
Optimization Methods for the Partner Units
Problem?

Markus Aschinger1, Conrad Drescher1, Gerhard Friedrich2, Georg Gottlob1,
Peter Jeavons1, Anna Ryabokon2, Evgenij Thorstensen1

1 Computing Laboratory, University of Oxford
2 Institut für Angewandte Informatik, Alpen-Adria-Universität Klagenfurt

Abstract. In this work we present the Partner Units Problem as a novel
challenge for optimization methods. It captures a certain type of config-
uration problem that frequently occurs in industry. Unfortunately, it can
be shown that in the most general case an optimization version of the
problem is intractable. We present and evaluate encodings of the problem
in the frameworks of answer set programming, propositional satisfiability
testing, constraint solving, and integer programming. We also show how
to adapt these encodings to a class of problem instances that we have
recently shown to be tractable.

1 Introduction

The Partner Units Problem (Pup) has recently been proposed as a new
challenge in automated configuration [8]. It captures the essence of a
specific type of configuration problem that frequently occurs in industry.

Informally the Pup can be described as follows: Consider a set of sensors
that are grouped into zones. A zone may contain many sensors, and a
sensor may be attached to more than one zone. The Pup then consists of
connecting the sensors and zones to control units, where each control unit
can be connected to the same fixed maximum number UnitCap of zones
and sensors.1 Moreover, if a sensor is attached to a zone, but the sensor
and the zone are assigned to different control units, then the two control
units in question have to be directly connected. However, a control unit
cannot be connected to more than InterUnitCap other control units (the
partner units).

For an application scenario consider, for example, a museum where we
want to keep track of the number of visitors that populate certain parts
(zones) of the building. The doors leading from one zone to another are
equipped with sensors. To keep track of the visitors the zones and sensors
are attached to control units; the adjacency constraints on the control
units ensure that communication between units can be kept simple.

? Work funded by FFG FIT-IT Grant 825071 (Klagenfurt) and EPSRC Grant
EP/G055114/1 (Oxford).

1 For ease of presentation and without loss of generality we assume that UnitCap is
the same for zones and sensors.

2 M. Aschinger et. al.

Let us emphasize that the Pup is not limited to this application do-
main: it occurs whenever sensors that are grouped into zones have to be
attached to control units, and communication between units should be
kept simple. Typical applications include intelligent traffic management,
or surveillance and security applications. The Pup has been introduced
as a novel benchmark instance at this year’s answer set programming
competition [2].

Figure 1 shows a Pup instance and a solution for the case UnitCap =
InterUnitCap = 2. In this example six sensors (left) and six zones (right),
which are completely inter-connected, are partitioned into units (shown
as squares) respecting the adjacency constraints. Note that for the given
parameters this is a maximal solvable instance; it is not possible to con-
nect a new zone or sensor to any of the existing ones.

Fig. 1. Solving a K6,6 Partner Units Instance — Partitioning Sensors and Zones into
Units on a Circular Unit Layout

Very recently, we have shown that the case where InterUnitCap = 2
and UnitCap = k for some fixed k is tractable, by giving a specialized
NLogSpace algorithm that is based on the notion of a path decomposi-
tion [1]. While this case is of some importance for our partners in indus-
try, the general case is also interesting: Consider, for example, a grid of
rooms, where every room is accessible from each neighboring room, and
all the doors are fitted with a sensor. Moreover, assume there are doors
to the outside on two sides of the building; the corresponding instance is
shown in Figure 2, with rooms as black squares, and doors as circles. It
is not hard to see that this instance is unsolvable for InterUnitCap = 2
and UnitCap = 2. However, it is easily solved for InterUnitCap = 4
and UnitCap = 2: Every room goes on a distinct unit, together with
the sensors to the west and to the north; the connections between units
correspond to those between rooms. Clearly this solution is optimal, in
the sense of using the least possible number of units.

Optimization Methods for the Partner Units Problem 3

In this paper we present and evaluate encodings in the optimization
frameworks of answer set programming, constraint satisfaction, Sat-
solving, and integer programming, that can be used to solve the gen-
eral version of the Pup. We also show how to adapt these encodings to
the special case InterUnitCap = 2, and compare the adapted encodings
against our specialized algorithm.
It is worth emphasizing that we do not take our encodings/algorithms to
be the final answer on the Pup. Instead we hope that our work will spark
interest in the problem across the different optimization research com-
munities, eventually resulting in better encodings and better theoretical
understanding of the problem.

Fig. 2. A Grid-like Pup Instance

The remainder of this paper is organized as follows: In section 2 we
give the basic formal definitions, and identify general properties of the
Pup. Then, in section 3 we present problem models in the frameworks
of answer set programming, propositional satisfiability testing, integer
programming, and constraint solving; these problem models can be used
for arbitrary fixed values of InterUnitCap. In section 4 we briefly recall
our recent tractability results for the case InterUnitCap = 2, and show
how the various Pup encodings presented in this paper can be adapted to
this special case. Finally, in section 5 we evaluate the performance of our
encodings, and in section 6 we list some directions for future research.

