
Tackling the Partner Units Configuration Problem∗

Markus Aschinger, Conrad Drescher, Georg Gottlob, Peter Jeavons, Evgenij Thorstensen
Computing Laboratory
University of Oxford

firstname.lastname@comlab.ox.ac.uk

Abstract
The Partner Units Problem is a specific type of con-
figuration problem with important applications in
the area of surveillance and security. In this work
we show that a special case of the problem, that
is of great interest to our partners in industry, can
directly be tackled via a structural problem decom-
postion method. Combining these theoretical in-
sights with general purpose AI techniques such as
constraint satisfaction and SAT solving proves to be
particularly effective in practice.

1 Introduction
In this paper we address the Partner Units Problem
(PUP) [Falkner et al., 2010], a configuration problem of high
relevance to surveillance and security applications where a
large number of sensors is divided into possibly overlapping
zones. More specifically, the PUP deals with the configura-
tion of a network of control units (“units”) for the sensors
and zones.

Informally the PUP can be described as follows: Consider
a set of sensors that are grouped into zones. A zone may con-
tain many sensors, and a sensor may be attached to more than
one zone. The PUP then consists of connecting the sensors
and zones to control units. These control units can be con-
nected to a given fixed maximum number UnitCap of zones
and sensors.1 Moreover, if a sensor is attached to a zone, but
the sensor and the zone are assigned to different control units,
then the two control units in question have to be (directly)
connected. However, a control unit cannot be connected to
more than InterUnitCap other control units (the partner units).

For an application scenario consider e.g. a museum where
we want to keep track of the number of visitors that populate
certain parts (zones) of the building. To this end the doors
leading from one zone to another are equipped with sensors.
To keep track of the visitors the zones and sensors are at-
tached to control units; the adjacency constraints on the con-
trol units ensure that communication between control units

∗Work funded by EPSRC Grant EP/G055114/1. Cooperation
with Siemens Austria partially funded by FFG FIT-IT Grant 825071.

1For ease of presentation we assume that UnitCap is the same for
zones and sensors.

can be kept simple. It is worth emphasizing that the PUP is not
limited to this application domain: It occurs whenever sen-
sors that are grouped into zones have to be attached to control
units, and communication between units must be kept simple
because of capacity constraints such as in intelligent traffic
management or safeguarding semi-automated transport sys-
tems. The PUP is used as a benchmark instance at this year’s
answer set programming competition [ASPcomp, 2011].

Figure 1 shows a PUP instance and a solution for the case
UnitCap = InterUnitCap = 2: six sensors (left) and six zones
(right) which are completely inter-connected are partitioned
into units — shown as squares — respecting the adjacency
constraints. Note that for the given parameters this is a maxi-
mal solvable instance; it is not possible to connect a new zone
or sensor to any of the existing ones.

Figure 1: Solving a K6,6 Partner Units Instance — Partition-
ing Sensors and Zones into Units

Let us emphasize that the PUP is a typical configuration
problem in the sense of [Mittal and Frayman, 1989]: Con-
nect a fixed finite set of given components so as to meet a
given objective while respecting given constraints. Solving
such configuration problems is one of the major success sto-
ries of applied AI research: Starting from early work on rule
based systems [McDermott, 1982], manifold general purpose
AI techniques such as CSP and SAT solving, heuristic search,
and description logics have successfully been applied to con-
figuration — for a recent survey see [Junker, 2006].

Due to cost considerations our partners in industry are pri-
marily interested in finding optimal solutions, that is, solu-
tions that use a minimum number of units. The rationale be-

hind this optimization criterion is that (a) units are expensive,
and (b) costs for connections are negligible.

Formally, the following are the three most important rea-
soning tasks for the PUP:

• Decide whether there is a solution (PUDP).

• Find a solution (PUSP).

• Find an optimal solution; i.e. one that uses a minimum
number of control units (PUOP): We treat this as decid-
ing whether there is a solution that uses n or fewer units.

