
Computing Science Group

THE ORDER ENCODING:
FROM TRACTABLE CSP TO TRACTABLE SAT

Justyna Petke and Peter Jeavons

CS-RR-11-04

Oxford University, Department of Computer Science

Wolfson Building, Parks Road, Oxford OX1 3QD



The order encoding:
from tractable CSP to tractable SAT∗

Justyna Petke and Peter Jeavons

Abstract

Many mathematical and practical problems can be expressed as constraint satisfaction
problems (CSPs). One way to solve a CSP instance is to encode it into SAT and use
a SAT-solver. However, important information about the problem can get lost during
the translation stage. For example, although the general constraint satisfaction problem
is known to be NP-complete, there are some classes of CSP instances that have been
shown to be tractable. These include the classes of CSP instances that contain only
max-closed or connected-row-convex constraints. In this paper we show that translating
such instances using some common standard encodings results in SAT instances which do
not fall into known tractable classes. However, translating such instances using the order
encoding results in SAT instances that do fall into known tractable classes. Moreover,
modern clause learning SAT-solvers can then solve them efficiently. Hence, we give a
theory-based argument to prefer the order encoding for certain families of constraint
satisfaction problems.

∗An extended abstract is published in Theory and Applications of Satisfiability Testing -
SAT2011. Further copies of this Research Report may be obtained from the Librarian, Oxford
University, Department of Computer Science, Computing Science Group, Wolfson Building, Parks
Road, Oxford OX1 3QD, England (Telephone: +44-1865-273837, Email: library@cs.ox.ac.uk).



1 Introduction

SAT solvers are now considered to be efficient and practical tools for many kinds of
problems [24]. In order to use them to solve constraint satisfaction problems (CSPs),
various encodings from CSP to SAT have been developed [3, 20, 23]. In a recent paper
we showed that current SAT-solvers will decide the satisfiability of the direct encoding
of any CSP instance with bounded width in expected polynomial-time [18]. Here we
investigate how SAT-solvers perform on CSP instances that are tractable due to the
nature of the constraints.

SAT-based constraint solvers performed very well in recent CSP solver competi-
tions [1, 2]. One solver in particular, called Sugar [22], was very efficient and even won
in a few categories. Surprisingly, it outperformed standard constraint solvers on many
instances involving global constraints, which are supposed to be a particular strength of
CSP solvers.

The SAT encoding that the Sugar solver implements is called the order encoding [23].
In this paper we show that this encoding, unlike other common encodings, transforms
instances of various tractable language classes of the constraint satisfaction problem into
easily-recognised tractable instances of SAT. We also show that such instances can then
be solved by standard SAT-solvers in polynomial-time.

2 Preliminaries

The (finite domain) constraint satisfaction problem is often defined as follows:

Definition 2.1. An instance of the Constraint Satisfaction Problem (CSP) is spec-
ified by a triple (V,D,C), where

• V is a finite set of variables;

• D is a finite set of possible values for the variables v ∈ V , called the domain;

• C is a finite set of constraints. Each constraint in C is a pair (Ri, Si) where

– Si is an ordered list of mi variables, called the constraint scope;

– Ri is a relation over D of arity mi, called the constraint relation.

Given any CSP instance (V,D,C), a partial assignment is a mapping f from some
subset W of V to D. A partial assignment satisfies the constraints of the instance
if, for all (R, (v1, v2, . . . , vm)) ∈ C such that vj ∈ W for j = 1, 2, . . . ,m, we have
(f(v1), f(v2) . . . , f(vm)) ∈ R. A partial assignment that satisfies the constraints of an
instance is called a partial solution1 to that instance. The set of variables on which a
partial assignment f is defined is called the domain of f , and denoted Dom(f). A partial
solution f ′ extends a partial solution f if Dom(f ′) ⊇ Dom(f) and f ′(v) = f(v) for all
v ∈ Dom(f). A partial solution with domain V is called a solution.

1Note that not all partial solutions extend to solutions.

1



The general CSP is known to be NP-complete, but many different conditions have
been identified which are sufficient to ensure that classes of instances satisfying those
conditions are tractable, that is, solvable in polynomial-time [7, 8, 9, 10, 12, 17]. This
research has focused on two main ways of imposing restrictions on a constraint problem
to ensure that it can be tractably solved. The first of these is to consider restrictions on
the way in which the constraints overlap - these are sometimes referred to as structural
restrictions. In particular, if the hypergraph formed by the constraint scopes has a
property known as bounded width, then it has been shown that the CSP instance can be
solved in polynomial-time [14].

The second standard approach to identifying restrictions on constraint problems which
ensure tractability is to restrict the forms of constraint which are allowed, that is, to
restrict the choice of the constraint relations. These are sometimes known as constraint
language restrictions, and we focus on these in this paper.

3 Some tractable CSP languages

3.1 The Boolean case: tractable languages for SAT

The propositional satisfiability problem (SAT) is actually a special type of constraint
satisfaction problem where the domain is Boolean (i.e., it contains just two values, true
and false), and the constraint relations are all specified by clauses.