2 The Partner Units Problem

2.1 Formal definition

Formally, the Pup consists of partitioning the vertices of a bipartite
graph G = (V1, V2, E) into a set U of bags such that each bag
– contains at most UnitCap vertices from V1 and at most UnitCap

vertices from V2; and
– has at most InterUnitCap adjacent bags, where the bags U1 and U2

are adjacent whenever vi ∈ U1 and vj ∈ U2 and (vi, vj) ∈ E.

4 M. Aschinger et. al.

To every solution of the Pup we can associate a solution graph. For this
we associate to every bag Ui ∈ U a vertex vUi . Then the solution graph
G∗ has the vertex set V1 ∪ V2 ∪ {vUi | Ui ∈ U} and the set of edges
{(v, vUi) | v ∈ Ui ∧ Ui ∈ U} ∪ {(vUi , vUj) | Ui and Uj are adjacent.}. In
the following we will refer to the subgraph of the solution graph induced
by the vUi as the unit graph.
The following are the two most important reasoning tasks for the Pup:
Decide whether there is a solution, and find an optimal solution, that
is, one that uses the minimal number of control units. We are especially
interested in the latter problem. For this we consider the corresponding
decision problem: Is there a solution with a specified number of units?
The rationale behind the optimization criterion is that (a) units are
expensive, and (b) connections are cheap.

2.2 The Partner Units Problem is Intractable

By a reduction from BinPacking, it can be shown that the optimization
version of the Pup is intractable when InterUnitCap = 0, and UnitCap
is part of the input. Observe that clearly the Pup is in NP (cf. also
section 3).

Theorem 1 ([1]). Deciding whether a Pup instance has a solution with
a given number of units is NP-complete, when InterUnitCap = 0, and
UnitCap is part of the input.

In practice, however, the value of UnitCap will typically be fixed.

2.3 Forbidden Subgraphs of the Pup

In solvable instances sensors cannot belong to arbitrarily many zones
(and vice versa) [1]:

Lemma 1 (Forbidden Subgraphs of the Pup). A Pup instance
has no solution if it contains K1,n or Kn,1 as a subgraph, where n =
((InterUnitCap + 1) ∗UnitCap) + 1.

2.4 K-regular Graphs

There is an interesting connection between most general solutions to
the Pup and k-regular unit graphs, where a graph is k-regular if every
vertex has exactly k neighbors: In k-regular unit graphs we are exploiting
the InterUnitCap capacity for connections between units to the fullest.
Hence, k-regular unit graphs are the most general solutions (if they exist).
In the case where k = 2, there is exactly one k-regular graph, the cycle;
we exploit this fact in section 4. In the case where k is odd, k-regular
unit graphs only exist if there is an even number of units (“hand-shaking
lemma”). Moreover, for k > 2 the number of distinct most general unit
graphs grows rapidly: E.g. for k = 4 there are six distinct graphs on
eight vertices, and 8037418 on sixteen vertices; for twenty vertices not
all distinct graphs have been constructed [13]. It can be shown that all
these solution topologies can be forced:

Optimization Methods for the Partner Units Problem 5

Observation 1 (Pup instances and k-regular graphs) For every k-
regular graph Gk there exists a Pup instance G with InterUnitCap = k
such that in every solution of G the unit graph is Gk.

Proof. Construct the instance G as follows:
1) First connect 2 ∗ UnitCap vertices (i.e. sensors and zones) to each

node in Gk. Let the set of all sensors (zones) be V1 (V2).
2) The instance G contains all edges (v1, v2), where v1 ∈ V1 and v2 ∈ V2

are connected to either the same or adjacent nodes in Gk.
We show that every solution is isomorphic to Gk. We consider two cases:
– 0 ≤ k ≤ 1: The result is immediate.
– k > 1: Let u0 be a node in Gk with neighbors uj : 1 ≤ j ≤ k. Denote

by V ui
1 and V ui

2 the sensors and zones created in G for ui : 0 ≤ i ≤ k.
Let G′k be an optimal solution for G. We need two observations: (1)
For each 0 ≤ i ≤ k both V ui

1 and V ui
2 are on the same unit in G′k.

(2) For 0 ≤ i < j ≤ k if V ui
1 ∪ V ui

2 and V
uj

1 ∪ V
uj

2 are connected in
G then their units are connected in G′k.

Hence, if InterUnitCap > 2, and there are no restrictions on the solution
topology in the application domain, then it is practically not feasible to
iteratively try all most general solution topologies. The solution topology
will have to be inferred instead.

2.5 Bounds on the Number of Units Required
Let us next point out that the number of units used when solving an
instance G = (V1, V2, E) is bounded from below by lb = dmax (|V1|,|V2|)

UnitCap
e.

