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Abstract. We use ideas from game theory to transform two families of
authentication protocols so that even if an intruder attacks a protocol,
its payoff will still be lower than when it does not. This is particularly
useful in resisting or discouraging a powerful and rational intruder (as
present in military applications) who makes many attempts to break a
protocol because (1) even if the intruder fails, a denial of service attack
is still mounted successfully, and (2) in a password-based protocol, the
chance of a successful attack increases quite significantly as more and
more attempts are launched to guess the password.

1 Introduction

Ideas from game theory have been used to re-design a number of fair
exchange protocols [4, 23] and secret sharing schemes [10, 8, 12, 7, 11] so
that parties cannot act on their own interests to bring these schemes to
failure [11]. As an example, in a fair exchange, a party accepts to deliver
an item iff it receives another item in return, and hence even unmalicious
but self-interested parties will be tempted to deviate from a protocol to
gain advantage. This notion of players’ rationality or self-interest is how-
ever not applicable to authentication and key-agreement protocols where
all honest nodes should incorporate to complete a protocol successfully,
because it is in their mutual interest that they agree on the same data.

We instead observe that in a hostile environment, such as military and
battle fields, there is always the presence of a powerful intruder who can
intercept and modify data transmitted over a communication channel,
such as WiFi or the Internet. In addition, the intruder is rational in
the sense that it always tries to maximise its payoff. Consequently the
intruder does no worse (and potentially does better) by intervening and
attempting to break many protocol runs because:

– With some probability ε: his or her attack on each protocol run suc-
ceeds, and this means that the intruder successfully manages to fool
trustworthy parties into, for example, believing corrupt data.

– With probability 1 − ε: his or her attack fails, but then at least the
intruder has successfully mounted a denial of service attack, and thus
has prevented honest parties from agreeing on the same data. In a



password-based protocol, an incorrect guess of a short password means
that the chance of correctly guessing the password will increase quite
significantly in subsequent runs, which further encourages the intruder
to mount another attack.

– In many cases, e.g. password-based protocols, we can put a limit k
on the number of failed attempts an intruder can make. Under such
a circumstance, a rational intruder only quits or stops attacking the

protocol when (1) it succeeds in the tth attempt where t ≤ k, or (2)
it fails in all k attempts.

These features motivate us to use techniques in game theory to redesign
authentication protocols to resist this kind of rational intruder.

Our first contribution is a general transformation in which we intro-
duce irrational behaviours an honest node, who is usually the initiator of
a protocol, can pursue under some probability, such that even a dishonest
node or the intruder deviates from a run its payoff will still be lower than
in an equilibrium where everyone faithfully follows the protocol. In other
words, the intruder does not have any incentive to attack a protocol, which
is very similar to the concept of Nash equilibrium in game theory. The
main thrust of this paper is to demonstrate how this protocol transforma-
tion works and benefits two families of protocols, namely password-based
authentication (or key agreement) schemes [1–3] and manual authentica-
tion protocols [5, 13–17, 25], though other cryptographic protocols such
as distance-bounding schemes [6, 20] also benefit from our work.

In Section 2, we present our protocol transformation and use it to
protect pairwise authentication protocols against an intruder who can at-
tack up to a single protocol run. This analysis will be formally extended
to deal with multiple-run attacks on both password-based authentication
schemes of Section 3 and manual authentication protocols of Section 4. In
Annex A, we show how this strategy can be easily adapted to group proto-
cols. The Machiavelli adversary model of Syverson et al. [23] will become
particularly useful in our analysis of group protocols based on passwords
where compromised nodes do not share secret with the intruder.

While we believe that we are the first to study the notion of including
irrational behaviours in honest parties’ activities tailored specifically for
authentication protocols, such idea can be traced back to earlier work
in other context of rational secret sharing protocols. To encourage an
intruder to give up attacking a protocol, it is probably inevitable that we
need to give something, which is less damaging than a successful attack,
to the intruder in each normal run. Both rational secret sharing schemes



of Gordon and Katz [10] and Fuchsbauer et al. [8] follow this strategy by
allowing a trusted dealer to send invalid shares of secret to players at the
beginning of some iterations, or forcing nodes to proceed in a sequence
of fake runs followed by a single real one. Both of these require extra
protocol runs, as in the case in our protocol transformation of Table 1.

2 Protocol transformation

For simplicity pairwise authentication schemes are considered, where two
trustworthy parties A and B want to authenticate or agree on the same
data, though our protocol transformation and analysis can be generalised
to group scenarios as presented in Annex A. In the schemes, it is in honest
nodes’ mutual interest that they follow the protocol. Also among the pro-
tocol participants, there is always one party who initiates a protocol by,
for example, sending the first message as seen in protocols of Sections 3
and 4, and hence we always denote A the protocol initiator. The job of
a rational intruder is to break a protocol run and maximise his or her
payoff. No specific protocol is given until multiple-run attacks are consid-
ered in subsequent sections, because for single-run attacks our suggested
changes in the behaviour of the initiator A are independent of the type of
authentication protocols whether they are based on passwords [1–3] or hu-
man interactions [15–17, 25, 26]. These changes, which are summarised in
Tables 1 and 2, aim to discourage the intruder from attacking a protocol.

