
Datalog Relaunched:
Simulation Unification and Value Invention

François Bry1, Tim Furche2, Clemens Ley2,
Bruno Marnette2, Benedikt Linse3, and Sebastian Schaffert4

1 Institute for Informatics, Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München, Germany

2 Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

3 Thomson Reuters, Landsberger Straße 191a, 80687 München, Germany
4 Knowledge and Media Technologies, Salzburg Research

Jakob Haringer Str. 5/III, 5020 Salzburg, Austria

Abstract. For reasoning on the Web, Datalog is lacking data extraction
and value invention. This article proposes to overcome these limitations
with “simulation unification” and “RDFLog”.
Simulation unification is a non-standard unification inspired from regular
path queries. Like standard unification, it yields bindings for variables in
both terms to unify. Unlike standard unification, it does not try to make
the two terms identical but instead to embed the query into the data.
Simulation unification is decidable. Without variables, it has polynomial
complexity. With variables it is, like standard unification, np-complete.
We identify a number of interesting special cases of unification, e.g.,
in presence or absence of term injectivity. In particular, we show that
simulation unification without term injectivity on tree data is linear and
in presence of injectivity it is still polynomial even on unordered trees in
contrast to the np-complete unordered tree inclusion problem.
RDFLog is Datalog with arbitrary quantifier alternation: Blank nodes,
i.e., existentially quantified variables, in rule heads may be governed
by universally quantified variables, universally quantified variables by
blank nodes. RDFLog’s declarative semantics is defined in terms of RDF
entailment; its sound and complete operational semantics, in terms of
Skolemization, standard Datalog evaluation, and un-Skolemization. We
show that RDFLog limited to ∀∗∃∗ prefixes is (up to unique helper pred-
icates) equivalent to RDFLog with full quantifier alternation. A light-
weight implementation points to the efficiency of the approach.

Keywords: Datalog, Unification, Value Invention, Un-Skolemization,
Query Language, Regular Path Queries, Semi-Structured Data, HTML,
XML, XPath, RDF.

1 Introduction

Datalog is a fragment of the logic programming language Prolog [87] aiming at
combining rule-based reasoning with relational databases. Datalog is declarative,

2 François Bry et al.

or “pure”, in the sense that it includes none of the procedural features of Prolog
such as a pre-defined evaluation order and language constructs such as the cut
for modifying this order. The integration of Prolog-style rule-based reasoning
and databases has been first advertised at the end of the 70es, beginning of the
80es of the 20th century in three workshops on ”Logic and Databases” [62] and
on ”Advances in Database Theories” [64,65] – cf. also [63]. The name Datalog,
a contraction of the then widespread expression ”Database Prolog”, has been
coined by David Maier and David S. Warren for lecture notes [91]. Datalog pro-
vides first-order queries that, up to the syntax, correspond to SQL queries with-
out negation. Datalog also provides definite rules that correspond to SQL views.
Methods have been developed for a set-oriented evaluation of Datalog queries
[40], i.e., an evaluation building upon relational algebra and therefore efficiently
accessing large amounts of data on secondary storage. Sophisticated methods
have been developed for implementing backward chaining relying on forward
chaining [112,8,14,117,110,31] (cf. [127,41,42,111] for overviews) thus ensuring a
terminating and set-oriented evaluation of recursive Datalog programs. Datalog
and the aforementioned evaluation methods have two salient traits:

1. They are restricted to “flat terms”,5 i.e., terms containing no function sym-
bols other than constants.

2. They are restricted to universal facts and rules, i.e., facts and rules where
all the variables of which are universally quantified.

Datalog’s restriction to flat terms is no stringent limitation if relational data
are accessed. Indeed, even though non-first-normal-form relational databases
have been considered in research, the focus of relational database technology is
on first-normal-form databases that correspond to “flat” logic terms, i.e., logic
terms containing no function symbols other than constants. If, however, instead
of flat relational data, data on the Web are accessed, then the two aforemen-
tioned traits of Datalog must be overcome. Indeed, HTML and XML documents
are semi-structured [1], i.e., can be formalized as labelled unranked trees or
nested relations. Datalog’s restriction to universally quantified variables must
be overcome if Datalog is to be used for RDF querying and reasoning. Indeed,
RDF graphs might contain so-called blank node, i.e., existentially quantified
variables.

This article describes two approaches to adapt Datalog to semi-structured
data (such as HTML and XML documents) and to RDF graphs respectively.

The first approach, called “simulation unification”, is a non-standard form
of unification tuned to data extraction from semi-structured data. Simulation
unification is inspired from regular path queries [2,3]. Like standard unification,
simulation unification determines bindings for variables in both terms to unify.
Unlike standard unification, simulation unification does not make the two terms
identical but instead searches for an embedding of the query into the data.
Simulation unification is decidable, sound and complete, and has polynomial

5 The article [117] is an exception: It describes an extension of the magic set method
[8,14] to a restricted type of rules with nested terms.

Datalog Relaunched 3

data complexity. Without variables and some incompleteness query constructs,
it has polynomial, on tree data even linear time complexity; with variables it
is, like standard unification, np-hard. Simulation unification is closely related to
the fragment of XPath [46] with only forward axes, a restriction that does not
affect the expressiveness of XPath [103].

The second approach, called RDFLog, is an extension of Datalog with arbi-
trary quantifier alternation. In RDFLog programs, blank nodes, i.e., existentially
quantified variables in rule heads, may occur in the scope of all, some, or none
of the universal variables of a rule. In other words, in RDFLog rules, existen-
tially quantified variables may be governed by universally quantified variables,
universally quantified variables by existentially quantified variables.

This articles is organized as follows. Section 2 discusses related work. Section
3 describes simulation unification. Section 4 is devoted to RDFLog. Section 5
suggest a notion of “rich unification” as a framework for adapting Datalog to
various data types and a direction for further research.

2 Related Work

2.1 Wrapping

Since the end of the 90es of the 20th century, the extraction of data from the Web
and from large Thesauri, i.e., from semi-structured documents such as HTML
documents, has been investigated from several angles. One commonly distin-
guishes between text extraction, or text wrapping, and structure extraction, or
structure wrapping. Text wrapping is the retrieval of portions of text regardless
of the documents’ structures. Text wrapping techniques returning so-called “bag
of words” is one of the core functions of current search engines and is therefore
well-mastered [88]. A more sophisticated form of text wrapping is targeted at
so-called “factoids”, or entities and relationships between entities, related to a
query and extracted from unstructured text [4,70,68,128,129]. Structure wrap-
ping, i.e., the retrieval of structured portions of text such as a section with its
sub-sections from a (structured) document is another from of wrapping. Cur-
rently, structure wrapping is deployed on the limited scale of Web query and
transformation languages such as XPath [46,17], XQuery [19] and XSLT [45].
XPath, which is part of both XQuery and XSLT, can be seen as the most used
structure wrapping language.

The approaches to structure wrapping considered so far can be understood
by formalizing semi-structured documents as node-labelled unranked trees, i.e.,
trees such that two nodes similarly labelled do not necessarily have the same
number of children.6 A structure-aware wrapper can be seen as a language for
selecting nodes, or equivalently the sub-trees rooted at these nodes, from labelled
unranked trees while possibly performing simple changes such as renaming labels
and removing some-subtrees. More sophisticated structure reorganizations – such

6 “Semi-structured” is used instead of “structured” for stressing this characteristic of
Web documents as well as the lack of schema [35,1].

4 François Bry et al.

as transposing a table, adding sums to table rows or columns, or constructing
from a bibliography by years a bibliography by authors, and more generally most
forms of data aggregation – are not considered part of data extraction: They are
out of the range of structure-aware wrappers.

XPath [46,17], which appeared in 1999 and follows the regular path approach
introduced with [2], is the best-known and most used structure wrapper lan-
guage. It is, however, far from being the only one. Others approach to structure
wrapping are as follows: Regular path queries (with constraints) have been pro-
posed in [3]; regular tree languages and (regular tree automata for their evalua-
tion) have been proposed in [30] and further investigated amongst other in [102];
a Datalog-style language called WebOQL has been proposed in [5]; regular path
queries with nesting (or RPN) have been proposed in [66,67]; exploiting the fact
that regular tree languages coincide with tree languages expressible in monadic
second order logic or MSO,7 MSO is proposed in [66,67] as a reference language
for investigations of the expressive power of structure-aware wrapper languages;
monadic Datalog, the inspiration of Elog [12], the language of the commercial
wrapper Lixto [68], has been proposed in [13,66,67]. More on Web wrapping and
Web query languages can be found in the survey [7].

Common to the afore-mentioned proposals is that

1. they are designed for tree-shaped data,

2. the majority, in particular XPath, is designed for querying only for sets of
nodes,

3. their query paradigm is navigational.

Being designed for tree-shaped data, they can neither exploit the hyper-
text links and references within an HTML or XML document, nor fully access
structure of RDF graphs. This restriction might not be that significant if stan-
dard documents and Web pages are queried. If instead Semantic Web documents
such as RDF graphs are queried, the restriction is more significant. Indeed, RDF
graphs are almost never tree-shaped. The majority is designed for querying for
sets of nodes, but not for sets of tuples of nodes. In logic terms, they are tuned
to monadic, i.e., single answer-variable, queries. A navigational query paradigm
is quite natural for monadic queries. [69,18,20] stress the drawbacks of naviga-
tional queries. Arguably, navigational queries in languages like XPath [46,17]
that offer so called “reverse axes” compromise declarativity. Note that reverse
axes do not increase XPath’s expressive power [103], though it has been recently
shown [89] that this does not hold for more expressive path languages containing
a Kleene-star type construct (such as conditional XPath [92]).

The language UnQL [36] has introduced simulation as a means for query
answering. This has been further investigated with the language XMAS [10].
UnQL and simulation unification differ from each other as follows. First, a query
in UnQL can be processed by matching, or “half unification”, of a query pat-
tern containing variables with a data item containing no variables. In contrast,

7 This is a classical result mentioned amongst other in [102].

Datalog Relaunched 5

simulation unification gives rise to unifying two query patterns both contain-
ing variables. Furthermore, variables in UnQL can only occur as leaves of query
patterns while simulation unification gives rise to (constrained) variables at any
depth of a query term.

Simulation unification is not limited to querying tree-shaped data but can
instead accommodate graph-shaped queries against graph-shaped data, is not
limited to monadic queries but instead can accommodate querying for tuples
of nodes, and its paradigm is not navigational but instead, like logic queries,
pattern-oriented.

