
Tractable Optimization Problems through

Hypergraph-Based Structural Restrictions�

Georg Gottlob1, Gianluigi Greco2, and Francesco Scarcello2

1 Oxford University
2 University of Calabria

georg.gottlob@comlab.ox.ac.uk, ggreco@mat.unical.it,
scarcello@deis.unical.it

Abstract. Several variants of the Constraint Satisfaction Problem have
been proposed and investigated in the literature for modelling those sce-
narios where solutions are associated with some given costs. Within these
frameworks computing an optimal solution is an NP-hard problem in
general; yet, when restricted over classes of instances whose constraint
interactions can be modelled via (nearly-)acyclic graphs, this problem is
known to be solvable in polynomial time. In this paper, larger classes
of tractable instances are singled out, by discussing solution approaches
based on exploiting hypergraph acyclicity and, more generally, structural
decomposition methods, such as (hyper)tree decompositions.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a well-known framework [11] for
modelling and solving search problems, which received considerably attention in
the literature due to its applicability in various areas. Informally, a CSP instance
is defined by singling out the variables of interest, and by listing the allowed
combinations of values for groups of them, according to the constraints arising
in the application at hand. The solutions for this instance are the assignments
of domain values to variables that satisfy all such constraints. Many apparently
unrelated problems from disparate areas actually turn out to be equivalent to
the CSP and can be accommodated within the CSP framework. Examples are
puzzles, conjunctive queries over relational databases, graph colorability, and
checking whether there is a homomorphism between two finite structures.

Example 1. Figure 1 shows a combinatorial crossword puzzle (taken from [15]).
A set of legal words is associated with each horizontal or vertical array of white
boxes delimited by black boxes. A solution to the puzzle is an assignment of a
letter to each white box such that to each white array is assigned a word from its
� G.Gottlob works at the Computing Laboratory and at the Oxford Man Institute

of Quantitative Finance, Oxford University. This work was done in the context of
the EPSRC grant EP/G055114/1 “Constraint Satisfaction for Configuration: Logical
Fundamentals,Algorithms, and Complexity” and of Gottlob’s Royal Society Wolfson
Research Merit Award.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 16–30, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Tractable Optimization Problems 17

Fig. 1. A crossword puzzle, its associated hypergraph Hcp, and a hypertree decompo-
sition of width 2 for Hcp

set of legal words. This problem can be recast in a CSP by associating a variable
with each white box, and by defining a constraint for each array of white boxes
prescribing the legal words that are associated with it. �

When assignments are associated with some given cost, however, computing an
arbitrary solution might not be enough. For instance, the crossword puzzle in
Figure 1 may admit more than one solution, and expert solvers may be asked
to single out the most difficult ones, such as those solutions that minimize the
total number of vowels occurring in the used words. In these cases, one is usually
interested in the corresponding optimization problem of computing the solution
of minimum cost, whose modeling is accounted for in several variants of the basic
CSP framework, such as fuzzy, probabilistic, weighted, lexicographic, valued, and
semiring-based CSPs (see [25,4] and the references therein).

Since solving CSPs—and the above extensions—is an NP-hard problem, much
research has been spent to identify restricted classes over which solutions can effi-
ciently be computed. In this paper, structural decomposition methods are consid-
ered [15], which identify tractable classes by exploiting the structure of constraint
scopes as it can be formalized either as a hypergraph (whose nodes correspond
to the variables and where each group of variables occurring in some constraint
induce a hyperedge) or as a suitable binary encoding of such hypergraph. In par-
ticular, we focus on the structural methods based on the notions of (generalized)
hypertree width [18,19] and treewidth [28]. In both cases, the underlying idea
is that solutions to CSP instances that are associated with acyclic (or nearly-
acyclic) structures can efficiently be computed via dynamic programming, by
incrementally processing the structure according to some of its topological or-
derings.

As a matter of fact, however, while in the case of classical CSPs deep and
useful results have been achieved for both graph and hypergraph representa-
tions, in the case of CSP extensions tailored for optimization problems attention
was mainly focused on binary encodings and, in particular, on the primal graph
representation, where nodes correspond to variables and an edge between two
variables indicates that they are related by some constraint. Discussing whether
(and how) hypergraph-based structural decomposition techniques in the litera-
ture can be lifted to such optimization frameworks is the main goal of this paper.
In particular, we consider three CSP extensions:

18 G. Gottlob, G. Greco, and F. Scarcello

(1) First, we consider optimization problems where every mapping variable-
value is associated with a cost, so that the aim is to find an assignment
satisfying all the constraints and having the minimum total cost.

(2) Second, we consider the case where costs are associated with the allowed
combinations of simultaneous values for the variables occurring in the con-
straint, rather than to individual values. Again, within this setting, we con-
sider the problem of computing a solution having minimum total cost.

(3) Finally, we consider a scenario where the CSP instance at hand might not
admit a solution at all, and where the problem is hence to find the assignment
minimizing the total number of violated constraints (and, more generally,
whenever a cost is assigned to each constraint, the assignment minimizing
the total cost of violated constraints).

For each of the above settings, the complexity of computing the optimal solution
is analyzed in this paper, by overviewing some relevant recent research and by
providing novel results. In particular:

� We show that optimization problems of kind (1) can be solved in polyno-
mial time on instances having bounded (generalized) hypertree-width hyper-
graphs. This result is based on an algorithm recently designed and analyzed
in the context of combinatorial auctions [13].

