
Model checking cryptographic protocols subject to combinatorial

attack

A.W. Roscoe, Toby Smyth and Long Nguyen
Oxford University Department of Computer Science

Parks Road, OX1 3QD, Oxford
Email: {Bill.Roscoe,Toby.Smyth,Long.Nguyen}@cs.ox.ac.uk

August 25, 2011

Abstract

We introduce an approach to model checking cryptographic protocols that use hashing too
weak to resist combinatorial attacks. Typically such hashing is used when an extremely low
bandwidth channel, such as a human user, is employed to transmit its output. This leads to two
opportunities for attack: deducing a weak value from its properties and discovering alternative
ways to produce a given weak value. The first of these proves a natural extension to established
protocol modelling approaches, but for the second we require something more novel. We propose
an approach based on taking snapshots of the intruder memory.

1 Introduction

Over the past two decades, many sophisticated methods [5, 8, 11, 6, 22] and tools, for example [9, 4]
have been introduced to analyse cryptographic protocols. Indeed it is now possible to input a
proposed protocol into any one of a number of tools and get either the reassurance that it is secure
or an attack that demonstrates it is not.

Such tools, however, rely on underlying assumptions about the cryptographic primitives that
they use. Essentially all of them use the assumption of perfect cryptography, with some being
adjustable to allow for particular algebraic and other weaknesses of particular forms of cryptography
such as RSA and Vernam (bit-wise exclusive-or) encryption.

In particular they generally rely on the assumption that all cryptographic objects have sufficient
entropy that there is essentially no chance of guessing one with a particular behaviour. An exception
to this is [10], where Lowe showed how the CSP model of protocol analysis can be extended by
giving the intruder the ability to guess certain sorts of value that have already been introduced by
other parties, the main intended application being password guessing attacks. In that paper, Lowe
studied the case that there might be a verifier: a value whose calculation in different ways enables
an attacker to verify a guess.

In this paper we examine the class of protocols which attempt to achieve authentication by
communication and comparison of short strings, and specifically consider how to modify the CSP
models of protocols and intruders described in [18, 21] to accommodate combinatorial search. An
extensive survey of such protocols can be found in [12]. We will see a number of these protocols
later in this paper. All that a traditional protocol verifier could achieve with one of these protocols
is one or other of finding an attack that does not depend on the weakness of any value, or proving
that no attack like this exists.

1

The short strings that are communicated over the low-bandwidth or human channel can come
into existence in these protocols in different ways. They might come into existence as short strings
randomly invented by one of the participants, meaning that they are naturally regarded as symbolic
constants in an abstract protocol model. We will consider this class of protocol in Section 4
by extending the symbolic intruder model in a way similar to that described by Lowe in [10].
Alternatively, the short string might come into existence (typically in the hands of multiple protocol
participants separately) through the application of a cryptographic primitive – a short hash or keyed
digest function – that takes one or more (typically long and un-guessable) values and outputs a
short one.

In Section 5, to deal with this type of protocol, we imagine that some of the hashing constructs
used in our protocol may be sufficiently weak that the intruder has a realistic prospect of searching
for a hash collision by some sort of trial and error involving the introduction of a large number of
different fresh values. This requires a completely different approach in modelling. In particular we
have to deal with the following problems:

• The symbolic representations used in protocol analysers for the protocol data yield no natural
way of creating such collisions.

• Model checkers etc certainly cannot cope with anything like the range of fresh values that
would, in practice, be used in a combinatorial search.

The main motivation for this work is provided by the class of protocols in which a human is
used to transfer a value between two systems and thereby secure a previously insecure electronic
connection. To make such protocols attractive – and in many circumstances to make them practical
at all – this value needs to be much shorter than a strong cryptographic hash. Yet in a number
of such protocols the value is either the short hash or a short keyed hash, or digest of information
passed. If well designed, such use need not be insecure, because the protocols can prevent the
attacker from performing any useful combinatorial search designed to create a hash collision.

We introduce a technique where the usual CSP model of cryptoprotocols is extended so that it
behaves as though hashes containing data introduced freshly by the intruder can, in appropriate
circumstances, behave as though they collide.

We discuss the application of our new methods to the protocols from Section 2, and then to
protocols designed to bootstrap groups of agents. We then discuss prospects for various generali-
sations of our work, including the development of finite-state checks capable of proving arbitrary –
rather than fixed finite – implementations of protocols.

While it is likely that the techniques developed in this paper could be employed in conjunction
with other approaches to verifying protocols, the one we work with is modelling in the CSP process
algebra [20] and running on the FDR refinement checker [18]. A number of CSP files that illustrate
the techniques we discuss can be downloaded from [2] so that the reader can run them and adapt
them for other protocols.

2 Non-standard authentication protocols

In the usual (Dolev-Yao) model of insecure communication networks, it is impossible to bootstrap
a secure connection between two or more parties without something that allows them to verify
communications from one another. In the traditional model of computer security, the parties are
assumed to have a pre-existing cryptographic infrastructure for this: typically a network of trusted
third parties or a PKI. There are a huge number of protocols for establishing an authenticated
parties in cases like this.

2

However, as described in [12], in many circumstances relating to modern, frequently lightweight,
mobile systems, such an infrastructure is either impractical or the name-based form of identity it
is inappropriate: someone might well want to create an authenticated connection to a system they
can identify clearly by context, but not by name.

Instead we assume that this context yields a separate, generally human-mediated and very low
bandwidth, channel that the person or people wanting to build a secure network know provides
a reliable and unspoofable link between the systems. Thus the intruder cannot successfully im-
personate trustworthy parties on such out of band or empirical channels, though we generally do
not assume that such communications are secret. In our discussion, such an empirical channel is
denoted by −→E .

It is easy to see that we can in principle secure any existing channel that exists between our
parties using a channel of this type: it is sufficient for Alice, in trying to create an authenticated
and secret communication link with Bob, swaps public keys with him over an empirical channel
that links them. Each then knows that the respective keys are bound to the parties they want to
communicate with and can therefore use them to sign and send information such as session keys
as though the public keys had been certified by some PKI.

A public key is, however, much too large a piece of data for the typical human to copy it willingly
and accurately. As pointed out by Balfanz et al. [3] we could replace the public key by its hash
using some standard cryptographic strength algorithm, and use this hash to check on the value of
the public key send over an insecure but very high-bandwidth channel, including the Internet or
WiFi, which is denoted by −→N . On the assumption that this hash is smaller than the key itself
this requires less, though still far too much, human effort, but gives security that is just as good
because we assume that it is impossible for the attacker to discover any hash collision against such
a function. Thus the hash from a known origin provides a “certificate” that the key received over
the insecure network comes from that origin also.

Balfanz et al. non-interactive protocol, [3]

1. A −→N B : A, INFOA

2. A −→E B : hash(A, INFOA)

If, as a concession to the human user who has to implement the empirical channel, we were to
use a weak hash for the above, say with 20-30 bits, then an attacker could search through a large
number of messages with the same format as the one that Alice (say) sends – it might well have
done this in advance. If successful then it could replace Alice’s version by its own, and Bob’s check
of the empirically sent hash would tally.

The work required by the intruder might reduce if the protocol were redesigned so that Alice
and Bob send each other public keys pkA and pkB over an insecure channel and, rather than
transmit two hashes empirically, they both compute hash(pkA‖pkB) and compare these. For the
task for the intruder now becomes to find pk′A and pk′B distinct from pkA and pkB such that
hash(pkA‖pk′B) = hash(pk′A‖pkB). He can therefore employ the birthday attack which means that
he only has to compute approximately the square root of the total number of hashes to expect
a collision. But in either case the opportunity to carry out combinatorial search means that a
determined attacker could either eliminate or severely degrade the security of the protocol.

The protocols we are considering in this paper are intended to prevent such search. We give a
number of examples in this paper: many more can be found in [12]. The following protocols, to
help direct comparison, all attempt to transfer a piece of information, INFOA, from Alice to Bob.
In some cases they are simplified versions of protocols for binary or group mutual authentication.
We will consider some group protocols and their verification in Section 7.

3

Our first example is a protocol introduced by Vaudenay [23], that makes use of an abstract
commitment scheme that can be implemented using (strong) cryptographic hashing.

A probabilistic commitment scheme can be simply explained as follows: given data x, someone
generating commitment values will build a pair (c, d), where c is the commitment value and d the
decommitment value. These values are nondeterministic, i.e. they vary even when the same data x
is inputted more than once, because the algorithm is seeded by some strong random value such as
a 256-bit nonce that is generated on the fly. Given values c and d, any party can deterministically
deduce x and check that the two were generated together. A commitment scheme must satisfy the
following two properties:

• Hiding: given value c, it must be inconceivable that any party could deduce any information
about x; and

• Binding: given the pair (c, d), it must be infeasible that any party could generate alternative
data x′ and a decommitment value d′ which match the original commitment value c.

