
Query Rewriting Under Query Extensions for
OWL 2 QL Ontologies

Tassos Venetis1, Giorgos Stoilos2, and Giorgos Stamou1

1 School of Electrical and Computer Engineering
National Technical University of Athens

Zographou Campus, 15780, Athens, Greece

2 Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, UK

Abstract. Conjunctive query answering is a key reasoning service for
many ontology-based applications. With the advent of lightweight on-
tology languages, such as OWL 2 QL, several query answering systems
have been proposed which compute the so called UCQ rewriting of a
given query. It is often the case in realistic scenarios, that users refine
their original queries, by e.g., extending them with new constraints and
making them more precise. To the best of our knowledge, in such cases, all
OWL 2 QL systems would need to recompute the rewriting of the refined
query from scratch. In this paper we study the problem of computing the
rewriting of the refined query by ‘extending’ the pre-computed rewriting
and avoiding re-computation. We study the problem from a theoretical
point of view and present a practical algorithm. Finally, we evaluate our
implementation experimentally by comparing it against many state-of-
the-art query rewriting systems, obtaining encouraging results.

1 Introduction

A key application of OWL ontologies is ontology-based data access (OBDA)
[15], where an ontology is used to support query answering against distributed
and/or heterogeneous data sources. A typical scenario would involve the use of
an OWL ontology to answer conjunctive queries over RDF datasets. Due to the
high complexity of answering conjunctive queries over OWL 2 DL ontologies
[11, 6], prominent languages such as OWL 2 QL have been developed. OWL
2 QL (a well-known OWL 2 profile3) is based on the well-known Description
Logic (DL) DL-LiteR [3, 1]. DL-LiteR is a member of the DL-Lite family [3, 1],
a family of ‘lightweight’ ontology languages specifically designed to feature low
theoretical complexity, and hence imply the existence of efficient query answering
algorithms.

Query answering in the DL-Lite family is usually performed via a technique
called query rewriting. According to this technique, given a query and a DL-
Lite ontology, the query is ‘rewritten’ into a set of queries such that, the union
3 http://www.w3.org/TR/owl2-profiles/

of the answers of the queries in the set over the input data and by discarding
the input ontology is equal to the answers of the original query over the data
and the ontology. In recent years, query rewriting over DL-Lite ontologies has
drawn significant attention, and several different algorithms and systems have
been proposed [3, 13, 4, 16].

Quite often in realistic data-access scenarios, users do not immediately ask
the query that they want. More precisely, as has been shown in the Web literature
[9, 8, 12], users usually first ask some ‘general’ query and then, according to
the results they get back, refine it by adding further constraints, making their
request more specific each time. Consequently, the actual (final) query might only
be known after several refinements of the initial one. In a different (Semantic
Web) motivating scenario, in order to assist users in constructing their queries,
iterative and incremental techniques have also been proposed [18, 5, 17]. However,
to the best of our knowledge, none of the query rewriting approaches that have
been proposed in the literature is designed to work well in such scenarios. More
precisely, in such cases all algorithms will (re)compute the entire rewriting of
each of the refined queries from scratch.

In the current paper we study the following problem: Given a DL-LiteR on-
tology, a query and its rewriting (computed previously), and a new constraint to
be added to the query, compute the rewriting of the new query by ‘extending’
the input rewriting and avoid computing it from scratch through the standard
algorithms. First, we study the problem at a theoretical level and investigate
whether it is possible to compute the rewriting of the extended query given any
input rewriting. Unfortunately, the answer is negative and we explain how op-
timisation techniques employed by nearly all modern systems might compute
rewritings that are not suitable for our task. Then, we present an algorithm for
computing query rewritings under query extensions. Our algorithm is based on
the well-known PerfectRef algorithm [3], which in its original version did not in-
clude any optimisations and hence is suitable for our purposes. For our algorithm
to behave well we propose several optimisations that are specific to our case. Fi-
nally, we have implemented the algorithm and have conducted an experimental
evaluation using the evaluation framework proposed in [13]. We have compared
our techniques with many of the available query rewriting systems and our first
results are encouraging given our preliminary implementation.

Our problem is also highly relevant to the field of databases, where it has
been studied under the term view adaptation [7, 10]—that is, computing the
materialisation of a re-defined materialised view. However, view adaptation has
not been studied in the presence of database constraints—that is, under the
presence of logical axioms. We also feel that this new approach and view of
query rewriting opens an interesting line of research for scalable OBDA.

2 Preliminaries

Description Logics We assume that the reader is familiar with the basics of DL
syntax, semantics and standard reasoning problems [2]. We next recapitulate

the syntax of DL-LiteR [3] a prominent DL language that consists of the logical
underpinnings of the QL profile of OWL 23 and is widely used in ontology-based
data access.

Let C, R, and I be countable, pairwise disjoint sets of atomic concepts, atomic
roles, and individuals. A DL-LiteR-role is either an atomic role P or its inverse
P−. DL-LiteR-concepts are defined inductively by the following grammar, where
A ∈ C and R is a DL-LiteR-role:

B := A | ∃R

A DL-LiteR-TBox is a finite set of axioms of the form B1 v B2 or B1 uB2 v ⊥,
with B(i) DL-LiteR-concepts and ⊥ the bottom concept that is empty in all
interpretations, or of the form R1 v R2 with R(i) DL-LiteR-roles. An ABox is a
finite set of assertions of the form A(c) or P (c, d) for A ∈ C, P ∈ R and c, d ∈ I.
A DL-LiteR-ontology O = T ∪ A consists of a TBox and an ABox.

