
Program analysis for overlaid data structures?

Oukseh Lee12, Hongseok Yang3, and Rasmus Petersen2

1 Hanyang University, South Korea
2 Queen Mary University of London, United Kingdom

3 University of Oxford, United Kingdom

Abstract. We call a data structure overlaid, if a node in the structure
includes links for multiple data structures and these links are intended
to be used at the same time. In this paper, we present a static program
analysis for overlaid data structures. Our analysis implements two main
ideas. The first is to run multiple sub-analyses that track information
about non-overlaid data structures, such as lists. Each sub-analysis infers
shape properties of only one component of an overlaid data structure,
but the results of these sub-analyses are later combined to derive the
desired safety properties about the whole overlaid data structure. The
second idea is to control the communication among the sub-analyses
using ghost states and ghost instructions. The purpose of this control is
to achieve a high level of efficiency by allowing only necessary information
to be transferred among sub-analyses and at as few program points as
possible. Our analysis has been successfully applied to prove the memory
safety of the Linux deadline IO scheduler and AFS server.

1 Introduction

Recent advances in verification research have resulted in successful industrial-
strength software verifiers, such as Microsoft SDV and Astrée. These tools do
verification-by-static-analysis, where the tools work fully automatically without
asking the user to insert loop invariants or procedure specifications. But these
tools cannot approach many parts of operating systems, because of their inaccu-
rate or unsound treatment of the heap. In fact, the heap is one of the outstanding
problems holding back verification-by-static-analysis (or software model check-
ing). Although there have been works approaching verification of the heap in
real-world systems programs [3, 14], fundamental problems remain, and one of
the most fundamental is the presence of nontrivial, but not unrestricted, shar-
ing. The not unrestricted aspect gives some hope that techniques might be found
that do not immediately run into an efficiency brick wall.

In this paper, we consider the automatic verification of overlaid data struc-
tures, which show such nontrivial but not unrestricted sharing. We call a data
structure overlaid, if a node in the structure includes links for multiple data
? We want to thank Gilad Arnold, Patrick Cousot, Peter Hawkins, Peter O’Hearn,

Martin Rinard, Noam Rinetzky, Xavier Rival, and John Wickerson for helpful com-
ments. This work was supported by EPSRC, and Lee by the Engineering Research
Center of Excellence Program of Korea Ministry of Education, Science and Technol-
ogy (MEST) / National Research Foundation of Korea (NRF) (Grant 2011-0000968).

structures and these links are intended to be used at the same time. These
overlaid data structures are frequently used in systems code in order to impose
multiple types of indexing structures over the same set of nodes. For instance,
the deadline IO scheduler of Linux has a queue whose nodes have links for a
doubly-linked list as well as links for a red-black tree. The linked list is used to
record the order in which nodes are inserted in the queue, and the red-black tree
provides an efficient indexing structure on the sector fields of the nodes.

Our goal is to build an efficient yet precise program analysis for overlaid data
structures, capable of verifying the memory safety or shape properties of real-
world programs. The objective here is not to verify toy problems of overlaid data
structures, but to verify real-world examples. In fact, we created an analyser in
2008 that could prove the memory safety of toy examples, but this analyser
could not scale to verify real code like the deadline IO scheduler for several
fundamental reasons (see Section 7). Also, there have been other papers that
take on toy programs using overlaid data structures or graphs, but they are all
too imprecise or too expensive to verify serious programs [9, 7, 4, 13].

In this paper, we present a new program analysis for overlaid data structures,
which can verify the memory safety and shape properties of medium sized real-
world examples from Linux. Our analysis implements two main ideas:

1. Run multiple sub-analyses that track information about standard data struc-
tures, such as lists: Each sub-analysis infers shape properties of only one com-
ponent of an overlaid data structure, but the results of these sub-analyses
are later combined to derive the desired safety properties about the whole
overlaid data structure. This is reminiscent of cartesian abstraction [2].

2. Control the communication among the sub-analyses using ghost states and
ghost instructions: We found that to prove the memory safety of programs
using overlaid data structures, the sub-analyses need to transfer information
among themselves (using a form of reduction [5]); the memory safety of
the programs often relies on the fact that components of an overlaid data
structure use the same set of nodes. Our analysis controls this information
transfer in order to achieve a high level of efficiency. It aims at allowing only
necessary information to be transferred among sub-analyses and only at as
few program points as possible. To achieve the aim, the analysis uses ghost
states, special instructions for modifying ghost states, and algorithms that
insert those instructions before or during the main phase of the analysis.

Related work We discuss three further related works here. The first is the syn-
thesis approach by Hawkins et al. [8], where a programmer specifies an overlaid
data structure using a high level specification in the style of a relational database.
This approach focuses on generating new correct programs using overlaid data
structures, and it is complementary to the results of this paper. The second is
the general meet algorithm [1] for finding intersections of heap abstractions in
TVLA. The algorithm is related to our operator for transferring information
among sub-analyses, but it aims at computing the exact meet, not an efficient
overapproximation of the meet as in this paper. The last is the Hob system by
Kuncak et al. [10], where one can apply different analysis plugins for different
data structures, combine the analysis results, and verify that values stored in

2

Fig. 1 Baby IO scheduler

struct node { struct node *next;
struct node *p,*l,*r;
int key; };

struct node *q1s, *q1t, *q2;

void move_request() {
struct node *c;
c = list_remove_first(&q1s);
if(c==0) return; //trans(list->tree)(c)
tree_remove(c); //move(c,gamma)
list_add_first(&q2,c);
c = 0; //moveRgn(gamma,beta)
} q1s

q1t

next

p p

ppp
l

l r

r r

p

0

0

0 0

next

l

l r

0 0

l r

0 0

l r

next

0

nextnext

next

next

next

next

0

q2

(a) C code (b) a snapshot of data structure

these data structures are properly related. This system regards an overlaid data
structure as a single data structure, and requires a plugin for its analysis. This
requirement can be met by the analysis in this paper.