So, for example, we could set c = hash(N ‖ x) for a strong random nonce N and d = N ‖ x. It
may not be necessary to incorporate x into d if the receiving party is already supposed to know x.

In some cases it is helpful to split x into two parts M ‖ R where M is some message and R is a
short random string. In the following protocol due to Vaudenay, this is done, and the commitment
is implemented in terms of hashing:

Vaudenay one-way authentication protocol, [23]

1. A −→N B : INFOA, hash(INFOA, RA, NA)
2. B −→N A : RB

3. A −→N B : NA, RA

4. A −→E B : RA ⊕RB

Here, RA and RB are short (weak) random values of say 16 to 20 bits, whereas NA and NB

are long random nonces as required in a probabilistic commitment scheme explained above. ⊕ is
bit-wise exclusive-or.

The intention of this protocol is to assure B that the message INFOA is actually what was
sent to him by A. The role of RB is the hardest thing to understand about this protocol, so we
will simplify it by assuming that there is also an empirical channel from B to A:

Simplified commitment scheme protocol

1. A −→N B : INFOA, hash(INFOA, RA, NA)
2. B −→E A : 1-bit committed signal
3. A −→N B : NA

4. A −→E B : RA

It is relatively straightforward to see that this protocol is secure since until A sends NA, the
intruder cannot search for the value of RA, and so cannot send an alternative Message 1 which has
the same RA in it.

Or, more precisely, if an intruder substitutes Message 1 by INFOI , hash(INFOI , NI , RI) where
RI is chosen at random, and then substitutes Message 3 by NI , then there is exactly 1

M chance
that RA and RI will agree, where M is the size of the space from which these values are taken (2b if
they are arbitrary b-bit strings). If this agreement happens, then B will accept INFOI as having
come from A.

In any application one needs to make M large enough to make this ‘single lucky guess’ attack
acceptably unlikely. What we will seek to verify of them is that an intruder capable of searching

4

through the space of weak values cannot guarantee to break the protocol, as could be done if we
weakened the above protocol by removing the empirical committed message or replacing it by one
over a Dolev-Yao channel. For in either case (in the latter via the intruder forging the committed
from B) A can send both the initial message and NA before B has received anything. Once the
intruder has Message 1 and NA, it can try each possible value of RA successively until it finds the
right one – namely the one that combines with INFOA and NA to give the right hash.

Having done this the intruder can send B (pretending to be A) the alternative Message 1:
INFOI , hash(INFOI , NI , RA), for any values INFOI and NI it chooses, and then similarly sends
NI . When A sends RA correctly to B, this will seem to confirm that she sent INFOI .

It is easy to change the Simplified protocol above into one in which A broadcasts to many B’s:
all A has to do is wait until she has received the empirical committed message from each of them
before broadcasting NA and then sending each the empirical RA. One can imagine that A might
empirically broadcast RA, for example by reading out the value to a room-full of people holding
the other devices involved. Vaudenay’s original protocol is not so easy to generalise to a group, but
does have the substantial advantage of not requiring the separate empirical commitment message.

Note that both Vaudenay’s and the simplified protocol seek to prove to B that he has hashed the
same INFO as A. In these protocols he compares the result of hashing his INFO (together with
other things) against a value he has received that purports to be what A created when calculating
the same hash. These two protocols succeed, where the simplified one without committed fails,
because they deny the intruder the opportunity to be confident that B will accept anything other
than the genuine hash from A to compare against his own. The actual value transmitted on the
empirical channel is not itself the hash.

An alternative approach is to make the value compared the hash itself. However it will have to
be a much shorter value than a traditional cryptographic hash. The question is whether a shorter
hash can be used safely in the presence of combinatorial search.

Our next example is a protocol where this creates a problem:

Naive short hash agreement protocol

1. A −→N B : INFOA, NA

2. B −→N A : NB

3. A −→E B : shorthash(INFOA, NA, NB)

with the protocol succeeding if the value computed by B for the short hash co-incides with the one
sent empirically by Alice.

If a full-length hash were sent and checked, this protocol would be secure (even without the
nonces) because the fact that A has sent B an empirical message means she has sent one over −→N ,
and the fact that no collisions are assumed possible for long hashes means that the one received first
must be the same as the hashed once, given that the hash value is checked. But (we are assuming)
this is not an option, and so we need to consider this protocol with a short hash.

Without the nonces, the attacker could prevent the first message getting through, search for
any other INFO′ that collides with INFOA under shorthash and send that instead. Adding
just NA would prevent the intruder from doing this searching off line1 in the event that either the
intruder can influence what A sends or A might repeat messages, but in fact gives it an additional
opportunity for an on-line attack since it can now choose whatever INFO′ it likes and search for
N ′ such that

shorthash(INFOA, NA) = shorthash(INFO′, N ′)

1We can characterise an off-line attack as one where much of the work – and in particular the searching – can be
done outside the period when the trustworthy participants are active. An on-line attack is where most of the work
is done during this period.

5

Adding Message 2 with NB prevents this, since the value of the final hash is not determined at the
point where B receives Message 1. However, the intruder can still substitute whatever INFO′ it
likes and now replace NB in Message 2 by N ′ such that

shorthash(INFOA, NA, NB) = shorthash(INFO′, NA, N
′)

This problem can be fixed by using a similar sort of delayed knowledge as in the first protocol.
We give two versions of this which bear an obvious resemblance to the two commitment scheme
protocols. In the first, the intruder is denied knowledge of the final hash until B is committed to
it, since B it committed to the value of NA by the hash in Message 1.

One-way HBCK Protocol

1. A −→N B : INFOA, hash(NA)
2. B −→E A : 1-bit committed signal
3. A −→N B : NA

4. A −→E B : shorthash(INFOA, NA)

In the second, the commitment of B to the final value is indicated by sending NB. It is not, in
this pairwise version of the protocol, necessary to hash NB, but we include hashing below since it
is necessary when this protocol is used to agree values between more than two parties

One-way SHBCK Protocol

1. A −→N B : INFOA, hash(NA)
2. B −→N A : hash(NB)
3. A −→N B : NA

3. B −→N A : NB

4. A −→E B : shorthash(INFOA, NA, NB)

The protocols above are pairwise versions of the Hash Commitment Before Knowledge (HBCK)
protocol and Symmetric HCBK protocol, introduced by Nguyen and Roscoe in [13, 14]. As we will
discuss in Section 7, it is sensible to strengthen the SHCBK version above by replacing the hashes
in Messages 1 and 2 by hash(A,NA) and hash(B,NB) respectively. However in this particular
version this strengthening does not seem to be strictly necessary.

The properties required of this short hash function are completely different from conven-
tional cryptographic hash functions. In fact it is better to structure it as a keyed digest function
digest(hk, INFO) where INFO is the substantive information that the protocol seeks to authen-
ticate, and hk is a quantity that the participants seek to randomise. The specification of digest
is that, for a specified ε > 0 and all I 6= I ′, the probability as hk varies uniformly over its range
that digest(hk, I) = digest(hk, I ′) is no more than ε. As discussed in [12, 14, 15], for a b-bit digest
function the best-possible ε is 2−b and there are various constructions that achieve close to this. So
in the usual presentations of the above protocols, the values compared are respectively

digest(NA, INFOA) and digest(NA ⊕NB, INFOA)

where ⊕ is bit-wise exclusive or.

3 Approaches to verification

The probabilistic specification of digest given above suggests that we might want to check the
correctness of this class of protocol on some stochastic tool: verifying that no matter what the
intruder does, it cannot increase its chance of success to greater than the ε plainly available.

6

To do this we would need to reformulate the models of protocols and attackers in tools capable
of stochastic calculations such as Prism [1] and Apex [7]. This would be desirable not only for the
present class of protocols but also for many other security applications. It will be interesting to
see if the tools presently available are capable of this sort of analysis, particularly given the large,
but not unbounded, number of times we might expect an intruder to be able to try guesses in
combinatorial search.

This is not, however, the approach we have taken. Rather, we have tried to embed the positive
(for the intruder) consequences of searching into the standard CSP model for cryptoprotocol analysis
as set out in [10]. So rather than give the intruder’s optimal likelihood of an attack succeeding
will give a yes or not answer: if we presume that our intruder has the ability to succeed when
performing certain sorts of searching, does it have a deterministic strategy to break security?

In the rest of this section we summarise the standard CSP model that we will later modify.
CSP is a notation for describing and reasoning about interacting systems. It is therefore natural

to use it for reasoning about security, where systems are used by two or more parties, one of
whom is an imagined intruder, and we have to understand what potential there is for certain
types of undesired interaction to occur. In cryptographic protocols, CSP models typically contain
representations of each trustworthy participant in a protocol run, any trusted third party that is
used, and the intruder. The art of creating such models in the context of strong cryptography
is very well developed [8, 18, 21]. Indeed Lowe, with the assistance of others, has created the
Casper tool [9] that writes CSP scripts automatically based on a protocol description and a few
directives to guide the type of model wanted. These models are then run on the general-purpose
CSP refinement/model checker FDR; if Casper is used it interprets any counter-example generated
by FDR in the language of protocols.