Queries We use standard notions of (function-free) term and variable. A concept
atom is of the form A(t) with A an atomic concept and t a term. A role atom
is of the form R(t, t′) for R an atomic role, and t, t′ terms. A conjunctive query
(CQ) q is an expression of the form:

{~x | {α1, . . . , αm}}

where each αi is a concept or role atom and ~x = (x1, . . . , xn) is a tuple of
variables called the distinguished (or answer) variables, each appearing in at
least some atom αi. The remaining variables of q are called undistinguished.
We use var(q) to denote all the variables appearing in q and avar(q) to denote
all its distinguished variables. Finally, a variable that is either distinguished or
appears in at least two different atoms αi, αj with i 6= j in q is called bound,
otherwise it is called unbound. We often abuse notation and use q to refer to the
set of its atoms, i.e., {α1, . . . , αm}. For the rest of the paper, and without loss
of generality, we will asume that queries are connected [6]. Finally, a union of
conjunctive queries (UCQ) is a set of conjunctive queries.

A certain answer to a CQ q w.r.t. O is a tuple ~c = (c1, . . . , cn) of individu-
als s.t. O entails the FOL formula obtained by building the conjunction of all
atoms αi in q, replacing each distinguished variable xj with cj and existentially
quantifying over undistinguished variables. We denote with cert(q,O) the set of
all certain answers to q w.r.t. O. Given q1, q2 with distinguished variables ~x and
~y, we say that q2 subsumes q1, if there exists a substitution θ from the variables
of q2 to the variables of q1 such that the set [{ans(~y)} ∪ q2]θ is a subset of the
set {ans(~x)} ∪ q1, where ans is in each case a predicate of the same arity as ~x
(~y) not appearing in q1 (q2). Finally, q1 is equivalent to q2 if they subsume each
other.

Query Answering in DL-LiteR Query answering in DL-LiteR is performed with
a technique known as query rewriting which, given a DL-LiteR-TBox T and

query q, computes a UCQ u, called a UCQ rewriting for q, T , with the following
property: for each ABox A s.t. O = T ∪ A is consistent, the following holds:

cert(q,O) =
∪

q′∈u

cert(q′,A).

For a DL-LiteR-TBox, a UCQ rewriting u for q, T can be computed using the
perfect reformulation algorithm (PerfectRef) described in [3]. The algorithm ap-
plies exhaustively a reformulation and a condensation step that generate new
CQs; the process terminates when no new CQ is generated.

In the reformulation step the algorithm picks a CQ q, an atom in the CQ
α ∈ q and an axiom I ∈ T and applies the axiom on the atom α of q replacing
it with a new atom and hence, creating a new CQ. This is performed with the
function gr(α, I), that takes as input an atom α and an axiom I ∈ T and returns
a new atom. For a CQ q, α ∈ q and I ∈ T , gr(α, I) is defined as follows:

– if α = A(x) and
i) I = B v A, then gr(α, I) = B(x);
ii) I = ∃P v A, then gr(α, I) = P (x, y) for y a new variable in q;
iii) I = ∃P− v A, then gr(α, I) = P (y, x) for y a new variable in q.

– if g = P (x, z), z is unbound in q and
i) I = A v ∃P , then gr(α, I) = A(x);
ii) I = ∃S v ∃P , then gr(α, I) = S(x, y) for y a new variable in q;
iii) I = ∃S− v ∃P , then gr(α, I) = S(y, x), for y a new variable in q.

– if g = P (z, x), with z unbound, then
i) I = A v ∃P−, then gr(α, I) = A(x);
ii) I = ∃S v ∃P−, then gr(α, I) = S(x, y), where y is new in q;
iii) I = ∃S− v ∃P−, then gr(α, I) = S(y, x), where y is new in q.

– if g = P (x, y) and
i) I = S v P or I = S− v P−, then gr(α, I) = S(x, y);
ii) I = S v P− or I = S− v P , then gr(α, I) = S(y, x).

If for some axiom I and some atom α one of the above conditions holds, then
we say that I is applicable to α, and applying I to some α in some CQ q creates
a new CQ of the form q[α/gr(α, I)]—that is, the new CQ contains the atom
gr(α, I) instead of α.

In the condensation step a new query is generated from a query q by ap-
plying to q the most general unifier between two atoms α1, α2 of its body; the
application of the condensation step is denoted by reduce(q, α1, α2).

3 Query Rewriting Under Query Extensions

In this section we present the design and implementation of an algorithm for
computing the UCQ rewriting of a refined query from the UCQ rewriting of the
initial query by avoiding the computation of the UCQ rewriting of the refined
query from scratch as in any of the standard query rewriting algorithms. In the

current paper we focus on refinements that involve additions of new atoms to
the queries, which we call extensions. We leave other types of refinements like
deletion of atoms or changes in the set of distinguished variables for future work.

In the following, we first study the problem at a theoretical level and give
examples that highlight issues and difficulties and which also explain several of
its technical parts; then, we present the algorithm in detail.

