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Abstract. We show how to calculate the maximum number of edits per
character needed to convert any string in one regular language to a string
in another language. Our algorithm makes use of a local determinization
procedure applicable to a subclass of distance automata. We then show
how to calculate the same property when the editing needs to be done
in streaming fashion, by a finite state transducer, using a reduction to
mean-payoff games. We show that the optimal streaming editor can be
produced in PTIME.

1 Introduction

Edit distance is a well-studied metric between strings, measuring how many
operations are needed to get from one string to another. In this paper we look
for natural (asymmetric) analogs for regular languages: how many edits does it
require to get from a word in regular language R to a word in regular language T ,
in the worst case? Our notation is motivated by considering R to be a restriction
– a constraint that the input is guaranteed to satisfy – and T to be a target – a
constraint that we want to enforce.

In a prior work [1], we considered the basic question of whether one can get
from a word in R to a word in T with a finite (uniformly bounded) number of
edits. One of the main results of [1] was a characterization of the pairs (R,T )
for which such a uniform bound exists.

Example 1. Consider the languages R = a∗b∗ and T = a∗c b∗. Clearly, any string
in R can be converted to a string in T with at most 1 edit.

Such a bound, when it exists, shows that the language R is “quite close to
being a subset of T” – the gap between strings in R and strings in T is small.
However, having a uniform bound on the number of edits is a strong requirement.
In this paper we look not at the absolute number of edits required to get from
R to T , but rather at the percentage of letters that need to be edited.

Example 2. Consider the languages R = (a + b)∗ and T = (ab + b)∗. Roughly, for
any pair of consecutive occurrences of the letter a in the input, we will have to
perform one edit in order to ensure alternation in the output. In particular, the
number of edits required to get from a string in R to a string in T is unbounded.
On the other hand, it is clear that we need to edit approximately half of the
letters in the worst case (i.e. a2n) in order to produce a string in T .



We measure the gap from R to T via the worst case, over all strings w ∈ R, of
the number of edits needed to bring w into T divided by the length of w. Since
we want the definition to be robust to a finite number of outliers, we take the
limit of this quantity as the strings are of larger and larger length – this is the
asymptotic (normalized) cost in getting from R to T . This gives us a measure of
the distortion needed to get from R to T , lying always between 0 and 1.

Our first main result is that we can determine the asymptotic cost effectively.
The algorithm relies on ideas from distance automata [9], and in particular on an
application of determinization of distance automata, closely related to Mohri’s
determinization procedure [7].

We then turn to the setting where editing is required to be done in streaming
fashion, producing the edits immediately on seeing the input letter. We measure
a streaming edit processor by the number of edits per character it requires to
get from any string in R to a string in T , again looking at the limit as the string
length gets large. We define the streaming asymptotic cost to be the optimal
cost of a streaming processor. We show that this quantity can also be calculated
effectively, using techniques from mean-payoff games.

Example 3. Consider R = (a + b) c∗(a+ + b+) and T = a c∗a+ + b c∗b+. One can
get from R to T by only editing the initial letter: so the asymptotic cost is
0. However, a streaming strategy must commit to changing the initial letter or
leaving it be: if it makes the “incorrect” choice, it will have to edit an unbounded
final segment; thus the streaming asymptotic cost is 1.

The above two results give us the ability to compare the cost one should pay
in editing strings in R to strings in T with an arbitrary processor with the cost
when we are restricted to use a streaming processor. If these are the same, it
shows that streaming processors that edit strings in R to T can approximate
arbitrary processors in worst-case behavior.

In summary our contributions are:

� We present an algorithm for calculating the asymptotic cost of transforming
strings in regular language R to strings in regular language T , based on
locally determinizing a subclass of distance automata.

� We give an algorithm for calculating the optimal asymptotic cost achieved
using a streaming editing algorithm.

