
A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE

JAN SCHWINGHAMMER, LARS BIRKEDAL, FRANÇOIS POTTIER, BERNHARD REUS,
KRISTIAN STØVRING, AND HONGSEOK YANG

Abstract. Frame and anti-frame rules have been proposed as proof rules for
modular reasoning about programs. Frame rules allow one to hide irrelevant

parts of the state during verification, whereas the anti-frame rule allows one

to hide local state from the context.
We discuss the semantic foundations of frame and anti-frame rules, and

present the first sound model for Charguéraud and Pottier’s type and capabil-

ity system including both of these rules. The model is a possible worlds model
based on the operational semantics and step-indexed heap relations, and the

worlds are given by a recursively defined metric space.

We also extend the model to account for Pottier’s generalized frame and
anti-frame rules, where invariants are generalized to families of invariants in-

dexed over preorders. This generalization enables reasoning about some well-

bracketed as well as (locally) monotone uses of local state.

1. Introduction

Information hiding, or hidden state, is one of the key design principles used by
programmers in order to control the complexity of large-scale software systems.
The idea is that an object (or function, or module) need not reveal in its interface
the fact that it owns and maintains a private, mutable data structure. Hiding this
internal invariant from the client has several beneficial effects. First, the complexity
of the object’s specification is slightly decreased. More importantly, the client is
relieved from the need to thread the object’s invariant through its own code. In
particular, when an object has multiple clients, they are freed from the need to
cooperate with one another in threading this invariant. Last, by hiding its internal
state, the object escapes the restrictions on aliasing and ownership that are normally
imposed on objects with mutable state.

The recently proposed anti-frame proof rule [21] enables hiding in the presence
of higher-order store, i.e., memory cells containing (pointers to) procedures or code
fragments. Thus, in combination with frame rules that allow the irrelevant parts
of the state to be hidden during verification, the anti-frame rule can provide an
important ingredient for modular, scalable program verification techniques. In this
article, we study the semantic foundation of the anti-frame rule and give a soundness
proof for it. Our proof involves an intricate recursive domain equation, and it helps
identify some of the key ingredients for soundness.

1.1. Information hiding with frame and anti-frame rules. Our results are in
a line of work on logic-based approaches to information hiding. These approaches
adopt a standard semantics of the programming language, and deal with infor-
mation hiding on a logical basis, for instance by extending a Hoare calculus with
special proof rules. These rules usually take the form of frame rules that allow
the implementation of an object to ignore (hence implicitly preserve) some of the
invariants provided by the context, and of anti-frame rules, which allow an object
to hide its internal invariant from the context [10, 15, 21, 26].

1



2 J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

It is worth emphasizing that hiding and abstraction (as studied, for instance, in
separation logic [5, 14, 16, 17]) are distinct mechanisms, which may co-exist within
a single program logic: Abstraction is often implemented in terms of assertion
variables (called abstract predicates by Parkinson) that describe the private data
structures of an object. These variables are exposed to a client, but their definitions
are not, so that the object’s internals are presented to the client in an abstract form.
Hiding, on the other hand, conceals the object’s internals completely.

In its simplest form, the frame rule [26] states that invariants R can be added to
valid triples: if{P}C{Q} is valid, then so is{P ∗R}C{Q ∗R}, where the separating
conjunction P ∗ R indicates that P and R govern disjoint regions of the heap. In
subsequent developments, the rule was extended to handle higher-order procedures
[10, 15] and higher-order store [7, 27]. Moreover, it was argued that both extensions
of the rule support information hiding: they allow one to hide the invariant of a
module and to prove properties of clients, as long as the module is understood in
continuation-passing style [15].

Thorough semantic analyses were required to determine the conditions under
which these extensions of the frame rule are sound. Indeed, the soundness of these
rules raises subtle issues. For instance, the frame rule for higher-order procedures
turns out to be inconsistent with the conjunction rule, a standard rule of Hoare logic
[10, 15]. Furthermore, seemingly innocent variants of the frame rule for higher-order
store have been shown unsound [23, 27].

In the most recent development in this line of research, Pottier [21] proposed an
anti-frame rule, which expresses the information hiding aspect of an object directly,
instead of in continuation-passing style. Besides giving several extensive examples
of how the anti-frame rule supports hidden state, Pottier argued that the anti-frame
rule is sound by sketching a plausible syntactic argument. This argument, however,
relied on several non-trivial assumptions about the existence of certain recursively
defined types and recursively defined operations over types. In the present paper
we justify these assumptions and give a complete soundness proof of Pottier’s anti-
frame rule.

1.2. This paper. This article is an extended version of results that were presented
in two papers at the FOSSACS 2010 and FOSSACS 2011 conferences [28, 29].

In the first of these papers we presented our results on a semantic foundation
for the anti-frame rule in the context of a simple while language with higher-order
store, using a denotational semantics of the programming language. In the second
paper we gave an alternative approach to constructing a model for the anti-frame
rule and presented our results in the context of Charguéraud and Pottier’s calculus
of capabilities [11] that not only features higher-order store but also higher-order
functions. In this latter paper we based the model on an operational semantics of
the programming language, using the discovery that the metric approach to solving
recursive possible world equations works both for denotationally- and operationally-
based models [6].

In the present paper we describe our results in the context of the calculus of
capabilities, using operational semantics. We detail both the original approach to
constructing a model of the anti-frame rule from the FOSSACS 2010 paper (but
adapted to operational semantics and step-indexing) and the alternative approach
from the 2011 paper. We have chosen to use the capability calculus setup since
Pottier has already shown how to reason about a range of applications with the
anti-frame rule in this system [21]. Moreover, Pottier has also proposed generalized
versions of the frame and anti-frame rules [22] for capabilities, and we show that
our approach extends to these generalizations.



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 3

1.3. Overview of the technical development. Recently, Birkedal et al. [6] de-
veloped a step-indexed model of Charguéraud and Pottier’s type and capability
system with higher-order frame rules, but without the anti-frame rule. This was a
Kripke model in which capabilities are viewed as assertions (on heaps) that are in-
dexed over recursively defined worlds: intuitively, these worlds are used to represent
the invariants that have been added by the frame rules.

Proving soundness of the anti-frame rule requires a refinement of this idea, as
one needs to know that additional invariants do not invalidate the invariants on
local state which have been hidden by the anti-frame rule. This requirement can be
formulated in terms of a monotonicity condition for the world-indexed assertions,
using an order on the worlds that is induced by invariant extension, i.e., the addition
of new invariants.1 More precisely, in the presence of the anti-frame rule, it turns
out that the recursive domain equation for the worlds involves monotone functions
with respect to an order relation on worlds, and that this order is specified using
the isomorphism of the recursive world solution itself. This circularity means that
standard existence theorems, in particular the one used for the model without the
anti-frame rule in [6], cannot be applied to define the worlds.

In the present paper we develop a new model of Charguéraud and Pottier’s
system, which can also be used to show soundness of the anti-frame rule. Moreover,
we demonstrate how to extend our model to prove soundness of Pottier’s generalized
frame and anti-frame rules, which allow hiding of families of invariants [22]. The
new model is a non-trivial extension of the earlier work because, as pointed out
above, the anti-frame rule is the source of a circular monotonicity requirement. We
present two alternative approaches that address this difficulty.

In the first approach, a solution to the recursive world equation is defined by an
inverse-limit construction in a category of metric spaces; the approximants to this
limit are defined simultaneously with suitably approximated order relations between
worlds. This approach has originally been used by Schwinghammer et al. [29] for a
separation logic variant of the anti-frame rule, for a simple while language (untyped
and without higher-order functions), and with respect to a denotational semantics of
the programming language. In this article, the metrics that are employed to define
the recursive worlds are linked to an operational semantics of the programming
language instead, using the step-indexing idea [3, 6]. While the construction is
laborious, it results in a set of worlds that evidently has the required properties.

The second approach can loosely be described as a metric space analogue of
Pitts’ approach to relational properties of domains [20] and thus consists of two
steps. First, we consider a recursive metric space domain equation without any
monotonicity requirement, for which we obtain a solution by appealing to a standard
existence theorem. Second, we carve out a suitable subset of what might be called
hereditarily monotone functions. We show how to define this recursively specified
subset as a fixed point of a suitable operator. While this second construction is
considerably simpler than the inverse-limit construction, the resulting subset of
monotone functions is, however, not a solution to the original recursive domain
equation. Hence, we must verify that the semantic constructions that are used to
justify the anti-frame rule restrict in a suitable way to the recursively defined subset
of hereditarily monotone functions.

We show that our techniques scale, by extending the model to Pottier’s gen-
eralized frame and anti-frame rules [22]. For this extension, capabilities denote

1The fact that ML-style untracked references can be encoded from strong references with the
anti-frame rule [21] also indicates that a monotonicity condition is required: Kripke models of
ML-style references involve monotonicity in the worlds [1, 8].



4 J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

v ::= x | 〈〉 | inj1 v | inj2 v | 〈v, v〉 | fun f(x)=t | l
t ::= v | (v t) | case(v, v, v) | proj1 v | proj2 v | ref v | get v | set v

Figure 1. Syntax

families of hereditarily monotone functions that are invariant under index reorder-
ing. The invariance property is expressed by considering a (recursively defined)
partial equivalence relation on these families.

Outline. This paper is organised as follows. In the next section we give a brief
overview of Charguéraud and Pottier’s type and capability system with higher-order
frame and anti-frame rules. In Section 3 we discuss the requirements that the frame
and anti-frame rules place on the worlds of the Kripke model. Section 4 gives some
background on metric spaces, and Sections 5 and 6 present the two approaches
to constructing the recursive worlds for the possible worlds model. (Readers not
interested in the details of these constructions can safely skip Sections 5 and 6.)
The model is described and used to prove soundness of Charguéraud and Pottier’s
system in Section 7. In Section 8 we show how to extend the model to also prove
soundness of the generalized frame and anti-frame rules.

2. A Calculus of Capabilities

Charguéraud and Pottier’s calculus of capabilities uses (linear) capabilities and
singleton types to track aliasing and ownership properties in a high-level, ML-like
programming language [11]. Capabilities describe the shape of heap data structures,
much like the assertions of separation logic. By introducing static names for values,
the singleton types make it possible to refer within capabilities to the arguments
and results of procedures.

We focus on the semantic foundations of the frame and anti-frame rules in this
paper, and the exact details of the capability type system are therefore less impor-
tant here: in this section we only give a brief overview of the calculus.2 We refer
to earlier work that motivates the design of the capability type system and gives
detailed examples of its use [11, 19, 21, 22].

2.1. Syntax and operational semantics. The programming language that we
consider is a standard call-by-value, higher-order language with general references,
sum and product types, and polymorphic and recursive types. The grammar in
Figure 1 gives the syntax of values and expressions, keeping close to the notation
of [11]. Here, the term fun f(x)=t stands for the recursive procedure f with body
t, and locations l range over a countably infinite set Loc.

The operational semantics (Figure 2) is given by a relation (t |h) 7−→ (t′ |h′)
between configurations that consist of a (closed) expression t and a heap h. We
take a heap h to be a finite map from locations to closed values, we use the notation
h#h′ to indicate that two heaps h, h′ have disjoint domains, and we write h · h′ for
the union of two such heaps. By Val we denote the set of closed values.

2.2. Types and capabilities. Charguéraud and Pottier’s type system uses capa-
bilities, value types, and computation types. Figure 3 presents a subset of those.
(The full syntax is given in Section 7.)

A capability C describes a heap property, much like the assertions of a Hoare-
style program logic. For instance, {σ : ref int} asserts that σ is a singleton region

2We only consider a fragment of the capability calculus. In particular, in this article we omit
existential types and group regions.



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 5

((fun f(x)=t) v |h) 7−→ (t[f := fun f(x)=t, x := v] |h)

(proji 〈v1, v2〉 |h) 7−→ (vi |h) for i = 1, 2

(case(v1, v2, inj
iv) |h) 7−→ (vi v |h) for i = 1, 2

(ref v |h) 7−→ (l |h·[l 7→ v]) if l /∈ dom(h)

(get l |h) 7−→ (h(l) |h) if l ∈ dom(h)

(set 〈l, v〉 |h) 7−→ (〈〉 |h[l := v]) if l ∈ dom(h)

(v t |h) 7−→ (v t′ |h′) if (t |h) 7−→ (t′ |h′)

Figure 2. Operational semantics

Capabilities C ::= ∅ | {σ : ref τ} | C ∗ C | . . .
Value types τ ::= 1 | int | τ × τ | τ + τ | χ→χ | [σ] | . . .
Computation types χ ::= τ | χ ∗ C | ∃σ.χ | . . .
Value contexts ∆ ::= ∅ | ∆, x:τ | . . .
Linear contexts Γ ::= ∅ | Γ, x:χ | Γ ∗ C | . . .

Figure 3. Capabilities and types

inhabited by one valid location that contains an integer value. More complex capa-
bilities can be built by separating conjunctions C1∗C2 and universal and existential
quantification over names σ.

Value types τ classify values; they include base types like int, singleton types [σ],
and are closed under products, sums, and universal quantification. Computation
types χ describe the result of computations. They include all types of the form
∃~σ.τ ∗C, which describe both the value and the heap that result from the evaluation
of an expression. Arrow types (which are value types) have the form χ1 → χ2 and
thus, like the pre- and post-conditions of a triple in Hoare logic, make explicit which
part of the heap is accessed and modified by a procedure call.

We allow recursive capabilities as well as recursive value and computation types,
provided the recursive definition is formally contractive [18], i.e., the recursion must
go through one of the type constructors +, ×, →, or ref .

Since Charguéraud and Pottier’s system tracks aliasing, strong (i.e., not neces-
sarily type preserving) updates can be admitted. A possible type for such an update
operation is ∀σ, σ′.([σ] × [σ′]) ∗ {σ : ref τ} → 1 ∗ {σ : ref [σ′]}. Here, the argument
to the procedure is a pair consisting of a location (named σ) and the value to be
stored (named σ′), and the location is assumed to be allocated in the initial heap
(and store a value of some type τ). The result of the procedure is the unit value
〈〉, but as a side-effect σ′ will be stored at the location σ.

There are two typing judgements, x1:τ1, . . . , xn:τn ` v : τ for values, and
x1:χ1, . . . , xn:χn  t : χ for expressions. The latter is similar to a Hoare triple
where (the separating conjunction of) χ1, . . . , χn serves as a precondition and χ
as a postcondition. (Since values cannot be reduced, there is no need for pre- and
postconditions in the value typing judgement.) Some of the inference rules that
define the two typing judgements are given in Figure 4.

