
Minimal Memory Automata

Michael Benedikt, Clemens Ley, and Gabriele Puppis

Oxford University Computing Laboratory, Park Rd, Oxford OX13QD UK

Abstract. We provide a Myhill-Nerode-like theorem that characterizes
the class of data languages recognized by deterministic finite-memory
automata (DMA). As a byproduct of this characterization result, we
obtain a canonical representation for any DMA-recognizable language.
We then show that this canonical automaton is minimal in a strong sense:
it has the minimal number of control states and also the minimal amount
of internal storage. We finally show how this minimal automaton can be
computed.

1 Introduction

Automata processing words and trees over infinite alphabets are attracting sig-
nificant interest from the database and verification communities, since they can
be often used as low-level formalisms for representing and reasoning about data
streams, program traces, and serializations of structured documents. Moreover,
properties specified using high-level formalisms (for instance, within suitable
fragments of first-order logic) can be often translated into equivalent automaton-
based specifications, easing, in this way, the various reasoning tasks.

Different models of automata which process words over infinite alphabets
have been proposed and studied in the literature (see, for instance, the surveys
[6, 7]). Among them, we would like to mention a few interesting categories, which
generalize the standard notion of regular language in several respects. Pebble
automata [5] use special markers to annotate locations in a data word. The data
automata of [1] parse data words in two phases, with one phase applying a finite-
state transducer to the input data word and another deciding acceptance on the
grounds of a classification of the maximal sub-sequences consisting of the same
data values (such a classification is usually specified in terms of membership
relationships with suitable regular languages). Of primary interest to us here
will be a third category, the finite memory automata [4], also called register
automata, which make use of a finite number of registers in order to store and
eventually compare values in the processed data word.

One could hope that most of the fundamental results in standard (i.e., finite-
state) automata theory can be carried on in the setting of words over infinite
alphabets. However, prior work has shown that many elementary closure and
decision properties of finite automata are absent in the infinite-alphabet case.
For example, the equivalence of the non-deterministic and deterministic variants
of automata is known to fail for both memory automata and pebble automata



[5]. While in the finite case the equivalence and universality problems for non-
deterministic automata are decidable, for most of the infinite word models they
are not [4, 5].

Among several paradigmatic problems in automata theory, a crucial one, for
both theoretical and practical reasons, is certainly the minimization problem.
Roughly speaking, it consists of determining the automaton-based representa-
tion that uses the “smallest space” for a given language. In the case of standard
finite-state automata, minimal space usage is usually translated in terms of the
minimum number of states. The well-known Myhill-Nerode theorem [3] gives a
canonical automaton for every regular language, which is minimal among de-
terministic finite automata representing the same language. When dealing with
more general models of automata, however, one may need to take into account
different complexity measures at the same time, possibly yielding some tradeoffs
between the amount of control state and the number of values/locations being
stored.

In this paper, we consider minimization for a particular model of register au-
tomata, which process finite words over an infinite alphabet. On the one hand,
the class of memory automata we are dealing with (DMA, for short) is very
similar to that of deterministic finite memory automata introduced in [4]. Our
notion of register automaton is slightly more general in allowing to compare val-
ues both with respect to a fixed equality relation on values (as in the standard
class of finite memory automata) and with respect to a fixed total ordering rela-
tion. For instance, our model of register automaton can recognize the language
of all strictly-increasing finite sequences of natural numbers, which can not be
recognized by a finite memory automaton.

The first contribution of the paper is an isolation of the ideal “minimal stor-
age” for a DMA. This is formalized in terms of the memorable values for any
word in the language – the set of values that must be stored at any point. Us-
ing this we can give a characterization of the class of languages recognized by
some DMA, which closely resembles the Myhill-Nerode theorem. Precisely, we
associate with each language L a suitable equivalence ≡L, using the memorable
values, and we characterize the class of DMA-recognizable languages as the class
of languages L for which ≡L has finite index. We remark that a similar result,
but restricted to the class of register automata that can only compare values
with respect to equality, has already appeared in [2]. In fact, our alternative
characterization, besides relating equivalence to space-minimality, holds also for
the larger class of DMA that compare values with respect to a fixed arbitrary
total ordering relation.

As our second contribution, which stems directly from the previous charac-
terization result, we show that the canonical DMA AL, which is obtained from
a given language L when the corresponding equivalence ≡L has finite index, sat-
isfies a strong notion of minimality that takes into account both the number of
control states and the number of values stored. Finally, we give an effective means
for minimizing a DMA, presenting a procedure that begins with an arbitrary
DMA and produces the minimal equivalent.



Organization: Section 2 gives preliminaries. Section 3 introduces the no-
tion of memorable value that will be used throughout the paper. Section 4
presents our characterization of DMA-definable languages, along with the results
on canonical and minimal automata. Section 5 gives our minimization algorithm,
while Section 6 gives conclusions.

2 Preliminaries

From now on, we fix an infinite alphabet D of values. A support is a relational
structure (D,R), where R is a binary relation on D. Through the rest of the
paper, we will only consider supports of the form (D,R), where R is either the
identity relation ∼ or a total order ≺. In some sections we will assume that ≺ is
dense and we will point out this assumption explicitly.

A (data) word is a finite sequence consisting of values from the infinite alpha-
bet D. In order to distinguish words up to R-preserving isomorphisms, where R
is the binary relation of the underlying support, we introduce the equivalence
relation ≃R such that, for every w,w′ ∈ D∗, w ≃R w′ whenever ∣w∣ = ∣w′∣ and
w(i) R w(j) iff w′(i) R w′(j) for all pairs of positions 1 ≤ i, j ≤ ∣w∣. The classes
of the equivalence relation ≃R are called ≃R-types. Note that the ≃R-type of a
word w of length n can be represented by a first-order formula over the signature
(R,<), where < is the word order. We will drop the subscript from ≃R whenever
the relation R of the underlying support is clear from the context.

A (data) language over (D,R) is a (possibly infinite) set of data words over
(D,R). Given a language L, we say that two words w,w′ are L-distinct if one is
in L and the other is not, otherwise, we say that w,w′ are L-equivalent and we
shortly write w =L w′ (clearly, =L is an equivalence relation with at most two
classes). From now on, we tacitly assume that languages over the support (D,R)
are closed under R-preserving isomorphisms, namely, for every language L over
(D,R), we assume that ≃R is a refinement of =L. Note that any language L which
is closed under R-preserving isomorphisms is also closed under substitutions of
value occurrences, namely, for every word w ∈ D∗ and every permutation f of
D, we have w =L f(w).

2.1 Finite-memory automata

In this section, we introduce a variant of Kaminski’s finite-memory automata
[4] that recognize data languages over supports of the form (D,∼) or (D,≺).
These automata process data words by storing a bounded number of values into
their memory and by comparing them with respect to the binary relation of the
underlying support.

Definition 1. A (non-deterministic) finite-memory automaton over a support
(D,R) is a tuple of the form A = (Q0, . . . ,Qk, T, I, F ), where
• k is the maximum number of stored values;
• Q0, . . . ,Qk are pairwise disjoint finite sets of control states;



• T is a finite set of transition rules of the form (p,α,E, q), where p ∈ Qi for
some 0 ≤ i ≤ k, α is the ≃-type of a word of length i+ 1, E ⊆ {1, .., i+ 1}, and
q ∈ Qj, with j = i + 1 − ∣E∣;

• I ⊆ Q0 is a set of initial states;
• F ⊆ Q0 ∪ . . . ∪Qk is a set of final states.