Clearly it can also be bounded from above by ub = |V1|+|V2|— we never
need empty units. If InterUnitCap = 2 and UnitCap > 1 we can show
that the stronger ub = max (|V1|, |V2|) holds for connected instances [1].
Now, if there are multiple connected components Ci in the instance with
upper bounds ubi, then we have ub =

P
ubi. We conjecture that this

also holds for InterUnitCap > 2, but have so far been unable to prove it.
These bounds are exploited in the problem encodings below either for
keeping the problem model small, or to limit the depth of iterative deep-
ening search. In this approach we first try to find a solution with lb units;
if that fails increase lb by one; the first solution found will be optimal.
For both approaches better upper bounds are desirable.

2.6 Symmetry breaking
If we don’t use iterative deepening search, then in some problem models
we might obtain solutions with empty units. Here we can do symmetry
breaking, by demanding that whenever unit j has a sensor or zone as-
signed to it, then every unit j′ < j also has some sensor or zone assigned
to it.
We can also rule out a lot of the connections between sensors and units
(or alternatively, between zones and units) immediately. Consider sensors
and units: Sensor 1 must be somewhere, so it might as well be on unit 1.
Sensor 2 can either be on unit 1 or on a new unit, let’s say 2, and so on.
Unfortunately, we cannot do this on both sensors and zones, since the
edges may disallow a zone and a sensor on the same unit.

6 M. Aschinger et. al.

3 Encodings for the General Case

We are next going to outline encodings of the Pup where InterUnitCap is
an arbitrary fixed constant. Due to cost considerations we are especially
interested in the optimization version of the Pup: We want to minimize
the number of expensive units used, but do not consider the cost for the
cheap connections between them.
In particular, we show how the problem can be encoded in the frame-
works of propositional satisfiability testing (Sat), integer programming
(Ip), and constraint solving (Csp), all of which can be considered as
state-of-the-art for optimization problems [11]. In addition we will also
describe an encoding in answer set programming (Asp), a currently very
successful knowledge representation formalism.

3.1 Answer Set Programming

First, we show how to encode the Pup in answer set programming [9, 12]
which has its roots in logic programming and deductive databases. This
knowledge representation language is based on a decidable fragment of
first-order logic and is extended with language constructs such as aggre-
gation and weight constraints. Already the propositional variant allows
the formulation of problems beyond the first level of the polynomial hi-
erarchy. In case standard propositional logic is employed 2, an answer
set corresponds to a minimal logical model by definition of [12].
In our encodings a solution (i.e. a configuration) is the restriction of an
answer set to those literals that satisfy the defined solution schema.
To encode a Pup instance in Asp we represent the zones and sensors
by the unary predicates zone/1 and sensor/1. The edges between zones
and sensors are represented by the binary predicate zone2sensor/2. The

number of available units lower =
l

max(|Sensors|,|Zones|)
2

m
, unitCap and

interUnitCap are each specified by a constant. The Pup is then encoded
via the following logical sentences employing the syntax described in [3]:

(1) unit(1..lower).

(2) 1 { unit2zone(U,Z) : unit(U) } 1 :- zone(Z).

(3) 1 { unit2sensor(U,S) : unit(U) } 1 :- sensor(S).

(4) :- unit(U), unitCap+1 { unit2zone(U,Z): zone(Z) }.
(5) :- unit(U), unitCap+1 { unit2sensor(U,S): sensor(S) }.
(6) partnerunits(U,P) :- unit2zone(U,Z), zone2sensor(Z,S),

unit2sensor(P,S), U!=P.

(7) partnerunits(U,P) :- partnerunits(P,U), unit(U), unit(P).

(8) :- unit(U), interUnitCap+1 { partnerunits(U,P): unit(P) }.

The first statement generates the required number of units represented
as facts: unit(1). unit(2). . . . unit(lower). The second and the third

2 All literals in rules are negation free. ⊥, →, ∧, ∨ are used to formulate (disjunctive)
rules.

Optimization Methods for the Partner Units Problem 7

clause ensure that each zone and sensor is connected to exactly one
unit. The edges between units and zones (rsp. sensors) are expressed by
unit2zone/2 (rsp. unit2sensor/2) predicates. We use cardinality con-
straints [17] of the form l {L1, . . . , Ln} u specifying that at least l but
at most u literals of L1, . . . , Ln must be true. So called conditions (ex-
pressed by the symbol “:”) restrict the instantiation of variables to those
values that satisfy the condition. For example, in the second rule, for any
instantiation of variable Z a collection of ground literals unit2zone(U, Z)
is generated where the variable U is instantiated to all possible values
s.t. unit(U) is true. In this collection at least one and at most one literal
must be true.

The fourth and the fifth rule guarantee that one unit controls at most
UnitCap zones and UnitCap sensors. In these rules the head of the rule
is empty which implies a contradiction in case the body of the rule is
fulfilled. The last three rules define the connections between units and
limit the number of partner units to InterUnitCap. Note that rules 4,
5 and 8 can be rephrased by moving the cardinality constraint on the
left-hand-side of the rule and adapting the boundaries. We used the
depicted encoding because it follows the Guess/Check/Optimize pattern
formulated in [12]. Depending on the particular encoding runtimes may
vary.

