
A Systematic Derivation of the STG Machine
Verified in Coq

Maciej Piróg
Institute of Computer Science

University of Wrocław
Wrocław, Poland

maciej.adam.pirog@gmail.com

Dariusz Biernacki
Institute of Computer Science

University of Wrocław
Wrocław, Poland

dabi@cs.uni.wroc.pl

Abstract
Shared Term Graph (STG) is a lazy functional language used as an
intermediate language in the Glasgow Haskell Compiler (GHC). In
this article, we present a natural operational semantics for STG and
we mechanically derive a lazy abstract machine from this seman-
tics, which turns out to coincide with Peyton-Jones and Salkild’s
Spineless Tagless G-machine (STG machine) used in GHC. Unlike
other constructions of STG-like machines present in the literature,
ours is based on a systematic and scalable derivation method (in-
spired by Danvy et al.’s functional correspondence between evalua-
tors and abstract machines) and it leads to an abstract machine that
differs from the original STG machine only in inessential details.
In particular, it handles non-trivial update scenarios and partial ap-
plications identically as the STG machine.

The entire derivation has been formalized in the Coq proof
assistant. Thus, in effect, we provide a machine checkable proof
of the correctness of the STG machine with respect to the natural
semantics.

Categories and Subject Descriptors D.3.1 [PROGRAMMING
LANGUAGES]: Formal Definitions and Theory—Semantics; D.3.4
[PROGRAMMING LANGUAGES]: Processors—Compilers

General Terms Languages, Theory, Verification

Keywords STG, natural semantics, abstract machine, derivation,
verification, Coq

1. Introduction
The Shared Term Graph (STG) language along with the Spine-
less Tagless G-machine (STG machine), both developed by Peyton-
Jones and Salkild [11, 12], lie at the heart of the Glasgow Haskell
Compiler (GHC)—the flagship Haskell compiler [7]. STG is a
higher-order pure lazy functional language based on a normalized
λ-calculus with multiple binders, datatype constructors and pattern
matching. It is used as an intermediate language in GHC and com-
piled to code that mimics the execution of the STG machine. The
STG abstract machine defines an operational semantics and an im-
plementation model for STG. Since it contains a high degree of im-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0252-4/10/09. . . $10.00

plementational detail, it is not amenable to reasoning about opera-
tional aspects of the source language. A considerably more intuitive
formalism that omits inessential details of implementation is natu-
ral semantics, proposed for lazy functional languages by Launch-
bury [8] and later refined by Sestoft [15]. Although the results by
Launchbury and by Sestoft are eminent, they do not address the
STG language, but a simpler variant of a normalized λ-calculus.
In turn, Encina and Peña in a series of articles proposed a natural
semantics for a language that very much resembles STG [4–6], but
it does not capture the evaluation model of the original STG ma-
chine in the way the heap is allocated and updated. This difference
is confirmed by their abstract machines: they were obtained by an
ad-hoc derivation and shown to be equivalent with the proposed
natural semantics, but these machines differ from the original STG
machine.

As a matter of fact, none of the existing natural semantics has
been defined exactly for the original STG language which allows
for multiple binders and non-trivial update scenarios directed by
update flags. Also, none of the proposed natural semantics for lazy
evaluation captures fully the evaluation model embodied in the
original STG machine.

In order to fill this vacuum and as a first step towards a certified
compiler for Haskell—a bigger project that we are working on—we
present a natural operational semantics for the STG language that is
an extension of the semantics given by Sestoft and from this seman-
tics we mechanically derive the corresponding abstract machine.
The derivation method we use consists of some standard steps such
as argument stack introduction and environment introduction, but
the critical transformation from a big-step operational semantics to
the equivalent abstract machine is given by the transformation to
continuation-passing style (CPS transformation) [13] followed by
the defunctionalization of continuations [3, 13]. We, therefore, rely
on Danvy et al.’s functional correspondence between evaluators and
abstract machines [1], that has already proved useful before in the
context of evaluators for a lazy lambda calculus [2], except that
we transform semantic descriptions rather than interpreters. This
derivation method transforms only the form of the semantics and
leaves the evaluation model described by the semantics intact, so
the natural semantics we propose and the abstract machine we de-
rive are two sides of the same coin.

Interestingly and as expected, the outcome of our derivation
turns out to be the STG machine, only slightly reformulated.
Hence, the STG machine, though designed for efficient evaluation
and—more importantly—efficient implementation on stock hard-
ware, can be seen as a natural counterpart of our semantics for the
STG language, obtained via a systematic and universal derivation
method. Additionally, having a method to mechanically transform
a natural operational semantics into an abstract machine, we can

e → x xi — application
| C xi — saturated constructor
| letrec xi = lf i in e — local definition
| case e of alt i — case expression

lf → λπ xi.e — lambda-form
alt → C xi → e — case alternative
π → U | N — update flag

Figure 1. The syntax of the STG language

augment the STG language with new features and then easily ob-
tain a consonant machine, e.g., the STG machine with unboxed
arithmetics.

The entire derivation presented in this article has been formal-
ized and proved correct in the Coq proof assistant. Thus we provide
a machine checkable proof of the correctness of the STG machine
with respect to the natural semantics. Additionally, we take this re-
sult as the starting point of the construction of a certified Haskell
compiler in Coq.

The rest of the article is organized as follows. In Section 2, we
present the syntax and the natural semantics of STG. In Section 3,
we describe our enabling technology—the functional correspon-
dence at the level of semantics. In Section 4, we transform the nat-
ural semantics into the STG machine by argument stack introduc-
tion and environment introduction followed by the transformation
to defunctionalized continuation-passing style. We also argue that
the resulting machine is the STG machine despite some minor dis-
crepancies between the two and we sketch how our construction
scales to some common extensions of the language. In Section 5,
we briefly describe the Coq formalization. In Section 6, we com-
pare our work with the existing derivations of lazy abstract ma-
chines. In Section 7, we conclude and put the present result in the
context of building a certified compiler for Haskell.

2. STG and its semantics
We begin with the syntax and semantics for the STG language
which is essentially a normalized lambda calculus with simplified
algebraic datatypes.

2.1 Syntax
The syntax of the STG language is shown in Figure 1, where X =
{x, y, z, p, q, . . .} is a set of variables and C = {C,C1, C2, . . .} is
a set of names of constructors. The letters e, f, g, w will stand for
expressions of the STG language.

We denote sequences by juxtaposition (e.g., x1 . . . xn) or by a
line over indexed elements (e.g., xi). If not stated otherwise, se-
quences may be empty. Appending sequences and inserting ele-
ments is also represented by juxtaposition. The symbol ε stands for
the empty sequence.

Application We apply only single variables to tuples of variables.
This limited form of application is in correspondence with the lazy
evaluation: the variables are pointers to thunks representing subex-
pressions that will be computed only if needed (or have already
been computed and updated). The tuple may be empty, so there is
no need for a separate variable case in the grammar.

Constructor Constructor expressions are built using a constructor
name (an element from the set C) and its arguments (variables).
All constructors are saturated, i.e., they must be given all their
arguments. Since the STG language is not typed and there are no
explicit datatype definitions, we may think of constructor names as
being the lowest-level identifiers, e.g., positive integers, possibly
shared between datatypes. (If the STG language is used as an

intermediate language in a compiler, the sharing of constructor
names is not an issue, since the front-end type checking guarantees
that each constructor name will be interpreted in the right datatype.)

Local definition Local definition expressions (aka letrec expres-
sions) play a more significant role than in ordinary functional lan-
guages: they enclose subexpressions for lazy evaluation. Each lo-
cal definition binds a lambda-form λπxi.e, where e is an expres-
sion and xi is a (possibly empty) tuple of its arguments. Intuitively,
we may think of it as an ordinary lambda expression. The sym-
bol π represents an update flag (U for updatable and N for non-
updatable), which indicates whether after evaluation of the lambda-
form the result should overwrite the lambda-form. If a lambda-form
expects some arguments, it is already in normal form (as usual, we
do not reduce under lambdas), so its update flag is always N . Def-
initions in one letrec block are assumed to be mutually recursive.