A configuration of A is defined as a pair of the form (q, σ) consisting of a control
state q ∈ Qi, with 0 ≤ i ≤ k, and a memory content σ ∈ Di. The meaning of a
transition rule of the form (q,α,E, q′) is that the automaton can move from a
configuration (q, σ) to a configuration (q′, σ′) by consuming an input value a iff
the word σ ⋅a has ≃-type α and σ′ is obtained from σ ⋅a by removing all positions
in E.

We enforce two sanity conditions to every transition rule (q,α,E, q′). To
guarantee that the length of the target memory content σ′ never exceeds k, we
assume that E is non-empty whenever q ∈ Qk. Second, the memory is updated
like a stack: if the ≃-type α is of the form [σ ⋅ a]≃, with σ(j) = a for some
1 ≤ j ≤ ∣σ∣, then E contains the index j. This has two advantages: The memory
content σ′ always contains pairwise distinct elements and the order of the data
values in the memory is the order of their last occurrences in the input word.
We will exploit the latter property when we show that for every FMA language
L there is a canonical FMA recognizing L.

A run of A is defined in the usual way. If w is a data word and A has a run
on w from a configuration (q, σ) to a configuration (q′, σ′), then we write

(q, σ) wÐÐÐ→
A

(q′, σ′).

The language recognized by A, denoted L (A), is the set of all words w such
that (q, ε) wÐÐÐ→

A
(q′, σ′), for some q ∈ I and some q′ ∈ F .

We say that a finite-memory automaton A = (Q0, . . . ,Qk, T, I, F ) is deter-
ministic if the set of initial states I is a singleton and there is no pair of transitions
(p,α,E, q), (p,α,E′, q′) ∈ T , with either q ≠ q′ or E ≠ E′. Similarly, A is said to
be complete if for every state q ∈ Qi and every ≃-type α with i + 1 variables, T
contains a transition rule of the form (q,α,E, q′). By a slight abuse of terminol-
ogy, we abbreviate any deterministic and complete finite-memory automaton by
DMA.

Our model of finite-memory automata is very similar the model of finite-
memory automata introduced in [4]. There are several distinguishing elements
though. The main difference is that while in the original model the number of
registers is fixed throughout the run, the number of stored values can vary in our
model. This flexibility will allow us to track space consumption more finely. In
particular, our definition allows automata that are canonical in a strong sense,
in that they store only the values that are essential for an automaton – the
number of such values may vary with the input word. A second distinction is
that the original model has an initial register assignment while the memory
content is initially empty in our model. In addition, only the support (D,∼)



has been considered previously. It should be pointed out that, over (D,∼), all
models have the same expressive power (provided that, in the original model, all
registers are initialized with a dummy value � ∉D).

3 Memorable Symbols

Given a DMA-recognizable language L and a prefix w of an input word, there
exist some values in w that need to be stored by any DMA that recognizes
L. We will call these values memorable. As an example, consider the language
L = {xyzy ∶ x < y < z} over the support (Q,<) and the word w = 123. Observe
that, after parsing w, any DMA A that recognizes L must be storing the value
2: otherwise A could not distinguish the two possible continuations u = 2 and
v = 2.5 (this is necessary since w ⋅ u ≠L w ⋅ v). For this reason, we will define 2 to
be memorable in w with respect to the language L.

We first give the definition of a memorable value in the case where the relation
of the underlying support is either the identity or a dense total order. Later, we
will consider the slightly more involved case of a non-dense total order.

Definition 2. Let L be a language over (D,R), where R is either the identity
or a dense total order. A value a is L-memorable in a word w if a occurs in w
and there exists a word u and a value b such that

⎧⎪⎪⎨⎪⎪⎩

w ⋅ u ≃R (w ⋅ u)[a/b]
w ⋅ u ≠L w ⋅ u[a/b].

Here u[a/b] denotes the word obtained from u by replacing each occurrence
of a with b. Note that it follows from the definition that b does not appear in
any of w, u, and that a does appear in u.

It is convenient to fix a string-based representation for the set of L-memorable
values of a word w. We thus denote by memL(w) the finite sequence that consists
of all L-memorable values of w ordered according to the positions of their last
occurrences in w (recall that every L-memorable value of w must occur at least
once in w).

The following proposition (whose proof can be found in the Appendix) makes
the intuition precise that any DMA has to store the memorable values of the
input word. That is, if a DMA A reaches a configuration (q, σ) after reading a
word w, then memL(w) must be a sub-sequence of σ.

Proposition 1. Let A be a DMA over (D,R), where R is either the identify or
a dense total order on D and let L = L(A). Then, for every word w, memL(w)
is a sub-sequence of the stored values of A after reading w. Moreover, if (q, σ)
and (q′, σ′) are the configurations reached by A after reading words w and w′,
respectively, then

⎧⎪⎪⎨⎪⎪⎩

q = q′

σ ≃R σ′
implies memL(w) ⋅ σ ≃R memL(w′) ⋅ σ′.



Hence every DMA must store the memorable values of an input word. We
will show in Section 4 that there is a DMA that does not need to store more
than the memorable values.

Intuitively, the next proposition shows that, if two words u and v are iso-
morphic with respect to the L-memorable values of a word w, then L can not
distinguish between w⋅u and w⋅v. Again, the proof can be found in the Appendix.

Proposition 2. Let L be a language over (D,R), where R is a either the iden-
tity or a dense total order on D. Then, for all words w,u, v we have

memL(w) ⋅ u ≃R memL(w) ⋅ v implies w ⋅ u =L w ⋅ v.

Extension to non dense supports. We now show why Proposition 2 fails over
non-dense orders and how the definition of a memorable value can be adapted
to overcome this problem. As an example, let us reconsider the language L =
{xyzy ∶ x < y < z} and the word w = 123, but now over the support (N,<).
According to Definition 2, the value a = 2 is not L-memorable in w anymore,
since it can not be substituted in w by any other fresh value b without changing
the resulting ≃<-type. In order to overcome this problem, we exploit the fact
that, for any fixed support (D,≺), where ≺ is an arbitrary total order over D,
and for every word w and value a over the support (D,≺), there exist a word w̃
and two values ã and b̃ such that

w ⋅ a ≃≺ w̃ ⋅ ã ≃≺ w̃ ⋅ b̃.

In particular, this implies that ã can always be substituted with b̃ in w̃ without
changing the resulting ≃≺-type. The following definition is the natural general-
ization of Definition 2.

Definition 3. Let L be a language over support (D,≺), where ≺ is a total (pos-
sibly not dense) order. A value a is L-memorable in a word w if a occurs in w
and there exist two words w̃, ũ and two values ã, b̃ such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w ⋅ a ≃≺ w̃ ⋅ ã
w̃ ⋅ ũ ≃≺ (w̃ ⋅ ũ)[ã/b̃]
w̃ ⋅ ũ ≠L w̃ ⋅ ũ[ã/b̃].

As an example, given L = {xyzy ∶ xy < z} over the support (N,<), we now
have that a = 2 is L-memorable in w = 123, since there exist w̃ = 246, ũ = 4,
ã = 4, and b̃ = 5 such that (i) w ⋅ a ≃< w̃ ⋅ ã, (ii) w̃ ⋅ ũ ≃< (w̃ ⋅ ũ)[ã/b̃], and (iii)
w̃ ⋅ ũ ≠L w̃ ⋅ ũ[ã/b̃].