Alternatively, Asp solvers provide built-in support for optimization by
restricting the set of answer sets according to an objective function.
For example, for minimizing the number of units, the upper bound on
the number of units used has to be provided as a constant upper =
max(|Zones|, |Sensors|). The unit generation rule of the original pro-
gram (line 1) then has to be replaced by:

(1’) unit(1..upper).

(2’) unitUsed(U):- unit2zone(U,Z).

(3’) unitUsed(U):- unit2sensor(U,S).

(4’) lower { unitUsed(X):unit(X) } upper.

(5’) unitUsed(X):- unit(X), unit(Y), unitUsed(Y), X<Y.

(6’) #minimize[unitUsed(X)].

Here, the second and the third rule express the property that a used unit
always has to be non-empty. Rule 4’ states that the number of used units
must be between lower and upper. Rule 5’ expresses an ordering on the
units: units with smaller numbers should be used first. This statement
improves the performance of the solver. The last rule expresses that the
optimization criterion is the number of units used in a solution.

3.2 Propositional Satisfiability Testing

We next show how to encode the Pup as a propositional satisfiability
problem. We are given sensors [1, S], zones [1, Z], and units [1, U], as
well as UnitCap and InterUnitCap.

8 M. Aschinger et. al.

Let suij denote that sensor i is assigned to unit j, and zuij that zone i
is assigned to unit j. First of all, every sensor and zone must belong to
a unit, so

∀1 ≤ i ≤ S
_

1≤j≤U

suij and ∀1 ≤ i ≤ Z
_

1≤j≤U

zuij .

Furthermore, every sensor and zone belongs to at most one unit, therefore
we have

∀1 ≤ i ≤ S.∀1 ≤ j < j′ ≤ U. (¬suij ∨ ¬suij′)

and the same for zones.
Now we need to count both the number of zones and sensors on a unit,
and forbid both numbers to be above UnitCap. For this we use a sequen-
tial counter, similar to the one presented in [18]. Let scijk mean that
unit j has k sensors assigned (ignore the i for now). We need to say that
every sensor counts as one,

∀1 ≤ i ≤ S.∀1 ≤ j ≤ U. (suij → scij1) ,

and also that we increment this number when we see something new:

∀1 ≤ i < i′ ≤ S.∀1 ≤ j ≤ U.∀1 ≤ k ≤ UnitCap.`
sui′j ∧ scijk → sci′j(k+1)

´
The fact that we keep track of what we have seen (using index i) is to
make sure, for example, that scij5 is only true if there are five distinct
sensors on a unit. Finally, we forbid too many sensors on a unit via

∀1 ≤ i ≤ S.∀1 ≤ j ≤ U.¬scij(UnitCap+1).

Repeat this trick for zones using zcijk.
Finally, we need to use the edges. Let szij be given, and mean that
sensor i has an edge to zone j. Also, let uuij mean that units i and j are
partnered. We need to define this as

∀1 ≤ i ≤ S.∀1 ≤ j ≤ Z.∀1 ≤ k < k′ ≤ U.

(((suik ∧ zujk′) ∨ (suik′ ∧ zujk)) ∧ szij → uukk′)

and also, by symmetry,

∀1 ≤ i < j ≤ U. (uuij → uuji) .

Now we can count the partnered units like we did before, using pcijk, and
then forbidding pcij(y+1). Technically, we don’t need both uuij and uuji,
but having both makes the encoding simpler in the definitions above. We
may skip uuii — but we may also leave them in, as the clauses forcing
uuij have i < j, and thus uuii is never forced. Therefore,

∀1 ≤ i ≤ j ≤ U. (uuij → pcij1) ,

and

∀1 ≤ i < i′ ≤ U.∀1 ≤ j ≤ U.
`
uui′j ∧ pcijk → pci′j(k+1)

´
.

Finally, we forbid too many partners, and we are done:

∀1 ≤ i ≤ j ≤ U.¬pcij(InterUnitCap+1).

Optimization Methods for the Partner Units Problem 9

3.3 Integer Programming

We next show how the Pup can be encoded into integer programming.
If InterUnitCap = 2 we set |Units| = max(|Sensors|, |Zones|); otherwise
it is |Units| = |Sensors| + |Zones|. Then we make matrices of Boolean
variables suij (and zuij , respectively) sensor si (zone zi) is assigned to
unit uj . These matrices are constrained to enforce that each sensor/zone
is assigned exactly one unit, and that no unit is assigned more than
UnitCap sensors/zones:

su1,1 su2,1 su3,1 . . .
P
≤ UnitCap

su1,2 su2,2
P
≤ UnitCap

su1,3
P
≤ UnitCap

.P
= 1

P
= 1

The zone-units matrix looks identical. Next we need a Boolean variable
UnitUsedi that indicates whether ui is assigned any sensors/zones. This
can be achieved by constraints suji ≤ UnitUsedi and zuji ≤ UnitUsedi,
for all j. Observe that in principle even for unused units UnitUsedi can
be set to one — a possibility that will be excluded by the objective
function.