3.1 Algorithm Design

Example 1. Consider the following TBox about an academic domain and the
CQ which retrieves all individuals that are students:

T = {GradStudent v Student,TennisPlayer v Athlete}
q = {x | {Student(x)}}

The set u = {q, q1}, where q1 = {x | {GradStudent(x)}} is a UCQ rewriting for
q, T and can be computed by any state-of-the-art query rewriting algorithm.

Suppose, now that a user wants to extend the initial query and retrieve
only those students that are also athletes—that is, issue the new query q′ =
{x | {Student(x), Athlete(x)}}. It can be easily checked that the UCQ u′ =
{q′, q′1, q′2, q′3}, with q′i defined as follows, is a UCQ rewriting for q′, T :

q′1 = {x | {Student(x), TennisPlayer(x)}},
q′2 = {x | {GradStudent(x), Athlete(x)}},
q′3 = {x | {GradStudent(x),TennisPlayer(x)}}

which can again be computed using any rewriting algorithm for q′, T . ♦

Although u′ from the above example can be computed by any state-of-the-art
query rewriting algorithm and system, when such an algorithm is applied over
q′ it will ‘repeat’ all the work previously done for the atom Student(x), when it
computed the UCQ rewriting for query q. Our motivation is that since all the
work for q has already been done, perhaps it is possible to compute the UCQ
rewriting of the extended query, by computing a UCQ rewriting only for the new
atom (i.e., for the atom Athlete(x)) and then, by appropriately ‘combining’ the
two rewritings. Using this approach we will perform only the additional work
left to compute a UCQ rewriting for the extended query, modulo the overhead
for combining the rewritings which we anticipate to be small.

To design a correct algorithm several important technical issues need to be
resolved. To mention a few, firstly, we need to figure out what is the appropriate
CQ of the new atom for which a UCQ rewriting should be computed (especially
regarding the choice of distinguished variable) while then, how to appropriately
combine the two UCQ rewritings.

Definition 1. Let q be a CQ and α an atom containing at least a variable of q.
The atom-query for α w.r.t. q is the CQ defined as follows qα := {var(α)∩var(q) |
{α}}.

The distinguished variables of the atom-query for α w.r.t. q are all the vari-
ables of α that also appear in q. The intuition is that, in the extended query
(q∪{α}) these variables are bound and hence, when computing the UCQ rewrit-
ing for α in isolation, these should be treated as such. In our previous example,
the atom-query for α w.r.t. q is the CQ qα = {x | {Athlete(x)}} and its UCQ
rewriting is the UCQ uα = {qα, q′α}, where q′α = {x | {TennisPlayer(x)}}.

Having computed a UCQ rewriting uα for the atom-query, we can use the
two UCQs to compute a UCQ rewriting for the extended query. At this point
it is important to see how the two rewritings should be combined. The obvious
choice is to take the pair-wise union of the CQs for which there is an overlap
between their variables. More precisely, for u and uα two UCQ rewritings and for
q1 ∈ u, q2 ∈ uα such that avar(q2) ⊆ var(q1), a CQ of the form {avar(q) | q1 ∪ q2}
can be constructed. Again, the intuition behind the condition on the variables is
that there must exist ‘join’-points between the queries that are unified. Indeed,
one can construct the UCQ rewriting u′ for q′, T from Example 1 by following
this procedure: from queries q1 ∈ u and q′α ∈ uα we can obtain the CQ q′3,
while from q1 ∈ u and qα ∈ uα we can obtain the CQ q′2. However, as the
following example shows this operation between the UCQs is not enough to give
a complete UCQ rewriting for the extended query.

Example 2. Consider the following TBox and CQ:

T = {A v ∃R, R v S, ∃S− v B} q = {x | {R(x, y)}}.

The set u = {q, q1}, where q1 = {x | {A(x)}} is a UCQ rewriting for q, T .
Consider now the addition of the atom α = B(y). The atom-query for α w.r.t.
q is the query qα = {y | B(y)} and the UCQ uα = {qα, q1

α, q2
α}, where q1

α = {y |
{S(z, y)}} and q2

α = {y | {R(z, y)}}, is a UCQ rewriting for qα, T .
Using the procedure described above we can compute the UCQ u∪ := {q ∪

qα, q ∪ q1
α, q ∪ q2

α}, which is indeed a sound UCQ rewriting for the query q+ :=
q∪{α}. However, it is not complete; more precisely, any complete UCQ rewriting
for q+, T must contain the query {x | {A(x)}}; but, for all CQs q′ ∈ uα avar(q′) *
var(q1), hence q1 is never used. ♦

In the previous example we observe that the missing query (q1) does exist in
the UCQ rewriting of the initial query, but it cannot be added to the target
UCQ using the union operation. This suggests that there is probably another
type of interaction between the UCQ rewritings that we should consider. More
precisely, we observe that apart from points where the UCQ rewritings should
be unified, there exist points where the UCQs should be ‘merged’. For example,
in the previous case we can observe that the formula implied by the CQ q2

α ∈ uα

is in some sense already ‘contained in’ q ∈ u. This represents a point where
the two UCQ rewritings actually ‘merge’. Hence, the construction of the UCQ
rewriting of the extended query should proceed by copying q and all the CQs
that are generated in the UCQ of the initial query ‘after’ q. Thus, in our previous
example, q1 should be copied (as is) to the computed UCQ. This in turn implies
that the rewriting algorithm used to compute the UCQ rewriting of the initial

query should keep track of the dependencies between the generated queries. As
we will show in the next section, the aforementioned union (join) and merge
operations are the two operations used to compute a UCQ rewriting of the
extended query.