� We show that even optimization problems of kind (2) are tractable on in-
stances having bounded (generalized) hypertree-width hypergraphs. Indeed,
we describe how to transform this kind of instances into equivalent instances
of kind (1), by preserving their structural properties.

� We observe that optimization problems of kind (3) remain NP-hard even
over instances having an associated acyclic hypergraph. However, there is
also good news: they are shown to be tractable on instances having bounded
treewidth incidence graph encoding. The latter is a binary encoding of the
constraint hypergraph with usually better structural features than the primal
graph encoding (see, e.g., [15,22]). Again, proof is via a mapping to case (1).

Organization. The rest of the paper is organized as follows. Section 2 discusses
preliminaries on CSPs and structural restrictions, and Section 3 provides an
overview of the structural decomposition methods based on treewidth and (gen-
eralized) hypertree width. Results for optimization problems of kind (1) and
(2) are discussed in Section 4, whereas problems of kind (3) are discussed in
Section 5. Finally, Section 6 draws our conclusions.

2 CSPs, Acyclic Instances, and Their Desirable
Properties

An instance of a constraint satisfaction problem [11] is a triple I = 〈Var , U, C〉,
where Var is a finite set of variables, U is a finite domain of values, and C =
{C1, C2, . . . , Cq} is a finite set of constraints. Each constraint Cv, for 1 ≤ v ≤ q,
is a pair (Sv, rv), where Sv ⊆ Var is a set of variables called the constraint
scope, and rv is a set of substitutions (also called tuples) from variables in Sv

Tractable Optimization Problems 19

Fig. 2. A hypergraph H1, a join tree JT (H1), the primal graph G(H1), and the inci-
dence graph inc(H1)

to values in U indicating the allowed combinations of simultaneous values for
the variables in Sv. Any substitution from a set of variables V ⊆ Var to U is
extensively denoted as the set of pairs of the form X/u, where u ∈ U is the value
to which X ∈ V is mapped. Then, a solution to I is a substitution θ : Var �→ U
for which q-tuples t1 ∈ r1, ..., tq ∈ rq exist such that θ = t1 ∪ ... ∪ tq.

Example 2. In the crossword puzzle of Figure 1, Var coincides with the letters of
the alphabet, and a variable Xi (denoted by its index i) is associated with each
white box. An example of constraint is C1H = ((1, 2, 3, 4, 5), r1H), and a pos-
sible instance for r1H is {〈h, o, u, s, e〉, 〈c, o, i, n, s〉, 〈b, l, o, c, k〉}—in the various
constraint names, subscripts H and V stand for “Horizontal” and “Vertical,”
respectively, resembling the usual naming of definitions in crossword puzzles. �

The structure of a CSP instance I is best represented by its associated hy-
pergraph H(I) = (V, H), where V = Var and H = {S | (S, r) ∈ C}—in the
following, V and H will be denoted by N (H) and E(H), respectively. As an
example, the hypergraph associated with the crossword puzzle formalized above
is illustrated in the central part of Figure 1.

A hypergraph H is acyclic iff it has a join tree [3]. A join tree JT (H) for
a hypergraph H is a tree whose vertices are the hyperedges of H such that,
whenever the same node X ∈ V occurs in two hyperedges h1 and h2 of H, then
X occurs in each vertex on the unique path linking h1 and h2 in JT (H). The
notion of acyclicity we use here is the most general one known in the literature,
coinciding with α-acyclicity according to Fagin [9]. Note that the hypergraph
Hcp of Figure 1 is not acyclic. An acyclic hypergraph is discussed below.

Example 3. Consider the hypergraph H1 shown on the left of Figure 2, which is
associated with a CSP instance over the set of variables {A, ..., M}. In particular,
six constraints are defined over the instance whose scopes precisely correspond
to the hyperedges in E(H1); for instance, {A, B, C} is an example of constraint
scope. Note also that H1 is acyclic. Indeed, a join tree JT (H1) for it is reported
in the same figure to the right of H1. �

An important property of acyclic instances is that they can efficiently be
processed by dynamic programming. Indeed, according to Yannakakis’ algo-
rithm [34] (originally conceived in the equivalent context of evaluating acyclic

20 G. Gottlob, G. Greco, and F. Scarcello

Boolean conjunctive queries), they can be evaluated by processing any of their
join trees bottom-up, by performing upward semijoins between the constraint re-
lations, thus keeping the size of the intermediate result small. At the end, if the
constraint relation associated with the root atom of the join tree is not empty,
then the CSP instance does admit a solution. Therefore, the whole procedure
is feasible in O(n × rmax × log rmax), where n is the number of constraints and
rmax denotes the size of the largest constraint relation.

In addition to the polynomial time algorithm for deciding whether a CSP
admits a solution, acyclic instances enjoy further desirable properties:

Acyclicity is efficiently recognizable: Deciding whether a hypergraph is
acyclic is feasible in linear time [31] and belongs to the class L (determinis-
tic logspace). Indeed, this follows from the fact that hypergraph acyclicity
belongs to SL [16], and that SL is equal to L [27].

Acyclic instances can be efficiently solved: After the bottom-up step de-
scribed above, one can perform the reverse top-down step by filtering each
child vertex from those tuples that do not match with its parent tuples. The
relations obtained after the top-down step enjoy the global consistency prop-
erty, i.e., they contain only tuples whose values are part of some solution of
the CSP. Then, all solutions can be computed with a backtrack-free proce-
dure, and thus in total polynomial time, i.e., in time polynomial in the input
plus the output [34] (and actually also with polynomial delay). Alternatively,
one may enforce pairwise consistency by taking the semijoins between all pairs
of relations until a fixpoint is reached. Indeed, acyclic instances that fulfil this
property also fulfil the global consistency property [2].