2.2 Rules Languages for the Semantic Web

The considerable literature on Web and Semantic Web rule languages falls gen-
erally into four groups:

1. markup for rule languages,
2. implementation of description logics or of RDF-based reasoning in Datalog,

in Logic Programming, or in Answer Set Programming,
3. Datalog or Logic Programming style rule languages for RDF,
4. “hybrid reasoning”, i.e., integrations of description logic primitives, or built-

ins, into Datalog or (Disjunctive) Logic Programming.

The prominent markup languages for rules are the Rule Markup Language
RuleML [28,21,22] and the languages, called “dialects”, of the Rule Interchange
Format RIF [26,24,23,106,25,49,47]. The focus here is on the interchange on the
Web relying on XML of rule programs of various kinds. Both have been de-
veloped to express various forms of reasoning, especially forward and backward
chaining, and, as far as RIF is concerned, production rules. SWRL [77,78,79,76],
a rule language integrating sublanguages of OWL [93,123,50,104,39,74,75,97] in
RuleML is both, a markup language, and an integration of a description logic in
Logic Programming.

The large number of implementations of description logics in Datalog or, more
generally, in Logic Programming or Disjunctive Logic Programming, amongst
others [15,99,71,11,80,81,82,97], reflects the diversity of description logics. An
implementations of RDF/S rule-based reasoning in Answer Set Programming is
described in [107].

RDF’s syntax makes it rather natural a candidate for Datalog or Logic Pro-
gramming rules. [85,27,33] are mostly devoted to syntax, markup and interoper-
ability issues of RDF rule languages, [121,130,96,72,124,105,120,34] investigate
various forms of rule-based reasoning with RDF/S data. See [61] for a survey on
RDF query and rule languages.

Various forms of hybrid reasoning, i.e., integration of description logics into
Datalog, Logic Programming, Disjunctive Logic Programming or Answer Set
Programming are described amongst others in [78,76,114,113,125,48,79,98,115,55]
[54,38,116,53,95,94,52,109,33].

Most of the rule languages considered in the afore-mentioned articles support
neither existential variables nor blank nodes in rule heads [121,122,96,58,105].

6 François Bry et al.

Some support blank nodes in rule heads but only with limited quantifier alter-
nations [130,72,120]. To the best of the authors’ knowledge, existential variable
in rule heads with unrestricted quantifier alternation has been first proposed in
[34]. The second part of the present paper describes this approach.

3 Simulation Unification: Unification for Web Wrapping

Simulation unification has been developed as a technique for evaluating “query
patterns”, called in the following “query terms”, that are both, in the style
of logic queries and better adapted to Web querying. Like logic queries, the
query terms might include several variables. Variables in a query term are logic
variables, that is, all their occurrences must be consistently bound. In contrast
to logic queries, query terms are incomplete specification of the data to retrieve.
Query terms may contain constructs for expressing incompleteness in breadth,
in depth, with respect to order, and with respect to optional subterms:

– Incompleteness in breath: While the query term a[X, b] corresponds to a
logic query a(X, b), the query term a[[X]] retrieves a-labelled nodes with at
least one child (bound to the variable X).

– Incompleteness in depth: The query term a[desc b] retrieves a-labelled nodes
with a b-labelled descendant node.

– Incompleteness with respect to order: The order of the matches for b and
desc c is irrelevant in the queries a{b, desc c} and a{{b, desc c}}.

– Incompleteness with respect to optional subterms: The query a[b, optionalc[X]]
binds the variable X to some value only if in the data retrieved the a-labeled
node has a c-labelled child having itself a child node (bound to X).

Furthermore, references in query terms and in data are resolved during simu-
lation unification allowing graph-shaped queries graph-shaped data. Additional
constructs ease the expression of queries frequently needed on the Web. The
comparison [29] with the XQuery programs from the XQuery Use Cases [43]
demonstrates that these features, as well as a few others described in [119],
considerably ease the expression of practical queries.

Definition 1 (Data Terms). Data terms are expressions inductively defined
as follows that satisfy Conditions 1 and 2 below:

1. If l is a label, then l is a (atomic) data term.
2. If id is an identifier and t is a data term neither ofthe form id0: t0 nor ofthe

form ↑id0, then id: t is a data term.
3. If id is an identifier, then ↑id is a data term.
4. If l is a label and t1, . . . , tn are n ≥ 1 data terms, then l[t1, . . . , tn] and

l{t1, . . . , tn} are data terms.

Condition 1: For a given identifier id an identifier definition id: t0 occurs at
most once in a term.
Condition 2: For every identifier reference ↑id occurring in a term t an iden-
tifier definition id: t0 occurs in t.

Datalog Relaunched 7

Definition 2 (Query Terms). Query terms are expressions inductively defined
as follows and satisfying Conditions 1 and 2 of Definition 1:

1. If l is a label and L is a label variable, then l, L, l{{}}, and L{{}} are
(atomic) query terms.

2. A term variable is a query term.
3. If id is an identifier and t is a query term neither ofthe form id0: t0 nor

ofthe form ↑id0, then id: t is a query term.
4. If id is an identifier, then ↑id is a query term.
5. If X is a variable and t a query term, then X t is a query term.
6. If X is a variable and t is a query term, then X desc t is a query term.
7. If l is a label, L a label variable and t1, . . . , tn are n ≥ 1 query terms,

then l[t1, . . . , tn], L[t1, . . . , tn], l{t1, . . . , tn}, L{t1, . . . , tn}, l[[t1, . . . , tn]],
L[[t1, . . . , tn]], l{{t1, . . . , tn}}, and L{{t1, . . . , tn}} are query terms.

Query terms in which no variables occur are ground. Query terms that are not
of the form ↑id, are strict. The leftmost label of strict and ground query terms
of the form l, l{{}}, l{t1, . . . , tn}, and l[t1, . . . , tn] is l; the leftmost label of a
strict and ground query term of the form id : t is the leftmost label of t.

Note that desc never occurs in a ground query term (for it is always coupled
with a variable), data terms are (simple) query terms, in a query term, multiple
occurrences of a same variable are possible. Child subterms and subterms of query
terms are defined such that if t = f [a, g{Y desc b{X}, h{a,X k{c}}], then
a and g{Y desc b{X}, h{a,X k{c}} are the only child subterms of t and
e.g. a and X and Y desc b{X} and h{a,X k{c}} and X k{c} and t
itself are subterms of t. Note that f is not a subterm of t.

We allow in the following a query term desc t without leading as an
abbreviation for X desc where X is a fresh variable.

Definition 3 (Variable Well-Formed Query Terms). A term variable X
depends on a term variable Y in a query term t if X t1 is a subterm of t and
Y is a subterm of t1. A query term t is variable well-formed if t contains no term
variables X0, . . . , Xn (n ≥ 1) such that 1. X0 = Xn and 2. for all i = 1, . . . , n,
Xi depends on Xi−1 in t.

Thus, f{X g{X}} and f{X g{Y }, Y h{X}} are not variable well-
formed. Variable well-formedness precludes queries specifying infinite answers.
In the following, query terms are assumed to be variable well-formed.

The declarative semantics of simulation unification is based on graph simu-
lation. A simulation of a graph G1 in a graph G2 is a mapping of the nodes of
G1 in the nodes of G2 preserving the edges. The graphs considered are directed,
ordered and rooted and their nodes are labelled.

Definition 4 (Simulation). Let G1 = (V1, E1) and G2 = (V2, E2) be two
graphs. Let ∼ be an equivalence relation on V1 ∪ V2. A relation S ⊆ V1V2 is
a simulation with respect to ∼ of G1 in G2 if:

8 François Bry et al.

1. If (v1, v2) ∈ S, then v1 ∼ v2.
2. If (v1, v2) ∈ S and (v1, v

′
1) ∈ E1, then there exists v′2 ∈ V2 such that (v′1, v

′
2) ∈

S and (v2, v
′
2) ∈ E2.

Let S be simulation S of G1 = (V1, E1) in G2 = (V2, E2). S is total, if for each
v1 ∈ V1 there exists at least one v2 ∈ V2 such that (v1, v2) ∈ S. If G1 has a
root r1, G2 has a root r2 and (r1, r2) ∈ S, then S is a rooted simulation. S is
minimal, if there are no simulations S ′ ⊆ S of G1 in G2 such that S ′ 6= S.

Note that every rooted simulation is total.

Definition 5 (Strict and Ground Query Term Simulation). � is the re-
lation on strict and ground query terms defined by t1 � t2 if there exists a
(minimal) rooted simulation with respect to label identity S of t1 in t2 such that:

1. if v1 = l{} occurs in t1 and (v1, v2) ∈ S, then v2 has no children in t2.
2. if v1 = l[[t11, . . . , t

1
n]] (n ≥ 1) occurs in t1, (v1, v2) ∈ S and (t1i , t

2
j) ∈ S

(1 ≤ j ≤ m ≤ n), then t21, . . . , t
2
m occur in this indexing order as children of

v2 in the graph induced by t2.
3. if v1 = l[t11, . . . , t

1
n] (n ≥ 1) occurs in t1, (v1, v2) ∈ S and if (t1i , t

2
j) ∈ S

(1 ≤ j ≤ m ≤ n), then t21, . . . , t
2
m are pairwise distinct (i.e. m = n), they

occur in this indexing order as children of v2 in the graph induced by t2 and
v2 has no other children than the t2j in t2.

4. if v1 = l{t11, . . . , t1n} occurs in t1, (v1, v2) ∈ S and (t1i , t
2
j) ∈ S (1 ≤ j ≤ m ≤

n), then t21, . . . , t
2
m are pairwise distinct (i.e. m = n) and v2 has no other

children than the t2j in t2.

5. if v1 = l{{t11, . . . , t1n}} occurs in t1, (v1, v2) ∈ S and (t1i , t
2
j) ∈ S (1 ≤ j ≤

m ≤ n), then t21, . . . , t
2
m are pairwise distinct (i.e. m = n).

Fig. 1 A minimal simulation of the (graph induced by the) ground query term
tq = f{id1 : a, b[d{{}}, ↑ id1], desce} in the (graph induced by the) data term
tdb = f [b[d, id2 : a], ↑ id2, c, d{e}].

f

b

d e d

b

a

f

d

e

da c

Datalog Relaunched 9

By Definition 4, � is reflexive and transitive, i.e. it is a preorder on the set of
data terms. � is not a partial order, for although t1 = f{{a}} � t2 = f{{a, a}}
and t2 = f{{a, a}} � t1 = f{{a}} (both a of t2 can be simulated by the same a
of t1), t1 = f{{a}} 6= t2 = f{{a, a}}.