Case expression Case expressions case e of alt i perform eager
evaluation (by eager we mean “up to the outermost constructor”)
of the subexpression e. The result is then matched against the list
of alternatives alt i which binds arguments of the constructor in the
matched alternative. The body of the matched alternative is then
evaluated according to the lazy evaluation strategy.

The transformation from an everyday-use functional language
like Haskell to the STG language requires extraction of all non-
variable subexpressions to letrec definitions, normalization of case
expressions and a static analysis for the update-flag annotation.

2.2 Natural semantics
In this section, we present a natural operational semantics for the
STG language. It uses a heap to store all the lambda-forms needed
to evaluate an expression. Free variables serve as pointers to the
elements of the heap. When the body of an updatable lambda-form
(i.e., one with the U flag) is evaluated, it is overwritten with the
value, so no expression sharing this lambda-form will evaluate the
same node for a second time.

We split the set of variables X into two disjoint, enumerably
infinite sets: the set of bound variables BOUND (ranged over by
x1, x2, . . .) and the set of heap pointers POINTERS (ranged over
by p, q, p1, q1, . . .), so:

X = BOUND ∪ POINTERS

It is needed to provide sound local freshness of names in the
semantics, as will be discussed later on. We call an expression well-
formed if and only if all its bound variables are in BOUND , and all
of its free variables are in POINTERS . The semantics is designed
for well-formed expressions only.

The semantics is given in Figure 2. It derives judgments of the
form (Γ : e ↓ ∆ : f). The pair (Γ : e) is called a configuration and
(∆ : f) a normal form. Γ and ∆ are heaps, i.e., partial functions
from X to LF , where LF is the set of all lambda-forms. Values in
the heap are called closures.

In the following, Γ{x 7→ lf } stands for a heap Γ, explicitly
indicating that Γ(x) = lf , while Γ⊕[x 7→ lf] stands for a heap

Γ : C pi ↓ Γ : C pi CON

Γ{p 7→ λN x1 . . . xm.e} : p p1 . . . pn ↓ Γ : p p1 . . . pn where n < m APP1

Γ : e[x1/p1 . . . xm/pm] ↓ ∆ : w

Γ{p 7→ λN x1 . . . xm.e} : p p1 . . . pm ↓ ∆ : w
APP2

Γ : e[x1/p1 . . . xm/pm] ↓ ∆ : q q1 . . . qk ∆ : q q1 . . . qk pm+1 . . . pn ↓ Θ : w

Γ{p 7→ λN x1 . . . xm.e} : p p1 . . . pn ↓ Θ : w
m < n APP3

Γ : e ↓ ∆ : C qi
Γ{p 7→ λU .e} : p ↓ ∆⊕[p 7→ λN .C qi] : C qi

APP4

Γ : e ↓ ∆{q 7→ λN x1 . . . xk xk+1 . . . xn.f} : q q1 . . . qk
∆⊕[p 7→ λN xk+1 . . . xn.f [x1/q1 . . . xk/qk]] : q q1 . . . qk p1 . . . pm ↓ Θ : w

Γ{p 7→ λU .e} : p p1 . . . pm ↓ Θ : w
APP5

Γ⊕[pi 7→ lf i[xi/pi]] : e[xi/pi] ↓ ∆ : w

Γ : letrec xi = lf i in e ↓ ∆ : w
pi ∈ POINTERS \Dom(Γ) LETREC

Γ : e ↓ ∆ : Ck pj ∆ : ek[xkj/pj] ↓ Θ : w

Γ : case e of Ci xij → ei ↓ Θ : w
CASE

Figure 2. The natural semantics of the STG language

Γ extended or overwritten at x with lf . The operation e[xi/pi]
simultaneously substitutes each free occurence of xi in e with pi.

Normal forms in this semantics are constructors and partial
applications, as stated in the CON and APP1 rules. (An application
is partial only in the context of a heap, which encodes the whole
graph of an expression.)

There are two more rules for applications of variables repre-
senting non-updatable closures: APP2, when there are just enough
arguments, and APP3, when there are too many arguments. Intu-
itively, we evaluate the body of the lambda-form, substituting actual
arguments for formal arguments. If there are too many arguments,
we use only the prefix of the argument list of the appropriate length.
If the closure evaluates to a partial application, we append the re-
maining suffix of the argument list and continue with evaluation.
If it evaluates to a constructor, the whole expression does not have
a normal form, since it would be an application of the constructor
to the suffix of the argument list, which is already saturated; such
expression would be ill-typed in any strongly typed language.

The rules for applications of variables representing updatable
closures are similar. For a variable p representing an updatable
(thus argument-free) closure, if the closure evaluates to a construc-
tor (APP4), it is the value of the expression. But we also need to
update the heap with the constructor, so that if any other expression
in some lambda-form in the heap uses the pointer p, the closure
will not have to be evaluated again. If the closure evaluates to a par-
tial application q q1 . . . qk (APP5), we update the closure under the
pointer p with the lambda-form under the pointer q, but with first
k arguments already fed with q1 . . . qk. (In the APP5 rule n > k,
since q q1 . . . qk is a partial application.)

Variables, addresses, and fresh pointers A variable is fresh if
and only if it does not interfere with any other variable in the
derivation tree by an undesired variable capture. The freshness
check (sometimes called a generation of a fresh variable) is local
iff it can be done using only the context of a single rule, and does
not refer to the whole derivation tree or any kind of external “fresh
names generator.” Locality is a desirable property when one wants
to reason in low-level details necessary for an implementation or
formalization in proof systems like Coq.

Our solution with a bipartite set of variables solves the problem:
generating fresh addresses in the LETREC rule is local (we need
freshness only with respect to the heap) and it fits the design pattern
of nameless bound variables representation in Coq, where bound
variables are represented as de Bruijn indices, and free variables as
atoms.

In order to formalize the above intuitions, we use the following
definitions:

DEFINITION 1. Let e be an expression or a lambda-form, and Γ be
a heap. Then:

1. e is well-formed iff its bound variables are in BOUND and its
free variables are in POINTERS .

2. e is closed by a heap Γ iff all its free variables are in Dom(Γ).
3. Γ is well-formed iff Dom(Γ) ⊆ POINTERS and each clo-

sure in Γ is well-formed and closed by Γ.
4. The configuration (Γ : e) is well-formed iff Γ and e are well-

formed and e is closed by Γ.

We do not mind that ill-formed programs and configurations
may evaluate to nonsense values. For example the configuration
(∅ : letrec x = λN .C in p) may evaluate to C if the lambda-form
in the letrec expression is allocated under the address p.

The following theorem ensures that if the root configuration is
well-formed, configurations are well-formed throughout the deriva-
tion tree and no variables are captured:

PROPOSITION 2. For a well-formed configuration (Γ : e), if (Γ :
e ↓ ∆ : w), then all configurations and normal forms in the
derivation of (Γ : e ↓ ∆ : w) (including ∆ : w) are well-formed
and all substitutions replace pointers for bound variables.

Comparison with Sestoft’s semantics Our semantics is inspired
by the semantics proposed by Sestoft [15] as a refinement for
Launchbury’s semantics for a normalized λ-calculus [8]. The rules
for constructors, letrec and case expressions are virtually the same.
The difference is in lambda-forms, which in STG are tied to letrec
definitions and bind multiple variables, while the Launchbury’s cal-
culus contains the usual first-class λ-abstractions binding a single

e → n | abs e | e� e where n ∈ Z and � ∈ Σ — empty

n ⇓ n
e ⇓ n

abs e ⇓ |n|
e1 ⇓ n1 e2 ⇓ n2

e1 � e2 ⇓ n1[�]n2

Figure 3. Arithmetic expressions—the syntax and natural semantics

variable. The restricted shape of lambda-forms in STG makes “en-
tering” a closure in the heap always identified with application
(note that since we have multiple binders, an application to zero
arguments is still an application), while they are different concepts
in Sestoft’s semantics, represented by two different rules, VAR and
APP.

