
Simple construction of ε-biased distribution

Long Hoang Nguyen and Andrew William Roscoe

Oxford University Department of Computer Science
Parks Road, Oxford, OX1 3QD

Email: {Long.Nguyen,Bill.Roscoe}@cs.ox.ac.uk

Abstract

ε-biased distribution has many applications in practice, including universal hashing
computation. In this paper we will improve an existing ε-biased distribution construction
due to Alon et al. [2] that requires to uniformly and efficiently sample irreducible polyno-
mials of a large degree, e.g. between 80 and 160. To remove the need for such a sampling
which can be computationally expensive, we will replace the irreducible polynomials by
random monic polynomials of higher degree, i.e. every degree r monic polynomial whether
irreducible or reducible is selected with the same probability 2−r. To analyse the security
of the scheme, we need to find the maximum number of degree r polynomials that divide
a degree n polynomial where n > r. We end this paper by pointing out another use of
our result in the fundamental problems of identity polynomial and primality testing in
number theory

1 Introduction

A linear feedback shift register or LFSR is rarely used on its own in cryptographic appli-
cations because of its linearity property or low linear complexity that can be exploited by
the attacker. Consequently there are two approaches to get around this problem to date.
The first strategy is to increase the linear complexity of a LFSR-based pseudorandom num-
ber generator by introducing non-linear operators such as AND into the computation of the
PRNG or combining the outputs of multiple LFSRs by a non-linear function. This method
is often combined with extending the length of LFSRs from 80 to say 19937 bits as in the
Mersenne Twister. Although such a PRNG can still be implemented very fast, it does not
completely eliminate the linearity property, and hence still cannot be used for cryptographic
applications.

The second approach is to randomise not only the initial seed but also the feedback rule of
a LFSR, where the latter is also known as the characteristic polynomial of the LFSR. To our
knowledge, this method has been used by Alon et al. [2] to produce an ε-biased distribution.
There is however one major drawback of Alon et al.’s construction which is explained as
follows: their construction randomly pick only irreducible monic polynomial of degree r as
the characteristic polynomial because: (1) each irreducible polynomial often corresponds to a
long-period LFSR; and (2) it is easier to analyse the security of the scheme. We observe that
when r is small this construction is very efficient because it is feasible to store all irreducible
polynomials of degree r in the memory, i.e. there are no more than b2r/rc of them. The
problem is that when r ≥ 80, which is usually the case in practice, it is not feasible to do so,
and thus if the same pseudorandom sequence must be produced by two or more parties at

1

the same time then they will need to agree in advance on the same algorithm that can return
a unique and random irreducible monic polynomial of degree r on fly. Such a mechanism
might not be always available in practice.

What we propose to investigate in this paper is that instead of randomly selecting only
irreducible polynomials, we want every polynomial of degree r (i.e. both irreducible and
reducible) is randomly picked with the same probability 1/2r. This will solve the problem
of mapping each random number or seed to a unique feedback rule of a LFSR efficiently.
But intuitively to achieve the same level of security, e.g. a bias of 2−80 as required in many
cryptographic applications such as the Toeplitz-based universal hash function of Krawczyk [6]
discussed in Section 4, we would need to choose a random polynomial of a significant higher
degree compared to one that is based on only irreducible polynomials.

It turns out that the security of our scheme is closely related to the solution of the
following problem: given integers r and n where n > r, what is the maximum number of
degree r polynomials that can divide a degree n polynomial? Although this problem might
look like it has been studied and solved by number theorists a long time ago, to the best of
our knowledge there has not been any satisfactory solution for this problem in the literature.
What we have discovered is that this problem has applications in not only biased distribution
constructions but also the fundamental problems of identity polynomial and primality testing
as recently demonstrated by Agrawal and Biswas [1]. These authors however provide a very
weak analysis for this problem as discussed in their paper and in Section 5 of this paper. In
section 3 we will use some number theory facts in combination with computer programming
to give an estimated but highly accurate solution for this problem as demonstrated by our
experimental results.

2 Notations

Definition 1. [2, 6] Let S be a distribution of sequences of length l. Let (α, s)2 denote the
inner product modulo 2 of α ∈ (F2)

l and s ∈ (F2)
l.

• S is said to pass the linear test α ∈ (F2)
l with bias e if |Pr{s∈S}[(α, s)2 = 1]− 1/2| ≤ e.

• S is said to be an e-biased distribution if it passes all linear tests α 6= 0 with bias e.