To study possible language restrictions for SAT, we consider subproblems of the form
SAT(C), where C is a set of relations over the Boolean domain, and SAT(C) consists of all
SAT instances whose constraint relations belong to C. Schaefer’s well-known dichotomy
theorem [21] identifies all the tractable languages for SAT:

Theorem 3.1 ([21]). Let C be a set of Boolean relations. If C satisfies at least one of
the conditions below, then SAT(C) is tractable. Otherwise SAT(C) is NP-complete.
1. Every relation in C evaluates to true if all arguments are true.
2. Every relation in C evaluates to true if all arguments are false.
3. Every relation in C can be expressed as a Horn formula.
4. Every relation in C can be expressed as a dual-Horn formula.
5. Every relation in C can be expressed as a 2-CNF formula.
6. Every relation in C can be expressed as an affine formula.

A formula is called Horn if it is a conjunction of clauses where every clause contains
at most one positive literal. It is dual-Horn, if it is a conjunction of clauses where every
clause has at most one negative literal. A 2-CNF formula is a conjunction of clauses
containing at most two literals each, and an affine formula is a conjunction of linear
equations over the two-element field.

3.2 A trivial case: Constant-closed constraints

A CSP instance is constant-closed if every constraint in it allows the constant value d
to be assigned to all variables in its scope, for some fixed d. Such instances are trivially

2



Figure 1: Examples of binary max-closed constraints from [16]. In each rectangle, the
circles on the left represent possible values for one variable, and the circles on the right
represent possible values for the other variable; both are ordered from bottom to top.
Two circles are connected by a line if the constraint allows that combination of values for
the two variables.

.

tractable, because they can be solved by the trivial linear algorithm that assigns the
value d to every variable in the instance. Surprisingly, instances with this property do
sometimes occur in practice: the majority of the satisfiable binary decision diagram
instances used in the third CSP solver competition [1] were later found to have constant
solutions.

3.3 Max-closed constraints

A rather more interesting family of tractable constraint satisfaction problems is the class
of CSPs whose constraints are all max-closed, as defined below:

Definition 3.2 ([16]). A constraint (R,S) with relation R of arity r over an ordered
domain D is said to be max-closed if for all tuples (d1, · · · , dr), (d′1, · · · , d′r) ∈ R we have
that the tuple (max(d1, d

′
1), · · · ,max(dr, d

′
r)) is also in R. It is min-closed if for all such

tuples the tuple (min(d1, d
′
1), · · · ,min(dr, d

′
r)) is in R.

Some examples of binary max-closed constraints are shown in Figure 1.
Another broad class of max-closed constraints, of arbitrary arity, are constraints on nu-
meric variables that can be represented by inequalities of the form:

n−1∑
i=1

aivi ≥ anvn + c (1)

where the vi’s are variables, c is a constant, and the ai’s are non-negative constants [16].
Max-closed constraints can take many other forms. For example, all unary constraints

on any ordered domain are max-closed, and certain non-linear numerical constraints,
such as 6v1v3v5 ≥ 3v2 + 2 are max-closed. They all can be solved by a polynomial-time
algorithm that enforces a type of local consistency known as arc consistency [7].

Theorem 3.3. A CSP instance that contains only max-closed constraints can be solved
by enforcing arc consistency.

Proof. Let P be a CSP instance that contains only max-closed constraints. After enforc-
ing arc consistency on P a value d is in the domain of variable v if and only if for every
constraint C in P there exists a tuple t satisfying C such that t[v] = d. If the domain

3



Figure 2: Examples of connected row-convex relations from [8]
.

of any variable is empty, then the instance is unsatisfiable and we are done. Otherwise,
let max(v) be the maximum domain value in the arc consistent domain of some variable
v. We claim that the tuple t = (v1 = max(v1), v2 = max(v2), ..., vn = max(vn)) solves
P . Assume, for contradiction, that t is not a solution for P . Then there exists some con-
straint C ∈ P that disallows t. Because all the variable domains are arc consistent, for
each variable vi ∈ C there exists a satisfying tuple ti such that ti[vi] = max(vi). Apply-
ing the max operator to all such tuples produces the tuple t′ such that t′[vi] = max(vi)
for all vi ∈ C. As C is still max-closed after enforcing arc consistency, t′ satisfies C.
As variables(t′) = variables(C) and t′ ⊆ t, t satisfies C and we reach a contradiction.
Hence, the satisfiability of a max-closed CSP instance P can be established by enforcing
arc consistency.

Corollary 3.4. A CSP instance that contains only max-closed constraints can be solved
in O(ed2) time, where e is the number of constraints and d is the domain size.

3.4 Connected row-convex constraints

Connected row-convex constraints were first defined in [12] using a standard matrix rep-
resentation of binary relations.

Definition 3.5 ([12]). Let the domain D be the ordered set {d1, d2, · · · , dm}, where d1 <
d2 < · · · < dm. A binary relation R over D can be represented by a m ×m 0-1 matrix
M , by setting Mij = 1 if the relation contains the pair (di, dj) and Mij = 0 otherwise. A
relation is said to be connected row-convex if the pattern of 1s in the matrix representation
(after removing rows and columns containing only 0s) is connected along each row, along
each column, and forms a connected 2-dimensional region (where some of the connections
may be diagonal).

