
The Limits of Decidability for First Order Logic
on CPDA Graphs

Christopher H. Broadbent

Department of Computer Science, Oxford University
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
christopher.broadbent@keble.oxon.org

Abstract
Higher-order pushdown automata (HOPDA) are abstract machines equipped with a nested ‘stack of stacks
of stacks’. Collapsible pushdown automata (CPDA) extend these devices by adding ‘links’ to the stack and
are equi-expressive for tree generation with simply typed λY terms. Whilst the configuration graphs of
HOPDA are well understood, relatively little is known about the CPDA graphs. The order-2 CPDA graphs
already have undecidable MSO theories but it was only recently shown by Kartzow (in his 2010 STACS
paper) that first-order logic is decidable at the second level. In this paper we show the surprising result that
first-order logic ceases to be decidable at order-3 and above. We delimit, in terms of quantifer alternation
and the orders of CPDA links used, the fragments of the decision problem to which our undecidability
result applies. Additionally we exhibit a natural sub-hierarchy to which limited decidability applies.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic

Keywords and phrases Collapsible Pushdown Automata, First Order Logic, Logical Reflection

1 Introduction

Higher-order pushdown automata generalise traditional pushdown automata by allowing the stack
to contain other stacks rather than just atomic elements. These devices are closely related to re-
cursion schemes, which are essentially simply typed λY terms that generate a single infinite tree.
Enjoying decidable µ-calculus theories, the class of trees generated by recursion schemes shows a
lot of promise as a model for verifying higher-order functional programs [12, 13]. Unfortunately
n-PDA are believed to expressively coincide with order-n recursion schemes only when the latter
satisfy a property called safety [10]. It is conjectured that unsafe recursion schemes are strictly more
expressive and this is known for level 2 [14]. Hence a more powerful automaton is needed, which
motivates order-n collapsible pushdown automata (n-CPDA) [7]. Inspired by panic automata [11],
which can be viewed as the special case at order-2, atomic elements in collapsible stacks eminate
‘links’ that target a component of the stack further below. Their expressive power coincides precisely
with unrestricted order-n recursion schemes.

We concern ourselves here with configuration graphs of these automata, with states of memory
as nodes and transitions as edges. It is particularly fruitful to consider the ‘ε-closures’ of such
graphs, which allow to construct a graph whose edges consist of an unbounded number of transitions
rather than just single steps. The ε-closures of HOPDA graphs form precisely the Caucal Hierarchy
[6, 3, 5], which is defined independently in terms of graph transformations. This deep result has as
a consequence that every n-PDA graph has decidable MSO theory.

So how does the addition of links affect this? Unfortunately there is even a 2-CPDA graph
that has undecidable MSO theory [7]. Nevertheless the local nature of first-order logic meant it
was widely assumed the first-order theories would still enjoy decidability. However, the problem
remained open for a few years until Kartzow saw that the ε-closures of 2-CPDA graphs are tree
automatic [9] and so do indeed have decidable first-order theory.

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 The Limits of Decidability for First Order Logic on CPDA Graphs

2-CPDA 32-CPDA 32-CPDA nn-CPDA nn-CPDA nn,(n−1)-CPDA nn,(n−1)-CPDA nm-CPDA n-PDA
/w ε-clos. /w ε-clos. (n ≥ 3) /w ε-clos. n ≥ 4 /w ε-clos. (n ≥ 4, /w ε-clos.

(n ≥ 3) (all n) m ≤ n− 2) (all n)
Σ1 Dec [9] Dec [1] Dec Dec Dec ? ? Und Dec [5]
Π2 Dec [9] Dec [1] Und Und Und ? ? Und Dec [5]
FO Dec [9] Dec [1] Und Und Und ? ? Und Dec [5]
MSO Und [7] Und [7] Und [7] Und [7] Und [7] Und [7] Und [7] Und [7] Dec [5]
µ-calculus Dec [11] Dec [7] Dec [7] Dec [7] Dec [7] Dec [7] Dec[7] Dec [7] Dec [10]

Table 1 Summary of (un)decidability results known to date. Those in bold are from this paper. The notation
‘nm,m′ -CPDA’ means an n-CPDA that only uses links of orders m and m′.

Our first contribution is to show that Kartzow’s result cannot be extended to higher-orders in
full generality. At order-3 we get undecidability when we consider Π2-sentences, namely those
with quantifier alternation of the form ∀∃. If we allow order-3 links we do not even need ε-closure
for this. This result is surprising in itself, but we also gain some insight into what links ‘mean’ in
terms of 3-CPDA graphs. On the one hand links can act as ‘place holders’ that allow first-order
logic to compare internal components of a single order-3 stack rather than just two order-3 stacks in
their entirety. This is the core of the undecidability result, which goes via a reduction from Post’s
Correspondence Problem [15]. Additionally, order-3 links provide edges in the graph that are ‘non-
local’ in nature, allowing ε-closure to be eliminated as a requirement for undecidability. At order-4
we get that even the Σ1-theory is undecidable—viz. the theory consisting of sentence without any
quantifier alternation, a particularly expressively weak fragment of the logic.

Our second contribution introduces a technique to tackle the Σ1-theories of CPDA graphs. Mak-
ing use of logical reflection [2], which enables CPDA to ‘know’ which µ-calculus sentences they
satisfy at any given point, we define a notion of monotonic CPDA that can construct all of its reach-
able configurations in a manner that does not every destroy an order-(n − 1) stack. This has some
parallels to Carayol’s work on canonical sequences of operations witnessing the constructibility of
HOPDA stacks [4]. Provided that an n-CPDA only has ‘order-n links’, monotonicity allows us to
eliminate them, thereby producing an n-PDA with decidable MSO theory, and leading to the decid-
ability of the Σ1 theory of the original n-CPDA. This can be viewed as a graph analogue of Aehlig
et al.’s work [8] in which it is shown that links can be eliminated from 2-CPDA graphs to produce an
equivalent word-generating 2-PDA at the expense of introducing non-determinism. This decidability
result is the first that applies a fragment of first-order logic to n-CPDA of all orders and establishes
that restricting links can recover some decidability.

2 Preliminaries

2.1 Higher-Order Stacks

Let us fix a stack-alphabet Γ. For higher-order automata this alphabet must be finite, but it is
convenient for definitions to allow it to be infinite. An order-1 stack over Γ is just a string of
the form [γ] where γ ∈ Γ∗. Let us refer to the set of order-1 stacks over Γ as stack1(Γ).
For n ∈ N the set of order-(n + 1)-stacks is: stackn+1(Γ) := stack1(stackn(Γ)). In a
(higher-order) stack [s1s2 · · · sm] we refer to si as the ith component of the stack. We al-
low the following operations on an order-1 stack s for every a ∈ Γ: pusha1([a1 · · · am]) :=
[a1 · · · ama], pop1([a1 · · · amam+1]) := [a1 · · · am], nop(s) := s. We allow the following
operations on an order-(n+ 1) stack s, where θ is any operation that may be performed on an order-
n stack: pushn+1([s1 · · · sm]) := [s1 · · · smsm], popn+1([s1 · · · smsm+1]) := [s1 · · · sm],

C.H. Broadbent 3

θ([s1 · · · sm]) := [s1 · · · θ(sm)]. Operations that we may perform on an order-n stack are col-
lectively referred to as order-n operations. Where s is an (n + 1)-stack. We also use the notation
topn+1(s) to denote the top-most order-n stack and top1(s) as the top atomic element.

I Definition 1. Let s := [s1s2 · · · sm] be an n-stack. Then we define the n-height |s|n of s by
|s|n := m. If 1 ≤ k < n, then the k-height |s|k of s is recursively defined by: |s|k :=

∑m
i=1 |si|k

I Definition 2. Let s := [s1s2 · · · sm] and t := [t1t2 · · · tm′] be two n-stacks. We say that s is an
n-prefix of t written s vn t just in case m ≤ m′ and si = ti for 1 ≤ i ≤ m. We recursively say that
s vk t for k < n just in case m ≤ m′ and si = ti for 1 ≤ i < m and sm vk tm. We write s @k t
to mean that s vk t and s 6= t.

I Example 3. Consider 2-stacks s := [[ababa][bababa]] and t := [[ababa][bab]]. Then we have
s v1 t but we do not have s v2 t. We also have |s|2 = |t|2 = 2 but |s|1 = 11 and |t|1 = 8.

I Definition 4. Let s = [s1 · · · sm] be a higher-order stack. Then s≤si := s = [s1 · · · si] for
1 ≤ i ≤ m. If t is an occurrence of a stack in si, then s≤t := [s1 · · · si≤t]. We also have a strict
version where s<si := s = [s1 · · · si−1] and s<t := s = [s1 · · · t<si].

2.2 Collapsible Pushdown Stacks

We offer fine control over the orders of links that a collapsible stack may contain—an order-(n+ 1)
link is one that targets an order-n stack within an order-(n+1) stack. We include the orders of links as
a subscript, so an order-nS stack is an order-n stack equipped with order-i links for each i ∈ S. The
S-collapsible pushdown alphabet (for S ⊆ N) Γ[S] induced by an alphabet Γ is the set Γ× S ×N.
The set of order-nS open collapsible stacks stackCnS (Γ) is defined by: stackCnS (Γ) := stackn(Γ[S]).
The order of a link of an atomic element (a, l, p) ∈ Γ[S] is given by the number in its second
component. If l < n the target of a link is the pth component of the l-stack in which the element
resides. If l ≥ n we say that the link is ‘dangling’.

When we write top1(s) where s is a collapsible stack with top atomic element (a, l, p) by abuse
of notation we usually mean top1(s) := a. If (a, l, p) is intended, it is usually clear from the context.
However, we have additional notation to explicitly refer to l.

I Definition 5. Let s be a collapsible stack with top atomic element (a, l, p), which by abuse of
notation we denote a. We then define lo(a) := l (the order of the link) and la(a) := l (the absolute
target of the link relative to the bottom of the p-stack in which it resides). It is also useful to describe
the target of the link in terms of an offset from the top: lr(a) := |t|l− 1 where t is the l stack within
s in which the occurrence a resides.

Note in particular that a pushk operation will preserve the absolute targets of links when copying
the k − 1 stack. We replace the push1 operation to allow the attachment of links: pusha,k1 (s) :=
push(a,k,|topk+1(s)|k−1)

1 (s) where topn+1(s) := s where s is order-n. The collapse operation dis-
cards everything above the target of a pointer. This can neatly be described in terms of link offset
where θm means the m-fold iteration of the operation θ: collapse(s) := poplo(top1(s))

lr(top1(s)).
Write ΘnS to denote the set of order-nS collapsible stack operations.

IExample 6. We exhibit operations on an order-3 collapsible stack, representing links graphically.

[[[abca] [ab]]]
pusha,21 ;push2;push3;pushc,31 push3−−−−−−−−−−−−−−−−−−−−−−→

[[[abca] [ab a] [ab a]] [[abca] [ab a] [ab a c]] [[abca] [ab a] [ab a c]]]

4 The Limits of Decidability for First Order Logic on CPDA Graphs

2.3 The Automata and their Graphs

I Definition 7. Let n ∈ N and let S ⊆ [1..n]. An nS-CPDA (order-nS collapsible pushdown
automaton) A is a tuple:〈

Σ,Π, Q, q0,Γ, Ra1 , Ra2 , . . . , Rar , Pb1 , Pb2 , . . . , Pbr′
〉

where Σ is a finite set of transition labels {a1, a2, . . . , ar}; Π is a finite set of configuration labels
{b1, b2, . . . , br′}; Q is a finite set of control-states; q0 ∈ Q is an initial control-state; Γ is a finite
stack alphabet; each Rai is the ai-labelled transition relation with Rai ⊆ Q × Γ × ΘnS × Q;
each Pbi is the bi-labelled unary predicate specified by Pbi ⊆ Q × Γ.

We define n-CPDA and n-PDA in a manner consistent with the standard definitions in the literature:

I Definition 8. An n-CPDA is an n[n..2]-CPDA and an n-PDA is an n∅-CPDA.

A configuration of an nS-CPDA is a pair (q, s) where q is a control-state and s is a stack.

I Definition 9. Let (q, s) and (q′, s′) be configurations of an nS-CPDA A. We say that (q′, s′)
can be reached from (q, s) in A with path labeled in L for some L ⊆ Σ∗ just in case:

(q, s)ai1(q1, s1)ai2(q2, s2)ai3 · · · (qm−1, sm−1)aim(q′, s′)

for some configurations (q1, s1), . . . , (qm−1, sm−1) where ai1ai2ai3 · · · aim ∈ L. We write (q, s)rL(q′, s′)
to mean this. We write (q, s)r(q′, s′) to mean (q, s)rΣ∗(q′, s′).

The set of reachable configurations of A is given by:

R(A) := { (q, s) : (q0,⊥n)r(q, s) }

I Definition 10. Let A be an nS-CPDA with transition-labels Σ and configuration-labels Π. The
configuration graph of (graph generated by) A has domain R(A), unary predicates Π and directed
edges Σ between configurations. We write G(A) to denote this graph.

The ε-closure of such a graph Gε(A) is induced from G(A) by taking a-labelled edges between
nodes related by rε∗a.

2.4 Logics

We consider first-order logic FO on graphs as is standardly defined. A Σ0 = Π0 = ∆0 formula
φ(x1, . . . , xk) is one without any quantifiers. A Σn+1 formula is one of the form ∃~y.φ(~y, x1, . . . , xk)
where φ(~y, x1, . . . , xk) is Πn and a Πn+1 formula is one of the form ∃~y.φ(~y, x1, . . . , xk) where φ
is Σn. A ∆n formula is one that is equivalent to both a Σn and Πn formula on every CPDA graph.
MSO is FO extended with second-order quantification over set variables. Transitive closure logic
FO(TC) is FO together with a binary predicate φ(x, y) for every formula of FO φ(x, y) with two
variables, which defines the relation that is the transitive closure of that defined by φ(x, y). When
the formulae transitively closed are restricted to ∆1 we call the logic FO(TC [∆1]). A sentence is
a formula with no free variables.

3 Undecidability

3.1 Post’s Correspondence Problem

All of the undecidability results go via a reduction from Post’s Correspondence Problem [15], which
is known to be undecidable. Consider a finite-alphabet Σ with |Σ| ≥ 2. An instance of the Post Cor-
respondence Problem (PCP) consists of two finite sets of strings over Σ: u1, . . . , um and v1, . . . , vm.

C.H. Broadbent 5

The question to be decided is whether there is a finite sequence i1 . . . ik consisting of integers
1 ≤ ij ≤ m such that ui1 .ui2 . · · · .uik = vi1 .vi2 . · · · .vik .

I Example 11. Consider the following two sets of strings over the alphabet {a, b, c}:

u1 := ab u2 := cababcabb u3 := ca v1 := ababc v2 := ab v3 := bca

Then the Post Correspondence Problem has answer ‘yes’ as witnessed by the solution 1123:

u1.u1.u2.u3 = ababcababcabbca = v1.v1.v2.v3

Given an instance of the PCP P we define a pushdown automaton AP1 that pushes elements of
Σ onto the stack together with indices indicating a partition into strings from the ui and vi.

I Definition 12. The automaton AP1 has stack alphabet: Σ ·∪ [1u, 2u . . .mu] ·∪ [1v, 2v . . .mv]
and behaves by non-deterministically choosing one of the following options:

Push any member of Σ onto the stack.
If the Σ symbols in the stack since the last symbol of the form iu (or the bottom of the stack if
there is no such symbol) form the word uj , then it may push ju onto the stack.
If the Σ symbols in the stack since the last symbol of the form iv (or the bottom of the stack if
there is no such symbol) form the word vj , then it may push jv onto the stack.

P has a solution just in case AP1 can generate a stack with ‘matching’ iu and iv subsequences.

I Lemma 13. Let P be an instance of Post’s Correspondence Problem. P has a solution just in
case the automaton AP1 can generate a stack s such that:

su = sv where su is the subsequence of s consisting of elements of the form iu and sv of elements
of the form iv and equality is interpreted with respect to the indices i only.
The top two elements of s form the set {iu, iv} for some 1 ≤ i ≤ m.