From Table 1, although U+
1 ≥ U+

2 > U−1 ≥ U−2 , these payoffs for the
intruder when it attacks a protocol can vary widely relative to one another
in practice, e.g. U+

1 and U+
2 can be either far apart or roughly the same.

We therefore will only tackle the most general case here: regardless of
whether A is faithful or not the intruder’s payoff is U+ = max{U+

1 , U
+
2 }

when it succeeds, and respectively U− = max{U−1 , U
−
2 } when it fails as

seen in Table 2. Consequently, a solution for this most general case applies
to every other scenario where U+

1 6= U+
2 and/or U−1 6= U−2 .

Using the protocol transformation specified in Table 1, we arrive at the
following theorem. We note that once parties can discourage an intruder
from attacking a protocol, we will turn into maximising the collective
payoff of honest protocol participants (from agreeing on the same data).

Theorem 1. Suppose that an intruder can only attack up to a single
run of an authentication protocol and succeed with probability ε, then to
discourage the intruder from attacking, this inequality must hold:

α >
εU+ + (1− ε)U−

U



Protocol transformation

In an authentication protocol where parties seek to agree on the same
data, we introduce the following behaviour that the initiator A of the
protocol can pursue to resist a rational intruder.

– With probability α: the initiator A will authenticate or transmit
some useless and random data, even though A still follows every step
of a protocol faithfully. When the intruder does not misbehave then
a protocol always completes successfully. This means that the other
party B, who honestly follows the protocol, will not be aware that
the authenticated data are of no use, and so it is a waste of time for B.

When this happens, after a period of time A will initiate another
run with B to revoke all useless data agreed in the previous run
and to authenticate meaningful data. Since it is in the intruder’s
interest that A deliberately authenticates useless data, we denote U
the intruder’s payoff in this case. There is no collective payoff for
the protocol participants.

– With probability 1− α: party A faithfully follows the protocol, and
thus if the intruder does not misbehave then the protocol run will be
successful, we denote V the protocol participants’ collective payoff.
There is no payoff for the intruder in this case.

When the intruder attacks and manipulates data in a protocol run, the
protocol participants cannot agree on the same data and are not given
any payoff. Regarding of the intruder’s payoff, there are two possibilities:

– With probability ε the intruder succeeds and is given payoff U+
1

when A is faithful, and U+
2 when A is unfaithful.

– With probability 1 − ε the intruder fails but it will still be given
some payoff for stopping A and B agreeing on the same data: U−1
when A is faithful, and U−2 when A is unfaithful.

In a successful attack and when the initiator A is unfaithful, the intruder
can still cause real damage to B before A initiates another runs to revoke
the corrupt data, we therefore arrive at U+

1 ≥ U
+
2 > U . Also the intruder

would prefer B to have a fake protocol run with an unfaithful initiator
rather than an unsuccessful attack, and hence U > U−1 ≥ U

−
2 .

Table 1. Protocol transformation.



Strategy Strategy Outcome Payoff of Payoff of
of intruder of initiator A of protocol intruder participants

No attack Faithful Succeed 0 V

No attack Unfaithful Succeed U 0

Attack Faithful Succeed U+
1 0

Attack Unfaithful Succeed U+
2 0

Attack Faithful Fail U−1 0

Attack Unfaithful Fail U−2 0

The lower half of this table is the generalised version of the upper half

No attack Faithful Succeed 0 V

No attack Unfaithful Succeed U 0

Attack Any Succeed U+ = max{U+
1 , U

+
2 } 0

Attack Any Fail U− = max{U−1 , U
−
2 } 0

Table 2. A summary of the game.

Proof. If the intruder does not misbehave, his or her expected payoff in
each run is αU . If the intruder misbehaves, his or her expected payoff of
a single-run attack is P = εU+ + (1− ε)U−. To achieve our aim, we need
to find the value of α such that the following inequality holds:

αU > εU+ + (1− ε)U−

α >
εU+ + (1− ε)U−

U
=
U− + ε(U+ − U−)

U

So as long as this is true, it is in the intruder’s interest not to intervene
and manipulate data transmitted in any protocol run. ut

From Tables 1 and 2, we have U+ > U > U−. But no matter how big U+

is, ε(U+ − U−) can be made extremely small relative to U and U−, e.g.
increasing the length of password or universal hash function in protocols
of Sections 3 and 4 will exponentially decrease the value of the successful
probability ε. However, the value of α is lower bounded by U−/U . We did
not specify the exact range for U− = max{U−1 , U

−
2 } in Tables 1 and 2

because when the intruder benefits from a denial of service attack (and/or
further knowledge of a password) then U− > 0. In contrast, U− would be
insignificant or even negative if we also consider honest parties’ suspicion
that an intruder is active after several failed protocol runs.