2 Informal description

We start with an informal description of our analysis using the baby IO scheduler
in Figure 1(a), which is modelled on the Linux deadline IO scheduler.

Our baby IO scheduler schedules IO requests using two disjoint queues. When
a request arrives, it is stored in the first queue. Later the request is selected
according to a scheduling policy, processed, and moved to the second queue. In
order to help the performance of the scheduling, the first queue uses an overlaid
data structure with list and tree components. The list component is a singly-
linked list starting from q1s, and it keeps requests in FIFO order. The tree
component is a binary search tree with parent pointers. The address of the root
of the tree is stored in q1t, and the tree provides an efficient search mechanism
on the key field of requests. The second queue is, on the other hand, a simple
linked list from q2, storing processed requests in FIFO order. A concrete example
of both queues is shown in Figure 1(b).

The move_request function in Figure 1 shows a typical example of exploiting
both components of an overlaid data structure. This function removes the first
node of the list component q1s of the overlaid data structure. Then, it switches
to the tree component, removes the node from the tree, and adds it to q2.
One important aspect is that the removal from the tree exploits the correlation
between components of the overlaid data structure—both the list q1s and the
tree q1t use the same set of nodes. Although the node c is found using the list
part, the correlation ensures that the node is in the tree as well. Hence, the
removal from the tree can be performed safely without traversing the tree.

The main challenge for automatically proving the memory safety or shape
properties of the baby IO scheduler is to find a good representation of the over-
laid data structure (q1s, q1t), which enables the design of an efficient yet precise
program analysis. Although nodes in this data structure are highly shared, this

3

sharing has a pattern, i.e., it is generated by the overlay of a list and a tree. Fur-
thermore, our baby scheduler, like the original Linux IO scheduler, relies only on
the correlation between the list and tree components found in the move_request
function—both components are formed using exactly the same set of nodes. We
would like the representation to exploit fully the pattern of (q1s,q1t), and to
express only this relatively weak correlation of its two components.

Our solution is to use the conjunction of two types of assertions ϕ∧ψ, where
ϕ describes the heap only in terms of list fields and ψ does the same but using
only the fields from the tree (including key). To express that the components of
an overlaid data structure use the same set of nodes, ϕ and ψ use what we call
region variables α, β, γ, which denote sets of memory addresses. Concretely, our
analysis infers that the data structures of our IO scheduler normally satisfy the
following assertion:

(ls(q1s)α ∗ ls(q2)β) ∧ (tr(q1t)α ∗ trueβ). (1)

The predicate ls(x) means a singly-linked list starting from the address x, and
tr(y) a tree rooted at y. The separating conjunction P ∗Q means that the heap
consists of two disjoint sub-heaps described by P and Q.

The first conjunct in (1) says that the heap contains two disjoint singly-
linked lists q1s and q2. Using the subscripts −α and −β , it also states that the
addresses of the nodes in the list q1s form the set α, and those of the nodes in
the list q2 the set β. The second conjunct, on the other hand, talks about tree-
related properties of the heap. According to this conjunct, the heap contains a
tree with root address q1t. Furthermore, the addresses of nodes in the tree form
the set α, while the addresses of all the other nodes make the set β. Note that
each conjunct has its own characterisations of α and β. To be consistent, both
characterisations of α should mean the same, which implies that the list and the
tree use the same set of nodes. This is exactly the type of correlation that we
want to express for the overlaid data structure (q1s, q1t).

This representation enables an interesting strategy for analyzing a client
program of an overlaid data structure. The strategy is to run multiple sub-
analyses that are designed for tracking information about standard non-overlaid
data structures, such as lists and trees. Each of these sub-analyses infers shape
properties of only one component of the overlaid data structure, hence handling
only one conjunct in our representation. The desired memory properties of the
program are then proved by combining the results of the sub-analyses.

Our analysis implements a real-world adjustment of this strategy. Note that
in our example, the sub-analyses cannot be completely independent. They need
to communicate during (not after) analysis, because of the above-mentioned
correlation among components of an overlaid data structure; in the function
move_request, the removal of c from the tree cannot be inferred to be safe
without looking at the list. To address this concern while keeping the communi-
cation cost of the sub-analyses low, our analysis uses ghost instructions for region
variables. It runs the sub-analyses independently most of the time, except at a
few program points where the memory safety proof demands communication
among the sub-analyses. At these program points, the analysis inserts ghost in-
structions that initiate communication among sub-analyses. Furthermore, even

4

in those communication points, the analysis tries to keep the communicated
information as simple as possible, using region variables.

We illustrate the analysis using the move_request function in Figure 1. In
this case, our analysis runs the list and tree sub-analyses, which update the
conjunct for list and that for tree, respectively. The first step of our analy-
sis is a pre-analysis that inserts ghost instructions for changing the values of
region variables or for transferring information between the list and tree sub-
analyses. For our move_request example, the pre-analysis inserts translist�tree(c)
and move(c, γ) before and after tree_remove, as shown in Figure 1. The first in-
struction translist�tree(c) tells the tree sub-analysis to get information about cell
c from the list sub-analysis, and it is a so-called reduction operator in program
analysis [5]. The instruction is inserted here, because the pre-analysis conjec-
tures that information about cell c at this program point will be necessary for
verification. The second instruction move(c, γ) tells the analysis to manage the
values of region variables by moving the address c from its current region to the
region γ. We defer the details of the pre-analysis to Section 5.

The second step is to run the move_request function symbolically, starting
from the assertion in (1), while abstracting away unnecessary information from
time to time. This symbolic abstract execution is done by invoking the corre-
sponding routines of the sub-analyses. The command list_remove_first(&q1s)
is run first in this manner, and results in the assertion

(ls(q1s)α ∗ c 7→ {}α ∗ ls(q2)β) ∧ (tr(q1t)α ∗ trueβ) (2)

for the true branch of the following conditional statement. Compared to the
original in (1), the assertion has additionally c 7→ {}α in the first conjunct, and
this additional predicate describes the cell c removed from the list q1s. In this
abstract execution, our analysis runs only the list sub-analysis not the tree one,
because it detects that list_remove_first(&q1s) is equivalent to skip as far
as the tree sub-analysis is concerned.