Related Work. The problem of finding the minimal distance of a string to a
regular language was first considered by Wagner in [10], who showed that the
problem could be solved by adapting the dynamic programming approach to edit
distance, giving a polynomial time algorithm. Several authors have extended the
definition to deal with distances between languages. Mohri [8] defines a distance
function between two sets of strings, and more generally between string distri-
butions: in the case of languages, this is the minimum distance between two
strings in the two respective languages, which is appropriate for many appli-
cations. Konstantinidis [4] focuses on the minimum distance between distinct
strings within the same language, giving tractable algorithms for computing it.

2



Our notion of “cost” is quite distinct from this, since it is asymmetric in the two
languages, focusing on the maximum of the distance of a string in one language
to the other language. In our prior work [1] we have given an algorithm for de-
termining when this distance is finite; again the paper deals with the streaming
and the non-streaming setting, but the techniques used for the finiteness prob-
lem, particularly in the non-streaming case, are radically different from those
used for asymptotic cost analysis. Further related work in the database area is
overviewed in [1].

Organization. Section 2 defines the basic problems. Section 3 studies the non-
streaming case, while Section 4 deals with the streaming case. Section 5 gives
conclusions. Proofs are relegated to the full paper.

2 Problem setting

Given two words w ∈ Σ∗ and u ∈∆∗, we denote by edit-dist(w,u) the Levenshtein
distance (henceforth, edit distance) between w and u, which is defined as the
length of a shortest sequence s of edit operations (e.g., deleting a single character,
modifying a single character, and inserting a single character) that transforms
w into u [11]. Following Wagner [10], we lift this to define the distance of a word
to a regular language T .

edit-dist(w,T ) =def min{ edit-dist(w,u) ∶ u ∈ T}.

We are interested in quantifying how difficult it is to edit a word in one language
to obtain a word in another. That is, we have finite alphabets Σ and ∆ and
regular languages R ⊆ Σ∗ and T ⊆ ∆∗, called the restriction and target lan-
guages, respectively. We would like to edit a string that is known to belong to
the restriction language into a string in the target language.

How do we measure the cost of edits needed to get from R to T? One method
is to look at the largest number of edit operations needed to get into T from
strings in R: that is, the supremum over w ∈ R of edit-dist(w,T ). In an earlier
work [1] we have studied for which pairs of languages (R,T ) this cost is finite.
However, many language pairs have infinite cost: the existence of a uniform
bound to the number of edits is quite a strong property (see Example 2 in the
introduction).

In this work we define an alternative notion of cost that looks at the per-
centage of symbols in a word that need to be edited. We define the normalized

cost for editing a word w to a word in T as the fraction edit-dist(w,T )
∣w∣ , that is,

the ratio between the cost of editing w and its length. In order to measure the
asymptotic behavior of the normalized cost, we define the asymptotic cost as the
limit superior of the normalized cost when the length of words in the restriction
tends to infinity. Formally, the asymptotic cost for two regular languages R and
T is defined as

A(R,T ) =def lim
n→∞

sup{ edit-dist(w,T )
∣w∣ ∶ w ∈ R, ∣w∣ ≥ n}
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For the above definition to make sense, we always assume that R is infinite. It
is easy to see that the asymptotic cost ranges over the interval [0,1] of the real
numbers. Indeed, for large words, one can modify and delete the letters to create
shorter words in the target language and thus the resulting cost is always less
than the length of the input word. We are ideally interested in computing the
value A(R,T ), provided that this number is rational.

Streaming vs non-streaming. The notion of “how much does it cost to edit a
word in R to a word in T” assumes that an editing process could be any mapping
from R to T (in principle, such a mapping could even fail to be computable).
However, we know from [10] that there is a dynamic programming algorithm
that, given a word w and a target language T represented by a deterministic finite
state automaton (DFA) T , computes in time O(∣w∣⋅∣T ∣) an optimal edit sequence
s such that s(w) ∈ T . In particular, this shows that optimal algorithms for editing
a word can be described by functions of fairly low complexity. Sometimes it
is desirable to have editing algorithms that are in even more limited classes.
Perhaps the ideal case is when we can edit with a one-pass algorithm, that
is, using a sequential transducer (note that we allow the transducer to have
infinitely many states). Recall that a sequential transducer defines a word-to-
word function; if this function happens to produce a word in T for every input
w ∈ R, then we say that it is a streaming edit strategy for R and T . Similarly, we
can consider k-lookahead transducers, with k ∈ N: this type of transducer outputs
words on the basis of its current state and an input (k + 1)-character window
that represents a substring of w of the form w[i] . . .w[i+k], where w[i] is either
the i-th symbol of w, if i ≤ ∣w∣, or a dummy symbol �, if i > ∣w∣. Accordingly, we
talk about a k-lookahead streaming edit strategy.