3 Randomised LFSR

We consider only polynomials over GF(2). Any (M−1)-bit message m can be represented by
a polynomial m(x) of degree deg(m(x)) = M − 1, where function deg(X) returns the degree
of polynomial X.

m(x) = m0 +m1x+ · · ·+mM−1x
M−1

If we want to construct a distribution of sequences of length M − 1 from a source of 2r truly
random bits then our algorithm is as follows:

• The first r bits determine the coefficients of a degree r monic polynomial f(x) that is
the feedback rule of the resulting LFSR.

• The second r random bits form the initial state of the LFSR.

2

Using existing results proved in [2] (Proposition 1), the value of the bias e of this distribution
is calculated as the ratio between the maximum number of monic polynomials of degree r that
divide a polynomial of degree M − 1 and the total number of degree r monic polynomials.1

e =
MAXm∈{0,1}M−1]{f(x)|deg(f(x)) = r and f(x)|m(x)}

2r

We know that the number of irreducible monic polynomials of degree i is

1

i

∑
d|i

µ

(
i

d

)
2d

This expression is well approximated by 2i/i, and hence we will treat the number of irreducible
monic polynomials of degree i as if it is exactly b2i/ic.

Calculating the bias e is very simple when the feedback rule f(x) is an irreducible polyno-
mial because any degree M −1 polynomial will have at most b(M −1)/rc distinct irreducible
factors of degree r. This is however not the case when any f(x) is randomly selected as in
our scheme.

Without loss of generality, we can assume that

M − 1 = 1b21/1c+ 2b22/2c+ 3b23/3c+ · · ·+ tb2t/tc (1)

≤ 21 + 22 + 23 + · · ·+ 2t = 2t+1 − 1

The product of all distinct irreducible polynomials of degree i ≤ t is therefore a polynomial
of degree M − 1, and we refer to such a polynomial as m1(x). We also define Pt the set of
all distinct irreducible polynomials of degree i ≤ t, and hence

m1(x) =
∏

g(x)∈Pt

g(x)

Suppose that
m(x) = g(x)h(x)

where g(x) is an irreducible monic polynomial of degree greater than t then thanks to Equal-
ity 1 it is always possible to construct another polynomial g′(x) where deg(g(x)) = deg(g′(x))
and g′(x) = g1(x)g2(x) · · · gl(x) is a product of some l distinct irreducible polynomials from
Pt and none of which divides h(x). In other words, m′(x) = g′(x)h(x) will have more factors
as monic polynomials of degree r than m(x). What this argument shows is that a polynomial
m(x) of degree M − 1 will have more distinct factors as monic polynomials of degree r when
m(x) is the product of only irreducible monic polynomials of degree less than or equal to
t. Consequently, m1(x) as defined above potentially gives us a tight lower bound for the
worst-case representation of a message of M − 1 bits.

We next will locate the upper bound for the worst-case representation of a message of
M − 1 bits. We observe that for any irreducible monic polynomial g(x) of degree i ≤ t,

1More information about this result can be found in Theorem 2 of Annex A of this paper or in [2], but
it can be briefly explained as follows. Suppose that degree r polynomial f(x) represents the feedback rule
of a r-bit LFSR and k is a the (M − 1)-bit stream outputted from the LFSR initiated by a r-bit seed, then
there are two possibilities: (1) when f(x) divides m(x) then the inner product modulo 2 of m and k is zero
regardless of what the initial r-bit seed is; and (2) when f(x) does not divide m(x) then the inner product
modulo 2 of m and k is a linear combination of the r bits of the initial seed, and thus is non-zero. Hence the
bias of this distribution equals the probability that the polynomial f(x) divides the polynomial m(x).

3

it is no better that g(x) occurs more than br/ic times in the prime decomposition of a
polynomial of degree M−1. As a consequence, we will refer to m2(x) as the product of every
irreducible polynomial g(x) ∈ Pt and each g(x) appears exactly br/deg(g(x))c times in the
prime decomposition of m2(x).

m2(x) =
∏

g(x)∈Pt

g(x)br/deg(g(x))c

We therefore arrive at

deg(m2(x)) =
∑
i≤t
br/icib2i/ic

> br/tcdeg(m1(x)) = M − 1

Since the degree of m2(x) is greater than M−1, we have gone over the top to define an upper
bound for the worst-case representation of a message of M − 1 bits. In the next subsection,
we will demonstrate that our lower and upper bounds corresponding to m1(x) and m2(x)
significantly narrow down the range where the worst-case scenario lies.