Finally, since languages are assumed to be closed under isomorphisms, Propo-
sitions 1 and 2 can be easily generalized to cope with the new definition of
memorable value for supports of the form (D,≺), where ≺ is an arbitrary total
order.



4 Myhill-Nerode for Data Languages
and Minimal Automata

This section is devoted to prove the main result that characterizes the class of
DMA-recognizable languages. This result also shows that these languages have
automata that are minimal in a strong sense: they have minimal number of
control states and they store only the things that they must store, namely, the
memorable values.

We begin by associating with each language L a new equivalence relation ≡L,
which is finer than =L, but coarser than ≃. In a similar way, we associate with
each DMA A a corresponding equivalence relation ≡A.

Definition 4. Given a language L over the support (D,R), we define ≡L ⊆
D∗ ×D∗ by letting w ≡L w′ iff

• memL(w) ≃R memL(w′),

• for all words u,u′ if memL(w) ⋅ u ≃R memL(w′) ⋅ u′ then w ⋅ u =L w′ ⋅ u′.

Definition 5. Given a DMA A over the support (D,R), we define ≡A ⊆D∗×D∗

by letting w ≡A w′ iff, whenever A reaches the configurations (q, σ) and (q′, σ′)
by reading w and w′, respectively, then q = q′ and σ ≃R σ′ follow.

It is easy to see that both ≡L and ≡A are equivalence relations. In fact, ≡L is
also a congruence with respect to concatenation of words to the right, namely,
w ≡L w′ implies w⋅u ≡L w′⋅u, under the assumption that memL(w) = memL(w′).
Moreover, it is easy to see that, given a DMA A having n control states and
storing at most k values, the corresponding equivalence ≡A has index at most
n ⋅ k! (indeed, the ≡A-equivalence class of any word w is uniquely determined
by the control state q and by the ≃-type of the register assignment σ of the
configuration (q, σ) that is reached by A after reading w). If the underlying
support contains only the identity relation ∼, then the upper bound for the
number of ≡A-equivalence classes drops down to n.

We are now ready to state the main characterization result.

Theorem 1. Let L be a language over (D,R), where R is either the identity or
a total order on D. Then, L is DMA-recognizable iff ≡L has finite index.

We briefly summarize the key ingredients of the proof of Theorem 1 (which is
given in the Appendix). The left-to-right-direction is proved by assuming that L
is recognized by a DMA A and by exploiting Proposition 1 in order to show that
the corresponding equivalence relation ≡A refines ≡L (from previous arguments
it then follows that ≡L has finite index). The converse direction is proved by
assuming that ≡L has finite index and by building a finite-memory automaton
AL, called canonical automaton. Below, we give a formal definition of such an
automaton. The fact that AL is deterministic and complete follows from Propo-
sition 2.



Definition 6. Let L be a language over (D,R), where R is either the identity or
a total order on D. If ≡L has finite index, then we define the canonical automaton
for L as the DMA AL = (Q0, ...,Qk, T,{qI}, F ), where

• k is the maximum length of sequences of the form memL(w), with w ∈D∗;
• for every 0 ≤ i ≤ k, Qi is the set of all ≡L-equivalence classes of the form

[w]≡L
, with w ∈D∗ and ∣memL(w)∣ = i;

• T is the set all transition rules of the form ([w]≡L
, α,E, [w ⋅ a]≡L

), with
w ∈D∗, a ∈D, α = [memL(w) ⋅ a]≃, and E ⊆ {1, ..., ∣memL(w)∣ + 1} such that
the sub-sequence obtained from memL(w) ⋅ a by removing all positions of E
coincides with the sequence memL(w ⋅ a);

• qI is the ≡L-equivalence class of the empty word ε;
• F is the set of all ≡L-equivalence classes of words w ∈ L.

Minimal DMA. We now prove that the canonical automaton for a given lan-
guage L is minimal among all equivalent DMA recognizing L. Here, we adopt a
general notion of minimality for DMA that takes into account both the number of
control states and the number of stored values on each input word. Precisely, we
say that a DMA A = (Q0, ...,Qk, T,{qI}, F ) is state-minimal if for every equiva-
lent DMA A′ = (Q′

0, ...,Q
′
k′ , T

′,{q′I}, F ′) that recognizes the same language, we
have

∣Q∣ = ∑
0≤i≤k

∣Qi∣ ≤ ∑
0≤i≤k′

∣Q′
i∣ = ∣Q′∣.

Similarly, we say that A is data-minimal if, for every equivalent DMA A′ =
(Q′

0, ...,Q
′
k′ , T

′,{q′I}, F ′) that recognizes the same language and every input word
w, we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(qI , ε) wÐÐ→
A

(q, σ)

(q′I , ε)
wÐÐ→
A
′ (q′, σ′)

implies ∣σ∣ ≤ ∣σ′∣.

Finally, we say that A is minimal if it is both state-minimal and data-minimal.
Below, we show that the canonical automaton is minimal among all equivalent
DMA (the proof is given in the Appendix).

Theorem 2. The canonical automaton AL for a given DRA-recognizable lan-
guage L is minimal.

We conclude the section by proving that minimal DMA, and in particular
canonical automata, are unique up to isomorphisms. Here we think of each DMA
A = (Q0, ...,Qk, T,{qI}, F ) as a finite directed graph, whose vertices are labeled
by indices i ∈ {0, ..., k} and represent control states in Qi and whose edges are
labeled by pairs (α,E) and represent transitions of the form (q,α,E, q′)). The
proof of the following result is given in the Appendix.

Corollary 1. Any minimal DMA recognizing a language L is isomorphic to the
canonical automaton for L.



Algorithm 1: Minimize(A)

input: a DMA A that accepts a language L over (D <∼)
output: the canonical automaton AL for L

let k = maximal number of values stored by A
let n = number of control states of A
let Σ = any subset of D of size k + 1

let Q1 ← ∅, . . . ,Qk ← ∅
for all w ∈ Σ≤n

do

⎧⎪⎪⎪⎨⎪⎪⎪⎩

if w /≡L w′ for all w′ ∈ ⋃i≤kQi

then {i← ∣memL(w)∣
Qi ← Qi ∪ {w}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Compute the
sets of states

T ← ∅
for all w,w′ ∈ Q0 ∪ ... ∪Qk and for all a ∈ Σ

do

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

if w ⋅ a ≡L w′

then

⎧⎪⎪⎪⎨⎪⎪⎪⎩

α← [memL(w) ⋅ a]≃
E ← {i ∶ ∀ j. memL(w ⋅ a)(j) ≠ (memL(w) ⋅ a)(i)}
T ← T ∪ {(w,α,E,w′)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Compute
the set of

transitions

return AL = (Q0, ...,Qk, T,{w ∈ Q0 ∶ w ≡L ε},{w ∈ Q0 ∪ ... ∪Qk ∶ w ∈ L})

Fig. 1. Minimization algorithm for DMA over the support (D,∼).

5 Computing Minimal DMA Over (D,∼)

In this section, we focus on the problem of computing the minimal DMA for
a given language over (D,∼). That is, given a DMA A that recognizes L over
(D,∼), we show how to compute the canonical automaton AL for L. This is
sufficient as by Theorem 2, the canonical automaton AL is minimal among all
equivalent DMA.