2.3. Invariant extension, frame and anti-frame rules. As in Pottier’s work
[21], following the approach to higher-order frame rules in [10], each of the syntactic
categories is equipped with an invariant extension operation, ·⊗C. Intuitively, this



6 J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

∆, f : χ1→χ2, x : χ1  t : χ2

∆ ` fun f(x)=t : χ1→χ2

∆ ` v : χ1 → χ2 ∆,Γ  t : χ1

∆,Γ  (v t) : χ2

Γ  v : τ

Γ  ref v : ∃σ.[σ] ∗ {σ : ref τ}
Γ  v : [σ] ∗ {σ : ref τ}

Γ  get v : τ ∗ {σ : ref τ}

Γ  v : ([σ]× τ2) ∗ {σ : ref τ1}
Γ  set v : 1 ∗ {σ : ref τ2}

Figure 4. Some typing rules for values and expressions

Monoid structures on capabilities

C1 ◦ C2
def
= (C1 ⊗ C2) ∗ C2 C1 ∗ C2 = C2 ∗ C1 (1)

(C1 ◦ C2) ◦ C3 = C1 ◦ (C2 ◦ C3) (C1 ∗ C2) ∗ C3 = C1 ∗ (C2 ∗ C3) (2)

C ◦ ∅ = C C ∗ ∅ = C (3)

Monoid actions

(· ⊗ C1)⊗ C2 = · ⊗ (C1 ◦ C2) · ⊗ ∅ = · (4)

(· ∗ C1) ∗ C2 = · ∗ (C1 ∗ C2) · ∗ ∅ = · (5)

Action by ∗ on linear environments

(Γ, x:χ) ∗ C = Γ, x:(χ ∗ C) = (Γ ∗ C), x:χ (6)

Action by ⊗ on capabilities, types, and environments

(· ∗ ·)⊗ C = (· ⊗ C) ∗ (· ⊗ C) (7)

{σ : ref τ} ⊗ C = {σ : ref τ ⊗ C} (8)

1⊗ C = 1 (9)

int⊗ C = int (10)

(τ1 + τ2)⊗ C = (τ1 ⊗ C) + (τ2 ⊗ C) (11)

(τ1 × τ2)⊗ C = (τ1 ⊗ C)× (τ2 ⊗ C) (12)

(χ1 → χ2)⊗ C = (χ1 ◦ C)→ (χ2 ◦ C) (13)

[σ]⊗ C = [σ] (14)

(∃σ.χ)⊗ C = ∃σ.(χ⊗ C) if σ /∈ RegNames(C) (15)

∅⊗ C = ∅ (16)

(Γ, x:χ)⊗ C = (Γ⊗ C), x:(χ⊗ C) (17)

Figure 5. Some axioms of the structural equivalence relation

operation conjoins C to the domain and codomain of every arrow type that occurs
within its left hand argument, which means that the capability C is preserved by
all procedures of this type.

This intuition is made precise by regarding capabilities and types modulo a
structural equivalence which subsumes the “distribution axioms” for⊗ that are used
to express generic higher-order frame rules [10]. The two key cases of the structural
equivalence are the distribution axioms for arrow types, (χ1 → χ2) ⊗ C = (χ1 ⊗



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 7

Shallow frame
Γ  t : χ

Γ ∗ C  t : χ ∗ C

Deep frame (comp)

Γ  t : χ

(Γ⊗ C) ∗ C  t : (χ⊗ C) ∗ C

Deep frame (val)

∆ ` v : τ

∆⊗ C ` v : τ ⊗ C

Anti-frame
Γ⊗ C  t : (χ⊗ C) ∗ C

Γ  t : χ

Figure 6. Frame and anti-frame rules

C ∗C)→ (χ2⊗C ∗C), and for successive extensions, (χ⊗C1)⊗C2 = χ⊗ (C1 ◦C2)
where the derived operation C1 ◦ C2 abbreviates the conjunction (C1 ⊗ C2) ∗ C2.
Figure 5 shows some of the axioms that define the structural equivalence. The
operations ∗ and ◦ form two monoid structures on the capabilities (equations 1–
3), and ∗ and the invariant extension operation ⊗ are actions of these monoids
(equations 4–17). The structural equivalence also includes the unfolding equations
for recursive capabilities and types.

The view of capabilities as the assertions of a program logic provides some in-
tuition for the “shallow” and “deep” frame rules, and for the (essentially dual)
anti-frame rule given in Figure 6. As in separation logic, the frame rules can be
used to add a capability C (which might assert the existence of an integer reference,
say) as an invariant to a specification Γ  t : χ, which is useful for local reasoning.
The difference between the shallow variant Shallow frame and the deep variant
Deep frame is that the former adds C only on the top-level, whereas the latter
also extends all arrow types nested inside Γ and χ, via ·⊗C. While the frame rules
can be used to reason about certain forms of information hiding [10], the anti-frame
rule expresses a hiding principle more directly: the capability C can be removed
from the specification if C is an invariant that is established by t, expressed by ·∗C,
and that is guaranteed to hold whenever control passes from t to the context and
back, expressed by · ⊗ C.

2.4. Example: typing Landin’s knot. Pottier [21] illustrates the anti-frame rule
by a number of applications. One of these is a fixed-point combinator implemented
by means of “Landin’s knot,” i.e., using back-patching and recursion through the
heap: employing the standard let notation as syntactic sugar, fix can be written as

funfix(f)=let r = ref〈〉
h = λy. (f (λx.(get r) x)) y

= set 〈r, h〉
in h

Every time the combinator is called with a functional f : (χ1→χ2) → (χ1→χ2),
a new reference cell σ is allocated in order to set up the recursion required for the
resulting fixed point fix f . Subsequent calls to fix f rely on this cell, and one needs to
know that the code stored in σ preserves the properties of this cell. More precisely,
the invariant for the cell is the (recursive) capability I = {σ : ref (χ1→χ2)⊗ I}.
When type-checking the body of fix in the context Γ = f :(χ1→χ2)→ (χ1→χ2), . . .
we have

(Γ, r:[σ])⊗ I ` λx.(get r) x : (χ1 → χ2)⊗ I
and therefore

(Γ, r:[σ])⊗ I ` λy. (f (λx.(get r) x)) y : (χ1 → χ2)⊗ I



8 J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

Thus, the strong update in the third line of the definition of fix establishes the
invariant I:

(Γ, r:[σ])⊗ I, h : (χ1 → χ2)⊗ I ∗ {σ : ref 1}  set 〈r, h〉 : 1 ∗ {σ : ref (χ1→χ2)⊗ I}

From this we obtain (Γ, r:[σ])⊗ I ∗ {σ : ref 1}  let h = . . . in h : (χ1 → χ2)⊗ I ∗ I
which, by applying structural equivalence axioms 17, 14, and 6 can be rewritten as

(Γ, r:[σ] ∗ {σ : ref 1})⊗ I  let h = . . . in h : (χ1 → χ2)⊗ I ∗ I

At this point, the anti-frame rule allows us to hide the reliance of the result on σ:

Γ, r:[σ] ∗ {σ : ref 1}  let h = . . . in h : χ1 → χ2

This leads to a purely functional interface of the fixed point combinator: after hid-
ing I, we can ascribe fix the type ((χ1→χ2)→(χ1→χ2)) → (χ1→χ2). Thus we
can reason about aliasing and type safety of programs that use the fixed-point com-
binator without considering the reference cells used internally by that combinator.

3. Kripke Semantics of Frame and Anti-frame Rules

Our soundness proof of the frame and anti-frame rules is based on two key ideas.
The first idea is an interpretation of arrow types which explicates the universal
and existential quantifications that are implicit in the anti-frame rule. Recall that
· ◦C = · ⊗C ∗C abbreviates the operation of combining two capabilities. Roughly
speaking, in our model, an arrow type χ1 → χ2 consists of the procedures that
have type

∀C.
(
χ1 ◦C → ∃C ′. χ2 ◦ (C ◦C ′)

)
in a standard interpretation. Pottier [21] showed how the anti-frame rule allows
encoding ML-like weak references in terms of strong references. Readers who are
familiar with Kripke models of ML references (see, e.g., [13]) may thus find the above
interpretation natural, by reading the type as for all worlds C, if the procedure is
given an argument of type χ1 in world C, then, for some future world C ◦C ′ (an
extension of C), the procedure returns a result of type χ2 in world C ◦C ′.

Intuitively, as indicated earlier, capabilities are like assertions in a Hoare-style
program logic and thus describe heaps. However, to formalize the above meaning
of arrow types, the second key idea of our model is that capabilities (as well as
types and type contexts) are parameterized by invariants. This parameterization
will make it easy to interpret the invariant extension operation ⊗, as in earlier work
[10, 27]. That is, rather than interpreting a capability C directly as a set of heaps,
we interpret it as a function JCK : W → Pred(Heap) that maps “invariants” from
W to sets of heaps. Essentially, invariant extension of C ⊗ C ′ is then interpreted
by applying JCK to (the interpretation of) the given invariant C ′. In contrast, a
simple interpretation of C as a set of heaps would not contain enough information
to determine the meaning of every invariant extension of C.

The question is now what the set W of invariants should be. As the frame and
anti-frame rules in Figure 6 suggest, invariants are in fact arbitrary capabilities,
so W should be the set used to interpret capabilities. But, as we just saw, capa-
bilities should be interpreted as functions from W to Pred(Heap). Thus, we are
led to consider a Kripke model where the worlds are recursively defined: to a first
approximation, we need a solution to the equation W = W →Pred(Heap).

In fact, in order to prove the soundness of the anti-frame rule, we will also need
to consider a preorder on W and ensure that the interpretation of capabilities and
types is monotone, which leads to the equation

W = W →mon Pred(Heap) . (18)



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 9

The preorder onW is induced by a monoid structure onW . More precisely, w1 v w′1
holds if w′1 is w1 ◦ w2 for some w2, where

(w1 ◦ w2)(w) = (w1 ⊗ w2)(w) ∗ w2(w) (19)

reflects the syntactic operation C1 ◦ C2, and where

(w1 ⊗ w2)(w) = w1(w2 ◦ w) (20)

is the semantic analogue of invariant extension. In particular, the monotonicity
condition in (18) states that JCK (JC1K) ⊆ JCK (JC1 ◦ C2K) holds for any capability
C, which means that additional invariants (here C2, appearing in the combined
invariant C1 ◦C2) cannot invalidate C with respect to a given invariant (here C1).
Intuitively, this property is necessary since C1 may have been hidden by the anti-
frame rule, i.e., C1 is not visible in the program logic at the point where the frame
rule is applied to introduce C2.

Note that the operations (19) and (20) are mutually recursive, that w2 on the
right-hand side of (19) is used both as an element in W and as a function on W ,
and that the monotonicity condition in (18) refers to the operation in (19). In
Sections 5 and 6 we will construct sets of worlds W that satisfy a suitable variant
of (18), using ultrametric spaces. To this end, we recall some basic definitions and
results about metric spaces in the next section.

4. Ultrametric Spaces and Uniform Relations

This section summarizes some basic notions from the theory of metric spaces,
and introduces “uniform relations” which will be used as building blocks for the
interpretation in the following sections. For a less condensed introduction we refer
to Smyth [30] and Birkedal et al. [9].

4.1. Ultrametric spaces. A 1-bounded ultrametric space (X, d) is a metric space
where the distance function d : X ×X → R takes values in the closed interval [0, 1]
and satisfies the “strong” triangle inequality d(x, y) ≤ max{d(x, z), d(z, y)}, for all
x, y, z ∈ X. A Cauchy sequence is a sequence (xn)n∈N of elements in X such that
for every k ∈ N there exists an index n and for all n1, n2 ≥ n, d(xn1

, xn2
) ≤ 2−k.

A metric space is complete if every Cauchy sequence (xn)n∈N has a limit limn xn.
A function f : X1 → X2 between metric spaces (X1, d1), (X2, d2) is non-

expansive if d2(f(x), f(y)) ≤ d1(x, y) for all x, y ∈ X1. It is contractive if there
exists some δ < 1 such that d2(f(x), f(y)) ≤ δ · d1(x, y) for all x, y ∈ X1. By the
Banach fixed point theorem, every contractive function f : X → X on a complete
and non-empty metric space (X, d) has a (unique) fixed point. By multiplication
of the distances of (X, d) with a non-negative factor δ < 1, one obtains a new
ultrametric space, δ · (X, d) = (X, d′) where d′(x, y) = δ · d(x, y).

The complete, 1-bounded, non-empty, ultrametric spaces and non-expansive
functions between them form a Cartesian closed category CBUlt. The termi-
nal object 1 is given by any singleton space, and products are given by the set-
theoretic product where the distance is the maximum of the componentwise dis-
tances. The exponential (X1, d1)→ (X2, d2) has the set of non-expansive functions
from (X1, d1) to (X2, d2) as underlying set, and the distance function is given by
dX1→X2(f, g) = sup{d2(f(x), g(x)) | x ∈ X1}.

The notation x
n
= y means that d(x, y) ≤ 2−n. Each relation

n
= is an equivalence

relation because of the ultrametric inequality, and we refer to this relation as “n-

equality.” Since the distances are bounded by 1, x
0
= y always holds, and the

n-equalities become finer as n increases. If x
n
= y holds for all n then x = y; this

observation allows us to prove equalities by induction on n.



10J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

If X is bisected, i.e., if all distances in X are of the form 2−n for some n, then a

function f : X → Y is non-expansive if and only if x
n
= x′ implies f(x)

n
= f(x′). In

the following, all the metric spaces that we consider have this property.

4.2. Uniform relations. In order to rephrase the (informal) requirement (18) in
CBUlt, we consider uniform relations in place of arbitrary predicates on Heap.
More generally, let (A,≤) be a partially ordered set. An (upwards closed) uniform
relation on A is a subset p ⊆ N × A that is downwards closed in the first and
upwards closed in the second component:

(k, a) ∈ p ∧ j ≤ k ∧ a ≤ b ⇒ (j, b) ∈ p .

We write URel(A) for the set of all such relations on A, and for k ∈ N we define
p[k] = {(j, a) | j < k}. Note that p[k] ∈ URel(A) if p ∈ URel(A), and that
p ⊆ p′ implies p[n] ⊆ p′[n]. We equip URel(A) with the distance function d(p, q) =

inf{2−n | p[n] = q[n]}, which makes (URel(A), d) an object of CBUlt. Moreover,
URel(A) forms a complete Heyting algebra.

Proposition 1. URel(A), ordered by inclusion, forms a complete Heyting algebra.
Meets and joins are given by set-theoretic intersections and unions, resp., and im-
plication p⇒ q is given by the uniform relation such that (k, a) ∈ (p⇒ q) holds if
and only if for all j ≤ k and all b ≥ a, (j, b) ∈ p implies (j, b) ∈ q.

Meets, joins and implication are non-expansive operations on URel(A) with re-
spect to the distance function d defined above.

In our model, we use URel(A) with the following concrete instances for the
partial order (A,≤):

(1) heaps (Heap,≤), where h ≤ h′ if and only if h′ = h · h0 for some h0#h,
(2) values (Val ,≤), where v ≤ v′ if and only if v = v′,
(3) stateful values (Val ×Heap,≤), where (v, h) ≤ (v′, h′) if and only if v = v′

and h ≤ h′, and
(4) stateful expressions (Exp×Heap,≤), where (t, h) ≤ (t′, h′) if and only if

t = t′ and h = h′.

We also use variants of (2) and (3) where the set Val is replaced by the set of value
substitutions, Env .

In the case of uniform relations on Heap we have a complete BI algebra structure
[25]: a separating conjunction and separating implication as its right adjoint, are
given by

(k, h) ∈ (p1 ∗ p2) ⇔ ∃h1, h2. h = h1·h2 ∧ (k, h1) ∈ p1 ∧ (k, h2) ∈ p2

(k, h) ∈ (p−∗ q) ⇔ ∀j ≤ k. ∀h′#h. (j, h′) ∈ p ⇒ (j, h · h′) ∈ q

The unit for ∗ is given by I = N×Heap. Up to the natural number indexing, this
is just the standard intuitionistic (in the sense that it is not “tight”) heap model of
separation logic [26]. Both separating conjunction and separating implication are
non-expansive operations on URel(Heap).

In the following, when interpreting types and capabilities, we will not need to use
all of the algebraic structure on uniform relations. Nevertheless, the fact that the
uniform relations form a complete Heyting (BI) algebra suggests that Charguéraud
and Pottier’s system could, in principle, be extended to a full-blown program logic
by including all of the logical connectives of separation logic assertions in the syntax
of capabilities.