Any binary constraint whose constraint relation is connected row-convex will be called
a connected row-convex constraint; some examples are illustrated in Figure 2. It is
convenient to also define all unary constraints to be connected row-convex, as they may
be combined with binary connected row-convex constraints to obtain a larger tractable
class of problems [8].

4



It has been known for some time that the class of connected row-convex constraints
can be solved in polynomial-time by an algorithm that enforces a type of local consistency
known as path-consistency [12]. Recently this result has been strengthened by considering
another type of consistency known as singleton arc consistency [5].

Theorem 3.6 ([6]). A CSP instance that contains only connected row-convex constraints
can be solved by enforcing singleton arc consistency.

Proof. All connected row-convex relations have a majority polymorphism [7]. Hence,
they can be solved by a singleton arc consistency algorithm, by Theorem 26 in [6].

Corollary 3.7. A CSP instance that contains only connected row-convex constraints can
be solved in O(end3) time, where e is the number of constraints, d is the domain size and
n is the number of variables.

4 Standard SAT encodings

A sparse encoding of a CSP instance introduces a new Boolean variable, x=v,a, for each
possible variable assignment, v = a. Let P be a CSP instance containing a variable
v with domain {1, 2, . . . , d}. Its sparse encoding, F , will contain the following set of
Boolean variables to represent v: {x=v,1, x=v,2, · · · , x=v,d}. Moreover, F will contain clauses
that force at least one of these x=v,is to be satisfied, to ensure that v is assigned some
value. This restriction is usually represented by the so-called at-least-one (ALO) clause,
x=v,1 ∨ · · · ∨ x=v,d. Additionally, F must not allow both x=v,i and x=v,j to be true for any
i 6= j, since a CSP variable can be assigned one value only. This requirement is usually
captured by a set of negative binary clauses, ¬x=v,i ∨ ¬x=v,j , for all 1 ≤ i < j ≤ d. These
are called the at-most-one (AMO) clauses. AMO and ALO clauses form together the
so-called exactly one (EO) constraint.

Finally, clauses are added to represent the constraints, to rule out any assignment to
the Boolean variables that violates a constraint. Examples of sparse encodings include
the direct encoding and the support encoding [20].2

The direct encoding encodes the disallowed variable assignments - the so-called con-
flicts or no-goods. It generates a clause

∨
v∈S ¬xvf(v) for each partial assignment f that

does not satisfy the constraint (R,S) ∈ C.
Another way of translating constraints into clauses is to encode the allowed variable

assignments - the so-called supports. This has been used as the basis for an encoding of
binary CSP instances, known as the support encoding. For each pair of variables v, w in
the scope of some constraint, and each value i ∈ D, the support encoding will contain
the clause ¬xvi∨

∨
j∈A xwj , where A ⊆ D is the set of values for the variable w which are

compatible with the assignment v = i, according to the constraint.

Proposition 4.1. No sparse encoding of a CSP instance with domain size > 2 belongs
to a tractable language class of SAT.

2AMO clauses can be omitted in the direct encoding of a CSP instance. However, we assume here
that every sparse encoding will contain clauses that impose the at-most-one condition.

5



Proof. Let v be a CSP variable with domain {1, 2, . . . , d}. A sparse encoding introduces
d Boolean variables, {x=v,1, x=v,2, · · · , x=v,d}, to represent possible assignments to v. The
encoding must also include a suitable set of clauses to enforce the “exactly-one” (EO)
constraint on these variables, as in any solution of the CSP instance exactly one of the
x=v,i must be assigned true.

However, the EO relation on d > 2 Boolean variables does not lie in any of the 6
tractable language classes for SAT [21]. Hence the clauses which encode the EO relation
do not all fall into any one of these tractable language classes.

The log encoding introduces a Boolean variable for each bit in the value of a CSP vari-
able. For instance, a variable with domain {0, 1, 2, 3} will be encoded using two Boolean
variables. The AMO and ALO clauses described above are not needed in this encoding,
since every bit pattern represents a potential solution. However, unary constraints can
be imposed to rule out certain bit patterns, and hence restrict the values of a variable to
some subset of the domain. Once again, clauses are added to represent the constraints,
by ruling out any assignment that violates a constraint.

Proposition 4.2. The log encoding of any CSP instance with domain size > 4 containing
certain unary constraints does not belong to any tractable language class of SAT.

Proof. Let {x[1], · · · , x[r]} be the Boolean variables representing a CSP variable v under
the log encoding of some instance P . Assume P contains unary constraints that restrict
v to values that are a power of 2. The clauses representing these constraints must allow
precisely those assignments where exactly one of the x[i]s is true. Hence the log encoding
of P must enforce the EO constraint on {x[1], . . . , x[r]}. If the size of the domain of v is
greater than 4, then r > 2 and the EO constraint does not fall into any of the six tractable
language classes for SAT [21]. Hence the clauses which encode this unary constraint do
not all fall into any one of these tractable language classes.

5 The order encoding

All of the SAT encodings described thus far use one or more Boolean variables to represent
each possible assignment of a CSP variable, v = a. The authors of the order encoding
took a different approach [23], also used in [3, 11]. In this encoding each Boolean variable
represents a comparison, v ≤ c.

