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ABSTRACT 
New families of protocol, based on communication over human-
based side channels, permit secure pairing or group formation in 
ways that no party has to prove its name, which is particularly 
suitable for authentication on mobile phones. Rather, individuals 
are able to hook up devices in their possession to others that they 
can identify by context. We examine a model in which, to prove 
his or her identity to a party, the user first uses one of these 
“human-interactive security protocols” or HISPs to connect to it. 
Thus, when authenticating A to B, A first authenticates a channel 
she has to B: the reverse direction. This can be characterised as 
bootstrapping a secure connection using human trust. We find that 
this offers new opportunities for convenient and secure electronic 
payment.   
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1. Introduction 
This is a paper about trust, security and identity management in 
the world of pervasive computing. 
Over the past few years a number of what we might term “Human 
interactive security protocols”, or HISPs, have been developed 
that permit one or more humans to bootstrap strong security 
between two or more devices based on the non-fakeable 
transmission of a minimal quantity of data between them to 
supplement a normal insecure communications medium. Because 
the humans know between which systems they have 
communicated this data (typically a few characters long and 
which we will refer to as a check-string) they know which 
systems are connected securely. There is an important difference 
between these protocols and those that bootstrap security from 
passwords, namely that the check-string does not have to be 
secret. 
This class of protocols allows two or more parties who trust one 
another, or a single party who trusts one or more others, to 
bootstrap a secure network using no more than an ability to 
communicate a small number of bits over the human-based, non-
fakeable channel. Another way of looking at them is that if the 
human(s) involved create an insecure channel between their 
devices, and already have an unfakable way of passing a small 
amount of information amongst them, then they can either turn 
the insecure channel into a secure one or discover the presence of 
an intruder who is trying to subvert it. 
The best of these protocols, for example those of [2, 4–7, 8, 9], 
enable these humans to be assured that there is no attack that 
allows an intruder to get the system into an insecure state (where 
the connections established are other than what the humans 

believe) with probability meaningfully greater than 2−b where b is 
the number of bits in the check-string. In addition, to have such a 

chance, the attacker will have 1−2−b chance of his presence being 
revealed by the difference between the strings. In particular, these 
protocols prevent any combinatorial searching by the intruder 
improving its chance of success. 
They thus provide a convenient way to bootstrap security that can 
be used in a wide variety of ways, in contexts both where all the 
devices are co-located and where they are not, and where the 
authentication is provided to all devices or asymmetrically to one, 
because only that device’s user has observed the equality required 
of the check-strings. Similarly they can be used in convenient 
consumer devices or as part of the security process in a more 
elaborate type of system. 
In this paper we try to understand the sort of authentication given 
by HISPs and the uses to which it can be put. We look in 
particular at a case study immediately relevant to everyday life: 
paying for goods via some electronic transaction in which the 
payer has to prove their identity to be allowed to use the account, 
and show how the model it gives for authenticating the payer can 
be adapted to other applications. 
We next give a summary of the challenges that HISPs and this 
integration with identity management bring to the formal 
modelling of security, noting that the concepts of trust and 
authentication are closely intertwined here. 
We briefly describe some of the prototype implementations that 
we have created. 
 

2. Example protocol 
The following protocol was designed and implemented by the 
authors as the first phase of a larger one designed to perform a 
financial transaction securely. It is closely based on the SHCBK 
protocol of [4, 5]. Because of its intended application we call the 
two parties C (customer) and M (merchant). Before the protocol is 
run these two parties have no shared knowledge that helps them 
achieve security, except, naturally, the ability to run the protocol 
itself. 
In order to run the protocol each party must create two values of 
sufficient strength to achieve the cryptographic goals they have:  

• Each party creates a hash, or digest key: we call these 
hkC and hkM. These are needed to randomise the final 
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check-string and we assume these are in the range 160-
511 bits1.  

