
Alexey Gotsman and Hongseok Yang (draft)

The Importance of Being Linearizable

Abstract
Linearizability is a commonly accepted notion of correctness for li-
braries of concurrent algorithms. Even though most algorithms get-
ting published are shown to satisfy it, so far the notion has not been
defined for realistic settings where they actually get used. Further-
more, it has not been clear if in such settings the linearizability of
a library tells us anything about the behaviour of its clients. Rather,
linearizability has mostly served as a box to be ticked in a paper
with a new concurrent algorithm, lest it should get rejected.

In this paper, we show that linearizability is more important than
that. First, we generalise it to cope with a realistic setting, including
multiple libraries and clients executing in a shared address space.
We do not limit possible interactions between them to passing val-
ues of a primitive data type, but allow transferring the ownership
of memory areas. Second, we show that, despite such subtle inter-
actions, the proposed notion of linearizability allows decomposing
the verification of a whole program into the verification of its con-
stituent components: while proving a property of a client of a con-
current library, we can soundly replace the library by its abstract
implementation related to the original one by our generalisation
of linearizability. This decomposition is of a finer grain than the
one enabled by thread-modular methods. We demonstrate the use
of our method by modularising the verification of two challenging
concurrent algorithms.

1. Introduction
The architecture of concurrent software usually exhibits some
forms of modularity. For example, concurrent algorithms are
encapsulated in libraries and complex algorithms are often
constructed using libraries of simpler ones. This lets devel-
opers benefit from ready-made libraries of concurrency pat-
terns and high-performance concurrent data structures, such as
java.util.concurrent for Java and Intel’s Threading Building
Blocks for C++. To simplify reasoning about concurrent software,
we need to exploit the available modularity. In particular, in rea-
soning about a client of a concurrent library, we would like to ab-
stract from the details of a particular library implementation. This
requires an appropriate notion of library correctness.

Correctness of concurrent libraries is commonly formalised by
the notion of linearizability [16], which fixes a certain correspon-
dence between the library and its abstract specification (the latter
usually sequential, with methods implemented atomically). Unfor-
tunately, this notion is not appropriate for the settings where con-
current libraries actually get used. In particular, the classical def-
inition of linearizability assumes a complete isolation between a
library and its client, with interactions limited to passing elements
of a primitive data type as parameters or return values of library
methods. In reality, the library and the client run in a shared address
space; thus, to prove the whole program correct, we need to verify
that one of them does not corrupt the data structures used by the
other. Type systems [5, 7] and program logics [24] usually achieve
this using the concept of ownership of data structures by a program
component: the right to access a data structure is given only to a
particular component or a set of them. In real software, this right is
not assigned statically, and the ownership of data structures can be
transferred between components at certain points, such as calls to
and returns from a library. Such interactions have to be taken into
account when defining linearizability in a realistic setting.
Examples. For an example of ownership transfer between concur-
rent libraries and their clients, consider any container with concur-
rent access, such as a concurrent set from java.util.concurrent or
Threading Building Blocks. A typical use of such a container is
to store pointers to a certain type of data structures. However, in a
programmer’s mind (and in a formal proof of correctness), the con-

Figure 1. A sketch of a concurrent queue implementation
struct Node;

void enqueue(int x) {
...
Node *newnode =
alloc(sizeof(Node));

...
// linearization point
...

}

int isEmpty() { ... }

int dequeue() {
...
// linearization point
...
free(oldnode);
...
// Wrapper *ret =
// alloc(sizeof(Wrapper));
...
// return ret;
return value;

}

tainer usually also holds the ownership of the data structures whose
addresses it stores. When a thread inserts a pointer to a data struc-
ture into a container, its ownership is transferred from the thread
to the container. When another thread removes a pointer from the
container, it acquires the ownership of the data structure the pointer
identifies. If the first thread tries to access a data structure after a
pointer to it has been inserted into the container, this will result in
a race condition. Hence, to be useful in practice, linearizability of
a concurrent container cannot be defined only in terms of passing
pointers between the container and the client, as has been the case
so far [12, 14, 16]; it must ensure that the container correctly trans-
fers the ownership of data structures associated with the pointers.

For another example of ownership transfer, consider a memory
allocator accessible concurrently to multiple threads. We can think
of the allocator as owning the blocks of memory on its free-list.
When a thread allocates a memory block, it gets the exclusive
ownership of the block, which allows it to access the block without
interference from the other threads. When the thread frees the
block, the ownership is returned to the allocator. Trying to write
to a memory cell after it was freed has dire consequences.

Speaking of which, a memory allocator is used by almost every
concurrent library. However, the standard notion of linearizability
does not capture the effects that the interactions between the library
and the allocator might have on the client. The most obvious of such
effects is that the library using a lot of memory might cause allo-
cations in the client to fail. However, there are more subtle effects
highlighting a fundamental problem not specific to memory allo-
cation. Consider a sketch of a concurrent queue implementation in
Figure 1 (a full implementation is given in Appendix E). The queue
stores integers and provides three methods with self-explanatory
names. There are a number of such implementations, supposedly
linearizable with respect to the abstract queue data type with the
three operations implemented atomically [21]. Their linearizabil-
ity is usually established by identifying linearization points in
the code of every implemented method at which, informally, the
method “takes effect”—the change it makes to the library state be-
comes visible to the other threads (see [16] and Appendix D). The
enqueue method allocates a Node structure to represent a new ele-
ment inside the queue; dequeue deallocates it when the element is
removed.

Now, let us modify the library such that, instead of returning
the value dequeued directly, the dequeue method returns it in a
wrapper object:

struct Wrapper *dequeue();

This requires one more call to the memory allocator to allocate the
wrapper; the implementation of dequeue is changed accordingly
by uncommenting the extra lines in its body. As it happens, the ad-
ditional call to the allocator to get a new wrapper makes the library
non-linearizable. When a library is linearizable, the informal expec-
tation (formalised in Section 5) is that the behaviour of its clients
should be reproducible when they use the atomic abstract library
implementation instead. Thus, consider the following client:

int flag = 0, res = 0;
Wrapper *x, *y;
enqueue(10);
in_parallel((y = dequeue()),

(flag = isEmpty();
x = alloc(sizeof(Wrapper));
free(x)));

if (flag && y == x) res = 1;

This client can set res to 1 when using our queue implementation.
Indeed, assume dequeue returns a wrapper allocated at address
42. Then during the time between removing the node storing 10
at the old linearization point of dequeue and allocating a wrapper
using alloc, the queue is empty, but cell 42 is free. This can
be noticed by the second thread of the client and lead to res
getting assigned to 1. If the new library were linearizable, the final
value 1 of res could be obtained with library methods performing
queue operations and wrapper allocation atomically. This, however,
cannot happen: in this case, if the queue is empty, then the wrapper
to be returned by dequeue has already been allocated.

Hence, the modified queue is not linearizable, while, as we show
later (Section 6 and Appendix E), the original implementation is.
This problem is not specific to memory allocation and could man-
ifest itself had the queue implementation called any other library
accessible to the client. The trouble is that linearizability cannot
cope with multiple libraries interacting with each other.
Contributions. As is demonstrated by the above discrepancies
between the theory of linearizability and the practice of concurrent
programming, even though linearizability has been accepted as a
correctness condition for concurrent libraries, so far there has been
no definition of the notion applicable to the environments in which
libraries execute in practice! Furthermore, it has not been clear if in
such environments the linearizability of a library tells us anything
about the behaviour of its clients. Rather, linearizability has mostly
served as a box to be ticked in a paper with a new concurrent
algorithm, lest it should get rejected. In this paper, we show that
linearizability is more important than that:
• We generalise it to cope with a realistic setting, including mul-

tiple libraries and clients executing in a shared address space,
whose interactions involve ownership transfers (Section 4).

• We show that, despite such subtle interactions, the proposed
notion of linearizability allows decomposing the verification of
a whole program into the verification of its constituent com-
ponents. Namely, we establish an Abstraction Theorem (Theo-
rem 9, Section 5): while proving a property of a client of a con-
current library, we can soundly replace the library by its abstract
implementation related to the original one by our generalisation
of linearizability. The abstract implementation is usually simpler
than the original one (in most cases implemented atomically),
which eases the proof of the resulting program.

• We also show that our Abstraction Theorem allows abstracting
several non-recursive interacting libraries (Section 5.1). This ex-
tension is non-trivial, since, while abstracting one library, we
have to preserve certain relationships between it and the other
libraries required by linearizability. This calls for a stronger state-
ment of Abstraction Theorem.

• Our formal development does not rely on a particular model
of program states, but assumes an arbitrary model from a cer-
tain class (Section 2). By picking a model with so-called per-
missions [4, 8], we can allow clients and libraries to transfer
non-exclusive rights to access certain memory areas in particular
ways, instead of transferring their full ownership. This makes our
Abstraction Theorem applicable even when libraries and their
clients share access to some areas of memory.

• We demonstrate that the Abstraction Theorem is not just a theo-
retical result: it enables compositional reasoning about complex
concurrent algorithms that are challenging for existing verifica-
tion methods. Namely, we modularly verify the linearizability
of a non-blocking queue [21] using a custom memory alloca-
tor implemented as a non-blocking stack [30], and a multiple-

word compare-and-swap (MCAS) algorithm [15] implemented
using an auxiliary operation. The examples exhibit both owner-
ship transfer and non-disjointness of the library states. In both
cases, the Abstraction Theorem makes the proof tractable by al-
lowing us to verify the linearizability of one part of the algorithm
(e.g., the queue implementation) assuming an atomic specifica-
tion of the other part it uses (e.g., the allocator). To verify the
examples, we developed a logic for establishing our notion of
linearizability, based on separation logic [29]. Due to space con-
straints, we describe it in Appendix D. Here we instead explain
the benefits the Abstraction Theorem gives us in the examples
considered (Section 6).

Technical challenges. Generalising linearizability to the realistic
setting described above and proving the corresponding Abstraction
Theorem presents several challenges. First, linearizability is usu-
ally defined in terms of histories, which are sequences of calls to
and returns from a library in a given program execution, recording
parameters and return values passed. To handle ownership transfer,
histories also have to include descriptions of memory areas trans-
ferred. However, in this case, some histories cannot be generated
by any pair of a client and a library: while generating histories of
a library we should only consider its executions in an environment
that respects the notion of ownership. For example, a client that
transfers a piece of state upon a call to a library not communicat-
ing with anyone else cannot then transfer the same piece of state
again before getting it back from the library upon a method re-
turn. We propose a notion of well-balancedness that characterises
those histories that treat ownership transfer correctly and should be
taken into account when defining linearizability. The proof of our
Abstraction Theorem relies crucially on the library semantics in-
cluding only well-balanced histories. We define a way to generate
such histories from a library implementation using the most gen-
eral client of the library, which performs all possible ownership
transfers consistent with the library specification (Section 3). As
we show, the safety of the most general client, which can be es-
tablished in existing program logics (Appendix C), implies that the
library does not access internals of its clients.

Second, the Abstraction Theorem holds only for certain healthy
clients that do not access the internals of the library and provide
the pieces of memory expected by the library at every call. As we
argue in Section 7, the notions of client healthiness used in data
refinement [3, 13, 22], a sequential counterpart of the problem we
are solving in this paper, do not generalise to concurrent setting.
We formulate a more flexible notion appropriate for our application
(Section 3) and show that it can be established in existing program
logics (Appendix C).

Finally, the proof of the Abstraction Theorem is highly non-
trivial in the presence of ownership transfer. It requires transform-
ing a trace of a client using a concrete library implementation into
a trace generated when the client uses an abstract implementation
instead. As we discuss in Section 5.2, this involves: decomposing
the original trace into traces in certain client- and library-local se-
mantics (Lemma 12); defining a sequence of transformations on the
client trace that make it consistent with a given history of interac-
tions with the abstract library (Lemma 13); and, finally, composing
the transformed client trace with a library-local trace of the abstract
implementation (Lemma 14). These steps are delicate: e.g., the de-
composition requires maintaining a splitting of the shared address
space into parts owned by the library and the client, despite ongo-
ing ownership transfers; the transformation requires the rearrange-
ments being performed on the trace to preserve the correctness of
ownership transfers to and from the library, and relies crucially on
the histories involved being well-balanced.
Related work. We discuss related work in detail in Section 7. Here
we briefly position our work with respect to the most common ap-
proach of decomposing the verification of concurrent programs—
thread-modular reasoning methods. These consider every thread in

the program in isolation under some assumptions on its environ-
ment [19, 27]. However, a single thread would usually make use of
multiple program components. This work goes further by allowing
a finer-grain intrathread-modular reasoning: separating the verifi-
cation of a library and its client, the code from both of which may
be executed by a single thread. Note that this approach is com-
plementary to thread-modular reasoning, which can still be used
to carry out the verification subtasks, such as establishing the lin-
earizability of libraries and proving the healthiness of clients. In
fact, the logic we use for establishing linearizability (Appendix D)
is thread-modular. In Section 7 we revisit this comparison in the
light of examples of using our verification method (Section 6).

2. Preliminaries
Programming language. We present our results for a simple lan-
guage of heap-manipulating concurrent programs. Let PComm be
the set of primitive commands, ranged over by c, and Method the
set of method names, ranged over by m. We assume that the meth-
ods do not take arguments and do not return values (these can be
passed via the heap using other mechanisms we provide). The syn-
tax of the language is given below:
C ::= c | m | C;C | C + C | C∗

L ::= {atomicm=C; . . . ; atomicm=C; m=C; . . . ;m=C}
S ::=C ‖ . . . ‖C | let L in S

The commands include primitive commands c, method callsm, se-
quential composition C;C′, nondeterministic choice C + C′ and
iteration C∗. The standard constructs, such as loops and condition-
als, can be defined as syntactic sugar (Appendix A).

A program consists of multiple libraries L implementing meth-
ods and their ground client C1 ‖ . . . ‖Cn, given by a parallel com-
position of threads. In the following we index threads in programs
using the set of identifiers ThreadID = N. A library implemen-
tation L defines a set of methods and declares some of them as
atomic, meaning that calls to such methods run without being in-
terleaved with the execution of other threads. We allow library im-
plementations to call methods from other libraries, as is the case in
the examples mentioned in Section 1. However, we do not allow
recursion crossing library boundaries, leaving it for future work
(Section 8). Throughout the paper, we assume that every method
called in the program is defined by some library in the scope of the
call, that different libraries define disjoint sets of methods, and that
implementations of atomic methods do not call non-atomic ones.
State model. We do not fix a model of states for our programming
language. Rather, our results hold for a class of models called
separation algebras [6] that allow expressing the dynamic memory
partitioning between libraries and their clients.

Definition 1. A separation algebra is a set Σ, together with a
partial commutative, associative and cancellative operation ∗ on
Σ and a unit element ε ∈ Σ. Here unity, commutativity and
associativity hold for the equality that means both sides are defined
and equal, or both are undefined. The property of cancellativity
says that for each θ ∈ Σ, the function θ ∗ · : Σ ⇀ Σ is injective.

In the rest of the paper we assume a separation algebra State
with the operation ∗. We think of elements of State as portions
of program states and the ∗ operation as combining such portions.
The partial states allow us to describe parts of the program state
belonging to a library or the client. When the ∗-combination of
two states is defined, we call them compatible. Incompatible states
usually make contradictory claims about the ownership of memory.

Elements of separation algebras are often defined using partial
functions. We use the following notation: g(x)↓ means that the
function g is defined on x, dom(g) denotes the set of arguments
on which g is defined, and g[x : y] denotes the function that has the
same value as g everywhere, except for x, where it has the value
y. In the future we also write for an expression whose value is
irrelevant and implicitly existentially quantified.

An example of a separation algebra is the following set RAM,
often used to give semantics to heap-manipulating programs:

Loc = N+ Val = Z RAM = Loc ⇀fin Val

A (partial) state in this model consists of a finite partial function
from allocated memory locations to values they store. The ∗ op-
eration on RAM is defined as the disjoint function union], with
the nowhere-defined function [] as its unit. Thus, the ∗ operation
combines disjoint pieces of memory.

More complicated separation algebras do not split memory
completely, instead allowing heap parts combined by ∗ to overlap.
This is done by associating so-called permissions [4] with memory
cells in the model, which do not give their exclusive ownership,
but allow accessing them in a certain way. Types of permissions
range from read sharing [4] to accessing memory in an arbitrary
way consistent with a given specification [8]. We give an example
of a separation algebra with permissions in Appendix A. Since we
develop all our results for an arbitrary separation algebra State, by
instantiating it appropriately we can handle cases when a library
and its client share access to some memory areas. For example, this
is the case in one of the algorithms we verify in Section 6.

In the following formal development we also make use of the
notion of footprints, which, informally, describe the equivalence
class of heaps with the same allocated memory or permissions. Let
us lift ∗ to P(State) pointwise: for p, q ∈ P(State)

p ∗ q =
[
{θ1 ∗ θ2 | θ1 ∈ p, θ2 ∈ q, (θ1 ∗ θ2)↓ }. (1)

Using the lifted ∗ operator, we now present a novel definition char-
acterising the separation algebras that admit a notion of footprints.

Definition 2. For a separation algebra Σ, let us define δ : Σ →
P(Σ) as follows: for θ ∈ Σ

δ(θ) = {θ′ | ∀θ′′. (θ′ ∗ θ′′)↓ ⇔ (θ ∗ θ′′)↓}.
We say that Σ is an algebra with footprints when
1. For all θ1, θ2 ∈ Σ, if θ1∗θ2 is defined, δ(θ1)∗δ(θ2) = δ(θ1∗θ2).
2. For all θ1, θ2, θ′1, θ

′
2 ∈ Σ, if θ1 ∗ θ2 and θ′1 ∗ θ′2 are defined,

(δ(θ1 ∗ θ2) = δ(θ′1 ∗ θ′2) ∧ δ(θ1) = δ(θ′1)) ⇒ δ(θ2) = δ(θ′2).

The function δ in the definition computes the equivalence class of
states having the same footprint as θ. In the case of the algebra
RAM, for θ ∈ RAM we have δ(θ) = {θ′ | dom(θ) = dom(θ′)}.
Thus, states with the same footprint contain the same memory cells.
It is easy to check that the conditions in Definition 2 are satisfied.
Definitions of δ for separation algebras with permissions are more
complicated, taking into account not only memory cells present
in the state, but also permissions for them (Appendix A). In the
following, we assume that State is an algebra with footprints. Let
Foot = {δ(θ) | θ ∈ State} be the set of footprints.

Property 1 in Definition 2 implies that for l1, l2 ∈ Foot we
have l1 ∗ l2 ∈ Foot ∪ {∅}. Thus the composition of two footprints
produces either another footprint or the empty set, the latter in the
case when the footprints being combined are incompatible.

Property 2 lets us define a partial subtraction operation on equiv-
alence classes in Foot. For l1, l2 ∈ Foot, if there are θ1, θ2, θ such
that θ1 ∈ l1, θ2 ∈ l2 and θ1 = θ2∗θ, we denote with l1 \ l2 ∈ Foot
the equivalence class δ(θ). When such θ1, θ2, θ do not exist, l1 \ l2
is undefined. It is easy to show that the \ operation is well-defined.

In our proofs we also rely on an additional property of ∗ and \
(Appendix A), which we omit to conserve space.

We say that a footprint l1 is smaller than a footprint l2, written
l1 � l2, when l2 \ l1 is defined. For θ1, θ2 ∈ State we let θ1 � θ2
when δ(θ1) � δ(θ2). Finally, for p1, p2 ∈ P(State) we let
p1 � p2 when ∀θ1 ∈ p1.∃θ2 ∈ p2. θ1 � θ2.
Semantics of primitive commands. Consider the set P(State)>

of subsets of State with a special element > used to denote an
error state, resulting, e.g., from dereferencing an invalid pointer.
We lift the ∗ operator to P(State)> as in (1) and by defining
> ∗ p = p ∗ > = > ∗ > = > for all p ∈ P(State).

Our semantics assumes an interpretation of every primitive
command c ∈ PComm as a transformer f t

c : State →
P(State)>, which maps pre-states to states obtained when thread
t ∈ ThreadID executes c from the pre-state. Our semantics exe-
cutes primitive commands atomically. Note that by defining appro-
priate primitive commands we can execute any block of code with-
out method calls atomically. We use atomic methods in the syntax
of programs to handle the latter case. The fact that our transformers
are parameterised by t allows atomic accesses to the areas of mem-
ory indexed by thread identifiers. This idealisation simplifies the
setting in that it lets us do without special thread-local or method-
local storage. In particular, method parameters and return values in
our language can be passed via special locations on the heap asso-
ciated with the index of the thread calling the method.

For our results to hold, we need to place the following restric-
tions on the transformer f t

c for every primitive command c ∈
PComm and thread t ∈ ThreadID:
Strong Locality: for any θ1, θ2 ∈ State

(θ1 ∗ θ2)↓ ∧ f t
c(θ1) 6= > ⇒ f t

c(θ1 ∗ θ2) = f t
c(θ1) ∗ {θ2}. (2)

Footprint Preservation: for any θ, θ′ ∈ State

θ′ ∈ f t
c(θ) ⇒ δ(θ′) = δ(θ). (3)

The strong locality of f t
c says that, if a command c can be safely

executed from a state θ1, then when executed from a bigger state
θ1 ∗ θ2, it does not change the additional state θ2 and its effect
depends only on the state θ1 and not on the additional state θ2.
This property is a variation on the locality property that ensures
the soundness of separation logic [6]. It is stronger than locality
because, while the latter prohibits the command from changing the
additional state, it allows the effect of the command to depend on
it; see [13] for a discussion.

Footprint preservation prohibits primitive commands from allo-
cating or deallocating memory. This does not pose a problem, since,
as we argued in Section 1, in the context of linearizability alloca-
tors should be treated as libraries. As we show in the next section,
we permit receiving the ownership of memory cells from a library.

The transformers for standard commands, except memory
(de)allocation, satisfy the above conditions (Appendix A).

3. Ownership-transfer semantics of open
programs

To formulate our results, we have to give a semantics to parts of
programs in the language of Section 2, such as libraries consid-
ered in isolation from their clients and clients considered in isola-
tion from implementations of libraries they use. In this section, we
give a semantics to such open programs, and, as its special case,
to closed programs of Section 2. The novelty of the notion of open
programs we propose is that we allow the programs to communi-
cate with their environment via ownership transfers. The semantics
of libraries defined in this section is later used to formulate lineariz-
ability (Section 4), and the semantics of clients, the notion of client
healthiness in our Abstraction Theorem (Section 5).
Open programs with ownership transfer. We start by introduc-
ing ingredients of the syntax of open programs. A predicate is a set
of program states from State, and a parameterised predicate is a
map from thread identifiers to predicates. We use the same symbols
p, q, r for ordinary and parameterised predicates; it should always
be clear from the context which one we mean. When p is a pa-
rameterised predicate, we write pt for the predicate obtained by
applying p to a thread t. We point out that both ordinary and pa-
rameterised predicates can be described syntactically, e.g., using
separation logic assertions ([29] and Appendix C).

We describe possible ownership transfers between components
with the aid of method specifications Γ, which are finite maps from
method names to tuples (p, q, a) of parameterised predicates p, q
and a ∈ {atomic, nonatomic}. Here pt describes pieces of state
transferred when thread t calls a method, and qt those transferred

at its return. The flag a describes whether the method is atomic or
not. We sometimes ignore a in the tuples from Γ, writing them as
Hoare triples: {p}m {q} ∈ Γ. We write Γ v Γ′ when Γ and Γ′ are
identical except that Γ′ classifies more methods as atomic.

As we explain below, to define the semantics of ownership
transfers unambiguously, we require pre- and postconditions in
method specifications to be precise. A predicate r ∈ P(State)
is precise if for every state θ there exists at most one substate
θ1 satisfying r, i.e., such that θ1 ∈ r and θ = θ1 ∗ θ2 for
some θ2. Note that, since the ∗ operation is cancellative, when
such a substate θ1 exists, the corresponding substate θ2 is unique.
Informally, a precise predicate carves out a unique piece of the
heap. A parameterised predicate p is precise if for every t, the
predicate pt is precise.

An open program P is a program where the ground client or
the implementations of some of the libraries may be missing:

P ::= [−] | C ‖ . . . ‖C | let L in P
The syntax of P differs from that of closed programs in two ways.
First, open programs may include a hole [−], which models a
missing ground client. Second, we allow P to call methods that
are not defined in it. Intuitively, such methods belong to libraries
whose implementations are missing from P . We often distinguish
open programs with a ground client from those without one, and
use the letter C for the former and L for the latter.

The environment an open program can interact with consists of
two parts. First, the program can use some libraries with missing
implementations. Second, the program itself might be an imple-
mentation of a library, providing some methods that can be called
by an unspecified client. We refer to the former as its imported
libraries and to the latter as its external environment. To specify
possible interactions with these two types of environment, we use
specified open programs or, simply, specified programs of the form
Γ ` P : Γ′. Here Γ includes the specifications of all the methods
without implementations in P . When P does not have a ground
client, Γ′ provides specifications for the methods in the open pro-
gram that can be called by its external environment. Thus, it speci-
fies the type of another open program P0 that can fill in the hole in
P and behave as the client of the libraries that P defines.

Note that Γ′ can include methods specified in Γ, in which case
we require that they be given the same specifications in Γ′ and
Γ. For each method in Γ′ implemented by P , we require that its
atomicity flag in Γ′ have the value atomic precisely when the
method is declared as such in P . Finally, we also require that
atomic methods implemented in P call only those methods in Γ
that are there declared as atomic. We sometimes omit Γ and Γ′

from a specified program when they are clear from the context.
WhenP implements all the libraries it uses, Γ can be ∅. WhenP

contains a ground client, we require Γ′ = ∅. Thus, closed programs
of Section 2 can have specifications of the form ∅ ` S : ∅.
Decomposing programs. We denote with P1(P2) the result of
filling the hole in an open program P2 with P1. We use this
operation only when P2 contains a hole; P1 may or may not
contain one. Thus, P2 defines the implementation of libraries,
and P1 a client of these libraries, which could be another library
implementation or a program with a ground client. When P1 and
P2 have specifications Γ′ ` P1 : Γ′′ and Γ ` P2 : Γ′, the program
P1(P2) gets the specification Γ ` P1(P2) : Γ′′. A common use of
this decomposition is to represent a closed program ∅ ` S : ∅ of
Section 2 as S = C(L), where Γ′ ` C : ∅ and ∅ ` L : Γ′.
Traces. In the semantics we define below, a specified program
Γ ` P : Γ′ denotes a set of traces, which are finite or infinite
sequences of actions ϕ of the form:

ϕ ::= (t, c) | (t, callm) | (t, retm) | (t, callm(θ)) | (t, retm(θ))

where t ∈ ThreadID, c ∈ PComm, θ ∈ State and m ∈ Method.
We denote the sets of corresponding types of actions with PAct,
CallAct, RetAct, ECallAct and ERetAct, respectively, and their

union with Act. We write Trace for the set of all traces.
An action describes an atomic computation step made by a

thread and can correspond to a primitive command, a method call
or a return. Call and return actions from ECallAct and ERetAct
represent interactions of the open program Γ ` P : Γ′ with
its environment: methods from Γ with unspecified implementation
or unspecified clients calling methods in Γ′. These actions are
annotated with the state that gets transferred between the program
and the environment. In contrast, actions in CallAct and RetAct
result from calls to and returns from methods internal to the open
program.

Let ACallAct = CallAct∪ECallAct and ARetAct = RetAct∪
ERetAct. We put the subscript M on sets of actions CallAct,
RetAct, ECallAct, ERetAct, ACallAct and ARetAct to restrict
them to calls to or returns from methods in M . For instance,
CallActM denotes the set of call actions involving methods from
the set M . We let CallRetActM = CallActM ∪ RetActM and
define ECallRetActM and ACallRetActM similarly. We omit M
when M = Method.
Control-flow graphs. In the definition of program semantics,
it is technically convenient for us to abstract from a particu-
lar syntax of programming language and represent commands by
their control-flow graphs. A control-flow graph (CFG) is a tuple
(N,T, start, end), consisting of the set of program points N , the
control-flow relation T ⊆ N × Comm × N , and the initial and
final positions start, end ∈ N . The edges are annotated with com-
mands from Comm, which are primitive commands or method calls
m. Every command C in our language can be translated to a CFG
in a standard manner (Appendix A).

We represent a specified program Γ ` P : Γ′ by a collection of
CFGs. IfP contains a ground client with n threads runningCt, t =
1..n, each thread t is represented by the CFG (Nt, Tt, startt, endt)
of Ct. Let Method(P) be the set of all methods declared in P .
For each method m ∈ Method(P) let Cm be the body of its
implementation. Every such method is then represented by the CFG
(Nm, Tm, startm, endm) of Cm. We also represent every method
m ∈ dom(Γ) by the CFG ({vm}, ∅, vm, vm), which corresponds
to a method body that returns immediately after having been called.
This CFG does not have any edges, because in the semantics below
we do not execute the implementation of such a method, but use its
specification to incorporate the effect a call to the method has on
the program state. Finally, if P does not have a ground client (so
n = 0), we define a CFG of the form ({vt

mgc}, ∅, vt
mgc, v

t
mgc) for

each thread t ∈ ThreadID, and let N0 = {vt
mgc | t ∈ ThreadID}.

