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Abstract

A digest function is a sort of universal hash that takes a key and a message as its
inputs. This paper will study these functions’ properties and design in the context of their
application in manual authentication technology. Frequently a digest function needs to
have a very short output (e.g. 16–32 bits) and no key is used to digest more than one
message. These together with other characteristics represent a new kind of game played
between an attacker and honest parties, which is very different from other authentication
mechanisms, notably message authentication codes or MACs.

Short digests can be constructed directly or by ”condensing” longer functions. We
offer an improved method for the latter but concentrate mainly on direct constructions.
We propose a digest algorithm which uses word multiplications to obtain a very fast im-
plementation. This digest scheme enjoys strong and provable security properties, namely
for a single-word or b-bit output digest function the collision probability is ε = 21−b on
equal and arbitrarily length inputs. The scheme is related to the multiplicative universal
hash function of Dietzfelbinger et al., and it improves on several well-studied and efficient
universal hashing algorithms, including MMH and NH.

1 Motivation and contribution

We investigate the design, construction and security of a new cryptographic primitive termed
a digest function, whose specification arises from its use in manual authentication technol-
ogy [4, 16, 27, 36, 37, 38, 39]. A digest function digest(k,m), which takes a key k and a
message m, has similarities to both ε-balanced and ε-almost universal hash functions [26, 53].
However, the majority of uses of this function in practice require it to have a very short
output (16–32 bits as in a password), and thus our constructions introduced here are de-
signed to take advantage of this feature, namely this feature opens the way for efficient and
parallelisable constructions as opposed to the cascade structure underlying many long-output
(universal) hash functions.

Although other similar cryptographic primitives such as short-output universal hash func-
tions MMH [18] and NH [9] have been designed and used to build message authentication
codes, we note that these short-output primitives are not often used on their own in crypto-
graphic mechanisms. In this paper we will focus on the application and security properties
of digest functions in manual authentication protocols, which use this function together with
existing human trust and interactions to authenticate data without the need for PKI, shared
private keys and passwords. Here is an example of how this technology works: for electronic
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devices to agree on the same (and potentially large) data that have been exchanged over
an insecure and high-bandwidth medium, their human owners need to manually compare
a short and non-secret digest of both the data and some key.1 Since human comparison
of a digest via conversations, phones or text messages is time-consuming, a digest function
must have a very short output. As this technology has many application in, for example,
online payments, e-heathcare and bootstrapping of ad hoc networks, it has been rapidly de-
veloped by many researchers and standardised by both ISO and IETF in the last decade.
Examples include the Bluetooth v2.1 [4, 29], MANA I [16, 35, 36], ZRTP [61], schemes of
Laur and Nyberg [27, 28], Pasini and Vaudenay [41], and the (S)HCBK protocols of the
authors [8, 36, 37, 38, 39, 43, 44, 45, 46, 47].

We will see in Section 2 that both security and efficiency properties of a digest function are
dictated by a new game played between an attacker and trustworthy parties in these protocols,
which is very different in a number of aspects from conventional attacking opportunities
present in other authentication mechanisms, such as message authentication codes. For
example, the digest key always varies randomly from one to another protocol run, i.e. no key
value is used to digest more than one message, and hence attacks which rely on the reuse of a
single private key in multiple sessions (as in MACs or any ciphers) are irrelevant. Moreover,
the digest key is always revealed and known to everyone (including the intruder) prior to the
computation of a digest value in these protocols, and consequently the process of expanding
this key into a long keystream via a pseudorandom number generator (PRNG) before being
input into a digest function need not to be cryptographically secure. This has a great impact
on the efficiency of digest computation because an ordinary PRNG is normally faster than a
cryptographically secure one. We note that there have been several papers [16, 41, 37, 38] in
which manual authentication protocols have been analysed. However, neither do they study
the differences between these protocols and MACs nor rigorously investigate the influence
of the interactions (or the new game) between protocol participants and the intruder on the
security properties that a digest function must satisfy.

A short digest can be directly constructed or by condensing longer functions. We will
give a brief survey on the latter in Section 4 where we present our improvement to one of
the existing schemes as well as pointing out their disadvantages. Our discussion on direct
constructions starts with the Toeplitz matrix algorithm of Krawczyk [25] and Mansour et
al. [30], and then expands to all of Sections 5 and 6.

The main contribution of this paper is a new digest algorithm which has similarity to
the well-studied multiplicative universal hashing scheme of Dietzfelbinger et al. [14]. Our
construction uses word multiplications which are fast in any modern microprocessor to in-
crease computational efficiency while retains the same level of security. In particular, for
a single-word or b-bit output digest scheme, the security proof of this construction demon-
strates that the collision probability is εc = 21−b. Since there are two other related universal
hash functions called MMH of Halevi and Krawczyk [18] and NH of Black et al. [9], we will
assess their suitability for use in manual authentication protocols as well as compare them
against ours in Section 6. While the underlying ideas of MMH and NH are different from our
digest scheme, i.e. they are based on techniques due to Carter and Wegman [12] instead of
multiplicative universal hashing, they also make use of word multiplications to have a very
good performance in computation. They however obtain lower levels of security: (1) for a
b-bit output MMH: εc = 6× 2−b, and (2) for a b-bit output NH, εc = 2−b/2.

1There are protocols such as schemes of Vaudenay [57], Mashatan and Stinson [31] which do not use a
digest or universal hash function. However the majority of others require the specification of a digest function.
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It is important to stress that our digest scheme can be efficiently generalised to a multiple-
word or long-output scheme without increasing the word length that is constrained by archi-
tecture characteristics. The generalised scheme enjoys the best bound for collision probability
one could hope for, i.e. for a n-word or nb-bit digest scheme the collision probability is 2n−nb.
Consequently, the digest algorithm can be plugged in to construct message authentication
codes and a new type of digital certificate termed FlexiMAC [39] that is significantly cheaper
to check as well as other computer science applications, including randomised algorithm [14].
The description and security proof for this generalised version are provided in subsection 5.3.

We end this paper by reporting the implementation results of our digest construction as
well as MMH, NH and SHA family of hash functions on the same platform: 1GHz AMD
Athlon(tm) 64 X2 Dual Core Processor (4600+ or 512 KB caches). With εc = 2−31 chance of
collision the digest scheme achieves peak performance of 1.57 cycles/byte, which is comparable
with 1.33 cycles/byte of MMH (for εc = 6× 2−32) and 1.25 cycles/byte of NH (for εc = 2−32

but the output length of NH is twice of MMH and digest). Please note that these figures
include the cost of both universal hashing computation and key expansion via a pseudorandom
number generator, the latter was not included in the previously recorded speeds for MMH [18]
and NH [9]. For comparison, our SHA1 implementation runs at 5.78 cycles/byte.