In contrast to Launchbury’s calculus, the STG language is more
complex in that it allows for multiple binders and update flags. On
the other hand, our semantics does not cater for the concept of black
holes, which, as advocated by Peyton-Jones [11], is superfluous as
far as only sequential computation is concerned. It is fairly easy
to embed Launchbury’s calculus into STG, and Sestoft’s natural
semantics into ours in a provably correct way.

3. Functional correspondence
In this section we describe a method that facilitates a mechani-
cal derivation of abstract machines from natural semantics. It is
inspired by functional correspondence that consists in first, trans-
forming an evaluator in direct style that implements a natural se-
mantics into continuation-passing style (CPS) and second, defunc-
tionalizing the continuations of the CPS evaluator, which leads to
an evaluator implementing an abstract machine [1]. We illustrate
the functional correspondence with the example of evaluating arith-
metic expressions.

Let Σ = {+, ∗,−, . . .} be a set of binary symbols and [·] : Σ→
ZZ×Z be a natural interpretation of symbols in Σ. For any n ∈ Z
let |n| denote its absolute value. The syntax and semantics of
arithmetic expressions are shown in Figure 3.

It is straightforward to implement an evaluator for this seman-
tics in a functional meta-language, i.e., to write a function eval
such that eval e = n iff the judgment (e ⇓ n) is provable. For each
semantic rule, the function is recursively called and the final result
is obtained by applying the corresponding operation to the results
of the recursive calls. It could be encoded in Haskell as follows:

data Expr = Const Integer
| Abs Expr
| Op Expr String Expr

interp :: String → Integer → Integer → Integer
interp "+" = (+)
interp "*" = (∗)
interp "-" = (−)
interp "mod" = mod

eval :: Expr → Integer
eval (Const n) = n
eval (Abs e) = abs n

where n = eval e
eval (Op e1 op e2) = interp op n1 n2

where n1 = eval e1

n2 = eval e2

In the next phase we transform the evaluator into CPS. Now, the
evaluator has one more argument—a continuation. The evaluator
no longer returns a value, instead it tail-calls itself or applies the

continuation to a value. To compute the value of an expression, one
supplies the evaluator with the identity continuation (kId):

evalCps :: Expr → (Integer → a)→ a
evalCps (Const n) k = k n
evalCps (Abs e) k = evalCps e (λn → k (abs n))
evalCps (Op e1 op e2) k = evalCps e1

(λn1 → evalCps e2 (λn2 → k (interp op n1 n2)))

kId :: Integer → Integer
kId = id

The next step is the defunctionalization of continuations. Each
construction of a continuation (either by a named value, like kId ,
or anonymously, like λn → k (abs n)) is replaced by an explicit
closure, which stores all the free variables of the continuation.
Each application of a continuation is replaced by an application
of the function apply which takes the closure as an argument and
evaluates accordingly:

data Cont a = Id
| K1 (Cont a)
| K2 Expr String (Cont a)
| K3 Integer String (Cont a)

apply :: Cont Integer → Integer → Integer
apply Id n = n
apply (K1 k) n = apply k (abs n)
apply (K2 e2 op k) n1 = evalDcps e2 (K3 n1 op k)
apply (K3 n1 op k) n2 = apply k (interp op n1 n2)

evalDcps :: Expr → Cont Integer → Integer
evalDcps (Const n) k = apply k n
evalDcps (Abs e) k = evalDcps e (K1 k)
evalDcps (Op e1 op e2) k = evalDcps e1 (K2 e2 op k)

Note that the Cont datatype behaves like a stack, with Id
corresponding to the empty stack, and K1 , K2 and K3 to three
kinds of its elements.

The mutually recursive functions evalDcps and apply may be
thought of as evaluators of two semantics defined in terms of each
other: E , proving judgments of the form E〈e,Ki〉 ↖ n, and A,
proving judgments of the form A〈m,Ki〉 ↖ n, where Ki is a
continuation stack. We call it the Defunctionalized CPS (D-CPS)
semantics (Figure 4). The equivalence of the two semantics may be
defined as follows: (e ⇓ n) iff E〈e, ε〉 ↖ n, and is easy to show
by simple induction. We call the transformation from the natural
semantics to the D-CPS semantics the D-CPS transformation.

Note that the D-CPS semantics has a particular form: each rule
has at most one premise, and the right-hand sides of the↖ symbol
are identical for the premise and the conclusion. Thus, it is easy to
transform the semantics into an abstract machine (Figure 5), where
the states are left-hand sides of the↖ symbol, each semantic rule
with a premise is transformed into a transition rule for the machine
(from the left-hand side of the conclusion to the left-hand side of
the premise) and the rule with no premises becomes a halting state:

A〈n,Ki〉 ↖m

E〈n,Ki〉 ↖m

E〈e,K1 : Ki〉 ↖m

E〈abs e,Ki〉 ↖m

E〈e1,K2(e2,�) : Ki〉 ↖m

E〈e1 � e2,Ki〉 ↖m
A〈m, ε〉 ↖m

A〈|n|,Ki〉 ↖m

A〈n,K1 : Ki〉 ↖m

E〈e2,K3(n1,�) : Ki〉 ↖m

A〈n1,K2(e2,�) : Ki〉 ↖m

A〈n1 [�] n2,Ki〉 ↖m

A〈n2,K3(n1,�) : Ki〉 ↖m

Figure 4. A D-CPS semantics for arithmetic expressions

E〈n,Ki〉 ⇒ A〈n,Ki〉
E〈abs e,Ki〉 ⇒ E〈e,K1 : Ki〉
E〈e1 � e2,Ki〉 ⇒ E〈e1,K2(e2,�) : Ki〉
A〈m, ε〉 ⇒ m
A〈n,K1 : Ki〉 ⇒ A〈|n|,Ki〉
A〈n1,K2(e2,�) : Ki〉 ⇒ E〈e2,K3(n1,�) : Ki〉
A〈n2,K3(n1,�) : Ki〉 ⇒ A〈n1 [�] n2,Ki〉

Figure 5. An abstract machine for arithmetic expressions

the equivalence of the D-CPS semantics and the abstract machine
can be formulated as follows: E〈e, ε〉 ↖ n iff E〈e, ε〉 ⇒∗ n, where
⇒∗ is the reflexive and transitive closure of the relation⇒.

Though the transformation from the D-CPS semantics into the
abstract machine-based semantics is trivial, the change is concep-
tually significant. The former is a big-step semantics, i.e., one that
proves judgments on a relation between expressions, stacks and the
final value. The latter is a small-step semantics, which describes
separate steps of computation.

Our next objective will be to enhance the STG semantics to
strengthen its computational properties and then to transform it into
an abstract machine using the presented method.

4. From the natural semantics to the STG
machine

In this section we present two additional semantics for the STG lan-
guage, the first introducing the stack of arguments for applications,
then refined by the introduction of environments instead of substi-
tutions. Then we use the method described in the previous section
to derive an abstract machine, which needs only a little make-up to
become the Spineless Tagless G-machine.

4.1 Argument stack introduction
An essential flaw of the STG language natural semantics is its treat-
ment of applications with too many arguments. Whenever an appli-
cation lacks some arguments (the APP1 rule is used) somewhere
in the derivation of the first premise of APP3, there may be more
arguments “waiting” in the second premise. Consider the following
program (for arbitrary e and p):

letrec f = λN x.e
g = λN .f

in g p

First, in APP3 g is evaluated in the first premise. g does not take
any arguments, and then f is evaluated to itself by APP1, because
there are not enough arguments to proceed (the argument p is
temporarily “forgotten” during the computation of the “argument
bottleneck” g). Only then, in the second premise of the APP3 rule,
the expression f p is created and evaluated.