These CFGs are used to represent the most general client of the
methods appearing in Γ′; see below. If P contains a ground client,
we let N0 = ∅.

We often view the above collection of CFGs as a sin-
gle graph with the node set Node = N0]

Un
t=1Nt]U

m∈Method(P)]dom(Γ)Nm and the edge set T =
Un

t=1 Tt]U
m∈Method(P)]dom(Γ) Tm.

Operational semantics with ownership transfer. Consider an
open program Γ ` P : Γ′ represented by its CFG. Let Pos be the
set of thread positions—non-empty finite sequences of elements of
Node. A thread position describes the call-stack of a thread: its last
element describes the program point of the current command, and
the rest give the return points for the methods called.

We define the set of program configurations as
Config = {>} ∪

(ThreadID ⇀fin Pos)× State× Foot× (P(ThreadID))+

The special configuration > indicates an error. The first compo-
nent of a non-erroneous configuration is a program counter, which
defines the position of each thread in the program, and the sec-
ond defines the state of the program memory. The third component
tracks the footprint of the imported libraries that the open program
P might communicate with; it is updated upon ownership transfers
at calls to and returns from these libraries. Tracking the footprint

Figure 2. Transition relation −→Γ,P,Γ′ for a specified program
Γ ` P : Γ′. The set M contains all the methods declared atomic in
P and Γ. We omit the subscripts Γ,P,Γ′ to avoid clutter.

t ∈ K α, θ, l
ϕ−→t α′, θ′, l′ ϕ 6∈ ACallRetActM

pc[t : α], θ, l, κK
ϕ−→ pc[t : α′], θ′, l′, κK (4)

t ∈ K α, θ, l
ϕ−→t >

pc[t : α], θ, l, κK
ϕ−→ > (5)

t ∈ K α, θ, l
ϕ−→t α′, θ′, l′ ϕ ∈ ACallActM

pc[t : α], θ, l, κK
ϕ−→ pc[t : α′], θ′, l′, κK{t} (6)

t ∈ K α, θ, l
ϕ−→t α′, θ′, l′ ϕ ∈ ARetActM

pc[t : α], θ, l, κK
ϕ−→ pc[t : α′], θ′, l′, κ (7)

(v, c, v′) ∈ T f t
c(θ) 6= > θ′ ∈ f t

c(θ)

αv, θ, l
(t,c)−−−→t αv′, θ′, l (8)

(v, c, v′) ∈ T f t
c(θ) = >

αv, θ, l
(t,c)−−−→t > (9)

(v, m, v′) ∈ T m 6∈ dom(Γ)

αv, θ, l
(t,call m)−−−−−−→t αv′startm, θ, l (10)

m 6∈ dom(Γ) α 6= vt
mgc

αendm, θ, l
(t,ret m)−−−−−−→t α, θ, l (11)

(v, m, v′) ∈ T {p}m {q} ∈ Γ
θ = θ′ ∗ θp θp ∈ pt l ∗ δ(θp) 6= ∅

αv, θ, l
(t,call m(θp))
−−−−−−−−−→t αvvm, θ′, l ∗ δ(θp) (12)

(v, m, v′) ∈ T {p}m {q} ∈ Γ θ 6∈ State ∗ pt

αv, θ, l
(t,call m(ε))−−−−−−−−→t > (13)

{p}m {q} ∈ Γ θq ∈ qt (θ ∗ θq)↓ (l \ δ(θq))↓

αvm, θ, l
(t,ret m(θq))
−−−−−−−−→t α, θ ∗ θq , l \ δ(θq) (14)

{p}m {q} ∈ (Γ′ − Γ) θp ∈ pt δ(θ) ∗ l ∗ δ(θp) 6= ∅

vt
mgc, θ, l

(t,call m(θp))
−−−−−−−−−→t vt

mgcstartm, θ ∗ θp, l (15)

{p}m {q} ∈ (Γ′ − Γ) θ = θ′ ∗ θq θq ∈ qt

vt
mgcendm, θ, l

(t,ret m(θq))
−−−−−−−−→t vt

mgc, θ
′, l (16)

{p}m {q} ∈ (Γ′ − Γ) θ 6∈ State ∗ qt

vt
mgcendm, θ, l

(t,ret m(ε))−−−−−−−−→t > (17)

{p}m {q} ∈ Γ′ ∩ Γ θp ∈ pt δ(θ) ∗ l ∗ δ(θp) 6= ∅

vt
mgc, θ, l

(t,call m(θp))
−−−−−−−−−→t vt

mgcvm, θ, l ∗ δ(θp) (18)

{p}m {q} ∈ Γ′ ∩ Γ θq ∈ qt (l \ δ(θq))↓

vt
mgcvm, θ, l

(t,ret m(θq))
−−−−−−−−→t vt

mgc, θ, l \ δ(θq) (19)

allows us to define a more precise semantics, which is required for
the proof of our Abstraction Theorem (see Section 5.2). The last
component is a non-empty sequence of sets of thread identifiers,
which describes the current scheduling policy and is used to imple-
ment the semantics of atomic.

The operational semantics of Γ ` P : Γ′ is given by the
transition relation −→Γ,P,Γ′ : Config × Act× Config in Figure 2.
The relation is defined by rules (4)–(7). Rules (4) and (5) pick a
thread t from the rightmost set in the current scheduling policy,
which describes the set of schedulable threads, and let it execute
an atomic command. The execution of an atomic command by t is
described using an auxiliary relation−→t,Γ,P,Γ′ : PConfig×Act×
PConfig, where PConfig = (Pos×State×Foot)∪{>} is the set

of program configurations projected to a single thread. According
to rule (6), when a thread t calls an atomic method, a new set {t}
gets appended to the sequence defining the scheduling policy, thus
making t the only schedulable thread. Rule (7) removes this set
when the method returns. Thus, expressing the scheduling policy
with a a sequence handles nested invocations of atomic methods.

The relation−→t,Γ,P,Γ′ is defined by rules (8)–(19). Rules (8)–
(11) correspond to internal actions of P: the execution of primitive
commands, or calls to and returns from methods defined in P . Note
that, upon a method call, the return point is saved as a component in
the new thread position, and the method starts executing from the
corresponding starting node of its CFG. Upon a return, the return
point is read from the current program counter.

Rules (12)–(19) concern interactions with the environment of
P . They package a semantics for programs with a ground client
and library implementations without one into a single transition
relation. We explain the semantics for these two cases separately.
Client-local semantics. Consider a specified open program Γ ` C :
∅, where C contains a ground client. This open program represents
a client program using some libraries with unspecified implemen-
tation. Our transition relation in Figure 2 provides a client-local se-
mantics of C in the sense that it generates executions of this client
assuming any behaviour of its imported libraries consistent with Γ.
According to (12), when a thread t calls a method in Γ, it transfers
the ownership of a piece of state satisfying the method precondi-
tion pt to the library being called. Since pt is precise (see above),
this piece of state is determined uniquely. The rule also updates the
footprint of the imported libraries accordingly. By (13), the seman-
tics faults if the state to be transferred is not available. This ensures
that the open program respects the specifications of the libraries it
uses. We do not use the resulting faulty traces in the future, so we
can annotate the transition with any actions; we chose (ret m(ε))
to be specific.

According to the CFG of P , a method from Γ returns imme-
diately after having been called. As stated in (14), instead of run-
ning the method implementation, the client receives the ownership
of an arbitrary piece of state satisfying the postcondition qt of the
method instantiated with the current thread identifier t, which has to
be compatible with the state of the client. As before, the footprint of
the library is updated appropriately. Finally, rules (15)–(19) never
become applicable for programs with a ground client.
Library-local semantics. Now consider a specified open program
Γ ` L : Γ′ where Γ′ is not empty and L does not have a ground
client. This program represents implementations of libraries, pos-
sibly using some other libraries with unspecified implementations.
As before, when L calls methods from the imported libraries, these
behave in an arbitrary way consistent with Γ, as per rules (12)–(14).
Rules (15)–(19), which are applicable to programs without ground
clients, give a library-local semantics to the program L. The se-
mantics can be thought of as running the library under its most gen-
eral client, which reproduces all possible library behaviours under
any clients. This property is formalised by Lemma 12 (Decompo-
sition) in Section 5.2. Assuming that every thread t in the program
starts at the position vt

mgc, it executes an infinite loop, repeatedly in-
voking arbitrary methods implemented in the library L or unimple-
mented, but specified in Γ. According to rule (15), when a method
implemented by L gets called, the library receives the ownership
of any state consistent with the method precondition. According
to (16), after the method returns, the library has to give up the piece
of state satisfying its postcondition. As before, this piece is defined
uniquely, because postconditions are precise. When such a piece of
state is not available, the program faults, as described by rule (17).
This ensures that the library respects the contract with its client.
Finally, the remaining rules (18) and (19) describe a call to and a
return from a method that is not implemented in L, but specified
by Γ and Γ′. The computation proceeds as in the case of methods
defined in L, except that the ownership transfer happens between

the external environment and the imported libraries, rather than the
environment and L.

Note that rules (15) and (18) have a side condition ensuring
that the footprint of the state transferred from the environment is
compatible with both the state of L and the state of its imported
libraries. This means that the library-local semantics generates the
behaviours of L only in the environment that respects the notion of
ownership, i.e., does not attempt to transfer pieces of state it cannot
possibly own at calls to L. A theorem in Section 5.2 (Lemma 12)
implies that every instantiation of the environment with a ground
client satisfies this constraint, and thus, it does not result in a
loss of generality. Including the compatibility with the state of
imported libraries into the constraint is needed for the proof of our
Abstraction Theorem and is the reason for tracking the footprint of
such libraries in the semantics.
Trace interpretation. Our operational semantics induces the trace
interpretation of specified open programs Γ ` P : Γ′. For a finite
trace τ and ς, ς ′ ∈ Config we write ς τ−→∗

Γ,P,Γ′ ς ′ if there exists
a corresponding derivation of τ using −→Γ,P,Γ′ . Similarly, for an
infinite trace τ and ς ∈ Config we write ς τ−→ω

Γ,P,Γ′ − to mean the
existence of an infinite τ -labelled computation from ς according
to our semantics. We denote with PC0 the set of initial program
counters of P , which is {[1 : start1, . . . , n : startn]} when P
contains a ground client and {[1 : v1

mgc, . . . , n : vn
mgc] | n ≥ 1}

when it does not. The trace interpretation ofP is defined as follows:
JΓ ` P : Γ′K = {(θ0, l0, τ) | θ0 ∈ State ∧ l0 ∈ Foot ∧

pc0 ∈ PC0 ∧ ((pc0, θ0, l0,ThreadID)
τ−→ω

Γ,P,Γ′ − ∨
∃ς ∈ Config − {>}. (pc0, θ0, l0,ThreadID)

τ−→∗
Γ,P,Γ′ ς)}.

An element in JPK records an initial state θ0, an initial footprint
l0 of imported libraries, and a finite or infinite execution trace,
which does not have to be maximal. For a specified open program
Γ ` P : Γ′, we often consider a set I ⊆ {(θ, l) ∈ State × Foot |
δ(θ)∗ l 6= ∅} defining its initial configurations. We call I an initial
condition of P and let
J(Γ ` P : Γ′), IK = {(θ0, l0, τ) ∈ JΓ ` P : Γ′K | (θ0, l0) ∈ I}.

Note that we require the states of the program and its imported
libraries in initial conditions to be compatible. In the following
we only use initial conditions I where the footprints of imported
libraries are downwards-closed with respect to �:

∀(θ, l) ∈ I.∀l′. l′ � l⇒ (θ, l′) ∈ I. (20)
This assumption simplifies the formulation of our results.

We use the standard notation for traces: ε is the empty trace,
τ(i) is the i-th action in the trace τ , |τ | is the length of the trace τ
(|τ | = ω if τ is infinite), and τ |t is the projection of τ to actions of
thread t. We call a trace τ well-formed if calls and returns in τ |t are
well-nested for every t ∈ ThreadID. It is easy to check that traces
generated by the semantics of open programs are well-formed.
Safety of open programs. A program Γ ` P : Γ′ is safe at (θ0, l0)

if it is not the case that (pc0, θ0, l0,ThreadID)
τ−→∗

Γ,P,Γ′ > for
some τ . The program P is safe for an initial condition I, if it is
safe at (θ0, l0) for all (θ0, l0) ∈ I.

Because of the locality property (2), commands fault when
accessing memory cells that are not present in the state they are run
from. Thus, the safety of a program guarantees that it does not touch
the part of the heap belonging to its environment. According to
rules (13) and (17), calls to methods in Γ and returns from methods
in Γ′ − Γ fault when the piece of state they have to transfer to the
environment is not available. Thus, the safety of the program also
ensures that it respects the contract with its environment.

While decomposing the verification of a closed program into the
verification of its components, we rely on the above properties to
ensure that we can indeed reason about the components in isolation,
without worrying about the interference from their environment. In
particular, the safety of an open program representing a client of
a library formalises the notion of client healthiness required in the

Abstraction Theorem (Section 5). We also define the linearizability
relation only between safe libraries (Section 4). In practice, the
safety of a program is established using a program logic, one of
which we present in Appendix C.

We now illustrate how the client- and library-local semantics
introduced here allow us to reason modularly about components of
a program. Let us define a partial ⊗ operation on elements (θ1, l1)
and (θ2, l2) of initial conditions as follows: (θ1, l1) ⊗ (θ2, l2) =
(θ1 ∗θ2, l2), if (θ1 ∗θ2)↓ and l1 = δ(θ2)∗ l2; undefined otherwise.
We lift ⊗ to initial conditions pointwise. When IL and IP are
respective initial conditions of a library L and its client P , IP ⊗IL

computes the initial condition of their combinationP(L). An initial
state is obtained by combining those of P and L, with the initial
state of P picked from a pair with the footprint matching the initial
condition of L. Since the imported libraries of P(L) are identical
to those of L, the initial footprints of P(L) and L are the same.

Theorem 3 (Information hiding). Consider Γ0 ` L : Γ1 and
Γ1 ` P : Γ2. If L and P are safe for their respective initial
conditions IL and IP , then so is P(L) for IP ⊗ IL.

We defer the proof to Appendix B and note that an obvious gen-
eralisation of the theorem to partial correctness properties holds as
well. The theorem allows hiding the state of the library while rea-
soning about the client and vice versa. In this sense it generalises
sequential proof rules for information hiding [25]; see Section 7.
Summary. So far, we have presented a novel semantics for spec-
ified open programs interacting with their environment via own-
ership transfers. We have also demonstrated, via Theorem 3 that
this semantics can be used to decompose the reasoning about a
given program P(L) into reasoning about its constituent compo-
nents P and L. We note that the client-local semantics of P and
library-local one of L can be viewed as defining a compositional
semantics of the program P(L). Of course, to use this semantics
we need to connect it to a standard semantics of closed programs.
Let us first note that for such programs, the semantics in Figure 2
with the initial library footprint δ(ε) is just a standard operational
semantics of the language of Section 2. In Section 5.2, we present
a theorem showing that the compositional semantics of a closed
program P(L), given by the client- and library-local semantics of
its components P and L, is sound (Lemma 12) with respect to the
standard one. In particular, Theorem 3 is a corollary of this result.
Finally, we can reason about the semantics of open programs using
standard logics (Appendix C).

As we argue in Section 6, just decomposing the verification of
a program as it is given is not enough: in many cases, we first need
to replace library implementations in it with simpler ones. In the
following sections we develop a technique allowing this.

4. Linearizability in the presence of ownership
transfer

Specifications of concurrent libraries are usually given by their ab-
stract implementations, most often consisting of atomically imple-
mented methods with the state of the library represented by an ab-
stract data type. The classical notion of linearizability [16] fixes a
correspondence between an implementation of a concurrent library
and such a specification. We now generalise it to our setting.

We define linearizability between specified open programs Γ `
L : Γ′ without a ground client, together with their initial condi-
tions I. A program L represents an implementation of libraries,
which provide methods in Γ′ to their client libraries or programs,
and which can also invoke methods that are not implemented, but
specified in Γ. When defining linearizability, we are not interested
in internal steps recorded in library traces from J(Γ ` L : Γ′), IK,
but only in the interactions of the libraries with their environment.
We record such interactions using histories, which are traces con-
sisting only of call and return actions with ownership transfer, i.e.,
those in ECallRetAct. Let History be the set of all histories.

In a well-formed trace τ , we can always identify pairs of calls

and returns that correspond to outermost invocations of methods
from a given set M in the trace τ |t of some thread t. For example,
when M = {m1,m2}, such calls and returns in the trace

(1, callm1) (2, callm3) (1, callm2(θ1)) (2, callm2(θ2))
(2, retm2(θ3))(1, retm2(θ4)) (1, retm1) (2, retm3)

are (1, callm1), (1, retm1), (2, callm2(θ2)), (2, retm2(θ3)). We
define historyM (τ) as the projection of τ to outermost calls and
returns in ECallRetActM . We lift it to sets of traces pointwise, so
that the set of histories of a library Γ ` L : Γ′ with an initial
condition I is given as follows: for M = dom(Γ′),
historyM (L, I) = {(θ0, l0, historyM (τ)) | (θ0, l0, τ) ∈ JL, IK}.

Definition 4. The linearizability relation is a binary relation v on
histories defined as follows: H v H ′ if (i) ∀t ∈ ThreadID. H|t =
H ′|t and (ii) there is a bijection π : {1, . . . , |H|} → {1, . . . , |H ′|}
such that ∀i.H(i) = H ′(π(i)) and

∀i, j. i < j∧H(i) ∈ ERetAct∧H(j) ∈ ECallAct ⇒ π(i) < π(j).

That is, the history H ′ linearizes the history H when it is a per-
mutation of the latter preserving the order of actions within threads
and non-overlapping method invocations.

The original definition of linearizability [16] only defines it on
sets of histories as above, without taking into account library im-
plementations that generate them. Performing library abstraction,
however, requires us to consider the implementations being re-
placed. The semantics of open programs of Section 3 provides a
way to generate the set of histories of libraries interacting with their
environment via ownership transfers, which allows us to lift the no-
tion of linearizability to library implementations as follows.

Definition 5. Consider Γ ` L1 : Γ′1 and Γ ` L2 : Γ′2 safe for I1

and I2, respectively, and assume Γ′1 v Γ′2. We say that (L2, I2)
linearizes (L1, I1), written (L1, I1) v (L2, I2), if

∀(θ1, l1, H1) ∈ historydom(Γ′
1)(L1, I1).∃(θ2, l2, H2) ∈

historydom(Γ′
2)(L2, I2). H1 v H2 ∧ θ1 � θ2 ∧ l1 � l2.

Thus, (L2, I2) linearizes (L1, I1) if every behaviour of the latter
in the library-local semantics may be reproduced in a linearized
form by the former without requiring more memory resources. The
requirement Γ′1 v Γ′2 in Definition 5 formalises the intuition that
the linearization of a library has a coarser granularity of atomic
actions than the original one. We now explain the motivation behind
Definitions 4 and 5 in detail and highlight their novel features.
Ownership transfer. Definition 4 treats parts of memory whose
ownership is passed between the library and the client in the same
way as parameters and return values in the classical definition [16]:
they are required to be the same in the two histories. In fact, the
setting of the classical definition can be modelled in ours if we pass
parameters and return values via the heap.

However, this treatment of ownership transfer is more subtle
than might seem at first sight. The fact that our definition can be
obtained straightforwardly from the classical one is made possible
by the carefully crafted library-local semantics from which we
generate histories. To see why this is the case, observe that some
histories may never be generated by the library-local semantics.
For example, consider the set of states RAM and the history
(1, callm1([10 : 0])) (2, callm2([10 : 0]))

(2, retm2([10 : 0])) (1, retm1([10 : 0]))

The history describes all the interactions between a library and its
client. According to the history, the cell at the address 10 was first
owned by the client, and then transferred to the library by thread
1. However, before this state was transferred back to the client, it
was again transferred from the client to the library, this time by
thread 2. If the history were generated by the semantics of the
library, the latter transition would clearly be impossible, as the
cell would be owned by the library, not by the client, before the
second transfer. This is ensured by the fact that the library-local

semantics only considers environments that respect the notion of
ownership: rule (15) in the semantics of Section 3 never transfers
cells incompatible with the current library state.

Our Abstraction Theorem relies crucially on the fact that the
histories considered are generated from the library-local semantics
and thus account for ownership transfer properly (see Section 5 for
discussion). The notion of such histories is formalised as follows.
Let us define a function run : History × Foot ⇀ Foot, which
tracks how the library footprint changes during a computation with
a given history. It is defined for finite histories inductively:
run(ε, l) = l;
run(ϕτ, l) = run(τ, l ∗ δ(θ)), if ϕ = (, call (θ)) ∧ l ∗ δ(θ) 6= ∅;
run(ϕτ, l) = run(τ, l \ δ(θ)), if ϕ = (, ret (θ)) ∧ δ(θ) � l;
run(ϕτ, l) = undefined, otherwise.

Definition 6. The history H is well-balanced from l, when it is
well-formed and run(H0, l) is defined (in particular, distinct from
∅) for all finite prefixes H0 of H .

As the following proposition (Appendix B) shows, histories gener-
ated from the library-local semantics are well-balanced.

Proposition 7. Assume Γ ` L : Γ′ safe for I. For all (θ, l,H) ∈
historydom(Γ′)(L, I), the history H is well-balanced from δ(θ) ∗ l.

Multiple libraries. Definition 4 requires us to preserve the order
of non-overlapping operations even between methods of different
libraries. In the case when libraries do not interact and every one of
them is linearizable, this condition comes for free: one can always
find a linearization of a history preserving the order of all non-
overlapping operations given linearizations of its projections to ev-
ery single library [16]. In the case when libraries may interact, this
requirement has to be built into the notion of linearizability. The
resulting definition is the same as would result if we merged all the
libraries involved into a single one. However, as we show in Sec-
tion 5.1, by carefully structuring the process of abstracting several
interacting libraries using a strong enough Abstraction Theorem,
we can avoid having to merge several concrete library implementa-
tions. Instead, we can consider only one concrete implementation
together with several abstract ones.
Memory requirements. Definition 5 requires the initial state of the
abstract library implementation to be smaller than the initial state
of the concrete one. The requirement is needed to ensure that all
behaviours of a client using the concrete implementation be repro-
ducible when it uses the abstract one instead. Namely, if the client
is itself an open program interacting with an external environment,
the memory whose ownership can be transferred to the client from
the environment has to be compatible with the footprint of the li-
brary. If the footprint of the abstract implementation is smaller than
that of the concrete one, any ownership transfers from the environ-
ment external to the client using the latter can be reproduced if the
client uses the former instead. Since histories of ownership trans-
fers for the two library implementations are related by linearizabil-
ity, it is sufficient to require the condition only of initial states.

This requirement on memory usage has been previously used in
data refinement [13]. It can be relaxed to allow the abstract library
implementation to use more memory cells than the concrete one,
provided that these additional ‘abstract’ cells cannot be transferred
to and from an external environment. This is guaranteed if they
cannot occur in method specifications. Our results can be easily
extended to such a setting, which we do not formalise so as not
to obscure the presentation. With this extension, the restriction on
memory usage does not pose problems in practice, as demonstrated
by our examples (Section 6).
Infinite histories. While the classical definition of linearizability
considers only finite histories, we also consider infinite ones, fol-
lowing a generalisation by Gotsman and Yang [14]. This allows li-
brary specifications to express liveness properties and avoids pend-
ing call completions in the definition of linearizability [16].

Establishing the new linearizability. We have developed a logic
for proving the proposed notion of linearizability, which gener-
alises an existing proof system [32] based on separation logic [29]
to the setting with ownership transfer. The logic uses the usual
method of proving linearizability based on linearization points [1,
16, 32] and treats ownership transfers between a library and its en-
vironment in the same way as transfers between procedures and
their callers in separation logic. Due to space constraints, the details
of the logic are beyond the scope of this paper and are described in
Appendix D. We mention the logic here to emphasise that our no-
tion of linearizability can indeed be established effectively.

5. Abstraction Theorem
Given the notions of client and library safety from Section 3 and
linearizability from Section 4, we can now state and prove the
central technical result of this paper—the Abstraction Theorem.

For a well-formed trace τ ∈ Trace and a set of methods M , we
define the following projections of τ :
• clientM (τ) to actions other than those inside an outermost invo-

cation of a method in M , including the outermost calls to and
returns from M (see Section 4);

• visibleM (τ) to the same actions, but excluding the outermost
calls to and returns from methods in M ;

• libM (τ) to actions other than those outside an outermost invoca-
tion of a method inM , including the outermost calls and returns.

We lift these operations to sets of traces pointwise.
The Abstraction Theorem shows that replacing a library used

by a client with its linearization leaves all the original client be-
haviours reproducible modulo the following notion of trace refine-
ment. Note that in the following this notion is used on traces with-
out internal library actions, obtained as results of clientM (·), where
M is the set of methods implemented by the library.

Definition 8. A trace τ ∈ Trace refines another trace τ ′ with
respect to a set of methods M , written τ CM τ ′, if (i) τ |t = τ ′|t
for every t ∈ ThreadID and (ii) there exists a bijection π :
{1, . . . , |τ |} → {1, . . . , |τ ′|} such that ∀i. τ(i) = τ ′(π(i)) and

∀i, j. (i < j ∧ ((τ(i), τ(j) ∈ Act− ACallRetActM) ∨
(τ(i) ∈ Act− ACallRetActM ∧ τ(j) ∈ ACallActM) ∨

(τ(i)∈ARetActM ∧ τ(j)∈Act−ARetActM)))⇒π(i)<π(j).

According to the definition, τ ′ is obtained from τ by a per-
mutation π that preserves the order of certain pairs of actions.
In particular, π preserves the order of actions within threads
and actions of the client (except calls to and returns from M).
Hence, clientM (τ) CM clientM (τ ′) implies visibleM (τ) =
visibleM (τ ′), so CM preserves any linear-time temporal property
over trace projections to client actions. Additionally, π preserves
the order of a client action followed by a call to a method inM and
a return from a method in M followed by a client action. As we
show in Section 5.1, this property is needed for abstracting multi-
ple libraries. Finally, it preserves the order of a return action fol-
lowed by a call action, like in the definition of linearizability (Def-
inition 4). The following theorem, proved in Section 5.2 and Ap-
pendix B, states our abstraction result.

Theorem 9 (Abstraction). Consider Γ0 ` L1 : Γ1, Γ0 ` L2 : Γ′1,
Γ1 ` P : Γ2 and Γ′1 ` P : Γ′2 safe for I1, I2, I and I,
respectively. Let Γ1 v Γ′1, Γ2 v Γ′2. If (L1, I1) v (L2, I2), then
∀(θ1, l1, τ1) ∈ JP(L1), I ⊗ I1K.∃(θ2, l2, τ2) ∈ JP(L2), I ⊗ I2K.
clientdom(Γ1)(τ1) Cdom(Γ1) clientdom(Γ′

1)(τ2) ∧ θ1 � θ2 ∧ l1 � l2.

From the properties of trace refinement noted above, we get

Corollary 10. Under the conditions of Theorem 9, we have
visibledom(Γ1)({τ1 | (θ1, l1, τ1) ∈ JP(L1), I ⊗ I1K}) ⊆

visibledom(Γ′
1)({τ2 | (θ2, l2, τ2) ∈ JP(L2), I ⊗ I2K}).

According to Corollary 10, while reasoning about a client
P(L1) of a library L1, we can soundly replace L1 with a sim-

pler library L2 linearizing L1: if a linear-time property over client
actions holds of P(L2), it will also hold of P(L1). In practice, we
are usually interested in atomicity abstraction (see, e.g., [20]), a
special case of this transformation when methods in L2 are atomic.

The requirement that P be safe in Theorem 9 restricts its appli-
cability to healthy clients that do not access library internals. This
requirement, as well as that of linearizability, can be established us-
ing program logics as described in Appendices C and D. However,
we emphasise that the formulation of the theorem is not tied to a
particular logic: the semantics of Section 3 provides an interface
prescribing what a logic being used needs to establish.
5.1 Abstracting multiple libraries
Note that the programs P(L1) and P(L2) in our Abstraction The-
orem do not have to be closed. In particular, P might itself be a
library implementation that uses methods provided by L1 or L2.
The following corollary of Theorem 9 can then be used to simplify
the proof of the linearizability of P .

Corollary 11. Consider Γ0 ` L1 : Γ1, Γ0 ` L′1 : Γ′1, Γ1 ` L2 :
Γ2, and Γ′1 ` L2 : Γ′2 safe for I1, I′1, I2 and I2, respectively.
Assume Γ1 v Γ′1 and Γ2 v Γ′2. Then
(L1, I1) v (L′1, I′1) ⇒ (L2(L1), I2⊗I1) v (L2(L′1), I2⊗I′1).
Proof. Consider (θ1, l1, τ1) ∈ JL2(L1), I2 ⊗ I1K. By Theorem 9,
for some (θ2, l2, τ2) ∈ JL2(L′1), I2 ⊗ I′1K we have
clientdom(Γ1)(τ1) Cdom(Γ1) clientdom(Γ′

1)(τ2)∧ θ1 � θ2 ∧ l1 � l2.