Given a streaming edit strategy S for R and T and a word w, we define the
cost of S on w to be the number of edits produced by S on w. Formally, letting
q0

a1/u1Ð→ q1
a2/u2Ð→ . . . an/unÐ→ qn

ε/un+1Ð→ be the run of the transducer S on a word
w = a1 . . . an, the cost of S on w, denoted cost(w,S), is the length of the final
output un+1 plus the sum of edit-dist(ai, ui) over all indices 1 ≤ i ≤ n. Notice
that the transducer S might output an additional string un+1 at the end of its
run in order to produce a word in the target language T . We can then define the
asymptotic cost of a streaming (k-lookahead) edit strategy S:

A(R,S, T ) =def lim
n→∞

sup{ cost(w,S)
∣w∣ ∶ w ∈ R, ∣w∣ ≥ n} .

Finally, the streaming (k-lookahead) asymptotic cost for two languages R and
T , denoted SA(R,T ), is the infimum of A(R,S, T ) taken over all streaming (k-
lookahead) edit strategies S for R and T . We remark that, a priori, the infimum
in the previous definition cannot be replaced by a minimum: it is conceivable that
the asymptotic costs of the streaming edit strategies for R and T are arbitrary
close to SA(R,T ), but never achieve this value. In fact, in Section 4 we will
show that this is not the case, as we can enforce, without loss of generality, a
uniform bound to the memory of streaming edit strategies.
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To stress the difference between the streaming and the non-streaming set-
tings, we explicitly refer to the original problem as the asymptotic cost problem
in the non-streaming case.

3 Asymptotic cost in the non-streaming case

In this section, we study the problem of computing the asymptotic cost in the
non-streaming setting. We begin with some background on distance automata,
which will play a key role in the main characterization result.

Distance automata computing the edit cost. Intuitively, a distance au-
tomaton [9] is a transducer D that receives as input a finite word w and outputs
a corresponding cost D(w) in N∪{∞}. Formally, it is a tuple D = (Σ,Q,E, I,F ),
where Q is a finite set of states, E ⊆ Q×Σ×N×Q is a finite transition relation, I
and F are some initial and final conditions described by partial functions from Q
to N and representing the costs of beginning and ending a run with certain states.
A run ofD on w is a sequence γ = (q0, a1, c1, q1) (q1, a2, c2, q2) . . . (qn−1, an, cn, qn)
of pairwise adjacent transitions in E that spell the input word w = a1a2 . . . an.
The cost of the run γ is naturally defined by

cost(γ) =def ∑1≤i≤n ci.

We denote by D(w) the minimum value I(q0)+cost(γ)+F (qn) among all states
q0 in the domain Dom(I) of I, all states qn in the domain Dom(F ) of F , and
all runs γ of D on w that start in q0 and end in qn. We let D(w) = ∞ if there
are no such states q0 and qn, or if there is no run from q0 to qn.