Suppose that there are a number of strategies regarding different val-
ues of α that node A can pursue: α ∈ {α1, α2, · · · , αw} where

0 < α1 < α2 < · · · < αw < 1

Since the main priority is discourage the intruder from attacking a pro-
tocol run, according to Theorem 1 node A will only select strategies with
α ∈ {αi, αi+1, · · · , αw} such that αiU > P where P = εU+ + (1 − ε)U−.
Given that this condition is satisfied (i.e. the intruder does not attack), we
further want to maximise the collective payoff of the protocol participants
in each run which is derived from Tables 1 and 2 to be

(1− α)V

Since αi < αi+1 < · · · < αw < 1, it is clear from the payoff matrix or
Table 3 that node A will pick αi as his or her optimal strategy.1

Strategy of Strategy of the initiator A
Intruder αi αi+1 · · · αw

No attack αiU , (1− αi)V αi+1U , (1− αi+1)V · · · αwU , (1− αw)V

Attack P , 0 P , 0 · · · P , 0
Table 3. This matrix shows relative payoffs for the intruder and the protocol partici-
pants with each combination of their strategies in each protocol run. Please note that
P = εU+ + (1 − ε)U− is the payoff for the intruder when (s)he attacks a protocol.

The above analysis only takes into account single-run attacks, in prac-
tice a rational intruder as defined in Section 1 would attack many protocol
runs until (s)he is successful. For this reason, it is desirable that we con-
sider the case of multiple-run attacks on authentication protocols.

3 Multiple-run attacks on password-based protocols

Any secure password-based (authentication or key-agreement) protocol
needs to resist off-line searching, i.e. the only way to find out a guess of a
password is correct is to interact with the protocol. Our analysis here ap-
plies to many secure password-based protocols, but for clarity we give the
definition of the Diffie-Hellman-based Encrypted Key Exchange scheme

1 In game theory, it is easy to show that α = αi and no-attack intruder constitute a
strict and also unique Nash equilibrium for the game depicted in Table 3.



of Bellovin and Merritt [1, 2]. This protocol establishes a shared private
key gxy, where gx and gy are Diffie-Hellman keys of A and B, from a short
password pw using an encryption scheme Epw() and a cryptographic hash
function hash(). Since passwords are usually very short and unchanged
for a period of time, the chance of a successful attack increases quite
significantly as more and more attempts are launched to guess the pass-
words. We stress that this feature of a password-based scheme, which is
different from other kinds of authentication protocol, is particularly rel-
evant to our discussion, because it will encourage the intruder to keep
guessing the password in many protocol runs until (s)he gets it right.

Password-based Encrypted Key Exchange Protocol [1, 2]

1. A −→ B : A ‖ Epw(gx)
2. B −→ A : Epw(gy) ‖ hash(sk ‖ 1)

where sk = hash(A ‖ B ‖ gx ‖ gy ‖ gxy)
3. A −→ B : hash(sk ‖ 2)

In practice we usually limit the number of failed attempts an intruder
can make, e.g. three wrong guesses and the protocol will stop running,
and thus we denote k the limit of number of attacks an intruder can
launch on a protocol. If a password is randomly selected from {1, . . . , n},
then2 1 ≤ k ≤ n and the chance of correctly guessing the password the
first time is ε = ε1 = 1/n. If an attacker’s first guess is incorrect, then
the second guess is successful with probability ε2 = 1/(n − 1). For all
k ∈ {1, . . . , n} we have εk = 1/(n−k+1). We emphasise that this increase
in the likelihood of successful guess in subsequent protocols run is correct
even when the initiator A is unfaithful, because except authenticating
meaningless data an unfaithful initiator by definition from the protocol
transformation of Table 1 still follows every other protocol step properly,
including authentication checks that involve the use of the password.

In order to be precise in our arguments, we need to be clear about
the attacking strategy of the intruder that our protocol transformation
of Table 1 seeks to resist. If the intruder decides to attack a protocol up
to k runs, then the intruder only terminates its attack if either of the
following two conditions is met:

– The intruder succeeds in the tth attempt where t ≤ k or
– The intruder fails in all k attempts.

This strategy includes the scenario when the intruder masquerades as the
initiator A to communicate with honest node B, i.e. the initiator is un-
trustworthy, and the intruder still needs to guess the password correctly.

2 This is true when the password is unchanged throughout a multiple-run attack.



Also these k attempts do not need to be consecutive and can be inter-
leaved with any number of protocol runs which are not attacked by the
intruder. We summarise the intruder’s accumulative payoff and probabil-
ity that it is successful or unsuccessful up to k attempts in Table 4.

No. of Outcome Probability Payoff
attempts of intruder

1 Succeed ε = ε1 = 1/n U+

2 Succeed (1− ε1)ε2 = 1/n U− + U+

3 Succeed (1− ε1)(1− ε2)ε3 = 1/n 2U− + U+

...
...

...
...

t Succeed εtΠ
t−1
i=1 (1− εi) = 1/n (t− 1)U− + U+

...
...

...
...

k Succeed εkΠ
k−1
i=1 (1− εi) = 1/n (k − 1)U− + U+

k Fail Πk
i=1(1− εi) = (n− k)/n kU−

Table 4. This tables shows the accumulative payoff and probability of the intruder’s
success and failure when (s)he attacks a password-based protocol up to k runs.