I Example 14. To continue the running example from Example 11, which we call P , the solution
as represented by a stack of AP1 is: [ab1uab1uc1vababc1vab2vb2uca3u3v]

3.2 Post’s Correspondence Problem and 2-CPDA

Hague et al. [7] showed that the model-checking problem for MSO on 2-CPDA graphs is undecid-
able; indeed the 2-CPDA graph that they exhibit witnesses the undecidability of transitive closure
logic FO(TC). In order to introduce our basic technique, we first reprove the undecidability of
FO(TC) on 2-CPDA graphs by a reduction from PCP—in fact FO(TC [∆1]).

The 2-CPDAAP2 is very likeAP1 except that it ensures each index (the elements of the form iu or
iv) eminate a pointer to a distinct 1-stack in the 2-stack. This will enable first-order logic to ‘ascertain
corresponding positions’ in two instances of a 1-stack by comparing the results of collapsing.

IDefinition 15. Let P be an instance of Post’s Correspndence Problem (using the notation above).
The automaton AP2 has stack alphabet: Σ ·∪ [1u, 2u . . .mu] ·∪ [1v, 2v . . .mv]. It behaves by non-
deterministically choosing one of the following options:

Push any member of Σ onto the stack.
If the Σ symbols in the stack since the last symbol of the form iu in the top 1-stack (or the bottom
of the 1-stack if there is no such symbol) form the word uj , then it may perform push2; pushju,21 .
If the Σ symbols in the stack since the last symbol of the form iv in the top 1-stack (or the bottom
of the 1-stack if there is no such symbol) form the word vj , then it may perform push2; pushjv,21 .

As with AP1 , the finite control-states can enforce the preconditions.

A solution to P can be formulated in terms of AP2 in a very similar manner to before:

6 The Limits of Decidability for First Order Logic on CPDA Graphs

I Lemma 16. Let P be an instance of Post’s Correspondence Problem. P has a solution just in
case the automaton AP2 can generate a stack s such that:

su = sv where su is the subsequence of top2(s) consisting of elements of the form iu and sv of
elements of the form iv and equality is interpreted with respect to the indices i only.
The top two elements of s form the set {iu, iv} for some 1 ≤ i ≤ m.

Proof. A consequence of Lemma 13 given that the permissible changes to the top2 1-stack of the
2-stack of AP2 are precisely those that could be made to the 1-stack of AP1 . J

I Example 17. To continue Example 11, the solution as represented by a stack of AP2 is:

[[ab] [ab 1u ab] [.] [.] [.] [.] [.] [.] [ab 1u ab 1u c 1v ababc 1v ab 2v b 2u ca 3u 3v]]

Now consider a variant of AP2 which we will call AP2+ . This behaves as follows:
It initially behaves as AP2 . It may terminate this phase if its top two elements are in {iu, iv} for
some i. When it terminates this phase, it enters a distinguished control-state guess.
It then performs a sequence of operations of the form:
push2; popm1

1 ; push2; popm2
1 ; push2; popm3

1 ; push2; popm4
1 withm1,m2,m2,m4 ∈ N. It should

ensure that the four 1-stacks so created form a set {u1, u2, v1, v2} (in no particular order) with:
top1(u1) = iu and top1(v1) = iv for some 1 ≤ i ≤ m.
Either top1(u2) = i′u and top1(v2) = i′v for some 1 ≤ i′ ≤ m or else u2 and v2 are both
empty.
Going from u1 to u2 can be done with the popping of precisely one symbol of the form ju
(that is the one on top of u1) and all other symbols popped should be letters.
Going from v1 to v2 can be done with the popping of precisely one symbol of the form kv
(that is the one on top of u1).

Compliance with these requirements can be checked using a finite number of control states. If
the automaton finds that it cannot avoid violating a requirement (e.g. it reaches the bottom of
a stack whilst iterating pop1) then it just enters a distinguished control-state fail. Otherwise
it enters one of the following distinguished control-states: u1v1u2v2

start , v1u1v2u2
start or

u1u2v1v2, u1v1u2v2, u1v1v2u2, v1u1u2v2, v1u1v2u2, v1v2u1u2 or u1v1
end , v1u1

end

specifying the order of creation of these four stacks along with a flag indicating end if the u2
and v2 are empty and start if both u1 and u2 have the top-most iu element of s and both v1 and
v2 the top-most iv element. Call these control-states verifier states.
From one of the above verifier states, the automaton may perform any sequence of of pop2 and
collapse operations via edges labelled pop2 and collapse which all end in control-state test.

I Example 18. The automaton AP2+ could reach the stack in Example 17 in control-state guess.
From here it could, for example, reach control-state v1v2u1u2 with stack:

[[ab] [.] [.] [.] [ab 1u ab 1u c 1v ababc 1v][ab 1u ab 1u c 1v][ab 1u ab 1u][ab 1u]]

I Definition 19. Let us fix some configuration of AP2+ with stack s and control-state guess. Let
us call the configurations reachable from (guess, s) associated with a verifier state the s-verifier
configurations. Given an s-verifier configuration c (with set of top four stacks {u1, u2, v1, v2}) we

C.H. Broadbent 7

define its successor c+ to be the configuration (which is unique if it exists) with top four stacks
{u+

1 , u
+
2 , v

+
1 , v

+
2 } such that u+

1 = u2 and v+
1 = v2.

Additionally the unique s-verifier bearing the start flag is dubbed 0s. The unique s-verifier
configuration whose control-state bears the end flag is dubbed ends.

We can now produce a version of Lemma 16 in terms of s-verifier configurations.

I Lemma 20. Let (guess, s) be a reachable configuration of AP2+ for some instance P of Post’s
Correspondence Problem. Then s represents a solution to P in the sense of Lemma 16 if and only if
there exists a chain of stacks s1, s2, . . . , sk such that s1 = 0s, sk = ends and si+1 = s+i for each
1 ≤ i ≤ k − 1 and such that for each i there exists a reachable si-verifier.

We can define the _ = (_)+ relation as a ∆1 formula. This can be achieved by ensuring that the
element on top of u2 in a verifier-configuration stack s is the same as the element on top of u1 in the
purported s+, and likewise for v1 and v2. Because every element in a AP2+ 1-stack has a pointer to a
different location, we can detect this by checking that collapsing on u1 results in the same stack as
collapsing on u2. Individual + steps can be extended to a chain via transitive closure.

I Lemma 21. There exists a Σ1 sentence φ of FO(TC [∆1]) such that for all instances P of
Post’s Correspondence Problem we have: G(AP2+) � φ iff P has a solution.

3.3 Undecidability for 32-CPDA

A 32-CPDA can record the chain of 2-stacks mentioned in Lemma 20 directly in its stack—the
members of the chain are piled on top of each other. This removes the burden of transitive closure
from the logic, although for 32-CPDA we require ε-closure.

I Definition 22. The 32-CPDA AP32
behaves as follows:

It begins by behaving in the same way asAP2+ , performing only 2-stack operations until it reaches
the control-state u1u2v1v2

start or v1v2u1u2
start. If it is unable to reach such a state, it goes

into a distinguished fail state and aborts.

The automaton then pushes a record of its AP32
control-state on to the stack and performs:

push3; pop2; pop2; pop2; pop2. This will return the stack to the originalAP2+ guess-configuration.
It then behaves from here as though it were AP2 in the guess control state (with a stack s) until
it reaches an s-verifier-configuration (or finds it is unable to, in which case it aborts).

The previous step is repeated until an ends configuration is reached, at which point the CPDA
pushes the AP2+ control-state onto the stack and enters a distinguished guess32

control-state.

This gives the essence of the automaton, although some extra edges do have to be added to the graph
for technical reasons. Let us continue with the running example:

I Example 23. Recall the stack ofAP2 in Example 17. AP32
extends this upwards to form a 3-stack

with contents disecting each stage in the iu and iv subsequences. In control-state guess32
:

8 The Limits of Decidability for First Order Logic on CPDA Graphs



[| | | | | | | | [· · · 3v] [ab 1u ab 1u c 1v][ab 1u][][v1uend
1]]

[| | | | | | | | [· · · 3v] [ab 1u ab 1u c 1v ababc 1v][ab 1u ab 1u c 1v][ab ab 1u][ab 1u v1v2u1u2]]

[| | | | | | | | [· · · 3v] [ab 1u ab 1u c 1v ababc 1v ab 2v b 2u][ab 1u ab c 1v ababc 1v ab 2v][ab 1u ab 1u c 1v ababc 1v][ab 1u ab 1u u1v1v2u2]]

[| | | | | | | | [· · · 3v] [· · · b 2v b 2u ca 3u 3v] [· · · 3u][ab 1u ab 1u c ababc 1v ab 2v b 2u][ab 1u ab 1u c 1v ababc 1v ab 2v v1u1u2v2]]

[| | | | | | | | [· · · 3v] [· · · 3v] [ab 1u ab 1u c 1v ababc 1v ab 2v b 2u ca 3u][· · · 3u]][· · · 2v b 2u ca 3u v1v2u1ustart
2]]


A stack in a guess32

configuration of AP32
fixes not only the 2-stack representing a guess at the

solution (as is done by AP2+) but also a sequence of 2-stacks alleged to witness the correctness of
this guess. With the aid of ε-closure we can perform an arbitary number of pop3 operations to
quantify over the 2-stacks belonging to this alleged chain.

I Lemma 24. There exists a Σ2 sentence φ of FO such that for all instances P of Post’s Corre-
spondence Problem we have: Gε(AP32

) � φ iff P has a solution.

3.4 The Non-Locality of 33-CPDA

s {u1, u2, v1, v2}

s {u1, u2, v1, v2}

s {u1, u2, v1, v2}

s {u1, u2, v1, v2}

s {u1, u2, v1, v2}

s {u1, u2, v1, v2}

s

Figure 1 Exploiting the non-locality of 3-
links

AdaptingAP32
to become a 33-CPDA is straightforward—

we can simply replace the 2-links with 3-links and
replace the initial push2 operations with push3 op-
erations to ensure different targets. Moreover, the
undecidability result for 33-CPDA is stronger; the
non-locality of additional 3-links is exploited to alle-
viate the need for ε-closure. We illustrate this idea of
exploiting non-localilty in Figure 1. We can access
all elements z in the chain with a first-order formula
along the lines of:

(∃x.x is a candidate stack)(∀y.y is a candidate stack after some pop1’s ∧ pop3(y) = pop3(x)).z = collapse(y)

In this way we can construct a 33-CPDA AP33
such that:

I Lemma 25. Let P be an instance of Post’s Correspondence Problem. Then there exists a Σ2
sentence φ of FO such that: G(AP33

) � φ (note no ε-closure) if and only if P has a solution.

3.5 Σ1 Undecidability for 42-CPDA

The Σ2-sentence witnessing undecidability on 32 graphs universally quantifies over elements in an
alleged chain under the _ = (_)+ relation in order to verify that it really is a chain. This is done

C.H. Broadbent 9

by verifying that the result of collapse on adjacent 2-stacks is the same. However, with a 42-CPDA
it is possible to construct two 4-stacks where the 3-stacks to be compared are in corresponding
positions. This is illustrated in Figure 2. Unfortunately it is only possible to make this work for
half of the definition of successor. The figure demonstrates the u1/u2 comparison, but we cannot
simultaneously do the v1/v2 comparison. This can be circumvented by revising the definition of
chain, successor and automaton to one where only one such comparison is sufficient. This is slightly
more fiddly than the definition presented here, but it works in a similar manner. This allows us to
construct an automaton AP42

such that:

I Lemma 26. There exists a Σ1-sentence φ such that for every instance P of Post’s Correspon-
dence Problem we have G(AP42

) � φ iff P has a solution.

s {u1, u2, v1, v2}Chain position 1

s {u1, u2, v1, v2}Chain position 2

s {u1, u2, v1, v2}Chain position 3

s {u1, u2, v1, v2}Chain positionm − 1

s {u1, u2, v1, v2}Chain positionm

s {u1, u2, v1, v2}Chain position 1

s {u1, u2, v1, v2}Chain position 2

s {u1, u2, v1, v2}Chain position 3

s {u1, u2, v1, v2}Chain positionm − 1

Collapse onu1 of positionm

s {u1, u2, v1, v2}Chain position 1

s {u1, u2, v1, v2}Chain position 2

s {u1, u2, v1, v2}Chain position 3

s {u1, u2, v1, v2}Chain positionm − 2

Collapse onu1 of positionm − 1

s {u1, u2, v1, v2}Chain position 1

s {u1, u2, v1, v2}Chain position 2

s {u1, u2, v1, v2}Chain position 3

s {u1, u2, v1, v2}Chain positionm − 1

s {u1, u2, v1, v2}Chain positionm

s {u1, u2, v1, v2}Chain position 1

s {u1, u2, v1, v2}Chain position 2

s {u1, u2, v1, v2}Chain position 3

s {u1, u2, v1, v2}Chain positionm − 1

Collapse onu2 of positionm − 1

s {u1, u2, v1, v2}Chain position 1

s {u1, u2, v1, v2}Chain position 2

s {u1, u2, v1, v2}Chain position 3

s {u1, u2, v1, v2}Chain positionm − 2

Collapse onu2 of positionm − 2

Figure 2 The idea behind AP42 .

As a consequence of all these reductions:

I Theorem 27. 1. For every n ≥ 4 and 2 ≤
m ≤ n − 2 the Σ1-FO model-checking
problem for nm-CPDA graphs (even with-
out ε-closure) is undecidable.

2. For every n ≥ 3 and m ≥ 3 the Π2-
FO model-checking problem for nm-CPDA
graphs (even w/o ε-closure) is undecidable.

3. For every n ≥ 3 and m ≥ 2 the Π2-FO
model-checking problem for the ε-closures
of nm-CPDA graphs is undecidable.

4 Σ1 Decidability on nn-CPDA

4.1 Monotonic CPDA

We wish to decompose ε∗a-labelled runs of an
automaton between two configurations into an
ε-fall and an εa-climb, which we will describe
as a bounce. The fall is the first part of the
run during which the stack will reach its low-
est point, whilst the climb is the part of the run
where the lowest point will be built up to the

final configuration. This is illustrated in Figure 3.

n-stack ops (n−1)
-stack ops

n-stack ops

Assert ε-fall to
orange decoration

(n − 1)-stackops
(included in climb)

Orange decoration
asserts ε∗a-climb

Figure 3 Asserting the existence of a bounce
without performing any stack operations.

This leads to the notion of a monotonic n-CPDA,
which witnesses the reachability of all configura-
tions in its graph without destroying (n − 1) stacks
during its run. The relationship between the graphs
of an CPDA A and its monotonic counterpart is one
of strong isomorphism. We say that an isomorphism
L between two configuration graphs G and G′ is
strong, written L : G ∼̂= G′, if it maps a config-
uration (q, s) to one of the form (q, L(s′)) where L
preserves stack structure and respects v1 prefixes.

The construction of monotonic CPDA is given in
terms of devices called µCPDA. A µCPDA operates

10 The Limits of Decidability for First Order Logic on CPDA Graphs

on an underlying CPDA, which it manipulates indi-
rectly, determining transitions on the basis of ‘tests’ for the satisfaction of a µ-calculus sentence
at the current configuration of the underlying CPDA. In particular, µCPDA are able to ‘predict the
future’ and consequently avoid the need to actually perform certain transitions, facilitating mono-
tonicity. Logical reflection [2] implies every µCPDA is strongly isomorphic to some CPDA.

I Definition 28. Let A be an n-CPDA. An ε∗a-climb of A from a configuration (q, s) to a con-
figuration (q′, s′), written (q, s)r↑ε∗a(q′, s′), is an ε∗a-labelled run from the first configuration to the
second such that each stack occurring in the run (including s′) has stack t such that popn(s) @n t.