When considering the edit distance of a word w ∈ Σ∗ to a regular language
T ⊆ ∆∗, it is fairly natural to express this value in terms of the cost computed
by a distance automaton. By default, we assume that the target language T
is recognized by a DFA T = (∆,Q, δ, q0, F ) where Q is a finite set of states,
δ ⊆ Q ×∆ ×Q is a finite transition relation, q0 and F are the initial and final
set of states. Given two states p, q of T , we let Tp,q be the DFA obtained from
T by letting p be the new initial state and q the new unique final state. The
distance automaton that computes the edit distance of a word over Σ to the
target language L (T ) is defined as Dedit

T = (Σ,Q,Eedit, Iedit, F edit), where

� Eedit is the set of all transitions of the form (p, a, c, q), with p, q ∈ Q, a ∈ Σ,
q reachable from p, and c = min{edit-dist(a, v) ∶ v ∈ L (Tp,q)},

� Iedit is the partial function that maps a state q ∈ Q to the minimum among
the values edit-dist(ε, v), with v ∈ L (Tq0,q) (if q is not reachable from the
initial state q0, then Iedit(q) is undefined),

� F edit is the partial function that maps a state p ∈ Q to the minimum among
the values edit-dist(ε, v), with v ∈ ⋃q∈F L (Tp,q) (if p cannot reach a state in
F , then F edit(p) is undefined).

One can easily show that Dedit
T computes exactly the edit distance between a

word w ∈ Σ∗ and L (T ).
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Proposition 1. For every word w ∈ Σ∗, we have Dedit
T (w) = edit-dist(w,L (T )).

Shortcut property and determinizable components. Distance automata
of the form Dedit

T are a proper sub-class of all distance automata. In particular,
they satisfy the shortcut property, formalized just below. Given a symbol a ∈ Σ
and two states p, q of a distance automaton D, we write p aÐ→ q to denote the
existence in D of a transition (p, a, c, q) with some cost c ∈ N.

Definition 1. A distance automaton D satisfies the shortcut property if for all
symbols a, b and all states p, q, r, p aÐ→ q bÐ→ r implies p aÐ→ r and p bÐ→ r.

The following lemma shows that, in particular, Dedit
T satisfies the shortcut

property.

Lemma 1. For every DFA T , Dedit
T satisfies the shortcut property.

We call a strongly connected component (SCC) of a distance automaton D
any maximal set of mutually reachable states. Given a SCC C of D, we denote
by D∣C the sub-automaton obtained from D by restricting the set of states and
transitions to C and by letting the initial and final conditions map any state of
C to 0. Note that the transition graph of D∣C is a clique when D satisfies the
shortcut property.

A crucial property entailed by the shortcut property is the following one.
Consider two runs ρ and ρ′ of D∣C that spell the same word w, but end in dif-
ferent states q and q′. If ρ and ρ′ have optimal cost among all runs on D∣C on w
that end in q and q′ respectively, then one can show that the difference in cost
between ρ and ρ′ is uniformly bounded by a constant. This implies that we can
determinize D∣C by using a subset construction, maintaining the difference be-
tween the optimal cost of reaching each state q and the overall optimal cost; this
is exactly Mohri’s determinization procedure [7]. Since this difference is always
uniformly bounded by a constant, we get a finite-state distance automaton:

Proposition 2. For every distance automaton D that satisfies the shortcut prop-
erty and every SCC C of D, the sub-automaton D∣C can be determinized.

The above result allows us to denote by det(D∣C) some deterministic distance
automaton equivalent to D∣C, namely, such that det(D∣C)(w) = D∣C(w) for
all w ∈ Σ∗. The automaton det(D∣C) can be computed from D∣C by a direct
exponential-time algorithm [7].

Example 4. Consider the distance automaton D of Figure 1, which computes the
edit distance of any word to the target language T = (ab+ b)∗ a∗. As D satisfies
the shortcut property and consists of two SCCs C1 and C2, the two sub-automata
D∣C1 and D∣C2 can be turned into equivalent deterministic distance automata
det(D∣C1) and det(D∣C2), depicted to the right of Figure 1.