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 11

4.3. Preordered metric spaces. The uniform relations URel(A), ordered by in-
clusion, form an example of a preordered metric space. More generally, a preordered,
complete, 1-bounded ultrametric space is an object (X, d) ∈ CBUlt equipped with
a preorder ≤ such that for all Cauchy sequences (xn)n∈N and (yn)n∈N, if xn ≤ yn
holds for all n ∈ N then limn xn ≤ limn yn.

For preordered, complete, 1-bounded ultrametric spaces X1 and X2 we write
X1 →mon X2 for the set of non-expansive and monotone functions between X1 and
X2. When equipped with the sup-distance, d(f, g) = sup{d2(f x, g x) | x ∈ X1},
the set X1 →mon X2 becomes an object of CBUlt.

Proposition 2. For any preordered, complete, 1-bounded ultrametric spaces X
and Y , X →mon Y equipped with the pointwise order forms a complete Heyting
algebra where the operations are non-expansive. Meets and joins are given by the
pointwise extension of the corresponding operations on Y , and f ⇒ g is defined by
(f ⇒ g)(x) =

∧
x′≥x

(
f(x′)⇒ g(x′)

)
.

In the case where Y is URel(Heap), X →mon URel(Heap) is a complete BI
algebra where ∗ and −∗ are non-expansive operations. Separating conjunction f ∗ g
and its unit I are defined pointwise, and the separating implication f −∗ g is defined
by (f −∗ g)(x) =

∧
x′≥x

(
f(x′)−∗ g(x′)

)
.

5. Monotone Recursive Worlds

In this section we prove the following existence theorem:

Theorem 3 (Existence of monotone recursive worlds). There exists a preordered
monoid (W,v, ◦, e) where W is an object of CBUlt with a (non-expansive) isomor-
phism ι from

(
1
2
·W →mon URel(Heap)

)
to W , such that the following conditions

hold:

(1) The preorder on W is given by w v w′ ⇔ ∃w0. w
′ = w ◦ w0.

(2) The operation ◦ : W ×W →W is non-expansive.
(3) For all w1, w2, w ∈W , ι−1(w1 ◦ w2)(w) = ι−1(w1)(w2 ◦ w) ∗ ι−1(w2)(w).

In condition (3), the operation ∗ is the separating conjunction on uniform heap
relations described in Proposition 1. By Proposition 2, 1

2
·W →mon URel(Heap) is

a complete BI algebra.

This theorem asserts the existence of a suitable set of worlds for the interpretation
of the capability calculus. In particular, if we define (f ⊗ w1)(w) = f(w1 ◦ w) for
f ∈

(
1
2
·W →mon URel(Heap)

)
and w1, w ∈W we have

ι−1(w1 ◦ w2)(w) = (ι−1(w1)⊗ w2)(w) ∗ ι−1(w2)(w) .

Apart from the insertion of the isomorphism in this equation, the difference between
the statement of the theorem and the informal requirements (18–20) on page 8
are the use of uniform relations instead of arbitrary predicates over heaps, the
restriction to non-expansive functions, and the scaling factor 1

2 . (Note that a non-

expansive function 1
2
·W →mon URel(Heap) is the same as a contractive function

W →mon URel(Heap) with contraction factor 1
2 .)

We prove Theorem 3 by constructing W ∼= 1
2
·W →mon URel(Heap) explicitly,

as (inverse) limit

W =
{
x ∈

∏
k≥0Wk | ∀k ≥ 0. xk = ε◦k(xk+1)

}
of a sequence of “approximations” Wk of W ,

W0

ε0 // W1
ε◦0

oo
ε1 // W2
ε◦1

oo
ε2 // . . .
ε◦2

oo
εk // Wk+1
ε◦k

oo
εk+1 // . . .
ε◦k+1

oo (21)



12J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

Each Wk is a complete, 1-bounded, ultrametric space with distance function dk,
and comes equipped with a non-expansive operation ◦k : Wk×Wk →Wk and a pre-
order vk. This sequence will be defined inductively, so that Wk+1 = 1

2
·Wk →mon

URel(Heap) are the non-expansive and monotone functions with respect to vk.

5.1. Cauchy tower of approximants. We define preordered, complete, 1-bounded
ultrametric spaces (Wk,vk), binary operations ◦k on Wk, and functions

Wk

εk // ( 1
2
·Wk →mon URel(Heap)

)
ε◦k

oo

by induction on k as follows.

• W0 = {?} is a one-point space;
• ◦0 is given by ? ◦0 ? = ?;
• v0 is the trivial order, ? v0 ?;
• ε0(w) = I, the unit of the BI algebra structure on 1

2
·Wk →mon URel(Heap);

• ε◦0(f) = ?.

For k ≥ 0,

• Wk+1 = 1
2
·Wk →mon URel(Heap);

• ◦k+1 is given by (f ◦k+1 g)(w) = f((ε◦k g) ◦k w) ∗ g(w);

• f vk+1 g holds if g
k+1
= f ◦k+1 f0 for some f0 ∈Wk+1;

• εk+1(f) sends g ∈ 1
2
·Wk+1 to (f(ε◦k g))[k+2] ∈ URel(Heap);

• ε◦k+1(F ) sends w ∈ 1
2
·Wk to (F (εk w))[k+1] ∈ URel(Heap).

In the rest of this subsection we show that vk indeed defines a preorder on Wk,
and that εk and ε◦k are non-expansive and map into the space of non-expansive
and monotone functions. One technical inconvenience in these proofs is that the
operations ◦k are not preserved by εk and ε◦k−1, and that they are not associative.
However, associativity holds “up to approximation k,” which explains the definition
of vk above.

Lemma 4 (Well-definedness). For all k ≥ 0,

(1) εk and ε◦k are non-expansive functions between Wk and 1
2
·Wk → URel(Heap).

(2) For all w,w′ ∈Wk, w ◦k w′ ∈Wk.
(3) ◦k is a non-expansive operation on Wk.

(4) For all w,w′, w′′ ∈Wk, (w ◦k w′) ◦k w′′
k
= w ◦k (w′ ◦k w′′).

(5) For all w ∈Wk+1, I ◦k+1 w = w and w ◦k+1 I
k+1
= w, where I is the unit of

the BI algebra structure on 1
2
·Wk →mon URel(Heap).

(6) The relation vk is a preorder on Wk.
(7) For all w ∈Wk and F ∈Wk+2, εk(w) and ε◦k+1(F ) are monotone functions

1
2
·Wk →mon URel(Heap).

(8) For all w ∈Wk, ε◦k(εk w)
k
= w. For all g ∈Wk+1, εk(ε◦k g)

k
= g.

(9) For all w,w′ ∈Wk, εk(w ◦k w′)
k
= (εk w) ◦k+1 (εk w

′). For all g, g′ ∈Wk+1,

ε◦k(g ◦k+1 g
′)

k
= (ε◦k g) ◦k (ε◦k g

′).

Proof. The properties are proved simultaneously by induction on k. The case k = 0
follows directly from the definitions. We give the key ideas for the case k > 0:

(1) The claimed non-expansiveness properties are consequences of the non-
expansiveness of εk−1 and ε◦k−1, obtained from the induction hypothesis,
and from the non-expansiveness of function composition.

(2) By induction hypothesis, ◦k−1 and ε◦k−1 are non-expansive functions; the
non-expansiveness of w ◦k w′ then follows with the non-expansiveness of ∗.



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 13

The monotonicity of w ◦k w′ follows from the definition of vk, the approx-
imate associativity of ◦k−1 given by part (4) of the induction hypothesis,
and the monotonicity of ∗ on URel(Heap).

(3) For non-expansiveness of ◦k, note that (ε◦k−1 w2) ◦k−1w
n
= (ε◦k−1 w

′
2) ◦k−1w

holds for all w ∈Wk−1 and all w2, w
′
2 ∈Wk with w2

n
= w′2 by parts (1) and

(3) of the induction hypothesis. Thus, for all w1, w
′
1 with w1

n
= w′1, the non-

expansiveness of ∗, w1 and w′1 yields (w1 ◦k w2)(w)
n
= (w′1 ◦k w′2)(w). Since

w is chosen arbitrarily, the sup-metric on Wk shows w1 ◦k w2
n
= w′1 ◦k w′2.

(4) Given any x ∈ 1
2
·Wk−1, ((w ◦k w′) ◦k w′′)(x)

k
= (w ◦k (w′ ◦k w′′))(x) follows

from parts (4) and (9) of the induction hypothesis. Thus, the claim follows
with the sup-metric on Wk.

(5) That I ◦k+1 w = I follows easily from the definition of I. For the second

claim, first note that (ε◦k I)
k
= I holds in Wk. Thus, (ε◦k I)◦k x

k+1
= I ◦k x = I

holds in 1
2
·Wk for any x, by the non-expansiveness of ◦k and by the first

claim. From this observation, the k+1-equivalence of w◦k+1I and w follows
with the non-expansiveness of w and the definition of ◦k+1.

(6) That vk is a preorder follows from its definition using parts (4) and (5).
(7) That εk(w)(w1) ⊆ εk(w)(w2) holds for any w,w1, w2 ∈Wk with w1 vk w2 is

a consequence of the monotonicity of w, part (9) of the induction hypothesis
and the definition of εk. For the second claim observe that, whenever
w1 vk w2, the definition of vk and part (9) of the induction hypothesis

yield εk(w2)
k
= εk(w1) ◦k+1 εk(w0) for some w0. Hence,

ε◦k+1(F )(w2) = (F (εw2))[k+1]

= (F (εk(w1) ◦k+1 εk(w0)))[k+1] ⊇ (F (εw1))[k+1] = ε◦k+1(F )(w1)

by the contractiveness and monotonicity of F and the definition of ε◦k+1.
(8) The claims follow from part (8) of the induction hypothesis, using the fact

that function composition is non-expansive and that functions in Wk for
k > 0 are contractive with contraction factor 1

2 , due to the scaling in the
definition of Wk.

(9) By part (9) of the induction hypothesis and by property (8) that we have

just established, ε◦k−1(ε◦k(εk w
′) ◦k w0)

k−1
= ε◦k−1(w′) ◦k−1 ε

◦
k−1(w0) holds for

all w′, w0 ∈Wk. Thus, using the definition of ◦k and εk, the contractiveness
of w ∈Wk, and the non-expansiveness of ∗,

(εk w ◦k+1 εk w
′)(w0)

= (w(ε◦k−1(ε◦k(εk w
′) ◦k w0)))

[k+1]
∗ (w′(ε◦k−1 w0))

[k+1]

k
= (w(ε◦k−1(w′) ◦k−1 ε

◦
k−1(w0)) ∗ w′(ε◦k−1 w0))

[k+1]

= (w ◦k w′)(ε◦k−1 w0)
[k+1]

,

which is just εk(w ◦k w′)(w0). Since this approximate equality holds for all
w0, the claim follows by definition of the sup-metric on Wk.

The second claim is proved similarly.

�

Part (8) of Lemma 4 states that diagram (21) forms a Cauchy tower [9], meaning
that supw dk+1(w, εk(ε◦k w)) as well as supw dk(w, ε◦k(εk w)) become arbitrarily small
as k increases. This ensures that W = {x ∈

∏
k≥0Wk | ∀k ≥ 0. xk = ε◦k(xk+1)},

equipped with the sup-distance, is an object of CBUlt. Limits of Cauchy chains
in W are given componentwise.



14J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

5.2. Monoid structure on the inverse limit. For all 0 ≤ k < l, we define the
functions εk,l : Wk →Wl and ε◦k,l : Wl →Wk by

εk,l = εl−1 · . . . · εk+1 · εk ε◦k,l = ε◦k · ε◦k+1 · . . . · ε◦l−1

which are non-expansive by Lemma 4(1).
Next, we equip W with an operation ◦ : W ×W →W defined by

(xk)k≥0 ◦ (yk)k≥0 =
(
lim
j>k

ε◦k,j(xj ◦j yj)
)
k≥0

.

Note that the limits exist: ε◦j (xj+1 ◦j+1 yj+1)
j
= ε◦j (xj+1) ◦j ε◦j (yj+1) = xj ◦j yj

by Lemma 4(9), and so (ε◦k,j(xj ◦j yj))j>k forms a Cauchy sequence in Wk by

the non-expansiveness of ε◦k,j . Moreover, we have ε◦k(limj>k+1 ε
◦
k+1,j(xj ◦j yj)) =

limj>k+1 ε
◦
k,j(xj ◦j yj) which shows that x ◦ y is a sequence in W . We also define

e
def
= (ek)k≥0 ∈W by ek = I.

Lemma 5. (W, ◦, e) is a monoid with non-expansive multiplication ◦.

Proof. From the definition of e and ◦, we have e ◦ w = w ◦ e = w for all w ∈ W .
To see the associativity of ◦, suppose x, y, z ∈ W . Lemma 4(4) shows for all j:

(xj ◦j yj) ◦j zj
j
= xj ◦j (yj ◦j zj). We obtain

xj ◦j (y ◦ z)j = xj ◦j (lim
l>j

ε◦j,l(yl ◦l zl))

= lim
l>j

xj ◦j ε◦j,l(yl ◦l zl)) by non-expansiveness of ◦j
j
= lim

l>j
xj ◦j (ε◦j,l(yl) ◦j ε◦j,l(zl)) by Lemma 4(9)

= lim
l>j

xj ◦j (yj ◦j zj) since y, z ∈W

j
= lim

l>j
(xj ◦j yj) ◦j zj by Lemma 4(4)

j
= (x ◦ y)j ◦j zj .

Thus, for any real number ε > 0 there exists n ≥ 0 sufficiently large such that

∀j ≥ n. dWj ((x ◦ y)j ◦j zj , xj ◦j (y ◦ z)j) < ε.

Since ε◦k,j is non-expansive, this yields for all k

((x ◦ y) ◦ z)k = lim
j>k

ε◦k,j((x ◦ y)j ◦j zj) = lim
j>k

ε◦k,j(xj ◦j (y ◦ z)j) = (x ◦ (y ◦ z))k

which proves (x ◦ y) ◦ z = x ◦ (y ◦ z).
Finally, ◦ is non-expansive since each ◦j and ε◦k,j is non-expansive. �

5.3. Isomorphism between W and monotone functions on W . As shown in
the preceding Lemma 5, ◦ is associative and has e as a unit. Therefore we can
consider the induced preorder on W , w v w′ ⇔ ∃w0. w

′ = w ◦ w0. It remains
to establish an isomorphism W ∼= 1

2
·W →mon URel(Heap) in CBUlt (where

the monotonicity refers to this preorder v on W ) that satisfies condition (3) from
Theorem 3.

To this end, first note that if w′ = w ◦ w′′ then w′k
k
= wk ◦k w′′k for all k, and

therefore we obtain

∀w,w′ ∈W. w v w′ ⇒ ∀k. wk vk w′k . (22)

Now note that for each k and for all sequences (wk)k≥0 and (w′k)k≥0 in W we have

wk+1(w′k) = ε◦k+1(wk+2)(ε◦k w
′
k+1) = (wk+2(εk(ε◦k w

′
k+1)))

[k+1]

k+1
= wk+2(w′k+1)



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 15

by Lemma 4(8) and the contractiveness of wk+2. Hence, (λw′.wk+1(w′k))k≥0 is a
Cauchy sequence in 1

2
·W → URel(Heap). In fact, it is a sequence in the (complete)

subspace of monotone maps, by (22) and the fact that each wk is monotone, and
therefore this sequence has a limit in 1

2
·W →mon URel(Heap). We may thus define

ι•(w) = lim
k

(λw′ ∈W.wk+1(w′k))

For g ∈ 1
2
·W →mon URel(Heap) we define ι(g)k ∈Wk by the following two cases:

ι(g)0 = ?