In this paper we study the special version of the PUP
where each unit can be connected to at most k sensors
or zones (UnitCap = k) and to at most two other units
(InterUnitCap = 2). This version of the problem (the SPUP)
is precisely the problem-description we got from our indus-
trial project partner.

We first tried to tackle the SPUP via CSP and SAT solving
technology and answer set programming, and previous ap-
proaches additionally include heuristic search methods such
as simulated annealing — none of these approaches were
much use on the instances encountered in practice. The in-
sight that these instances could be directly tackled via the
algorithm presented in this paper constituted a major break-
through performance-wise. A second major breakthrough oc-
curred when incorporating these theoretical insights into the
aforementioned general AI techniques.
A Guide to the Paper. The remainder of this paper is or-
ganized as follows: In Section 2 we formally introduce the
problem and state general problem properties. Among other
things we show that in its most general form the PUP is
NP-hard (Theorem 1). Then in Section 3 we show that the
SPUDP and the SPUSP are tractable. We do this by giving the
NLOGSPACE algorithm DECIDESPUP that solves the prob-
lem by constructing a path decomposition with specific prop-
erties. We also show that the SPUOP is tractable if there are
not more than logarithmically many connected components
in the instance. In the same section we discuss our imple-
mentation of (a deterministic version of) the DECIDESPUP
algorithm. In Section 4 we briefly evaluate the performance
of our algorithm and an adapted CSP encoding. In Section 5
we conclude the paper with notes on related work and an out-
look on future research.

We have also been working on encodings of the gen-
eral version of the PUP— that is where both UnitCap and
InterUnitCap are arbitrary fixed constants — in the frame-
works of answer set, integer, and constraint programming as
well as SAT solving. These encodings together with a more
thorough empirical evaluation of the DECIDESPUP algorithm
are presented in [Aschinger et al., 2011].

2 Formal Definition of the Partner Units
Problem and Basic Facts

Formally, the PUP consists of partitioning the vertices of a
bipartite graph G = (V1, V2, E) into a set U of units such
that each unit

• contains at most UnitCap vertices from V1 and at most
UnitCap vertices from V2; and

• has at most InterUnitCap adjacent units, where the units
U1 and U2 are adjacent whenever vi ∈ U1 and vj ∈ U2

and (vi, vj) ∈ E.

To every solution of the PUP we can associate a solution
graph. For this we associate to every unit Ui ∈ U a ver-
tex vUi

. Then the solution graph G∗ has the vertex set
V1 ∪ V2 ∪ {vUi

| Ui ∈ U} and the set of edges {(v, vUi
) |

v ∈ Ui ∧ Ui ∈ U} ∪ {(vUi , vUj) | Ui and Uj are adjacent.}.
In the following we will refer to the subgraph of the solution
graph induced by the vUi as the unit graph.

Unfortunately, in its most general form the PUOP is in-
tractable:

Theorem 1 (PUOP is Intractable). The PUOP is NP-complete
when InterUnitCap = 0, and UnitCap is part of the input.

Proof. Membership in NP is obvious. For hardness,
we reduce from BINPACKING, given by natural numbers
i1, . . . , in, BinSize and k. We make a PUOP instance by cre-
ating for every ij a biclique between one fresh sensor and ij
fresh zones, setting UnitCap = BinSize and InterUnitCap =
0. A packing with k or fewer bins exists iff there exists a so-
lution to the PUOP with k or fewer units. Finally note that
BINPACKING remains NP-complete when all the numbers
are expressed in unary [Garey and Johnson, 1979].

Observe, however, that the above theorem concerns the
case of optimally configuring one parameter of the units,
namely UnitCap, rather than finding a configuration that re-
spects the given unit properties.

On the other hand it is not hard to show the following:

Lemma 1 (Forbidden Subgraphs of the PUP). A PUP instance
has no solution if it contains K1,n or Kn,1 as a subgraph,
where n = ((InterUnitCap + 1) ∗ UnitCap) + 1.

Proof. Assume some sensor s has n neighbors, and is as-
signed to some unit U in a solution. There can be at most
InterUnitCap Ui adjacent to U , each with at most UnitCap
zones attached. Hence one of the neighbors of s has to be on
a unit different from U and all the Ui.