Then by Definition 8, historydom(Γ2)(τ1) v historydom(Γ′
2)(τ2). 2

The step of the proof going from Cdom(Γ1) to v is subtle: it
relies crucially on the second and third clauses specifying order
preservation in Definition 8, which are not needed for proving
Corollary 10. Namely, we need to ensure that Cdom(Γ1) preserves
the order between non-overlapping invocations of methods imple-
mented by L1 and L2. Since the latter are client actions from the
the point of view of L1, this is justified by the additional clauses in
the definition of C, which guarantee the preservation of the order
between a client action followed by a call to a method implemented
in L1, and a return from such a method followed by a client action.
Hence, abstracting multiple libraries requires a stronger statement
of the Abstraction Theorem than abstracting a single one.

The corollary allows us to prove linearizability composition-
ally in the structure of a library. If we prove that a library L1 is
linearized by an atomically implemented library L′1, then proving
the linearizability of L2(L1) can be simplified. Since v is transi-
tive, instead of proving the linearizability of L2(L1) by L′2(L′1)
for some L′2 directly, we can instead prove that the latter linearizes
a simpler library L2(L′1). This can be generalised to abstracting
multiple libraries. Consider a program

let L1 in let L2 in let L3 in . . . let Lk in [−]

Let Li be (let Li in [−]). We first find a linearization L′1 =
(let L′1 in [−]) of L1, usually with L′1 implemented atomi-
cally. By Corollary 11, L2(L1) is linearized by L2(L′1). We then
prove the linearizability of the latter by L′2(L′1) for some L′2 =
(let L′2 in [−]). Then by Corollary 11 and the transitivity of v,
L3(L2(L1)) is linearized by L3(L′2(L′1)). Continuing with this
process, we can abstract all the libraries in the program, showing
it is linearized by

let L′1 in let L′2 in let L′3 in . . . let L′k in [−]

Note that, even though the above process requires considering sev-
eral libraries together (e.g., L′1, L′2, L3), we only have to consider
an implementation of one them (L3), together with specifications of
the libraries it calls (L′1, L′2). We never have to consider concrete
implementations of several libraries together, which would make
reasoning non-modular.
5.2 Proof outline
The proof of Theorem 9 is both complicated and subtle. For this
reason, here we provide a proof outline, explaining the method we

followed, stating core lemmas and highlighting non-trivial places in
the proof. To prove Theorem 9, we need to transform a trace τ1 of
P(L1) into a trace τ2 of P(L2) with client projections related by
Cdom(Γ1). Whereas client actions only get permuted when going
from τ1 to τ2, library actions get changed completely. To replace
library actions, we use the semantics in Section 3, which provides
the trace interpretation of L1, L2, P and their compositions.

To transform τ1 into τ2, we first show that a trace of P(L1),
such as τ1, generates two traces agreeing on the history of meth-
ods in dom(Γ1): ξ1 in the semantics of Γ0 ` L1 : Γ1 and η1 in
the semantics of Γ1 ` P : Γ2 (Lemma 12). Note that the trace η1
of P thus constructed excludes the internal library actions. Since
(L1, I1) v (L2, I2), there exists a history H2 of L2 with re-
spect to methods in dom(Γ′1) linearizing historydom(Γ1)(η1). We
then show that η1 can be transformed into a trace η2 of P satisfy-
ing η1 Cdom(Γ1) η2 and also having the target history H2 of L2

(Lemma 13). Finally, we show that the library-local trace ξ2 gen-
erating this history of L2 can be composed with η2 to yield the
desired trace τ2 of P(L2) (Lemma 14). This proof scheme can be
described mnemonically as ‘decompose, rearrange, compose’.

We now formulate the necessary lemmas, proved in Ap-
pendix B. For a set M of methods, let eraseM be a function on
well-formed traces that erases the state annotations θ of all calls
to and returns from methods in M . Let ieraseM be its variant that
erases the annotations in all calls to and returns from M , except
those that correspond to outermost invocations of any methods. The
following operation combines traces ofL andP into those ofP(L)
by interleaving their internal library and client actions.
(θ1, l1, ξ)◦Γ0,Γ1,Γ2(θ2, l2, η)={(θ, l, τ) |(θ, l)=(θ2, l2)⊗(θ1, l1)
∧ historydom(Γ1)(ξ) = historydom(Γ1)(η)
∧ erasedom(Γ1)−dom(Γ0)(libdom(Γ1)(τ)) = erasedom(Γ1)−dom(Γ0)(ξ)
∧ clientdom(Γ1)(τ) = ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(η)}.

It requires that the traces being combined agree on the history of
the interface methods from Γ1 and have compatible initial states.
We erase state annotations from some of the actions in ξ and η in
cases when the corresponding actions in τ model calls from P to
L, which, unlike direct calls from the environment of P(L) to L,
are not annotated with states.

Lemma 12 (Decomposition). Assume Γ0 ` L : Γ1 and Γ1 ` P :
Γ2 safe for I1 and I2, respectively. Then

∀(θ, l, τ) ∈ J(Γ0 ` P(L) : Γ2), I2 ⊗ I1K.∃(θ1, l1, ξ) ∈ JL, I1K.
∃(θ2, l2, η) ∈ JP, I2K. (θ, l, τ) ∈ (θ1, l1, ξ) ◦Γ0,Γ1,Γ2 (θ2, l2, η).

We say that a history H respects the atomicity of Γ if for every
method declared atomic in Γ, a call to it in H can only be immedi-
ately followed by its return. For H and τ such that historyM (τ) =
H , we say that τ respects the atomicity of H if τ does not insert an
action between adjacent calls and returns by the same thread in H .

Lemma 13 (Rearrangement). Consider Γ ` P : Γ′ and histories
H1 and H2 over the set of methods dom(Γ) such that H1 v H2.
Assume H2 respects the atomicity of Γ and H1 and H2 are well-
balanced from their respective initial footprints l1 and l2 such that
l1 � l2. If P is safe at (θ1, l1) for a state θ1, then

∀η1. (θ1, l1, η1) ∈ JPK ∧ historydom(Γ)(η1) = H1 ⇒
∃η2. (θ1, l2, η2) ∈ JPK ∧ historydom(Γ)(η2) = H2 ∧

η1 Cdom(Γ) η2 ∧ η2 respects the atomicity of H2.

Lemma 14 (Composition). Assume Γ0 ` L : Γ1 and Γ1 ` P :
Γ2 safe for I1 and I2, respectively. Then

∀(θ1, l1, ξ) ∈ JL, I1K.∀(θ2, l2, η) ∈ JP, I2K.
((θ2, l2)⊗ (θ1, l1))↓ ∧ historydom(Γ1)(ξ) = historydom(Γ1)(η) ⇒

∃(θ, l, τ) ∈ J(Γ0 ` P(L) : Γ2), I2 ⊗ I1K.
(θ, l, τ) ∈ (θ1, l1, ξ) ◦Γ0,Γ1,Γ2 (θ2, l2, η).

Proof of Theorem 9. Take (θ1, l1, τ1) ∈ JP(L1), I ⊗ I1K. Let
M = dom(Γ1) andM ′ = (dom(Γ1)−dom(Γ0))∩dom(Γ2). By

Lemma 12, for some ξ1, η1, θ′1 and θ we have
(θ′1, l1, ξ1) ∈ JL1, I1K ∧ (θ, δ(θ′1) ∗ l1, η1) ∈ JΓ1 ` P : Γ2, IK

∧ θ1 = θ ∗ θ′1 ∧ historyM (ξ1) = historyM (η1)
∧ clientM (τ1) = ieraseM′(η1). (21)

Let H1 = historyM (ξ1). Since (L1, I1) v (L2, I2), there exist
(θ′2, l2, H2) ∈ historyM (L2, I2) such that

H1 v H2 ∧ l1 � l2 ∧ θ′1 � θ′2.

By Proposition 7,H1 andH2 are well-balanced from δ(θ′1)∗ l1 and
δ(θ′2) ∗ l2, respectively. Since Γi v Γ′i, H2 respects the atomicity
of Γ1. Applying Lemma 13, we can construct a trace η2 such that
(θ, δ(θ′2)∗ l2, η2)∈JΓ1`P :Γ2K∧historyM (η2)=H2∧η1 CM η2

and η2 respects the atomicity of H2. The latter implies (θ, δ(θ′2) ∗
l2, η2) ∈ JΓ′1 ` P : Γ′2K. From (20) we get (θ, δ(θ′2) ∗ l2) ∈ I.
Since (θ′2, l2, H2) ∈ history(L2, I2), there exists a library trace
ξ2 such that (θ′2, l2, ξ2) ∈ JL2, I2K and historyM (ξ2) = H2.
Besides, ((θ, δ(θ′2)∗ l2)⊗ (θ′2, l2))↓. Then by Lemma 14, for some
trace τ2, we have (θ ∗ θ′2, l2, τ2) ∈ JΓ0 ` P(L2) : Γ′2, I ⊗
I2K and ieraseM′(η2) = clientM (τ2). Since η1 CM η2, we
have ieraseM′(η1) CM ieraseM′(η2). Thus, ieraseM′(η1) CM

clientM (τ2), which, together with (21), implies clientM (τ1) CM

clientM (τ2). 2

Discussion. We now highlight some of the technical challenges
arising in the proofs of Lemmas 12–14 and Theorem 9.

Most of the proof of the Decomposition Lemma (Lemma 12)
deals with maintaining a splitting of the state ofP(L) into the parts
owned by L and P , which changes during ownership transfers.
The resulting partial states then define the executions of ξ and η,
showing that the traces indeed belong to the semantics of L and
P , respectively. Conversely, the Composition Lemma (Lemma 14)
composes the states of L and P into a state of P(L) to construct an
execution of τ in the semantics of P(L).

The Decomposition and the Composition Lemmas rely crucially
on the the Strong Locality property (2) of primitive commands,
which ensures that their results are independent from parts of the
heap they do not access. The property guarantees that client actions
are reproducible after we replace one library implementation with
another.

Another subtlety in the proofs of the Decomposition and the
Composition Lemmas is the need to ensure that ownership transfers
to P(L) from its environment are also reproducible after the above
transformation. As we explained in Section 4, the environment
respects the notion of ownership, i.e., the states it transfers to
P(L) have to be compatible with the state owned by the program.
We then need to ensure that this condition is satisfied when the
environment performs transfers to P(L′) instead. We prove this by
tracking the footprint of the imported libraries L in the semantics
of the client P and restricting the semantics so that the transfers
from the environment be compatible with this footprint (rules (15)
and (18) in Figure 2). As the abstract library implementation L′ is
required to have a smaller footprint than the concrete one L (see
the discussion in Section 4), this ensures that the transfers are still
possible after the Composition Lemma plugs in the library L′ into
a trace of the client P .

The Rearrangement Lemma (Lemma 13) is the most difficult
one of the three. Its proof transforms η1 into η2 by repeatedly
swapping adjacent actions according to a certain strategy to make
the history of methods in dom(Γ) equal to H ′. The challenges in-
clude devising an appropriate strategy, making sure the intermedi-
ate traces are derivable in the semantics of the client P , and, in
particular, establishing that all ownership transfers can still be per-
formed after the transformations.

For example, one transformation we have to perform on the
trace of the client P is swapping actions in the trace fragment
(t1, call m1(θ1)) (t2, c), where t1 6= t2 and c is a primitive com-
mand executed by the client. Informally, we justify the validity of
this transformation as follows. According to rule (12), the call to

m1 gives up the ownership of the part of the client state θ1 satisfy-
ing its precondition. The safety of the client P ensures that c does
not access the memory transferred. This makes it possible to post-
pone transferring θ1 to the library until after c is executed, which
ensures that the trace with the two actions swapped belongs to the
semantics of P .

It is trickier to swap (t1, call m1(θ1)) (t2, ret m2(θ2)), where
t1 6= t2. The justification of this transformation relies on the fact
that the target historyH ′ is well-balanced (Section 4). Consider the
case when θ1 = θ2 = θ. Then the two actions correspond to the
client first transferring θ to the library and then getting it back. It is
impossible for the library to transfer θ to the client earlier, unless
it already owned θ before the call in the original trace. Fortunately,
using the fact that H ′ is well-balanced, we can prove that the latter
is indeed the case, and hence, the actions commute.

6. Applications
To demonstrate that the Abstraction Theorem yields an effec-
tive method of modularising the verification of concurrent pro-
grams, we show how it can be used to verify the linearizabil-
ity of non-blocking concurrent algorithms compositionally in their
structure. Non-blocking algorithms employ synchronisation tech-
niques alternative to the usual lock-based mutual exclusion, such
as atomic compare-and-swap (CAS) operations provided on mod-
ern processors. It is these algorithms that are nowadays used to
implement standard concurrent containers in common libraries,
such as java.util.concurrent and Threading Building Blocks. Non-
blocking algorithms are extremely difficult to design and verify.
Therefore, it is desirable to split the problem of reasoning about
such an algorithm into manageable pieces.

We consider two algorithms, each using a simpler inner algo-
rithm L1, given by a separate set of methods, to implement a more
complicated outer one L2. In both cases, we prove the linearizabil-
ity of the whole algorithm L2(L1) according to Corollary 11, i.e.,
by showing that:
• the inner algorithm L1 is linearized by its abstract atomic imple-

mentation L′1;
• the outer algorithm L2 is linearizable assuming it uses the ab-

stract atomic implementation L′1 of the inner one.
This decomposes the verification of the algorithm according to the
architecture used by its designer. As we argue below, proofs of the
algorithms considered using existing methods, without atomicity
abstraction, would be at best complicated and at worst, intractable.
Due to space constraints we refer the reader to Appendix E for
detailed proofs; here we only discuss how our verification method
deals with the challenging features of the algorithms.
Non-blocking queue with a memory allocator. As the first exam-
ple, we consider a well-known implementation of a non-blocking
concurrent queue due to Michael and Scott [21], which instantiates
the sketch presented in Figure 1 (see Appendix E for the complete
source code). The queue algorithm uses a custom memory alloca-
tor for nodes in the linked list representing the queue. To avoid the
allocator becoming a performance bottleneck, Michael and Scott
also implement it using a non-blocking algorithm—a concurrent
stack due to Treiber [30]. We verify the example using the above
decomposition, i.e., by first linearizing the allocator, and then the
queue algorithm using its atomic implementation. We now list the
problematic features of the algorithm and justify why such a de-
composition is desirable.

First, as we explained in Section 1, the memory allocator and
its client transfer the ownership of memory cells at calls to and
returns from the former. In particular, for an appropriate definition
of the algebra State, the specifications of the allocator methods
look approximately as follows:

{emp} alloc() {(ret = 0 ∧ emp) ∨ (ret 6= 0 ∧ Block(ret))}
{Block(block)} free(block) {emp}
Here ret denotes the return value of alloc, block the value of

the parameter of free, emp the empty heap ε, and Block(block)
a block of memory at the address block managed by the allocator.
The alloc method returns 0 when the allocator runs out of mem-
ory. Using our logic for proving linearizability (Appendix D), we
can show that the allocator with this specification is linearizable
with respect to its atomic implementation where the addresses of
free memory blocks are stored in an abstract set, instead of a free-
list managed by the non-blocking stack algorithm. This requires
proving that the ownership transfer is performed correctly.

Second, as we argued in Section 1, when the allocator is ac-
cessible to the client of the queue, the combination of the queue
algorithm and the allocator might not be linearizable if the client
can notice the difference between the memory usage behaviour of
the concrete and the abstract queue implementation. To show that
this is not the case, while proving the linearizability of the queue
implementation using the memory allocator, we need to establish a
correspondence between the set of free memory blocks in the con-
crete and the abstract implementations. After the memory allocator
is linearized, referring to the set of free blocks is not problematic,
since the allocator state is represented abstractly and is updated
atomically. Had we considered the original allocator implementa-
tion while proving the queue linearizable, we would have to refer
to the internal free-list representation of the allocator to state the
required invariant about the queue memory usage. Atomicity ab-
straction lets us avoid this and makes the proof more modular.

Finally, the parts of the memory owned by the queue and the
allocator are not strictly disjoint for the following reason. Non-
blocking algorithms often need to check that the information on
the basis of which a change to a data structure was computed is still
valid when the data structure is updated accordingly. This is usually
done by ensuring that certain fields in the data structure have not
been changed since the last time the thread making the update read
them. The CAS operation allows checking that a field still has the
old value atomically with the update. However, this equality does
not always imply that the field has not been changed. Namely, a so-
called ABA problem may arise, when the data structure is changed
from its original state A to B, and then restored to A again. For
example, a queue node can be returned to the allocator, and then
allocated and inserted into the data structure again. To avoid this
problem, the queue and the allocator use modification counters,
atomically incremented at every write to certain memory cells in
the data structures, which allows distinguishing between the two As
in ABA. However, in the case when a validation of the update fails
due to a modification counter mismatch, the read of the counter
might access a node that is no longer present in the data structure,
i.e., has been returned to the allocator in the case of the queue, or
has been allocated to the queue in the case of the allocator. Thus,
in our proof we cannot consider the state of the allocator as being
completely disjoint from the state of its client. Another subtlety
is that the queue algorithm relies on the allocator not erasing the
modification counters of the node structures it manages, so that the
algorithm could still check them after nodes are deallocated. In our
proof, we deal with these problems using permissions (Section 2):
the queue and the allocator share the right to access some memory
cells in restricted ways.
Multiple-word compare-and-swap (MCAS). Vafeiadis [32, Sec-
tion 5.3] proved the linearizability of the implementation of a
multiple-word compare-and-swap (MCAS) operation in terms of
single-word CASes by Harris et al. [15]. The MCAS algorithm is
extremely complicated; to simplify its structure, the authors singled
out a part of it as an auxiliary linearizable operation implementing
a restricted version of a two-word comparison and a single-word
swap (RDCSS). Clients of both MCAS and RDCSS are expected to
transfer the ownership of dynamically-allocated descriptors identi-
fying the operations being performed to the libraries.

Vafeiadis’s proof of the linearizability of MCAS is done accord-
ing to the decomposition presented at the beginning of this sec-
tion, i.e., by first proving the RDCSS linearizable and then proving

the linearizability of MCAS assuming an atomic implementation
of RDCSS. Our Abstraction Theorem shows that such a composi-
tional proof is indeed legal, which was not justified by Vafeiadis.
Moreover, performing an atomicity abstraction in this case is cru-
cial for the proof to be tractable. Proving linearizability of a li-
brary method is typically done by identifying a linearization point
in its code, where, informally, the method “takes effect” (see Ap-
pendix D). After applying the atomicity abstraction to the inner
RDCSS algorithm, the linearization point for one of the methods
of MCAS is precisely the atomic RDCSS operation. If we consid-
ered the original non-atomic RDCSS implementation instead, find-
ing the linearization point would be extremely difficult and would
involve reasoning about both MCAS and RDCSS implementations
at the same time. In this case, atomicity abstraction helps simplify
identifying linearization points (in fact, creating them!) in a com-
plex concurrent algorithm.

7. Related work
The most closely related work is that by Gotsman and Yang [14],
who have recently proposed a generalisation of linearizability to
deal with liveness properties and proved a corresponding Abstrac-
tion Theorem. Since the main focus of that paper was on liveness,
it assumed a simplistic setting, where a single library and its client
reside in separate address spaces; thus, they are guaranteed not to
interfere with each other and cannot perform ownership transfers.
As we have shown, lifting these restrictions is non-trivial and is
precisely the subject of our main technical contributions. These
include the definition of linearizability in a realistic setting (Sec-
tion 4), a novel notion of client healthiness in the presence of own-
ership transfer (Section 3), and, last but not least, the proof of the
Abstraction Theorem (Section 5). We note that the main challenges
in proving the Abstraction Theorem in a realistic setting are also
due to ownership transfers (see the discussion in Section 5.2).

The above-mentioned result of Gotsman and Yang’s built on a
work by Filipović et al. [12], which characterised linearizability in
terms of observational refinement over a highly idealistic seman-
tics. The assumptions about the isolation of the library and client
made in that work were similar to the ones used by Gotsman and
Yang. Besides, Filipović et al. did not justify any compositional
proof methods, as we have done in Theorem 9.

Turon and Wand [31] have proposed a logic for establishing re-
finements between concurrent modules, in fact equivalent to lin-
earizability. Their logic considers libraries and clients residing in
a shared address space, but not ownership transfer. It assumes that
the client does not access the internal library state, however, their
paper does not provide a way of checking this condition. As a con-
sequence, Turon and Wand do not propose an Abstraction Theorem
strong enough to support separate reasoning about a library and its
client in realistic situations of the kind we consider.

Elmas et al. [9, 10] have developed a system for verifying con-
current programs based on repeated applications of atomicity ab-
straction. They do not use linearizability to perform the abstrac-
tion. Instead, they check the commutativity of an action to be in-
corporated into an atomic block with all actions of other threads. In
particular, to abstract a library implementation in a program by its
atomic specification, their method would have to check the com-
mutativity of every internal action of the library with all actions
executed by the client code of other threads. Thus, the method of
Elmas et al. is non-modular: it does not allow decomposing the ver-
ification of a program into verifying libraries and their clients sep-
arately. In contrast, our Abstraction Theorem ensures the atomicity
of a library under any healthy client.

As we noted in Section 1, it is also possible to decompose
the verification of concurrent programs into verifying separate
threads with the aid of thread-modular techniques [19, 27]. We po-
sitioned our approach as performing intrathread-modular reason-
ing, which goes further by decomposing the verification of code in-
side threads. In this comparison, however, we ignored a restricted

form of intrathread-modular reasoning enabled by thread-modular
techniques, which we are now in a position to discuss. Thread-
modular methods allow reasoning about the control of a thread
in a program while ignoring the possibility of its interruption by
the other threads. Hence, they allow considering a library method
called by the thread in isolation, e.g., by using the standard proof
rules for procedures. However, such a decomposition is done under
fixed assumptions on the environment of the thread and thus does
not allow, e.g., increasing the atomicity of its actions. As the ex-
ample of MCAS shows (Section 6), this is necessary to deal with
complex algorithms. In the case of MCAS, our method is able to
abstract RDCSS to its atomic specification in all threads at once.
Thus, when reasoning about the transformed MCAS algorithm us-
ing our thread-modular logic for linearizability, we can rely on RD-
CSS actions performed by the environment of a thread to be atomic.

Jacobs et al. [18] have proposed a method for achieving pro-
cedural abstraction in the presence of concurrency. They also aim
at achieving intrathread-modular reasoning, but in a standard pro-
gram logic verifying a given program. On the other hand, our focus
is on reasoning principles for relating pairs of programs, which use
different data structures and meet different atomicity conditions.

Ways of establishing relationships between different sequential
implementations of the same library have been studied in data re-
finement [17, 28], including cases of interactions via ownership
transfer [3, 13, 22]. Our results can be viewed as generalising data
refinement to the concurrent setting. Moreover, when specialised
to the sequential case, they provide a more flexible method of per-
forming it in the presence of the heap and ownership transfer than
previously proposed ones. In more detail, the way we define client
healthiness (Section 3) is more general than the one often used
in data refinement [13]. There, it is typical to fix a (precise) in-
variant of a library and check that the client does not access the
area of memory fenced off by the invariant. Here we do not re-
quire an explicit library invariant, using client-local semantics in-
stead (Section 3): since primitive commands fault when accessing
non-existent memory cells, the safety of the client in this semantics
ensures that it does not access the internals of the library. We note
that the approach requiring an invariant for library-local data struc-
tures does not generalise to the concurrent setting: while a precise
invariant for the data structures shared among threads executing li-
brary code is not usually difficult to find, the state of data structures
local to the threads depends on their program counters. Thus, an
invariant insensitive to program positions inside the library code
often does not exist. Such difficulties are one of reasons for using
client- and library-local semantics in this paper.

If Theorem 9 generalises data refinement to concurrent setting,
then Theorem 3 does the same for information hiding [26]. The lat-
ter is concerned with compositionally verifying a (single) program
consisting of a library and its client executing in a shared address
space; data refinement can be viewed as its relational version. The-
orem 3 is a concurrent analogue of the procedure declaration rule
with information hiding proposed by O’Hearn et al. [25]. As in the
case of data refinement, the conditions required by the theorem are
somewhat more general than in existing proof systems [11, 23, 25].

Finally, we note that the applicability of our results is not lim-
ited to proving existing programs correct: they can also be used
in the context of formal program development. In this case, in-
stead of abstracting an existing library to an atomic specification
while proving a complete program, Theorem 9 allows refining an
atomic library specification to a concrete concurrent implementa-
tion while developing a program top-down [2, 20]. Our work thus
advances the method of atomicity refinement to a setting with con-
current components sharing an address space and communicating
via ownership transfers.

8. Conclusion
The only way to prove modern concurrent systems correct is by de-
composing them into manageable pieces according to their archi-

tecture. This is challenging because software components are not
isolated, but interact with their environment in complicated ways.
In this paper we have shown that, even for subtle interactions in-
volving the transfer of ownership of memory areas and access to
a shared state, it is possible to separate the verification of concur-
rent libraries from that of their clients. We consider this work a
starting point for developing the theory of abstractions for different
types of interactions among concurrent components that would al-
low such decompositions. Of particular interest for the future work
are ways of verifying recursive libraries compositionally and han-
dling interactions arising from a concurrent program running on a
weak memory model.

References
[1] D. Amit, N. Rinetzky, T. W. Reps, M. Sagiv, and E. Yahav. Compari-

son under abstraction for verifying linearizability. In CAV, 2007.
[2] R.-J. Back. On correct refinement of programs. JCSS, 1981.
[3] A. Banerjee and D. A. Naumann. Ownership confinement ensures rep-

resentation independence in object-oriented programs. JACM, 2005.
[4] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission

accounting in separation logic. In POPL, 2005.
[5] C. Boyapati, R. Lee, and M. C. Rinard. Ownership types for safe

programming: preventing data races and deadlocks. In OOPSLA,
2002.

[6] C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract
separation logic. In LICS, 2007.

[7] D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for
object containment. In ECOOP, 2001.

[8] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee
reasoning. In ESOP, 2009.

[9] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In
POPL, 2009.

[10] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying
linearizability proofs with reduction and abstraction. In TACAS, 2010.

[11] X. Feng. Local rely-guarantee reasoning. In POPL, 2009.
[12] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for

concurrent objects. In TCS, 2010.
[13] I. Filipović, P. O’Hearn, N. Torp-Smith, and H. Yang. Blamining the

client: On data refinement in the presence of pointers. FAC, 2010.
[14] A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction.

In ICALP, 2011.
[15] T. Harris, K. Fraser, and I. Pratt. A practical multi-word compare-and-

swap operation. In DISC, 2002.
[16] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition

for concurrent objects. TOPLAS, 1990.
[17] C. A. R. Hoare. Proof of correctness of data representations. Acta

Informatica, 1972.
[18] B. Jacobs and F. Piessens. Expressive modular fine-grained concur-

rency specification. In POPL, 2011.
[19] C. B. Jones. Specification and design of (parallel) programs. In IFIP

Congress, 1983.
[20] C. B. Jones. Splitting atoms safely. TCS, 2007.
[21] M. M. Michael and M. L. Scott. Simple, fast, and practical non-

blocking and blocking concurrent queue algorithms. In PODC, 1996.
[22] I. Mijajlovic and H. Yang. Data refinement with low-level pointer

operations. In APLAS, 2005.
[23] D. A. Naumann and A. Banerjee. Dynamic boundaries: Information

hiding by second order framing with first order assertions. In ESOP,
2010.

[24] P. O’Hearn. Resources, concurrency and local reasoning. TCS, 2007.
[25] P. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information

hiding. In POPL, 2004.
[26] D. L. Parnas. On the criteria to be used in decomposing systems into

modules. CACM, 1972.
[27] A. Pnueli. In transition from global to modular temporal reasoning

about programs. In Logics and Models of Concurrent Systems, 1985.
[28] J. C. Reynolds. Types, abstraction and parametric polymorphism. In

IFIP Congress, 1983.
[29] J. C. Reynolds. Separation logic: A logic for shared mutable data

structures. In LICS, 2002.
[30] R. K. Treiber. Systems programming: Coping with parallelism. Tech-

nical Report RJ 5118, IBM Almaden Research Center, 1986.
[31] A. Turon and M. Wand. A separation logic for refining concurrent

objects. In POPL, 2011.
[32] V. Vafeiadis. Modular fine-grained concurrency verification. PhD

Thesis. University of Cambridge, 2008.

A. Additional definitions for the programming
language

Semantics of typical primitive commands. When our state model
State is RAM, we typically consider following primitive com-
mands:

skip, [E] = E′, assume(E),

where expressions E are defined as follows:
E ::= Z | tid | [E] | E + E | −E | !E . . .

