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ABSTRACT.
We consider the master/slave parameterised reachability problem for networks of pushdown sys-
tems, where communication is via a global store using only non-atomic reads and writes. We show
that the control-state reachability problem is decidable. As part of the result, we provide a construc-
tive extension of a theorem by Ehrenfeucht and Rozenberg to produce an NFA equivalent to certain
kinds of CFG. Finally, we show that the non-parameterised version is undecidable.

1 Introduction
A parameterised reachability problem is one where the system is defined in terms of a given
input, usually a number n. We then ask whether there is some n such that the resulting
system can reach a given state. An early result shows that this problem is undecidable, even
when the system defined for each n is a finite state machine: one simply has to define the nth
system to simulate a Turing machine up to n steps [1]. Thus, the Turing machine terminates
iff there is some n such that the nth system reaches a halting state.

Such a result, however, is somewhat pathological. More natural parameterised prob-
lems concentrate on the replication of components. For instance, we may have a leadership
election algorithm amongst several nodes. For this algorithm we would want to know, for
example, whether there is some n such that, when n nodes are present, the routine fails to
elect a leader. This problem walks the line between decidability and undecidability, even
with finite-state components: in a ring network, when nodes can communicate to their left
and right neighbours directly, Suzuki proves undecidability [30]; but, in less disciplined
topologies, the problem becomes decidable [14].

In particular, the above decidability result considers the following problem: given a
master process U and slave C, can the master in parallel with n slaves reach a given state.
Communication in this system is by anonymous pairwise synchronisation (that is, a receive
request can be satisfied by any thread providing the matching send, rather than a uniquely
identified neighbour). This problem reduces to Petri-nets, which can, for each state of C,
keep a count of the number of threads in that state. When communication is via a finite-
state global store, which all threads can read from and write to (atomically), it is easy to see
that decidability can be obtained by the same techniques.

These results concern finite-state machines. This is ideal for hardware or simple pro-
tocols. When the components are more sophisticated (such as threads created by a web-
server), a more natural and expressive (infinite-state) program model — allowing one to
accurately simulate the control flow of first-order recursive programs [18] — is given by
pushdown systems (PDSs). Such systems have proved popular in the sequential setting
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(e.g. [7, 12, 27, 25]), with several successful implementations [5, 6, 27]. Unfortunately, when
two PDSs can communicate, reachability quickly becomes undecidable [24].

In recent years, many researchers have tackled this problem, proposing many different
approximations, and restrictions on topology and communication behaviour (e.g. [21, 8, 9,
10, 28, 26, 16]). A pleasantly surprising (and simple) result in this direction was provided
by Kahlon [19]: the parameterised reachability problem for systems composed of n slaves
C communicating by anonymous synchronisation is decidable. This result relies heavily on
the inability of the system to restrict the number of active processes, or who they commu-
nicate with. Indeed, in the presence of a master process U , or communication via a global
store, undecidability is easily obtained.

In this work we study the problem of adding the master process and global store. To
regain decidability, we only allow non-atomic accesses to the shared memory. We then show
— by extending a little-cited theorem of Ehrenfeucht and Rozenberg [11] — that we can
replace the occurrences of C with regular automata. This requires the introduction of dif-
ferent techniques than those classically used. Finally, a product construction gives us our
result. In addition, we show that, when n is fixed, the problem remains undecidable, for all
n. For clarity, we present the single-variable case here. In the appendix we show that the
techniques extend easily to the case of k shared variables.

After discussing further related work, we begin in Section 2 with the preliminaries. In
Section 3 we define the systems that we study. Our main result is given is Section 4 and
the accompanying undecidability proof appears in Section 5. In Section 6 we show how to
obtain a constructive version of Ehrenfeucht and Rozenberg’s theorem. Finally, we conclude
in Section 7.

Related Work Many techniques attack parameterisation (e.g. network invariants and sym-
metry). Due to limited space, we only discuss PDSs here. In addition to results on param-
eterised PDSs, Kahlon shows decidability of concurrent PDSs communicating via nested-
locks [20]. In contrast, we cannot use locks to guarantee atomicity here.

A closely related model was studied by Bouajjani et al. in 2005. As we do, they allow
PDSs to communicate via a global store. They do not consider parameterised problems
directly, but they do allow the dynamic creation of threads. By dynamically creating an
arbitrary number of threads at the start of the execution, the parameterised problem can be
simulated. Similarly, parameterisation can simulate thread creation by activating hitherto
dormant threads. However, since Bouajjani et al. allow atomic read/write actions to occur,
the problem they consider is undecidable; hence, they consider context-bounded reachability.

Context-bounded reachability is a popular technique based on the observation that
many bugs can be identified within a small number of context switches [23]. This idea has
been extended to phase-bounded systems where only one stack may be decreasing in any one
phase [2, 29]. Finally, in another extension of context-bounded model-checking, Ganty et
al. consider bounded under-approximations where runs are restricted by intersecting with a
word of the form a∗1 . . . a∗n [13]. In contrast to this work, these techniques are only accurate
up to a given bound. That is, they are sound, but not complete. Recently, La Torre et al.
gave a sound algorithm for parameterised PDSs together with a technique that may detect
completeness in the absence of recursion [32].
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Several models have been defined for which model-checking can be sound and com-
plete. For example, Bouajjani et al. also consider acyclic topologies [4, 10]. As well as
restricting the network structure, Sen and Viswanathan [28], La Torre et al. [31] and later
Heußner et al. [16], show how to obtain decidability by only allowing communications to
occur when the stack satisfies certain conditions.

2 Preliminaries
We recall the definitions of finite automata and pushdown systems and their language
counter-parts. We also state a required result by Ehrenfeucht and Rozenberg.

DEFINITION 1.[Non-Deterministic Finite Word Automata] We define a non-deterministic
finite word automaton (NFA) A as a tuple (Q, Γ, ∆, q0,F ) where Q is a finite set of states, Γ
is a finite alphabet, q0 ∈ Q is an initial state,F ⊆ Q is a set of final states, and ∆ ⊆ Q× Γ×Q
is a finite set of transitions.

We will denote a transition (q, γ, q′) using the notation q
γ−→ q′. We call a sequence

q1
γ1−→ q2

γ2−→ · · · γz−1−−→ qz a run of A. It is an accepting run if q1 = q0 and qz ∈ F . The
language L(A) of an NFA is the set of all words labelling an accepting run. Such a language
is regular.

DEFINITION 2.[Pushdown Systems] A pushdown system (PDS)P is a tuple (Q, Σ, Γ, ∆, q0,F )
where Q is a finite set of control states, Σ is a finite stack alphabet with a special bottom-of-
stack symbol⊥, Γ is a finite output alphabet, q0 ∈ Q is an initial state, F ⊆ Q is a set of final
states, and ∆ ⊆ (Q× Σ)× Γ× (Q× Σ∗) is a finite set of transition rules.

