
Reverse authentication in financial transactions
A.W. Roscoe,

Oxford University Computing Laboratory

Bill.Roscoe@comlab.ox.ac.uk

Chen Bangdao
Oxford University Computing Laboratory

Bangdao.Chen@comlab.ox.ac.
uk

L.H. Nguyen
Oxford University Computing Laboratory

Long.Nguyen@comlab.ox.ac.uk

ABSTRACT
New families of protocol, based on communication over human-
based side channels, permit secure pairing or group formation in
ways that no party has to prove its name, which is particularly
suitable for authentication on mobile phones. Rather, individuals
are able to hook up devices in their possession to others that they
can identify by context. We examine a model in which, to prove
his or her identity to a party, the user first uses one of these
“human-interactive security protocols” or HISPs to connect to it.
Thus, when authenticating A to B, A first authenticates a channel
she has to B: the reverse direction. This can be characterised as
bootstrapping a secure connection using human trust. We find that
this offers new opportunities for convenient and secure electronic
payment.

Keywords
HISP, Authentication, Reverse

1. Introduction
This is a paper about trust, security and identity management in
the world of pervasive computing.
Over the past few years a number of what we might term “Human
interactive security protocols”, or HISPs, have been developed
that permit one or more humans to bootstrap strong security
between two or more devices based on the non-fakeable
transmission of a minimal quantity of data between them to
supplement a normal insecure communications medium. Because
the humans know between which systems they have
communicated this data (typically a few characters long and
which we will refer to as a check-string) they know which
systems are connected securely. There is an important difference
between these protocols and those that bootstrap security from
passwords, namely that the check-string does not have to be
secret.
This class of protocols allows two or more parties who trust one
another, or a single party who trusts one or more others, to
bootstrap a secure network using no more than an ability to
communicate a small number of bits over the human-based, non-
fakeable channel. Another way of looking at them is that if the
human(s) involved create an insecure channel between their
devices, and already have an unfakable way of passing a small
amount of information amongst them, then they can either turn
the insecure channel into a secure one or discover the presence of
an intruder who is trying to subvert it.
The best of these protocols, for example those of [2, 4–7, 8, 9],
enable these humans to be assured that there is no attack that
allows an intruder to get the system into an insecure state (where
the connections established are other than what the humans

believe) with probability meaningfully greater than 2−b where b is
the number of bits in the check-string. In addition, to have such a

chance, the attacker will have 1−2−b chance of his presence being
revealed by the difference between the strings. In particular, these
protocols prevent any combinatorial searching by the intruder
improving its chance of success.
They thus provide a convenient way to bootstrap security that can
be used in a wide variety of ways, in contexts both where all the
devices are co-located and where they are not, and where the
authentication is provided to all devices or asymmetrically to one,
because only that device’s user has observed the equality required
of the check-strings. Similarly they can be used in convenient
consumer devices or as part of the security process in a more
elaborate type of system.
In this paper we try to understand the sort of authentication given
by HISPs and the uses to which it can be put. We look in
particular at a case study immediately relevant to everyday life:
paying for goods via some electronic transaction in which the
payer has to prove their identity to be allowed to use the account,
and show how the model it gives for authenticating the payer can
be adapted to other applications.
We next give a summary of the challenges that HISPs and this
integration with identity management bring to the formal
modelling of security, noting that the concepts of trust and
authentication are closely intertwined here.
We briefly describe some of the prototype implementations that
we have created.

2. Example protocol
The following protocol was designed and implemented by the
authors as the first phase of a larger one designed to perform a
financial transaction securely. It is closely based on the SHCBK
protocol of [4, 5]. Because of its intended application we call the
two parties C (customer) and M (merchant). Before the protocol is
run these two parties have no shared knowledge that helps them
achieve security, except, naturally, the ability to run the protocol
itself.
In order to run the protocol each party must create two values of
sufficient strength to achieve the cryptographic goals they have:

• Each party creates a hash, or digest key: we call these
hkC and hkM. These are needed to randomise the final

Second International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
May 17, 2010, Helsinki, Finland

check-string and we assume these are in the range 160-
511 bits1.