The following theorem shows that as k increases the probability α
that the initiator A behaves irrationally also goes up but very slowly.

Theorem 2. Suppose that an intruder is allowed to attack a password-
based protocol up to k runs for any k ∈ {1, . . . , n = 1/ε}, and the intruder

quits iff (s)he is successful in the tth attempt where t ≤ k or fails in all
k attempts as seen in Table 4. Then to discourage the intruder from
attacking the protocol, this inequality must hold:

α >
εU+ + (1− ε)U−

U
+

(
U+ − U−

U

)
k − 1

n(2n− k + 1)

Proof. When an intruder attacks a protocol up to k runs, from Table 4,
the expected (average) number of protocol runs the intruder intervenes is

N =
1

n
+

2

n
+

3

n
+ · · ·+ k

n
+
k(n− k)

n
=
k(2n− k + 1)

2n

Similarly, the expected accumulative payoff of the intruder’s multiple-run
attack can be computed as follows



P =
U+

n
+
U− + U+

n
+ · · ·+ (k − 1)U− + U+

n
+
k(n− k)U−

n

=
kU+

n
+ U−

[
1

n
+

2

n
+ · · ·+ k − 1

n
+
k(n− k)

n

]
=
kU+

n
+
k(2n− k − 1)U−

2n

Since the payoff an intruder gets from not attacking a protocol in each
run is αU , in order to discourage the intruder from attacking a password-
based protocol up to k runs, we must have:

αUN > P

α >
kU+

nUN
+
k(2n− k − 1)U−

2nUN

α >
2U+

(2n− k + 1)U
+

(2n− k − 1)U−

(2n− k + 1)U

α >

(
1

n
+

k − 1

n(2n− k + 1)

)
U+

U
+

(
1− 1

n
− k − 1

n(2n− k + 1)

)
U−

U

α > (ε+∆)
U+

U
+ (1− ε−∆)

U−

U

α >
εU+ + (1− ε)U−

U
+

(
U+ − U−

U

)
∆

where ∆ = k−1
n(2n−k+1) . ut

Since n ≥ k ≥ 1, as k increases then so do both ∆ and α, and moreover
ε > ∆ ≥ 0. This implies that

– The difference between the bounds for α with respect to single-run (see

Theorem 1) and n-run attacks is
(
U+−U−

U

)
∆ < ε

(
U+−U−

U

)
, which can

be made arbitrarily small by exponentially decreasing the value of ε,
i.e. increasing the password length.

– If this protocol transformation can discourage a k-run attack, then it
can also discourage a t-run attack for any t ≤ k.

As regards the payoff of protocol participants, we can use the analysis
given at the end of Section 2 to select the optimal strategy for A to
maximise the collective payoff when α can be chosen from a range of
different values, i.e. α ∈ {α1, · · · , αw} where 0 < α1 < · · · < αw < 1.



4 Multiple-run attack on manual authentication protocol

In contrast to password-based schemes, the chance of a successful attack
ε on a manual authentication protocol run remains unchanged regardless
of how many times an attack is launched. This property applies to all
secure protocols of this type, whether they provide oneway, pairwise or
group authentication [17].

Our analysis here applies to every secure manual authentication pro-
tocol, but for clarity we give the pairwise version of the SHCBK protocol
of the author [16–18]. In this scheme, parties A and B want to authenti-
cate their public data mA/B from human interactions to remove the need
of passwords, private keys and PKIs. The single arrow (−→) indicates
an unreliable and high-bandwidth link (e.g. WiFi or the Internet) where
messages can be maliciously altered, whereas the double arrow (=⇒) rep-
resents an authentic and unspoofable channel. The latter is not a private
channel (i.e. anyone can overhear it) and it is usually very low-bandwidth
since it is implemented by humans, e.g., human conversations, text mes-
sages or manual data transfers between devices. hash() and uhash() are
cryptographic and universal hash functions. Long random keys kA/B are
generated by A/B, and kA must be kept secret until after kB is revealed
in Message 2. Operators ‖ and ⊕ denote concatenation and exclusive-or.

A pairwise manual authentication protocol [16–18]

1. A −→ B : mA, hash(kA)
2. B −→ A : mB, kB
3. A −→ B : kA
4. A⇐⇒ B : uhash(kA ⊕ kB,mA ‖ mB)

To ensure both parties share the same data, the human owners of devices
A and B have to compare a short universal hash value of 16–32 bits
manually. Since the universal hash key kA ⊕ kB always varies randomly
from one to another run, the chance of a successful attack on each protocol
run ε equals the collision probability of the universal hash function.3

Definition 1. [22] An ε-almost universal hash function, uhash : R ×
X → Y , must satisfy that for every m,m′ ∈ X and m 6= m′:

Pr{k∈R}[uhash(k,m) = uhash(k,m′)] ≤ ε

3 We note that our protocol transformation of Table 1 and the analysis of this section
also apply to other manual authentication protocols, including schemes of Vaude-
nay [25] and Čagalj et al. [5], which do not use a universal hash function.