Rooted simulation with respect to label equality is a first step towards a
formalisation of answers to query terms: If there exists a rooted simulation of
(the graph induced by) a data term t1, considered as a query term, in (the
graph induced by) a data term t2, then t2 is an answer to t1. Ground in-
stances of a query term (cf. Definition 6) gives rise to extend this notion of
answers to query terms. An answer in a database D to a query term tq is
characterized by bindings for the variables in tq such that the database term
t resulting from applying these bindings to tq is an element of D. Consider
e.g. the query tq = f{{ X g{{b}}, X g{{c}} }} against the database
D = {f{g{a, b, c}, g{a, b, c}, h}, f{g{b}, g{c}}}. The constructs in tq yield
the constraint g{{b}} � X ∧ g{{c}} � X. Matching tq with the first data term
in D yields the constraint X � g{a, b, c}. Matching tq with the second data term
in D yields the constraint X � g{b} ∧X � g{c}. g{b} � X ∧ g{c} � X is not
compatible with X � g{b} ∧X � g{c}. Thus, the only possible value for X is
g{a, b, c}, i.e. the only possible answer to tq in D is f{g{a, b, c}, g{a, b, c}, h}.

Definition 6 (Ground Instances of Query Terms). A grounding substi-
tution is a function which assigns a label to each label variable and a database
term to each term variable of a finite set of (label or term) variables. Let tq be a
query term, V1, . . . , Vn be the (label or term) variables occurring in tq and σ be
a grounding substitution assigning vi to Vi. The ground instance tqσ of tq with
respect to σ is the ground query term that can be constructed from tq as follows:

1. Replace each subterm X t by X.
2. Replace each occurrence of Vi by vi (1 ≤ i ≤ n).

Requiring in Definition 2 desc to occur to the right of makes it possible to
characterize a ground instance of a query term by a grounding substitution. This
is helpful for formalizing answers but not necessary for language implementa-
tions.

Not all ground instances of a query term are acceptable answers, for some
instances might violate the conditions expressed by the and desc constructs.

Definition 7 (Allowed Instances). The constraint induced by a query term
tq and a substitution σ is the conjunction of all inequalities tσ � Xσ such that
X t is a subterm of tq not of the form desc t0, and of all expressions XσC tσ
(read “tσ subterm of Xσ”) such that X desc t is a subterm of tq, if tq has
such subterms. If tq has no such subterms, the constraint induced tq and σ is the
formula true. Let σ be a grounding substitution and tqσ a ground instance of tq.
tqσ is allowed if:

1. Each inequality t1 � t2 in the constraint induced by tq and σ is satisfied.
2. For each t1 C t2 in the constraint induced by tq and σ, t2 is a subterm of t1.

10 François Bry et al.

Query term Data terms

T1 a{ } � a{ }; a[]
6� b{ }

T2 a[] � a[]
6� b{ }; a{ }

T3 a{ b } � a{ b }
6� a{ b, b }

T4 a{ b, b } � a{ b, b }
6� a{ b }; a{ b, b, b }

P1 a{{ b }} � a{ b }; a{ c, b, d }; a{ b, b }
6� a{ };

P2 a[[b, c]] � a[b, c]; a[d, b, e, c]
6� a[c, b]; a{ b, c }

D1 a{ desc b } � a[b]; a[c{ b, e }];
6� a{ d, c{ b } };

D2 a{ desc b, desc c } � a[b, e[c]];
6� a{ b, c, d }; a{ e[b, c] };

D3 a{{ desc b, desc c }} � a[b, e[c]]; a{ b, c, d };
6� a{ e[b, c] };

Table 2. Query terms and matching data (; separates different data terms)

Definition 8 (Answers). Let tq be a query term and D a database. An answer
to tq in D is a database term tdb ∈ D such that there exists an allowed ground
instance t of tq satisfying t � tdb.

3.1 Examples of Simulation

Table 2 illustrates the simulation between (variable-free) query terms and data
terms. For space reasons, we omit in query terms empty double braces and in
data terms empty single braces, i.e., c reads c{{ }} in a query term and c{ } in
a data term.

The first examples T1–T4 illustrate matching of ordered and unordered total
query terms. Note, that unordered query terms match against ordered data terms
(since the use of the curly braces indicates only that we do not care about the
order). In total query terms both terms have exactly the same number of children
in all cases. This is what sets partial query terms (P1–P2, I1–I2) apart from total
query terms. Here, we may have additional query terms in the data that are
ignored. The remaining examples of Table 2 illustrate the effect of desc. It allows
matching at any depth (cf. D1–D3). Totality and injectivity are still enforced
between the children of a matching data term (observe the difference between
D2 and D3).

The effect of variables on term matching is illustrated in Table 4: Essentially,
a variable matches any single term (or label, or position, or node, if so placed),

Datalog Relaunched 11

Query term Data terms Bindings

V1 a{ var X } � a[b]; {X/b}
6� a{ }; a[b, c]

V2 a{{ var X }} � a[b, c]; {X/b, X/c}
6� a{ };

V3 a{{ var X, var X }} � a[b, b]; a{ c, b, b, d } {X/b1, X/b2}
6� a{ b, c }; a{ b }

V5 a{ var X{ var X } } � a[b{ ”b”}]; {X/"b"}
6� a{ b, c };

V6 a{ var X c, var X } � a[c, c]; {X/b}
6� a{ b, b };

V7 a{ desc var X } � a[c{ b, e[f] }]; {X/c{...}, X/b,
X/e[...], X/f}

6� a{ d, c{ b } };

Table 4. Query terms containing variables and their bindings

but matches are recorded in the bindings of the query. If a variable occurs mul-
tiple times (V3), the matched query terms must be structurally equivalent. A
variable may occur as a label (V5), in which case it is bound to the value of the
label and can only match with other labels or character data (as the ‘‘b’’ in
V5). A variable may occur in a term restriction before (V6), in which case
the right hand query term restricts the matching bindings for X. Finally, it can
be combined with desc yielding the expected result (V7).

3.2 Simulation Unification

Simulation unification is a non-deterministic algorithm for solving in the data
term lattice (Tdb/ ≡,�) induced by the relation �. Inequations of the form
tq � tc, where tq is a query term, tc is a so-called “construct term”, i.e., a query
term without and desc constructs.8 (possibly a data term), and tq and tc are
variable disjoint.9 Thus, simulation unification computes substitutions σ such
that tqσ and tcσ have instances tqστ and tcστ with tqστ and tcστ data terms
and tqστ � tcστ .

Simulation unification consists in repeated applications of Term Decompo-
sition phases followed by a Consistency Verification phase to a formula C (for
constraint store) consisting in disjunctions of conjunctions of inequations of the
form tq � tc (with tq query term and tc construct term) and/or equations of
the form tc1 = tc2 (with tc1 and tc2 construct terms). At the beginning C consists

8 Simulation unification is in fact defined for more general construct terms in which
grouping and aggregation construts à la LDL [101,44] might occur.

9 Variable disjointness is achieved in deduction systems by the so-called “standardiza-
tion apart.”

12 François Bry et al.

in a single inequation tq � tc. Both phases Term Decomposition and Consis-
tency Verification consist in stepwise changes of the constraint store C. These
changes are expressed in the following formalism inspired from [59]: A “simplifi-
cation” L⇔ R replaces L by R. Trivially satisfied inequations or equations are
replaced by the atomic formula true. Inconsistent conjunctions of inequations or
equations are replaced by the atomic formula false. Memoing ensures that the
recursive traversal cyclic query terms terminates. For space reasons, memoing
is not discussed in the following, i.e., references in query terms are disregarded,
and only the decomposition rules for terms of the form a{} or {{}} are given.
See [118] for a full treatment.

Definition 9 (Term Decomposition Rules). Let l (with or without indices)
denote a label. Let t1 and t2 (with or without indices) denote query terms.

– Root Elimination:

(1) l � l{t21, . . . , t2m} ⇔ true if m ≥ 1
l � l{{}} ⇔ true

(2) l{t11, . . . , t1n} � l⇔ false if n ≥ 1
l{t11, . . . , t1n} � l{{}} ⇔ false if n ≥ 1

(3) Let Π be the set of (total) functions {t11, . . . , t1n} → {t21, . . . , t2m}:
l{t11, . . . , t1n} � l{t21, . . . , t2m} ⇔

∨
π∈Π

∧
1≤i≤n t

1
i � π(t1i)

if n ≥ 1 and m ≥ 1

(4) l1{t11, . . . , t1n} � l2{t21, . . . , t2m} ⇔ false if l1 6= l2 and n ≥ 0 and m ≥ 0

– Elimination:

X t1 � t2 ⇔ t1 � t2 ∧ t1 � X ∧ X � t2

– Descendant Elimination:

desc t1 � l2{t21, . . . , t2m} ⇔ t1 � l2{t21, . . . , t2m} ∨
∨

1≤i≤m desc t1 � t2i
if m ≥ 0

Applying the and descendant elimination rules to a constraint store C in
disjunctive normal form may yield a constraint store not in disjunctive normal
form. Thus, the method has to repeatedly restore the disjunctive normal form
of C.

In the following, mgcu(t1, . . . , tn) (with t1, . . . , tn query terms) returns a most
general commutative-unifier of t1, . . . , tn (in the sense of [6]) expressed as either
false, if t1 and t2 are not commutative-unifiable, or as true if t1 and t2 are
commutative-unifiable and do not contain variables, or else as a conjunction
of equations of the form X = t. Note that most general commutative-unifiers
are only computed for construct terms (i.e., query terms without and desc
constructs). Recall that commutative unification is decidable.

Datalog Relaunched 13

In the definition below, simulation unification is initialized with X0 tq �
tc, where X0 is a variable occurring neither in tq nor in tc, instead of simply
tq � tc. The additional variable X0 serves a complete specification of the answers
returned. This is useful in proving the correctness of simulation unification but
can sometimes be dispensed of in practice.

Definition 10 (Simulation Unification).

1. Initialization:
C := X0 tq � tc
(with tq query term, tc construct term and tq, tc and X0 variable disjoint).

2. Term Decomposition:
Until C can no longer be modified, repeat performing one of:

– Apply a (applicable) Term Decomposition rule to C

– Put C in disjunctive normal form

end-until

3. Variable Binding:
Replace each X � t in C with X = t.

4. Consistency Verification:
For each disjunct D of C and for each variable X occurring in D do:

Replace in D the equations X = t1, . . . , X = tn by mgcu(t1, . . . , tn).

end-for

Note that the constraint store C returned at the end of the Term Decomposition
step is necessarily in disjunctive normal form. Indeed, if C is not in disjunctive
normal form, then the halting condition of the until loop (Step 2 of Definition
10) is not satisfied.