We remark that the above result does not imply that the entire distance
automaton D is determinizable. Consider, for instance, a distance automaton
that computes the edit distance of a word w to the target language L (T ) =
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D :

a/0, b/1

a/1, b/0

a/1

b/0 a/1

b/1

a/0, b/1

a/0 b/1

C1

C2

0 | 0 1 | 0

0 | 1 1 | 1

det(D|C1) :

0det(D|C2) :

a/0

a/1

b/0 b/0 a/
0

b/0

a/1

b/1

a/0, b/1

Fig. 1. A distance automaton with two SCCs and its determinized sub-automata.

a∗+b∗. This distance is given by the symmetric difference between the number of
occurrences of a and the number of occurrences of b and hence any deterministic
device that computes edit-dist(w,L (T )) must use unbounded memory.

The asymptotic cost. We give an effective characterization of the asymptotic
cost A(D) of a distance automaton D satisfying the shortcut property:

A(D) =def lim
n→∞

sup{D(w)∣w∣ ∶ w ∈ Σ∗, ∣w∣ ≥ n} .

The characterization will imply that the above value is rational and computable
from D. Before turning to the characterization, we remark that computability
of asymptotic costs does not hold for arbitrary distance automata:

Proposition 3. The problem of deciding, given an arbitrary distance automaton
D, whether or not A(D) ≤ 1

2
is undecidable.

We use the undecidability of the 1
2

-threshold problem for normalized costs
induced by distance automata [5], which consists of deciding, given a distance

automaton D, whether D(w)
∣w∣ ≤ 1

2
holds for all words w ∈ Σ∗. The reduction

is done by transforming a given distance automaton D into a new distance

automaton D′ such that A(D′) = sup{D(w)∣w∣ ∶ w ∈ Σ∗}.

Next we explain how the shortcut property helps in computing the asymp-
totic cost. One can show that the problem of computing A(D) for a distance
automaton D that is deterministic is reducible to the problem of computing nor-
malized costs of simple cycles. Formally, a simple cycle is any run of det(D) that
is a cycle (i.e., that starts and ends in the same state) but that does not con-
tain proper sub-cycles. It is then easy to show that for a deterministic distance

automaton D, A(D) coincides with the maximum of cost(L)
∣L∣ among all simple

cycles L of D, where cost(L) denotes the cost of the simple cycle L. Thus by
Proposition 2, calculation with simple cycles suffices to compute the asymptotic
cost of any distance automaton satisfying the shortcut property and having a
single SCC.

We consider now the more general case of a distance automaton D satisfying
the shortcut property and having many SCCs, say C1, . . . ,Ck. The situation in
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this case is slightly more complicated, as A(D) cannot be expressed as a func-
tion of A(D∣C1), . . . ,A(D∣Ck). We define D̄ as the deterministic multi-distance
automaton obtained from the synchronous product of det(D∣C1), . . ., det(D∣Ck)
and we denote by L1, . . . , Lm the simple cycles of D̄. Moreover, given 1 ≤ i ≤ m
and 1 ≤ j ≤ k, we denote by costj(Li) the cost of the projection of the simple
cycle Li into the j-th component of D̄. Assuming that D is trim, namely, all its
states are reachable from some states in Dom(I) and they can reach some states
in Dom(F ), we can characterize the asymptotic cost of D as follows:

Theorem 1. For every distance automaton D satisfying the shortcut property,

A(D) = max
α1,...,αm≥0

min
1≤j≤k

∑1≤i≤m αi ⋅ costj(Li)
∑1≤i≤m αi ⋅ ∣Li∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E(D)

. (1)

The idea underlying the above characterization is that the asymptotic cost
A(D) is achieved by repetitions of simple cycles in D̄. Indeed, the parameters
α1, . . . , αm represent a correlation between the numbers of repetitions of the
various simple cycles, and the index j represents the SCC of D that optimizes
the normalized cost of these repetitions. The proof will consist of establishing
two inequalities. In one case, we argue that all words can be approximated in
cost by repetitions of simple cycles, and that the cost of editing these words is
at most the cost of a “homogeneous strategy” that edits all cycles in the same
component of D. For the other inequality, we present a large family of words for
which the best strategy is nearly homogeneous. The words will consist of nested
repetitions of simple cycles in such a way that any edit strategy stabilizes by
editing in the same component.