To solve this problem, we introduce another entity to our judg-
ments, which we call the argument accumulator. The judgments
now take the form 〈Γ, e, pi〉 � 〈∆, w, qi〉, where pi and qi are

the accumulators—stacks containing variables (intuitively, point-
ers). The intuition is that whenever we see an application, we put
the arguments in the accumulator, and take them out when they
are needed for entering a closure. The argument-accumulating se-
mantics is given in Figure 6. The A-ACCUM rule is introduced. It
deals with applications by putting arguments in the accumulator.
All the other rules dealing with application are limited to applica-
tions to the empty tuple of arguments, while the “real” arguments
are now stored in the accumulator. The application rules APP2 and
APP3 from the previous semantics are now merged to form the
A-APP2.5 rule. It is possible because the spare arguments do not
need to be held back in the second premise of APP3, but they travel
up the derivation tree in the accumulator and can be accessed when
needed. Note that only constructors and applications to empty tuple
of arguments are now normal forms.

The argument-accumulating semantics is sound and complete
with respect to the STG language natural semantics.

PROPOSITION 3 (soundness and completeness). If
e is a closed expression, then:

1. (∅ : e ↓ ∆ : C pi) iff 〈∅, e, ε〉 � 〈∆, C pi, ε〉,
2. (∅ : e ↓ ∆ : p pi) iff 〈∅, e, ε〉 � 〈∆, p, pi〉.

4.2 Replacing substitution with environment
The next step toward an abstract machine is introduction of en-
vironments. This step is made simpler by the fact that in the
argument-accumulating semantics for well-formed configurations
we substitute only pointers for bound variables. Thus for each ex-
pression there will be an associated environment, which will bind
addresses in the heap (pointers) with the free variables of the ex-
pression.

The explicit environment semantics is shown in Figure 7. It
proves judgments of the form 〈Γ, e, σ, qi〉 � 〈∆, w, τ, ri〉, where
σ and τ are environments, i.e., partial functions from variables to
variables.

We will denote the set of all environments by ENV . Γ, ∆ and Θ
are heaps of a new kind: their domain are variables from the set X
and their codomain are closures, i.e., elements of lf×ENV . FV (l)
stands for the set of all free variables of the lambda form l. The
environment σ�X is a subset of an environment σ with its domain
trimmed to the set of variables X , σ[xi/pi] is an extension of σ by

〈Γ, C pi, ε〉 � 〈Γ, C pi, ε〉 A-CON

〈Γ, p, (p1 . . . pm q1 . . . qn)〉 � 〈∆, w, ri〉
〈Γ, (p p1 . . . pm), q1 . . . qn〉 � 〈∆, w, ri〉

m > 0 A-ACCUM

〈Γ{p 7→ λN x1 . . . xm.e}, p, (p1 . . . pn)〉 � 〈Γ, p, (p1 . . . pn)〉 where n < m A-APP1

〈Γ, e[x1/p1 . . . xm/pm], pm+1 . . . pn〉 � 〈∆, w, ri〉
〈Γ{p 7→ λN x1 . . . xm.e}, p, (p1 . . . pn)〉 � 〈∆, w, ri〉

m 6 n A-APP2.5

〈Γ, e, ε〉 � 〈∆, C qi, ε〉
〈Γ{p 7→ λU .e}, p, ε〉 � 〈∆⊕[p 7→ λN .C qi], C qi, ε〉

A-APP4

〈Γ, e, ε〉 � 〈∆{q 7→ λN x1 . . . xk xk+1 . . . xn.f}, q, (q1 . . . qk)〉
〈∆⊕[p 7→ λN xk+1 . . . xn.f [x1/q1 . . . xk/qk]], q, (q1 . . . qk p1 . . . pm)〉 � 〈Θ, w, ri〉

〈Γ{p 7→ λU .e}, p, (p1 . . . pm)〉 � 〈Θ, w, ri〉
A-APP5

〈Γ⊕[pi 7→ lf i[xi/pi]], e[xi/pi], ri〉 � 〈∆, w, si〉
〈Γ, letrec xi = lf i in e, ri〉 � 〈∆, w, si〉

pi ∈ POINTERS \Dom(Γ) A-LETREC

〈Γ, e, ε〉 � 〈∆, Ck pj , ε〉 〈∆, ek[xkj/pj], qi〉 � 〈Θ, w, ri〉
〈Γ, case e of Ci xij → ei , qi〉 � 〈Θ, w, ri〉

A-CASE

Figure 6. The argument-accumulating semantics

[xi/pi]. We also write e[σ] when we use the environment σ as a
substitution. Intuitively, the argument accumulator stores pointers.

The trimming of environments is not essential for the sound-
ness and completeness of the explicit environment semantics. We
decided to leave the trimming in the E-LETREC rule and in the
rules performing updates to indicate that closures in the heap are
an abstraction of real-life closures in a real-life heap (where the
closures contain only values for variables that are actually free in
the function).

To avoid confusion, we will now denote heaps used in the
argument-accumulating semantics by A-heap and heaps used in the
explicit environment semantics by E-heap.

DEFINITION 4. 1. An expression is env-well-formed iff the set of
all its variables (both bound and free) is a subset of BOUND .

2. An environment σ is env-well-formed iff it is a function from
BOUND to POINTERS .

3. An expression e is closed by an environment σ iff FV (e) ⊆
Dom(σ).

4. A E-heap Γ with Dom(Γ) ⊆ POINTERS is env-well-formed
iff for each closure (e, σ) in Γ both e and σ are env-well-formed
and e is closed by σ.

The correspondence between an A-heap and a E-heap is defined
as follows:

DEFINITION 5. An A-heap Γ and a E-heap Γ• are similar iff:

1. Dom(Γ) = Dom(Γ•),
2. Γ• is env-well-formed,
3. for any p ∈ POINTERS , if Γ(p) = (λνyi.ẽ)

and Γ•(p) = (λµxi.e, τ) then yi = xi, ẽ = e[τ]
and ν = µ.

By Γ• we will denote a E-heap that is similar to an A-heap Γ.

PROPOSITION 6 (soundness and completeness). If
e is a closed expression, then:

1. If 〈∅, e, ε〉 � 〈∆, w̃, qi〉 then there exist ∆•, w, τ s.t.
〈∅, e, ∅, ε〉� 〈∆•, w, τ, qi〉 and w̃ = w[τ].

2. If 〈∅, e, ∅, ε〉� 〈∆•, w, τ, qi〉 then there exists ∆ s.t. 〈∅, e, ε〉 �
〈∆, w[τ], qi〉.

4.3 Transformation to Defunctionalized CPS
We are now ready to perform the D-CPS transformation. It may
be done in exactly the same manner as described in Section 3, and
its result is shown in Figure 8. We call the resulting semantics the
D-CPS semantics.

The rules E-APP4 and E-APP5 give rise to two continuations,
but—since the rules for them are the same—we may merge them
into a single continuation UPD (for “update”). The continuation
for the E-Case is named ALT (for “alternatives”).

PROPOSITION 7 (soundness and completeness). For any Γ,
e, σ and pi, the following holds:
〈Γ, e, σ, pi〉� 〈∆, f, γ, qi〉 iff E〈Γ, e, σ, pi, ε〉 ↖ 〈∆, f, γ, qi〉.

4.4 From the D-CPS semantics to the abstract machine
The extraction of an abstract machine from the D-CPS semantics
may be done exactly as described in Section 3. The resulting D-CPS
machine is shown in Figure 9. The soundness and completeness is
trivial and may be formulated as follows:

PROPOSITION 8 (soundness and completeness). For any Γ,
e, σ and pi, E〈Γ, e, σ, pi, ε〉 ↖ 〈∆, f, γ, qi〉 iff

E〈Γ, e, σ, pi, ε〉
dcps
=⇒

∗
〈∆, f, γ, qi〉.