We say that an n-CPDA is monotonic via r just in case no r-transition performs a collapse on an
n-link or a popn operation. That is, when transitioning using r-edges, the number of (n− 1)-stacks
in an n-stack increases monotonically. The following Lemma constructs an automaton monotonic
via an edge rε such that ε∗-climbs are precisely captured by standard reachability using rε-edges.
Write A �Π,Σ for the automaton formed from A by deleting all unary predicates not labelled in Π
and deleting all transitions not labelled in Σ ∪ {ε}.

I Lemma 29. LetA be an n-CPDA with edge alphabet Σ and unary predicates Π. Then there ex-
ists an n-CPDAA↑ such that Gε(A) ∼̂= Gε(A↑ �Σ,Π) but whose additional distinguished edge labels
include rε /∈ Σ such thatA↑ is monotonic via rε and (q, s)r↑ε∗ a(q′, s′) just in case (q, s)rr∗ε a(q

′, s′).

The dual of an ε-climb is an ε-fall; a configuration with a higher stack reaching a configuration with
a lower stack such that no configuration in the run descends below the lower stack.

IDefinition 30. LetA be an n-CPDA. An ε-fall ofA from a configuration (q, s) to a configuration
(q′, s′) is an ε∗-labelled run from (q, s) to (q′, s′) such that for every stack t occurring in the run
(including s) we have popn(s′) @n t.

The quasi-analogue ofA↑ for falls isA↓. However, we avoid needing to perform any destructive
operations (including collapse) by instead making A↓ aware of the predicates that A could satisfy
after performing an ε-fall.

I Lemma 31. Let A be an n-CPDA with unary predicates Π. Then there exists an n-CPDA A↓
with stack-alphabet Γ↓ and control-state space Q↓ such that G(A) ∼̂= G(A �Π↓) and that also has
a predicate P ↓ for each P ∈ Π such that P holds of precisely those configurations c from which A
has an ε-fall to a configuration c′ satisfying P .

I Definition 32. Let A be an n-CPDA. An a-bounce in A↑ from (q, s) to (q′, s′) in A↑ is a run
consisting of an ε-fall from (q, s) to some configuration (q′′, s′′) followed by an r∗εa-climb from
(q′′, s′′) to (q′, s′). Let us write (q, s)ba(q′, s′) to indicate the existence of such a bounce.

The significance of bounces is summed up in the following lemma. Whilst we strictly only need
to consider A↑ we state the Lemma in terms of A↑↓ as when we come to make use of it (with
meta-annotations) we will need to reference predicates holding at the bottom of the bounce:

I Lemma 33. Let (q, s) and (q′, s′) be two configurations of a CPDA A and let (q, L(s)) and
(q′, L(s′)) be the corresponding configurations inA↑↓ via the strong isomorphism. Then (q, s)rε∗a(q′, s′)
just in case (q, L(s))baL(q′, L(s′)).

4.2 Link Trails: Towards Link Elimination for Graphs

Part of our technique addressing the Σ1 model-checking problem for CPDA graphs involves the
elimination of outer-most links. The operational part of the simulation will make use of bouncing

C.H. Broadbent 11

(Lemma 33). But it is not enough just to simulate collapse; even if links are never used opera-
tionally, they still provide a feature by which stacks may be distinguished. For example the stacks

[[abc] [ab c]] and [[abc] [a b c]] are different although removing the link from
either gives us the same: [[abc] [abc]]. We introduce the idea of link-trails in order to cap-
ture the differences created by links after they have been removed. Stacks and atomic elements are
‘coloured’ in a manner that is unique to a particular arrangement of n-links.

I Definition 34. We overload the la(s) operator to apply to stacks s as well as individual el-
ements. Let s = [s1 s2 · · · ; sm] be a k-stack with 2 ≤ k (located within an n-stack for
k ≤ n). Define la(s) to be the position of the highest (n − 1)-stack pointed to by an n-link:
la(s) = max ({ la(si) : 1 ≤ i ≤ m } ∪ { 0 }) and when s = [a1 a2 · · · am] is an order-1
stack: la(s) = max ({ la(ai) : lo(ai) = n and 1 ≤ i ≤ m } ∪ { 0 })

So in particular la(s) = 0 when s contains no element with an n-link.
We now describe how stacks and atomic elements can be ascribed one of four colours in { c<, c=, c>,⊥ }.

I Definition 35. We ascribe colours to stacks and atomic elements via a function col(_). Let
s = [a1 a2 · · · am] be a 1-stack located in an n-stack. Suppose that lo(ai) = n for some i:

col(ai) :=



⊥ if lo(ai) 6= n

c> if for every j < i such that lo(aj) = n we have

la(ai) > la(aj)
c= if lo(ai) = n and the greatest j < i such that

lo(aj) = n satisfies la(aj) = la(ai)

Note that for constructible stacks the above is exhaustive (it is impossible to construct a stack con-
taining a link with target lower than the target of a link below it in the same 1-stack).

Now let s := [s1 s2 · · · sm] be an order-k stack in an order-n stack for n ≥ k ≥ 2 (in
particular we allow k = n in which case s is the whole n-stack). We then set col(si) by:

col(si) :=


c> if la(si) > max({ la(sj) : 1 ≤ j < i })
c= if la(si) = max({ la(sj) : 1 ≤ j < i })
c< if la(si) < max({ la(sj) : 1 ≤ j < i })

For an n-stack s let us write stripln(s) to denote the n-stack that results from deleting all of the
n-links from s. The colouring uniquely specifies the n-links that it contains:

I Lemma 36. Consider two constructible n-stacks s and s′ with stripln(s) = stripln(s′). Assume
for every stack or atomic element a contained within s and corresponding element a′ in s′ we have
col(a) = col(a′). Then s = s′.

I Lemma 37. LetA be an nn-CPDA. Then there exists an nn-CPDA lum(A) such that Gε(lum(A)) ∼=
Gε(A) and further such that for any reachable configurations (q, s), (q, s′) of lum(A) we have
s = s′ iff stripln(s) = stripln(s′).

4.3 Meta-Annotations

Having enabled link removal whilst preserving equality between configurations, we now add a mech-
anism by which we can simulate edges in the graph without needing to actually perform the collapse
operations. Indeed it will remove the need to perform any stack operations at all. This is achieved

12 The Limits of Decidability for First Order Logic on CPDA Graphs

by decorating (n−1)-stacks within an n-stack with information about the control-states from which
a complete n-stack could be reached via an ε∗a-climb. Because this requires quantification over
multiple runs and a CPDA can only perform one run at a time, it is necessary for the CPDA to
guess the appropriate annotations and to externally verify them. It turns out that this can be done

using MSO over lum(A)↑
↓

since Lemma 29 allows climbs to be expressed in terms of rε-edges;
we have cr↑ε∗ac

′ iff crr∗ε ac
′, and rσ can always be expressed in MSO. Moreover, the reachabil-

ity of a particular meta-annotation via an ε-fall can be asserted by MSO over lum(A)↑
↓

due to
Lemma 31. This MSO formula makes an assertion of the ‘consistency’ of k-tuples of configurations
(q1, s1), . . . , (qk, sk) with the constituent (n − 1) stacks of each n-stack decorated with a ‘meta-
annotation’. A meta-annotation is a |Σ|.k-tuple ((Qa1)a∈Σ, . . . , (Qak)a∈Σ) where each component is
a subset of control-states Q. The k-tuple is deemed consistent if for every (n− 1) stack s′ in si, the
meta-annotation on top of si≤s′ satisfies q ∈ Qaj iff there is an ε∗a climb from (q, si≤s′) to (qj , sj).

By asserting the (non-)existence of a suitable ε-fall to such a decoration, we can assert the (non-
)existence of a bounce witnessing (non-)reachability, as illustrated in Figure 3. This corresponds to
reachability in the original automaton due to Lemma 33. Since MSO is decidable on n-PDA:

I Theorem 38. Let A be an nn-CPDA. Then the Σ1 theory of Gε(A) is decidable.

References

1 C.H Broadbent. On Collapsible Pushdown Automata, their Graphs and the Power of Links. PhD
thesis, 2011.

2 C.H. Broadbent, Arnaud Carayol, C.-H.L. Ong, and Olivier Serre. Recursion Schemes and Logical
Reflection. In LICS, pages 120—-129. IEEE Computer Society, 2010.

3 Thierry Cachat. Higher order pushdown automata, the Caucal hierarchy of graphs and parity games.
In Proceedings of ICALP, volume 2719 of Lecture Notes in Computer Science, pages 556–569.
Springer, 2003.

4 A. Carayol. Regular Sets of Higher-Order Pushdown Stacks. In Proc. MFCS, volume 3618 of
LNCS, pages 168–179. Springer, 2005.

5 Arnaud Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic and
higher-order pushdown automata. In FSTTCS, pages 112–123. Springer, 2003.

6 Didier Caucal. On infinite transition graphs having a decidable monadic theory. Theoretical Com-
puter Science, 290(1):79–115, 2003.

7 M Hague, A S Murawski, C.-H L Ong, and O Serre. Collapsible Pushdown Automata and Recur-
sion Schemes. In LICS. IEEE Computer Society, 2008.

8 K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level 2 for string
languages. In Proc. FoSSaCS, pages 490–501, 2005.

9 Alexander Kartzow. Collapsible Pushdown Graphs of Level 2 are Tree-Automatic. In STACS, pages
501–512, 2010.

10 T Knapik, D Niwinski, and P Urzyczyn. Higher-Order Pushdown Trees are Easy. In Proc. FoS-
SaCS, volume 2303 of LNCS, pages 205–222. Springer, 2002.

11 T Knapik, D Niwinski, P Urzyczyn, and I Walukiewicz. Unsafe Grammars and Panic Automata.
In Proc. ALP, volume 3580, pages 1450–1461, Berlin/Heidelberg, 2005. Springer-Verlag.

12 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order pro-
grams. In POPL, volume 44, pages 416–428. ACM, 2009.

13 C.-H.L. Ong and Steven J Ramsay. Verifying Higher-Order Functional Programs with Pattern-
Matching Algebraic Data Types. In POPL, 2011.

14 Pawel Parys. Collapse Operation Increases Expressive Power of Deterministic Higher Order Push-
down. In STACS, 2011.

15 E. Post. A variant of a recursively unsolvable problem. Bulletin of the American Mathematical
Society, 52(4):264–268, April 1946.

C.H. Broadbent 13

A Undecidability

A.1 Post’s Correspondence Problem

Lemma 13

Let P be an instance of Post’s Correspondence Problem. P has a solution just in case the automaton
AP1 can generate a stack s such that:

su = sv where su is the subsequence of s consisting of elements of the form iu and sv of
elements of the form iv and equality is interpreted with respect to the indices i only.
The top two elements of s form the set {iu, iv} for some 1 ≤ i ≤ m.

Proof. This is a quick consequence of definitions. Suppose that there is a solution σ = ui1ui2 · · ·uik =
vi1vi2 · · · vik to P . Then AP1 may construct a stack meeting the criteria by pushing the letters in σ
onto the stack whilst also pushing iru onto the stack after completing the pushing of uir and likewise
pushing irv after completing vir .

Conversely suppose that there is a stack s meeting the criteria. Let σ := πΣ(s), which we claim
is a string generated by a solution to P . Let iru be the rth element of the form ju in the stack.
Let irv be the rth element of the form jv in the stack. Note that this is well defined since the first
criterion requires the subsequences of ju and and jv to be the same. Let k be the length of these two
sequences.

Define i0u and i0v to be the bottom of the stack. Divide σ into segments u′r (for 1 ≤ r ≤ k)
where ur+1 is the subsequence of letters (in Σ) from s that begins immediately after iru and ends
immediately before ir+1u. Define v′r in a similar manner using irv . The first criterion ensures that
u′r = uir and that v′r = vir for every 1 ≤ r ≤ k. Moreover the second criterion ensures that
u′1u
′
2 · · ·u′k = v′1v

′
2 · · · v′k = s. That is ui1ui2 · · ·uik = vi1vi2 · · · vik = s and so we do indeed have

a solution to P . J

A.2 Post’s Correspondence Problem and 2-CPDA

Lemma 20

Let (guess, s) be a reachable configuration of AP2+ for some instance P of Post’s Correspondence
Problem. Then s represents a solution to P in the sense of Lemma 16 if and only if there exists a
chain of stacks s1, s2, . . . , sk such that s1 = 0s, sk = ends and si+1 = s+i for each 1 ≤ i ≤ k − 1
and such that for each i there exists a reachable si-verifier.

Proof. From the definitions of + and the relationship between u1 and u2 in each verifier configu-
ration, it follows that the top element of u2 is the element coming after the top element of u+

2 in the
subsequence of elements in top2(s) consisting of elements of the form iu. The same holds for v2
and v+

2 and the subsequence of elements in top2(s) consisting of elements of the form iv .
Also note that the top elements of u2 and v2 in 0s will respectively be the last iu and iv in each

of these subsequences and the top elements of u1 and v1 in ends will be the first (since by definition
of ends there cannot be any iu or iv lying below the top element of u1 and v1 respectively).

Now we can get by an easy induction on r that if there is a chain s1, s2, . . . , sr such that s1 = 0s
and si+1 = s+i for each 1 ≤ i < r, then the following three assertions are true:

The top element of the u2 of sr is the rth element from the end of the subsequence of top2(s)
consisting of elements of the form iu.
The top element of the v2 of sr is the rth element from the end of the subsequence of top2(s)
consisting of elements of the form iv .
If the top element of the u2 of sj for 1 ≤ j ≤ r is iju, then the top element of the v2 of sj is ijv .

14 The Limits of Decidability for First Order Logic on CPDA Graphs

As a consequence, we get that the existence of such a chain implies that the final r elements of the
subsequence of top2(s) consisting of elements of the form iu matches the last r elements of the
subsequence of top2(s) consisting of elements of the form iv .

So suppose there exists a chain s1, s2, . . . , sk such that s1 = 0s, sk = ends and si+1 = s+i for
each 1 ≤ i ≤ k− 1. The observations above ensure that s meets the conditions of Lemma 16 and so
we may conclude that s does indeed witness a solution to P .

Conversely let us begin by assuming that switnesses a solution to P . It must then be the case that
top2(s) satisfies the properties laid out in Lemma 16. It is again an easy induction on r to see that
under such circumstances one can generate a sequence s1, s2, . . . , sr where s1 = 0s and si+1 = s+i
for each 1 ≤ i < r so long as r does not exceed the length of the subsequence of top2(s) consisting
of elements of the form iu (which is the same as that consisting of elements of the form iv). The
induction step just needs to observe that we should order the u+

1 , u
+
2 , v

+
1 , v

+
2 with decreasing height,

to enable the next to be formed from pop1ing from the previous.
Finally observe that when r reaches the length of the subsequences, the u2 and v2 of sr will have

top elements corresponding to the initial iu and iv in the subsequences of top2(s) given by Lemma
16. This means that s+r will have u1 and v1 with these same initial elements and so u2 and v2 must
be empty. That is s+r = ends. Hence we construct a chain of the required form. J

Lemma 21

There exists a Σ1 sentence φ of FO(TC) containing only derived predicates ψ formed from ∆1
formulae such that for all instances P of Post’s Correspondence Problem we have:

G(AP2+) � φ iff P has a solution.