To discourage the intruder from attacking a manual authentication proto-
col in multiple runs, we use the protocol transformation of Table 1. With
probability α the initiator A authenticates useless data, though A still
follows every other protocol step properly, including an authentication
check in Message 4 of the above protocol. Since the chance of a successful
single-run attack ε is unchanged, intuitively the value of α required to
discourage a multiple-run attack is the same as in a single-run attack of
Theorem 1. But we will formally state and prove this result in Theorem 3.

Theorem 3. Suppose that an intruder is allowed to attack a manual
authentication protocol up to k runs for any k ≥ 1, and the intruder

quits iff (s)he is successful in the tth attempt where t ≤ k or fails in
all k attempts as seen in Table 5. Then to discourage the intruder from
attacking the protocol, this inequality must hold:

α >
εU+ + (1− ε)U−

U

We summarise the intruder’s accumulative payoff and probability of suc-
cess and failure in Table 5.

No. of Outcome Probability Payoff of
attempts intruder

1 Succeed ε U+

2 Succeed ε(1− ε) U− + U+

3 Succeed ε(1− ε)2 2U− + U+

...
...

...
...

t Succeed ε(1− ε)t−1 (t− 1)U− + U+

...
...

...
...

k Succeed ε(1− ε)k−1 (k − 1)U− + U+

k Fail (1− ε)k kU−

Table 5. This tables shows the accumulative payoff and probability of the intruder’s
success and failure when (s)he attacks a manual authentication protocol up to k runs.

Proof. When an intruder attacks a protocol up to k runs, from Table 5,
the expected number of runs the intruder intervenes in this protocol is:

N = ε+ 2ε(1− ε) + · · ·+ kε(1− ε)k−1 + k(1− ε)k

= 1 + (1− ε) + (1− ε)2 + · · ·+ (1− ε)k−1 (1)



Equality (1) is derived from repeatedly applying the following equality
for all t ∈ {1, · · · , k − 1}.

(1− ε)t = t(1− ε)t−1ε+ (t+ 1)(1− ε)t − t(1− ε)t−1

The expected accumulative payoff of the intruder’s multiple-run attack
can be computed as follows

P = εU+ + ε(1− ε)(U− + U+) + · · ·+ ε(1− ε)k−1((k − 1)U− + U+) + (1− ε)kkU−

= U+ε
[
1 + (1− ε) + · · ·+ (1− ε)k−1

]
+

U−(1− ε)
[
ε+ 2ε(1− ε) + · · ·+ (k − 1)ε(1− ε)k−2 + k(1− ε)k−1

]
= U+εN + U−(1− ε)N
= N

[
U+ε+ U−(1− ε)

]
Since the payoff an intruder gets from following this protocol in each run
is αU , in order to discourage the intruder from attacking a protocol in
multiple runs, we must have:

αUN > P

α >
εU+ + (1− ε)U−

U

ut

5 Payoff versus loss maximisation

The notion of maximisation of an attacker’s payoff is very much related
to maximising the loss of honest players. Recently there have been some
work, notably [6] of Dimitrakakis et al., which analyse expected loss in
authentication protocols based on a challenge-response exchange lasting
multiple rounds between a verifier and a prover. The verifier’s loss comes
from the possibility of false acceptance (or authenticating a malicious
intruder) and false rejection (or rejecting a legitimate user), both of which
arise from noise existing in the data layer which exchanges bits during the
challenge-response phase of the protocols. The noise therefore necessitates
the use of a tolerance threshold, such that a prover is authenticated if the
total number of errors of its responses is below the threshold.

We observe that intuitively the same notion of a rational attacker in-
vestigated in this paper is applicable in this scenario where the attacker



tries to maximise the verifier’s expected loss. To discourage such an at-
tacker from disrupting a protocol, we need to adjust the threshold so
that even when an attacker impersonates the prover (e.g. in an attempt
to forge a false acceptance), the expected loss it causes to the verifier is
still lower than when the verifier communicates with a legitimate user.
It is worth to point out that the noise present in the challenge-response
phase causes damage to the verifier, and hence there is no need to intro-
duce irrational behaviour into honest parties’ activities as in our protocol
transformation of Table 1 to discourage a rational attacker.

The author has made progress regarding this problem as reported
in [20], but due to limited space and since this problem is not quite within
the scope of this paper, we intend to publish this work in due course.

6 Conclusions and future research

We have introduced the use of ideas from game theory to redesign two
families of authentication protocols, namely password-based authentica-
tion and manual authentication protocols, to make them resilient against
a powerful and rational intruder. In these protocols, only the intruder and
dishonest parties are self-interested and all other trustworthy protocol
participants should incorporate to complete a protocol run successfully,
since this is in their mutual interest to agree on the same data.