Another important open question is whether the above process can be per-
formed using any computed UCQ rewriting for the initial query. Unfortunately,
as the following example shows, this is not always possible. The problem is that
optimisation techniques like subsumption checking, employed by many modern
state-of-the-art query rewriting systems, can prune queries that are not going to
be redundant in UCQ rewritings of the extended query.

Example 3. Consider the following TBox and CQ:

T = {A v ∃R} q = {x | {A(x), R(x, y)}}.

The UCQ u := {q, q1}, where q1 = {x | {A(x)}}, is a UCQ rewriting for q, T .
However, q1 subsumes q, hence q can be removed and the UCQ {q1} is also a
UCQ rewriting for q, T . Most modern systems are likely to return the latter
UCQ rewriting.

Now suppose that we extend the original query by adding the new atom
B(y). Then, the new query is of the form q+ = {x | {A(x), R(x, y), B(y)}} and
its UCQ rewriting consists of the set {q+}. Unfortunately, it is not possible to
compute this UCQ rewriting from the UCQ {q1}. Intuitively, the problem is that
query q1, which is used to prune q, is no longer generated in the UCQ rewriting of
the extended query; hence, in that context q is not redundant. A UCQ rewriting
for q+, T can, however, be generated from u (the UCQ without the subsumed
query removed) and a UCQ rewriting for qα = {y | {B(y)}}, which consists of
the UCQ {qα}. More precisely, from the union of q ∈ u and qα ∈ uα one obtains
the query q+. ♦

The previous example suggests that we should use an algorithm that does
not employ such optimisation techniques. One such algorithm is the original
PerfectRef algorithm. However, the absence of optimisation techniques compro-
mises the practicality of the approach. More precisely, as has been shown by
experimental evaluations [14], systems that do not use optimisations tend to
compute very large UCQ rewritings. Hence, performing a pair-wise union of two
large UCQ rewritings can be impractical. However, our intuition is that on the
one hand, the UCQ rewriting of the atom-query is going to be rather small,
while on the other hand, the two UCQ rewritings would have many ‘merge’ and
few ‘join’ points, as the following example shows.

Example 4. Consider the following TBox and CQ:

T = {An v An−1, . . . , A2 v A1, A1 v B,A1 v C} q = {x | {B(x)}}.

The set u = {q, q1, . . . , qn} where qi is a CQ of the form {x | {Ai(x)}} is
a UCQ rewriting for q, T . Now suppose that we extend the query with atom
C(x) obtaining the new CQ q+ = {x | {B(x), C(x)}}. Following our previous

discussion, we can compute a UCQ rewriting for q+, T by combining u with a
UCQ rewriting for qα = {x | {C(x)}} w.r.t. T , which in this case is the UCQ
uα = {qα, q1, . . . , qn}. However, after computing the union of q ∈ u and qα ∈ uα

we immediately see that q1 appears in both UCQ rewritings. Hence, at this point
the two UCQs merge and all queries qi with 1 ≤ i ≤ n can be copied to the final
UCQ and can be discarded from further processing. ♦

Concluding our analysis and design, we present yet another technical issue
in the construction of a correct algorithm.

Example 5. Consider the following TBox and CQ:

T = {A v ∃R} q = {x | {R(x, y), R(z, y)}}.

The set u = {q, q1, q2}, where q1 = {x | {R(x, y)}} and q2 = {x | {A(x)}} is
a UCQ rewriting for q, T . Consider now the addition of the atom α = B(z).
The atom-query for α w.r.t. q is the query qα := {z | {B(z)}} and its UCQ
rewriting is uα := {qα}. We can observe that the only query with which qα joins
is the query q, however, a UCQ rewriting for q ∪ {α} must contain the queries
q′1 = {x | {R(x, y), B(x)}} and q′2 = {x | {A(x), B(x)}}. The issue is that query
q1 is produced from q by unifying R(x, y) and R(z, y) through a condensation
step, and z, the common variable, is renamed to x. ♦

The above example suggests that in order to be able to compute a UCQ rewriting
of an extended query from the UCQ rewriting of an initial one, the algorithm
used to create the UCQ rewriting of the initial one should keep track of variable
renamings preformed during the condensation step. If this is the case, then in the
previous example, qα can be joined with q1 and q2 in order to produce queries
q′1 and q′2.

3.2 The UCQ Extension Algorithm

As detailed in the previous section, in order to produce a correct UCQ rewriting
for an extended query, first and foremost, the algorithm that is used to compute
the UCQ rewriting of the initial query must, on the one hand keep track of the
dependencies between the generated queries while on the other hand, keep track
of variable changes in the condensation step.

These changes are detailed in Algorithm 1, which presents ex-PerfectRef,
an extended version of the standard PerfectRef algorithm. Unlike PerfectRef,
ex-PerfectRef maintains a binary-relation G over queries. A pair 〈q, q′〉 is in
G if q′ is generated from q by an application of either a single reformulation
or condensation step. Since G can contain cycles, ex-PerfectRef also extracts
and returns a hierarchy out of the computed dependency relation—that is, for
each cycle a representative query is selected and then a transitively-reduced
strict partial order of all the representative elements is constructed. The formal
definition of the hierarchy function is given next.