Note that only the first conjunct of (2) knows the allocatedness of cell c in
α. The next instruction transtree�list(c) makes the analysis transfer the informa-
tion about cell c from the first to the second conjunct, which gives the assertion:

(ls(q1s)α ∗ c 7→ {}α ∗ ls(q2)β) ∧ (ϕ(q1t, c, α) ∗ trueβ). (3)

Here ϕ(q1t, c, α) is an assertion with free variables q1t, c, α, and it describes a
tree with root q1t and a normal node c such that all nodes of the tree form the
set α.4 This refinement of assertions is how our analysis enables the communica-
tion between sub-analyses, this time from the list to the tree sub-analysis. The
transferred information allows the analysis to prove the memory safety of the
following instruction tree_remove(c), which is handled by the tree sub-analysis
only, and to overapproximate the instruction’s output states by the assertion:

(ls(q1s)α ∗ c 7→ {}α ∗ ls(q2)β) ∧ (tr(q1t)α ∗ c 7→ {}α ∗ trueβ). (4)

This assertion has c 7→ {}α in both conjuncts, hence confirming that the node c
is indeed removed from both the list q1s and the tree q1t.
4 Concretely, ϕ(q1t, c, α) is ∃uvwxy. tseg(q1t, 0, c, u)α∗c 7→ {p:u, l:v, r:x}α∗tseg(v, c,

0, w)α ∗tseg(x, c, 0, y)α where tseg is a tree segment predicate explained in Section 4.

5

The next instruction is the ghost instruction move(c, γ) inserted by the pre-
analysis. This instruction simply changes the subscript of c 7→ {} from α to γ:

(ls(q1s)α ∗ c 7→ {}γ ∗ ls(q2)β) ∧ (tr(q1t)α ∗ c 7→ {}γ ∗ trueβ). (5)

Semantically, this change means that the allocated cell c is moved from the set α
to the set γ, which only contains c. The decision for singling out c and putting it
in a separate set γ is made because the pre-analysis detected a possibility of mov-
ing cell c between two different data structures. This possibility is indeed realized
in the program, because the following two instructions list_add_first(&q2,c)
and c = 0 move the cell c to the second queue q2. The analysis tracks the move
of the cell, using its list sub-analysis, and transforms (5) to the assertion:

(∃a. ls(q1s)α ∗ q2 7→ {next:a}γ ∗ ls(a)β) ∧ (∃b. tr(q1t)α ∗ b 7→ {}γ ∗ trueβ). (6)

The variable a has the old value of q2, and b the old value of c.
Note that the sub-formula q2 7→ {next:a}γ ∗ ls(a)β in (6) describes a list

starting from q2 of length at least one (because of cell q2). The list sub-analysis
decides that this length information is not necessary for verifying the memory
safety of the program, and it plans to drop the information by replacing the sub-
formula by ls(q2). To do this, the analysis inserts the instruction moveRgn(γ, β)
for moving all cells in γ to β, and analyzes the inserted instruction:

(∃a. ls(q1s)α ∗ q2 7→ {next:a}β ∗ ls(a)β) ∧ (∃b. tr(q1t)α ∗ b 7→ {}β ∗ trueβ). (7)

The reason for inserting the instruction moveRgn(γ, β) is to make sure that the
changes in the values of region variables happen consistently for both conjuncts
(i.e., both sub-analyses), although the changes are initiated by the need for ab-
stracting a part of the first conjunct. Now, both the head q2 and the tail a are
in the same set β, so the abstraction applies and gives the final result:

(ls(q1s)α ∗ ls(q2)β) ∧ (tr(q1t)α ∗ trueβ). (8)

Here b 7→ {}β ∗ trueβ is also abstracted to trueβ by the tree sub-analysis. This
amounts to forgetting the fact that β contains at least one cell.

Our formalization of the ideas described so far will form the rest of the paper.

3 Formal setting for region variables

Instrumented storage model We use a storage model where a state consists
of three components. The first two are the usual ones, namely, the stack for
program variables and the heap for dynamically allocated cells. The third one
is, however, unusual, and it defines the values of region variables.

To give a formal definition of our model, we need four disjoint countable
sets: a set Addrs of addresses; a set Vars of normal variables x, y, z; sets Fields
and Regions that respectively contain field names f, g of heap cells and region
variables α, β, γ. We assume that a fixed constant null is not in Addrs. The
storage model is defined by the following equations:

Vals = Addrs ∪ {null} Stacks = Vars→Vals Heaps = Addrs⇀fin(Fields⇀Vals)
Partitions = Regions → P(Addrs) States = Stacks× Heaps× Partitions

6

Fig. 2 Semantics of sample assertions. We assume a function [[e]] from Stacks
to Vals that defines the meaning of expression e, and a mapping [[p]] from value
tuples to heaps that specifies the semantics of primitive predicate p.
s, h, η |= ϕα ⇐⇒ s, h, η |= ϕ and dom(h) = η(α)
s, h, η |= e ∈ α ⇐⇒ [[e]]s ∈ η(α)
s, h, η |= e 7→ {~f : ~e} ⇐⇒ dom(h) = {[[e]]s} and h([[e]]s)fi = [[ei]] for all 1 ≤ i ≤ |~f|
s, h, η |= p(~e) ⇐⇒ h ∈ [[p]]([[~e]]s)
s, h, η |= emp ⇐⇒ dom(h) = ∅ and η(α) = ∅ for all α
s, h, η |= P ∗Q ⇐⇒ ∃h1, h2, η1, η2. (h1, η1) • (h2, η2) = (h, η)

and s, h1, η1 |= P1 and s, h2, η2 |= P2

Note that a state has three components (s, h, η) ∈ States, where s defines the
values of stack variables, h specifies the contents of allocated cells, and η maps
region variables to address sets. We call a pair (h, η) well-formed if the mapping
η defines a partition of allocated cells, that is, the following holds:

(dom(h) = ∪α∈Regionsη(α)) ∧ (∀α, β ∈ Regions. α 6≡ β =⇒ η(α) ∩ η(β) = ∅).