Acyclic instances are parallelizable: It has been shown that solving acyclic
CSP instances is highly parallelizable, as this problem (actually, decid-
ing the existence of a solution) is complete for the low complexity class
LOGCFL [16]. Efficient parallel algorithms are discussed in [16] and [17].

We conclude this section by recalling that the above desirable properties of
acyclic CSP instances have profitably been exploited in various application sce-
narios. Indeed, besides their application in the context of Database Theory, they
found applications in Game Theory [14,8], Knowledge Representation and Rea-
soning [21], and Electronic Commerce [13], just to name a few.

3 Generalizing Acyclicity

Many attempts have been made in the literature for extending the good results
about acyclic instances to relevant classes of nearly acyclic structures. We call
these techniques structural decomposition methods, because they are based on
the “acyclicization” of cyclic (hyper)graphs. We refer the interested reader to
[29] for a detailed description of how these techniques may be useful for con-
straint satisfaction problems and to [22] for further results about graph-based
techniques, when relational structures are represented according to various graph
representations (primal graph, dual graph, incidence-graph encoding). We also

Tractable Optimization Problems 21

want to mention recent methods such as Spread-cuts [7] and fractional hypertree
decompositions [23].

A survey of most of these techniques is currently available in Wikipedia (look
for “decomposition method”, at http://www.wikipedia.org). In the sequel, we
shall briefly overview the tree and hypertree decomposition methods.

3.1 Tree Decompositions

For classes of instances having only binary constraints or, more generally, con-
straints whose scopes have a fixed maximum arity, the most powerful structural
method is based on the notion of treewidth.

Definition 1 ([28]). A tree decomposition of a graph G = (V, E) is a pair
〈T, χ〉, where T = (N, F) is a tree, and χ is a labelling function assigning with
each vertex p ∈ N a set of vertices χ(p) ⊆ V such that the following conditions
are satisfied: (1) for each node b of G, there exists p ∈ N such that b ∈ χ(p); (2)
for each edge (b, d) ∈ E, there exists p ∈ N such that {b, d} ⊆ χ(p); and, (3) for
each node b of G, the set {p ∈ N | b ∈ χ(p)} induces a connected subtree of T
(connectedness condition). The width of 〈T, χ〉 is the number maxp∈N (|χ(p)|−1).
The treewidth of G, denoted by tw(G), is the minimum width over all its tree
decompositions. �

It is well-known that a graph G is acyclic if and only if tw(G) = 1. Moreover,
for any fixed natural number k > 0, deciding whether tw(G) ≤ k is feasible in
linear time [5].

Any CSP with primal graph G such that tw(G) ≤ k can be (efficiently)
turned into an equivalent CSP whose primal graph is acyclic. Let I = 〈Var , U, C〉
be a CSP instance, let G be the primal graph of H(I), and let 〈T, χ〉 be a
tree decomposition of G having width k. We may build a new acyclic CSP
instance I ′ = 〈Var , U, C′〉 over the same variables and universe as I, but with
a different set of constraints C′, as follows. Firstly, for each vertex v of T , we
create a constraint (Sv, rv), where Sv = χ(v) and rv = U |χ(v)|. Then, for every
constraint (S, r) ∈ C of the original problem such that S ⊆ χ(v), we eliminate
from rv all those tuples that do not match with r. The resulting constraint is
then added to C′. It can be shown that I ′ has the same solutions as I, and that
it is acyclic. In fact, observe that, by construction, 〈T, χ〉 is a join tree of the
hypergraph H(I ′) associated with I ′, because of the connectedness condition
of tree decompositions. Furthermore, building I′ from I is feasible in O(n ×
|U |k+1) where n is the number of vertices in T , and where the size of the largest
constraint relation in the resulting instance is |U |k+1. Since one can always
consider only tree decompositions whose number of vertices is bounded by the
number of variables of the problem (i.e., the nodes of the graph), it follows that
deciding whether I ′ (and hence I) is satisfiable is feasible in O(|V ar|× |U |k+1×
log |U |k+1). In fact, as for acyclic instances, even in this case we may compute
also solutions for I with a backtrack-free search, after the preprocessing of the
instance performed according to the given tree decomposition (i.e., according to

http://www.wikipedia.org

22 G. Gottlob, G. Greco, and F. Scarcello

the join tree of the equivalent acyclic instance). As a consequence, all classes of
CSP instances (with primal graphs) having bounded treewidth may be solved
in polynomial time, even if with an exponential dependency on the treewidth.

Clearly enough, this technique is not very useful for CSP instances with large
constraint scopes. In particular, the class of CSP instances whose associated
constraint hypergraphs are acyclic are not tractable according to tree decompo-
sitions, because acyclic hypergraphs may have unbounded treewidth. Intuitively,
in the primal graph all variables occurring in the same constraint scope are con-
nected to each other, and thus they lead to a clique in the graph. It follows that
CSP instances having constraint scopes with large arities have large treewidths,
too, because the treewidth of a clique of n nodes is n−1. As an example, Figure 2
reports the graph G(H1) associated with the acyclic hypergraph H1, where one
may notice how the hyperedge {A, C, D, E, F, G, H} is flattened into a clique
over all its variables.

3.2 Hypertree Decompositions

Let us now turn our attention to hypergraph based decompositions. Such decom-
positions are similar to tree decompositions, but they use an additional covering
of each set χ(p) with as few as possible hyperedges. The width is then no longer
defined as the maximum cardinality of χ(p) over all decomposition nodes p, but
as the maximum number of hyperedges used to cover χ(p). Intuitively, this no-
tion of width is better, because it will allow us to expresses more accurately the
computational effort needed to transform an instance into an acyclic one.

