a result from [Fagin 2007]. In the proof

of Theorem 14.9 in [Fagin 2007], it was shown that, given a propositional formula ϕ, one

can construct two mappings M = (S,T,Σ) and M′ = (T,S,Σ′) with Σ and Σ′ sets

of full st-tgds and full ts-tgds, respectively, such that M′ is an inverse of M if and only

if ϕ is not satisfiable. Moreover, the mappings constructed in that proof were such that if

(I1, I2) ∈ M ◦M′ then I1 ⊆ I2. Then from Lemma 9.2, we know that M′ is an inverse

of M if and only if M′ is a recovery of M. We have that, M′ is a recovery of M if and

only if ϕ is not satisfiable. Thus, the hardness results follows then from the well known

fact that, testing whether a propositional formula is satisfiable is an NP-complete problem.

Second, we assume that Σ′ is a set of ts-tgds, and we show that the problem of verifying

whether M′ is a recovery of M is ΠP
2 -complete. From Lemma 9.3, we have that M′ is

a recovery of M if and only if for every source instance I such that |I| ≤ kΣ · kΣ′ and

N-connected component K of chaseΣ′(chaseΣ(I)), there exists a homomorphism from

K to I that is the identity on C. Given that the size of I , as well as the size of K , is

polynomial in the size of M and M′, and that the homomorphism problem is in NP, we

have that the problem of verifying whether M′ is a recovery of M is in ΠP
2 . To prove that

this problem is indeed ΠP
2 -complete, we give a reduction from the problem of verifying

whether a quantified propositional formula:

ϕ = ∀u1 · · · ∀uℓ∃v1 · · · ∃vm ψ, (9)
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is valid, where ψ is a 3-CNF propositional formula. This problem is known to be ΠP
2 -

complete [Du and Ko 2000].

Let S = {TV (·, ·), R0(·, ·, ·), R1(·, ·, ·), R2(·, ·, ·), R3(·, ·, ·)} and T = {U1(·, ·, ·), . . .,
Uℓ(·, ·, ·)}. Next we define schema mappings M = (S,T,Σ) and M′ = (T,S,Σ′) such

that, ϕ is valid if and only if M′ is a recovery of M. The first argument of predicate TV
is used to store the truth value true, while its second argument is used to store the truth

value false. Predicate R0 is used to store the truth assignments that satisfy the clauses of

the form u ∨ v ∨ w (clauses without negative literals). Assuming that variables x, y store

values true and false, respectively, the following formula is used to define R0:

ϕ0(x, y) = R0(x, x, x) ∧R0(x, x, y) ∧R0(x, y, x) ∧R0(y, x, x) ∧

R0(x, y, y) ∧R0(y, x, y) ∧R0(y, y, x).

Similarly, predicate R1 is used to store the truth assignments that satisfy the clauses of the

form u∨v∨¬w, predicateR2 is used to store the truth assignments that satisfy the clauses

of the form u∨¬v∨¬w, and predicateR3 is used to store the truth assignments that satisfy

the clauses of the form ¬u ∨ ¬v ∨ ¬w. Again assuming that variables x, y store values

true and false, respectively, the following formulas are used to define R1, R2 and R3:

ϕ1(x, y) = R1(x, x, x) ∧ R1(x, x, y) ∧R1(x, y, x)∧

R1(y, x, x) ∧R1(x, y, y) ∧R1(y, x, y) ∧R1(y, y, y),

ϕ2(x, y) = R2(x, x, x) ∧ R2(x, x, y) ∧R2(x, y, x)∧

R2(x, y, y) ∧R2(y, x, y) ∧R2(y, y, x) ∧R2(y, y, y),

ϕ3(x, y) = R3(x, x, y) ∧ R3(x, y, x) ∧R3(y, x, x)∧

R3(x, y, y) ∧R3(y, x, y) ∧R3(y, y, x) ∧R3(y, y, y).

Finally, the first argument of predicate Ui is used to store the truth value of propositional

variable ui, for every i ∈ {1, . . . , ℓ}. We include two extra arguments in Ui for a technical

reason that will become clear when we prove that the reduction is correct.

Set Σ of full st-tgds is given by the following dependency:

T (x, y) ∧ ϕ0(x, y) ∧ ϕ1(x, y) ∧ ϕ2(x, y) ∧ ϕ3(x, y) →

U1(x, x, y) ∧ U1(y, x, y) ∧ · · · ∧ Uℓ(x, x, y) ∧ Uℓ(y, x, y). (10)

Set Σ′ of ts-tgds is given by the following dependency:

U1(u1, x, y) ∧ · · · ∧ Uℓ(uℓ, x, y) → ∃v1 · · · ∃vm θ(u1, . . . , uℓ, v1, . . . , vm), (11)

where θ(u1, . . . , uℓ, v1, . . . , vm) is defined as follows. If 3-CNF formula ψ in (9) is equal

toC1∧· · ·∧Ck , where eachCi is a clause, then θ = θ1∧· · ·∧θk, where θi is obtained from

Ci as follows. Without loss of generality, we assume that in Ci, the positive literals appear

before the negative literals (if Ci has at least one positive literal). Then if Ci = u ∨ v ∨w,

we have that θi = R0(u, v, w), if Ci = u ∨ v ∨ ¬w, we have that θi = R1(u, v, w), if

Ci = u ∨ ¬v ∨ ¬w, we have that θi = R2(u, v, w), and if Ci = ¬u ∨ ¬v ∨ ¬w, we have

that θi = R3(u, v, w). For example, if ϕ = ∀u1∀u2∃v1 ((u1∨v1∨¬u2)∧(u1∨u2∨v1)),
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then

Σ = {TV (x, y) ∧ ϕ0(x, y) ∧ ϕ1(x, y) ∧ ϕ2(x, y) ∧ ϕ3(x, y) →

U1(x, x, y) ∧ U1(y, x, y) ∧ U2(x, x, y) ∧ U2(y, x, y)},

Σ′ = {U1(u1, x, y) ∧ U2(u2, x, y) → ∃v1 (R1(u1, v1, u2) ∧R0(u1, u2, v1))}.

Next we show that ϕ is valid if and only if M′ is a recovery of M.

(⇒) Assume that ϕ is valid. From Lemma 9.3, to show that M′ is a recovery of M, it

is enough to prove that for every instance I of S and N-connected component K of

chaseΣ′(chaseΣ(I)), there exists a homomorphism from K to I that is the identity on

C. Next we show that this is the case.

Let I1 be an instance of S. By definition of Σ and Σ′, and in particular because of the

inclusion of the two extra arguments in each Ui, we have that if K is an N-connected

component of chaseΣ′(chaseΣ(I1)), then there exists a pair of values a, b in dom(I1)
such that: (1) I1 |= T (a, b)∧ϕ0(a, b)∧ϕ1(a, b)∧ϕ2(a, b)∧ϕ3(a, b), (2) chaseΣ(I1) |=
U1(c1, a, b)∧· · ·∧Uℓ(cℓ, a, b), where each ci is either a or b, and (3)K is generated from

∃v1 · · · ∃vm θ(c1, . . . , cℓ, v1, . . . , vm) when computing chaseΣ′(chaseΣ(I1)). Assume

that in the construction of K , variable vi is replaced by value ni ∈ N, for every i ∈
{1, . . . ,m}. Given that ϕ is valid, we know that for the truth assignment σ1 such that

σ1(ui) = ci, for every i ∈ {1, . . . , ℓ}, there exists a truth assignment σ2 such that σ1∪σ2

satisfies propositional formula ψ in (9). From this we conclude that function h defined

as h(ni) = σ2(vi) (i ∈ {1, . . . ,m}) and h(c) = c (c ∈ C) is a homomorphism from K
to I that is the identity on C.

(⇐) Assume that M′ is a recovery of M, and let I be an instance of S such that T I =
{(a, b)}, where a and b are two distinct elements from C, and

RI0 = {(a, a, a), (a, a, b), (a, b, a), (b, a, a), (a, b, b), (b, a, b), (b, b, a)},

RI1 = {(a, a, a), (a, a, b), (a, b, a), (b, a, a), (a, b, b), (b, a, b), (b, b, b)},

RI2 = {(a, a, a), (a, a, b), (a, b, a), (a, b, b), (b, a, b), (b, b, a), (b, b, b)},

RI3 = {(a, a, b), (a, b, a), (b, a, a), (a, b, b), (b, a, b), (b, b, a), (b, b, b)}.

Given that M′ is a recovery of M, we have that (I, I) ∈ M ◦ M′. Thus, for ev-

ery tuple (c1, . . . , cℓ) ∈ {a, b}ℓ, there exists a tuple (d1, . . . , dm) ∈ {a, b}m such that

I |= θ(c1, . . . , cℓ, d1, . . . , dm). Hence, by the definitions of θ, RI0, RI1, RI2 and RI3, we

conclude that ϕ is a valid formula. This concludes the proof of the theorem.

Proposition 9.1 is in sharp contrast with the results of [Fagin 2007], where it is shown that

the problem of verifying, given schema mappings M = (S,T,Σ) and M′ = (T,S,Σ′),
with Σ a set of full st-tgds and Σ′ a set of full ts-tgds, whether M′ is an inverse of M is

DP-complete 1. The lower complexity for the case of the recovery is not surprising as the

notion of recovery is much weaker than the notion of inverse. However, the situation is

different for the case of non-full st-tgds.

THEOREM 9.4. The problem of verifying, given mappings M = (S,T,Σ) and M′ =
(T,S,Σ′), where Σ is a set of st-tgds and Σ′ is a set of ts-tgds, whether M′ is a recovery

of M is undecidable.

1A problem is in DP if it is the intersection of an NP problem and a coNP problem [Papadimitriou 1993].
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PROOF. The proof of the theorem is given in electronic Appendix C.3.

As a corollary of Theorem 9.4 and the results in Section 6, we obtain the following

undecidability results for maximum recoveries, inverses 2 and quasi-inverses.

COROLLARY 9.5. The problems of verifying, given mappings M = (S,T,Σ) and

M′ = (T,S,Σ′), where Σ is a set of st-tgds and Σ′ is a set of ts-tgds, whether (1) M′ is

a maximum recovery of M, (2) M′ is an inverse of M, and (3) M′ is a quasi-inverse of

M, are all undecidable.

PROOF. The proof of the corollary is given in electronic Appendix C.4.

10. CONCLUDING REMARKS

In this paper, we introduce the notion of a recovery of a mapping: a reverse mapping that

recovers sound information. We introduce an order relation on recoveries, from which the

notion of maximum recovery naturally arises. As our results show, maximum recoveries

possess good properties that justify their usage in data exchange and metadata manage-

ment. Most notably, maximum recoveries exist for the large class of mappings specified

by FO-TO-CQ dependencies.

An important open problem is the decidability of the existence of maximum recoveries

for classes of dependencies beyond FO-TO-CQ, for example, the classes of FO-TO-UCQ

and FO-TO-CQ 6= dependencies. Although we have concentrated on the relational case, a

characteristic of the notions of recovery and maximum recovery is that, they are bounded

neither to a specific data model nor to a specific language for expressing schema mappings.

As part of our future work, we plan to study these notions for other semantics, e.g. closed

world semantics [Libkin 2006], and for other data models, e.g. XML.
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A. PROOFS OF SECTION 7

A.1 Proof of Lemma 7.2

To prove the lemma, we provide an algorithm that given an st-mapping M = (S,T,Σ)
such that Σ is a set of FO-TO-CQ dependencies, and a conjunctive query Q over schema

T, computes a queryQ′ that is a rewriting of Q over the source schema S.

We first introduce the terminology used in the algorithm. The basic notion used in

the algorithm is that of existential replacement. In an existential replacement of a for-

mula β, we are allowed to existentially quantify some of the positions of the free vari-

ables of β. For example, if β(x1, x2, x3) = P (x1, x2) ∧ R(x2, x3), then two exis-

tential replacements of β(x1, x2, x3) are γ1(x2) = ∃u∃v (P (u, x2) ∧ R(x2, v)) and

γ2(x1, x2, x3) = ∃z (P (x1, z) ∧ R(x2, x3)). We note that both γ1 and γ2 are implied

by β. In an existential replacement, we are also allowed to use the same quantifier for

different positions. For example, γ3(x2) = ∃w (P (w, x2) ∧ R(x2, w)) is also an exis-

tential replacement of β. We note that γ3 is implied by β if x1 and x3 have the same

value, that is, β(x1, x2, x3) ∧ x1 = x3 implies γ3. In an existential replacement, these

equalities are also included. Formally, given a formula β(x̄) where x̄ = (x1, . . . , xk)
is a tuple of distinct variables, an existential replacement of β(x̄) is a pair of formulas

(∃z̄ γ(x̄′, z̄), θ(x̄′′)), where: (1) ∃z̄ γ(x̄′, z̄) is obtained from β(x̄) by existentially quanti-

fying some of the positions of the free variables of β(x̄), and z̄ is the tuple of fresh variables

used in these quantifications, (2) θ(x̄′′) is a conjunction of equalities such that xi = xj is

in θ (1 ≤ i, j ≤ k and i 6= j) if we replace a position with variable xi and a position with

variable xj by the same variable z from z̄, and (3) x̄′ and x̄′′ are the tuples of free variables

of ∃z̄ γ(x̄′, z̄) and θ(x̄′′), respectively. Notice that ∃z̄ γ(x̄′, z̄) is a logical consequence

of β(x̄) ∧ θ(x̄′′). For example, the following are existential replacements of the formula

β(x1, x2, x3) = ∃y1 (R(x1, x2, y1) ∧ T (y1, x3, x2)):
(
∃y1 (R(x1, x2, y1) ∧ T (y1, x3, x2)), true

)
,

(
∃z1∃z2∃y1 (R(z1, x2, y1) ∧ T (y1, x3, z2)), true

)
,

(
∃z1∃z2∃y1 (R(z1, z1, y1) ∧ T (y1, z2, z2)), x1 = x2 ∧ x3 = x2

)
.

