
Department of Computer Science

RR-11-08

Department of Computer Science, University of Oxford

Wolfson Building, Parks Road, Oxford OX1 3QD

SEMANTIC WEB SEARCH BASED ON

ONTOLOGICAL CONJUNCTIVE QUERIES

Bettina Fazzinga

Giorgio Gianforme

Georg Gottlob

Thomas Lukasiewicz

DEPARTMENT OF COMPUTER SCIENCE RESEARCH REPORT

DEPARTMENT OF COMPUTER SCIENCE RESEARCH REPORT 11-08, OCTOBER 2011

SEMANTIC WEB SEARCH BASED ON ONTOLOGICAL

CONJUNCTIVE QUERIES

(PRELIMINARY VERSION, 12 OCTOBER 2011)

Bettina Fazzinga 1 Giorgio Gianforme 2 Georg Gottlob 3

Thomas Lukasiewicz 4

Abstract. Many experts predict that the next huge step forward in Web information technology

will be achieved by adding semantics to Web data, and will possibly consist of (some form of) the

Semantic Web. In this paper, we present a novel approach to Semantic Web search, called Serene,

which allows for a semantic processing of Web search queries, and for evaluating complex Web

search queries that involve reasoning over the Web. More specifically, we first add ontological

structure and semantics to Web pages, which then allows for both attaching a meaning to Web

search queries and Web pages, and for formulating and processing ontology-based complex Web

search queries (i.e., conjunctive queries) that involve reasoning over the Web. Here, we assume

the existence of an underlying ontology (in a lightweight ontology language) relative to which Web

pages are annotated and Web search queries are formulated. Depending on whether we use a general

or a specialized ontology, we thus obtain a general or a vertical Semantic Web search interface,

respectively. That is, we are actually mapping the Web into an ontological knowledge base, which

then allows for Semantic Web search relative to the underlying ontology. The latter is then realized

by reduction to standard Web search on standard Web pages and logically completed ontological

annotations. That is, standard Web search engines are used as the main inference motor for ontology-

based Semantic Web search. We develop the formal model behind this approach and also provide

an implementation in desktop search. Furthermore, we report on extensive experiments, including

an implemented Semantic Web search on the Internet Movie Database.

1Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria, Italy; e-mail: bfazzinga@deis.

unical.it.
2Dipartimento di Informatica e Automazione, Università Roma Tre, Italy; e-mail: giorgio.gianforme@gmail.com.
3Department of Computer Science and Oxford-Man Institute of Quantitative Finance, University of Oxford, UK;

e-mail: georg.gottlob@cs.ox.ac.uk.
4Department of Computer Science, University of Oxford, UK; e-mail: thomas.lukasiewicz@cs.ox.ac.uk.

Acknowledgements: This paper is a significantly extended and revised version of a paper that appeared in:

Proceedings FoIKS-2010, LNCS 5956, pp. 153–172. Springer, 2010 [27]. It is a preliminary version of a paper

that will appear in: J. Web Sem., 2011. This work was supported by the European Research Council under the

EU’s 7th Framework Programme (FP7/2007-2013)/ERC grant 246858 – DIADEM, by the German Research

Foundation (DFG) under the Heisenberg Programme, and by a Yahoo! Research Fellowship. Georg Gottlob

is a James Martin Senior Fellow. The work was carried out in the context of the James Martin Institute

for the Future of Computing. We are very grateful to Giorgio Orsi for his generous help in providing the

experimental results shown in Table 1. Many thanks also to the reviewers of the FoIKS-2010 abstract of this

paper for their useful and constructive comments, which have helped to improve this work.

Copyright c© 2012 by the authors

RR-11-08 I

Contents

1 Introduction 1

2 System Overview 4

2.1 Ontology . 4

2.2 Annotations . 5

2.3 Inference Engine . 6

2.4 HTML Encoding of Annotations . 6

2.5 Query Evaluator . 7

3 Semantic Web Search 8

3.1 Semantic Web Knowledge Bases . 8

3.2 Semantic Web Search Queries . 9

3.3 Ranking Answers . 11

4 Realizing Semantic Web Search 11

5 Offline Ontology Compilation 12

5.1 Simple Completion . 13

5.2 HTML Encoding . 16

6 Online Query Processing 17

6.1 Simple Search Queries . 17

6.2 Safe Search Queries . 17

6.3 Ranking Answers . 20

7 Implementation 20

8 Experimental Results 21

8.1 Size of Completed Annotations . 22

8.2 Efficiency of Online Query Processing . 22

8.3 Efficiency Comparison to the Corese System . 25

8.4 Precision and Recall of Semantic Web Search . 27

9 Semantic Web Search on the Internet Movie Database 28

10 Related Work 32

11 Conclusion 34

A Appendix: Description Logics 35

B Appendix: Proofs 37

RR-11-08 1

1 Introduction

Web search is a key technology of the Web, since it is the primary way to access content in the ocean of