Let us next point out that the number of units used when
solving an instance G = (V1, V2, E) is bounded from below
by lb = dmax (|V1|,|V2|)

UnitCap e. Clearly it can also be bounded from
above by ub = |V1| + |V2| — we never need empty units.
If InterUnitCap = 2 and UnitCap > 1 we can show that the
stronger ub = max (|V1|, |V2|) holds for connected instances.
We conjecture that this also holds for InterUnitCap > 2, but
have so far been unable to prove it. Now, if there are multiple
connected components Ci in the instance with upper bounds
ubi, then we have ub =

∑
ubi.

3 The Case of InterUnitCap = 2

We now turn to the SPUP, the announced Special Partner
Units Problem, where the number of neighbors of any given
unit in a solution is bounded by 2, i.e., InterUnitCap = 2.
We will directly tackle the SPUP by giving an algorithm that
decides the SPUDP in NLOGSPACE by computing a special
path decomposition of the instance graph.

For ease of presentation in the sequel we make the simpli-
fying assumption that the underlying bipartite graph is con-
nected. This does not affect solutions of the SPUDP and the
SPUSP, where the connected components can be tackled in-
dependently. For optimal solutions, however, the connected
components of an underlying graph will have to be consid-
ered simultaneously; cf. the discussion in Section 3.4.

3.1 Path Decompositions
Let us next formally introduce path decompositions. A path
decomposition of a graph G = (V,E) is a pair P = (P, χ)
such that P is a simple path (W,F) — i.e., P does not contain
cycles. The function χ associates to every w ∈ W a subset
B ⊆ V such that
(1) for every vertex v in V there is a vertex w ∈ W with

v ∈ χ(w);
(2) for every edge (v1, v2) there is a vertex w ∈ W with
{v1, v2} ⊆ χ(w); and

(3) for every vertex v in V the set {w ∈ W | v ∈ χ(w)}
induces a subpath of P .

Condition (3) is called the connectedness condition. The sub-
sets B associated with the path vertices are called bags. The
width of a path decomposition is maxw∈W (|χ(w)− 1|). The
pathwidth pw(G) of a graph is the minimum width over all
its path decompositions.

3.2 Basic Properties of the SPUP

We proceed by identifying basic properties of the SPUP. The
key observation is that the units and their interconnections
form a special kind of unit graph in any solution: either a
simple path, or a simple cycle. This holds because each unit
is connected to at most two partner units. Moreover, cycles
are more general unit graphs than paths: Every solution can
be extended to a cyclic solution; hence in the sequel we only
consider cyclic solutions.

Now every solution of a SPUP instance given by a zones-
and-sensors-graph G gives rise to a path decomposition with
special properties:
Theorem 2 (SPUP is Path-Decomposable). Assume a SPUP
instance given by a graph G = (V1, V2, E) is solvable us-
ing n units, that is |U| = n. Let f be the unit function that
associates vertices from G to U . Then there is a path decom-
positionP = (P, χ) ofG of pathwidth≤ (3∗2∗UnitCap)−1:

Proof. If G is solvable then there is a solution graph G∗

whose unit graph is a cycle vU1 , . . . , vUn , vU1 . Consider
P = (P = w1, . . . , wn−1, χ) where χ(wi) = f−1(U1) ∪
f−1(Ui) ∪ f−1(Ui+1). This P is indeed a path decomposi-
tion:
• Every edge (v1, v2) is in some bag. Assume v1 and
v2 are assigned to two different connected units Ui and
Ui+1. Then {v1, v2} ⊆ χ(wi).
• The connectedness condition is satisfied: For the ver-

tices connected to unit U1 the induced subgraph is P .
All other vertices occur in at most two consecutive bags.
• Every bag in P contains ≤ (3 ∗ 2 ∗ UnitCap) elements;

hence pw(P) ≤ (3 ∗ 2 ∗ UnitCap)− 1.