Let P be a CSP instance containing a variable v with domain {1, 2, . . . , d}. Its
order encoding, F , will contain the following set of Boolean variables to represent v:
{x≤v,1, x

≤
v,2, · · · , x

≤
v,d−1}, where each x≤v,i represents the comparison v ≤ i. Moreover, F

will contain clauses ¬(x≤v,c−1)∨(x≤v,c), for c = 2, 3, . . . , d−1, to ensure that these variables
are consistently assigned.

Finally, clauses are added to represent the constraints, to rule out any assignment to
the Boolean variables that violates a constraint. For example, if a unary constraint on
variable v excludes the value i from its domain, then we add the clause ¬(x≤v,i)∨ (x≤v,i−1),
to represent the constraint that (v > i) ∨ (v ≤ i − 1). Note that an arbitrary unary
constraint on a finite domain can be represented as a conjunction of such binary clauses.

6



Example 5.1. The order encoding for linear inequality constraints over the integers is
discussed in detail in [23].

Let P = (V,D,C) be a CSP instance, in which D is the set {1, 2, . . . , d}, and assume
that every constraint of P is of the form

∑n
i=1 aivi ≤ c, where ais are non-zero integer

constants, c is an integer constant, and the vis are mutually distinct integer variables.
The order encoding of P , taking values in D, will be a conjunction of the following

clauses, where each inequality of the form v ≤ j is represented by a Boolean variable,
x≤v,j:

• for all vi ∈ V and j ∈ D such that 2 ≤ j ≤ d− 1: ¬(vi ≤ j − 1) ∨ (vi ≤ j)

• for all constraints
∑n

i=1 aivi ≤ c :

∧
(b1,...,bn)∈B

∨
i

{
vi ≤ b biai c (ai > 0)

¬(vi ≤ d biai e − 1) (ai < 0)

where B is the set of integer tuples defined by

{(b1, . . . , bn) |
n∑

i=1

bi = c− n + 1,
n∧

i=1

min(aivi)− 1 ≤ bi ≤ max(aivi)}

It turns out that under the order encoding, unlike the encodings considered earlier,
certain tractable CSP classes are translated to tractable language classes of SAT.

Theorem 5.2. If a CSP instance P = (V,D,C) is constant-closed under the lowest or
the highest domain value, then its order encoding will also be constant-closed.

Proof. Let P = (V,D,C) be a CSP instance defined on domain D = {1, . . . , d}. If P
allows value 1 to be assigned to every variable v ∈ V , its order encoding will be satisfied by
assigning the value True to all the Boolean variables x≤v,i. On the other hand, if P allows
value d to be assigned to every variable v ∈ V , its order encoding will be satisfied by
assigning the value False to all the Boolean variables x≤v,i. Hence, the result follows.

A similar result can be obtained for max-closed constraints, thanks to the following
theorem and corollary:

Theorem 5.3 ([16]). A constraint over an ordered domain is max-closed if and only if
it is logically equivalent to a conjunction of disjunctions of the following form:

(vi < ai) ∨ (v1 > b1) ∨ · · · ∨ (vn > bn).

where each vi is a variable (not necessarily distinct), and the ai, bi are domain values.

Corollary 5.4 ([16]). If the domain of the variables is {True, False}, with False <
True, then a constraint is min-closed if and only if it is logically equivalent to a conjunc-
tion of Horn clauses.

7



Theorem 5.5. If a CSP instance P contains only max-closed constraints, then its order
encoding will be min-closed.

Proof. By Theorem 5.3, every max-closed constraint can be represented as a set of con-
straints of the form (vi < ai) ∨ (v1 > b1) ∨ · · · ∨ (vn > bn). Hence, the order encoding of
a max-closed CSP instance P will produce the following set of clauses:

• for all vi ∈ V and c ∈ D such that 2 ≤ c ≤ d− 1: ¬(vi ≤ c− 1) ∨ (vi ≤ c)

• for all constraints (vi < ai) ∨ (v1 > b1) ∨ · · · ∨ (vn > bn) :
(vi ≤ ai − 1) ∨ ¬(v1 ≤ b1) ∨ · · · ∨ ¬(vn ≤ bn).

As each inequality of the form v ≤ c is represented by a Boolean variable, x≤v,c, we end
up with a set of Horn clauses, which are min-closed by Corollary 5.4.

A similar result can be obtained for connected row-convex constraints, thanks to the
following theorem, which shows that they have a very simple representation in terms of
disjunctions of inequalities.

Theorem 5.6 ([8]). A constraint over an ordered domain is connected row-convex if and
only if it is logically equivalent to a conjunction of disjunctions of the following forms:

v ≤ di ∨ w ≤ dj
v ≤ di ∨ w ≥ dj
v ≥ di ∨ w ≤ dj
v ≥ di ∨ w ≥ dj .

(2)

where v and w are variables (not necessarily distinct), and di, dj are domain values.

Corollary 5.7. If the domain of the variables is {True, False}, then a constraint is
connected row-convex if and only if it is logically equivalent to a conjunction of 2-CNF
clauses over literals representing comparisons.

Theorem 5.8. If a CSP instance P contains only connected row-convex constraints, then
its order encoding will also be connected row-convex.