Here tid refers to the identifier of the thread executing the com-
mand, [E] returns the contents of the address E in memory, and !E
is the C-style negation of an expression E—it returns 1 when E
evalues to 0, and 0 otherwise. We denote with JEKθ,t ∈ Val∪{>}
the result of evaluating the expression E in the state θ with the
current thread identifier t. This evaluation might dereference ille-
gal memory adresses, such as dangling pointers, and results in the
error value >.

For the above commands and t ∈ ThreadID, we define corre-
sponding transition relation ;t: RAM × (RAM ∪ {>}) in Fig-
ure 3. Using this transition relation, we then define f t

c : RAM →
P(RAM)> for the primitive commands c as follows:

f t
c(θ) =

>, if (c, θ) ;t >;S ˘

θ′ | (c, θ) ;t θ
′¯, otherwise.

Definition of loops and conditionals. The standard commands for
conditionals and loops are defined in our language as follows:
(if E then C1 else C2) = (assume(E);C1) + (assume(!E);C2),

(while E do C) = (assume(E);C)∗; assume(!E).

Translation of commands to CFGs. We construct the CFG of a
command C by induction on its syntax:
1. A primitive command c has the CFG

({start, end}, {(start, c, end)}, start, end).

2. Assume C1 and C2 have CFGs (N1, T1, start1, end1) and
(N2, T2, start2, end2), respectively. Then C1;C2 has the CFG

(N1 ∪N2, T1 ∪ T2 ∪ {(end1, skip, start2)}, start1, end2).

3. Assume C1 and C2 have CFGs (N1, T1, start1, end1) and
(N2, T2, start2, end2), respectively. Then C1 +C2 has the CFG
(N1 ∪N2 ∪ {start, end},

T1 ∪ T2 ∪ {(start, skip, start1), (start, skip, start2),
(end1, skip, end), (end2, skip, end)}, start, end).

4. Assume C has a CFG (N,T, start, end). Then C∗ has the CFG
(N,T ∪ {(end, skip, start)}, start, end).

Example of a separation algebra with permissions. We now
present an extension of the separation algebra RAM in Section 2,
where states carry additional information regarding permission to
access memory cells. Here we consider simple permissions to read
from and write to memory cells, often used to model read sharing
among multiple threads or program components. In Section E we
give a more complicated algebra used for proving one of our exam-
ples. Formally, this algebra, denoted RAMp, is defined as follows:

Loc = N+ Val = Z Perm = (0, 1]
RAMp = Loc ⇀fin (Val× Perm)

A state in this model consists of a finite parial function from
allocated memory locations to values they store and so called
permissions—numbers from (0, 1] that show “how much” of the
memory cell belongs to the partial state [4]. As we show below,
the latter allow a library and its client to share access to some of
memory cells. Permissions in RAMp allow only read sharing: when
defining the semantics of commands over states in RAMp, the per-
missions strictly less than 1 are interpreted as permissions to read;
the full permission 1 additionally allows writing. This can be gen-
eralised to sharing permissions to access memory in an arbitrary
way consistent with a given specification [8].

Figure 3. Transition relation for sample primitive commands in the
RAM model. The result > indicates that the command faults.
(skip, θ) ;t θ
[E]=E′, θ ;t θ[JEKθ,t : JE′Kθ,t] if JEKθ,t, JE′Kθ,t ∈ dom(θ)
[E]=E′, θ ;t > if ¬(JEKθ,t, JE′Kθ,t ∈ dom(θ))
assume(E), θ ;t θ if JEKθ,t ∈ Val, JEKθ,t 6= 0
assume(E), θ ;t > if JEKθ,t = >

Figure 4. Transition relation for sample primitive commands in
the RAMp model. The evaluation of expressions JEK ignores the
permission part of the model.

skip, θ ;t θ
[E]=E′, θ ;t θ[JEKθ,t : (JE′Kθ,t, 1)]

if θ(JEKθ,t) = (, 1), JE′Kθ,t ∈ Val
[E]=E′, θ ;t > if the above condition does not hold
assume(E), θ ;t θ if JEKθ,t ∈ Val, JEKθ,t 6= 0
assume(E), θ ;t > if JEKθ,t = >

The ∗ operation on RAMp adds up permissions for memory
cells. Formally, for θ1, θ2 ∈ RAMp, we write θ1] θ2 when:
∀x ∈ Loc. θ1(x)↓ ∧ θ2(x)↓ ⇒
(∃v, π1, π2. θ1(x) = (v, π1)∧ θ2(x) = (v, π2)∧π1+π2 ≤ 1).

If θ1] θ2, then we define
θ1 ∗ θ2 = {(x, (v, π)) |

(θ1(x) = (v, π) ∧ θ2(x)↑) ∨ (θ2(x) = (v, π) ∧ θ1(x)↑) ∨
(θ1(x) = (v, π1) ∧ θ2(x) = (v, π2) ∧ π = π1 + π2)}.

Otherwise, θ1 ∗θ2 is undefined. The unit for ∗ is the empty heap [].
This definition of ∗ allows us, e.g., to split a memory area into two
disjoint parts. It also allows splitting a cell with a full permission
1 into two parts, carrying read-only permissions 1/2 and agreeing
on the value stored in the cell. These permissions can later be re-
combined to obtain the full permission, which allows both reading
from and writing to the cell.

In the case of the algebra RAMp, for θ ∈ RAMp we have

δ(θ) = {θ′ | ∀x. (θ(x)↓ ⇔ θ′(x)↓) ∧
∀v, π. (θ(x) = (v, π) ∨ θ′(x) = (v, π)) ∧ π < 1 ⇒

θ(x) = θ′(x)}.
In other words, states with the same footprint contain the same
memory cells with the identical permissions; in the case of memory
cells on read permissions, the states also have to agree on their
values. It is easy to check that the conditions in Definition 2 are
satisfied.

Finally, we define f t
c : RAMp → P(RAMp)> for the primitive

commands c, following the same recipe as in the RAM case. In this
case, we use the transition relation described in Figure 4.
An additional property of ∗ and \. In our proofs we rely on
the following associativity property of ∗ and \, which needs to be
checked for a particular instatiation of State with a separation alge-
bra. Let x, y, l1, . . . , ln ∈ Foot. Consider two defined expressions
E1(x) and E2(x ∗ y), applying a sequence of ∗ and \ operations
to x, respectively, x ∗ y: e.g., x ∗ li1 \ li2 ∗ li3 Let us assume
that (i) there is a unique occurence of every li in Ej ; (ii) each li is
used with the same operation in E1 and E2; (iii) every li used in
E1 with ∗ also occurs in E2; (iv) the sets of li used in E1 and E2

with \ are the same. Then E2(x ∗ y) \ y is defined.
This property is used in the proof of our Rearrangement Lemma

(Section B.4). Checking it for typical models of program states is
not problematic. However, we conjecture that, in the context we use
it, we should be able to derive it from more primitive axioms. We
plan to investigate this.

B. Proofs
We first define several operations that relate configurations in the
semantics of P(L), P and L. When considering the CFG of P
and L, we disambiguate the nodes vt

mgc in P and L by denoting the
latter ones withwt

mgc and the former with vt
mgc. Also, we remind the

reader that when a method m is not implemented in P but called
there, we introduced a particular node vm for the method m in the
semantics of P .

A partial operation ⊗ : Pos × Pos ⇀ Pos combines thread
positions in the semantics of P and L to obtain a position of
P(L) as follows: α ⊗ vt

mgc = α and αvm ⊗ vt
mgcβ = αβ for

t ∈ ThreadID. For all the other combinations, the ⊗ operator is
undefined. We lift⊗ to program counters pointwise. We now define
a partial operation

⊗ : P(ThreadID)+ × P(ThreadID)+ ⇀ P(ThreadID)+

on scheduling policies:
ThreadID⊗ ThreadID = ThreadID,

ThreadID⊗ ThreadIDκ = ThreadIDκ,
ThreadIDκ1K ⊗ ThreadIDKκ2 = ThreadIDκ1Kκ2;

all other combinations are undefined. We then define the ∗ opera-
tion that combines non-erroneous configurations from PConfig as
follows:

(α1, θ1, l1) ∗ (α2, θ2, l2) = (α1 ⊗ α2, (θ1, l1)⊗ (θ2, l2)).

We also define ∗ on non-erroneous configurations from Config:
(pc1, θ1, l1, κ1) ∗ (pc2, θ2, l2, κ2) =

(pc1 ⊗ pc2, (θ1, l1)⊗ (θ2, l2), κ1 ⊗ κ2).

For a set of methods M we define functions clientM : Pos →
Pos and libt

M : Pos → Pos, t ∈ ThreadID that compute thread
positions in the semantics of P and L corresponding to a position
in P(L). First, we let clientM (wt

mgc) = wt
mgc and libM (wt

mgc) =
vt

mgc. Consider now a thread position α1α2, where α1 is its maxi-
mal prefix consisting only of nodes outside the bodies of methods
in M . We let

clientM (α1α2) = α1vm,

if α2 is non-empty and m is the method whose implementation
contains the first node in α2. Otherwise, we let clientM (α1) = α1.
We also let libt

M (α1α2) = vt
mgcα2. We then lift these operations to

program counters as follows: (clientM (pc))(t) = clientM (pc(t))
and (libM (pc))(t) = libM (pc(t)).

Assume a program P(L), such that Γ0 ` L : Γ1 and Γ1 `
P : Γ2. Consider a thread t ∈ ThreadID, a set of methods
M , a scheduling policy κ and a thread position α1α2, where α1

is its maximal prefix consisting only of nodes outside the bodies
of methods in M . Let ij be the number of nodes in αj , j =
{1, 2} belonging to the CFGs of methods declared as atomic in
Γ0, P or L. We then define clientM,α,t(κ) = ThreadIDκ1 and
libM,α,t(κ) = ThreadIDκ2, where κ2 consists of i2 singleton sets
{t}; κ1 consists of i1 singleton sets {t}, if i2 = 0, and i1 + 1 such
sets, otherwise.

For ς = (pc[t : α], θ, l, κ) ∈ Config, such that pc(t) is
undefined, we let ς|t = (α, θ, l) ∈ PConfig. For σ = (α, θ, l) ∈
PConfig, pc ∈ ThreadID ⇀fin Pos, κ ∈ P(ThreadID)+ we let
combinet(σ, pc, κ) = (pc[t : α], θ, l, κ).

B.1 Properties of the \ operation
Proposition 15. The \ operation is well-defined.

Proof. Consider l1, l2 ∈ Foot and θ1, θ2, θ, θ
′
1, θ

′
2, θ

′ such that
θ1, θ

′
1 ∈ l1, θ2, θ′2 ∈ l2, θ1 = θ2 ∗ θ and θ′1 = θ′2 ∗ θ′. We show

that δ(θ) = δ(θ′).
We have:

δ(θ1 ∗ θ) = δ(θ2) = l2 = δ(θ′2) = δ(θ′1 ∗ θ′).
By Property 2 in Definition 2, this implies δ(θ) = δ(θ′). 2

We now list some the useful properties of \.

Proposition 16. For all l1, l2, l3 ∈ Foot, in the case when all
subexpressions used in the corresponding case below are defined,
we have:
1. (l1 \ l2) ∗ l2 = l1;
2. (l1 ∗ l2) \ l2 = l1;

3. (l1 ∗ l2) \ l3 = (l1 \ l3) ∗ l2.

Proof. We consider each property in turn.
1. Consider θ ∈ l1 \ l2 and θ2 ∈ l2. Then there exist θ1 ∈ l1

and θ′2 ∈ l2 such that θ ∗ θ′2 = θ1. By Property 1 in Definition 2
this implies

(l1 \ l2) ∗ l2 = δ(θ) ∗ δ(θ′2) = δ(θ ∗ θ′2) = δ(θ1) = l1.

2. Consider θ ∈ (l1 ∗ l2) \ l2. Then for some θ1 ∈ l1 and
θ2, θ

′
2 ∈ l2 we have θ1 ∗ θ2 = θ′2 ∗ θ. This implies δ(θ1 ∗ θ2) =

δ(θ′2 ∗ θ). By Property 1 in Definition 2, this implies
l1 = δ(θ1) = δ(θ) = (l1 ∗ l2) \ l2.

3. By item 1 we get
l1 ∗ l2 = ((l1 \ l3) ∗ l3) ∗ l2 = ((l1 \ l3) ∗ l2) ∗ l3.

Hence, (l1 ∗ l2) \ l3 = (l1 \ l3) ∗ l2. 2

B.2 Properties of the ownership-transfer semantics
The following proposition, used in later proofs, shows that in any
reachable configuration of a program, the footprint of imported
libraries is compatible with that of the program.

Proposition 17 (Consistency). If Γ ` P : Γ′ is safe at (θ0, l0),
where {θ0} ∗ l0 6= ∅, and (pc0, θ0, l0, κ0)−→∗

Γ,P,Γ′ (pc, θ, l, κ),
then {θ} ∗ l 6= ∅.

Proof. We prove the statement of the proposition by induction on
the length of the derivation. The base case holds because {θ0}∗l0 6=
∅. Assume

(pc0, θ0, l0, κ0)−→∗
P (pc, θ, l, κ)

ϕ−→P (pc′, θ′, l′, κ′)

and {θ} ∗ l 6= ∅.
We consider every rule from rules (8)–(19) in Figure 2 that can

be used to derive ϕ and can affect the program memory and the
footprint of imported libraries:
• Rule (8). For some c ∈ PComm, θ′ ∈ fc(θ) 6= > and l′ = l.

Since {θ} ∗ l 6= ∅, (3) implies that {θ′} ∗ l′ 6= ∅.
• Rule (12). For some predicate pt and θp ∈ pt we have θ = θ′∗θp

and l′ = l ∗ δ(θp). In this case {θ′}∗ l′ = {θ′}∗ l ∗ δ(θp), which
is non-empty when {θ} ∗ l is.

• Rule (14). For some predicate qt and θq ∈ qt we have θ′ = θ∗θq

and l′ = l \ δ(θq). Then for some θL ∈ l, θ′L ∈ l′ and
θ′q ∈ δ(θq) we have θ′L ∗ θ′q = θL. From {θ} ∗ l 6= ∅ we get that
θ ∗ θL = θ′L ∗ θ′q ∗ θ is defined. Since θ′q ∈ δ(θq), θ′L ∗ θq ∗ θ is
defined as well. Hence, ∅ 6= ({θ}∗{θq})∗(l \ δ(θq)) = {θ′}∗l′.

• Rule (15). For some predicate pt and θp ∈ pt we have θ′ = θ∗θp

and l′ = l. In this case {θ′} ∗ l′ = {θ} ∗ {θp} ∗ l, which is non-
empty according to the side condition of rule (15).

• Rule (16). For some predicate qt and θq ∈ qt we have θ = θ′∗θq

and l′ = l. We have {θ} ∗ l = {θ′} ∗ {θq} ∗ l′, so {θ′} ∗ l′ 6= ∅.
• Rule (18). For some predicate pt and θp ∈ pt we have θ′ = θ

and l′ = l ∗ δ(θp). In this case {θ′}∗ l′ = δ(θ)∗ l ∗ δ(θp), which
is non-empty according to the side condition of rule (18).

• Rule (19). For some predicate qt and θq ∈ qt we have θ′ = θ
and l′ = l \ δ(θq). Then {θ′} ∗ l′ = {θ} ∗ (l \ δ(θq)), which is
non-empty when {θ} ∗ l is.

So, {θ′} ∗ l′ 6= ∅ in all cases, as required. 2

Proof of Proposition 7. Consider Γ ` L : Γ′ safe for I and
(θ0, l0, ξ) ∈ JL, IK. Then there exists a derivation of ξ:

(pc0, θ0, l0,ThreadID)
ξ−→∗

L (pc, θ, l, κ).

Let M = dom(Γ′). We prove
run(historyM (ξ), δ(θ0) ∗ l0) = δ(θ) ∗ l

by induction on the length of the derivation of ξ. By Proposition 17,
δ(θ)∗ l 6= ∅, which implies that historyM (ξ) is well-balanced from
δ(θ0) ∗ l0.

The base case trivially follows from the definition of run. For
the induction step, assume the above and

(pc, θ, l, κ)
ϕ−→L (pc′, θ′, l′, κ′).

Let
l1 = run(historyM (ξ), δ(θ0) ∗ l0),
l2 = run(historyM (ξϕ), δ(θ0) ∗ l0).

Then l1 = δ(θ) ∗ l. We now make a case-split on which of rules
(8)–(19) is used to derive ϕ.
• Rule (15). Then ϕ = (t, call m(θp)), where Γ′(m) = (p,) and
θp ∈ pt. In this case θ′ = θ ∗ θp, l′ = l, l2 = l1 ∗ δ(θp)1 and
δ(θ) ∗ l ∗ δ(θp) 6= ∅. Then

l2 = l1 ∗ δ(θp) = δ(θ) ∗ l ∗ δ(θp) = δ(θ′) ∗ l′ 6= ∅.
• Rule (16). Then ϕ ∈ (t, ret m(θq)), where Γ′(m) = (, q) and
θq ∈ qt. In this case θ = θ′ ∗ θq , l′ = l and l2 = l1 \ δ(θq). We
have

l1 = δ(θ) ∗ l = δ(θ′ ∗ θq) ∗ l = δ(θ′) ∗ δ(θq) ∗ l.
Hence, l1 \ δ(θq) is defined and l2 = δ(θ′) ∗ l′.

• Rule (18). Thenϕ ∈ (t, callm(θp)), where (Γ′∩Γ)(m) = (p,)
and θp ∈ pt. In this case θ′ = θ, l′ = l ∗ δ(θp), l2 = l1 ∗ δ(θp)
and δ(θ) ∗ l ∗ δ(θp) 6= ∅. We have

l2 = l1 ∗ δ(θp) = δ(θ) ∗ l ∗ δ(θp) = δ(θ′) ∗ l′,
which is defined.

• Rule (19). Then ϕ ∈ (t, ret m(θq)), where (Γ′ ∩ Γ)(m) =
(, q) and θq ∈ qt. In this case θ′ = θ, l′ = l \ δ(θp) and
l2 = l1 \ δ(θp). We have l2 = l1 \ δ(θp) = (δ(θ) ∗ l) \ δ(θp).
Since l \ δ(θp) is defined, l2 is defined as well. Besides, l2 =
(δ(θ) ∗ l) \ δ(θp) = δ(θ′) ∗ l′.

• It is easy to check that in all other cases we have δ(θ′) ∗ l′ =
δ(θ) ∗ l = l1 = l2.

2

B.3 Proof of Lemma 12
Consider (θ0 ∗ θL, l0, τ) ∈ JP(L)K such that (θL, l0) ∈ I1

(θ0, δ(θL) ∗ l0) ∈ I2. We need to construct η and ξ such that
(θ0, δ(θL) ∗ l0, η) ∈ JPK, (θL, l0, ξ) ∈ JLK and

historydom(Γ1)(η) = historydom(Γ1)(ξ)
∧ clientdom(Γ1)(τ) = ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(η)
∧ erasedom(Γ1)−dom(Γ0)(libdom(Γ1)(τ)) = erasedom(Γ1)−dom(Γ0)(ξ)

Let
ς0 = (pc0, θ0 ∗ θL, l0,ThreadID)

∧ ς01 = (pc1
0, θ0, δ(θL) ∗ l0,ThreadID)

∧ ς02 = (pc2
0, θL, l0,ThreadID),

where pc0, pc1
0 and pc2

0 are initial program counters of P(L), P
and L, respectively, such that pc0 = pc1

0 ∗ pc2
0. Then ς0 = ς01 ∗ ς02 .

Since (θ0 ∗ θL, l0, τ) ∈ JP(L)K, there exists a τ -labelled
derivation using −→P(L) that starts from ς0 ∈ Config. From
the derivation of τ , we construct traces η and ξ, together with
their derivations using −→P and −→L. Our construction first
considers every finite prefix τi of τ and builds traces ηi and ξi in the
semantics ofP andL and their derivations for τi. The two resulting
series are such that for i < j, the derivation of ηi or ξi is a prefix of
that of ηj or ξj , which also implies that the trace ηi or ξi is a prefix
of ηj or ξj . Because of this, the series have the limit derivations and
the limit traces, which are the desired ones.

The following claim lies at the core of our construction:
Consider a finite prefix τi of τ , traces ηi and ξi and configura-
tions ς, ς1, ς2 ∈ Config such that ς = ς1 ∗ ς2 6= > and

ς0
τi−→∗

P ς ∧ ς01
ηi−→∗

P ς1

∧ ς02
ξi−→∗

L ς2;

historydom(Γ1)(ηi) = historydom(Γ1)(ξi)
∧ clientdom(Γ1)(τi) = ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(ηi)
∧ erasedom(Γ1)−dom(Γ0)(libdom(Γ1)(τi)) =

erasedom(Γ1)−dom(Γ0)(ξi)

1 Here we use the equality that means both sides are defined and equal, or
both are undefined.

If τ = τiϕτ
′ for some action ϕ and trace τ ′, and ς

ϕ−→P(L) ς
′

for some ς ′ 6= >, there exist ς ′1, ς ′2 ∈ Config − {>} and
extensions ηi+1 and ξi+1 of ηi and ξi and the corresponding
derivations such that ς ′ = ς ′1 ∗ ς ′2 and

ς01
ηi+1−−−→∗

P ς
′
1 ∧ ς02

ξi+1−−−→∗
L ς

′
2;

historydom(Γ1)(ηi+1) = historydom(Γ1)(ξi+1)
∧ clientdom(Γ1)(τiϕ) = ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(ηi+1)
∧ erasedom(Γ1)−dom(Γ0)(libdom(Γ1)(τi+1)) =

erasedom(Γ1)−dom(Γ0)(ξi+1)

To prove the claim, we assume τi, ϕ, τ
′, ς, ς1, ς2, ς

′, ηi, ξi satis-
fying the assumptions in it. Let ϕ = (t,),

ς = (pc[t : α0], θ, l, κ) ∧ ς ′ = (pc[t : α′0], θ
′, l′, κ′),

where pc(t) is undefined, and

σ = ς|t ∧ σ1 = ς1|t ∧ σ2 = ς2|t.

Then σ = σ1 ∗ σ2 and σ
ϕ−→t,P(L) σ

′. We now make a case-split
on which of rules (8)–(19) is used to derive ϕ.
• Rule (8) such that ϕ = (t, c) ∈ PAct is a client action in τ . Then,

there exist v, v′ ∈ Node, α ∈ Pos, l ∈ Foot, θ, θ′, θ1, θ2 ∈
State, such that (v, c, v′) is in the control-flow relation of P and

σ1 = (αv, θ1, δ(θ2) ∗ l) ∧
σ2 = (vt

mgc, θ2, l) ∧
σ = (αv, θ, l) ∧ θ = θ1 ∗ θ2; (22)

σ′ = (αv′, θ′) ∧ θ′ ∈ fc(θ).

Then by (2) we have

θ′ ∈ fc(θ) = fc(θ1 ∗ θ2) = fc(θ1) ∗ {θ2}.
Thus, θ′ = θ′1 ∗ θ2, for some θ′1 ∈ fc(θ1). Let

σ′1 = (αv′, θ′1, δ(θ2) ∗ l),
σ′2 = σ2, ηi+1 = ηiϕ and ξi+1 = ξi. Then σ′ = σ′1 ∗ σ′2 and

σ1
ϕ−→t,P σ

′
1.

Let ς ′1 = combinet(σ
′
1, clientdom(Γ1)(pc), clientdom(Γ1),α′

0,t(κ
′))

and ς ′2 = ς2, then

ς1
ϕ−→P ς

′
1

and ς ′ = ς ′1 ∗ ς ′2. We also have

clientdom(Γ1)(τiϕ) = clientdom(Γ1)(τi)ϕ =
ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(ηi)ϕ =
ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(ηiϕ) =

ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(ηi+1)

and

erasedom(Γ1)−dom(Γ0)(libdom(Γ1)(τiϕ)) =
erasedom(Γ1)−dom(Γ0)(libdom(Γ1)(τi)) =

erasedom(Γ1)−dom(Γ0)(ηi) =
erasedom(Γ1)−dom(Γ0)(ηi+1),

from which the required follows.
• Rules (10) or (11) such that ϕ ∈ CallRetAct is a client action in
τ . These cases are handled similarly to the previous one.

• Rules (8), (10) or (11) such that ϕ ∈ PAct ∪ CallRetAct is a
library action in τ . These case are also handled similarly to the
case of a client PAct. We establish that

ς2
ϕ−→L ς

′
2

for some ς ′2 such that ς ′ = ς1 ∗ ς ′2 and let ς ′1 = ς1, ηi+1 = ηi and
ξi+1 = ξiϕ. Since

clientdom(Γ1)(τiϕ) = clientdom(Γ1)(τi) =
ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(ηi) =

ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(ηi+1)

and

erasedom(Γ1)−dom(Γ0)(libdom(Γ1)(τiϕ)) =
erasedom(Γ1)−dom(Γ0)(libdom(Γ1)(τi)ϕ) =

erasedom(Γ1)−dom(Γ0)(ξi)ϕ =
erasedom(Γ1)−dom(Γ0)(ξiϕ) =

erasedom(Γ1)−dom(Γ0)(ξi+1),

this implies our claim.
• Rule (10) such that ϕ = (t, callm) is an outermost call to L in τ

and m ∈ dom(Γ1) − dom(Γ0). Then there exist v, v′ ∈ Node,
α ∈ Pos, l ∈ Foot, θ, θ1, θ2 ∈ State, such that (v,m, v′) is in
the control-flow relation of P , (B.3) is fulfilled and

σ′ = (αv′startm, θ, l).

Since P is safe, we have θ1 = θ′1 ∗ θp for some θp ∈ pt, where
(Γ1−Γ0)(m) = (p,). By Proposition 17, {θ1}∗ δ(θ2)∗ l 6= ∅,
hence, l ∗ δ(θ2 ∗ θp) 6= ∅. Let

σ′1 = (αvm, θ
′
1, l ∗ δ(θ2 ∗ θp)) ∧

σ′2 = (vmgcstartm, θ2 ∗ θp, l),

so that σ′1 ∗ σ′2 = σ′ and

σ1
(t,call m(θp))
−−−−−−−−→t,P σ′1 ∧ σ2

(t,call m(θp))
−−−−−−−−→t,L σ

′
2.

Let
ς ′1 = combinet(σ

′
1, clientdom(Γ1)(pc), clientdom(Γ1),α′

0,t(κ
′)),

ς ′2 = combinet(σ
′
2, libdom(Γ1)(pc), libdom(Γ1),α′

0,t(κ
′)),

then

ς1
ϕ−→P ς

′
1 ∧ ς2

ϕ−→L ς
′
2

and ς ′ = ς ′1 ∗ ς ′2. Now let ηi+1 = ηi(t, call m(θp)) and
ξi+1 = ξi(t, callm(θp)), then history(ηi+1) = history(ξi+1),

clientdom(Γ1)(τiϕ) = clientdom(Γ1)(τi)ϕ =
ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(ηi)ϕ =

ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(ηi(t, callm(θp))) =
ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(ηi+1)

and

erasedom(Γ1)−dom(Γ0)(libdom(Γ1)(τiϕ)) =
erasedom(Γ1)−dom(Γ0)(libdom(Γ1)(τi)ϕ) =

erasedom(Γ1)−dom(Γ0)(ξi)ϕ =
erasedom(Γ1)−dom(Γ0)(ξi(t, callm(θp))) =

erasedom(Γ1)−dom(Γ0)(ξi+1).

Hence, the required follows.
• Rule (11) such that ϕ = (t, retm) is a return from an outermost

call to L in τ and m ∈ dom(Γ1) − dom(Γ0). Then there exist
v′ ∈ Node, α ∈ Pos, l ∈ Foot, θ, θ1, θ2 ∈ State, such that

σ = (αv′endm, θ, l) ∧
σ′ = (αv′, θ, l) ∧ θ = θ1 ∗ θ2 ∧
σ1 = (αv′vm, θ1, δ(θ2) ∗ l) ∧

σ2 = (vt
mgcendm, θ2, l).

Since L is safe, we have θ2 = θ′2 ∗ θq for some θq ∈ qt,
where (Γ1 − Γ0)(m) = (, q). By Proposition 17, {θ} ∗ l 6= ∅,
i.e., {θ1 ∗ θ′2 ∗ θq} ∗ l 6= ∅. Then θ1 ∗ θq is defined and so is
(δ(θ2) ∗ l) \ δ(θq) = δ(θ′2) ∗ l. Hence, for

σ′1 = (αv′, θ1 ∗ θq, (δ(θ2) ∗ l) \ δ(θq)) ∧
σ′2 = (vmgc, θ

′
2, l),

we have σ′1 ∗ σ′2 = σ′ and

σ1
(t,ret m(θq))
−−−−−−−−→t,P σ′1 ∧ σ2

(t,ret m(θq))
−−−−−−−−→t,L σ

′
2.

Let ηi+1 = ηi(t, ret m(θq)) and ξi+1 = ξi(t, ret m(θq)), then
the proof is finished like in the previous case.