In the first existential replacement above, we have replaced no position, thus obtaining

the initial formula β(x1, x2, x3) and sentence true (this is a valid existential replacement).

In the second existential replacement, although we have replaced some positions of free

variables by existentially quantified variables z1 and z2, we include sentence true since no

positions with distinct variables are replaced by the same variable from (z1, z2).
In the algorithm, we use the following terminology for tuples of variables: x̄ ⊆ ȳ indi-

cates that every variable in x̄ is also mentioned in ȳ, (x̄, ȳ) is a tuple of variables obtained

by placing the variables of x̄ followed by the variables of ȳ, f : x̄ → ȳ is a substitution

that replaces every variable of x̄ by a variable of ȳ (f is not necessarily a one-to-one func-

tion), f(x̄) is a tuple of variables obtained by replacing every variable x in x̄ by f(x),
and if x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yk), we use formula x̄ = ȳ as a shorthand for

x1 = y1 ∧ · · · ∧ xk = yk.

Algorithm QUERYREWRITING(M, Q)

Input: An st-mapping M = (S,T,Σ) where Σ is a set of FO-TO-CQ dependencies, and

a conjunctive query Q over T.

Output: An FO queryQ′ that is a rewriting of Q over the source schema S.
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(1) Assume that Q is given by the formula ∃ȳψ(x̄, ȳ).

(2) Create a set Cψ of FO queries as follows. Start with Cψ = ∅ and letm be the number of

atoms in ψ(x̄, ȳ). Then for every p ∈ {1, . . . ,m} and tuple ((σ1, k1), . . . , (σp, kp)) ∈
(Σ × {1, . . . ,m})p such that k1 + · · · + kp = m, do the following.

(a) Let (ξ1, . . . , ξp) be a tuple obtained from (σ1, . . . , σp) by renaming the variables

of the formulas σ1, . . ., σp in such a way that the sets of variables of the formulas

ξ1, . . ., ξp are pairwise disjoint.

(b) Assume that ξi is equal to ϕi(ūi) → ∃v̄i ψi(ūi, v̄i), where ūi and v̄i are tuples of

distinct variables.

(c) For every tuple (χ1(w̄1, z̄1), . . . , χp(w̄p, z̄p)), where χi(w̄i, z̄i) is a conjunction

of ki (not necessarily distinct) atoms from ψi(ūi, v̄i), w̄i ⊆ ūi, z̄i ⊆ v̄i, and such

that w̄i and z̄i are tuples of distinct variables, do the following.

i. Let ∃z̄ χ(w̄, z̄) be the formula ∃z̄1 · · · ∃z̄p(χ1(w̄1, z̄1) ∧ · · · ∧ χp(w̄p, z̄p))
with w̄ = (w̄1, . . . , w̄p) and z̄ = (z̄1, . . . , z̄p).

ii. Then for every existential replacement (∃s̄∃z̄ γ(w̄′, z̄, s̄), θ(w̄′′)) of

∃z̄ χ(w̄, z̄) (up to renaming of variables in s̄), and for every pair of variable

substitutions f : x̄ → x̄ and g : w̄′ → x̄, check whether there exists a vari-

able substitution h : ȳ → (z̄, s̄) such that ψ(f(x̄), h(ȳ)) and γ(g(w̄′), z̄, s̄)
are syntactically equal (up to reordering of atoms). If this is the case, then

add to Cψ the following formula:

∃ū1 · · · ∃ūp

( p
∧

i=1

ϕi(ūi) ∧ θ(w̄
′′) ∧ x̄ = f(x̄) ∧ w̄′ = g(w̄′)

)

. (13)

(3) If Cψ is nonempty, then let α(x̄) be the FO formula constructed as the disjunction of

all the formulas in Cψ. Otherwise, let α(x̄) be false, that is, an arbitrary unsatisfiable

formula (with x̄ as its tuple of free variables).

(4) Return the queryQ′ given by α(x̄).

Notice that in the algorithm, tuple x̄ is the set of free variables of formula (13) since

both w̄′ and w̄′′ are subsets of (ū1, . . . , ūp). Also notice that since ψ(f(x̄), h(ȳ)) and

γ(g(w̄′), z̄, s̄) are identical (up to reordering of atoms), f is a function from x̄ to x̄, g is a

function from w̄′ to x̄, and h is a function from ȳ to (z̄, s̄), we have that every variable x in

x̄ is equal to some variable u in (ū1, . . . , ūp) since x̄ = f(x̄)∧ w̄′ = g(w̄′) is a subformula

of (13). This implies that formula (13) is domain independent since each formula ϕi(ūi)
is assumed to be domain independent. Thus, we also have that α(x̄) and Q′ are domain

independent.

Example A.1. Assume that Σ is given by dependency σ:

ϕ(x1, x2) → R(x1, x1, x2), (14)

where ϕ(x1, x2) is an FO formula over the source schema, and that Q(x1, x2, x3) is

the conjunctive query ∃y1 ψ(x1, x2, x3, y1), where ψ(x1, x2, x3, y1) = R(x1, x2, y1) ∧
R(y1, x3, x3). Given that ψ(x1, x2, x3, y1) has two atoms, the algorithm considers the tu-

ples (σ1, 2) from (Σ × {1, 2})1 and ((σ1, 1), (σ2, 1)) from (Σ × {1, 2})2, where σ1 =
σ2 = σ, to construct a source rewriting of query Q(x1, x2, x3). We show here how tuple

((σ1, 1), (σ2, 1)) is processed.
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First, the algorithm generates a tuple (ξ1, ξ2) from (σ1, σ2) by renaming the variables

of σ1 and σ2 (in such a way that the sets of variables of ξ1 and ξ2 are disjoint). Assume

that ξ1 is equal to ϕ(u1, u2) → R(u1, u1, u2) and ξ2 equal to ϕ(u3, u4) → R(u3, u3, u4).
The algorithm continues by considering all the tuples (χ1(u1, u2), χ2(u3, u4)) such that

χ1(u1, u2) and χ2(u3, u4) are nonempty conjunctions of atoms from the consequents

of ξ1 and ξ2, respectively. In this case, the algorithm only needs to consider tu-

ple (R(u1, u1, u2), R(u3, u3, u4)). The algorithm uses this tuple to construct formula

χ(u1, u2, u3, u4) = R(u1, u1, u2) ∧ R(u3, u3, u4), and then looks for all the existential

replacements of χ(u1, u2, u3, u4) that can be made identical to ∃y1 ψ(x1, x2, x3, y1) by

substituting some variables. For instance, (∃s1 (R(u1, u1, s1) ∧R(s1, u3, u4)), u2 = u3)
is one of these existential replacements: R(g(u1), g(u1), s1)∧R(s1, g(u3), g(u4)) is syn-

tactically equal to ψ(f(x1), f(x2), f(x3), h(y1)), where f(x1) = f(x2) = x1, f(x3) =
x3, g(u1) = x1, g(u3) = g(u4) = x3 and h(y1) = s1. The algorithm uses functions f , g
and condition u2 = u3 from the existential replacement to generate the following formula

β(x1, x2, x3) (omitting trivial equalities like x1 = x1):

∃u1∃u2∃u3∃u4 (ϕ(u1, u2) ∧ ϕ(u3, u4) ∧

u2 = u3 ∧ x2 = x1 ∧ u1 = x1 ∧ u3 = x3 ∧ u4 = x3).

Formula β(x1, x2, x3) is added to Cψ. It is important to notice that β(x1, x2, x3) rep-

resents a way to deduce ∃y1 ψ(x1, x2, x3, y1) from ϕ(x1, x2), that is, β(x1, x2, x3) →
∃y1 ψ(x1, x2, x3, y1) is a logical consequence of formula (14).

In the last step of the algorithm, an FO formula α(x1, x2, x3) is generated by taking the

disjunction of all the formulas in Cψ. In particular, formula β(x1, x2, x3) above is one of

these disjuncts. The algorithm returns α(x1, x2, x3), which is a rewriting over the source

of conjunctive query Q(x1, x2, x3).

Let M = (S,T,Σ) be an st-mapping with Σ a set of FO-TO-CQ dependencies, Q a

conjunctive query over T, and Q′ the output of QUERYREWRITING(M, Q). It is straight-

forward to prove that the algorithm runs in exponential time in the size of M and Q, and

that the size of Q′ is exponential in the size of M andQ. We now prove the correctness of

the rewriting algorithm. We need to show that for every instance I of S, it holds that:

Q′(I) = certainM(Q, I).

In this proof, we assume that Q is given by the formula ∃ȳψ(x̄, ȳ), and that Q′ is given by

the formula α(x̄) (that could be false).

We first show that Q′(I) ⊆ certainM(Q, I). The proof relies in the following claim.

CLAIM A.2. The formula ∀x̄(α(x̄) → ∃ȳψ(x̄, ȳ)) is a logical consequence of Σ.

PROOF. If α(x̄) is false, the property trivially holds. Now, assume that α(x̄) is the

disjunction of the formulas in the set Cψ constructed after step 2 of the algorithm. We show

that for every β(x̄) ∈ Cψ it holds that ∀x̄(β(x̄) → ∃ȳψ(x̄, ȳ)) is a logical consequence of

Σ, which implies that ∀x̄(α(x̄) → ∃ȳψ(x̄, ȳ)) is a logical consequence of Σ. Assume that

β(x̄) is equal to:

∃ū1 · · · ∃ūp

( p
∧

i=1

ϕi(ūi) ∧ θ(w̄
′′) ∧ x̄ = f(x̄) ∧ w̄′ = g(w̄′)

)

,
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where for every i ∈ {1, . . . , p}, it holds that ϕi(ūi) → ∃v̄i ψi(ūi, v̄i) is a dependency in

Σ. In step 2(c)i of the algorithm, formula ∃z̄χ(w̄, z̄) is defined as ∃z̄1 · · · ∃z̄p(χ1(w̄1, z̄1)∧
· · ·∧χp(w̄p, z̄p)), where χi(w̄i, z̄i) is a conjunction of atoms fromψi(ūi, v̄i), with w̄i ⊆ ūi
and z̄i ⊆ v̄i. Thus, we have that sentence Φ:

∀x̄
(
β(x̄) → ∃w̄

(
∃z̄ χ(w̄, z̄) ∧ θ(w̄′′) ∧ x̄ = f(x̄) ∧ w̄′ = g(w̄′)

))

is a logical consequence of Σ. Given that (∃s̄∃z̄ γ(w̄′, z̄, s̄), θ(w̄′′)) is an existential re-

placement of ∃z̄ χ(w̄, z̄), we know that ∃z̄ χ(w̄, z̄)∧θ(w̄′′) implies ∃s̄∃z̄ γ(w̄′, z̄, s̄). Thus,

we have that Φ implies:

∀x̄
(
β(x̄) → ∃w̄′

(
∃s̄∃z̄γ(w̄′, z̄, s̄) ∧ x̄ = f(x̄) ∧ w̄′ = g(w̄′)

))
.

Now, we can safely replace w̄′ by g(w̄′), and drop the conjunction w̄′ = g(w̄′) and the

existential quantification over w̄′. Then we obtain that sentence:

∀x̄
(
β(x̄) → ∃s̄∃z̄ γ(g(w̄′), z̄, s̄) ∧ x̄ = f(x̄)

)

is a logical consequence of Φ. Thus, given that γ(g(w̄′), z̄, s̄) is syntactically equal to

ψ(f(x̄), h(ȳ)), we know that ∀x̄(β(x̄) → ∃s̄∃z̄ ψ(f(x̄), h(ȳ)) ∧ x̄ = f(x̄)) is also a

consequence of Φ. In this last formula, we can replace f(x̄) by x̄ and drop the conjunction

x̄ = f(x̄), obtaining ∀x̄(β(x̄) → ∃s̄∃z̄ ψ(x̄, h(ȳ))). Since h is a function from ȳ to (z̄, s̄),
we have that ∃z̄∃s̄ ψ(x̄, h(ȳ)) logically implies formula ∃ȳ ψ(x̄, ȳ) (because the variables

in ȳ are all distinct). We have shown that ∀x̄(β(x̄) → ∃ȳ ψ(x̄, ȳ)) is a logical consequence

of Φ and, therefore, it is a logical consequence of Σ. This concludes the proof of the

claim.

We prove now that Q′(I) ⊆ certainM(Q, I) for every instance I ∈ Inst(S), by using

the above claim. Let I be an arbitrary instance, and assume that ā is a tuple of constant

values such that ā ∈ Q′(I). We need to show that for every J ∈ SolM(I) it holds that

ā ∈ Q(J). Since ā ∈ Q′(I) we know that I |= α(ā). Now let J ∈ SolM(I). From the

Claim A.2 we know that ∀x̄(α(x̄) → ∃ȳψ(x̄, ȳ)) is a logical consequence of Σ. Then since

(I, J) |= Σ and I |= α(ā), it holds that J |= ∃ȳψ(ā, ȳ), which implies that ā ∈ Q(J).
Thus we have that for every J ∈ SolM(I) it holds that ā ∈ Q(J). This was to be shown.

We now prove that certainM(Q, I) ⊆ Q′(I) for every instance I . We first recall

the notion of chase (introduced in the proof of Theorem 7.3). Let I be an instance of

S. Then chaseΣ(I) is an instance of T constructed with the following procedure. For

every dependency σ ∈ Σ of the form ϕ(x̄) → ∃ȳ ν(x̄, ȳ), with x̄ = (x1, . . . , xm),
ȳ = (y1, . . . , yℓ) tuples of distinct variables, and for every m-tuple ā of elements from

dom(I) such that I |= ϕ(ā), do the following. Choose an ℓ-tuple n̄ of distinct fresh values

from N, and include all the conjuncts of ν(ā, n̄) in chaseΣ(I). We say that the conjuncts

of ψ(a1, . . . , am, n1, . . . , nℓ) included in chaseΣ(I) are generated (or justified) by σ.