Proof. Let us first exhibit formulae witnessing the fact that the relation ‘for some stack s x is an
s-verifier and y = x+’ is ∆1-definable. The following is a Σ1 formula representing the relation:

∃z. (∃w1w2w3. (pop2(x,w1) ∧ pop2(w1, w2) ∧ pop2(w2, w3) ∧ pop2(w3, z))
∃w′1w′2w′3. (pop2(y, w′1) ∧ pop2(w′1, w′2) ∧ pop2(w′2, w′3) ∧ pop2(w′3, z)))∧∨
{a,b,c,d}

={u1,u2,v1,v2}

abcd(x) ∧
∨

{a,b,c,d}
={u1,u2,v1,v2}

abcd(y) ∧

((u1u2v1v2(x) ∧ u1u2v1v2(y))→ ((∃w1w2.∃w′1w′2w′3.∃cu.
pop2(x,w1) ∧ pop2(w1, w2) ∧ collapse(w2, cu)
pop2(y, w′1) ∧ pop2(w′1, w′2) ∧ pop2(w′2, w′3) ∧ collapse(w′3, cu))
∧(∃w′1.∃cv.collapse(x, cv) ∧ pop2(y, w′1) ∧ collapse(w′1, cv)))) ∧ · · ·

· · · ∧ ((v1u1u2v2(x) ∧ u1v1u2v2(y))→ ((∃w1.∃w′1w′2w′3.∃cu.
pop2(x,w1) ∧ collapse(w1, cu)∧
pop2(y, w′1) ∧ pop2(w′1, w′2) ∧ pop2(w′2, w′3) ∧ collapse(w′3, cu))
∧ (∃w′1w′2.∃cv.collapse(x, cv)∧
pop2(y, w′1) ∧ pop2(w′1, w′2) ∧ collapse(w′2, cv))))

∧ · · ·

We have only mentioned two of the 6 × 8 + 2 × 8 = 64 elements of the final conjunction in the
formula above, but the remainder follow the same pattern. There are 6 different predicates that

C.H. Broadbent 15

characteise the order of the u1, u2, v1v2 in x but 8 for y as these may enjoy the end flag and then
there are additionally two with a start flag that x may exhibit. The formula correctly captures the
relation y = x+ since the pointer from each atomic element in the stack is assigned a different target
to its 2-pointer when it is created. In the final conjunction, cu represents the common target of the
u2 in x and u1 in y and cv the common target of the v2 in x and the v1 in y. The first clauses of the
formula assert that x and y are both s-verifiers for some particular fixed stack s (embodied by the
configuration bound to z).

We now exhibit a Π1 formula defining this relation, thereby showing that the relation is ∆1. This
is effectively a rehashing of the Σ1 formula above, exploiting the fact that all of the relations used
are destructive operations on some fixed stacks and are consequently ‘functional’ (the result of a
particular destructive operation on a fixed stack always gives a unique result):

∀z.∀w1w2w3.∀w′1w′2w′3 (pop2(x,w1)→ pop2(w1, w2)→ pop2(w2, w3)→ pop2(w3, z)
→ pop2(y, w′1)→ pop2(w′1, w′2)→ pop2(w′2, w′3)→ pop2(w′3, z))∧∨
{a,b,c,d}

={u1,u2,v1,v2}

abcd(x) ∧
∨

{a,b,c,d}
={u1,u2,v1,v2}

abcd(y) ∧

((u1u2v1v2(x) ∧ u1u2v1v2(y))→ ((∀w1w2.∀w′1w′2w′3.∀cu.
pop2(x,w1)→ pop2(w1, w2)→ collapse(w2, cu)
pop2(y, w′1)→ pop2(w′1, w′2)→ pop2(w′2, w′3)→ collapse(w′3, cu))
∧(∀w′1.∀cv.collapse(x, cv)→ pop2(y, w′1)→ collapse(w′1, cv)))) ∧ · · ·

· · · ∧ ((v1u1u2v2(x)∀u1v1u2v2(y))→ ((∀w1.∀w′1w′2w′3.∀cu.
pop2(x,w1)→ collapse(w1, cu)→
pop2(y, w′1)→ pop2(w′1, w′2)→ pop2(w′2, w′3)→ collapse(w′3, cu))
∧ (∀w′1w′2.∀cv.collapse(x, cv)→
pop2(y, w′1)→ pop2(w′1, w′2)→ collapse(w′2, cv))))

∧ · · ·

Let φ+(x, y) be either of the formulae above.We can now define what it means to have a chain
from x to y of s-verifiers (for some s) in FO(TC) using transitive closure on only a ∆1-definable
relation:

φ+(x, y)

We can easily assert that y is equal to ends for some stack s with:

u1v
end
1 ∨ v1u

end
1

Likewise we can assert that x is equal to 0s for some stack s with:

u1u2v1v
start
2 (x) ∨ v1v2u1u

start
2 (x)

By Lemma 20 we can construct the required Σ1 sentence φ by putting all of the above together to
get:

∃x.∃y.

(u1u2v1v
start
2 (x) ∨ v1v2u1u

start
2 (x)

)
∧

∨
{a,b,c,d}

={u1,u2,v1,v2}

abcdend(y) ∧ φ+(x, y)



16 The Limits of Decidability for First Order Logic on CPDA Graphs

J

A.3 Undecidability for 32-CPDA

We give the full definition of AP32
:

Definition 22

The 32-CPDA AP32
behaves as follows:

It begins by behaving in the same way asAP2+ , performing only 2-stack operations until it reaches
the control-state u1u2v1v2

start or v1v2u1u2
start. If it is unable to reach such a state, it goes

into a distinguished fail state and aborts.
The automaton then pushes a record of itsAP32

control-state on to the stack and performs push3; pop2; pop2; pop2; pop2;.
This will return the stack to the original AP2+ guess-configuration. It then behaves from here
as though it were AP2 in the guess control state (with a stack s) until it reaches an s-verifier-
configuration (or finds it is unable to, in which case it aborts).
The previous step is repeated until an ends configuration is reached, at which point the CPDA
pushes the AP2+ control-state onto the stack and enters a distinguished guess32

control-state.
The following transitions are then added:

An ε-transition going from any configuration to a distinguished control-state prototest via a
pop3 operation.
The only transition going from a prototest control-state is allowed when the top1 stack-symbol
is one of: u1u2v1v2, u1v1u2v2, u1v1v2u2, v1u1u2v2, v1u1v2u2, v1v2u1u2 (in partic-
ular when the top symbol does not have a start or end flag). This transition is given the label
toTest and moves to control-state test with no stack operation.
We also allow a toTest-labelled transition from a configuration with control-state guess32

to
control-state test whilst not performing any stack operation.

We further add these transitions:
A transition to2+ performing a pop1 and entering control-state abcd whenever in control-state
test with top stack element abcd where abcd is a control-state of AP2+ . From this control-state
AP32

behaves in the same way as AP2+ , performing only order-2 operations.
From any configuration with test control-state there exist transitions labelled push3 and pop3
performing the respective stack operations whilst remaining in control-state test.

Lemma 24

There exists a Σ2 sentence φ of FO such that for all instances P of Post’s Correspondence Problem
we have: Gε(AP32

) � φ iff P has a solution.

Proof. Let us first interpret Lemma 20 in the context of AP32
. Since AP32

is designed to generate
arbitrary verifiers for some stack s created at the outset, beginning with 0s and ending with ends,
Lemma 20 implies that there is a solution to P if and only if AP32

can reach a configuration of the
form (guess32

, s) such that for every pair of 2-stacks t, t′ occurring in s with t′ immediately above
t, t′ = t+.

We already have a Π1 formula ψ(x, y) in first-order logic expressing that y = x+ where x and y
range over 2-stacks reachable by AP2+ . This was given in the proof of Lemma 21. Now observe that
for any 3-stack s and sequence of 2-stack operations ~op we have ~θ(s) = ~θ(pop3(push3(s))) if and
only if ~θ(top3(s)) = ~θ(top3(pop3(s))). We can thus exploit the AP2+ -simulation feature of AP32

to

C.H. Broadbent 17

express that some variable x bound to a configuration of A32 of the form (test, s) has the property
that top3(pop3(s))+ = top3(s). This can be done by the Π1 formula χ(x):

∀y1y2y.∀z.(pop3(x, y1)→ push3(y1, y2)→ to2+(y2, y)→ to2+(x, z)→ ψ(y, z))

over both the graph G(AP32
) and Gε(AP32

) (AP32
has no ε-transitions reachable from a configuration

with control-state test).
The construction of AP32

ensures that the configurations we can reach from (guess32
, s) by a

(possibly empty) sequence of ε-transitions followed by a toTest-transition are precisely those of
the form (test, s′) such that s′ is a prefix of s whose 2-stacks all occur in s. Hence these stacks are
precisely those reachable by a toTest-transition in the ε-closure of the configuration graph. Thus
combining all of the observations above the required Σ2 sentence φ is:

φ := ∃x.∀y(guess32
(x) ∧ toTest(x, y) ∧ χ(y) ∨ (u1u2v1v

start
2 (y) ∨ v1v2u1u

start
2 (y)))

(disregarding when y is a verifier with the start flag as this is at the bottom and so there is no stack
to compare below this). J

A.4 The Non-Locality of 32-CPDA

I Definition 39. Let P be an instance of Post’s Correspondence Problem. The 33-CPDA AP33
has

stack alphabet:

Σ ·∪ [1u, 2u, . . . ,mu] ·∪ [1v, 2v, . . . ,mv] ·∪ {u1u2v1v
start
2 ,v1v2u1u

start
2 ,u1v

end
1 ,v1u

end
1 }

·∪ {abcd : {a, b, c, d} = {u1, u2, v1, v2}} ·∪ {•}

It initially behaves by non-deterministically choosing one of the following:
Push any member of Σ onto the stack.
If the Σ symbols in the stack since the last symbol of the form iu in the top 1-stack (or the bottom
of the 1-stack if there is no such symbol) form the word uj , then it may perform push3; pushju,31 .
If the Σ symbols in the stack since the last symbol of the form iv in the top 1-stack (or the bottom
of the 1-stack if there is no such symbol) form the word vj , then it may perform push3; pushjv,31 .

Finite control-states enforce the precondition on the second and third options.
Once the top two elements of the stack are of the form iu, iv for some i (in either order), the

automaton enters the next phase and generate the first element of the verification chain:
Perform push2; push2
Perform pop1; push2; push2
Either push u1u2v1v

start
2 or v1v2u1u

start
2 onto the stack depending on whether the top two

elements were in the order iuiv or iviu.
The automaton then iteratively produces further candidates for elements in the verification chain:

Perform push3.
Perform pop2; pop2pop2pop2
Perform push•,31
Perform push2 followed by iterated pop1 until the top element of the stack is no longer a •.
Generate a further four 2-stacks representing a u1, u2, v1, v2 in exactly the same way as forAP32

,
recording the ordering (possibly with an end flag) on top.
The automaton breaks from this iteration at this point iff an element with an end flag was just
deployed.

After this phase the automaton enters a distingished control-state candidate. It then leaves this
control-state to perform push3; pop2; pop2; pop2; pop2 and enters control-state chainpos. It then
repeatedly performs the following:

18 The Limits of Decidability for First Order Logic on CPDA Graphs

pop1 entering a non-distinguished control-state.

If the top element is a • it enters control-state chainpos and goes back to the item above.
We additionally add transitions from all configurations labelled by pop1, pop2, pop3 and collapse
performing the respective stack operations whilst transitioning to a distinguished control-state test.

Lemma 25

Let P be an instance of Post’s Correspondence Problem. Then there exists a Σ2 sentence φ of FO
such that:

G(AP33
) � φ

(note no ε-closure) if and only if P has a solution.

Proof. For the same reasons as with AP32
it is the case that P has a solution if and only if AP33

can
reach a configuration (candidate, t) such that, for every pair of 2-stacks s, s′ occurring in t with s′

is the 2-stack immediately above s, it is the case that s′ = s+.
Assuming that the variable x is bound to a configuration (test, t′) where t′ is an initial segment

of a stack t such that (t, candidate) is reachable, we can assert that the top two 2-stacks of t′ form
a pair with the credentials above using the following Π1 formula ψ(x) over G(A33):

∀s′.∀u2v2u1v1.∀ww′.∀cucv.(pop3(x, s′)→ u1u2v1v2(x)→ u1u2v1v2(s′)
→ pop2(x, v1)→ pop2(v1, w)→ pop2(w, u1)→ pop1(s′, v2)
→ pop2(s′, w′)→ pop2(w′, u2)→ collapse(u1, cu)→ collapse(v1, cv)
→ (collapse(u2, cu) ∧ collapse(v2, cv)))

∧ · · ·

where as with the proof of Lemma 21 we have illustrated just one of 64 conjuncts that go through
all possible orderings of the u1, u2, v1, v2 in the top and penultimate 2-stacks. The correctness of
this formula follows from the fact that every element constituting the guess of a solution of P is
equipped with a 3-link pointing to a distinct 2-stack.

The design of AP33
ensures that the elements in the verification-chain contained in t (i.e. all

candidates for the pairing s, s′ in t) are precisely those that can be reached by performing a collapse
operation on a (chainpos, t′) configuration reached from (candidate, t). Assuming that x is
again bound to a (candidate, t) configuration, we can thus assert that x represents a solution to P
with the following Π1 formula χ(x) over G(AP33

):

χ(x) := ∀y.∀z.(chainpos(y)→ pop3(y, x)→ collapse(y, z)
→ ¬(u1u2v1v2

start(z) ∨ v1v2u1u2
start(z)) → ψ(z))

We can thus take the required Σ2 formula φ (asserting the existence of such a solution witnessing
configuration x) to be:

φ := ∃x.(candidate(x) ∧ χ(x))

J

C.H. Broadbent 19

A.5 Σ1 Undecidability for 42-CPDA

A.5.1 The modification

We modify the verification chain so that only one pair of collapses needs to be compared for equality
rather than previously where two comparisons were required (for the u and the v). This allows us to
avoid the problem above.

Proceeding with our running example, a solution to a PCP instance will be represented using a
2-stack in exactly the same manner as before:

[[ab] [ab 1u ab] [.] [.] [.] [.] [.] [.] [ab 1u ab 1u c 1v ababc 1v ab 2v b 2u ca 3u 3v]]

The difference is the manner in which the ‘verification chain’ used to check the correctness of an
alleged representation is constructed and represented in a 3-stack. In this modified chain of 2-stacks
it is the top three 1-stacks that are significant. Each element in the stack will posess either ‘u v1 and
v2’ 1-stacks (in some order) or v, u1 and u2 1-stacks. This contrasts with the original verification
chaion where each point posessed a u1, u2, v1 and v2 1-stack.

We refer to the u or v 1-stack in a chain position as guaranteed and the u2 or v2 stack as
tentative with the associated u1 or v1 as the condition stack. If the condition stack represents the
same position in either the u or v subsequence from the previous member in the chain, then the
tentative stack correctly represents the next position in the u or v subsequence. This is the same idea
as before. The guaranteed stack, however, will always unconditionally represent the next position in
the v or u subsequence.

The following shows this new kind of a verification chain as a 3-stack:

[| | | | | | | | [ab 1u][][uend
1]]

[| | | | | | | | [ab 1u ab 1u c 1v][ab 1u ab 1u][ab 1u vu1u2]]

[| | | | | | | | [ab 1u ab 1u c 1v ababc 1v ab 2v][ab 1u ab 1u c 1v ababc 1v][ab 1u ab 1u v1v2u]]

[| | | | | | | | [ab 1u ab 1u c 1v ababc 1v ab 2v b 2u ca 3u][ab 1u ab 1u c 1v ababc ab 2v b 2u][ab 1u ab 1u c 1v ababc 1v ab 2v u1u2v]]

[| | | | | | | | [ab 1u ab 1u c 1v ababc ab 2v b 2u ca 3u 3v][ab 1u ab 1u c 1v ababc 1v ab 2v b 2u ca][ab 1u ab 1u c 1v ababc 1v ab 2v b 2u ca 3u vu1ustart
2]]


As before, a token describing the ordering of the stacks is added to the top of each element in the
chain.

Let us formally define a 32-CPDA that generates verification chains in the manner illustrated in
the example above.