2 Characteristics of the new game

In this section, we will describe the main requirements of a digest function by outlining
major differences between manual authentication protocols and MACs, both of which seek
to authenticate data. This comparison focuses on four aspects: human interactions, key
distribution or agreement, key usage, and key expansion. To illustrate the differences, we
frequently refer to the following scheme2 as an example, though our analysis here applies
to the majority of other oneway, pairwise and group manual authentication protocols in the
literature [4, 27, 28, 37, 38, 41, 58]. We end this section by summarising the comparison in
Table 1. The exact definition of a digest function is given in Section 3.

In the following scheme, parties A and B want to authenticate their public data mA/B

to each other without the need for passwords, private keys, or pre-established security in-
frastructures such as a PKI. mA/B include public keys, images or videos, and so can be of
significant size. The single arrow (−→) indicates an unreliable and high-bandwidth link where
messages can be maliciously altered, whereas the double arrow (=⇒) represents an authentic
and unspoofable channel. The latter is not a private channel (anyone can overhear it) and it
is usually very low-bandwidth since it is implemented by humans, e.g., human conversations
or manual data transfers between devices. hash() is a cryptographic hash function. Long
random keys kA/B generated by A/B are kept secret until the end of Messages 1–2. Operators
‖ and ⊕ denote bitwise concatenation and exclusive-or.

A pairwise authentication protocol [4, 27, 29, 36, 37, 38]

1.A −→ B : mA, hash(A ‖ kA)
2.B −→ A : mB, hash(B ‖ kB)
3.A −→ B : kA
4.B −→ A : kB
5.A⇐⇒ B : digest(kA ⊕ kB,mA ‖ mB)

2This is the pairwise version of the SHCBK protocol [37, 38]. It also closely resembles the Bluetooth
v2.1 [4, 29] and the protocol of Laur any Nyberg [27].
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Human interactions and security of the protocol: To ensure both devices agree on
the same data, their human owners have to compare a digest value manually in Message 5.
As human interactions are expensive, the digest function needs to have a short output of
b = 16–32 digits. Also regardless of what the intruder does with Messages 1–4, the digest
key k∗ = kA ⊕ kB, which is computed at each node and is instrumental in the computation
of the digest value digest(k∗,mA ‖ mB), always varies from one to another run in a way that
cannot be influenced by an attacker. This is because each party’s digest key is randomised by
its own subkey, due to the ⊕ operator. What we then require of such a digest function is the
resistance against a digest collision attack. A digest collision for a pair of different messages
m and m′ is a key k such that digest(k,m) = digest(k,m′).

Key distribution and agreement: In the symmetric cryptographic world, we usually as-
sume that parties share a long private key in advance, and no-one could have influenced its
creation and distribution. In contrast, as seen in the above scheme, the establishment of
the digest key k∗ = kA ⊕ kB is part of the protocol itself, and therefore potentially open
to attacks. Those protocols must ensure that, invariably, the digest key remains completely
unknown to anyone until very late in the protocol, specifically after everyone’s view of mA/B

is committed. This is a major advantage because no attacker can manipulate mA/B data
by reference to what it might know about the digest key. This is in contrast to attacking
strategies on symmetric cryptographic primitives as will be discussed below.

Key usage: The majority of MAC schemes and also ciphers use the same private key to
encrypt or hash multiple messages for a long period of time.3 This opens the way for crypt-
analysis as well as adaptive chosen plaintext and ciphertext attacks. As explained previously,
no key value is used to digest more than one input message in the new game. The key
always varies randomly from one to another protocols, and hence there is no opportunity
for traditional cryptanalysis. To some extent, this type of protocols have similarities to
password-based schemes where off-line searches are made irrelevant, i.e. the only way to find
out a guess of a password is correct is to interact with the protocol. However passwords are
often unchanged, and so the chance of a successful attack increases as more attempts are
launched to guess the passwords. This is not the case in the above protocol since the digest
key is always random and fresh, and so the chance of a successful attack remains unchanged
regardless of how many times an attack is launched. Crucially this explains why manual
authentication protocols can resist collision attacks even though the digest is short.

Key expansion and pseudorandom number generator (PRNG): All digest and uni-
versal hash (MMH and NH) constructions considered here require the key length to be compa-
rable with the message length, which can be very long for large data. One therefore usually
generates such a long keystream out of a shorter digest key via a PRNG prior to digest
computation, e.g. in Message 5 of the above protocol. Similarly both MAC algorithms and
ciphers use shared private keys to derive long keystreams or multiple round keys. However,
to generate keystreams as in MACs and the one-time padding scheme, the PRNG must pass
the next-bit test (or be unpreditable), and such a PRNG is called a Cryptographically Secure

3Although researchers [19] have suggested that we should avoid reusing universal hash keys in MAC schemes,
and such an approach has been taken by SNOW 3G [3], both parties still need to agree on the same long-term
secret which is used to generate a new keystream each time a MAC is computed. The problem of recovering
reused universal hash keys is therefore reduced to the problem of recovering long-term secrets.
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MACs Manual authentication protocols

Human None Compare short authentication strings
interactions ⇒ Long-output primitives ⇒ Short-output (digest) functions

Key generation, Generated by trusted parties Jointly agreed among parties
distribution, Distributed in advance Not agreed until the end of protocol
and agreement ⇒ Unbiased and no attacks ⇒ Unbiased but open to collision attacks

Key usage Reused Never used more than once
Revocation and replacement Always random and fresh
⇒ Cryptanalysis ⇒ No cryptanalysis and no off-line search

Key expansion Must pass the next-bit test Do not need to pass the next-bit test
⇒ CS-PRNG ⇒ Good quality (ordinary) PRNG

Table 1: A summary of the differences between MACs and the new game.

PRNG (CS-PRNG).4

The next-bit test [32] (or unpredictability): A pseudorandom bit generator is said to
pass the next-bit test if there is no polynomial-time algorithm which, on input of the
first l bits of an output sequence s, can predict the (l + 1)st bit of s with probability
significantly greater than 1/2.

In contrast, the digest key in manual authentication protocols is always revealed and known to
everyone prior to digest computation (as seen in Messages 3–4 of the above protocol). Clearly
there is no point for the PRNG which expands this non-secret key into a long keystream to
pass the next-bit test, because the pseudorandom keystream is predictable from the digest
key anyway. What we require of this PRNG is a long period and good statistical prop-
erties, and such a PRNG is well-studied and efficiently implemented in practice, including
linear congruential generators, linear or generalised feedback shift registers. We note that the
security of a CS-PRNG often relies on the presumed intractability of an underlying number-
theoretic problem, such as the factoring and RSA problems, which use modular arithmetics;
thus CS-PRNGs are relatively slow compared to normal PRNGs [32]. As will be demon-
strated in subsection 6.3, this will have a major effect on the speed and usability of not only
our proposed constructions but also other similar primitives used in manual authentication
protocols.