Web data. Current Web search technologies are essentially based on a combination of textual keyword

search with an importance ranking of documents via the link structure of the Web [8]. For this reason,

however, current standard Web search does not allow for a semantic processing of Web search queries,

which analyzes both Web search queries and Web pages with respect to their meaning, and returns exactly

the semantically relevant pages to a query. For the same reason, current standard Web search also does not

allow for evaluating complex Web search queries that involve reasoning over the Web.

Many experts predict that the next huge step forward in Web information technology will be achieved by

adding such structure and/or semantics to Web contents and exploiting them when processing Web search

queries. Indeed, the Semantic Web [5, 6] as a vision of a more powerful future Web goes in this direction.

It is a common framework that allows data to be shared and reused in different applications, enterprises,

and communities. The Semantic Web is an extension of the current Web by standards and technologies that

help machines to understand the information on the Web so that they can support richer discovery, data in-

tegration, navigation, and automation of tasks. It consists of several hierarchical layers, where the Ontology

layer, in form of the OWL Web Ontology Language [36, 54, 4], is the highest layer that has currently reached

a sufficient maturity. Some important layers below the Ontology layer are the RDF and RDF Schema layers

along with the SPARQL query language. For the higher Rules, Logic, and Proof layers of the Semantic Web,

one has especially developed languages integrating rules and ontologies, and languages supporting more

sophisticated forms of knowledge. During the recent decade, a huge amount of academic and commercial

research activities has been spent towards realizing the vision of the Semantic Web. Hence, in addition to the

traditional Web pages, future Web data are expected to be more and more organized in the new formalisms of

the Semantic Web, and will thus also consist of RDF data along with ontological and rule-based knowledge.

As an important example of an initiative towards adding structure and/or semantics to Web contents

in practice (and thus ultimately also towards the Semantic Web), Google’s Rich Snippets1 highlight useful

information from Web pages via structured data standards such as microformats and RDFa. As another ex-

ample, OpenCalais2 turns unstructured HTML into semantically marked up data, ordering data into groups

such as “people”, “places”, “companies”, and more. Other (less general) examples are Freebase3, which is

a semantically marked up database of structured information similar to Wikipedia, and DBpedia4, which ex-

tracts structured information from Wikipedia and makes that data available on the Web.

The development of a new search technology for the Semantic Web, called Semantic Web search, is cur-

rently an extremely hot topic, both in Web-related companies and in academic research (see Section 10). In

particular, there is a fast growing number of commercial and academic Semantic Web search engines. There

are essentially two main research directions. The first (and most common) one is to develop a new form of

search for searching the pieces of data and knowledge that are encoded in the new representation formalisms

of the Semantic Web, while the second (and nearly unexplored) direction is to use the formalisms of the Se-

mantic Web in order to add some semantics to Web search. The second direction is also a first step towards

Web search queries in (written or spoken) natural language.

In this paper, we follow the second line of research. We aim at adding ontological structure to Web

pages, which then allows for both analyzing the meaning of Web search queries and Web pages, and for

1http://knol.google.com/k/google-rich-snippets-tips-and-tricks
2http://www.opencalais.com/
3http://www.freebase.com/
4http://dbpedia.org/

2 RR-11-08

formulating and processing ontology-based complex Web search queries that involve reasoning over the

Web. Intuitively, rather than being interpreted in a keyword-based syntactic fashion, the pieces of data

on existing Web pages are connected to (and via) some ontological knowledge base and then interpreted

relative to this knowledge base. That is, the pieces of data on Web pages are connected to (and via) a much

more precise semantic and contextual meaning. This allows for answering Web search queries in a much

more precise way, taking into account the meaning of Web search queries and pages, and it also allows

for more complex ontology-based Web search queries that involve reasoning over the Web, which are also

much closer to complex natural language search queries than current Boolean keyword-based search queries.

The following are some examples of such Web search queries, which can be appropriately handled in our

Semantic Web search, but not in current standard Web search:

• As for complex Web search queries, when searching for a movie, one may be interested in movies

that were produced by a US company before 1999 and that had a French director. Similarly, when

buying a house in a town, one may be interested in large house selling companies within 50 miles of

that town, that exist for at least 15 years, and that were not known to be blacklisted by a consumer

organization in the last 5 years. Such queries are answered by connecting the information on existing

Web pages relative to some ontological knowledge.