Algorithm 1 provides the pseudo-code of a procedure that receives a DMA
A recognizing L as input and computes (a representation of) the corresponding
canonical automaton AL. Such a procedure consists of two main loops: the first
one computes a minimal and complete set Q = Q0 ∪ ...∪Qk of representatives of
≡L-equivalence classes, which are then identified with the control states of the
canonical automaton AL; the second loop computes the set of transition rules
of AL.

We now show that Algorithm 1 computes the minimal automaton for the
given DMA A. Assume that A has n states and stores at most k values. We
first show that at the end of the computation Q = Q0 ∪ . . .∪Qk contains exactly
one representative for each ≡L-equivalence class. We claim that Σ≤n contains
at least one representative for each equivalence class of ≡L: observe that each
control state q in A can be reached by a word in Σ≤n (this is the case because



∣Σ∣ > k – see the proof of Lemma 1 for a similar argument). By the proof of
Theorem 1 we know that ≡A refines ≡L, and hence Σ≤n contains at least one
representative of each ≡L-equivalence class. It is clear that, after the execution
of the first loop of the procedure, the set Q contains pairwise non-≡L-equivalent
representants of all ≡L-equivalence classes. Hence Q contains exactly one word
in each ≡L-equivalence class. It is clear from Definition 6 that the set T contains
exactly the transitions of A.

In order to claim that the pseudo-code of Algorithm 1 describes an effective
minimization procedure, we need to verify that the following two problems are
decidable:
• the memorability problem: Given a DMA A recognizing L over (D,∼), a word

w, and a value a, is a is L-memorable in w?
• the word-equivalence problem: Given a DMA A recognizing L over (D,∼)

and two words w and w′, is w ≡L w′?
The decidability of both problems is shown using the following lemma.

Lemma 1. Let A be a DMA over (D,∼) that stores at most k values and let
L = L (A). Let w,w′ be two words and let ∆ be a finite subset of D containing
all values occurring in w or in w′, plus 2k+1 additional values. For every u ∈D∗,
there is v ∈∆∗ such that ⎧⎪⎪⎨⎪⎪⎩

w ⋅ u =L w ⋅ v
w′ ⋅ u =L w′ ⋅ v.

The following propositions whose proofs are in the Appendix give the formal
statements that the memorability problem and the word-equivalence problem
are decidable.

Proposition 3. The memorability problem is decidable in non-deterministic
single-exponential time O(n2 ⋅m2k ⋅k2k), where m is the length of the input word
w, n is the number of control states of the input DMA A and k is maximum
number of values stored by A.

Proposition 4. The word-equivalence problem is decidable in non-deterministic
single-exponential time O(n2 ⋅m2k ⋅k2k), where m is the sum of the lengths of the
two input words w and w′, n is the number of control states of the input DMA
A and k is maximum number of values stored by A.

6 Conclusion

Some problems still remain open. In particular, the most natural question is
whether a minimization procedure, similar to the one described in Section 5,
can be given also in the case where the alphabet is equipped with a total or-
der. Moreover, it would be interesting to see whether or not analogous charac-
terization results (and, possibly, a corresponding minimization procedure) can
be given in the case of DMA-recognizable languages over an infinite alphabet



equipped with a partial order. This would enable us to consider supports of the
form (P(D),⊂), where P(D) is the powerset of an infinite domain D and ⊂
is the containment relation between subsets of D. Finally, more general models
of automata could be taken into account, including, for instance, automata that
process sequences of database instances and, possibly, use more powerful policies
for updating their memory.



Bibliography

[1] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and
Claire David. Two-variable logic on words with data. In Proceedings of the
21st Annual IEEE Symposium on Logic in Computer Science, pages 7–16,
Washington, DC, USA, 2006. IEEE Computer Society.

[2] Nissim Francez and Michael Kaminski. An algebraic characterization of de-
terministic regular languages over infinite alphabets. Theoretical Computer
Science, 306(1-3):155–175, 2003.

[3] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[4] Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical
Computer Science, 134(2):329–363, 1994.

[5] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines
for strings over infinite alphabets. ACM Trans. Comput. Logic, 5(3):403–435,
2004.

[6] Thomas Schwentick. Automata for xml - a survey. Journal of Computer and
System Sciences, 73(3):289–315, 2007.

[7] Luc Segoufin. Automata and logics for words and trees over an infinite
alphabet. In Proceedings of the 15th Annual Conference of the EACLS, 20th
International Workshop on Computer Science Logic, volume 4207 of Lecture
Notes in Computer Science, pages 41–57, Szeged, Hungary, 2006. Springer.



A Appendix

A.1 Proof of Proposition 1

Proposition 1. Let A be a DMA over (D,R), where R is either the identity
or a dense total order on D, and let L be the language accepted by A. Then, for
every word w, we have that memL(w) is a sub-sequence of the stored values of
A after reading w. Moreover, if (q, σ) and (q′, σ′) are the configurations reached
by A after reading words w and w′, respectively, then

⎧⎪⎪⎨⎪⎪⎩

q = q′

σ ≃R σ′
implies memL(w) ⋅ σ ≃ memL(w′) ⋅ σ′.

Proof. We first prove that memL(w) is a sub-sequence of the memory content σ
of A after reading w. As in the proof of the previous proposition, it is sufficient
to prove that every L-memorable value of w occurs in the memory content σ
(indeed, by definition of transition relation of A, the values in σ, exactly as those
in memL(w), are ordered according to the positions of their last occurrences in
w). We prove the claim by contraposition, namely, we fix a value a that occurs
in w, but not in the memory content σ, and we prove that a is not L-memorable
for w (that is for every word u and every value b, w ⋅ u ≃R (w ⋅ u)[a/b] implies
w ⋅ u =L w ⋅ u[a/b]). Let us then assume that (i) a occurs in w but not in σ, (ii)
w ⋅u ≃R (w ⋅u)[a/b], and (iii) w ⋅u ∈ L (the dual case w ⋅u ∉ L can be dealt with
by similar arguments). We have to prove that w ⋅ u[a/b] ∈ L holds as well. Since
w ⋅ u ∈ L, we know that A admits a run on u of the form (q0, σ0), . . . , (qn, σn),
with (q0, σ0) = (q, σ) and qn being a final control state. Moreover, since a does
not occur in the memory content σ and since b occurs neither in w nor in u
(otherwise, we would have w ⋅ u /≃ w ⋅ u[a/b]), we know that A admits a run
on u[a/b] of the form (q0, σ0[a/b]), . . . , (qn, σn[a/b]), with (q0, σ0[a/b]) = (q, σ).
This shows that w ⋅u[a/b] is accepted by A as well. Hence a is not L-memorable
in w.

We now prove the second claim of the proposition. Let us consider two con-
figurations (q, σ) and (q′, σ′) that are reached by A after reading two words
w and w′, respectively, and such that q = q′ and σ ≃R σ′. We define w′′ =
w′[σ′(i)/σ(i)]1≤i≤∣σ∣ (note that w′′ ≃R w′). By exploiting arguments similar to
above ones, one can show that A reaches the configuration (q, σ) after reading
w′′. This implies that w ⋅ u =L w′′ ⋅ u for every word u and hence memL(w)
coincides with memL(w′′). Moreover, by construction, we have memL(w′′) =
memL(w′)[σ′(i)/σ(i)]1≤i≤∣σ∣. We can then conclude that σ ⋅ memL(w) = σ ⋅
memL(w′′) ≃ σ′ ⋅memL(w′). ⊓⊔



A.2 Proof of Proposition 2

Proposition 2. Let L be a language over (D,R), where R is a either the
identity or a dense total order on D. Then, for all words w,u, v we have

memL(w) ⋅ u ≃R memL(w) ⋅ v implies w ⋅ u =L w ⋅ v.