One of the decisions that has to be taken in these directives is whether to create a model that
tests a small instance of a protocol, where only a few identities are present that can run the protocol
a very small number of times each, or to use more sophisticated techniques that attempt to prove
an arbitrary implementation of the protocol. When checking a new protocol one will probably first
do the former, since experience shows that this almost always finds any attack there is, and only if
none is found attempt the general result.

Since, in fact, the model check of the general case can only consider a small number of agents
and a small number of cryptographic values such as keys and nonces, the general model works by
creating a simulation of what happens in reality. These simulations are designed so that any attack
in the real world is present. This is occasionally at the expense of finding false attacks, in other
words behaviours introduced by the way the simulation is done rather than being present in the real
world. In other words, our finite-state simulation of the infinite real world contains a representation
of every real-world trace, and also a few that are not there at all: it over-approximates. For details
of the approach used for building proofs of protocols, see [8, 18, 21].

For the time being we will confine ourselves to building the type of CSP model that considers
only a small protocol implementation. We will, however, draw a lesson from the above in the sense
that we will feel free to over-approximate the behaviour of our intruder since it turns out to be
significantly more efficient than attempting to model it precisely. The argument for doing this is
the same: it is better to have a model that finds occasional false attacks rather than one that misses
real ones.

In CSP models, all the data values in the protocol are drawn from a symbolic recursive data
type in which objects such as keys and nonces are primitive constants. For example, for protocols
with symmetric and asymmetric encryption, and strong hashing, we might use the type2:

2Pieces of CSP written in this font are quotations from the CSPM machine-readable CSP language which is a

7

datatype Fact = Sq.Seq(Fact) | Encrypt.Fact.Fact |

PKE.Fact.Fact | Hash.Fact |

Alice | Bob | Cameron | -- agents

Na | Nb | Nc | -- nonces

PKa | PKb | PKc | -- public keys

SKa | SKb | SKc | -- secret keys

AtoB | BtoA | Cmessage -- message contents

Operations such as hashing, encryption and decryption are thus modelled symbolically, and a finite
number of constants are introduced to represent things like node names, keys and nonces. It is
natural in such a model to make the strong encryption hypothesis: that there are no hash collisions
or other unexpected equalities between terms, and that encryptions are only decipherable by a
party in possession of the appropriate key. For of course all members of this type with distinct
construction are in fact distinct, and we have no opportunity to analyse the actual encryption
methods for vulnerabilities.

Trustworthy agents are modelled as processes that simply engage in the series of messages that
they perform in the protocol under consideration, introducing values and performing tests on the
coherence of the data concerned. The latter tests are simply coded by saying that only messages
which are consistent with previous data will be accepted. Thus any attempt to communicate data
that is not thus coherent to such an agent will result in the agent not making progress. The type
of attack our model looks for are ones in which trustworthy agents can be led to insecure states.
In the case of authentication protocols these are typically states where an agent has completed
the protocol in such a way that it leads it to incorrect conclusions about the data it has received
or the states of other agents. In our example files this is specified by building trustworthy agents
Alice and Bob, building Alice in such a way that she always sends a particular message to Bob

and trying to establish that he ever thinks she has sent him a different one.
So, for example, we could code the sending and receiving behaviour of the Vaudenay protocol

thus:

Send(id,ns,rs) =

(rs!=<> and ns!=<>) &

[] a:diff(agents,{id}) @

comm.id.a.Sq.<mess(id,a),

hash(Sq.<mess(id,a),head(rs), head(ns)>)> ->

([] r:shortstring @

comm.a.id.r ->

comm.id.a.head(ns) ->

commE.id.a.xor(head(rs),r) ->

User(id,tail(ns),tail(rs)))

Resp(id,ns,rs) =

(rs!=<>) &

[] a:diff(agents,{id}) @

([] m:sessmess, r:shortstring,n:nonces @

comm.a.id.Sq.<m,hash(Sq.<m,r,n>)> ->

comm.id.a.head(rs) ->

mixture of CSP and Haskell-like functional programming as in this defined data type.

8

comm.a.id.n ->

commE.a.id?w:message4 ->

testeq.w.xor(r,head(rs)) ->

if ok(id,a,m) then

User(id,ns,tail(rs)) else ERROR)

The process User(a,ns,rs) is just the choice between these two.
In the usual CSP model, based on the so-called Dolev-Yao model, the intruder is presumed

capable of overhearing, blocking, modifying and faking messages between trustworthy participants
limited only by its inability to break cryptographic constructions such as encryption and hashing. It
is exactly this communication model that we want for the high bandwidth communication medium
−→N .

In the standard model the intruder is simply programmed as an agent with an initial knowledge –
typically all public information and the private information needed to behave as an agent distinct
from the trustworthy ones – which can always learn any Fact and send fake messages containing any
Fact it can construct. The susceptibility of agent’s communications to being overheard, blocked
and faked is a consequence of the way they are put in parallel with the intruder. The CSP renaming
operator is used to map each outgoing communication of a trustworthy agent both to one that gets
through and to one that goes only to the intruder. Similarly, the incoming ones are renamed both
from ones that come from the honest source and ones that appear to be from there though actually
coming from the intruder.

The intruder itself is equivalent to Spy(Known), where

Spy(X) = say?x:inter(X,Messages) -> Spy(X)

[] learn?x -> Spy(close(union(X,{x})))

where close(Y) applies rules from a set of deductions representing the things it can do to data such
as encrypt, decrypt, hash and form sequences; and Known is the set of things initially known to the
intruder. Such deductions are of the type (X,f) where X is a finite set of Facts and f is a single
one: for example ({k,Encrypt.k.x},x) represents symmetric key decryption. As described in [8],
in practical CSP models this is factored into a parallel composition of one process per learnable
fact to make it work efficiently. We will see later how to do this to the extended intruder model
developed in this paper.

It is straightforward to reduce the ability of the intruder so that it can no longer fake messages
from Bob to Alice, or block ones from Alice to Bob, say. Equally one can introduce multiple
channels between the agents over which the intruder has different powers. In our case there is no
problem in building a model with distinct channels for −→N and −→E , the latter of which cannot
be faked. In the example above these channels are written comm and commE respectively.

If this is combined with a model of the intruder in which shorthash is treated in the same way
as hash, then no attack will be found on any of the example protocols3, even the variants on The
Naive protocol. In the standard model, the only thing that the intruder can do with hash is apply
it: if it knows x then it knows hash(x). In other words it has no ability to deduce x from hash(x)
or to create x 6= y such that hash(x) = hash(y).

In the next two sections we will see how to give our intruder appropriate versions of these two
abilities. In trying to understand what is appropriate it is useful to identify the subset of the
symbolic values in Fact that are weak: ones ranging over domains small enough to make searching
attacks meaningful.

3If the communications on −→E were replaced by the same ones over −→N , then attacks would be found on all
the protocols since all of them depend on the fact that communications on −→E cannot be faked.

9

4 Deducing preimages

Suppose our attacker knows a value C[w] whose construction depends on the weak value w but
does not know w itself. Under what circumstances can it test guesses of w? In [10], Lowe addresses
a generalisation of this question in which C[w] is replaced by a general value v that is capable of
verifying w. So for example, in Lowe’s work, v might be a piece of data that the attacker requires w
to decrypt (which is typical in protocols that bootstrap based on weak, shared, secret passwords).
In some very detailed work, Lowe analyses under what circumstances we can say that the attacker
has an alternative route to deducing v given w that really requires w. To achieve this, monitoring
the sets of deductions used, Lowe uses a significantly altered intruder model.

We used a simpler and less general approach that is well suited to the case where the verifier v
takes the form C[w]. Rather than change the nature of the intruder model, we stick to the one in
which it is based on deductions X ` f for X ∪ {f} ⊆ fact. We add a new deduction, which to all
intents and purposes is {C[w], C[·]} ` w: if the intruder knows the result of applying a context to
a weak value w, and knows the context itself, then it can work out w.

To implement this we need to understand what it means to “know” a context. Practically, it
means that the intruder has the ability, given an arbitrary value s, to calculate C[s]. In general
an intruder can use other, trustworthy, agents as “oracles” to help it calculate, but this would
have two big disadvantages when it comes to performing a combinatorial search. The first is that
such interaction would almost certainly be a lot slower than the intruder calculating for itself. The
second is that if a trustworthy agent were performing a calculation for every value that the intruder
tried, it would raise suspicions that something evil was afoot.

