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Abstract We consider extensions of the lightweight description logic (DL)
EL with numerical datatypes such as naturals, integers, rationals and reals
equipped with relations such as equality and inequalities. It is well-known
that the main reasoning problems for such DLs are decidable in polynomial
time provided that the datatypes enjoy the so-called convexity property. Un-
fortunately many combinations of the numerical relations violate convexity,
which makes the usage of these datatypes rather limited in practice. In this
paper, we make a more fine-grained complexity analysis of these DLs by con-
sidering restrictions not only on the kinds of relations that can be used in
ontologies but also on their occurrences, such as allowing certain relations to
appear only on the left-hand side of the axioms. To this end, we introduce
a notion of safety for a numerical datatype with restrictions (NDR) which
guarantees tractability, extend the EL reasoning algorithm to these cases, and
provide a complete classification of safe NDRs for natural numbers, integers,
rationals and reals.
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1 Introduction and Motivation

Description logics (DLs) [1] provide a logical foundation for modern ontol-
ogy languages such as OWL1 and OWL 2 [2]. EL++ [3] is a lightweight
DL for which reasoning is tractable (i.e., can be performed in time that is
polynomial w.r.t. the size of the input), and that offers sufficient expressiv-
ity for a number of life-sciences ontologies, such as SNOMED CT [4] or the
Gene Ontology [5]. Additionally, EL++ underpins the EL Profile of OWL 2
[6], which is a sublanguage of OWL 2, particularly useful in applications in-
volving large ontologies with many classes and/or properties. Among other
constructors, EL++ supports limited usage of datatypes. In DL, datatypes
(also called concrete domains) can be used to define new concepts by re-
ferring to particular values, such as strings or integers. For example, the
concept Human u ∃hasAge.(<, 18) u ∃hasName.(=,“Alice”) describes humans
whose age is less than 18 and whose name is “Alice”. Datatypes are charac-
terised first by the domain their values can come from and also by the relations
that can be used to constrain possible values. In our example, (<, 18) refers to
the domain of natural numbers and uses the relation “<” to constrain possible
values to those less than 18, while (=, “Alice”) refers to the domain of strings
and uses the relation “=” to constrain the value to “Alice”.

In order to ensure that reasoning remains polynomial, EL++ allows only
for datatypes which satisfy a condition called p-admissibility [3]. In a nutshell,
this condition ensures that the satisfiability of datatype constraints can be
solved in polynomial time, and that concept disjunction cannot be expressed
using datatype concepts. For example, if we were to allow both ≤ and ≥
for integers, then we could express A v B t C by formulating the axioms
A v ∃R.(≤, 5), ∃R.(≤, 2) v B and ∃R.(≥, 2) v C for some fresh symbol R.
Thus, allowing both ≤ and ≥ has the same effect as extending EL++ with
disjunction, which is well known to cause intractability [3]. Similarly, we can
show that p-admissibility prevents from having both ≤ and = or both ≥ and
= in the language. For this reason, the EL Profile of OWL 2, which is based
on EL++, admits only equality (=) in datatype expressions.

In this paper, we demonstrate how these restrictions can be significantly
relaxed without loosing tractability. As a motivating example, consider the
following axioms which might be used, e.g., in a pharmacy-related ontology:

Panadol v ∃contains.(Paracetamol u ∃mgPerTablet.(=, 500)) (1)

Patient u ∃hasAge.(<, 6) u
∃hasPrescription.∃contains.(Paracetamol u ∃mgPerTablet.(>, 250)) v ⊥ (2)

Axiom (1) states that the drug Panadol contains 500 mg of paracetamol per
tablet, while axiom (2) states that a drug that contains more than 250 mg of

1 http://www.w3.org/2004/OWL
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paracetamol per tablet must not be prescribed to a patient younger than 6
years old. The ontology could be used, for example, to support clinical staff who
want to check whether Panadol can be prescribed to a 3-year-old patient. This
can easily be achieved by checking whether the following concept is satisfiable
w.r.t. the ontology:

Patient u ∃hasAge.(=, 3) u ∃hasPrescription.Panadol (3)

Unfortunately, this is not possible using EL++, because axioms (1) and (2)
involve both equality (=) and inequalities (<, >), and this violates the p-
admissibility restriction. In this paper we demonstrate that it is, however,
possible to express axioms (1) and (2) and concept (3) in a tractable extension
of EL. A polynomial classification procedure can then be used to determine
the satisfiability of (3) w.r.t. the ontology by checking if adding an axiom

X v Patient u ∃hasAge.(=, 3) u ∃hasPrescription.Panadol

for some new concept name X would entail X v ⊥.
Our idea is based on the intuition that equality in (1) and (3) serves a

different purpose than inequalities do in (2). Equality in (1) and (3) is used to
state a fact (the content of a drug and the age of a patient) whereas inequalities
in (2) are used to trigger a rule (what happens if a certain quantity of drug
is prescribed to a patient of a certain age). In other words, equality is used
positively and inequalities are used negatively. It seems reasonable to assume
that positive usages of datatypes will typically involve equality since a fact
can usually be precisely stated. On the other hand, it seems reasonable to
assume that negative occurrences of datatypes can involve equality as well as
inequalities since a rule usually applies to a range of situations. In this paper,
we make a fine-grained study of datatypes in EL by considering restrictions
not only on the kinds of relations included in a datatype, but also on whether
the relations can be used positively or negatively.

The main contributions of this paper can be summarised as follows:

1. We introduce the notion of a Numerical Datatype with Restrictions (NDR)
that specifies the domain of the datatype, the datatype relations that can
be used positively and the datatype relations that can be used negatively.

2. We extend the EL reasoning algorithm [3] to provide a polynomial reason-
ing procedure for an extension of EL with NDRs, and we prove that this
procedure is sound for any NDR.

3. We introduce the notion of a safe NDR, show that every extension of EL
with a safe NDR is tractable, and prove that our reasoning procedure is
complete for any safe NDR.

4. Finally, we provide a complete classification of safe NDRs for the cases
of natural numbers, integers, rationals and reals. Notably, we demonstrate
that the numerical datatype restrictions can be significantly relaxed by al-
lowing arbitrary numerical relations to occur negatively—not only equal-
ity as currently specified in the OWL 2 EL Profile. As argued earlier, this
combination is of particular interest to ontology engineering, and is thus a
strong candidate for the next extension of the EL Profile in OWL 2.
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This work is an extended version of a conference paper [7], and provides
the full proofs for all obtained results. The paper is organized as follows.
After providing the necessary technical background in Section 2, in Section 3
we formally define the extensions of EL with NDRs, characterise when such
extensions are tractable using the notion of “safety”, which is closely related to
the notion of convexity [3], and describe a polynomial and sound classification
procedure that is complete for safe NDRs. The remainder of the paper is
concerned with identifying all safe NDRs for the domains of natural numbers
(Section 4), integers (Section 5), rationals, and reals (Section 6). In Section 7
we discuss the related work. In Section 8 we summarise our results and outline
the directions for future research.

2 Preliminaries

In this section we introduce an extension of EL⊥ [3] with numerical datatypes
which we denote by EL⊥(D). In the DL literature datatypes are best known un-
der the name “concrete domains” [8]; in this paper we use the term “datatypes”
to be more consistent with the terminology of OWL and OWL 2 [2]. The syn-
tax of EL⊥(D) uses a set of concept names NC , a set of role names NR and
a set of feature names NF . EL⊥(D) is parametrised with a numerical domain
D, such that D ⊆ R, where R is the set of real numbers. NC , NR and NF are
countably infinite sets and, additionally, pairwise disjoint.

Definition 1 (D-datatype restriction) We call (s, y), where y ∈ D and
s ∈ {<,≤, >,≥,=}, a D-datatype restriction (or simply a datatype restriction
if the domain D is clear from the context). Given a domain D, a D-datatype
restriction r = (s, y) and an x ∈ D, we say that x satisfies r and we write
r(x) iff (x, y) ∈ s, where s is interpreted in the usual way as the corresponding
binary relation on real numbers.

Intuitively, datatype restrictions specify subsets of elements from the nu-
merical domain using the (in)equality relations. For example, the restriction
(<, 5) over D = N corresponds to the set {1, 2, 3, 4} ⊆ N. In DLs datatype re-
strictions are used to define concepts by referring to elements in such subsets
of numerical domains using the features from NF . The set of concepts is recur-
sively defined using the constructors listed in the middle column of Table 1,
where C and D are concepts, R ∈ NR, F ∈ NF and r is a D-datatype restric-
tion. We typically use the capital letters A, B to refer to concept names and
the capital letters C, D or E to refer to concepts. We also set the abbreviations
N>C = NC ∪ {>} and N>,⊥C = NC ∪ {>,⊥}.