• C creates a session key k whose role is as set out above.
This would normally be in the range 120–160 bits, but it
could be increased to 512 bits (input width of the basic
hash function) without penalty.

• M either creates freshly, or re-uses, an asymmetric key
pair (pk,sk). There is no need for the “public” key pk to
be certified. The length of these keys will depend on the
desired level of security2, the amount of available
computing power, and the cryptosystem in use.

The protocol also involves a standard cryptographic hash function
which possesses 3 main properties [3]: collision resistance, 2nd
preimage resistance and inversion resistance. It depends heavily
on the following property of such a function:

 If a party A has knowledge of hash(V) for some
value V, then while A cannot constructively
compute V other than with infinitesimal probability,
it can always check in future whether a value
alleged to be V actually is V.

In this state A is committed to V but without knowledge of V. In
the first pair of steps of the protocol, C and M both commit each
other without knowledge to values. The only one of the four
parameters hkC, hkM, pk and k communicated openly is M’s

public key pk:

1. C ⎯→ M::hash(0:hkC),hash(k)

2. M ⎯→ C::hash(1:hkM),pk

When these messages have been received, both parties are
committed to values of all four parameters, but each lacks some
knowledge. Thanks to the communication channel being insecure,
they have no reason to believe that they are committed to the
same values of the parameters – but of course they hope they are!
Importantly, no intruder can know all four of the original (as
opposed to hashed) values as created by the appropriate one of A
and B.
The tags 0: and 1: are added to the hash keys hkC and hkM to

ensure that the contents of these hashes can be distinguished as
coming from a customer or merchant. This avoids the intruder
reflecting hkC back to C as a supposed hkM in a way that C would

accept. While this attack would not allow the intruder to break the
protocol, it makes the analysis more complex – hence the tags.
Even if the intruder has participated in the protocol and
impersonated one or both of the parties, it does not know the
complete set of parameter values to which either C or M is

1 The upper bound takes account of the common hash block size

of 512 and the extra initial bit inserted by the protocol.
2 The key certainly needs to be strong enough so that there is no

realistic chance of it being broken during the life of the session
being established. Further strength is required to ensure that the
contents of that session remain secret after it ends.

committed. This is because no-one except C knows its value of
hkC, and similarly for M and hkM.

The protocol now proceeds:

3. C ⎯→ M::hkC,{k}pk

4. M ⎯→ C::hkM

The second part of Message 3 is to tell C the actual value of the
session key, which is now checked against the hash. In fact this
transmission can be delayed until after the check-string
comparison if the computation of the public encryption {k}pk is

time consuming on a low-powered customer device.
It is the transmission of the unencrypted keys hkC and hkM at this

stage that represents the core of the protocol. Firstly, of course,
the participants must check that these are the same values that
were represented in Messages 1 and 2. If not, the run is
abandoned. Secondly, they (and anyone else who has been
listening in) can compute a value for

 digest(hkC⊕hkM,(pk,hash(k)))

where ⊕ is bit-wise exclusive or and (X,Y) is an ordered pair. The
protocol completes successfully if C (or C and M) are convinced
that their two versions of the value – the check-string of this
protocol – are equal: in becoming convinced they must not use a
channel which can be “spoofed” by an intruder. Typically one
will read their value to the other, or C will read M’s value directly
and compare it with her own. Whichever of them knows that the
two values are equal can conclude that the link is authenticated.
Typically this is either C or both of them.

3. Supporting a financial transaction
In many cases such as a financial transaction over the Internet or
with a vending machine, or someone seeking to prove his identity
and gain access to some service via a machine, there will only be
one human present to perform the check of the equality of the
digests or similar value used by other HISPs.
For high integrity applications involving a potentially complacent
human in this way, there is a strong argument for having the
human transfer a value manually rather than simply check that
two displayed values are equal. So in fact the device actually
performs the comparison – between the one its user has copied
from M and the one it has computed itself. There are still some
interesting variants possible on this. In the following, we will split
the entity C, representing the combination of a human customer
Alice and her security device SD, into these two parts.

CA Most obviously and probably easiest in many
applications: Alice reads a value from M and types it into
her own device SD.

CS As a variant on this: when SD says that the two values
agree, Alice presses a button on M to signal this
agreement.