We also make use of the notion of N-connected instances introduced in the Section 9

when proving Proposition 9.1. Recall that an instance I of S is N-connected if the follow-

ing holds. Let GI = (VI , EI) be a graph such that VI is composed by all the tuples t ∈ RI

forR ∈ S, and there is an edge inEI between tuples t1 and t2 if there exists a value n ∈ N

that is mentioned both in t1 and t2. Then I is N-connected if the graph GI is connected.

An instance I1 is an N-connected sub-instance of I , if I1 is a sub-instance of I and I1
is N-connected. Finally, I1 is an N-connected component of I , if I1 is an N-connected

sub-instance of I and there is no N-connected sub-instance I2 of I such that I1 is a proper
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sub-instance of I2. We extend these definitions for formulas that are conjunctions of atoms.

Let ϕ(x̄) be a conjunction of atoms, and ā a tuple of values in C ∪N. We say that ϕ(ā) is

N-connected, if the instance that contains exactly the atoms of ϕ(ā) is N-connected. The

definition of N-connected components of a conjunction of atoms ψ(ā), is defined as for

the case of instances. Notice that if I is such that dom(I) ⊆ C, then every atom in an

N-connected sub-instance of chaseΣ(I) is generated by a single dependency in Σ.

We are ready now to prove that certainM(Q, I) ⊆ Q′(I) for every instance I in

S. Let I be an arbitrary instance of S. We use the following property of chaseΣ(I).
Since Q is a conjunctive query, from [Fagin et al. 2005a] (Proposition 4.2) we know

that certainM(Q, I) = Q(chaseΣ(I))↓, where Q(chaseΣ(I))↓ denotes the set of tu-

ples in Q(chaseΣ(I)) composed only by constant values. Thus, in order to prove that

certainM(Q, I) ⊆ Q′(I), it is enough to prove that Q(chaseΣ(I))↓ ⊆ Q′(I). Next we

show this last property.

Recall that Q is defined by formula ∃ȳψ(x̄, ȳ) and Q′ by α(x̄). Assume that x̄ is the

tuple of distinct variables (x1, . . . , xr) and let ā = (a1, . . . , ar) be a tuple of constant

values such that ā ∈ Q(chaseΣ(I))↓. Then we know that chaseΣ(I) |= ∃ȳψ(ā, ȳ). We

need to show that ā ∈ Q′(I), that is, we need to show that I |= α(ā). In order to prove this

last fact, we show that after step 2 of the algorithm, there exists a formula β(x̄) ∈ Cψ such

that I |= β(ā).

Assume that in formula ψ(x̄, ȳ), ȳ is the tuple of distinct variables (y1, . . . , yℓ). Since

chaseΣ(I) |= ∃ȳψ(ā, ȳ), we know that there exists a tuple b̄ = (b1, . . . , bℓ) composed by

constant and null values,such that chaseΣ(I) |= ψ(ā, b̄). Let ρ1(ā1, b̄1), . . . , ρp(āp, b̄p) be

the N-connected components of ψ(ā, b̄), and assume that ρi(āi, b̄i) is a conjunction of ki
(not necessarily distinct) atoms. Notice that if ψ(x̄, ȳ) hasm atoms, then k1+· · ·+kp = m.

Without loss of generality, we can assume that ψ(ā, b̄) = ρ1(ā1, b̄1) ∧ . . . ∧ ρp(āp, b̄p)
(otherwise we can always reorder the atoms in ψ(ā, b̄)). Since chaseΣ(I) |= ψ(ā, b̄), we

know that for every i ∈ {1, . . . , p}, the conjuncts of ρi(āi, b̄i) are included in the same

N-connected sub-instance of chaseΣ(I). Furthermore, as we have noted before, for every

set of facts J that forms an N-connected sub-instance of chaseΣ(I), there exists a sentence

in Σ that justifies J . Then there exist p (not necessarily distinct) sentences (σ1, . . . , σp) ∈
Σp, such that the atoms in ρi(āi, b̄i) are generated by σi. Let (ξ1, . . . , ξp) be a tuple of

dependencies obtained by renaming the variables of (σ1, . . . , σp) in such a way that the

set of variables of the formulas ξ1, . . . , ξp are pairwise disjoint. Assume that every ξi is of

the form ϕi(ūi) → ∃v̄iψi(ūi, v̄i). Since σi generates all the atoms in ρi(āi, b̄i), we know

that for every i ∈ {1, . . . , p}, there exists a formula χi(w̄i, z̄i), and tuples c̄i and n̄i of

values in C and N, respectively, such that χi(w̄i, z̄i) is a conjunction of ki (not necessarily

distinct) atoms from ψi(ūi, v̄i) with w̄i ⊆ ūi and z̄i ⊆ v̄i, and such that χi(c̄i, n̄i) is

syntactically equal to ρi(āi, b̄i), up to reordering of atoms. Without loss of generality we

can assume that χi(c̄i, n̄i) = ρi(āi, b̄i). Let χ(w̄, z̄) = χ1(w̄1, z̄1) ∧ · · · ∧ χp(w̄p, z̄p),
with w̄ = (w̄1, . . . , w̄p) = (w1, . . . , wd) and z̄ = (z̄1, . . . , z̄p) = (z1, . . . , ze) tuples of

distinct variables. Then we have that χ(c̄, n̄) = ψ(ā, b̄), where c̄ = (c̄1, . . . , c̄p) is a tuple

of values in C, and n̄ = (n̄1, . . . , n̄p) is a tuple of values in N. Given that the conjuncts

of ρi(āi, b̄i) are facts in chaseΣ(I), and each ρi(āi, b̄i) = χi(c̄i, n̄i) is an N-connected

component of ψ(ā, b̄), we have that n̄ is a tuple of distinct values in N (since tuples n̄i and

n̄j do not share any values, for every i 6= j). Through the rest of the proof, we assume that

c̄ = (c1, . . . , cd) and n̄ = (n1, . . . , ne), that is, for every i ∈ {1, . . . , d}, ci is the value
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assigned to variable wi, and for every i ∈ {1, . . . , e}, ni is the value assigned to zi.
Focus now in the positions of ψ(x̄, ȳ). For every i ∈ {1, . . . , r}, we call xi-position

to a position in ψ(x̄, ȳ) where variable xi occurs. Similarly, for every i ∈ {1, . . . , ℓ}, a

yi-position is a position in ψ(x̄, ȳ) where variable yi occurs. Since ψ(ā, b̄) and χ(c̄, n̄) are

syntactically equal, there is a one-to-one correspondence between the positions in ψ(x̄, ȳ)
and the positions in χ(w̄, z̄). Then we can talk about xi- or yi-positions in general when

referring to positions in ψ(x̄, ȳ) or in χ(w̄, z̄). We use this correspondence of positions

and the fact that ψ(ā, b̄) = χ(c̄, n̄), to create an existential replacement, and functions f ,

g, and h, as in step 2(c)ii of the algorithm.

We know that ā is a tuple of constant values. Then from ψ(ā, b̄) = χ(c̄, n̄), we obtain

that every element of n̄ is equal to an element of b̄. Furthermore, this last fact implies that

every variable of z̄ occurs in a yi-position of χ(w̄, z̄), otherwise, it could not be the case

that ψ(ā, b̄) = χ(c̄, n̄). Consider now the variables yi such that a variable of w̄ occurs

in a yi-position of χ(w̄, z̄). Construct an existential replacement of ∃z̄χ(w̄, z̄) where,

for every such variable yi, all the yi-positions are replaced by an existentially quantified

variable si. Let (∃s̄∃z̄γ(w̄′, z̄, s̄), θ(w̄′′)) be such a replacement of ∃z̄χ(w̄, z̄). Notice

that in the formula γ(w̄′, z̄, s̄), every variable of w̄′ occurs in an xi-position. We define

now function h as follows. Let h : ȳ → (z̄, s̄) be a function such that, h(yi) = zj if

zj occurs in a yi-position, and h(yi) = si otherwise. Notice that h is well defined since

if variable zj occurs in a yi-position, then zj occurs in every yi-position (given that n̄ is

a tuple of distinct values of N, c̄ is a tuple of values of C, and χ(c̄, n̄) = ψ(ā, b̄)). We

define now functions f : x̄ → x̄ and g : w̄′ → x̄. For that purpose, we construct first a

partition of the set of variables of (x̄, w̄′), and then, we let f and g assign to every variable

a representative of its equivalent class. Consider then, for every value a in ā, the set Va
of all the variables xi of x̄ such that xi is assigned value a (that is, ai = a), plus all the

variables wj of w̄′ such that wj is assigned value a (that is, cj = a). Note that, since

χ(c̄, n̄) = ψ(ā, b̄) and every variable of w̄′ occurs in an xi-position, sets Va do form a

partition of (x̄, w̄′). Choose as a representative of every equivalent class, the variable xi
with minimum index in the equivalent class. Then let f and g be such that, f(xi) = xj
if xj is the representative of Vai

, and similarly g(wi) = xj if xj is the representative of

Vci
. By the definition of the existential replacement, and the definitions of functions f ,

g, and h, and since ψ(ā, b̄) = χ(c̄, n̄), we have that ψ(f(x̄), h(ȳ)) and γ(g(w̄′), z̄, s̄) are

syntactically equal (they coincide in every xi- and yi-position). Then we know that the

formula:

β(x̄) = ∃ū1 · · · ∃ūp

( p
∧

i=1

ϕi(ūi) ∧ θ(w̄
′′) ∧ x̄ = f(x̄) ∧ w̄′ = g(w̄′)

)

,

is added to Cψ after step 2 of the algorithm. We claim that I |= β(ā).
Next we show that I |= ϕ1(c̄

⋆
1) ∧ · · · ∧ ϕp(c̄

⋆
p) ∧ θ(c̄′′) ∧ ā = f(ā) ∧ c̄′ = g(c̄′),

where c̄⋆i is a tuple of elements in C that contains c̄i, c̄
′ is the tuple obtained by restricting

c̄ to the variables of w̄′, and c̄′′ is the tuple obtained by restricting c̄ to the variables of

w̄′′. Notice that an equality wj = wk appears in the formula θ(w̄′′) if j 6= k and both

wj and wk occur in a yi-position. Then since ψ(ā, b̄) = χ(c̄, n̄), we know that bi (the

value assigned to yi) is equal to both cj and ck and, thus, cj = ck holds. We conclude

that θ(c̄′′) holds. Consider now equality ā = f(ā). We know by the definition of f that

f(xi) = xj , if xj is the representative of Vai
. Thus, we have that ai = aj , which implies
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that ā = f(ā) holds. Next consider equality c̄′ = g(c̄′). We know by the definition

of g that g(wi) = xj , if xj is the representative of Vci
. Thus, we have that ci = aj ,

which implies that c̄′ = g(c̄′) holds. Finally, given that for every i ∈ {1, . . . , p}, formula

ψi(āi, b̄i) = χi(c̄i, n̄i) is justified by dependency ϕi(ūi) → ∃v̄iψi(v̄i, w̄i), there exists a

tuple c̄⋆i that contains the elements in c̄i and such that I |= ϕi(c̄
⋆
i ). We have shown that

I |= ϕ1(c̄
⋆
1) ∧ · · · ∧ ϕp(c̄

⋆
p) ∧ θ(c̄

′′) ∧ ā = f(ā) ∧ c̄′ = g(c̄′), and, hence, I |= β(ā).
We have shown that if chaseΣ(I) |= ∃ȳψ(ā, ȳ) for a tuple ā of constants, then there

exists a formula β(x̄) ∈ Cψ such that I |= β(ā). Thus, since α(x̄) is the disjunctions of the

formulas in Cψ, we have that I |= α(ā). Recall that ∃ȳψ(x̄, ȳ) defined query Q and α(x̄)
defines query Q′. Therefore, if a tuple ā of constants is such that ā ∈ Q(chaseΣ(I))
then we have that ā ∈ Q′(I), which implies that Q(chaseΣ(I))↓ ⊆ Q′(I) and then

certainM(Q, I) ⊆ Q′(I) which is the property that we wanted to obtain. This completes

the proof of correctness of the algorithm.

A.2 Proof of Lemma 7.6

The following algorithm computes a rewriting of a conjunctive query given by a single

atom without existential quantifiers.

Algorithm QUERYREWRITINGATOM(M, Q)

Input: An st-mapping M = (S,T,Σ) where Σ is a set of FO-TO-CQ dependencies, and

a conjunctive query Q given by a single atom over T without existential quantifiers.

Output: An FO queryQ′ that is a rewriting of Q over the source schema S.

(1) Construct a set Σ′ of dependencies as follows. Start with Σ′ = ∅. For every depen-

dency σ ∈ Σ of the form ϕ(ū) → ∃v̄ψ(ū, v̄) do the following.

(a) For every atom P (ū′) that is a conjunct in ψ(ū, v̄) such that ū′ ⊆ ū, add de-

pendency ϕ′(ū′) → P (ū′) to Σ′, where ϕ′(ū′) = ∃ū′′ϕ(ū) with ū′′ the tuple of

variables in ū that are not mentioned in ū′.

(2) Rename the variables of the dependencies in Σ′ in such a way that the obtained de-

pendencies have pairwise disjoint sets of variables.

(3) Assume thatQ is given by the atomR(x̄), where x̄ is a tuple of not necessarily distinct

variables that are not mentioned in the dependencies of Σ′.

(4) Create a set CR of FO queries as follows. Start with CR = ∅. Then for every depen-

dency ϕ(z̄) → R(z̄) in Σ′, add formula ∃z̄(ϕ(z̄) ∧ z̄ = x̄) to CR.