Definition 2 ([19]). A generalized hypertree decomposition of a hypergraph H
is a triple HD = 〈T, χ, λ〉, where 〈T, χ〉 is a tree decomposition of the primal
graph of H, and λ is a labelling of the tree T by sets of hyperedges of H such
that, for each vertex p ∈ vertices(T), χ(p) ⊆

⋃
h∈λ(v) h. That is, all variables in

the χ labeling are covered by hyperedges (scopes) in the λ labeling. The width
of HD is the number maxp∈vertices(T)(|λ(p)|). The generalized hypertree width of
H, denoted by ghw(H), is the minimum width over all its generalized hypertree
decompositions. If I is a CSP instance then ghw(I) := ghw(H(I)). �

Clearly, for each CSP instance I, ghw(I) ≤ tw(I). Moreover, there are classes
of CSPs having unbounded treewidth whose generalized hypertree width is
bounded[19].

Finding a suitable tree decomposition whose sets χ(p) may each be covered
with a few hyperedges seems to be quite a hard task even in case we have some
fixed upper bound k. Indeed, it has been shown that deciding whether ghw(H) ≤
k is NP-complete (for any fixed k ≥ 3) [20]. Fortunately, since its first proposal in
[18], this notion comes with a tractable variant, called hypertree decomposition,
whose associated width is at most 3 times (+1) larger than the generalized
hypertree width [1]. As a consequence, it can be shown that every class of CSPs
that is tractable according to generalized hypertree width is tractable according
to hypertree width, as well.

Tractable Optimization Problems 23

Definition 3 ([18]). A hypertree decomposition of a hypergraph H is a gen-
eralized hypertree decomposition HD = 〈T, χ, λ〉 that satisfies the following
additional condition, called Descendant Condition or also special condition:
∀p ∈ vertices(T), ∀h ∈ λ(p), h ∩ χ(Tp) ⊆ χ(p), where Tp denotes the sub-
tree of T rooted at p, and χ(Tp) the set of all variables occurring in the χ
labeling of this subtree.

The hypertree width hw(H) of H is the minimum width over all its hypertree
decompositions. �

As an example, on the right part of Figure 1 a hypertree decomposition of the
hypergraph Hcp in Example 1 is reported. Note that this decomposition has
width 2.

We refer the interested reader to [18,29] for more details about this notion
and in particular about the descendant condition. Here, we just observe that the
notions of hypertree width and generalized hypertree width are true generaliza-
tions of acyclicity, as the acyclic hypergraphs are precisely those hypergraphs
having hypertree width and generalized hypertree width one. In particular, the
classes of CSP instances having bounded (generalized) hypertree width have the
same desirable computational properties as acyclic CSPs [16]. Indeed, from a
CSP instance I = 〈Var , U, C〉 and a (generalized) hypertree decomposition HD
of H(I) of width k, we may build an acyclic CSP instance I ′ = 〈Var , U, C′〉 with
the same solutions as I. The overall cost of deciding whether I is satisfiable is in
this case O((m−1)×rk

max × log rk
max), where rmax denotes the size of the largest

constraint relation and m is the number of vertices of the decomposition tree,
with m ≤ |Var | (in that we may always find decompositions in a suitable normal
form without redundancies, so that the number of vertices in the tree cannot
exceed the number of variables of the given instance). To be complete, if the in-
put consists of I only, we have to compute the decomposition, too. This can be
done with a guaranteed polynomial-time upper bound in the case of hypertree
decompositions [18].

In the following two sections, we provide some tractability results for op-
timization problems. For the sake of presentation, we give algorithms for the
acyclic case, provided that these results may be clearly extended to any class of
instances having bounded (generalized) hypertree width, after the above men-
tioned polynomial-time transformation.

4 Optimization Problems over CSP Solutions

In this section, we consider optimization problems where an assignment has to
be singled out that satisfies all the constraints of the underlying CSP instance
and that has minimum total cost; in other words, we look for a “best” solution
among all the possible solutions. In particular, below, we shall firstly address the
case where each possible variable-value mapping is associated with a cost (also
called constraint satisfaction optimization problem); then we shall consider the
case where costs are defined over the constraints tuples (weighted CSP).

24 G. Gottlob, G. Greco, and F. Scarcello

Input: An acyclic CSOP instance 〈I, w〉 with I = 〈Var , U, C〉, C = {(S1, r1), ..., (Sq, rq)},
and a join tree T = (N, E) of the hypergraph H(I);

Output: A solution to 〈I, w〉;
var t∗ : Var �→ U ;

�v
tv

: rational number, for each tuple tv ∈ rv ;
ttv,c : tuple in rc, for each tuple tv ∈ rv , and for each (v, c) ∈ E;

——–
Procedure BottomUp;
begin

Done := the set of all the leaves of T ;
while ∃v ∈ T such that (i) v
∈ Done, and (ii) {c | c is child of v} ⊆ Done do

rv := rv − {tv | ∃(v, c) ∈ E such that ∀tc ∈ θc, tv
≈ tc};
if rv = ∅ then EXIT; (* I is not satisfiable *)
for each tv ∈ rv do

�v
tv

:= w(tv);
for each c such that (v, c) ∈ E do

t̄c := arg mintc∈rc|tv≈ tc

(
�c

tc
− w(tc ∩ tv)

)
;

ttv,c := t̄c; (* set best solution *)
�v

tv
:= �v

tv
+ �c

t̄c
− w(t̄c ∩ tv);

end for
end for
Done := Done ∪ {v};

end while
end;

——–
begin (* MAIN *)

BottomUp;
let r be the root of T ;
t̄r := arg mintr∈rr �r

tr
;

t∗ := t̄r; (* include solution *)
TopDown(r, t̄r);
return t∗;

end.