An optimal path decomposition of the complete bipartite
graphKn,n with n = 3∗UnitCap has width (3∗2∗UnitCap)−
1; cf. Figure 1. Hence the bound is tight.

The following conditions are easily seen to hold for the
path decomposition P constructed above:

(a) The length of P is n− 1; P = w1, . . . wn−1.

(b) There are sets S1 ⊆ V1, S2 ⊆ V2 with |Si| ≤ UnitCap
such that S1 ∪ S2 are in every bag of P .

(c) Apart from S1∪S2 each bag contains at most 2∗UnitCap
elements from V1 (or V2, respectively).

(d) For any vertex v ∈ V1 ∪ V2 all neighbors of v appear in
three consecutive bags of P (assuming the first and last
bag to be connec ted).

(e) For each bag χ(wi) of P it holds χ(wi) = f−1(U1) ∪
f−1(Ui) ∪ f−1(Ui+1) for 1 ≤ i ≤ n− 1.

(f) S1 = f−1(U1) ∩ V1 and S2 = f−1(U1) ∩ V2.

Intuitively, the vertices in the sets S1 and S2 from condition
(b) above are those that close the cycle (i.e. that are connected
to unit U1). These have to be in every bag as some of their
neighbors might only appear on the last unit Un. If all neigh-
bors of S1 and S2 already appear in U1 ∪ U2 then we need
consider only paths as unit graphs instead of cycles, and the
pathwidth is hence decreased by 2 ∗ UnitCap.

3.3 An Algorithm for the SPUP

By Theorem 2 we know that if a SPUP instance is solvable
then there is a path decomposition with specific properties.
But we still need an algorithm for finding such suitable path
decompositions. Many algorithms for finding path decompo-
sitions of bounded width have been proposed in the literature.
But, for the SPUP we want to find path decompositions P
with specific properties:

• The paths should be short (the number of bags reflects
the number of units); and hence,

• The bags should be rather full (in “good” solutions the
units will be filled up).

• The construction of the bags must be interleaved with
checking the additional constraints.

Below we introduce an algorithm that fits the bill; it is
inspired by the algorithm for finding hypertree decomposi-
tions from [Gottlob et al., 2002]. This non-deterministic al-
gorithm does the following: The bags on the path decompo-
sition are guessed. The initial bag partitions the graph into
a set of remaining components that are recursively processed
simultaneously. A single bag suffices to remember which part
of the graph has already been processed; the bag separates
the processed part of the graph from the remaining compo-
nents. Consequently, all we have to store is the current bag
and the remaining components. It turns out that for this we
only need logarithmic space, and thus the algorithm runs in
NLOGSPACE, and hence in polynomial time [Cook, 1971].

In addition to the bags the unit function is guessed, too.
According to condition (d) from above all neighbors of any
vertex in G occur in three consecutive bags in P . Hence, for

checking locally that the unit function is correct it suffices to
remember three bags at each step.

Due to the different roles played by the units that make up a
bag, the DECIDESPUP algorithm operates at the level of units
rather than bags.

DECIDESPUP(G)
1 Guess disjoint non-empty U1, U2 ⊆ V (G)

with |Ui ∩ V1| ≤ UnitCap ≥ |Ui ∩ V2|
2 CR ← G \ (U1 ∪ U2)
3 if DECIDESPUP (CR, 〈U1, U2〉, 〈U1, U2〉)
4 then ACCEPT
5 else REJECT

DECIDESPUP(CR, 〈U1, U2〉, 〈Ui−1, Ui〉)
1 if CR = ∅
2 then
3 if ∀v ∈ U1 nb(v) ⊆ U1 ∪ U2 ∪ Ui and

∀v ∈ Ui nb(v) ⊆ Ui−1 ∪ Ui ∪ U1

4 then ACCEPT
5 else REJECT
6 else
7 Guess non-empty Ui+1 ⊆ V (

⋃
CR)

with |Ui+1 ∩ V1| ≤ UnitCap ≥ |Ui+1 ∩ V2|
8 For v ∈ Ui check nb(v) ⊆ (Ui−1 ∪ Ui ∪ Ui+1)
9 C ′R ← (CR \ Ui+1)

10 DECIDESPUP (C ′R, 〈U1, U2〉, 〈Ui, Ui+1〉)

Upon initialization (l. 1–5) the first two units are guessed
as subsets of the vertices of the input G (l. 1). Throughout a
run of the algorithm the remaining components are stored in
CR (l. 2). We then proceed to the recursive case (l. 3–5).