Therefore our default position on knowing a context is that, given s, the intruder must be capable
of working out C[s] without any external assistance. We have implemented this by introducing a
constant s representing an arbitrary weak member of Fact that is known to the intruder, but such
that no Fact involving s can be transmitted across any channel.

Knowing C[·] therefore is equivalent to knowing C[s], so the above deduction becomes

{C[w], C[s]} ` w

Thus, given the particular type of combinatorial searching we are discussing in this section, it
is possible to augment the standard deduction model to analyse for it in such a way that scarcely
changes the overall protocol model.

Of the example protocols, the only ones where there is a secret weak value to guess are Vaude-
nay’s protocol and the variants we discussed. Our modified model can be run on these protocols,
and attacks are duly found on the version of the second without the committed message and the
first protocol if B does not generate the short nonce NB which is instrumental in the computation
of the short authentication string sent in Message 4.

This is therefore, at least within the scope of our examples, a successful way of building searching
for a weak secret value into the standard CSP models of cryptoprotocols. It would be interesting
to experiment with further examples such as those used by Lowe to see how this method compares
with his in more general circumstances.

5 Searching for collisions

In the rest of the example protocols, the secret values used by the agents are not weak. The only
weak value used is the short hash or digest, which is already public at the point it is calculated. The
nature of the attacks described on the ”Naive short hash agreement protocol” and variants of the

10

other protocols take a different form: rather than searching for a weak secret, the intruder rather
looks for different strong values that some weak context (one that generates a weak value). This is
a rather different sort of activity to capture in our symbolic protocol model, because rather than
discovering an existing value we are expecting our intruder to discover a new one with a special
property.

Introducing a new constant into Fact for every special property that might be accessible to the
intruder would be completely impractical, even if these were finite in number. For example, for
every weak value w and every context C[·] that the intruder knows, whose value depends properly
on its argument, it can search for v such that C[v] = w. Since it is quite likely that these searched-
for constants can be used to create other contexts, it is likely that in most examples the number of
symbolic contexts actually available to the intruder will be infinite.

With the exception of the first group of example protocols, which we can already examine
thanks to the pre-image guessing techniques, the examples all have the following features:

• The only roles that weak values have is to be compared over the empirical channel: no
cryptographic functions are ever applied to them.

• In the pairwise versions of the protocols presented above, only a single pair of weak values
are compared. [This is not true of group versions, since then we will typically be comparing
values computed at N different locations.]

We conclude that any flaw relating to searching in these protocols will be due to a single pair of
computed weak values, computed entirely from strong ones, being equal. Thus, for these protocols,
this provides semi-formal justification for the assertion that if the intruder can break the security
of the protocol, it can do so with a single search.

To give it this ability we can add a single additional constant where it can choose the equation
that the constant satisfies. The target of this search would be a weak value w, and the object
would be to find some fresh value x for a weak-valued context C[·] such that C[x] = w, where C[·]
is a context that the intruder knows.4 Equality would not actually hold in the symbolic type Fact:
rather we would need to modify equality tests etc in the CSP model so that it behaved as though
the values were equal.

To achieve this, the triple (x,C[x], w) becomes part of the state of the protocol model after the
search has been performed. The multiplicity of weak values w and contexts C[·] that the intruder
knows means that this typically increases the state space size considerably, making the checks of
relatively simple protocols like the (pairwise) examples in Section 2 into lengthy runs. It is this
effect that makes it unrealistic to contemplate extending this model of the intruder to perform more
than one search.

This recalls the early days of protocol verification using CSP models [8, 18, 21], where the
intruder models used were, for similar reasons, restricted to “remember” only one or perhaps two
facts over any above their basic initial knowledge. This proved effective in finding interesting
attacks, but was obviously inadequate even to prove the security even of small protocol models:
we clearly needed to extend the intruder model to have an arbitrary memory. This proved possible
with the “perfect spy” [21], now a standard part of all CSP cryptographic protocol analysis. One
of the interesting side-effects of this was that the state spaces of checks run with this unbounded

4We might note that this does not exclude our intruder model from the effect of performing the “birthday attack”
where it solves the equation C1[x] = C2[y] for a pair of fresh values x and y, since having introduced one value y
and constructed C2[y] it can search for x. Of course this does not reflect the relative efficiency of this style of attack,
but all we are doing is to look for attacks on the assumption that searching does yield a result without reflecting
efficiency.

11

memory model were usually smaller than with a highly restricted memory, because the choice of
which thing to remember no longer contributed.

What we would like to be able to do similarly is to find an intruder model that reflected its
ability to perform an arbitrary number of combinatorial searches in a single run. We have not
solved this problem completely, but have found an approach that reduces the complexity of model
checking and provides a less limited intruder.

Our new model has no explicit representation of search, but rather asks each time two weak
values are compared whether the intruder could have performed a search to force them to be equal.

To achieve this, we allow the protocol and intruder model to proceed normally, except that
whenever the intruder invents a fresh value it takes a snapshot of its memory. Then, whenever a
comparison of weak values occurs, we ask whether the search could have happened in the state that
generated the most recent fresh value created by the intruder.

This of course will also have an effect on the state space: simply on the grounds of the size
of Fact one cannot introduce more than a very few fresh constants, and there will clearly be an
overhead from the extra memory information. As we will see, however, this overhead is much lower
than from the model in which we record a triple recording the search that was performed.

Initially we will consider the case in which the intruder is allowed to search for a single fresh
value with a special property. We will need a revised intruder process that keeps a record of its own
memory at the point when the search was performed, and which can judge whether the equality of
two weak values could have been the result of that search. The sequential process we want is:

Spy0(X,F) = say?x:X -> Spy0(X,diff(F,explode(x)))

[] learn?y:No(F) -> Spy0(close(union(X,{y})),F)

[] search?f:F -> Spy1(X,X,f)

Spy1(X,Y,f) = say?x:X -> Spy1(X,Y,f)

[] learn?y -> Spy1(close(union(X,{y})),Y,f)

[] testeq?{x,y}:equals(Y,f) -> Spy1(X,Y,f)

equals(Y,f) = union({{x,y} | x,y <- inter(WeakComp, Y), member(f,explode(y)))},

{(x,x) | x <- WeakComp})

In other words, unless the two values are actually the same, one of them –here y– must involve f,
and at the point f was introduced these two facts were known to the intruder. Note that at that
point, knowing x and y, if they involve f, is equivalent to knowing the contexts used to create them
so we do not need the special placeholder s to model this type of searching.

This definition can be simplified by only having the intruder record the point-of-search knowl-
edge of weak facts, since its knowledge of other data then is irrelevant to its subsequent behaviour.

Just as with the classic intruder model, this will not run on FDR thanks to the state space
of this sequential process. We therefore need to factor this adapted model in a similar way: with
one parallel process for each learnable fact. In the classic model this component process is one of
two states Ignorantof(x) or Knows(x). These will still suffice for the components that do not
represent weak values, since these are not required to compute the equals relation. Such processes
do not need to synchronise on the search.f action, bearing in mind that there will be no intruder
component for the fresh fact f on which the search is performed since for the purposes of coding
this is in the knowledge of the intruder and is not in this sense learnable. So we will need modified
components only for weak x.

For these, processes similar to these two are required prior to the search, while after it there
will be three states:

12

• One in which the fact x is still not known: IgnorantAfter(x,f)

• One in which x was known at the point of the search (and is therefore still known): WasKnown(x,f).

• One in which x is known now but was not known at the point of the search: RecentlyKnown(x,f).

Note that these three states also record the fact that was searched on, since this will be needed to
determine the modified equality relation. The need for this parameter can be dropped if we split
WasKnown(x,f) into two states: one for the case where f contains the searched-for value, and one
for the case where it does not:

In the following definitions the type of testeq has changed to be two separate comparable
components rather than a set. By fixing the second of these components to contain the search
value, we can ensure that one of the two “equal” values always does contain this.

• The first state does not know its fact, before the search.

ignorantof(f) = member(f,SpyMightHear) & learn.f -> knows(f)

[] infer?t:infs(f) -> knows(f)

[] search?x -> ignorantafter(f)

[] member(f,WComparisons) & testeq.f.f -> ignorantof(f)

• The second state does know its fact, before the search. Note that the result state after
search.x depends on whether it contains x or not.

knows(f) = member(f,SpyMightHear) & say.f -> knows(f)

[] member(f,SpyMightHear) & learn.f -> knows(f)

[] infer?t:deds(f) -> knows(f)

[] member(f,Banned) & spyknows.f -> knows(f)

[] member(f,WComparisons) & testeq.f.f -> knows(f)

[] search?x -> (if member(x,atoms(f)) then wasknownwith(f)

else wasknownwithout(f))

• The state where f is not known after the search.

ignorantafter(f) = member(f,SpyMightHear) & learn.f -> recentlyknown(f)

[] infer?t:infs(f) -> recentlyknown(f)

[] member(f,WComparisons) & testeq.f.f -> ignorantof(f)

• The state where f is known after the search and involves the search constant.

wasknownwith(f) = member(f,SpyMightHear) & say.f -> wasknownwith(f)

[] member(f,SpyMightHear) & learn.f -> wasknownwith(f)

[] infer?t:deds(f) -> wasknownwith(f)

[] member(f,Banned) & spyknows.f -> wasknownwith(f)

[] member(f,WComparisons) & testeq?x!f -> wasknownwith(f)

[] member(f,WComparisons) & testeq!f?x -> wasknownwith(f)

• The state where f is known after the search and does not involve the search constant.