For the constraints on the connections between units it is convenient to
increase InterUnitCap by one, and stipulate that every unit is connected
to itself. We then obtain a symmetric matrix of Boolean uuij variables,
which can be used to indicate whether unit i is connected to unit j:

1 uu1,2 uu1,3 . . .
P
≤ InterUnitCap + 1

uu2,1 1
P
≤ InterUnitCap + 1

uu3,1 . . . 1 . . .
P
≤ InterUnitCap + 1

In addition to enforcing that InterUnitCap is not exceeded, the entries
in this matrix are subject to the following constraints:

– uuij = uuji (symmetry); and

– uuij ≥ (suki + zulj)− 1, for all connections (sk, zl) between sensors
and zones — if a sensor sk and a zone zl are connected yet assigned
different units ui, uj then these units are connected.

This model allows more connections between units than are actually
needed, in this case mandating a post-processing step for solutions.

As a last constraint we add that the number of units used is bounded
from below:

dmax (|Sensors|, |Zones|)
2

e ≤
X

j

UnitUsedj .

Finally, we add the objective function
P

j UnitUsedj , subject to mini-
mization. As usual, first a linear relaxation with cost C is solved, and
only then is the problem solved over the integers, posting the cost C as
a lower bound.

10 M. Aschinger et. al.

3.4 Constraint Satisfaction Problem

Finally, we model the Pup as a Csp by letting sensors and zones be
variables S = {s1, . . . , sn} and Z = {z1, . . . , zm}. For the domains we
use (a numbering of) the units U1, . . . , Un.
We post a global cardinality constraint gcc(Ui,[s1, . . . , sn],C) on the
sensors for every Ui , where C is a variable with domain {0, . . . , UnitCap},
and do likewise for the zones. These constraints ensure that each unit
occurs at most UnitCap times in any assignment to S and Z.
Tracking connections between units via Boolean variables is done using
a matrix of Boolean uuij variables as in the integer programming model,
but using cardinality constraints to count the number of ones.
In addition for each connection (s, z) we post implicational constraints
that exclude the value j from the domain of sensor s if z is assigned to
unit i and uuij = 0 (and vice versa):

(s = Ui ∧ uuij = 0)→ z 6= Uj and (z = Ui ∧ uuij = 0)→ s 6= Uj

4 A Special Case: InterUnitCap = 2

In this section we focus on the case where InterUnitCap = 2. We first
briefly recall the fundamental ideas of our recent tractability results for
this case; for the details the interested reader is referred to [1]. We then
show how the fundamental ideas from this work can be incorporated into
the Pup encodings presented above.

4.1 A Specialized Algorithm for InterUnitCap = 2

The basic observation in the case InterUnitCap = 2 is that the unit graph
in a solution of a connected Pup instance is always either a path or a
cycle. This holds because the number of neighbors of a unit is bounded
by two. Based on this observation we have developed a non-deterministic
algorithm DecPup that decides the Pup. Basically, DecPup recursively
guesses the contents of the units. It turns out that this can be done
in NLogSpace by exploiting the notion of a path decomposition; this
non-deterministic algorithm can then be turned into a polynomial back-
tracking search procedure.
Let us now turn to those of the ideas we use for the DecPup algorithm
that can be incorporated into the other problem models: We first observe
that cyclic unit graphs are more general solution topologies than paths.
Any solution that is a path can be extended to a cycle, but the converse
is clearly false. Hence, for a fixed number of units used in the solution,
we can assume a fixed cyclic layout of the units throughout the search.
By using iterative deepening search (on the number of units used) we
can find optimal solutions first.
In this context let us point out that branch-and-bound-search for optimal
solutions (again on the number of units used) does not work: e.g. a K6,6

graph does not admit solutions with more than three units.
Note also that finding optimal solutions gets more complicated if there
are multiple connected components in the input graph. DecPup can then

Optimization Methods for the Partner Units Problem 11

still be used to compute optimal solutions in polynomial time — but only
if there are at most logarithmically many connected components in the
input graph. Part of the problem is that any two connected components
may either have to be assigned to the same, or to two distinct unit
graph(s). A priori it is unclear which of the two choices leads to better
results. E.g. if we assume that UnitCap = 2 then two K3,3 should be
placed on one cyclic unit graph, while two K6,6 must stand alone.
Note that with cycles for unit graphs there are two kinds of rotational
symmetry: For any given solution with unit graph U1, . . . , Un, U1 there
also are identical solutions U2, . . . , Un, U1, U2, etc.; in addition, there is
also Un, Un−1, . . . , U1, Un. We can break this symmetry without addi-
tional computational cost by requiring that
– the first sensor is assigned to unit U1; and
– the second sensor appears somewhere on the first half of the cycle.