We will denote a transition rule ((q, a), γ, (q′, w′)) using the notation (q, a)
γ
↪−→ (q′, w′).

The bottom-of-stack symbol is neither pushed nor popped. That is, for each rule (q, a)
γ
↪−→

(q′, w′) ∈ ∆ we have, when a 6=⊥, w does not contain⊥, and, a =⊥ iff w′ = w ⊥ and w does
not contain ⊥. A configuration of P is a tuple (q, w), where q ∈ Q is the current control
state and w ∈ Σ∗ is the current stack contents. There exists a transition (q, aw)

γ−→ (q′, w′w)

of P whenever (q, a)
γ
↪−→ (q′, w′) ∈ ∆. We call a sequence c0

γ1−→ c1
γ2−→ · · · γz−→ cz a run of

P . It is an accepting run if c0 = (q0,⊥) and cz = (q, w) with q ∈ F . The language L(P)
of a pushdown system is the set of all words labelling an accepting run. Such a language
is context-free. Note, in some cases, we omit the output alphabet Γ. In this case, the only
character is the empty character ε, with which all transitions are labelled. In general, we
will omit the empty character ε when it labels a transition.

We use a theorem of Ehrenfeucht and Rozenberg [11]. With respect to a context-free
language L, a strong iterative pair is a tuple (x, y, z, u, t) of words such that for all i ≥ 0
we have xyizuit ∈ L, where y and u are non-empty words. A strong iterative pair is very
degenerate if, for all i, j ≥ 0 we have that xyizujt ∈ L.

THEOREM 3.[[11]] For a given context-free language L, if all strong iterative pairs are very
degenerate, then L is regular.

However, Ehrenfeucht and Rozenberg do not present a constructive algorithm for ob-
taining a regular automaton accepting the same language as an appropriate context-free
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language. Hence, we provide such an algorithm in Section 6.

3 Non-Atomic Pushdown Systems
Given an alphabet G, let r(G) = { r(g) | g ∈ G } and w(G) = { w(g) | g ∈ G }. These
alphabets represent read and write actions respectively of the value g.

DEFINITION 4.[Non-atomic Pushdown Systems] Over a finite alphabet G, a non-atomic
pushdown system (naPDS) is a tuple P = (Q, Σ, ∆, q0,G) where Q is a finite set of control-
states, Σ is a finite stack alphabet with a bottom-of-stack symbol ⊥, q0 ∈ Q is a designated
initial control state and ∆ ⊆ (Q× Σ)× (r(G) ∪ w(G) ∪ { ε })× (Q× Σ∗).

That is, a non-atomic pushdown system is a PDS where the output alphabet is used to
signal the interaction with a global store, and there are no final states: we are interested in
the behaviour of the system, rather than the language it defines.

DEFINITION 5.[Networks of naPDSs ] A network of n non-atomic pushdown systems (NPDS)
is a tuple N = (P1, . . . ,Pn,G, g0) where, for all 1 ≤ i ≤ n, Pi =

(
Qi, Σi, ∆i, qi

0,G
)

is a NPDS
over G and g0 ∈ G is the initial value of the global store.

A configuration of an NPDS is a tuple (q1, w1, . . . , qn, wn, g) where g ∈ G and for each
i, qi ∈ Qi and wi ∈ Σ∗i . There is a transition (q1, w1, . . . , qn, wn, g) −→ (q′1, w′1, . . . , q′n, w′n, g′)
whenever, for some 1 ≤ i ≤ n and all 1 ≤ j ≤ n with i 6= j, we have q′j = qj, w′j = wj, and
• (qi, wi) −→ (q′i, w′i) is a transition of Pi and g′ = g; or

• (qi, wi)
r(g)−−→ (q′i, w′i) is a transition of Pi and g′ = g; or

• (qi, wi)
w(g′)−−−→ (q′i, w′i) is a transition of Pi.

A path π of N is a sequence of configurations c1c2 . . . cm such that, for all 1 ≤ i < m,
ci −→ ci+1. A run of N is a path such that c1 =

(
q1

0,⊥, . . . , qn
0 ,⊥, g0

)
.

4 The Parameterised Reachability Problem
We define and prove decidability of the parameterised reachability problem for naPDSs. We
finish with a few remarks on the extension to multiple variables, and on complexity issues.

DEFINITION 6.[Parameterised Reachability] For given naPDSs U and C over G, initial store
value g0 and control state q, the parameterised reachability problem asks whether there is

some n such that the NPDS Nn =

U , C, . . . , C︸ ︷︷ ︸
n

,G, g0

 has a run to some configuration

containing q.

In this section, we aim prove the following theorem.

THEOREM 7. The parameterised reachability problem for NPDSs is decidable.

Without loss of generality, we can assume q is a control-state of U (a C process can
write its control-state to the global store for U to read). The idea is to build an automaton
which describes for each g ∈ G the sequences g1 . . . gm ∈ G∗ that need to be read by some
C process to be able to write g to the global store. We argue using Theorem 3 that such
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read languages are regular (and construct regular automata using Lemma 18). Broadly this
is because, between any two characters to be read, any number of characters may appear in
the store and then be overwritten before the process reads the required character. We then
combine the resulting languages with U to produce a context-free language that is empty iff
the control-state q is reachable.

4.1 Regular Read Languages

Given a non-atomic pushdown system P we define for each g ∈ G the pushdown system
Pw(g) which is P augmented with a new unique control-state f , and a transition (q, a) ↪−→

( f , a) whenever P has a rule (q, a)
w(g)
↪−−→ (q′, w). Furthermore, replace all (q, a)

w(g′)
↪−−→ (q′, w)

rules with (q, a)
#
↪−→ (q′, w) where # /∈ G. These latter rules signify that the global store con-

tents have been changed, and that a new value must be written before reading can continue.
This implicitly assumes that C does not try to read the last value it has written. This can be
justified since, whenever this occurs, because we are dealing with the parameterised version
of the problem, we can simply add another copy of C to produce the required write.

We interpret f as the sole accepting control state of Pw(g) and thus L
(
Pw(g)

)
is the

language of reads (and writes) that must occur for g to be written. We then allow any
number of (ignored) read and # events∗ to occur, producing the read language Lw(g) for
w(g) defined as

Lw(g) =
{

R∗γ1R∗ . . . R∗γzR∗
∣∣∣ γ1 . . . γz ∈ L

(
Pw(g)

) }
where R = { r(g′) | g′ ∈ G } ∪ { # }.
LEMMA 8. For all g ∈ G, Lw(g) is regular and an NFA A accepting Lw(g), of doubly-
exponential size, can be constructed in doubly-exponential time.