(5) If CR is nonempty, then let α(x̄) be the FO formula constructed as the disjunction of

all the formulas in CR. Otherwise, let α(x̄) be false, that is, an arbitrary unsatisfiable

formula (with x̄ as its tuple of free variables).

(6) Return the queryQ′ given by α(x̄).

It is straightforward to see that the algorithm runs in time O(‖Σ‖2) in the general case,

and in time O(‖Σ‖) if Σ is a set of full FO-TO-CQ dependencies, each dependency with

a single atom in its conclusion. Just notice that in the latter case, the set Σ′ constructed

in the step 1 of the algorithm is of size linear in the size of Σ. The proof of correctness

follows directly from the correctness of algorithm QUERYREWRITING of Lemma 7.2. Just

observe that if the input of the algorithm QUERYREWRITING is a queryQ given by the sin-

gle atomR(x̄) with no existentially quantified variables, then in the step 2 of the algorithm
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the parameter m is equal to 1. Also notice that an atom with existentially quantified vari-

ables cannot be transformed into R(x̄) by applying existential replacements and variable

substitutions.

B. PROOFS OF SECTION 8

B.1 Proof of Proposition 8.1

Let S = {P (·), R(·)}, T = {T (·)} and Σ be the following set of st-tgds:

P (x) → ∃yT (y),

R(x) → T (x).

Assume that M′ is a recovery of M that is specified by a set of FO-sentences over S∪T.

Next we show that M′ is not a maximum recovery of M.

On the contrary, assume that M′ is a maximum recovery of M. Let I be an instance of

S such that P I = {a} and RI = ∅, where a is an arbitrary element of C. Since M′ is a

recovery of M, there exists an instance J of T such that (I, J) ∈ M and (J, I) ∈ M′.

We consider two cases.

—First, assume that J mentions an element b ∈ C, that is not necessarily distinct from

a. Then we have that (I ′, J) ∈ M, where I ′ is an instance of S such that P I
′

= ∅
and RI

′

= {b}. Thus, given that (J, I) ∈ M′, we have that (I ′, I) ∈ M ◦M′, which

implies that ∅  SolM(I) ⊆ SolM(I ′) by Proposition 3.8. Let J ′ be an instance of T

defined as T J
′

= {n}, where n is an arbitrary element of N. We have that (I, J ′) ∈ M
and (I ′, J ′) 6∈ M, which contradicts the fact that SolM(I) ⊆ SolM(I ′).

—Second, assume that J does not mention any element from C. Assume that dom(J) =
{n1, . . . , nk}, and let f be a function defined as f(ni) = bi, where each bi is an element

of C that is distinct from a and bi 6= bj for i 6= j. Let J⋆ be the target instance that

results from replacing every value ni by bi. It is easy to see that (I, J⋆) ∈ M. Let g
be a function with domain {a, n1, . . . , nk} defined as g(a) = a and g(ni) = f(ni). We

have that g is an isomorphism from (J, I) to (J⋆, I) when we consider these instances

as structures over S ∪ T
3. Thus, given that M′ is specified by a set of FO-sentences

over S ∪ T, we conclude that (J⋆, I) ∈ M′. Therefore, there exists an instance J⋆ of

T such that (I, J⋆) ∈ M, (J⋆, I) ∈ M′ and J⋆ mentions elements of C. This leads

to a contradiction, as we show in the previous case. This concludes the proof of the

proposition.

B.2 Proof of Proposition 8.2

Let S = {S(·, ·)}, T = {T (·)} and M = (S,T,Σ) be an st-mapping specified by the

following set Σ of CQ 6=-TO-CQ dependencies:

S(x, y) ∧ x 6= y → T (x).

Next we show that M has no maximum recovery specified by a set of FOC-TO-UCQ

dependencies.

For the sake of contradiction, assume that M⋆ = (T,S,Σ⋆) is a maximum recovery

of M, where Σ⋆ is a set of FOC-TO-UCQ dependencies. Let I1 be a source instance

3Notice that if we consider (J, I) and (J⋆, I) as structures over S ∪T ∪ {C(·)}, then g is not an isomorphism

from (J, I) to (J⋆, I).
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such that SI1 = {(a, b)}, where a, b are arbitrary elements of C and a 6= b. Given that

M⋆ is a recovery of M, there exists a target instance J1 such that (I1, J1) ∈ M and

(J1, I1) ∈ M⋆.

Since M⋆ is a maximum recovery of M, there exists at least one dependency ϕ(x̄) →
ψ(x̄) ∈ Σ⋆ such that J1 |= ϕ(c̄), where c̄ is a nonempty tuple of elements from C. On

the contrary, assume that this is not the case. Then given that (J1, I1) |= Σ⋆ and Σ⋆ is

a set of FOC-TO-UCQ dependencies, we conclude that either (J1, I∅) |= Σ⋆, where I∅
is the empty source instance, or (J1, I2) |= Σ⋆, where I2 is a source instance such that

SI2 = {(c, c)} (c ∈ C, c 6= a, c 6= b). The former case contradicts Proposition 3.8 since

(I1, I∅) ∈ M◦M⋆ and SolM(I∅) 6⊆ SolM(I1), while the latter case contradicts the same

proposition since (I1, I2) ∈ M ◦M⋆ and SolM(I2) 6⊆ SolM(I1).
Given that there exists at least one dependencyϕ(x̄) → ψ(x̄) ∈ Σ⋆ such that J1 |= ϕ(c̄),

where c̄ is a nonempty tuple of elements from C, and given that SI1 = {(a, b)}, we have

that dom(J1) ∩ C = {a}. On the contrary, assume that this is not the case. First, suppose

that a 6∈ dom(J1) ∩ C. Then given that J1 |= ϕ(c̄) and dom(I1) = {a, b}, we conclude

that every element of c̄ is equal to b. Thus, since (J1, I1) |= Σ⋆, SI1 = {(a, b)} and Σ⋆

is a set of FOC-TO-UCQ dependencies, we conclude that (J1, I3) |= Σ⋆, where I3 is a

source instance such that SI3 = {(b, b)}. Therefore, given that (I1, J1) ∈ M, we have

that (I1, I3) ∈ M ◦ M⋆, which implies by Proposition 3.8 that SolM(I3) ⊆ SolM(I1).
But if J∅ is the empty target instance, then J∅ ∈ SolM(I3) and J∅ 6∈ SolM(I1), which

leads to a contradiction. Second, suppose that b ∈ dom(J1) ∩ C. Given that J1 |= ϕ(c̄),
a ∈ dom(J1) ∩ C and dom(I1) = {a, b}, we have that every element of c̄ is equal to

either a or b. Let c̄′ be a tuple generated from c̄ by replacing a by b and b by a. Given

that a and b are indistinguishable in J1, we conclude that J1 |= ϕ(c̄′), which implies

that {(a, b)}  SI1 and, thus, contradicts the definition of I1. Third, assume that b 6∈
dom(J1)∩C. Then there exists d ∈ dom(J1)∩C such that d 6= a and d 6= b. Thus, given

that J1 |= ϕ(c̄), a ∈ dom(J1)∩C and dom(I1) = {a, b}, we have that every element of c̄
is equal to a. Let c̄′′ be a tuple generated from c̄ by replacing a by d. Given that a and d are

indistinguishable in J1, we conclude that J1 |= ϕ(c̄′′), which implies that {(a, b)}  SI1

and, thus, contradicts the definition of I1.

Given that dom(J1) ∩ C = {a}, (J1, I1) |= Σ⋆ and Σ⋆ is a set of FOC-TO-UCQ

dependencies , we conclude that (J1, I4) |= Σ⋆, where I4 is a source instance such that

SI4 = {(a, a)}. Thus, given that (I1, J1) ∈ M, we have that (I1, I4) ∈ M ◦M⋆, which

implies by Proposition 3.8 that SolM(I4) ⊆ SolM(I1). But if J∅ is the empty target

instance, then J∅ ∈ SolM(I4) and J∅ 6∈ SolM(I1), which leads to a contradiction. This

concludes the proof of the proposition.

B.3 Proof of Theorem 8.3

Assume that there exists a nontrivial sentence Φ in L that is not expressible in L′, and let

S be the schema of Φ. We define an st-mapping M = (S,T,Σ) as follows. We let P be a

fresh relation name, T = {P (·)} and

Σ = {Φ → ∃xP (x)}.

For the sake of contradiction, assume that there exists a maximum recovery M⋆ =
(T,S,Σ⋆) of M, where Σ⋆ is a nonempty set of CQ-TO-L′ dependencies from

{P (·),C(·)} to S. Furthermore, assume that Σ⋆ contains the following dependencies:
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αi → βi 1 ≤ i ≤ ℓ,
γj(xj,1, . . . , xj,nj

) → δj(xj,1, . . . , xj,nj
) 1 ≤ j ≤ m and 1 ≤ nj

To prove the theorem, we consider two cases. In both cases, we denote by J∅ the empty

instance for target schema T.

(1) Assume that there exist instances I1 of S and J1 of T such that I1 |= Φ, (I1, J1) ∈ M,

(J1, I1) ∈ M⋆ and dom(J1) ⊆ N.

Let S be the set of indexes {i | 1 ≤ i ≤ ℓ and J1 |= αi}. We note that S 6= ∅.

On the contrary, assume that S = ∅, and let I2 be an instance of S such that I2 6|=
Φ (such an instance exists since Φ is a nontrivial sentence). Given that (J1, I1) |=
Σ⋆ and dom(J1) ⊆ N, we have J1 6|= ∃xi,1 · · · ∃xi,ni

γi(xi,1, . . . , xi,ni
) for every

i ∈ {1, . . . ,m}. Thus, given that S = ∅, we conclude that (J1, I2) ∈ M⋆ (in fact,

(J1, I) ∈ M⋆ for every instance I of S). Therefore, since (I1, J1) ∈ M, we have

that (I1, I2) ∈ M ◦ M⋆. Thus, we have by Lemma 3.11 that SolM(I2) ⊆ SolM(I1)
since M⋆ is a maximum recovery of M. But J∅ ∈ SolM(I2) since I2 6|= Φ, and

J∅ 6∈ SolM(I1) since I1 |= Φ, which leads to a contradiction.

Let Ψ be the following sentence:
∧

i∈S

βi.

We note that this sentence is well defined since S 6= ∅. Next we show that Φ is equivalent

to Ψ. First, we assume that I is an instance of S such that I |= Φ, and we prove that

I |= Ψ. Given that M⋆ is a recovery of M, there exists an instance J of T such that

(I, J) ∈ M and (J, I) ∈ M⋆. Given that P J 6= ∅ and dom(J1) ⊆ N, we know that

there exists a homomorphism from J1 to J . Thus, for every i ∈ S, we have that J |= αi
since αi is a conjunctive query. We conclude that for every i ∈ S, it is the case that

I |= βi (since (J, I) ∈ M⋆). Therefore, we have that I |= Ψ. Second, we assume

that I is an instance of S such that I |= Ψ, and we prove that I |= Φ. On the contrary,

assume that I 6|= Φ. Given that I |= Ψ, we have that (J1, I) ∈ M⋆ and, therefore,

(I1, I) ∈ M◦M⋆. We conclude by Lemma 3.11 that SolM(I) ⊆ SolM(I1) since M⋆

is a maximum recovery of M. But J∅ ∈ SolM(I) since I 6|= Φ, and J∅ 6∈ SolM(I1)
since I1 |= Φ, which leads to a contradiction.

From the previous paragraph, we have that Φ is equivalent to Ψ. But this contradicts the

fact that Φ is not expressible in L′, since each βi (1 ≤ i ≤ ℓ) is an L′-sentence and L′ is

closed under conjunction.

(2) Assume that for every instance I1 of S, if J1 is an instance of T such that I1 |= Φ,

(I1, J1) ∈ M and (J1, I1) ∈ M⋆, then dom(J1) ∩ C 6= ∅. In this case, we consider

two sub-cases.

(2.1) Assume that m = 0, that is, Σ⋆ = {αi → βi | 1 ≤ i ≤ ℓ}, and let Ψ be the

following sentence:

ℓ∧

i=1

βi.

Next we show that Φ is equivalent to Ψ. First, we assume that I is an instance of S

such that I |= Φ, and we prove that I |= Ψ. Given that M⋆ is a recovery of M,

there exists an instance J of T such that (I, J) ∈ M and (J, I) ∈ M⋆. From the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



54 ·

hypothesis, we have that dom(J) ∩ C 6= ∅. Thus, given that each αi (1 ≤ i ≤ ℓ) is

a conjunctive query over the vocabulary {P (·),C(·)}, we conclude that J |= αi for

every i ∈ {1, . . . , ℓ}. Therefore, for every i ∈ {1, . . . , ℓ}, it is the case that I |= βi
(since (J, I) ∈ M⋆) and, hence, I |= Ψ. Second, we assume that I is an instance of

S such that I |= Ψ, and we prove that I |= Φ. On the contrary, assume that I 6|= Φ,

and let I1 be an instance of S such that I1 |= Φ (such an instance exists since Φ is a

nontrivial sentence). Given that M⋆ is a recovery of M, there exists an instance J1 of

T such that (I1, J1) ∈ M and (J1, I1) ∈ M⋆. Thus, given that I |= Ψ, we have that

(J1, I) ∈ M⋆ and, therefore, (I1, I) ∈ M ◦M⋆. We conclude by Lemma 3.11 that

SolM(I) ⊆ SolM(I1) since M⋆ is a maximum recovery of M. But J∅ ∈ SolM(I)
since I 6|= Φ, and J∅ 6∈ SolM(I1) since I1 |= Φ, which leads to a contradiction.

From the previous paragraph, we have that Φ is equivalent to Ψ. But this contradicts

the fact that Φ is not expressible in L′, since each βi (1 ≤ i ≤ ℓ) is an L′-sentence

and L′ is closed under conjunction.