Procedure TopDown(v : vertex of N , tv ∈ rv);
begin

for each c ∈ N s.t. (v, c) ∈ E do
t̄c := ttv,c;
t∗ := t∗ ∪ t̄c; (* include solution *)
TopDown(c, t̄c);

end for
end;

Fig. 3. Algorithm ComputeOptimalSolution

4.1 Constraint Satisfaction Optimization Problems

An instance of a constraint satisfaction optimization problem (CSOP) con-
sists of a pair 〈I, w〉, where I = 〈Var , U, C〉 is a CSP instance and where
w : Var × U �→ Q is a function mapping substitutions for individual vari-
ables to rational numbers. For a substitution {X1/u1, ..., Xn/un}, we denote by
w({X1/u1, ..., Xn/un}) the value

∑n
i=1 w(Xi, ui). Then, a solution to a CSOP

instance 〈I, w〉 is a solution θ to I such that w(θ) ≤ w(θ′), for each solution θ′

to I. Details on this framework can be found, e.g., in [32].
Constraint satisfaction optimization problems naturally arise in various ap-

plication contexts. As an example they have recently been used in the context
of combinatorial auctions [13], in order to model and solve the winner deter-
mination problem of determining the allocation of the items among the bidders
that maximizes the sum of the accepted bid prices. In particular, in [13], it has
been observed that CSOPs and, in particular, the winner determination prob-
lem, can be solved in polynomial time on some classes of acyclic instances via a
dynamic programming algorithm founded on the ideas of [34]. This algorithm,
named ComputeOptimalSolution, is reported in Figure 3 and will be briefly
illustrated in the following.

Tractable Optimization Problems 25

The algorithm receives in input the instance 〈I, w〉 and a join tree T = (N, E)
for H(I). Recall that each vertex v ∈ N corresponds to a hyperedge of H(I)
and, in its turn, to a constraint in C; hence, we shall simply denote by (Sv, rv)
the constraint in C univocally associated with vertex v.

Based on 〈I, w〉 and T , ComputeOptimalSolution computes an optimal
solution (or checks that there is no solution) by looking for the “conformance” of
the tuples in each relation rv with the tuples in rc, for each child c of v in T , where
tv ∈ rv is said to conform with tc ∈ rc, denoted by tv ≈ tc, if for each X ∈ Sv∩Sc,
X/u ∈ tv ⇔ X/u ∈ tc. In more detail, ComputeOptimalSolution solves
〈I, w〉 by traversing T in two phases. First, vertices of T are processed from
the leaves to the root r, by means of the procedure BottomUp that updates
the weight �v

tv
of the current vertex v. Intuitively, �v

tv
stores the cost of the best

partial solution for I computed by using only the variables occurring in the
subtree rooted at v. Indeed, if v is a leaf, then �v

tv
= w(tv). Otherwise, for each

child c of v in T , �v
tv

is updated by adding the minimum value �c
tc
− w(tc ∩ tv)

over all tuples tc conforming with tv. The tuple t̄c for which this minimum is
achieved is stored in the variable ttv ,c (resolving ties arbitrarily). Note that if
this process cannot be completed, because there is no tuple in rv conforming
with some tuple in each relation associated with the children of v, then we may
conclude that I is not does not admit any solution. Otherwise, after the root
r ∈ N is reached, this part ends, and the top-down phase may start.

In this second phase, the tree T is processed starting from the root. Firstly,
the assignment t∗ is defined as the tuple in rr with the minimum cost over all
the tuples in rr (again, resolving ties arbitrarily). Then, procedure TopDown
extends t∗ with a tuple for each vertex of T : at each vertex v and for each child
c of v, t∗ is extended with the tuple ttv ,c resulting from the bottom-up phase.

Being based on a standard dynamic programming scheme, correctness of
ComputeOptimalSolution can be shown by structural induction on the sub-
trees of T [13]. Moreover, by analyzing its running time, one may note that deal-
ing with cost functions does not (asymptotically) provide any overhead w.r.t.
Yannakakis’s algorithm [34] for plain CSPs. Following [13], the following can be
shown for the more general case of CSOP instances having bounded generalized
hypertree-width hypergraphs.1

Theorem 1. Let 〈I, w〉 be a CSOP instance and HD a (generalized) hypertree
decomposition of H(I). Moreover, let k be the width of HD and m be the number
of vertices in its decomposition tree. Then, a solution to 〈I, w〉 can be computed
(or it is discovered that no solution exists) in time O((m−1)×rk

max × log rk
max),

where rmax is the size of the largest constraint relation in I.

1 In all complexity results, we assume the weighting function w be explicitly listed in
the input (otherwise, just add the cost of computing through w all cost values for
the variable assignments of the given input instance).

26 G. Gottlob, G. Greco, and F. Scarcello

4.2 Weighted CSPs: Costs over Tuples

Let us now turn to study a slight variation of the above scenario, where costs
are associated with each tuple of the constraint relations, rather than with sub-
stitutions for individual variables. In fact, this is the setting of weighted CSPs,
a well-known specialization of the more general valued CSP framework [30].