PROOF. Take any strong iterative pair (x, y, z, t, u) of Lw(g). To satisfy the preconditions of
Theorem 3, we observe that xzu ∈ Lw(g) since we have a strong iterative pair. Then, from
the definition of Lw(g) we know xR∗zR∗u ⊆ Lw(g) and hence, for all i, j, xyiztju ⊆ Lw(g) as
required. Thus Lw(g) is regular. The construction of A comes from Lemma 18.

4.2 Simulating the System

We build a PDS that recognises a non-empty language iff the parameterised reachability
problem has a positive solution. The intuition behind the construction of Psys is that, if a
collection of C processes have been able to use the output of U to produce a write of some g
to the global store, then we may reproduce that group of processes to allow as many writes
g to occur as needed. Hence, once qi ∈ Fi has been reached, gi can be written at any later
time. The # character is used to prevent sequences such as r(g)w(g′)r(g) occurring in read
languages, where no process is able to provide the required write w(g) that must occur after
w(g′).

∗Extra # events will not allow spurious runs, as they only add extra behaviours that may cause the system to
become stuck. This is because # is never read by a process.
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DEFINITION 9.[Psys] Given an naPDS U =
(
QU , Σ, ∆U , qU0 ,G

)
with initial store value g0, a

control-state f ∈ QU , and, for each g ∈ G, a regular automaton

Aw(g) =
(
Qw(g), R, ∆w(g),Fw(g), qw(g)

0

)
,

we define the PDS Psys = (Q, Σ, ∆, q0,F ) where, if G = { g0, . . . , gm }, then
• Q = QU ×Qw(g0) × · · · × Qw(gm) × (G ∪ { # }),
• q0 =

(
qU0 , qw(g0)

0 , . . . , qw(gm)
0 , g0

)
,

• F = { f } ×Qw(g0) × · · · × Qw(gm) × (G ∪ { # }),
and ∆ is the smallest set containing all (q, a) ↪−→ (q′, w) where q = (qU , q0, . . . , qm, g) and,
• q′ = (q′U , q0, . . . , qm, g) and (qU , a) ↪−→ (q′U , w) ∈ ∆U , or

• q′ = (q′U , q0, . . . , qm, g) and (qU , a)
r(g)
↪−−→ (q′U , w) ∈ ∆U , or

• q′ = (q′U , q0, . . . , qm, g′) and (qU , a)
w(g′)
↪−−→ (q′U , w) ∈ ∆U , or

• q′ = (qU , q0, . . . , q′i, . . . , qm, g) and qi
r(g)−−→ q′i ∈ ∆i, qi /∈ Fi and w = a, or

• q′ = (qU , q0, . . . , q′i, . . . , qm, #) and qi
#−→ q′i ∈ ∆i, qi /∈ Fi and w = a, or

• q′ = (qU , q0, . . . , qm, gi), qi ∈ Fi and w = a.

LEMMA 10. The PDS Psys has a run to some control-state in F iff the parameterised reacha-
bility problem for U , C, G, g0 and q has a positive solution.

The full proof of correctness is given in the appendix. To construct a run reaching q
from an accepting run of Psys we first observe that U is modelled directly. We then add a
copy of C for every individual write to the global component of Psys. These slaves are able to
read from/write to the global component finally enabling them to perform their designated
write. This is because (a part of) the changes to the global store is in the read language of
the required write.

In the other direction, we build an accepting run of Psys from a run of the parame-
terised system reaching q. To this end, we observe again that we can simulate U directly. To
simulate the slaves, we take, for every character g ∈ G written to the store, the copy of C
responsible for its first write. From this we get runs of theAw(g) that can be interleaved with
the simulation of U and each other to create the required accepting run, where additional
writes of each g are possible by virtue of Aw(g) having reached an accepting state (hence we
require no further simulation for these writes).

Example Let U perform the actions r(1)r(2)w(ok)r( f ) and C run either w(1)r(ok)w(go) or
w(2)r(go)w( f ). Let L1, . . . ,L4 denote the following read languages.

Lw(1) = Lw(2) = R∗ Lw(go) = R∗#R∗r(ok)R∗ Lw( f ) = R∗#R∗r(go)R∗

Take two slaves C1 and C2 and the run (the subscript denotes the active process):

w(1)C1
r(1)Uw(2)C2

r(2)Uw(ok)U r(ok)C1
w(go)C1

r(go)C2
w( f )C2

r( f )U .

This can be simulated by the following actions on the global component of Psys:

w(#)L3
w(1)L1

r(1)Uw(#)L4
w(2)L2

r(2)Uw(ok)U r(ok)L3
w(go)L3

r(go)L4
w( f )L4

r( f )U .

Note, we have scheduled the w(#) actions immediately before the write they correspond to.
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4.3 Complexity and Multiple Stores

We obtain for each g ∈ G an automaton Aw(g) of size O
(

22 f (n)
)

in O
(

22 f (n)
)

time for some
polynomial f (using Lemma 18) where n is the size of the problem description. The push-
down system Psys, then, has O

(
22 f ′(n)

)
many control states for a polynomial f ′. It is well

known that reachability/emptiness for PDSs is polynomial in the size of the system (e.g.
Bouajjani et al. [7]), and hence the entire algorithm takes doubly-exponential time. For the
lower bound, one can reduce from SAT to obtain an NP-hardness result (as shown in the
appendix). Further work is needed to pinpoint the complexity precisely.

The algorithm presented above only applies to a single shared variable. A more natural
model has multiple shared variables. We may allow k variables with the addition of k global
components G1, . . . ,Gk. The main change required is the use of symbols #1, . . . , #k rather than
simply # and to build Psys to be sensitive to which store is being written to (or erased with
some #i). This does not increase the complexity since n = |G1| + · · · + |Gk| in the above
analysis and the cost of the k-product of variables does not exceed the cost of the product
of the Aw(g). We give the full details in the appendix. Note that, using the global stores,
we can easily encode a PSPACE Turing machine using U , without stack, and an empty C.
Hence the problem for multiple variables is at least PSPACE-hard.

5 Non-parameterized Reachability
We consider the reachability problem when the number of processes n is fixed. In the case
when 1 ≤ n ≤ 2, undecidability is clear: even with non-atomic read/writes, the two pro-
cesses can organise themselves to overcome non-atomicity. When n > 2, it becomes harder
to co-ordinate the copies of C. A simple trick recovers undecidability. More formally, then:

DEFINITION 11.[Non-parameterized Reachability] For given n and naPDSs U and C over
G, initial store value g0 and control state q, the non-parameterised reachability problem asks

whether the NPDSNn =

U , C, . . . , C︸ ︷︷ ︸
n

,G, g0

 has a run to some configuration containing q.

THEOREM 12. The non-parameterized reachability problem is undecidable when n ≥ 1.
When n > 1, the result holds even when U is null.