13

wasknownwithout(f) = member(f,SpyMightHear) & say.f -> wasknownwithout(f)

[] member(f,SpyMightHear) & learn.f -> wasknownwithout(f)

[] infer?t:deds(f) -> wasknownwithout(f)

[] member(f,Banned) & spyknows.f -> wasknownwithout(f)

[] member(f,WComparisons) & testeq!f?x -> wasknownwithout(f)

• The state where f was not known at the point of search but has been learned since.

recentlyknown(f) = member(f,SpyMightHear) & say.f -> recentlyknown(f)

[] member(f,SpyMightHear) & learn.f -> recentlyknown(f)

[] infer?t:deds(f) -> recentlyknown(f)

[] member(f,Banned) & spyknows.f -> recentlyknown(f)

[] member(f,WComparisons) & testeq.f.f -> recentlyknown(f)

Above, infs(f) are the inferences that allow f to be deduced, namely ones of the form (X,f), and
deds(f) are ones that f contributes to, namely ones (x,f’) where f is in X.

Note that the channel equal is treated asymmetrically here: the first component can be com-
municated whenever the fact had been known at the point of the search. The second can be
communicated whenever both this happens and the fact actually involves the value on which the
search occurred, or the two components are equal without the need to search. This ensures that
the conditions involved in the definition of equals(z,Y) above are true when the event equal.x.y
occurs after a search: both must have been known at the point of the search and at least one of
them (i.e. y) involves the fresh value introduced at that point.

Note that the only point at which the identity of f is required in the above definitions is
in WasKnown(x,f) in determining the second component of equals.x.y. This suggests that a
more concise definition in terms of FDR compilation will be produced by modifying the above
definitions, deleting the parameter f from the last three states and dividing up the final state into
two: WasKnownWithf(x) and WasKnownNof(x) with the decision about which of these two to enter
being made at the point of the search. So the definition of Knows(x) becomes

Knows(x) = member(x,Messages)&learn.x -> Knows(x)

[] infer?d:deds(x) -> Knows(x)

[] member(x,Messages)&say.x -> Knows(x)

[] search?f:Searchable ->

if member(f,explode(f)) then WasKnownWithf(x)

else WasKnownNof(x)

The resulting components are synchronised on relevant infer events as in the classic intruder
model. The weak components are synchronised on all search events, and equals.x.y is in the
alphabets of intruder components x and y.

The classic intruder only has a component for each LearnableFact, namely a relevant member
of the type Fact that is not known initially to the intruder but which can be learned. There is
an additional one-state process SpyKnows that performs its functions for the facts that are in the
initial knowledge of the intruder. More-or-less the same will do in our revised case except that the
corresponding process now has to synchronise on search events, allowing one of them, and after
that synchronises with appropriate equals events.

SpyKnows = learn?x:IntruderInitialKnowledge -> SpyKnows

[] say?x:IntruderInitialKnowledge -> SpyKnows

14

[] equal?x:IntruderInitialKnowledge!x -> SpyKnows

[] search?f -> SpyKnows’({w | w <- WeakComp, member(f,explode(w))})

SpyKnows’(Y) = learn?x:IntruderInitialKnowledge -> SpyKnows’(Y)

[] say?x:IntruderInitialKnowledge -> SpyKnows’(Y)

[] equal?x:IntruderInitialKnowledge!x -> SpyKnows’(Y)

[] equal?x?y:Y -> SpyKnows’(Y)

One thing that is not captured by the above definitions (either the parallel one or the sequential
Spy0) are the practical constraints of searching for a value f with a specific property. In reality the
value comes into being only when it is searched for, and so the value certainly cannot have been
seen outside the intruder at the point the search.f event occurs. So we need an additional process
running in parallel with the intruder that only allows search.f at points where the intruder has
never communicated say.x for any x such that member(f,explode(x)).

This can be incorporated into the above definitions at the expense of some more complexity,
or we can run another process in parallel to enforce it, which is probably more straightforward to
explain. The intruder will have one or more constants representing fresh values that it can search
for, and in the model we are now considering it can perform a single search for a value of one of
these. These constants are placed in the initial knowledge of the intruder process. We can regard
the values of such constants as formal and undetermined until the moment they or something based
on them is seen by another agent, after which they become fixed: there is at least a superficial
analogy with quantum information theory here. To enforce this we could run the following process
in parallel with the intruder for each searchable constant f, synchronising on the set of events it
uses:

SearchReg(f) = search.f -> NoSearch(f)

[] say?x:{x | x <- Messages, member(f,explode(x))} -> NoSearch(f)

NoSearch(f) = say?x:{x | x <- Messages, member(f,explode(x))} -> NoSearch(f)

This is not, however, the most efficient model. To understand this, contemplate the possible
timings of a particular search relative to when the searched-for value is used by being sent (via the
say event in the definitions above) to a trustworthy agent.

The longer it waits to make this search before this send, the better for the intruder, because
the more values and contexts it knows for the search to be based on, and the larger the set of
values that Set1(X,Y) records as Y making more pairs “equal”. In fact if any attack is possible for
a search at any time, it is also possible if the search happened a notional instant before the send.
(Note that the actual time required to do the search is irrelevant to our symbolic model.)

It therefore makes sense in principle to identify the point of the search with the first time a
value involving the searchable constant is sent. By doing this we potentially eliminate many states
where the search has been performed but the value not yet used. CSP enables us to do this by
introducing a combined channel searchandsay.(f,x) where f is a searchable constant and x is a
Message that involves it. Getting the right events to synchronise using this approach is, however,
complex. We therefore adopt the much simpler solution of stipulating that, in the system as a
whole, every time a search.f event occurs, the next event has the intruder perform say.x for an
x involving f. This can be done by parallel composition (synchronising on all visible events) with
a constraining process SearchAndDeliver.

Exactly as with the classic intruder model, the parallel composition of all the ignorantof(f)

processes has the channel infer hidden and the FDR operator chase is applied. This forces all
inferences to occur as early as possible, which has a huge effect in reducing the state space.

15

The intruder model above has been used to establish the expected results – namely the absence
of any attack or the presence of one based on searching – for each of the protocols in Section 2 that
are based on the agreement of a final short hash or digest. For example, no attack is found on the
version given of the HCBK protocol given there, but if we interchange Messages 2 and 3 – so that
A sends na before it receives the committed messages – FDR produces traces such as the following
one.

<take.Bob.Alice.Sq.<BtoA,Hash.Nb>,

take.Bob.Alice.Nb,

search.fN,

fake.Bob.Alice.Sq.<Cmessage,Hash.fN>,

fake.Bob.Alice.fN,

commE.Alice.Bob.Yes,

commE.Bob.Alice.Digest.Nb.BtoA,

testeq’.{Digest.Nb.BtoA,Digest.fN.Cmessage},

error>

This represents the intruder blocking and learning Bob’s first two messages to Alice. Since it then
knows Nb it can search for a value fN such that the equality implied by the testeq’ event holds,
and then fake alternative messages to Alice “from” Bob.

As described earlier, CSP files can be downloaded which will allow readers to test these protocols
for themselves.

5.1 Other approaches to modelling collisions

The model we have developed for collision searching above has two curious, and related properties.

(a) While the constants used for searching are “known” to the intruder from the beginning, the
search for the actual value does not occur until part-way through the run (when search.f

occurs).

(b) Once this search is performed, our model assumes it actually satisfies all equations that could
have been searched for, not just one.

The latter is certainly, in general, a phenomenon that could lead to the discovery of false attacks
that rely on a single constant satisfying multiple equations. This is not possible in the examples
we have considered to date since none of these protocols relies on any more than a single equality
test, and that test being true does not lead to nodes releasing information that would be useful to
the intruder in subsequent runs.5

This would be an issue if we used a similar model for the “FlexiMac” protocol of [16] in which a
digital certificate for message M consists of a signed set of pairs (k, digest(k,M)) where there are
N keys chosen at random. The certificate is verified by choosing, at random, V << N of the keys
and verifying that the digests of the received M under these keys agree with those in the certificate.