3.1 Experiments

Since there are many ways a degree r polynomial f(x) can be constructed as a product of
some of the irreducible factors from Pt, we have not been able to find a formula that can
give us the exact number of degree r polynomials that divide either m1(x) or m2(x), but
fortunately these numbers can be computed exhaustively by computers and these task can
be done very quickly. In the following, we give the pseudo-code of the algorithms which can
compute the numbers.

M1(r, t) returns the number of monic polynomials of degree r that divide m1(x)

M1(r, t)
1. if(r = 0) then return 1
2. else if(t = 0 and r = 1) then return 2
3. else if(t = 0 and r = 2) then return 1
4. else if(t = 0 and r > 2) then return 0
5. else if(t > 0) then
6. L = b2t/tc
7. l = min(r/t, L)
8. sum = 0
9. for i = 0 to l

10. sum = sum+
(
L
i

)
∗M1(r − i ∗ t, t− 1)

11. return sum

4

M2(r, t) returns the number of monic polynomials of degree r that divide m2(x)

M2(r, t)
1. if(r = 0 or t = 0) then return 1
2. else
3. L = b2t/tc
4. l = r/t
5. sum = 0
6. for i = 0 to l
7. if(t 6= 1 or r = i ∗ t) then sum = sum+ M2’(L, i) ∗M2(r − i ∗ t, t− 1)
8. return sum

M2’(L, i)
1. if(i = 0) then return 1
2. else
3. z = min(L, i)
4. sum = 0
5. for j = 0 to z

6. sum = sum+
(
L
j

)
∗M2’(j, i− j)

7. return sum

In the first experiment, we fix M = 2t+1 − 1 or the length of input message and let the
LFSR bitlength r vary from 0 to 700. This experiment is repeated four times with different
values for t: 10, 20, 30 and 40. We plot log(1/e) against r in the graph of Figure 1.

In the second experiment, we fix the bias e and let the message length vary from 210 to
260 bits. This experiment is repeated twice with different values for e: 2−80 and 2−40. We
plot the LFSR bitlength r against t in the graph of Figure 2.

4 Toeplitz matrix based construction

The following universal hashing construction is invented independently by Krawczyk [6] and
Mansour et al. [8]. Since this construction uses a Toeplitz matrix multiplication, we give the
definition for a Toeplitz matrix below.

Definition 2. A Toeplitz matrix A is a (not necessary square) matrix where each left-to-right
diagonal is fixed, i.e. for all pairs of indexes (i, j): Ai,j = Ai+1,j+1.

If we want to compute a b-bit universal hash of a M -bit message m, then (M+b−1)-bit key k
is drawn randomly from a distribution R = {0, 1}M+b−1. We can generate a Toeplitz matrix
A(k) of M rows and b columns from key k, i.e. we assume a linear map from (F2)

M+b−1 to
the set of Toeplitz matrices in (F2)

M×b, and then

h(k,m) = m×A(k) (2)

The symbol ‘×’ in Equation 2 represents a product of vector m and matrix A(k) over F2.
If key k is drawn randomly and uniformly fromR, then the collision probability is εc = 2−b.

Unfortunately such a random and uniform distribution is not always feasible to construct
when M + b − 1 is of a significant size. In practice for large messages we need to expand a
standard key into a long (M+b−1)-bit key stream efficiently, and one therefore frequently uses
a pseudorandom number generator. In the case of this construction, a linear pseudorandom

5

Figure 1:

6

Figure 2:

7

number generator or one with a low linearity complexity must not be used because this
construction is linear in the key, i.e. h(k1 + k2,m) = h(k1,m) + h(k2,m). To justify this
argument, in Annex A, we describe an attack on this construction if key expansion is done
by a linear feedback shift register (or LFSR) whose feedback rule is fixed and known to an
attacker.

We note that Krawczyk [6] suggested that k could be drawn from a biased distribution
on sequences of length K = M + b − 1. Such a biased distribution can be generated by
the scheme of Alon et al. [2]2 that requires to uniformly and efficiently sample irreducible
monic polynomial of degree k. As we have explained earlier that this sampling can be very
inefficient, and thus we propose to replace the irreducible polynomials by random monic
polynomial as explained earlier.

Theorem 1. Let R be an ε-biased distribution on sequences of length K, then the Toeplitz
matrix based scheme (2−b + ε)-almost universal.

Proof of this theorem can be found the paper of Krawczyk [6] (Theorem 13 and Theorem 5).

5 Identity polynomial testing

A restricted but common form of the identity polynomial testing problem is: given a degree
n univariate binary polynomial m(x), check if m(x) is identically zero. This task is trivial if
m(x) is explicitly given as a sum of monomials, however in many cases m(x) is given in an
implicit form, including a product of many polynomials or an arithmetic circuit.