ι(g)k+1 = λw ∈ 1
2 ·Wk. (g

(
liml>max{i,k} ε

◦
i,l(εk,l w)

)
i≥0

)
[k+1]

For this definition, one first checks that the sequence (liml>max{i,k} ε
◦
i,l(εk,l w))i≥0

is an element of W , so that g can be applied. Next, each ι(g)k+1 is monotone. To
see this, let w1 vk w2, so by definition of vk there exists w0 ∈Wk such that w2 and
w1 ◦k w0 are k-equivalent in Wk; we must show that (ι g)k+1(w1) ⊆ (ι g)k+1(w2).

Let xj = (liml>max{i,k} ε◦i,l(εk,l wj))i≥0 for j = 0, 1, 2. Then, x2
k
= x1 ◦ x0 holds

in W . From the non-expansiveness and monotonicity of g it follows that g(x2)
k+1
=

g(x1 ◦ x0) ⊇ g(x1), and therefore (g x1)[k+1] ⊆ (g x2)[k+1], which yields the claimed

monotonicity of ι(g)k+1. Finally, ι g ∈ W holds since the definition of ι satisfies
ε◦k(ι g)k+1 = (ι g)k for all k.

Lemma 6. The assignment of g to ι(g) determines a non-expansive function from
1
2
·W →mon URel(Heap) to W , with a non-expansive inverse given by ι•.

Proof sketch. The non-expansiveness of ε and ε◦ is easy to see. To show that ι• is

a right-inverse to ι one first proves that (ι(ι• w))n
n
= wn holds for all w ∈ W and

n ∈ N. This yields the required equality, since

(ι(ι• w))l = lim
n>l

ε◦l,n((ι(ι• w))n) = lim
n>l

ε◦l,n(wn) = wl

follows for each l by the non-expansiveness of the ε◦n,l’s.
That ι• is also a left-inverse to ι can be seen by a similar calculation. �

To finish the proof of Theorem 3 we need to establish the relationship between
the monoid multiplication and the isomorphism:

Lemma 7. For all w1, w2, w ∈W , ι−1(w1◦w2)(w) = ι−1(w1)(w2◦w) ∗ ι−1(w2)(w).

Proof sketch. One first shows that g(w) = limk limj>k+1(ι g)j(ε
◦
k,j−1 wk) for all g

in 1
2
·W →mon URel(Heap) and w ∈ W . Using this equation, the claim is then

established by unfolding the definitions of ◦ and ι−1. �

6. Hereditarily Monotone Recursive Worlds

In this section we present an alternative construction of a set of recursive worlds,
which differs from the one defined in the previous section in some respects. Either
set is suitable for the interpretation of the capability calculus.

6.1. Recursive worlds. The first step in this construction is the definition of re-
cursive worlds without monotonicity condition. It is well-known that one can solve
recursive domain equations in CBUlt, given by locally contractive functors, by an
adaptation of the inverse-limit method from classical domain theory [2]. In particu-
lar, by considering the space of contractive but not necessarily monotone functions
in the domain equation (18) above, America and Rutten’s existence theorem ap-
plies.



16J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

Proposition 8. There exists a unique (up to isomorphism) metric space (X, d) ∈
CBUlt and an isomorphism ι from 1

2 ·X→URel(Heap) to X.

Proof. X is obtained by America and Rutten’s existence theorem for fixed points
of locally contractive functors [2], applied to the functor F : CBUltop −→ CBUlt,
F (X) = 1

2
·X → URel(Heap). �

The next step is to define the composition operation ◦ on X.

Lemma 9. There exists a non-expansive operation ◦ : X ×X → X such that

∀x1, x2, x ∈ X. ι−1(x1 ◦ x2)(x) = ι−1(x1)(x2 ◦ x) ∗ ι−1(x2)(x) ,

This operation is associative, and has emp = ι(I) as left and right unit, for I(w) =
N×Heap the unit of the lifted separating conjunction described in Proposition 2.

Proof. The operation ◦ can be defined by a straightforward application of Banach’s
fixed point theorem on the complete ultrametric space X × X → X. The proof

that emp is a left and right unit is easy, for associativity one proves x1 ◦ (x2 ◦x3)
n
=

(x1 ◦ x2) ◦ x3 for all n ∈ N by induction. See [27]. �

We define f ⊗ x, for f : 1
2
·X → URel(Heap) and x ∈ X, as the non-expansive

function 1
2
·X → URel(Heap) given by (f ⊗ x)(x′) = f(x⊗ x′).

Since ◦ defines a monoid structure on X there is an induced preorder on X given
by x v y ⇔ ∃x0. y = x ◦ x0. We will now “carve out” a subset of functions in
1
2
·X → URel(Heap) that are monotonic with respect to this preorder. This subset

needs to be defined recursively.

6.2. Relations on ultrametric spaces. For X ∈ CBUlt let R(X) be the col-
lection of all non-empty and closed relations R ⊆ X; we will just write R when X
is clear from the context. We set

R[n]
def
= {y | ∃x ∈ X. x n

= y ∧ x ∈ R} .

for R ∈ R. Thus, R[n] is the set of all points within distance 2−n of R. Note
that R[n] ∈ R. In fact, ∅ 6= R ⊆ R[n] holds by the reflexivity of n-equality, and if

(yk)k∈N is a sequence in R[n] with limit y in X then d(yk, y) ≤ 2−n must hold for

some k, i.e., yk
n
= y. So there exists x ∈ X with x ∈ R and x

n
= yk, and hence by

transitivity x
n
= y which then gives limn yn ∈ R[n].

We make some further observations that follow from the properties of n-equality
on X. First, R ⊆ S implies R[n] ⊆ S[n] for any R,S ∈ R. Moreover, using the fact
that the n-equalities become increasingly finer it follows that (R[m])[n] = R[min(m,n)]

for all m,n ∈ N, so in particular each (·)[n] is a closure operation on R. As a

consequence, we have R ⊆ . . . ⊆ R[n] ⊆ . . . ⊆ R[1] ⊆ R[0]. By the 1-boundedness of
X, R[0] = X for all R ∈ R. Finally, R = S if and only if R[n] = S[n] for all n ∈ N.

Proposition 10. Let d : R×R → R be defined by d(R,S) = inf {2−n | R[n] = S[n]}.
Then (R, d) is a complete, 1-bounded, non-empty ultrametric space. The limit of
a Cauchy chain (Rn)n∈N with d(Rn, Rn+1) ≤ 2−n is given by

⋂
n(Rn)[n], and in

particular R =
⋂
nR[n] for any R ∈ R.

Proof. First, R is non-empty since it contains X itself, and d is well-defined since
R[0] = S[0] holds for any R,S ∈ R. Next, since R = S is equivalent to R[n] = S[n]

for all n ∈ N, it follows that d(R,S) = 0 if and only if R = S. That the ultrametric
inequality d(R,S) ≤ max{d(R, T ), d(T, S)} holds is immediate by the definition of
d, as is the fact that d is symmetric and 1-bounded.

To show completeness, assume that (Rn)n∈N is a Cauchy sequence inR. Without
loss of generality we may assume that d(Rn, Rn+1) ≤ 2−n holds for all n ∈ N, and



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 17

therefore that (Rn)[n] = (Rn+1)[n] for all n ≥ 0. Writing Sn for (Rn)[n], we define

R ⊆ X by

R
def
=

⋂
n≥0

Sn .

R is closed since each Sn is closed. We now prove that R is non-empty, and
therefore R ∈ R, by inductively constructing a sequence (xn)n∈N with xn ∈ Sn:
Let x0 be an arbitrary element in S0 = X. Having chosen x0, . . . , xn, we pick some

xn+1 ∈ Sn+1 such that xn+1
n
= xn; this is always possible because Sn = (Sn+1)[n]

by our assumption on the sequence (Rn)n∈N. Clearly this is a Cauchy sequence in
X, and from Sn ⊇ Sn+1 it follows that (xn)n≥k is in fact a sequence in Sk for each
k ∈ N. But then also limn∈N xn is in Sk for each k, and thus also in R.

We now prove that R is the limit of the sequence (Rn)n∈N. By definition of d it
suffices to show that R[k] = (Rk)[k] for all k ≥ 1, or equivalently, that R[k] = Sk.

From the definition of R, R ⊆ Sk, which immediately entails R[k] ⊆ (Sk)[k] = Sk.

To prove the other direction, i.e., Sk ⊆ R[k], assume that x ∈ Sk. To show
that x ∈ R[k] we inductively construct a Cauchy sequence (xn)n≥k with xn ∈ Sn,

xk = x and xn+1
n
= xn analogously to the one above. Then limm xm is in Sn for

each n ≥ 0, and thus also in R. Since dX(xk, limn≥k xn) ≤ 2−k by the ultrametric
inequality, xk ∈ R[k], or equivalently, x ∈ R[k]. �

6.3. Hereditarily monotone recursive worlds. We will now define the set of
hereditarily monotonic functions W as a recursive predicate on the space X from
Proposition 8. Let the function Φ : P(X)→ P(X) on subsets of X be given by

Φ(R) = {ι(g) | ∀x, x0 ∈ R. g(x) ⊆ g(x ◦ x0)} .

The function restricts to a contractive function on R:

Lemma 11. If R ∈ R then Φ(R) is non-empty and closed, and R
n
= S implies

Φ(R)
n+1
= Φ(S).

Proof. It is clear that Φ(R) 6= ∅ since ι(g) ∈ Φ(R) for every constant function g
from 1

2 · X to URel(Heap). Limits of Cauchy chains in 1
2 · X → URel(Heap) are

given pointwise, hence (limn gn)(x) ⊆ (limn gn)(x ◦ x0) holds for all Cauchy chains
(gn)n∈N in Φ(R) and all x, x0 ∈ R. This proves Φ(R) ∈ R.

We now show that Φ is contractive. To this end, let n ≥ 0 and assume R
n
= S.

Let ι(g) ∈ Φ(R)[n+1]. We must show that ι(g) ∈ Φ(S)[n+1]. By definition of the

closure operation there exists ι(f) ∈ Φ(R) such that g and f are (n+1)-equal. Set
h(w) = f(w)[n+1]. Then h and g are also (n+1)-equal, hence it suffices to show

that ι(h) ∈ Φ(S). To establish the latter, let w0, w1 ∈ S be arbitrary. By the
assumption that R and S are n-equal there exist elements w′0, w

′
1 ∈ R such that

w′0
n
= w0 and w′1

n
= w1 holds in X, or equivalently, such that w′0 and w0 as well as

w′1 and w1 are (n+1)-equal in 1
2 · X. By the non-expansiveness of ◦, this implies

that also w′0 ◦ w′1 and w0 ◦ w1 are (n+1)-equal in 1
2 ·X. Since

f(w0)
n+1
= f(w′0) ⊆ f(w′0 ◦ w′1)

n+1
= f(w0 ◦ w1)

holds by the non-expansiveness of f and the assumption that ι(f) ∈ Φ(R), we
obtain the required inclusion h(w0) ⊆ h(w0 ◦ w1) by definition of h. �

By Proposition 10 and the Banach theorem we can now define the hereditarily
monotonic functions W as the uniquely determined fixed point of Φ.



18J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

Theorem 12 (Existence of hereditarily monotone recursive worlds). There exists
a non-empty and closed subset W ⊆ X satisfying the condition

w ∈W ⇔ ∃g. w = ι(g) ∧ ∀w1, w2 ∈W. g(w1) ⊆ g(w1 ◦w2) .

Note that W thus constructed does not quite satisfy the conditions stated in
Theorem 3: we do not have an isomorphism between W and the non-expansive and
monotonic functions from W (viewed as an ultrametric space itself), but rather
between W and all functions from X that restrict to monotonic functions whenever
applied to hereditarily monotonic arguments. Keeping this in mind, we abuse
notation and write

1
2 ·W →mon URel(A)

= {g : 1
2 ·X → URel(A) | ∀w1, w2 ∈W. g(w1) ⊆ g(w1 ◦ w2)} .

Then, for our particular application of interest, we also have to ensure that all the
operations restrict appropriately (cf. Section 7 below). Here, as a first step, we
show that the composition operation ◦ restricts to W .

Lemma 13. For all n ∈ N, if w1, w2 ∈W then w1 ◦w2 ∈W[n]. In particular, since
W =

⋂
nW[n] it follows that w1, w2 ∈W implies w1 ◦ w2 ∈W .

Proof. The proof is by induction on n. The base case is immediate as W[0] = X.
Now suppose n > 0 and let w1, w2 ∈ W ; we must prove that w1 ◦ w2 ∈ W[n].

Let w′1 be such that ι−1(w′1)(w) = ι−1(w1)(w)[n]. Observe that w′1 ∈ W , that w′1
and w1 are n-equal, and that w′1 is such that n-equality of w,w′ in 1

2 ·X already

implies ι−1(w′1)(w) = ι−1(w′1)(w′). Since w′1 and w1 are n-equivalent, the non-

expansiveness of the composition operation implies w1 ◦ w2
n
= w′1 ◦ w2. Thus it

suffices to show that w′1 ◦ w2 ∈ W = Φ(W ). To see the latter, let w,w0 ∈ W be
arbitrary, and note that by induction hypothesis we have w2 ◦ w ∈ W[n−1]. This

means that there exists w′ ∈W such that w′
n
= w2 ◦ w holds in 1

2 ·X, hence

ι−1(w′1 ◦ w2)(w) = ι−1(w′1)(w2 ◦ w) ∗ ι−1(w2)(w) by definition of ◦

= ι−1(w′1)(w′) ∗ ι−1(w2)(w) by w′
n
= w2 ◦w

⊆ ι−1(w′1)(w′ ◦ w0) ∗ ι−1(w2)(w ◦ w0) by hereditariness

= ι−1(w′1)((w2 ◦w) ◦w0) ∗ ι−1(w2)(w ◦w0) by w′
n
= w2 ◦w

= ι−1(w′1 ◦ w2)(w ◦ w0) by definition of ◦.

Since w,w0 were chosen arbitrarily, this calculation establishes w′1 ◦ w2 ∈W . �

Moreover, the BI algebra structure that exists on 1
2
·X → URel(Heap) by Propo-

sition 2 restricts to the hereditarily monotone functions.

Proposition 14. 1
2 ·W →mon URel(Heap) forms a complete BI algebra where the

operations are non-expansive. Meets and joins are given by the pointwise extension
of intersection and union on URel(Heap), and f ⇒ g is defined by (f ⇒ g)(x) =⋂
x0∈X

(
f(x ◦ x0) ⇒ g(x ◦ x0)

)
. Separating conjunction f ∗ g and its unit I are

defined pointwise, and the separating implication f −∗ g is defined by (f −∗ g)(x) =⋂
x0∈X

(
f(x ◦ x0)−∗ g(x ◦ x0)

)
from the separating implication on URel(Heap).

7. Step-indexed Possible World Semantics of Capabilities

In this section we prove the soundness of the calculus of capabilities. After
defining the semantic domains for the interpretation of types and capabilities, we
give the full syntax and typing rules for the system presented in Section 2. Then,



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 19

using the hereditarily monotone recursive worlds W , we construct a model of types
and capabilities based on the operational semantics.

Alternatively, it is possible to use the monotone recursive worlds from Section 5
instead. This would require only minor and straightforward modifications of the
interpretation below.