Although we only consider pairwise authentication schemes, our pro-
tocol transformation can be easily adapted to group protocols where there
are more than two nodes as presented in Annex A. For group authentica-
tion, the same protocol transformation of Table 1 can be used, however
the initiator must be trustworthy. For otherwise a compromised node who
does not obey our protocol transformation could play the role of the ini-
tiator so that all other honest nodes would always authenticate useful
data. This is not an issue in a pairwise scenario where two parties share
a private key/password or an authentic channel (=⇒), because it makes
no sense for either of them to fool the other. To remove the need of the
trusted initiator in group authentication, in Annex A we extend our pro-
tocol transformation so that every node is assumed to be unfaithful with
probability α independently. In particular, the Macchiavellian adversary
model of Syverson et al. [24] will be interestingly employed to resist a
rational intruder in password-based group key-agreement protocols.

While we have explored the notion of rational and powerful intruder
in two types of authentication protocols, our work reported here opens
the way to a number of new problems. The first set of questions consists of



direct extension of the results presented here. For example, in addition to
authentication schemes based on a challenge-response phase as mentioned
previously, it would be interesting to investigate how relevant the notion
of a rational intruder is to other types of authentication protocols which
are based on PKIs or long private keys. The kind of rational intruder
considered here might not be present in some applications, and hence can
one formally define and model a weaker intruder so that the probability
that honest nodes need to behave irrationally can be reduced further? Also
there is no need to use the protocol transformation of Table 1 in every
scenario, instead one can switch it on or off depending on the anticipated
level of threat, risk or presence of a powerful intruder in each application.

The second set of questions is more open-ended. As a rational and
powerful intruder exists in hostile environment, can one transform other
families of cryptographic protocols to make them resilient against this
kind of intruder? Since our protocol transformation works best when pro-
tocols are immune to (off-line) searching, can it be relaxed or modified to
accommodate a wider variety of possible attacks, e.g. substitution attacks
that are relevant to other cryptographic primitives (including MACs)?
Besides considering reducing the intruder’s power in future work, one
might consider increasing rationality assumptions for the intruders, as in
the Macchiavellian adversary [24] who does not share private keys and
passwords with its collaborators.
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A Extended protocol transformation for group
authentication protocols

Throughout the main text of this paper, we have focused on the applica-
tion of the protocol transformation of Table 1 on pairwise authentication
protocols, and in particular there is a designated role for the protocol ini-
tiator who is unfaithful with probability α. Although the same protocol



transformation is applicable to group authentication schemes, it might
be difficult for multiple protocol participants to agree on who will be the
initiator. We therefore would like to remove the need for such an initiator
by assuming that every honest node can be unfaithful (or authenticates
useless data) with probability α independently. In other words, we ex-
tend our protocol transformation and apply it to the behaviour of every
group protocol participant, and hence the extended protocol transforma-
tion. There is however a difficulty arising from the assignment of correct
payoffs for the intruder in different combinations of parties’ strategies,
which will be addressed below.

In a group authentication protocol, there are more than two nodes in a
group G. For the types of considered protocols, which only authenticate
public data, not all of the protocol participants have to be honest, i.e.
these compromised principles will not obey our protocol transformation.
We will discuss further what the compromised nodes might do later. We
denote p the number of honest parties out of all protocol participants and
without loss of generality p ≥ 2.

When the intruder does not attack a protocol run, there are three
main possibilities that affect the payoff of the intruder:

– With probability (1 − α)p, every honest node is faithful and there is
no payoff for the intruder.

– With probability 1 − (1 − α)p − αp, there are at least one faithful
node and one unfaithful node. The payoff for the intruder might vary
according to the number of faithful nodes present, but we only consider
the most general case where the intruder’s payoffs is always the same
under this condition.

– With probability αp, all nodes are unfaithful.

When the intruder attacks a protocol run, there are two possibilities that
affect the intruder’s payoff:

– With probability 1 − αp, at least one node is faithful. The payoff for
the intruder also can vary according to the number of faithful nodes
present, but again we only consider the most general case where the
intruder’s payoff is the same when the intruder’s attack succeeds, and
also the same when it fails.

– With probability αp, all nodes are unfaithful.

We summarise the payoff for the intruder in different scenarios in Table 6.
Based on the damages an intruder might cause to honest parties, it is

clear from Table 6 that we always have the followings:

U1 ≥ U2



Strategy Strategy Outcome Payoff of Payoff of
of intruder of honest parties of protocol intruder participants

No attack All faithful Succeed 0 V

At least
No attack 1 faithful node & Succeed U1 0

1 unfaithful node

No attack All unfaithful Succeed U2 0

Attack At least Succeed U+
1 0

1 faithful node Fail U−1 0

Attack All Succeed U+
2 0

unfaithful Fail U−2 0
Table 6. A summary of the game.

U+
1 ≥ U

+
2

U+
1 ≥ U

−
1

U−1 ≥ U
−
2

What is not clear is how we can compare the payoffs for the intruder
when all parties choose to be unfaithful, i.e. U2, U

+
2 and U−2 . It turns

out that it very much depends on the type of authentication protocols,
and hence in the following subsections we will investigate both manual
authentication and password-based authentication schemes in turn.