• C creates a session key k whose role is as set out above. 
This would normally be in the range 120–160 bits, but it 
could be increased to 512 bits (input width of the basic 
hash function) without penalty.  

• M either creates freshly, or re-uses, an asymmetric key 
pair (pk,sk). There is no need for the “public” key pk to 
be certified. The length of these keys will depend on the 
desired level of security2, the amount of available 
computing power, and the cryptosystem in use.  

The protocol also involves a standard cryptographic hash function 
which possesses 3 main properties [3]: collision resistance, 2nd 
preimage resistance and inversion resistance. It depends heavily 
on the following property of such a function:  

 If a party A has knowledge of hash(V) for some 
value V, then while A cannot constructively 
compute V other than with infinitesimal probability, 
it can always check in future whether a value 
alleged to be V actually is V.  

In this state A is committed to V but without knowledge of V. In 
the first pair of steps of the protocol, C and M both commit each 
other without knowledge to values. The only one of the four 
parameters hkC, hkM, pk and k communicated openly is M’s 

public key pk:  

1. C ⎯→ M::hash(0:hkC),hash(k)   

2. M ⎯→ C::hash(1:hkM),pk   

When these messages have been received, both parties are 
committed to values of all four parameters, but each lacks some 
knowledge. Thanks to the communication channel being insecure, 
they have no reason to believe that they are committed to the 
same values of the parameters – but of course they hope they are!  
Importantly, no intruder can know all four of the original (as 
opposed to hashed) values as created by the appropriate one of A 
and B. 
The tags 0: and 1: are added to the hash keys hkC and hkM to 

ensure that the contents of these hashes can be distinguished as 
coming from a customer or merchant. This avoids the intruder 
reflecting hkC back to C as a supposed hkM in a way that C would 

accept. While this attack would not allow the intruder to break the 
protocol, it makes the analysis more complex – hence the tags. 
Even if the intruder has participated in the protocol and 
impersonated one or both of the parties, it does not know the 
complete set of parameter values to which either C or M is 

                                                                 
1 The upper bound takes account of the common hash block size 

of 512 and the extra initial bit inserted by the protocol. 
2 The key certainly needs to be strong enough so that there is no 

realistic chance of it being broken during the life of the session 
being established. Further strength is required to ensure that the 
contents of that session remain secret after it ends. 

committed. This is because no-one except C knows its value of 
hkC, and similarly for M and hkM. 

The protocol now proceeds:  

3. C ⎯→ M::hkC,{k}pk  

4. M ⎯→ C::hkM  

The second part of Message 3 is to tell C the actual value of the 
session key, which is now checked against the hash. In fact this 
transmission can be delayed until after the check-string 
comparison if the computation of the public encryption {k}pk is 

time consuming on a low-powered customer device. 
It is the transmission of the unencrypted keys hkC and hkM at this 

stage that represents the core of the protocol. Firstly, of course, 
the participants must check that these are the same values that 
were represented in Messages 1 and 2. If not, the run is 
abandoned. Secondly, they (and anyone else who has been 
listening in) can compute a value for  

       digest(hkC⊕hkM,(pk,hash(k)))  

where ⊕ is bit-wise exclusive or and (X,Y) is an ordered pair. The 
protocol completes successfully if C (or C and M) are convinced 
that their two versions of the value – the check-string of this 
protocol – are equal: in becoming convinced they must not use a 
channel which can be “spoofed” by an intruder. Typically one 
will read their value to the other, or C will read M’s value directly 
and compare it with her own. Whichever of them knows that the 
two values are equal can conclude that the link is authenticated. 
Typically this is either C or both of them. 
 