20 The Limits of Decidability for First Order Logic on CPDA Graphs

I Definition 40. Let P be an instance of PCP. The 32-CPDA AP3alt
2

shares stack alphabet with

AP2 but with extra symbols: vu1u2, u1vu2, u1u2v, vu1u
start
2 , uend

1 , uv1v2, v1uv2, v1v2u,
uv1v

start
2 , vend

1 .
AP3alt

2
initially behaves the same way as AP2 in order to generate a 2-stack representing a postu-

lated solution to P . At this point the top two elements of the stack will either be iuiv or iviu for
some i ∈ [1..m]. We then perform push2; push2; pop1; push2 followed by pushuv1v

start
2

1 if the top

two symbols are iviu and pushvu1u
start
2

1 if iuiv . The automaton then performs push3 and behaves as
follows, examining the token on top of the stack to ascertain which option should be taken:

If the current guaranteed stack of the top3 element (which has just been copied) is below both
the condition and tentative stacks, then we should perform pop2 until the guaranteed stack is the
top2 stack—i.e. perform pop2; pop2. Then:

If the guaranteed stack is a u stack (rather than a v stack) then perform pop1 until another ju
or jv is found for some j ∈ [1..m].
* At the first new ju to be discovered, we deem the resulting top2 to be the new u stack. If
v1 and v2 are still to be produced we perform push2 and continue with the pop1s.

* At all subsequent ju discovered, we just perform pop1 and continue with the pop1s.

* If a jv is found and we have not yet created a new v1, then we non-deterministically choose
whether to deem this stack to be the new v1. If we choose not to we just proceed with more
pop1s. If we choose to do so, then we perform push2.

* The first new jv to be found since creating v1 should become the new v2 stack. If the new
u stack has not yet been created then we perform push2 and continue with the popping.

* All subsequent jv found since creating the new v2 should just be popped and the pop1s
continued.

* If the empty 1-stack is produced, then abort (and fail) if either u1 has not yet been generated
or either u2 or v have been generated. Otherwise perform push2; pushu

end
1

1 .

* If the new v, u1 and u2 have all been created, then cease the pop1s and perform pushtoken
1

where token is the token (without a start or end flag) denoting the order in which the
stacks were produced.

If the guaranteed stack is a v stack (rather than a u stack) then do the same as above inter-
changing u and v.

If the condition stack of the top3 element in the chain is below both the guaranteed and tentative
stacks, then we should perform pop2 until the condition stack is the top2 stack—i.e. perform
pop2; pop2. Then:

If the condition stack is a u1 stack (rather than a v1 stack) then perform pop1 until another ju
or jv is found for some j ∈ [1..m].
* At the first new ju to be discovered we just perform pop1 and continue with the pop1

operations. At the second new ju to be discovered, we deem the current top2 stack to be
the new u stack. If the new v1 and v2 have not yet been created we perform push2 and
continue with the pop1 operations.

* At all subsequent ju discovered, we just perform pop1 and continue with the pop1s.

* If a jv is discovered then we behave in the same way as in the case when the guaranteed
stack u is below the condition stack v1 (see above). This creates the v1 and v2 stacks.

* If an empty 1-stack is produced or we have just finished creating all of the new u, v1 and
v2 then again we behave in the same manner as when the guaranteed stack is below the
condition stack.

Note that the condition stack will always be below the tentative stack, so we have already ex-
hausted the possibilities.

C.H. Broadbent 21

If it is not the case that top1(u) = iu and top1(v2) = iv or top1(u2) = iu and top1(v) = iv
(depending on which combination of stacks the recently produced chain element uses) for some
i ∈ [1..m] then the automaton aborts into a fail state.
If we have deployed a token with an end marker, then we halt and move into a distinguished
control-state guess32

. Otherwise we perform a push3 operation and repeat.

I Remark. Suppose that an element in a chain generated byAP3alt
2

consists of a v and u1, u2 stacks.
If v is the first (lowest) of these, then the next element in the chain will consist of a v, u1 and u2. If
u1 is the lowest, then the next element in the chain will consist of a u, v1 and v2.

We formalise what it means to be a correct verification chain in this new style using a revised
successor operation ⊕ to be to AP3alt

2
what + is to AP32

.

I Definition 41. Let s be a 2-stack over the alphabet of AP2 . The successor s⊕ of s is the unique
stack such that:

pop2; pop2; pop2(s⊕) = pop2; pop2; pop2(s)
Where a, b, c are (in order) the top three 1-stacks of s⊕: c v1 b v1 a.
If the bottom of the top three 1-stacks in s is a u or u1 stack, then s⊕ should consist of a u, v1
and v2 stack, if its a v or v1 stack then, s⊕ should consist of a v, u1 and u2 stack.
Let su be either the u2 or u stack in s (whichever s posesses). Let sv be either the v2 or v stack
in s (whichever s posesses).

If s⊕ posesses u1, then this u1 = su and its u2 has as its top1 element the highest element of
the form iu below top1(su). If such an element does not exist, u2 should be empty. Moreover
the v of s⊕ should have as its top1 element the highest element of the form iv below top1(sv).
If such an element does not exist, v should be empty.
If s⊕ posesses v1, then this v1 = sv and its v2 has as its top1 element the highest element of
the form iv below top1(sv). If such an element does not exist,v2 should be empty. Moreover
the u of s⊕ should have as its top1 element the highest element of the form iu below top1(su).
If such an element does not exist, u should be empty.

The following Lemma is almost an immediate consequence of the definitions and Lemma 16.

I Lemma 42. Let P be an instance of Post’s Correspondence Problem and let s be a 2-stack
generated by AP2 . The 2-stack s represents a solution to P in the sense of Lemma 16 iff there is a
‘verification chain’ of 2-stacks s1, s2, . . . , sk for some k such that:

s1 = push2; push2; pop1; push2(s) (with top three stacks defined to be v, u1, u2 or u, v1, v2 if
the top two elements of s are respectively of the form iviu or iuiv)
sk has empty stacks as its top two 1-stacks
si+1 = s⊕i for every 1 ≤ i < k.
For each element si in the chain we have top1(v) = jv and top1(u2) = ju or top1(u) = ju and
top1(v2) = jv for some j ∈ [1..m] (depending on what selection of stacks si has).

Proof. We establish the result by arguing that such a sequence exists iff s satisfies the conditions
set out in Lemma 16.

Argue by induction on l that an initial segment of such a chain s1, s2, . . . , sl exists with j1, j2, . . . , jl
the associated indices mentioned in the fourth condition iff the top-most l elements of s of the form iu
are (j1)u, (j2)u, . . . , (jl)u, and the topmost l elements of s of the form iv are (j1)v, (j2)v, . . . , (jl)v
(ordered top down).

First the⇒) direction. The base case (l = 1) is immediate since all stacks generated byAP2 must
have top two elements of the form jujv or jvju for some j. Suppose now that an initial segment
of such a chain s1, s2, . . . , sl, sl+1 exists with fourth-condition indices j1, j2, . . . , jl, jl+1. By the
induction hypothesis, we just need to check that if the top elements of either v or v2 in sl and either

22 The Limits of Decidability for First Order Logic on CPDA Graphs

u or u2 in sl are respectively the lth jv and ju elements from the top of s, then the top elements of
either v or v2 in (sl)⊕ and either u or u2 in (sl)⊕ are respectively the (l+ 1)th elements of the form
jv and ju from the top of s. But this is ensured directly by the fourth point in the definition of ⊕.

Now consider the ⇐) direction. Again the base case (l = 1) is straightforward since s1 is
explicitly defined to meet the criteria. Suppose that the topmost l + 1 elements of the form ju
of s are: (j1)u, (j2)u, . . . , (jl)u, (jl+1)u and the topmost l + 1 elements of the form jv of s are:
(j1)v, (j2)v, . . . , (jl)v, (jl+1)v . By the induction hypothesis we already have a chain s1, s2, . . . , sl
and so we just need to show that (sl)⊕ both exists and satisfies the requisite criteria. If it does
exist, then as above the fourth clause in the definition of ⊕ ensures that the fourth requirement of the
Lemma is satisfied, which is the only one that would need to be established (the first applies only
to s1, the second is not relevant to initial prefixes and the third is by assumption). Thus it is only
existence that we need to establish. But the ⊕ successor always exists. The top three stacks are all
initial segments of s (exhaustively defined—they are defined to be the empty stack if an appropriate
element in s does not exist) and so can be linearly ordered with resepct to v1. J

The following Lemma is critical—it tells us that AP3alt
2

is able to construct an appropriate chain
of successors if one exists and moreover provides a sufficient (and necessary) condition for a stack
it generates representing such a chain.

I Lemma 43. Let P be an instance of Post’s Correspondence Problem. For any 2-stack s gener-
ated by AP2 there exists a sequence of 2-stacks s1, s2, . . . , sk satisfying the condition in Lemma 42
iff AP3alt

2
can reach a configuration (guess32

, [s′1, s′2, . . . , s′k]) such that:

s′i = pushtoken
1 (si) for each 1 ≤ i ≤ k where token is a token indicating the ordering of the

top three stacks with a start flag for s′1 and a end flag for s′k.
For every 1 ≤ i < k:

If s′i+1 contains a u1 then this is equal to u2 or u in s′i (depending on which one s′i contains)
or if s′i+1 contains a v1 then this is equal to v2 or v in s′i (depending on which one s′i contains).

Note that for each i only one of the above will hold.

Proof. First let us argue in the⇒) direction. First argue by induction on l that if we have an initial
prefix s1, s2, . . . , sl of such a sequence s1, s2, . . . , sk, thenAP3alt

2
can generate a stack [s′1, s′2, . . . , s′l]

without aborting, during the phase after generating the 2-stack s, such that:
s′i = pushtoken

1 (si) for each 1 ≤ i ≤ l where token is a token indicating the ordering of the top
three stacks with a start flag for s′1 and a end flag for s′k.
For every 1 ≤ i < l:

If s′i+1 contains a u1 then this is equal to u2 or u in s′i (depending on which one s′i contains)
or if s′i+1 contains a v1 then this is equal to v2 or v in s′i (depending on which one s′i contains).

Note that for each i only one of the above will hold.

For the base case (l = 1) the result is immediate as AP3alt
2

will construct s′1 from s in exactly the way
that s1 is defined in Lemma 42 (adding a token on top).

For the inductive step, suppose that AP3alt
2

has already generated [s′1, s′2, . . . , s′l] corresponding
to a sequence s1, s2, . . . , sl. Suppose now that this sequence extends to s1, s2, . . . , sl, sl+1. The
automaton will perform push3; pop2pop2 in preparation to generate s′l+1. We consider two cases:

Case when the guaranteed stack of s′l (or by induction hypothesis equivalently sl) is below both
the condition and tentative stacks: W.l.o.g. assume that the guaranteed stack of s′l is a u stack (the
case when it is a v stack is similar). Due to the position of v we must have in sl: v w1 u1 w1 u2.
Thus the u1 of sl+1 = s⊕l , which is the u1 of sl can indeed be produced by performing pop1
operations on the v of sl (s′l). The automaton is free to pick anything to be the u1 of sl+1 and so in

C.H. Broadbent 23

particular can choose the correct value. The new v of sl+1 is restricted to be correct with respect to
the v of sl and similarly the restriction on u2 is precisely what is required with respect to u1 in sl+1.

Case when the condition stack of s′l (or by induction hypothesis equivalently sl) is below both the
guaranteed and tentative stacks: Again w.l.o.g. assume that the condition stack of s′l is a u1 stack
(the case when it is a v1 stack is similar). Due to the position of u1 we must have in sl: u1 w1 v

and u1 w1 u2. Since the new v1 in sl+1 should be equal to v in sl and the new u in sl+1 an initial
prefix of u2 in sl, it must be possible to form both of these from performing pop1 operations on the
u1 in sl. The automaton is unconstrained in picking the v1, so in particular it is able to guess the
correct position—again the constraint on picking the new v2 relative to v1 is precisely the correct
one. Note also that the constraint on picking the new u relative to the old u1 is precisely the correct
one—popping to the next ju will yield the old u2 and so popping from that to the second ju will
yield the correct new u.

Either way since the sequence s1, s2, . . . , sl, sl+1 by assumption exhibits equality of the top
elements of the u2 and v or v2 and u in each element in the chain, it will carry out the above without
aborting. Furthermore the second condition on the s′i is satisfied since the si form a ⊕-successor
chain.

This establishes the induction hypothesis is true for all l ≤ k. In particular when l = k the top
two 1-stacks of sk (or s′k ignoring the token on top) will be empty and so the automaton will halt in
control-state guess32

as required.
Now let us consider the ⇐) direction. We argue by induction on the converse hypothesis to

what we had before. Suppose that AP3alt
2

generates a stack [s′1 s′2 · · · s′l] (in the phase following
the construction of the 2-stack s) that corresponds to a correct initial segment of a verification chain
s1, s2, . . . , sl. Suppose now that AP3alt

2
proceeds to generate [s′1 s′2 · · · s′l s′l+1] that satisfies the

conditions in the converse of the induction hypothesis used previously. This stack must have been
produced from [s′1 s′2 · · · s′l] by beginning with a push3; pop2; pop2. Again we should consider
the same two cases as before, noting that the additional assumed constraint on s′i+1 relative to s′i
ensures that the guessed new u1/v1 for s′l+1 must indeed be the u1/v1 for s⊕l (i.e. the u2/v2 of s′l
or equivalently sl). The new u2/v2 and v/u will be correctly created by the automaton, as discussed
before when arguing in the⇒ direction.

The fact that the automaton does not fail means that it must have successfully found that the u/u2
and v2/v stacks in sl+1 share top1 elements. Thus sl+1 = s⊕l as required and also satisfy the top1
equality requirement.

The automaton will only halt in control-state guess32
if it detects two empty 1-stacks (modulo

the token), constituting the final sk in the chain. J

A.5.2 Exploiting AP3alt
2

in a 4-CPDA

Since only one comparison needs to be made between adjacent elements, the problem illustrated in
Figure 2 is no longer an issue. The same idea that took us from AP32

to AP52
can thus be used to go

from AP3alt
2

to a 42-CPDA AP42
.

I Definition 44. Let P be an instance of Post’s Correspondence Problem. The 42-CPDA AP42

shares the same stack-alphabet as AP3alt
2

. It begins by behaving as AP3alt
2

until this automaton halts
in control-state guess32

. It then performs a push4 operation and non-deterministically decides
whether to operate in ‘A-mode’ or ‘B-mode’. If it decides to operate in A-mode:

Perform collapse on the conditional stack (either u2 or v2 depending on which it has) of the top3
element of the verification chain.
Perform push4; pop3—this reveals the previous member of the verification chain as the top3
stack.

24 The Limits of Decidability for First Order Logic on CPDA Graphs

Repeat until collapse has been performed on the second member of the verification chain (we do
not do this to the first member). Once this stage is reached, enter distinguished control stateA.

If it decides to operate in B-mode, it proceeds as follows:
First examines the token on top of the top3 stack to determine whether the condition stack of the
top3 element in the chain is u1 or v1. If it is u1 set w := u and if it is v1 set w := v.
Performs pop3; push3 so that a copy of the previous element in the chain is now the top3 stack.
The automaton then performs collapse on either the guaranteed stack w or the tentative stack w2
depending on which this previous element in the chain posesses.
Perform push4; pop3.
Repeat until collapse has been performed on copies of all but the last members of the verification
chain (including the first represented by the bottom 3-stack). Once done enter distinguished
control-stateB.

We add an additional transition labelled toCandidate from both A and B to a distinguished
control-state candidate.

Lemma 26

There exists a Σ1-sentence φ such that for every instance P of Post’s Correspondence Problem we
have G(AP42

) � φ iff P has a solution.

Proof. Combine Lemmas 42 and 43. Thus P has a solution if and only if AP3alt
2

can reach a config-
uration (guess32

, [s1, s2, . . . , sk]) such that: For every 1 ≤ i < k:
If si+1 contains a u1 then this is equal to u2 or u in si (depending on which one si contains)
or if si+1 contains a v1 then this is equal to v2 or v in si (depending on which one si contains).