The function hierarchy. Let U be a set, let K ⊆ U × U be a binary relation
over U and let S be a subset of U .

Algorithm 1 ex-PerfectRef(q, T)
Input: A CQ q and a DL-LiteR-TBox T

1: Initialise a UCQ u := {q}
2: Initialise a binary relation G := ∅
3: Initialise a mapping µ from CQs to unifications and set µ(q) := ∅
4: repeat
5: u′ := u
6: for all q ∈ u′ do
7: for all α ∈ q do
8: for all PI I ∈ T do
9: if I is applicable to α then

10: q′ := q[α/gr(α, I)]
11: µ(q′) := µ(q)
12: u := u ∪ {q′};
13: G := G ∪ {〈q, q′〉}
14: end if
15: end for
16: end for
17: for all α1, α2 in q do
18: if there is a most general unifier σ for α1 and α2 then
19: q′ := reduce(q, α1, α2)
20: µ(q′) := µ(q) ∪ {σ}
21: u := u ∪ {q′}
22: G := G ∪ {〈q, q′〉}
23: end if
24: end for
25: end for
26: until u′ = u
27: if G = ∅ then
28: return (hierarchy(u, {〈q, {var(q) | {}}〉}), µ)
29: end if
30: return (hierarchy(u, G), µ)

– D ∈ U is reachable in K from C ∈ U , written C K D, if E0, . . . , En with
n ≥ 0 exist where E0 = C, En = D and 〈Ei, Ei+1〉 ∈ K for each 0 ≤ i < n.4

– A hierarchy of S w.r.t. K is a pair 〈H, ρ〉 defined as follows:
• Let V ⊆ S be a minimal (w.r.t. set inclusion) set such that, it con-

tains exactly one element from each set {C | C, D ∈ S, C K D and
D K C}. Then, H is the reflexive–transitive reduction of the relation
{〈C,D〉 ∈ V × V | C K D}.

• ρ : V → 2S is the function on V such that D ∈ ρ(C) if and only if
C K D and D K C.

– hierarchy(S, K) is a function that returns one arbitrarily chosen but fixed
hierarchy of S w.r.t. K.

4 Note that, according to this definition, each C ∈ U is reachable from itself.

Algorithm 2 ExtendRewriting(q, α, T , 〈H, ρ〉, µ)
Input: A CQ q, an atom α, a DL-LiteR-TBox T and a hierarchy 〈H, ρ〉 and
mapping µ computed using Algorithm 1.

1: uα := PerfectRef({var(α) ∩ var(q) | {α}}, T)
2: Initialise a queue Q with Q := {q0}, where q0 is the root in H
3: u := ∅
4: while Q 6= ∅ do
5: Remove the head qH from Q
6: for all qeq ∈ ρ(qH) do
7: for all qα ∈ uα do
8: if isContainedIn(qα, qeq) then
9: for all q′′ such that qeq H q′′ do

10: Add q′′ and all CQs in ρ(q′′) to u
11: end for
12: else
13: µeq := µ(qeq)
14: if containsAllVars(qα, qeq, µeq) then
15: Add {avar(q) | qeq ∪ (qα)µeq} to u
16: Add to the end of Q each q′′ such that 〈qeq, q

′′〉 ∈ H
17: end if
18: end if
19: end for
20: end for
21: end while
22: u := u \ {{var(q) | {}}}
23: return removeSubsumed(u)

Finally, the algorithm uses a mapping µ from CQs to variable mappings in
order to keep track of the variable unifications that are conducted during the
condensation step (Line 20). These are also copied to newly created CQs in the
reformulation step (Line 11).

Having computed a UCQ rewriting for some query q and TBox T in the
form of a hierarchy 〈H, ρ〉 using Algorithm 1, and tracked variable unifications
using µ, one can compute a UCQ rewriting for any extension of query q with
an atom α. The algorithm uses the following functions to check that the two
UCQ rewritings should be merged or to check using the variable mappings in µ
computed by Algorithm 1 that two CQs can be joined (cf. Example 5).

The function isContainedIn. Let q, q′ be two CQs. Then, isContainedIn(q′, q)
returns true if the CQ {avar(q) | q ∪ q′} subsumes q; otherwise it returns false.
The intuition is that all atoms in q′ already exist in q.

The function containsAllVars. Let q, q′ be two CQs and µ a set of variable
mappings. Then, containsAllVars(q′, q, µ) returns true if, for each z ∈ avar(q′)
there exists x ∈ var(q) such that, when considering the mappings in µ as a
graph, we have z µ x.

Algorithm 2 presents the algorithm in detail. The algorithm accepts as an
input a CQ q, a new atom α, a DL-LiteR-TBox T and a hierarchy 〈H, ρ〉 and
a mapping µ computed using Algorithm 1 and it returns a UCQ for the query
{var(q) | q∪{α}}. It first computes a UCQ rewriting uα for the atom-query qα of
α w.r.t. q (Line 1). The UCQ rewriting for qα explicates all implied information
of the T about the atom α, which is essential for the correctness of the algorithm.