A.1 Group manual authentication protocols

For clarity, we give the specification of the SHCBK protocol in this Sec-
tion, though our analysis is applicable to other group manual authenti-
cation schemes [17, 26]. In this scheme, all parties As of group G want
to authenticate their public data mA’s from human interactions to re-
move the need of passwords, private keys and PKIs. The single arrow
(−→) indicates an unreliable and high-bandwidth link (e.g. WiFi or the
Internet) where messages can be maliciously altered, whereas the double
arrow (=⇒) represents an authentic and unspoofable channel. The latter
is not a private channel (i.e. anyone can overhear it) and it is usually very
low-bandwidth since it is implemented by humans, e.g., human conver-
sations, text messages or manual data transfers between devices. hash()
and uhash() are cryptographic and universal hash functions. Long ran-



dom key kA is generated by A ∈ G, and kA must be kept secret until
after A has received Messages 1 from all other party B ∈ G.

SHCBK protocol [16, 18]

1. ∀A −→ ∀B : mA, hash(A, kA)
2. ∀A −→ ∀B : kA
3. ∀A =⇒ ∀B : uhash(k∗,M)

where k∗ is the XOR of all kA’s for A ∈ G
and M is the concatenation of all mA’s for A ∈ G

Since there is no shared password or private key that underlies a
manual authentication protocol, there is not much benefit for both the in-
truder and compromised principles when all honest protocol participants
are unfaithful even when the intruder in collaboration with compromised
nodes succeed in their attack. Consequently, the following inequality ap-
pears to be plausible.

U2 ≥ U+
2 ≥ U

−
2

Under this assumption and the information from Table 7, which sum-
marises the intruder’s accumulative payoff and probability of success and
failure, we arrive at the following theorem.

No. of Outcome Probability Payoff of
attempts intruder

1 Succeed ε (1− αp)U+
1 + αpU+

2

2 Succeed ε(1− ε) (1− αp)(U−1 + U+
1 ) + αp(U−2 + U+

2 )

3 Succeed ε(1− ε)2 (1− αp)(2U−1 + U+
1 ) + αp(2U−2 + U+

2 )
...

...
...

...

t Succeed ε(1− ε)t−1 (1− αp)[(t− 1)U−1 + U+
1 ] + αp[(t− 1)U−2 + U+

2 ]
...

...
...

...

k Succeed ε(1− ε)k−1 (1− αp)[(k − 1)U−1 + U+
1 ] + αp[(k − 1)U−2 + U+

2 ]

k Fail (1− ε)k (1− αp)kU−1 + αpkU−2
Table 7. This tables shows the accumulative payoff and probability of the intruder’s
success and failure when (s)he attacks a group manual authentication protocol of p
honest parties up to k runs.

Theorem 4. Suppose that an intruder is allowed to attack a group
manual authentication protocol up to k runs for any k ≥ 1. Moreover there



are p honest protocol participants, and any of whom can be unfaithful
with probability α independently. If the following inequality holds then
we can discourage the intruder from attacking the protocol.

1− (1− α)p

1− αp
>
εU+

1 + (1− ε)U−1
U1

Many details in the following proof are not given since they can be found
in the proof of Theorem 3 which concerns a pairwise manual authentica-
tion protocol of Section 4.

Proof. When an intruder attacks a protocol up to k runs, from Table 7,
the expected number of runs the intruder intervenes in this protocol is:

N = ε+ 2ε(1− ε) + · · ·+ kε(1− ε)k−1 + k(1− ε)k

= 1 + (1− ε) + (1− ε)2 + · · ·+ (1− ε)k−1

The expected accumulative payoff of the intruder’s multiple-run attack
can be computed as follows

P = (1− αp)N
[
U+
1 ε+ U−1 (1− ε)

]
+ αpN

[
U+
2 ε+ U−2 (1− ε)

]
≤ (1− αp)N

[
U+
1 ε+ U−1 (1− ε)

]
+ αpNU2 (2)

Inequality (2) holds because we have assumed that U2 ≥ U+
2 ≥ U

−
2 . Since

the payoff an intruder gets from following this protocol in each run is

(1− αp − (1− α)p)U1 + αpU2

In order to discourage the intruder from attacking a protocol in multiple
runs, we want to have:

[1− αp − (1− α)p]U1N + αpU2N > P

Using Inequality (2) and dividing both sides by (1 − αp)NU1, we arrive
at

1− αp − (1− α)p

1− αp
>
εU+

1 + (1− ε)U−1
U1

1− (1− α)p

1− αp
>
εU+

1 + (1− ε)U−1
U1

ut



We observe that as α increases toward 1, then so is 1 − (1−α)p
1−αp , which

therefore makes sense in our security model. Additionally, the value for
α is independent of the number of attempts k the intruder is allowed
to attack a protocol. As explained in Section 4, this is intuitively correct
because the chance of a successful attack on each protocol run of this type
remains unchanged regardless of how many times an attack is launched.

A.2 Password-based group authentication protocols

For clarity, we present the group version of the pairwise Diffie-Hellman-
based Encrypted Key Exchange scheme of Bellovin and Merritt [1, 2].
This protocol establishes a shared private key gxAxB between any two
parties A and B, where gxA and gxB are public Diffie-Hellman keys of A
and B, from a short password pw using an encryption scheme Epw() and
a cryptographic hash function hash().