(2.2) Assume that m > 0, and let Ψ be the following sentence:

( ℓ∧

i=1

βi

)

∧

( m∧

j=1

∃x δj(x, . . . , x
︸ ︷︷ ︸

nj times

)

)

.

Next we show that Φ is equivalent to Ψ. First, we assume that I is an instance of S

such that I |= Φ, and we prove that I |= Ψ. Given that M⋆ is a recovery of M,

there exists an instance J of T such that (I, J) ∈ M and (J, I) ∈ M⋆. From the

hypothesis, we have that dom(J) ∩ C 6= ∅. Thus, given that each αi (1 ≤ i ≤ ℓ) is

a conjunctive query over the vocabulary {P (·),C(·)}, we conclude that J |= αi for

every i ∈ {1, . . . , ℓ}. Furthermore, given that each γj (1 ≤ j ≤ m) is a conjunctive

query over the vocabulary {P (·),C(·)}, we conclude that for every a ∈ dom(J)∩C

and j ∈ {1, . . . ,m}:

J |= γj(a, . . . , a
︸ ︷︷ ︸

nj times

).

Therefore, given that (J, I) ∈ M⋆, we have that for every i ∈ {1, . . . , ℓ}, it is the

case that I |= βi, and for every j ∈ {1, . . . ,m}, it is the case that

I |= ∃x δj(x, . . . , x
︸ ︷︷ ︸

nj times

).

Thus, we have that I |= Ψ. Second, we assume that I is an instance of S such that

I |= Ψ, and we prove that I |= Φ. On the contrary, assume that I 6|= Φ, and let I1
be an instance of S such that I1 |= Φ (such an instance exists since Φ is a nontrivial

sentence). Given that I |= Ψ, there exists an element a ∈ dom(I) such that for every

j ∈ {1, . . . ,m}:

I |= δj(a, . . . , a
︸ ︷︷ ︸

nj times

).

Thus, if Ja is an instance of T such that P Ja = {a}, then (Ja, I) ∈ M⋆, and,

therefore, (I1, I) ∈ M ◦M⋆ since (I1, Ja) |= Σ. From Lemma 3.11, we have that
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SolM(I) ⊆ SolM(I1) since M⋆ is a maximum recovery of M. But J∅ ∈ SolM(I)
since I 6|= Φ, and J∅ 6∈ SolM(I1) since I1 |= Φ, which leads to a contradiction.

From the previous paragraph, we have that Φ is equivalent to Ψ. But this contradicts

the fact that Φ is not expressible in L′, since each βi (1 ≤ i ≤ ℓ) is an L′-sentence

and L′ is closed under conjunction, existential quantification and free-variable substi-

tution. This concludes the proof of the theorem.

B.4 Proof of Proposition 8.4

To prove the proposition, we need to introduce the notion of Ehrenfeucht-Fraı̈ssé game,

which characterizes elementary equivalence in FO (see [Libkin 2004]). Let R be a re-

lational schema. For every pair I1, I2 of instances of R, tuples ā = (a1, . . . , am) ∈
dom(I1)

m and b̄ = (b1, . . . , bm) ∈ dom(I2)
m define a partial isomorphism from I1 to I2

if the following hold:

—For every i, j ≤ m, ai = aj iff bi = bj .

—For every k-ary relation symbol R ∈ R and every sequence [i1, . . . , ik] of not nec-

essarily distinct numbers from {1, . . . ,m}, it holds that (ai1 , . . . , aik) ∈ RI1 iff

(bi1 , . . . , bik) ∈ RI2 .

—For every i ≤ m, ai ∈ C iff bi ∈ C.

The Ehrenfeucht-Fraı̈ssé game is played by two players, called the spoiler and the du-

plicator, on two instances I1, I2 of R. In each round i, the spoiler selects either a point

ai ∈ dom(I1), or bi ∈ dom(I2), and the duplicator responds by selecting bi ∈ dom(I2), or

ai ∈ dom(I1), respectively. The duplicator wins after m rounds if the tuples (a1, . . . , am)
and (b1, . . . , bm) define a partial isomorphism from I1 to I2, otherwise the spoiler wins.

We use notation I1 ≡k I2 to indicate that the duplicator has a winning strategy in the

k-round game on I1 and I2.

The quantifier rank of an FO formula is the maximum depth of quantifier nesting in it. It

is well known that if I1 ≡k I2, then I1 and I2 agree on all FO sentences over R ∪ {C(·)}
of quantifier rank k [Libkin 2004].

We have the necessary to continue with the proof of Proposition 8.4. In the proof of part

(1), we use the following terminology. We say that an instance I of a schema R is the

disjoint union of two instances I1 and I2 if dom(I1) ∩ dom(I2) = ∅ and RI = RI1 ∪RI2

for every R ∈ R. Furthermore, we say that I ′ ⊆ I is a connected component of I if: (a)

for every a, b ∈ dom(I ′), there exist tuples t1 ∈ RI
′

1 , . . ., tm ∈ RI
′

m and elements a1, . . .,
am−1 such that a is mentioned in t1, b is mentioned in tm and ai is mentioned in ti and

ti+1, for every i ∈ {1, . . . ,m − 1}; and (b) for every I ′′ ⊆ I such that I ′ ⊆ I ′′ and I ′′

satisfies condition (a), it holds that I ′ = I ′′.
Let S = {P (·, ·)}, T = {R(·, ·), S(·, ·)},

Σ = {P (x, y) → ∃z1∃z2∃z3 (R(x, z1) ∧R(y, z2) ∧ S(z1, z3) ∧ S(z2, z3))},

Γ = {R(x, y) ∧R(x, z) → y = z,

S(x, y) → x = y,

R(x, y) ∧R(y, z) ∧R(y′, z) → y = y′,

S(x, y) ∧R(y, z) ∧R(y′, z) → y = y′,

S(y, x) ∧R(y, z) ∧R(y′, z) → y = y′,

R(x, y) ∧R(x′, y) ∧R(y, z) → x = x′},
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and M = (S,T,Σ,Γ). For the sake of contradiction, assume that M⋆ = (T,S, ϕ) is a

maximum recovery of M that is specified by an FO sentence ϕ over signature {P (·, ·),
R(·, ·), S(·, ·),C(·)}.

For every k ≥ 2, let Ik be an instance of S such that P Ik = {(a1, a2), . . . , (ak−1, ak)}
and Ck an instance of S such that PCk = {(a1, a2), . . . , (ak−1, ak), (ak, a1)}, where

ai 6= aj (1 < i < j ≤ k).

CLAIM B.1. Let J be an instance of T such that RJ = {(a1, c), . . . , (ak, c)} and

SJ = {(c, c)}, where c 6= ai for every i ∈ {1, . . . , k}. Then J is a solution for both Ik
and Ck.

We conclude that every instance Ik is in the domain of M. Thus, given that M⋆ is a

maximum recovery of M, we have by Lemma 3.11 that for every k ≥ 2, there exists an

instance Jk of T such that (Ik, Jk) ∈ M, (Jk, Ik) ∈ M⋆ and Jk is a witness for Ik under

M.

CLAIM B.2. For every k ≥ 2, if J is a solution for Ik , then J is the disjoint

union of two instances J1 and J2, where J2 could be the empty target instance and (a)

dom(J1) = {a1, . . . , ak, b1, . . . , bℓ, c}, (b) ai 6= c (1 ≤ i ≤ k), bi 6= c (1 ≤ i ≤ ℓ),
ai 6= bj (1 ≤ i ≤ k and 1 ≤ j ≤ ℓ), bi 6= bj (1 ≤ i < j ≤ ℓ), (c)

RJ1 = {(a1, c), . . . , (ak, c), (b1, c), . . . , (bℓ, c)} and SJ1 = {(c, c)}.

To prove the claim, assume that (Ik, J) |= Σ. Then we have that J contains at least all

the tuples shown in the following figure:

.   .   .

S

c2

d1

c5c4c3

a3a1 a2

d2 d3

c1

ak−1

c2k−4 c2k−3

dk−2

ak

c2k−2

dk−1

R R RRRR R R

S S S S S S S

Given that J satisfies dependencyR(x, y)∧R(x, z) → y = z, in the above figure c2 = c3,

c4 = c5, . . ., c2k−4 = c2k−3. Thus, given J also satisfies dependency S(x, y) → x = y,

we have that c1 = c2 = · · · = c2k−2 = d1 = · · · = dk−1. We use c to denote all these

elements. We conclude that J contains at least all the tuples shown in the following figure:

.   .   .

R

a3a1 a2 ak−1 ak

c

R R

S

R R

Let J1 be a connected component of J that contains the tuples shown in the figure, and let

d be an arbitrary element in this component (d may be equal c or aj , 1 ≤ j ≤ k). Then we

have that:
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—If (ai, d) ∈ RJ1 , then d = c since J satisfies dependencyR(x, y) ∧R(x, z) → y = z.

—It could not be the case that (d, ai) ∈ RJ1 since J satisfies dependency R(x, y) ∧
R(y, z) ∧R(y′, z) → y = y′, k ≥ 2 and ai 6= aj for every j 6= i.

—It could not be the case that (ai, d) ∈ SJ1 since J satisfies dependency S(y, x) ∧
R(y, z) ∧R(y′, z) → y = y′, k ≥ 2 and ai 6= aj for every j 6= i.

—It could not be the case that (d, ai) ∈ SJ1 since J satisfies dependency S(x, y) ∧
R(y, z) ∧R(y′, z) → y = y′, k ≥ 2 and ai 6= aj for every j 6= i.

—If (c, d) ∈ SJ1 or (d, c) ∈ SJ1 , then c = d since J satisfies dependency S(x, y) → x =
y.

—It could not be the case that (c, d) ∈ RJ1 since J satisfies dependency R(x, y) ∧
R(x′, y) ∧R(y, z) → x = x′, k ≥ 2 and ai 6= aj for every j 6= i.

From these six conditions, we conclude that there exist elements b1, . . ., bℓ such that (a)

dom(J1) = {a1, . . . , ak, b1, . . . , bℓ, c}, (b) ai 6= c (1 ≤ i ≤ k), bi 6= c (1 ≤ i ≤
ℓ), ai 6= bj (1 ≤ i ≤ k and 1 ≤ j ≤ ℓ), bi 6= bj (1 ≤ i < j ≤ ℓ), (c) RJ1 =
{(a1, c), . . . , (ak, c), (b1, c), . . . , (bℓ, c)} and SJ1 = {(c, c)}. To conclude the proof, we

let J2 be the disjoint union of the remaining connected components of J . Notice that J2

could be the empty target instance. This concludes the proof of the claim.

Now, for every k ≥ 2, let I⋆k be an instance of S such that:

P I
⋆
k = {(a1, a2), . . . , (a⌊ k

2
⌋−1, a⌊ k

2
⌋)} ∪ {(a⌊ k

2
⌋+1, a⌊ k

2
⌋+2), . . . , (ak−1, ak), (ak, a⌊ k

2
⌋+1)}.

By using Claim B.2, it is straightforward to prove the following result.

CLAIM B.3. There exists a constant s0 > 0 such that, for every k > s0, it holds that

(Ik, Jk) ≡k (I⋆k , Jk)

Now we have all the necessary ingredients to prove the first part of the proposition. Assume

that the quantifier rank of ϕ is k0, and let s > max{k0, s0}. Next we show that (Is, I
⋆
s ) ∈

M◦M⋆. Given that M⋆ is specified by ϕ and (Js, Is) ∈ M⋆, we have that (Js, Is) |= ϕ.

Thus, given that s > k0 and (Js, Is) ≡s (Js, I
⋆
s ) (by Claim B.3), we have that (Js, I

⋆
s ) |=

ϕ. We conclude that (Js, I
⋆
s ) ∈ M⋆, which implies that (Is, I

⋆
s ) ∈ M ◦M⋆.

Given that M⋆ is a maximum recovery of M and (Is, I
⋆
s ) ∈ M ◦ M⋆, we know by

Proposition 3.8 that SolM(I⋆s ) ⊆ SolM(Is). Let J⋆ be an instance of T defined as:

RJ
⋆

= {(a1, c1), . . . , (a⌊ s
2
⌋, c1)} ∪ {(a⌊ s

2
⌋+1, c2), . . . , (as, c2)},

SJ
⋆

= {(c1, c1), (c2, c2)},

where c1 6= ai (1 ≤ i ≤ s), c2 6= ai (1 ≤ i ≤ s) and c1 6= c2. Then by definition of M
and Claim B.1, we have that J⋆ ∈ SolM(I⋆s ). Furthermore, we have that J⋆ 6∈ SolM(Is),
which contradicts the fact that SolM(I⋆s ) ⊆ SolM(Is). This concludes the proof of the

first part of the proposition.

To prove part (2), let S = {P (·, ·)}, T = {R(·, ·)},

Σ = {P (x, y) → R(x, y)},

Γ = {R(x, y) ∧R(y, z) → R(x, z)},

and M = (S,T,Σ,Γ). For the sake of contradiction, assume that M⋆ = (T,S, ϕ) is a

maximum recovery of M that is specified by an FO sentence ϕ over signature {P (·, ·),
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R(·, ·),C(·)}. Given that M⋆ is a maximum recovery of M, we know from Lemma 3.11

that for every instance I of S, there exists an instance JI of T such that (I, JI) ∈ M,

(JI , I) ∈ M⋆ and JI is a witness for I under M. Since (I, JI) ∈ M, we have that JI
satisfies set Γ of target tgds. Given an instance I of S, define TrCl(I) as the transitive

closure of I . Then we have that:

CLAIM B.4. For every source instance I , RJI = P TrCl(I)∪NI , where P TrCl(I) andNI
are disjoint and for every (a, b) ∈ NI , it holds that a ∈ N or b ∈ N.