A state (s, h, η) is well-formed when (h, η) is well-formed. In the rest of this
paper, we consider only well-formed states and pairs of heaps and region-maps.

Note that in a well-formed state, every allocated address belongs to a unique
region. As a result, a fact about an allocated address l can be approximated by
the region variable α containing l. For instance, when the variable x contains the
address l of an allocated cell (i.e., s(x) = l), we can approximate this information
by s(x) ∈ η(α). Our analysis uses this approximation to form the lightweight
information to be passed among the sub-analyses.

Assertions Assertions ϕ describe properties of states, and are defined as follows:

e ::= x | null ϕ ::= ϕα | e= e | e∈α | e 7→ {~f :~e} | p(~e)
| emp | ϕ ∗ ϕ | true | ϕ ∧ ϕ | ¬ϕ | ∃x. ϕ

This is a variant of the assertion language from separation logic [12]. The first ϕα

says that the heap satisfies ϕ and all the allocated addresses in the heap form the
set α. This is the most unusual case of our assertion language, and it enables one
to talk about the values of region variables, the new part of our storage model.
The next two are the usual equalities on expressions and the membership of an
expression to a region variable. The assertion x 7→ {~f : ~e}means a heap containing
only one cell x that stores ~e in fields ~f. This definition does not require that ~f
be the only fields in cell x. Hence, the cell x can have fields other than ~f. The
following case p(~e) is the application of a primitive predicate p, such as the tree
or singly-linked list predicates, and it is mainly used to describe a recursive data
structure. Our assertion language includes separating connectives—emp for the
empty heap and the region variables all having the empty set, and ϕ ∗ ψ for
the splitting of both the heap and the region-variable map such that one pair
satisfies ϕ and the other ψ. The remaining cases are the standard connectives
from classical logic, and they have the usual meanings. We point out that other
standard connectives from classical logic can be defined in a standard way.

7

Fig. 3 Semantics of sample primitive instructions. We assume a function [[b]]
from Stacks to {true, false} that defines the meaning of boolean b.

[[assume(b)]](s, h, η)= if ([[b]]s = true) then {(s, h, η)} else ∅
[[x := newα,F ()]](s, h, η)= {(s[x 7→ l], h[l 7→ v], η[α 7→ η(α) ∪ {l}]) |

l ∈ Addrs \ dom(h) and v is a function from F to Vals}
[[move(e, α)]](s, h, η)= if ¬(∃β. [[e]]s ∈ η(β)) then err

else {(s, h, η[β 7→ η(β) \ {[[e]]s}, α 7→ η(α) ∪ {[[e]]s}])}
[[moveRgn(α, β)]](s, h, η)= {(s, h, η[α 7→ ∅, β 7→ η(α) ∪ η(β)])}

The formal semantics is given by a satisfaction relation |= between well-
formed states and assertions (s, h, η) |= ϕ, and sample clauses of the semantics
appear in Figure 2. The clause for ϕ ∗ ψ uses the following partial combining
operator (h1, η1) • (h2, η2) on well-formed pairs of heaps and region-maps:

(h, η)•(h′, η′) =

(h] h′, λβ. η(β)] η′(β)) if dom(h) ∩ dom(h′) = ∅ and
∀α. dom(η(α)) ∩ dom(η′(α)) = ∅

undefined otherwise

The operator merges two pairs of heaps and region-maps, when both components
of the pairs do not overlap. The definition of ϕ∗ψ uses this operator to express the
splitting of the heap and region-map components. Also note that the semantics
of emp says that both the heap and the region map are empty.

Syntax and semantics of programs We consider simple imperative programs
specified in terms of standard control flow graphs. These programs are directed
graphs (V,E) with two distinguished vertices entry, exit ∈ V and a labeling
function L from E to primitive instructions. The vertex entry is required to have
no incoming edges and exit no outgoing edges.

The syntax of primitive instructions c are given by the following grammar:

e ::= x | null c ::= assume(b) | x := e | x := e.f | e.f := e
b ::= e = e | e 6= e | free(e) | x := newα,F () (where F ⊆ Fields)
| b ∧ b | b ∨ b | move(e, α) | moveRgn(α, β)

Most cases are standard imperative operations. For instance, assume(b) checks
whether the input state satisfies b. If so, it skips. Otherwise, it diverges. The
only exceptions are the last three cases. The instruction x := newα,F () allocates
a new cell with fields F , and puts this cell into the region α. The fields of this
new cell are uninitialized. The next two move(e, α) and moveRgn(α, β) are ghost
instructions that mainly manipulate the region-map parts of states. When cell
e is allocated in the input state, move(e, α) removes this cell from its current
region, and puts it in the region α. The instruction moveRgn(α, β) moves all the
cells in the region α to the region β. Hence, at the end of this instruction, α
contains no cells, while β contains all cells that used to be in α. The meaning of
both instructions is not ambiguous, because we assume that the input states are
well-formed and so all allocated addresses belong to only one region variable.

Our analysis uses move and moveRgn to ensure that the region-map part of
a state carries useful information about heap data structures. In particular, it

8

aims to put each data structure, such as a list or a tree, in its own partition
described by some region variable α, because then knowing e ∈ α is sufficient to
identify the data structure containing e.

The formal meanings of primitive instructions are given in terms of functions
from States to P(States)∪{err}, where err models a memory error. Sample cases
of the semantics appear in Figure 3.