• Suppose next that one is searching for “bus” (as a means of transportation for persons) on the Web.

Then, one is looking for buses or synonyms / related concepts, but also for special kinds of buses

that are not synonyms / related concepts, such as e.g. passenger vans. Ontological knowledge now

allows for obtaining both a collection of contextually correct synonyms / related concepts and a col-

lection of contextually correct special kinds of buses.

• Similarly, a Web search for “president of the USA” should also return Web pages that contain “George

W. Bush” (who is one of the presidents of the USA according to some ontological knowledge). Also,

a Web search for “the president of the USA on September 11, 2001” should return Web pages men-

tioning “George W. Bush” (who was the president of the USA on September 11, 2001).

• On the other hand, when searching for Web pages about the first president of the USA, “Washington”,

ontological knowledge allows us to restrict our search to Web pages that are actually about Washington

as the name of the president, and so to ignore, e.g., Web pages about the state or town.

In our approach, an ontologically enriched Web along with complex ontology-based search on the Web

are achieved on top of the existing Web and using existing Web search engines. Intuitively, standard Web

pages are first connected to (and via) an ontological knowledge base, which then allows for formulating and

processing complex ontology-based (conjunctive) search queries that involve reasoning over the data of the

Web. The query processing step is based on new techniques (i) for pre-compiling the ontological knowledge

using standard ontology reasoning techniques and (ii) for translating complex ontology-based Web queries

into (sequences of) standard Web queries that are answered by standard Web search. That is, essential parts

of ontological search on the Web are actually reduced to state-of-the-art search engines such as Google

search. As important advantages, this approach can immediately be applied to the whole existing Web, and

it can be done with existing Web search technology (and so does not require completely new technologies).

Such a line of research aims at adding ontology-based structure and semantics (and thus in a sense also

intelligence) to current search engines for the existing Web by combining existing Web pages and queries

with ontological knowledge.

RR-11-08 3

The ontological knowledge and annotations that are underlying our Semantic Web search can be clas-

sified according to its origin and contents. As for the origin, they may be either (a) explicitly defined by

experts, or (b) automatically extracted from the Web, eventually coming along with existing pieces of on-

tological knowledge and annotations (e.g., from existing ontologies or ontology fragments, and/or from

existing annotations of Web pages in microformats or RDFa). In the latter case, generating, maintaining,

and updating the ontological knowledge and annotations is done automatically and much less cost-intensive

than in the former case. As for the contents, (a) the ontological knowledge and annotations may either de-

scribe fully general knowledge (such as the knowledge encoded in Wikipedia) for general ontology-based

search on the Web, or (b) they may describe some specific knowledge (such as biomedical knowledge) for

vertical ontology-based search on the Web. The former results into a general ontology-based interface to the

Web similar to Google, while the latter produces different vertical ontology-based interfaces.

The main contributions of this paper and the characteristic features of our approach to Semantic Web

search can be briefly summarized as follows:

• We present a novel approach to Semantic Web search, called Serene, which allows for a semantic

processing of Web search queries relative to an underlying ontology, and for evaluating ontology-

based complex Web search queries that involve reasoning over the Web. We show how the approach

can be implemented on top of standard Web search engines and ontological inference technologies.

• We develop the formal model behind this approach. In particular, we introduce Semantic Web knowl-

edge bases and Semantic Web search queries to them. We also define the ObjectRank ranking for our

Semantic Web search.

• We provide a technique for processing Semantic Web search queries, which consists of an offline

inference and an online reduction to a collection of standard Web search queries. We prove that this

way of processing Semantic Web search queries is always ontologically correct. Furthermore, we

identify a large class of Semantic Web knowledge bases where it is also complete.

• The offline inference compiles terminological knowledge into so-called completed annotations. We

prove that these have a polynomial size and can also be computed in polynomial time. Furthermore,

experimental data show that they are also rather small in practice, especially since ontological hierar-

chies in practice are generally not that deep (a concept has at most a dozen superconcepts).

• We report on two prototype implementations of our approach in desktop search. Experiments with

more than one million annotation facts show that the new methods are principally feasible and poten-

tially scale to Web search (which is actually much faster than desktop search, even with a much larger

search space).

• We also compare our most recent prototype with the Corese system [17], which is the Semantic Web

search system in the state-of-the-art that is most closely related to our approach, showing that our

system is 18 times quicker than Corese.

• Differently from conventional Boolean keyword-oriented Web search queries, the proposed Semantic

Web search queries clearly empower the user to precisely describe her information need for certain

kinds of queries, resulting in a very precise result set and a very high precision and recall for the query

result.