3 Notation and definitions

We define M , K and b the bitlength of message, key and output in a digest or universal hash
function. We denote R = {0, 1}K , X = {0, 1}M and Y = {0, 1}b.

Definition 1. [26] A ε-balanced universal hash function, h : R×X → Y , must satisfy that
for every m ∈ X \ {0} and y ∈ Y : Pr{k∈R}[h(k,m) = y] ≤ ε

4CS-PRNG is also required to resist a state-compromise attack: given the knowledge of the internal state
of a PRNG or the last few bits, it is infeasible to reconstruct the preceding bits of the sequence [60].
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Definition 2. [26] A ε-almost universal hash function, h : R ×X → Y , must satisfy that
for every m,m′ ∈ X (m 6= m′): Pr{k∈R}[h(k,m) = h(k,m′)] ≤ ε

Combining definitions 1 and 2, we define an (εd, εc)-balanced digest function as follows. We
note that the majority of manual authentication protocols only need the second requirement
of a digest function, but some of those also need the first one.

Definition 3. A (εd, εc)-balanced digest function, digest : R×X → Y , must satisfy

• for every m ∈ X \ {0} and y ∈ Y : Pr{k∈R}[digest(k,m) = y] ≤ εd

• for every m,m′ ∈ X (m 6= m′): Pr{k∈R}[digest(k,m) = digest(k,m′)] ≤ εc

4 Existing digest constructions

There have been a number of publications [4, 16, 41] in which functions playing the role
of a digest function have been defined. However, they mainly use methods which create
a long hash of authentic data and then condense it to a short digest value. Although we
make improvement to one of these, we will show that this strategy suffers from either lack of
rigorous proof of security or computational inefficiency.

Since this paper concentrates on direct constructions of digest functions, we first analyse
a method based on Toeplitz matrix which directly produces a b-bit digest, and then expand
this discussion to a variety of new and existing ones in Sections 5 and 6.

4.1 Condensing a long-output function

One possibility suggested in [4, 16, 41] is to truncate the output of a cryptographic hash
function to the b least significant bits: digest(k,m)=truncb (hash(k ‖ m)). This does not
exploit the short output and parallel computation to increase computational efficiency, be-
cause the design of the underlying long-output cryptographic hash function hash() usually
follows the Merkle-Damg̊ard structure [34]. Also it is hard to provide any concrete security
evidence for the truncation operation truncb() since the definition of a hash function does
not normally specify the distribution of individual groups of bits. In contrast, we will show
in subsection 5.2 that truncation is secure in our new digest constructions.

Taking a different approach, Gehrmann and Nyberg [16] proposed using error-correcting
codes (ECC) to construct a short-output (b-bit) check-value function, which is a variant of
the polynomial universal hashing algorithm introduced in [10, 20, 55]. The advantage of
this approach is its mathematical structure and its security proof, yet the algorithm puts
a severe limit on the message length. To have a perfectly balanced (b-bit) digest function
εc = 2−b, the input message length must not exceed 2b. More generally, to obtain a collision
probability εc = c2−b where c ∈ [1, 2b − 1], the input message bitlength is bounded above by
(c+ 1)b.5 What Gehrmann and Nyberg suggested was to compress any significant amount of
data into (c+ 1)b bits by using a cryptographic hash function as a first step: digest(k,m) =
ECC(k, hash(m)).

We note that this construction has to compromise the security (i.e. εc = c2−b) to digest
messages which are longer than 2b bits. To minimise this effect, we propose the following
improved scheme which is nearly perfectly balanced at the cost of more computation. As in

5Suppose b = 32 and ε = 7 ∗ 2−16, then the input message cannot have more than 256 bits, which is just
about good enough to authenticate a single key.
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Gehrmann-Nyberg, a large message first needs to be hashed into an 8b-bit value, but then
the length of this hash value will be repeatedly halved by using a perfectly balanced digest
construction ECC().

digest(k,m) = ECC(k1, ECC(k2, ECC(k3, hash(m))))

Here ECC() always takes a message twice the length of the key, and produces an output of
length half the message.6 Keys k1, k2, and k3 are derived from k, and their bitlengths are b, 2b
and 4b. The collision probability of this construction is therefore εc = 2−b +2−2b +2−4b +µ ≈
2−b, where µ is the collision probability of hash() and µ� 2−b.

We can easily generalise this algorithm to the whole length of message m, and thus
eliminate the need for hash(). Although the total length of all keys (k1, k2, . . .) required
is the same as the length of m, these keys can be efficiently derived from k via a PRNG.
Unfortunately this method will become much more expensive mainly because ECC(), which
involves modular arithmetics, will be called dlogMe times.

4.2 Toeplitz matrix based construction

Instead of condensing longer functions, one can use the following direct construction invented
independently by Krawczyk [26] and Mansour et al. [30]. Since this construction uses a
Toeplitz matrix multiplication, we give the definition for a Toeplitz matrix below.

Definition 4. A Toeplitz matrix A is a (not necessary square) matrix where each left-to-right
diagonal is fixed, i.e. for all pairs of indexes (i, j): Ai,j = Ai+1,j+1.

If we want to compute a b-bit universal hash of a M -bit message m, then (M + b − 1)-bit
key k is drawn randomly from R = {0, 1}M+b−1. We can generate a Toeplitz matrix A(k) of
M rows and b columns from key k, i.e. we assume a linear map from (F2)

M+b−1 to the set of
Toeplitz matrices in (F2)

M×b, and then

h(k,m) = m×A(k) (1)

The symbol ‘×’ in Equation 1 represents a product of vector m and matrix A(k) over F2.
If key k is drawn randomly from R, then the collision probability is εc = 2−b. This

construction however has two disadvantages. First it requires many bit operations arising
from a (Toeplitz) matrix multiplication, and hence unless special hardware or instruction
for binary matrix multiplication is available this is likely to be very inefficient. For large
messages, we need to expand a short seed into a long (M + b − 1-bit) keystream efficiently,
and one therefore frequently uses a linear pseudorandom number generator or one with a low
linearity complexity for this purpose. Sadly it is not secure to do so in this case, because
this construction is linear in the key, i.e. h(k1 + k2,m) = h(k1,m) + h(k2,m). To justify
this argument, in Annex A, we describe an attack on this construction if key expansion is
done by a linear feedback shift register (or LFSR) whose feedback rule is fixed and known
to an attacker. We note that Krawczyk [26] suggested that k could be drawn from a biased
distribution on sequences of length K, however constructions for biased sequences due to
Alon et al. [7] would involve the computation of either a Legendre symbol or a modular
exponentiation per each pseudorandom bit, both of which are computationally expensive.