While recursively processing G (l. 1–10) we consider two
cases: (1) If there are no remaining components (l. 1) we
check the termination condition in l. 3. The neighbors of U1

have to appear somewhere on the first, second, or last unit,
while the neighbors of the last unit have to appear somewhere
on the second-to-last, last, or first unit. Hence we storeU1 and
U2, as well as a a “predecessor” unit Ui−1 and a “middle”
unit Ui throughout a run of the algorithm; upon termination
Ui−1 is the second-to-last, and Ui is the last unit in the cycle.
The recursive procedure is first called with Ui−1 = U1 and
Ui = U2, and at each step the contents of the current bag
is given by the union of U1 with Ui−1 ∪ Ui. (2) Otherwise,
a “successor” unit Ui+1 is guessed (l. 7). In a solution, all
neighbors of vertices assigned to Ui are guaranteed to appear
in Ui−1 ∪ Ui ∪ Ui+1 — this is checked in l. 8. For Ui−1

this will already have been established (if i > 2), and hence
in the next step Ui and Ui+1 together with U1 are again a
proper separator. In l. 9 the vertices just assigned to Ui+1 are
deleted from the remaining components, and in l. 10 the same
procedure is called recursively.

Using this algorithm we can show the following:
Theorem 3 (Tractability of SPUDP). The decision problem
for the SPUP is solvable by the algorithm DECIDESPUP in
NLOGSPACE for InterUnitCap = 2 and any given fixed value
of UnitCap.

Proof. First observe that if the algorithm accepts then there
is a solution for the SPUP; moreover, if there is a solution of

the SPUP, this clearly can be guessed. We still have to show
that the workspace required by DECIDESPUP is logarithmic
in the size of the input. The size of the currently retained
units is bounded; hence these can be stored in logarithmic
space. Moreover, the currently retained units separate the part
of the input graph that has already been processed from the
remaining components. Hence we only have to represent the
remaining components. At each step their number is bounded
by 2 ∗ 2 ∗ UnitCap: For the current units Ui−1 and Ui there
can be at most 2 ∗UnitCap neighbors not yet assigned; in the
worst case these can all belong to different connected com-
ponents. Each of the remaining connected components can
be represented by a single vertex; hence we can get by with
logarithmic space.

Answer Extraction
For actually obtaining a solution to a SPUP instance we face
the following problem: In general it is not possible to re-
member the contents of all the bags in logarithmic space.
Theoretically this problem can be solved as follows: On a
first accepting run of DECIDESPUP we clearly can remem-
ber the first bag’s contents in logarithmic space. We can then
run DECIDESPUP again with a fixed first bag, and so forth.
Hence the following holds:
Theorem 4 (Tractability of SPUSP). The problem of find-
ing a solution to the SPUP is solvable in NLOGSPACE for
InterUnitCap = 2 and any given fixed value of UnitCap.

Note that the problem of answer extraction disappears
when actually implementing the non-deterministic algorithm
on a deterministic computer; cf. Section 3.5.

Towards an Efficient Algorithm
We next make a number of observations that can be exploited
to turn DECIDESPUP into a practically efficient algorithm.

Guiding the Guessing Not all zones and sensors assigned
to units have to be chosen randomly. At most UnitCap neigh-
bors of sensors and zones on the first unit can be assigned to
the last unit. Hence the following holds:2

|nbs(U1) \ (U1 ∪ U2)| ≤ UnitCap ≥ |nbz(U1) \ (U1 ∪ U2)|.
Moreover, the neighbors of U1 not assigned to U1 or U2 may
only be guessed in the last step, where the number of unpro-
cessed sensors (or zones) is at most UnitCap.