An axiom α in EL⊥(D) or simply an axiom α is an expression of the form
C v D, where C and D are concepts. An EL⊥(D)-ontology O or simply an
ontology O is a set of axioms. We say that a concept E occurs in a concept
C iff E is used in the construction of C. E occurs positively (negatively) in an
axiom C v D iff it occurs in the concept D (respectively C); alternatively we
say that the axiom C v D has positive (negative) occurrence of E.
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Table 1 Concept descriptions in EL⊥(D)

Name Syntax Semantics

Concept name C CI

Top > ∆I

Bottom ⊥ ∅
Conjunction C uD CI ∩DI
Existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}
Datatype restriction ∃F.r {x ∈ ∆I | ∃v ∈ D : (x, v) ∈ FI ∧ r(v)}

Table 2 Normal form of axioms and normalization rules for EL⊥(D)

Normal forms Normalization rules

NF1 A′ v B′ C uH v E → {H v Af , C uAf v E}
NF2 A1 uA2 v B ∃R.G v D → {G v Af , ∃R.Af v D}
NF3 A v ∃R.B G v H → {G v Af , Af v H}
NF4 ∃R.B v A C v ∃R.H → {C v ∃R.Af , Af v H}
NF5 A v ∃F.r B v C uD → {B v C,B v D}
NF6 ∃F.r v A ⊥ v C → ∅

An interpretation of EL⊥(D) is a pair I = (∆I , ·I), where ∆I is a non-
empty set which we call the domain of the interpretation and ·I is the in-
terpretation function. The interpretation function maps each concept name A
to a subset AI of ∆I , each role name R ∈ NR to a relation RI ⊆ ∆I × ∆I
and each feature name F ∈ NF to a relation F I ⊆ ∆I ×D. Note that we do
not require the interpretation of features to be functional or serial. In this re-
spect, they correspond to the data properties in OWL 2 [2]. The constructors
of EL⊥(D) are interpreted as indicated in the right column of Table 1. For an
axiom α, where α = C v D, we write I |= α and we say that an interpretation
I satisfies an axiom α, iff CI ⊆ DI . If I |= α for every α ∈ O, then I is a
model of O and we write I |= O. Additionally, if every model I of O satisfies
the axiom α then we say that O entails α and we write O |= α. We define
the signature of an ontology O as the set sig(O) of concept, role and feature
names that occur in O. We say that a concept, role or feature name X is fresh
w.r.t. an ontology O iff X /∈ sig(O).

One of the most common reasoning tasks w.r.t. an ontology O is the clas-
sification of an ontology O, that is computing all axioms of the form A v B,
where A, B ∈ N>,⊥C and O |= A v B. The (transitively reduced) set of these
subsumption relations is called the taxonomy of the ontology O.

We say that an axiom in EL⊥(D) is in normal form if it has one of the

forms NF1-NF6 in the left part of Table 2, where A′ ∈ N>C , B′ ∈ N>,⊥C ,
A(i), B ∈ NC , R ∈ NR, F ∈ NF , and r is a D-datatype restriction. It holds

that for each EL⊥(D)-ontology, if the normalization rules of the right part
of Table 2 are applied, we obtain an ontology which contains only axioms in
normal form [3]. For the rules of Table 2, we have that B ∈ NC , G,H /∈
NC , R ∈ NR, C, D, E, G and H are concepts and Af is a fresh concept
name w.r.t. the so far transformed ontology. For example, by successively
applying the fourth and the fifth rule of Table 2 to the axiom (1), we replace
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(1) by the normalised axioms Panadol v ∃contains.Y , Y v Paracetamol and
Y v ∃mgPerTablet.(=, 500), where Y is a fresh concept. It can be shown that
normalisation of an ontology O can be performed in polynomial time and that
the size of the produced ontology is linear in the size of the input ontology.

3 Numerical Datatypes with Restrictions

In this section we introduce the notion of a Numerical Datatype with Restric-
tions (NDR) which specifies which datatype relations can be used positively
and negatively in ontologies. We then present a polynomial consequence-based
classification procedure for EL⊥ extended with NDRs and prove its soundness.
Finally we prove that the procedure is complete provided that the NDR sat-
isfies special safety requirements.

Definition 2 (Numerical Datatype with Restrictions) A numerical da-
tatype with restrictions (NDR) is a triple (D, O+, O−), where D ⊆ R is a nu-
merical domain, and O+, O− ⊆ {<,≤, >,≥,=} are the sets of positive and, re-
spectively, negative relations. An EL⊥(D)-axiom is an EL⊥(D, O+, O−)-axiom
if for every positive (negative) occurrence of a concept ∃F.(s, y) in the ax-
iom, s ∈ O+ (respectively s ∈ O−). An EL⊥(D, O+, O−)-ontology is a set of
EL⊥(D, O+, O−)-axioms.

For example, ∃F.(<, 5) v ∃R.∃F.(=, 3) is an EL⊥(N, {=}, {<,≤, >,≥,=})-
axiom, whereas the axioms A v ∃F.(≤, 3) and ∃F.(>, 1.5) v B are not.

3.1 The Classification Procedure and Soundness

The classification procedure for EL⊥(D, O+, O−) that we are going to describe
is closely related to the procedure for EL++ [3]. In order to formulate infer-
ence rules for datatypes we introduce notation for satisfiability of a datatype
restriction and implication between datatype restrictions.

Definition 3 Let r+ and r− be D-datatype restrictions. We write r+ →D ⊥
if there is no x ∈ D such that r+(x) holds. Otherwise, we write r+ 9D ⊥. We
write r+ →D r− if r+(x) implies r−(x), for every x ∈ D. Otherwise, we write
r+ 9D r−.

For example, (<, 0)→N ⊥ and (<, 5)→N (≤, 4), but (<, 5) 9R (≤, 4). Note
that r+ →D ⊥ implies that r+ →D r− for every restriction r−. We assume that
given r+ and r−, it is possible to decide in polynomial time whether r+ →D ⊥
and r+ →D r−. Table 3 shows that this is the case for D = N, Z and R.

The classification procedure for EL⊥(D) takes as input an EL⊥(D)-ontology
O whose axioms are in normal form and applies the inference rules in Table 4
to derive new axioms of the form NF1, NF3 and NF5 in Table 2. The rules
are applied to already derived axioms and use axioms in O and the properties
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Table 3 Deciding r+ →D ⊥ and r+ →D r− for D = N, Z, R

r+ →D ⊥ when holds
(<,n)→D ⊥ n = 0, D = N
(≤, n)→D ⊥ never
(=, n)→D ⊥ never
(≥, n)→D ⊥ never
(≥, n)→D ⊥ never

r+ →D r− when holds
(<,n)→D (<,m) n ≤ m
(<,n)→D (≤,m) n ≤ m+ 1, D = N, Z, or n ≤ m, D = R
(<,n)→D (=,m) n = 0, D = N or n = 1, m = 0, D = N
(<,n)→D (≥,m) n = 0, D = N
(<,n)→D (>,m) n = 0, D = N
(≤, n)→D (<,m) n < m
(≤, n)→D (≤,m) n ≤ m
(≤, n)→D (=,m) n = m = 0, D = N
(≤, n)→D (≥,m) never
(≤, n)→D (>,m) never
(=, n)→D (<,m) n < m
(=, n)→D (≤,m) n ≤ m
(=, n)→D (=,m) n = m
(=, n)→D (≥,m) n ≥ m
(=, n)→D (>,m) n > m
(≥, n)→D (<,m) never
(≥, n)→D (≤,m) never
(≥, n)→D (=,m) never
(≥, n)→D (≥,m) n ≥ m
(≥, n)→D (>,m) n > m
(>,n)→D (<,m) never
(>,n)→D (≤,m) never
(>,n)→D (=,m) never
(>,n)→D (≥,m) n ≥ m− 1, D = N, Z, or n ≥ m, D = R
(>,n)→D (>,m) n ≥ m

r+ →D ⊥ and r+ →D r− as side-conditions. E.g., if A v ∃F.(<, 5) has been
derived by previous application of the rules and ∃F.(≤, 4) v B is in the input
ontology, using CD1 we can derive A v B, since (<, 5)→N (≤, 4).

The procedure terminates when no new axiom can be derived. It is easy
to see that the procedure runs in polynomial time because no new datatype
restrictions are created, and there are only polynomially many axioms of the
form NF1, NF3 and NF5 possible over the symbols in O. It can be easily shown
that the procedure is sound because the rules derive logical consequences of
the axioms:

Theorem 1 (Soundness) Let O be an EL⊥(D)-ontology consisting of ax-
ioms in normal form and O′ be the set of all axioms that are derivable using
the rules of Table 4 for O. Then every model I of O is a model of O′ as well.

Proof For every axiom α ∈ O′, we prove that I |= α by induction on the
length of the derivation of α.

Induction base: If α is obtained using rules IR1 and IR2 then clearly I |= α.
If α = A v ⊥ is obtained using rule ID1, then A v ∃F.r+ ∈ O. Since I |= O,
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Table 4 Reasoning rules in EL⊥(D)

IR1
A v A

IR2
A v > CR1

A v B
A v C′

B v C′ ∈ O

CR2
A v B A v C

A v D
B u C v D ∈ O CR3

A v B
A v ∃R.C

B v ∃R.C ∈ O

CR4
A v ∃R.B B v C

A v D
∃R.C v D ∈ O CR5

A v ∃R.B B v ⊥
A v ⊥

ID1
A v ⊥ A v ∃F.r+ ∈ O , r+ →D ⊥

CD1
A v ∃F.r+
A v B

∃F.r− v B ∈ O , r+ →D r−

CD2
A v B

A v ∃F.r+
B v ∃F.r+ ∈ O

where A, B, C, D ∈ N>C , C′ ∈ N>,⊥
C , R ∈ NR, F ∈ NF for all rules

AI ⊆ (∃F.r+)I . Since r+ →D ⊥, (∃F.r+)I = ∅. Therefore, AI ⊆ ∅ and so
I |= A v ⊥.