6With m = m0||m1 and k,m0,m1 ∈ Fp where p is prime, then ECC(k,m) = m0 + m1k (mod p) with
εc = 1/p.
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5 A new digest construction

We first discuss the well-studied multiplicative universal hashing algorithm introduced by
Dietzfelbinger et al. [14]. Although this scheme is provably secure, it is not efficient with
long messages, and consequently we will develop this method further by making use of word
multiplication instructions which are fast in software on standard and sometimes basic mi-
croprocessors. We note that there have been two other related universal hashing methods
which also use word multiplications, namely MMH of Halevi and Krawczyk [18] and NH of
Black et al. [9]. Both of which will be compared against our new construction in Section 6.

It is important to point out that our digest function as well as MMH and NH all require a
key of comparable size as the input message to be randomly selected from its domain. This is
the only assumption made in Theorems 1 and 3 (the security proofs of our digest algorithms).
In practice, we need to generate such a long key out of a shorter key via a pseudorandom
number generator (PRNG), and the issue whether the PRNG need to be cryptographically
secure or not is independent of the work reported in this section. Instead it depends on the
type of authentication mechanisms which use a digest function as pointed out in Section 2.

• For message authentication codes, since a MAC key must be kept private and unknown
to the intruder, the process of expanding this key into a long keystream for being input
into a MAC algorithm must pass the next-bit test, i.e. a CS-PRNG is required.

• For manual authentication protocols, a digest key is always revealed prior to digest
computation, and hence the PRNG does not need to be cryptographically secure.

5.1 Multiplicative universal hashing

Suppose we want to compute a b-bit universal hash of a M -bit message, then the universal
hash key k must be drawn randomly from R = {1, 3, 5, . . . , 2M − 1}, i.e. k is odd. Dietzfel-
binger et al. [14] define:

h(k,m) = (k ∗m mod 2M ) div 2M−b

It was proved that the collision probability of this construction is εc = 21−b on equal length
inputs [14]. While this has a simple description, for long input messages of several megabytes,
such as images, it will become very time consuming to compute the integer multiplication
involved in this algorithm. We therefore propose the following change to make it run faster.

5.2 New construction and security proof

In this section, we will show that digest(k,m) can be calculated using word multiplications
that are implemented efficiently in just about all processors.

Let us divide message m into b-bit blocks 〈m1, . . . ,mt=M/b〉. A (M + b)-bit key k =

〈k1, . . . , kt+1〉 is selected randomly from R = {0, 1}M+b. A b-bit digest(k,m) is defined as

digest(k,m) =

t∑
i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] mod 2b (2)

Here, * refers to a word multiplication of two b-bit blocks which produces a 2b-bit output,
whereas both ‘+’ and

∑
are additions modulo 2b.
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To see why this scheme is based on the multiplicative method of Dietzfelbinger et al. [14],
one can study Figure 1 where all word multiplications involved in Equation 2 can be arranged
into the same shape as the overlap of the expanded multiplication between m and k. If we
further ignore the effect of the carry in (word) multiplications then this becomes the same
as the Toeplitz matrix based construction of subsection 4.2. And indeed such a carry-less
multiplication instruction is available in a new Intel processor [6].

Operation count. To give an estimated operation count for an implementation of digest(),
which will be subsequently compared against universal hashing schemes MMH and NH, we
consider a machine with the same properties as one used by Halevi and Krawczyk [18]:

• (b = 32)-bit machine integers, and arithmetic operations are done in registers.

• A multiplication of two 32-bit integers yields a 64-bit result that is stored in 2 registers.

A pseudo-code for digest() on such machine may be as follows

digest(key,msg)
1. Sum = 0
2. load key[1]
3. for i = 1 to t
4. load msg[i]
5. load key[i+ 1]
6. 〈High1, Low1〉 = msg[i] ∗ key[i]
7. 〈High2, Low2〉 = msg[i] ∗ key[i+ 1]
8. Sum = Sum+ Low1 +High2
9. return Sum

This consists of 2t = 2M/b word multiplications (MULT) and 2t = 2M/b addition modulo
2b (ADD). That is each message-word requires 1 MULT and 2 ADD operations. As in [18],
a MULT/ADD operation should include not only the actual arithmetic instruction but also
loading the message- and key-words to registers and/or loop handling.

Theorem 1. For any t, b ≥ 1, digest() of Equation 2 satisfies Definition 3 with the
distribution probability εd = 2−b and the collision probability εc = 21−b on equal length
inputs.

Proof. We first consider the collision property. For any pair of distinct messages of equal
length: m = m1 · · ·mt and m′ = m′1 · · ·m′t, without loss of generality we assume that m1 >
m′1. Please note that when t = 1 or mi = m′i for all i ∈ {1, . . . , t − 1} then in the following
calculation we will assume that mt+1 = m′t+1 = 0. A digest collision is equivalent to:

t∑
i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] =
t∑

i=1

[m′i ∗ ki + (m′i ∗ ki+1 div 2b)]

There are two possibilities as follows.

WHEN m1 −m′1 is odd. The above equality can be rewritten as

(m1 −m′1)k1 = y (3)
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digest(k,m)

m1m2m3

k1 k4k3k2

*

k  = k1 || k2 || k3 || k4           
m = m3 || m2 || m1

digest(k,m) = m1 * k1 + (m1 * k2 div 2b) +
     m2 * k2 + (m2 * k3 div 2b) +

                      m3 * k3 + (m3 * k4 div 2b)

Figure 1: Word multiplication model digest(k,m). Each parallelogram equals the expansion
of a word multiplication between a b-bit key block and a b-bit message block.

where

y = (m′1k2 div 2b) +

t∑
i=2

[
m′i ∗ ki + (m′i ∗ ki+1 div 2b)

]
−

(m1k2 div 2b)−
t∑

i=2

[
mi ∗ ki + (mi ∗ ki+1 div 2b)

]

We note that y depends only on keys k2, . . .,kt+1, and hence we fix k2 through kt+1 in our
analysis. Since m1 −m′1 is odd, i.e. m1 −m′1 and 2b are co-prime, there is at most one value
of k1 satisfying Equation 3. The collision probability is therefore εc = 2−b < 21−b.

WHEN m1 −m′1 is even. A digest collision can be rewritten as

(m1 −m′1)k1 + (m1k2 div 2b)− (m′1k2 div 2b) + (m2 −m′2)k2 = y (4)

where

y = (m′2k3 div 2b) +

t∑
i=3

[
m′i ∗ ki + (m′i ∗ ki+1 div 2b)

]
−

(m2k3 div 2b)−
t∑

i=3

[
mi ∗ ki + (mi ∗ ki+1 div 2b)

]

We note that y depends only on keys k3, . . .,kt+1. If we fix k3 through kt+1 in our analysis,
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we need to find the number of pairs (k1, k2) such that Equation 4 is satisfied.

εc ≤ Prob{
0≤k1<2b

0≤k2<2b

} [(m1 −m′1)k1 + (m1k2 div 2b)− (m′1k2 div 2b) + (m2 −m′2)k2 = y
]

We define

m1k2 = u2b + v

m′1k2 = u′2b + v′

Since we assumed m1 > m′1, we have u ≥ u′ and (m1 −m′1)k2 = (u− u′)2b + v − v′.