Proof. We only prove the case where R is a total and dense order. The case where
R is the identity on D is similar and slightly simpler. Suppose that memL(w)⋅u ≃
memL(w) ⋅ v (we will drop the subscript ≺ within this proof). We prove that
w ⋅ u =L w ⋅ v holds by exploiting a double induction on two parameters: the
first, dominant, parameter is the number of positions on which u and v have
different values; the second parameter takes into account the number of values
c that occur in w such that c ⋅ u /≃ c ⋅ v.

We begin by considering the set I of all positions where u and v differ. Pre-
cisely, we let I = {i ∶ 1 ≤ i ≤ ∣u∣, u(i) ≁ v(i)} (this is well defined because
∣u∣ = ∣v∣), {a1, . . . , an} = {u(i) ∶ i ∈ I} such that a1 ≺ . . . ≺ an, and {b1, . . . , bn} =
{u(i) ∶ i ∈ I} such that b1 ≺ . . . ≺ bn. None of the values a1, b1, ..., an, bn
are L-memorable in w because of memL(w) ⋅ u ≃ memL(w) ⋅ v. We define
a sequence (u0, v0), . . . , (un, vn) by (u0, v0) ∶= (u, v) and for all 1 ≤ i ≤ n if
ai ≺ bi then ui ∶= ui−1 and vi ∶= vi−1[bi/ai] and if ai ≻ bi then ui ∶= ui−1[ai/bi]
and vi ∶= vi−1. Note that un = vn and memL(w) ⋅ ui−1 ≃ memL(w) ⋅ ui and
memL(w) ⋅ vi−1 ≃ memL(w) ⋅ vi for all indices 1 ≤ i ≤ n. As a1, b1, . . . , an, bn are
not L-memorable in w it is sufficient to show the following:

Claim. For every word u′ and every pair of values a, b, we have that

memL(w) ⋅ u′ ≃ memL(w) ⋅ u′[a/b] implies w ⋅ u′ =L w ⋅ u′[a/b].

We assume that memL(w) ⋅ u′ ≃ memL(w) ⋅ u′[a/b] and that a ≺ b (the other
case is symmetric). Let {c1, . . . , cm} be the set of values that occur in w such
that a ⪯ c ⪯ b and c1 ≺ . . . ≺ cm. Note that none of these values is L-memorable
in w. We will prove the claim by induction on m.
• (Base case m = 0) If there is no value c that occurs in w and that satisfies

a ⪯ c ⪯ b then w ⋅ u′ ≃ w ⋅ u′[a/b]. Since L is closed under isomorphism we
obtain w ⋅ u′ =L w ⋅ u′[a/b].

• (Induction step m > 0) We distinguish two sub-cases:
1. (case a ∼ c1) As ≺ is dense, there is a fresh value d such that a ≺ d

and w ⋅ u′ ≃ (w ⋅ u′)[a/d]. Moreover, since a is not L-memorable in w,
we have w ⋅ u′ =L w ⋅ u′[a/d]. Now let m′ be the number of values c′

that occur in w and that satisfy d ⪯ c′ ⪯ b. Since c1 = a ≺ d, we know
that m′ < m. As d and b are not memorable for w memL(w) ⋅ u′[a/d] ≃
memL(w) ⋅ u′[a/d][d/b]. Hence, by inductive hypothesis, w ⋅ u′[a/d] =L
w ⋅ u′[a/d][d/b].



2. (case a ≺ c1) Again exploiting that ≺ is dense, there must be a value
d such that a ≺ d ≺ c1, w ⋅ u′ ≃ (w ⋅ u′)[a/d], and (w ⋅ u′)[a/d] ≃ (w ⋅
u′)[a/c1]. As a is not memorable for w, w ⋅ u′ =L w ⋅ u′[a/d]. Similarly
(w ⋅ u′)[a/d] =L w ⋅ u′[a/c1] because c1 is not memorable for w. Hence
w ⋅ u′ =L w ⋅ u′[a/c1]. We can use the same argument as in case 1. to
show that w ⋅ u′[a/c1] =L w ⋅ u′[a/b]. ⊓⊔

A.3 Proof of Theorem 1

Theorem 1. Let L be a language over (D,R), where R is either the identity
or a total order on D. Then, L is DMA-recognizable iff ≡L has finite index.

Lemma 2. Let L be a language over (D,R), where R is either a dense total
order or the identity on D. Then, for every word w and every value a, we have
that memL(w ⋅ a) is a sub-sequence of memL(w) ⋅ a.

Proof. We show that every L-memorable value of w ⋅a is either an L-memorable
value of w or it coincides with a (the convention that the values in memL(w) are
ordered according to the positions of their last occurrences in w will then imply
the claim of the proposition). Suppose, by contraposition, that there is a value
b that is L-memorable in w ⋅ a, but not in w. Since b is L-memorable in w ⋅ a, we
know there exist a word u and a value c such that

⎧⎪⎪⎨⎪⎪⎩

w ⋅ a ⋅ u ≃R (w ⋅ a ⋅ u)[b/c]
w ⋅ a ⋅ u ≠L w ⋅ a ⋅ u[b/c].

Similarly, since b is not L-memorable in w, then we know that, for every word v
and every value d, we have

{w ⋅ v ≃R (w ⋅ v)[b/d] implies w ⋅ v =L w ⋅ v[b/d].

In particular, by letting v = a ⋅ u and d = c, we obtain

w ⋅ a ⋅ u = w ⋅ v =L w ⋅ v[b/d] = w ⋅ (a ⋅ u)[b/c].

Together with w ⋅ a ⋅ u ≠L w ⋅ a ⋅ u[b/c], this can only be true if a = b. ⊓⊔

Proof (of Theorem 1). Let us first consider the direction from left to right. Let
A = (Q0, ...,Qk, T,{qI}, F ) be a DMA that recognizes the language L. We prove
that ≡L has finite index by showing that ≡L is refined by ≡A (we have already
argued that the index of ≡A has size at most ∣Q∣ ⋅ k!). Let us fix two words
w and w′ such that w ≡A w′ and let (q, r) and (q′, r′) be the configurations
reached by A after reading w and w′, respectively. Since w ≡A w′, we know that
q = q′ and r ≃ r′. Thus, by Proposition 1, we have memL(w) ⋅ r ≃ memL(w′) ⋅ r′
(we will drop R as a subscript in this proof). In particular, this shows that



the first condition of Definition 4 (i.e., memL(w) ≃ memL(w′)) is satisfied. We
now consider two words u,u′ such that memL(w) ⋅ u ≃ memL(w′) ⋅ u′ and we
show that w ⋅u =L w′ ⋅u′ follows. For the sake of brevity, we denote by (p, s) the
configuration reached byA after reading w⋅u and we define v = u[r(i)/r′(i)]1≤i≤∣r∣
and s′ = s[r(i)/r′(i)]1≤i≤∣r∣. Since q′ = q and r ⋅ u ⋅ s ≃ r′ ⋅ v ⋅ s′, we know that A
reaches the configuration (p, s′) after reading the word w ⋅ v. Summing up, we
have:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(qI , ε) wÐÐ→
A

(q, r) uÐÐ→
A

(p, s)

(qI , ε) w′

ÐÐ→
A

(q′, r′) vÐÐ→
A

(p, s′).