Second International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
May 17, 2010, Helsinki, Finland

MA Alice reads the value from her SD and types it into M. In
this case it is virtually certain that M will signal to the
human whether the two values agree. This information
may or may not be passed explicitly by Alice on to SD.
(iii) will be the case where it is not.

MS This is the case like (iii) but where this information is
transmitted by Alice to SD.

The pairs CA and MA, and CS and MS are clearly mirror images
of each other: the first letter tells us who does the comparison in a
method, and the second tells us whether the resulting
authentication is asymmetric or symmetric. In CA and MA only a
one-directional empirical channel is used between SD and M, in
opposite directions. In CS and MS, both sides are assured of
equality provided our human is trustworthy and reliable.
Note that in cases CA and MA one or other device proceeds
without knowing that the check-strings actually agreed.
Nevertheless these two cases are potentially useful: for example
CA can be used when everything confidential and of value that
passes through the transaction moves in the direction from SD to
M.
The most obvious case of this is Alice using SD to pay M for
some goods and services: M wants to get paid but does not care
that much who pays him, whereas Alice only wants to pay the
merchant to which she has an obligation to pay.
Notice that this reasoning does not apply when the merchant is
passing value to a customer. Imagine that the merchant wants to
pass value to the customer who is standing at a particular till, is
on a particular phone call etc. If the protocol is run in mode MA it
gains the assurance that it is this person’s device that is
connecting to it, since only she was in a position to make the
empirical communication. In practice, however, this situation
might well require the customer to pass (e.g. ID) information to
the merchant that she would not want to give to anyone, and it
would be better for Alice not to need to learn a very different
protocol for a relatively unusual case. Therefore a protocol giving
a symmetric outcome would probably be used here, in particular
CS with a warning to Alice about the consequences of pushing the
final button incorrectly.
One way of more-or-less ensuring that she does behave correctly
and not push the button without knowing that the digests agree is
to have both sides compute a bit from the protocol parameters,
and use it to have M only tell Alice which of two buttons to press
once it knows the digests/check-strings agree. The essential thing
here is making the customer look at the device that has been able
to check equality before confirming anything to the other one.
We might note that it will almost always be Alice who identifies
that M is what she wants to connect SD to, and that the connection
process itself gives neither party any proof of the identity of the
other. Therefore, at the end of the HISP run:

• Unless MA is used, Alice knows that C is connected to
M, as identified by being at the other end of the empirical
channel.

• Unless CA has been used, M “knows” that the party it is
connected to is the one at the other end of its empirical
channel.

• Both know they have a shared secret symmetric key with
the other, that can be used to secure and authenticate
communication between them in a subsequent session.

The connection above has very little in common with the way that
most personal financial transactions are performed, at least those
involving banks3. For the current methods for doing these,
whether manual (e.g. typing details from a credit card into an
https site) or electronic (e.g., logging in to Internet banking; using
Chip-and-PIN terminals at point of sale) are designed simply to
authenticate the payer (Alice and/or her credit card) to the payee
and/or bank. Typically also, traditional methods of payment give
the payee a great deal of sensitive information about the payer:
note that anyone who has been paid on-line with a particular card
has the information he (or anyone to whom it is unwittingly
compromised) to pay for goods with that same credit card; and
that nothing proves to Alice that the Chip-and-PIN terminal in her
hands will not clone her card and remember her PIN.
What the above protocol does is allow Alice to connect her SD to
the particular merchant she has been shopping at, whether in
person, on-line, or on the telephone. Clearly this authentication is
in the reverse direction to the usual sort as described in the
preceding paragraph. That explains the title of this paper: it can be
viewed as reverse authentication.
What we have allowed Alice to do is to create a secure electronic
connection with the merchant that she wants to pay, and
furthermore where she is assured that the connection has been
made within the context of the particular transaction for which
she is willing to pay.
This electronic connection will allow a great deal more
information to pass between her device (card/SD) that is
otherwise possible unless she puts her card into the hands of the
payee, or at all on-line.
What the reverse authentication achieves, in summary, is not to
replace the usual ID check on Alice and her device, but to make it
potentially more thorough, particularly on-line, easier for Alice
(because in most cases she will have to do less), and to remove
the danger of Alice’s secrets getting compromised. We will
demonstrate this below.
We believe that beginning a financial transaction with the HISP
authenticating merchant to customer makes sense in all of the
following cases.