• When v ≥ v′: (m1k2 div 2b)− (m′1k2 div 2b) = (m1 −m′1)k2 div 2b

• When v < v′: (m1k2 div 2b)− (m′1k2 div 2b) = [(m1 −m′1)k2 div 2b] + 1

Let c = m1 −m′1 and d = m2 −m′2 (mod 2b), we then have 1 ≤ c < 2b and:

εc ≤ p1 + p2

where
p1 = Prob{

0≤k1<2b

0≤k2<2b

} [ck1 + (ck2 div 2b) + dk2 = y
]

and
p2 = Prob{

0≤k1<2b

0≤k2<2b

} [ck1 + (ck2 div 2b) + dk2 = y − 1
]

Using Lemma 1, we have p1, p2 ≤ 2−b, and thus εc = 21−b.
As regards distribution, since m = m1 · · ·mt > 0 as specified in Definition 3, without loss

of generality we can assume that m1 > 0. If we fix k3 through kt+1, we need to find the
following probability:

εd ≤ Prob{
0≤k1<2b

0≤k2<2b

} [m1k1 + (m1k2 div 2b) +m2k2 = y
]

Using Lemma 1, we have εd = 2−b.

Lemma 1. Let 1 ≤ c < 2b and 0 ≤ d < 2b, then for any y ∈ {0, . . . , 2b − 1} there are at
most 2b pairs k1, k2 ∈ {0, . . . , 2b − 1} such that

ck1 + (ck2 div 2b) + dk2 = y (mod 2b)

Proof. We write c = s2l with s odd and 0 ≤ l < b. Since s and 2b are co-prime, there exist a
unique inverse modulo 2b of s, we call it s−1. Our equation now becomes:

2lsk1 + (2lsk2 div 2b) + ds−1sk2 = y (mod 2b)

Let sk1 = γ (mod 2b−l) and sk2 = α2b−l + β (mod 2b), we then have 0 ≤ γ < 2b−l and
0 ≤ α < 2l. The above equation becomes:

2lγ + α+ ds−1(α2b−l + β) = y

2lγ + α(1 + ds−12b−l) + βds−1 = y

2lγ + αx = z

Where x = 1 + ds−12b−l (mod 2b) which is always odd, and z = y− βds−1. Using Lemma 2,
there is a unique pair (γ, α) satisfying the above equation. Since 0 ≤ γ < 2b−l and 0 ≤ α < 2l,
there are at most 2b pairs (k1, k2) satisfying the condition that we require in this lemma.
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Lemma 2. Let 0 ≤ l < b and x ∈ {1, 3, . . . , 2b − 1} then for any z ∈ {0, . . . , 2b − 1} there
is a unique pair (γ, α) such that 0 ≤ γ < 2b−l, 0 ≤ α < 2l, and 2lγ + αx = z (mod 2b).

Proof. If there exist two distinct pairs (γ, α) and (γ′, α′) satisfying this condition, then

2lγ + αx = 2lγ′ + α′x = z

which implies that
2l(γ − γ′) = (α′ − α)x

This leads to two possibilities.

• When α′ = α then 2l(γ − γ′) = 0, which means that 2b−l|(γ − γ′). The latter is
impossible because 0 ≤ γ, γ′ < 2b−l and γ 6= γ′.

• When α′ 6= α and since x is odd, we must have 2l|(α′ − α). This is also impossible
because 0 ≤ α, α′ < 2l.

REMARKS. The bound given by Theorem 1 for the distribution probability (εd = 2−b) is
tight: let m = 0b−11 and any y and note that any key k = k1k2 with k1 = y satisfying
this equation digest(k,m) = y. The bound given by Theorem 1 for the collision probability
εc = 21−b also appears to be tight. To verify this bound, we have implemented exhaustive
tests on single-word messages with small value of b. For example, when b = 7, we look at
all possible pairs of two different (b = 7)-bit messages in combination with all (2b = 14)-bit
keys, the obtained collision probability is 2−b × 1.875.

We end this section by pointing out that truncation is secure in this digest construction.
For any b′ ∈ {1, . . . , b− 1}, we define

truncb′(digest(k,m)) =
t∑

i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] mod 2b
′

(5)

where truncb′() takes the first b′ least significant bits of the input. We then have the following
theorem whose proof is very similar to the proof of Theorem 1, and hence it is not given here.

Theorem 2. For any n, t ≥ 1, b ≥ 1 and any integer b′ ∈ {1, . . . , b− 1}, truncb′(digest())
of Equation 5 satisfies the definition of a digest function with the distribution probability
εd = 2−b

′
and the collision probability εc = 21−b

′
on equal length inputs.

5.3 Reducing the collision probability

Although single-word or b-bit digest schemes where b ∈ {8, 16, 32} are suitable for their ap-
plication in manual authentication protocols, if we want to use digest functions as the main
ingredient of a message authentication code, we need to reduce the collision probability with-
out increasing the value of b that is dictated by architecture characteristics. It turns out
that using the same technique as in the multiplicative universal hashing method of subsec-
tion 5.1, a single-word digest scheme can be straightforwardly generalised to a multiple-word
(or nb-bit) digest construction digestMW (), where MW stands for multiple-word, as seen in
Figure 2 and below.
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   d1     d2     d3

m1m2m3

k3 k6k5k4

*

k  = k1 || k2 || k3 || k4 || k5 || k6          
m = m3 || m2 || m1

digest(k,m) = d1 || d2 || d3

d1 = m1 * k1 + (m1 * k2 div 2b) + m2 * k2 + (m2 * k3 div 2b) + m3 * k3 + (m3 * k4 div 2b) (mod 2b)
d2 = m1 * k2 + (m1 * k3 div 2b) + m2 * k3 + (m2 * k4 div 2b) + m3 * k4 + (m3 * k5 div 2b)     (mod 2b)
d3 = m1 * k3 + (m1 * k4 div 2b) + m2 * k4 + (m2 * k5 div 2b) + m3 * k5 + (m3 * k6 div 2b) (mod 2b)

k2k1

Figure 2: 3b-bit output digestMW (k,m). Each parallelogram equals the expansion of a word
multiplication between a b-bit key block and a b-bit message block.

We still divide m into b-bit blocks 〈m1, . . . ,mt=M/b〉. However, a (M + bn)-bit key k =

〈k1, . . . , kt+n〉 will be chosen randomly from R = {0, 1}M+bn to compute a nb-bit digest.
For all i ∈ {1, . . . , n}, we then define:

di = digest(ki···t+i,m) =
t∑

j=1

[mjki+j−1 + (mjki+j div 2b)] mod 2b

And
digestMW (k,m) = 〈d1 · · · dn〉

Operation count. The advantage of this scheme is the ability to reuse the result of each
word multiplication in the computation of two adjacent digest output words as seen in Fig-
ure 2 and the following pseudo-code, e.g. the multiplication m1k2 is instrumental in the
computation of both d1 and d2. Using the same machine as specified in subsection 5.2, each
message-word therefore requires (n+ 1) MULT and 2n ADD operations.