We claim that this is the case iffAP42
can both reach a configuration (A, t) and a configuration (B, t)

for some stack t.
Suppose first that such a pair of configurations is indeed reachable for AP42

. Since a stack pro-
duced by either an A-mode run or a B-mode run from a AP3alt

2
stack [s1, s2, . . . , sk] will have this

3-stack as its bottom most 3-stack we may conclude that the configuration (A, t) as well as the con-
figuration (B, t) must be produced beginning with the same AP3alt

2
stack. Since a collapse on two

elements in copies of some 2-stack si will yield the same result iff they are the same, the construction
of the A and B modes ensures that the equalities required to relate each si to si+1 (for 1 ≤ i < k)
must hold. After all, the ith collapse performed in B-mode will be on the appropriate component
of si for 1 ≤ i < k whilst the ith collapse performed in A-mode will be on the correspondingly
appropriate component of si+1. The results of these collapses are directly compared since collapse
is performed on a copy of the relevant 2-stack that has precisely the same set of 2-stacks below it in
each case.

It follows from the above that P does indeed have a solution.
Conversely begin by assuming that P has a solution. It follows that AP3alt

2
must be able to reach

a configuration (guess32
, [s1 s2 · · · sk]) satisfying the conditions above. By the converse consid-

erations to before (in terms of comparing collapses) these conditions must ensure that the A-mode
and the B-mode both generate the same stack from this starting point, as required.

We can therefore take as the required Σ1-sentence the following:

∃x.∃y.∃z.(A(x) ∧B(y) ∧ toCandidate(x, z) ∧ toCandidate(y, z))

J

C.H. Broadbent 25

B Decidability on nn-CPDA

µCPDA

B.0.3 The Extended Model

An nS-µCPDA is a device that has an nS-CPDA at its disposal but may intervene and manipulate it
beyond its normal course depending on whether the original nS-CPDA satisfies various µ-calculus
sentences in its current configuration.

I Definition 45. An nS-µCPDA B is a tuple:〈
Σ,Π, Q, q0,Γ, R′a1

, R′a2
, . . . , R′ar , P

′
b1 , P

′
b2 , . . . , P

′
br′
, Ra1 , Ra2 , . . . , Rar , Pb1 , Pb2 , . . . , Pbr′

〉
where

〈
Σ,Π, Q, q0,Γ, R′a1 , R

′
a2 , . . . , R

′
ar , P

′
b1 , P

′
b2
, . . . , P ′br′

〉
is an nS-CPDA called the un-

derlying nS-CPDA; R′ai ⊆ L0
µ × ΘnS × Q and P ′bj ∈ L0µ for each 1 ≤ i ≤ r and

1 ≤ j ≤ r′.

As with CPDA configurations are elements of Q × stackCnS (Γ) but the only transitions allowed are
specified by the R′bi with reference to the Rbj rather than by the Rbj themselves. Likewise P ′bi are
the only unary predicates it has.

I Definition 46. Let B be an nS-µCPDA with underlying nS-CPDA A. Let (q, s), (q′, s′) be
configurations of B (and hence also of A). There is an ai labelled transition from (q, s) to (q′, s′)
in B just in case G(A), (q, s) � φ where (φ, θ, q′) ∈ R′ai and s′ = θ(s). Likewise we have (q, s)
satisfying the predicate bi just in case G(A), (q, s) � P ′bi .

Given these transition edges and predicates of B the graphs G(B) and Gε(B) are defined in the same
way as with conventional CPDA.

I Example 47. Consider a standard order-1 pushdown automaton that has control-states { q0, q1 }
and stack alphabet { a, b }. Give it has a transition relation Rc := { (q0, pop1, q0) } and predicates
Pa := { (q0, a) }, Pb := { (q0, b) }.

Suppose that we extend this to a 1-µPDA with a sole µPDA transition relationR′c := { ((µX.(a∨
[c]X) ∧ b), pusha1 , q1) }. Then this µPDA will have a c-labelled transition from the configuration
(q0, [bbaaabbbbbb]) to the configuration (q1, [bbaaabbbbbba]) but no other transitions from this con-
figuration.

The µ-calculus sentence asserts that the current configuration has b on top of the stack but that
repeated popping will yield a on top.

B.0.4 Strong Isomorphisms

Two graphs are said to be isomorphic if qua graphs they are essentially the same. As expected the
formal definition is as follows:

I Definition 48. Let G and G′ be graphs sharing a signature S with respective node sets N
and N ′. We say that G and G′ are isomporphic, written G ∼= G′ just in case there is a bijection
f : N −→ N ′ (called an isomorphism) such that for every u ∈ N and unary predicate b of S

interpreted as bG in G and bG′ in G′ we have u ∈ bG iff f(u) ∈ bG′ and for every edge a we have
uau′ in G iff f(u)af(u′) in G′.

26 The Limits of Decidability for First Order Logic on CPDA Graphs

It is well known that the theories in all logics we have introduced are invariant under isomorphism—a
sentence will hold in a graph G just in case it holds in all isomporphic graphs G′.

Note that every CPDA A can be viewed as a µCPDA B. We simply take B to have underlying
CPDA A and give it a predicate for every control-state/stack-alphabet pair in Q × Γ to facilitate
a µ-calculus sentence asserting that we are currently in a particular control-state with a particular
symbol on top of the stack. This allows us to reconstruct the original transition relation ofA in B. It
thus follows that for every CPDA A there exists a µCPDA B such that Gε(B) ∼= Gε(A).

For CPDA there is a stronger notion of isomorphism where stack structure and control-states are
preserved as well. This will be the form of isomporphism to which we usually appeal. In particular
the definition makes sense when comparing µCPDA and CPDA.

I Definition 49. Let A and A′ be nS-µCPDA (and in particular either or both may be an nS-
CPDA). We say that G(A) and G(A′) (resp. Gε(A) and Gε(A′)) are strongly isomorphic just in case
there is an isomporphismL between the graphs where for any configuration (q, s) ofAwe can define
L by an expression of the form L(q, s) := (L(q), L(s)) where L(popk(s)) = popk(L(s)) for every
1 ≤ k ≤ n; L(collapse(s)) = collapse(L(s)) and L(⊥n) = ⊥n, overloading L to additionally
denote a map on both control-states and constructible stacks.

We write G(A) ∼̂= G(A′) (resp. Gε(A) ∼̂= Gε(A′)) to indicate this.

Note that whilst L is a bijection between the domains of each graphs, in the ε-transition there may be
intermediate control-states accessed during the course of ε-transitions that do not appear in nodes of
the ε-closure of the graph. Therefore L may not be a bijection between control-states. Nevertheless,
for control states belonging to the ε-closure (on which L is a bijection) we adopt the convention
‘L(q) := q’. The correponding convention for stacks ‘L(s) := s’ is not used as it would be highly
misleading; two occurrences of a symbol a in s may map to different symbols in L(s).

B.0.5 Representing as Conventional CPDA

Just as every nS-CPDA can be viewed as an nS-µCPDA it turns out that the converse holds as well.
Indeed we can view the main result of [2] as saying precisely this.

I Theorem 50. Given any nS-µCPDA B there exists an nS-CPDAA such that G(B) ∼̂= G(A) and
so also Gε(B) ∼̂= Gε(A).

Proof. Let A− be the nS-CPDA underlying B with control-states QA− . Extend QA− with a fresh
distinguished control-state ?. Add fresh distinguished edges q̂ for every q ∈ QA− from the config-
uration (?, s) to the configuration (q, s) for every stack s and have a transition θ for every nS-stack
operation connecting (?, s) to (?, θ(s)). Making ? the initial state call the resulting automaton A?.

Now let φ1, φ2, . . . , φm be a list of all of the µ-calculus sentences occurring in transition relations
of B. Let φqi be the µ-calculus sentence [q̂]φi for every q ∈ QA− and 1 ≤ i ≤ m. Logical reflection
for CPDA, as established in [2], allows us to construct an automaton A?LR such that there exists an
isomorphism f : Gε(A?) ∼= Gε(A?LR) and additionally there is a set S[q̂]φi ⊆ QA?

LR
× ΓA?

LR

such that a configuration (p, t) of A?LR satisfies Gε(A?LR), (p, t) � [q̂]φi just in case (p, top1(t)) ∈
S[q̂]φi . That is A?LR generates the same ε-closure as A? but is also ‘aware’ of what µ-calculus
properties are satisfied at each configuration.

Note that we do not quite have a strong isomorphism here. Whilst [2] tells us the stacks either
side of the isomorphism satisfy the required structural similarity, the control-state in the image of
the isomorphism depends on the stack in the input configuration as well as the control-state. That
said, the converse does hold: the control-state in the image determines the control-state in the input
of the isomorphism. In particular it is well-defined to delete all control-states from A?LR that are not

C.H. Broadbent 27

associated with ? in A?. We also remove all edges other than those of the form θ for θ ∈ Θn. Call
the resulting automaton A??LR.

Now we construct the n-CPDA B to have the same control-statesQA asA and the stack-alphabet
of A??LR. In order to simulate A when in control-state q it may do the following:

Pick a A-transition dependent on µ-calculus sentence φ that performs stack-operation θ whilst
moving to control-state q′.
Check that the top element of the stack belongs to S[q̂]φ in which case we are indeed in a config-
uration corresponding to a A-configuration in control-state q at which φ holds.
Transition into control-state q′ whilst performing the stack-operation dictated by theA??LR-transition
θ.

Then g : G(B) ∼̂= G(A) with g(q, s) := g(q, t) where f(?, s) = (_, t).
J

B.1 Monotonic CPDA

We will without loss of generality make the assumption that pushn, popn and collapse on n-links
is only performed during ε-transitions. This avoids the need for case separation when monotising
automata—we can just focus on ε-edges. Generality is not lost since ε-closure allows us to decom-
pose an a-labelled pushn edge (for example) into an ε-transition with pushn followed by an a-edge
with nop.

We will also use Σ to denote the set of non-ε transition labels and view ε as lying outside of Σ.

B.1.0.1 Lemma 29

Let A be an n-CPDA with edge alphabet Σ and unary predicates Π. Then there exists an n-CPDA
A↑ such that Gε(A) ∼̂= Gε(A↑ �Σ,Π) but whose additional distinguished edge labels include rε /∈ Σ
such that A↑ is monotonic via rε and (q, s)r↑ε∗ a(q′, s′) just in case (q, s)rr∗ε a(q

′, s′).

Proof. Due to Theorem 50 it is sufficient to define an order-n µCPDAA↑µ that satisfies the require-
ments. Conversely it is easy to construct an order-n µCPDA Aµ that shares the same configuration
graph as A since the current control-state and top stack symbol can trivially be detected with a
µ-calculus sentence. Extend this to a µCPDA A↑µ as follows:

Add a unary predicate q for each control-state q of A.
Add a marker marker[γ] to the stack-alphabet for each γ in the stack alphabet of Γ. The au-
tomaton ensures that at most one of these is on the stack at any one time. Extend the Σ transitions
to treat marker[γ] as γ and add a single unary predicate marker asserting that the marker is on
top of the stack.
We add edges labelled deployMarker that simply rewrites the top element of the stack γ to
marker[γ] without changing the control-state.
Add edges labelled removeMarker that rewrite a marker[γ] on top of the stack to γ without
altering the control-state.
Add edges ε<n for each ε-transition in A not performing a collapse on an n-link; a popn nor a
pushn
Add edges εpushn

for each ε-transition in A that performs a pushn operation.
Now let φq be the µ-calculus assertion: ‘We can perform deployMarker and then perform arbitrary
ε transitions, beginning with a pushn and immediately removing the marker from the copy, ending
up back with the stack at which we started, and indeed stopping precisely when we end up back
where we started, with the marker on top and in control-state q.’

28 The Limits of Decidability for First Order Logic on CPDA Graphs

This can be expressed in the µ-calculus by the following:

φq := < deployMarker >< εpushn
>< removeMarker > µX.((q ∧ marker)

∨ (< ε > X ∧ ¬marker))

We define an rε-edge to occur whenever we have an ε<n-edge or an εpushn
-edge. We addi-

tionally add an rε-edge to control-state q′ via nop whenever φq′ holds in the current configuration
(possible since it is a µCPDA).

Observe that reachability via rε-edges preserves the original stack alphabet—markers are only
implicitly deployed in the definition of each φq , they are never introduced by an actual transition of
A↑µ.

Now we argue for correctness. We disregard the single a ∈ Σ-transition at the end of the path
since by our w.l.o.g. assumption this is an order (n − 1)-operation and so not pertinent to the
definition of a climb.

First suppose that (q, s)r↑ε∗(q′, s′) (derived from A). All operations featuring in this path other
than a popn or a collapse on an n-link can be replaced directly by an rε-edge. So we just need
to show that popn and collapse on n-links can also be replaced. The fact that we are considering
a climb rather than an arbitrary run tells us that for every stack t occurring in the run witnessing
(q, s)r↑ε∗(q′, s′) we must have popn(s) @n t. It must thus be that for every instance of collapse
on an n-link or popn resulting in a configuration (p′, t) there must be an earlier configuration of the
form (p, t) in the run that is followed by a pushn operation. But then φp′ holds at this configuration
and so there is an rε-transition from (p, t) to (p′, t), as required.

Conversely suppose that there is an r∗ε path from (q, s) to (q′, s′). Argue by induction on the
length of the path. If popn(s) @n t, then t′ = pushn(t) and t′ = θ(t) for any θ ∈ Θn−1 must
satisfy popn(s) @n t′. Moreover these operations for rε-edges are directly inherited from the
original ε-edges and so the path is as required for these operations. It just remains to consider rε
resulting from a φp′ -test at a configuration (p, t) with s @n t, resulting in (p′, t). But φp′ asserts
the existence of precisely such an ε-path. J

I Remark. Since the initial configuration has the empty stack ⊥n and we can w.l.o.g. view
‘popn(⊥n)′ @n t as holding for any stack t (for example by treating the initial stack as pushn(⊥n)
and ensuring the automaton never pops down below this) we get that all reachable configurations are
monotonically reachable from the initial configuration via {rε ∪ Σ}-labelled paths.

Lemma 31

LetA be an n-CPDA with unary predicates Π. Then there exists an n-CPDAA↓ with stack-alphabet
Γ↓ and control-state space Q↓ such that G(A) ∼̂= G(A �Π↓) and that also has a predicate P ↓ for
each P ∈ Π such that P holds of precisely those configurations c from which A has an ε-fall to a
configuration c′ satisfying P .

Proof. As with the proof of Lemma 29 we work with n-µCPDA instead of n-CPDA, as permitted
by Theorem 50. In fact we begin the construction of A↓µ (the µCPDA meeting the requirements
that can then be translated to the CPDA A↓) in exactly the same way as A↑µ from Lemma 29. We
further add an edge q for each q ∈ Q that transitions to control-state q without altering the stack; a
popn edge performing a popn operation without altering the control-state; and a destroyn edge for
every ε-edge performing a collapse on an n-link or a popn operation, making the same transition as
the ε-edge.

C.H. Broadbent 29

We can define the property marker↓ asserting that a marker has already been deployed to the top
of some (n− 1)-stack below in Lµ:

marker↓ := µX.(marker ∨ < popn > X)

For each predicate P ∈ Π the following µ-calculus ψP↓ sentence defines the required predicate P ↓.
It asserts reachability whilst making sure the final result is an ε-fall by deploying the marker every
time we make a pushn operation, thereby enforcing that we should eventually descend below the
marker:

ψP↓ := µX.(((P ∧ ¬marker↓)
∨ < destroyn ∪ < ε<n > X

∨ (¬marker↓ ∧ < deployMarker >< εpushn
> X)

∨ (marker↓ ∧ < εpushn
> X)))

Note that some stacks during the run asserted to exist by ψP↓ may contain multiple markers at one
time (unlike with A↑). With A↑ we were concerned about knowing when we return to exactly the
same stack, whereas here we just want to make sure that we do not stop until we have returned to
the last stack at which we performed a pushn (in order to get an ε-fall). J

Lemma 33

Let (q, s) and (q′, s′) be two configurations of a CPDA A and let (q, L(s)) and (q′, L(s′)) be the
corresponding configurations inA↑↓ via the strong isomorphism. Then (q, s)rε∗a(q′, s′) just in case
(q, L(s))baL(q′, L(s′)).