Starting from i ≥ 2 we have the stronger:
(nbs(Ui) \ (Ui ∪Ui−1)) ⊆ Ui+1 ⊇ (nbz(Ui) \ (Ui ∪Ui−1)).

Finding Optimal Solutions First Next recall that “good”
solutions correspond to short path decompositions with filled-
up bags, and the number of units used in the solution of
a SPUP instance G = (V1, V2, E) is bounded by lb =
dmax (|V1|,|V2|)

UnitCap e from below and by ub = max (|V1|, |V2|)
from above. Hence we can apply iterative deepening search:
First, try to find a solution with lb units; if that fails increase
lb by one; hence the first solution found will be optimal. This
yields the following:

2We denote by nbs(U) (nbz(U)) the set of sensors (zones) that
are adjacent in the input graph to zones (sensors) assigned to U .

Corollary 1 (Tractability of SPUOP). On connected input
graphs the SPUOP is solvable in NLOGSPACE.

Note that branch-and-bound-search (on the number of units
used) can not be used: E.g. a K6,6 graph does not admit so-
lutions with more than three units.

Symmetry Breaking We already observed that cycles are
more general unit graphs than paths. But with cycles for unit
graphs there are two types of rotational symmetry: For a solu-
tion with unit graph vU1 , . . . , vUn , vU1 there is (1) a solution
vU2 , . . . , vUn , vU1 , vU2 , etc.; in addition there also is (2) the
solution vU1 , vUn , vUn−1 , . . . , vU2 , vU1 . We can break these
symmetries by stipulating that

• the first sensor is assigned to unit U1; and

• the second sensor appears somewhere on the first half of
the cycle.

3.4 SPUOP and Multiple Connected Components
Next let us discuss the problem of finding optimal solutions
when the input graph consists of more than one connected
component. Here, part of the problem is that any two con-
nected components may either have to be assigned to the
same, or to two distinct unit graph(s). A priori it is unclear
which of the two choices leads to better results. E.g. if we
assume that UnitCap = 2 then two K3,3 should be placed
on one cyclic unit graph, while a K6,6 must stand alone. We
leave the complexity of the SPUOP on arbitrary input graphs
as an open problem — but we are able to show the following:

Theorem 5 (Tractability of SPUOP on Multiple Connected
Components). For InterUnitCap = 2 and any given value of
UnitCap the optimization problem for the SPUP on multiple
connected components is solvable in NLOGSPACE if there
are only logarithmically many connected components in the
input graph.

Proof. (Sketch) Let a graph with c connected components
be given as the union

⋃
i=1..cGi of bipartite graphs Gi =

(V1,i, V2,i, Ei). The possible number of unit graphs in op-
timal solutions ranges from 1 to c. Set V1 =

⋃
i V1,i and

V2 =
⋃

i V2,i. The number of units used is bounded by lb =
dmax (|V1|,|V2|)

UnitCap e from below and ub =
∑

i max (|V1,i|, |V2,i|)
from above. For the lower bound we assume all components
fit on a single unit graph; for the upper bound we consider the
c individual upper bounds separately.

Next observe that also in the case of multiple connected
components a solution to the SPUP gives rise to a path decom-
position of a special form: Assume a SPUP instance given by
a graph G =

⋃
Gi is solvable with a solution graph G∗ con-

sisting ofm connected components, and using n units in total.
By concatenating the path decompositions as constructed in
the proof of Theorem 2, we obtain a single path decomposi-
tion of length n−m. Mutatis mutandis an appropriate version
of Theorem 2 is obtained.

Likewise the algorithm DECIDESPUP can be adjusted to
guess appropriate path decompositions: We have to distin-
guish between remaining components that are currently being
processed and those that are still untouched. The key is then

to ensure that a new “cyclic” segment of the path decomposi-
tion may only be started if the set of remaining components
that are still currently being processed is empty; i.e. there are
no unassigned neighboring sensors or zones left.