4 RR-11-08

• We show that our approach to Semantic Web search can be readily applied to existing Web pages,

even if they are currently not (yet) semantically annotated, and that it can be used to perform a vertical

ontology-based search. More concretely, we have used the approach to implement a Semantic Web

search interface for the Web pages of the Internet Movie Database (IMDB)5.

The rest of this paper is organized as follows. In Section 2, we give an overview of our approach to

Semantic Web search. In Section 3, we introduce Semantic Web knowledge bases and Semantic Web search

queries, and we define the ObjectRank ranking. Sections 4 to 6 describe how Semantic Web search queries

are processed via offline inference and online reduction to standard Web search. In Sections 7 and 8, we

report on two prototype implementations for semantic desktop search, along with extensive experimental

results. Section 9 describes the implemented Semantic Web search on the IMDB. In Sections 10 and 11,

we discuss related work, summarize our main results, and give an outlook on future research. The basics of

the underlying tractable ontology language are recalled in Appendix A, and detailed proofs of all results are

given in Appendix B.

2 System Overview

The overall architecture of our Semantic Web search system, called Serene (Semantic Web search engine),

is shown in Fig. 1. It consists of the Interface, the Query Evaluator (implemented on top of standard Web

Search Engines), and the Inference Engine (blue parts). Standard Web pages and their objects are enriched

by Annotation pages, based on an Ontology.

2.1 Ontology

Our approach to Semantic Web search is done relative to a fixed underlying ontology, which defines an

alphabet of elementary ontological ingredients, as well as terminological relationships between these in-

gredients. The ontology may either describe fully general knowledge (such as the knowledge encoded in

Wikipedia) for general ontology-based search on the Web, or it may describe some specific knowledge (such

as biomedical knowledge) for vertical ontology-based search on the Web. The former results into a general

ontology-based interface to the Web similar to Google, while the latter produces different vertical ontology-

based interfaces to the Web. There are many existing ontologies that can be used, which have especially been

developed in the context of the Semantic Web, but also in biomedical and technical areas. Such ontologies

are generally created and updated by human experts in a knowledge engineering process. Recent research

attempts are also directed towards an automatic generation of ontologies from text documents, eventually

coming along with existing pieces of ontological knowledge [9, 24].

For example, an ontology may contain the knowledge that (i) conference and journal papers are articles,

(ii) conference papers are not journal papers, (iii) isAuthorOf relates scientists and articles, (iv) isAuthorOf is

the inverse of hasAuthor, and (v) hasFirstAuthor is a functional binary relationship, which is formalized by:

ConferencePaper⊑Article, JournalPaper⊑Article,
ConferencePaper⊑¬JournalPaper,
∃isAuthorOf⊑ Scientist, ∃isAuthorOf −⊑Article,
isAuthorOf −⊑ hasAuthor, hasAuthor−⊑ isAuthorOf,
(funct hasFirstAuthor) .

(1)

5http://www.imdb.com

RR-11-08 5

Ontology

Evaluator

Query
Interface

Engine

Search

Inference

Engine

Web

Annotations

Figure 1: System architecture.

2.2 Annotations

As a second ingredient of our approach to Semantic Web search, we assume the existence of assertional

pieces of knowledge about Web pages and their objects, also called (semantic) annotations, which are

defined relative to the terminological relationships of the underlying ontology. Such annotations are starting

to be widely available for a large class of Web resources, especially user-defined annotations with the Web

2.0. They may also be automatically learned from Web pages and their objects (see, e.g., [15]). As a midway

between such fully user-defined and fully automatically generated annotations, one can also automatically

extract annotations from Web pages using user-defined rules, as described in Section 9.

For example, in a very simple scenario relative to the ontology in Eq. 1, a Web page i1 may contain

information about a Ph.D. student i2, called Mary, and two of her papers: a conference paper i3 with title

“Semantic Web search” and a journal paper i4 entitled “Semantic Web search engines” and published in

2008. A simple HTML page representing this scenario is shown in Fig. 2.

There may now exist one semantic annotation each for the Web page, the Ph.D. student Mary, the journal

paper, and the conference paper. The annotation for the Web page may simply encode that it mentions Mary

and the two papers, while the one for Mary may encode that she is a Ph.D. student with the name Mary

and the author of the papers i3 and i4. The annotation for i3 may encode that i3 is a conference paper and

has the title “Semantic Web search”, while the one for i4 may encode that i4 is a journal paper, authored

by Mary, has the title “Semantic Web search engines”, was published in 2008, and has the keyword “RDF”.