We now prove the claim. Given that JI is a solution for I under M, we have that

P TrCl(I) ⊆ RJI and, hence, RJI = P TrCl(I) ∪NI , where P TrCl(I) and NI are disjoint. For

the sake of contradiction, assume that there exists a tuple (a, b) ∈ NI such that a and b are

both elements of C.

Let I ′ be an instance of S defined as P I
′

= P I ∪ {(a, b)}. Given that JI satisfies Γ,

we have that JI ∈ SolM(I ′) and, therefore, SolM(I) ⊆ SolM(I ′) since JI is a witness

for I under M. Let J ′ be an instance of T defined as RJ
′

= P TrCl(I). We have that

J ′ ∈ SolM(I), and given that P TrCl(I) and NI are disjoint, we have that (a, b) 6∈ P TrCl(I)

and, thus, J ′ 6∈ SolM(I ′). This contradicts the fact that SolM(I) ⊆ SolM(I ′), and

concludes the proof of the claim.

To prove the proposition, we need to introduce some terminology. Let k0 be the quan-

tifier rank of ϕ. An instance (I, J) of S ∪ T is M-cyclic if dom(I) = {a1, . . . , am},

dom(J) = {a1, . . . , am}∪{d1, . . . , dn}, P I = {(ai, ai+1) | 1 ≤ i ≤ m−1}∪{(am, a1)}
and RJ = {(ai, aj) | 1 ≤ i, j ≤ m} ∪X , where X satisfies the following conditions: (1)

if (u, v) ∈ X , then u ∈ N or v ∈ N; and (2) if (ai, dj) ∈ X , then (ak, dj) ∈ X for every

k ∈ {1, . . . ,m}, and if (dj , ai) ∈ X , then (dj , ak) ∈ X for every k ∈ {1, . . . ,m}. For an

M-cyclic instance (I, J) as above, we say that an instance (I ′, J ′) of S ∪ T is an amplifi-

cation of (I, J) if dom(I ′) = {b1, . . . , b2m}, dom(J ′) = {b1, . . . , b2m} ∪ {d1, . . . , dn},

P I
′

= {(bi, bi+1) | 1 ≤ i ≤ m − 1} ∪ {(bm, b1)} ∪ {(bm+i, bm+i+1) | 1 ≤
i ≤ m − 1} ∪ {(b2m, bm+1)} and RJ

′

= {(bi, bj) | 1 ≤ i, j ≤ 2m} ∪ Y , where

Y satisfies the following conditions: (1) if (u, v) ∈ Y , then u ∈ N or v ∈ N;

(2) X ∩ ({d1, . . . , dn} × {d1, . . . , dn}) = Y ∩ ({d1, . . . , dn} × {d1, . . . , dn}); (3) if

(bi, dj) ∈ Y , then (bk, dj) ∈ Y for every k ∈ {1, . . . , 2m}, and if (dj , bi) ∈ Y , then

(dj , bk) ∈ Y for every k ∈ {1, . . . , 2m}.

CLAIM B.5. There exists a constant m0 > 0 such that, if the domain of an M-cyclic

instance (I, J) contains at least m0 elements, and (I ′, J ′) is an amplification of (I, J),
then (I, J) ≡k0 (I ′, J ′).

Now we have all the necessary ingredients to prove part (2) of the proposition. Let

m > m0 and I1, I2 be instances of S defined as:

P I1 = {(bi,bi+1) | 1 ≤ i ≤ m− 1} ∪

{(bm, b1)} ∪ {(bm+i, bm+i+1) | 1 ≤ i ≤ m− 1} ∪ {(b2m, bm+1)},

P I2 = {(bi,bi+1) | 1 ≤ i ≤ m− 1} ∪ {(bm, b1)} ∪

{(bm+i, bm+i+1) | 1 ≤ i ≤ m− 1} ∪ {(b2m, bm+1)} ∪ {(bm, bm+1)}.

Next we show that (I2, I1) ∈ M ◦ M⋆. Let I be an instance of S defined as P I =
{(ai, ai+1) | 1 ≤ i ≤ m − 1} ∪ {(am, a1)}. Given that TrCl(I) = {(ai, aj) | 1 ≤ i, j ≤
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m}, we have that (I, JI) is M-cyclic by Claim B.4 and the fact that JI satisfies Γ. Thus, by

Claim B.5, we have that if (I ′, J ′) is an amplification of (I, JI), then (I, JI) ≡k0 (I ′, J ′).
It is straightforward to prove that there is an amplification (I ′, J ′) of (I, JI) such that

I ′ = I1 and J ′ ∈ SolM(I2). Thus, given that M⋆ is specified by FO-sentence ϕ, the

quantifier rank of ϕ is k0 and (I, JI) ≡k0 (I1, J
′), we conclude that (J ′, I1) ∈ M⋆.

Hence, (I2, I1) ∈ M ◦M⋆ since (I2, J
′) ∈ M and (J ′, I1) ∈ M⋆.

Given that M⋆ is a maximum recovery of M and (I2, I1) ∈ M ◦ M⋆, we know by

Proposition 3.8 that SolM(I1) ⊆ SolM(I2). But let J be an instance of T defined as

RJ = TrCl(I1). Then we have that J ∈ SolM(I1) and J 6∈ SolM(I2) since (bm, bm+1) ∈
P I2 and (bm, bm+1) 6∈ RJ . This contradicts the fact that SolM(I1) ⊆ SolM(I2), and

concludes the proof of the proposition.

C. PROOFS OF SECTION 9

C.1 Proof of Lemma 9.2

(⇒) Trivial.

(⇐) Assume that M′ is a recovery of M. We must show that (I1, I2) ∈ M ◦ M′ if

and only if I1 ⊆ I2. By hypothesis, it holds that if (I1, I2) ∈ M◦M′ then I1 ⊆ I2. Now,

assume that I1 ⊆ I2. Since M′ is a recovery of M, we know that (I2, I2) ∈ M◦M′ and

then, there exists a target instance J such that (I2, J) ∈ M and (J, I2) ∈ M′. Now, given

that M is specified by a set of st-tgds, M is closed-down on the left and then (I1, J) ∈ M.

We have that (I1, J) ∈ M and (J, I2) ∈ M′, which implies that (I1, I2) ∈ M◦M′. This

was to be shown.

C.2 Proof of Lemma 9.3

(⇒) From [Fagin et al. 2005], we know that M ◦ M′ can be specified by a set of st-

tgds. Now, from [Fagin 2007] (Proposition 7.2) we know that chaseΣ′(chaseΣ(I)) is a

universal solution for I under M ◦ M′, and then (I, I) ∈ M ◦ M′ if and only if there

exists a homomorphism from chaseΣ′(chaseΣ(I)) to I that is the identity on C. The (⇒)

direction of the proposition follows from the latter condition.

(⇐) Without loss of generality, assume that each st-tgd in Σ has a single atom in its

right-hand side. For the sake of contradiction, suppose that M′ is not a recovery of M
and for every source instance I such that |I| ≤ kΣ ·kΣ′ and N-connected componentK of

chaseΣ′(chaseΣ(I)), there exists a homomorphism from K to I that is the identity on C.

Given that M′ is not a recovery of M, there exists an instance I1 of S such that

(I1, I1) 6∈ M◦M′. Let I be an instance of S. Given that chaseΣ(I) is a universal solution

for I under M and chaseΣ′(chaseΣ(I)) is a universal solution for chaseΣ(I) under M′,

it is straightforward to prove that if (I, I ′) ∈ M ◦M′, then there exists a homomorphism

from chaseΣ′(chaseΣ(I)) to I ′ that is the identity on C. Furthermore, if there exists a

homomorphism from chaseΣ′(chaseΣ(I)) to an instance I ′, then one can conclude that

(chaseΣ(I), I ′) ∈ M′ since (chaseΣ(I), chaseΣ′(chaseΣ(I))) ∈ M′ and chaseΣ(I) does

not mention any null values as Σ is a set of full st-tgds. Thus, we have that if there exists

a homomorphism from chaseΣ′(chaseΣ(I)) to an instance I ′, then (I, I ′) ∈ M ◦M′. In

particular, from the previous properties, we conclude that (I, I) ∈ M ◦ M′ if and only

if there exists a homomorphism from chaseΣ′(chaseΣ(I)) to I that is the identity on C.

Thus, given that (I1, I1) 6∈ M◦M′, there is no homomorphism from chaseΣ′(chaseΣ(I1))
to I1 that is the identity on C, which implies that there exists an N-connected compo-
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nent K1 of chaseΣ′(chaseΣ(I1)) such that there is no homomorphism from K1 to I1
that is the identity on C. Given that K1 is an N-connected component and Σ is a set

of full st-tgds, there exists a dependency α(x̄) → ∃ȳ β(x̄, ȳ) in Σ′ and a tuple ā of ele-

ments from C such that chaseΣ(I1) |= α(ā) and K1 is generated from ∃ȳ β(ā, ȳ) when

computing chaseΣ′(chaseΣ(I1)). Assume that α(ā) is equal to T1(ā1) ∧ · · · ∧ Tn(ān).
Then for every i ∈ {1, . . . , n}, there exists a full st-tgd γi(x̄i) → Ti(x̄i) such that

I1 |= γi(āi). Let I2 be a sub-instance of I1 given by the union of all the tuples in the

formulas γi(āi) (i ∈ {1, . . . , n}). Then we have that K1 is an N-connected component

of chaseΣ′(chaseΣ(I2)) and there is no homomorphism from K1 to I2 that is the identity

on C. But by definition of I2, we know that |I2| ≤ kΣ · kΣ′ , which contradicts our initial

assumption.

C.3 Proof of Theorem 9.4

To prove this theorem, we reduce the problem of verifying whether a deterministic Turing

Machine (DTM) accepts the empty string to the complement of the problem of verifying

whether a schema mapping M′ is a recovery of a schema mapping M.

Let M = (Q,Γ, q0, δ, qf) be a DTM, where Q, Γ, q0, δ and qf are the finite set of

states, tape alphabet, initial state, transition function and final state of M . For the sake of

simplicity, we assume that q0 6= qf , the input alphabet is {0, 1} and the tape alphabet Γ
is {0, 1,B}, where B is the blank symbol. Furthermore, we assume that the tape of M is

infinite to the right and that in each step of M the head has to move either to the right (R)

or to the left (L), that is, δ is a total function from (Q\{qf})×Γ toQ×Γ×{L,R}. Notice

that we also assume that no transitions are defined for the final state qf .

Next we define data exchange settings M = (S,T,Σ) and M′ = (T,S,Σ′) in such a

way that M accepts the empty string if and only if M′ is not a recovery of M. Relational

schemas S and T are defined as follows:

S := {D(·, ·), T (·)},

T := {D′(·, ·), T ′(·), Z(·), O(·), E(·, ·, ·), L(·, ·, ·), P (·, ·), U(·, ·), S(·, ·, ·), H(·, ·, ·),

T0(·, ·, ·), T1(·, ·, ·), TB(·, ·, ·)} ∪ {Sq(·, ·) | q ∈ Q}.

Before defining sets Σ and Σ′ of tgds, we give the intended interpretations of the predicates

of S and T. As it is customary when doing a logical encoding of a Turing Machine, we

have a predicate L to store a linear order. Since negation is not allowed in tgds, predicate

L is ternary and its third argument is used to indicate whether the first argument is or is

not less than the second one. Predicate Z in T is used to store elements that represent the

truth value false (or zero), while predicate O in T is used to store elements that represent

the truth value true (or one). Thus, for example, if we want to say that a is less than b
according to linear order L, then we add a tuple (a, b, c) to L, where c belongs to O.

As it is also customary when doing a logical encoding of a Turing Machine, we have

predicates P and U to store the first and last elements of linear order L, a predicate S to

store the successor relation associated with L, a predicate H to store the position of the

head of DTMM , predicates Sq (q ∈ Q) to store the state ofM and predicates T0, T1, TB to

indicate for each cell of the tape of M whether its value is either 0 or 1 or B, respectively.

As for the case of linear order L, all these predicates have an extra argument that is used

to indicate whether the predicate is true or false for a particular tuple. Since the equality

symbol = is not allowed in st-tgds, we also have an equality predicateE, which is ternary,
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as in the previous cases.

To explain the intended interpretations of predicates T of S and T ′ of T, we need to

show some of the dependencies in Σ and Σ′. Set Σ contains st-tgds:

D(x, y) → D′(x, y),

T (x) → T ′(x)

and Σ′ contains ts-tgds:

D′(x, y) → D(x, y),

T ′(x) → T (x),

Z(x) → T (x),

O(x) → T (x).

Thus, if I is an instance of S and J is a solution for I under M◦M′, then I ⊆ J . After

giving the definitions of Σ and Σ′, we prove that DTM M accepts the empty string if and

only if there exists an instance I of S such that (I, I) 6∈ M ◦M′ and, thus, we conclude

that M accepts the empty string if and only if M′ is not a recovery of M.

Let I be an instance of S and dom(DI) the set of all elements mentioned in DI . Each

element in dom(DI) is used to denote a position in the tape of M as well as a point

of time in the execution of this DTM. Thus, some of the dependencies of Σ should be

used to guess a linear order L on dom(DI). More precisely, if domD(x) is defined as

∃yD(x, y) ∨ ∃zD(z, x), then we should include in Σ an axiom of the form domD(x) ∧
domD(y) → ∃uL(x, y, u) stating that for every pair of elements x and y in D, there is

a truth value associated with the statement “x is less than y according to L”, but with the

additional restriction that u belongs to either Z or O. We cannot impose this restriction

by using an axiom of the form domD(x) ∧ domD(y) → ∃u (L(x, y, u) ∧ Z(u)) because

we will be explicitly saying that x is not less than y according to L, and the same happens

with axiom domD(x) ∧ domD(y) → ∃u (L(x, y, u) ∧O(u)). To overcome this problem,

we use the fact that T ′ is a copy of T and all the elements of Z and O belong to T ′

(since Z(x) → T (x) and O(x) → T (x) are in Σ′), and we replace the previous axiom by

domD(x)∧domD(y) → ∃u (L(x, y, u)∧T ′(u)), which indeed says that u is a truth value

but without explicitly stating whether this value is true of false.