Proof. By Theorem 5.6, each connected row-convex constraint can be represented as a
set of disjunctions of inequalities of the form (2). The order encoding of a CSP instance
P that contains such constraints will produce the following clauses:

• for all vi ∈ V and c ∈ D such that 2 ≤ c ≤ d− 1: ¬(vi ≤ c− 1) ∨ (vi ≤ c)

• for all constraints C:

vi ≤ di ∨ vj ≤ dj if C = vi ≤ di ∨ vj ≤ dj
vi ≤ di ∨ ¬(vj ≤ dj − 1) if C = vi ≤ di ∨ vj ≥ dj
¬(vi ≤ di − 1) ∨ vj ≤ dj if C = vi ≥ di ∨ vj ≤ dj
¬(vi ≤ di − 1) ∨ ¬(vj ≤ dj − 1) if C = vi ≥ di ∨ vj ≥ dj

(3)

As each inequality of the form v ≤ c is represented by a Boolean variable, we end up with
a set of binary clauses, which are connected row-convex by Corollary 5.7.

8



6 Full regular encodings

We note that a sparse encoding introduces a Boolean variable x=v,a representing each
assignment v = a, but the order encoding introduces a Boolean variable x≤v,c representing
each comparison v ≤ c. In this section, we will consider another suggested type of
encoding that uses a similar idea to the order encoding.

A full regular encoding [3] introduces a Boolean variable x≥v,a for each inequality of the
form v ≥ a. It can be based on any sparse encoding. For example, the full regular direct
encoding is based on the direct encoding. Let x=v,i be an assignment literal in a constraint

clause of a sparse encoding; in a full regular encoding it is replaced with x≥v,i ∧ ¬x
≥
v,i+1.

Similarly, each negative literal ¬x=v,i is replaced with x≥v,i+1 ∨¬x
≥
v,i. However, as the next

result indicates, once we make these substitutions on a set of support or conflict clauses
the resultant SAT formula belongs to a tractable language class of SAT only in the rather
trivial constant-closed cases.

Proposition 6.1. The full regular direct encoding of any CSP instance P with non-unary
constraints belongs to a tractable language class of SAT if and only if the constraints of
P are constant-closed under the highest or lowest domain value. The same applies to the
full regular support encoding.

Proof. Let
∨

(¬x=v,i) be a conflict clause in the direct encoding of some non-unary con-
straint. Under the full regular direct encoding such a clause is translated into the following
formula:

∨
(x≥v,i+1∨¬x

≥
v,i), which does not belong to any tractable language class of SAT,

except the constant-closed classes.
Let ¬x=v,j ∨

∨
x=w,i be a support clause in the support encoding of some non-unary

constraint. Under the full regular support encoding such a clause is translated into a
conjunction of clauses of the form (x≥v,j+1∨¬x

≥
v,j∨x

≥
w,i+1)∧(x≥v,j+1∨¬x

≥
v,j∨¬x

≥
w,i), which

does not belong to any tractable language class of SAT except the constant-closed classes.
If a CSP instance is closed under the highest or lowest domain value, a full regular

direct encoding of such an instance will be constant-closed for the value False or True,
respectively, but in all other cases there will be a constraint which is violated by assigning
all variables the highest value, and a constraint which is violated by assigning all variables
the lowest value. These constraints must be represented by clauses which are not all
members of either of the constant-closed classes.

7 Performance of DPLL-based SAT-solvers on tractable
CSPs

It has been shown experimentally in [23] that the order encoding gives better solver
performance compared with the direct and support encodings on instances of the graph
colouring and open-shop scheduling problems. Our theoretical results above suggest that
the order encoding will also be a better choice of encoding than a sparse or log encoding
for all CSP instances over the tractable constraint languages we have considered. In this
section we investigate to what extent this is true in practice with a current SAT-solver.

9



(int v1 1 5)

(int v2 1 5)

(int v3 1 5)

(<= -7 (+ (mul 5 v1) (mul -7 v3) ) )

(<= -12 (+ (mul 10 v1) (mul -7 v2) (mul -10 v3) ) )

(<= -4 (+ (mul -8 v1) (mul 2 v2) (mul 4 v3) ) )

(<= 6 (+ (mul 5 v1) (mul 8 v2) (mul 2 v3) ) )

Figure 3: A constant-closed CSP instance in ∗.csp format [22] that is satisfied by the
assignment (v1 = 1, v2 = 1, v3 = 1). For example, the fourth line of the instance
represents the constraint −7 ≤ 5v1 − 7v3.

Throughout this section when we refer to a clause-learning SAT solver we mean a
Conflict-Driven Clause Learning SAT-solver that implements the DPLL algorithm and
an asserting learning scheme, as defined in Chapter 4 of [20].

We generated various instances of the three tractable CSP classes discussed in this
paper. All the instances generated are specified by 3 parameters: the number of vari-
ables, the maximum domain value, and the number of constraints. The domain for every
variable in our instances is 1..d, where d is the maximum domain value.

All the instances generated were then encoded using the direct, log and order en-
codings. For the order encoding we used Sugar’s built-in CSP-to-SAT translator, but
without the optimizations described in [22] that introduce new variables. For the other
encodings we wrote custom translators.

We ran all the encoded instances on the state-of-the-art clause-learning SAT-solver,
MiniSAT [19] version 2-070721-8. For all of the results, the times given are elapsed times
on a Lenovo 3000 N200 laptop with an Intel Core 2 Duo processor running at 1.66GHz
with 2GB of RAM. For each set of parameters we generated four instances and report
the average timings.