In particular, since A recognizes L, we know that w ⋅ u =L w′ ⋅ v. Moreover, by
definition of v, we have memL(w′) ⋅ v ≃ memL(w) ⋅ u and, from the previous
assumptions, memL(w) ⋅ u ≃ memL(w) ⋅ u′. By exploiting the transitivity of the
relation ≃, we obtain memL(w′) ⋅v ≃ memL(w′) ⋅u′ and hence, by Proposition 2,
w′ ⋅ v =L w′ ⋅ u′ follows. Finally, by transitivity of =L, we conclude that w ⋅ u =L
w′ ⋅ u′.
We now prove the opposite direction, namely, we assume that ≡L has finite index
and we show that there is a DMA AL = (Q0, ...,Qk, T,{qI}, F ) that recognizes L.
We first define the maximum number k of active registers and the sets Q0, ...,Qk
of control states of AL. Note that for each ≡L-equivalence class C = [w]≡L

, with
w ∈ D∗, there is a number iC such that ∣memL(w)∣ = iC (by definition of ≡L,
this number iC does not depend on the choice of the representant w). We let
k be the maximum number iC , for all ≡L-equivalence classes C. Then, for each
index 0 ≤ i ≤ k, we define Qi as the set of all ≡L-equivalence classes C such that
iC = i. Precisely, we let Qi = {[w]≡L

∶ w ∈ D∗, memL(w) = i}. Accordingly, we
let qI = [ε]≡L

be the initial state and F = {[w]≡L
∶ w ∈ L} be the set of final

states of AL. It remains to define the set T of transition rules of AL. We let T
contain all and only the tuples of the form

([w]≡L
, α,E, [w ⋅ a]≡L

)

where w ∈ D∗, a ∈ D, α is the ≃-type of the word memL(w) ⋅ a, and E is the
set of positions of memL(w) ⋅ a such that the removal of all positions i ∈ E from
memL(w) ⋅ a yields exactly memL(w ⋅ a) (note that, by Lemma 2, memL(w ⋅ a)
is a sub-sequence of memL(w) ⋅ a and hence such a set E exists). Clearly, by
definition of T , AL is complete. It remains to prove that AL is deterministic,
namely, that for every pair of transition rules in T of the form ([w]≡L

, [memL(w ⋅
a)]≃,E, [w ⋅ a]≡L

) and ([w′]≡L
, [memL(w′ ⋅ a′)]≃,E′, [w′ ⋅ a′]≡L

), we have that

⎧⎪⎪⎨⎪⎪⎩

w ≡L w′

memL(w) ⋅ a ≃ memL(w′) ⋅ a′
implies

⎧⎪⎪⎨⎪⎪⎩

w ⋅ a ≡L w′ ⋅ a′

E = E′.

Suppose that w ≡L w′ and memL(w) ⋅ a ≃ memL(w′) ⋅ a′ hold.

We first prove that w ⋅ a ≡L w′ ⋅ a′ holds. By Lemma 2, memL(w ⋅ a) is a sub-
sequence of memL(w) ⋅ a and memL(w′ ⋅ a′) is a sub-sequence of memL(w′) ⋅ a′.



Moreover, by hypothesis, memL(w) ⋅a ≃ memL(w′) ⋅a′ holds. It thus follows that
memL(w ⋅ a) ≃ memL(w′ ⋅ a′). This shows that the first condition of Definition
4 is satisfied. As for the second condition, we consider two words u and u′ such
that memL(w ⋅a) ⋅u ≃ memL(w′ ⋅a′) ⋅u′. We then define v as the word obtained by
replacing every occurrence of the value memL(w′)(i), with 1 ≤ i ≤ ∣memL(w′)∣ =
∣memL(w)∣, by the corresponding value memL(w)(i) and every occurrence of a′

by a. Clearly, by construction and by previous assumptions, we have

memL(w ⋅ a) ⋅ a ⋅ u ≃ memL(w′ ⋅ a′) ⋅ a′ ⋅ u′ ≃ memL(w ⋅ a) ⋅ a ⋅ v.

Hence, by Proposition 2, we know that (w ⋅ a) ⋅ u =L (w ⋅ a) ⋅ v. Moreover, since
w ≡L w′ and memL(w) ⋅ (a ⋅ v) ≃ memL(w) ⋅ (a′ ⋅ u′), we know that w ⋅ (a ⋅ v) =L
w′ ⋅ (a′ ⋅u′). Therefore, by transitivity, we conclude that (w ⋅a) ⋅u =L (w′ ⋅a′) ⋅u′.
This shows that w ⋅ a ≡L w′ ⋅ a′.

It remains to show that E = E′. We do that by considering an arbitrary position
i, with 1 ≤ i ≤ ∣memL(w) ⋅ a∣ (= ∣memL(w′) ⋅ a′∣), and by proving that the i-th
value of the sequence memL(w) ⋅ a is L-memorable in w ⋅ a iff the i-th value of
the sequence memL(w′) ⋅ a′ is L-memorable in w′ ⋅ a′. For the sake of simplicity,
we only consider the case of a densely linearly ordered support (the proof for the
more general case is a straightforward adaptation of the following one). Let us
fix a position i in memL(w) ⋅ a and the two values b = (memL(w) ⋅ a)(i) and b′ =
(memL(w′)⋅a′)(i). We assume that b is L-memorable in w ⋅a and we prove that b′

is L-memorable in w′ ⋅ a′ (the converse implication is by symmetric arguments).
Since b is L-memorable in w ⋅a, we know from Definition 2 that there exist a word
u and a value c such that w⋅a⋅u ≃ (w⋅a⋅u)[b/c] and w⋅a⋅u ≠L w⋅a⋅u[b/c]. We then
define u′ as the word obtained from u by replacing every occurrence of a value of
the form memL(w ⋅a)(j) by the corresponding value memL(w′ ⋅a′)(j). Clearly, we
have memL(w ⋅a)⋅u ≃ memL(w′ ⋅a′)⋅u′. In a similar way, we can find two values b′

and c′ such that memL(w⋅a)⋅u[b/c] ≃ memL(w′ ⋅a′)⋅u′[b′/c′]. Now, we recall from
previous arguments that the two words w ⋅ a and w′ ⋅ a′ are ≡L-equivalent. This
implies that both (w⋅a)⋅u =L (w′⋅a′)⋅u′ and (w⋅a)⋅u[b/c] =L (w′⋅a′)⋅u′[b′/c′] hold.
We thus conclude that w′ ⋅a′ ⋅u′ ≃ (w′ ⋅a′ ⋅u′)[b′/c′] and w′ ⋅a′ ⋅u′ ≠L w′ ⋅a′ ⋅u′[b′/c′],
which means that b′ is L-memorable in w′ ⋅ a′. In this way, we have just shown
that

E = {i ∶ ∀ j. memL(w ⋅ a)(j) ≠ (memL(w) ⋅ a)(i)}
= {i ∶ ∀ j. memL(w′ ⋅ a′)(j) ≠ (memL(w′) ⋅ a′)(i)} = E′.

Summing up, we have that AL is a DMA that recognizes the language L. ⊓⊔

A.4 Proof of Theorem 2

Theorem 2. The canonical automaton AL for a given DRA-recognizable lan-
guage L is minimal.