Having a UCQ rewriting for the initial query and the atom-query for α w.r.t.
q, the algorithm proceeds in combining the UCQs; it uses a queue Q to perform
a breadth-first search over the queries in H and either compute the union of
the queries or copy queries from the UCQ rewriting of the initial query. More
precisely, it picks a query qH from Q, a query qeq in the equivalence class ρ(qH)
and a query qα from the UCQ uα. If isContainedIn(qα, qeq) = true, then the two
UCQs merge and hence, all queries q′′ that are reachable in H from qeq and
all those queries in the equivalence class of q′′ can be added to the target UCQ
(Lines 9–11). Otherwise, the algorithm checks if the two CQs can be unified using
function containsAllVars. If the function returns true then the union of the queries
is sound, and is thus added to the target UCQ after appropriately renaming the
variables of qα if necessary; then, the successor query of qeq in H is added to Q
and the process continues. Finally, the algorithm applies subsumption checking
in order to remove all the redundant queries and return a minimal UCQ rewriting
for the extended query.

It can be shown that Algorithm 2 correctly computes a UCQ rewriting for
an extended query, given a hierarchy computed using Algorithm 1.

4 Evaluation

We have developed a prototype tool for computing the rewriting of an extended
conjunctive query based on Algorithms 2 and 1. Our implementation uses the
implementation of PerfectRef that was developed and used in the experimental
evaluation in [14].

We have compared our implementations with a number of available query
rewriting systems. More precisely, our set of tools include the aforementioned
implementation of PerfectRef,5 Requiem [14], a resolution-based rewriting algo-
rithm that uses subsumption to reduce the number of generated queries and
Rapid [4], a recently developed highly-optimised DL-LiteR UCQ rewriting algo-
rithm. For the evaluation we used the framework proposed in [14]. It consists of
nine ontologies, namely V that captures information about European history,6

P1 and P5 two hand-crafted artificial ontologies, S that models information
about European Union financial institutions, U that is a DL-LiteR version of the
well-known LUBM7 ontology and A that is an ontology capturing information
about abilities, disabilities and devices. Moreover, we also used the ontologies
P5X, UX and AX that consist of normalised versions of the ontologies P5, U
5 http://www.cs.ox.ac.uk/projects/requiem/C.zip
6 http://www.vicodi.org/
7 http://swat.cse.lehigh.edu/projects/lubm/

Table 1. Comparison between PerfectRef and ex-PerfectRef

O Q
PerfectRef ex-PerfectRef O Q

PerfectRef ex-PerfectRef O Q
PerfectRef ex-PerfectRef

♯u t ♯u t ♯u t ♯u t ♯u t ♯u t

P1

1 2 1 2 4

S

1 6 2 6 4

V

1 15 4 15 6
2 3 2 3 5 2 202 175 202 158 2 11 9 11 9
3 7 9 7 9 3 1005 1113 1005 1109 3 72 43 72 38
4 16 21 16 24 4 1548 945 1548 1920 4 185 82 185 121
5 32 55 32 54 5 8693 8589 8693 23521 5 150 167 150 181

P5

1 14 4 14 6

U

1 5 3 5 5

A

1 783 561 783 277
2 86 32 86 40 2 286 166 286 173 2 1812 1217 1812 710
3 530 273 530 304 3 1248 479 1248 593 3 4763 1506 4763 2074
4 3476 1576 3476 2663 4 5359 1628 5359 3919 4 7251 2336 7251 5288
5 23744 26498 23744 188456 5 9220 4038 9220 14451 5 7885 347798 - -

P5X

1 14 3 14 5

UX

1 5 3 5 4

AX

1 783 335 738 269
2 86 34 86 38 2 286 187 286 154 2 1812 1249 1812 713
3 530 282 530 301 3 1248 484 1248 587 3 4763 1403 4763 2089
4 3476 1452 3476 2660 4 5358 1615 5358 3995 4 7251 2717 7251 5407
5 23744 33248 23744 195478 5 9220 4041 9220 14513 5 7885 356756 - -

and A. For each ontology, a set of five hand-crafted queries is proposed [14]. All
experiments were conducted on a MacBook Pro with a 2.66GHz processor and
4GB of RAM with a time-out of 600 seconds.

In our first experiment we compared our extended ex-PerfectRef (i.e., Algo-
rithm 1) against the standard implementation of PerfectRef. The goal is to assess
the extent to which our extensions and changes affect the performance of the
original algorithm.

Table 1 presents the results, where ♯u and t denote the size of the computed
UCQ and the execution time (in milliseconds). As can be seen from that table,
the performance of ex-PerfectRef is generally worse than that of PerfectRef. This
was not surprising due to the extensions that have been applied to the original
algorithm. This difference is relatively small in queries such as Q1–Q4, while it
is usually more acute in query Q5. Notably, for query Q5 in ontologies A and
AX, ex-PerfectRef failed to terminate within the set time-out.

In our second experiment, we evaluated Algorithms 1 and 2 against other
query rewriting algorithms. In the case of our system, we proceeded as follows: for
each of the test ontologies and for each of the queries Qi, 1 ≤ i ≤ 5 we removed
an arbitrary selected atom α to obtain a (hypothetical) initial query Qi−. Then,
we first run the method ex-PerfectRef(Qi−, T) to compute a UCQ rewriting for
Qi−, T in the form of a hierarchy 〈H, ρ〉 together with the variable unification
mappings µ, and then run the method ExtendRewriting(Qi−, α, T , 〈H, ρ〉, µ) to
compute the UCQ rewriting for Qi, T , as detailed in Algorithm 2. Since this
process requires a query that contained at least two atoms, we did not consider
query Q1 for some ontologies.