In the definition of L, we would also like to say that L is defined only for the ele-

ments in dom(DI), thus avoiding extra elements that are not in D and can behave inad-

equately. The problem with this is that we cannot include in Σ′ an axiom of the form

L(x, y, z) → domD(x)∧domD(y), where domD(x) = ∃yD(x, y)∨∃zD(z, x), because

this disjunctive sentence is not equivalent to any set of tgds, unlike domD(x)∧domD(y) →
∃u (L(x, y, u)∧T ′(u)) which is equivalent to a set of four tgds. To overcome this problem,

we simply replace disjunction by conjunction in the definitions of domD(x) and domD(x),
and thus we replace the previous dependency by:

µ(x) ∧ µ(y) → ∃u (L(x, y, u) ∧ T ′(u)),

L(x, y, z) → µ(x) ∧ µ(y),

where µ(x) = ∃yD(x, y)∧∃z D(z, x). Hence, predicateL is only defined for the elements

that appear in both columns of D.

In order to properly define L, we also need to include the axioms that defineL as a linear

order. In particular, we need to say that L is connected, that is, for every pair of distinct
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elements x and y, we have that x is less than y or y is less than x according to L. Since

the equality symbol is not allowed in st-tgds, we use the equality predicate E to express

this axiom. Thus, Σ also has to include some dependencies defining E. In particular, we

include in Σ an axiom of the formD(x, y) → ∃u (E(x, y, u)∧Z(u)), saying that for every

tuple (x, y) in D, we have that x and y are distinct elements. Thus, we also use D to store

an inequality relation.

A natural question at this point is what happens if some of the implicit assumptions made

above are not satisfied. For example, what happens if D or T is empty, or if D contains a

tuple of the form (x, x), or if Z and O share some values (which implies that some facts

could be both true and false), or if T ′ contains a value which is neither in Z nor in O,

or if there is no element a in D satisfying µ? After defining Σ and Σ′, we make explicit

these assumptions, and we show that some of the conditions in Σ and Σ′ ensure that, if a

source instance I does not satisfy any of these assumptions, then (I, I) ∈ M ◦M′. Thus,

when checking whether M′ is a recovery of M, we only need to take into account source

instances satisfying these assumptions.

Now we are ready to define sets Σ and Σ′ of tgds. For the sake of completeness, we

also include some of the dependencies already mentioned.

Copying axioms. Σ contains copying st-tgds:

D(x, y) → D′(x, y),

T (x) → T ′(x),

and Σ′ contains copying ts-tgds:

D′(x, y) → D(x, y),

T ′(x) → T (x).

Definition of predicates Z and O. Let

λ := ∃x∃y (D(x, y) ∧ T (x) ∧ T (y)).

To define predicates Z and O, we include the following st-tgd in Σ:

λ → ∃uO(u) ∧ ∃v Z(v).

This dependency says that if a source instance I satisfies λ, then for every solution J for

I , both ZJ and OJ are not empty. Sentence λ is included in this dependency to deal

with source instances not satisfying some of the assumptions mentioned above (this will

be formalized in Lemmas C.1, C.2 and C.3).

To complete the definition of Z and O, we include the following ts-tgds in Σ′:

Z(x) → T (x),

O(x) → T (x),

Z(x) ∧O(y) → D(x, y).

Definition of equality predicate E. Let

µ(x) := ∃y D(x, y) ∧ ∃z D(z, x).
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To define the equality predicate E, we include the following st-tgds in Σ:

λ ∧ µ(x) ∧ µ(y) → ∃u (E(x, y, u) ∧ T ′(u)),

λ ∧ µ(x) ∧ µ(y) ∧D(x, y) → ∃u (E(x, y, u) ∧ Z(u)).

The first dependency says that for every pair of elements x, y satisfying µ, either x is equal

to y or x is not equal to y according to E. The second st-tgd says that for every tuple (x, y)
in D, we have that x is different from y (according to E). We also need to state that E is

an equivalence relation, which is done by including the following dependencies into Σ′:

E(x, y, u1) ∧ Z(u1) ∧ E(x, y, u2) ∧O(u2) → ∃v D(v, v),

E(x, x, u) ∧ Z(u) → ∃v D(v, v),

E(x, y, u1) ∧O(u1) ∧ E(y, x, u2) ∧ Z(u2) → ∃v D(v, v),

E(x, y, u1) ∧O(u1) ∧ E(y, z, u2) ∧O(u2) ∧ E(x, z, u3) ∧ Z(u3) → ∃v D(v, v).

The first ts-tgd above says that unless there is a tuple (a, a) in D, it could not be the

case that x is equal to y and x is not equal to y according to E. The remaining three

dependencies define E as an equivalent relation, provided that D does not contain a tuple

(a, a).
Finally, we also include in Σ′ the following ts-tgd:

E(x, y, z) → µ(x) ∧ µ(y),

stating that E is only defined for the elements that satisfy µ.

Definition of linear order L. We include the following st-tgd in Σ:

λ ∧ µ(x) ∧ µ(y) → ∃u (L(x, y, u) ∧ T ′(u)),

and we include the following ts-tgds in Σ′:

L(x, x, u) ∧O(u) → ∃v D(v, v),

L(x, y, u1) ∧O(u1) ∧ L(y, z, u2) ∧O(u2) ∧ L(x, z, u3) ∧ Z(u3) → ∃v D(v, v),

E(x, y, u1) ∧ Z(u1) ∧ L(x, y, u2) ∧ Z(u2) ∧ L(y, x, u3) ∧ Z(u3) → ∃v D(v, v).

The first dependency above says that L is irreflexive, the second says that L is transitive

and the third says that L is connected (unless there is a tuple (a, a) in D). To complete the

definition of L, we include in Σ′ the following ts-tgd:

L(x, y, z) → µ(x) ∧ µ(y),

stating that L is only defined for the elements that satisfy µ, and we also include in Σ′ an

axiom that states that L is consistent with E (that is, E is a congruence relation for L):

L(x, y, u1) ∧O(u1) ∧ E(x, x1, u2) ∧O(u2) ∧

E(y, y1, u3) ∧O(u3) ∧ L(x1, y1, u4) ∧ Z(u4) → ∃v D(v, v).

This dependency says that unless there is a tuple (a, a) in D, if x is equal to x1 and y is

equal to y1 according to E, then x is less than y according to L if and only if x1 is less

than y1 according to L.
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Definition of predicate P . This predicate is used to store the first element of L. To define

this predicate, we include in Σ the following st-tgd:

λ ∧ µ(x) → ∃u1∃u2 (P (u1, u2) ∧O(u2)).

This st-tgd says that if there exists at least one element satisfying formula µ, and also

formula λ is satisfied, then there is a first element for linear order L. Moreover, we also

include the following ts-tgds in Σ′:

P (x, u1) ∧O(u1) ∧ L(y, x, u2) ∧O(u2) → ∃v D(v, v),

P (x, u1) ∧O(u1) ∧E(x, y, u2) ∧O(u2) ∧ P (y, u3) ∧ Z(u3) → ∃v D(v, v),

P (x, y) → µ(x).

The first dependency above says that the first element of L does not have a predecessor

according to L, while the second says that unless there is a tuple (a, a) in D, if x is equal

to y according to E, then x is the first element of L if and only if y is the first element of

L (that is, E is a congruence relation for P ). Moreover, the last dependency above states

that P is only defined for the elements that satisfy µ.

Definition of predicate U . This predicate is used to store the last element of L. To define

this predicate, we include the following st-tgd in Σ:

λ ∧ µ(x) → ∃u1∃u2 (U(u1, u2) ∧O(u2)).

and we include the following ts-tgds in Σ′:

U(x, u1) ∧O(u1) ∧ L(x, y, u2) ∧O(u2) → ∃v D(v, v),

U(x, u1) ∧O(u1) ∧E(x, y, u2) ∧O(u2) ∧ U(y, u3) ∧ Z(u3) → ∃v D(v, v),

U(x, y) → µ(x).

Definition of successor predicate S. We include the following st-tgds in Σ:

λ ∧ µ(x) ∧ µ(y) → ∃u (S(x, y, u) ∧ T ′(u)),

λ ∧ µ(x) → ∃y∃u (S(x, y, u) ∧O(u)).

As for the case of linear order L, the first st-tgd is used to indicate that for every pair of

elements x, y satisfying formula µ, there is a truth value associated with the statement “y
is a successor of x according to S”. The second st-tgd above is used to indicate that every

element satisfying µ has a successor element. We note that this dependency states that

even the last element of linear order L has a successor. This does not create any problems,

as we do not impose any restrictions on the successor of the last element (for example, we

do not say that it should be greater than the last element), and we do not use this successor

when coding Turing Machine M .

To indicate that S is the successor relation associated with L, we include the following

ts-tgds in Σ′:

S(x, y, u1) ∧O(u1) ∧ U(x, u2) ∧ Z(u2) ∧ L(x, y, u3) ∧ Z(u3) → ∃v D(v, v),

S(x, y, u1) ∧O(u1) ∧ U(x, u2) ∧ Z(u2) ∧

L(x, z, u3) ∧O(u3) ∧ L(z, y, u4) ∧O(z4) → ∃vD(v, v),

S(x, y, z) → µ(x) ∧ µ(y).

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 65

The first dependency above says that if y is a successor of x according to S and x is not the

last element of L, then x is less than y according to L (unless there is a tuple (a, a) in D).

As we mentioned above, this dependency does not impose any restrictions on the successor

of the last element. The second ts-tgd says that there are no elements in between x and y
if y is a successor of x and x is not the last element. The third dependency says that S is

only defined for elements satisfying µ, which in particular implies that the successor of an

element must satisfy µ. As for the case of predicates L, P and U , we also need to include

an axiom saying that S is consistent with the equality predicate E:

S(x, y, u1) ∧O(u1) ∧E(x, x1, u2) ∧O(u2) ∧

E(y, y1, u3) ∧O(u3) ∧ S(x1, y1, u4) ∧ Z(u4) → ∃v D(v, v).

Encoding of DTM M . Now we are ready to present the dependencies that code DTM M .

As for the case of predicatesE, L, P , U and S, we include an extra argument in predicates

H , T0, T1, TB and Sq (q ∈ Q) to indicate whether a particular tuple is or is not in these

predicates. Thus, for example, if u is an element of O (and thus represents value true),

then H(x, y, u) says that the head of M is in position y at time x, T0(x, y, u) says that the

cell of the tape of M in position y has symbol 0 at time x, and likewise for symbols 1 and

B, and Sq(x, u) says that M is in state q at time x.

First, we include the following st-tgds in Σ:

λ ∧ µ(x) ∧ µ(y) → ∃u (H(x, y, u) ∧ T ′(u))
λ ∧ µ(x) ∧ µ(y) → ∃u (Ta(x, y, u) ∧ T ′(u)) for a ∈ {0, 1,B}

λ ∧ µ(x) → ∃u (Sq(x, u) ∧ T ′(u)) for q ∈ Q

We note that the first st-tgd says that for every pair of elements x, y satisfying formula µ,

there is a truth value associated with the statement “the head of M is in position y at time

x”. We also observe that the second st-tgd is defined for every a ∈ {0, 1,B}, while the last

one is defined for every q ∈ Q.

Second, we include the following ts-tgds in Σ′:

H(x, y, z) → µ(x) ∧ µ(y)
Ta(x, y, z) → µ(x) ∧ µ(y) for a ∈ {0, 1,B},

Sq(x, y) → µ(x) for q ∈ Q.

These dependencies state that H , T0, T1, TB and Sq (q ∈ Q) are only defined for elements

satisfying µ.

Third, we include ts-tgds in Σ′ saying that predicates H , T0, T1, TB and Sq (q ∈ Q)

are consistent with the equality predicate E. Since all these dependencies are similarly

defined, we only include here the ts-tgd for predicate H :

H(x, y, u1) ∧O(u1) ∧ E(x, x1, u2) ∧O(u2) ∧

E(y, y1, u3) ∧O(u3) ∧H(x1, y1, u4) ∧ Z(u4) → ∃v D(v, v).

Notice that this ts-tgd says that unless there is a tuple (a, a) in D, if x is equal to x1 and y
is equal to y1 according to E, then, according to H , the head of M is in position y at time

x if and only if the head of M is in position y1 at time x1.

Fourth, to state that each cell of the tape of M contains exactly one symbol at each

moment, we include a ts-tgd in Σ′ saying that it could not be the case that the cell of the
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Sq(x, u1) ∧ O(u1) ∧H(x, y, u2) ∧O(u2) ∧ Ta(x, y, u3) ∧O(u3) ∧

U(x, u4) ∧ Z(u4) ∧ S(x, u, u5) ∧O(u5) ∧ Sq′(u, u6) ∧ Z(u6) → ∃v D(v, v),

Sq(x, u1) ∧ O(u1) ∧H(x, y, u2) ∧O(u2) ∧ Ta(x, y, u3) ∧

O(u3) ∧ U(x, u4) ∧ Z(u4) ∧ S(x, u, u5) ∧O(u5) ∧

S(w, y, u6) ∧O(u6) ∧H(u,w, u7) ∧ Z(u7) → ∃v D(v, v),

Sq(x, u1) ∧ O(u1) ∧H(x, y, u2) ∧O(u2) ∧ Ta(x, y, u3) ∧O(u3) ∧

U(x, u4) ∧ Z(u4) ∧ S(x, u, u5) ∧O(u5) ∧ Tb(u, y, u6) ∧ Z(u6) → ∃v D(v, v).