3. Supporting a financial transaction 
In many cases such as a financial transaction over the Internet or 
with a vending machine, or someone seeking to prove his identity 
and gain access to some service via a machine, there will only be 
one human present to perform the check of the equality of the 
digests or similar value used by other HISPs. 
For high integrity applications involving a potentially complacent 
human in this way, there is a strong argument for having the 
human transfer a value manually rather than simply check that 
two displayed values are equal. So in fact the device actually 
performs the comparison – between the one its user has copied 
from M and the one it has computed itself. There are still some 
interesting variants possible on this. In the following, we will split 
the entity C, representing the combination of a human customer 
Alice and her security device SD, into these two parts.  

CA Most obviously and probably easiest in many 
applications: Alice reads a value from M and types it into 
her own device SD. 

CS As a variant on this: when SD says that the two values 
agree, Alice presses a button on M to signal this 
agreement. 
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MA Alice reads the value from her SD and types it into M. In 
this case it is virtually certain that M will signal to the 
human whether the two values agree. This information 
may or may not be passed explicitly by Alice on to SD. 
(iii) will be the case where it is not.  

MS This is the case like (iii) but where this information is 
transmitted by Alice to SD.  

The pairs CA and MA, and CS and MS are clearly mirror images 
of each other: the first letter tells us who does the comparison in a 
method, and the second tells us whether the resulting 
authentication is asymmetric or symmetric. In CA and MA only a 
one-directional empirical channel is used between SD and M, in 
opposite directions. In CS and MS, both sides are assured of 
equality provided our human is trustworthy and reliable. 
Note that in cases CA and MA one or other device proceeds 
without knowing that the check-strings actually agreed. 
Nevertheless these two cases are potentially useful: for example 
CA can be used when everything confidential and of value that 
passes through the transaction moves in the direction from SD to 
M. 
The most obvious case of this is Alice using SD to pay M for 
some goods and services: M wants to get paid but does not care 
that much who pays him, whereas Alice only wants to pay the 
merchant to which she has an obligation to pay. 
Notice that this reasoning does not apply when the merchant is 
passing value to a customer. Imagine that the merchant wants to 
pass value to the customer who is standing at a particular till, is 
on a particular phone call etc. If the protocol is run in mode MA it 
gains the assurance that it is this person’s device that is 
connecting to it, since only she was in a position to make the 
empirical communication. In practice, however, this situation 
might well require the customer to pass (e.g. ID) information to 
the merchant that she would not want to give to anyone, and it 
would be better for Alice not to need to learn a very different 
protocol for a relatively unusual case. Therefore a protocol giving 
a symmetric outcome would probably be used here, in particular 
CS with a warning to Alice about the consequences of pushing the 
final button incorrectly. 
One way of more-or-less ensuring that she does behave correctly 
and not push the button without knowing that the digests agree is 
to have both sides compute a bit from the protocol parameters, 
and use it to have M only tell Alice which of two buttons to press 
once it knows the digests/check-strings agree. The essential thing 
here is making the customer look at the device that has been able 
to check equality before confirming anything to the other one.  
We might note that it will almost always be Alice who identifies 
that M is what she wants to connect SD to, and that the connection 
process itself gives neither party any proof of the identity of the 
other. Therefore, at the end of the HISP run:  

• Unless MA is used, Alice knows that C is connected to 
M, as identified by being at the other end of the empirical 
channel.  

• Unless CA has been used, M “knows” that the party it is 
connected to is the one at the other end of its empirical 
channel.  

• Both know they have a shared secret symmetric key with 
the other, that can be used to secure and authenticate 
communication between them in a subsequent session.  