A pseudo-code for digestMW () on such machine may be as follows

digestMW (key,msg)
1. For i = 1 to n
2. d[i] = 0
3. load key[i]
4. For j = 1 to t
5. load msg[j]
6. load key[j + n]
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7. 〈High[0], Low[0]〉 = msg[j] ∗ key[j]
8. For i = 1 to n
9. 〈High[i], Low[i]〉 = msg[j] ∗ key[j + i]
10. d[i] = d[i] + Low[i− 1] +High[i]
11. return 〈d[1] · · · d[n]〉

The following theorem and its proof show that digestMW () enjoys the best bound for both
collision and distribution probabilities that one could hope for.

Theorem 3. For any n, t ≥ 1 and b ≥ 1, digestMW () satisfies the definition of a digest
function with the distribution probability εd = 2−nb and the collision probability εc = 2n−nb

on equal length inputs.

Proof. We first consider the collision property of a digest function. For any pair of distinct
messages of equal length: m = m1 · · ·mt and m′ = m′1 · · ·m′t, without loss of generality we
assume that m1 > m′1. Please note that when t = 1 or mi = m′i for all i ∈ {1, . . . , t− 1} then
in the following calculation we will assume that mt+1 = m′t+1 = 0.

For i ∈ {1, . . . , n}, we define Equality Ei as

Ei :
t∑

j=1

[
mjki+j−1 + (mjki+j div 2b)

]
=

t∑
j=1

[
m′jki+j−1 + (m′jki+j div 2b)

]
and thus the collision probability is: εc = Prob{k∈R}[E1 ∧ · · · ∧ En].

WHEN m1 −m′1 is odd. We proceed by proving that for all i ∈ {1, . . . , n}

Prob[Ei is true | Ei+1, . . . , En are true] ≤ 2−b

For Equality En, the claim is satisfied due to Theorem 1. We notice that Equalities Ei+1

through En depend only on keys ki+1, . . . , kn+t, whereas Equality Ei depends also on key ki.
Fix ki+1 through kn+t such that Equalities Ei+1 through En are satisfied. We prove that
there is at most one value of ki satisfying Ei. To achieve this we let

z = (m′1ki+1 div 2b) +
t∑

j=2

[
m′jki+j−1 + (m′jki+j div 2b)

]
−

(m1ki+1 div 2b)−
t∑

j=2

[
mjki+j−1 + (mjki+j div 2b)

]
we then rewrite Equality Ei as

(m1 −m′1)ki = z

Since we assumed m1 −m′1 is odd, there is at most one value of ki satisfying this equation.

WHEN m1 − m′1 is even. We write m1 − m′1 = 2ls with s odd and 0 < l < b, and
s′ = (m′2 − m2)s

−1. We further denote ski = xi2
b−l + yi for i ∈ {1, . . . , n + t}, where

0 ≤ xi < 2l and 0 ≤ yi < 2b−l.
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For i ∈ {1, . . . , n}, if we define bi ∈ {0, 1} and

f(yi, xi+1) = 2lyi + xi+1[(m2 −m′2)s−12b−l + 1]

g(ki+2, . . . , ki+t) = (m′2ki+2 div 2b) +
t∑

j=3

[
m′jki+j−1 + (m′jki+j div 2b)

]
−

(m2ki+2 div 2b)−
t∑

j=3

[
mjki+j−1 + (mjki+j div 2b)

]
then, using similar trick as in the proof of Lemma 1, Equality Ei can be rewritten as

(m1 −m′1)ki + ((m1 −m′1)ki+1 div 2b) + (m2 −m′2)ki+1 = g(ki+2, . . . , ki+t)− bi
2lski + (2lski+1 div 2b) + (m2 −m′2)s−1ski+1 = g(ki+2, . . . , ki+t)− bi
2lyi + xi+1 + (m2 −m′2)s−1(xi+12

b−l + yi+1) = g(ki+2, . . . , ki+t)− bi
2lyi + xi+1[(m2 −m′2)s−12b−l + 1] = s′yi+1 − bi + g(ki+2, . . . , ki+t)

f(yi, xi+1) = s′yi+1 − bi + g(ki+2, . . . , ki+t)

Putting Equalities E1 through En together, we have

E1 : f(y1, x2) = s′y2 − b1 + g(k3, . . . , k1+t)

E2 : f(y2, x3) = s′y3 − b2 + g(k4, . . . , k2+t)

E3 : f(y3, x4) = s′y4 − b3 + g(k5, . . . , k3+t)

...
...

...

En−1 : f(yn−1, xn) = s′yn − bn−1 + g(kn+1, . . . , kn+t−1)

En : f(yn, xn+1) = s′yn+1 − bn + g(kn+2, . . . , kn+t)

We fix kn+2 through kt+n. We note that there are 2b−t values for yn+1 and two values for
bn. For each pair (yn+1, bn) there is a unique pair (yn, xn+1) satisfying Equality En due to
Lemma 2. Similarly, for each tuple 〈yn, kn+1, bn−1, bn〉 there is also a unique pair (yn−1, xn)
satisfying Equality En−1. We will continue this process until we reach the pair (y1, x2) in
Equality E1. Since Equalities E1 through En do not depend on x1 and there are 2l values for
x1, there will be at most 2l2n2b−l = 2n+b different tuples 〈k1 · · · kn+1〉 satisfying Equalities
E1 through En. And thus the collision probability εc = 2n+b/2(n+1)b = 2n−nb.

Similar argument also leads to our bound on the distribution probability εd = 2−nb.

REMARKS. Even though Theorems 1 and 3 specify the εc-almost-universal property of the
digest schemes, which is required in manual authentication protocols, their proofs can be
easily adapted to show that our constructions are also εc-almost-∆-universal as in the case of
the MMH scheme considered in the next section. The latter property requires that for every
m,m′ ∈ X where m 6= m′ and a ∈ Y : Pr{k∈R}[digest(k,m)− digest(k,m′) = a] ≤ εc.

6 Comparative analysis

In this section, we compare our new digest scheme against well-studied universal hashing
algorithms MMH of Halevi and Krawczyk [18] and NH of Black et al. [9]. While the single-
word or b-bit output digest scheme can only be used on its own in manual authentication
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protocols, it can perfectly be generalised to have multiple-word output as in the case of
MMH and NH to design MAC schemes. Consequently, our comparative analysis consider
both single- and multiple-word output schemes.

The main properties of these three schemes are summarised in Table 2, and their imple-
mentation results are given in Table 3. The pseudo-codes of both MMH and NH are provided
in Annex B.