4 Abstract states

Our abstract domain consists of assertions of the form:

(ϕ1,1 ∨ . . . ∨ ϕ1,m1) ∧ (ϕ2,1 ∨ . . . ∨ ϕ2,m2) ∧ . . . ∧ (ϕn,1 ∨ . . . ∨ ϕn,mn
). (9)

Each conjunct here records the current analysis result of one sub-analysis. For
instance, the first conjunct could express the findings of the list analysis, and say
how fields for singly-linked lists are connected in the heap. The second conjunct
could, on the other hand, be concerned with the result of the tree analysis, and
describe the connection of tree-related fields. Notice that a disjunction appears
right under the conjunction. This disjunction is used by a sub-analysis to keep
track of various correlations of stack variables and heap data structures explicitly.
We point out that this is the only disjunction explicitly appearing in the abstract
state; ϕi,j does not contain any disjuncts inside.

Formally, our domain is parameterized by a finite collection F = {Fi}1≤i≤n

of sets of fields and primitive predicates p. The intention is that n specifies
the number of sub-analyses, and that each Fi describes the fields and primitive
predicates that the sub-analysis i cares about.

Once a parameter F is given, we can construct our abstract domain D(F)
in three steps. First, we define special forms of assertions, called symbolic heaps:

Π ::= true | e = e | e 6= e | Π ∧Π Pure formulae
Σ ::= trueα | (e 7→ {~f : ~e})α | (p(~e))α | emp | Σ ∗Σ Spatial formulae
H ::= ∃~x.Π ∧Σ Symbolic heaps

TheΠ part of a symbolic heap describes the information about variables, and the
Σ part expresses a property on the heap and region-map components of states.
Note that in a symbolic heap, the region subscript −α is used only in limited
places with three basic predicates. Furthermore, the pure part of a symbolic heap
does not contain membership expressions e ∈ α; all memberships are implicitly
expressed using the subscript formulae−α. These and other syntactic restrictions
in symbolic heaps (such as the absence of disjunction and negation) are imposed
so that we can reuse the core components of existing separation-logic based shape
analyses, such as abstraction algorithms and transfer functions [6]. We write SH
for the set of all symbolic heaps.

Second, we define a set of assertions used by each sub-analysis i. Let SHi be
the set of symbolic heaps H such that all pointsto predicates (e 7→ {~f : ~e})α in
H mention only fields in Fi (i.e., ~f ⊆ Fi), and all primitive predicates (p(~e))α

in H belong to Fi (i.e., p ∈ Fi). The domain for the sub-analysis i is Di =
Pfin(SHi). The finite powerset operator is used here to express finite disjunction.
For instance, the set {H1, . . . ,Hm} ∈ Di means the disjunction H1 ∨ . . . ∨Hm.

9

Finally, the abstract domain D(F) is defined by D = D1 × . . . × Dn ∪ {>}
for n = |F|. The cartesian product means the conjunction of assertions. For
instance, the assertion (9) in the beginning of this section is formally represented
by the tuple ({ϕ1,1, . . . , ϕ1,m1}, {ϕ2,1, . . . , ϕ2,m2}, . . . , {ϕn,1, . . . , ϕn,mn

}) in
this domain. The element > means the possibility of error. We will use d to
denote a non-> element in D, and di to mean the i-th component of d.

The domain D(F) is a lattice, when > is considered the largest element and
the non-> elements are ordered pointwise. Then, the lattice operations of D(F)
are obtained by extending corresponding operations on the Di’s pointwise. For
instance, the join d t d′ is given by (d1 t d′1, . . . , dn t d′n).

Weak reduction operator One important operator of our domain is a weak
reduction operator that transfers information among components of abstract
states. The transferred information is about the allocatedness of a cell and a
region variable α containing this cell. For instance, consider the abstract state:(

x 7→ {next:0}α ∨ (∃a. x 7→ {next:a}α ∗ ls(a)α)
)
∧ tr(y)α

where only the first conjunct says that cell x is allocated and belongs to the set
α. Using our reduction operator, we can transfer this information about cell x
from the first to the second conjunct. Given appropriate parameters, the opera-
tor transforms this abstract state to the one below:(
x 7→ {next:0}α ∨ (∃a. x 7→ {next:a}α ∗ ls(a)α)

)
∧ ∃uvw. tseg(y, 0, x, u)α ∗ x 7→ {p:u, l:v, r:w}α ∗ tseg(v, x, 0,)α ∗ tseg(w, x, 0,)α.

Here the predicate tseg(a, b, c, d) describes a rooted tree segment with one hole.
The root is a and its parent pointer points to b. The hole of the segment is an
outgoing pointer from the tree, going from address d to address c. The source d
belongs to the segment, but the target c does not. We write in the parameter
of tseg when we do not want to specify the parameter.5 Note that the second
conjunct now talks about the allocatedness of cell x and its membership of α.

Our operator is defined by lifting a similar reduction operator on symbolic
heaps to abstract states. We first describe this original unlifted operator, denoted
trans. Let i be a sub-analysis id and e an expression.

transi(e)(H : SH,H ′ : SHi) : Di =
let R = getRegion(e,H) in if (R = NoInfo) then {H ′} else caseSHi(e,R,H ′).

The operator transi(e)(H,H ′) transfers information about cell e from H to H ′,
and the transferred information talks about the allocatedness of e and a re-
gion variable that contains e. The operator starts by calling the subroutine
getRegion(e,H), which has two possible outcomes. The first outcome is NoInfo
indicating that H does not have any information on cell e. In this case, the input
H ′ gets no information from H, and it becomes the output of trans. The second
outcome is a region variable α satisfying the entailment H ` e ∈ α, which means
that according to H, the region variable α contains cell e. Given this outcome,
the operator trans conjoins the membership information e ∈ α with H ′, and calls