4.5 The STG machine
In this section we show that the D-CPS machine is in fact the Spine-
less Tagless G-machine in disguise and we compare the resulting
machine to the original formulation by Peyton Jones and Salkild.

4.5.1 Merging and splitting of rules
First, we notice that QA-APP4 is of the form

. . .
dcps
=⇒ E〈. . . C xi . . .〉

〈Γ, C xi, σ, ε〉� 〈Γ, C xi, σ, ε〉 E-CON

〈Γ, x, σ, (σx1 . . . σxm q1 . . . qn)〉� 〈∆, w, γ, ri〉
〈Γ, (x x1 . . . xm), σ, q1 . . . qn〉� 〈∆, w, γ, ri〉

m > 0 E-ACCUM

〈Γ{σx 7→ (λN x1 . . . xm.e, τ)}, x, σ, p1 . . . pn〉� 〈Γ, x, σ, p1 . . . pn〉 where n < m E-APP1

〈Γ, e, τ [x1/p1 . . . xm/pm], pm+1 . . . pn〉� 〈∆, w, γ, ri〉
〈Γ{σx 7→ (λN x1 . . . xm.e, τ)}, x, σ, p1 . . . pn〉� 〈∆, w, γ, ri〉

m 6 n E-APP2.5

〈Γ, e, τ, ε〉� 〈∆, C xi, γ, ε〉
〈Γ{σx 7→ (λU .e, τ)}, x, σ, ε〉� 〈∆⊕[σx 7→ (λN .C xi, γ�xi)], C xi, γ, ε〉

E-APP4

〈Γ, e, τ, ε〉� 〈∆{γy 7→ (λN x1 . . . xk xk+1 . . . xn.f, µ)}, y, γ, q1 . . . qk〉
〈∆⊕[σx 7→ (λN xk+1 . . . xn.f, µ[x1/q1 . . . xk/qk])], y, γ, q1 . . . qk p1 . . . pm〉� 〈Θ, w, ξ, ri〉

〈Γ{σx 7→ (λU .e, τ)}, x, σ, p1 . . . pm〉� 〈Θ, w, ξ, ri〉
E-APP5

〈Γ⊕[pi 7→ (lf i, τi[xi/pi]�FV(lf i))], e, σ[xi/pi], ri〉� 〈∆, w, γ, si〉
〈Γ, letrec xi = lf i in e, σ, ri〉� 〈∆, w, γ, si〉

pi ∈ POINTERS \Dom(Γ) E-LETREC

〈Γ, e, σ, ε〉� 〈∆, Ck yj , γ, ε〉 〈∆, ek, σ[xkj/γyj], qi〉� 〈Θ, w, ξ, ri〉
〈Γ, case e of Ci xij → ei , σ, qi〉� 〈Θ, w, ξ, ri〉

E-CASE

Figure 7. The explicit environment semantics

and Q-CON is the only rule of the form

E〈. . . C xi . . .〉
dcps
=⇒ . . .

Therefore we can replace QA-APP4 with the following:

A〈∆, C xi, γ, ε,UPD(p, ε) : Si〉
dcps
=⇒ A〈∆⊕[p 7→ λN .C xi (γ�xi)], C xi, γ, ε, Si〉

We can also split the HALT rule into two rules, one for each kind of
normal forms:

A〈Γ, C xi, σ, ε, ε〉
dcps
=⇒ 〈Γ, C xi, σ, ε〉 Q-HALT-CON

A〈Γ, x, σ, pi, ε〉
dcps
=⇒ 〈Γ, x, σ, pi〉 Q-HALT-APP

The expression on the left-hand side of the rule HALT-APP is an
application with zero arguments (x), since the only rule of the form
. . .

dcps
=⇒ A〈. . . w . . .〉 where w is an application is Q-APP1, in

which w has no arguments.
We will now merge the Q-APP1 rule with Q-HALT-APP and,

separately, with Q-APP5. We replace these three rules with the
following two:

E〈Γ{σx 7→ λN x1 . . . xm.e τ}, x, σ, p1 . . . pn, ε〉
dcps
=⇒ 〈Γ, x, σ, p1 . . . pn〉 where n < m,

E〈∆{γy 7→ λN x1 . . . xk xk+1 . . . xn.f µ}, y, γ, q1 . . . qk
UPD(p, p1 . . . pn) : Si〉 where k < n

dcps
=⇒ E〈∆⊕[p 7→ λN xk+1 . . . xn.f µ[x1/q1 . . . xk/qk]],

y, γ, q1 . . . qk p1 . . . pn, Si〉.

4.5.2 Introduction of the STG instructions
So far we have used two kinds of “instructions:” eval (E) and apply
(A), where E intuitively means that we are currently evaluating an
expression, and A means that we have just finished evaluating an
expression and we need an element from the stack of continuations
to go on.

After the merging of rules, we notice that the A instruction ap-
plies now only to the rules for constructors. We will dub such rules
return. We also split the E instruction into two: one for appli-
cation to zero arguments (we will dub such rules enter), and for
any other kind of expression (dubbed eval). We also notice that
now there is no rule for configurations of the form 〈eval,Γ, x, . . .〉,
where x is a single variable, therefore we abandon the side condi-
tionm > 0 in the Q-ACCUM rule, so that evaluating an application
to zero arguments means entering the closure it represents.

The changes in the machine are summarized in Figure 10. We
claim that this machine is the STG machine up to some minor de-
tails described in the following subsection. As evidence, in Fig-
ure 10 we put numbers next to names of the rules; these numbers
are the numbers of the transition rules in Peyton Jones and Salkild’s
original STG machine [11] (not all numbers are present since our
machine lacks primitive arithmetics and default alternatives in case
expressions, and the HALT rules are not featured in the original
STG machine).

4.5.3 Soundness and completeness
We can combine all the local soundness and completeness theorems
to formulate our main proposition. Recall that by ∆ and ∆• we
denote a pair of similar heaps (Definition 5).

PROPOSITION 9 (completeness). For a closed expression e, the
following hold:

1. If (∅ : e ↓ ∆ : p pi), there exist ∆•, x and σ such that
〈eval, ∅, e, ε, ε, ε〉 stg

=⇒
∗
〈∆•, x, σ, pi〉 and σx = p.

2. If (∅ : e ↓ ∆ : C pi), there exist ∆•, xi and σ such that:
〈eval, ∅, e, ε, ε, ε〉 stg

=⇒
∗
〈∆•, C xi, σ, ε〉 and σxi = pi.

PROPOSITION 10 (soundness). For a closed expression e, the fol-
lowing hold:

1. If 〈eval, ∅, e, ε, ε, ε〉 stg
=⇒

∗
〈∆•, x, σ, pi〉 then there exists ∆

such that (∅ : e ↓ ∆ : (σx) pi).