• Rule (15) such that ϕ = (t, call m(θp)) is a client action in τ ,
where θp ∈ pt and (Γ2 − Γ1)(m) = (p,). Then there exist

l ∈ Foot, θ, θ1, θ2 ∈ State, such that

σ = (wt
mgc, θ, l) ∧

σ′ = (wt
mgcstartm, θ ∗ θp, l) ∧ θ = θ1 ∗ θ2 ∧
σ1 = (wt

mgc, θ1, δ(θ2) ∗ l) ∧
σ2 = (vt

mgc, θ2, l). (23)

and δ(θ1) ∗ l ∗ δ(θ2) ∗ δ(θp) = δ(θ) ∗ l ∗ δ(θp) 6= ∅. Let

σ′1 = (vt
mgcstartm, θ1 ∗ θp, δ(θ2) ∗ l)

and σ′2 = σ2. Then σ1
ϕ−→t,P σ

′
1 and σ′ = σ′1 ∗σ′2. We now show

the required like in the case of a client PAct.
• Rule (15) such that ϕ = (t, call m(θp)) is a client action in τ ,

where θp ∈ pt and (Γ2 ∩ Γ1 − Γ0)(m) = (p,). Then there
exist l ∈ Foot, θ, θ1, θ2 ∈ State, such that (23) holds and
δ(θ1) ∗ l ∗ δ(θ2) ∗ δ(θp) = δ(θ) ∗ l ∗ δ(θp) 6= ∅. Let

σ′1 = (vt
mgcvm, θ1, δ(θ2) ∗ l ∗ δ(θp))

σ′2 = (vt
mgcstartm, θ2 ∗ θp, l).

Then σ1
ϕ−→t,P σ

′
1, σ2

ϕ−→t,P σ
′
2 and σ′ = σ′1 ∗ σ′2.

• Rule (16) such that ϕ = (t, ret m(θq)), where θq ∈ qt and
(Γ2−Γ1)(m) = (, q). Then there exist l ∈ Foot, θ, θ′, θ1, θ2 ∈
State, such that

σ = (wt
mgcendm, θ, l) ∧

σ′ = (wt
mgc, θ

′, l) ∧ θ = θ1 ∗ θ2 = θ′ ∗ θq ∧
σ1 = (wt

mgcendm, θ1, δ(θ2) ∗ l) ∧
σ2 = (vt

mgc, θ2, l)

Since P is safe, we have θ1 = θ′1 ∗ θ′q for some θ′q ∈ qt. Then
θ′1 ∗ θ′q ∗ θ2 = θ′ ∗ θq . Since q is precise and ∗ is cancellative,
this entails θ′q = θq and θ′1 ∗ θ2 = θ′. Let

σ′1 = (wt
mgc, θ

′
1, l)

and σ′2 = σ2, then σ1
ϕ−→t,P σ

′
1 and σ′ = σ′1 ∗ σ′2.

• Rule (16) such that ϕ = (t, ret m(θq)), where θq ∈ qt and
(Γ2 ∩ Γ1 − Γ0)(m) = (, q). Then there exist l ∈ Foot,
θ, θ′, θ1, θ2 ∈ State, such that

σ = (wt
mgcendm, θ, l) ∧

σ′ = (wt
mgc, θ

′, l) ∧ θ = θ1 ∗ θ2 = θ′ ∗ θq ∧
σ1 = (wt

mgcvm, θ1, δ(θ2) ∗ l) ∧
σ2 = (vt

mgcendm, θ2, l)

Since L is safe, we have θ2 = θ′2 ∗ θ′q for some θ′q ∈ qt. Then
θ1 ∗ θ′q ∗ θ′2 = θ′ ∗ θq . Since q is precise and ∗ is cancellative,
this entails θ′q = θq and θ1 ∗ θ′2 = θ′. Let

σ′1 = (wt
mgc, θ1, δ(θ

′
2) ∗ l)

σ′2 = (vt
mgc, θ

′
2, l),

then σ1
ϕ−→t,P σ

′
1 and σ′ = σ′1 ∗ σ′2.

• Rule (12) such that ϕ = (t, call m(θp)) is a library action
in τ , where Γ0(m) = (p,) and θp ∈ pt. Then, there exist
v, v′, vm′ ∈ Node, α, β ∈ Pos, l ∈ Foot, θ, θ′, θ1, θ2 ∈ State,
such that (v,m, v′) is in the control-flow relation of L and

σ = (αβv, θ, l) ∧
σ′ = (αβv′vm, θ

′, l ∗ δ(θp)).θ = θ1 ∗ θ2 = θ′ ∗ θp ∧
σ1 = (αvm′ , θ1, δ(θ2) ∗ l) ∧

σ2 = (vt
mgcβv, θ2, l).

Since L is safe, we have θ2 = θ′2 ∗ θ′p, where θ′p ∈ pt. Besides,
p is precise and ∗ is cancellative, so we have θ′p = θp and
θ1 ∗ θ′2 = θ′. Hence, for

σ′2 = (vt
mgcβv

′vm, θ
′
2, l ∗ δ(θp))

and σ′1 = σ1, we have σ′1 ∗ σ′2 = σ′ and σ2
ϕ−→t,L σ

′
2.

• Rule (14) such that ϕ = (t, ret m(θq)) is a library action
in τ , where Γ0(m) = (, q) and θq ∈ qt. Then, there exist
v′, vm′ ∈ Node, α, β ∈ Pos, l ∈ Foot, θ, θ1, θ2 ∈ State, such

that
σ = (αβv′vm, θ, l) ∧

σ′ = (αβv′, θ ∗ θq, l \ δ(θq)) ∧ θ = θ1 ∗ θ2 ∧
σ1 = (αvm′ , θ1, δ(θ2) ∗ l) ∧
σ2 = (vt

mgcβv
′vm, θ2, l).

Hence, for
σ′2 = (vt

mgcβv
′, θ2 ∗ θq, l \ δ(θq))

and σ′1 = σ1, we have σ′1 ∗ σ′2 = σ′ and σ2
ϕ−→t,L σ

′
2.

• Rules (12) and (14) such that ϕ is a client action. These cases are
handled similarly to the previous two.

• Rule (18) such that ϕ = (t, callm(θp)), where (Γ2 ∩Γ0)(m) =
(p,) and θp ∈ pt. Then, there exist l ∈ Foot, θ, θ1, θ2 ∈ State,
such that

σ = (wt
mgc, θ, l) ∧

σ′ = (wt
mgcvm, θ, l ∗ δ(θp)) ∧ θ = θ1 ∗ θ2 ∧
σ1 = (wt

mgc, θ1, δ(θ2) ∗ l) ∧
σ2 = (vt

mgc, θ2, l)

and δ(θ) ∗ l ∗ δ(θp) 6= ∅. Hence, for
σ′1 = (wt

mgcvm, θ1, δ(θ2) ∗ l ∗ δ(θp))
σ′2 = (vt

mgcvm], θ2, l ∗ δ(θp)),

we have σ′1 ∗ σ′2 = σ′, σ1
ϕ−→t,L σ

′
1 and σ2

ϕ−→t,L σ
′
2.

• Rule (19) such that ϕ = (t, retm(θq)), where (Γ2 ∩ Γ0)(m) =
(, q) and θq ∈ qt. Then, there exist l ∈ Foot, θ, θ1, θ2 ∈ State,
such that

σ = (wt
mgcvm, θ, l) ∧

σ′ = (wt
mgc, θ, l \ δ(θq)) ∧ θ = θ1 ∗ θ2 ∧

σ1 = (wt
mgcvm, θ1, δ(θ2) ∗ l) ∧

σ2 = (vt
mgcvm, θ2, l).

Hence, for
σ′1 = (wt

mgc, θ1, (δ(θ2) ∗ l) \ δ(θq))
σ′2 = (vt

mgc, θ2, l \ δ(θq)),

we have σ′1 ∗ σ′2 = σ′, σ1
ϕ−→t,L σ

′
1 and σ2

ϕ−→t,L σ
′
2.

We have thus shown that the claim holds for all ϕ. 2

B.4 Proof of Lemma 13
In this section, we use the following notation. We denote deriva-
tions of traces in the semantics of Section 3 with D, E , For two
derivations D1 and D2 their concatenation D1D2 is defined when
the last state in D1 is the same as the first state in D2. The concate-
nation glues the derivations at this state. Below we sometimes write
vπ and Cπ

M instead of v and CM to make the bijection π used to
establish the relations between histories or traces explicit.

Let dom(Γ) = M . Take θ0 ∈ State and l1, l2 ∈ Foot such
that l1 � l2. Consider a trace τ such that (θ0, l1, τ) ∈ JPK and
the corresponding derivation D in the semantics of P . Assume
well-formed histories H,H ′ ∈ History of methods in M such
that historyM (τ) = H , H v H ′ and H ′ is well-balanced from
l2 (H is well-balanced from l1 by Proposition 7). We first prove
that there exists a trace τ ′ such that (θ1, l1, τ2) ∈ JPK with a
corresponding derivation D′ in the the semantics of P such that
historyM (τ ′) = H ′ and τ CM τ ′. To this end, we define a
(possibly infinite) sequence of steps that transforms τ into τ ′ andD
into D′. In more detail, τ ′ and D′ are constructed using a sequence
of traces ξk such that (θ0, l1, ξk) ∈ JPK and their corresponding
derivations Dk, defined for every finite prefix H ′

k of H ′ of length
k as described below. Every trace ξk is such that for some prefix
ηk of ξk we have historyM (ηk) = H ′

k and historyM (ξk) vπ H ′,
where π is an identity on actions fromH ′

k in historyM (ξk). LetD′
k

be the prefix of Dk corresponding to the derivation of ηk. Then,
additionally, for all i, j with i < j, ηi is a prefix of ηj and D′

i is
a prefix of D′

j . Hence, the sequences of traces ηk and derivations
D′

k have limits τ ′ and D′ such that for every k, ηk is a prefix of τ ′,
D′

k is a prefix of D′ and historyM (τ ′) = H ′. Then, as we show,

(θ0, l1, τ
′) ∈ JPK, its derivation is D′ and historyM (τ ′) = H ′,

τ CM τ ′.
The transformations we perform on the trace τ might violate

atomicity constraints temporarily. Therefore, actually, we construct
the derivations Di and D′ and define JPK above in the semantics
given by the relation ↪→Γ,P,Γ′ : NConfig × Act× NConfig, for

NConfig = {>} ∪ (ThreadID ⇀fin Pos)× State× Foot,

which ignores the scheduling policy. The relation ↪→P is defined
like the one in Figure 2, but with rules (4)–(7) replaced by the
following ones:

α, θ, l
ϕ−→t α

′, θ′, l′

pc[t : α], θ, l
ϕ
↪−→P pc[t : α′], θ′, l

α, θ, l
ϕ−→t >

pc[t : α], θ, l
ϕ
↪−→P >

However, that the final trace τ ′ satisfies the atomicity constraints
in the following sense. We say that τ ′ respects the atomicity of
Γ ` P : Γ′ if it does not interleave actions by any thread inside
methods declared atomic in Γ or P with actions by other threads.
It is easy to check that the transformations below indeed result in
a trace τ ′ respecting the atomicity of Γ ` P : Γ′ and H ′. As
the following proposition shows, in this case τ ′ is in fact derivable
using −→.

Proposition 18. If

(pc0, θ0, l0)
τ ′

↪−→P σ

for some σ 6= >, and τ ′ respects the atomicity of Γ ` P : Γ′, then

(pc0, θ0, l0,ThreadID)
τ ′
−→P ς

for some ς 6= >.

The fact that (θ0, l2, τ
′) ∈ JPK, as required by the statement of

the lemma, follows from the following proposition, proved at the
end of this section.

Proposition 19 (Footprint reduction). Assume JPK is safe at
(θ0, l1), (θ0, l1, τ) ∈ JPK, l2 � l1 and historyM (τ) be well-
balanced from l2. Then (θ0, l2, τ) ∈ JPK.

To construct the sequence of traces, we let ξ0 = τ and let the
prefix η0 contain all the client actions preceding the first call or
return action in ξ0. The trace ξk+1 is constructed from the trace
ξk by applying the following lemma for τ1 = ηk, τ1τ2 = ξk,
E1 = D′

k, E1E2 = Dk, H1 = H ′
k and H1ψH2 = H ′.

Lemma 20. Consider a well-formed history H1ψH2 of methods
in M , where ψ ∈ ECallRetActM , and (θ0, l1, τ1τ2) ∈ JPK with a
derivation E1E2 (where E1 derives τ1 and E2 derives τ2) such that

historyM (τ1) = H1, (24)
historyM (τ1τ2) vπ H1ψH2, (25)

where π is an identity on actions from H1 in historyM (τ1τ2).
Then there exist traces τ ′2 and τ ′′2 and their derivations E ′2 and E ′′2
such that (θ0, l1, τ1τ

′
2τ

′′
2) ∈ JPK, the corresponding derivation is

E1E ′2E ′′2 and
τ1τ2 Cρ

M τ1τ
′
2τ

′′
2 , (26)

historyM (τ1τ
′
2) = H1ψ, (27)

historyM (τ1τ
′
2τ

′′
2) vπ′ H1ψH2, (28)

where π′ is an identity on actions from H1ψ in historyM (τ1τ
′
2τ

′′
2)

and ρ is an identity on actions from τ1 in τ1τ2.

To prove Lemma 20, we transform τ1τ2 into τ1τ ′2τ ′′2 , respec-
tively,D1D2 intoD1D′

2 by applying a finite number of transforma-
tions that preserve their properties of interest, described in Propo-
sition 21, respectively, Proposition 22 below.

Proposition 21. Let τ be a trace andH a well-formed history such
that historyM (τ) vπ H . Then swapping any two adjacent actions

ϕ1 and ϕ2 in τ executed by different threads such that
1. ϕ1 ∈ ECallActM and ϕ2 ∈ Act− ERetActM ; or
2. ϕ2 ∈ ERetActM and if ϕ1 ∈ ECallActM , then ϕ2 precedes ϕ1

in H ,
yields a trace τ ′ such that τ Cρ

M τ ′ and historyM (τ ′) vπ′ H .
The bijection π′ is defined as follows. If ϕ1 6∈ ECallRetActM

or ϕ2 6∈ ECallRetActM , then π′ = π. Otherwise, let i be the index
of ϕ1 in historyM (τ). Then π′(i + 1) = π(i), π′(i) = π(i + 1)
and π′(k) = π(k) for k 6∈ {i, i+ 1}.

The bijection ρ is defined as follows. Let i be the index of ϕ1 in
τ . Then ρ′(i + 1) = ρ(i), ρ′(i) = ρ(i + 1) and ρ′(k) = ρ(k) for
k 6∈ {i, i+ 1}.

Proposition 22. Consider actions ϕ1, ϕ2 ∈ Act by different
threads such that any of the following is true:
• ϕ1 ∈ ECallActM , ϕ2 ∈ Act− ERetActM ;
• ϕ1 ∈ Act− ECallActM , ϕ2 ∈ ERetActM .
If for σ0, σ1, σ2 ∈ Config − {>} we have

σ0
ϕ1
↪→P σ1

ϕ2
↪→P σ2, (29)

then for some σ′1 ∈ NConfig − {>}

σ0
ϕ2
↪→P σ′1

ϕ1
↪→P σ2.

Proof. The proof proceeds by case analysis on rules of operational
semantics that can produce ϕ1 and ϕ2. We consider only a couple
of illustrative cases.
• Rules (12) and (8) such that that ϕ1 ∈ ECallActM and ϕ2 ∈

PAct. Then there exist t1, t2 ∈ ThreadID, v1, v′1, v2, v′2 ∈
Node, pc ∈ ThreadID ⇀ Pos, α1, α2 ∈ Pos, l ∈ Foot,
θ1, θ2, θp ∈ State, such that (v1,m, v

′
1) and (v2, c, v

′
2) are in

the control-flow relation of P , Γ(m) = (p,) and
σ0 = (pc[t1 : α1v1][t2 : α2v2], θ1 ∗ θp, l) ∧

σ1 = (pc[t1 : α1v1][t2 : α2v
′
2vm], θ1, l ∗ δ(θp)) ∧

σ2 = (pc[t1 : α1v
′
1][t2 : α2v

′
2vm], θ2, l ∗ δ(θp)) ∧

θp ∈ pt1 ∧ θ2 ∈ fc(θ1).

Since θ1 ∗ θp is defined, by (3) so is θ2 ∗ θp. Then from (2) we
get

θ2 ∗ θp ∈ fc(θ1) ∗ θp = fc(θ1 ∗ θp).

Then the required holds for
σ′1 = (pc[t1 : α1v

′
1][t2 : α2v

′
2], θ2 ∗ θp, l).

• Rules (12) and (15) such that ϕ1, ϕ2 ∈ ECallAct. Then there
exist t1, t2 ∈ ThreadID, v1, v′1 ∈ Node, pc ∈ ThreadID ⇀
Pos, α1, α2 ∈ Pos, l ∈ Foot, θ1, θ2, θ1p, θ2p ∈ State, such
that (v1,m1, v

′
1) is in the control-flow relation of P , Γ(m1) =

(p1,), Γ′(m2) = (p2,) and

σ0 = (pc[t1 : α1v1][t2 : wt
mgc], θ1 ∗ θ1p, l) ∧

σ1 = (pc[t1 : α1v
′
1vm1][t2 : wt

mgc], θ1, l ∗ δ(θ1p)) ∧
σ2 = (pc[t1 : α1v

′
1vm1][t2 : wt

mgcstartm2], θ1 ∗ θ2p, l ∗ δ(θ1p)) ∧
θ1p ∈ p1

t1 ∧ θ2p ∈ p2
t2 ∧ {θ1} ∗ {θ1p} ∗ l ∗ δ(θ2p) 6= ∅.

Then the required holds for

σ′1 = (pc[t1 : α1v1][t2 : wt
mgcstartm2], θ1 ∗ θ

1
p ∗ θ2p, l).

2

Note that the above proposition does not allow swapping a call
followed by a return. This case is very subtle and relies crucially
on the well-balancedness property of histories under consideration.
The following lemma proves a key property showing that the swap-
ping can be done under certain circumstances, which are in fact
fulfilled in the context where we apply it in the proof of Lemma 20.

Lemma 23. Consider histories
H1 =HH ′

1(t1, callm1(θ1))(t2, retm2(θ2))H
′′
1 ,

H2 =H(t2, retm2(θ2))H
′
2(t1, callm1(θ1))H

′′
2

of methods in M , well-balanced from l1 and l2, respectively and
assume that l2 � l1, t1 6= t2 and H1 vπ H2, where π is an

identity on H and maps the (t1, callm1(θ1)) and (t2, retm2(θ2))
actions in H1 to the corresponding actions in H2. Then the history

H̃1 = HH ′
1(t2, retm2(θ2))(t1, callm1(θ1))H

′′
1

is also well-balanced from l1.

Proof. Every return action inH ′
1 precedes (t1, callm1(θ1)) inH1.

Since H1 v H2, it follows that every such action is in H ′
2. For the

same reason, every call action in H ′′
1 that is also in H ′

2 follows all
such return actions in H2. Thus, there is a prefix H ′′′

2 of H ′
2 whose

actions are a subset of the actions in H ′
1, including all the returns

and some of the calls from H ′
1.

Since H2 is well-balanced from l2,
run(H(t2, retm2(θ2))H

′′′
2 , l2) = run(H ′′′

2 , run(H, l2) \ δ(θ2))
is defined (see Definition 6). Since H1 is well-balanced from l1,

run(HH ′
1, l1) = run(H ′

1, run(H, l1))

is defined.
We have assumed that l2 � l1, which implies run(H, l2) �

run(H, l1). From the above it follows that run(H, l2) \ δ(θ2)
is defined, hence, run(H, l1) \ δ(θ2) is also defined and
run(H, l2) \ δ(θ2) � run(H, l1) \ δ(θ2). From this, the above-
stated relationship between actions in H ′

1 and H ′
2, and the asso-

ciativity property of ∗ and \ formulated in Appendix A, we obtain
that run(H ′

1, run(H, l1) \ δ(θ2)) is defined. But this means that the
history HH ′

1(t2, retm2(θ2)) is well-balanced from l1.
Since H1 is well-balanced from l1,

run(HH ′
1, l1) ∗ δ(θ1)

is defined. Then so is
(run(HH ′

1, l1) \ δ(θ2)) ∗ δ(θ1).
Hence, HH ′

1(t2, ret m2(θ2))(t1, call m1(θ1)) is well-balanced
from l1. Besides
run(HH ′

1(t2, retm2(θ2))(t1, callm1(θ1)), l1) =
run(HH ′

1(t1, callm1(θ1))(t2, retm2(θ2)), l1),

so the history H̃1 is also well-balanced from l1. 2

The following corollary of the lemma justifies the transforma-
tion.

Corollary 24. Consider a trace (θ0, l1, τ1) ∈ JPK and a history
H2 of methods in M such that historyM (τ1) = H1 and H1 and
H2 satisfy the conditions of Lemma 23. Let

σ0

ττ ′
1

↪→∗
P σ1

(t1,call m1(θ1))
↪−−−−−−−−−→∗

P σ2

(t2,ret m2(θ2))
↪−−−−−−−−−→∗

P σ3

τ ′′
1
↪→∗

P σ4

be the derivation of τ1, where t1 6= t2. Then for some σ′2 the
following is also a valid derivation:

σ0

ττ ′
1

↪→∗
P σ1

(t2,ret m2(θ2))
↪−−−−−−−−−→∗

P σ
′
2

(t1,call m1(θ1))
↪−−−−−−−−−→∗

P σ3

τ ′′
1
↪→∗

P σ4.

Proof. We can assume that for some v1, v
′
1 ∈ Node, pc ∈

ThreadID ⇀ Pos, α1, α2 ∈ Pos, l ∈ Foot, θ ∈ State,
(v1,m1, v

′
1) is in the control-flow relation of P and
σ1 = (pc[t1 : α1v1][t2 : α2vm2], θ ∗ θ1, l) ∧

σ2 = (pc[t1 : α1v
′
1vm1][t2 : α2vm2], θ, l ∗ δ(θ1)) ∧

σ3 = (pc[t1 : α1v
′
1vm1][t2 : α2], θ ∗ θ2, (l ∗ δ(θ1)) \ δ(θ2)).

By Lemma 23, historyM (ττ ′1(t2, retm2(θ2))(t1, callm1(θ1))τ
′′
1)

is well-balanced from the initial footprint in σ0. Hence, l \ δ(θ2)
and (l \ δ(θ2)) ∗ δ(θ1) are defined. Then by Proposition 16(3),
(l ∗ δ(θ1)) \ δ(θ2) = (l \ δ(θ2)) ∗ δ(θ1). By Proposition 17, l ∗
{θ ∗θ1} 6= ∅. Since l \ δ(θ2) is defined, so is θ ∗θ1 ∗θ2. The above
implies that

σ′2 = (pc[t1 : α1v1][t2 : α2], θ ∗ θ1 ∗ θ2, l \ δ(θ2))
is defined and

σ1

(t2,ret m2(θ2))
↪−−−−−−−−−→∗

P σ
′
2

(t1,call m1(θ1))
↪−−−−−−−−−→∗

P σ3.

2

Proof of Lemma 20. From (24) and (25) it follows that τ2 = τ ′3ψτ
′
4

for some traces τ ′3 and τ ′4. We have two cases.
1. ψ ∈ ECallActM . Then τ ′3 cannot contain an action

ϕ ∈ ERetActM , because in this case ϕ would precede ψ in
historyM (τ1τ2). However, ϕ ∈ H2 and, thus, ψ precedess ϕ in
H1ψH2, so this would contradict (25). Hence, there are no return
actions in τ ′3. Moreover, since τ1τ2 is well-formed, for any action
ϕ = (t, call m(θ)) in τ ′3 there are no actions by the thread t in τ ′3
following ϕ. Thus, we can move all actions from ECallAct in the
subtrace τ ′3 of τ1τ2 to the position right after ψ by swapping adja-
cent actions in τ1τ2 a finite number of times as described in Propo-
sition 21(1) and transforming its derivation as described in Propo-
sition 22 and Lemma 24. We thus obtain the trace τ1τ ′′3 ψτ ′′4 τ ′4,
where τ ′′4 consists of ECallActM actions in τ ′3 and τ ′′3 of the rest
of actions in the subtrace. Conditions (26)–(28) then follow from
Proposition 21(1) and the transitivity of CM for τ ′2 = τ ′′3 ψ and
τ ′′2 = τ ′′4 τ

′
4.

2. ψ ∈ ERetActM . Since the history historyM (τ1τ2) is well-
formed, the matching call of ψ is in H1. From (24) and (25) it
then follows that this call is not in τ ′3. Furthermore, since the trace
τ1τ2 is well-formed, the thread that executed ψ does not execute
any actions in the subtrace in τ ′3. Thus, we can move the action ψ
to the beginning of τ ′3 by swapping adjacent actions in τ1τ2 a finite
number of times as described in Proposition 21(2) and transforming
its derivation as described in Proposition 22 and Lemma 24. We
thus obtain the trace τ1ψτ ′3τ ′4. Conditions (26)–(28) then follow
from Proposition 21(2) and the transitivity of CM for τ ′2 = ψ
τ ′′2 = τ ′3τ

′
4. 2

Now all is left is to prove Proposition 19.
Proof of Proposition 19. Consider (θ0, l1, τ) ∈ JPK. Then there
exists a non-faulting derivation

(pc0, θ0, l1,ThreadID)
τ−→∗

P (pc, θ, l′1, κ)

of τ in the semantics of P . Take l2 � l1 and assume that
historyM (τ) is well-balanced from l2. We prove by induction on
the length of the derivation of τ that there exists a derivation

(pc0, θ0, l2,ThreadID)
τ−→∗

P (pc, θ, l′2, κ)

such that run(historyM (τ), l2) = l′2 and l′2 � l′1.
The base case trivially follows from the definition of run. For

the induction step, assume the above and

(pc, θ, l′1, κ)
ϕ−→P (pc′, θ′, l′′1 , κ

′).

We need to show that
(pc, θ, l′2, κ)

ϕ−→P (pc′, θ′, l′′2 , κ
′)

and run(historyM (τϕ), l2) = l′′2 and l′′2 � l′′1 .
We consider every rule in the operational semantics that can

produce ϕ.
• Rule (12) such that ϕ = (t, call m(θp)), where Γ(m) = (p,)

and θp ∈ pt. Then l′′1 = l′1 ∗ δ(θp) and θ = θ′ ∗ θp. Since
l′2 � l′1, l′2 ∗ δ(θp) 6= ∅ and l′2 ∗ δ(θp) � l′′1 . Besides,
run(historyM (τ1ϕ), l2) = run(historyM (τ1), l2) ∗ δ(θp) =
l′2 ∗ δ(θp). Thus, the required holds for l′′2 = l′2 ∗ δ(θp).

• Rule (14) such that ϕ = (t, ret m(θq)), where Γ(m) =
(, q) and θq ∈ qt. Then l′′1 = l′1 \ δ(θq) and θ′ =
θ ∗ θq . Since historyM (τ) is well-balanced from l2, so
is historyM (τ1ϕ). We thus have run(historyM (τ1ϕ), l2) =
run(historyM (τ1), l2) \ δ(θq) = l′2 \ δ(θq), which is defined.
Besides, l′2 \ δ(θq) � l′1 \ δ(θq), so the required holds for l′′2 =
l′2 \ δ(θq).

• Rule (15) such that ϕ = (t, call m(θp)), where (Γ′ − Γ)(m) =
(p,) and θp ∈ pt. Then l′′1 = l′1, θ′ = θ ∗ θp and {θ} ∗
l′1 ∗ {θp} 6= ∅. Since l′2 � l′1, {θ} ∗ l′2 ∗ {θp} 6= ∅. Besides,
run(historyM (τ1ϕ), l2) = run(historyM (τ1), l2) = l′2. Then,
the required holds for l′′2 = l′2.

• Rule (18) such that ϕ = (t, call m(θp)), where (Γ′ ∩ Γ)(m) =
(p,) and θp ∈ pt. Then l′′1 = l′1 ∗ δ(θp), θ′ = θ and {θ} ∗ l′1 ∗

{θp} 6= ∅. Since l′2 � l′1, {θ} ∗ l′2 ∗ {θp} 6= ∅ and l′2 ∗ δ(θp) �
l′′1 . Besides, run(historyM (τ1ϕ), l2) = run(historyM (τ1), l2) ∗
δ(θp) = l′2 ∗ δ(θp). Then, the required holds for l′′2 = l′2 ∗ δ(θp).

• Rule (19) such that ϕ = (t, ret m(θq)), where (Γ′ ∩ Γ)(m) =
(, q) and θq ∈ qt. Then l′′1 = l′1 \ δ(θq) and θ′ = θ. Since
l′2 � l′1, l′2 \ δ(θq) � l′′1 . Besides, run(historyM (τ1ϕ), l2) =
run(historyM (τ1), l2) \ δ(θq) = l′2 \ δ(θq), which is defined.
Thus, the required holds for l′′2 = l′2 \ δ(θq).

• It is easy to check that in all other cases we have l′1 = l′′1 ,
run(historyM (τϕ), l2) = run(historyM (τ), l2) = l′2 and the
required holds for l′′2 = l′2.