5 Formally, ϕ ∗ tseg(a, b, c,) is an abbreviation for ∃d.ϕ ∗ tseg(a, b, c, d) for a fresh d.

10

Fig. 4 Subroutines getRegion and caseSHi. The function caseID below is a pa-
rameter provided for each primitive predicate p. In the figure, we give an example
of caseID for tr and tseg.
getΠ(e, emp) = NoInfo

getΠ(e, e′ 7→{~f: ~e′′}α ∗Σ) = if (Π ` e = e′) then α else getΠ(e, Σ)

getΠ(e, p(~e′)α ∗Σ) = if (Π ∧ p(~e′) ` e7→{} ∗ true) then α else getΠ(e, Σ)
getRegion(e, H) = let (∃~x. Π ∧Σ) = H in getΠ(e, Σ)
caseID(e, tr(e0)α) =
{(uvwxy, tseg(e0, 0, e, u)α ∗ e 7→ {p:u, l:v, r:w}α ∗ tseg(v, e, 0, x)α ∗ tseg(w, e, 0, y)α)}

caseID(e, tseg(e0, e1, e2, e3)α) =
{(uvwx, tseg(e0, e1, e, u)α ∗ e 7→ {p:u, l:v, r:w}α ∗ tseg(v, e, e2, e3)α ∗ tseg(w, e, 0, x)α),
(uvwx, tseg(e0, e1, e, u)α ∗ e 7→ {p:u, l:v, r:w}α ∗ tseg(v, e, 0, x)α ∗ tseg(w, e, e2, e3)α)}

case(e,α,Π)(Σ, emp) = ∅
case(e,α,Π)(Σ, e′ 7→{~f: ~e′′}β ∗Σ′) =

if (Π ` e 6= e′ or α 6≡ β) then case(e,α,Π)(Σ ∗ e′ 7→{~f: ~e′′}β , Σ′)

else {([], e=e′, Σ ∗ e′ 7→{~f: ~e′′}β ∗Σ′)} ∪ case(e,α,Π)(Σ ∗ e′ 7→{~f: ~e′′}β , Σ′)

case(e,α,Π)(Σ, p(~e′)β ∗Σ′) =

if (α 6≡ β) then case(e,α,Π)(Σ ∗ p(~e′)β , Σ′)

else {(~a, true, Σ ∗Σ′′ ∗Σ′) | (~a, Σ′′) ∈ caseID(e, p(~e′))} ∪ case(e,α,Π)(Σ ∗ p(~e′)β , Σ′)
caseSH(e, α, H) =

let (∃~x. Π ∧Σ) = H in {∃~x~a. (Π ∧Π ′) ∧Σ′ | (~a, Π ′, Σ′) ∈ case(e,α,Π)(emp, Σ)}

a case-analysis routine that transforms the assertion back into a set of symbolic
heaps in SHi, while ensuring the soundness condition expressed below:

H = caseSHi(e, α,H ′) =⇒ (e ∈ α ∧H ′) `
∨

Hk∈H
Hk.

One implementation of getRegion and caseSH is given in Figure 4.
For sub-analysis ids i, j and an expression e, we define our weak reduction

operator transi�j(e) : D → D by transi�j(e)(>) = > and

transi�j(e)(d) = let H =
⋃
{transj(H,H ′) | (H,H ′) ∈ di × dj} in d[j 7→ H].

This operator applies transj to all possible symbolic-heap combinations from the
i and j-th components of d, and uses the result to update the j-th component.

Note that the parameters i, j, e control the transferred information by our
reduction operator. It restricts the source to only one component of an abstract
state, and does a similar restriction on the target. Furthermore, it transfers infor-
mation only about cell e, with respect to its membership to one region variable.
This fine-grained control is essential for the performance of our analysis. Based
on the results of a pre-analysis, our analysis does only necessary information
transfer among component sub-analyses, by using our reduction operator with
carefully chosen parameters and only at necessary program points.

11

5 Pre-analysis

The input to our analysis is a control flow graph G = (V,E, entry, exit, L) and
an initial abstract state dinit ∈ D \ {>}. Since G represents a normal C program,
its labelling L does not use our ghost instructions or weak reduction operator.

Given this input, the analysis first runs a pre-analysis, which changes G by
inserting ghost instructions of the form move(e, α) or our weak reduction operator
transi�j(e). Intuitively, the pre-analysis finds a program point v such that if cell e
is allocated at v in the concrete semantics, all sub-analyses are likely to infer the
allocatedness of e. Then, it picks a fresh region variable α, and inserts move(e, α)
after v. For transi�j(e), the pre-analysis inserts this instruction before a program
point v′, if it makes the following three conclusions at v′:

1. The cell e will be dereferenced by the sub-analysis j.
2. The sub-analysis is unlikely to infer that all cells reachable from e by Fj-

fields are allocated or null, while this allocation property indeed holds in
the concrete semantics.

3. But the sub-analysis i is likely to infer the same type of information about
cells reachable from e by Fi-fields.

Here {Fi}1≤i≤n is a parameter to our analysis. The first can be detected easily by
a simple syntactic check, but the other two require more sophisticated reasoning.
In the remainder of this section, we focus on this reasoning as well as that used
for inserting move(e, α).

Both types of reasoning are based on data-flow analyses. Let Subanalyses be
the set of sub-analysis ids {1, . . . , n}, and Exp the set of expressions in the input
control flow graph G. Define the domain Dpre by Dpre = P(Subanalyses × Exp).
Two data-flow analyses compute maps from program points to Dpre, denoted Rr

and Rp, by repeatedly applying the following equations:

for k ∈ {r, p} and v ∈ V \ {entry}, Rk
n+1(v) =

⋂
(v′,v)∈E

LL(v′, v)M]
k(Rk

n(v′)).

This commonality leaves only Rr(entry), Rp(entry), LL(v′, v)M]
r, and LL(v′, v)M]

p

unspecified. We give this missing information about the two data-flow analyses
in Figure 5.

Our intention is that if (i, e) ∈ Rr(v), then sub-analysis i likely infers that at
program point v, all cells reachable from e by Fi-fields are allocated or null, if
this property holds in the concrete semantics. Also, by (i, e) ∈ Rp(v), we intend
that the sub-analysis i knows enough to prove the allocatedness of e at program
point v, if e is indeed allocated in the concrete semantics. Hence, if our intentions
are properly implemented, the reasoning steps necessary for inserting trans and
move(e, α) can be done using Rr and Rp.6

The definitions of LcM]
r and LcM]

p in Figure 5 follow our intentions. The only
exception is in the use of deref and genr(x:=e.f, X). Here the definitions as-
sume that after the dereference operation e.f, all sub-analyses caring about f

6 move(e, α) is inserted after a program point v, if Subanalyses × {e} ⊆ Rp(v). Our
second and third conditions for inserting transi�j(e) are (j, e) 6∈ Rr(v) and (i, e) ∈
Rr(v).