7.1. Semantic domains and constructors. Let X ∈ CBUlt denote the solu-
tion to the ultrametric equation X ∼= 1

2
·X → URel(Heap) from Proposition 8,

and let W ∈ R(X) denote the subset of hereditarily monotone recursive worlds
(Theorem 12).

We define semantic domains for the capabilities and the value and memory types,

Cap = 1
2 ·W →mon URel(Heap)

VT = 1
2 ·W →mon URel(Val)

MT = 1
2 ·W →mon URel(Val ×Heap) ,

so that g ∈ Cap if and only if ι(g) ∈W .
To define operations on the semantic domains that correspond to the syntactic

type and capability constructors, we consider the lifting of (memory) types from
values to expressions.

Definition 15 (Expression typing). Consider f : 1
2
·X → URel(Val ×Heap). The

function E(f) : X → URel(Exp ×Heap) is defined by (k, (t, h)) ∈ E(f)(x) iff

∀j ≤ k, t′, h′. (t |h) 7−→j (t′ |h′) ∧ (t′ |h′) irreducible

⇒ (k−j, (t′, h′)) ∈
⋃
w∈W

f(x ◦ w) ∗ ι−1(x ◦ w)(emp) .

Note that it is here where the indexing by natural numbers that is used in
uniform relations (and which, in particular, induces the distance between uniform
relations) is linked to the operational semantics of the programming language.

Also note that in this definition, f is a contractive function on X whereas E(f)
is merely non-expansive. This is because the conclusion uses the world x as a heap
predicate, qua ι−1(x ◦ w)(emp), i.e. the scaling by 1/2 is undone, and the number
j of steps taken in the reduction sequence may in fact be 0.

Lemma 16. Let f : 1
2
·X → URel(Val ×Heap). Then E(f) is non-expansive, and

for all x ∈ X, E(f)(x) ∈ URel(Exp ×Heap) is uniform. Moreover, the assignment
of E(f) to f is non-expansive.

Proof. Observe that f
n
= f ′ and x

n
= x′ in X implies f(x ◦ w)

n
= f ′(x′ ◦ w) and

ι−1(x ◦ w)(emp)
n
= ι−1(x′ ◦ w)(emp), for any w ∈ W , by the non-expansiveness

of f, f ′ and ◦. Thus E(f)(x)
n
= E(f ′)(x′). In particular, for f = f ′ we obtain the

non-expansiveness of E(f), and for x = x′ we obtain the non-expansiveness of E by
definition of the sup metric. �

Definition 17 (Capability and type constructors). In addition to separating con-
junction and its unit, given in Proposition 14, we define the following operations.

Invariant extension: Let g : 1
2
·X → URel(A) and w ∈ W . We define

g ⊗ w : 1
2
·X → URel(A) by

(g ⊗ w)(x) = g(w ◦ x)

Separation: Let p ∈ URel(A×Heap) and r ∈ URel(Heap). We define p∗r ∈
URel(A×Heap) by

p ∗ r = {(k, (a, h · h′)) | (k, (a, h)) ∈ p ∧ (k, h′) ∈ r}



20J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

This operation can be lifted pointwise, (g∗c)(x) = g(x)∗c(x) for g : 1
2
·X →

URel(A×Heap) and c : 1
2
·X → URel(Heap). For notational convenience

we will sometimes view r ∈ URel(Heap) as the constant function that maps
any x ∈ X to r, and thus write g ∗ r for this pointwise lifting.

Singleton capabilities: Let v ∈ Val and g : 1
2
·X → URel(Val ×Heap). We

define {v : g} : 1
2
·X → URel(Heap) by

{v : g}(x) = {(k, h) | (k, (v, h)) ∈ g(x)}

Name abstraction: Let F : Val → ( 1
2
·X → URel(A)), where Val is viewed

as a discrete ultrametric space. Then ∃F : 1
2
·X → URel(A) is defined by

(∃F )(x) =
⋃

v∈Val

F (v)(x)

Universal quantification: Let S be a set (viewed as an object of CBUlt
with discrete metric), and let F : S → ( 1

2
·X → URel(A)). We define

∀F : 1
2
·X → URel(A) by

(∀F )(x) =
⋂
s∈S

F (s)(x)

Recursion: Let F : ( 1
2
·X → URel(A)) → ( 1

2
·X → URel(A)) be a contrac-

tive function. We define fixF : 1
2
·X → URel(A) by

fixF = the unique g : 1
2
·X → URel(A) such that g = F (g)

which exists by the Banach fixed point theorem.
Sum types: Let g1, g2 : 1

2
·X → URel(Val). We define g1 + g2 : 1

2
·X →

URel(Val) by

(g1 + g2)(x) = {(k, injiv) | ∀j < k. (j, v) ∈ gi(x)}

Similarly, for g1, g2 : 1
2
·X → URel(Val ×Heap) we define g1 + g2 : 1

2
·X →

URel(Val ×Heap) by

(g1 + g2)(x) = {(k, (injiv, h)) | ∀j < k. (j, (v, h)) ∈ gi(x)}

Product types: Let g1, g2 : 1
2
·X → URel(Val). We define g1× g2 : 1

2
·X →

URel(Val) by

(g1× g2)(x) = {(k, 〈v1, v2〉) | ∀j < k. (j, vi) ∈ gi(x)}

Similarly, for g1, g2 : 1
2
·X → URel(Val ×Heap) we define g1× g2 : 1

2
·X →

URel(Val ×Heap) by

(g1× g2)(x) = {(k, (〈v1, v2〉 , h1 · h2)) | ∀j < k. (j, (vi, hi)) ∈ gi(x)}

Arrow types: Let g1, g2 : 1
2
·X → URel(Val ×Heap). We define g1→ g2 :

1
2
·X → URel(Val) on x ∈ X by

{(k, fun f(y)=t) | ∀j < k. ∀w∈W. ∀r∈URel(Heap).

∀v, h. (j, (v, h)) ∈ g1(x ◦ w) ∗ ι−1(x ◦ w)(emp) ∗ r ⇒
(j, (t[f :=fun f(y)=t, y:=v], h)) ∈ E(g2 ∗ r)(x ◦ w)}

Reference types: Let g : 1
2
·X → URel(Val ×Heap). We define ref(g) in

1
2 ·X → URel(Val ×Heap) by

ref(g)(x) = {(k, (l, h · [l 7→ v])) | ∀j < k. (j, (v, h)) ∈ g(x)}



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 21

The case for arrow types realizes the key ideas of our model that we have de-
scribed in Section 3 as follows. First, the universal quantification over w ∈W and
subsequent use of the world x◦w builds in monotonicity, and intuitively means that
g1 → g2 is parametric in (and hence preserves) invariants that have been added by
the procedure’s context. In particular, the definition states that procedure appli-
cation preserves this invariant, when viewed as the predicate ι−1(x ◦ w)(emp). By
also conjoining r as an invariant we “bake in” the first-order frame property, which
results in a subtyping axiom χ1 → χ2 ≤ χ1 ∗C → χ2 ∗C in the type system. The
existential quantification over w′, in the definition of E , allows us to “absorb” a part
of the local heap description into the world. Finally, the quantification over indices
j < k in the definition of g1 → g2 achieves that (g1 → g2)(x) is uniform. There are
three reasons why we require that j be strictly less than k. Technically, as for the
definition of E , the use of ι−1(x◦w) in the definition undoes the scaling by 1/2, and
j < k ensures the non-expansiveness of g1 → g2 as a function 1/2 ·X → URel(Val).
Moreover, it lets us prove the typing rule for recursive functions by induction on k.
Finally, it means that→ is a contractive type constructor, which justifies the formal
contractiveness assumption about arrow types that we made earlier. Intuitively, the
use of j < k for the arguments suffices since application consumes a step. The use
of j < k in sum, product, and reference types instead of j ≤ k ensures that these
constructors are contractive in their arguments and not merely non-expansive.

Lemma 18 (Well-definedness). The operations given in Definition 17 are well-
defined, i.e., each operation is a non-expansive function that maps into uniform
relations of the right kind. Moreover, they restrict to non-expansive operations on
monotonic functions:

• If g : 1
2
·W →mon URel(A) then g⊗w : 1

2
·W →mon URel(A). The opera-

tion g, w 7→ g⊗w is non-expansive in g and contractive in w.
• If g : 1

2
·W →mon URel(A×Heap) and c ∈ Cap then g ∗ c : 1

2
·W →mon

URel(A×Heap). The operation g, c 7→ g ∗ c is non-expansive in g and c.
• If g ∈ MT then {v : g} ∈ Cap. The operation g 7→ {v : g} is non-expansive.
• If F : Val → ( 1

2
·W →mon URel(A)) then ∃F : 1

2
·W →mon URel(A). The

operation F 7→ ∃F is non-expansive.
• If F : S → ( 1

2
·W →mon URel(A)) then ∀F : 1

2
·W →mon URel(A). The

operation F 7→ ∀F is non-expansive.
• If F : ( 1

2
·W →mon URel(A))→ ( 1

2
·W →mon URel(A)) is contractive then

fixF : 1
2
·W →mon URel(A). The operation F 7→ fixF is non-expansive.

• If g1, g2 ∈ VT then g1 + g2 ∈ VT, and if g1, g2 ∈ MT then g1 + g2 ∈ MT.
The operations g1, g2 7→ g1 + g2 are contractive in g1 and g2.
• If g1, g2 ∈ VT then g1× g2 ∈ VT, and if g1, g2 ∈ MT then g1× g2 ∈ MT.

The operations g1, g2 7→ g1× g2 are contractive in g1 and g2.
• If g1, g2 ∈ MT then g1→ g2 ∈ VT. The operation g1, g2 7→ g1→ g2 is

contractive in g1 and g2.
• If g ∈ MT then ref(g) ∈ MT. The operation g 7→ ref(g) is contractive.

Proof. We consider the cases of invariant extension and sum types in detail.

• Let g : 1
2
·X → URel(A) and w ∈ W . Then, by definition, (g⊗w)(x) =

g(w◦x) is a uniform relation on A for any x ∈ X. By the non-expansiveness
of g and ◦ (cf. Lemma 9), g⊗w is a non-expansive function.

Next, we show that ⊗ restricts to the monotone functions. Assume
g : 1

2
·W →mon URel(A). To show g⊗w : 1

2
·W →mon URel(A) we must

prove (g⊗w)(w1) ⊆ (g⊗w)(w1◦w2) for all w1, w2 ∈W . Note that w ∈W ,
and thus Lemma 13 shows w ◦w1 ∈W . Hence, g(w ◦w1) ⊆ g(w ◦w1 ◦w2)



22J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

by the assumption g : 1
2
·W →mon URel(A), and the claim follows from

the definition of g⊗w.
We show that ⊗ is non-expansive in its first and contractive in its second

argument. If g
n
= g′ then (g⊗w)(x)

n
= (g′⊗w)(x) by definition of the sup-

metric, which means that g 7→ g⊗w is non-expansive. Finally, assuming

that we have w
n
= w′ for w,w′ ∈ W , then w ◦x n+1

= w′ ◦x holds in 1
2
·X

for any x ∈ X by the non-expansiveness of ◦ and the scaling operation.

Thus (g⊗w)(x)
n+1
= (g⊗w′)(x) follows from the non-expansiveness of g,

and since x was chosen arbitrarily the definition of the sup-metric yields

g⊗w n+1
= g⊗w′ which shows that w 7→ g⊗w is contractive.

• Let g1, g
′
1, g2, g

′
2 : 1

2
·X → URel(Val), and assume g1

n
= g′1 and g2

n
= g′2.

Then, for any x, x′ ∈ X such that x
n
= x′ holds with respect to the metric

on 1
2
·X, the non-expansiveness of g1, g2 yields g1(x)

n
= g1(x′) and g2(x)

n
=

g2(x′). Hence, (j, v) ∈ g1(x) if and only if (j, v) ∈ g′1(x′) for any j < n, and
(j, v) ∈ g′2(x) if and only if (j, v) ∈ g′2(x′) for any j < n. By definition of
g1 + g2 and g′1 + g′2 it follows that (g1 + g2)(x)[n+1] = (g′1 + g′2)(x′)[n+1], i.e.,

that (g1 + g2)(x)
n+1
= (g1 + g2)(x′). From this observation, taking g1 = g′1

and g2 = g′2, it follows immediately that g1 + g2 is non-expansive. Moreover,
taking x = x′, the definition of the sup-metric shows that the assignment
g1, g2 7→ g1 + g2 is contractive.

Since g1(x) and g2(x) are uniform relations, it is easy to see that (k, v) ∈
(g1 + g2)(x) implies (j, v) ∈ (g1 + g2)(x) for all j ≤ k. Finally, from the
definition of g1 + g2 it follows that g1, g2 ∈ VT implies g1 + g2 ∈ VT.

The remaining cases are similar. �

7.2. Type system and soundness. The syntax and typing rules of Charguéraud
and Pottier’s capability type system are given in Figures 7 and 8. In addition to
the typing rules given earlier, the capability type system also features subtype and
subcapability relations. Figure 9 shows some of the axioms that induce these rela-
tions. Axiom (23) is a variant of the first-order (shallow) frame rule from Figure 6.3

Axiom (24) allows us to “garbage-collect” capabilities for parts of the heap that
are no longer needed. This axiom only holds in a “non-tight” interpretation of
assertions like we use it here. Axioms (25) and (26) permit to translate back and
forth between a value type τ and a singleton type [σ] (together with a capability for
σ). The relation ≤ is defined inductively by inference rules (not shown here) which
state that all type and capability constructors are covariant,4 with two exceptions:
as usual, arrow types are contravariant in their first argument, and ⊗ is invariant
in its second argument.

Using the operations given in Definition 17, the interpretation of capabilities
and types is defined in Figure 10 by induction on the syntax. The interpretation
depends on an environment η, which maps region names σ ∈ RegName to closed
values η(σ) ∈ Val , capability variables γ to semantic capabilities η(γ) ∈ Cap,
and type variables α and β to semantic types η(α) ∈ VT and η(β) ∈ MT. By
Lemma 18 we obtain interpretations JCKη ∈ Cap, JτKη ∈ VT, and JθKη ∈ MT.
Moreover, Lemma 18 shows that whenever C is formally contractive in ξ then

3The deep variant of this axiom, χ1 → χ2 ≤ (χ1◦C)→ (χ2◦C), is not sound in the capability
calculus. Pottier [23] gives a counterexample based on this axiom and the anti-frame rule, and a
similar counterexample that does not use the anti-frame rule can be constructed along the lines
of [27, Proposition 1].

4Unusually, even the reference types are covariant in Charguéraud and Pottier’s system.