7.1 Constant-closed constraints

Proposition 7.1. If a CSP instance P allows the lowest (or highest) domain value to
be assigned to all its variables, then a DPLL-based SAT-solver with an appropriate value
order will decide the satisfiability of the order encoding of P in linear time.

Proof. Each clause of the order encoding of a constant-closed constraint under the lowest
domain value has at least one positive literal. Hence, a DPLL-based SAT-solver, that
assigns the value True first to each variable, will not need to backtrack, and hence will
decide its satisfiability in linear time in the size of the instance. Similarly, the satisfiability
of a constant-closed instance under the highest domain value will be decided by a DPLL-
based SAT-solver with the opposite value order in linear time.

In order to generate instances that were constant-closed under the lowest (or highest)
domain value, we generated random inequalities and then selected those that satisfied
the required constant solution. An example is shown in Figure 3.

As predicted by Theorem 5.2, for all constraints that were constant-closed under the
lowest domain value, the formulas generated by the Sugar solver contained at least one

10



positive literal in each clause. Moreover, the instances that were satisfied by assigning
the highest domain value to each variable contained at least one negative literal in each
clause. The runtimes of MiniSAT on these two families of instances3 are presented in
Table 1.

number of number of number of MiniSAT (sec.) MiniSAT (sec.) MiniSAT (sec.)
CSP variables CSP values constraints direct encoding log encoding order encoding

instances satisfied by assigning the lowest domain value to every variable

3 10 100 0.01 0.07 0.00
6 6 10 22.55 489.60 0.10
9 3 10 7.52 39.90 0.08
9 3 100 7.70 39.84 1.76
9 4 10 > 16 min 284.37 4.64
10 3 10 130.34 837.75 0.39

instances satisfied by assigning the highest domain value to every variable

3 10 100 0.02 0.07 0.00
6 6 10 17.90 348.19 0.06
9 3 10 6.16 28.47 0.06
9 3 100 7.60 40.60 0.90
9 4 10 > 16 min 263.47 5.04
10 3 10 119.39 754.83 0.61

Table 1: Performance of MiniSAT on the direct, log and order encoding of constant-closed
CSP instances of the form shown in Figure 3.

It is clear from these results that the order encoding is much better than the others for
solving these kinds of instances. The order encoding usually produced fewer clauses than
the other encodings for instances of this type. However, Mini-SAT’s performance was still
much better on the clauses produced by the order encoding even in those cases where
this encoding produced a larger set of clauses than the other encodings. For instance, for
parameters (9, 3, 100) the direct and log encodings produced around 19 700 clauses each,
whereas the order encoding produced an average of 46 957 clauses.

7.2 Max-closed constraints

Proposition 7.2. If a CSP instance P contains only max-closed constraints, then a
DPLL-based SAT-solver which assigns False before True will decide the satisfiability of
the order encoding of P in linear time.

Proof. Let F be the order encoding of P . As long as F contains a unit clause, unit
propagation takes place. Next, either the solver terminates after discovering an empty

3For the instances satisfied by assigning the lowest domain value to every variable, we changed the
value ordering to assign True before False. In all other cases we used MiniSAT’s default value ordering,
which assigns False first.

11



(int v1 1 5)

(int v2 1 5)

(int v3 1 5)

(<= 10 (+ (mul -6 v1) (mul 9 v2) (mul 4 v3) ) )

(<= -3 (+ (mul -10 v1) (mul 2 v2) (mul 4 v3) ) )

(<= 16 (+ (mul 7 v1) (mul 1 v2) (mul 10 v3) ) )

(<= -1 (+ (mul 7 v1) (mul -6 v2) (mul 6 v3) ) )

Figure 4: An example of a satisfiable max-closed CSP instance.

clause, or a set of Horn clauses of size > 1 remain. Each such clause contains at least one
negative literal. Hence, if a solver then decides to assign value False to each variable,
every clause will be satisfied and a solution will be found. As unit propagation takes
linear time [13, 20, 24], the result follows.

To obtain satisfiable CSP instances with max-closed constraints, we generated in-
equality constraints of the form shown in Equation 1, and then selected only those that
satisfied some fixed random solution. An example instance is shown in Figure 4.

To generate unsatisfiable instances, we used the same technique as before and then
added two further inequalities of the following form:(∑

i∈{1,...,n}\{k} vi

)
− vk ≥ d ∗ (n− 1)− 1(∑

i∈{1,...,n}\{j} vi

)
− vj ≥ d ∗ (n− 1)− 1

(4)

for some j 6= k, where n is the number of variables in the instance and d is the maximum
domain value.

We encoded the generated instances using the direct, log and order encodings. As
predicted by Theorem 5.5, the order encodings of these max-closed instances contained
Horn clauses only. The runtimes of MiniSAT on the various encodings are presented in
Table 2.

The results show that the order encoding outperforms the other two encodings, as
expected. Moreover, in the unsatisfiable case MiniSAT detects the unsatisfiability purely
by unit propagation - no variable is picked for branching. Hence, it is even quicker in
solving unsatisfiable instances than in solving the satisfiable ones. The opposite seems to
be true for the other two encodings.