In the following we introduce a new and very simple algorithm that can solve this problem
efficiently. Given a binary polynomial m(x) of degree n, or if we are given an arithmetic circuit
of size s then the corresponding polynomial degree n is bounded by 2s, we randomly choose
a monic polynomial f(x) of degree r. We accept if m(x) is divisible by f(x).

If m(x) is zero then the algorithm always accepts. If m(x) is non-zero then the probability
of false acceptance is at most the ratio between the maximum number of degree r polynomials
that can divide a degree n polynomial and 2r, which is the problem we solve in Section 3.
Obviously this algorithm requires r random bits and the degree of the factor polynomial f(x)
is also r. We observe that the bigger r is the less likely we have a false acceptance when
m(x) is non-zero. The probability of false acceptance can be estimated by our approximated
solution given in Figure 1 of Section 3.

Previously Agrawal and Biswas [1] introduced a very similar algorithm but theirs suffers
from two major weaknesses: (1) the degree r of the randomly selected factor or polynomial
is restricted to log n which leads to a very big probability of false-acceptance, in contrast the
degree r is unrestricted in ours; and (2) in the analysis of Agrawal and Biswas, they do not
consider the random polynomial f(x) with multiple irreducible factors of degree less than r
or with irreducible factors of degree less than r/2 + 1 as in ours, and thus their analysis will
not give good estimated solution even when they let the degree of f(x) be comparable to
ours.

Being aware of these weaknesses, Agrawal and Biswas introduced a more complicated
algorithm which randomly selects the factor polynomial f(x) from a set of nearly co-prime
polynomials. While this algorithm only needs log n random bits, the degree of the factor

2Other schemes introduced by Alon et al. [2] would involve the computation of either a Legendre symbol
or a modular exponentiation per each pseudorandom bit, both of which are computationally expensive.

8

polynomial f(x) is at least log3 n and thus is much more expensive to check for divisibility
than ours.

In this section we focus on testing whether a univariate polynomial over Z2 is zero, but of
course we are also interested in the case where the input polynomial is not only multivariate
but also its coefficients are over Zp where p is prime. Using the strategy introduced by
Agrawal and Biswas any multivariate polynomial can be deterministically transformed to a
univariate higher degree polynomial such that the resulting polynomial is zero iff the original
one is zero. Secondly our analysis for binary polynomial of Section 3 can be easily adjusted
to deal with polynomial over Zp. From the distribution for irreducible polynomials [7], the
number of irreducible polynomials of degree r over Zq is

1

r

∑
d|r

µ
(r
d

)
qd

which is bounded above by pr

r − p
r/2. Using this information, our algorithm and program

presented in Section 3 can easily estimate the probability of false acceptance.

References

[1] M. Agrawal and S. Biswas. Primality and Identity Testing via Chinese Remaindering.
FOCS’99.

[2] N. Alon, O. Goldreich, J. Hastad and R. Peralta. Simple Constructions of Almost k-wise
Independent Random Variables. In Proceedings of the IEEE Symposium on Foundations
of Computer Science, 1990, vol. 2, pp. 544-553.

[3] J.L. Carter and M.N. Wegman. Universal Classes of Hash Functions. Journal of Com-
puter and System Sciences, 18 (1979), 143-154.

[4] S.W. Golomb. Shift Register Sequences. ISBN: 0894120484, Aegean Park Press, 1981.

[5] H. Krawczyk. LFSR-based Hashing and Authentication. Advances in Cryptology,
CRYPTO 1994, LNCS vol. 839, 129-139.

[6] H. Krawczyk. New Hash Functions For Message Authentication. Advances in Cryptology
- Eurocrypt 1995, LNCS vol. 921, pp. 301-310.

[7] Lidl and H. Niederrieter. Introduction to finite fields and their applications. Cambridge
University Press, 1986.

[8] Y. Mansour, N. Nisan and P. Tiwari. The Computational Complexity of Universal Hash-
ing. Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp.
235-243, 1990.

[9] M. Matsumoto and T. Nishimura. Fast Mersenne Twister Homepage where the pub-
licly available source code for this pseudorandom number generator can be found:
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/SFMT/

[10] M.N. Wegman and J.L. Carter. New Hash Functions and Their Use in Authentication
and Set Equality. Journal of Computer and System Sciences, 22 (1981), 265-279.

9

A An attack on LFSR-based h(k,m) of subsection 4

Let (m,m′)2 denote the inner product modulo 2 of m and m′ ∈ (F2)
M .