For efficiency reasons it is preferable to intertwine the Term Decomposition
and Consistency Verification phases instead of performing them one after an-
other. The sequential processing of both phases in Definition 10 simplifies the
proofs.

Proposition 1 (Correctness and Completeness). Let tq be a query term,
tc a construct term, i.e., a query term without and desc constructs, and X0 a
variable such that tq, tc and X0 are variable disjoint. There exists a substitution τ
such that tqτ and tcτ are database terms and tqτ = tcτ if and only if a simulation
unification initialized with X0 tq � tc returns a substitution σ such that

– For each variable X in tq, Xσ is a subterm of tqσ.

– tqτ is an instance of tqσ.

– tcτ is an instance of tcσ.

The proof is given in [118].

14 François Bry et al.

3.3 Complexity of Simulation Unification

The complexity of standard unification is famously linear. The complexity pic-
ture for simulation unification is considerably more “complex”: It is easy to see
that full simulation unification is np-complete. It is in np, e.g., by translation
to first-order logic [60]. It is np-hard, e.g., by reduction from subgraph isomor-
phism [90] or 3SAT. In presence of incomplete term specifications and variables
this is not surprising and in line with similarly expressive XML query languages
such as XPath 2 (see [16]).

In this section, we thus introduce a family of restrictions to the query terms
defined in Definition 2 and briefly summarize the complexity of simulation uni-
fication for these languages.

We denote with SUtree;−bi,−di
−var,−inj,−u the simulation unification problem over query

terms without variables (−var), term injectivity (−inj), and unordered terms
(−u), where query terms may only be tree-shaped (i.e., no references) and may
be neither incomplete in depth (−di) nor breadth (−bi). Note, that all these
restrictions only apply to query terms, not to data terms. For −var, we can
also use −tvar to only disallow term variables, such that label variables can still
be used. For −u we can also use −o to disallow ordered terms. We can drop
any of these restrictions, e.g., SU−bi−var denotes the simulation unification problem
over the sub-language of query terms without variables and with no breadth-
incomplete terms.

Fragment Complexity

1 SU np-complete
2 SU−var np-complete
3 SUtree

−tvar np-complete

4 SUtree
−var,−inj q · d2, q · d if data terms are trees or CIGs [60]

5 SUtree
−var q · d · (q+d)1.5·q·d

log(q+d)

6 SUtree
−var,−o q · d · (q+d)1.5·q·d

log(q+d)

7 SUtree
−var,−u q · d2

8 SUtree;−di
−var q1.5 · d

9 SUtree;−di
−var,−o q1.5 · d

10 SUtree;−di
−var,−u q · d

11 SUtree;−di,−bi
−var q + d

12 SUtree;−di,−bi
−var,−o q + d

13 SUtree;−di,−bi
−var,−u q + d

Table 5. Complexity of simulation unification. (q size of query term; d size of data
term (number of nodes, see [60])

Table 5 summarizes the complexity results for simulation unification over the
most interesting classes of restricted query terms.

Datalog Relaunched 15

The first three lines recall np-complete fragments: (1) simulation unification
over unrestricted query terms is np-complete. (2) It remains so even if we allow
no variables, but query terms may be graph-shaped. (3) It also remains np-
complete if we allow only tree shaped query terms, but any form of variables
(including only label variables).

Proof (Sketch). It is easy to see that (1) (and thus (2) and (3)) is in np, cf. [60]
for a reduction to first-order logic.

np-hardness for (1) and (2) can be shown by reduction from subgraph iso-
morphism: Let P,G be arbitrary graphs. Then we can test if P is isomor-
phic to a subgraph in G by the following construction (let λ 6= mu be ar-
bitrary labels): For each node of P , we construct a breadth-incomplete query
term qi with label λ containing a reference to the query term of each adjacent
node. Let q = µ{{q1, q2, . . .}}. For each node of G, we construct a breadth-
complete data term di with label λ and references to each query term of adja-
cent nodes. Let d = µ{d1, d2, . . .}. Then, q simulates in d, if and only if P is
a subgraph of G. For instance, for the graph P1 with edges (1, 2), (2, 3), (1, 4)
and the graph G1 with edges (1, 2), (2, 3), (2, 4), (1, 4), (1, 5), (4, 5) the terms are
µ{{λ{{λ{{λ{{}} }}, λ{{}} }} and µ{λ{λ{}, ↑ 4}, 4@λ{↑ 5}, 5@λ{}}.

np-hardness for (3) is shown in [90] by reduction from Clique.

Fragment 4 of Table 5 highlights a major result of [60]: If we relax the injectiv-
ity requirement, i.e., that the t21, . . . t

2
m must be pairwise distinct in Definition 5,

simulation unification becomes polynomial for query terms without of references
and variables. In fact, there is a large class of graph-shaped data terms, called
CIGs in [60], that includes all trees and forests on which simulation unification
has linear data complexity in this case.

Fragments 5-7 consider the effect of injectivity in case of tree shaped query
terms without variables. Fragment 5 is the general case, fragment 6 if we allow
no ordered query terms (no []), fragment 7 if we allow no unordered query terms
(no {}). The complexity of fragments 5 and 6 has been an open issue as stated in
[90] and is first shown here. It turns out that all three fragments have polynomial
complexity.

Proof. The polynomial complexity for Fragment 7 follows from equivalence of
this fragment to a fragment of navigational XPath, see [60], for whose complexity
see [16]. For instance, a[[desc b, c[desc e]]] is equivalent to

/a[./*[descendant-or-self::b]/following-sibling::c[./*[1]

[descendant-or-self::e][not(following-sibling::*)]]

The complexity for fragment 6 can be shown by reduction to maximum
matching for bipartite graphs (or a non-linear assignment problem): We con-
sider bottom-up each sub-term c in the given query q. For each c, Mc denotes
the set of nodes in the data term that match with c. We start with the leaf terms
and set Mc to the set of nodes with the appropriate label and arity (|Mc| ≤ d).
For inner query terms, if c is incomplete, let c = λ{{s1, . . . , sn}}. If c is complete

16 François Bry et al.

let c = λ{s1, . . . , sn}. For each node n in the data term d, that has the appro-
priate label and arity for c, for consider all si and let Mn

si be the restriction of
Mc to children of n. Thus the Mn

si are the possible matches for each si under
the assumption that c matches with n. From the Mn

si we construct a bipartite
graph in the following way: G = (P,C;E) where P is all the si, C = ∪iMn

si , and
E = {(si, c) : c ∈Mn

si}, i.e., there is an edge from si to a node in C, if that node
is a possible match for si.

For this bipartite graph, we compute the maximum matching S. A subset M
of E is called a matching if every vertex of G coincides with at most one edge
from M . A matching is called maximal if it cannot be enlarged by any edge of
the graph. A matching is called maximum, if it has maximal cardinality among
all matchings for that graph.

If S has cardinality n, n is a match for c and is added to Mc. If Mq 6= after
all query terms have been processed, then q simulates in d.

Computing the maximum matching can be done in O((q+d)1.5·q·d
log(q+d)), cf.[37].

Thus, the whole algorithm takes q · d · (q+d)
1.5·q·d

log(q+d) .

For fragment 5 finally, we can use the same algorithm as for 6, but if c is
ordered we walk over the si and the children of n at the same time and compare
matches in order, which can be done in q + n time. Thus, it has the same
complexity as fragment 6.

This result is indeed surprising, as unordered tree inclusion is np-complete
[84]. The difference between our case and unordered tree inclusion is that sim-
ulation unification does not consider a query term such as a{{desc b, desc c}}
to simulate with a{d{b, c} } due to the injectivity requirement in Definition 5.
For unordered tree inclusion the graph with edges (a, b), (a, c) is included in the
graph (a, d), (d, b), (d, c), as unordered tree inclusion only preserves the ancestor
relationships.

Fragments 8-10 are the cases, where we also restrict the use of desc. All three
cases following immediately from the complexity of ordered, resp. unordered path
inclusion problems shown in [83].

Finally, fragments 11-13 are the cases, where we consider only complete terms
(without either desc, [[]] or {{}}). In this case, simulation unification is the same
problem as tree isomorphism for node-labeled trees, for which well-known linear
algorithms exist.

To summarize, there are two surprising results when considering simulation
unification over restricted fragments of the full query terms defined in Defini-
tion 2:

– Even in presence of incomplete terms and for terms mixing unordered and
ordered specifications, simulation unification has linear data complexity on
tree and CIG data and quadratic data complexity on arbitrary graphs, if we
ignore the injectivity requirement.

– In presence of the injectivity requirement, simulation unification still remains
polynomial in contrast to closely related problems such as unordered tree
inclusion.

Datalog Relaunched 17

Though most of the results above have been proven in [60] and [90], the
latter case has been stated as an open issue even in [90]. In this paper, we close
this remaining gap in the complexity picture for simulation unification with
a positive result: Simulation unification remains polynomial as long as we do
not use (multiple occurrences of) variables or graph-shaped query terms, even
in presence of unordered terms. It is especially, interesting that thanks to the
particular variant of injectivity chosen for query terms, simulation unification
remains polynomial, as this requirement has been made for practical reasons: An
intuition—so far often confirmed, admittedly on unsystematic observations— is
that injectivity eases in practice the programming of queries.

4 RDFLog: Datalog with Value Invention

RDFLog extends Datalog to support two distinguishing features of RDF: blank
nodes and the logical core [100] of the RDFS vocabulary. In RDFLog, Blank
nodes can be specified by existentially quantified variables in rule heads. RD-
FLog allows unrestricted quantifier alternation between existential and universal
quantifiers in a rule. The following examples illustrate the benefit of unrestricted
quantifier alternation.
(1) “Someone knows each professor” can be represented in RDFLog as

∃stu∀prof ((prof , rdf:type, uni:professor)→ (stu, uni:knows, prof)) (1)

We call such rules ∃∀ rules. Some approaches such as [130] are limited to rules
of this form.
(2) “Each lecture must be “practiced” by another course (such as a tutorial or
practice lab) without knowing more about that course”. This statement can not
be expressed by ∃∀ rules. In RDFLog it can be represented as

∀lec∃crs
(
(lec, rdf:type, uni:lecture)→ (crs, uni:practices, lec)

)
(2)

Such rules are referred to as ∀∃ rules. Recent proposals for rule extensions to
SPARQL are limited to this form, if they consider blank nodes in rule heads at all.
Indeed, with SPARQL’s CONSTRUCT patterns a fresh blank node is constructed
for each binding of the universal variables (cf. Section 10.2.1 in [108]).
(3) “For each lecture there is a course that “practices” that lecture and is at-
tended by all students attending the lecture”. This is represented in RDFLog
as

∀lec∃crs∀stu
(
(lec, rdf:type, uni:lecture) ∧ (stu, uni:attends, lec)→

(crs, uni:practices, lec) ∧ (stu, uni:attends, crs)
)

(3)

To the authors’ knowledge, RDFLog is the first RDF query language that sup-
ports rules of this third kind. RDFLog furthermore is a closed RDF query lan-
guage, i.e., the answer to an RDFLog program is again an RDF graph, and
RDFLog can express the logical core ρdf of the RDFS semantics [100].