Proof. We first prove that AL is state-minimal. Let us consider a DMA A′
that recognizes L. We introduce a function f that maps control states of AL
to control states of A′, as follows. First, we associate with each control state q
of AL a representant wq of the corresponding ≡L-equivalence class, namely, we
assume q = [wq]≡L

for some word wq ∈ D∗. Then, for each control state q of
AL, we define f(q) as the control state reached by A′ after reading wq. We now
prove that f injective. Let us consider two control states q and q′ of AL such
that f(q) = f(q′). By construction, we know that A′ reaches two configurations
of the form (f(q), σ) and (f(q′), σ′) by reading wq and wq′ , respectively. Since
f(q) = f(q′), we know that wq and wq′ are in the same ≡A′ -equivalence class.
Moreover, by recalling the proof of Theorem 1, we know that ≡A′ refines ≡L.
This shows that wq ≡L wq′ and hence q = q′. We just prove that the function f
is injective and hence A′ has at least as many control states as AL.

We now prove that AL is data-minimal. Let us fix a DMA A′ that recognizes L
and let us consider a generic word w. Suppose that AL reaches the configuration
(q, σ) by reading w and, similarly,A′ reaches the configuration (q′, σ′) by reading
w. From the proof of Theorem 1, we recall that the stored values σ coincides
with the sequence of L-memorable values of w. Moreover, from Proposition 1, we
know that memL(w) is a sub-sequence of the stored values σ′. We thus conclude
that ∣σ∣ ≤ ∣σ′∣. ⊓⊔

A.5 Proof of Corollary 1

Corollary 1. Any minimal DMA recognizing a language L is isomorphic to the
canonical automaton for L.

Proof. Let A′ = (Q′
0, ...,Q

′
k′ , T

′,{q′I}, F ′) be a DMA recognizing a language L
and let AL = (Q0, ...,Qk, T,{qI}, F ) be the corresponding canonical automaton.
The proof follows easily from that of Theorem 2. In particular, we first observe
that k = k′ follows from the minimality of AL and A′. The bijection that maps
control states of AL to control states of A′ is given by the function f introduced
in the first part of the proof of Theorem 2. Note that this function satisfies
f(q) ∈ Q′

i for all 0 ≤ i ≤ k = k′ and all q ∈ Qi. Moreover, since A′ is state-minimal,
f must be surjective. Finally, the correspondence between the transitions of AL
and those of A′ is uniquely determined by the function f , since both AL and A′
are deterministic and complete. ⊓⊔

A.6 Proof of Lemma 1

Lemma 1. Let A be a DMA over (D,∼) that stores at most k values and let
L = L (A). Let w,w′ be two words and let ∆ be a finite subset of D containing
all values occurring in w or in w′, plus 2k+1 additional values. For every u ∈D∗,
there is v ∈∆∗ such that ⎧⎪⎪⎨⎪⎪⎩

w ⋅ u =L w ⋅ v
w′ ⋅ u =L w′ ⋅ v.



Proof. Let A, L, ∆, w, and w′ be as in the claim of the proposition. We first
introduce some definitions. The (w,w′)-trace of a word u = a1...an is the se-
quence γ̄ = (σ0, σ

′
0)...(σn, σ′n), where, for every index 0 ≤ i ≤ n, σi is the memory

content reached by A after reading the word w ⋅ (a1...ai) and σ′i is the memory
content reached by A after reading the word w′ ⋅ (a1...ai). We also introduce a
transformation f on (w,w′)-traces, which only depends on w, w′, and ∆. Given
a word u = a1...an and the corresponding (w,w′)-trace γ̄ = γ0...γn, we let m be
the position of the first occurrence in u of a value from D ∖∆, we let b be a
value from D that occur neither in the memory content σm−1 nor in the memory
content σ′m−1 (note that such a value exists since ∣∆∣ ≥ ∣σm−1∣ + ∣σ′m−1∣), and we
accordingly define

f(γ̄) = (γ0...γm−1) ⋅ (γm...γn)[am⤡b]

where (γm...γn)[am⤡b] is the sequence obtained from γm...γn by substituting,
in every position i ∈ {m, ..., n} and in both memory contents σi and σ′i, every
occurrence of am by b and, vice versa, every occurrence of b by am. By a slight
abuse of notation, we also denote by f(u) the word (a1...am−1)⋅(am...an)[am⤡b],
where u, m and b are defined as above. Note that, in virtue of these definitions,
the position of the first occurrence in f(u) of a value from D∖∆ is strictly greater
than the position of the first occurrence in u of a value from D ∖∆. Below, we
prove that f(γ̄) is a (w,w′)-trace of f(u) and, furthermore, w ⋅ u =L w ⋅ f(u)
and w′ ⋅ u =L w′ ⋅ f(u) hold. This would imply that that the folded iteration
f i(u) of f on u is well-defined and it reaches a fixed point fω(u) in at most ∣u∣
steps. Moreover, from previous arguments, the fixed point fω(u) contains only
values from the finite alphabet ∆. By transitivity of =L, we would then be able
to conclude that, given u ∈ D∗, there is v = fω(u) ∈ ∆∗ such that w ⋅ u =L w ⋅ v
and w′ ⋅ u =L w′ ⋅ v.

We now fix a word u ∈ D∗ and we prove that f(γ̄) is a (w,w′)-trace of f(u)
and w ⋅ u =L w ⋅ f(u) holds (by analogous arguments, w′ ⋅ u =L w′ ⋅ f(u) would
follow as well). For the sake of brevity, we assume that u = a1...an, γ̄ = γ0...γn,
f(u) = (a1...am−1) ⋅ (am...an)[am⤡b], and f(γ̄) = (γ0...γm−1) ⋅ (γm...γn)[am⤡b],
where m is the position of the first occurrence in u of a value from D ∖∆ and
b is a value from D that is fresh for both memory contents contained in γm−1.
Moreover, for every index 0 ≤ i ≤ n, we denote by (qi, σi) the configuration
reached by A after reading the word w ⋅ (a1...ai). Similarly, for every index
m− 1 ≤ i ≤ n, we denote by (pi, τi) the configuration reached by A after reading
the word w ⋅ (a1...am−1) ⋅ (am...ai)[am⤡b]. We can shortly write

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(qI , ε) wÐÐ→
A

(q0, σ0) a1...am−1ÐÐÐÐÐÐ→
A

(qm−1, σm−1) am...anÐÐÐÐÐÐÐÐÐÐ→
A

(qn, σn)

(qI , ε) wÐÐ→
A

(q0, σ0) a1...am−1ÐÐÐÐÐÐ→
A

(pm−1, τm−1) (am...an)[am⤡b]ÐÐÐÐÐÐÐÐÐÐÐ→
A

(pn, τn).

In order to show that f(γ̄) is a (w,w′)-trace of f(u) and w ⋅ u =L w ⋅ f(u), it
is sufficient to prove that pi = qi and τi = σi[am⤡b] for all m − 1 ≤ i ≤ n. We



prove this by exploiting an induction on i. The base case i =m−1 is trivial since
neither am nor b occur in the memory content σi (in particular, this follows
from the definition of m and from the fact that am ∉ ∆ and ∆ contains all
values that occur in w). As for the induction case, suppose that pi−1 = qi−1 and
τi−1 = σi−1[am⤡b]. If ai ≁ am and ai ≁ b, then it immediately follows that pi = qi
and τi = σi[am⤡b]. If ai ∼ am, then, by definition of m and b, we have

σi−1 ⋅ ai = σi−1 ⋅ am ≃ (σi−1 ⋅ am)[am⤡b] = τi−1 ⋅ ai[am⤡b].