Induction step: For the cases when axiom α is obtained using rules IR1-

CR5 (that do not involve datatypes) the proof is the same as for EL++ [3].
If α = A v B is obtained using CD1 from A v ∃F.r+, then by induction
hypothesis, AI ⊆ (∃F.r+)I . Since I |= O, (∃F.r−)I ⊆ BI and by r+ →D r−,
we have that AI ⊆ BI . So, I |= A v B. If α = A v ∃F.r+ is obtained using
CD2 from A v B, then, by induction hypothesis, AI ⊆ BI . Since I |= O,
BI ⊆ (∃F.r+)I and, so, AI ⊆ (∃F.r+)I . So, I |= A v ∃F.r+. ut

3.2 Completeness and Safe NDRs

The completeness proof of the procedure presented in the current section is
based on the canonical model construction similarly as for EL++ [3]. In order
to deal with datatypes in the canonical model we introduce a notion of a
datatype constraint.

Definition 4 (Constraint) A constraint over (D, O+, O−) is defined as a
pair of sets (S+, S−), such that S+ = {(s1+, y1), . . . , (sn+, yn)}, n ≥ 0, with
si+ ∈ O+, yi ∈ D (1 ≤ i ≤ n); S− = {(s1−, z1), . . . , (sm− , zm)}, m ≥ 0, with

sj− ∈ O−, zj ∈ D (0 ≤ j ≤ m). (S+, S−) is trivial iff there exists an r+ ∈ S+,
such that r+ →D ⊥, or there exist r+ ∈ S+ and r− ∈ S−, such that r+ →D r−.

Intuitively, a constraint specifies which datatype restrictions should hold
in a model and which should not. Trivial constrains specify restrictions that
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are trivially unsatisfiable. For example, ({(≤, 2)}, {(<, 5), (>, 3)}) is a trivial
constraint over (N, {≤}, {<,>}) because (≤, 2)→N (<, 5).

Definition 5 (Solution) A solution for (S+, S−) is a set V ⊆ D such that
(i) for every r+ ∈ S+ there exists x ∈ V such that r+(x) holds, and (ii) for
every r− ∈ S− and every x ∈ V , r−(x) does not hold. A constraint (S+, S−)
is satisfiable if there exists a solution for (S+, S−).

For example ({(<, 5)}, {(=, 3)}) has a solution (e.g. {4}) and, hence, it
is satisfiable. Note that the empty constraint ({}, {}) is also satisfiable and
non-trivial. It is easy to see that every trivial constraint is not satisfiable: if
r+ →D ⊥, then condition (i) of Definition 5 is violated; if r+ →D r− then (i)
and (ii) cannot hold together. If a constraint is non-trivial, it does not yet mean
that it is satisfiable. For example the constraint ({(<, 2)}, {(=, 0), (=, 1)})
over (N, {<}, {=}) is non-trivial because (<, 2) 9N ⊥, (<, 2) 9N (=, 0) and
(<, 2) 9N (=, 1), but it has no solution V ⊆ N. We are particularly interested
in “safe” NDRs for which this never happens, that is, all non-trivial con-
straints are satisfiable. We will demonstrate that our classification procedure
is complete for such NDRs and therefore, extensions of EL with safe NDRs
are tractable.

Definition 6 (NDR Safety) Let (D, O+, O−) be an NDR. (D, O+, O−) is
safe iff every non-trivial constraint over (D, O+, O−) is satisfiable.

Our goal now is to give classification of all (of finitely many) NDRs over
D = N,Z,Q,R that are safe. In the following we establish a link between
the NDR safety property and the convexity property as defined by Baader et
al. [3], which will be later used for proving safety. A datatype D is convex,
if whenever a conjunction of D-datatype restrictions implies a disjunction of
such restrictions, then the conjunction also implies some of its disjuncts [3].
We will refer to this property as a strong convexity property, and demonstrate
that the notion of safety for NDRs corresponds to a weaker version of it.

Definition 7 (Strong and Weak Convexity) The NDR (D, O+, O−) is
strongly convex if whenever (

∧n
i=1 r

i
+)→D (

∨m
j=1 rj−), for some ri+ = (si+, yi),

rj− = (sj−, zj), s
i
+ ∈ O+, sj− ∈ O−, and yi, zj ∈ D (1 ≤ i ≤ n, 1 ≤ j ≤ m), then

there exists j (1 ≤ j ≤ m) such that (
∧n

i=1 r
i
+)→D rj−. The NDR (D, O+, O−)

is weakly convex if this property holds for n = 1.

For example the NDR (Z, {<,>}, {=}) is weakly convex since the impli-
cations (<, y) →Z (

∨m
j=1(=, zj)) and (>, y) →Z (

∨m
j=1(=, zj)) never hold.

But it is not strongly convex since, e.g., (>, 2) ∧ (<, 5)→Z (=, 3) ∨ (=, 4), but
(>, 2) ∧ (<, 5) 9Z (=, 3) and (>, 2) ∧ (<, 5) 9Z (=, 4).

Lemma 1 (D, O+, O−) is safe iff it is weakly convex.

Proof Suppose that (D, O+, O−) is not weakly convex. We prove that it is not
safe. Since it is not weakly convex, there exists some r+ →D

∨m
j=1 rj− such
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that r+ 9D rj− for all j with 1 ≤ j ≤ m. In order to prove non-safety, it
is sufficient to define a non-trivial constraint (S+, S−) over (D, O+, O−) that
is not satisfiable. Let (S+, S−) be such that S+ = {r+} and S− = {rj−}mj=1.

(S+, S−) is non-trivial because r+ 9D rj− and r+ 9D ⊥ (otherwise, e.g.,
r+ →D r1−, which exists since m ≥ 1). (S+, S−) is not satisfiable because,

otherwise, there exists an x ∈ V such that r+(x) and ¬rj−(x) for all j with

1 ≤ j ≤ m, and so, the implication r+ →D (
∨m

j=1 rj−) cannot hold.
Conversely, we prove that if (D, O+, O−) is not safe, then it is not weakly

convex. Since it is not safe, there exists a non-trivial constraint (S+, S−) that
is not satisfiable, where S+ = {ri+}ni=1 and S− = {rj−}mj=1. First note that
S− 6= ∅, since, otherwise V = D is a solution for (S+, S−) = (S+, ∅) since
ri+ 9D ⊥ (1 ≤ i ≤ n). Similarly, S+ 6= ∅ since, otherwise, V = ∅ is a

solution for (S+, S−) = (∅, S−). Since (S+, S−) is non-trivial, ri+ 9D rj− for
all i with 1 ≤ i ≤ n and all j with 1 ≤ j ≤ m. We claim that there exists
some i with 1 ≤ i ≤ n such that ri+ →D (

∨m
j=1 rj−). Indeed, otherwise for

every i (1 ≤ i ≤ n) there exists ei ∈ D such that ri+(ei) and ¬rj−(ei) hold for
all j with 1 ≤ j ≤ m, and so V = {ei}ni=1 is a solution for (S+, S−). Since

ri+ →D (
∨m

j=1 rj−) but ri+ 9D rj− (1 ≤ j ≤ m), (D, O+, O−) is not weakly
convex. ut

We will now prove that safety for NDRs is a sufficient condition for com-
pleteness for the classification algorithm based on the rules in Table 4.

Theorem 2 (Completeness) Let (D, O+, O−) be a safe NDR, O an ontol-
ogy consisting of EL⊥(D, O+, O−)-axioms in normal form, and O′ the axioms
derivable under the rules of Table 4 using O. Then for every A ∈ N>C and

B ∈ N>,⊥C , A,B ∈ sig(O), if O |= A v B, then A v B ∈ O′ or A v ⊥ ∈ O′.

Proof The proof is analogous to the completeness proof of the subsumption
algorithm for EL++ [3]: we will build a (canonical) model I for O using O′
and show that for all A, B if A v B 6∈ O′ and A v ⊥ 6∈ O′, then I 6|= A v B.
W.l.o.g. there exists at least one A, such that A v ⊥ 6∈ O since otherwise this
claim is trivial.

For every A ∈ NC , F ∈ NF , define the constraint (S+(A,F ), S−(A,F ))
over (D, O+, O−), as follows:

S+(A,F ) =

{
∅ if A v ⊥ ∈ O′,
{r+ | A v ∃F.r+ ∈ O′} otherwise.

(3)

S−(A,F ) = {r− | ∃F.r− v B ∈ O, A v B /∈ O′} (4)

First, we show that (S+(A,F ), S−(A,F )) is a non-trivial constraint. Indeed,
if r+ →D ⊥ for some r+ ∈ S+(A,F ), then by (3) we have A v ⊥ 6∈ O′ and
A v ∃F.r+ ∈ O′, which is not possible sinceO′ is closed under the rule ID1. Sim-
ilarly, there exists no r+ ∈ S+(A,F ) and r− ∈ S−(A,F ) such that r+ →D r−
holds because, otherwise by (3) and (4) A v ∃F.r+ ∈ O′, ∃F.r− v B ∈ O, and
A v B /∈ O′, which is not possible since O′ is closed under the rule CD1. Since
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(S+(A,F ), S−(A,F )) is a non-trivial constraint over the safe NDR (D, O+, O−),
by Definition 4, it is satisfiable. Let us denote by V (A,F ) some fixed solution
for (S+(A,F ), S−(A,F )).