Observe that the total number of remaining connected com-
ponents at each step is now bounded by (4 ∗ UnitCap) + c,
where c is the number of connected components in the input
graph. Hence we stay within the logarithmic space bound if
there are not more than logarithmically many connected com-
ponents in the input graph.

3.5 Implementation
We prototypically implemented the DECIDESPUP algorithm
in Java, replacing the non-determinism by a backtracking
search mechanism. Our implementation can only handle con-
nected input graphs.

In [Gottlob and Samer, 2008] a deterministic backtrack-
ing version of the non-deterministic hypertree decomposition
algorithm from [Gottlob et al., 2002] is described, and the
issues we face when making DECIDESPUP deterministic are
very similar. To avoid repeated sub-computations we store
pairs of bags and remaining components that could not be de-
composed:
Observation 1 (Avoidable Sub-Computations). Assume a
pair of a bag B and a set of remaining components CR

could not be decomposed by DECIDESPUP. If the same pair
〈B,CR〉 occurs again on a run of DECIDESPUP it also can-
not be decomposed.

If we use iterative deepening search we also have to store
the number of remaining units when encountering a dead-end
— it may be possible to decompose the remaining compo-
nents using more units. We don’t store successful pairs —
the first such pair occurs when finding a solution.

It turns out that for identifying unsuccessful pairs of bags
and remaining components it is enough to store the bag plus
the unassigned neighbors:
Lemma 2 (Identifying Remaining Components). Given the
contents of a bag and the set of currently unassigned neigh-
bors at any step throughout a run of DECIDESPUP the re-
maining components are uniquely determined.

Proof. Assume to the contrary that we have calls
1) DECIDESPUP(CR, 〈U1, U2〉, 〈Ui−1, Ui〉, and
2) DECIDESPUP(C ′R, 〈U1, U2〉, 〈Ui−1, Ui〉,

both with the same unassigned neighbors V (of U1 and Ui).
First assume that we have different remaining connected

components CR and C ′R on the same set of vertices. This
immediately leads to a contradiction.

Next assume that there is a vertex v0 ∈ CR that is not in
C ′R, and hence not in V . This v0 cannot be part of the current
bag B = U1 ∪ Ui−1 ∪ Ui as this is the same in the calls 1)
and 2). Hence assume that, in the run leading to the call 2),
v0 is assigned to Uj where j < (i−1). We know that there is
a path v0, v1, . . . , vn in CR leading from v0 to some vn ∈ V
such that none of the vi, 0 ≤ i ≤ n is in B. Hence, in the
run leading to the call 2), for one of the pairs vi, vi+1 the test
nb(vi) ⊆ (Uk−1 ∪ Uk ∪ Uk+1) (k < i) must have failed.

As there are only polynomially many possible pairs of cur-
rent bags and unassigned neighbors, and each of them is con-
structed at most once, the overall runtime of our implementa-
tion of the DECIDESPUP algorithm is polynomial, too.

In order to detect no-good branches in the search tree early
we implemented a form of two-step forward-checking: We
check whether there is enough space for the open neighbours
of the current unit on the current plus the next unit (step one),
and do the same for the open neighbours of these open neigh-
bours (step two).

Finally observe that for the backtracking search we have to
store the choices made, and hence answer extraction is easy.

4 Evaluation

As already stated in the introduction, in addition to the meth-
ods previously used in industry we have also developed en-
codings of the PUOP in SAT and CSP solving, as well as
answer set and integer programming. We then proceeded to
adapt these encodings to the SPUOP, combining the key in-
sights from the DECIDESPUP algorithm with advanced solv-
ing techniques from the respective areas; these encodings, to-
gether with an evaluation of their performance, are described
in [Aschinger et al., 2011].

We have used these encodings, both adapted and not, to
compare our implementation of the DECIDESPUP algorithm
against; the evaluation was done using a set of instances that
we received from our partners in industry. A small excerpt
from our experimental results is shown in Table 1, where
each line is a representative result for a different class of
problem instances. We imposed a ten minute time limit, a
“*” indicates a timeout, and runtimes are in seconds. The
number of units needed in optimal solutions is denoted by
“Cost”. CSP denotes a PUOP encoding in ECLiPSe Prolog,
and CSPDECIDESPUP the adaption thereof to the SPUOP.