In a simple case V = 2 and N = 1000, perhaps chosen because it is assessed that there is a
good chance that an attacker can find M ′ such that digest(k,M ′) = digest(k,M) for k any one of
the N keys, a 1% chance that it can find M ′ and {k1, k2} such that this equation holds for both ki
simultaneously, and a negligible chance for more ki simultaneously.

5In any case, the example files usually only consider models where no more than one run between trustworthy
parties occurs, and therefore usually only one testeq can occur on any run.

16

Since there are 500, 500 different pairs of keys that the verifier might pick at random, there
is actually only a one in 50M chance that an attack will work. However, letting the attacker
search for M ′ at the time it knows the certificate using the model described above will mean that,
symbolically, the fresh fM chosen will “solve” all the equations digest(k,M) = digest(k, fM)
simultaneously as k varies.

We could address this particular issue by the addition of an additional restriction to our model:
a process that only allows a single set of two distinct values {d1,d2} to be communicated on
testeq’ in a single run: once a single such pair has occurred the regulator process will prevent all
other ones. This could easily be increased to any fixed number N depending on how many different
equations we think the intruder can solve simultaneously. In the following definition, ps are the
“equal” pairs of distinct values observed to date.

EqLim(N,ps) = card(ps) < N & testeq’?p:S2 -> EqLim(N,union(ps,{p}))

[] testeq’?p:union(S1,ps) -> EqLim(N,ps)

where S2 are the two-element sets of comparable weak values, and S1 are the one-element sets (i.e.
representing pairs that are equal without searching).

This approach does not allow satisfactory analysis of the FlexiMac protocol as a whole. Fortu-
nately that is fairly easy to address via probabilistic calculations.

If we set N=1 in EqLim(N,{}), we can refine further the way our understanding of the searched-for
value grows as a run progresses. At the start of a run we know nothing about its value; at the point
of the search we have a potentially large set of equations it might satisfy; and we know exactly
which it satisfies at the point it turns up in a successful equality test of differently-constructed
values.

One of the keys to the efficient use of FDR is reducing the number of states that are explored,
and it is interesting to contrast the above approach with an early attempt by Roscoe to model the
HCBK protocol in 2004, shortly after he invented it. In that the single equation to be solved was
chosen (as is natural intuitively) at the point of the search itself. Thus the search event had three
parameters: the search constant and the two sides of the equation. This was subsequently stored
as a parameter to allow the determination of subsequent equality tests.

In all protocol states after the search this early model therefore kept a separate system state
for all the equations that could have been searched over. This is hugely less efficient than our new
approach of leaving this equation undetermined until an event that fixes it is executed: now there
is just one system state per protocol state.

5.2 Modelling ⊕

Both the Vaudenay and SHCBK protocols make crucial use of bit-wise exclusive-or. It is important
that we have an efficient representation of it within our CSP models that reflects its algebraic
properties if we are going to analyse for attacks that might use its properties. (For examples of
such attacks, see Section 7.)

We have modelled the fields that are liable to be xor-ed as objects of the form Xor.S, where S is
a set of constants of the given sort. It is reasonable to assume that the xors of all such collections
of a few constants are indeed different, and we can define an operator xor that precisely reflects
the algebraic properties of ⊕:

xor(Xor.S,Xor.T) = Xor.union(diff(S,T),diff(T,S))

The useful feature of this representation is that there really is just one value in Fact for each real
value. The Xor constructor has the following intruder deductions:

17

• (S,Xor.S): if the intruder knows every member of the set S it can xor them together.

• ({Xor.{f},f): if the intruder knows the lifted Xor of a fact then it knows the fact.

• ({Xor.S,Xor.T},xor(Xor.S,Xor.T)): if the intruder knows two facts it can xor them to-
gether.

This representation has proved very successful in dealing with relevant protocols mentioned in
this paper: the reader will find it in the example files that accompany this paper. It is somewhat
different from the representation of xor used in Casper, and homeomorphic to one previously
proposed by [13].

The only potential problem is that the size of the space of Xor.S grows exponentially with
the number of constants available for S, and this in turn could well have an explosive effect on
parameters such as the overall alphabet of the model and the number of deductions.

6 Combined approach

In the previous two sections we have described techniques by which FDR models can be extended
to allow the intruder to search for weak values that are concealed within known contexts, and also
search for collisions between constructed contexts that are weak at the top level.

There is nothing that prevents the two being used together in a single model, but we are not
aware of any published protocol for which they are both relevant. Consider, however, the following
protocol, in which it is assumed that A and B share a weak, supposedly secret, password PAB.

A −→N B : M
B −→N A : Nb
A −→E B : digest(PAB ‖ Nb,M)
Here, M is the intended messages and Nb is a nonce.
Suppose the intruder has observed one run of this protocol. Because it knows M and Nb it can

search for the value of PAB as in Section 4. When a second message M2 is sent from A to B, the
intruder can substitute it by the message M ′ of its choice, trap the nonce Nb of this second session,
and search for Nb′ such that

digest(PAB ‖ Nb,M ′) = digest(PAB ‖ Nb′,M2)

and send this to A in Nb’s place.

7 Group protocols

A number of HISPs (including the original versions of HCBK and SHCBK) have been developed
which allow an arbitrary-sized group to authenticate data from one or all of them based on agree-
ment about a single weak value (a digest in these two cases).

There are no new powers that the intruder needs in order to cope with group protocols, so
the only real issue is how to model the execution and correctness of a group protocol sufficiently
efficiently to make analysis feasible.

We will use two group versions of the SHCBK protocol as our examples. The S in its name
stands for “Symmetric”, and all its messages are broadcasts from each node to every other. When
two of us initially discovered this protocol presented it at a workshop [13] the protocol took the
form:

18

Symmetrised HCBK protocol (SHCBK), [13]

1. ∀A −→N ∀A′ : A, INFOA, hash(kA)
2. ∀A −→N ∀A′ : kA
3. ∀A −→E ∀A′ : digest(k∗, INFOS)

where k∗ is the XOR of all the kA’s for A ∈ G

However when we subsequently published this work in a journal [14] it had become

Symmetrised HCBK protocol (SHCBK), [14]

1. ∀A −→N ∀A′ : A, INFOA, hash(A, kA)
2. ∀A −→N ∀A′ : kA
3. ∀A −→E ∀A′ : digest(k∗, INFOS)

where k∗ is the XOR of all the kA’s for A ∈ G

In each case, any pair of nodes who successfully compare their digests on the final step are
supposed to know that their views of the various INFOAs (including their own) coincide.

Note that the only difference is that the shares hkA of the final digest key are hashed alone in
the first version and with the names of their originators in the second.

This modification was made because we were aware that the use of ⊕ in combining these shares
made a reflection attack available to the intruder whereby it could adopt another node’s hkA as
the one belonging to another node without actually knowing it. Once it knows hash(hkA) it can
send this two whoever it likes, pretending it is from any one of the nodes, even though it does not
yet know the value of hkA. Once A reveals the value of hkA in Message 2, the intruder can copy
this value to follow up all the sends it has made of its hash.

Since the shares of hk are combined by ⊕, this has the effect of selectively cancelling some of
the shares hkA in the calculations of some or all B.

The modification of replacing hash(hkA) by hash(A, hkA) immediately removes this possibility
of reflection (on the assumption that nodes expect all their partners to have distinct identifiers A,
which is in practice necessary in group protocols where messages are broadcast). For at the point
where the share hkA is sent openly in Message 2, apparently from B 6= A, the check of the hash
hash(B, hkA) will not agree with the reflected hash hash(A, hkA) from Message 1.

All this was clear to us when we made the modification, but we did not investigate the extent to
which failure to make it could compromise security. Certainly, security is not always compromised:
note that one of the examples earlier in the present paper is a pairwise adaptation of Version 1,
and we have successfully verified it.6

One of the most interesting properties of SHCBK is that, if run by a group G, it authenticates
two trustworthy parties and their data to each other even if all of the other members of the group
are corrupt and under the control of the intruder.

As a natural step up from two-user sessions, we have therefore built models of this protocol with
the usual two trustworthy participants Alice and Bob, who can either run the protocol with each
other in a group of two or with a third corrupt identity in a group of three. The specification is
that, provided Alice and Bob agree on the final digest, their information is correctly authenticated
to the other.

6The version quoted in Section 2 is not susceptible to the reflection attack because it does not xor the two
shares. However using digest(Na ⊕ Na,M) instead of shorthash(Na,Nb,M), as is done in the CSP example file
for this protocol, does admit the attack but does not change the verifiability. In fact we have only verified a small
implementation of it, but there is every reason to believe that this pairwise version remains secure in arbitrary-sized
implementations.

19

Since the protocol model we build is symmetric, with no pre-set order of communication other
than that each node completes its activities in Message 1 before Message 2, and similarly completes
Message 2 before engaging in digest comparisons in Message 3, we can restrict our attention to
showing that Alice’s information is correctly authenticated to Bob. This permits a significantly
reduced state space for the component processes.