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 23

Variables ξ ::= α | β | γ | σ
Capabilities C ::= C ⊗ C | ∅ | C ∗ C | {σ : θ} | ∃σ.C | γ | µγ.C | ∀ξ.C
Value types τ ::= τ ⊗ C | 0 | 1 | int | τ + τ | τ × τ | χ→χ | [σ] | α | µα.τ | ∀ξ.τ
Memory types θ ::= θ ⊗ C | τ | θ + θ | θ × θ | ref θ | θ ∗ C | ∃σ.θ | β | µβ.θ | ∀ξ.θ
Computation types χ ::= χ⊗ C | τ | χ ∗ C | ∃σ.χ
Value contexts ∆ ::= ∆⊗ C | ∅ | ∆, x:τ

Linear contexts Γ ::= Γ⊗ C | ∅ | Γ, x:χ | Γ ∗ C

Figure 7. Syntax of capabilities and types

(x : τ) ∈ ∆

∆ ` x : τ ∆ ` 〈〉 : 1

∆ ` v : τi

∆ ` (inji v) : (τ1+τ2)

∆ ` v1 : τ1 ∆ ` v2 : τ2

∆ ` 〈v1, v2〉 : (τ1 × τ2)

∆ ` v : τ

∆  v : τ

∆ ` v : χ1 → χ2 ∆,Γ  t : χ1

∆,Γ  (v t) : χ2

Γ  v : [σ] ∗ {σ : τ1 × θ2}
Γ  proj1 v : τ1 ∗ {σ : τ1 × θ2}

Γ  v : [σ] ∗ {σ : θ1 × τ2}
Γ  proj2 v : τ2 ∗ {σ : θ1 × τ2}

∆, f : χ1→χ2, x : χ1  t : χ2

∆ ` fun f(x)=t : χ1→χ2

∆ ` v : τ

∆ ` v : ∀ξ.τ
ξ /∈ ∆

∆ ` v1 : (∃σ1.[σ1] ∗ {σ : [σ1] + 0} ∗ {σ1 : θ1} ∗ C)→ χ
∆ ` v2 : (∃σ2.[σ2] ∗ {σ : 0 + [σ2]} ∗ {σ2 : θ2} ∗ C)→ χ

∆,Γ  v : [σ] ∗ {σ : θ1 + θ2} ∗ C
∆,Γ  case(v1, v2, v) : χ

Γ  v : τ

Γ  ref v : ∃σ.[σ] ∗ {σ : ref τ}
Γ  v : [σ] ∗ {σ : ref τ}

Γ  get v : τ ∗ {σ : ref τ}
Γ  v : ([σ]× τ2) ∗ {σ : ref τ1}

Γ  set v : 1 ∗ {σ : ref τ2}

Γ  t : χ

Γ ∗ C  t : χ ∗ C
Γ  t : χ

(Γ⊗ C) ∗ C  t : (χ⊗ C) ∗ C
∆ ` v : τ

∆⊗ C ` v : τ ⊗ C

Γ⊗ C  t : (χ⊗ C) ∗ C
Γ  t : χ

∆ ` v : τ ′ τ ′ ≤ τ
∆ ` v : τ

Γ ≤ Γ′ Γ′  t : θ′ θ′ ≤ θ
Γ ` t : θ

Figure 8. Typing of values and expressions

χ1 → χ2 ≤ (χ1 ∗ C)→ (χ2 ∗ C) (23)

C ≤ ∅ (24)

τ ≤ ∃σ.[σ] ∗ {σ : τ} (25)

[σ] ∗ {σ : τ} ≤ τ ∗ {σ : τ} (26)

Figure 9. Some subtyping axioms

g 7→ JCKη[ξ:=g] is contractive (and similarly for formally contractive types τ and χ),

which guarantees that the fixed points in Figure 10 are well-defined.
The structural equivalences given in Figure 5 can be verified with respect to this

interpretation. The monoid equations follow since ∗ and ◦ define monoid structures



24J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

Capabilities, JCKη : 1/2 ·W →mon URel(Heap)

JC1 ⊗ C2Kη = JC1Kη ⊗ ι(JC2Kη) J∅Kη = I

JC1 ∗ C2Kη = JC1Kη ∗ JC2Kη J{σ : θ}Kη = {η(σ) : JθKη}
JγKη = η(γ) J∃σ.CKη = ∃(λv ∈ Val . JCKη[σ:=v])

Jµγ.CKη = fix(λc ∈ Cap. JCKη[γ:=c]) J∀σ.CKη = ∀(λv ∈ Val . JCKη[σ:=v])

Value types, JτKη : 1/2 ·W →mon URel(Val)

Jτ ⊗ CKη = JτKη ⊗ ι(JCKη) J0Kη = λw. ∅
J1Kη = λw.N× {〈〉} JintKη = λw.N× {n | n ∈ Z}

J[σ]Kη = λw.N× {η(σ)} Jτ1 + τ2Kη = Jτ1Kη + Jτ2Kη
Jτ1 × τ2Kη = Jτ1Kη × Jτ2Kη Jχ1 → χ2Kη = Jχ1Kη → Jχ2Kη

JαKη = η(α) Jµα.τKη = fix(λg ∈ VT. JτKη[α:=g])

J∀σ.τKη = ∀(λv ∈ Val . JτKη[σ:=v])

Memory types, JθKη : 1/2 ·W →mon URel(Val ×Heap)

Jθ ⊗ CKη = JθKη ⊗ ι(JCKη) Jθ1 + θ2Kη = Jθ1Kη + Jθ2Kη
JτKη = λw.{(k, (v, h)) | (k, v) ∈ JτKη w} Jθ1 × θ2Kη = Jθ1Kη × Jθ2Kη

Jref θKη = ref JθKη Jθ ∗ CKη = JθKη ∗ JCKη
JβKη = η(β) J∃σ.θKη = ∃(λv ∈ Val . JθKη[σ:=v])

Jµβ.θKη = fix(λg ∈ MT. JθKη[β:=g]) J∀σ.θKη = ∀(λv ∈ Val . JθKη[σ:=v])

Value contexts, J∆Kη : 1/2 ·W →mon URel(Env)

J∆⊗ CKη = J∆Kη ⊗ ι(JCKη)

J∅Kη = λw.N× {[ ]}
J∆, x:τKη = λw.{(k, ρ[x 7→ v]) | (k, ρ) ∈ J∆Kη w ∧ (k, v) ∈ JτKη w}

Linear contexts, JΓKη : 1/2 ·W →mon URel(Env ×Heap)

JΓ⊗ CKη = JΓKη ⊗ ι(JCKη)

J∅Kη = λw.N× ({[ ]} ×Heap)

JΓ, x:χKη w = λw.{(k, (ρ[x 7→ v], h · h′)) |
(k, (ρ, h)) ∈ JΓKη w ∧ (k, (v, h′)) ∈ JχKη w}

JΓ ∗ CKη = JΓKη ∗ JCKη

Figure 10. Interpretation of capabilities and types

on Cap; the latter via the bijection ι between W and Cap. We consider the case of
associativity of ◦:

Lemma 19. For all C1, C2, C3, JC1 ◦ (C2 ◦ C3)K = J(C1 ◦ C2) ◦ C3K.

Proof. We prove the following claim: for all C,C ′, ι JC ◦ C ′K = ι JCK ◦ ι JC ′K. It
suffices to show JC ◦ C ′Kη w = ι−1(ι JCKη ◦ ι JC ′Kη)(w) for all η and w, and this



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 25

follows from the defining equation for ◦:
ι−1(ι JCKη ◦ ι JC

′Kη)(w) = ι−1(ι JCKη)(ι JC ′Kη ◦ w) ∗ ι−1(ι JC ′Kη)(w)

= (JCKη ⊗ ι JC
′Kη)(w) ∗ JC ′Kη (w)

= JC ⊗ C ′ ∗ C ′Kη (w) = JC ◦ C ′Kη (w)

To prove the lemma, it suffices to prove ι JC1 ◦ (C2 ◦ C3)K = ι J(C1 ◦ C2) ◦ C3K. By
the above claim, this is a consequence of the associativity of ◦ on X. �

Most of the remaining equations in Figure 5 (as well as other equivalences that
appear in [11, 21]) are easy consequences of the pointwise definition of the operations
in Definition 17. We consider the distribution axiom for arrow types, which is more
involved:

Lemma 20. For all χ1, χ2 and C, J(χ1 → χ2)⊗ CK = J(χ1 ◦ C)→ (χ2 ◦ C)K.

Proof. The lemma follows from the following claim.

∀g1, g2 ∈ MT. ∀c ∈ Cap. (g1 → g2)⊗ ι(c) = (g1 ⊗ ι(c) ∗ c)→ (g2 ⊗ ι(c) ∗ c)
We prove the inclusion from left to right. For the proof, let x ∈ X, k ∈ N and
assume (k, (fun f(y)=t)) ∈ ((g1 → g2) ⊗ ι(c))(x) = (g1 → g2)(ι(c) ◦ x). We must
show that (k, (fun f(y)=t)) ∈ (g1⊗ ι(c) ∗ c)→ (g2⊗ ι(c) ∗ c). To this end, let j < k,
w ∈W , r ∈ URel(Heap), and suppose

(j, (v, h)) ∈ (g1 ⊗ ι(c) ∗ c)(x ◦ w) ∗ ι−1(x ◦ w)(emp) ∗ r
= g1(ι(c) ◦ x ◦ w) ∗ c(x ◦ w) ∗ ι−1(x ◦ w)(emp) ∗ r
= g1(ι(c) ◦ x ◦ w) ∗ ι−1(ι(c) ◦ x ◦ w)(emp) ∗ r .

Then, by assumption, (j, (t[f :=fun f(y)=t, y:=v], h)) ∈ E(g2 ∗ r)(ι(c) ◦ x ◦ w). By
unfolding the definition of E , the latter is seen to be equivalent to

(j, (t[f :=fun f(y)=t, y:=v], h)) ∈ E(g2 ⊗ ι(c) ∗ c ∗ r)(x ◦ w) ,

and thus (k, (fun f(y)=t)) ∈ (g1 ⊗ ι(c) ∗ c)→ (g2 ⊗ ι(c) ∗ c).
The other inclusion is proved similarly. �

We give the semantics of typing judgements next. The semantics of a typing
judgement for values simply establishes truth with respect to all worlds w, environ-
ments η, and indices k ∈ N:

|= (∆ ` v : τ) ⇐⇒ ∀η. ∀w. ∀k. ∀ρ. (k, ρ) ∈ J∆Kη w ⇒ (k, ρ(v)) ∈ JτKη w

Here ρ(v) means the application of the substitution ρ to v.
The semantics of the typing judgement for expressions mirrors the interpretation

of the arrow case for value types, in that there is also a quantification over heap
predicates r ∈ URel(Heap) and an existential quantification over w′ ∈ W through
the use of E :

|= (Γ  t : χ) ⇐⇒ ∀η. ∀w ∈W. ∀k. ∀ρ. ∀h. ∀r∈URel(Heap).

(k, (ρ, h)) ∈ JΓKη w ∗ ι
−1(w)(emp) ∗ r

⇒ (k, (ρ(t), h)) ∈ E(JχKη ∗ r)(w)

The universal quantification over worlds w ensures the soundness of the deep frame
rule, and the universal quantification over heap predicates r validates the shallow
frame rule. The existential quantifier plays an important part in the verification of
the anti-frame rule below.

In the remainder of this section we prove soundness of the calculus of capabilities.

Theorem 21 (Soundness).



26J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

• If ∆ ` v : τ then |= (∆ ` v : τ).
• If Γ  t : χ then |= (Γ  t : χ).

In particular, if ∅ ` t : χ is a closed program that does not contain any locations,
and if (t |h) 7−→∗ (t′ |h′) where (t′ |h′) is irreducible, then t′ is a value.

To prove the theorem, we show that each typing rule preserves the truth of
judgements. The proof of the frame rules is straightforward.

Lemma 22 (Soundness of the shallow frame rule). Suppose |= (Γ  t : χ). Then
|= (Γ ∗ C  t : χ ∗ C).

Proof. Assume |= (Γ  t : χ). We prove |= (Γ ∗ C  t : χ ∗ C). Let η be an
environment, let w ∈W , k ∈ N, r ∈ URel(Heap) and assume

(k, (ρ, h)) ∈ JΓ ∗ CKη (w) ∗ ι−1(w)(emp) ∗ r
= JΓKη (w) ∗ JCKη (w) ∗ ι−1(w)(emp) ∗ r .

We can now instantiate the universally quantified r in the assumption |= (Γ  t : χ)
with JCKη (w) ∗ r, and obtain (k, (ρ(t), h)) ∈ E(JχKη ∗ (JCKη (w) ∗ r))(w). Since

JCKη ∈ Cap we have JCKη (w) ⊆ JCKη (w ◦w′) for any w′ ∈W , and hence we obtain

(k, (ρ(t), h)) ∈ E(Jχ ∗ CKη ∗ r)(w) by unfolding the definition of E . �

Lemma 23 (Soundness of the deep frame rule for expressions). Suppose |= (Γ 
t : χ). Then |= (Γ⊗ C ∗ C  t : χ⊗ C ∗ C).

Proof. Assume |= (Γ  t : χ). We prove |= (Γ ⊗ C ∗ C  t : χ ⊗ C ∗ C). Let η be
an environment, let w ∈W , k ∈ N, r ∈ URel(Heap) and

(k, (ρ, h)) ∈ JΓ⊗ C ∗ CKη (w) ∗ ι−1(w)(emp) ∗ r
= JΓKη (ι(JCKη) ◦ w) ∗ ι−1(ι(JCKη) ◦ w)(emp) ∗ r .

Since JCKη ∈ Cap we can instantiate |= (Γ  t : χ) with the world w′ = ι(JCKη) ◦w
to obtain (k, (ρ(t), h)) ∈ E(JχKη ∗ r)(w′). The latter is equivalent to (k, (ρ(t), h)) ∈
E(Jχ⊗ C ∗ CKη ∗ r)(w). �

Next, we consider the anti-frame rule. Our soundness proof of the anti-frame
rule employs the technique of so-called commutative pairs. This idea had already
been present in Pottier’s syntactic proof sketch [21], and has been worked out in
more detail in [29].

Lemma 24 (Existence of commutative pairs). For all worlds w0, w1 ∈ W , there
exist w′0, w

′
1 ∈W such that

w′0 = ι(ι−1(w0)⊗ w′1), w′1 = ι(ι−1(w1)⊗ w′0), and w0 ◦ w′1 = w1 ◦ w′0 .

Proof. Fix w0, w1 ∈W , and consider the function F on X ×X defined by

F (x′0, x
′
1) =

(
ι(ι−1(w0)⊗ x′1), ι(ι−1(w1)⊗ x′0)

)
.

Then, F is contractive, since ⊗ is contractive in its second argument. Also, F
restricts to a function on the non-empty and closed subset W ×W of X×X. Thus,
by Banach’s fixpoint theorem, F has a unique fixpoint (w′0, w

′
1) ∈ W ×W . This

means that

w′0 = ι(ι−1(w0)⊗ w′1) and w′1 = ι(ι−1(w1)⊗ w′0). (27)



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 27

Note that these are the first two equalities claimed by this lemma. The remaining
claim is w0 ◦ w′1 = w1 ◦ w′0, and it can be proved as follows. Let w ∈ X.

ι−1(w0 ◦ w′1)(w) = ι−1(w0)(w′1 ◦ w) ∗ ι−1(w′1)(w) (by definition of ◦)
= (ι−1(w0)⊗ w′1)(w) ∗ ι−1(w′1)(w) (by definition of ⊗)

= ι−1(w′0)(w) ∗ (ι−1(w1)⊗ w′0)(w) (by (27))

= ι−1(w′0)(w) ∗ ι−1(w1)(w′0 ◦ w) (by definition of ⊗)

= ι−1(w1)(w′0 ◦ w) ∗ ι−1(w′0)(w) (by commutativity of ∗)
= ι−1(w1 ◦ w′0)(w) (by definition of ◦).

Since w was chosen arbitrarily, we have ι−1(w0 ◦w′1) = ι−1(w1 ◦w′0), and the claim
follows from the injectivity of ι−1. �

Lemma 25 (Soundness of the anti-frame rule). Suppose |= (Γ⊗C  t : χ⊗C ∗C).
Then |= (Γ  t : χ).