7.3 Connected row-convex constraints

Proposition 7.3. If a CSP instance P contains only connected row-convex constraints,
then a clause-learning SAT-solver will decide the satisfiability of the order encoding of P
after a linear number of conflicts.

Proof. Let F be the order encoding of P . By Theorem 5.8, we know that F is in 2-CNF.
Consider the case when after unit propagation some binary clause C is falsified. The
literals of C have been assigned at the current decision level (since a previous assignment
of one of its literals would cause the clause to be either satisfied or become unit and hence

12



number of number of number of MiniSAT (sec.) MiniSAT (sec.) MiniSAT (sec.)
CSP variables CSP values constraints direct encoding log encoding order encoding

satisfiable instances

3 10 100 0.01 0.06 0.00
6 6 10 7.42 95.97 0.07
9 3 10 1.30 4.99 0.01
9 3 100 5.15 23.27 0.59
9 4 10 > 16 min 176.16 0.73
10 3 10 20.08 107.38 0.11

unsatisfiable instances

3 10 100 0.02 0.06 0.00
6 6 10 26.64 515.90 0.01
9 3 10 7.85 41.12 0.00
9 3 100 7.87 40.15 0.02
9 4 10 > 16 min 299.60 0.02
10 3 10 140.68 907.51 0.01

Table 2: Performance of MiniSAT on the direct, log and order encoding of max-closed
CSP instances of the form shown in Figure 4.

trigger further unit propagation). Each clause that caused literals of C to be assigned will
also contain literals that have been assigned at the current decision level. As an asserting
learning scheme adds a clause that contains only one variable that has been assigned at
the current decision level, it will backtrack to a unit clause and add its negation to the
clause set. As at most n unit clauses can be added, where n is the number of variables
in P , a clause-learning SAT-solver will terminate after at most n conflicts.

We wrote a program to generate instances of the form shown in Equation 2. For the
satisfiable case we ensured that each constraint in an instance satisfied some fixed random
solution. For the unsatisfiable case we added four constraints imposed on two randomly
picked variables of the form in Equation 5.

vi ≤ a ∨ vj ≤ b
vi ≥ a + 1 ∨ vj ≤ b
vi ≤ a ∨ vj ≥ b + 1
vi ≥ a + 1 ∨ vj ≥ b + 1

(5)

An example instance is shown in Figure 5.
As predicted by Theorem 5.8, the order encoding of such instances produced binary

clauses only. Comparison with the direct and log encoding is shown in Table 3.
All three encodings performed fairly well on the connected row-convex class, although

the log encoding seems to be significantly worse than the others. Since the constraints
are all binary, the direct encoding actually generates a set of 2-CNF clauses together with
at-least-one clauses, which grow with domain size.

13



(int v1 1 5)

(int v2 1 5)

(int v3 1 5)

(or (<= v1 1) (<= v2 4) )

(or (<= v2 2) (>= v3 3) )

(or (>= v3 3) (>= v1 1) )

(or (<= v3 1) (<= v2 2) )

(or (>= v3 2) (<= v2 2) )

(or (<= v3 1) (>= v2 3) )

(or (>= v3 2) (>= v2 3) )

Figure 5: An example of an unsatisfiable connected row-convex CSP instance. The last
four constraints ensure that the instance is trivially unsatisfiable.

number of number of number of MiniSAT (sec.) MiniSAT (sec.) MiniSAT (sec.)
CSP variables CSP values constraints direct encoding log encoding order encoding

satisfiable instances

100 10 100 0.01 0.01 0.00
10 100 10 0.31 6.14 0.00
100 100 10 2.85 11.76 0.02
10 100 100 15.74 645.36 0.00
10 110 100 15.75 696.07 0.00
10 200 100 226.75 > 16 min 0.00

unsatisfiable instances

100 10 100 0.01 0.02 0.00
10 100 10 0.83 14.97 0.00
100 100 10 3.21 16.67 0.01
10 100 100 5.78 368.79 0.01
10 110 100 9.72 > 16 min 0.01
10 200 100 83.33 > 16 min 0.00

Table 3: Performance of MiniSAT on the direct, log and order encoding of connected
row-convex CSP instances of the form shown in Figure 5.

8 Conclusions

The increasing efficiency of SAT-solvers has led to the development of SAT-based con-
straint solvers and various SAT encodings for CSPs have now been developed. However,
most previous comparison between such encodings has been purely empirical. In this pa-
per we gave a theory-based argument to prefer the order encoding for certain families of
constraint satisfaction problems. In particular, we showed that translating such instances
using a sparse encoding or the log encoding results in SAT instances which do not fall into
known tractable classes. However, translating such instances using the order encoding
results in SAT instances that do fall into known tractable classes. Moreover, standard
SAT-solvers will then solve them efficiently. We also provided experimental evidence

14



that, as predicted, the order encoding is a considerably better choice in practice, with
current SAT-solvers, for max-closed, connected row-convex and certain constant-closed
CSP classes than either the direct encoding or the log encoding.