6.1 MMH

Fix a prime number p ∈ [2b, 2b + 2b/2]. The b-bit output MMH universal hash function is
defined for any k = k1, . . . , kt and m = m1, . . . ,mt as follows

MMH(k,m) =

[[[
t∑

i=1

mi ∗ ki

]
mod 22b

]
mod p

]
mod 2b

It was proved in [18] that MMH can generate digest with the collision probability εc = 6×2−b

as opposed to only 21−b obtained by digest(). It is also not hard to show that the distribution
probability εd = 22−b by using the same proof technique presented in [18].

For single-word output, each message word in MMH requires 1 word of (pseudo)random
key, 1 (b×b) MULT, and 1 ADD modulo 22b. We note however that this does not include the
cost of the final reduction modulo p. For n-word output MMH, using “the Toeplitz matrix
approach”, the scheme is defined as

MMHMW (k,m) = MMH(k1···t,m) ‖ MMH(k2···t+1,m) ‖ · · · ‖ MMH(kn···t+n−1,m)

MMHMW obtains εc = 6n2−nb and εd = 22n−nb, which are significantly worse than digestMW ()
(εc = 2n−nb, εd = 2−nb).

6.2 NH

The 2b-bit output NH universal hash function is defined for any k = k1, . . . , kt and m =
m1, . . . ,mt, where t is even, as follows

NH(k,m) =

t/2∑
i=1

(k2i−1 +m2i−1)(k2i +m2i) mod 22b

The downside of NH relative to MMH and our digest method is the level of security obtained,
namely with a 2b-bit output, which is twice the length of both digest() and MMH, NH was
shown to have the collision probability εc = 2−b and the distribution probability εd = 2−b,
which are far from optimality. While its computational cost is better than the other twos, i.e.
each message-word requires 1 word of (pseudo)random key, only 1/2 (b× b) MULT, 1 ADD
modulo 2b, and 1/2 ADD modulo 22b, NH is not as suitable as MMH and digest() for being
used in manual authentication protocols where humans only can compare very short digest
values manually.

For 2n-word output, also using “the Toeplitz matrix approach”, we have εc = 2−nb and
εd = 2−nb. Each message-word requires n/2 MULT and 3n/2 ADD operations as seen below.

NHMW (k,m) = NH(k1···t,m) ‖ NH (k3···t+2,m) ‖ · · · ‖ NH(k2n−1···t+2(n−1),m)

16



Scheme Message Key MULT ADD εc εd Output
bitlength bitlength per word per word bitlength

digest M M + b 2 2 21−b 2−b b
MMH M M 1 1 6× 2−b 22−b b
NH M M 1/2 3/2 2−b 2−b 2b

digestMW M M + nb n+ 1 2n 2n−nb 2−nb nb
MMHMW M M + (n− 1)b n n 6n × 2−nb 22n−nb nb
NHMW M M + 2(n− 1)b n/2 3n/2 2−nb 2−nb 2nb

Table 2: A summary on the main properties of digest(), MMH and NH. MULT operates on
b-bit inputs, whereas ADD operates on inputs of either b or 2b bits.

6.3 Implementations and Summary

The main properties of all three schemes considered here are summarised in Table 2, i.e.
the upper and lower halves correspond to single-word (b bits) and respectively multiple-word
(nb bits) output schemes. This table indicates that the security level obtained in our digest
algorithm is higher than both MMH and NH with respect to the same output length. In
particular, the collision probability of digest() is a third of MMH, while NH must double the
output length to achieve the same order of security which makes it not as suitable for being
used in manual authentication protocols as MMH and digest(). For multiple-word output
schemes, this advantage in security of our digest algorithm becomes even more significant as
seen in the lower half of Table 2.

We have also tested the implementations of digest(), MMH, NH as well as their multiple-
word output versions on a workstation with a 1GHz AMD Athlon(tm) 64 X2 Dual Core
Processor (4600+ or 512 KB caches) running the 2.6.30 Linux kernel. All source code was
written in C making use of GCC 4.4.1 compiler. The number of cycles elapsed during execu-
tion was measured by the clock() instruction in the normal way (as in the case of UMAC [56]).

For comparison, we recompiled publicly available source code for the SHA1, SHA256 and
SHA512 hash functions [48] whose reported speeds on our workstation are given in Table 4.7

As seen in Table 2, the key length is comparable with the message length in all con-
structions. For application of these primitives in MACs, normally each universal hash key
is generated once out of a short seed and reused for a period of time, and hence previously
recorded speeds for MMH and NH within UMAC [9, 18] do not include the cost of long key
generation. In contrast, for manual authentication protocols described earlier, key genera-
tion must be done every time a digest is computed, because each digest key is only used
once. The choice of PRNG in our test is based on our observation in Section 2 of the new
game arising from manual authentication protocols. Namely this PRNG does not need to be
cryptographically secure as usually the case in other cryptographic applications, because the
key that seeds a PRNG is always revealed to everyone at the point when the digest value
is computed. In addition, unlike the Toeplitz-based construction of Section 4.2 our digest
constructions (and MMH and NH) are all non-linear in the input key, and for this reason,
very fast and ordinary PRNGs suitable for non-cryptographic purposes can be used here. A
typical example is the well-studied Mersenne Twister or its updated version SIMD-oriented

7This is slightly faster than the results published by the ECRYPT Benchmarking of Cryptographic Sys-
tems [15].
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digest MMH NH

Output εc Speed Output εc Speed Output εc Speed
bitlength (cpb) bitlength (cpb) bitlength (cpb)

32 2× 2−32 1.57 32 6× 2−32 1.33 64 2−32 1.25
64 22 × 2−64 1.93 64 62 × 2−64 1.69 128 2−64 1.49
96 23 × 2−96 2.36 96 63 × 2−96 1.79 192 2−96 1.75
160 25 × 2−160 2.79 160 65 × 2−160 2.14 320 2−160 2.04
256 28 × 2−256 2.89 256 68 × 2−256 2.17 512 2−256 2.28

Table 3: Performance (cycles/byte) of digest, MMH and NH constructions, which include
the cost of both pseudorandom key generation (around 1 cycles/byte) and universal hashing
computation. In each row, the length of NH is always twice the length of MMH and digest.

Workstation SHA1 SHA256 SHA512

1GHz AMD Athlon 64 X2 5.78 12.35 8.54

Table 4: Speed of SHA hash functions (cycles/byte) on our workstation.

Fast Mersenne Twister PRNG of Saito and Matsumoto [33, 49], which has a very long period
of 219937 − 1 and passes numerous tests of randomness. The speed of this generator is about
1 cycles/byte (or 1 cpb) on our workstation, which is inline with the results published by its
inventors [33]. This is significantly faster than the most efficient CS-PRNG to date, which
is based on the AES encryption scheme, whose latest recorded speed [22] due to Käsper and
Schwabe is at 7.59 cpb on a modern processor.