Now, if for every A ∈ (N>C ∩sig(O)) we have A v ⊥ ∈ O′, then the theorem
holds trivially. Otherwise, define the following interpretation I = (∆I , ·I):

∆I = {eA | A ∈ (N>C ∩ sig(O)), A v ⊥ /∈ O′} (5)

BI = {eA | eA ∈ ∆I , A v B ∈ O′} (6)

RI = {(eA, eB) | A v ∃R.B ∈ O′, eA, eB ∈ ∆I} (7)

F I = {(eA, v) | v ∈ V (A,F )} (8)

Intuitively, the domain of the interpretation contains a distinguished element
eA for every concept name A, such that A v ⊥ 6∈ O′. Note that the domain
∆I is not empty since we have assumed that there exists at least one A such
that A v ⊥ 6∈ O′. Hence, I = (∆I , ·I) is defined correctly. We prove that I is
a model of O by considering all types of axioms α ∈ O according to Table 2:

– NF1 : α = A′ v B′: Take any x ∈ A′I . We need to prove that x ∈ B′I .
By (5), x = eC for some C ∈ (N>C ∩ sig(O)) such that C v ⊥ /∈ O′.
We first prove that C v A′ ∈ O′. Indeed, if A′ ∈ NC , by (6), since
x = eC ∈ A′I , C v A′ ∈ O′. Otherwise, A′ = > and by IR2, we have
that C v > = C v A′ ∈ O′. Now, since A′ v B′ ∈ O and O′ is closed un-
der CR1, C v B′ ∈ O′. Since C v ⊥ /∈ O′, we have either B′ = >, and so
x ∈ ∆I = B′I , or B′ ∈ NC and by (6), x = eC ∈ B′I .

– NF2 : α = A1 u A2 v B: Take any x ∈ (A1 u A2)I . We need to prove
that x ∈ BI . By (5) x = eA for some A ∈ (N>C ∩ sig(O)), and by (6),
since x = eA ∈ (A1 u A2)I = AI1 ∩ AI2 , and A1, A2 ∈ NC , A v A1 ∈ O′
and A v A2 ∈ O′. Since A1 u A2 v B ∈ O and O′ is closed under CR2,
A v B ∈ O′. Since B ∈ NC , by (6) x ∈ BI .

– NF3 : α = A v ∃R.B: Take any x ∈ AI . We will prove that x ∈ (∃R.B)I .
By (5), x = eC for some C ∈ (N>C ∩ sig(O)) with C v ⊥ /∈ O′. Since
A ∈ N>C and x = eC ∈ AI , by (6), C v A ∈ O′. Since A v ∃R.B ∈ O
and O′ is closed under CR3, C v ∃R.B ∈ O′. Since C v ⊥ /∈ O′ and O′ is
closed under CR5, B v ⊥ /∈ O′. Since additionally B ∈ (N>C ∩ sig(O)), by
(5), there exists eB ∈ ∆I . By (7), (eC , eB) ∈ RI . Since O′ is closed under
IR1, B v B ∈ O′, therefore, by (6), eB ∈ BI . Thus, x = eC ∈ (∃R.B)I .

– NF4 : α = ∃R.B v A: Take any x ∈ (∃R.B)I . We need to prove that
x ∈ AI . By definition of the interpretation, there exists y ∈ ∆I such that
(x, y) ∈ RI and y ∈ BI . Since (x, y) ∈ RI , by (7) x = eC and y = eD
such that C v ∃R.D ∈ O′, and since y = eD ∈ BI and B ∈ NC , by (6),
D v B ∈ O′. Since ∃R.B v A ∈ O, C v ∃R.D ∈ O′, D v B ∈ O′, and O′
is closed under CR4, C v A ∈ O′. Hence, by (6), x = eC ∈ AI .

– NF5 : α = A v ∃F.r+: Take any x ∈ AI . We will prove that x ∈ (∃F.r+)I .
By (5), x = eC for some C ∈ (N>C ∩ sig(O)) such that C v ⊥ /∈ O′.
By (5), since x = eC ∈ AI , C v A ∈ O′. Since A v ∃F.r+ ∈ O and
O′ is closed under CD2, C v ∃F.r+ ∈ O′. Let (S+(C,F ), S−(C,F )) be the
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constraint defined according to (3) and (4) and V (C,F ) its solution. Since
C v ∃F.r+ ∈ O′ and C v ⊥ /∈ O′, by (3), r+ ∈ S+(C,F ). Then there
exists v ∈ V (C,F ) such that v satisfies r+. By (8), we have (eC , v) ∈ F I ,
hence x = eC ∈ (∃F.r+)I by the definition of the interpretation.

– NF6 : α = ∃F.r− v B: Take any x ∈ (∃F.r−)I . We need to prove that
x ∈ BI . By (5), x = eC for some C ∈ (N>C ∩sig(O)) such that C v ⊥ /∈ O′.
Let (S+(C,F ), S−(C,F )) be the constraint defined according to (3) and
(4) and V (C,F ) its solution. Since x ∈ (∃F.r−)I , by the definition of the
interpretation, there exists v ∈ D such that (x, v) ∈ F I and v satisfies r−.
By (8), v ∈ V (C,F ). Since V (C,F ) is a solution for (S+(C,F ), S−(C,F ))
and v satisfies r−, we have r− /∈ S−(C,F ). Hence, by (4) and since
∃F.r− v B ∈ O, C v B ∈ O′. Since B ∈ NC , by (6), x = eC ∈ BI .

To conclude the proof of the theorem, suppose to the contrary that there
exist A ∈ N>C and B ∈ N>,⊥C , A,B ∈ sig(O), such that O |= A v B, but
A v B /∈ O′ and A v ⊥ /∈ O′. Let I be the model defined by (5)–(8). As
shown above, I |= O. Since A ∈ (N>C ∩ sig(O)) and A v ⊥ /∈ O′, by (5),
eA ∈ ∆I . Since A ∈ (N>C ∩ sig(O)) and O′ is closed under IR1, A v A ∈ O′.
Therefore, by (6), eA ∈ AI . Since I |= O and O |= A v B, eA ∈ BI . Since
A ∈ (N>C ∩ sig(O)) and O′ is closed under IR2, A v > ∈ O′. Therefore, since
A v B /∈ O′, B 6= >. Also, since eA ∈ BI , B 6= ⊥. Hence B ∈ NC and
by (6), since eA ∈ BI , A v B ∈ O′. This contradicts our assumption that
A v B /∈ O′. Thus, the proof by contradiction implies the statement of the
theorem. ut

Corollary 1 The classification of EL⊥(D, O+, O−)-ontologies for safe NDRs
(D, O+, O−) can be computed in polynomial time in the size of the ontology.

Proof Given an EL⊥(D, O+, O−)-ontology O, let ON be the result of applying
the normalisation rules from Table 2 to O, and O′ be the axioms derivable
by rules in Table 4 using ON . As has been pointed out, both of these com-
putations can be performed in polynomial time. By Theorem 1 and Theo-
rem 2, the result of classification can be computed by taking all A v B for A,
B ∈ (N>,⊥C ∩ sig(O)), where either A = ⊥, or A v B ∈ O′ or A v ⊥ ∈ O′. ut

4 Maximal Safe NDRs for N

In this section we present a full classification of safe NDRs for natural numbers;
within this section we assume that every constraint is over the domain D = N.
The main result of this section is presented in Table 5, which lists all maximal
safe NDRs for N. We prove that: (i) every NDR in Table 5 is safe, (ii) extending
any of these NDRs with a new relation leads to non-safety and (iii) every safe
NDR for N is contained in some NDR in Table 5.

In order to prove that the NDRs in Table 5 are safe, by Definition 6 we need
to demonstrate that every non-trivial constraint over each of these NDRs is
satisfiable. In the next Lemma we show that w.l.o.g. we can focus our attention
only on constraints of a reduced form.
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Table 5 Maximal safe NDRs for N: NDRN
i = (Oi

+, O
i
−), 1 ≤ i ≤ 4

NDRN
i Oi

+ Oi
−

NDRN
1 {=} {<,≤, >,≥,=}

NDRN
2 {<,≤, >,≥,=} {<,≤}

NDRN
3 {<,≤, >,≥,=} {>,≥}

NDRN
4 {>,≥,=} {<,≤,=}

Lemma 2 Let (S+, S−) be a non-trivial constraint over an NDR from Table 5.
Then there exists a non-trivial constraint (S′+, S

′
−) over the same NDR such

that (S+, S−) is satisfiable iff (S′+, S
′
−) is satisfiable and:

S′+ ⊆ {(≤, y0), (=, y1), . . . , (=, yn), (≥, yn+1)}, (9)

S′− ⊆ {(≤, z0), (=, z1), . . . , (=, zm), (≥, zm+1)}. (10)

Proof Given a non-trivial constraint (S+, S−) let us apply the following trans-
formation rules to (S+, S−):

(S+ ∪ {(<, y)}, S−)⇒ (S+ ∪ {(≤, y − 1)}, S−), if y ≥ 1 (11)

(S+ ∪ {(>, y)}, S−)⇒ (S+ ∪ {(≥, y + 1)}, S−) (12)

(S+, S− ∪ {(<, 0)})⇒ (S+, S−) (13)

(S+, S− ∪ {(<, z)})⇒ (S+, S− ∪ {(≤, z − 1)}), if z ≥ 1 (14)

(S+, S− ∪ {(>, z)})⇒ (S+, S− ∪ {(≥, z + 1)}) (15)

(S+ ∪ {(≤, y1), (≤, y2)}, S−)⇒ (S+ ∪ {(≤,min{y1, y2})}, S−) (16)

(S+ ∪ {(≥, y1), (≥, y2)}, S−)⇒ (S+ ∪ {(≤,max{y1, y2})}, S−) (17)

(S+, S− ∪ {(≤, z1), (≤, z2)})⇒ (S+, S− ∪ {(≤,max{z1, z2})}) (18)

(S+, S− ∪ {(≥, z1), (≥, z2)})⇒ (S+, S− ∪ {(≥,min{z1, z2})}) (19)