Proof. We prove |= (Γ  t : χ). Let w ∈ W , η an environment, r ∈ URel(Heap)
and

(k, (ρ, h)) ∈ JΓKη (w) ∗ ι−1(w)(emp) ∗ r .
We must prove (k, (ρ(t), h)) ∈ E(JχKη ∗ r)(w). By Lemma 24,

w1 = ι(ι−1(w)⊗ w2), w2 = ι(JCKη ⊗ w1) and ι(JCKη) ◦ w1 = w ◦ w2 (28)

holds for some worlds w1, w2 in W .
First, we find a superset of the precondition JΓKη (w) ∗ ι−1(w)(emp) ∗ r in the

assumption above, replacing the first two ∗-conjuncts as follows:

JΓKη (w) ⊆ JΓKη (w ◦ w2) by monotonicity of JΓKη and w2 ∈W
= JΓKη (ι(JCKη) ◦ w1) since ι(JCKη) ◦ w1 = w ◦ w2

= JΓ⊗ CKη (w1) by definition of ⊗.

ι−1(w)(emp) ⊆ ι−1(w)(emp ◦ w2) by monotonicity of ι−1(w) and w2 ∈W
= ι−1(w)(w2 ◦ emp) since emp is the unit

= (ι−1(w)⊗ w2)(emp) by definition of ⊗
= ι−1(w1)(emp) since w1 = ι(ι−1(w)⊗ w2).

Thus, by the monotonicity of separating conjunction, we have that

(k, (ρ, h)) ∈ JΓKη (w) ∗ ι−1(w)(emp) ∗ r ⊆ JΓ⊗ CKη (w1) ∗ ι−1(w1)(emp) ∗ r . (29)

By the assumed validity of the judgement Γ⊗ C  t : χ⊗ C ∗ C, (29) entails

(k, (ρ(t), h)) ∈ E(Jχ⊗ C ∗ CKη ∗ r)(w1) . (30)

We need to show that (k, (ρ(t), h)) ∈ E(JχKη∗r)(w), so assume (ρ(t) |h) 7−→j (t′ |h′)
for some j ≤ k such that (t′ |h′) is irreducible. From (30) we then obtain

(k−j, (t′, h′)) ∈
⋃
w′ Jχ⊗ C ∗ CKη (w1 ◦ w′) ∗ ι−1(w1 ◦ w′)(emp) ∗ r . (31)

Now observe that we have

Jχ⊗ C ∗ CKη (w1 ◦ w′) ∗ ι−1(w1 ◦ w′)(emp)

= JχKη (ι(JCKη) ◦ w1 ◦ w′) ∗ JCKη (w1 ◦ w′) ∗ ι−1(w1 ◦ w′)(emp)

= JχKη (ι(JCKη) ◦ w1 ◦ w′) ∗ ι−1(ι(JCKη) ◦ w1 ◦ w′)(emp)

= JχKη (ι(w ◦ w2 ◦ w′) ∗ ι−1(ι(w ◦ w2 ◦ w′)(emp)



28J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

since ι(JCKη) ◦ w1 = w ◦ w2. Setting w′′
def
= w2 ◦ w′ one obtains

JχKη (w ◦ w′′) ∗ ι−1(w ◦ w′′)(emp) .

Thus, (31) entails that (k−j, (t′, h′)) is in
⋃
w′′ JχKη (w ◦w′′) ∗ ι−1(w ◦w′′)(emp) ∗ r,

and we are done. �

Remark 26 (Monotonicity). Note that it is in the above proof for the anti-frame
rule where the monotonicity condition of the recursive worlds is exploited to es-
tablish (29). Monotonicity of JCK is also used to prove the shallow frame rule in
Lemma 22 (and the first-order frame axiom in Proposition 27 below). However, this
is only necessary because of the existential quantifier that is implicitly used in the
postcondition, via the definition of E(·). In a system without anti-frame rule, the
quantifier can be dropped from the definition of E(·) and no monotonicity condition
of JCK is needed [6, 27].

We omit the proofs for the remaining typing rules. Using the model, we can also
show that subtyping is sound. Recall that ≤ is an inductively defined relation on
syntactic type expressions, defined by axioms (as shown in Figure 9) and rules that
propagate those axioms through type constructors (omitted for brevity). One can
show that syntactic subtyping is sound:

Proposition 27 (Soundness of subtyping). The three kinds of subtyping relations
are sound. More precisely, for all η and w:

(1) C ≤ C ′ implies JCKη w ⊆ JC ′Kη w,

(2) τ ≤ τ ′ implies JτKη w ⊆ Jτ ′Kη w,

(3) θ ≤ θ′ implies JθKη w ⊆ Jθ′Kη w.

Proof. The three statements are proved simultaneously by induction on the deriva-
tion of the subtyping judgement in question. One must show that the axioms in
Figure 9 hold with respect to the interpretation given in Figure 10, and that all of
the inference rules that define the subtyping judgements preserve these inclusions.
We show three sample cases:

Axiom (23) is sound. We have to show that for all η and w ∈ W , Jχ1 → χ2Kη w ⊆
J(χ1 ∗ C)→ (χ2 ∗ C)Kη w.

Assume (k, fun f(x)=t) ∈ Jχ1 → χ2Kη w. To see that (k, fun f(x)=t) is also in the

set J(χ1 ∗ C)→ (χ2 ∗ C)Kη w, suppose that j < k, w0 ∈ W and r ∈ URel(Heap),
and let

(j, (v, h)) ∈ Jχ1 ∗ CKη (w ◦ w0) ∗ ι−1(w ◦ w0)(emp) ∗ r
= Jχ1Kη (w ◦ w0) ∗ ι−1(w ◦ w0)(emp) ∗ (r ∗ JCKη (w ◦ w0))

We must show that (j, (t[f :=fun f(x)=t, x:=v], h)) ∈ E(Jχ2 ∗ CKη ∗ r)(w ◦ w0). So

assume that (t[f :=fun f(x)=t, x:=v] |h) 7−→i (t′ |h′) for some i ≤ j and some ir-
reducible configuration (t′ |h′). By unfolding the definition of Jχ1 → χ2Kη w, we
obtain

(j, (t[f :=fun f(x)=t, x:=v], h)) ∈ E(Jχ2Kη ∗ (r ∗ JCKη (w ◦ w0)))(w ◦ w0)

and hence that there exists w1 ∈W such that

(j − i, (t′, h′)) ∈ Jχ2Kη (w ◦ w0 ◦ w1) ∗ ι−1(w ◦ w0 ◦ w1)(emp) ∗ r ∗ JCKη (w ◦ w0)

Since w◦w0 v w◦w0◦w1 entails JCKη (w◦w0) ⊆ JCKη (w◦w0◦w1) by monotonicity

of JCKη, one obtains

(j − i, (t′, h′)) ∈ Jχ2 ∗ CKη (w ◦ w0 ◦ w1) ∗ ι−1(w ◦ w0 ◦ w1)(emp) ∗ r



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 29

which yields (j, (t[f :=fun f(x)=t, x:=v], h)) ∈ E(Jχ2 ∗ CKη ∗ r)(w ◦ w0).

Axiom 24 is sound. We have to prove for all η and w ∈W , JCKη w ⊆ J∅Kη w.

This follows simply from the definition J∅Kη w = N×Heap.

The rule for covariant subtyping of ⊗, concluding τ ⊗ C ≤ τ ′ ⊗ C from τ ≤ τ ′, is
sound. Assume that JτKη w ⊆ Jτ ′Kη w holds for all η and w ∈ W . Then we have to

show that Jτ ⊗ CKη w ⊆ Jτ ′ ⊗ CKη w for all η and w ∈W .

By definition, Jτ ⊗ CKη w = JτKη (ι JCKη ◦ w) and Jτ ′ ⊗ CKη w = Jτ ′Kη (ι JCKη ◦ w).
Thus, the statement follows by instantiating the universally quantified world in the
assumption by ι JCKη ◦ w. �

The soundness of the two subsumption rules given in the last line of Figure 8 is
an immediate consequence of Proposition 27.

8. Generalized Frame and Anti-frame Rules

The frame and anti-frame rules allow for hiding of invariants. However, to hide
uses of local state, say for a function, it is, in general, not enough only to allow
hiding of global invariants that are preserved across arbitrary sequences of calls and
returns. For instance, consider the function f with local reference cell r:

let r = ref 0 in fun f(g)=(inc(r); g〈〉; dec(r)) (32)

If we write int n for the singleton integer type containing n, we may wish to hide
the capability I = {σ : ref (int 0)} to capture the intuition that the cell r : [σ] stores
0 upon termination. However, there could well be re-entrant calls to f such that
{σ : ref (int 0)} is not an invariant for those calls.

Thus Pottier [22] proposed two extensions to the anti-frame rule that allows for
hiding of families of invariants. The first idea is that each invariant in the family
is a local invariant that holds for one level of the recursive call of a function. This
extension allows us to hide “well-bracketed” [12] uses of local state. For instance,
the N-indexed family of invariants I n = {σ : ref (int n)} can be used for (32); see
the examples in [22]. The second idea is to allow each local invariant to evolve in
some monotonic fashion; this allows us to hide even more uses of local state. For
instance, for f defined by

let r = ref 1 in fun f(g)=(set 〈r, 0〉 ; g〈〉; set 〈r, 1〉 ; g〈〉)

we may wish to capture the fact that the cell r : [σ] stores 1 after f(g) returns.
Intuitively, this holds since the calls to g may at most bump up the value of r from
0 to 1 (through recursive calls to f), and this fact can be captured in the type
system by considering the {0, 1}-indexed family of invariants I n = {σ : ref (int n)}
once we allow that calls with I i may return with I j for j ≥ i. The idea is related to
the notion of evolving invariants for local state in recent work on reasoning about
contextual equivalence [1, 12].

In summary, we want to allow the hiding of a family of capabilities (I i)i∈κ
indexed over a preordered set (κ,≤). The preorder is used to capture that the local
invariants can evolve in a monotonic fashion, as expressed in the new definition of
the action of ⊗ on function types (note that I on the right-hand side of ⊗ now has
kind κ→cap):

(χ1 → χ2)⊗ I = ∀i.
(
(χ1 ⊗ I) ∗ I i→ ∃j ≥ i. ((χ2 ⊗ I) ∗ I j)

)
(33)

Observe how this definition captures the intuitive idea: if the invariant I i holds
when the function is called then, upon return, we know that an invariant I j (for
j ∈ κ, j ≥ i) holds. Different recursive calls may use different local invariants due



30J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

Generalized frame
Γ  t : χ

Γ⊗ I ∗ I i  t : ∃j ≥ i. (χ⊗ I) ∗ I j

Generalized anti-frame
Γ⊗ I  t : ∃i. (χ⊗ I) ∗ I i

Γ  t : χ

Figure 11. Generalized frame and anti-frame rules

to the quantification over i. The generalized frame and anti-frame rules are given
in Figure 11.

We now show how to extend our model of the type and capability calculus to
accommodate hiding of such more expressive families of invariants. Naturally, the
first step is to refine our notion of world, since the worlds are used to describe
hidden invariants.

8.1. Generalized recursive worlds and generalized world extension. Sup-
pose K is a (small) collection of preordered sets. We write K∗ for the finite sequences
over K, ε for the empty sequence, and use juxtaposition to denote concatenation.
For convenience, we will sometimes identify a sequence α = κ1, . . . , κn over K with
the preorder κ1 × · · · × κn. As in Section 6, we define the worlds for the Kripke
model in two steps, starting from an equation without any monotonicity require-
ments:5 CBUlt has all non-empty coproducts, and there is a unique solution to
the two equations

X ∼=
∑
α∈K∗

Xα , Xκ1,...,κn
= (κ1× · · ·×κn)→ ( 1

2 ·X → URel(Heap)) , (34)

with isomorphism ι :
∑
α∈K∗ Xα → X in CBUlt, where each κ ∈ K is equipped

with the discrete metric. Each Xα consists of the α-indexed families of (world-
dependent) predicates so that, in comparison to Section 6, X consists of all these
families rather than individual predicates.

Note that, by definition of the metric on X, if x
n
= x′ holds for n > 0 and

x = ι〈α, g〉 and x′ = ι〈α′, g′〉, then α = α′ and g i
n
= g′ i for all i ∈ α.

The composition operation ◦ : X×X → X is now given by x1 ◦x2 = ι(〈α1α2, g〉)
where 〈αi, gi〉 = ι−1(xi), and where g ∈ Xα1α2

is defined by

g(i1i2)(x) = g1(i1)(x2 ◦ x) ∗ g2(i2)(x) .

for i1 ∈ α1, i2 ∈ α2. That is, the combination of an α1-indexed family g1 and an
α2-indexed family g2 is a family g over α1α2, but there is no interaction between
the index components i1 and i2: they concern disjoint regions of the heap. The
composition operation is defined as the fixed point of a contractive function as
in Lemma 9, it can be shown associative, and it has a left and right unit given
by emp = ι(〈ε, I〉). For g : 1

2 · X → URel(A) we define the extension operation
(g ⊗ x)(x′) = f(x ◦ x′)

8.2. Generalized hereditarily monotone recursive worlds. We will proceed
as in Section 6, and carve out a subset of recursive worlds that satisfy a monotonicity
condition.

To prove soundness of the anti-frame rule, and more specifically to establish
the existence of commutative pairs, we need to know that the order in which the
invariant families appear is irrelevant for the semantics of types and capabilities.
The requirement is made precise by considering a partial equivalence relation ∼
on X, where ι(〈α1α2, g〉) ∼ ι(〈α2α1, h〉) holds if g(i1i2)(x1) = h(i2i1)(x2) for all
i1 ∈ α1, i2 ∈ α2 and x1 ∼ x2, and insisting that semantic operations respect this

5We believe that a variant of the inverse-limit construction in Section 5 could also be used to
construct the worlds, but we have not checked all the details.



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 31

relation. Note that the relation ∼ is recursive; we define it as the fixed point of a
function Ψ on the non-empty and closed subsets of X ×X.

Definition 28. Let Ψ : R(X × X) → R(X × X) be defined as follows. For all
x, y ∈ X where x = ι〈α, g〉 and y = ι〈β, h〉, (x, y) ∈ Ψ(R) if and only if

• there exists n ∈ N and a permutation π of 1, . . . , n such that α = α1 . . . αn
and β = απ(1) . . . απ(n); and

• for all i1 ∈ α1, . . . , in ∈ αn and all z, z′ ∈ X, if (z, z′) ∈ R then g(i1 . . . in)(z) =
h(iπ(1) . . . iπ(n))(z

′).

The function Ψ is contractive, and we define ∼ ⊆ X ×X as its unique fixed point
in URel(X ×X), by the Banach fixed point theorem.

Lemma 29. ∼ is a partial equivalence relation on X:

(1) x ∼ y implies y ∼ x;
(2) x ∼ y and y ∼ z implies x ∼ z.

Proof. Since (∼[n])n is a Cauchy chain in R(X × X) with limit ∼ given as the
intersection of the ∼[n], part (1) of the lemma follows from the claim:

∀n ∈ N. ∀xy ∈ X. x ∼ y ⇒ (y, x) ∈ ∼[n] ,

which is proved by induction on n.
The case n = 0 is immediate since ∼[0] = X ×X. For the case n > 0 let x ∼ y.