Table 3 shows the results of the experiment, which were averaged over a large number
of random and long inputs of more than one million bits. The speeds are in cycles/byte or
cpb, and for completeness they include the cost of both pseudorandom key generation and
universal hashing computation. Our digest constructions, at the cost of higher security, are
slightly slower than MMH and NH due to extra multiplication operations, but still signifi-
cantly faster than cryptographic hash functions SHA1/256/512 as seen in Table 4. Also the
speeds of the digest algorithms, MMH, and NH go up very slowly as the output length is
multiplied, e.g. doubled, tripled, quintupled, or octupled. This can be explained through
the fact that although pseudorandom key generation requires quite an amount computation
(i.e. each pseudorandom byte takes around 1 cycle to generate), from Table 2 the amount of
pseudorandom key generation per each message-word essentially remains unchanged as we
increase the output length.
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A An attack on LFSR-based h(k,m) of subsection 4.2

Let (m,m′)2 denote the inner product modulo 2 of m and m′ ∈ (F2)
M .

Suppose that h(k,m) of subsection 4.2 uses a r-bit LFSR to generate a (K = M+b−1)-bit
key k′ = k0 · · · kK−1 out of the r-bit key k = k0k1 · · · kr−1. In this attack, we need to assume
that the feedback rule of the LFSR is fixed and known to the intruder, such a feedback rule
can be represented by an irreducible monic polynomial.

f(x) = f0 + f1x+ f2x
2 + f3x

3 + · · ·+ fr−1x
r−1 + xr (6)

For any n ∈ [r,K − 1] we then have

kn = f0kn−r + f1kn−r+1 + · · ·+ fr−1kn−1 =

r−1∑
i=0

fikn−r+i (7)

Since we need to generate a M × b Toeplitz matrix A(k) from key k, we use the following
linear map from (F2)

M+b−1 to the set of Toeplitz matrices in (F2)
M×b: Ai,j(k) = k′i+j . In

other words, each column (out of b columns) of A(k) is a continuous sequence of M bits
taken from k′, and each column i+ 1 is shifted (upward) relative to the column i, with a new
element set to the last position of the column i+ 1. This is a matrix where each right-to-left
diagonal is fixed as opposed to the fixed left-to-right diagonal property of a Toeplitz matrix
as defined in Definition 4, but it is essentially the same as a Toeplitz matrix.
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The input message m can also be represented by a polynomial m(x) of degree M − 1.

m(x) = m0 +m1x+ · · ·+mM−1x
M−1

What we want to prove is the following Lemma and Theorem.

Lemma 3. For any n ≥ r, the reduction of xn modulo f(x) is a linear combination
of {x0, x1, . . . , xr−1}, and that this linear combination is identical to the coefficients in the
expression of kn as a linear combination of {k0, . . . , kr−1}.

Proof. Since we always have Equation 7 above, we additionally need to prove that for any
n ≥ r we also have:

xn = f0x
n−r + f1x

n−r+1 + · · ·+ fr−1x
n−1 (mod f(x))

This can be proved by induction. This is clearly true when n = r. We now assume that this
is true for n = i such that i ≥ r: xi = f0x

i−r + f1x
i−r+1 + · · ·+ fr−1x

i−1 (mod f(x)), then
multiplying both sides by x implies that this is also true for n = i+ 1.

Although this only shows that kn is a linear combination of {kn−r, . . . , kn−1} which is
identical to the coefficients in the expression of xn as a linear combination of {xn−r, . . . , xn−1},
if we repeatedly apply the same result to every element in these linear combinations until kn
and tn are only repsensented by {k0, . . . , kr−1} and {x0, x1, . . . , xr−1}, respectively, we will
get the proof.

Theorem 4. If f(x) devides m(x) then the inner product modulo 2 of m and the first M
bits output from a LFSR with a feedback rule f(x) is zero regardless of what the initial r-bit
seed is, i.e. if f(x)|m(x) then (k0 · · · kM−1,m0 · · ·mM−1)2 = 0 for any value of k = k0 · · · kr−1.

Proof. We first have

(k0 · · · kM−1,m0 · · ·mM−1)2 =
M−1∑
i=0

kimi =
∑

mi=1, i∈[0,M−1]

ki

For any i ≥ r ki is a linear combination of {k0, . . . , kr−1}, and thus Σmi=1ki is also a linear
combination of {k0, . . . , kr−1}. Using Lemma 3, the latter linear combination will be identical
to the coefficients in the expression of Σmi=1x

i as a linear combination of {x0, . . . , xr−1}
modulo f(x). Now suppose that:

(k0 · · · kM−1,m0 · · ·mM−1)2 =
∑

mi=1, i∈[0,M−1]

ki = a0k0 + a1k1 + · · ·+ ar−1kr−1

Using Lemma 3 and the above observation, we will have

a0x
0 + a1x

1 + · · ·+ ar−1x
r−1 =

∑
mi=1, i∈[0,M−1]

(
xi (mod f(x))

)

=

 ∑
mi=1, i∈[0,M−1]

xi

 (mod f(x))

= m(x) (mod f(x))

As a result, when f(x)|m(x) all of the coefficients in the expression of (k0 · · · kM−1,m0 · · ·mM−1)2
as a linear combination of {k0, . . . , kr−1} will be zero regardless of the value of the initial seed
k = k0 · · · kr−1.
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Since each column in the Toeplitz matrix A(k) is a continuous sequence of M bits which is
taken from k′ = k0 · · · kK−1, applying Theorem 4, we will have h(k,m) = 0 for any value of
k when the polynomial representing the feedback rule of the LFSR divides the polynomial
representing the input message.

B Pseudo-code for MMH and NH

The following pseudo-code for MMH is taken from [18], where b = 32 and p = 232 + 15. The
output length of MMH is b bits, whereas NH produces 2b bits.

MMH(key,msg)
1. SumHigh = SumLow = 0
2. for i = 1 to t
3. load msg[i]
4. load key[i]
5. 〈ProdHigh, ProdLow〉 = msg[i] ∗ key[i]
6. SumLow = SumLow + ProdLow
7. SumHigh = SumHigh+ ProdHigh+ carry
8. Reduce 〈SumHigh, SumLow〉 mod p and then mod 2b

NH(key,msg)
1. SumHigh = SumLow = 0
2. for i = 1 to t/2
3. load msg[2i− 1]
4. load msg[2i]
5. load key[2i− 1]
6. load key[2i]
7. Left = msg[2i− 1] + key[2i− 1]
8. Right = msg[2i] + key[2i]
9. 〈ProdHigh, ProdLow〉 = Left ∗Right
10. SumLow = SumLow + ProdLow
11. SumHigh = SumHigh+ ProdHigh+ carry
12. return 〈SumHigh, SumLow〉
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