(A) Electronic cash: the customer has some device with her
that contains value, and she wishes to transfer some of
that value to the merchant. It might well be the case that
she wishes to do so anonymously.

(B) Credit card or cheque: the customer wishes to give the
merchant the right to take some sum of money from her
account. Note that, although the mechanisms are rather
different, both conventional credit card transactions and
paper cheques have this logical effect.

(C) Electronic banking: the customer wishes to give her bank
a direct instruction to pay the money into the merchant’s
account. The logical difference with (B) is that the bank

3 As we will see, good old fashioned cash transactions resemble

our connection.

Second International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
May 17, 2010, Helsinki, Finland

must be involved directly, and the merchant never holds a
token that is good for money.

This first dimension influences the way the payment proceeds
after a secure link has been established, and how identity issues
arise. (A) is different from the others because our customer will
not have to prove her identity (Alice) to anyone, while in the
other two it is desirable4 that she (separately from her device)
proves that she is entitled to use the account by the entry of a
secret PIN or biometrics.
In each of these we imagine a variety of payment situations,
which influence how the authenticated connection is made.

(i) The customer is sitting at a desk and shopping on-line.
Here we assume that the customer and the banking
system do not trust the PC except possibly through an
https windows displayed on browsers. [This is not to say
that this last mechanism is 100% secure, but since e-
commerce and digital banking rely on it currently, it
seems reasonable that we can also provided we do not
increase the risks inherent from using it in present
methods5.]

(ii) The customer is trying to pay the merchant in person: in
present technology she would hand over cash or credit
card, or place her card in some reader presented by the
merchant. Here, the merchant might be a machine, or
might be a manned till.

(iii) The customer is shopping over the mobile phone.

In case (C) (mobile banking) we do not concern ourselves with
how the secure connection between phone and bank is made,
since we can reasonably assume that there is a long-term key
which achieves this. In all cases we assume that a HISP is to be
used to connect the phone to the merchant that is to be paid,
thereby proving to Alice that she is paying the correct entity
within the correct transaction.
Except in the case where the paying device SD is the same
telephone over which the transaction is being conducted, we need
to get some connection between SD and merchant established to
that it can be authenticated with a HISP. In technology used for
everyday payments, both of these phases need to be very easy.
One advantage of using a HISP is that the customer’s view of the
second phase can be the same in every case. The following sets
out a few options for making the initial insecure connection in the
on-line and point-of-sale cases.
In the on-line case there are two main options for this connection:
the first of these is using the home PC on which the shopping is
being done as a link between SD and merchant. The link could
then be made by wire (e.g. USB), wireless (e.g. WiFi or
Bluetooth) or infrared. None of these is technologically difficult,

4 We note that in some present credit card transactions, especially

on-line ones, she does not have to do this.
5 In fact we argue that our methods provide a higher degree of

security than the traditional use of https sites, since we are only
relying on the communication through it being authenticated,
not secret. Thus neither screen-shot grabbing nor key-sniffing
would benefit an attacker.