A〈Γ, w, σ, pi, ε〉 ↖ 〈Γ, w, σ, pi〉 D-HALT

A〈Γ, C xi, σ, ε, Si〉 ↖ 〈∆, w, γ, ri〉
E〈Γ, C xi, σ, ε, Si〉 ↖ 〈∆, w, γ, ri〉

D-CON

E〈Γ, x, σ, (σx1 . . . σxm q1 . . . qn), Si〉 ↖ 〈∆, w, γ, ri〉
E〈Γ, (x x1 . . . xm), σ, q1 . . . qn, Si〉 ↖ 〈∆, w, γ, ri〉

m > 0 D-ACCUM

A〈Γ, x, σ, p1 . . . pn, Si〉 ↖ 〈∆, w, γ, ri〉
E〈Γ{σx 7→ (λN x1 . . . xm.e, τ)}, x, σ, p1 . . . pn, Si〉 ↖ 〈∆, w, γ, ri〉

n < m D-APP1

E〈Γ, e, τ [x1/p1 . . . xm/pm], pm+1 . . . pn, Si〉 ↖ 〈∆, w, γ, ri〉
E〈Γ{σx 7→ (λN x1 . . . xm.e, τ)}, x, σ, p1 . . . pn, Si〉 ↖ 〈∆, w, γ, ri〉

m 6 n D-APP2.5

E〈∆⊕[p 7→ (λN .C xi, γ�xi)], C xi, γ, ε, Si〉 ↖ 〈Θ, w, ξ, si〉
A〈∆, C xi, γ, ε,UPD(p, ε) : Si〉 ↖ 〈Θ, w, ξ, si〉

DA-APP4

E〈Γ, e, τ, ε,UPD(σx, ri) : Si〉 ↖ 〈Θ, w, ξ, qi〉
E〈Γ{σx 7→ (λU .e, τ)}, x, σ, ri, Si〉 ↖ 〈Θ, w, ξ, qi〉

DE -APP4.5

E〈∆⊕[p 7→ (λN xk+1 . . . xn.f, µ[x1/q1 . . . xk/qk])], y, γ, q1 . . . qk p1 . . . pm, Si〉 ↖ 〈Θ, w, ξ, ri〉
A〈∆{γy 7→ (λN x1 . . . xk xk+1 . . . xn.f, µ)}, y, γ, q1 . . . qk,UPD(p, p1 . . . pm) : Si〉 ↖ 〈Θ, w, ξ, ri〉

DA-APP5

E〈Γ⊕[pi 7→ (lf i, τi[xi/pi]�FV(lf i))], e, σ[xi/pi], ri Si〉 ↖ 〈∆, w, γ, si〉
E〈Γ, letrec xi = lf i in e, σ, ri, Si〉 ↖ 〈∆, w, γ, si〉

pi ∈ POINTERS \Dom(Γ) D-LETREC

E〈Γ, e, σ, ε,ALT(Ci xij → ei , σ, qi) : Si〉 ↖ 〈Θ, w, ξ, ri〉
E〈Γ, case e of Ci xij → ei , σ, qi, Si〉 ↖ 〈Θ, w, ξ, ri〉

DE -CASe

E〈∆, ek, σ[xkj/γyj], qi, Si〉 ↖ 〈Θ, w, ξ, ri〉
A〈∆, Ck yj γ, ε,ALT(Ci xij → ei , σ, qi) : Si〉 ↖ 〈Θ, w, ξ, ri〉

DA-CASE

Figure 8. The D-CPS semantics

2. If 〈eval, ∅, e, ε, ε, ε〉 stg
=⇒

∗
〈∆•, C pi, σ, ε〉 then there exists

∆ such that (∅ : e ↓ ∆ : C pi).

4.5.4 Design differences
The original STG machine was designed, while ours was derived.
Still, the design choices we have made when introducing successive
semantics have a great impact on the final machine. In this section
we compare the STG machine from Figure 10 with the machine
described by Peyton Jones.

Stacks Our formulation of the STG machine has two stacks (ar-
gument accumulator and continuation stack), while the original
STG machine has three stacks (argument stack, return stack, and
update stack). The argument accumulator works exactly like the ar-
gument stack of the original STG machine, while the continuation
stack covers the return stack and the update stack. Our two-stack
machine can be simulated by a single-stack machine in exactly the
same way as the original STG machine [11], since the harmonics
of the stack operations in both machines are identical. However,
we find the formulation with two stacks particularly clean (as op-
posed to single stack), since the return-update stack may be seen
as a continuation (in particular, when we finish evaluation, we con-
tinue with an update), while the argument stack may not (we do not
use arguments with computed normal forms, instead we constantly
shuffle the argument stack during evaluation).

Instructions and environments The enter and return instruc-
tions are formulated slightly differently: here, enter takes a vari-

able x and an environment σ, and then enters the closure under the
address σx, while the original enter rule takes the address. Simi-
larly, return expects a constructor expression (a constructor name
and a tuple of variables) and an environment, while in the original
formulation it needs a constructor name and a tuple of addresses.
The equivalence of both approaches is almost trivial.

Problems with ill-typed expressions As pointed out by Encina
and Peña [4], the original STG machine might not behave as ex-
pected for some ill-formed programs. For example, consider the
following program (which would be ill-typed in any reasonable
strongly-typed language):

letrec id = λN x.x
c = λU .C
f = λU .case id of C → D

in f c

The original machine allocates the declarations, pushes the pointer
to c on the argument stack and continues with evaluation of f .
The case expression in f first computes id , which evaluates to C
(we have an argument for it on the argument stack!). The whole
expression finally evaluates to D.

Even though the STG language is not typed, the intuition is that
the evaluation should be broken in the case expression, since id
should not get its argument. Indeed, it is the case when the three
stacks of the original STG machine are simulated by a single stack,
where the argument is “guarded” by an element containing case
alternatives. This is a minor flaw, since for well-typed programs

A〈Γ, w, σ, pi, ε〉
dcps
=⇒ 〈Γ, w, σ, pi〉 Q-HALT

E〈Γ, C xi, σ, ε, Si〉
dcps
=⇒ A〈Γ, C xi, σ, ε, Si〉 Q-CON

E〈Γ, (x x1 . . . xm), σ, q1 . . . qn, Si〉
dcps
=⇒ E〈Γ, x, σ, (σx1 . . . σxm q1 . . . qn), Si〉 where m > 0 Q-ACCUM

E〈Γ{σx 7→ (λN x1 . . . xm.e, τ)}, x, σ, p1 . . . pn, Si〉
dcps
=⇒ A〈Γ, x, σ, p1 . . . pn, Si〉

n < m Q-APP1

E〈Γ{σx 7→ (λN x1 . . . xm.e, τ)}, x, σ, p1 . . . pn, Si〉
dcps
=⇒ E〈Γ, e, τ [x1/p1 . . . xm/pm], pm+1 . . . pn, Si〉

m 6 n Q-APP2.5

A〈∆, C xi, γ, ε,UPD(p, ε) : Si〉
dcps
=⇒ E〈∆⊕[p 7→ (λN .C xi, γ�xi)], C xi, γ, ε, Si〉 QA-APP4

E〈Γ{σx 7→ (λU .e, τ)}, x, σ, ri, Si〉
dcps
=⇒ E〈Γ, e, τ, ε,UPD(σx, ri) : Si〉 QE -APP4.5

A〈∆{γy 7→ (λN x1 . . . xk xk+1 . . . xn.f, µ)}, y, γ, q1 . . . qk,UPD(p, p1 . . . pm) : Si〉
dcps
=⇒ E〈∆⊕[p 7→ (λN xk+1 . . . xn.f, µ[x1/q1 . . . xk/qk])], y, γ, (q1 . . . qk p1 . . . pm), Si〉

QA-APP5

E〈Γ, letrec xi = lf i in e, σ, ri, Si〉
dcps
=⇒ E〈Γ⊕[pi 7→ (lf i, τi[xi/pi]�FV(lf i))], e, σ[xi/pi], ri, Si〉

pi ∈ POINTERS \Dom(Γ) Q-LETREC

E〈Γ, case e of Ci xij → ei , σ, qi, Si〉
dcps
=⇒ E〈Γ, e, σ, ε,ALT(Ci xij → ei , σ, qi) : Si〉 QE -CASE

A〈∆, Ck yj , γ, ε,ALT(Ci xij → ei , σ, qi) : Si〉
dcps
=⇒ E〈∆, ek, σ[xkj/γyj], qi, Si〉 QA-CASE

Figure 9. The D-CPS abstract machine

the machine with one stack behaves exactly like the machine with
three stacks.