Fig. 2. Target-to-source dependencies coding transition δ(q, a) = (q′, b,L).

tape of M in position y at time x contains neither symbol 0 nor 1 nor B (unless there is a

tuple (a, a) in D):

T0(x, y, u1) ∧ Z(u1) ∧ T1(x, y, u2) ∧ Z(u2) ∧ TB(x, y, u3) ∧ Z(u3) → ∃v D(v, v).

Furthermore, for every pair of distinct symbols a and b in {0, 1,B}, we include a ts-tgd in

Σ′ saying that it could not be the case that the cell of the tape of M in position y at time x
contains both a and b:

Ta(x, y, u1) ∧O(u1) ∧ Tb(x, y, u2) ∧O(u2) → ∃v D(v, v).

Fifth, we include the following ts-tgd in Σ′ stating that the head of M is in at most one

position at each moment:

H(x, y1, u1) ∧O(u1) ∧H(x, y2, u2) ∧O(u2) ∧ E(y1, y2, u3) ∧ Z(u3) → ∃v D(v, v).

We observe that the dependency above together with the dependencies defining transition

function δ (defined below) enforce that the head of M is in exactly one position at each

moment. To state that M is in exactly one state at each moment, we include a ts-tgd in Σ′

saying that it could not be the case that M is not in any state q ∈ Q at time x:
(

∧

q∈Q

(Sq(x, u
q) ∧ Z(uq))

)

→ ∃v D(v, v).

Furthermore, for every pair of distinct states q1 and q2 in Q, we include a ts-tgd in Σ′

saying that it could not be the case thatM is in both states q1 and q2 (unless there is a tuple

(a, a) in D):

Sq1(x, u1) ∧O(u1) ∧ Sq2(x, u2) ∧O(u2) → ∃v D(v, v).

Sixth, we include the following ts-tgds in Σ′ to define the initial configuration: the state of

M is q0, the head of M is in the first position of the tape of M and each position of this

tape contains the blank symbol.

P (x, u1) ∧O(u1) ∧ Sq0(x, u2) ∧ Z(u2) → ∃v D(v, v),

P (x, u1) ∧O(u1) ∧H(x, x, u2) ∧ Z(u2) → ∃v D(v, v),

P (x, u1) ∧O(u1) ∧ TB(x, y, u2) ∧ Z(u2) → ∃v D(v, v).

Finally, we include some ts-tgds in Σ′ to code the transition function of M . Let (q, a) ∈
(Q \ {qf}) × Γ. If δ(q, a) = (q′, b,L), then we include in Σ′ the ts-tgds shown in Figure
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2, and if δ(q, a) = (q′, b,R), then we include similar ts-tgds, but where the head of M is

moved to the right. Moreover, for every a ∈ {0, 1,B} we include the following “frame

axiom” in Σ′:

H(x, y, u1) ∧ Z(u1) ∧ Ta(x, y, u2) ∧O(u2) ∧

U(x, u3) ∧ Z(u3) ∧ S(x, u, u4) ∧O(u4) ∧ Ta(u, y, u5) ∧ Z(u5) → ∃v D(v, v),

which says that unless there exists a tuple (a, a) inD, if the head ofM is not in position y at

time x, then the symbol in this position is the same at time u, where u is the successor of x.

Accepting condition for DTM M . To conclude the reduction, we include in Σ′ the follow-

ing ts-tgd:

Sqf
(x, y) ∧O(y) → ∃v D(v, v).

This dependency says that if at time x the state of the DTM M is qf (the final state), then

there exists an element a such that (a, a) is in D.

We have concluded the definitions of Σ and Σ′. We now proceed to prove that M
accepts the empty string if and only if M′ is not a recovery of M. But before we need to

prove some intermediate lemmas.

LEMMA C.1. Let I be an instance of S. If {(a, b) ∈ DI | a ∈ T I and b ∈ T I} = ∅,

then (I, I) ∈ M ◦M′.

PROOF. Assume that {(a, b) ∈ DI | a ∈ T I and b ∈ T I} = ∅. Then I does not

satisfy formula λ = ∃x∃y (D(x, y) ∧ T (x) ∧ T (y)). Thus, given that λ is in the left-hand

side of every st-tgd in Σ except for the axioms D(x, y) → D′(x, y) and T (x) → T ′(x),
we conclude that the following instance J of T is a solution for I under M: D′J = DI ,

T ′J = T I and XJ = ∅, for everyX ∈ T \ {D′, T ′}. By simply inspecting the set Σ′, it is

possible to conclude that (J, I) |= Σ′ (sinceXJ = ∅ for everyX ∈ T \ {D′, T ′}, we only

need to show that (J, I) satisfies dependencies D′(x, y) → D(x, y) and T ′(x) → T (x),
which is clearly the case). Thus, we have that (I, I) ∈ M ◦M′.

LEMMA C.2. Let I be an instance of S. If {a ∈ dom(DI) | I |= µ(a)} = ∅, then

(I, I) ∈ M ◦M′.

PROOF. Analogous to the proof of the Lemma C.2.

LEMMA C.3. Let I be an instance of S. If there is a tuple (a, a) ∈ DI , then (I, I) ∈
M ◦M′.

PROOF. Assume that there is a tuple (a, a) ∈ DI . Furthermore, assume that for

(a0, b0) ∈ DI , we have that a0 ∈ T I and b0 ∈ T I (if there is no such a tuple in DI ,

then by Lemma C.1 we conclude that (I, I) ∈ M ◦ M′). Let J be a solution for I
such that D′J = DI , T ′J = T I , ZJ = {a0} and OJ = {b0}. Given that there is a

tuple (a, a) ∈ DI , we have that (J, I) satisfies every dependency in Σ′ that has formula

∃v D(v, v) as its conclusion. Thus, to prove that (J, I) satisfies Σ′, we only need to show

that this instance satisfies ts-tgds: D′(x, y) → D(x, y), T ′(x) → T (x), Z(x) → T (x),
O(x) → T (x) and Z(x) ∧ O(y) → D(x, y), which is clearly the case. We conclude that

(I, I) ∈ M ◦M′.
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We have all the necessary ingredients to prove that M accepts the empty string if and

only if M′ is not a recovery of M.

PROOF OF THEOREM 9.4. (⇒) Assume that M accepts the empty string, that is, assume

that from the empty tape, M reaches the final state qf in k steps, where k ≥ 2 since the

initial state of M is different from qf . Then define IM as the following instance of S:

DIM = {(n,m) | n,m ∈ {1, . . . , k} and n 6= m} ∪ {(f, t)},

T IM = {f, t}.

Next we show that IM is not a solution for IM underM◦M′. For the sake of contradiction,

assume (IM , IM ) ∈ M◦M′. Then there exists an instance J of T such that (IM , J) |= Σ
and (J, IM ) |= Σ′. Since (IM , J) satisfies D(x, y) → D′(x, y) and (J, IM ) satisfies

D′(x, y) → D(x, y), we conclude that D′J = DIM , and given that (IM , J) satisfies

T (x) → T ′(x) and (J, IM ) satisfies T ′(x) → T (x), we conclude that T ′J = T IM .

Moreover, given that (f, t) ∈ DIM and T IM = {f, t}, we have that IM satisfies λ. Thus,

given that (I, J) satisfies λ → ∃uZ(u) ∧ ∃v O(v) and (J, IM ) satisfies Z(x) → T (x),
O(x) → T (x) and Z(x) ∧O(y) → D(x, y), we conclude that ZJ = {f} and OJ = {t}.

Since IM 6|= ∃v D(v, v) and (J, IM ) |= Σ′, we have that (J, IM ) does not satisfies the

left-hand side of any dependency in Σ′ having ∃v D(v, v) in its right-hand side. Further-

more, given that k ≥ 2, we have that {a ∈ dom(DIM ) | IM |= µ(a)} is not empty. Thus,

by considering the dependencies in Σ and Σ′ that define predicates E, L, P , U , S, H , T0,

T1, TB and Sq (q ∈ Q), we conclude that these predicates encode k steps of the run of M
on the empty string. Given that M accepts the empty string, we have that (n, t) ∈ SJqf

for some n ∈ {1, . . . , k} (note that linear order L does not necessarily coincide with the

usual linear order 1 < 2 < · · · < k). Thus, given that t ∈ OJ and (J, IM ) satisfies depen-

dency Sqf
(x, y) ∧O(y) → ∃v D(v, v), we have that there is a tuple (a, a) in DIM , which

contradicts the definition of instance IM .

(⇐) Assume that M does not accept the empty string. Thus, given that we assume that

the transition function δ of M is a total function with domain (Q \ {qf}) × {0, 1,B}, we

have that for every k ≥ 1, DTM M reaches some state q ∈ (Q \ {qf}) in k steps from the

initial empty tape. We use this fact to show that M′ is a recovery of M.

Let I be an instance of S. We need to show that (I, I) ∈ M ◦ M′. If {(a, b) ∈ DI |
a ∈ T I and b ∈ T I} = ∅ or {a ∈ dom(DI) | I |= µ(a)} = ∅ or there is a tuple

(a, a) ∈ DI , then (I, I) ∈ M ◦M′ by Lemmas C.1, C.2 and C.3. Thus, we assume that

I does not satisfy any of these conditions, and without loss of generality, we assume that

dom(DI) = {0, . . . , n} (n ≥ 1), (0, 1) ∈ DI , 0 ∈ T I and 1 ∈ T I .

To prove that I is a solution for I under M◦M′, we construct a solution J for I under

M such that (J, I) |= Σ′. More precisely, we define J as follows: D′J = DI , T ′J = T I ,
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ZJ = {0}, OJ = {1} and

EJ := {(i, i, 1) | i ∈ {0, . . . , n}} ∪ {(i, j, 0) | i, j ∈ {0, . . . , n} and i 6= j},

LJ := {(i, j, 1) | i, j ∈ {0, . . . , n} and i < j} ∪ {(i, j, 0) | i, j ∈ {0, . . . , n} and i ≥ j},

SJ := {(i, i+ 1, 1) | i ∈ {0, . . . , n− 1}} ∪

{(n, 1, 1)} ∪ {(i, j, 0) | i, j ∈ {0, . . . , n}, j 6= i+ 1 and (i, j) 6= (n, 1)},

P J := {(0, 1)} ∪ {(i, 0) | i ∈ {1, . . . , n}},

UJ := {(n, 1)} ∪ {(i, 0) | i ∈ {0, . . . , n− 1}}.

Furthermore, relations HJ , T J0 , T J1 , T J
B

and SJq (q ∈ Q) are defined in such a way that

they represent n + 1 steps of the run of M on the empty string. Since M does not accept

the empty string, we conclude that (i, 1) 6∈ SJqf
for every i ∈ {0, . . . , n} and, therefore,

(J, I) trivially satisfies dependency Sqf
(x, y) ∧ O(y) → ∃v D(v, v) since OJ = {1}.

Furthermore, (J, I) satisfies all the other ts-tgds in Σ′ having ∃v D(v, v) in its right-hand

side, sinceHJ , T J0 , T J1 , T J
B

and SJq (q ∈ Q) code n+1 steps of the run ofM on the empty

string. Thus, to prove that (J, I) |= Σ′, we only need to show that this instance satisfies

dependencies D′(x, y) → D(x, y), T ′(x) → T (x), Z(x) → T (x), O(x) → T (x) and

Z(x) ∧ O(y) → D(x, y). It is straightforward to prove that (J, I) satisfies the previous

ts-tgds. Thus, we conclude that (J, I) |= Σ′ and, hence, (I, I) ∈ M◦M′. This concludes

the proof of the theorem.

C.4 Proof of Corollary 9.5

Let M = (S,T,Σ) and M′ = (T,S,Σ′) be the mappings used in the proof of Theorem

9.4. Recall that Σ is a set of st-tgds from S to T and Σ′ is a set of ts-tgds from T to S,

where

S := {D(·, ·), T (·)},

T := {D′(·, ·), T ′(·), Z(·), O(·), E(·, ·, ·), L(·, ·, ·), P (·, ·), U(·, ·), S(·, ·, ·), H(·, ·, ·),

T0(·, ·, ·), T1(·, ·, ·), TB(·, ·, ·)} ∪ {Sq(·, ·) | q ∈ Q}.

Given that Σ includes dependencies D(x, y) → D′(x, y) and T (x) → T ′(x), and Σ′

includes dependenciesD′(x, y) → D(x, y) and T ′(x) → T (x), we have that if (I1, I2) ∈
M ◦ M′, then I1 ⊆ I2. Thus, from Lemma 9.2, we have that M′ is a recovery of M
iff M′ is an inverse of M. Hence, from the proof of Theorem 9.4, we conclude that the

problem of verifying, given schema mappings M1 and M2 specified by a set of st-tgds

and a set of ts-tgds, respectively, whether M2 is an inverse of M1 is undecidable.

A careful inspection of the set of dependencies Σ reveals that mapping M is invertible.

In fact, ts-mapping specified by dependencies D′(x, y) → D(x, y) and T ′(x) → T (x) is

an inverse of M. Thus, from Theorem 6.3, we conclude that M′ is a maximum recovery

of M iff M′ is an inverse of M. Therefore, from the proof of Theorem 9.4, we have

that the problem of verifying, given schema mappings M1 and M2 specified by a set of

st-tgds and a set of ts-tgds, respectively, whether M2 is a maximum recovery of M1 is

undecidable. Furthermore, from Proposition 3.24 in [Fagin et al. 2008], we conclude that

M′ is an inverse of M iff M′ is a quasi-inverse of M. Hence, from the proof of Theorem

9.4, we have that the problem of verifying, given schema mappings M1 and M2 specified

by a set of st-tgds and a set of ts-tgds, respectively, whether M2 is a quasi-inverse of M1
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is undecidable.
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