We have to be very careful with state space with more participants in the protocol, because
the number of constants in a model grows, the size of the messages (in this protocol Message 3
which is the digest of one value by another, each of which grows with the number of participants)
grows very quickly, as do the parameters and therefore the state-space sizes of the individual agent
processes.

The definition of a trustworthy agent for the first version is as follows. Instead of sending and
receiving a fixed sequence of messages, it goes through a phase for sending and receiving each of
the three messages of the protocol that it has to exchange with all the other parties.

User(id,ns) = ns!=<> &

session?S:sessions(id) ->

(Phase1(id,xn(head(ns)),{},S);User(id,tail(ns)))

Phase1(id,n,bs,S) =

comm.id?a:diff(S,{id})!Sq.<mess(id),hash(n)> ->

Phase1(id,n,bs,S)

[]([]a:rest(S,id,bs),m:sessmess, n’:xnonces@

comm.a.id.Sq.<m,hash(n’)> ->

Phase1(id,n,union(bs,{(a,m,n’)}),S))

[] rest(S,id,bs)=={} & Phase2(id,n,bs,{},n,S)

Phase2(id,n,bs,cs,hk,S) =

comm.id?a:diff(S,{id})!n -> Phase2(id,n,bs,cs,hk,S)

[]([] a:diff(S,union({id},cs)) @

comm.a.id.checknonce(a,bs) ->

Phase2(id,n,bs,union(cs,{a}),

xor(hk,checknonce(a,bs)),S))

[] diff(S,union({id},cs))=={} &

let d=digest(hk,summary(S,id,n,bs))

within Phase3(id,d,bs,S)

Phase3(id,d,bs,S) =

SKIP

[] ([] a:diff(S,{id}) @ commE.id.a.d ->

Phase3(id,d,bs,S))

[] commE?a:diff(S,{id,Cameron})!id?w:WComparisons ->

testeq.w.d ->

(if ok(id,a,msg(a,bs)) then Phase3(id,d,bs,S)

else ERROR)

Note that in each of the first two phases it broadcasts its own message arbitrarily often without
recording who it has been sent to, but carefully gathers the information it has been sent.

This protocol gave the following trace representing an attack: Cameron has been able use the
reflection attack outlined above, adopting Bob’s hk as his own. This means that he can already

20

know what final digest key Bob will use even before Bob has revealed its own Nb: the properties of
⊕ means that that share of the key is nullified in the operation of both Alice and Bob. A search
is therefore performed before an intruder-modified copy of Alice’s Message 1 is delivered to Bob

when it has access to the values that both Alice and Bob will generate for their final comparison.

<session.{Cameron,Alice,Bob}

take.Alice.Bob.Sq.<InfoA,Hash.Xor.{Na}>

comm.Bob.Alice.Sq.<Cmess,Hash.Xor.{Nb}>

fake.Cameron.Alice.Sq.<Cmess,Hash.Xor.{Nb}>

take.Alice.Cameron.Xor.{Na}

fake.Cameron.Bob.Sq.<Cmess,Hash.Xor.{Nb}>

search.fN

fake.Alice.Bob.Sq.<Cmess,Hash.Xor.{fN}>

comm.Bob.Alice.Xor.{Nb}

fake.Cameron.Bob.Xor.{Nb}

fake.Alice.Bob.Xor.{fN},

fake.Cameron.Alice.Xor.{Nb}

commE.Alice.Bob.Digest.Xor.{Na}.

Summary.{(Alice,InfoA),(Cameron,Cmess),(Bob,Cmess)}

testeq’.{Digest.Xor.{fN}.

Summary.{(Alice,Cmess),(Cameron,Cmess),(Bob,Cmess)},

Digest.Xor.{Na}.

Summary.{(Alice,InfoA),(Cameron,Cmess),(Bob,Cmess)}}

error>

Because of the way our system is plumbed together, each comm action is a communication between
the two trustworthy agents that is overheard by Cameron, fake.X.Y is a communication from the
intruder to Y that is apparently from X, and take.X.Y is a communication from X to Y which does
not get through if Y is trustworthy, and is in any cawse heard by the intruder Cameron.

The net result of the above trace is that Bob thinks that Alice has sent the information Cmess,
whereas in fact she has send InfoA. Note that the representations of the digest keys and shares of
them follows the model of xor we discussed in Section 5.2. The fact that all the Xor-ed sets above
are singletons above is a consequence of the way this particular attack works. Normally, of course,
we would expect the final key used in a session involving k agents to be the Xor of a set of k values.

At the point of the search.fN the intruder has the knowledge to find a value which makes the
equation implicit in the testeq’ message true.

Note that this trace does not, thanks to our broadcast model, include all the sends of of Messages
1 and 2 by Alice and Bob. They could be inserted without destroying the attack, but our Cameron
(the intruder) does not need all these sends either to learn the contents of the messages (at most one
send by one of them suffices) or to proceed (because he is not constrained to follow any protocol).

Fortunately, attacks disappear for Version 2: the corresponding file for it yields a successful
check for the authentication specification, showing that the protocol does indeed authenticate A’s
information to B even when C is corrupt.7

This particular attack clearly exploits the intruder’s ability to participate in the protocol as
a participant. Note that even if there is a real Cameron who is trustworthy, there is nothing to
prevent the intruder taking his role in the first two messages of this protocol, so unless Alice and/or

7What that means is that if A and B agree on the digest, then A and B agree on what A’s information is. The
intruder controlling C can, if it wishes, prevent them from agreeing in various ways.

21

Bob check agreement of the digest with the real Cameron there is nothing to prevent the intruder
taking his place from the perspective of the other two users.

Even though the pairwise version of the protocol in Section 2 is secure, FDR succeeds in finding
attacks on the group version of the protocol for sessions involving just the group {Alice,Bob}. The
explanation of this apparent contradiction is the more liberal communication order in the group
version of the protocol. In it, all participants are prepared to send Message 1 before receiving a
Message 1 from any other party. However in the one-way pairwise version the responder/receiver
B will only send a hash of his own key share after receiving Message 1 from A. That difference is
crucial.8

Running our model on different variants of this protocol is an excellent demonstration of the
power of the CSP model we are proposing. It also emphasises the advisability of following normal
commonsense protocol design practices such as explicitness of encrypted/hashed components in
designing HISP-style protocols, just as in more traditional ones.

8 Prospects for generalisation

For some protocols it is to draw a distinction between weak values that are susceptible to straight
combinatorial search and semi-weak values that are too long for this but are vulnerable to the
birthday attack. In other words it might be impractical to search for v such that C[v] = sw where
sw is a semi-weak value (perhaps 80 bits), but feasible to search for v such that C[v] = C ′[v] where
C and C ′ are both semi-weak contexts.

Consider, for example, the simple protocols in which A sends InfoA to B backed up by an
empirical communication of hash(InfoA), and where A sends InfoA, NA to B backed up by
hash(InfoA, NA). In some circumstances it might be possible for the intruder to influence what A
sends as InfoA, but we can assume that NA is always chosen randomly. (Note that these protocols
were both discussed as weak versions of the Naive protocol in Section 2.)

For the first protocol, the intruder can search for distinct InfoA and Info′A that hash to the
same value before influencing A accordingly. This is an instance of the birthday attack and is
much easier for the intruder than attacking the second protocol where, since it cannot influence the
choice of NA, it simply has to search for N ′A such that hash(InfoA, NA) = hash(Info′A, N

′
A). It is

natural that there will be lengths of hash that can be considered effectively secure for this second
protocol but not the first.

We could easily allow for types that we know to be semi-weak in a protocol description (either
instead of, or as well as, weak ones) by not allowing the deduction of such a value v from C[v]
where C is a known context, and only allowing the search for values v solving equations between
semi-weak contexts when both sides depend on v. The latter can be achieved by altering the way
the testeq channel is used.

We have to recognise, however, that our model as introduced so far has limitations. In particular
we have only considered small implementations of our protocols, with small groups only able to
run protocols a very limited number of times and have limited our intruder to a single search.

Previous work [5] has showed how to adapt the standard CSP protocol model using ideas from
data independence so that arbitrary-scale implementations can be proved secure. This is done by

8It is also important that the one-way pairwise version is one-way in that direction: if we take the opportunity to
add a packet from B to A in the second message of the protocol, as well as the final digest, that message’s authen-
tication can be successfully attacked using reflection plus combinatorial search. This demonstrates that including
unique node identifiers in the hashes of the key shares should be strongly recommended in all variants of the SHCBK
protocol.

22

building finite-state implementations that have the ability to simulate arbitrary ones well enough
to verify a security specification based on a very few trustworthy identities.