Group password-based Encrypted Key Exchange Protocol

1. ∀A −→ ∀B : A ‖ Epw(gxA)
2. ∀B −→ ∀A : hash(skAB ‖ 1)

where skAB = hash(A ‖ B ‖ gxA ‖ gxB ‖ gxAxB )
3. ∀A −→ ∀B : hash(skAB ‖ 2)

In a password-based group protocol, such as the one above, all parties
in group G share a common and private password pw. Following the
Machiavelli adversary model introduced by Syverson et al. [24], we will
allow the presence of compromised protocol participants. But, to make
these protocols usable, these compromised principles are restricted to the
following behaviours:

– In an attempt to collaborate with the intruder, compromised protocol
participants will not obey our extended protocol transformation, i.e.
they always exchange meaningful data.

– However, compromised principles will not share the password with the
intruder or anyone else outside group G.

– Additionally, compromised nodes will not use their knowledge of the
shared password to fool other honest protocol participants into agree-
ing on the same and corrupt keys.

The latter two conditions must hold, for otherwise it is impossible to
resist an intruder who possesses the password. Thus the intruder will
not receive much support from compromised or Machiavellian parties.
However as we have observed previously there is always further knowledge
of the password the intruder can gain from attacking a protocol run, even



when all honest protocol participants are unfaithful. Consequently, it is
not possible to compare U2 against U−2 , and the only comparisons that
appear to be plausible are the followings.

U+
2 ≥ U

−
2

U+
2 ≥ U2

Under this assumption and information from Table 8, which summarises
the intruder’s accumulative payoff and probability of success and failure,
we arrive at the following theorem.

No. of Outcome Probability Payoff of
attempts intruder

1 Succeed ε = ε1 = 1/n (1− αp)U+
1 + αpU+

2

2 Succeed (1− ε1)ε2 = 1/n (1− αp)
(
U−1 + U+

1

)
+ αp

(
U−2 + U+

2

)
3 Succeed (1− ε1)(1− ε2)ε3 = 1/n (1− αp)

(
2U−1 + U+

1

)
+ αp

(
2U−2 + U+

2

)
...

...
...

...

t Succeed εtΠ
t−1
i=1 (1− εi) = 1/n (1− αp)

(
(t− 1)U−1 + U+

1

)
+

αp
(
(t− 1)U−2 + U+

2

)
...

...
...

...

k Succeed εkΠ
k−1
i=1 (1− εk) = 1/n (1− αp)

(
(k − 1)U−1 + U+

1

)
+

αp
(
(k − 1)U−2 + U+

2

)
k Fail Πk

i=1(1− εi) = (n− k)/n (1− αp)kU−1 + αpkU−2
Table 8. This tables shows the accumulative payoff and probability of the intruder’s
success and failure when (s)he attacks a group password-based protocol of p parties up
to k runs.

Theorem 5. Suppose that an intruder is allowed to attack a group
password-based protocol up to k runs for any k ≥ 1. There are p honest
protocol participants, and any of whom can be unfaithful with probability
α independently. If the following inequality holds then we can discourage
the intruder from attacking the protocol.

1− (1− α)p + αpδ

1− αp
>
εU+

1 + (1− ε)U−1
U1

+

(
U+
1 − U

−
1

U1

)
∆



where ∆ = k−1
n(2n−k+1) and δ =

U+
2 −U2

U1
.

Many details in the following proof are not given since they can be found
in the proof of Theorem 2 which concerns a pairwise password-based
protocol of Section 3.

Proof. When an intruder attacks a protocol up to k runs, from Table 8,
the expected (average) number of protocol runs the intruder intervenes is

N =
k(2n− k + 1)

2n

Similarly, the expected accumulative payoff of the intruder’s multiple-run
attack can be computed as follows

P = (1− αp)
[
kU+

1

n
+
k(2n− k − 1)U−1

2n

]
+ αp

[
kU+

2

n
+
k(2n− k − 1)U−2

2n

]

≤ (1− αp)
[
kU+

1

n
+
k(2n− k − 1)U−1

2n

]
+ αpU+

2 N (3)

Inequality (3) holds because U+
2 ≥ U

−
2 . Since the payoff an intruder gets

from not attacking a protocol in each run is

[1− αp − (1− α)p]U1 + αpU2

To discourage the intruder from attacking a password-based protocol up
to k runs, we want to have:

[1− αp − (1− α)p]U1N + αpU2N > P

Using Inequality (3), we arrive at

[1− αp − (1− α)p]U1N + αpU2N > (1− αp)
[
kU+

1

n
+
k(2n− k − 1)U−1

2n

]
+ αpU+

2 N

Dividing both sides by (1− αp)U1N and rearranging, we have

1− (1− α)p

1− αp
− αp

1− αp
U+
2 − U2

U1
>

kU+
1

nU1N
+
k(2n− k − 1)U−1

2nU1N

1− (1− α)p + δαp

1− αp
>
εU+

1 + (1− ε)U−1
U1

+

(
U+
1 − U

−
1

U1

)
∆

where ∆ = k−1
n(2n−k+1) and δ =

U+
2 −U2

U1
. ut