Formally, a weighted CSP (WCSP) instance consists of a tuple 〈I, w1, ..., wq〉,
where I = 〈Var , U, C〉 with C = {C1, C2, . . . , Cq} is a CSP instance, and where,
for each tuple tv ∈ rv, wv(tv) ∈ Q denotes the cost associated with tv. For a
solution θ = t1∪...∪tq to I, we define w(θ) =

∑q
v=1 wv(tv) as its associated cost.

Then, a solution to 〈I, w1, ..., wq〉 is a solution θ to I such that w(θ) ≤ w(θ′),
for each solution θ′ to I.

A few tractability results for WCSPs (actually, for valued CSPs) are known in
the literature when structural restrictions are considered over binary encodings
of the constraint hypergraphs. Indeed, it has been observed that WCSPs are
tractable when restricted on classes of instances whose associated primal graphs
are acyclic or nearly-acyclic (see, e.g., [33,10,26]). However, the primal graph
obscures much of the structure of the underlying hypergraph since, for instance,
each hyperedge is turned into a clique there—see the discussion in Section 3.

Therefore, whenever constraints have large arities, tractability results for pri-
mal graphs are useless, and it becomes then natural to ask whether polynomial-
time solvability still holds when moving from (nearly-)acyclic primal graphs
to acyclic hypergraphs, possibly associated with very intricate primal graphs.
Next, we shall positively answer this question, by simply recasting weighted
CSPs as constraint optimization problems, and by subsequently solving them
via the algorithm ComputeOptimalSolution. To this end, given a WCSP
instance 〈I, w1, ..., wq〉, we define its associated CSOP instance, denoted by
CSOP(〈I, w1, ..., wq〉), as the pair 〈I ′, w′〉 with I ′ = 〈Var ′, U ′, C′〉 such that:

• Var ′ = Var ∪ {D1, ..., Dq}, where each Dv is a fresh auxiliary variable in I ′;
• U ′ = U∪

⋃q
v=1

⋃
tv∈rv

{utv}, i.e., for each constraint (Sv, rv) ∈ C, U ′ contains
a fresh value for each tuple in rv—intuitively, mapping the variable Dv to
utv encodes that the tuple tv is going to contribute to a solution for I;

• C′ = {(Sv ∪ {Dv}, r′v) | (Sv, rv) ∈ C}, where r′v = {tv ∪ {Dv/utv} | tv ∈ rv};
• w′(X/u) = wv(tv) if X = Dv and u = utv , for some tuple tv ∈ rv; otherwise,

w′(X/u) = 0. That is, the whole cost of each tuple is determined by the
mapping of its associated fresh variable Dv.

It is immediate to check that the above transformation is feasible in linear
time. In addition, the transformation enjoys two relevant preservation prop-
erties: Firstly, it preserves the structural properties of the WCSP instance in
that H(I ′) is acyclic if and only if H(P) is acyclic; and secondly, it preserves
its solutions, in that θ′ = t′1 ∪ ... ∪ t′q is a solution to 〈I, w1, ..., wq〉 if and only
if θ = t1 ∪ ... ∪ tq is a solution to 〈I′, w′〉, where t′v = tv ∪ {Dv/utv} for each
1 ≤ v ≤ q. By exploiting these observations and Theorem 1, the following can
be established.

Tractable Optimization Problems 27

Theorem 2. Let 〈I, w1, ..., wq〉 be a WCSP instance and HD a (generalized)
hypertree decomposition of H(I). Moreover, let k be the width of HD and m be the
number of vertices in its decomposition tree. Then, a solution to 〈I, w1, ..., wq〉
can be computed (or we may state that there is no solution) in time O((m−1)×
rk
max × log rk

max), where rmax is the size of the largest constraint relation in I.

5 Minimizing the Number of Violated Constraints

In this section, we shall complete our picture by considering those scenarios
where problems might possibly be overconstrained and where, hence, the focus is
on finding assignment minimizing the total number of violated constraints. These
kinds of problems are usually referred to in the literature as Max-CSPs [12],
which similarly as WCSPs are specializations of valued CSPs.

Formally, let θ : Var �→ U be an assignment for a CSP instance I =
〈Var , U, C〉. We say that the violation degree of θ, denoted by δ(θ), is the number
of relations rv such that there is no tuple tv ∈ rv with tv ⊆ θ. An assignment
θ : Var �→ U is a solution to the Max-CSP instance (associated with I) if
δ(θ) ≤ δ(θ′), for each assignment θ′ : Var �→ U . Note that Max-CSPs instances,
by definition, do always have a solution.

5.1 Acyclic Instances Remain Intractable

After the tractability results established in Section 4.2 for WCSPs, one may
expect good news for Max-CSPs, too. Surprisingly, this is not the case.

Theorem 3. Solving Max-CSPs is NP-hard, even when restricted over classes
of instances with acyclic constraint hypergraphs.