We have prototypically implemented the DecPup algorithm in Java (for
connected graphs), and will use it below in the evaluation of the other
encodings for the case InterUnitCap = 2. The implementation features
memoization of no-good units to avoid the rediscovery of unsolvable
subproblems, and two-step forward-checking: Checking whether there is
enough space for the open neighbours of the current unit on the current
plus the next unit (step one), and doing the same for the open neighbours
of the open neighbours (step two).

4.2 Adapting the Encodings to InterUnitCap = 2

To some extent the ideas presented above can be incorporated into the
other problem models: If we use iterative deepening search, then we
can assume a fixed cyclic layout of the units for each depth. Then, the
connections between units are given, something that greatly simplifies the
problem models. It also allows us to use symmetry breaking as defined in
section 4.1 above. For example, in the constraint model we can drop the
Boolean matrix that tracks the connections between units, and simplify
the implicational constraints for a connection (s, z) to

s = Ui → z ∈ {Ui−1, Ui, Ui+1} and z = Ui → s ∈ {Ui−1, Ui, Ui+1}.

The adaptations for Asp and Sat are similar [1].
If we are not doing iterative deepening search, that is, the maximum
available number of units in the model is given by the upper bound, then
this does not work, as it is not clear where to close the cycle. Especially
for the integer programming model this constitutes a challenge: If we use
iterative deepening we lose the objective function.
To guide the search, we can, by a simple greedy algorithm, compute an
ordering of the variables that ensures that each sensor (or zone) has some
predecessor that has already been assigned to a unit; we assume that an
arbitrary sensor (or zone) is fixed initially. If variables are assigned in
this order then the number of possible unit choices per zone (or sensor) is
bounded by three throughout the search, instead of NoOfUnits. However,
to the best of our knowledge neither integer programming tools nor Asp-
or Sat-solvers usually provide this level of control over variable ordering
to the user.

12 M. Aschinger et. al.

5 Evaluation

We have evaluated our encodings on a set of benchmark instances that we
received from our partners in industry. All experiments were conducted
on a 3 GHz dual core machine with 4 GB RAM running Fedora Linux,
release 13 (Goddard). In general in our experiments we have imposed a
ten minute time limit for finding solutions.
For the evaluation of the different encodings of the Pup we use the Sat-
solver MiniSat v2.0 [14], the constraint logic programming language
ECLiPSe-Prolog v6.0 [7], and Clingo v3.0 [3] from the Potsdam Answer
Set Solving Collection (Potassco). For evaluating the integer program-
ming model we have used Cbc v2.6.2 in combination with Clp v1.13.2
from the COIN-OR project [4], and IBM’s Cplex v12.1 [5].
In the Asp, Sat and Csp models, as well as in DecPup, we use iterative
deepening search for finding optimal solutions, as this has proven to be
the most efficient. We did not try this in the integer programming model,
as we would lose the objective function in doing so.
The reader is advised to digest the results presented below with caution:
We are using both the Sat and the integer programming solvers out of the
box, whereas for the Csp model we employ the variable ordering heuris-
tics outlined in the previous section. Moreover, if InterUnitCap > 2,
for the Asp model we employ the following advanced feature: a portfolio
solver Claspfolio, which is a part of Potassco [3], comes with a machine
learning algorithm (support vector machine) that has been trained on a
large set of Asp programs. Claspfolio analyzes a new Asp program (in
our case the Pup program), and configures Clingo to run with options
that have already proved successful on similar programs. It is likely that
such machine learning techniques could also be developed and fruitfully
applied in the other frameworks.

5.1 Experimental Results

InterUnitCap = 2 All instances are based on rectangular floor plans,
and all instance graphs are connected. In all instances there is one zone
per room, and by default there are sensors on all doors. Only the grid-*
and tri-* instances feature external doors. For an illustration see Figure 2,
which shows a rectangular 8 × 3 floor plan with external doors on two
sides of the building.
Apart from that, the instances are structured as follows:
– dbl-* consist of two rows of rooms with all interior doors equipped

with a sensor.
– dblv-* are the same, only that there are additional zones that cover

the columns.
– tri-* are grids with only some of the doors equipped with sensors.

There are additional zones that cover multiple rooms.
– grid-* are not full grids, but some doors are missing, and there are

no rooms (zones) without doors.
The runtimes we obtained for the various problem encodings described
above are shown in seconds in Table 1 (a “*” indicates a timeout). The
Cost column contains the number of units in an optimal solution; a slash
“/” in that column indicates that no solution exists.