and the session on the browser can instruct the PC about where to
route the communications.
The second is using telephony to make the connection: this may
be the only option when Alice is forbidden to connect any
personal device to the PC. The only problem then is giving one or
other side of the connection (phone=SD or merchant) the
information required to connect telephonically to the other. This
will be the combination of a telephone number and a (probably
one-time) token that identifies the particular transaction. The
merchant’s number can be transferred to the phone from the PC
by (e.g.) Bluetooth, but of course this would fall foul of the no-
connection rule if this applied. The user’s number can be pre-
loaded into the browser (and there are strong arguments for this
being a separate number from the one used for ordinary phone
functions), and this sent together with a one-time token to the
merchant when a button on the payment site is pressed.
In the point-of-sale case, the same two options (local and
telephonic) connection apply. A literally wired local connection is
unlikely, but it would be possible to place a phone into a special
cradle. In that case it is probably not necessary to use a HISP,
since the phone is obviously connected to the merchant.
Similarly, if a connection is bootstrapped from a physical
connection that Alice can see, this is still probably not necessary,
and the same may apply for low-value transactions if it is
bootstrapped from very short range radio as used for example, in
Oyster cards [1], provided this generates a session key. A HISP
will provide additional assurance in this last case for high-value
transactions. Other options include Bluetooth connection (where
it may be necessary for Alice to select which till she is at) or
telephony (where the number can be transferred using any of the
methods described above, or perhaps via scanning of a bar-code
displayed on the phone).
In all payment methods, we assume the first action after the
secure session is established would be for the merchant to send
the SD details of the transaction it wishes to be paid for plus
secondary security information such as its name and logo. If Alice
agrees to the payment, she will either press a button or enter the
personal information (e.g. PIN or biometric) needed to confirm
her presence. Whatever payment token is then sent by her SD will
then contain the secondary security information so that a fake
merchant who has “borrowed” these should not be able to obtain
payment from them.
An electronic cash payment would simply follow the appropriate
protocol over the secured session.
For a credit card transaction we either have greatly increased the
communication possibilities between SD and merchant or
(particularly when Chip-and-PIN terminals are replaced) ensured
that there is much less availability of customer information to
merchant. In either of these cases it makes sense to replace
present payment methods by the SD giving the merchant an e-
cheque containing

• Payee, payer, amount, credit card details and time-stamp,
as on a conventional cheque.

• Transaction ID.

• Any secondary security information about the payee that
Alice has confirmed. The bank will confirm that this ties
up with the payee.

Second International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
May 17, 2010, Helsinki, Finland

• Evidence that Alice has correctly proved her own
identity. This might be either the actual information (e.g.
PIN) she has input, or evidence both that the SD/card has
confirmed this information (noting that at present PINs
are typically confirmed by a credit card and not
transmitted) and that the SD/card itself is genuine and
behaving properly.

This would be encrypted a under key that merchants cannot
understand (e.g. a symmetric key specific to this SD/Card or the
public key of the banking system) and sent to the merchant to be
forwarded and authorised by the banking system.
Perhaps the most attractive scenarios for using HISPs for payment
comes in the context of mobile banking (i.e. on-line banking on a
mobile phone). Systems implementing this with limited
functionality are rapidly being developed by banks and rolled out
to customers, but none that we are are aware of allow the user to
make a payment a general point-of-sale or on-line merchant. The
deficiency can be remedied once the phone is securely connected
by HISP to the merchant. For then M sends details of the
transaction for Alice to confirm, plus bank account details to
which the money is to be paid. When C confirms and gives
whatever authorisation code is required by her bank, the on-line
banking session automatically generates a transfer to M’s bank,
and an unforgeable certificate that this has occurred is sent by C’s
bank to M via C. The value of the HISP here is that it ensures that
the bank account details really come from M.
It is worth noting that the total effort that Alice has to make in
running a HISP and confirming the transaction on her SD is
substantially less than is required of her in conventional on-line
purchases using credit cards, whether these are performed by
entering card details onto a web-site or by entering her PIN into a
secondary device provided by the card issuer and then copying a
one-time authentication code into the web site. (Devices such as
these are, of course designed to help Alice prove her identity –
they do not help Alice to create an authenticated connection to the
merchant.)

4. Implementations
We have implemented various mobile phone applications using
versions of SHCBK, including the one described above. The
following is a brief of some of these.
We have implemented two main variations on payment using
mobile phones, A and B. In the first, the payee is assumed to be a
merchant, as is the case for today’s credit and debit card
payments. The second is peer-to-peer payment between mobile
phones. In both cases we have assumed that the payment is
managed through online banking accessed through the mobile
phone.
In scenario A, we have assumed that the purchase is made online.
However, it would be easy to convert the following to Point of
Sale (POS).

1. The customer C has come to the point of paying on an
internet session and is confident that the HTTPS session
is connected to the merchant M.

2. C presses a button on the website for mobile payment
and starts (*) the payment application on his mobile
phone. The button gives C’s phone payment number to
M securely via HTTPS.

3. M calls C’s mobile phone and runs the initial messages
of the protocol with it.

4. M calculates the digest and displays it on existing
HTTPS window.

5. Assuming C wishes to carry on; he types this number
into phone which then decides if numbers agree.
Agreement gives secure connection.