We have shown that using the order encoding to translate a CSP instance that is
constant-closed for the lowest domain value gives a set of clauses satisfying the first
condition of Schaefer’s Dichotomy Theorem. Similarly, constraints that are constant-
closed under the highest domain value translate under the order encoding to clauses
that satisfy the second condition of the theorem. Max-closed constraints translate to
clauses satisfying the third condition of the theorem. By symmetry between min-closed
and max-closed constraints, min-closed constraints translate to clauses satisfying the
fourth condition of the theorem. Connected row-convex constraints translate to clauses
satisfying the fifth condition. The final, sixth, condition in Schaefer’s Theorem can never
be satisfied using the order encoding, since (for all domains with 3 or more elements) it
is already broken by the consistency clauses, ¬(x≤v,c−1) ∨ (x≤v,c). Hence we have given a
complete list of all constraint types which are encoded to tractable language classes for
SAT using the order encoding.

It would be interesting to see if other encodings could be developed which would allow
other tractable CSP languages to be translated to tractable languages for SAT, and hence
solved efficiently by SAT-based solvers.

9 Acknowledgements

The provision of an EPSRC Doctoral Training Award to Justyna Petke is gratefully
acknowledged. We would also like to thank the reviewers of SAT2011 and Andras Salamon
for their valuable comments.

References

[1] 3rd internat. CSP solver competition, http://www.cril.univ-artois.fr/CPAI08/.

[2] 4th internat. CSP solver competition, http://www.cril.univ-artois.fr/CPAI09/.

[3] C. Anstegui and F. Manyà. Mapping Problems with Finite-Domain Variables into
Problems with Boolean Variables. Theory and Applications of Satisfiability Testing
- SAT 2004, vol. 3542, pages 1–15, Springer 2005.

[4] A. Atserias, J. K. Fichte, and M. Thurley. Clause-learning algorithms with many
restarts and bounded-width resolution. In Journal of Artificial Intelligence Research
(JAIR), volume 40, pages 353–373, JAIR, 2011.

[5] C. Bessiere and R. Debruyne. Theoretical analysis of singleton arc consistency and
its extensions. in Artificial Intelligence Journal, volume 172:1, pages 29–41, AI 2008.

[6] H. Chen, V. Dalmau and B. Grußien. Arc Consistency and Friends. In The Com-
puting Research Repository (CoRR), volume abs/1104.4993, CoRR 2011.

15



[7] D. Cohen and P. Jeavons. The complexity of constraint languages. Handbook of
Constraint Programming, Chapter 8, pages 245–280, Elsevier 2006.

[8] D. Cohen, P. Jeavons, P. Jonsson and M. Koubarakis. Building tractable disjunctive
constraints. Journal of the ACM, vol. 47, pages 826–853, ACM 2000.

[9] D. Cohen, P. Jeavons, and M. Gyssens A unified theory of structural tractability
for constraint satisfaction problems. Journal of Computer and System Sciences, vol.
74, pages 721–743, Elsevier 2007.

[10] M.C. Cooper, D. Cohen, and P. Jeavons. Characterising tractable constraints. Ar-
tificial Intelligence Journal, vol. 65, pages 347–361, Elsevier 1994.

[11] J.M. Crawford and A.B. Baker. Experimental results on the application of satis-
fiability algorithms to scheduling problems. In Proceedings of the twelfth national
conference on Artificial intelligence - AAAI’94, volume 2, AAAI 1994.

[12] Y. Deville, O. Barette, and P. van Hentenryck. Constraint satisfaction over connected
row convex constraints. Proceedings of IJCAI’97, pages 405–411, IJCAI 1997.

[13] W. Dowling and J. Gallier. Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. Journal of Logic Programming, vol. 1, pages 267–284,
Elsevier 1984.

[14] M. Grohe. The Complexity of Homomorphism and Constraint Satisfaction Problems
Seen from the Other Side. Journal of the ACM, vol. 54, pages 1–24, ACM 2007.

[15] H.H. Hoos. SAT-encodings, search space structure, and local search performance.
Proceedings of IJCAI’99, pages 296–302, IJCAI 1999.

[16] P. Jeavons and M.C. Cooper. Tractable constraints on ordered domains. Artificial
Intelligence Journal, pages 327–339, Elsevier 1995.

[17] P. Jeavons, D. Cohen, and M. Gyssens. Closure Properties of Constraints. Journal
of the ACM, vol. 44, pages 527–548, ACM 1997.

[18] P. Jeavons and J. Petke. Local consistency and SAT-solvers. Principles and Practice
of Constraint Programming - CP’10, pages 398–413, Springer 2010.

[19] The MiniSat page. http://minisat.se/.

[20] S.D. Prestwich. CNF encodings. Handbook of Satisfiability, Chapter 2, pages 75–97,
IOS Press 2009.

[21] T.J. Schaefer. The Complexity of Satisfiability Problems. Proceedings of the 10th
ACM Symposium on Theory of Computing - STOC’78, pages 216–226, ACM 1978.

[22] Sugar - a SAT-based constraint solver. http://bach.istc.kobe-u.ac.jp/sugar/.

16



[23] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear CSP
into SAT. Constraints Journal, vol. 14, pages 254–272, Springer 2009.

[24] L. Zhang and S. Malik. The quest for efficient Boolean satisfiability solvers. Computer
Aided Verification, vol. 2404, pages 641–653, Springer 2002.

17