Our formulation avoids this problem by storing the argument
stack in the continuation when evaluating the inner expression in
the DE -CASE rule. The original STG machine behavior would be
obtained if we leave the argument stack for the first premise in the
argument-accumulating semantics in the A-Case rule:

〈Γ, e, qi〉 � 〈∆, Ck pj , ri〉 〈∆, ek[xkj/pj], ri〉 � 〈Θ, w, si〉
〈Γ, case e of Ci xij → ei , qi〉 � 〈Θ, w, si〉

An alternative update rule The APP5 rule from our natural se-
mantics (and its successors: A-APP5, E-APP5 and S-APP1APP5)
are problematic to implement in a compiler since we cannot create
new expressions on the fly. Moreover, updating the heap as follows:

∆⊕[p 7→ (λN xk+1 . . . xn.f, µ[x1/q1 . . . xk/qk])]

would in practice mean modifying the expressions because envi-
ronments are precomputed, i.e., each variable in an expression is
statically bound to the n-th element on the stack, the n-th slot of
the current closure, or a register. One solution is to update the heap
not with the partially applied lambda-form, but with the computed
normal form:

Γ : e ↓ ∆{q 7→ λN x1 . . . xk xk+1 . . . xn.f} : q q1 . . . qk
∆⊕[p 7→ λN . q q1 . . . qk] : q q1 . . . qk p1 . . . pn ↓ Θ : w

Γ{p 7→ λU .e} : p p1 . . . pn ↓ Θ : w

Now it is sufficient to create code for partial applications for all
possible number of arguments. This approach is used in the original
formulation of the STG machine as an alternative update rule. 1

1 The original STG rule to which we would come via all our transformations
is called 17a.

4.6 Extensions
An advantage of using a constructive derivation method for obtain-
ing an abstract machine from the underlying natural semantics is
its scalability. Any changes in the latter smoothly ensue in the ma-
chine.

A useful example of such an operation is adding primitive (un-
boxed) arithmetics. We need to include numerical literals and oper-
ators as base constructions in the language, and to extend the STG
natural semantics with a few intuitive rules, with no need to alter
any of the original rules. If careful when introducing environments,
we can augment the machine with a primitive arithmetics similar to
the one presented in the original papers [11, 12].

In the same way we can add other concepts that are easy to
express in the natural semantics, but may not be that trivial in the
machine, like (monadic) input/output, or the Haskell seq operator.

5. Formalization in Coq
One of our main contributions is a formalization of the deriva-
tion of the STG machine in the Coq proof assistant. The com-
plete source code with documentation can be found at: http:
//www.ii.uni.wroc.pl/~dabi/Publications/Haskell10/
stg-in-coq/. The development is about 7500 lines of code long
(ca. 100 definitions and 230 theorems).

The STG language is formalized as a Coq datatype. Variables
are represented either by an abstract type atom, which models the
free variables of an expression, or as de Bruijn indices for bound
variables (they correspond to the POINTERS and BOUND sets,
respectively). We use de Bruijn notation to handle all three kinds
of binders: arguments in lambda-forms, parameters of constructors
in alternatives, and names of lambda-forms in letrec definitions.
The Coq definition reads as follows:

〈return,Γ, C xi, σ, pi, ε〉
stg

=⇒ 〈Γ, C xi, σ, pi〉 S-HALT-CON

〈enter,Γ{σx 7→ (λN x1 . . . xm.e, τ)}, x, σ, p1 . . . pn, ε〉
stg

=⇒ 〈Γ, x, σ, p1 . . . pn〉 n < m S-APP1HALT

〈eval,Γ, C xi, σ, ε, Si〉
stg

=⇒ 〈return,Γ, C xi, σ, ε, Si〉 S-CON (5)

〈eval,Γ, (x x1 . . . xm), σ, q1 . . . qn, Si〉
stg

=⇒ 〈enter,Γ, x, σ, (σx1 . . . σxm q1 . . . qn), Si〉 S-ACCUM (1)

〈enter,∆{γy 7→ (λN x1 . . . xk xk+1 . . . xn.f, µ)}, y, γ, q1 . . . qk,UPD(p, p1 . . . pm) : Si〉
stg

=⇒ 〈enter,∆⊕[p 7→ (λN xk+1 . . . xn.f, µ[x1/q1 . . . xk/qk])], y, γ, (q1 . . . qk p1 . . . pm), Si〉
k < n S-APP1APP5 (17)

〈enter,Γ{σx 7→ (λN x1 . . . xm.e, τ)}, x, σ, p1 . . . pn, Si〉
stg

=⇒ 〈eval,Γ, e, τ [x1/p1 . . . xm/pm], pm+1 . . . pn, Si〉
m 6 n S-APP2.5 (2)

〈return,∆, C xi, γ, ε,UPD(p, ε) : Si〉
stg

=⇒ 〈return,∆⊕[p 7→ (λN .C xi, γ�xi)], C xi, γ, ε, Si〉 SA-APP4CON (16)

〈enter,Γ{σx 7→ (λU .e, τ)}, x, σ, ri, Si〉
stg

=⇒ 〈eval,Γ, e, τ, ε,UPD(σx, ri) : Si〉 SE -APP4.5 (15)

〈eval,Γ, letrec xi = lf i in e, σ, ri, Si〉
stg

=⇒ 〈eval,Γ⊕[pi 7→ (lf i, τi[xi/pi]�FV(lf i))], e, σ[xi/pi], ri, Si〉
pi ∈ POINTERS \Dom(Γ) S-LETREC (3)

〈eval,Γ, case e of Ci xij → ei , σ, qi, Si〉
stg

=⇒ 〈eval,Γ, e, σ, ε,ALT(Ci xij → ei , σ, qi) : Si〉 SE -CASE (4)

〈return,∆, Ck yj , γ, ε,ALT(Ci xij → ei , σ, qi) : Si〉
stg

=⇒ 〈eval,∆, ek, σ[xkj/γyj], qi, Si〉 SA-CASE (6)

Figure 10. The STG machine

Parameter atom : Set.
Inductive var : Set :=
| Index : nat -> var
| Atom : atom -> var.

Inductive expr : Set :=
| App : var -> list var -> expr
| Constr : constructor -> list var -> expr
| Letrec : list lambda_form -> expr -> expr
| Case : expr -> list alt -> expr
with lambda_form : Set :=
| Lf : upd_flag -> nat -> expr -> lambda_form
with alt : Set :=
| Alt : constructor -> nat -> expr -> alt.

The nat arguments of constructors Lf and Alt determine how
many arguments a lambda-form or alternative binds. The defini-
tions in Letrec are enumerated top-down. For example, consider
the following expression:

letrec f = λNx y. f g x y
g = λNx. x

in f g

The corresponding Coq term is:

Letrec
[Lf Dont_update 2

(App (Index 2) [Index 3, Index 1, Index, 0]),
Lf Dont_update 1

(App (Index 0) nil)]
(App (Index 0) [Index 1])

well-formed terms we consider terms that are locally closed, i.e.,
in which none of the variables is an index exceeding the number
of surrounding binders (which corresponds to Definition 1). In

the semantics with environments we allow a variable to be an
exceeding index if it is in the domain of the associated environment
(as in Definition 4). Hence, our approach is not “locally nameless”,
as we work on free de Bruijn indices.

The natural semantics and abstract machines are defined as
inductive predicates. Heaps are represented by partial functions, for
example the type of A-heaps is:

var -> option lambda form.

The type of the predicate representing the natural semantics for the
STG language is:

heapA -> expr -> heapA -> expr -> Prop,

while the type of transitions of the STG machine is:

configuration -> configuration -> Prop,

where configuration is equal to:

instruction * heapB * expr * env * vars * stack.

The soundness and completeness theorems for each semantics
are generalized to obtain stronger induction hypothesis, and proven
by the standard Coq structural induction, or—if necessary—by a
well-founded induction on the height of derivations of judgments.