Table 2 presents the results from our second experiment. In that table, ex-PR
refers to algorithm ex-PerfectRef executed for Qi− and T , Ref refers to Algorithm
2 without the final redundancy elimination step, while sub refers to that step
(Line 23 of Algorithm 2). Hence, ♯u⋆ and t⋆ denote the size of the computed UCQ
and the execution time (in milliseconds) for the respective code ⋆. Also P-Ref
refers to algorithm PerfectRef. Note that, after the final redundancy elimination

Table 2. Results of Algorithms 1 and 2 compared with other UCQ rewriting systems

O Q
Algorithms 1 & 2

P-Ref Requiem Rapid
♯uex-PR ♯uRef tex-PR tRef tsub tRef+tsub tall

V

2 1 10 3 35 3 38 41 14 15 44
3 3 72 4 82 45 127 131 124 63 66
4 37 185 30 39 95 134 164 274 173 116
5 120 30 184 7 11 18 202 392 93 108

P1

2 2 2 5 2 1 3 8 4 6 10
3 3 2 5 3 0 3 8 9 11 12
4 7 2 11 3 0 3 14 31 27 17
5 16 2 30 4 1 5 35 102 69 37

P5

2 14 10 5 5 2 7 12 40 26 15
3 86 13 47 15 3 18 65 299 245 26
4 530 18 322 35 1 36 358 1328 1131 39
5 3476 32 2685 105 3 108 2793 26781 7722 104

P5X

2 14 25 7 6 7 13 20 134 152 30
3 86 79 59 17 35 52 111 630 1380 161
4 530 399 406 73 61 134 540 6327 4161 1230
5 3476 2649 2911 225 770 995 3906 342133 93234 6533

S

2 34 29 19 11 1 12 31 400 180 12
3 193 33 255 15 4 19 274 1514 1095 16
4 404 57 464 20 5 25 489 1490 1142 15
5 2296 154 2551 52 3 55 2606 28829 8202 18

U

1 24 2 10 4 0 4 14 4 11 9
2 41 18 19 10 0 10 29 427 158 9
3 180 8 161 11 1 12 173 650 256 11
4 205 59 99 51 4 55 154 2133 1234 14
5 225 59 179 19 6 25 204 6453 3307 18

UX

1 24 5 8 5 0 5 13 3 13 8
2 41 20 18 10 1 11 29 471 212 8
3 180 39 183 13 6 19 202 1169 778 20
4 205 35 105 54 3 57 162 7677 6975 17
5 225 113 215 19 30 49 264 20863 20466 33

A

1 27 52 14 80 8 88 102 676 181 20
2 783 71 305 22 7 29 334 1184 162 42
3 4763 104 2072 117 11 128 2200 1476 231 97
4 783 323 313 95 80 175 488 2774 340 179
5 4763 624 2141 262 195 457 2598 342897 576 316

AX

1 27 67 15 81 15 96 111 527 233 31
2 783 1490 356 93 648 741 1097 2210 1561 1269
3 4763 4752 11296 188 10428 10616 21921 9774 12097 2132
4 783 3355 338 153 3451 3604 3942 16608 9140 2846
5 4763 36013 11459 934 - - - - - 60492

step, all systems returned UCQ rewritings of the same size (the same as the ones
reported in [14]) and hence the numbers are not presented.

As we can observe from the table, compared to PerfectRef, the process of
extending the UCQ rewriting of a query (column tRef+tsub) is much more efficient
than computing the UCQ rewriting of the new query from scratch (column
for PerfectRef). Even more interestingly, even when considering Algorithms 1
and 2 together (i.e., tall), the process is much more efficient than PerfectRef. In
cases of queries containing a few atoms (usually queries Q1 and Q2) and having
small rewritings (less than 30 queries), the total time is comparable, however
in queries with large UCQ rewritings and large number of atoms, Algorithms 1
and 2 combined, manage to be several times and sometimes even 1 or 2 orders
of magnitude faster than PerfectRef in computing the UCQ rewriting for Qi, T .
Such notable cases are queries Q3–Q5 in ontology P5 and P5X, all the queries
in ontology S, queries Q3-Q5 in ontology U and UX, queries Q1, Q2, Q4 and Q5
in ontology A and finally queries Q1, Q2, and Q4 in ontology AX. An intuition
behind this large improvement is that the brute-force (blind) application of the
reformulation and condensation steps of PerfectRef is bound to be inefficient and
not scale well in such cases. In our case though, Algorithm 1 first computes a
UCQ rewriting for a smaller CQ (i.e., Qi) and then Algorithm 2 performs a much
more guided breadth-first search, applying simple operations like set-union.

However, there are also two exceptions. Firstly, PerfectRef is faster in query
Q3 ontology A. The reason is that the UCQ rewriting of the ‘reduced’ query
Qi− is much larger (4763 CQs) than the UCQ rewriting of Qi (104 CQs). That
is, the extra atom in Qi helps PerfectRef stop computation earlier and compute
the small target UCQ rewriting fast, while Algorithm 2 begins the refinement
process with a large number of CQs most of which are not going to produce CQs
for Qi, T . Finally, like PerfectRef, Algorithm 2 failed to terminate in query Q5
ontology AX. The reason is that the size of the UCQ computed by the Ref part
of the algorithm, i.e., ♯uRef , is quite large and the final redundancy elimination
method fails to terminate within the set time-out.