Suppose that h(k,m) of subsection 4 uses a r-bit LFSR to generate a (K = M+b−1)-bit
key k′ = k0 · · · kK−1 out of the r-bit key k = k0k1 · · · kr−1. In this attack, we need to assume
that the feedback rule of the LFSR is fixed and known to the intruder, such a feedback rule
can be represented by an irreducible monic polynomial.

f(x) = f0 + f1x+ f2x
2 + f3x

3 + · · ·+ fr−1x
r−1 + xr (3)

For any n ∈ [r,K − 1] we then have

kn = f0kn−r + f1kn−r+1 + · · ·+ fr−1kn−1 =
r−1∑
i=0

fikn−r+i (4)

Since we need to generate a M × b Toeplitz matrix A(k) from key k, we use the following
linear map from (F2)

M+b−1 to the set of Toeplitz matrices in (F2)
M×b: Ai,j(k) = k′i+j . In

other words, each column (out of b columns) of A(k) is a continuous sequence of M bits
taken from k′, and each column i+ 1 is shifted (upward) relative to the column i, with a new
element set to the last position of the column i+ 1. This is a matrix where each right-to-left
diagonal is fixed as opposed to the fixed left-to-right diagonal property of a Toeplitz matrix
as defined in Definition 2, but it is essentially the same as a Toeplitz matrix.

The input message m can also be represented by a polynomial m(x) of degree M − 1.

m(x) = m0 +m1x+ · · ·+mM−1x
M−1

What we want to prove is the following Lemma and Theorem.

Lemma 1. For any n ≥ r, the reduction of xn modulo f(x) is a linear combination
of {x0, x1, . . . , xr−1}, and that this linear combination is identical to the coefficients in the
expression of kn as a linear combination of {k0, . . . , kr−1}.

Proof. Since we always have Equation 4 above, we additionally need to prove that for any
n ≥ r we also have:

xn = f0x
n−r + f1x

n−r+1 + · · ·+ fr−1x
n−1 (mod f(x))

This can be proved by induction. This is clearly true when n = r. We now assume that this
is true for n = i such that i ≥ r: xi = f0x

i−r + f1x
i−r+1 + · · ·+ fr−1x

i−1 (mod f(x)), then
multiplying both sides by x implies that this is also true for n = i+ 1.

Although this only shows that kn is a linear combination of {kn−r, . . . , kn−1} which is
identical to the coefficients in the expression of xn as a linear combination of {xn−r, . . . , xn−1},
if we repeatedly apply the same result to every element in these linear combinations until kn
and tn are only repsensented by {k0, . . . , kr−1} and {x0, x1, . . . , xr−1}, respectively, we will
get the proof.

Theorem 2. If f(x) devides m(x) then the inner product modulo 2 of m and the first M
bits output from a LFSR with a feedback rule f(x) is zero regardless of what the initial r-bit
seed is, i.e. if f(x)|m(x) then (k0 · · · kM−1,m0 · · ·mM−1)2 = 0 for any value of k = k0 · · · kr−1.

10

Proof. We first have

(k0 · · · kM−1,m0 · · ·mM−1)2 =

M−1∑
i=0

kimi =
∑

mi=1, i∈[0,M−1]

ki

For any i ≥ r ki is a linear combination of {k0, . . . , kr−1}, and thus Σmi=1ki is also a linear
combination of {k0, . . . , kr−1}. Using Lemma 1, the latter linear combination will be identical
to the coefficients in the expression of Σmi=1x

i as a linear combination of {x0, . . . , xr−1}
modulo f(x). Now suppose that:

(k0 · · · kM−1,m0 · · ·mM−1)2 =
∑

mi=1, i∈[0,M−1]

ki = a0k0 + a1k1 + · · ·+ ar−1kr−1

Using Lemma 1 and the above observation, we will have

a0x
0 + a1x

1 + · · ·+ ar−1x
r−1 =

∑
mi=1, i∈[0,M−1]

(
xi (mod f(x))

)

=

 ∑
mi=1, i∈[0,M−1]

xi

 (mod f(x))

= m(x) (mod f(x))

As a result, when f(x)|m(x) all of the coefficients in the expression of (k0 · · · kM−1,m0 · · ·mM−1)2
as a linear combination of {k0, . . . , kr−1} will be zero regardless of the value of the initial seed
k = k0 · · · kr−1.

Since each column in the Toeplitz matrix A(k) is a continuous sequence of M bits which is
taken from k′ = k0 · · · kK−1, applying Theorem 2, we will have h(k,m) = 0 for any value of
k when the polynomial representing the feedback rule of the LFSR divides the polynomial
representing the input message.

11