It is easy to see that that rules (11)-(19) can be applied only finitely many
times. Indeed, every transformation either reduces the number of restrictions
with relations < and > by rules (11)–(15), or leaves this number the same and
reduces the number of restrictions with relations ≤, ≥ by rules (16)–(19). Let
(S′+, S

′
−) be obtained from (S+, S−) after exhaustively applying the transfor-

mations (11)-(19). It is easy to see that (S′+, S
′
−) remains a non-trivial con-

straint over the same NDR from Table 5 as (S+, S−) and (S′+, S
′
−) is satisfiable

iff (S+, S−) is satisfiable. Moreover, since (S+, S−) is non-trivial, (<, 0) /∈ S+,
and therefore (S′+, S

′
−) does not contain restrictions of the form (<, x) and

(>, x), because all of them are eliminated by rules (11)–(15). Similarly, each
set S′+ and S′− contains at most one restriction of the form (≤, x) and at most
one restriction of the form (≥, x) as a consequence of the transformation rules
(16)–(19). Therefore (9) and (10) hold. ut

Lemma 3 Every NDR in Table 5 is safe.
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Proof According to Definition 6, in order to prove safety for an NDR we need
to find a solution for every non-trivial constraint over the NDR. Recall that a
solution V for a constraint (S+, S−) over an NDR is a set V ⊆ D = N such
that every r+ ∈ S+ is satisfied by at least one value v ∈ V but no r− ∈ S−
is satisfied by any value v ∈ V . By Lemma 2, w.l.o.g. we can assume that S+

and S− are of the form (9) and (10), respectively. We construct the solution
V by performing the following case analysis over the content of S+ and S−:

Case 1: S+ = {(=, y1), . . . , (=, yn)}, n ≥ 0. Define V := {y1, . . . , yn}.
Clearly, every restriction in S+ is satisfied by some yi ∈ V , but no restric-
tion in S− is satisfied by V : if yi, with 1 ≤ i ≤ n, satisfies some restriction
r− ∈ S−, then (=, yi)→N r−, which contradicts the non-triviality of (S+, S−).

Case 2: S+ ∩ {(≤, y0), (≥, yn+1)} 6= ∅. We further distinguish cases ac-
cording to the content of S−. Note that we do not examine the case where
{(≤, z0), (≥, zm+1)} ⊆ S−, because this is not possible for NDRs in Table 5.

Case 2.1: S− = {(=, z1), . . . , (=, zm)}, m ≥ 0. Define V := N\{z1, . . . , zm}.
It is easy to see that V satisfies all restrictions except for those in S−. Since
(S+, S−) is non-trivial, and thus S+ ∩ S− = ∅, V is a solution for (S+, S−).

Case 2.2: S− = {(≤, z0)}. Define V := {v ∈ N | v > z0}. It is easy to
see that V satisfies all restrictions except for restrictions of the form (≤, y)
and (=, y) with y ≤ z0. Since such restrictions imply (≤, z0) and (S+, S−) is
non-trivial, S+ cannot contain them. Therefore, V is a solution for (S+, S−).

Case 2.3: S− = {(≥, zm+1)}. Define V := {v ∈ N | v < zm+1}. It is easy to
see that V satisfies all restrictions except for restrictions of the form (≥, y) and
(=, y) with y ≥ zm+1. Since such restrictions imply (≥, zm+1) and (S+, S−) is
non-trivial, S+ cannot contain them. Therefore, V is a solution for (S+, S−).

Case 2.4: S− = {(≤, z0), (=, z1), . . . , (=, zm)}, m ≥ 1. Define V := {v ∈ N |
v > z0\{z1, . . . , zm}}. From Table 5 one can see that S+ cannot contain restric-
tions of the form (≤, y). It is easy to see that from the remaining restrictions,
V satisfies all restrictions except for those of the form (=, y) with y ≤ z0 or
y = zj (1 ≤ j ≤ m). Since such restrictions imply restrictions in S−, S+ can-
not contain them. Therefore, V is a solution for (S+, S−). ut

We are now in a position to prove that the NDRs in Table 5 are maximal
safe, that is, they contain all safe NDRs over D = N. In order to prove this
property, we first list several cases of non-safe NDRs for N, and then, show
that by extending NDRs listed in Table 5, we fall into one of these cases.

Lemma 4 Let (N, O+, O−) be an NDR. Then:

(a) If O+ ∩ {<,≤, >,≥} 6= ∅, O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅, then
(N, O+, O−) is non-safe.

(b) If O+ ∩ {>,≥} 6= ∅, O− ∩ {>,≥} 6= ∅ and {=} ⊆ O−, then (N, O+, O−) is
non-safe.

(c) If O+ ∩ {<,≤} 6= ∅ and {=} ⊆ O−, then (N, O+, O−) is non-safe.

Proof In order to prove that (N, O+, O−) is non-safe, by Lemma 1 it suffices to
prove that it is not weakly convex. Recall that by Definition 7, (N, O+, O−) is
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Table 6 Examples of non-safe NDRs for N where (s+, y) →N (s1−, z1) ∨ (s2−, z2),

(s+, y) 9N (s1−, z1) and (s+, y) 9N (s2−, z2)

{s+} {s1−, s2−} y z1 z2

{<}, {≤} {<,≥}, {≤, >}, {≤,≥} 3 1 1
{<}, {≤} {<,>} 3 2 1
{>}, {≥} {<,≥}, {≤, >}, {≤,≥} 1 3 3
{>}, {≥} {<,>} 1 3 2
{>} {=,≥} 1 2 3
{>} {=, >} 1 2 2
{≥} {=,≥} 1 1 2
{≥} {=, >} 1 1 1
{<} {=} 3 1 2
{≤} {=} 2 1 2

weakly convex iff for every r+ = (s+, y) and ri− = (si−, zi), such that s+ ∈ O+,
si− ∈ O− and y, zi ∈ N (1 ≤ i ≤ n), if r+ →N

∨n
i=1 r

i
−, then there exists an i

with 1 ≤ i ≤ n such that r+ →N ri−. For each of the cases (a), (b) and (c)
of the lemma, we provide counterexamples that violate the weak convexity
condition, namely a triple of restrictions (s+, y), (s1−, z1) and (s2−, z2), such
that s+ ∈ O+, s1−, s2− ∈ O−, y, z1, z2 ∈ N, (s+, y)→N (s1−, z1) ∨ (s2−, z2),
(s+, y) 9N (s1−, z1) and (s+, y) 9N (s2−, z2). The counterexamples are listed
in Table 6: the first four lines correspond to case (a), the next four lines to
case (b) and the final two lines to case (c). ut

Lemma 5 Every NDR in Table 5 is maximal safe, that is if any new relation
is added to O+ or O−, the NDR becomes non-safe.

Proof We examine all cases of adding a new relation to NDRs in Table 5:
NDRN

1 : By Lemma 4(a), if any of <, ≤, >, ≥ is added to O+, then NDRN
1

becomes non-safe.
NDRN

2 : By Lemma 4(a), if > or ≥ is added to O−, then NDRN
2 becomes non-

safe. By Lemma 4(c), when = is added to O−, NDRN
2 becomes non-safe.

NDRN
3 : By Lemma 4(a), if < or ≤ is added to O−, then NDRN

3 becomes non-

safe. By Lemma 4(c), when = is added to O−, NDRN
3 becomes non-safe.

NDRN
4 : By Lemma 4(b), if > or ≥ is added to O−, then NDRN

4 is non-safe. By

Lemma 4(c), when < or ≤ is added to O+, NDRN
4 becomes non-safe. ut

It remains to prove that the list of safe NDRs in Table 5 subsumes every
safe NDR for D = N.

Lemma 6 If (N, O+, O−) is a safe NDR, then O+ ⊆ Oi
+ and O− ⊆ Oi

− for

some NDRN
i = (N, Oi

+, O
i
−) in Table 5, (1 ≤ i ≤ 4).

Proof The proof is by case analysis of possible relations in O+ and O−.
Case 1: O+ ∩ {<,≤, >,≥} = ∅. In this case, O+ ⊆ O1

+ and O− ⊆ O1
−.

Case 2: O+∩{<,≤, >,≥} 6= ∅. By Lemma 4(a) and since the NDR is safe,
O− ∩{<,≤} = ∅ or O− ∩{>,≥} = ∅. Therefore, we examine two cases: either
O− ⊆ {>,≥,=} or O− ⊆ {<,≤,=}.
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Case 2.1: O− ⊆ {>,≥,=}. We further distinguish whether O− ⊆ {>,≥}
or O− ∩ {=} 6= ∅.

Case 2.1.1: O− ⊆ {>,≥}. In this case, {>,≥} = O3
−, so O− ⊆ O3

−; also
O+ ⊆ O3

+.
Case 2.1.2: O− ∩ {=} 6= ∅. By Lemma 4(c) and since the NDR is

safe, O+ ⊆ {>,≥,=}; also since O4
+ = {>,≥,=}, O+ ⊆ O4

+. By Lemma 4(b)
and since the NDR is safe, O− ∩ {>,≥} = ∅. Therefore, O− = {=} and since
{=} ⊆ O4

−, O− ⊆ O4
−

Case 2.2: O− ⊆ {<,≤,=}. We distinguish whether O+ ⊆ {>,≥,=} or
O+ ∩ {<,≤} 6= ∅.

Case 2.2.1: O+ ⊆ {>,≥,=}. If O+ ⊆ {>,≥,=}, then by {>,≥,=} = O4
+,

O+ ⊆ O4
+. Also since O4

− = {<,≤,=}, O− ⊆ O4
−.