Example 5. Consider again the distance automaton D of Figure 1, with the two
SCCs C1 and C2. The determinized sub-automaton det(D∣C1) has four different
simple cycles: one spelling aa with cost 1, one spelling ab with cost 0, one spelling
b with cost 0, and one spelling aba with cost 1. Similarly, the determinized sub-
automaton det(D∣C2) has two simple cycles: one spelling a with cost 0, and
the other spelling b with cost 1. Hence (aa)n is a family of words achieving a
worst-case asymptotic cost of lim n

2n
= 1

2
for the sub-automaton D∣C1, and bn

is a family of words achieving a worst-case asymptotic cost of lim n
n
= 1 for the

sub-automaton D∣C2. However, a2n is not a worst-case for D∣C2 (as it can be
repaired with asymptotic cost 0) and, symmetrically, bn is not a worst-case for
D∣C1. This means that the worst-case asymptotic cost for D is achieved by a
suitable combination of both families, namely, (aab)n. This gives the asymptotic
cost A(D) = lim n

3n
= 1

3
.

We make a few remarks related to the effectiveness of the characterization.
First of all, we observe that the right handside term E(D) of Equation (1) can
be rewritten as the following instance of a linear programming problem:

maximize y subject to ∑1≤i≤m ci,j ⋅ xi ≥ y ∀1 ≤ j ≤ k
∑1≤i≤m xi ≤ 1, xi ≥ 0 ∀1 ≤ i ≤ k.
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where, for every 1 ≤ i ≤ m and every 1 ≤ j ≤ k, ci,j = costj(Li)
∣Li∣ . Intuitively,

the variables x1, . . . , xm represent the values α1 ⋅ ∣L1∣, . . ., αm ⋅ ∣Lm∣ normalized
in such a way that they sum up to 1, and the variable y represents an under-
approximation of the value E(D). It is also known [6] that the optimal choices
for the parameters x1, ..., xm, y can be found at the ‘corners’ of the (m + 1)-
dimensional polyhedron that results from the intersection of the finitely many
half-spaces defined by the above linear inequalities. This explains why we put
maxα1,...,αm≥0 instead of supα1,...,αm≥0 in Equation (1). Moreover, it also implies
that the asymptotic cost A(D) is a rational number.

Regarding the complexity of the problem of computing A(D), we observe
that (i) the size ∣D̄∣ of the multi-distance automaton D̄ is exponential in ∣D∣,
(ii) each simple cycle Li has length at most linear in ∣D̄∣, (iii) the number m of

simple cycles is exponential in ∣D̄∣, and (iv) each constant ci,j = costj(Li)
∣Li∣ can be

computed in time polynomial in ∣D̄∣ and ∣Li∣. Overall, the problem of computing
the asymptotic cost of D is reduced, in time doubly exponential, to an instance
of a linear programming problem. The latter problem is known to be in PTIME
[3], which proves that A(D) can be computed in doubly exponential time.

From the cost of distance automata to the cost of editing. Theorem 1,
together with Proposition 1 and Lemma 1, gives a way of computing the asymp-
totic cost A(Σ∗,T ) of editing arbitrary words in Σ∗ to words in L (T ). Here
we show how to generalize to our original problem, which involves the presence
of both a restriction and a target language. We first modify the definition of
asymptotic cost for a distance automaton to include the presence of a restriction
language L (R) recognized by a DFA R:

A(R,D) =def lim
n→∞

sup{D(w)∣w∣ ∶ w ∈ L (R), ∣w∣ ≥ n} .