Proof. Consider any class T of CSPs instances having an NP-hard satisfiability
problem. Then, let T ′ be a new class of Max-CSP instances such that, for each
I = 〈Var , U, C〉 ∈ T , T ′ contains an instance I ′ = 〈Var , U, C′〉 with C′ = C ∪
{(Var , ∅)}. That is, any instance I′ ∈ T ′ has a constraint over all variables with
an empty constraint relation, and thus it is not satisfiable. Moreover, because
of the big hyperedge associated with such a constraint, its hypergraph H(I′) is
trivially acyclic. Also, by construction, there is an assignment for I′ violating
only one constraint if and only if I is satisfiable. It follows that finding an
assignment minimizing the total number of violated constraints is NP-hard on
the class of acyclic instances T ′. �

5.2 Incidence Graphs and Tractable Cases

Given that hypergraph acyclicity and hence its generalizations are not sufficient
for guaranteeing the tractability of Max-CSPs, it makes sense to explore acyclic-
ity properties related to suitable graph representations. In fact, as observed
in Section 4.2, it is well-known that valued CSPs (and, hence, Max-CSPs) are
tractable over acyclic primal graphs (e.g., [33,10,26]). More precisely, tractability

28 G. Gottlob, G. Greco, and F. Scarcello

has been observed in the literature to hold over primal graphs having bounded
treewidth (see Section 3). Our main result in this section is precisely to show
that tractability still holds in case the incidence graph of H(I) has bounded
treewidth, which is a more general condition than the bounded treewidth of pri-
mal graphs and which can be used to establish better complexity bounds and
to enlarge the class of tractable instances [22]. The fact that the standard CSP
is tractable for instances whose incidence graphs have bounded treewidth was
already shown in [6]. We here extend this tractability result to Max-CSPs.

Recall that the incidence encoding of a hypergraph H, denoted by inc(H) =
(N, E), is the bipartite graph where N = E(H) ∪ N (H) and E = { {h, a} | h ∈
E(H) and a ∈ h)}, i.e. it contains an edge between h and a if and only if the
variable a occurs in the hyperedge h. As an example, Figure 2 reports on the
rightmost part the incidence graph inc(H1), where nodes associated with hyper-
edges in E(H1) are depicted as black circles. Note that the treewidth of inc(H1)
is 2, which is much smaller than the treewidth of G(H1). This does not happen
by chance since, for each hypergraph H, it holds that tw(inc(H)) ≤ tw(G(H));
in addition, there are also classes of hypergraphs with incidence encodings of
bounded treewidth and primal encodings of unbounded treewdith (see, e.g., [22]).

While enlarging the class of instances having bounded treewidth, the inci-
dence encoding still conveys all the information needed to solve Max-CSP in-
stances. Again, the solution algorithm consists of a transformation into a suit-
able CSOP instance. Formally, let I = 〈Var , U, C〉 be a Max-CSP instance with
C = {(S1, r1), ..., (Sq, rq)}, and let 〈T, χ〉 be a k-width tree decomposition of
inc(H(I))—recall that for each vertex v ∈ T , χ(v) is a set of variables (i.e., nodes
of N (H(I))) and constraint scopes (i..e, edges in E(H(I))). Then, the constraint
satisfaction optimization problem instance CSOP(I, 〈T, χ〉) is the pair 〈I ′, w′〉,
where I ′ = 〈Var ′, U ′, C′〉 and such that:
• Var ′ = Var ∪ {S1, ..., Sq}, that is, also the constraint scopes of C belong to

the variables of the new problem;
• U ′ = U ∪ {unsat} ∪ {ut | t ∈ ri, for 1 ≤ i ≤ q};
• C′ = {(χ(v), r′v) | v ∈ T } where the constraint relation r′v is defined as

follows. Let μ = |χ(v)∩Var |, and let Uμ denote the set of all possible tuples
over the μ variables in χ(v) ∩Var . Let also Si1 , ...Sih

be the scope-variables
in χ(v). Then, for each tuple θ ∈ Uμ, the relation r′v contains all tuples
θ ∪ {Si1/vi1} ∪ · · · ∪ {Sih

/vih
}, where vij ∈ U (1 ≤ j ≤ h) is a value for the

scope-variable Sij such that: vij = ut if there is a tuple t ∈ rij conforming
with θ; and vij = unsat , if no such a tuple exists in rij .

• w′(X/u) = 0 if u �= unsat ; otherwise w′(X/u) = 1, that is, each constraint
of C that is not satisfied increases the cost of a solution by a unitary factor.

Note that this transformation is feasible in time exponential in the width of 〈T, χ〉
only. Moreover, solutions of I ′ with minimum total cost precisely correspond to
assignments over I minimizing the total number of violated constraints. In fact,
the following can be established.

Theorem 4. Let I = 〈Var , U, C〉 be a Max-CSP instance with tw(inc(H(I))) =
k. Then, a solution to I can be computed in time O(|Var |× |U |k+1× log |U |k+1).

Tractable Optimization Problems 29

6 Conclusion and Discussion

In this paper, classes of tractable CSOP, WCSP, and Max-CSP instances are
singled out by overviewing and proposing solution approaches applicable to
instances whose hypergraphs have bounded (generalized) hypertree width, or
whose incidence graphs have bounded treewidth. The techniques described in
this paper are mainly based on Algorithm ComputeOptimalSolution, which
has been designed to optimize costs expressed as rational numbers and combined
via the summation operation. However, it is easily seen that it remains correct
if costs are specified over an arbitrary totally ordered monoid structure, where
some binary operation ⊕ (in place of standard summation) is used in order to
combine costs, provided it is commutative, associative, closed, and that it ver-
ifies identity and monotonicity. It follows that all tractable classes of CSOP,
WCSP, and Max-CSP instances identified in this paper remain tractable in such
extended scenarios, which indeed emerge with valued CSPs (see, e.g., [4]).