The connection above has very little in common with the way that 
most personal financial transactions are performed, at least those 
involving banks3. For the current methods for doing these, 
whether manual (e.g. typing details from a credit card into an 
https site) or electronic (e.g., logging in to Internet banking; using 
Chip-and-PIN terminals at point of sale) are designed simply to 
authenticate the payer (Alice and/or her credit card) to the payee 
and/or bank. Typically also, traditional methods of payment give 
the payee a great deal of sensitive information about the payer: 
note that anyone who has been paid on-line with a particular card 
has the information he (or anyone to whom it is unwittingly 
compromised) to pay for goods with that same credit card; and 
that nothing proves to Alice that the Chip-and-PIN terminal in her 
hands will not clone her card and remember her PIN. 
What the above protocol does is allow Alice to connect her SD to 
the particular merchant she has been shopping at, whether in 
person, on-line, or on the telephone. Clearly this authentication is 
in the reverse direction to the usual sort as described in the 
preceding paragraph. That explains the title of this paper: it can be 
viewed as reverse authentication. 
What we have allowed Alice to do is to create a secure electronic 
connection with the merchant that she wants to pay, and 
furthermore where she is assured that the connection has been 
made within the context of the particular transaction for which 
she is willing to pay. 
This electronic connection will allow a great deal more 
information to pass between her device (card/SD) that is 
otherwise possible unless she puts her card into the hands of the 
payee, or at all on-line. 
What the reverse authentication achieves, in summary, is not to 
replace the usual ID check on Alice and her device, but to make it 
potentially more thorough, particularly on-line, easier for Alice 
(because in most cases she will have to do less), and to remove 
the danger of Alice’s secrets getting compromised. We will 
demonstrate this below. 
We believe that beginning a financial transaction with the HISP 
authenticating merchant to customer makes sense in all of the 
following cases.  

(A) Electronic cash: the customer has some device with her 
that contains value, and she wishes to transfer some of 
that value to the merchant. It might well be the case that 
she wishes to do so anonymously. 

(B) Credit card or cheque: the customer wishes to give the 
merchant the right to take some sum of money from her 
account. Note that, although the mechanisms are rather 
different, both conventional credit card transactions and 
paper cheques have this logical effect.  

(C) Electronic banking: the customer wishes to give her bank 
a direct instruction to pay the money into the merchant’s 
account. The logical difference with (B) is that the bank 

                                                                 
3 As we will see, good old fashioned cash transactions resemble 

our connection. 
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must be involved directly, and the merchant never holds a 
token that is good for money.  

This first dimension influences the way the payment proceeds 
after a secure link has been established, and how identity issues 
arise. (A) is different from the others because our customer will 
not have to prove her identity (Alice) to anyone, while in the 
other two it is desirable4 that she (separately from her device) 
proves that she is entitled to use the account by the entry of a 
secret PIN or biometrics.  
In each of these we imagine a variety of payment situations, 
which influence how the authenticated connection is made.  

(i) The customer is sitting at a desk and shopping on-line. 
Here we assume that the customer and the banking 
system do not trust the PC except possibly through an 
https windows displayed on browsers. [This is not to say 
that this last mechanism is 100% secure, but since e-
commerce and digital banking rely on it currently, it 
seems reasonable that we can also provided we do not 
increase the risks inherent from using it in present 
methods5.]  

(ii) The customer is trying to pay the merchant in person: in 
present technology she would hand over cash or credit 
card, or place her card in some reader presented by the 
merchant. Here, the merchant might be a machine, or 
might be a manned till.  

(iii) The customer is shopping over the mobile phone.  

In case (C) (mobile banking) we do not concern ourselves with 
how the secure connection between phone and bank is made, 
since we can reasonably assume that there is a long-term key 
which achieves this. In all cases we assume that a HISP is to be 
used to connect the phone to the merchant that is to be paid, 
thereby proving to Alice that she is paying the correct entity 
within the correct transaction. 
Except in the case where the paying device SD is the same 
telephone over which the transaction is being conducted, we need 
to get some connection between SD and merchant established to 
that it can be authenticated with a HISP. In technology used for 
everyday payments, both of these phases need to be very easy. 
One advantage of using a HISP is that the customer’s view of the 
second phase can be the same in every case. The following sets 
out a few options for making the initial insecure connection in the 
on-line and point-of-sale cases. 
In the on-line case there are two main options for this connection: 
the first of these is using the home PC on which the shopping is 
being done as a link between SD and merchant. The link could 
then be made by wire (e.g. USB), wireless (e.g. WiFi or 
Bluetooth) or infrared. None of these is technologically difficult, 