PROOF. We reduce from the undecidability of the emptiness of the intersection of two
context-free languages. First fix some n ≥ 2 and two pushdown systems P1, P2 accepting
the two languages L1 and L2.

We define C to be the disjunction of C1, . . . , Cn. That is, C makes a non-deterministic
choice of which Ci to run (1 ≤ i ≤ n). Let 1, . . . , n, f , ! be characters not in the alphabet of L1
and L2. The process C1 will execute, for each γ1 . . . γz ∈ L1, a sequence

w(1)r(n)w(γ1)r(!)w(γ2)r(!) . . . w(γz)r(!)w( f ) .

It is straightforward to build C1 from P1. Similarly, the process C2 will execute, for each
a1 . . . am ∈ L2, a sequence

r(1)w(2)r(γ1)w(!)r(γ2)w(!) . . . r(γz)w(!)r( f )
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and move to a fresh control-state q f . It is straightforward to build C2 fromP2. The remaining
processes for 3 ≤ i ≤ n simply perform the sequence r(i− 1)w(i).

The control-state q f can be reached iff the intersection of L1 and L2 is non-empty. To
see this, first consider a word witnessing the non-emptiness of the intersection. There is
immediately a run of Nn reaching q f where each ith C process behaves as Ci.

In the other direction, take a run ofNn reaching q f . First, observe that for each 1 ≤ i ≤ n
there must be some copy of C running Ci. This is because, otherwise, there is some i not
written to the global store, and hence all i′ ≥ i, including n, are not written. Then C1 can
never write f and C2 can never move to q f . Finally, take the sequence a1 . . . am written by C1
(and read by C2). This word witnesses non-emptiness as required.

In the case when n = 1, we simply have U run C1 and C run C2.

6 Making Ehrenfeucht and Rozenberg Constructive
We show how to make Theorem 3 constructive. To prove regularity, Ehrenfeucht and Rozen-
berg assign to each word a set of types θ(w), and prove that, if θ(w) = θ(w′), then w ∼ w′ in
the sense of Myhill and Nerode [17]. We first show how to decide θ(w) = θ(w′), and then
show how to build the automaton. For the sake of brevity, we will assume familiarity with
context-free grammars (CFGs) and their related concepts [17].

For our purposes, we consider a context-free grammar (in Chomsky normal form) G to
be a collection of rules of the form A → BC or A → a, where A, B and C are non-terminals
and a is a terminal in Γ. There is also a designated start non-terminal S. A word w is in L(G)
if there is a derivation-tree with root labelled by S such that an internal node labelled by A
has left- and right-children labelled by B and C when we have A→ BC in the grammar and
a leaf node is labelled by a when it has parent labelled by A (with one child) and A → a is
in the grammar. Furthermore w is the yield of the tree; that is, w labels the leaves. Note, all
nodes must be labelled according to the scheme just described. One can also consider the
derivation of w in terms of rewrites from S, where the parent-child relationship in the tree
gives the requires rewriting steps.

6.1 Preliminaries

We first recall some relevant definitions from Ehrenfeucht and Rozenberg. We write #a(w)
to mean the number of occurrences of the character a in the word w.

DEFINITION 13.[Type of a Word] Let Γ be an alphabet and let x, w ∈ Γ∗, We say that w is of
type x, or that x is a type of w (denoted τ(x, w)) if

1. for every a ∈ Γ, #a(x) ≤ 1, and
2. there exists a homomorphism h such that

(a) for every a ∈ Γ, h(a) ∈ a ∪ aΓ∗a, and
(b) h(x) = w.

If x satisfies the above, we also say that x is a type in Γ∗.

Given a CFG G in Chomsky normal form, we assume a derivation tree T of G is a
labelled tree where all internal nodes are labelled with the non-terminal represented by
the node, and all leaf nodes are labelled by their corresponding characters in Γ. Given a
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derivation tree T, Ehrenfeucht and Rozenberg define a marked tree T with an expanded set
of non-terminals and terminals. Simultaneously, we will define the spine of a marked tree.
Intuitively, we take a path in the tree and mark it with the productions of G that have been
used and the directions taken.

Given an alphabet of terminals and non-terminals Σ and a derivation tree T, let Σ =
{ (A, B, C, k) | k ∈ { 1, 2 } ∧ A→ BC ∈ G } ∪ { (A, a) | A→ a ∈ G }. This is the marking
alphabet of G.

DEFINITION 14.[Spine of a Derivation Tree] Let T be a derivation tree in G and let ρ =
v0 . . . vs be a path in T where s ≥ 1, v0 is the root of T, vs is a leaf of T and `(v0), . . . , `(vs)
are the labels corresponding to nodes of ρ. Now for each node vj, 0 ≤ j ≤ s, change its label
to `

(
vj
)

as follows:
1. if A→ BC is the production used to rewrite the node j (hence `

(
vj
)
= A) and vj has a

direct descendant to the left of ρ, then `
(
vj
)

is changed to `
(
vj
)
= (A, B, C, 1),

2. if A→ BC is the production used to rewrite the node j and vj has a direct descendant
to the right of ρ, then `

(
vj
)

is changed to `
(
vj
)
= (A, B, C, 2),

3. if A→ a is the production used to rewrite the node j then `
(
vj
)

is changed to `
(
vj
)
=

(A, a),
4. `(vs) = `(vs).

The resulting tree is called the marked ρ-version of T and denoted by T(ρ). The word
`(v0) . . . `(vs) is referred to as the spine of T(ρ) and denoted by Spine

(
T(ρ)

)
.

We write δ(w, z) whenever there exists some u such that the word wu has a derivation
tree T in G with a path ρ ending on the last character of w and with Spine

(
T(ρ)

)
= z. Then,

we have θ(w) = { x | δ(w, z) ∧ τ(x, z) }. Intuitively, this is the spine-type of w.
Finally, Ehrenfeucht and Rozenberg show that, whenever all strong iterative pairs of G

are very degenerate, then θ(w) = θ(w′) implies w ∼ w′. Since there are a finite number of
types x, we have regularity by Myhill and Nerode.

6.2 Building the Automaton

We show how to make the above result constructive. The first step is to decide θ(w) = θ(w′)
for given w and w′. To do this, from G and some type x, we build Gx which generates all w
such that δ(w, z) holds for some z of type x. Thus x ∈ θ(w) iff w ∈ L(Gx).

First note that there is a simple (polynomial) regular automaton Ax recognising, for
x = a1 . . . as the language (

a1 ∪ a1Σ∗a1

)
. . .
(

as ∪ asΣ
∗as

)
and z ∈ L(Ax) iff z is of type x. The idea is to build this automaton into the productions
of G to obtain Gx such that all characters to the left (inclusive) of the path chosen by Ax are
kept, while all those to the right are erased.