Proof. Suppose first that (q, L(s))ba(q′, L(s′)). Then by definition there must be an ε-fall from
(q, L(s)) to some configuration (q′′, L(s′′)) in A↑↓ such that (q′′, L(s′′))r↑r∗ε a(q

′, L(s′)). But the

latter implies (q′′, L(s′′))r↑ε∗ a(q′, L(s′)) and so there is an ε∗ a path in A↑↓ from (q, L(s)) to
(q′, L(s′). But this uses edges inherited from the original A and so (q, s)rε∗a(q′, s′) in A.

Conversely suppose that (q, s)rε∗a(q′, s′) inA. This must be witnessed by a run and we may take
the right-most element (q′′, s′′) in the run such that popn(s′′) vn popn(t) for stacks t to the left
of s′′ in the run. This is the ‘lowest point’ the n-stack reaches in the run. By definition of ε-fall we
have an ε-fall from (q, s) to (q′′, s′′). By Lemma 29 we must also have (q′′, L(s′′))r↑r∗ε a(q

′, L(s′))
in A↑↓since popn(s′′) @n popn(s′) (due to it being the lowest point in the run). We thus have the
required bounce. J

B.2 Link Trails: Towards Link Elimination for nn-CPDA

Lemma 36

Consider two constructible n-stacks s and s′ with stripln(s) = stripln(s′). Assume for every
stack or atomic element a contained within s and corresponding element a′ in s′ we have col(a) =
col(a′). Then s = s′.

Proof. Suppose for contradiction that despite the conditions holding we have s 6= s′. Since
stripln(s) = stripln(s′) the difference must be entirely down to a discrepancy in n-links. Since
colouring determines which atomic elements are the source of a link (those not coloured ⊥) it must,
more specifically, be down to a discrepancy in the target of a link eminating from a particular atomic
element. Let a be the lowest atomic element in s (with corresponding element a′ in s′) such that the

30 The Limits of Decidability for First Order Logic on CPDA Graphs

n-link from a and the n-link from a′ have different targets. By assumption of a being the lowest
such element we must have s<a = s′<a′ .

Suppose for contradiction that neither a nor a′ were produced by a pusha,n1 or pusha
′,n

1 op-
eration. Since s and s′ are both constructible, there must be a sequence of stack operations con-
structing s and s′. Let i be the order of the last pushi operation that occurs in this sequence for s
that creates the position a and after which the position a is never discarded. Let i′ be similar for
s′ and a′. So i ≥ 2 and i′ ≥ 2. Note that since s<a = s′<a′ it must in particular be the case
topi(popi(s<a)) = topi(popi(s′<a′)) and indeed that topi′(popi′(s<a)) = topi′(popi′(s′<a′)).
Thus the pushi and pushi′ operations must both create an a and a′ that is a copy of an element with
the same link. This is a contradiction since we are assuming a and a′ have different targets.

So w.l.o.g. assume that a is produced by a pushi operation whilst a′ is produced by a pusha
′,n

1
operation. Let tj be the j-stack containing position a (in s) and t′j be the j-stack containing a′ (in
s′) for 1 ≤ j ≤ i − 1. By assumption we have col(tj) = col(t′j) for each j. It will be helpful to
further define t0 := a and t′0 = a′.

We now argue by induction that for all 0 ≤ j < n− 1 it is the case that col(tj) = col(t′j) = c>
and that there is no freshly created n-link (i.e. n-link from an element b such that lr(b) = 1) in tj+1.

For the base case take j = 0. It must be the case that col(a) = col(a′) = c> since the only
other option is c= which is impossible since la(a) 6= la(a′). Since any n-link above a′ in t′1 must
share the target of a′ (as it would be another freshly created link in the same n-stack) it follows that
these would also have colour c=. This means that there can be no freshly created n-links above a in
t1 since these would have colour c> which would not match the corresponding colour in t′1. There
can be no freshly created n-links below a in t1 as a is not freshly created and so any stack containing
such an n-link below a would not be constructible.

For the induction step consider j > 0. We have col(tj) = col(t′j) by assumption. We also
assume as part of the induction hypothesis that tj contains no freshly created n-link. Suppose that
there is a freshly created n-link in a j-stack below tj in tj+1. Then there must be a corresponding
freshly created n-link in t′j+1 below t′j (from the assumption that a and a′ form the lowest n-link
discrepancy in s and s′). It follows that col(t′j) = c= (since t′j also contains a fresh n-link) and so
by equality of colouring col(tj) = c=. But due to the fact that tj contains no freshly-created n-link
we would also have col(tj) = c<, a contradiction. Thus there is no freshly created n-link below tj
in tj+1. If there is a freshly created n-link in tj+1 above tj then there must be a lowest j-stack uj
containing such a link. But then col(uj) = c> since there are no freshly created n-links below it
in tj+1. So the corresponding j-stack u′j in t′j must also have col(u′j) = c>. But this is impossible
since there is a freshly created n-link in t′j and so col(uj)′ ∈ { c<, c= }. It follows that there is no
freshly created n-link in tj+1.

Now observe that col(t′j) = c> since from the paragraph above no fresh n-links can occur below
it in t′j+1. Thus we also have col(tj) = c>. We have thus established the induction hypothesis.

Recall that the position a was produced by a pushi operation for 2 ≤ i ≤ n. Suppose first that
2 ≤ i < n. The result above tells us that col(ti−1) = c> but also that ti−1 contains no fresh n-links.
This is a contradiction since the only way an (i− 1)-stack derived from a copy of the (i− 1)-stack
below it could contain a link with a higher target is if it creates a fresh link.

Now suppose that i = n. We know from the induction hypothesis that tn−1 contains no fresh
n-link. Thus we have col(tn−1) ∈ { c=, c< }. But since t′n−1 does contain a fresh n-link we must
have col(t′n−1) = c>. Thus col(tn−1) 6= col(t′n−1), which is the required contradiction. J

The next step is to show how a CPDA can dynamically assign colours to its stacks correctly. We
restrict ourselves to automata that only have n-links so that the only way to destroy internal stacks
is using a higher-order pop operation. Let s be an nn-CPD stack over the alphabet Γ. We define the

C.H. Broadbent 31

colour tracking stack colTr(s) to be the stack over the alphabet:

Γ × { ⊥, c=, c> } ×
n−2∏
i=0
{ c<, c=, c> }n−1−i ∪ [1..(n− 1)] × { c<, c=, c> }

We construct colTr(s) from s by first replacing each atomic element a in s with an element

(a, c0, (b01, . . . , b0n−1), (b12, . . . , b1n−1), . . . , (bn−2
n−1))

where:
c0 := col(a)
b0j ∈ { c<, c= } for 1 ≤ j ≤ n − 1 just in case a sources an n-link and one of the following
holds:

col(topj+1(s≤a)) = c> but col(topj+1(s<a)) 6= c> in which case b0j = col(topj+1(s<a)).
There is another atomic element a′ anywhere below a in topj+1(s≤a) also sourcing an n-link
such that la(a′) = la(a) and such that col(topj+1(s≤a)) = c> but col(topj+1(s<a)) =
b0j 6= c>.

b0j = c> otherwise.
For each 1 ≤ i ≤ n − 2 let si := topi+1(s≤a). Then for each i < j ≤ n − 1 we have
bij ∈ { c<, c= } just in case one of the following holds:

col(si) = c> but col(topj+1(s<si)) = bij 6= c>
There is another i-stack s′i occurring anywhere below si in topj+1(s<si) such that la(s′i) =
la(si) and col(s′i) = c> but col(topj+1(s<s′i)) = bij 6= c>.

bji = c> otherwise.

We finish the construction of colTr(s) by adding a decoration (i, col(si)) on top of each i-stack si
in s for 1 ≤ i ≤ n− 1.

The idea is that each component stack of s is annotated with its colour and the additional deco-
rations provide the necessary information to determine how a stack operation affects the colours.

I Lemma 51. Let s be an nn-stack over an alphabet Γ. Suppose that for 0 ≤ k < k′ ≤ n− 1 we
have col(topi+1(s)) = c> for every i with k ≤ i < k′. Then there is no k-stack sk strictly below
topk+1(s) in topk′+1(s) such that la(sk) ≥ la(topk+1(s)).

Proof. First we claim that la(topi+1(s)) = la(topk+1) for k ≤ i ≤ k′. To see this argue by
induction on i (for k ≤ i ≤ k′). The base case is trivial (since i = k). For the induction step note
that since col(topi+1(s)) = c> it must be that la(topi+1(s)) is greater than la(si) for any i-stack si
below topi+1(s) in topi+2(s). It then follows by definition that la(topi+2(s)) = la(topi+1(s)) =
la(topk+1(s)).

It follows that for any given k ≤ i < k′ we cannot have a k-stack sk with la(sk) ≥ la(topk+1(s))
below topi+1(s) in topi+2(s) since that would contradict the assumption that topi+1(s) = c>.
This in turn implies that there is no k-stack sk strictly below topk+1(s) in topk′+1(s) such that
la(sk) ≥ la(topk+1(s)). J

Hence we can use the decorations according to the following lemma:

I Lemma 52. Let s be an nn-stack over an alphabet Γ. Suppose that for 0 ≤ k < k′ ≤ n− 1 we
have col(topi+1(s)) = c> for every k ≤ i < k′. Suppose further that s′ is an nn-stack such that
popk+1(colTr(s)) = popk+1(colTr(s′)) but where topk+1(s′) 6= c>. Then where

top1(colTr(s)) = (a, c0, (b01, . . . , b0n−1), (b12, . . . , b1n−1), . . . , (bn−2
n−1))

32 The Limits of Decidability for First Order Logic on CPDA Graphs

we have:

col(topk′+1(s′)) =

{
bkk′ if col(topk′+1(s)) = c>

c< otherwise

Proof. We may appeal to Lemma 51 in order to get that there is no k-stack sk below topk+1(s)
in topk′+1(s) such that la(sk) = la(topk+1(s)). Moreover we must have la(topk′+1(s′)) =
la(s<topk+1(s)) due to the fact that col(topk′+1(s′)) 6= c> but s and s′ are equal everywhere be-
low topk′+1(s′). In the case when col(topk′+1(s′)) = c> the definition of bkk′ thus implies that
col(topk′+1(s′)) = bkk′ .

Consider now the only other case when col(topk′+1(s)) ∈ { c=, c< }. Again by Lemma 52
we know that la(topk+1(s)) is strictly greater than la(sk) for any k-stack below it in topk′+1(s).
We also know that la(topk+1(s′)) < la(topk+1(s)) due to colouring. Thus we can conclude that
la(topk′+1(s′)) < la(topk′+1(s)) meaning that col(topk′+1(s′)) = c<. J

It is also helpful to be able to use colour annotations to recover which stacks contain fresh links.

I Lemma 53. Let s be an nn-stack. Then for each 2 ≤ i ≤ n, the stack topi(s) contains an
n-link from an atom a with lr(a) = 1 iff col(topn(s)) = c> and additionally for each j such that
i ≤ j < n we have col(topj(s)) ∈ { c=, c> }.

Proof. First suppose that topi(s) contains an n-link from an atom a with lr(a) = 1. Since no link
in the (n− 1)-stack below can source a link with the same target, we must have col(topn(s)) = c>.
Moreover, no link in the topn(s) stack can have a target above that of a. Since topi(s) contains a,
topj(s) must contain a for i ≤ j < n and so col(topj(s)) ∈ { c=, c> }, as required.

Now suppose that the right-hand-side of the ‘iff’ holds. Since col(topn(s)) = c> the topn stack
must contain a fresh n-link as all other n-links in the topn stack would have been created and so exist
in an n-stack below it. Suppose for contradition that topi(s) does not contain a fresh n-link. Then
there must be a maximum j with i < j ≤ n − 1 such that topj(s) does not contain a fresh n-link.
But since topn does contain a fresh n-link there must exist an n-link below topj(s) in topj+1(s)
whence we would have col(topj(s)) = c<, a contradiction. J

The following Lemma tells us that we can preserve the correct annotations whilst manipulating
an nn-stack. Unfortunately we do not have a version of this Lemma for n-stacks containing links of
other orders.

I Lemma 54. Let s be an nn-stack over an alphabet Γ and let θ be an n-stack operation. There
then exists a compound stack operation θ′ such that colTr(θ(s)) = θ′(colTr(s))—i.e. θ′ could be
implemented by an nn-CPDA. Moreover the number of operations in θ′ is bounded.

Proof. Consider each possible θ in turn.
If it is a push1 operation, then if no link is attached, no colour is affected. We can thus just pop

off the colour annotations on top of the stack (which are bounded in number), and push

(a,⊥, (b01, . . . , b0n−1), (b12, . . . , b1n−1), . . . , (bn−2
n−1))

on the stack with colour ⊥ where b0j := c> for all 1 ≤ j ≤ n − 1 and for each 1 ≤ i < j ≤ n − 1
we set bij to be the bij from the previous top1 element on the stack (since this new element has no
affect on any colour).

If it is a pusha,n1 operation, then again we first pop off the colour annotations on top of the stack.
In the light of Lemma 53 these colour annotations allow us to deduce the set F ⊆ [2..n] of elements
i such that topi(s) contains a fresh n-link. The colour of any topi-stack with i ∈ F is unchanged

C.H. Broadbent 33

since they already contain a link with the highest possible target. The colour of topi-stacks with
i /∈ F (with i ∈ [1..n]) are set as follows (which do not necessarily but may result in a change of
colour):

if i + 1 ∈ F then a stack below topi(s) in topi+1(s) already contains a link and so the new
colour of the new topi stack is c=.
otherwise this is the first fresh link and so the new topi stack has colour c>.

Note that this ensures the colour c0 of the new atomic element to be created is either c= or c>
depending on whether there already exists a fresh link below it in the top2 stack. The actual element
being pushed onto the stack has the form:

(a, c0, (b01, . . . , b0n−1), (b12, . . . , b1n−1), . . . , (bn−2
n−1))

For all i ∈ F and all j with i < j ≤ n we have bi−1
j−1 set to the bi−1

j−1 from the previous top1 element
(as discarding the topi (i− 1)-stack is no different to before if it already contained a fresh link). For
all i, j /∈ F and j with 1 ≤ i < j ≤ n we set bi−1

j−1 to be the colour of the topj (j − 1)-stack prior to
pushing the new element on the stack. This is correct since discarding topi for i ∈ F will eliminate
the newly added fresh n-link, which is the only fresh n-link in both the topj stack thereby returning
the topj colour to that which it was before it was added. Note that it is impossible for j /∈ F but
i ∈ F since i < j and so all cases are covered.

If it is a pushk operation for 2 ≤ k ≤ n, then we discard all colour annotations (i, ci) on top of
the topi+1 stack for i ≥ k, perform a pushk operation changing the colour annotation on top of the
resulting top-most k−1 stack to (k−1, c=) and replacing all of the previously discarded decorations
unchanged. The colour annotations on i-stacks for i > k − 1 will remain correct as no new links
are created and those on i-stacks for i < k − 1 will remain correct as they depend only on what was
copied in its entirety by the pushk operation.