2

B.5 Proof of Lemma 14
Assume (θ0, δ(θL) ∗ l0, η) ∈ JPK and (θL, l0, ξ) ∈ JLK such
that historydom(Γ1)(η) = historydom(Γ1)(ξ). Then there exist an η-
labelled derivation using −→P and a xi-labelled derivation using
−→L, starting from initial configurations ς10 ∈ Config and ς20 ∈
Config, respectively. Without loss of generality, we can assume that
ς10 and ς20 have the same number of threads.

From the above two derivations, we now construct the required
trace (θ0 ∗ θL, l0, τ) ∈ JP(L)K together with its derivation using
−→P . We first build a series of finite traces

τ0, τ1, τ2, . . .

and their derivations. This series is such that for i < j, the deriva-
tion of τi is a prefix of that of τj , which also implies that τi is a
prefix of τj . Because of this, the series has the limit derivation and
the limit trace, which are the desired ones.

The first element in the series is the empty trace ε and the empty
derivation consisting of the initial configuration ς10 ∗ς20 only. For the
(i+1)-st element with i > 0, we assume that the i-th element τi

and its computation have been constructed and satisfy the following
property:

For some finite prefixes η1 and ξ1 of η and ξ such that
historydom(Γ1)(η1) = historydom(Γ1)(ξ1)

∧ clientdom(Γ1)(τi) = ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(η1)
∧ libdom(Γ1)(τi) = erasedom(Γ1)−dom(Γ0)(ξ1)

and configurations ς1i , ς
2
i ∈ Config we have:

ς10 ∗ ς20
τi−→∗

P ς
1
i ∗ ς2i ∧ ς10

η1−→∗
P ς

1
i

∧ ς20
ξ1−→∗

L ς
2
i .

Now we define the (i + 1)-st element τi+1 and its derivation that
maintain the property above. As we explained above, the derivation
for τi+1 will be an extension of that for τi by one or more steps.

Assume η = η1ϕ1η
′ and ξ = ξ1ϕ2ξ

′ for some actions ϕ1 and
ϕ2 and traces η′ and ξ′ (the case that η = η1 or ξ = ξ1 is handled
analogously). Let the following be the transitions by ϕ1 and ϕ2 in
the derivations for η and ξ:

ς1i
ϕ1−→P ς1 ∧ ς2i

ϕ2−→L ς
2,

where ς1, ς2 ∈ Config − {>}.
Let ϕ1 = (t1,), ϕ2 = (t2,) and

σ1
i = ς1i |t ∧ σ1 = ς1|t ∧ σ2

i = ς2i |t ∧ σ2 = ς2|t.
Then σ1

i ∗ σ2
i is defined and

σ1
i

ϕ−→t,P(L) σ
1 ∧ σ2

i
ϕ−→t,P(L) σ

2.

We now make a case-split on types of actions ϕ1 and ϕ2 and
which of rules (8)–(19) are used to derive them.
• ϕ1, ϕ2 ∈ ECallActdom(Γ1) derived using rules (12) and (15),

respectively and such that ϕ2 is an outermost call to meth-
ods from dom(Γ1) in ξ. Then ϕ1 is an outermost call to
methods from dom(Γ1) in η. In this case ϕ1 = ϕ2,
because historydom(Γ1)(η1) and historydom(Γ1)(ξ1) are the
same by our assumption, so that their same-length prefixes
historydom(Γ1)(τi)ϕ1 and historydom(Γ1)(τi)ϕ2 should be iden-
tical. Assume ϕ1 = (t, call m(θp)) for Γ(m) = (p,) and
θp ∈ pt. Then, there exist v, v′ ∈ Node, α ∈ Pos, l ∈ Foot,

θ1, θ2 ∈ State, such that (v,m, v′) is in the control-flow rela-
tion of P , θ1 = θ′1 ∗ θp and

σ1
i = (αv, θ1, δ(θ2) ∗ l)

∧ σ1 = (αv′vm, θ
′
1, δ(θ2) ∗ l ∗ δ(θp))

∧ σ2
i = (vt

mgc, θ2, l)

∧ σ2 = (vt
mgcstartm, θ2 ∗ θp, l)

∧ σ1
i ∗ σ2

i = (αv, θ1 ∗ θ2, l) ∧ θ1 = θ′1 ∗ θp.

In this case

σ1 ∗ σ2 = (αv′startm, θ1 ∗ θ2, l),

is defined and

σ1
i ∗ σ2

i
(t,call m)−−−−−→t,P(L) σ

1 ∗ σ2.

Then ς1 ∗ ς2 is defined as well and

ς1i ∗ ς2i
(t,call m)−−−−−→P(L) ς

1 ∗ ς2.

Hence, the desired τi+1 is τiϕ1, and its derivation is

ς10 ∗ ς20
τi−→∗

P(L) ς
1
i ∗ ς2i

(t,call m)−−−−−→P(L) ς
1 ∗ ς2.

• ϕ1, ϕ2 ∈ ECallActdom(Γ1) such that ϕ2 is an outermost call to
methods from dom(Γ1) in ξ and the actions are derived using
rules (18) and (18), (12) and (18), or (18) and (15), respectively.
Then ϕ1 is an outermost call to methods from dom(Γ1) in η.
These cases are handled analogously to the previous one.

• ϕ1, ϕ2 ∈ ERetActdom(Γ1) such that ϕ2 is an outermost return
from methods in dom(Γ1) in ξ and the actions are derived using
rules (14) and (16), (19) and (19), (14) and (19), or (19) and (16),
respectively. Then ϕ1 is an outermost return from methods in
dom(Γ1) in η. This case is handled analogously to the previous
one.

• ϕ1 ∈ ERetActdom(Γ1) and ϕ2 ∈ PAct, such that ϕ2 is derived
using (8) and the actions are performed by the same thread. Then
ϕ1 is an outermost return from methods in dom(Γ1) in η. In this
case for some θ1, θ2, θ′2 ∈ State, v, v′ ∈ Node, α, β ∈ Pos and
l ∈ Foot, we have that (v, c, v′) is in the control-flow relation of
P(L) and

σ1
i = (αvm, θ1, δ(θ2) ∗ l) ∧
σ2

i = (vt
mgcβv, θ2, l) ∧

σ2 = (vt
mgcβv

′, θ′2, l) ∧ θ′2 ∈ fc(θ2) ∧
σ1

i ∗ σ2
i = (αβv, θ1 ∗ θ2, l).

Since θ1 ∗ θ2 is defined, by (3), θ′2 ∈ fc(θ2) implies that θ1 ∗ θ′2
is defined as well. Then

σ1
i ∗ σ2 = (αβv′, θ1 ∗ θ′2, l).

is defined. From (2) we have

θ1 ∗ θ′2 ∈ {θ1} ∗ fc(θ2) = fc(θ1 ∗ θ2).

Hence, σ1
i ∗σ2

i
ϕ2−→t,P(L) σ

1
i ∗σ2, so that ς1i ∗ς2i

ϕ2−→P(L) ς
1
i ∗ς2.

The desired τi+1 is τiϕ2, and its derivation is:

ς10 ∗ ς20
τi−→∗

P(L) ς
1
i ∗ ς2i

ϕ2−→P(L) ς
1
i ∗ ς2.

• ϕ1 ∈ ERetActdom(Γ1) and ϕ2 ∈ CallRetAct ∪
ECallRetActdom(Γ0) such that the actions are executed by
the same thread and ϕ2 is not an outermost call to or return from
a method in dom(Γ1) in ξ. Then ϕ1 is an outermost return from
methods in dom(Γ1) in η. This case is handled similarly to the
previous one.

• ϕ1 ∈ ECallActdom(Γ2−Γ1) and ϕ2 ∈ ECallActdom(Γ1), such that
the actions are performed by the same thread and ϕ1 is derived
using rule (12). Then ϕ2 is an outermost call to methods from
dom(Γ1) in η. Let ϕ1 = (t, callm(θp)), (Γ2−Γ1)(m) = (p,),
θp ∈ pt. In this case for some θ1, θ2 ∈ State, θp ∈ p,

v, v′ ∈ Node, α ∈ Pos and l ∈ Foot, we have
σ1

i = (wt
mgc, θ1, δ(θ2) ∗ l) ∧

σ2
i = (vt

mgc, θ2, l) ∧
σ1 = (wt

mgcstartm, θ1 ∗ θp, l) ∧
σ1

i ∗ σ2
i = (wt

mgc, θ1 ∗ θ2, l),
where {θ1} ∗ δ(θ2) ∗ l ∗ {θp} 6= ∅. Hence,

σ1 ∗ σ2
i = (wt

mgcstartm, θ1 ∗ θ2 ∗ θp, l).

is defined (note that this relies crucially on the requirement that
the state θp allocated in rule (12) be compatible with the footprint
of the imported libraries). Hence, σ1

i ∗ σ2
i

ϕ1−→t,P(L) σ
1 ∗ σ2

i .
Then ς1 ∗ ς2i is defined and ς1i ∗ ς2i

ϕ1−→P(L) ς
1 ∗ ς2i . The desired

τi+1 is τiϕ1, and its derivation is:

ς10 ∗ ς20
τi−→∗

P(L) ς
1
i ∗ ς2i

ϕ1−→P(L) ς
1 ∗ ς2i .

• ϕ1 ∈ PAct ∪ CallRetAct and ϕ2 ∈ ECallActdom(Γ1), such
that the actions are performed by the same thread. Then ϕ2 is
an outermost call to methods from dom(Γ1) in η. This case is
handled similarly to the previous one.

• ϕ1 ∈ PAct ∪ CallRetAct ∪ ECallRetActdom(Γ2−Γ1) and ϕ2 ∈
PAct ∪ CallRetAct ∪ ECallRetActdom(Γ0), such that the actions
are executed by different threads and ϕ2 is not an outermost call
to or return from a method in dom(Γ1) in ξ. As before, we can
show that

ς1i ∗ ς2i
ϕ1−→P(L) ς

1 ∗ ς2i ∧ ς1 ∗ ς2i
ϕ2−→P(L) ς

1 ∗ ς2.
This gives the extension of the given computation for τi by two
further steps:

ς10 ∗ ς20
τiϕ1ϕ2−−−−−→∗

P(L) ς
1 ∗ ς2.

It follows that the trace τiϕ1ϕ2 is the desired τi+1.
It is easy to check that all the other cases are impossible.

We have just shown how to construct τi for all the cases. The
desired derivation is constructed as the limit of the sequence for τi.
It is easy to show that the resulting trace τ satisfies

clientdom(Γ1)(τ) = ierase(dom(Γ1)−dom(Γ0))∩dom(Γ2)(η)

and

erasedom(Γ1)−dom(Γ0)(libdom(Γ1)(τ)) = erasedom(Γ1)−dom(Γ0)(ξ).

2

B.6 Proof of Theorem 3
Consider θ0, θL and l0 such that (θL, l0) ∈ IL (θ0, δ(θL) ∗ l0) ∈
IP . By contradiction, assume there is an unsafe execution ofP(L):
for some trace τ , ϕ ∈ Act, pc ∈ ThreadID ⇀ Pos, θ ∈ State, we
have

(pc0, θ0 ∗ θL, l0,ThreadID)
τ−→∗

P(L) (pc, θ, l, κ)
ϕ−→P(L) >.

Let ϕ = (t,). The prefix τ of the faulting trace is safe. From
the proof of Lemma 12, for some η and ξ such that (θ0, δ(θL) ∗
l0, η) ∈ JPK and (θL, l0, ξ) ∈ JLK, and θ1, θ2 ∈ State such that
θ = θ1 ∗ θ2, we have

(pc0, θ0, δ(θL),ThreadID)
η−→∗

P
(clientdom(Γ1)(pc), θ1, δ(θ2) ∗ l, clientdom(Γ1),pc(t),t(κ))

and

(pc0, θL, δ(l0),ThreadID)
ξ−→∗

L
(libdom(Γ1)(pc), θ2, l, libdom(Γ1),pc(t),t(κ)).

We now show that either P or L is unsafe by considering every
rule of the operational semantics that may produce the faulting
transition ϕ.
• Rule (9) such that ϕ = (t, c) ∈ PAct and f t

c(θ) = >. By (2) this
implies f t

c(θ1) = f t
c(θ2) = >. Besides, for some v, v′ ∈ Node,

(v, c, v′) is in the control-flow relation of P(L) and pc(t) = v
ends with v. If v belongs to the code of P , then

(clientdom(Γ1)(pc), θ1, δ(θ2)∗l, clientdom(Γ1),pc(t),t(κ))
ϕ−→ >;

if it belongs to L, then

(libdom(Γ1)(pc), θ2, l, libdom(Γ1),pc(t),t(κ))
ϕ−→ >.

In both cases either P or L is unsafe.
• Rule (13) such that ϕ = (t, call m(ε)). Let Γ0(m) = (p,).

Then for some v, v′ ∈ Node, (v,m, v′) is in the control-flow
relation of P(L), pc(t) ends with v, and θ 6∈ State ∗ pt. The
latter implies θ1, θ2 6∈ State ∗ pt. Like in the previous case, this
means that either P or L is unsafe.

• Rule (17) such that ϕ = (t, ret m(ε)) and m ∈ dom(Γ2) −
dom(Γ1). Let (Γ2 ∩ Γ1 − Γ0)(m) = (, q), then pc(t) =
vt

mgcendm and θ 6∈ State ∗ qt. The latter implies θ1 6∈ State ∗ qt.
But then P is unsafe.

• Rule (17) such that ϕ = (t, ret m(ε)) and m ∈ (dom(Γ2) ∩
dom(Γ1)) − dom(Γ0). Let (Γ2 ∩ Γ1 − Γ0)(m) = (, q), then
pc(t) = vt

mgcendm and θ 6∈ State ∗ qt. The latter implies
θ2 6∈ State ∗ qt. But then L is unsafe.

2

C. Logic for safety
In this section we review an existing program logic that can be
used to reason about open programs of Section 3. In Appendix D
we extend the logic presented here for establishing the notion of
linearizability proposed in Section 4.

Proving the safety of open programs is convenient in separation
logics [29], because of their ability to reason naturally about owner-
ship transfer. To deal with algorithms of the kind present in modern
concurrent libraries, we need a logic that can handle programs with
a high degree of interference between concurrent threads. For this
reason, we use RGSep [32], which combines rely-guarantee (aka
assume-guarantee) reasoning [19, 27] with separation logic [29].

The main idea of the logic is to partition the program memory
into several thread-local parts (each of which can only be accessed
by a given thread) and the shared part (which can be accessed by
all threads). The partitioning is defined by proofs in the logic: an
assertion in the code of a thread restricts its local state and the
shared state. Additionally, the partitioning is dynamic, meaning that
we can use ownership transfer to move some part of the local state
into the shared state and vice versa. Rely and guarantee conditions
are then specified with sets of actions, which are relations on the
shared state determining how threads can change it. This is in
contrast with the original rely-guarantee method, in which rely
and guarantee conditions are relations on the whole program state.
Thus, while reasoning about a thread, we do not have to consider
local states of other threads.

We present the logic in an abstract form [6], i.e., without fixing
the underlying separation algebra State of memory states. Also, the
variant of the logic we present here includes logical variables from
a set LVar = LIVar] LSVar. Variables from LIVar = {x, y, . . .}
range over integers and those from LSVar = {X,Y, . . .} over
memory states. Let LVal = State∪Z be the set of values of logical
variables, and LInt = LVar → LVal the set of their interpretations
respecting the types.

We assume an assertion language for denoting subsets of
State× LInt, including at least the following connectives:

p, q ::= true | X | ∃X. p | ¬p | p ∧ q | p ∨ q | p⇒ q
| emp | p ∗ q | p −−∗ q

The interpretation of most of them is standard. Therefore, we only
give the most interesting cases:

θ, i |= X ⇐⇒ θ = i(X)
θ, i |= ∃X. p ⇐⇒ ∃θ′ ∈ State. (θ, i[X : θ′] |= p)
θ, i |= ∃x. p ⇐⇒ ∃v ∈ Z. (θ, i[x : v] |= p)
θ, i |= emp ⇐⇒ θ = ε
θ, i |= p ∗ q ⇐⇒ ∃θ0, θ1. (θ0 ∗ θ1)↓∧ θ0 ∗ θ1 = θ ∧

θ0, i |= p ∧ θ1, i |= q
θ, i |= p −−∗ q ⇐⇒ ∀θ′. ((θ ∗ θ′)↓∧ (θ′, i |= p)) ⇒

(θ ∗ θ′, i |= q)

With the aid of −−∗, called separating implication, we can define
p(X) for an assertion p as syntactic sugar for

true ∗ (emp ∧ (X −−∗ p)).
Informally, p(X) does not restrict the current state, but requires
thatX be bound to some state satisfying p. We use it extensively in
our extension of the logic for reasoning about linearizability (Ap-
pendix D). We also assume a language for denoting parameterised
predicates. For an assertion p denoting a parameterised predicate
and t ∈ ThreadID, the assertion pt denotes the predicate JpKt.

The above assertion language can be extended as needed when
we consider particular instatiations of State. For all assertion lan-
guages we introduce in this paper, we use the usual operator J·K
for computing assertion denotations. For instance, for the language
above, JpK = {(θ, i) | (θ, i |= p)}.

Since RGSep partitions the program state into thread-local and
shared parts, it has to extend the above assertion language so that
assertions denote subsets of State × State × LInt. Here the first
component represents the state local to the thread in whose code the
assertion is located and the second the shared state. The assertion
language of RGSep is as follows:

P,Q ::= p | p | P ∗Q | P ∧Q | P ∨Q
with the following semantics:

θ, θ′, i |= p ⇐⇒ (θ, i |= p)
θ, θ′, i |= p ⇐⇒ θ = ε ∧ (θ′, i |= p)
θ, θ′, i |= P ∗Q ⇐⇒ ∃θ1, θ2. θ = θ1 ∗ θ2 ∧

(θ1, θ
′, i |= P) ∧ (θ2, θ

′, i |= Q)

An assertion p denotes the local-shared state pairs with the local
state satisfying p; p the pairs with the empty local state and the
shared state satisfying p; P ∗ Q the pairs in which the local state
can be divided into two substates such that one of them together
with the shared state satisfies P and the other together with the
shared state satisfies Q. The semantics of ∧ and ∨ is standard.

The judgements of our logic include rely and guarantee condi-
tions determining how a command or its environment changes the
shared state. To this end, we assume a language for expressing such
conditions R,G, . . ., denoting relations over State × State. Such
conditions are often expressed using actions of the form p ; q.
Informally, this action changes the part of the shared state that
satisfies p into one that satisfies q, while leaving the rest of the
shared state unchanged. Formally, its meaning is a binary relation
on shared states:
Jp ; qK = {(θ1 ∗ θ0, θ2 ∗ θ0) | ∃i. (θ1, i) ∈ JpK ∧ (θ2, i) ∈ JqK}.
It relates some initial state θ1 satisfying the precondition p to a
final state θ2 satisfying the postcondition q. In addition, there may
be some disjoint state θ0 that is not affected by the action.

In the following we denote with atomic { C } a block of
code C considered as one atomic command. While proving a pro-
gram, we assume that atomic method declarations in it are replaced
with ordinary ones, but with method implementations wrapped into
atomic blocks.

The judgements of the logic have the form
Γ | ∆ | R,G `w

t {P}C {Q}.
HereR andG are rely and guarantee conditions, andw ∈ {in, out}
indicates whether the command C is inside an atomic block or not.
The symbol t ∈ ThreadID is a thread identifier, C is a command
in the code of thread t, and P and Q are assertions describing the
local state of the thread and the shared state. The context Γ is a
syntactic version of a method specification for libraries with un-
specified implementation, which we introduced in Section 3, where
pre- and postconditions are syntactic assertions denoting param-
eterised predicates. We require that the assertions p be insensi-
tive to interpretations of logical variables in the following sense:
∀(θ, i) ∈ p.∀i′. (θ, i′) ∈ p. We also require that the assertions p
be precise, i.e., that for any i ∈ LInt and t ∈ ThreadID the pred-
icate {θ | (θ, i) ∈ JptK} be precise (Section 3). The context ∆

is a finite map from methods to rely-guarantee specifications of the
formR′, G′�{P ′}m {Q′}. The context ∆ provides specifications
of methods that are implemented in the program considered. Note
that a specification of a method in ∆ includes not only pre- and
postconditions, but also rely and guarantee conditions the method
admits. The domains of Γ and ∆ are required to be disjoint.

Informally, our judgement Γ |∆ |R,G `w
t {P}C {Q} as-

sumes that the command C is run by thread t, its environment
changes the shared state according to R, its initial state satisfies
P , and the methods it calls satisfy the contracts in Γ and ∆. Given
this, the judgement guarantees that the command is safe, changes
the shared state according to G, and its final state (if it terminates)
satisfies Q. We have a similar judgement

Γ | ∆ ` {P} C {Q}
for an open program C with a ground client, which may call meth-
ods undefined but specified in Γ or ∆.

We partition all the atomic commands in the program into those
that access only the local state of the thread executing them and
those that can additionally access the shared state. Atomic com-
mands of the latter kind are annotated with actions p ; q, as in
atomicp;q { C }, which determine how the command treats the
shared state (see below). These annotations are a part of proofs in
our logic.

In reasoning about how a command changes the shared state,
we need to make sure that its views of the state is up-to-date with
whatever changes its environment could make. For this reason,
we require that assertions P,Q in a judgement Γ |∆ |R,G `w

t

{P}C {Q} be stable under the rely R, i.e., insensitive to changes
allowed by the relation. Formally, an assertion P is stable under a
rely R when

∀(θ, θ1, i) ∈ JP K.∀θ2. (θ1, θ2) ∈ JRK ⇒ (θ, θ2, i) ∈ JP K.
The proof rules of RGSep are summarised in Figure 5. Most

of the rules are standard ones from Hoare logic. We have a single
axiom for primitive commands executing on the thread-local state
(PRIM), which allows any pre- and postconditions consistent with
the semantics of the command. The axiom uses the following lifting
of the denotations of primitive commands c ∈ PComm (Section 2)
to State× LInt:

f t
c(θ, i) = f t

c(θ)× {i}, (30)

if f t
c(θ) 6= >; f t

c(θ, i) = >, otherwise. When particular State and
f t

c are chosen, the axiom can be specialised to several syntactic ver-
sions, obtaining a concrete instance of the abstract logic presented
here.

The ATOMICOUT rule handles commands accesssing the shared
state, according to the corresponding annotation p0 ; q0: it com-
bines the local state p of the current thread with the part of the
shared state satisfying p0, and runs C as if this combination were
in the thread’s local state and the environment did not interfere. To
model the latter the rely is replaced by ∅. The rule then splits the
resulting state into local and shared parts, determining the shared
part as the one that satisfies the annotation q0. The rule requires that
the change C makes to the shared state be allowed by its guarantee
G. The ATOMICIN rule just ignores nested atomic blocks.

The consequence rule (CONSEQ) allows strenthening the pre-
condition and the rely and weakening the postcondition and the
guarantee. The disjunction rule (DISJ) is useful for proof by cases.
EXISTS1 rule is a usual rule from Hoare logic, and EXISTS2 its
generalisation to logical variables ranging over states. The frame
rule (FRAME) ensures that if a command C is safe when run from
states in P , it does not touch an extra piece of state described by
F . We have to require that the frame F be stable under the current
rely R in case C contains commands changing the shared state.

The CALL1 axiom is a variation on the procedure call axiom
from Hoare logic, handling calls to methods in Γ with unspecified
implementations. To prove a call to a methodmwith a specification
{p}m {q}, we instantiate p and q with the current thread idendifier

Figure 5. Proof rules of RGSep
f t

c(JpK) v JqK
Γ | ∆ | R, G `w

t {p} c {q} PRIM

Γ | ∆ | ∅, G `in
t {p ∗ p0}C {q ∗ q0} Jp0 ; q0K ⊆ G

Γ | ∆ | R, G `out
t {p ∗ p0 ∗ r } atomicp0;q0 {C } {q ∗ q0 ∗ r}

ATOMICOUT

Γ | ∆ | R, G `in
t {p}C {q}

Γ | ∆ | R, G `in
t {p} atomic {C } {q}

ATOMICIN

Γ | ∆ | R, G `w
t {P1}C1 {P2}

Γ | ∆ | R, G `w
t {P2}C2 {P3}

Γ | ∆ | R, G `w
t {P1}C1; C2 {P3}

SEQ

Γ | ∆ | R, G `w
t {P}C1 {Q}

Γ | ∆ | R, G `w
t {P}C2 {Q}

Γ | ∆ | R, G `w
t {P}C1 + C2 {Q}

CHOICE

Γ | ∆ | R, G `w
t {P}C {P}

Γ | ∆ | R, G `w
t {P}C∗ {P} LOOP

P1 ⇒ P2 R1 ⇒ R2 G2 ⇒ G1 Q2 ⇒ Q1

Γ | ∆ | R2, G2 `w
t {P2}C {Q2}

Γ | ∆ | R1, G1 `w
t {P1}C {Q1}

CONSEQ

Γ | ∆ | R, G `w
t {P1}C {Q1}

Γ | ∆ | R, G `w
t {P2}C {Q2}

Γ | ∆ | R, G `w
t {P1 ∨ P2}C {Q1 ∨Q2}

DISJ

Γ | ∆ | R, G `w
t {P}C {Q}

Γ | ∆ | R, G `w
t {∃x. P}C {∃x. Q} EXISTS1

Γ | ∆ | R, G `w
t {P}C {Q}

Γ | ∆ | R, G `w
t {∃X. P}C {∃X. Q} EXISTS2

Γ | ∆ | R, G `w
t {P}C {Q} F is stable under R

Γ | ∆ | R, G `w
t {P ∗ F}C {Q ∗ F} FRAME

Γ, {p}m {q} | ∆ | R, G `w
t

{P ∗ pt}m {P ∗ qt}

CALL1

Γ | ∆, (R, G � {P}m {Q}) | R, G `w
t {P}m {Q} CALL2

Γ | ∆ | R1, G1 `w
1 {P1}C1 {Q1}

· · ·
Γ | ∆ | Rn, Gn `w

n {Pn}Cn {Qn}
Γ | ∆ ` {P1 ∗ . . . ∗ Pn}C1 ‖ . . . ‖ Cn {Q1 ∗ . . . ∗Qn}

(where Rt =
S
{Gk | 1 ≤ k ≤ n ∧ k 6= t})

PAR

Γ | ∆, ∆′ ` {P} C {Q}
∀(R, G � {Pm}m {Qm}) ∈ ∆′. ∀t ∈ ThreadID.

m ∈ M and (Γ | ∆, ∆′ | R, G `w
t {Pm}Cm {Qm})

Γ | ∆ ` {P} let {m = Cm | m ∈ M} in C {Q} LIBRARY

t, dispose the method precondition pt from the pre-state, and allo-
cate the method postcondition qt to the post-state. The disposal and
allocation here model the ownership transfer between the library of
m and its client. Note that p and q restrict only the thread-local state
of thread t. The CALL2 axiom allows using a method specification
from ∆ with the rely and the guarantee matching the current ones.

The PAR rule combines judgements about several threads. Note
that every thread in the rule assumes that the others satisfy their
respective guarantees. Pre- and postconditions of threads in the
premisses of the rule are ∗-conjoined in the conclusion. According

to the semantics of the assertion language, this takes the disjoint
composition of the local states of the threads and enforces that
the threads have the same view of the shared state. Finally, the
LIBRARY rule adapts the standard procedure declaration rule to our
setting and is used to reason about library declarations.

The following theorems show how the logic can be used to
establish the safety of open programs with and without a ground
client.

Theorem 25 (Soundness—client). Consider a program Γ ` C : ∅
with an initial condition I. Assume an assertion P is such that

∀(θ, l) ∈ I.∃(θ1, θ2, i) ∈ JP K. θ = θ1 ∗ θ2.
If Γ | ∅ ` {P} C {Q}, then C is safe for I.

Theorem 26 (Soundness—library). Consider a program Γ ` L :
Γ′ with an initial condition I. Assume a guarantee G, an assertion
inv and a context ∆ such that
• ∀(θ, l) ∈ I.∃(θ, i) ∈ JinvK;
• inv is stable under G;
• for all (R′, G′ � {Pm}m {Qm}) ∈ ∆ and t ∈ ThreadID

Γ | ∆ | R′, G′ `w
t {Pm}Cm {Qm};

• for all {pm}m {qm} ∈ Γ′ − Γ and t ∈ ThreadID

Γ | ∆ | G,G `w
t {inv ∗ pm

t } Cm {inv ∗ qm
t }.

Then L is safe for I.

The proofs are identical to the soundness proof of RGSep [32].

D. Logic for linearizability with ownership
transfer

We now extend the logic presented in Appendix C to reasoning
about our notion of linearizability (Section 4). The logic we present
here generalises the method of proving linearizability using lin-
earization points [1, 16, 32] to the setting with ownership transfer.