DEFINITION 15.[Gx] For a given word type x and CFG G, the grammar Gx has the following
production rules:
• all productions in G,

• Aq → Bq′Cε for each A→ BC ∈ G and q
(A,B,C,1)−−−−−→ q′ in Ax,
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• Aq → BCq′ for each A→ BC ∈ G and q
(A,B,C,2)−−−−−→ q′ in Ax,

• Aq → a for each A→ a ∈ G and q
(A,a)−−→ q′ in Ax where q′ is a final state,

• Aε → BεCε for each A→ BC ∈ G,
• Aε → ε for each A→ a ∈ G.

The initial non-terminal is Sq0 where S is the initial non-terminal of G and q0 is the initial
state of Ax.

The correctness of Gx is straightforward and hence relegated to the appendix.

LEMMA 16. For all w, we have w ∈ L(Gx) iff x ∈ θ(w).

LEMMA 17.[Deciding θ(w) = θ(w′)] For given w and w′, we can decide θ(w) = θ(w′) in
O
(

2 f (n)
)

time for some polynomial f where n is the size of G.

PROOF. For a given alphabet Σ, there are ∑m
r=1 r! types where m =

∣∣Σ∣∣. Since m is poly-

nomial in n, there are O
(

2 f (n)
)

word types. Hence, we simply check w ∈ L(Gx) and

w′ ∈ L(Gx) for each type x. This is polynomial for each x, giving O
(

2 f (n)
)

in total.

From this, we can construct, following Myhill and Nerode, the required automaton,
using a kind of fixed point construction beginning with an automaton containing the state
qε from which the equivalence class associated to the empty word will be accepted.

LEMMA 18. For a CFG G such that all strong iterative pairs are very degenerate, we can
build an NFA A of O

(
22 f (n)

)
size in the same amount of time, where n is the size of G.

PROOF. Let G be a CFG such that all strong iterative pairs are degenerate. We build an
NFA A such that L(G) = L(A) by the following worklist algorithm.

1. Let the worklist contain only ε (the empty word) and A have the initial state qε.
2. Take a word w from the worklist.
3. If w ∈ L(G), make qw a final state.
4. For each a ∈ Γ

(a) if there is no state qw′ such that θ(wa) = θ(w′), add qwa to A and add wa to the
worklist,

(b) take qw′ in A such that θ(wa) = θ(w′),
(c) add the transition qw

a−→ qw′ to A.
5. If the worklist is not empty, go to point 2, else, return A.

Since this follows the Myhill-Nerode construction, using θ(w) = θ(w′) as a proxy for
w ∼ w′, we have that the algorithm terminates and is correct. Hence, with the observation
that there are O

(
22 f (n)

)
different values of the sets θ(w), we have the lemma.

7 Conclusions and Future Work

In this work, we have studied the parameterised master/slave reachability problem for
pushdown systems with a global store. This provides an extension of work by Kahlon
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which did not allow a master process, and communication was via anonymous synchroni-
sation; however, this is obtained at the expense of atomic accesses to global variables. Our
algorithm introduces new techniques to pushdown system analysis.

An initial inspiration for this work was the study of weak-memory models, which do
not guarantee that — in a multi-threaded environment — memory accesses are sequentially
consistent. In general, if atomic read/writes are permitted, the verification problem is harder
(for example, Atig et al. relate the finite-state case to lossy channel machines [3]); hence, we
removed atomicity as a natural first step. It is not clear how to extend our algorithm to
accommodate weak-memory models and it remains an interesting avenue of future work.

Another concern is the complexity gap between the upper and lower bounds. We con-
jecture that the upper bound can be improved, although we may require a new approach,
since the complexity comes from the construction of regular read languages. A related ques-
tion is whether we can improve the size of the automataAw(g). Since a PDS can recognise the
language

{
a2n }

, we have a read language requiring an exponential number of a characters;
hence, theAw(g) must be at least exponential in the worst case. It is worth noting that Meyer
and Fischer give a language whose deterministic regular automaton is doubly-exponential in
the size of the corresponding deterministic PDS [22]. However, in the appendix, we provide
an example showing that this language is not very degenerate. If the PDS is not determin-
istic, Meyer and Fischer prove there is no bound, in general, on the relationship in sizes.
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A Proofs for Section 4
The proof of Lemma 10 is split into the following two lemmas.

LEMMA 19. The PDS Psys has a run to some control-state in F , then the parameterised
reachability problem for U , C, G, g0 and q has a positive solution.

PROOF. Take an accepting run of Psys. We can extract a number of sequences from this
run. First, let G = g1

G, . . . , gz
G be the sequence of values written to the global (last) component

of Psys’s control-state. Note, g1
G = g0. Then, for each g ∈ G that is written to the global

component, let Rg be the sequence of read and # events that took Aw(g) from qw(g)
0 to a state

in Fw(g). Since this is accepted by the read language of g, there is a subword r
(

g1), . . . , r(gx)

of Rg and sequences of writes W0, . . . , Wx such that W0r
(

g1)W1 . . . r(gx)Wxw(g) is a run of C
(with internal transitions hidden).

Furthermore, let #i be a sequence of # characters the same length as Wi. Notice, we can
fix a sub-sequence Gg = #0g1 · · · gx#xg of Rg corresponding to a run of C in the sense that,
# characters represent some write action, the gh for all 1 ≤ h ≤ x are read events of gh, and
g is a write of g. Similarly, U has a sub-sequence GU leading to q. This sequence is mapped
on to G as follows. The sequence G partitions the run of Psys into contiguous sections with
each gi

G beginning a new section. Since Gg is a sub-sequence of Rg which is in turn a sub-
sequence of the run of Psys, there is a natural mapping of elements of Gg to the transitions
in the run of Psys. Each character is mapped to the element of G that begins the section the
transition occurs in. Similarly, U has a sequence GU leading to q.

We create the NPDS which has a unique process C for each gi
G in G that is not # and

is not written by U (that is, a process for each individual write). We build the run in z
segments: one for each gi

G. In each segment, all processes whose sub-sequence Gg or GU
maps a character onto gi

G will be scheduled to make the corresponding transitions. These
can be scheduled in any order, except the process running first in the segment must be the
process responsible for writing gi

G. When gi
G = #, the process will not write # to the store,

but some other character. Since no process reads # this is safe.
Observe that there may be some gi

G that are not written by any process. In this case
gi

G = # (since we allowed # to occur at any time) and, because no process reads #, the
corresponding segment is merely ε.

LEMMA 20. If the parameterised reachability problem for U , C, G, g0 and q has a positive
solution, then Psys has a run to some control-state in F .

PROOF. Take a run C = c0c1 . . . cz of the NPDS with n copies of C that reaches q. From this,
we build an accepting run π ofPsys. The initial configuration of π is

(
qU0 , qw(g0)

0 , . . . , qw(gm)
0 , g0

)
.