The finite-state models approximate the general implementation in the sense that they simulate
all behaviours but potentially introduce extra ones and possibly false attacks. The crucial property
that the intruder’s deductive system must have in order for this approach to work is that it be
positive: it must never rely on the distinctness of two values of the same type for a deduction to
be made except, perhaps, where one or both are constants such as node names involved in the
specification that do not change from protocol session to session.

If we restrict our attention to additional deductions introduced in Section 4 that model the
search for weak values, there seems to be no reason why the data-independence framework should
not apply. The silent values become constants of the sort referred to above, and then the additional
deduction will preserve the necessary positive structure when added to the usual one representing
strong encryption.

The issue of generalisation is more interesting for models that give the intruder the ability to
search for values that solve equations. Such searches are typically relevant in protocols like SHCBK
where the only use of weak values is in the comparison of a single set of them that are intended to
be equal, as the last step of the protocol. Furthermore the touchstone of a successful attack is that
two of these values are equal even though they are not constructed in the same way.

Under these conditions the only positive effect of a search by the intruder can be to create such
an attack, and any such attack is enabled by the last search prior to the comparison that related
to a constant involved in at least one of the two facts concerned.9

It should then follow that any attack would be found on any file modelling such a protocol
would be found on a model restricted to a single search.

If we were allowed to use weak values for other things than comparison we might use them
inside other constructions such as hashing and encryption (as done with passwords and short
random strings in other types of protocol earlier in this paper). If the weak values used inside
contexts were themselves the result of some construction, as in hash(A, digest(hk, 〈A,B,Na, Nb〉))
then searching for equalities between these subterms and other weak values could enable attacks.
This would greatly complicate the problem of finding a model for the general analysis of such
protocols.

However under the restrictions discussed above this does not occur. Importantly, then, the
acceptance of protocol messages at steps other than the final comparison will not be affected by
whatever searches might have preceded them. Similarly, the interpretation of these messages by
nodes at earlier steps will not be affected by searches. The only way in which a search can affect
the progress of a protocol is in the final comparison. Being final, the success of such a comparison
does not release any further information to the intruder.

It is therefore reasonable to conjecture that for such protocols the data independence techniques
for protocol analysis will continue to work, in the sense that if there is an attack on any model of
the protocol it will be found, augmented by giving the intruder a single search. A proviso on this
is that the collapsing transformations used for data independence cannot remove an attack. There
is no danger of this for the formulation of an attack where node B authenticates some constant
originating from the intruder as being from A.

Further work is necessary to underpin the above arguments as well as to develop the CSP
protocol models to implement them.

9The situation would be more complex in the modification suggested above to restrict the intruder to birthday-
style attacks, since it is possible to perform such an attack by a search on two constants, one for each side of the
equation, as in finding a collision in digest(hk, hash(A,N1)) = digest(hk, hash(B,N2)) by searching on N1 and N2.

23

It would, of course, be natural to build either our small implementation model or this general-
isation into Casper.

One generalisation issue that the above does not address is the size of groups in those protocols
that are run between more than two nodes. It seems to us that there is unlikely to be a one-
size-fits-all approach to this problem. The case that seems most likely to be tractable is where
protocols do not depend on the correct behaviour of all the participants, as in our analysis of the
group version of SHCBK. Even there, however, we would need to allow for the collection of data
from an arbitrary rather than fixed-size group. This will require some interesting abstraction.

9 Conclusions

We have successfully extended the well-tried CSP model of cryptographic protocol to encompass
two different sorts of ways an intruder might exploit the presence of weak values and cryptographic
constructs, and applied the resulting model to a number of protocols. Indeed, with the extension
to semi-weak values contemplated in the previous section, we believe that our model is capable of
coping with all of the protocols set out in [12], with the exception of the FlexiMac protocol that
we have already discussed.

We have also argued that for core classes of protocol it should be possible to use the data
independence based methods for proving general protocol implementations together with our new
approach.

Using weak values automatically brings in a stochastic element to protocols: the relationship
between the lengths of these values and the quality of security will generally be much closer to the
front of the mind than in other types of protocol. In most cases the presence of a human participant
applies downward pressure to these lengths, and so one wants to know just how long they really
need to be to attain a given security level. One cannot just assume that the lengths will be well in
excess of what it needed.

The main deficiency of the approach set out in this paper is that it does not give a numerical
value for security: the highest probability of success of any intruder strategy. To get such a value, we
would need to build a model in a probabilistic model checker or similar tool. This is an important
topic for future work. It may also be possible to derive results about stochastic behaviour for
restricted classes of protocols which show that a successful result from one of our yes-or-no checks
guarantees that (for particular properties of the cryptography involved) the chance of a successful
attack is no more than ε. The distinction between birthday-style and simple searches would be
important, but as we have already seen we can distinguish these symbolically.

A question already posed in Section 4 is how our method of symbolically allowing for the deduc-
tion of preimages compares to Lowe’s approach to guessing in [10], theoretically and pragmatically,
with the latter meaning both efficiency and coverage in finding attacks.

References

[1] Please see: http://www.prismmodelchecker.org/.

[2] CSP files that illustrate the technique we discuss in this paper can be downloaded from:
http://www.cs.ox.ac.uk/publications/publication5265-abstract.html

[3] D. Balfanz, D. Smetters, P. Stewart and H. Wong, Talking to strangers: Authentication in
ad-hoc wireless networks, in: Proceedings of the 9th Annual Symposium on Network and Dis-
tributed System Security (NDSS), 2002.

24

[4] B. Blanchet. Automatic Verification of Correspondences for Security Protocols. Journal of
Computer Security, 17(4):363-434, July 2009.

[5] P.J. Broadfoot, G. Lowe, A.W. Roscoe. Automating Data Independence. ESORICS 2000: 175-
190.

[6] J. Heather and S. Schneider. A decision procedure for the existence of a rank function. Journal
of Computer Security 13(2): 317-344 (2005).

[7] A. Legay, A. Murawski, J. Ouaknine and J. Worrell. On Automated Verification of Probabilistic
Programs. Proceedings of TACAS 2008, LNCS 4963, pp. 173-187.

[8] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. TACAS
1996: 147-166.

[9] G. Lowe. Casper: A Compiler for the Analysis of Security Protocols. Journal of Computer
Security 6(1-2): 53-84 (1998).

[10] G. Lowe. Analysing Protocol Subject to Guessing Attacks. Journal of Computer Security 12(1):
83-98 (2004).

[11] G. Lowe and A.W. Roscoe. Using CSP to Detect Errors in the TMN Protocol. IEEE Trans.
Software Eng. 23(10): 659-669 (1997).

[12] L.H. Nguyen and A.W. Roscoe. Authentication protocols based on low-bandwidth unspoofable
channels: A comparative survey. Journal of Computer Security 19(1): 139-201 (2011).

[13] L.H. Nguyen and A.W. Roscoe, Efficient group authentication protocol based on human in-
teraction, in: Proceedings of the Joint Workshop on Foundation of Computer Security and
Automated Reasoning Protocol Security Analysis (FCS-ARSPA 2006), 2006, pp. 9-31.

[14] L.H. Nguyen and A.W. Roscoe, Authenticating ad-hoc networks by comparison of short digests,
Information and Computation 206(2-4) (2008), 250-271.

[15] L.H. Nguyen and A.W. Roscoe. On the construction of digest functions for manual authenti-
cation protocols. Please see: http://www.cs.ox.ac.uk/files/4130/digest.pdf.

[16] L.H. Nguyen and A.W. Roscoe, Separating two roles of hashing in one-way message authentica-
tion, in: Proceedings of the Joint Workshop on Foundations of Computer Security, Automated
Reasoning for Security Protocol Analysis and Issues in the Theory of Security (FCS-ARSPA-
WITS 2008), 2008, pp. 195-210.

[17] ISO/IEC 9798-6, L.H. Nguyen, ed., 2010, Information Technology – Security Techniques –
Entity authentication – Part 6: Mechanisms using manual data transfer.

[18] A.W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. CSFW
1995: 98-107

[19] A.W. Roscoe, Human-centred computer security, 2005. See:
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/113.pdf.

[20] A.W. Roscoe. The theory and practice of concurrency. Prentice Hall. 1998.

25

[21] A.W. Roscoe and M.H. Goldsmith. The perfect spy for modelchecking cryptoprotocols. In Pro-
ceedings of DIMACS workshop on the design and formal verification of cryptoprotocols. 1997.

[22] F. Javier Thayer, J.C. Herzog and J.D. Guttman. Strand Spaces: Why is a Security Protocol
Correct? IEEE Symposium on Security and Privacy 1998: 160-171.

[23] S. Vaudenay, Secure communications over insecure channels based on short authenticated
strings, in: Advances in Cryptology - Crypto 2005, Lecture Notes in Computer Science, Vol.
3621, V. Shoup, ed., Springer, 2005, pp. 309-326.

26