6. M sends details of the payment it wants over the secure
(authenticated and encrypted) connection including
amount, name, possible logo and bank information.

7. The payment is displayed on mobile phone (in our
implementation, in the form of a cheque) and C is asked
to confirm payment (*).

8. Payment is processed by e-banking, which generates a
“receipt” to send to M.

As discussed earlier in this paper, it will be necessary in practice
to have the customer prove his identity as part of this process.
One or both of the points marked (*) are appropriate.
The second works similarly. In our implementation, the mobile
phones connect via Bluetooth, but telephony and other routes are
also possible.
The two users will connect their phones much as C and M are
connected above. Now C will probably enter the amount to pay
rather than confirming the payee’s request. In our
implementation, the payer sees a cheque appear on his/her mobile
phone to confirm paying it.
Screen shots of B:

We note that in neither scenario is any confidential information
given by C to the payee. This will considerably reduce the
opportunities for fraud.
The cryptography functions we have applied in the applications
comply with the guidance published in FIPS 186 -3, FIPS 196, SP
800-78.

5. Conclusion
We have seen how, in transactions involving Alice proving her
identity to some party Bob whom she can identify by context, it
often makes sense for her to get a connection that she knows is
with Bob, even if she does not know Bob’s name. She can then
use that connection to prove her identity securely, and perhaps
perform other functions, and has no need to place a credit card,
identity card etc in the hands of another party, thereby enabling

Second International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
May 17, 2010, Helsinki, Finland

her to control what information is taken. In other words, before
she authenticates herself in one direction, she performs an
authentication in the reverse direction.

We believe that this technology will have many applications both
within the area of financial transactions highlighted here and more
widely.

6. Acknowledgements
We are grateful to Ronald Kainda and Ivan Flechais [10] for their
work with Roscoe on the human factors of HISPs. Several MSc
students, in particular Qiulu Zhao and Keith Awyong, helped us
in assessing the efficiency of various cryptographic schemes.
Emma Sceats of ISIS Innovation Ltd and a number of researchers
from the banking industry have helped us to understand what is
required there and enabled us to understand the real-life problems
that protocols for financial transactions need to solve.

7. REFERENCES
[1] See: http://en.wikipedia.org/wiki/Oyster_card
[2] S. Laur and K. Nyberg. Efficient Mutual Data Authentication
Using Manually Authenticated Strings. Volume 4301 on LNSC,
90-107, 2006.

[3] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone.
Handbook of Applied Cryptography. ISBN: 0-8493-8523-7.
[4] L.H. Nguyen and A.W. Roscoe. Efficient group authentication
protocol based on human interaction. In Proceedings of FCS-
ARSPA 2006, 9-31.
[5] L.H. Nguyen and A.W. Roscoe. Authenticating ad hoc
networks by comparison of short digests. Information and
Computation 206 (2008), 250-271.
[6] L.H. Nguyen and A.W. Roscoe. Authentication protocols
based on low-bandwidth unspoofable channels: a comparative
survey. Submitted to Journal of Computer Security. See:
http://www.comlab.ox.ac.uk/files/2104/Compara.pdf
[7] L.H. Nguyen and A.W. Roscoe. Separating two roles of
hashing in one-way message authentication. Proceedings of FCS-
ARSPA-WITS 2008, 195-210.
[8] A.W. Roscoe. Human-centred computer security. (2005) See:
web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/113.pdf
[9] S. Vaudenay. Secure Communications over Insecure Channels
Based on Short Authenticated Strings. Advances in Cryptology -
Crypto 2005, LNCS vol. 3621, 309-326
[10] R. Kainda, I. Flechais and A.W. Roscoe. Usability and
Security of Out-Of-Band Channels in Secure Device Pairing
Protocols. In the Proceedings of SOUPS 2009

Second International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
May 17, 2010, Helsinki, Finland

http://www.comlab.ox.ac.uk/files/2104/Compara.pdf

	1. Introduction
	2. Example protocol
	3. Supporting a financial transaction
	4. Implementations
	5. Conclusion
	6. Acknowledgements
	7. REFERENCES