18 François Bry et al.

In [86] it is suggested to extend Logic Programming—called Computational
Logic—with existential quantifications in rule’s heads, that is, with the very
extension RDFLog provides. However, in this book, no method is described for
the processing such rules.

The proofs of all results of this section on RDFLog and value invention can
be found in [32].

4.1 Preliminaries

Definition 11 (RDF Graph [73]). An RDF vocabulary V consists of two
disjoint sets called URIs U and literals L. The blank nodes B is a set disjoint
from U and L. An RDF graph is a set of RDF triples where an RDF triple is
an element of (U ∪ B)× U× (U ∪ L ∪ B). If t = (s, p, o) is an RDF triple then s
is the subject, p is the predicate, and o is the object of t.

The set L of literals consists of three subsets, plain literals, typed literals and
literals with language tags. In this work we consider only plain literals (and thus
drop IL, the interpretation function for typed literals, see Section 1.3 in [73], in
the following definitions).

Definition 12 (RDF Interpretation [73]). An interpretation I of an RDF
vocabulary V = (U, L) is a tuple (IR, LV, IP, IEXT, IS) where IR is a non-empty set
of resources such that L ⊆ LV ⊆ IR, IP is a set of properties and IEXT : IP →
2IR×IR, and IS : U→ IR ∪ IP are mappings.

IR and IP are not necessarily disjoint since a same URI can be used both as a
resource and as a property. RDF interpretations are used to assign a truth value
to an RDF graph. RDF assigns a special meaning to a predefined vocabulary,
called RDFS vocabulary. It is, e.g., required that IEXT(IP(rdfs : subPropertyOf))
is transitive and reflexive. The formulation of theses constraints on RDF inter-
pretation makes use of a notion of a class which is omitted in the definition
above for simplicity. The logical core of RDFS, denoted as ρdf , has been iden-
tified in [100]. An RDF interpretation I is a ρdf interpretation if I satisfied the
constraints specified in Definition 3 of [100].

The semantics of RDF is completed by the notion of entailment: An RDF
graph g RDF-entails (ρdf -entails) an RDF graph h if for all RDF (ρdf) inter-
pretations I, I(h) = true if I(g) = true [73].

The following uses formulas, terms, structures, Herbrand structures, satisfac-
tion |=, models, entailment |=, logic and Datalog programs, and the immediate
consequence operator TP of a logic program P . Infinite formulas 10 are also
used: if Φ is a recursively enumerable set of formulas, then

∧
(Φ) is a formula; if

x̄ = x1, x2, . . . is a recursively enumerable sequence of variables and if ϕ is a for-
mula, then ∃x̄(ϕ) is a formula. We write ϕ(x̄) to indicate that the free variables
of a formula ϕ are amongst x̄ = x1, . . . , xn.

10 Of a limited form: infinite conjunctions all variables of which are existentially quan-
tified.

Datalog Relaunched 19

We show that the semantics of RDF can be defined in terms of standard
logic. In particular, RDF graphs can be translated to formulas so that logical
entailment coincides with RDF entailment. For any RDF vocabulary V = (U, L)
we define the alphabet ΣV = U ∪ L ∪ {T} where U and L are constant symbols
and T is an arbitrary ternary relation symbol.

Definition 13 (Canonical Formula of an RDF Graph). Let g = {t1, . . . , tn}
be an RDF graph over V. The canonical formula of g is the formula ϕg :=
∃x̄ (ψ1(x̄) ∧ . . . ∧ ψn(x̄)) over ΣV and variables from B where ψi = T (s, p, o) if
ti = (s, p, o) and x̄ is the set of blank nodes occurring in g.

It is easy to see that ρdf [100] corresponds to a finite set of Datalog rules Φρdf .

Proposition 2. Let g, h be RDF graphs and ϕg, ϕh their canonical formulas.
Then g RDF-entails h iff ϕg |= ϕh and g ρdf -entails h iff ϕg ∧ Φρdf |= ϕh.

4.2 RDFLog Syntax

Definition 14 (Syntax of RDFLog Programs). Let V = (U, L) be an RDF
vocabulary and Var a set of variables. An RDFLog atom over V is an atom
T (t1, t2, t3) where t1, t2 ∈ (U ∪ Var) and t3 ∈ (U ∪ L ∪ Var). An RDFLog rule
over V is a formula

∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn (body(x̄)→ head(x̄, ȳ))

over ΣV and Var where x̄ = x̄1, . . . , x̄n and ȳ = ȳ1, . . . , ȳn are finite sequences
from Var and body(x̄) and head(x̄, ȳ) are finite conjunctions of RDFLog atoms.
In addition we require that RDFLog rules are range restricted: if x ∈ Var(head)
is universal or there is an existential y ∈ Var(head) such that y is in the scope
of x, then x ∈ Var(body). An RDFLog program over V is a finite set of RDFLog
rules over V.

Any finite RDF graph g = {t1, . . . , tn} with blank nodes x̄ can be encoded
into the RDFLog rule ∃x̄ (true → t1 ∧ . . . ∧ tn) where true denotes the empty
conjunction. As it makes the notation simpler, we always assume that the input
RDF graph is encoded into such a rule in the RDFLog program. As there is only
one predicate symbol (T) in an RDFLog program, it can be omitted.

4.3 Declarative Semantics

The following RDFLog program shows that it is problematic to define the seman-
tics of an RDF query language in terms of models. Let the canonical structure Ag

of an RDF graph g be the structure over the domain of URIs, literals and blank
nodes where (t1, t2, t3) is true in Ag iff (t1, t2, t3) is an RDF triple in g. As (2) is a
fact in P and (1) is a rule in P , any canonical structure of an RDF graph that is
a model of P must contain the triple (’Logic’, uni:located in, :b) for some blank
node :b. Since this triple contains a literal in the subject position, it is not an

20 François Bry et al.

RDF triple. Thus, that P has no model which is the canonical structures of an
RDF graph. Even if, as with SPARQL, literals in subject position are allowed,
one can similarly argue with blank nodes in predicate position.

P =
{
∀sem∃rm∀stu

(
(stu, uni:attends, sem)

→ (sem, uni:located in, rm) ∧ (stu, uni:knows, rm)
)
, (1)

true → (uni:julie, uni:attends, ’Logic’) ∧ (uni:john, uni:attends, uni:RDF)
}

(2)

[[P]] 3
{

(:b3, uni:located in, :b1), (uni:julie, uni:knows, :b1),

(uni:RDF, uni:located in, :b2), (uni:john, uni:knows, :b2),

(uni:julie, uni:attends, ‘Logic’), (uni:julie, uni:attends, :b3),

(uni:john, uni:attends, uni:RDF)
}

The difficulty is overcome by defining the semantics of RDFLog in terms
of RDF entailment. More precisely, the semantics of an RDFLog program P is
defined as the set of all RDF graphs g that entail exactly the same RDF graphs
as P (and satisfying in particular P |= g).

Definition 15 (Denotational Semantics of RDFLog). Let P be an RD-
FLog program and RDF the set of RDF graphs. The denotational semantics [[P]]
of P is the set [[P]] := {g ∈ RDF | ∀h ∈ RDF (P |= ϕh iff ϕg |= ϕh)} where ϕg

and ϕh are the canonical formulas of g and h respectively.

Observe that the semantics of an RDFLog program is an infinite set of pos-
sibly infinite RDF graphs. As we formalized RDF graphs as formulas, we have
to consider the special kind of infinite formulas defined above. Nonetheless it
is immediate from the definition that the RDF graphs in [[P]] form an equiva-
lence class under RDF entailment. Therefore any element of [[P]] characterizes
the infinite set [[P]]. In the next section we show how such a representative can
be computed.

Observe that Φρdf encoded in RDFLog. Therefore it is up to the programmer
to enclose Φρdf into P if the semantics of P is supposed to be aware of the ρdf
vocabulary.

subsectionOperational Semantics
RDFLog operational semantics consists in (1) Skolemization, (2) standard

Datalog evaluation, (3) un-Skolemization, and (4) normalization. Normalisation
discards intermediary triples that may contain blank nodes in predicate position
(see [126] for cases where this is useful), the final answer of an RDFLog program
never contains such triples.

Definition 16 (Skolemisation). Let Σ and Γ be disjoint alphabets, ϕ = ∀x̄∃y(ψ)
a formula over Σ ∪ Γ and f ∈ Γ . A Γ -Skolemisation step sf maps ϕ to
sf (ϕ) := ∀x̄ψ{y � f(x̄)}. A Γ -Skolemisation s is a composition sf1 ◦ . . . ◦ sfn of
Γ -Skolemisation steps such that fi does not occur in sfi+1 ◦ . . .◦sfn(ϕ) and s(ϕ)
contains no existential variables. The definition of a Skolemisation is extended
to sets in the usual way.

Datalog Relaunched 21

The Skolemised of an RDFLog program P is equivalent to a range restricted
logic program s(P). Any logic programming engine can compute the minimal
Herbrand model Ms(P) of s(P).

We define ϕMS(P)
to be the conjunction of all ground atoms that are true in

Ms(P). However, ϕMS(P)
might not be the canonical formula of an element of [[P]]

for two reasons. First, the example shows that ϕMS(P)
might contain atoms with

skolem terms, such as (uni:RDF, uni:located in, srm(uni:RDF)), which are not en-
tailed by P . Second, ϕMS(P)

can contain atoms that contain literals in subject
or predicate position and blank nodes in predicate position. In the example the
atom (‘Logic’, uni:located in, srm(‘Logic’)) contains the literal ‘Logic’ in subject
position.

The first problem is solved by “undoing” the Skolemisaton, i.e., replacing each
Skolem term in ϕMS(P)

by a fresh, distinct blank node. We call this operation
UnSkolemisaton.