12

Fig. 5 Subroutines used by the pre-analysis. The abstract state dinit ∈ D is the
initial abstract state given as the input to the whole analysis.
Rr

n(entry) = {(i, e) | e is null or appears in all H in (dinit)i}, Rp
n(entry) = ∅

For k ∈ {r, p}, LcM]
k(X)= (X ∪ deref(c))\kill(c)∪ genk(c, X) with deref, kill, genk below:

instr c deref(c) kill(c) genr(c, X) genp(c, X)
assume(b) ∅ ∅ ∅ ∅
x := e ∅ Subanalyses× {x} {(i, x) | (i, e) ∈ X} {(i, x) | (i, e) ∈ X}
x := e.f {(i, e) | f ∈ Fi} Subanalyses× {x} {(i, x) | f ∈ Fi} ∅
e.f := e′ {(i, e) | f ∈ Fi} ∅ ∅ ∅
free(e) ∅ Subanalyses× {e} ∅ ∅
x := newα,F () ∅ Subanalyses× {x} Subanalyses× {x} Subanalyses× {x}

know both types of reachability and allocatedness information regarding e. Intu-
itively, this assumption amounts to hypothesizing that our pre-analysis inserts
the reduction operator trans in all the necessary places, so that by the time that
the field f is dereferenced, every sub-analysis interested in the field knows the
necessary information.

Finally, the definitions of Rp(entry) and Rr(entry) in Figure 5 reflect another
assumption of ours: That the initial abstract state dinit does not imply allocated-
ness, but it contains expression e in the i-th conjunct only when the null status
or the allocatedness of cells reachable from e is known to sub-analysis i.

6 Invariant inference

Next, our analysis runs its main invariant inference engine, which computes an
invariant at each program point. Our invariant inference engine takes an initial
abstract state dinit and the output of our pre-analysis, which is a control flow
graphG = (V,E, entry, exit, L) that can include ghost instructions move(e, α) and
the reduction operator transi�j(e) (but not moveRgn(α, β)). Given this input, the
engine computes two maps I and A from program points, the first I to abstract
states and the next A to sets of ghost instructions of the form moveRgn:

M = {moveRgn(α, β) | α, β ∈ Regions(dinit, L)}, I : V → D, A : V → P(M).

Here Regions(dinit, L) is the set of region variables appearing in dinit or some
instruction in the range of L. Note that since Regions(dinit, L) is finite, so are
M , its subsets and the collection P(M). The first map I is the usual result of
a program analysis, and keeps an invariant at each program point. The second
map A records the ghost instructions dynamically discovered and then executed
during the invariant inference. These instructions move cells from one region
variable to another, and they are added and executed so as to maintain the
relationship between region variables and data structures in the heap.

Our analysis uses the standard fixpoint algorithm for control flow graphs,
with one interesting twist regarding the map A for ghost instructions. Assume
that for all normal or ghost instructions or our weak reduction operator, c, we
are given the transfer function for c, and the following two functions:

[[c]]] : D → D, abs : D → D, enableAbs : D → P(M). (10)

13

Fig. 6 Abstract transfer functions. The abstract value d below is not >. When
> is the input, abs(>) = [[c]]]> = >. We assume that [[c]]]i and absi are given.

[[c]]](d) = if (∃i. [[c]]]i(di) = >) then > else ([[c]]]1(d1), . . . , [[c]]
]
n(dn))

abs(d)= (abs1(d1), ..., absn(dn)) [[transi�j(e)]]
](d)= transi�j(e)(d)

[[move(e, α)]]](d) = [[moveRgn(α, β)]]](d)= d[β/α]
let check(i, H) =

(1) Find finitely many Hk’s in SHi such that

H `
W

k∈K Hk and Hk has the form ∃ ~xk.Πk ∧ e7→{ ~fk: ~e′k}βk ∗Σk.
(2) If cannot find, return {>}. Otherwise, for the found Hk’s, rename the

subscript βk of e7→{...}βk by α and return {∃ ~xk.Πk ∧ e7→{ ~fk: ~e′k}α ∗Σk}k∈K .
and ri =

S
{check(i, H) | H ∈ di} for all i

in if (∃i s.t. > ∈ ri) then > else (r1, . . . , rn)

Here abs(d) abstracts assertions in d, and enableAbs(d) returns ghost instructions
in M that will enable further abstraction of d. Now, for (finite) subsets M0 of
M , define [[M0]]](d) = ([[cn]]] ◦ . . . ◦ [[c1]]])(d), where c1, . . . , cn is one enumeration
of M0 according to a fixed scheme. (In our analysis, this choice does not matter,
because the transfer functions of any two instructions in M commute.) Using
what we have assumed or defined, we define the main fixpoint algorithm below:

In(entry) = dinit, In+1(v) =
⊔

(v′,v)∈E(abs ◦ [[An(v)]]] ◦ [[L(v′, v)]]])(In(v′)),
An(entry) = ∅, An+1(v) =An(v) ∪ enableAbs(In+1(v)).

Note that since P(M) is finite, there are only finitely many values for A, and
the fixpoint computation of A does not cause non-termination. In practice, we
found that the analysis time is dominated by the fixpoint computation for I.