Assume we have a run πi corresponding to the run of the NPDS up to ci. This run will have
the property that the first component (the control-state of U ) of the last configuration in πi
will match the control-state of U in ci. Hence, πz will be the required accepting run.

Take the first write of w(g) of each g ∈ G that is written by some copy of C. Take the run
of C that produced the write which is a sequence of reads and writes W0R1W1 . . . RxWx (with
internal moves omitted). Let #j be a sequence of # characters with the same length as Wj.

There is as accepting run qw(g)
0

γ1−→ qw(g)
1

γ2−→ · · ·
γy−→ qw(g)

y ofAw(g) where #0R1#1R1 . . . Rx#x =
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γ1 . . . γy. Furthermore, γ1 . . . γy can be mapped onto a sub-word of the sequence of actions
taken on the global component up to the first write of g.

Let
(

qUiU , qw(g0)
ig0

, . . . , qw(gm)
igm

, gi
)

be the final configuration of πi. We extend πi with the
following transitions, in order of appearance.

• For all g such that we have a maximal path qw(g)
ig

r(g)−−→ · · · r(g)−−→ qw(g)
ig+1 , make the transi-

tions to qw(g)
ig+1 . (That is, read g as many times as possible.)

• If the transition between ci and ci+1 is a move of U , then simulate the move directly.
• If the transition is a write move w(g) by a copy of C which is not responsible for the

first write of g, but is responsible for for the first write of some other g′, then advance

qw(g′)
ig′

#−→ qw(g′)
ig′

, setting the global component to # as required. Note that the transition

from qw(g′)
ig′

must be a # move since it is a write move of C and all preceding reads and
writes have been simulated.
• Further to the above, if it is a write of g by some C, we know that qw(g)

ig
is an accepting

state ofAw(g). This is because we have been simulating the sequence W0R1W1 . . . RxWx
with the accepting run #0R1#1 . . . Rx#x. Hence we can (and do) perform the write of g
to the global component.
• Other types of transitions have no further updates to πi. In particular, if the transition

is a read move by some copy of C we do not add any transitions (these moves are
taken care of more eagerly above).

This completes the construction of πi, and thus πy gives us a required accepting run of
Psys.

B Non-Atomic Pushdown Systems with Multiple Variables

B.1 Model Definition

DEFINITION 21.[Non-atomic Pushdown Systems with Multiple-Variables] Over a parti-
tioned finite alphabet G = G1 ] · · · ] Gk, a non-atomic pushdown system (naPDS) is a tuple
P = (Q, Σ, ∆, q0,G1, . . . ,Gk) whereQ is a finite set of control-states, Σ is a finite stack alpha-
bet, q0 ∈ Q is a designated initial control state and ∆ ⊆ (Q× Σ)× (r(G) ∪ w(G) ∪ { ε })×
(Q× Σ∗).

DEFINITION 22.[Networks of naPDSs with Multiple Variables] A network of n non-atomic
pushdown systems (NPDS) is a tuple N =

(
P1, . . . ,Pn,G1, . . . ,Gk, g1

0, . . . , gk
0
)

where, for all
1 ≤ i ≤ n, Pi =

(
Qi, Σi, ∆i, qi

0,G1, . . . ,Gk
)

is a NPDS over G1, . . . ,Gk and for all 1 ≤ i ≤ k,
gi

0 ∈ Gi is the initial value of the ith global store.

A configuration of an NPDS is a tuple (q1, w1, . . . , qn, wn, g1, . . . , gk) where gi ∈ Gi for
each 1 ≤ i ≤ k, and for each 1 ≤ i ≤ n, qi ∈ Qi and wi ∈ Σ∗i . There is a transition
(q1, w1, . . . , qn, wn, g1, . . . , gk) −→

(
q′1, w′1, . . . , q′n, w′n, g′1, . . . , g′k

)
whenever, for some 1 ≤ i ≤ n

and all 1 ≤ j ≤ n with i 6= j we have q′j = qj, w′j = wj, and
• (qi, wi) −→ (q′i, w′i) is a transition of Pi and for all 1 ≤ l ≤ k, g′l = gl ; or
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• (qi, wi)
r(gl)−−→ (q′i, w′i) is a transition of Pi for some 1 ≤ l ≤ k and for all 1 ≤ l′ ≤ k,

g′l′ = gl′ ; or

• (qi, wi)
w(g′l)−−−→ (q′i, w′i) is a transition of Pi for some 1 ≤ l ≤ k and for all 1 ≤ l′ ≤ k such

that l′ 6= l, g′l′ = gl′ .
A path π ofN is a sequence of configurations c1c2 . . . cz such that, for all 1 ≤ i < z, ci −→ ci+1.
A run of N is a path such that c1 =

(
q1

0,⊥, . . . , qn
0 ,⊥, g1

0, . . . , gk
0
)
.

B.2 Reachability Analysis

In this section, we aim prove the following theorem.

THEOREM 23. The parameterised reachability problem for NPDSs with multiple variables
is decidable.

Again, we assume q is a control-state of U . The idea is the same as the single variable
case, except for some minor adjustments to handle the extra variables.

Regular Read Languages

Given a non-atomic pushdown system P we define for each g ∈ G the pushdown system
Pw(g) which is P augmented with a new unique control-state f , and a transition (q, a) ↪−→

( f , a) whenever P has a rule (q, a)
w(g)
↪−−→ (q′, w). Furthermore, replace all (q, a)

w(g′)
↪−−→ (q′, w)

rules with (q, a)
#i
↪−→ (q′, w) where #i /∈ G1 ∪ · · · ∪ Gk and g′ ∈ Gi.

Again, we interpret f as the sole accepting control state of Pw(g) giving the read lan-
guage Lw(g) for w(g) defined as

Lw(g) =
{

R∗γ1R∗ . . . R∗γzR∗
∣∣∣ γ1 . . . γz ∈ L

(
Pw(g)

) }
where R = { r(g′) | g′ ∈ G } ∪ { #1, . . . , #k }.

LEMMA 24. For all g ∈ G, Lw(g) is regular and an NFA A accepting Lw(g), of doubly-
exponential size, can be constructed in doubly-exponential time.

PROOF. Identical to the single variable case.