References

1. Adler, I., Gottlob, G., Grohe, M.: Hypertree-Width and Related Hypergraph In-
variants. European Journal of Combinatorics 28, 2167–2181 (2007)

2. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. Journal of the ACM 30(3), 479–513 (1983)

3. Bernstein, P.A., Goodman, N.: The power of natural semijoins. SIAM Journal on
Computing 10(4), 751–771 (1981)

4. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:
Semiring-Based CSPs and Valued CSPs: Frameworks, Properties,and Comparison.
Constraints 4(3), 199–240 (1999)

5. Bodlaender, H.L., Fomin, F.V.: A Linear-Time Algorithm for Finding Tree De-
compositions of Small Treewidth. SIAM Journal on Computing 25(6), 1305–1317
(1996)

6. Chekuri, C., Rajaraman, A.: Conjunctive Query Containment Revisited. MFPS
1985 239(2), 211–229 (2000); Preliminary version in: Schwentick, T., Suciu, D.
(eds.): ICDT 2007. LNCS, vol. 4353, pp. 211–229. Springer, Heidelberg (2007);
Afrati, F.N., Kolaitis, P.G. (eds.): ICDT 1997. LNCS, vol. 1186, pp. 56–70.
Springer, Heidelberg (1996) (Full version)

7. Cohen, D.A., Jeavons, P.G., Gyssens, M.: A unified theory of structural tractabil-
ity for constraint satisfaction problems. Journal of Computer and System Sci-
ences 74(5), 721–743 (2008)

8. Daskalakis, C., Papadimitriou, C.H.: Computing pure nash equilibria in graphical
games via markov random fields. In: Proc. of ACM EC 2006, pp. 91–99 (2006)

9. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes.
J. ACM 30(3), 514–550 (1983)

10. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting Tree Decomposition and Soft
Local Consistency In Weighted CSP. In: Proc. of AAAI 2006 (2006)

11. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
12. Freuder, E.C., Wallace, R.J.: Partial Constraint Satisfaction. Artificial Intelli-

gence 58(1-3), 21–70 (1992)

30 G. Gottlob, G. Greco, and F. Scarcello

13. Gottlob, G., Greco, G.: On the complexity of combinatorial auctions: structured
item graphs and hypertree decomposition. In: Proc. EC 2007, pp. 152–161 (2007)
(full version currently available as Technical Report, University of Calabria)

14. Gottlob, G., Greco, G., Scarcello, F.: Pure Nash Equilibria: Hard and Easy Games.
Journal of Artificial Intelligence Research 24, 357–406 (2005)

15. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artificial Intelligence 124(2), 243–282 (2000)

16. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries.
Journal of the ACM 48(3), 431–498 (2001)

17. Gottlob, G., Leone, N., Scarcello, F.: Advanced parallel algorithms for processing
acyclic conjunctive queries, rules, and constraints. In: Proc. of SEKE 2000, pp.
167–176 (2000)

18. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable
queries. J. of Computer and System Sciences 64(3), 579–627 (2002)

19. Gottlob, G., Leone, N., Scarcello, F.: Robbers, marshals, and guards: game theo-
retic and logical characterizations of hypertree width. J. of Computer and System
Sciences 66(4), 775–808 (2003)

20. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions:
NP-hardness and tractable variants. In: Proc. of PODS 2007, pp. 13–22 (2007)

21. Gottlob, G., Pichler, R., Wei, F.: Bounded Treewidth as a Key to Tractability of
Knowledge Representation and Reasoning. In: Proc. of AAAI 2006 (2006)

22. Greco, G., Scarcello, F.: Non-Binary Constraints and Optimal Dual-Graph Repre-
sentations. In: Proc. of IJCAI 2003, pp. 227–232 (2003)

23. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proc. of
SODA 2006, Miami, Florida, USA, pp. 289–298 (2006)

24. Kask, K., Dechter, R., Larrosa, J., Dechter, A.: Unifying tree decompositions for
reasoning in graphical models. Artificial Intelligence 166(1-2), 165–193 (2005)

25. Meseguer, P., Rossi, F., Schiex, T.: Soft Constraints. In: Handbook of Constraint
Programming. Elsevier, Amsterdam (2006)

26. Ndiaye, S., Jégou, P., Terrioux, C.: Extending to Soft and Preference Constraints
a Framework for Solving Efficiently Structured Problems. In: Proc. of ICTAI 2008,
pp. 299–306 (2008)

27. Reingold, O.: Undirected ST-connectivity in log-space. Journal of the ACM 55(4)
(2008)

28. Robertson, N., Seymour, P.D.: Graph minors III: Planar tree-width. Journal of
Combinatorial Theory, Series B 36, 49–64 (1984)

29. Scarcello, F., Gottlob, G., Greco, G.: Uniform Constraint Satisfaction Problems
and Database Theory. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Com-
plexity of Constraints. LNCS, vol. 5250, pp. 156–195. Springer, Heidelberg (2008)

30. Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In: Proc. of IJCAI 1995, pp. 631–639 (1995)

31. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing 13(3), 566–579 (1984)

32. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)
33. Terrioux, C., J’egou, P.: Bounded Backtracking for the Valued Constraint Satisfac-

tion Problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 709–723. Springer,
Heidelberg (2003)

34. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proc. of VLDB 1981,
pp. 82–94 (1981)

	Tractable Optimization Problems through Hypergraph-Based Structural Restrictions
	Introduction
	CSPs, Acyclic Instances, and Their Desirable Properties
	Generalizing Acyclicity
	Tree Decompositions
	Hypertree Decompositions

	Optimization Problems over CSP Solutions
	Constraint Satisfaction Optimization Problems
	Weighted CSPs: Costs over Tuples

	Minimizing the Number of Violated Constraints
	Acyclic Instances Remain Intractable
	Incidence Graphs and Tractable Cases

	Conclusion and Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