This shows that the same transition rule of A is activated in the configuration
(qi−1, σi−1) and in the configuration (pi−1, τi−1) while consuming, respectively,
the value ai and the value ai[am⤡b]. Therefore, pi = qi and τi = σi[am⤡b]
follow. The argument for the remaining case ai ∼ b is symmetric. ⊓⊔

A.7 Proof of Proposition 3

Proposition 3. The memorability problem is decidable in non-deterministic
single-exponential time O(n2 ⋅m2k ⋅k2k), where m is the length of the input word
w, n is the number of control states of the input DMA A and k is maximum
number of values stored by A.

Proof. Let A be a DMA recognizing a language L and using n control states
and at most k stored values, let w be a word of length m, and let a be a value
that occurs in w. Moreover, let us fix a fresh value b not occurring in w and a
subset ∆ of D that contains the value b, all values occurring in w, and 2k + 1
additional values. We first prove that

a is L-memorable in w iff a is L ∩∆∗-memorable in w

(here, by a slight abuse of terminology, we adapt Definition 2 to languages over
finite alphabets; precisely, we say that a value a is L∩∆∗-memorable in w iff there
exist v ∈∆∗ and c ∈∆ such that w ⋅ v ≃ (w ⋅ v)[a/c] and w ⋅ v ≠L∩∆∗ w ⋅ v[a/c]).
The direction from right to left is trivial. Let us then assume that a is L-
memorable in w. From Definition 2, we know that there exist a word u and
a value b′ such that w ⋅ u ≃ (w ⋅ u)[a/b′] and w ⋅ u ≠L w ⋅ u[a/b′]. By Proposition
2, we can assume, without loss of generality, that b′ ∼ b. Now, let v be the (w, b)-
surrogate of u over the finite alphabet ∆. Since b occurs neither in w nor in v, we
know that w ⋅v ≃ (w ⋅v)[a/b]. It remains to prove that w ⋅v ≠L∩∆∗ w ⋅v[a/b]. By
definition of surrogate, we have w ⋅ u =L w ⋅ v. Moreover, given the construction
of the surrogate v of u (cf., the proof of Lemma 1), we can assume, without loss
of generality, that w ⋅u[a/b] ≃ w ⋅ v[a/b] and hence w ⋅u[a/b] =L w ⋅ v[a/b]. This
shows that w ⋅ v ≠L∩∆∗ w ⋅ v[a/b] holds and hence a is L ∩∆∗-memorable in w.

In order to decide whether the value a is L∩∆∗-memorable in w it is sufficient to
provide an upper bound to the length of a shortest word v ∈∆∗ (if there is any)
such that w ⋅ v ≃ (w ⋅ v)[a/b]. Let us assume that a is L ∩∆∗-memorable in w



and let v ∈∆∗ be a word among the shortest ones witnessing w ⋅v ≃ (w ⋅v)[a/b].
Moreover, let B be a deterministic finite-state automaton that recognizes the
language L ∩ ∆∗. Without loss of generality, we can assume that the number
N of states of B does not exceed n ⋅ ∣∆∣k (indeed, the set of states of B can
be obtained from the set of configurations of A that are reachable by reading
words over ∆). We now prove that ∣v∣ ≤ N2 (note that since N ≤ n ⋅ ∣∆∣k and
∣∆∣ ≤ m + 2k + 2, this would immediately lead to a non-deterministic procedure
that decides in time O(n2 ⋅m2k ⋅k2k) whether a is L-memorable in w). Suppose,
by way of contradiction, that ∣v∣ > N2. This implies that there exist two distinct
positions 1 ≤ i < j ≤ ∣v∣ and two states s, s′ of B such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

sI
w ⋅ (v(1)...v(i))ÐÐÐÐÐÐÐÐÐÐÐÐ→

B
s (v(i + 1)...v(j))ÐÐÐÐÐÐÐÐÐÐÐÐ→

B
s

sI
w ⋅ (v(1)...v(i))[a/b]ÐÐÐÐÐÐÐÐÐÐÐÐ→

B
s′ (v(i + 1)...v(j))[a/b]ÐÐÐÐÐÐÐÐÐÐÐÐ→

B
s′

where sI is the initial state of B. The above arguments show there is a shorter
word v′ = v(1)...v(i)v(j + 1)...v(∣v∣) such that w ⋅ v′ ≃ (w ⋅ v′)[a/b], thus contra-
dicting the minimality of v. ⊓⊔

A.8 Proof of Proposition 4

Proposition 4. The word-equivalence problem is decidable in non-deterministic
single-exponential time O(n2 ⋅m2k ⋅k2k), where m is the sum of the lengths of the
two input words w and w′, n is the number of control states of the input DMA
A and k is maximum number of values stored by A.

Proof. Let us fix a DMA A recognizing a language L and using n control states
and at most k stored values, and let us fix two words w and w′. As a first
remark, note that w /≡L w′ holds only if ∣memL(w)∣ = ∣memL(w′)∣. In virtue of
Proposition 3, checking whether ∣memL(w)∣ = ∣memL(w′)∣ can be done in non-
deterministic time O(n2 ⋅m2k ⋅ k2k). Thus, from now on, we can assume that
∣memL(w)∣ = ∣memL(w′)∣. Moreover, since ≃ refines ≡L, we can assume, without
loss of generality, that memL(w) = memL(w′) (indeed, if this were not the case,
we could equivalently check whether w ≡L w′′, where w′′ is the word obtained
from w′ by first replacing all occurrences of values of the form memL(w)(i) that
are not L-memorable in w′ by corresponding fresh values, simultaneously for all
indices 1 ≤ i ≤ ∣memL(w)∣, and then replacing all occurrences of values of the form
memL(w′)(i) by memL(w)(i), simultaneously for all indices 1 ≤ i ≤ ∣memL(w)∣).
As usual, we introduce a finite set ∆ that contains all values that occur in w or in
w′, plus 2k+1 additional values. Moreover, we denote by ≋L the standard Myhill-
Nerode equivalence between words over the finite alphabet ∆. In particular, we
have

w ≋L w′ iff ∀ u ∈∆∗ w ⋅ v =L w′ ⋅ v.
We now prove that, under the assumption memL(w) = memL(w′), we have

w ≡L w′ iff w ≋L w′.



Assume that w ≡L w′. Since memL(w) = memL(w′), we know from the definition
of ≡L that w ⋅ v =L w′ ⋅ v holds for every word v ∈ D∗ and hence, in particular,
for every word v ∈ ∆∗. This shows that w ≋L w′. As for the other direction, we
assume, by contraposition, that w /≡L w′. By definition, there exist two words
u,u′ ∈D∗ such that memL(w)⋅u ≃ memL(w′)⋅u′ and w ⋅u ≠L w′ ⋅u′. Moreover, in
virtue of Proposition 2, we know that w′ ⋅u =L w′ ⋅u′. This implies w ⋅u ≠L w′ ⋅u.
Now, let v be the (w,w′)-surrogate of u over the alphabet ∆. By construction,
we have that w ⋅u =L w ⋅v and w′ ⋅u =L w′ ⋅v. Therefore, we obtain w ⋅v ≠L w′ ⋅v
and hence w ~L w′.

To conclude the proof, it is sufficient to show that problem of checking whether
w ≋L w′ is decidable in non-deterministic time O(n2 ⋅m2k ⋅ k2k). We omit this
part of the proof since the arguments are very similar to the ones used in the
proof of Proposition 3. ⊓⊔