For simplicity, we assume x = ι〈α1α2, p〉 and y = ι〈α2α1, q〉. To prove (y, x) ∈ ∼[n]

it suffices to show that y′ ∼ x′ holds for y′ = ι〈α2α1, q
′〉 and x = ι〈α1α2, p

′〉 with

q′(i2i1)(z) = q(i2i1)(z)[n] and p′(i1i2)(z) = p(i1i2)(z)[n], since (y, x)
n
= (y′, x′). To

this end, let i2 ∈ α2, i1 ∈ α1, and suppose that z ∼ z′; we must prove q′(i2i1)(z) =
p′(i1i2)(z′). By induction hypothesis, (z′, z) ∈ ∼[n−1], i.e., there exists u′ ∼ u with

u′
n−1
= z′ and u

n−1
= z in X. Note that this means u′

n
= z′ and u

n
= z holds in 1

2 ·X.
Thus

q(i2i1)(z)
n
= q(i2i1)(u) = p(i1i2)(u′)

n
= p(i1i2)(z′)

by the non-expansiveness of p, q, and by the assumption x ∼ y. It follows that

q′(i2i1)(z) = q(i2i1)(z)[n] = p(i1i2)(u′)[n] = p′(i1i2)(z′)

i.e., we have shown y′ ∼ x′.
Part (2) follows from a similar argument, proving that for all n, x ∼ y and y ∼ z

implies (x, z) ∈ ∼[n]. �

The composition operation respects this partial equivalence relation.

Lemma 30. If x ∼ x′ and y ∼ y′ then x ◦ y ∼ x′ ◦ y′.

Proof sketch. Similar to the proof of Lemma 13: We prove by induction that for
all n ∈ N, if x ∼ x′ and y ∼ y′ then (x ◦ y, x′ ◦ y′) ∈ ∼[n], and use that ∼ is the
intersection of all the ∼[n]. �

Next, we define the hereditarily monotone worlds. We ensure that these worlds w
respect ∼ by requiring that they be self-related. The set W ⊆ X of these worlds is
again defined as fixed point of a contractive function, on the closed and non-empty
subsets of X.

Definition 31 (Generalized hereditarily monotone worlds). Let Φ : R(X)→ R(X)
be defined as follows. For all w ∈ X where w = ι〈α, g〉, w ∈ Φ(R) if and only if

• w ∼ w; and
• for all i ∈ α and all w1, w2 ∈ R, g(i)(w1) ⊆ g(i)(w1 ◦ w2).



32J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

The function Φ is contractive, and we define the hereditarily monotone functions
W = fix(Φ) = Φ(W ) by the Banach fixed point theorem.

Using Lemmas 29 and 30 it is not difficult to see that W is closed under the
relation ∼. Moreover, as in Section 6, the composition operation restricts to the
subset of hereditary monotone worlds.

Lemma 32. If w1, w2 ∈W then w1 ◦ w2 ∈W .

Proof sketch. As in the proof of Lemma 13, we show that x, y ∈W implies x ◦ y ∈
W[n] for all n ∈ N by induction on n. Lemma 30 is used to show the additional
requirement that the composition of x, y ∈W is self-related, x ◦ y ∼ x ◦ y. �

8.3. Semantics of capabilities and types. The semantic domains for the in-
terpretation of capabilities and types, with respect to the generalized worlds, now
consist of the world-dependent functions that are both monotonic (with respect to
the generalized hereditarily monotone worlds) and respect the relation ∼. More
precisely, for a preordered set A we define 1

2 ·W →mon URel(A) to consist of all

those g : 1
2 ·X → URel(A) where

• ∀x, x′ ∈ X. x ∼ x′ ⇒ g(x) = g(x′);
• ∀w1, w2 ∈W. g(w1) ⊆ g(w1 ◦ w2).

Then we write

Cap = 1
2 ·W →mon URel(Heap)

VT = 1
2 ·W →mon URel(Val)

MT = 1
2 ·W →mon URel(Val ×Heap) .

Note that with this definition, g ∈ κ→ Cap if and only if ι(〈κ, g〉) ∈W .
To define the interpretation of types, we first consider the following extension of

memory types from values to expressions. Compared to the corresponding Defini-
tion 15 in Section 7, the extension now depends on the parameter i ∈ α.

Definition 33 (Expression typing). Let f in 1
2 ·W →mon URel(Val ×Heap). Let

x ∈ X and 〈α, p〉 = ι−1(x). Let i ∈ α. Then E(f, x, i) ⊆ Exp ×Heap is defined by
(k, (t, h)) ∈ E(f, x, i) if and only if

∀j ≤ k, t′, h′. (t |h) 7−→j (t′ |h′) ∧ (t′ |h′) irreducible

⇒ (k−j, (t′, h′)) ∈
⋃

w∈W, 〈αβ,q〉=ι−1(x◦w), i1≥i, i2∈β

f(x ◦ w) ∗ q(i1i2)(emp) .

This definition is well-behaved, in the sense that E(f, x, i) ⊆ Exp ×Heap is a
uniform subset (with respect to the discrete order on Exp × Heap, that it is non-
expansive as a function in x, and that x ∼ x′ implies E(f, x, i) = E(f, x′, i′) for a
suitable reordering i′ of the parameters i.

Corresponding to the distribution axiom (33), the interpretation of arrow types
bakes in the property that state changes on local state are captured by the local
invariants: given x ∈ X, (k, fun f(y)=t) ∈ (f1 → f2)(x) if and only if

∀j < k. ∀w ∈W where ι−1(x ◦ w) = 〈α, p〉. ∀r∈URel(Heap). ∀i ∈ α. ∀v, h.
(j, (v, h)) ∈ f1(x ◦ w) ∗ p(i)(emp) ∗ r ⇒

(j, t[f :=fun f(y)=t, y:=v], h)) ∈ E(f2 ∗ r, x ◦ w, i) .
Semantic operations corresponding to the other capability and type constructors
can be defined analogous to Definition 17. It is easy to see that these operations
respect the relation ∼. In fact, the only case that makes direct use of the parameter
x ∈ W is the case of arrow types above where one quantifies universally over the



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 33

elements of all instances of its precondition p and (via E) existentially over the
elements of instances of its postcondition q; by definition of ∼ all these instances
do not depend on reordering of the parameter.

As in Section 7, (semantic variants of) the distribution axioms for generalized
invariants can be justified with respect to these operations. In particular, the axiom

(33) holds since, given c ∈ κ→ Cap and setting w
def
= ι(〈κ, c〉),

(f1 → f2)⊗ w = ∀i∈κ
(
(f1 ⊗ w) ∗ c i)→ ∃j≥i((f2 ⊗ w) ∗ c j)

)
where ∀ and ∃ denote the pointwise intersection and union of world-indexed uniform
predicates.

The semantics of value judgements ∆ ` v : τ looks as before. The semantics of
the expression typing judgement mirrors the new interpretation of arrow types, in
the sense that there is now also a universal quantification over all possible instances
i of the invariant family p represented by a world w ∈W :

|= (Γ  t : χ) ⇐⇒ ∀η. ∀w ∈W where w = 〈α, p〉. ∀k ∈ N.
∀i ∈ α. ∀r∈URel(Heap).∀(k, (ρ, h)) ∈ JΓKη w ∗ p(i)(emp) ∗ r.

(k, (ρ(t), h)) ∈ E(JχKη ∗ r, w, i).
We can now prove soundness of the generalized rules.

Theorem 34 (Soundness). The generalized frame and anti-frame rules are sound.

In particular, this theorem shows that all the reasoning about the use of local
state in the (non-trivial) examples considered by Pottier in [22] is sound.

Proof sketch. The case of the generalized frame rule is similar to the proof of
Lemma 23.

The soundness proof for the generalized anti-frame rule rests again on the exis-
tence of commutative pairs. Compared to the earlier Lemma 24, however, we can
only prove a variant which states that commutativity holds up to the relation ∼:
Let w0, w1 ∈ W be families indexed over α0 and α1, i.e., ι−1(w0) = 〈α0, p0〉 and
ι−1(w1) = 〈α1, p1〉 for some p0 and p1. Then there exist w′0, w

′
1 ∈W such that

w′0 = ι〈α0, λi.(p0 i)⊗ w′1〉,
w′1 = ι〈α1, λi.(p1 i)⊗ w′0〉, and

w0 ◦ w′1 ∼ w1 ◦ w0 .

Since we insisted that the interpretations of types and capabilities respect ∼, this
variant is sufficient to prove the soundness of the generalized anti-frame rule anal-
ogously to the proof of Lemma 25. �

9. Conclusion and Future Work

We have developed a soundness proof of the frame and anti-frame rules in the
expressive type and capability system of Charguéraud and Pottier, by constructing a
Kripke model of the system. For our model, we have presented two novel approaches
to construct the recursively defined set of worlds.6 The first approach is a (tedious)
construction of an inverse limit in the category of complete, 1-bounded ultrametric
spaces. In the second approach one defines the worlds as a recursive subset of
a recursively defined metric space. This construction is simpler than the inverse
limit construction, but requires an additional argument to show that the semantic
operations restrict to this subset. We have demonstrated that this approach scales,
by also extending the model to show soundness of Pottier’s generalized frame and

6An interesting challenge would be to find a general existence theorem for solutions of recursive
domain equations that can deal with the recursive monotonic worlds.



34J. SCHWINGHAMMER, L. BIRKEDAL, F. POTTIER, B. REUS, K. STØVRING, AND H. YANG

anti-frame rules. More generally, we believe that the recursive worlds constructed
in Sections 5 and 6 can be used, possibly in variations, to model various type system
and program logics with hidden (higher-order) state.

Future work includes exploring some of the orthogonal extensions of the basic
type and capability system that have been proposed in the literature: group regions
[11], and fates and predictions [19]. The model that we have presented suggests
to include separation logic assertions in the syntax of capabilities, and it would be
interesting to work out such a program logic in detail.

Recently, Pottier has given an alternative soundness proof for a slightly different
language, including group regions but not the generalized frame and anti-frame
rules. This proof is based on progress and preservation properties, and has been
formalized in the Coq proof assistant [24]. While we have not attempted a formal-
ization of our model, we believe that this is possible based on the results of Varming
et al. [4].

References

[1] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation inde-
pendence. In Proceedings of POPL, pages 340–353, 2009.

[2] P. America and J. J. M. M. Rutten. Solving reflexive domain equations in
a category of complete metric spaces. J. Comput. Syst. Sci., 39(3):343–375,
1989.

[3] A. W. Appel and D. A. McAllester. An indexed model of recursive types
for foundational proof-carrying code. ACM Trans. Program. Lang. Syst.,
23(5):657–683, 2001.

[4] N. Benton, L. Birkedal, A. Kennedy, and C. Varming. Formalizing domains,
ultrametric spaces and semantics of programming languages. 2010. Draft.

[5] B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines, higher-order
separation logic, and abstraction. ACM Trans. Program. Lang. Syst., 29(5),
2007.

[6] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg, and
H. Yang. Step-indexed Kripke models over recursive worlds. In Proceedings of
POPL, pages 119–132, 2011.

[7] L. Birkedal, B. Reus, J. Schwinghammer, and H. Yang. A simple model of
separation logic for higher-order store. In Proceedings of ICALP, pages 348–
360, 2008.

[8] L. Birkedal, K. Støvring, and J. Thamsborg. Realizability semantics of para-
metric polymorphism, general references, and recursive types. In Proceedings
of FOSSACS, pages 456–470, 2009.

[9] L. Birkedal, K. Støvring, and J. Thamsborg. The category-theoretic solution
of recursive metric-space equations. Theor. Comput. Sci., 411(47):4102–4122,
2010.

[10] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules for Algol-like languages. LMCS, 2(5:1), 2006.

[11] A. Charguéraud and F. Pottier. Functional translation of a calculus of capa-
bilities. In Proceedings of ICFP, pages 213–224, 2008.

[12] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and
control effects on local relational reasoning. In Proceedings of ICFP, 2010.

[13] P. B. Levy. Possible world semantics for general storage in call-by-value. In
Proceedings of CSL, pages 232–246, 2002.

[14] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract predicates
and mutable ADTs in Hoare type theory. In Proceedings of ESOP, pages
189–204, 2007.



A STEP-INDEXED KRIPKE MODEL OF HIDDEN STATE 35

[15] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information
hiding. In Proceedings of POPL, pages 268–280, 2004.

[16] M. Parkinson and G. Bierman. Separation logic and abstraction. In Proceedings
of POPL, pages 247–258, 2005.

[17] M. Parkinson and G. Bierman. Separation logic, abstraction and inheritance.
In Proceedings of POPL, pages 75–86, 2008.

[18] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[19] A. Pilkiewicz and F. Pottier. The essence of monotonic state. In Proceedings

of TLDI, pages 73–86, 2011.
[20] A. M. Pitts. Relational properties of domains. Inf. Comput., 127(2):66–90,

1996.
[21] F. Pottier. Hiding local state in direct style: a higher-order anti-frame rule. In

Proceedings of LICS, pages 331–340, 2008.
[22] F. Pottier. Generalizing the higher-order frame and anti-frame rules. Unpub-

lished note, available at http://gallium.inria.fr/~fpottier, July 2009.
[23] F. Pottier. Three comments on the anti-frame rule. Unpublished note, available

at http://gallium.inria.fr/~fpottier, July 2009.
[24] F. Pottier. Syntactic soundness proof of a type-and-capability system with

hidden state. Unpublished note, May 2011.
[25] D. J. Pym, P. W. O’Hearn, and H. Yang. Possible worlds and resources: the

semantics of BI. Theor. Comput. Sci., 315(1):257–305, 2004.
[26] J. C. Reynolds. Separation logic: A logic for shared mutable data structures.

In Proceedings of LICS, pages 55–74, 2002.
[27] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples

and frame rules for higher-order store. In Proceedings of CSL, pages 440–454,
2009.

[28] J. Schwinghammer, L. Birkedal, and K. Støvring. A step-indexed Kripke model
of hidden state via recursive properties on recursively defined metric spaces.
In Proceedings of FOSSACS, pages 305–319, 2011.

[29] J. Schwinghammer, H. Yang, L. Birkedal, F. Pottier, and B. Reus. A semantic
foundation for hidden state. In Proceedings of FOSSACS, pages 2–16, 2010.

[30] M. B. Smyth. Topology. In Handbook of Logic in Computer Science, volume 1.
Oxford Univ. Press, 1992.

Saarland University, Saarbrücken

IT University of Copenhagen

INRIA

University of Sussex, Brighton

University of Copenhagen

Queen Mary University, London

http://gallium.inria.fr/~fpottier
http://gallium.inria.fr/~fpottier

	1. Introduction
	1.1. Information hiding with frame and anti-frame rules
	1.2. This paper
	1.3. Overview of the technical development
	Outline

	2. A Calculus of Capabilities
	2.1. Syntax and operational semantics
	2.2. Types and capabilities
	2.3. Invariant extension, frame and anti-frame rules
	2.4. Example: typing Landin's knot

	3. Kripke Semantics of Frame and Anti-frame Rules
	4. Ultrametric Spaces and Uniform Relations
	4.1. Ultrametric spaces
	4.2. Uniform relations
	4.3. Preordered metric spaces

	5. Monotone Recursive Worlds
	5.1. Cauchy tower of approximants
	5.2. Monoid structure on the inverse limit
	5.3. Isomorphism between W and monotone functions on W

	6. Hereditarily Monotone Recursive Worlds
	6.1. Recursive worlds
	6.2. Relations on ultrametric spaces
	6.3. Hereditarily monotone recursive worlds

	7. Step-indexed Possible World Semantics of Capabilities
	7.1. Semantic domains and constructors
	7.2. Type system and soundness

	8. Generalized Frame and Anti-frame Rules
	8.1. Generalized recursive worlds and generalized world extension
	8.2. Generalized hereditarily monotone recursive worlds
	8.3. Semantics of capabilities and types.

	9. Conclusion and Future Work
	References