Optimization Methods for the Partner Units Problem 13

Table 1. Structured Problems with InterUnitCap = UnitCap = 2

Name |S| |Z| Edges Cost Csp Sat DecPup Asp Cbc Cplex

dbl-20 28 20 56 14 0.02 0.48 0.01 0.16 14.12 1.53

dbl-40 58 40 116 29 0.28 2.36 0.05 3.93 224.14 13.58

dbl-60 88 60 176 44 0.42 29.74 0.08 * * 213.58

dbl-80 118 80 236 59 1.14 * 0.16 * * 522.50

dbl-100 148 100 296 74 1.89 * 0.41 * * *

dbl-120 178 120 356 89 3.21 * 0.39 * * *

dbl-140 208 140 416 104 5.01 * 0.59 * * *

dbl-160 238 160 476 119 13.94 * 0.71 * * *

dbl-180 268 180 536 134 20.07 * 0.87 * * *

dbl-200 298 200 596 149 14.4 * 1.08 * * *

dblv-30 28 30 92 15 0.09 0.42 65.49 0.26 37.18 2.93

dblv-60 58 60 192 30 0.26 3.15 * 1.94 * *

dblv-90 88 90 292 45 0.82 12.54 * 27.35 * *

dblv-120 118 120 392 60 1.85 41.65 * 13.92 * *

dblv-150 148 150 492 75 3.48 20.97 * 29.54 * *

dblv-180 178 180 592 90 6.20 44.28 * 54.50 * *

tri-30 40 30 78 20 1.07 0.79 0.50 0.41 45.17 78.75

tri-32 40 32 85 20 0.64 0.74 * 0.26 55.20 4.66

tri-34 40 34 93 / 21.10 22.77 * 0.89 74.78 5.06

tri-60 79 60 156 40 158.49 315.42 114.08 4.40 * 108.01

tri-64 79 64 170 / * 379.36 * 43.88 * 76.26

grid-90 50 68 97 34 0.04 4.51 0.03 1.53 * 21.19

grid-91 50 63 97 32 0.10 * * 0.92 * 16.60

grid-92 50 65 97 33 0.49 * * 0.87 * 17.40

grid-93 50 58 97 29 0.13 2.68 * 1.75 * 13.41

grid-94 50 66 97 33 0.04 3.66 * 1.61 * *

grid-95 50 60 97 30 0.02 3.90 0.48 0.97 * 18.34

grid-96 50 62 97 31 0.07 3.30 * 0.87 * 13.62

grid-97 50 64 97 32 0.02 3.67 * 0.86 * 17.90

grid-98 50 59 97 30 0.03 * * 1.19 * 12.30

grid-99 50 65 97 33 0.03 * 202.48 1.16 * 20.35

InterUnitCap > 2 For the general case we have also tested our encod-
ings on a set of benchmark instances where InterUnitCap = 4 that we
obtained from our partners in industry:
– tri-* are exactly as before, only with InterUnitCap = 4.
– grid-* are as before, only that a bigger number of doors exists.

5.2 Analysis

Any conclusions drawn from our experimental results have to be qualified
by the remark that, of course, in every solution framework there are many
different problem models, and there is no guarantee that our problem
models are the best ones possible.

14 M. Aschinger et. al.

Table 2. Structured Problems with InterUnitCap = 4 and UnitCap = 2

Name |S| |Z| Edges Cost Csp Sat Asp Cbc Cplex

tri-30 40 30 78 20 0.12 2.40 0.40 182.91 24.79

tri-32 40 32 85 20 0.14 1.91 0.66 270.27 20.84

tri-34 40 34 93 20 * 1.98 0.60 331.29 *

tri-60 79 60 156 40 0.52 * 11.07 * *

tri-64 79 64 170 40 * * 7.61 * *

tri-90 118 90 234 59 1.50 401.44 332.34 * *

tri-120 157 120 312 79 3.37 * * * *

grid-1 100 79 194 50 * 78.19 31.45 * *

grid-2 100 77 194 50 * 90.89 18.91 * *

grid-3 100 78 194 50 * 88.87 25.72 * *

grid-4 100 80 194 50 * 95.12 24.66 * *

grid-5 100 76 194 50 * 454.42 48.88 * *

grid-6 100 78 194 50 * 204.85 9.15 * *

grid-7 100 79 194 50 * 112.36 12.89 * *

grid-8 100 78 194 50 * * 11.89 * *

grid-9 100 76 194 50 * 91.62 19.71 * *

grid-10 100 80 194 50 * 545.16 13.54 * *

Let us begin our analysis of the results by highlighting a peculiarity of
the Pup: While it is possible to construct instances that require more
than the minimum number of units, it is not straight-forward to do so,
and such instances also appear to be rare in practice: In our experiments
in no solution are there more units than the bare minimum required. It
is clear that iterative deepening search thrives on this fact, whereas the
integer programming model suffers.