Case 2.2.2: O+ ∩ {<,≤} 6= ∅. By Lemma 4(c) and since the NDR is safe,
{=} ∩ O− = ∅. Therefore, O− ⊆ {<,≤}. Since {<,≤} = O2

−, O− ⊆ O2
−; also

O+ ⊆ O2
+. ut

5 Maximal Safe NDRs for Z

In this section, we identify the maximal safe NDRs for the domain of integers
(Z). Table 7 lists all maximal safe NDRs for Z. Compared to the Table 5, we
have two new maximal safe NDRs, namely NDRZ

2 and NDRZ
6 . This is because

integers do not have a minimal element as in the case of naturals. In particular
positive occurrences of < or ≤ together with negative occurrence of = are no
longer dangerous: e.g., (≤, 1)→N (=, 1)∨ (=, 0), but (≤, 1) 9Z (=, 1)∨ (=, 0).

Lemma 7 Let (S+, S−) be a non-trivial constraint over an NDR from Table 7.
Then there exists a non-trivial constraint (S′+, S

′
−) over the same NDR such

that (S+, S−) is satisfiable iff (S′+, S
′
−) is satisfiable and:

S′+ ⊆ {(≤, y0), (=, y1), . . . , (=, yn), (≥, yn+1)}, (20)

S′− ⊆ {(≤, z0), (=, z1), . . . , (=, zm), (≥, zm+1)}. (21)

Proof The proof of this lemma is analogous to the proof of Lemma 2. The
constraint (S′+, S

′
−) can be obtained using the following transformation rules:

(S+ ∪ {(<, y)}, S−)⇒ (S+ ∪ {(≤, y − 1)}, S−) (22)

(S+ ∪ {(>, y)}, S−)⇒ (S+ ∪ {(≥, y + 1)}, S−) (23)

(S+, S− ∪ {(<, z)})⇒ (S+, S− ∪ {(≤, z − 1)}) (24)

(S+, S− ∪ {(>, z)})⇒ (S+, S− ∪ {(≥, z + 1)}) (25)

(S+ ∪ {(≤, y1), (≤, y2)}, S−)⇒ (S+ ∪ {(≤,min{y1, y2})}, S−) (26)

(S+ ∪ {(≥, y1), (≥, y2)}, S−)⇒ (S+ ∪ {(≤,max{y1, y2})}, S−) (27)

(S+, S− ∪ {(≤, z1), (≤, z2)})⇒ (S+, S− ∪ {(≤,max{z1, z2})}) (28)

(S+, S− ∪ {(≥, z1), (≥, z2)})⇒ (S+, S− ∪ {(≥,min{z1, z2})}) (29)

Note that rule (13) is now omitted because integer numbers do not have a
lower bound. ut
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Table 7 Maximal safe NDRs for Z: NDRZ
i = (Oi

+, O
i
−), 1 ≤ i ≤ 6

NDRZ
i Oi

+ Oi
−

NDRZ
1 {=} {<,≤, >,≥,=}

NDRZ
2 {<,≤, >,≥,=} {=}

NDRZ
3 {<,≤, >,≥,=} {<,≤}

NDRZ
4 {<,≤, >,≥,=} {>,≥}

NDRZ
5 {>,≥,=} {<,≤,=}

NDRZ
6 {<,≤,=} {>,≥,=}

Lemma 8 Every NDR in Table 7 is safe.

Proof Let (S+, S−) be a non-trivial constraint over an NDR in Table 7. By
Lemma 7, w.l.o.g. we can assume that S+ and S− are of the form (20) and
(21), respectively. We construct a solution V for (S+, S−) by performing the
following case analysis over the content of S+ and S−:

Case 1: S+ = {(=, y1), . . . , (=, yn)}, n ≥ 0. Define V := {y1, . . . , yn}.
Clearly, every restriction in S+ is satisfied by some value in V . On the other
hand, no restriction in S− is satisfied by V : if yi, with 1 ≤ i ≤ n, satisfies some
restriction r− ∈ S−, then (=, yi) →N r−, which contradicts the non-triviality
of (S+, S−).

Case 2: S+ ∩ {(≤, y0), (≥, yn+1)} 6= ∅. We further distinguish cases ac-
cording to the content of S−. Note that we do not examine the case where
{(≤, z0), (≥, zm+1)} ⊆ S−, because this is not possible for NDRs in Table 7.

Case 2.1: S− = {(=, z1), . . . , (=, zm)}, m ≥ 0. Define V := Z\{z1, . . . , zm}.
It is easy to see that V satisfies all restrictions except for those in S−. Since
(S+, S−) is non-trivial, and thus S+ ∩ S− = ∅, V is a solution for (S+, S−).

Case 2.2: S− = {(≤, z0)}. Define V := {v ∈ Z | v > z0}. It is easy to
see that V satisfies all restrictions except for restrictions of the form (≤, y)
and (=, y) with y ≤ z0. Since such restrictions imply (≤, z0) and (S+, S−) is
non-trivial, S+ cannot contain them. Therefore, V is a solution for (S+, S−).

Case 2.3: S− = {(≥, zm)}. This case is symmetrical to Case 2.2.
Case 2.4: S− = {(≤, z0), (=, z1), . . . , (=, zm)}, m ≥ 1. Define solution

V := {v ∈ Z | v > z0} \ {z1, . . . , zm}. In this case, S+ cannot contain restric-
tions of the form (≤, y) as it can be seen from Table 7. It is also easy to see
that from the remaining restrictions, V satisfies all restrictions except for re-
strictions of the form (=, y) with y ≤ z0 or y = zj (1 ≤ j ≤ m). Since such
restrictions imply restrictions in S−, S+ cannot contain them. Therefore, V is
a solution for (S+, S−).

Case 2.5: S− = {(=, z1), . . . , (=, zm), (≥, zm+1)}, m ≥ 1. This case is sym-
metrical to Case 2.4 ut

Lemma 9 Let (Z, O+, O−) be an NDR. Then:

(a) If O+ ∩ {<,≤, >,≥} 6= ∅, O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅, then
(Z, O+, O−) is non-safe.

(b) If O+ ∩ {>,≥} 6= ∅, O− ∩ {>,≥} 6= ∅ and {=} ⊆ O−, then (Z, O+, O−) is
non-safe.
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Table 8 Examples of non-safe NDRs for Z where (s+, y) →Z (s1−, z1) ∨ (s2−, z2),

(s+, y) 9Z (s1−, z1) and (s+, y) 9Z (s2−, z2)

{s+} {s1−, s2−} y z1 z2

{<}, {≤} {<,≥}, {≤, >}, {≤,≥} 3 1 1
{<}, {≤} {<,>} 3 2 1
{>}, {≥} {<,≥}, {≤, >}, {≤,≥} 1 3 3
{>}, {≥} {<,>} 1 3 2
{>} {=,≥} 1 2 3
{>} {=, >} 1 2 2
{≥} {=,≥} 1 1 2
{≥} {=, >} 1 1 1
{<} {=,≤} 3 2 1
{<} {=, <} 3 2 2
{≤} {=,≤} 2 2 1
{≤} {=, <} 2 2 2

(c) If O+ ∩ {<,≤} 6= ∅, O− ∩ {<,≤} 6= ∅ and {=} ⊆ O−, then (Z, O+, O−) is
non-safe.

Proof In order to prove that (Z, O+, O−) is non-safe, by Lemma 1 it suffices
to prove that it is not weakly convex. For each of the cases (a), (b) and (c)
of the lemma, we provide counterexamples that violate the weak convexity
condition, namely a triple of restrictions (s+, y), (s1−, z1) and (s2−, z2), such
that s+ ∈ O+, s1−, s2− ∈ O−, y, z1, z2 ∈ Z, (s+, y)→N (s1−, z1) ∨ (s2−, z2), but
(s+, y) 9Z (s1−, z1) and (s+, y) 9N (s2−, z2). The counterexamples are listed
in Table 8: the first four lines correspond to case (a), the next four lines to
case (b) and the final four lines to case (c). ut

Lemma 10 Every NDR in Table 7 is maximal safe, that is if any new relation
is added to O+ or O−, the NDR becomes non-safe.

Proof We examine all cases of adding a new relation to NDRs in Table 7:
NDRZ

1 : By Lemma 9(a), if any of <, ≤, >, ≥ is added to O+, then NDRZ
1

becomes non-safe.
NDRZ

2 : By Lemma 9(b), if > or ≥ is added to O−, then NDRZ
2 becomes non-

safe. By Lemma 9(c), when < or ≤ is added to O−, then NDRZ
2 becomes

non-safe.
NDRZ

3 : By Lemma 9(a), if > or ≥ is added to O−, then NDRZ
3 becomes non-

safe. By Lemma 9(c), when = is added to O−, then NDRZ
3 becomes non-safe.

NDRZ
4 : By Lemma 9(a), if < or ≤ is added to O−, then NDRZ

4 becomes non-

safe. By Lemma 9(b), if = is added to O−, then NDRZ
4 becomes non-safe.

NDRZ
5 : By Lemma 9(a), if > or ≥ is added to O−, then NDRZ

5 becomes non-

safe. By Lemma 9(c), when < or ≤ is added to O+, then NDRZ
5 becomes

non-safe.
NDRZ

6 : By Lemma 9(a), if < or ≤ is added to O−, then NDRZ
6 becomes non-

safe. By Lemma 9(b), if > or ≥ is added to O+, then NDRZ
6 becomes non-safe.

ut
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Lemma 11 If (Z, O+, O−) is a safe NDR, then O+ ⊆ Oi
+ and O− ⊆ Oi

− for

some NDRZ
i = (Z, Oi

+, O
i
−) in Table 7, (1 ≤ i ≤ 6).