Simulating the System

We build a PDS that recognises a non-empty language iff the parameterised reachability
problem has a positive solution. The intuition behind the construction of Psys is the same
as the single variable case, except minor adjustments are needed to handle the interaction
with multiple variables.
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DEFINITION 25.[Psys] Given an naPDS U =
(
QU , Σ, ∆U , qU0 ,G1, . . . ,Gk

)
over G = G1 ] · · · ]

Gk with initial values g1
0, . . . , gk

0, a control-state f ∈ QU , and, for each g ∈ G, a regular

automatonAw(g) =
(
Qw(g), R, ∆w(g),Fw(g), qw(g)

0

)
, we define the PDSPsys = (Q, Σ, ∆, q0,F )

where
• we let, for all i, Gi =

{
gi

0, . . . , gi
mi

}
and,

• let ~Q = Qw(g1
0)
× · · · × Qw(g1

m1)
× · · · × Qw(gk

0)
× · · · × Qw(gk

mk)
, then

• Q = QU × ~Q× (G1 ∪ { #1 })× · · · × (Gk ∪ { #k }),

• q0 =

(
qU0 , q

w(g1
0)

0 , . . . , q
w(gk

mk)
0 , g1

0, . . . , gk
0

)
,

• F = { f } × ~Q× (G1 ∪ { #1 })× · · · × (Gk ∪ { #k }),
and ∆ is the smallest set containing all (q, a) ↪−→ (q′, w) where q =

(
qU , q1

0, . . . , qk
mk

, g1, . . . , gk
)

and,
• q′ =

(
q′U , q1

0, . . . , qk
mk

, g1, . . . , gk
)

and (qU , a) ↪−→ (q′U , w) ∈ ∆U , or

• q′ =
(
q′U , q1

0, . . . , qk
mk

, g1, . . . , gk
)

and (qU , a)
r(gi)
↪−−→ (q′U , w) ∈ ∆U for some i, or

• q′ =
(
q′U , q1

0, . . . , qk
mk

, g1, . . . , g′i , . . . , gk
)

and (qU , a)
w(g′i)
↪−−−→ (q′U , w) ∈ ∆U for some g′i ∈

Gi, or

• q′ =
(

qU , q1
0, . . . , pi

j, . . . , qk
mk

, g1, . . . , gk

)
and qi

j
r(gl)−−→ pi

j ∈ ∆i
j for some l, qi

j /∈ F i
j and

w = a, or
• q′ =

(
qU , q1

0, . . . , pi
j, . . . , qk

mk
, g1, . . . , #l , . . . , gk

)
and qi

j
#l−→ pi

j ∈ ∆i
j, qi

j /∈ F i
j and w = a, or

• q′ =
(

qU , q1
0, . . . , qk

mk
, g1, . . . , gi

j, . . . , gk

)
, qi

j ∈ F i
j and w = a.

We have the following property.

LEMMA 26. The PDS Psys has a run to some control-state in F iff the parameterised reacha-
bility problem for U , C, G1, . . . ,Gk, g1

0, . . . , gk
0 and q has a positive solution.

We prove this property in the following lemmas, and conclude that the parameterised
reachability problem with multiple variables is decidable.

LEMMA 27. The PDS Psys has a run to some control-state in F , then the parameterised
reachability problem for U , C, G1, . . . ,Gk, g1

0, . . . , gk
0 and q has a positive solution.

PROOF. Take an accepting run of Psys. We can extract a number of sequences from this
run. First, let G = ~g1, . . . ,~gz be the sequence of updates to the global (last k) components
of Psys’s control-state. That is, g1 =

(
g1

0, . . . , gk
0
)
, and ~gi+1 is generated from ~gi by the next

change to a global component. Then, for each g that is written to a global component, let Rg

be the sequence of read and #1, . . . , #k events that took Aw(g) from qw(g)
0 to a state in Fw(g).

Since this is accepted by the read language of g, there is a subword r
(

g1), . . . , r(gx) of Rg
and sequences of writes W0, . . . , Wx such that W0r

(
g1)W1 . . . r(gx)Wxw(g) is a run of C (with

internal transitions hidden).
Furthermore, let #i be a sequence of actions derived from Wi by replacing each write

to a variable j with the character #j. We can fix a sub-sequence Gg = #0g1 · · · gx#xg of Rg
corresponding to the run of C above. This sequence is mapped on to G as follows. The
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sequence G partitions the run of Psys into contiguous sections with each ~gi beginning a new
section. Since Gg is a sub-sequence of Rg which is in turn a sub-sequence of the run of
Psys, there is a natural mapping of elements of Gg to the transitions in the run of Psys. Each
character is mapped to the element of G that begins the section the transition occurs in.
Similarly, U has a sequence GU leading to q.

We create the NPDS which has a unique process C for each ~gi in G that is not a #j event
for some j and is not written by U (that is, a process for each individual write). We build
the run in z segments: one for each ~gi. In each segment, all processes whose sub-sequence
Gg (when the update given by ~gi is a write of the character g) or GU maps a character onto
~gi will be scheduled to make the corresponding transitions (including internal transitions).
These can be scheduled in any order, except the process running first in the segment must
be the process responsible for writing g. When ~gi is a write of #j, the process will not write
#j to the jth component of the store, but some other character. Since no process reads #j this
is safe.

Observe that there may be some updates ~gi that are not written by any process. In
this case the update is the write of some #j (since we allowed #j to occur at any time) and,
because no process reads #j, the corresponding segment is merely ε.

LEMMA 28. If the parameterised reachability problem for U , C, G1, . . . ,Gk, g1
0, . . . , gk

0 and q
has a positive solution, then Psys has a run to some control-state in F .

PROOF. Take a run C = c0c1 . . . cz of the NPDS with n copies of C that reaches q. From
this, we build an accepting run π of Psys. The initial configuration of π is(

qU0 , q
w(g1

0)
0 , . . . , q

w(gk
mk)

0 , g1
0, . . . , gk

0

)
.

Assume we have a run πi corresponding to the run of the NPDS up to ci. This run will have
the property that the first component (the control-state of U ) of the last configuration in πi
will match the control-state of U in ci. Hence, πz will be the required accepting run.

Take the first write of w(g) for each g ∈ G that is written by some copy of C. Take the
run of C that produced the write which is a sequence of reads and writes W0R1W1 . . . RxWx
(with internal moves omitted). Let #j be a sequence of #1, . . . , #k characters derived from Wj
as in the proof of Lemma 27. There is an accepting run of Aw(g)

qw(g)
0

γ1−→ qw(g)
1

γ2−→ · · ·
γy−→ qw(g)

y

where #0R1#1R1 . . . Rx#x = γ1 . . . γy. Furthermore, γ1 . . . γy can be mapped onto a sub-word
of the sequence of actions taken on the global components up to the first write of g.

Let
(

qUiU , q
w(g1

0)
ig1

0

, . . . , q
w(gk

mk)
igk

mk

, g1, . . . , gk

)
be the final configuration of πi. We extend πi

with the following transitions, in order of appearance.

• For all g such that we have a maximal path qw(g)
ig

r(g1)
−−−→ · · · r(gy)−−→ qw(g)

ig+1 where gj for

1 ≤ j ≤ y are characters in { g1, . . . , gk }, make the transitions to qw(g)
ig+1 . (That is, read

the current global store as many times as possible.)
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• If the transition between ci and ci+1 is a move of U , then simulate the move directly.
• If the transition is a write move w(g) for some g ∈ G by a copy of C which is not

responsible for the first write of g, but is responsible for for the first write of some other

g′, then advance qw(g′)
ig′

#j−→ qw(g′)
ig′

, setting the jth global component to #j as required.