                                                                 
4 We note that in some present credit card transactions, especially 

on-line ones, she does not have to do this. 
5 In fact we argue that our methods provide a higher degree of 

security than the traditional use of https sites, since we are only 
relying on the communication through it being authenticated, 
not secret. Thus neither screen-shot grabbing nor key-sniffing 
would benefit an attacker. 

and the session on the browser can instruct the PC about where to 
route the communications. 
The second is using telephony to make the connection: this may 
be the only option when Alice is forbidden to connect any 
personal device to the PC. The only problem then is giving one or 
other side of the connection (phone=SD or merchant) the 
information required to connect telephonically to the other. This 
will be the combination of a telephone number and a (probably 
one-time) token that identifies the particular transaction. The 
merchant’s number can be transferred to the phone from the PC 
by (e.g.) Bluetooth, but of course this would fall foul of the no-
connection rule if this applied. The user’s number can be pre-
loaded into the browser (and there are strong arguments for this 
being a separate number from the one used for ordinary phone 
functions), and this sent together with a one-time token to the 
merchant when a button on the payment site is pressed.  
In the point-of-sale case, the same two options (local and 
telephonic) connection apply. A literally wired local connection is 
unlikely, but it would be possible to place a phone into a special 
cradle. In that case it is probably not necessary to use a HISP, 
since the phone is obviously connected to the merchant. 
Similarly, if a connection is bootstrapped from a physical 
connection that Alice can see, this is still probably not necessary, 
and the same may apply for low-value transactions if it is 
bootstrapped from very short range radio as used for example, in 
Oyster cards [1], provided this generates a session key. A HISP 
will provide additional assurance in this last case for high-value 
transactions. Other options include Bluetooth connection (where 
it may be necessary for Alice to select which till she is at) or 
telephony (where the number can be transferred using any of the 
methods described above, or perhaps via scanning of a bar-code 
displayed on the phone). 
In all payment methods, we assume the first action after the 
secure session is established would be for the merchant to send 
the SD details of the transaction it wishes to be paid for plus 
secondary security information such as its name and logo. If Alice 
agrees to the payment, she will either press a button or enter the 
personal information (e.g. PIN or biometric) needed to confirm 
her presence. Whatever payment token is then sent by her SD will 
then contain the secondary security information so that a fake 
merchant who has “borrowed” these should not be able to obtain 
payment from them. 
An electronic cash payment would simply follow the appropriate 
protocol over the secured session. 
For a credit card transaction we either have greatly increased the 
communication possibilities between SD and merchant or 
(particularly when Chip-and-PIN terminals are replaced) ensured 
that there is much less availability of customer information to 
merchant. In either of these cases it makes sense to replace 
present payment methods by the SD giving the merchant an e-
cheque containing  

• Payee, payer, amount, credit card details and time-stamp, 
as on a conventional cheque.  

• Transaction ID.  

• Any secondary security information about the payee that 
Alice has confirmed. The bank will confirm that this ties 
up with the payee.  
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• Evidence that Alice has correctly proved her own 
identity. This might be either the actual information (e.g. 
PIN) she has input, or evidence both that the SD/card has 
confirmed this information (noting that at present PINs 
are typically confirmed by a credit card and not 
transmitted) and that the SD/card itself is genuine and 
behaving properly.  