Consider the following program Γ ` L : Γ′ with an initial
condition I:

Γ′ = λm ∈M. {pm}m {qm},
L = let {m = Cm | m ∈M1} in

let {m = Cm | m ∈M2} in
. . .
let {m = Cm | m ∈Mk} in
[−]

for some sets M,Mi of methods such that M ⊆
S

i=1..k Mi.
The method of linearization points is restricted to proving the
linearization of L by a library L′ with all methods implemented
atomically. Our goal is thus to establish that (L, I) v (L′, I′),
where

L′ = let {atomicm = (skip∗;Ca
m; skip∗) | m ∈M1} in

let {atomicm = (skip∗;Ca
m; skip∗) | m ∈M2} in

. . .
let {atomicm = (skip∗;Ca

m; skip∗) | m ∈Mk} in
[−].

for some commands Ca
m, m ∈

S
i=1..k Mi.

Proof systems for linearizability typically do not allow library
specification to make any statements about liveness properties of
the library. Thus, the skip∗ statements in the abstract library im-
plementation L′ allow for any termination behaviour of its meth-
ods: the first one models the divergence before the method makes
a change to the library state using Ca

m, and the second, the diver-
gence after this. Here we restrict ourselves to verifying linearizabil-
ity with respect to abstract implementations capturing only safety
properties of a library; liveness properties can be handled follow-
ing [14].

The method of linearization points considers the concrete and
the abstract implementations of the library running alongside each
other. Both are run under their most general clients; however, while

Figure 6. Semantics of the assertion language of the logic for
linearizability

(θc, θa), (θ′c, θ
′
a), θ, ν, i |= Pre(p) ⇐⇒ θ, i |= p ∧ ν = Pre

(θc, θa), (θ′c, θ
′
a), θ, ν, i |= Post(p) ⇐⇒ θ, i |= p ∧ ν = Post

(θc, θa), (θ′c, θ
′
a), θ, ν, i |= Pr ∗Qr ⇐⇒

∃θ1c , θ2c , θ1a, θ2a, θ1, θ2, ν1, ν2. θc = θ1c ∗ θ2c ∧ θa = θ1a ∗ θ2a ∧
((θ1c , θ

1
a), (θ′c, θ

′
a), θ1, ν1, i |= Pr) ∧

((θ2c , θ
2
a), (θ′c, θ

′
a), θ2, ν2, i |= Qr) ∧

((ν1 = None ∧ ν2 = None ∧ ν = None) ∨
(ν1 = None ∧ ν2 ∈ {Pre,Post} ∧ ν = ν2 ∧ θ2 = θ) ∨
(ν1 ∈ {Pre,Post} ∧ ν2 = None ∧ ν = ν1 ∧ θ = θ1))

(θc, θa), (θ′c, θ
′
a), θ, ν, i |= pr ⇐⇒ θc, θa, i |= pr

(θc, θa), (θ′c, θ
′
a), θ, ν, i |= Pr ∧Qr ⇐⇒

((θc, θa), (θ′c, θ
′
a), θ, ν, i |= Pr) ∧

((θc, θa), (θ′c, θ
′
a), θ, ν, i |= Qr)

we consider all possible executions of the client of the concrete li-
brary, the client of the abstract one is allowed to call a method only
when the corresponding concrete method implementation is at a
certain linearization point. The linearization point thus determines
the place where the concrete implementation of the method ‘takes
effect’. Proving linearizability then boils down to checking that, if
the abstract method invocation receives the ownership of the same
piece of state upon its call as the corresponding concrete one, then
they will both return the same state at their returns. The sequence
of abstract method invocations at linearization points in an execu-
tion of the concrete implementation yields the desired linearizing
history of the abstract implementation. The conditions restricting
possible rearrangements of method invocations in the definition of
linearizability are trivially satisfied, since a linearization point is
inside the code of the corresponding concrete method.

The above method typically requires relating the states of the
two library implementations. For this reason, we adjust the asser-
tion language of Appendix C to describe such relations. Namely,
we define a new syntactic category

pr, qr ::= . . . | p | bpc
of relational assertions, where . . . duplicates the grammar of the
assertions p, q, . . . denoting subsets of State× LInt, but now with
p, q replaced by pr, qr . The assertion bpc denotes a state of the ab-
stract implementation satisfying p. Note that the resulting grammar
for pr disallows nested b·c operators.

The assertions pr, qr denote subsets of State × State × LInt
according to the following semantics:

θc, θa, i |= p ⇐⇒ (θc, i |= p) ∧ θa = ε
θc, θa, i |= bpc ⇐⇒ (θa, i |= p) ∧ θc = ε

We then modify the assertion language of RGSep as follows:
Pr ::= . . . | pr | pr | Pre(p) | Post(p)

This allows pieces of abstract state to be local or shared. The Pre
and Post assertions are used to reason about the correspondence
between pre- and postconditions of the concrete and the abstract li-
brary implementations (see below). The resulting assertions denote
subsets of

State2 × State2 × State× {Pre,Post,None} × LInt.

Here the first component represents a pair of thread-local states of
the concrete and abstract implementations, and the second, a pair
of shared states of these two implementations. The next two com-
ponents record the state given in a Pre or a Post assertion. The
semantics is given in Figure 6. The semantic definitions for asser-
tions not in the figure are obtained from the corresponding cases in
the logic of Appendix C either by ignoring the components corre-
sponding to Pre and Post, like in the case of pr , or by propagating
them to sub-assertions, like in the case of Pr ∧Qr .

Finally, we assume a language for expressing rely-guarantee
conditions Rr, Gr, . . ., over pairs of concrete and abstract shared
states; thus, Rr denotes a subset of State2 × State2.

The judgements of the new proof system have the form

Γ | ∆ | Rr, Gr `w,j
t {Pr} C {Qr},

where j is conc or abs, depending on whether C is a command
belonging to the concrete or the abstract implementation.

Having changed the assertion language, we now have to adjust
some of the proof rules in Figure 5. First, we lift transformers f t

c

defining the semantics of primitive commands c to State × State
in the following two ways: for all θ, θ′ ∈ State

f t
conc(c)(θ, θ

′) = f t
c(θ)× {θ′};

f t
abs(c)(θ, θ

′) = {θ} × f t
c(θ

′),

if f t
c on the corresponding single state is distinct from >; and >,

otherwise. The transformers define the effect of c executing on
the concrete, respectively, the abstract state. We then lift f t

j(c) to
State × State × LInt similarly to (30). We now replace the PRIM
axiom with two corresponding variants:

f t
j(c)(JprK) v JqrK

Γ | ∆ | R,G `w,j
t {pr} c {qr}

PRIM-j

for j ∈ {conc, abs}. The rest of the rules of the new logic are
obtained from the rules in Figure 5 by replacing `t with `j

t . We
only need to change the notion of stability: Pr is stable under Rr

when
∀((θc, θa), (θc

1, θ
a
1), θ, ν, i) ∈ JPrK.∀θc

2, θ
a
2 ∈ State.

((θc
1, θ

a
1), (θc

2, θ
a
2)) ∈ JRrK ⇒ ((θc, θa), (θc

2, θ
a
2), θ, ν, i) ∈ JPrK.

The definition of pr ; qr is adjusted similarly.
The proof method for linearizability builds on the technique for

proving the safety of library implementations described in Theo-
rem 26. To prove (L, I) v (L′, I′), we require a guarantee Gr , an
assertion invr , and a context ∆ such that
• ∀(θ, l) ∈ I, (θ′, l′) ∈ I′.∃i. (θ, θ′, i) ∈ JinvrK;
• invr is stable under Gr;
• for all (R′r, G

′
r � {Pr}m {Qr}) ∈ ∆ and t ∈ ThreadID

Γ | ∆ | R′r, G′
r `t {Pr}Cm {Qr}.

For an implementation Cm of a method m in the domain of
Γ′ − Γ, let C̃m be Cm with some of commands C inside atomic
blocks replaced by C; LCa

mM. Here we mark with L·M the code of
the abstract implementation, which is treated specially by the proof
system. The placement of LCa

mM thus fixes linearization points
inside the code of Cm. For every thread t and {pm} m {qm} ∈
Γ′ − Γ, we require a derivation of the following judgement:

Γ | ∆ | Gr, Gr `conc
t

{∃X.Pre(X) ∧ pm
t (X) ∧X ∗ inv}

C̃m

{∃Y.Post(Y) ∧ qm
t (Y) ∧ Y ∗ inv}

(31)

with abstract method invocations LCa
mM inside Cm handled using

the following proof rule:

Γ | ∆ | R′r, G′
r `in,abs

t

{∃X. pm
t (X) ∧ bXc ∗ Pr)} Ca

m {∃Y. qm
t (Y) ∧ bY c ∗Qr}

Γ | ∆ | R′r, G′
r `in,conc

t

{∃X.Pre(X) ∧ Pr} LCa
mM {∃X,Y.Post(Y) ∧Qr}

LINPOINT

The rationale behind (31) and LINPOINT is as follows. As noted
above, in the method of linearization points we assume that the
abstract implementation, when executed at a linearization point,
receives the ownership of the same piece of state as the concrete
one called earlier. We then have to establish that the piece of state
the abstract implementation returns to the client at the linearization
point is the same as what the concrete one returns at the method
return. Pre and Post predicates are used to reason about such rela-
tionships. In the precondition of (31), Pre(X) records the state X
received by the concrete implementation when it was called, which
is assumed to satisfy the precondition pm

t . According to the pre-
condition of the premiss of LINPOINT, the abstract implementation

then receives the abstract copy bXc of the state passed to the con-
crete implementation at its invocation, as recorded by the Pre(X)
predicate. Here we can also assume that the state X satisfies the
precondition pm

t . LINPOINT requires the abstract implementation
Ca

m to be verified in the abstract proof system, where primitive
commands can only act on the abstract state. In the postcondition
of the premiss of LINPOINT, we require the abstract implementa-
tion to produce a piece of abstract state bY c such that Y satisfies
qm

t . The postcondition of the conclusion of LINPOINT then records
this state in Post(Y). Finally, Post(Y) is used in the postcondition
of (31) to check that the concrete implementation returns the same
state as the abstract one. All proof rules except LINPOINT do not
change Pre and Post, treating them as ghost state.

The proof method also requires the abstract implementation to
be executed exactly once during the execution of a concrete one.
To this end, LINPOINT rule exchanges a Pre assertion for a Post
one, and the semantics of ∗ prohibits duplicating the assertions.
This ensures that only one linearization point can be present in any
execution of the method. Note that, in LINPOINT, Pr can contain
free occurrences of X and Qr of Y , thus correlating the current
state with the auxiliary information in Pre and Post predicates.

Theorem 27 (Soundness). Under the above conditions, L and L′
are safe for I and I′, respectively, and (L, I) v (L′, I′).

Despite the presented logic being based on an existing method of
linearization points, our extension to ownership transfer is new,
with the main technical novelty being our use of logical variables
ranging over states to track correlations between concrete and ab-
stract pre- and postconditions.

E. Proof of Michael and Scott’s queue
Non-blocking queue with a memory allocator. In Figure 7 we
present the concurrent queue implementation due to Michael and
Scott [21] we refered to in Section 6. For readability, in exam-
ples we use the full C language instead of the minimalistic one
for which we formalise our results. A client using the implemen-
tation can call several enqueue, dequeue or isEmpty operations
concurrently. The queue is non-blocking, i.e., implemented with
compare-and-swap operations (CAS) instead of locks. CAS takes
three arguments: a memory address addr, an expected value v1,
and a new value v2. It atomically reads the memory address and
updates it with the new value when the address contains the ex-
pected value; otherwise, it does nothing. In C syntax this might be
written as follows:

atomic {
if (*addr==v1) { *addr=v2; return 1; }
else { return 0; }

}

In most architectures an efficient CAS (or an equivalent operation)
is provided natively by the processor.

Like most concurrent algorithms with explicit memory manage-
ment, the queue algorithm uses a custom memory allocator to al-
locate Node structures, which Michael and Scott implement using
a concurrent non-blocking stack due to Treiber [30] (Figure 8). We
first explain this algorithm, as the simpler one of the two.
Memory allocator. The allocator stores the free list of memory
blocks of size sizeof(Node) as a linked list, pointed to by the
variable Top. The pointer to the next element of the list is stored
at the beginning of each block. We assume sizeof(Node) ≥
sizeof(Block∗) + sizeof(unsigned), so that the pointer can
be stored without overwriting the last counter field of the structure.
As we noted in Section 6, the queue algorithm relies on this field
not being changed by the memory allocator even after a node is
deallocated. For brevity we omitted the initialisation code.

The operations on the list are implemented as follows. The free
operation (i) reads the current value of the top-of-the-stack pointer
Top; (ii) stores the read value of Top at the beginning of the block

Figure 7. Michael and Scott’s non-blocking queue [21]

struct Node { NodeRef next; int val; };
struct NodeRef { Node *ptr; unsigned count; };
NodeRef head, tail;

void init() {
head = (Node*)alloc();
head->next = NULL;
tail = head;

}

int enqueue(int val) {
Node *node;
NodeRef next, last;
node = alloc();
if (node == NULL) return FAIL;
node->val = val;
node->next.ptr = NULL;
while (true) {
atomic { last = tail; }
atomic { next = last.ptr->next; }
if (atomic { tail != last }) continue;
if (next.ptr == NULL) {
if (CAS(last.ptr->next, next,

NodeRef(node, next.count+1)))
break;

} else
CAS(tail, last, NodeRef(next.ptr, last.count+1));

}
CAS(tail, last, NodeRef(next.ptr, last.count+1));
return SUCCESS;

}

int dequeue() {
NodeRef next, first, last;
int val;
while (true) {
atomic { first = head; }
atomic { last = tail; }
atomic { next = first.ptr->next; }
if (atomic { head != first }) continue;
if (first.ptr == last.ptr) {
if (next.ptr == NULL) return EMPTY;
CAS(tail, last, NodeRef(next.ptr, last.count+1));

} else {
atomic { val = next->val; }
if (CAS(head, first,

NodeRef(next.ptr, first.count+1)))
break;

}
}
free(first.ptr);
return val;

}

int isEmpty() {
NodeRef next, first, last;
while (true) {
atomic { first = head; }
atomic { last = tail; }
atomic { next = head.ptr->next; }
if (head != first) continue;
if (first != last) return 0;
if (next.ptr == NULL) return 1;
CAS(tail, last, NodeRef(next.ptr, last.count+1));

}
}

block being deallocated; and (iii) atomically updates the top-of-
the-stack pointer with the new value block. If the pointer has
changed between (i) and (iii), the CAS fails and the operation is
restarted. The alloc operation is implemented in a similar way.
Note that it returns NULL when the allocator is out of memory.

To avoid the ABA problem (Section 6), the algorithm associates
a counter with the Top variable, incremented on every modification.
This ensures that, when a CAS succeeds, the Top variable has not
changed since it was read by the thread that executed it: the counter
excludes the possibility of the variable being changed temporarily

Figure 8. A concurrent memory allocator implemented using
Treiber’s stack [30]

struct Block { Block *next; };
struct BlockRef { Block *ptr; unsigned count; };
BlockRef Top;

void free(void *block) {
BlockRef t, x;
do {
atomic { t = Top; }
(Block*)block->next = t.ptr;
x = BlockRef((Block*)block, t.count+1);

} while (!CAS(&Top, t, x));
}

void *alloc() {
BlockRef t, x;
do {
atomic { t = Top; }
if (t.ptr == NULL)
return NULL;

x = BlockRef(t.ptr->next, t.count+1);
} while (!CAS(&Top, t, x));
return t.ptr;

}

and then restored to the previous value. We assume that the size
of the NodeRef structure is of a size such that it can be read
and written to atomically. Following Michael and Scott [21], we
assume that the modification counter is unbounded, which is clearly
idealistic. However, a version of this algorithm with a bounded
counting mechanism does get used in practice, e.g., in Java memory
management2. In this case, a bound is picked such that an overflow
will (hopefully) not occur, and a bounded counter will be equivalent
to an unbounded one.

Consider an execution of the alloc method in which it is
preempted in between reading Top and t.ptr->next. Another
alloc method invocation might run to completion, removing the
memory block t.ptr points to and returning a pointer to it to the
client of the allocator. When the first alloc method wakes up, it
will thus read a memory cell that is being used by the client. This
does not cause a problem, since the allocator only reads the cell,
but not writes to it, and free cells are never returned to the operating
system. However, this means that in our proof we cannot consider
the state of the allocator as being completely disjoint from the state
of its client.
Non-blocking queue. We now give an explanation of the Michael
and Scott’s queue algorithm3. The algorithm in Figure 7 imple-
ments the queue as a singly-linked list with head and tail point-
ers. The head pointer always points to a dummy node, which is the
first node in the list; tail points to either the last or second to last
node in the list. The implementation calls the allocator to create
new nodes in the list representing the queue. The enqueue opera-
tion returns FAIL if the allocator runs out of memory, and SUCCESS
in all other cases. Like the allocator implementation, this algorithm
uses modification counters to avoid the ABA problem, this time for
all nodes in the queue. It relies on the fact that modification coun-
ters only increse, and are not modified by the memory allocator.
As before, the queue implementation might end up reading from a
memory cell freed to the allocator (but not writing to it).

The enqueue operation takes place in two distinct steps. Nor-
mally, the enqueue method creates a new node by calling the mem-
ory allocator, locates the last node in the queue, and performs the
following two steps:
• executes a CAS to append the new node; and
• executes a CAS to swing the queue’s tail from the prior last

2 D. F. Bacon. Parallel and concurrent real-time garbage collection. Slides
from a talk at a Summer School on Trends in Concurrency, 2008.
3 M. Herlihy and N. Shavit. The Art of Multiprocessor Programming, 2008.

node to the current last node.
Because these two steps are not executed atomically, every other
method call must be prepared to encounter a half-finished enqueue
call, and to finish the job (“help” the enqueuer).

In more detail, an enqueuer creates a new node with the new
value to be enqueued, reads tail, and finds the node that appears
to be last. To verify that node is indeed last, it checks whether
the node has a successor. If the node does not have a successor,
the thread attempts to append the new node using a CAS. If the
CAS succeeds, the thread uses a second CAS to advance tail to
the new node. Even if this second CAS fails, the thread can still
return successfully because, as it happens, the CAS fails only if
some other thread “helped” it by advancing tail. If the tail node
has a successor, then the method tries to “help” other threads by
advancing tail to refer directly to the successor before trying
again to insert its own node.

The dequeue method checks that the queue is nonempty by
checking that the next field of the head node is not null. It then
executes a CAS to change head from the sentinel node to its
successor, making the successor the new sentinel node. There is,
however, a subtle issue: before advancing head one must make sure
that tail is not left referring to the sentinel node which is about
to be removed from the queue. To avoid this problem dequeue
performs a test: if head equals tail and the (sentinel) node they
refer to has a non-null next field, then the tail is deemed to be
lagging behind. As in the enqueue method, dequeue then attempts
to help make tail consistent by swinging it to the sentinel node’s
successor, and only then updates head to remove the sentinel. The
value is read from the successor of the sentinel node.

Finally, isEmpty is just a simplified version of dequeue.
Formal setting. We define an extension RAMµ of RAM with the
kinds of permissions we need to verify the example. Let the set of
permissions be:

Permµ = {1, µ} × {a, i}.

The permission (1, a) denotes the full permission for a memory
cell, and it allows reading from and writing to a memory cell (re-
call that disposing a cell is forbiden in our language as discussed in
Section 2). The permission (µ, a) allows reading a cell; however,
unlike read permissions in RAMp it does not prohibit other threads
from writing to the cell. Hence, the value read using a µ-permission
can be arbitrary. Permissions (1, i) and (µ, i) have the same mean-
ing, except that additionally the number stored in the cell can only
be increased; thus, it is not possible to decrement the contents of
the cell using such a permission, and for two successive reads of
u1 and u2 from the cell using a (µ, i) permission, we always have
u1 ≤ u2. A part of our intuition behind Permµ is formalised by the
following partial operation · on Permµ:

(µ,m) · (µ,m′) =

(µ,m), if m = m′;
undefined, otherwise.

(µ,m) · (1,m′) = (1,m′) · (µ,m) =

(1,m), if m = m′;
undefined, otherwise.

(1,m) · (1,m′) = undefined.

Note that any number of (µ,m)-permissions can be generated by a
full permission.

Using Permµ, we now define RAMµ as follows:

Loc = N+ Val = Z
RAMµ = Loc →fin (P(Val)× Permµ).

For A ⊆ Val, we write upclosed(A) to mean that

∀v, v′ ∈ Val. v ≤ v′ ∧ v ∈ A⇒ v′ ∈ A.

Figure 9. Transition relation for sample primitive commands in
the RAMµ model. The evaluation of expressions JEK ignores the
permission part of the model, and it is nondeterministic. It returns
an element in P(Val ∪ {>}).
skip, θ ;t θ
[E]=E′, θ ;t θ[v : ({v′}, π)] if JEKθ,t ⊆ dom(θ), JE′Kθ,t ⊆ Val,

v ∈ JEKθ,t, v′ ∈ JE′Kθ,t, θ(v) = (, (1, a))
[E]=E′, θ ;t θ[v : ({v′}, π)] if JEKθ,t ⊆ dom(θ), JE′Kθ,t ⊆ Val,

v ∈ JEKθ,t, v′ ∈ JE′Kθ,t,
θ(v) = (V, (1, i)), ∀x ∈ V. v′ ≥ x

[E]=E′, θ ;t > if the above condition does not hold
assume(E), θ ;t θ if JEKθ,t ⊆ Val and ∃v. v ∈ JEKθ,t ∧ v 6= 0
assume(E), θ ;t > if JEKθ,t 6⊆ Val

The ∗ operator on RAMµ is defined as follows: for all x ∈ Loc

(θ0 ∗ θ1)(x) =8>>>>>>>>>>><>>>>>>>>>>>:

θ0(x), if θ1(x)↑;
θ1(x), if θ0(x)↑;
(v0 ∩ v1, π0 · π1), if θi(x)= (vi, πi), πi = (µ,);

(vi, π0 · π1), if θi(x)= (vi, πi), πi = (1, a),

v|i−1| = Val;

(vi, π0 · π1), if θi(x)= (vi, πi), πi = (1, i),

vi ⊆ v|i−1|, upclosed(v|i−1|);

undefined, otherwise.

The definition of the semantics of the primitive commands is
adjusted straightforwardly from the one over the domain RAMp of
Section A; see Figure 9.

The ad-hoc yet flexible permissions supported by RAMµ are
designed mainly to handle the state sharing between the queue and
the memory allocator. In more advanced concurrency logics [8],
these ad hoc permissions can be defined inside the logic, rather
than being hardcoded into the model.

An interesting feature of RAMµ is that the ∗ operation on it is
not cancellative. For example:

[1 : ({1}, (1, a))] ∗ [2 : ({1}, (1, a))] =
[1 : ({1}, (1, a))] ∗ ([2 : ({1}, (1, a))] ∗ [1 : ({1}, (µ, a))]).

The issue is that we might either leave µ-snapshots for memory
cells we are cancelling out in the residue or not. Fortunately, our
requirements on models of program states can be relaxed slightly as
follows. The cancellativity of ∗ is used to define a unique operation
for substracting a part of a state satisfying a precise predicate that
we use while defining the semantics of open programs in Figure 2.
There, given a state θ and a precise predicate p describing a pre- or
postcondition, we compute a state θ′ such that θ = θ′ ∗θp for some
θp ∈ p. Let us denote the resulting θ′ with θ \ p, which is defined
uniquely when ∗ is cancellative. In our proofs, the predicates p we
use in this context describe only full permissions. We can define
the result of θ \ p for such predicates p as the state θ′ such that
θ = θ′ ∗ θp, θp ∈ p and

∀x. (θp(x)↓ ⇒ θ′(x)↓) ∧
(∀V. θp(x) = (V, (1, i)) ⇒ θ′(x) = (V, (µ, i))).

It is easy to check that the latter condition makes θ′ defined
uniquely, by mandating that we leave µ-snapshots for all the mem-
ory cells we are transferring in θp.

A similar issue arises with the defintion of the δ function. Be-
cause ∗ is not cancellative, Property 2 in Definition 2 is not satis-
fied. We use this property to define the \ operation on footprints,
substracting the footprint of a state satisfying a pre- or postcondi-
tion. As in the case of ∗, we can define the result of l1 \ l2 directly
when l2 = δ(θp) for θp describing only full permissions. Take
θ ∈ l1. Then l1 \ l2 = δ(θ′), where θ′ satisfies the above condi-
tions in the definition of \ on states. It is again easy to check that
the \ operation is well-defined.

With the new definitions of the \ operations on states and foot-
prints, the proof of the Abstraction Theorem goes through as be-

fore.
To denote elements of RAMµ, we extend the assertion language

of Appendix D as follows:

p ::= . . . | E 7→ F | E 7→µ · | E 7→i F | E 7→i
µ F | trueµ

for a standard expression grammar for E,F , except we do not
allow the heap dereference operator [E′] to be used inside E and
F . The consequence of this condition is that JEKθ,t is always a
singleton set of values in Val, and it is independent of θ. From now
on, when we write semantics of expressions inside assertions, In
the following we thus write JEKt instead of JEKθ,t and treat it as
an element of Val, instead of a singleton set.

The meaning of assertions is as follows:
• E 7→ F denotes heaps with a full permission for a single cell at

the address E storing F ;
• E 7→µ · denotes a singleton heap with cell E having the permis-

sion (µ, a) and storing the set of all values Val;
• E 7→i

µ F denotes a heap with cellE having the permission (1, i)
and storing the set of all values greater than F ;

• E 7→i F denotes a heap with cell E having the permission (1, i)
and storing the set of all values greater than F ;

• trueµ denotes a heap with µ-permissions only.
Formally:

θ, i |= E 7→ F ⇐⇒ θ = [JEKt : ({JF Kt}, (1, a))]
θ, i |= E 7→µ · ⇐⇒ θ = [JEKt : Val, (µ, a))]
θ, i |= E 7→i F ⇐⇒ θ = [JEKt : ({JF Kt}, (1, i))]
θ, i |= E 7→i

µ F ⇐⇒ θ = [JEKt : ({v | v ≥ JF Kt}, (µ, i))]
θ, i |= trueµ ⇐⇒ ∀x. θ(x)↓ ⇒ θ(x) = (, (µ,))

All assertions used in the proof are implicitly conjoined with ∗
trueµ. For a field f of a C structure, we useE.f 7→ E′ as a shortcut
for E + off 7→ E′, where off is the offset of f in the structure. We
also use this notation for the other kinds of 7→ predicates.

Recall that our programming language (Section 2) does not al-
low procedures to have local variables, parameters or return values,
but provides atomic commands depending on the current thread
identifier. In the following we use global arrays indexed by thread
identifiers to represent such variables. This is enough, since we do
not allow recursive procedures. In particular, the return value is al-
ways represented by the array ret, and a procedure parameter by
an array with an identical name. For a global array var, we write
var P for ∃var . var[tid] 7→ var ∗ P and bvarc P for
∃var . bvar[tid] 7→ varc ∗ P . Note that here var is a physical ar-
ray, whereas var is a logical variable representing a value of one
of its slots. We assume that global variables are allocated at fixed
addresses.

We extend the setting of of Section D in two ways, which
can be easily accommodated. First, we allow an invocation of a
library method to receive the ownership of fixed thread-local data
structures representing its local variables, in addition to the shared
invariant inv.

Second, while verifying the code of the abstract implementa-
tion inside L·M, we are allowed to treat non-determinism angeli-
cally, choosing the values returned by non-deterministic expres-
sions ourselves. This is because the proof of linearizability con-
structs the execution of the abstract implementation linearizing
a given execution of the concrete one. To incorporate such non-
determinism, we allow the abstract library implementation to use
a special havoc(x) command, which assigns a non-deterministic
value to the address x and is treated angelically using the following
proof rule:

{E 7→ } havoc(E) {E 7→ F} HAVOC

The rule allows choosing any expression F as the value written to
E.

Finally, our proofs use prophecy variables4, which are often
needed in proofs of linearizability [32].

In the following proofs we use CASA,B(addr, v1, v2) as a short-
cut for

if (nondet()) {
atomicA {
assume(*addr == v1); *addr = v2;

}
return 1;

} else {
atomicB {
assume(*addr != v1);

}
return 0;

}
This definition is semantically equivalent to the definition given
at the beginning of this section, but allows different action an-
notations for the successful and the failure cases. We also use
CASf,A,B(addr, v1, v2) as a shortcut for

if (nondet()) {
atomicA {
assume(*addr == v1); *addr = v2; LfM;

}
return 1;

} else {
atomicB {
assume(*addr != v1);

}
return 0;

}

Specifications. The methods of the two libraries satisfy the follow-
ing specifications:
{ret emp} alloc()

{ret (ret = 0 ∧ emp) ∨ (ret 6= 0 ∧ Block(ret))}
{block Block(block)} free(block) {block emp}
{val , ret emp} enqueue(val)

{val , ret (ret = SUCCESS ∨ ret = FAIL) ∧ emp}
{ret emp} dequeue() {ret emp}
{ret emp} isEmpty() {ret (ret = 0 ∨ ret = 1) ∧ emp}

where
Block(x) = x.next.ptr 7→ ∗ x.next.count 7→i ∗ x.val 7→
The Block predicate describes permissions we associate with Node
structures while verifying the queue algorithm. The abstract atomic
implementations of the libraries are given in Figures 10 and 11.
These use abstract cells storing a sequence of queue elements or a
set of pointers to free memory blocks in the allocator. We assume
sequential primitive operations on such sequences and sets. Note
that, even though the abstract implementation of enqueue does
not call the memory allocator, it can still fail non-deterministically,
to simulate the behaviour of the concrete implementation. For the
same reason, alloc non-deterministically changes the contents of
the first sizeof(Block∗) bytes of the block it allocates.
Linearizability of the allocator. The detailed proofs of lineariz-
ability are given in Section E.1 below. The linearization point of
a free operation is at the successful CAS. If an alloc operation
returns NULL, its linearization point is at at the point when it reads
NULL from Top. Otherwise, it is at the successful CAS. It is easy to
check that all assertions used in the proof are stable. We also show
the treatment of the CAS operations using ATOMICOUT and LIN-
POINT rules in detail. For readability we inlined the bodies of ab-
stract methods called at linearization points, so that return state-
ments in them are meant to jump to the closing bracket of L·M.