Given a DFA R and a distance automaton D satisfying the shortcut property,
we denote by Dag(R) (resp., Dag(D)) the directed acyclic graph of the SCCs of
R (resp., D). The paths in Dag(R) (resp., Dag(D)) are the sequences of SCCs of
the form π = C1 . . .Ch, where each SCC Cl+1 is reachable from the previous SCC
Cl. Given a SCC B of R, we denote by LB,1, . . . , LB,mB

the simple cycles of the
automaton D̄ × (R∣B) = det(D∣C1) × . . . × det(D∣Ck) × (R∣C), where C1, . . . ,Ck
are the SCCs of D and R∣B is the sub-automaton obtained from R by restricting
the set of states to B (it does not matter which state is chosen to be initial in
R∣B). Finally, given a simple cycle LB,i of D̄ × (R∣B) and a SCC C of D, we
denote by costC(LB,i) the cost of a the projection of LB,i into the component
C of D̄ × (R∣B). The generalized characterization result is as follows:

Theorem 2. For every (trim) DFA R and every distance automaton D satis-
fying the shortcut property,

A(R,D) =
max

τ=B1...Bh∈Dag(R)
α1,1,...,α1,m1

≥0
...

αh,1,...,αh,mh
≥0

min
π=C1...Ch∈Dag(D)

∑1≤l≤h∑1≤i≤ml
αl,i ⋅ costCl

(LBl,i)
∑1≤l≤h∑1≤i≤ml

αl,i ⋅ ∣LBl,i∣
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Using arguments similar to the complexity analysis in the unrestricted case,
we obtain that the asymptotic cost A(R,T ) (= A(R,Dedit

T )) for two DFA R
and T is computable in 2EXPTIME.

4 Asymptotic cost in the streaming case

Here we characterize the asymptotic cost in the streaming setting in terms of
the value of a mean-payoff game [2]. A mean-payoff game is an infinite, turn-
based game played over an arena M = (V,E, v0), where V is the union of two
disjoint finite sets of vertices, VAdam (owned by player Adam) and VEve (owned
by player Eve), E ⊆ V ×N × V is a finite set of weighted edges, and v0 ∈ V is an
initial vertex. The game starts at v0 and, at each round, the player who owns
the current vertex v moves along an edge (v, c, v′) ∈ E. The reward for Adam
(resp., Eve) in an infinite play π = (v0, c1, v1) (v1, c2, v2) . . . is given by the
value νπAdam (resp., −νπEve), where

νπAdam =def lim inf
n→∞

∑n
i=1 ci
n

νπEve =def lim sup
n→∞

∑n
i=1 ci
n

Intuitively, Adam wants to maximize νπAdam and Eve wants to minimize νπEve.
It is known from [2] that mean-payoff games are positionally determined,

namely, to each mean-payoff game corresponds a value ν such that Adam (resp.,
Eve) has a positional strategy that guarantees νπAdam ≥ ν (resp., νπEve ≤ ν) for all
plays π that respect his (resp., her) strategy.

Let R = (Σ,Q, δ, q0, F ) and T = (∆,Q′, δ′, q′0, F
′) be two trim DFA. To com-

pute the streaming asymptotic cost SA(R,T ), we construct the arena Medit
R,T ,

where Adam’s vertices are pairs of the form (q, q′), with q ∈ Q and q′ ∈ Q′, and
Eve’s vertices are pairs of the form (q, q′, a), with q ∈ Q, q′ ∈ Q′, and a ∈ Σ. The
edges of the arena are triples of the form ((q, q′),0, (p, q′, a)), where p = δ(q, a),
or of the form ((q, q′, a), c, (q, p′)), where c = min{edit-dist(a, v) ∶ v ∈ L (Tq′,p′)}.
The initial vertex of the arena is the pair (q0, q′0) (so Adam moves first). Observe
that the final states of R and T do not play any relevant role in this definition:
this is because R and T are assumed to be trim and the costs of moving from
non-final states to final states are irrelevant for the asymptotic behaviour. Fur-
thermore, note that the game alternates between Adam and Eve, and only the
second player can incur positive costs.

Below, we show that the value of the mean-payoff game over Medit
R,T , multi-

plied by 2, coincides with the asymptotic cost in the streaming setting.

Theorem 3. Given two DFA R and T , we have SA(R,T ) = 2 ⋅ ν, where ν is
the value of the mean-payoff game overMedit

R,T . Moreover, SA(R,T ) is rational,
it can be computed in polynomial time, and it is achieved by a single streaming
edit strategy for L (R) and L (T ) – which can also be computed in PTIME.