Proof The proof is by case analysis of possible relations in O+ and O−.

Case 1: O+ ∩ {<,≤, >,≥} = ∅. In this case, O+ ⊆ O1
+ and O− ⊆ O1

−.

Case 2: O+∩{<,≤, >,≥} 6= ∅. By Lemma 9(a) and since the NDR is safe,
O− ∩ {<,≤} = ∅ or O− ∩ {>,≥} = ∅. Therefore, we distinguish two cases:
either O− ⊆ {>,≥,=} or O− ⊆ {<,≤,=}.

Case 2.1:O− ⊆ {>,≥,=}. We further distinguish on whetherO− ⊆ {>,≥}
or O− ∩ {=} 6= ∅.

Case 2.1.1: O− ⊆ {>,≥}. Then O− ⊆ O4
− and O+ ⊆ O4

+.

Case 2.1.2: O− ∩ {=} 6= ∅. If O− = {=}, then O− ⊆ O2
− and O+ ⊆ O2

+.
Otherwise, O− ∩ {>,≥} 6= ∅. By Lemma 9(b) and since the NDR is safe,
O+ ∩ {>,≥} = ∅. Thus, O+ ⊆ {<,≤,=} = O6

+ and O− ⊆ {>,≥,=} = O6
−.

Case 2.2:O− ⊆ {<,≤,=}. We further distinguish on whetherO− ⊆ {<,≤}
or O− ∩ {=} 6= ∅.

Case 2.2.1: O− ⊆ {<,≤}. Then O− ⊆ O3
− and O+ ⊆ O3

+.

Case 2.2.2: O− ∩ {=} 6= ∅. If O− = {=}, then O− ⊆ O2
− and O+ ⊆ O2

+.
Otherwise, O− ∩ {<,≤} 6= ∅. By Lemma 9(c) and since the NDR is safe,
O+ ∩ {<,≤} = ∅. Thus, O+ ⊆ {>,≥,=} = O5

+ and O− ⊆ {<,≤,=} = O5
−.
ut

6 Maximal Safe NDRs for R and Q

We continue with the domain of real numbers (R) and rational numbers (Q).
Table 9 lists all maximal safe NDRs for these domains. Reals and rationals
are examples of dense domains: between every two different numbers there
is always a third one. This property results in new safe NDRs. Specifically,
either ≤ or ≥ can be added to O− of NDRZ

2 from Table 7 because they do
not violate the weak convexity property: e.g., (≤, 5)→Z (=, 5) ∨ (≤, 4), but
(≤, 5) 9R (=, 5) ∨ (≤, 4). For the same reason, O+ of NDRZ

5 and NDRZ
6 from

Table 7 can be extended with < and >: e.g., (<, 5)→Z (=, 4) ∨ (≤, 3), but
(<, 5) 9R (=, 4) ∨ (≤, 3).

Below we provide only proofs for R. The proofs for Q are identical.

Lemma 12 Let (S+, S−) be a non-trivial constraint over an NDR from Ta-
ble 9. Then there exists a non-trivial constraint (S′+, S

′
−) over the same NDR

such that (S+, S−) is satisfiable iff (S′+, S
′
−) is satisfiable and:

S′+ ⊆ {(<, ys0), (≤, y0), (=, y1), . . . , (=, yn), (≥, yn+1), (>, ysn+1)}, (30)

S′− ⊆ {(<, zs0), (≤, z0), (=, z1), . . . , (=, zm), (≥, zm+1), (>, zsm+1)}. (31)

Proof The proof is similar to the proof of Lemma 2 for the case of natural
numbers. Since, we are no longer able to eliminate strict inequalities (real
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Table 9 Maximal safe NDRs: NDRDi = (Oi
+, O

i
−), 1 ≤ i ≤ 7, for D = R and D = Q

NDRQ
i NDRR

i Oi
+ Oi

−

NDRQ
1 NDRR

1 {=} {<,≤, >,≥,=}
NDRQ

2 NDRR
2 {<,≤, >,≥,=} {≤,=}

NDRQ
3 NDRR

3 {<,≤, >,≥,=} {≥,=}
NDRQ

4 NDRR
4 {<,≤, >,≥,=} {<,≤}

NDRQ
5 NDRR

5 {<,≤, >,≥,=} {>,≥}
NDRQ

6 NDRR
6 {<,>,≥,=} {<,≤,=}

NDRQ
7 NDRR

7 {<,≤, >,=} {>,≥,=}

numbers is a dense domain) we only apply the rules that eliminate duplicate
occurrences of inequalities:

(S+ ∪ {(<, y1), (<, y2)}, S−)⇒ (S+ ∪ {(<,min{y1, y2})}, S−) (32)

(S+ ∪ {(>, y1), (>, y2)}, S−)⇒ (S+ ∪ {(>,max{y1, y2})}, S−) (33)

(S+ ∪ {(≤, y1), (≤, y2)}, S−)⇒ (S+ ∪ {(≤,min{y1, y2})}, S−) (34)

(S+ ∪ {(≥, y1), (≥, y2)}, S−)⇒ (S+ ∪ {(≤,max{y1, y2})}, S−) (35)

(S+, S− ∪ {(<, z1), (<, z2)})⇒ (S+, S− ∪ {(<,max{z1, z2})}) (36)

(S+, S− ∪ {(>, z1), (>, z2)})⇒ (S+, S− ∪ {(>,min{z1, z2})}) (37)

(S+, S− ∪ {(≤, z1), (≤, z2)})⇒ (S+, S− ∪ {(≤,max{z1, z2})}) (38)

(S+, S− ∪ {(≥, z1), (≥, z2)})⇒ (S+, S− ∪ {(≥,min{z1, z2})}) (39)

ut

Lemma 13 Every NDR in Table 9 is safe.

Proof Let (S+, S−) be a non-trivial constraint over an NDR in Table 9. By
Lemma 12, w.l.o.g. we can assume that S+ and S− are of the form (30) and
(31), respectively. We construct a solution V for (S+, S−) by performing the
following case analysis over the content of S+ and S−:

Case 1: S+ = {(=, y1), . . . , (=, yn)}. Then the solution V := {y1, . . . , yn}.
Case 2: S+ ∩{(<, ys0), (≤, y0), (≥, yn+1), (>, ysn+1)} 6= ∅. We further distin-

guish cases according the content of S−:
Case 2.1: S− = {(=, z1), . . . , (=, zm)}, m ≥ 0. Then V := R \ {z1, . . . , zm}.
Case 2.2: S− = {(≤, z0), (=, z1), . . . , (=, zm)}, m ≥ 0. Then the solution

V := {v ∈ R | v > z0} \ {z1, . . . , zm}.
Case 2.3: S− = {(=, z1), . . . , (=, zm), (≥, zm+1)}, m ≥ 0. Then the solution

V := {v ∈ R | v < zm+1} \ {z1, . . . , zm}.
Case 2.4: S− = {(<, zs0), (=, z1), . . . , (=, zm)}, m ≥ 0. Then the solution

V := {v ∈ R | v ≥ zs0} \ {z1, . . . , zm}.
Case 2.5: S− = {(=, z1), . . . , (=, zm), (>, zsm+1)}, m ≥ 0. Then the solution

V := {v ∈ R | v ≤ zsm+1} \ {z1, . . . , zm}.
Case 2.6: S− = {(<, zs0), (≤, z0), (=, z1), . . . , (=, zm)}, m ≥ 0. Then the

solution V := {v ∈ R | v ≥ zs0 ∧ v > z0} \ {z1, . . . , zm}.
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Table 10 Examples of non-safe NDRs for R where (s+, y) →R (s1−, z1) ∨ (s2−, z2),

(s+, y) 9R (s1−, z1) and (s+, y) 9R (s2−, z2)

{s+} {s1−, s2−} y z1 z2

{<}, {≤} {<,≥}, {≤, >}, {≤,≥} 3 1 1
{<}, {≤} {<,>} 3 2 1
{>}, {≥} {<,≥}, {≤, >}, {≤,≥} 1 3 3
{>}, {≥} {<,>} 1 3 2
{≥} {=, >} 1 1 1
{≤} {=, <} 1 1 1

Case 2.7: S− = {(=, z1), . . . , (=, zm), (≥, zm+1), (>, zsm+1)}, m ≥ 0. Then
the solution V := {v ∈ R | v < zm+1 ∧ v ≤ zsm+1} \ {z1, . . . , zm}. ut

Lemma 14 Let (R, O+, O−) be an NDR. Then:

(a) If O+ ∩ {<,≤, >,≥} 6= ∅, O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅, then
(R, O+, O−) is non-safe.

(b) If {≥} ∈ O+ and O− ∩ {>,=} 6= ∅, then (R, O+, O−) is non-safe.
(c) If {≤} ∈ O+ and O− ∩ {<,=} 6= ∅, then (R, O+, O−) is non-safe.