Table 1: Experimental Results
Edges Cost CSP DECIDESPUP CSPDECIDESPUP

92 15 * 65.49 0.09
97 33 * 202.48 0.03

156 40 * 114.08 158.49
236 59 * 0.16 1.14

It can be seen that our prototype implementation of
DECIDESPUP can find optimal solutions much faster than
the (non-adapted) encoding as a CSP. But encodings of the
SPUOP in general purpose AI frameworks such as SAT or
CSP in general perform much better than our prototype im-
plementation if they are adapted to exploit the key insights of
the DECIDESPUP algorithm [Aschinger et al., 2011].

On the one hand, none of the adapted encodings provably
runs in polynomial time; on the other hand, these encodings
seem to be much better at detecting no-good branches in the
search tree early than our implementation that tries to do so
using the two-step look-ahead scheme described above.

5 Related and Future Work
In this work we have shown how the Special Partner Units
Configuration Problem can directly be tackled by comput-
ing a path decomposition of the input graph. More typically,
structural problem decomposition methods such as path, tree,
and hypertree decompositions are used to identify classes of
problem instances that can be solved in polynomial time; for
an example of this usage in a logic-based formalism for con-
figuration problems see [Gottlob et al., 2007].

While our results clearly advance the state-of-the art of the
PUP, there are a number of questions that deserve further re-
search efforts. One important direction is the study of search
heuristics so as to achieve a further speedup of the runtime.
On the more theoretical side, it may be worthwhile studying
two problems of currently unknown complexity: (i) the PUP
and PUOP in case InterUnitCap is fixed but greater than 2, and
(ii) the case of SPUOP where there are more than O(log n)
connected components in the input graph.

Acknowledgments We greatly acknowledge the construc-
tive criticism we received from the reviewers.

References
[Aschinger et al., 2011] M. Aschinger, C. Drescher,

G. Friedrich, G. Gottlob, P. Jeavons, A. Ryabokon, and
E. Thorstensen. Optimization Methods for the Partner
Units Problem. In Proceedings of CPAIOR’11, 2011.

[ASPcomp, 2011] Third ASP Competition. https://
www.mat.unical.it/aspcomp2011/, 2011.

[Cook, 1971] S. A. Cook. Characterizations of pushdown
machines in terms of time-bounded computers. Journal
of the ACM, 4:4–18, 1971.

[Falkner et al., 2010] A. Falkner, A. Haselböck, and
G. Schenner. Modeling Technical Product Configuration
Problems. In Proceedings of the Configuration Workshop
at ECAI’10, 2010.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson.
Computers and Intractability. WH Freeman, 1979. p. 226.

[Gottlob and Samer, 2008] G. Gottlob and M. Samer. A
backtracking-based algorithm for hypertree decomposi-
tion. ACM Journal of Experimental Algorithmics, 2008.

[Gottlob et al., 2002] G. Gottlob, N. Leone, and F. Scarcello.
Hypertree Decomposition and Tractable Queries. Journal
of Computer and System Sciences, 64(3), 2002.

[Gottlob et al., 2007] G. Gottlob, G. Greco, and T. Mancini.
Conditional constraint satisfaction: Logical foundations
and complexity. In Proceedings of IJCAI’07, 2007.

[Junker, 2006] U. Junker. Configuration. In F. Rossi, P. van
Beek, and T. Walsh, editors, Handbook of Constraint Pro-
gramming. Elsevier, 2006.

[McDermott, 1982] J. McDermott. R1: A rule-based config-
urer of computer systems. Artificial Intelligence, 19, 1982.

[Mittal and Frayman, 1989] S. Mittal and F. Frayman. To-
wards a generic model of configuraton tasks. In Proceed-
ings of IJCAI’89, 1989.