To complete the story, we need to discharge our assumption of the three
functions in (10). For normal instructions c, we define [[c]]] and abs by applying
componentwise the sub-analyses’ transfer functions [[c]]]i : Di ∪ {>} → Di ∪ {>}
and abstraction routines absi : Di → Di. The details are given in Figure 6. The
figure also shows that [[transi�j(e)]]] is implemented by the reduction operator
with the same name, [[moveRgn(α, β)]]] by the substitution of the source region
variable α by the target β, and [[move(e, α)]]] by the exposure of a points-to fact
e 7→ {. . .}βk

from a symbolic heap followed by the renaming of its subscript βk

by α. The remaining operator is enableAbs, which we define by enableAbs(d) =
{moveRgn(α, β) | abs([[moveRgn(α, β)]]](d)) 6= d}. This operator returns all the
region movement operations that enable further abstraction of its input d.

7 Experiments

We have implemented an interprocedural version of the analysis (based on the
RHS algorithm [11]), and applied it to verify the memory safety of two types
of programs. The first are toy examples of modest size and with just enough
structure to warrant an overlaid analysis. The second are programs lifted from
the Linux 2.6.37 code base. The results of our experiments appear in Figure 7.

14

Fig. 7 Experimental result. Used Intel Core i7 2.66GHz with 8GB memory.
filename # of analysis time (sec) speedup #of trans

lines (A) old (B) new (A/B) inserted

list-dio-sim.c 110 3.12 1.56 2.0 2
list-dio.c 134 – 3.95 – 4
many-keys-3.c 92 1.65 0.72 2.3 2
many-keys-4.c 98 8.16 1.22 6.7 3
many-lists-3.c 106 1.90 1.37 1.4 3
many-lists-4.c 124 12.53 3.05 4.1 4
cache-1.c 88 1.29 0.97 1.3 9
cache-2.c 93 14.70 1.81 7.8 11

linux/block/deadline-iosched-sim.c 1,941 237.67 32.76 7.3 4
linux/block/deadline-iosched-sim2.c 1,968 5,399.73 100.06 54.0 4
linux/block/deadline-iosched.c 2,131 – 364.45 – 5
linux/fs/afs/server-sim.c 712 705.67 22.61 31.2 9
linux/fs/afs/server.c 1,084 – 1,932.65 – 13

The figure also includes the numbers obtained by applying our previous anal-
ysis built in 2008 to the same examples. This previous analysis couples the sub-
analyses more tightly (using the abstract domain P(SH1 × . . .× SHn)∪ {>}), it
does not use ghost instructions, and it transfers information among sub-analyses
more frequently than our current analysis. The figure shows that the current
implementation performs better, and the performance gain becomes more sig-
nificant, when a program becomes bigger or more complicated. There are also a
number of programs that cannot be analysed at all by the old analysis.

The right-most column records the number of transi�j(e) inserted by the pre-
analysis of our current implementation. It shows that very little communication
is happening. We consider this a primary factor of the efficiency of the analysis.

The benchmark set consists of the following programs, and can be found at
https://sites.google.com/site/overlaiddata/

– list-dio is an abstract version of the deadline IO scheduler. It uses two
doubly-linked lists instead of list and tree. The sim version skips the request-
move routine, which cannot be verified by the old analysis.

– many-keys has an overlaid data structure of doubly-linked lists that are
ordered by different keys. The number of lists is annotated in the filename.

– many-lists uses multiple doubly-linked lists implemented by different fields.
These lists do not share nodes, so they do not form an overlaid data struc-
ture. However, our analysis can analyse each list separately, using a distinct
conjunct for each list. The number of lists is annotated.

– cache has one doubly-linked list and pointers to cells in the list that were
recently accessed. We can separately analyse the list and pointers by using
our technique. The number of cache pointers is annotated.

– block/deadline-iosched.c has an overlaid data structure of a doubly-
linked list and a red-black tree to maintain a list of requests. The original
source was modified as follows: irrelevant fields and procedures such as ones
for locks, and language constructors such as arrays that our analyser does not
support, were removed, and assumptions were inserted to tree operations to

15

compensate for our inaccurate tree abstraction. The sim/sim2 version skips
procedures that the old analyser cannot verify due to its imprecision, as well
as procedures of high analysis cost.

– fs/afs/server.c also has a similar data structure to maintain servers but
it has one more component of doubly-linked list for removing servers: Servers
to be removed are additionally connected to the graveyard list. So, in this
case, the overlaid data structure consists of three components.

Conclusion In this paper, we have presented a static analysis for overlaid data
structures, capable of verifying memory safety of real world programs. Our in-
sight is to decompose an overlaid data structure into its components, and to
track components using sub-analyses as independently as possible, while allow-
ing communication among them using ghost instructions. Besides the progress in
verifying more challenging data structures, we hope that our work has provided
further evidence that with proper understanding of more programming patterns
in systems code, together with specialized abstractions, one can design effective
automatic verifiers for ever-larger classes of real-world systems programs.

References

1. Arnold, G., Manevich, R., Sagiv, M., Shaham, R.: Combining shape analyses by
intersecting abstractions. In: VMCAI (2006)

2. Ball, T., Podelski, A., Rajamani, S.: Boolean and cartesian abstraction for model
checking C programs. In: TACAS (2001)

3. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL (2009)

4. Cherini, R., Rearte, L., Blanco, J.: A shape analysis for non-linear data structures.
In: SAS (2010)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL (1979)

6. Distefano, D., O’Hearn, P., Yang, H.: A local shape analysis based on separation
logic. In: TACAS (2006)

7. Hawkins, P., Aiken, A., Fisher, K.: Reasoning about shared mutable data structures
(2010), manuscript

8. Hawkins, P., Aiken, A., Fisher, K., Rinard, M., Sagiv, M.: Data structure fusion.
In: APLAS (2010)

9. Kreiker, J., Seidl, H., Vojdani, V.: Shape analysis of low-level C with overlapping
structures. In: VMCAI (2010)

10. Kuncak, V., Lam, P., Zee, K., Rinard, M.: Modular pluggable analyses for data
structure consistency. IEEE TSE (2006)

11. Reps, T., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via graph
reachability. In: POPL (1995)

12. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS (2002)

13. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM TOPLAS 24(3), 217–298 (2002)

14. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.:
Scalable shape analysis for systems code. In: CAV (2008)

16