Proof In order to prove that (R, O+, O−) is non-safe, by Lemma 1 it suffices
to prove that it is not weakly convex. For each of the cases (a), (b) and (c)
of the lemma, we provide counterexamples that violate the weak convexity
condition, namely a triple of restrictions (s+, y), (s1−, z1) and (s2−, z2), such
that s+ ∈ O+, s1−, s2− ∈ O−, y, z1, z2 ∈ R, (s+, y)→R (s1−, z1) ∨ (s2−, z2),
(s+, y) 9R (s1−, z1) and (s+, y) 9R (s2−, z2). The counterexamples are listed
in Table 10: the first four lines correspond to case (a), the penultimate line to
case (b) and the last line to case (c). ut

Lemma 15 Every NDR in Table 9 is maximal safe, that is if any new relation
is added to O+ or O−, the NDR becomes non-safe.

Proof We examine all cases of adding a new relation to NDRs in Table 9:
NDRR

1 : By Lemma 14 (a), if any of <, ≤, >, ≥ is added to O+, then NDRR
1

becomes non-safe.
NDRR

2 : By Lemma 14 (a), if ≥ is added to O−, then NDRR
2 becomes non-safe.

By Lemma 14 (b), when > is added to O−, NDRR
2 becomes non-safe. Finally,

by Lemma 14 (c), if < is added to O−, then NDRR
2 becomes non-safe.

NDRR
3 : By Lemma 14 (a), if ≤ is added to O−, then NDRR

3 becomes non-safe.

By Lemma 14 (b), when > is added to O−, NDRR
3 becomes non-safe. Finally,

by Lemma 14 (c), if < is added to O−, then NDRR
3 becomes non-safe.

NDRR
4 : By Lemma 14 (a), if > or ≥ is added to O−, then NDRR

4 becomes non-

safe. By Lemma 14 (c), if = is added to O−, then NDRR
4 becomes non-safe.

NDRR
5 : By Lemma 14 (a), if < or ≤ is added to O−, then NDRR

5 becomes

non-safe. By Lemma 14 (b), when = is added to O−, NDRR
5 becomes non-safe.

NDRR
6 : By Lemma 14 (a), if > or ≥ is added to O−, then NDRR

6 becomes non-

safe. By Lemma 14 (c), if ≤ is added to O+, then NDRR
6 becomes non-safe.
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NDRR
7 : By Lemma 14 (a), if < or ≤ is added to O−, then NDRR

7 becomes non-

safe. Similarly, by Lemma 14 (b), if ≥ is added to O+, then NDRR
7 becomes

non-safe. ut

Lemma 16 If (R, O+, O−) is a safe NDR, then O+ ⊆ Oi
+ and O− ⊆ Oi

− for

some NDRR
i = (R, Oi

+, O
i
−) in Table 9, (1 ≤ i ≤ 7).

Proof The proof is by case analysis of possible relations in O+ and O−.
Case 1: O+ ∩ {<,≤, >,≥} = ∅. In this case, O+ ⊆ O1

+ and O− ⊆ O1
−.

Case 2: O+ ∩ {<,≤, >,≥} 6= ∅. By Lemma 14 (a) and since the NDR is
safe, O− ∩ {<,≤} = ∅ or O− ∩ {>,≥} = ∅. Therefore, we examine two cases:
either O− ⊆ {>,≥,=} or O− ⊆ {<,≤,=}.

Case 2.1: O− ⊆ {>,≥,=}. We further examine whether O− ⊆ {>,≥} or
{=} ⊆ O−.

Case 2.1.1: O− ⊆ {>,≥}. Then O− ⊆ O5
− and O+ ⊆ O5

+.
Case 2.1.2: {=} ⊆ O−. We distinguish two cases: either O− ⊆ {≥,=} or

O− ∩ {>,=} 6= ∅.
Case 2.1.2.1: O− ⊆ {≥,=}. In this case O+ ⊆ O3

+ and O− ⊆ O3
−.

Case 2.1.2.2: O− ∩ {>,=} 6= ∅. By Lemma 14 (b) and since the NDR is
safe O+ ∩ {≥} = ∅. So, O+ ⊆ {<,≤, >,=} = O7

+ and O− ⊆ {>,≥,=} = O7
−.

Case 2.2: O− ⊆ {<,≤,=}. We further examine whether O− ⊆ {<,≤} or
{=} ⊆ O−.

Case 2.2.1: O− ⊆ {<,≤}. Then O− ⊆ O4
− and O+ ⊆ O4

+.
Case 2.2.2: {=} ⊆ O−. We distinguish two cases: either O− ⊆ {≤,=} or

O− ∩ {<,=} 6= ∅.
Case 2.2.2.1: O− ⊆ {≤,=}. In this case O+ ⊆ O2

+ and O− ⊆ O2
−.

Case 2.2.2.2: O− ∩ {<,=} 6= ∅. By Lemma 14 (c) and since the NDR is
safe, O+ ∩ {≤} = ∅. So, O+ ⊆ {<,>,≥,=} = O6

+ and O− ⊆ {<,≤,=} = O6
−.
ut

7 Related Work

Datatypes have been extensively studied in the context of DLs [3,8,9]. Ex-
tensions of expressive DLs with datatypes have been examined in depth [8]
with the main focus on decidability. Baader, Brandt and Lutz [3] formulated
tractable extensions of EL with datatypes using a p-admissibility restriction
for datatypes. A datatype D is p-admissible if (i) satisfiability and implication
of conjunctions of datatype restrictions can be decided in polynomial time, and
(ii) D is convex: if a conjunction of datatype restrictions implies a disjunction
of datatype restrictions, then it also implies one of its disjuncts [3]. In our work
instead of condition (i) we require that implication and satisfiability of just
datatype restrictions (not conjunctions since we do not consider functional
features) is decidable in polynomial time. Condition (ii) is replaced with the
requirement of safety for NDRs, where, in addition, we take into account the
polarity for occurrences of datatype restrictions. The refined restrictions give
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more possibilities for the use of datatypes in tractable languages, as demon-
strated by the example given in the introduction. Furthermore, Baader, Brandt
and Lutz did not provide a classification of p-admissible datatypes; in our case
we provide such a classification for natural numbers, integers, rationals and
reals. The EL Profile of OWL 2 [2] is inspired by EL++ and restricts all OWL
2 datatypes to satisfy p-admissibility. In particular, only equality can be used
in datatype restrictions. Our result can allow for a significant extension of
datatypes in the OWL 2 EL Profile, where, in addition, inequalities can be
used negatively. We believe that this result can be extended to many more
datatype restrictions outside of OWL 2, such as intervals, or user-definable
restrictions, such as predicates expressing that an integer is odd or prime.

Our work is not the only one where the convexity property for extensions
of EL is relaxed without losing tractability. It has been shown [9] that the
convexity requirement is not necessary provided that (i) the ontology contains
only concept definitions of the form A ≡ C, where A is a concept name, and (ii)
every concept name occurs at most once in the left-hand side of the definition.
While this requirement seems natural since concepts in ontologies are typically
defined only once, it disallows the usage of general concept inclusion axioms
(GCIs), such as the axiom (2) given in the introduction, which do not cause
any problem in our case.

Another related polynomial extension of EL has been considered by Viorica
Sofronie-Stokkermans [10], where in addition to the standard concept construc-
tors in EL, one can use concept of the form ↓m, ↑n, and [m;n], interpreted
as (semi-)intervals over a partially ordered set (P, <). The difference with the
results discussed before, is that the domain P and therefore the values of the
end-point parameters m and n are not fixed but can be chosen arbitrarily
for every interpretation.2 This property guarantees that the extension is poly-
nomial: in contrast to intervals over concrete datatypes such as integers or
reals, intervals over abstract partially ordered sets have the convexity prop-
erty. For example, the property [n;n] ⊆ ↓m∪ ↑m holds for real numbers since
{x ∈ R | x ≤ m} ∪ {x ∈ R | x ≥ m} = R for every m ∈ R, but does not hold
for partially ordered sets in general, where elements can be incomparable.

8 Conclusions and Future Work

In this work we made a fine-grained analysis of extensions of EL with numer-
ical datatypes, by distinguishing not only the types of relations but also the
polarities of their occurrences in axioms. We made a full classification of cases
where these restrictions result in a tractable extension for natural numbers,
integers, rationals and reals. One practically relevant case for these datatypes
is when positive occurrences of datatype expressions can only use equality and
negative occurrences can use any of the numerical relations considered. This
case was motivated by an example of a pharmacy-related ontology and can

2 Personal communication with Viorica Sofronie-Stokkermans



24 Despoina Magka et al.

be proposed as a candidate for a successor of the OWL 2 EL Profile [6]. For
the cases where the extension is tractable, we provided a polynomial sound
and complete consequence-based reasoning procedure, which can be seen as
an extension of the completion-based procedure for EL [3]. We think that
the procedure can be extended to accommodate other constructors in EL++

such as (complex) role inclusions, nominals, domain and range restrictions and
assertions since these constructors do not interact with datatypes [11].

In future work we also plan to consider other OWL datatypes, such as
strings, binary data or date and time, functional features, and to try to merge
our procedure with the consequence-based procedure for Horn SHIQ [12]. For
example, to extend the procedure with functional features, we probably need
a notion of “functional safety” for an NDR that corresponds to the strong
convexity property (see Definition 7). It might be possible to achieve even
higher expressivity by combining different NDRs for features and datatypes
that do not interact in the ontology. Currently, using two safe NDRs in a single
ontology may result in intractability. For example, allowing the usage of both
NDRZ

1 and NDRZ
2 in Table 7 is equivalent to not having any restrictions at all.

One possible solution to this problem is to specify explicitly which features
can be used with which NDRs in order to separate their usage in ontologies.
As we mentioned in the previous section, it will be also interesting to look
into more expressive datatype restrictions, such as intervals or user-definable
predicates, and restrictions containing unknown parameters or variables.
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