Even if it seems natural that the value of the mean-payoff game over Medit
R,T

determines the asymptotic cost SA(R,T ), we remark that the proof of the above
theorem is not trivial. Indeed, the mean-payoff game corresponds directly to a
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pR :

a, b

q rT :

a

b

p, q

p, r

p, q, a

p, r, a

p, q, b

p, r, b

Medit
R,T :

0

1

0

1

0

1

0

1

0 1

1 0

Fig. 2. Two DFA and the arena for the associated mean-payoff game.

version of the streaming edit problem where the input to the edit strategy is a
sequence of prefixes of a single infinite word spelled by a run of R. The core
of the proof is to show a correspondence between this infinitary version of the
streaming edit problem and the original problem as stated in Section 2. This is
done by showing that (⋆) for the optimal strategy of Eve S in the mean-payoff
game, one can construct a streaming edit processor S ′ of R into T such that
A(R,S′,T )

2
does not exceed the reward of S. S ′ just mimics S until the string

terminates, at which point it performs additional insertions to get to a final
state. For the other direction we take any streaming edit processor S ′ of R into
T with value A(R,S ′,T ) and show that no strategy S for Adam can guarantee

a reward of more than A(R,S′,T )
2

. By the result from [2] mentioned above, this
shows that Eve can guarantee a reward of at least this amount. The limit on
Adam’s ability is shown by combating his strategy S using the edit processor
S ′. Putting these two directions together, we see that the optimal streaming edit
processor is produced by first computing Eve’s optimal strategy, then applying
the transformation (⋆) described above: we will argue below that this is a PTIME
procedure.

We recall that the problem of deciding whether the value of an arbitrary
mean-payoff game M = (V,E, v0) is below a certain threshold is in coNP ∩
NP; much recent work has focused on improving the exponential bounds on
deterministic algorithms; for example, it can be done in O(∣V ∣2 ⋅ ∣E∣ ⋅cmax), where
cmax is the maximum weight of an edge of M [12]. Even though the parameter
cmax is exponential when the weights are represented in binary notation, when
restricting to arenas of the formMedit

R,T , this value never exceeds the total number
of states of the DFA T . This gives the polynomial bound on the complexity of
the problem of computing the value of the mean-payoff game over Medit

R,T , and
the PTIME bound in Theorem 3 follows.

Example 6. Consider the restriction and target language R ∶ (a + b)∗ and T ∶
(ab)∗ which automata and respectively mean-payoff arena Medit

R,T are shown in
Figure 2. Here, diamond nodes are owned by Eve and square nodes are owned
by Adam. One can easily see that an optimal positional strategy for Adam is to
play (p, q) Ð→ (p, q, b) and (p, r) Ð→ (p, r, a). With this strategy we get that for
every Eve’s strategy the value ν of the mean-payoff game overMedit

R,T is equal to

11



1
2

and then SA(R,T ) = 1. This value definitely contrasts with the non-streaming

asymptotic cost between R and T which is equal to 1
2
.

There is a natural generalization of the above theorem for computing the
asymptotic cost of streaming edits with k-lookahead: it is indeed sufficient to
modify the definition of the arenaMedit

R,T in such a way that Adam plays (k+1)-
character windows. Note that this requires extending the set of vertices ofMedit

R,T
from (Q×Q′)∪(Q×Q′×Σ) to (Q×Q′×(Σ∪{�})k)∪(Q×Q′×Σ×(Σ∪{�})k).

5 Conclusions

We have addressed the problem of computing the asymptotic cost between reg-
ular languages in the non-streaming and streaming settings. It is surprising that
the asymptotic cost in both settings is rational and computable. In the stream-
ing setting this gives us optimal online algorithms for editing one language into
another, which are quite distinct from traditional edit distance algorithms based
on dynamic programming. We leave as an open problem whether the algorithms
for computing asymptotic cost in the nonstreaming setting are optimal.
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