Definition 17 (Unskolemisation). Let Σ and Γ be disjoint alphabets and ϕ
a ground, possibly infinite, and quantifier free formula over Σ ∪ Γ . Let t̄ be the
sequence of all ground terms f(ū) where f is in Γ and ū is a sequence of terms
over Σ ∪ Γ . Then the Γ -Unskolemisation u maps ϕ to u(ϕ) := ∃x̄ (ϕ{t̄ � x̄}) .
where x̄ is a sequence of fresh variables.

To solve the second problem, we remove all triples with literals or blank
nodes in predicate position (no RDF graph may contain such a triple or any
triple entailed by it). In addition we remove each triple t that contains a literal
l in object position and add two triples t1 and t2 where t1 is obtained from t by
replacing an occurrence of a literal l in subject position by a fresh blank node bl
and t2 is obtained from t by replacing all occurrences of l by bl.

This is necessary to preserve information about the identity of domain ele-
ments that are denoted by blank nodes. For example observe that the RDF graph
{(uni:julie, uni:attends, :b), (:b, uni:located in, srm(‘Logic’))} follows from the
RDFLog program P above. To maintain this information we need to insert the
triple (uni:julie, uni:attends, :b3) into [[P]]. We formalise this step by defining the
normalisation operator.

Definition 18 (Normalisation Operator). Let ϕ be a formula of the form
∃x̄ (a1(x̄) ∧ . . . ∧ an(x̄)) where each ai(x̄) = T (t1, t2, t3) for some t1, t2, t3 ∈ (U∪
B ∪ L). Let L′ ⊆ L be the set of literals that occur in the first argument of an
atom in ϕ. We define µ : U ∪ B ∪ L → U ∪ B ∪ L to be the injection such that
µ(t) = b for some fresh blank node b (not in ϕ) if t ∈ L′ and µ(t) = t otherwise.
Then Π(ϕ) = {Π(a1(x̄)), . . . Π(an(x̄))} and

Π(T (t1, t2, t3)) =

{
> if t2 ∈ B ∪ L

(µ(t1), t2, t3) ∧ (µ(t1), t2, µ(t3)) otherwise

The normalisation operator ensures that, though intermediary triples may con-
tain blank nodes in predicate position (see [126] for examples where this is use-
ful), the final answer of an RDFLog program never contains such triples.

22 François Bry et al.

Definition 19 (Operational Semantics of RDFLog). Let P be an RDFLog
program over Σ, s a Γ -Skolemisation for P , and u an Γ -Unskolemisation. Then
the operational semantics of P is [P] := Π

(
u(ϕMs(P)

)
)

where ϕMS(P)
is as

defined above: the conjunction of all ground atoms that are true in the minimal
Herbrand model of s(P).

4.4 Properties and Experimental Evaluation

Even though we do not require that elements of the denotational semantics [[P]]
of an RDFLog program P are models of P it holds that u(ϕMs(P)

) has a canonical
structure that is not only a model of P but even a universal model [56,57]. Thus
if we allow literals in subject position and blank nodes in subject or predicate
position, we can omit Π from the operational semantics and compute a model
of P .

To formulate this more precisely, we define an extended Herbrand structure A
over alphabet Σ and variables Var as a structure (D,Rel ,Fun) where D is the set
of (possibly non-ground) terms over Σ and Var , and every function fA is defined
by fA(t1, . . . , tn) = f(t1, . . . , tn). We extend the definition of Unskolemisation
from formulas to extended Herbrand structures: if u is an Unskolemisation that
replaces t̄ by x̄ then u(M) is the extended Herbrand structure obtained from M
by renaming the domain elements t̄ by x̄.

Lemma 1. Let P be an RDFLog program, AP = u(Ms(P)) and ϕP = u
(
ϕMs(P)

)
.

Then AP |= P and P |= ϕP .

Intuitively, AP |= P means that ϕP captures all the information in P and
P |= ϕP means that it does not assert anything that is not asserted by P .
From these two key observations, we can prove that the operational semantics of
RDFLog is both sound and complete with respect to the denotational semantics.

Theorem 1. Let P be an RDFLog program. Then [P] ∈ [[P]].

The reduction of RDFLog to standard logic programs allows for a direct im-
plementation of RDFLog on top of any logic programming or database engine
that supports value invention and recursion. In the following, we we compare ex-
perimentally the performance of a very simple prototype based on that principle
with two of the more common SPARQL implementations. Our implementation
of RDFLog uses a combination of Perl pre- and post-filters for Skolemisation,
Unskolemisation, and normalisation of RDFLog programs and XSB Prolog to
evaluate the Skolemised programs.

We compare our implementation with the ARQ SPARQL processor of Jena
(Version 2.1) and the SPARQL engine provided by the Sesame RDF Framework.
For Sesame, we choose the main-memory store as it is “by far the fastest type
of repository that can be used” according to Sesame’s authors. With this store,
Sesame becomes a main-memory, ad-hoc query engine just like RDFLog and
ARQ. As common for ad-hoc queries we measure overall execution time including
both loading of the RDF data and execution of the SPARQL or RDFLog query.

Datalog Relaunched 23

Fig. 2 Performance comparison on rule 1 (left) and on rule 2 (right)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

tim
e

(s
ec

)

data size (triples)

RDFLog
SPARQL(ARQ)

SPARQL(Sesame)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

tim
e

(s
ec

)

data size (triples)

RDFLog
SPARQL (ARQ)

SPARQL (Sesame)

In the experiments we evaluate three different queries against an RDF graph
consisting of Wikipedia data. The experiments have been carried out on a Intel
Pentium M Dual-Core with 1.86 GHz, 1 MB cache and 2 GB main memory.
For each setting, the running time is averaged over 25 runs. We compare the
following rules:

– Rule 1: ∀x∀y ((x,wiki:internalLink, y)→ (x, test:connected, y))
– Rule 2: ∀x∀y∃z ((x,wiki:internalLink, y)→ (x, test:connected, z))

Figure 2 compares the performance of RDFLog with that of ARQ and Sesame
for rule 1 and rule 2 (we omit rule 3 as it is not expressible in SPARQL). Despite
its light-weight, ad-hoc implementation, RDFLog outperforms ARQ and Sesame
in this setting. The figures show moreover that also for ARQ and Sesame, blank
node construction does not bear any significant additional computational effort.

5 Conclusion

Datalog has proven a useful vehicle for research and advanced database systems.
However, to remain such it must adapt to the ever more dominant Web. To that
end, we describe two approaches for addressing two of the most glaring defi-
ciencies of Datalog: simulation unification, for an easy access to semi-structured
Web data, and RDFLog, for arbitrary quantifier alternation in rule heads needed
for constructing RDF graphs. Both approaches pose new challenges to Data-
log evaluation and analysis, but we show that in both cases polynomial core
languages—at the cost of mild restrictions—can be identified.

Acknowledgements

The research leading to these results has received funding from the European
Commission and the Swiss Federal Office for Education and Science within the
6th Framework Programme project REWERSE no. 506779 and the European

24 François Bry et al.

Research Council under the European Communitys Seventh Framework Pro-
gramme (FP7/2007-2013)/ERC grant agreement no. 246858—DIADEM.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query
Language for Semistructured Data. Int. J. on Digital Libraries, 1(1):68–88, 1997.

3. S. Abiteboul and V. Vianu. Regular Path Queries with Constraints. In PODS,
pages 122–133, 1997.

4. D. E. Appelt. Introduction to Information Extraction. AI Commun., 12(3):161–
172, 1999.

5. G. O. Arocena and A. O. Mendelzon. WebOQL: Restructuring Documents,
Databases, and Webs. In ICDE, pages 24–33. IEEE Computer Society, 1998.

6. F. Baader. Unification, chapter Unification in Commutative Theories, pages 417–
435. Academic Press, 1989.

7. J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and Semantic Web Query
Languages: A Survey. In Reasoning Web, First International Summer School
2005, volume 3564 of LNCS. Springer-Verlag, 2005.

8. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic Sets and Other
Strange Ways to Implement Logic Programs. In PODS, pages 1–15. ACM, 1986.

9. P. Barahona, F. Bry, E. Franconi, N. Henze, and U. Sattler, editors. Reasoning
Web, Second International Summer School 2006, Tutorial Lectures, volume 4126
of Lecture Notes in Computer Science. Springer, 2006.

10. C. Baru, B. Ludäscher, Y. Papakonstantinou, P. Velikhov, and V. Vianu. Fea-
tures and Requirements for an XML View Denition Language: Lessons from XML
Information Mediation. In QL98. W3C, 1998.

11. N. Bassiliades and I. P. Vlahavas. R-DEVICE: A Deductive RDF Rule Language.
In G. Antoniou and H. Boley, editors, RuleML, volume 3323 of Lecture Notes in
Computer Science, pages 65–80. Springer, 2004.

12. R. Baumgartner, S. Flesca, and G. Gottlob. The Elog Web Extraction Language.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR, volume 2250 of Lecture Notes
in Computer Science, pages 548–560. Springer, 2001.

13. R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction
with Lixto. In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamoha-
narao, and R. T. Snodgrass, editors, VLDB, pages 119–128. Morgan Kaufmann,
2001.

14. C. Beeri and R. Ramakrishnan. On the Power of Magic. In PODS, pages 269–284.
ACM, 1987.

15. K. V. Belleghem, M. Denecker, and D. D. Schreye. A Strong Correspondence
between Description Logics and Open Logic Programming. In ICLP, pages 346–
360, 1997.

16. M. Benedikt and C. Koch. Xpath leashed. 2007.
17. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernàndez, M. Kay, J. Robie, and

J. Siméon, editors. XML Path Language (XPath) Version 2.0. Recommendation.
W3C, 2007.

18. A. Berlea and H. Seidl. fxt – A Transformation Language for XML Documents.
J. of Computing and Information Technology (CIT), Special Issue on Domain-
Specific Languages, 2001.

Datalog Relaunched 25

19. S. Boag, D. Chamberlin, M. F. Fernaàndez, J. Robie, and J. Siméon, editors.
XQuery 1.0: An XML Query Language. Recommendation. W3C, 2007.

20. H. Boley. Relationships Between Logic Programming and XML. In Proc. 14th
Workshop Logische Programmierung, Würzburg, Jan 2000.

21. H. Boley. The RuleML Family of Web Rule Languages. In J. J. Alferes, J. Bailey,
W. May, and U. Schwertel, editors, PPSWR, volume 4187 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2006.

22. H. Boley. Are Your Rules Online? Four Web Rule Essentials. In A. Paschke and
Y. Biletskiy, editors, RuleML, volume 4824 of Lecture Notes in Computer Science,
pages 7–24. Springer, 2007.