This would be encrypted a under key that merchants cannot 
understand (e.g. a symmetric key specific to this SD/Card or the 
public key of the banking system) and sent to the merchant to be 
forwarded and authorised by the banking system. 
Perhaps the most attractive scenarios for using HISPs for payment 
comes in the context of mobile banking (i.e. on-line banking on a 
mobile phone). Systems implementing this with limited 
functionality are rapidly being developed by banks and rolled out 
to customers, but none that we are are aware of allow the user to 
make a payment a general point-of-sale or on-line merchant. The 
deficiency can be remedied once the phone is securely connected 
by HISP to the merchant. For then M sends details of the 
transaction for Alice to confirm, plus bank account details to 
which the money is to be paid. When C confirms and gives 
whatever authorisation code is required by her bank, the on-line 
banking session automatically generates a transfer to M’s bank, 
and an unforgeable certificate that this has occurred is sent by C’s 
bank to M via C. The value of the HISP here is that it ensures that 
the bank account details really come from M.  
It is worth noting that the total effort that Alice has to make in 
running a HISP and confirming the transaction on her SD is 
substantially less than is required of her in conventional on-line 
purchases using credit cards, whether these are performed by 
entering card details onto a web-site or by entering her PIN into a 
secondary device provided by the card issuer and then copying a 
one-time authentication code into the web site. (Devices such as 
these are, of course designed to help Alice prove her identity – 
they do not help Alice to create an authenticated connection to the 
merchant.) 

4. Implementations 
We have implemented various mobile phone applications using 
versions of SHCBK, including the one described above. The 
following is a brief of some of these. 
We have implemented two main variations on payment using 
mobile phones, A and B. In the first, the payee is assumed to be a 
merchant, as is the case for today’s credit and debit card 
payments. The second is peer-to-peer payment between mobile 
phones. In both cases we have assumed that the payment is 
managed through online banking accessed through the mobile 
phone. 
In scenario A, we have assumed that the purchase is made online. 
However, it would be easy to convert the following to Point of 
Sale (POS). 

1. The customer C has come to the point of paying on an 
internet session and is confident that the HTTPS session 
is connected to the merchant M. 

2. C presses a button on the website for mobile payment 
and starts (*) the payment application on his mobile 
phone. The button gives C’s phone payment number to 
M securely via HTTPS. 

3. M calls C’s mobile phone and runs the initial messages 
of the protocol with it. 

4. M calculates the digest and displays it on existing 
HTTPS window. 

5. Assuming C wishes to carry on; he types this number 
into phone which then decides if numbers agree. 
Agreement gives secure connection. 

6. M sends details of the payment it wants over the secure 
(authenticated and encrypted) connection including 
amount, name, possible logo and bank information. 

7. The payment is displayed on mobile phone (in our 
implementation, in the form of a cheque) and C is asked 
to confirm payment (*).  

8. Payment is processed by e-banking, which generates a 
“receipt” to send to M. 

As discussed earlier in this paper, it will be necessary in practice 
to have the customer prove his identity as part of this process. 
One or both of the points marked (*) are appropriate.  
The second works similarly. In our implementation, the mobile 
phones connect via Bluetooth, but telephony and other routes are 
also possible.  
The two users will connect their phones much as C and M are 
connected above. Now C will probably enter the amount to pay 
rather than confirming the payee’s request. In our 
implementation, the payer sees a cheque appear on his/her mobile 
phone to confirm paying it. 
Screen shots of B: 

 

 
We note that in neither scenario is any confidential information 
given by C to the payee. This will considerably reduce the 
opportunities for fraud. 
The cryptography functions we have applied in the applications 
comply with the guidance published in FIPS 186 -3, FIPS 196, SP 
800-78. 
 

5. Conclusion 
We have seen how, in transactions involving Alice proving her 
identity to some party Bob whom she can identify by context, it 
often makes sense for her to get a connection that she knows is 
with Bob, even if she does not know Bob’s name. She can then 
use that connection to prove her identity securely, and perhaps 
perform other functions, and has no need to place a credit card, 
identity card etc in the hands of another party, thereby enabling 
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her to control what information is taken. In other words, before 
she authenticates herself in one direction, she performs an 
authentication in the reverse direction. 

We believe that this technology will have many applications both 
within the area of financial transactions highlighted here and more 
widely. 
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