InterUnitCap = 2 The combination of assuming a fixed cyclic unit
graph together with iterative deepening search resulted in drastic speed-
ups for the Asp, Sat, and Csp solvers. Symmetry breaking did not have
much effect — except on the unsolvable instances.
The Asp and the Sat encoding show broadly similar behavior: Both
Clingo and MiniSat use variations of the DPLL-procedure [6] for rea-
soning. Oddly, they even both get faster at some point as problem size
increases on the dblv-* instances. However, Clingo does significantly
better on the grid-like instances. Interestingly, machine learning did not
help for the Asp encoding specialized to InterUnitCap = 2; hence the
results shown were obtained using both solvers out of the box.
For the Csp encoding the variable ordering is the key to the good results:
Without the variable ordering the Csp model performs quite poorly. The
absence of a similar variable selection mechanism from both Asp and Sat
in our experiments might explain the surprising superiority of Csp on
most benchmarks.
The inconsistent results for DecPup are particularly striking. On the one
hand, DecPup performs excellently on the dbl-* instances. But in gen-
eral, it disappoints. Possibly this might be due to the following: DecPup

Optimization Methods for the Partner Units Problem 15

has a “local” perspective on the problem, that is, it only can see the cur-
rent and past units; the subsequent units are only created at runtime. In
all the other encodings all units are present from the beginning, some-
thing which, in one way or another, facilitates propagating the current
variable assignment to other units.

The Ip encoding is not yet fully competitive. It particularly struggles
with the dblv-* instances. In general, the commercial Cplex is at least
one order of magnitude faster than the open source Cbc.

It is also interesting to compare the dbl-* with the dblv-* instances,
as the latter are obtained from the former by adding constraints. Both
Clingo and MiniSat thrive on the additional constraints, contrary to
ECLiPSe, Cbc, Cplex and DecPup.

InterUnitCap > 2 In this setting, for finding solutions the symmetry
breaking methods from section 2.6 did increase computation time for the
Csp, the Sat, and the Ip model. However, symmetry breaking again does
help when proving an instance unsatisfiable. The results in Table 2 were
obtained without symmetry breaking.

If Claspfolio’s machine learning database is not used to configure op-
tions of Clingo, then the two DPLL-based programs again perform quite
similar, with Clingo slightly having the edge (results not shown). With
machine learning Clingo clearly is the winner, with the main benefits
stemming from the following: Use the VSIDS heuristics [15] instead of
the BerkMin heuristics [10], and exploit local restarts [16]. Note that
MiniSat also uses the VSIDS heuristics.

Interestingly, the Csp-encoding now disappoints. Given that the same
variable ordering is used, this may have to be attributed to insufficient
propagation when tracking the connections between units.

Again our Ip encoding is not on par yet. But for this encoding comparing
the instances tri-30,32,34 in Tables 1 and 2 is particularly instructive:
This is basically the same model in both settings, only that in the latter
case there are more variables due to the higher upper bound on the
number of required units.

6 Future Work

There is still significant work to be done on the Pup: Almost all inter-
esting complexity questions are still open, and a thorough investigation
of these questions should eventually lead to better algorithms and en-
codings for the Pup. It should also be possible to prove better upper
bounds, in particular ones that depend on UnitCap; especially the inte-
ger programming model would benefit from this. It would be interesting
to see what the variable ordering heuristics can do for Sat and Asp. More
generally, the major challenge is to find stronger problem models in the
various frameworks and to improve the implementation of DecPup, the
only algorithm guaranteed to run in polynomial time.

Acknowledgment. We greatly appreciate the helpful comments from
the anonymous reviewers.

16 M. Aschinger et. al.

References

1. Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeavons, P., ,
Ryabokon, A., Thorstensen, E.: Tackling the Partner Units Problem.
Tech. Rep. RR-10-28, Computing Laboratory, University of Oxford
(2010), available from the authors

2. Third International Answer Set Programming Competition 2011.
https://www.mat.unical.it/aspcomp2011/ (2011)

3. The Potsdam Answer Set Solving Collection.
http://potassco.sourceforge.net/

4. COIN-OR CLP/CBC IP solver. http://www.coin-or.org/
5. IBM ILOG CPLEX IP solver. http://www.ibm.com/
6. Davis, M., Putnam, H.: A Computing Procedure for Quantification

Theory. Journal of the ACM 7(3) (1960)
7. ECLiPSe-Prolog. http://eclipseclp.org/
8. Falkner, A., Haselböck, A., Schenner, G.: Modeling Technical Prod-

uct Configuration Problems. In: Proceedings of the Configuration
Workshop at ECAI’10 (2010)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic pro-
gramming. In: Proceedings of ICLP’88 (1988)

10. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver.
In: Proceedings of DATE’02 (2002)

11. Hooker, J.N.: Integrated Methods for Optimization. Springer, New
York (2006)

12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S.,
Scarcello, F.: The DLV system for knowledge representation and
reasoning. ACM Transactions on Computational Logic 7(3) (2006)

13. Meringer, M.: Regular Graphs Page.
http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html

14. Minisat SAT solver. http://www.minisat.se
15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik,

S.: Chaff: Engineering an Efficient SAT Solver. In: Proceedings of
DAC’01 (2001)

16. Ryvchin, V., Strichman, O.: Local restarts. In: Proceedings of
SAT’08 (2008)

17. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing
the stable model semantics. Artificial Intelligence 138(1-2) (2002)

18. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality
Constraints. In: Proceedings of CP 2005. Springer (2005)