Observe how none of the bij values of atomic elements in the copied stack need changing. Over-
loading the notation a consider an atom

a := (a, c0, (b01, . . . , b0n−1), (b12, . . . , b1n−1), . . . , (bn−2
n−1))

occurring in the newly created (k−1)-stack. For each i, j with i < j < k−1 note that topj+2(pushk(colTr(s))≤a)
is a copy of a (j + 1)-stack in the (k − 1)-stack below. Since the meaning of bij is completely
determined by the (j + 1)-stack in which it resides, this remains correct. For i < j = k −
1 we have it that si is a copy of some stack s′i below it in the topj+2(pushk(colTr(s))≤a) =
topk+2(pushk(colTr(s))≤a) (j + 1)-stack (so in particular la(si) = la(s′i)). But s′i would have
existed prior to performing pushk and must also contain an atom annotated with bij and so bij must
be a correct annotation. For j > k−1 (and i < j as usual) we have the case i ≤ k−1, which implies
that topi+1(pushk(colTr(s))≤a) is a copy of an i-stack below it in its (j + 1)-stack, and also the
case i > k − 1 in which case the conditions remain unchanged to before the pushk operation—in
particular pushk

If it is a popk operation for k < n, then first discard all of the decorations from the stack
associated with the topi stack for k ≤ i ≤ n. If k = 1 and the top element of the stack is now
a linkless element for some a, then we can just pop1 it off without affecting the colour and restore
the decorations unchanged. Otherwise we must be able to see the colour of the topk stack (even
when k = 1). If the topk stack has colour c= or c< then discarding it will not change any other
colours and so we simply perform popk and restore the previously discarded decorations unchanged.
If the topk stack has colour c>, then again we perform popk but we also need to recompute the
colours for the topi stack where k < i ≤ n and amend the previously discarded colour decorations
accordingly when restoring them. Let k < l ≤ n − 1 be the least l > k such that either l =
n − 1 or else col(topl+1(s)) 6= c>. We can make use of Lemma 52 to soundly set the colour of

34 The Limits of Decidability for First Order Logic on CPDA Graphs

topj+1(popk(colTr(s))) to bk−1
j for k < j < l. If topl+1 = c> then Lemma 52 allows us to set its

new colour to bk−1
l , if topl+1 ∈ { c<, c= } then the same lemma tells us to set it to c<.

There is no need to adjust the colour of stacks above l; either there are no stacks outside of l that
have a colour assignment (i.e. when l = n−1) or else for j > lwe have col(topj+1(popk(colTr(s)))) =
col(topj+1(colTr(s))) since col(topl+1(colTr(s))) ∈ { c<, c= }.

If it is a popn operation or a collapse operation (which must be on an n-link) we do not need to
do anything special as all decorations will be accurate. For the collapse we just need to pop1 down
to the element on which to collapse. J

Lemma 37

Let A be an nn-CPDA. Then there exists an nn-CPDA lum(A) such that Gε(lum(A)) ∼= Gε(A)
and further such that for any reachable configurations (q, s), (q, s′) of lum(A) we have s = s′ iff
stripln(s) = stripln(s′).

Proof. We define lum(A) to be the nn-CPDA that replaces all operations of A generating an a-
edge with a compound operation from Lemma 54 where the compound generates a path of the form
ε∗a. Since colTr(s) for any stack s includes an annotation of the colour of each constituent stack,
Lemma 36 ensures that s = s′ iff stripln(s) = stripln(s′) for any stacks s and s′ reachable by
lum(A). The predicates for lum(A) are induced by those for A by projecting the stack alphabet
and control-states of lum(A) onto those of A. J

B.3 Meta-Annotations

I Definition 55. Fix k ∈ N and let A be an nn-CPDA with control-states Q and edge-labels in
Σ. A k-meta-annotation for A is a |Σ|.k-tuple ((Qa1)a∈Σ, . . . , (Qak)a∈Σ) where each component is
a subset of Q.

Given an nn-CPDA A and k ∈ N the n-PDA GrStriplnk(A) is formed using the following recipe:
Take the nn-CPDA lum(A) and modify it so that a single k-meta-annotation ((Qa1)a∈Σ, . . . , (Qak)a∈Σ)
is kept at the top of every (n− 1)-stack. No restriction is placed on what this may be (it is non-
deterministically chosen from amongst all k-meta-annotations). We add a predicate
Met(((Qa1)a∈Σ, . . . , (Qak)a∈Σ)) holding at all configurations with the corresponding meta-annotation
on top together with a predicate
Met(q, ((Qa1)a∈Σ, . . . , (Qak)a∈Σ)) additionally asserting that the automaton is in control-state
q. Unary predicates are inherited directly from A on the basis of control-state and stack symbol
immediately below the meta-annotation. Call this nn-CPDA lum(A)+

k .

Let GrStriplnk(A)− be the automaton lum(A)+
k

↑↓
.

Finally GrStriplnk(A) is GrStriplnk(A)− restricted to edges that do not perform a collapse
or a popn operation, and we remove all links. Thus GrStriplnk(A) is an n-PDA. We further
add an edge stackComp from each configuration (q, s) to a configuration (s?, s) for a distin-
guished control-state s?. This allows stacks from different configurations to be manipulated and
compared without prejudice to their control-states. Also add an edge labelled p for every p ∈ Q
such that for any control-state q̂ of GrStriplnk(A) and control-state p̂ corresponding to p we
have (q̂, s)p(p̂, s). Add an edge popn from each (q, s) to (q, popn(s)).

Let us break down each stage of this construction. We need to classify the stacks for which the k-
meta-annotations are considered ‘correct’—something that lum(A)+

k has no control over itself—it
is a constraint imposed from the outside. Indeed correctness is only defined for k-tuples of config-
urations since every meta-annotation references reachability to each of k different configurations.
This correctness property is known as consistency.

C.H. Broadbent 35

I Definition 56. Let (q1, s1), . . . (qk, sk) be reachable configurations of lum(A)+
k . Then we say

that this k-tuple of configurations is consistent just in case the following conditions are met:
For each i with 1 ≤ i ≤ k it is the case that each (n − 1)-stack in si contains precisely one
meta-annotation, which must occur on top of it.
Suppose that t vn si for some 1 ≤ i ≤ k. Then the meta-annotation on top of topn(t) must be
((Qa1)a∈Σ, . . . , (Qak)a∈Σ) where for each 1 ≤ j ≤ k:

Qaj := { q ∈ Q : (q, t)r↑ε∗a(qj , sj) }

Note that Qaj = ∅ if there is no ε∗a-climb from any configuration (q, t) to (qj , sj), which in
particular is the case if popn(t) 6vn sj .

Now let L be the map from lum(A)+-stacks to GrStriplnk(A)−-stacks witnessing the strong
isomorphism Gε(lum(A)+) ∼̂= Gε(GrStriplnk(A)−) �Π,Σ, where Π and Σ are the unary predicates
and edge labels from lum(A)+ . So if (q, s) is a node of Gε(lum(A)+), the corresponding node in
Gε(GrStriplnk(A)−) is (q, L(s)). Note further that since GrStriplnk(A)− is monotonic, deleting
destructive transitions will not change the set of reachable configurations. Thus (q, stripln(L(s))) is
also a reachable configuration of Gε(GrStriplnk(A)). By Lemma 37 L(s) is completely determined
by stripln(L(s)), and so for notational convenience we drop the stripln() and view (q, L(s)) as the
‘configuration of Gε(GrStriplnk(A)) corresponding to (q, s)’.

I Lemma 57. For each k ∈ N and nn-CPDAA, there exists an MSO formula con(x1, x2, . . . , xk)
such that reachable configurations (q1, s1), . . . , (qk, sk) of lum(A)+ are consistent just in case:

GrStriplnk(A) � con((q1, L(s1)), . . . , (qk, L(sk)))

and such that for every i with 1 ≤ i ≤ k, GrStriplnk(A) � con(c1, . . . , ck) implies that ci =
(q, L(s)) for some reachable configuration (q, s) of lum(A)+.

Proof. First observe that for lum(A)+
k configurations (q, s) and (q′, s′) with corresponding GrStriplnk(A)

configurations x = (q, L(s)) and y = (q′, L(s′)) we can MSO-define s vn s′ in G(GrStriplnk(A))
using a standard least fixed-point construction:

x vn y := ∃X.(∃x′.xstackCompx′)(∃y′.ystackCompy′).
(x′ ∈ X ∧ φvn(X, y′) ∧ ∀Y.(φvn(Y, y′) → X ⊆ Y))

where

φvn(X,x′, y′) := ∀z.(z ∈ X ↔ (z = y′ ∨ (∃z′ ∈ X).z′popnz))

We do indeed have s @n s′ iff L(s) vn L(s′) since strong isomorphisms preserve stack structure.
We additionally need a way of capturing the configurations of GrStriplnk(A) that correspond to

the reachable configurations of lum(A)+, namely those monotonically generated by GrStriplnk(A)−:

R(x) := ∃X.∃x′.(x′ ∈ X ∧ φR(X) ∧ ∀Y.(φR(Y) → X ⊆ Y) ∧
∨
a∈Σ

x′ax)

where

φR(X) := ∀z.(z ∈ X ↔ (z = c0 ∨ (∃z′ ∈ X).(z′rεz ∨
∨

a∈Σ∪{ε}

z′az))

where c0 is the initial configuration. Using a standard least-fixed-point construction, R(x) defines
those configurations of GrStriplnk(A) reachable via an (rε + Σ + ε)∗Σ-labelled path. By Re-
mark B.1.0.1 these are precisely the configurations of GrStriplnk(A) corresponding to those in

36 The Limits of Decidability for First Order Logic on CPDA Graphs

lum(A)+, noting that no rε-edge is deleted in forming GrStriplnk(A) from GrStriplnk(A)− since
the latter is monotonic via rε. Also note that our w.l.o.g. assumption that all Σ-labelled edges per-
form an order-(n− 1) operation prevents any Σ-labelled edge from being deleted.

For lum(A)+
k configurations (q, s) and (q′, s′) with corresponding GrStriplnk(A) configu-

rations x = (q, L(s)) and y = (q′, L(s′)) we can MSO-define (q, s)r↑ε∗a(q′, s′) for a ∈ Σ in
G(GrStriplnk(A)) with the ε∗a-climb interpreted over lum(A)+ by defining xrr∗ε ay in G(GrStriplnk(A)).
These two are equivalent due to Lemma 29 together with the w.l.o.g assumption that all Σ-labelled
operations are order-(n− 1).

xr↑ε∗ay := xrr∗ε ay := ∃X.(∃y′.y′ay).(y′ ∈ X ∧ φrr∗ε
(X,x) ∧

∀Y.(φrr∗ε (Y, x) → X ⊆ Y))

where

φrr∗ε
(X,x) := ∀z.(z ∈ X ↔ (z = x ∨ (∃z′ ∈ X).z′rεz))

We define a predicate meta asserting that a configuration has a meta-annotation on top:

meta(x) :=
∨
m∈M

Met(m)(x)

where M is the set of meta-annotations. We also define the following predicates that can be used to
express some basic properties about the meta-annotation on top of a stack:

[q ∈ Qai](x) :=
∨

m=((Qa1)a∈Σ,...,(Qak)a∈Σ)∈M

q∈Qa
i

Met(m)(x)

for each 1 ≤ i ≤ k, a ∈ Σ and q ∈ Q. We can now read off the definition of consistency to define:

con(x1, x2, . . . , xk) :=∀x.

(
k∨
i=1

x vn xi

)
→

meta(x) ∧
∧

1≤i≤k
a∈Σ,q∈Q

[q ∈ Qai](x) ↔ ∃y.(R(y) ∧ xqy ∧ yr↑ε∗axi)

J

I Lemma 58. Let A be an n-CPDA with stack-alphabet Γ. For every quanfitifer free formula
φ(x1, . . . , xk) in FO and configurations (q1, s1), . . . , (qk, sk) in Gε(A):

Gε(A) � φ((q1, s1), . . . , (qk, sk)) ⇔ Gε(lum(A)+
k) � φ((q1, t1), . . . , (qk, tk))

whenever (q1, t1), . . . , (qk, tk) are consistent reachable configurations of lum(A)+
k and πΓ(ti) = si

for each 1 ≤ i ≤ k.
Moreover for every set of A configurations (q1, s1), . . . , (qk, sk) there exists a consistent set of

reachable configurations (q1, t1), . . . , (qk, tk) of lum(A)+
k such that πΓ(ti) = si for each 1 ≤ i ≤

k.

Proof. For the first part argue by induction on the structure of φ. For the base case note that unary
predicates are inherited directly fromA and the fact we are considering ε-closure ensures that binary
relations are also directly inherited, despite the additional steps of maintaining meta-annotations. For

C.H. Broadbent 37

equality we must appeal to consistency. The Qai component of any meta-annotation m containined
in one of the tj is uniquely determined by (qi, si) (or indeed by (qi, ti)) and tj≤m by definition of
consistency. Thus for any 1 ≤ i, j ≤ k we will have (qi, ti) = (qj , tj) just in case si = sj .

Conjunction and negation are straightforward applications of the induction hypothesis.
The second part is immediate from the fact that we just need to choose Qai for each meta-

annotation to be the unique set specified by (qi, si). J

I Lemma 59. Let A be an n-CPDA. For every Σ1 sentence φ in FO we can construct an MSO
sentence φ̂ such that:

Gε(A) � φ ⇔ G(GrStriplnA(k)) � φ̂

Proof. Without loss of generality (due to prenex normal form) let us assume that φ = ∃x1.∃x2. · · · ∃xk.φ′(x1, . . . , xk)
where φ′ is quantifier free. For each reachable configuration (q, s) of lum(A)+

k let (q, L(s)) be the
corresponding reachable configuration of GrStriplnA(k). By Lemma 58 it suffices to construct a
quantifier free MSO formula φ̂′(x1, . . . , xk) such that for consistent (q1, s1), . . . , (qk, sk):

Gε(lum(A)+
k) � φ′((q1, s1), . . . , (qk, sk)) ⇔

G(GrStriplnk(A)) � φ̂′((q1, L(s1)), . . . , (qk, L(sk)))

We can then take

φ̂ := ∃x1 · · ·xk

(
k∧
i=1
R(xi) ∧ con(x1, . . . , xk) ∧ φ̂′(x1, . . . , xk)

)
where con is the MSO formula taken from Lemma 57 andR is the reachability predicate taken from
the proof of Lemma 57.

We define φ̂′ by induction on the structure of φ′. The atomic cases of equality and unary pred-
icates can have φ̂′ = φ′ due to the strong isomorphism between lum(A)+

k and GrStriplnk(A)−

together with the fact that removing links does not affect equality for lum(A)+
k . Binary rela-

tions must be given a more sophisticated translation since some edges are removed in forming
GrStriplnk(A). We therefore appeal to Lemma 33 telling us that (q, s)a(q′, s′) in Gε(lum(A)+

k)
just in case (q, L(s))ba(q′, L(s′)) in GrStriplnk(A)−. When φ′(x, y) = xaxi we thus express the
existence of such a bounce by taking:

φ̂′(x, xi) :=
∨
q∈Q

∧
m∈Mi

q,a

(Met(q,m)(x))↓

whereQ is the set of control-states ofA andM i
q,a is the set of meta-annotations ((Qa1)a∈Σ, . . . , (Qak)a∈Σ)

such that q ∈ Qai .
Negation and conjunction is a trivial application of the induction hypothesis. J

I Remark. The method behind the proof of Lemma 59 does not generalise to sentences with
quantifier alternation since consistency requires a k-tuple of stacks to be fixed. If one fixes a stack
with an existential quantification and then endeavours to add a universal quantification, there may
be some stack over which the universal quantifier ranges that does not honour the information in the
meta-annotations embedded in the fixed (existentially quantified) stack.

Since GrStriplnk(A) is an n-PDA it must be the case that Gε(GrStriplnA(k)) has decidable
MSO theory [5]. Lemma 59 therefore implies:

Theorem 38

Let A be an nn-CPDA. Then the Σ1 theory of Gε(A) is decidable.

	Introduction
	Preliminaries
	Higher-Order Stacks
	Collapsible Pushdown Stacks
	The Automata and their Graphs
	Logics

	Undecidability
	Post's Correspondence Problem
	Post's Correspondence Problem and 2-CPDA
	Undecidability for 32-CPDA
	The Non-Locality of 33-CPDA
	1 Undecidability for 42-CPDA

	1 Decidability on nn-CPDA
	Monotonic CPDA
	Link Trails: Towards Link Elimination for Graphs
	Meta-Annotations

	Undecidability
	Post's Correspondence Problem
	Post's Correspondence Problem and 2-CPDA
	Undecidability for 32-CPDA
	The Non-Locality of 32-CPDA
	1 Undecidability for 42-CPDA
	The modification
	Exploiting AP32alt in a 4-CPDA

	Decidability on nn-CPDA
	The Extended Model
	Strong Isomorphisms
	Representing as Conventional CPDA

	Monotonic CPDA
	Link Trails: Towards Link Elimination for nn-CPDA
	Meta-Annotations