Note that the transition from qw(g′)
ig′

must be a #j move since it is a write move to the
jth component of C and all preceding reads and writes have been simulated.

• Further to the above, if it is a write of g by some C, we know that qw(g)
ig

is an accepting
state ofAw(g). This is because we have been simulating the sequence W0R1W1 . . . RxWx
with the accepting run #0R1#1 . . . Rx#x. Hence we can (and do) perform the write of g
to the global component.
• Other types of transitions have no further updates to πi. In particular, if the transition

is a read move by some copy of C we do not add any transitions (these moves are
taken care of more eagerly above).

This completes the construction of πi, and thus πy gives us a required accepting run of Psys.

C Complexity Lower Bounds

THEOREM 29. The parameterised reachability problem for NPDSs with a single global store
is NP-hard, even when the stacks are removed.

PROOF. We reduce from SAT. The encoding is as follows: U first guesses an assignment
to the variables x1, . . . , xn (say). He does this by writing 1i or 0i to the global store for each
1 ≤ i ≤ n. The C process has n branches. Along the ith branch it reads, and remembers in
its control state, the value of xi written by U . Then, whenever a symbol ?i can be read from
the global store, C reads it and writes 1i or 0i as appropriate.

Then, also in its control state, U evaluates the boolean formula. When it needs to obtain
the value of xi. it writes ?i to the global store and waits for a copy of C to return the an-
swer. A unique control state is reached if the formula evaluates to true. Hence, the defined
parameterised reachability instance reaches this control state iff the formula can be satisfied.

It is not immediately obvious how to evaluate the formula in the control state. The
technique is the same as in Hague and Lin [15]. To evaluate a non-atomic formula, we store
it as a tree in the control state. Evaluation uses a kind of tree automaton (the run of which
is encoded into the state space). The tree automaton navigates the tree in left most, depth
first order. First it moves down to the left most leaf. This will be an atomic proposition. The
proposition is evaluated using the technique above and the value is passed up to the parent.
When first returning to a parent node, it is marked as seen. If the node is a disjunction,
and the value returned is 1, then the automaton returns to the parent, also carrying the 1,
otherwise it moves down into the right subtree. The automaton eventually returns from
this tree with a value. Since the node is marked, it detects that it has fully evaluated the
disjunction and returns the value to the parent. Evaluation is analogous for conjunction.
Finally, a value is returned from the root.

The evaluation above only introduces a polynomial number of control states. Because
the tree is navigated in left most depth first order, there are a linear number of different
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markings (if the right hand subtree is not visited, we can simply mark all of the nodes in
this subtree without affecting the execution). Then, to keep track of the automaton, we
attach the state of the automaton to the node of the tree it is at. This is only polynomial since
there is only one node marked by the automaton state at a time.

D Proofs for Section Section 6

LEMMA 16. For all w, we have w ∈ L(Gx) iff x ∈ θ(w).

PROOF. First, assume w ∈ L(Gx). We show x ∈ θ(w). Take the derivation tree of w
in Gx. By definition, this tree has a path marked by a run of Ax, such that w is derived to
the left (inclusive) of the path, and the empty word is derived to the right. By replacing all
non-terminals Aq and Aε with their corresponding non-terminals in G, and adjusting the ap-
plied production rules accordingly, we obtain a derivation tree of some word wu containing
a spine of type x. Hence x ∈ θ(w), as required.

In the other direction, consider the derivation tree T of wu with a spine of type x that
witnesses x ∈ θ(w). The spine induces an accepting run of Ax. Thus, we build a derivation
tree of Gx where all non-terminals and productions to the left of the spine are the same, all
non-terminals and productions along the spine are annotated with the run of Ax and all
non-terminals and productions to the right are replaced by their empty equivalent, e.g. Aε.
This induces a derivation tree of w in Gx as required.

E Lower Bounds on Automata Size
We mentioned in the conclusion the problem of whether the doubly-exponential size of
the NFA built from a very degenerate context-free language must be doubly-exponential
in the worst case. We have been unable to obtain this lower bound. Since, in Section 6,
we construct a deterministic finite-automaton, one may ask whether a result of Meyer and
Fischer [22] — that there is a deterministic PDS accepting a language whose corresponding
deterministic finite automaton is doubly-exponential — can provide a lower bound in the
deterministic case. Unfortunately, we provide a counter-example below. The language In
given by Meyer and Fischer is described as follows†

“In consists of words in { 0, 1, a1, . . . , an }∗ { 0, 1 }n−1 accepted by a deterministic
pushdown store machine which operates as follows:

1. Copy the input onto the store until input a1 is encountered. If a1 does not
occur, reject the input.

2. Set i = 2.
3. If the next input is zero, pop the store until the first occurrence of ai. If

the next input is a one, pop the store to the second occurrence of ai. If any
other input is encountered, or the occurrences of ai are not found, reject the
input.

†In the original definition, the word finishes with { 0, 1 }n, though we believe this to be a mistake. After this
correction, the size of the finite automaton is 22n−1

. One could, of course, make other corrections to preserve the
22n

claimed.
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4. Increment i by one.
5. If i ≤ n, repeat step 3.
6. If the digit on top of the store is 1 and there are no more input symbols,

accept the input. Otherwise reject the input.”
Intuitively, the input up to a1 is interpreted as representing a binary tree in post-fix

notation (although the PDS cannot enforce this with a small number of states, hence even
“malformed” trees are accepted). After a1, we see a sequence of 0s and 1s tracing a path in
the tree. If this path ends on a node labelled by a 1, then we accept. Since there are doubly-
exponential trees of depth n labelled at the leaves by 0 and 1, we get that the corresponding
deterministic finite automaton must by doubly-exponential.

However, let n = 3 and consider the strong iterative pair

(x, y, z, t, u) = (0a31a3a2, 0a30a3a2, ε, 0a31a3a2, 0a30a3a2a110) .

In the following, we underline the part of the input identified by the suffix 10. For i =
0 we have xyiztiu = 0a31a3a2 0a30a3a2a110 and for i > 0 we have xyiztiu = . . . tu =
. . . 0a31a3a2 0a30a3a2a110. In both cases one can verify membership in In.

However, consider i = 1 and j = 0. Then xyiztju = . . . yu = . . . 0a30a3a2 0a30a3a2a110,
which is not in In. Essentially, the sub-tree given by y violates the acceptance condition.
When an occurrence of y necessitated an occurrence of t, the automaton would never read
into y. However, when y and t are disconnected, y may not be “protected” by t.