23. H. Boley, G. Halmark, M. Kifer, A. Paschke, A. Polleres, and D. Reynolds, editors.
RIF Core Dialect. W3C Recommendation. World Wide Web Consortium (W3C),
2010.

24. H. Boley and M. Kifer, editors. RIF Basic Logic Dialect. W3C Recommendation.
World Wide Web Consortium (W3C), 2010.

25. H. Boley and M. Kifer, editors. RIF Framework for Logic Dialects. W3C Recom-
mendation. World Wide Web Consortium (W3C), 2010.

26. H. Boley, M. Kifer, P.-L. Patranjan, and A. Polleres. Rule Interchange on the
Web. In G. Antoniou, U. Aßmann, C. Baroglio, S. Decker, N. Henze, P.-L. Pa-
tranjan, and R. Tolksdorf, editors, Reasoning Web, volume 4636 of Lecture Notes
in Computer Science, pages 269–309. Springer, 2007.

27. H. Boley, J. Mei, M. Sintek, and G. Wagner. RDF/RuleML Interoperability. In
Rule Languages for Interoperability, 2005.

28. H. Boley, S. Tabet, and G. Wagner. Design Rationale for RuleML: A Markup
Language for Semantic Web Rules. In I. F. Cruz, S. Decker, J. Euzenat, and D. L.
McGuinness, editors, SWWS, pages 381–401, 2001.

29. O. Bolzer, F. Bry, T. Furche, S. Kraus, and S. Schaffert. Development of Use
Cases, Part I. Technical Report PMS-FB-2005-23, Institute for Informatics, Uni-
versity of Munich, 2005.

30. A. Brügemann-Klein and D. Wood. Regular Tree Languages over Non-ranked
Alphabets. Unpublished manuscript, 1998.

31. F. Bry. Query Evaluation in Deductive Databases: Bottom-Up and Top-Down
Reconciled. Data Knowledge Engineering, 5:289–312, 1990.

32. F. Bry, T. Furche, C. Ley, B. Linse, and B. Marnette. RDFLog: It’s like Datalog
for RDF. Technical Report PMS-FB-2008-1, Institute for Informatics, University
of Munich, 2005.

33. F. Bry, T. Furche, C. Ley, B. Linse, and B. Marnette. RDFLog: It’s like Datalog
for RDF. In Workshop on (Constraint) Logic Programming (WLP 2008), 2008.

34. F. Bry, T. Furche, and B. Linse. The perfect match: Rpl and rdf rule languages. In
A. Polleres and T. Swift, editors, RR, volume 5837 of Lecture Notes in Computer
Science, pages 227–241. Springer, 2009.

35. P. Buneman. Tutorial Semistructured Data. In PODS, pages 117–121, 1997.
36. P. Buneman, M. F. Fernandez, and D. Suciu. Unql: A query language and algebra

for semistructured data based on structural recursion. VLDB J., 9(1):76–110,
2000.

37. R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. SIAM, Soci-
ety for Industrial and Applied Mathematics, 2009.

38. D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati. View-Based Query
Answering over Description Logic Ontologies. In G. Brewka and J. Lang, editors,
KR, pages 242–251. AAAI Press, 2008.

26 François Bry et al.

39. J. J. Carroll and J. D. Roo, editors. OWL Web Ontology Language Test Cases.
W3C Recommendation. World Wide Web Consortium (W3C), 2004.

40. S. Ceri, G. Gottlob, and L. Lavazza. Translation and Optimization of Logic
Queries: The Algebraic Approach. In W. W. Chu, G. Gardarin, S. Ohsuga, and
Y. Kambayashi, editors, VLDB, pages 395–402. Morgan Kaufmann, 1986.

41. S. Ceri, G. Gottlob, and L. Tanca. What you Always Wanted to Know About
Datalog (And Never Dared to Ask). IEEE Trans. Knowl. Data Eng., 1(1):146–
166, 1989.

42. S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer,
1990.

43. D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie, editors. XML Query
Use Cases. W3C Working Group Note. World Wide Web Consortium (W3C),
2007.

44. D. Chimenti, R. Gamboa, R. Krishnamurthy, S. A. Naqvi, S. Tsur, and C. Zaniolo.
The ldl system prototype. IEEE Trans. Knowl. Data Eng., 2(1):76–90, 1990.

45. J. Clark, editor. XSL Transformations (XSLT) Version 1.0. Recommendation.
W3C, 1999.

46. J. Clark and S. DeRose, editors. XML Path Language (XPath) Version 1.0.
Recommendation. W3C, 1999.

47. J. de Bruijn, editor. RIF RDF and OWL Compatibility. W3C Recommendation.
World Wide Web Consortium (W3C), 2010.

48. J. de Bruijn, T. Eiter, A. Polleres, and H. Tompits. On Representational Issues
About Combinations of Classical Theories with Nonmonotonic Rules. In J. Lang,
F. Lin, and J. Wang, editors, KSEM, volume 4092 of Lecture Notes in Computer
Science, pages 1–22. Springer, 2006.

49. C. de Sainte Marie, G. Halmark, and A. Paschke, editors. RIF Production Rule
Dialect. W3C Recommendation. World Wide Web Consortium (W3C), 2010.

50. M. Dean and G. Schreiber, editors. OWL Web Ontology Language Reference.
W3C Recommendation. World Wide Web Consortium (W3C), 2004.

51. A. Deutsch, editor. Proceedings of the Twenty-third ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems. ACM, 2004.

52. W. Drabent, T. Eiter, G. Ianni, T. Krennwallner, T. Lukasiewicz, and
J. Maluszynski. Hybrid Reasoning with Rules and Ontologies. In F. Bry and
J. Maluszynski, editors, REWERSE, volume 5500 of Lecture Notes in Computer
Science, pages 1–49. Springer, 2009.

53. T. Eiter, G. Ianni, T. Krennwallner, and A. Polleres. Rules and Ontologies for
the Semantic Web. In C. Baroglio, P. A. Bonatti, J. Maluszynski, M. Marchiori,
A. Polleres, and S. Schaffert, editors, Reasoning Web, volume 5224 of Lecture
Notes in Computer Science, pages 1–53. Springer, 2008.

54. T. Eiter, G. Ianni, A. Polleres, R. Schindlauer, and H. Tompits. Reasoning with
Rules and Ontologies. In Barahona et al. [9], pages 93–127.

55. T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, and K. Wang. Forgetting in Man-
aging Rules and Ontologies. In Web Intelligence, pages 411–419. IEEE Computer
Society, 2006.

56. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and
Query Answering. In D. Calvanese, M. Lenzerini, and R. Motwani, editors, ICDT,
volume 2572 of Lecture Notes in Computer Science, pages 207–224. Springer, 2003.

57. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics
and Query Answering. Theor. Comput. Sci., 336(1):89–124, 2005.

Datalog Relaunched 27

58. D. Fensel, K. P. Sycara, and J. Mylopoulos, editors. The Semantic Web - ISWC
2003, Second International Semantic Web Conference, Sanibel Island, FL, USA,
October 20-23, 2003, Proceedings, volume 2870 of Lecture Notes in Computer
Science. Springer, 2003.

59. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming, 37(1-3):95–138,
October 1998.

60. T. Furche. Implementation of Web Query Language Reconsidered: Beyond Tree
and Single-Language Algebras at (Almost) No Cost. Dissertation/doctoral thesis,
Ludwig-Maxmilians University Munich, 2008.

61. T. Furche, B. Linse, F. Bry, D. Plexousakis, and G. Gottlob. Rdf querying:
Language constructs and evaluation methods compared. In Barahona et al. [9],
pages 1–52.

62. H. Gallaire and J. Minker, editors. Logic and Data Bases, Symposium on Logic
and Data Bases, Advances in Data Base Theory. Plenum Press, 1978.

63. H. Gallaire, J. Minker, and J.-M. Nicolas. Logic and Databases: A Deductive
Approach. ACM Comput. Surv., 16(2):153–185, 1984.

64. H. Gallaire, J.-M. Nicolas, and J. Minker, editors. Advances in Data Base The-
ory, Vol. 1, Based on the Proceedings of the Workshop on Formal Bases for Data
Bases, December 12-14, 1979, Centre d’Études et de Recherches de l’École Na-
tionale Supérieure de l’Aéronautique et de l’Espace de Toulouse (CERT), France,
Advances in Data Base Theory. Plenum Press, 1981.

65. H. Gallaire, J.-M. Nicolas, and J. Minker, editors. Advances in Data Base Theory,
Vol. 2, Based on the Proceedings of the Workshop on Logical Data Bases, Decem-
ber 14-17, 1982, Centre d’études et de recherches de Toulouse, France, Advances
in Data Base Theory. Plenum Press, 1984.

66. G. Gottlob and C. Koch. Monadic Datalog and the Expressive Power of Languages
for Web Information Extraction. In L. Popa, editor, PODS, pages 17–28. ACM,
2002.

67. G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages
for Web information extraction. J. ACM, 51(1):74–113, 2004.

68. G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and S. Flesca. The Lixto Data
Extraction Project - Back and Forth between Theory and Practice. In Deutsch
[51], pages 1–12.

69. G. Grahne and L. V. S. Lakshmanan. On the Difference between Navigating
Semi-structured Data and Querying It. In Workshop on Database Programming
Languages, pages 271–296, 1999.

70. R. Grishman. Information Extraction. In The Oxford Handbook of Computational
Linguistics, pages 545–559. Oxford University Press, 2003.

71. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs:
combining logic programs with description logic. In WWW, pages 48–57, 2003.

72. C. Gutiérrez, C. A. Hurtado, and A. O. Mendelzon. Foundations of semantic web
databases. In Deutsch [51], pages 95–106.

73. P. Hayes, editor. RDF Semantics. W3C Recommendation. World Wide Web
Consortium (W3C), 2004.

74. J. Heflin, editor. OWL Web Ontology Language Use Cases and Requirements.
W3C Recommendation. World Wide Web Consortium (W3C), 2004.

75. M. Hori, J. Euzenat, and P. F. Patel-Schneider, editors. OWL Web Ontology
Language XML Presentation Syntax. W3C Recommendation. World Wide Web
Consortium (W3C), 2004.

28 François Bry et al.

76. I. Horrocks. OWL Rules, OK? In Rule Languages for Interoperability, 2005.
77. I. Horrocks, J. Angele, S. Decker, M. Kifer, B. N. Grosof, and G. Wagner. Where

Are the Rules? IEEE Intelligent Systems, 18(5):76–83, 2003.
78. I. Horrocks and P. F. Patel-Schneider. A proposal for an Owl rules language. In

S. I. Feldman, M. Uretsky, M. Najork, and C. E. Wills, editors, WWW, pages
723–731. ACM, 2004.

79. I. Horrocks, P. F. Patel-Schneider, S. Bechhofer, and D. Tsarkov. OWL rules: A
proposal and prototype implementation. J. Web Sem., 3(1):23–40, 2005.

80. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ-Description Logic to Dis-
junctive Datalog Programs. In D. Dubois, C. A. Welty, and M.-A. Williams,
editors, KR, pages 152–162. AAAI Press, 2004.

81. U. Hustadt, B. Motik, and U. Sattler. Reasoning in Description Logics by a
Reduction to Disjunctive Datalog. J. Autom. Reasoning, 39(3):351–384, 2007.

82. G. Ianni, T. Krennwallner, A. Martello, and A. Polleres. A Rule System for Query-
ing Persistent RDFS Data. In L. Aroyo, P. Traverso, F. Ciravegna, P. Cimiano,
T. Heath, E. Hyvönen, R. Mizoguchi, E. Oren, M. Sabou, and E. P. B. Sim-
perl, editors, ESWC, volume 5554 of Lecture Notes in Computer Science, pages
857–862. Springer, 2009.

83. P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, University of Helsinki, Faculty of Science, Department of
Computer Science, 1992.

84. P. Kilpelainen and H. Mannila. Ordered and Unordered Tree Inclusion. SIAM J.
Comput., 24(2):340–356, 1995.

85. G. Klyne. Representring Facts and Rules in RDF –
Bridging Cconventional predicate representation and RDF.
http://www.ninebynine.org/RDFNotes/RDFFactsAndRules.html, 2001.

86. R. Kowalski. Computational logic and human life: How to be artificially in-
telligent. Preprint, Department of Computing, Imperial College London, 2010.
http://www.doc.ic.ac.uk/~rak/papers/newbook.pdf, to be published by Cam-
bridge University Press.

87. R. A. Kowalski. The Early Years of Logic Programming. Commun. ACM,
31(1):38–43, 1988.

88. A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond – The Science
of Search Engine Ranking. Princetoon University Press, 2006.

89. C. Ley and M. Benedikt. How big must complete xml query languages be? In
ICDT ’09: Proceedings of the 12th International Conference on Database Theory,
pages 183–200, New York, NY, USA, 2009. ACM.

90. B. Linse. Data Integration on the (Semantic) Web with Rules and Rich Unifica-
tion. PhD thesis, Ludwig-Maximilians-Universität München, 2010.

91. D. Maier. Communication during the Workshop Datalog 2.0, 2010.
92. M. Marx. Conditional xpath. ACM Trans. Database Syst., 30(4):929–959, 2005.
93. D. L. McGuinness and F. van Harmelen, editors. OWL Web Ontology Language

Overview. W3C Recommendation. World Wide Web Consortium (W3C), 2004.
94. G. Meditskos and N. Bassiliades. A Rule-Based Object-Oriented OWL Reasoner.

IEEE Trans. Knowl. Data Eng., 20(3):397–410, 2008.
95. G. Meditskos and N. Bassiliades. Combining a DL Reasoner and a Rule Engine for

Improving Entailment-Based OWL Reasoning. In A. P. Sheth, S. Staab, M. Dean,
M. Paolucci, D. Maynard, T. W. Finin, and K. Thirunarayan, editors, ISWC,
volume 5318 of Lecture Notes in Computer Science, pages 277–292. Springer,
2008.

http://www.doc.ic.ac.uk/~rak/papers/newbook.pdf

Datalog Relaunched 29

96. Z. Miklós, G. Neumann, U. Zdun, and M. Sintek. Querying semantic web resources
using triple views. In Fensel et al. [58], pages 517–532.

97. B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, editors. OWL
2 Web Ontology Language Profiles. W3C Recommendation. World Wide Web
Consortium (W3C), 2009.

98. B. Motik, I. Horrocks, R. Rosati, and U. Sattler. Can OWL and Logic Program-
ming Live Together Happily Ever After? In I. F. Cruz, S. Decker, D. Allemang,
C. Preist, D. Schwabe, P. Mika, M. Uschold, and L. Aroyo, editors, International
Semantic Web Conference, volume 4273 of Lecture Notes in Computer Science,
pages 501–514. Springer, 2006.

99. B. Motik and R. Volz. Optimizing Query Answering in Description Logics using
Disjunctive Deductive Databases. In F. Bry, C. Lutz, U. Sattler, and M. Schoop,
editors, KRDB, volume 79 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.

100. S. Muñoz, J. Pérez, and C. Gutiérrez. Minimal Deductive Systems for RDF. In
E. Franconi, M. Kifer, and W. May, editors, ESWC, volume 4519 of Lecture Notes
in Computer Science, pages 53–67. Springer, 2007.

101. S. A. Naqvi and S. Tsur. A Logical Language for Data and Knowledge Bases.
Computer Science Press, 1989.

102. F. Neven and T. Schwentick. Query automata over finite trees. Theoretical Com-
puter Science, 275(1-2):633–674, 2002.

103. D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking Forward. In A. B.
Chaudhri, R. Unland, C. Djeraba, and W. Lindner, editors, EDBT Workshops,
volume 2490 of Lecture Notes in Computer Science, pages 109–127. Springer,
2002.

104. P. F. Patel-Schneider, P. Hayes, and I. Horrocks, editors. OWL Web Ontology
Language Semantics and Abstract Syntax. W3C Recommendation. World Wide
Web Consortium (W3C), 2004.

105. A. Polleres. From SPARQL to rules (and back). In C. L. Williamson, M. E.
Zurko, P. F. Patel-Schneider, and P. J. Shenoy, editors, WWW, pages 787–796.
ACM, 2007.

106. A. Polleres, H. Boley, and M. Kifer, editors. RIF Datatypes and Built-Ins 1.0.
W3C Recommendation. World Wide Web Consortium (W3C), 2010.

107. A. Polleres and R. Schindlauer. DLVHEX-SPARQL: A SPARQL Compliant
Query Engine Based on DLVHEX. In A. Polleres, D. Pearce, S. Heymans, and
E. Ruckhaus, editors, ALPSWS, volume 287 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007.

108. E. Prud’hommeaux and A. Seaborne, editors. SPARQL Query Language for RDF.
W3C Recommendation. World Wide Web Consortium (W3C), 2008.

109. J. Pührer, S. Heymans, and T. Eiter. Dealing with Inconsistency When Combining
Ontologies and Rules Using DL-Programs. In L. Aroyo, G. Antoniou, E. Hyvönen,
A. ten Teije, H. Stuckenschmidt, L. Cabral, and T. Tudorache, editors, ESWC
(1), volume 6088 of Lecture Notes in Computer Science, pages 183–197. Springer,
2010.

110. R. Ramakrishnan. Magic Templates: A Spellbinding Approach to Logic Programs.
In ICLP/SLP, pages 140–159, 1988.

111. R. Ramakrishnan and J. D. Ullman. A survey of deductive database systems. J.
Log. Program., 23(2):125–149, 1995.

112. J. Rohmer, R. Lescoeur, and J.-M. Kerisit. The Alexander Method - A Technique
for The Processing of Recursive Axioms in Deductive Databases. New Generation
Comput., 4(3):273–285, 1986.

30 François Bry et al.

113. R. Rosati. On the decidability and complexity of integrating ontologies and rules.
J. Web Sem., 3(1):61–73, 2005.

114. R. Rosati. Semantic and Computational Advantages of the Safe Integration of
Ontologies and Rules. In F. Fages and S. Soliman, editors, PPSWR, volume 3703
of Lecture Notes in Computer Science, pages 50–64. Springer, 2005.

115. R. Rosati. Integrating Ontologies and Rules: Semantic and Computational Issues.
In Barahona et al. [9], pages 128–151.

116. R. Rosati. On Combining Description Logic Ontologies and Nonrecursive Datalog
Rules. In D. Calvanese and G. Lausen, editors, RR, volume 5341 of Lecture Notes
in Computer Science, pages 13–27. Springer, 2008.

117. D. Saccà and C. Zaniolo. Implementation of recursive queries for a data language
based on pure horn logic. In ICLP, pages 104–135, 1987.

118. S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the
Web. Dissertation/Ph.D. thesis, Institute of Computer Science, LMU, Munich,
2004. PhD Thesis, Institute for Informatics, University of Munich, 2004.

119. S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction
to Xcerpt. In Extreme Markup Languages, 2004.

120. S. Schenk and S. Staab. Networked graphs: a declarative mechanism for SPARQL
rules, SPARQL views and RDF data integration on the web. In J. Huai, R. Chen,
H.-W. Hon, Y. Liu, W.-Y. Ma, A. Tomkins, and X. Zhang, editors, WWW, pages
585–594. ACM, 2008.

121. M. Sintek and S. Decker. Triple - an rdf query, inference, and transformation
language. In INAP, pages 47–56, 2001.

122. M. Sintek and S. Decker. Triple - a query, inference, and transformation language
for the semantic web. In I. Horrocks and J. A. Hendler, editors, International
Semantic Web Conference, volume 2342 of Lecture Notes in Computer Science,
pages 364–378. Springer, 2002.

123. M. K. Smith, C. Welty, and D. L. McGuinness, editors. OWL Web Ontology
Language Guide. W3C Recommendation. World Wide Web Consortium (W3C),
2004.

124. T. Swift. Deduction in ontologies via asp. In V. Lifschitz and I. Niemelä, editors,
LPNMR, volume 2923 of Lecture Notes in Computer Science, pages 275–288.
Springer, 2004.

125. H. J. ter Horst. Combining RDF and Part of OWL with Rules: Semantics, De-
cidability, Complexity. In Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen,
editors, ISWC, volume 3729 of Lecture Notes in Computer Science, pages 668–684.
Springer, 2005.

126. H. J. ter Horst. Completeness, decidability and complexity of entailment for rdf
schema and a semantic extension involving the owl vocabulary. J. Web Sem.,
3(2-3):79–115, 2005.

127. J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I.
Computer Science Press, 1988.

128. Y. Wilks and C. Brewster. Natural Language Processing as a Foundation of the
Semantic Web. Foundations and Trends in Web Science, 1(3-4):199–327, 2009.

129. Y. Wilks and C. Brewster. Natural Language Processing as a Foundation of the
Semantic Web. Now Publishers Inc., 2009.

130. G. Yang and M. Kifer. Reasoning about anonymous resources and meta state-
ments on the semantic web. J. Data Semantics, 1:69–97, 2003.