4 M. Abadi and L. Lamport. The existence of refinement mappings. TCS,
1991

Figure 10. Abstract queue implementation

abstract Sequence<int> Queue;

int atomic enqueue_abs(int val) {
if (havoc()) {
add_to_tail(Queue, val)
return SUCCESS;

} else {
return FAIL;

}
}

int atomic dequeue_abs() {
if (!isEmpty(Queue))
return remove_head(Queue);

else
return EMPTY;

}

Figure 11. Abstract memory allocator implementation

struct Block { Block *next; };
abstract Set<void*> Mem;

void atomic free_abs(void *block) {
add(Mem, block);

}

void* atomic alloc_abs() {
void *b;
if (!isEmpty(Mem)) {
b = remove(Mem);
havoc(b, sizeof(Block*));
return b;

} else {
return NULL;

}
}

Linearizability of the queue. As we argued in Section 1, to verify
that the queue is linearizable, we need to refer to the state of the
memory allocator. This would complicate the proof if we consid-
ered the original allocator implementation. The Abstraction Theo-
rem allows us to avoid this using the method of abstracting nested
libraries in Section 5.1: as we explained in Section 6, we first re-
place the memory allocator with its atomic implementation and
then prove the linearizability of the queue using it.

The proof is analogous to existing proofs in the literature5; the
only added feature is the treatment of interactions with the memory
allocator. The linearization points for queue methods are as fol-
lows. A successful enqueue is linearized at the point when the
thread executes a CAS to link the new node into the list repre-
senting the queue. If dequeue returns a value, then its lineariza-
tion point occurs when it completes a successful CAS to change
head; otherwise it is linearized at the moment when it reads
first.ptr->next for the last time before returning.

We note that the queue might also function as a container,
storing data structures of a certain type instead of integers. The
proof of its linearizability can be generalised to this case on the
lines of the above proof of the memory allocator.

E.1 Detailed linearizability proofs

Auxiliary definitions for the proof of the linearizability of the memory
allocator.

Block(x, y) = x.next.ptr 7→ y ∗ x.next.count 7→i ∗ x.val 7→

Block(x) = ∃y. Block(x, y)

PBlock(x) = x.next.count 7→i ∗ x.val 7→

5 V. Vafeiadis. Shape-value abstraction for verifying linearizability. In VM-
CAI, 2009.

RBlock(x, y) = ∃X. x 7→ y ∗X ∗ bx 7→ ∗Xc ∧ (PBlock(x))(X)

&Top.ptr 7→ y ∗&Top.count 7→ c ∗ bMem 7→ Mc ;

&Top.ptr 7→ x ∗&Top.count 7→ (c+1) ∗ RBlock(x, y) ∗
b(Mem 7→ M] {x})c (Push)

&Top.ptr 7→ x ∗&Top.count 7→ c ∗ RBlock(x, y) ∗
b(Mem 7→ M] {x})c ;

&Top.ptr 7→ y ∗&Top.count 7→ (c+1) ∗ bMem 7→ Mc (Pop)

emp ; emp (Id)

G = Push ∪ Pop ∪ Id

ls(x, y, M) ⇔ (x = y ∧M = ∅ ∧ emp) ∨
(x 6= y ∧ x ∈ M ∧ ∃z. RBlock(x, z) ∗ ls(z, y, M − {x}))

StackInv(c) = ∃M, x. &Top.ptr 7→ x ∗&Top.count 7→ c ∗
ls(x, 0, M) ∗ bMem 7→ Mc

StackInv = ∃c. StackInv(c)

S(x, c, y) = ∃M. &Top.ptr 7→ x ∗&Top.count 7→ c ∗ RBlock(x, y) ∗
ls(y, 0, M) ∗ bMem 7→ Mc

Proof of the linearizability of the memory allocator.
struct Block { Block *next; };
struct BlockRef { Block *ptr; unsigned count; };
BlockRef Top;
abstract Set<void*> Mem;

void free(void *block) {
BlockRef t, x;
{t, x ∃X. Pre(X)∧X ∗ StackInv ∧ (block Block(block))(X)}
do {
{t, x, block ∃X. Pre(block[tid] 7→ block ∗X) ∧
X ∗ StackInv}

atomicId { t = Top; }
(Block*)block->next = t.ptr;
x = BlockRef((Block*)block, t.count+1);
{t, x, block Pre(block[tid] 7→ block ∗ block 7→ ∗X)∧
block 7→ t.ptr ∗X ∗ StackInv ∧ (PBlock(block))(X) ∧
x = BlockRef(block , t.count+1)}

} while (!CASfree abs(block),Push,Id(&Top, t, x));

{t, x, block Post(block[tid] 7→ block) ∧ StackInv}
}
{t, x, block Post(block[tid] 7→ block) ∧ StackInv}

void *alloc() {
BlockRef t, x;
{t, x, ret , bbc Pre(ret[tid] 7→ ret) ∧ StackInv}
do {
{t, x, ret , bbc Pre(ret[tid] 7→ ret) ∧ StackInv}
atomicId { t = Top; if (t.ptr == NULL) alloc_abs(); }
{t, x, ret , bbc (t.ptr = 0 ∧ Post(ret[tid] 7→ 0) ∧ StackInv) ∨
(Pre(ret[tid] 7→ ret) ∧
((∃c. StackInv(c) ∗ t.ptr.next 7→µ · ∧ c > t.count) ∨
(∃y. S(t.ptr, t.count, y) ∗ t.ptr.next 7→µ ·)))}

if (t.ptr == NULL)
{t, x, ret , bbc Post(ret[tid] 7→ 0) ∧ StackInv}
return NULL;

{t, x, ret , bbc Pre(ret[tid] 7→ ret) ∧
((∃c. StackInv(c) ∗ t.ptr.next 7→µ · ∧ c > t.count) ∨
(∃y. S(t.ptr, t.count, y) ∗ t.ptr.next 7→µ ·))}

atomicId { x = BlockRef(t.ptr->next, t.count+1); }
{t, x, ret , bbc Pre(ret[tid] 7→ ret) ∧
((∃c. StackInv(c) ∧ c > t.count) ∨
(∃y. S(t.ptr, t.count, y) ∧ x = BlockRef(y, t.count+1)))}

} while (!CASalloc abs(),Pop,Id(&Top, t, x));

{t, x, ret , bbc ∃X. Post(ret[tid] 7→ t.ptr ∗X)∧X ∗ StackInv ∧
(Block(t.ptr))(X)}

return t.ptr;

}
{t, x, ret , bbc StackInv ∗ (ret = 0 ∧ Post(ret[tid] 7→ 0)) ∨
(∃X. Post(ret[tid] 7→ ret ∗X) ∧X ∧ (Block(ret))(X))}

Linearization point of free in detail.
CASfree abs(block),Push,Id(&Top, t, x):

{t, x, block ∃X. Pre(block[tid] 7→ block ∗ block 7→ ∗X) ∧
block 7→ t.ptr ∗X ∗ StackInv ∧ (PBlock(block))(X) ∧
x = BlockRef(block , t.count+1)}

if (nondet()) {
atomicPush {

assume(Top == t);
{t, x, block ∃X. Pre(block[tid] 7→ block ∗ block 7→ ∗X) ∧
block 7→ t.ptr ∗X ∗&Top.ptr 7→ t.ptr ∗
&Top.count 7→ t.count ∗ bMem 7→ Mc ∧
x = BlockRef(block , t.count+1) ∧ (PBlock(block))(X)}

Top = x;
{t, x, block ∃X. Pre(block[tid] 7→ block ∗ block 7→ ∗X)
&Top.ptr 7→ block ∗&Top.count 7→ (t.count+1) ∗
block 7→ t.ptr ∗X ∗ bMem 7→ Mc ∧ (PBlock(block))(X)}

L
{t, x, block bMem 7→ M ∗ block[tid] 7→ blockc ∗
&Top.ptr 7→ block ∗&Top.count 7→ (t.count+1) ∗
RBlock(block , t.ptr)}

add(Mem, block);
{t, x, block b(Mem 7→ M]{block})∗block[tid] 7→ blockc∗
&Top.ptr 7→ block ∗&Top.count 7→ (t.count+1) ∗
RBlock(block , t.ptr)}

M
{t, x, block Post(block[tid] 7→ block) ∧
&Top.ptr 7→ block ∗&Top.count 7→ (t.count+1) ∗
bMem 7→ M] {block}c ∗ RBlock(block , t.ptr)}

}
{t, x, block Post(block[tid] 7→ block) ∧ StackInv}
return 1;

} else {
atomicId {

assume(Top != t);
}
{t, x, block ∃X. Pre(block[tid] 7→ block ∗ block 7→ ∗X) ∧
block 7→ t.ptr ∗X ∗ StackInv}

return 0;
}

Linearization point of alloc in detail.
CASalloc abs(),Pop,Id(&Top, t, x):

{t, x, ret , bbc Pre(ret[tid] 7→ ret) ∧
((∃c. StackInv(c) ∧ c > t.count) ∨
(∃y. S(t.ptr, t.count, y) ∧ x = BlockRef(y, t.count+1)))}

if (nondet()) {
atomicPop {

assume(Top == t);
{t, x, ret , bbc Pre(ret[tid] 7→ ret) ∗ RBlock(t.ptr, y) ∗
&Top.ptr 7→ t.ptr ∗&Top.count 7→ t.count ∗
b(Mem 7→ M] {t.ptr})c ∧
x = BlockRef(y, t.count+1)}

Top = x;
{t, x, ret , bbc Pre(ret[tid] 7→ ret) ∗ RBlock(t.ptr, y) ∗
&Top.ptr 7→ y ∗&Top.count 7→ (t.count+1) ∗
b(Mem 7→ M] {t.ptr})c}

L
void *b;
{t, x, ret bb ret[tid] 7→ c ∗ RBlock(t.ptr, y) ∗
&Top.ptr 7→ y ∗&Top.count 7→ (t.count+1) ∗
b(Mem 7→ M] {t.ptr})c}

if (!isEmpty(Mem)) {
b = remove(Mem);
{t, x, ret bb ret[tid] 7→ ∧ b = t.ptrc ∗
RBlock(t.ptr, y) ∗ bMem 7→ Mc ∗
&Top.ptr 7→ y ∗&Top.count 7→ (t.count+1)}

havoc(b, sizeof(Block*));
} else {
{false}
b = NULL;

}
{t, x, ret ∃X. bb ret[tid] 7→ ∗X ∧ b = t.ptrc ∗X ∗
&Top.ptr 7→ y ∗&Top.count 7→ (t.count+1) ∧
(Block(t.ptr))(X)}

return block;
{t, x, ret ∃X. bb ret[tid] 7→ t.ptr ∗Xc ∗X ∗
&Top.ptr 7→ y ∗&Top.count 7→ (t.count+1) ∧
(Block(t.ptr))(X)}

M
{t, x, ret , bbc ∃X. Post(ret[tid] 7→ t.ptr ∗X) ∧X ∗
&Top.ptr 7→ y ∗&Top.count 7→ (t.count+1) ∧
(Block(t.ptr))(X)}

}
return 1;

} else {
atomicPop {

assume(Top != t);
}
{t, x, ret Pre(ret[tid] 7→ ret) ∧ StackInv}
return 0;

}

Auxiliary definitions for the proof of the non-blocking queue.

Block(x, y, z) = x.next.ptr 7→ y ∗ x.next.count 7→i ∗ x.val 7→ z

Block(x, y) = Block(x, y,)

Block(x) = Block(x, ,)

RBlock(x) = ∃X. X ∗ bXc ∧ (Block(x))(X)

(Mem 7→ Mc] {x}) ∗ Block(x) ; Mem 7→ Mc (Alloc)

Mem 7→ Mc ; (Mem 7→ Mc ∪ {x}) ∗ Block(x) (Free)

&tail.ptr 7→ x ∗&tail.count 7→i c′ ∗
x.ptr 7→ 0 ∗ x.count 7→i c ∗ x.val 7→ a ∗ Queue 7→ αa ;

&tail.ptr 7→ x ∗&tail.count 7→i c′ ∗
x.ptr 7→ y ∗ x.count 7→i (c+1) ∗ x.val 7→ a ∗
y.ptr 7→ 0 ∗ y.count 7→i ∗ y.val 7→ b ∗ Queue 7→ αab

(Insert)

t 6= x ∧&head.ptr 7→ x ∗&head.count 7→i c ∗&tail.ptr 7→ t ∗
x.ptr 7→ y ∗ x.count 7→i c1 ∗ x.val 7→
y.ptr 7→ z ∗ y.count 7→i c2 ∗ y.val 7→ a ∗ Queue 7→ aα ;

&head.ptr 7→ y ∗&head.count 7→i (c+1) ∗
y.ptr 7→ z ∗ y.count 7→i c2 ∗ y.val 7→ ∗ Queue 7→ α

(Remove)

&tail.ptr 7→ x ∗&tail.count 7→i c ∗
x.ptr 7→ y ∗ x.count 7→i c1 ∗ y.ptr 7→ 0 ∗ y.count 7→i c2 ;

&tail.ptr 7→ y ∗&tail.count 7→i (c+1) ∗
x.ptr 7→ y ∗ x.count 7→i c1 ∗ y.ptr 7→ 0 ∗ y.count 7→i c2

(Advance)

emp ; emp (Id)

G = Alloc ∪ Free ∪ Insert ∪ Remove ∪ Advance ∪ Id

ls(h, t, α, Ma, xc) ⇔ (h = t ∧ ((∃v. α = v ∧ xp = 0 ∧ t ∈ Ma ∧
t.ptr 7→ 0 ∗ t.count 7→i xc ∗ t.val 7→ v) ∨ (∃v1, v2. α = v1v2 ∧

xp = 0 ∧ xp, t ∈ Ma ∧ t.ptr 7→ xp ∗ t.count 7→i xc ∗ t.val 7→ v1 ∗
xp.ptr 7→ 0 ∗ xp.count 7→i ∗ xp.val 7→ v2))) ∨

(h 6= t ∧ ∃α′, z, v. α = vα′ ∧ h ∈ Ma ∧ Block(h, z, v) ∗ ls(z, t, α′))

Q(hp, hc, nt, nc, tp, tc, xp, xc, Ma) =
∃Mc, α. Mc ⊆ Ma ∧Mem 7→ Mc ∗

bMem 7→ Ma ∗ (~u∈Ma−Mc Block(u)) ∗ Queue 7→ αc∗
(~u∈Mc RBlock(u)) ∗&head.ptr 7→ hp ∗&head.count 7→i hc ∗

&tail.ptr 7→ tp ∗&tail.count 7→i tc ∧
(hp = tp ∧ α = ε ∧ np = xp ∧ nc = xc ∧ tp ∈ Ma ∧

tp.ptr 7→ 0 ∗ tp.count 7→i xc ∗ tp.val 7→) ∨
(hp = tp ∧ α = v ∧ np = xp ∧ nc = xc ∧ tp, xp ∈ Ma ∧

tp.ptr 7→ xp ∗ tp.count 7→i xc ∗ tp.val 7→ ∗
xp.ptr 7→ 0 ∗ xp.count 7→i ∗ xp.val 7→ v) ∨

(hp 6= tp ∧ hp.ptr 7→ np ∗ hp.count 7→i nc ∗ hp.val 7→ ∗
ls(np, tp, α, Ma))

Q1(tp, tc, xp, xc, Ma) = Q(, , , , tp, tc, xp, xc, Ma)

Q2(hp, hc, np, nc, tp, tc, Ma) = Q(hp, hc, np, nc, tp, tc, , , Ma)

QueueInv = Q(, , , , , , , ,)

Proof of the linearizability of enqueue.
int enqueue(int val) {

Node *node;
NodeRef next, last;
{node,next , last , val , ret QueueInv ∧
Pre(val[tid] 7→ val ∗ ret[tid] 7→ ret)}

node = alloc_absAlloc();
{node,next , last , val , ret Q1(, , , , {node} ∪) ∧
Pre(val[tid] 7→ val ∗ ret[tid] 7→ ret) ∗ ((node = 0 ∧ emp) ∨
(node.val 7→ ∗ node.next.ptr 7→ ∗ node.next.count 7→i))}

if (node == NULL) {
enqueue_abs(val);
{node,next , last , val , ret Q1(, , , , {node} ∪) ∧
Post(val[tid] 7→ val ∗ ret[tid] 7→ FAIL)}

return FAIL;
}
node->val = val;
node->next.ptr = NULL;
while (true) {
{node,next , last , val , ret Q1(, , , , {node} ∪) ∧
Pre(val[tid] 7→ val ∗ ret[tid] 7→ ret) ∗ node.val 7→ val ∗
node.next.ptr 7→ 0 ∗ node.next.count 7→i }

atomicId { last = tail; }
{node,next , last , val , ret
(Q1(last .ptr, last .count, , , {node} ∪) ∨
(∃c. Q1(, c, , , {node} ∪) ∧ c > last .count)) ∧
Pre(val[tid] 7→ val ∗ ret[tid] 7→ ret) ∗ node.val 7→ val ∗
node.next.ptr 7→ 0 ∗ node.next.count 7→i ∗
last .ptr.next.ptr 7→µ · ∗ last .ptr.next.count 7→i

µ }
atomicId { next = last.ptr->next; }
{node,next , last , val , ret
∃c′. last .ptr.next.ptr 7→µ · ∗ last .ptr.next.count 7→i

µ c′ ∗
(Q1(last .ptr, last .count,next .ptr,next .count, {node} ∪)∨
(QueueInv ∧ c′ > next .count ∧ next .ptr = 0) ∨
(∃c. Q1(, c, , , {node} ∪) ∧ c > last .count))∧
Pre(val[tid] 7→ val ∗ ret[tid] 7→ ret) ∗ node.val 7→ val ∗
node.next.ptr 7→ 0 ∗ node.next.count 7→i }

if (atomicId { tail != last }) continue;
if (next.ptr == NULL) {
{node,next , last , val , ret next .ptr = 0 ∧
∃c′. last .ptr.next.ptr 7→µ · ∗ last .ptr.next.count 7→i

µ c′ ∗
(Q1(last .ptr, last .count,next .ptr,next .count, {node} ∪)∨
(∃c. Q1(, , , , {node} ∪) ∧ c′ > next .count)) ∧
Pre(val[tid] 7→ val ∗ ret[tid] 7→ ret) ∗ node.val 7→ val ∗
node.next.ptr 7→ 0 ∗ node.next.count 7→i }

if (CASInsert,Id(last.ptr->next, next,
NodeRef(node, next.count+1)))

break;
} else
{node,next , last , val , ret next .ptr 6= 0 ∧
(Q1(last .ptr, last .count,next .ptr,next .count, {node} ∪)∨

(∃c. Q1(, c, , , {node} ∪) ∧ c > last .count))∧
Pre(val[tid] 7→ val ∗ ret[tid] 7→ ret) ∗ node.val 7→ val ∗
node.next.ptr 7→ 0 ∗ node.next.count 7→i }

CASAdvance,Id(tail, last,
NodeRef(next.ptr, last.count+1));

}
{node,next , last , val , ret next .ptr 6= 0 ∧
(Q1(last .ptr, last .count,node,next .count+1) ∨
(∃c. Q1(, c, ,) ∧ c > last .count))∧
Post(val[tid] 7→ val ∗ ret[tid] 7→ SUCCESS)}

CASenqueue,Advance,Id(tail, node,
NodeRef(next.ptr, last.count+1));

{node,next , last , val , ret QueueInv
Post(val[tid] 7→ val ∗ ret[tid] 7→ SUCCESS)}

return SUCCESS;
}

Proof of the linearizability of dequeue.
int dequeue() {

NodeRef next, first, last;
int val;
{next ,first , last , val , ret QueueInv ∧
Pre(ret[tid] 7→ ret)}

while (true) {
{next ,first , last , val , ret QueueInv ∧
Pre(ret[tid] 7→ ret)}

atomicId { first = head; }
atomicId { last = tail; }
{next ,first , last , val , ret Pre(ret[tid] 7→ ret) ∧
∃x1, x2, y1, y2. Q2(x1, x2, y1, y2, z1, , ,) ∧
(x1 = first .ptr ∧ x2 = first .count ∧
y1 = last .ptr ∧ y2 = last .count) ∨ x2 > first .count ∨
(x1 = first .ptr ∧ x2 = first .count ∧ y2 > last .count ∧
z1 6= 0) ∧ first .ptr 7→µ · ∗ first .count 7→i

µ }
atomicId {

next = first.ptr->next;
if (first.ptr == last.ptr && next.ptr == NULL &&

prophecy(l: head == first))
dequeue_abs();

}
// Note that if the prophecy is true,
// then now we also have head = first
{next ,first , last , val , ret
∃x1, x2, y1, y2, z1, z2. Q2(x1, x2, y1, y2, z1, z2, ,) ∧
(first .ptr 6= last .ptr ∧ next .ptr 6= 0 ⇒ (x2 > first .count ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count) ∧
Pre(ret[tid] 7→ ret) ∧ emp) ∧
(first .ptr = last .ptr ∧ next .ptr 6= 0 ⇒
(x2 > first .count ∨ z2 > last .count ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count ∧
z1 = last .ptr ∧ z2 = last .count) ∧
Pre(ret[tid] 7→ ret) ∧ emp) ∧
(first .ptr = last .ptr ∧ next .ptr = 0 ⇒
(x2 > first .count ∧ ¬prophecy(l: head == first) ∧ emp ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count ∧
z1 = last .ptr ∧ z2 = last .count ∧
prophecy(l: head == first) ∧ Post(ret[tid] 7→ EMPTY))) ∗
next .val 7→µ ·}

l: if (atomicId { head != first }) continue;
{next ,first , last , val , ret Pre(ret[tid] 7→ ret) ∧
∃x1, x2, y1, y2, z1, z2. Q2(x1, x2, y1, y2, z1, z2, ,) ∧
(first .ptr 6= last .ptr ∧ next .ptr 6= 0 ⇒ (x2 > first .count ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count)) ∧
(first .ptr = last .ptr ∧ next .ptr 6= 0 ⇒ z2 > last .count ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count ∧
z1 > last .ptr ∧ z2 > last .count)) ∧
(first .ptr = last .ptr ∧ next .ptr = 0 ⇒
Post(ret[tid] 7→ EMPTY)) ∗ next .val 7→µ ·}

if (first.ptr == last.ptr) {
if (next.ptr == NULL) {

{next ,first , last , val , ret
QueueInv ∧ Post(ret[tid] 7→ EMPTY)}

return EMPTY;
}
{next ,first , last , val , ret Pre(ret[tid] 7→ ret) ∧
∃x1, x2, y1, y2, z1, z2. Q2(x1, x2, y1, y2, z1, z2, ,) ∧
first .ptr = last .ptr ∧ next .ptr 6= 0 ∧ (z2 > last .count ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count ∧
z1 = last .ptr ∧ z2 = last .count) ∧ emp}

CAS(tail, last, NodeRef(next.ptr, last.count+1));
} else {
{next ,first , last , val , ret Pre(ret[tid] 7→ ret) ∧
∃x1, x2, y1, y2, z1, z2. Q2(x1, x2, y1, y2, z1, z2, ,) ∧
first .ptr 6= last .ptr ∧ next .ptr 6= 0 ∧ (x2 > first .count ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count) ∧
next .val 7→µ ·}

atomicId { val = next->val; }
{next ,first , last , val , ret Pre(ret[tid] 7→ ret) ∧
∃x1, x2, y1, y2, z1, z2, v. Q2(x1, x2, y1, y2, z1, z2, v,) ∧
first .ptr 6= last .ptr ∧ next .ptr 6= 0 ∧ (x2 > first .count ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count ∧ v = next .val) ∧ emp}

if (CASdequeue abs(),Remove,Id(head, first,
NodeRef(next.ptr, first.count+1)))

break;
}

}
{next ,first , last , val , ret
Q1(, , , , , , , {first} ∪) ∧ Post(ret[tid] 7→ val) ∗
(first .val 7→ ∗ first .next.ptr 7→ ∗ first .next.count 7→i))}

free_absFree(first.ptr);
{next ,first , last , val , ret QueueInv ∧ Post(ret[tid] 7→ val)}
return val;

}

Proof of the linearizability of isEmpty.
int isEmpty() {

NodeRef next, first, last;
{next ,first , last , ret QueueInv ∧
Pre(ret[tid] 7→ ret)}

while (true) {
{next ,first , last , ret QueueInv ∧
Pre(ret[tid] 7→ ret)}

atomicId { first = head; }
atomicId {

last = tail;
if (first.ptr != last.ptr && prophecy(l: head == first))

isEmpty_abs();
}
// Note that if the prophecy is true,
// then now we also have head = first
{next ,first , last , ret
∃x1, x2, y1, y2. Q2(x1, x2, y1, y2, z1, , ,) ∧
(x1 = first .ptr ∧ x2 = first .count ∧
y1 = last .ptr ∧ y2 = last .count) ∨ x2 > first .count ∨
(x1 = first .ptr ∧ x2 = first .count ∧ y2 > last .count ∧
z1 6= 0) ∧ first .ptr 7→µ · ∗ first .count 7→i

µ ∧
(first .ptr 6= last .ptr ∧ prophecy(l: head == first) ∧
Post(ret[tid] 7→ 0 ∨ (first .ptr = last .ptr ∨
¬prophecy(l: head == first)) ∧ Pre(ret[tid] 7→ ret))}

atomicId {
next = first.ptr->next;
if (first.ptr == last.ptr && next.ptr == NULL &&

prophecy(l: head == first))
isEmpty_abs();

}
// Note that if the prophecy is true,
// then now we also have head = first
{next ,first , last , ret
∃x1, x2, y1, y2, z1, z2. Q2(x1, x2, y1, y2, z1, z2, ,) ∧
(first .ptr 6= last .ptr ∧ next .ptr 6= 0 ⇒ (x2 > first .count ∧
¬prophecy(l: head == first) ∧ Pre(ret[tid] 7→ ret) ∨
prophecy(l: head == first) ∧ Post(ret[tid] 7→ 0) ∧

x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count) ∧ emp)
(first .ptr = last .ptr ∧ next .ptr 6= 0 ⇒
(x2 > first .count ∨ z2 > last .count ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count ∧
z1 = last .ptr ∧ z2 = last .count) ∧
Pre(ret[tid] 7→ ret) ∧ emp) ∧
(first .ptr = last .ptr ∧ next .ptr = 0 ⇒
(x2 > first .count ∧ ¬prophecy(l: head == first) ∧ emp ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count ∧
z1 = last .ptr ∧ z2 = last .count ∧
prophecy(l: head == first) ∧ Post(ret[tid] 7→ 1)))

l: if (atomicId { head != first }) continue;
{next ,first , last , ret
∃x1, x2, y1, y2, z1, z2. Q2(x1, x2, y1, y2, z1, z2, ,) ∧
(first .ptr 6= last .ptr ∧ next .ptr 6= 0 ⇒
Post(ret[tid] 7→ 0) ∧ emp) ∧
(first .ptr = last .ptr ∧ next .ptr 6= 0 ⇒ (z2 > last .count ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count ∧
z1 > last .ptr ∧ z2 > last .count) ∧ Pre(ret[tid] 7→ ret)) ∧
(first .ptr = last .ptr ∧ next .ptr = 0 ⇒
Post(ret[tid] 7→ 1))}

if (first.ptr != last.ptr) {
{next ,first , last , ret QueueInv ∧
Post(ret[tid] 7→ 0) ∧ emp)

return 0;
}
if (next.ptr == NULL) {
{next ,first , last , ret
QueueInv ∧ Post(ret[tid] 7→ 1)}

return 1;
}
{next ,first , last , ret Pre(ret[tid] 7→ ret) ∧
∃x1, x2, y1, y2, z1, z2. Q2(x1, x2, y1, y2, z1, z2, ,) ∧
first .ptr = last .ptr ∧ next .ptr 6= 0 ∧ (z2 > last .count ∨
x2 = first .count ∧ x1 = first .ptr ∧
y1 = next .ptr ∧ y2 = next .count ∧
z1 = last .ptr ∧ z2 = last .count) ∧ emp}

CAS(tail, last, NodeRef(next.ptr, last.count+1));
}

}