6. Related work
The idea of deriving lazy machines from natural semantics was
first proposed by Sestoft [15]. He used an informal method to
change rules for constructing derivations in natural semantics into
rules for constructing a sequence of machine states. Then Mountjoy
suggested that the same method for an extended semantics may lead
to a machine that is closer to STG, and gave a proof of equivalence
of some more elaborate abstract machines (but still far from the

STG machine) [10]. The work of Mountjoy was continued by
Encina and Peña [4–6]. They used similar methods to invent STG-
like machines and gave detailed proofs of their equivalence with an
initial natural semantics.2

Though our approach may at first seem similar to the Encina
and Peña’s, it is based on different principles. To underscore the
differences, we will examine the four main concepts: languages,
semantics, derivations and abstract machines.

Languages In their articles, Encina and Peña introduce two new
languages, both bearing the same name Fun. While neither of them
is very different from STG, they were designed to fit the sole
purpose of proving equivalence of a semantics and a machine.

Our approach, in turn, is to take the well-known STG language
exactly as introduced by Peyton Jones, and give it a natural seman-
tics, which is an interesting challenge even outside the context of
deriving abstract machines. Nevertheless, starting with the natural
semantics for the STG language was the key to obtaining the STG
machine.

Semantics In our work, semantics for letrec and case expressions
are similar to Encina and Peña’s. They follow the approach of
Launchbury and Sestoft. The key difference is in the treatment of
multiple λ-binders and partial applications.

The two semantics for both Fun languages consequently eval-
uate partial applications by allocation in the heap. They allocate
either a primitive heap element pap, or the lambda-form with the
actual arguments substituted by the corresponding prefix of formal
arguments. Though in the machine this allocation may be fused
with an update, we do not find such solution elegant when concern-
ing natural semantics.

Encina and Peña admit that their semantics, just as their lan-
guages, are tailored for the transformation into a particular ma-
chine. Our ambition, on the other hand, is to propose a more general
and intuitive natural semantics, ready for any other formal reason-
ing, like preservation of semantics by program transformations in
optimizing compilers.

We are also the first to address update flags in the semantics,
which, if assigned correctly by a static program analysis, lead to a
boost of performance.

Derivations Encina and Peña present their machines, but they do
not explain how they invented them. They only refer to Sestoft’s
approach, who used his intuition of flattening derivation trees into
sequences of machine transitions. This is hardly a derivation under-
stood as a transformation from one entity (in this case a semantics)
into another (an abstract machine) using a well-defined method.
Moreover, their machines do not implement exactly the same eval-
uation model as their semantics (for example, S3 from [6] allocates
more closures then the corresponding machine).

Our machine is a result of a method strongly inspired by a well-
known transformation of programs, which preserves most impor-
tant properties, including the evaluation model.

Abstract machines Both Fun languages are different than STG,
thus their STG-like machines differ from the original STG ma-
chine. The most striking difference is the lack of enter, eval and
return instructions which are STG-tuned incarnations of the eval
(E) and apply (A) instructions arising naturally from the D-CPS
transformation.

2 In [6] Encina and Peña present two machines: push/enter and eval/apply.
We are interested only in the former, since it resembles the original STG
machine presented in [11].

7. Conclusion and future work
We have presented the natural semantics underlying the Spineless
Tagless G-machine as evidenced by Danvy et al.’s functional cor-
respondence between evaluators and abstract machines. Thus, we
have shown that the functional correspondence, when lifted to the
level of operational semantics is still effective and furnish provably
correct transformations of non-trivial natural semantics into non-
trivial abstract machines, without the need to pull the latter out of
thin air. In particular, we have shown that the STG machine, though
originally obtained by refining simpler machines (the G-machine
and the Spineless G-machine) is just another incarnation of the nat-
ural semantics we have introduced.

Our main result, i.e., the equivalence between the natural se-
mantics and the STG machine, has two facets. First, it provides a
proof of correctness of the STG machine with respect to the nat-
ural semantics that, in fact, is a generalization of the commonly
accepted and well-understood semantics by Sestoft. From the com-
piler’s perspective, this result can be seen as a formal justification of
the compilation process of the language Haskell: an abstract func-
tional language is given provably correct low-level semantics that
facilitates imperative code generation [11].

Symmetrically, we provide a proof of correctness of our natural
semantics with respect to the well-known operational semantics of
Haskell given by the STG machine, which ensures that one can
safely reason about the operational aspects of Haskell code using
the natural semantics instead of the abstract machine.

Our ultimate goal is a Coq-certified compiler for a subset of
Haskell and the present article is a first step towards it. Having
an abstract machine, STG expressions can be easily compiled into
a set of imperative instructions, which change the global state to
mimic the execution of the STG machine. Formalized and verified
in Coq, this process can be automatically transformed into a work-
ing compiler by the Coq program extraction mechanism (in fact,
it has been done as the first author’s MSc thesis). Combined with
the result from this article, it yields a compiler to a virtual machine
with respect to the natural semantics.

Acknowledgments
We would like to thank Małgorzata Biernacka and Filip Sieczkowski
for numerous discussions and useful comments on this work as
well as Jeremy Gibbons and the anonymous reviewers for helping
us improve the presentation.

References
[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.

A functional correspondence between evaluators and abstract
machines. In Miller [9], pages 8–19.

[2] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between call-by-need evaluators and lazy abstract
machines. Information Processing Letters, 90(5):223–232, 2004.

[3] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In
Harald Søndergaard, editor, Proceedings of the Third International
ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP’01), pages 162–174, Firenze, Italy, September
2001. ACM Press.

[4] Alberto de la Encina and Ricardo Peña. Formally deriving an STG
machine. In Miller [9], pages 102–112.

[5] Alberto de la Encina and Ricardo Peña. Proving the correctness of
the STG machine. In Ricardo Pena and Thomas Arts, editors, IFL,
volume 2670 of Lecture Notes in Computer Science, pages 88–104.
Springer, 2003.

[6] Alberto de la Encina and Ricardo Peña. From natural semantics to
C: A formal derivation of two STG machines. Journal of Functional
Programming, 19(1):47–94, 2009.

[7] Haskell homepage: http://www.haskell.org.
[8] John Launchbury. A natural semantics for lazy evaluation. In

Susan L. Graham, editor, Proceedings of the Twentieth Annual ACM
Symposium on Principles of Programming Languages, pages 144–
154, Charleston, South Carolina, January 1993. ACM Press.

[9] Dale Miller, editor. Proceedings of the Fifth ACM-SIGPLAN
International Conference on Principles and Practice of Declarative
Programming (PPDP’03), Uppsala, Sweden, August 2003. ACM
Press.

[10] Jon Mountjoy. The spineless tagless G-machine, naturally. In Paul
Hudak and Christian Queinnec, editors, Proceedings of the 1998 ACM
SIGPLAN International Conference on Functional Programming,
SIGPLAN Notices, Vol. 34, No. 1, pages 163–173, Baltimore,
Maryland, September 1998. ACM Press.

[11] Simon L. Peyton Jones. Implementing lazy functional languages
on stock hardware: The spineless tagless G-machine. Journal of
Functional Programming, 2(2):127–202, 1992.

[12] Simon L. Peyton Jones and Jon Salkild. The spineless tagless
G-machine. In Joseph E. Stoy, editor, Proceedings of the Fourth
International Conference on Functional Programming and Computer
Architecture, pages 184–201, London, England, September 1989.
ACM Press.

[13] John C. Reynolds. Definitional interpreters for higher-order pro-
gramming languages. In Proceedings of 25th ACM National Con-
ference, pages 717–740, Boston, Massachusetts, 1972. Reprinted in
Higher-Order and Symbolic Computation 11(4):363–397, 1998, with
a foreword [14].

[14] John C. Reynolds. Definitional interpreters revisited. Higher-Order
and Symbolic Computation, 11(4):355–361, 1998.

[15] Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional
Programming, 7(3):231–264, May 1997.