Interestingly, a similar good behaviour for Algorithms 1 and 2 combined can
be observed even when compared to the much more optimised system Requiem.
There are a few cases that Requiem is more efficient, especially for ontology A
which, as mentioned above, seems to be problematic for Algorithm 2, however,
we can observe that in most cases the behaviour of Algorithms 1 and 2 is much
more robust and scales better in queries with a UCQ rewriting of increasing
size. Again, this is due to the guided nature of the refinement algorithm, while
Requiem, although it uses subsumption internally to remove redundant queries,
applies the resolution rule in an unguided brute-force way.

Finally, even when compared to Rapid, a highly optimised and DL-LiteR-
tuned algorithm, although Rapid is in most cases faster than the overall execution
time of our strategy, there are several cases that the performance of the two
algorithms is comparable. Actually, in ontology P5X and ontology A query 2, it
manages to be notably faster than Rapid. Furthermore, when restricted only to

the refinement step (Algorithm 2), algorithm manages to be even closer to the
performance of Rapid.

5 Conclusion

In the current paper we studied the following problem: Given a query, a UCQ
rewriting for the query and some atom, can we compute a UCQ rewriting for
the query extended with the additional atom by “extending” the input UCQ
rewriting without computing a UCQ rewriting of the new query from scratch?

We studied the problem at a theoretical level and investigated whether it is
possible to compute such a UCQ rewriting from any given UCQ rewriting for the
initial query. Our results showed that this is not possible in general, especially
when optimisations are used to prune queries from the UCQ rewriting of the ini-
tial query. Hence, we designed our refinement algorithm by using the PerfectRef
algorithm, which, in its original version, did not include any optimisations. Al-
though it is commonly accepted that an unoptimised rewriting algorithm would
compute large UCQ rewritings, and hence, compromise the practicality of our
method, we continued by developing new optimisation strategies and a careful
strategy for computing the refinement. Subsequently, we implemented the pro-
posed algorithm and evaluated it experimentally, obtaining several encouraging
and interesting results. On the one hand, the refinement process is much more
efficient than computing the UCQ rewriting of the extended query from scratch
using most (if not all) state-of-the-art rewriting algorithms. On the other hand,
even when considering the overall time of computing the UCQ rewriting of the
initial query together with the time for the refinement, the method was more
efficient and robust compared to PerfectRef and Requiem, the latter of which
also employs several optimisations.

There are many interesting challenges for future work. Firstly, one could
study a similar problem under different types of query refinements, such as,
after removing an atom or after adding and/or removing distinguished variables.
Secondly, our initial relatively naive and preliminary algorithm is definitely open
for further optimisations. More precisely, it is currently unknown whether some
redundant queries from the UCQ rewriting of the initial query can actually be
removed. Finally, investigating whether such an approach can also be applied to
optimised systems such as Rapid or to more expressive DLs like EL and ELHI
using systems such as Requiem are also interesting issues.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. Journal of Artificial Intelligence Research 36, 1–69 (2009)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

4. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting in OWL 2 QL.
In: Proceedings of the 23rd International Conference on Automated Deduction
(CADE 23), Polland. pp. 192–206 (2011)

5. Demidova, E., Zhou, X., Nejdl, W.: A probabilistic scheme for keyword-based in-
cremental query construction. IEEE Transactions on Knowledge and Data Engi-
neering 99 (2011)

6. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic SHIQ. In: Proc. of International Joint Conference on Artificial
Intelligence (IJCAI 2007) (2007)

7. Gupta, A., Mumick, I.S., Ross, K.A.: Adapting materialized views after redefini-
tions. In: Proceedings of ACM SIGMOD International Conference on Management
of Data. pp. 211–222 (1995)

8. Jansen, B.J., Spink, A., Blakely, C., Koshman, S.: Defining a session on web search
engines: Research articles. Journal of the American Society for Information Science
and Technology 58, 862–871 (2007)

9. Jansen, B.J., Spink, A., Pedersen, J.: A temporal comparison of altavista web
searching: Research articles. Journal of the American Society for Information Sci-
ence and Technology 56, 559–570 (2005)

10. Mohania, M.: Avoiding re-computation: View adaptation in data warehouses. In:
In Proceedings of 8 th International Database Workshop. pp. 151–165 (1997)

11. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expres-
sive description logics via tableaux. Journal of Automated Reasoning 41(1), 61–98
(2008)

12. Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: Proceedings of the
1st international conference on Scalable information systems (InfoScale 06). ACM
(2006)

13. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting
under description logic constraints. Journal of Applied Logic 8, 186–209 (2009)

14. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2.
In: Proceedings of the International Semantic Web Conference (ISWC 09). pp.
489–504 (2009)

15. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. Journal on Data Semantics X, 133–173 (2008)

16. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
Proceedings of the International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR-10) (2010)

17. Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-based interpretation of
keywords for semantic search. In: Proceedings of the International Semantic Web
Conference (ISWC 2007). vol. 4825, pp. 523–536 (2007)

18. Zenz, G., Zhou, X., Minack, E., Siberski, W., Nejdl, W.: From keywords to seman-
tic queries-incremental query construction on the semantic web. Journal of Web
Semantics 7, 166–176 (2009)