The semantic annotations of i1, i2, i3, and i4 are then formally expressed as the following sets of ontological

axioms Ai1 , Ai2 , Ai3 , and Ai4 , respectively:

Ai1 = {contains(i1, i2), contains(i1, i3), contains(i1, i4)},
Ai2 = {PhDStudent(i2), name(i2, “mary”),

isAuthorOf(i2, i3), isAuthorOf(i2, i4)},
Ai3 = {ConferencePaper(i3), title(i3, “Semantic Web search”)},
Ai4 = {JournalPaper(i4), hasAuthor(i4, i2),

title(i4, “Semantic Web search engines”),
yearOfPublication(i4, 2008), keyword(i4, “RDF”)}.

(2)

6 RR-11-08

Figure 2: HTML page.

2.3 Inference Engine

Differently from the ontology, the semantic annotations can be directly published on the Web and searched

via standard Web search engines. In order to also make it visible to standard Web search engines, the on-

tology is compiled into the semantic annotations. More specifically, all semantic annotations are completed

in an offline ontology compilation step, where the Inference Engine adds all properties (i.e., ground atoms)

that can be deduced from the ontology and the semantic annotations. The resulting (completed) semantic

annotations are then published as Web pages, so that they can be searched by standard Web search engines.

For example, considering again the running scenario, using the ontology in Eq. 1, in particular, we

can derive from the semantic annotations in Eq. 2 that the two papers i3 and i4 are also articles, and both

authored by Mary.

2.4 HTML Encoding of Annotations

The above searchable (completed) semantic annotations of (objects on) standard Web pages are published

as HTML Web pages with pointers to the respective object pages, so that they (in addition to the standard

Web pages) can be searched by standard search engines. For example, the HTML pages for the completed

semantic annotations of the above Ai1 , Ai2 , Ai3 , and Ai4 are shown in Fig. 3. We here use the HTML

address of the Web page/object’s annotation page as an identifier for that Web page/object. The plain textual

representation of the completed semantic annotations allows their processing by existing standard search

engines for the Web. It is important to point out that this textual representation is simply a list of properties,

each eventually along with an identifier or a data value as attribute value, and it can thus immediately be

encoded as a list of RDF triples. Similarly, the completed semantic annotations can be easily encoded in

RDFa or microformats.

RR-11-08 7

i1 :www.xyuni.edu/mary/an1.html

<html>
<body>
www.xyuni.edu/mary

WebPage

contains i2

contains i3

contains i4

</body>
</html>

i3 :www.xyuni.edu/mary/an3.html

<html>
<body>
www.xyuni.edu/mary

Article

ConferencePaper

hasAuthor i2

title Semantic Web search

</body>
</html>

i2 :www.xyuni.edu/mary/an2.html

<html>
<body>
www.xyuni.edu/mary

PhDStudent

name mary

isAuthorOf i3

isAuthorOf i4

</body>
</html>

i4 :www.xyuni.edu/mary/an4.html

<html>
<body>
www.xyuni.edu/mary

Article

JournalPaper

hasAuthor i2

title Semantic Web search engines

yearOfPublication 2008

keyword RDF

</body>
</html>

Figure 3: Four HTML pages encoding the (completed) semantic annotations for the HTML page in Fig. 2

and the three objects on it.

2.5 Query Evaluator

The Query Evaluator reduces each Semantic Web search query of the user in an online query processing

step to a sequence of standard Web search queries on standard Web and annotation pages, which are then

processed by a standard Web Search Engine. The Query Evaluator also collects the results and re-transforms

them into a single answer which is returned to the user. As an example of a Semantic Web search query,

one may ask for all Ph.D. students who have published an article in 2008 with RDF as a keyword, which is

formally expressed as follows:

Q(x)= ∃y (PhDStudent(x) ∧ isAuthorOf(x, y) ∧ Article(y)∧
yearOfPublication(y, 2008) ∧ keyword(y, “RDF”)) .

(3)

This query is transformed into the two queries Q1 = PhDStudent AND isAuthorOf and Q2 = Article AND

“yearOfPublication 2008” AND “keyword RDF”, which can both be submitted to a standard Web search en-

gine. The result of the original queryQ is then built from the results of the two queriesQ1 andQ2. Note that

a graphical user interface, such as the one of Google’s advanced search, and ultimately a natural language

interface (for queries in written or spoken natural language) can help to hide the conceptual complexity of

ontological queries to the user.

8 RR-11-08

3 Semantic Web Search

In this section, we introduce Semantic Web knowledge bases, and we define the syntax and semantics of

Semantic Web search queries to such knowledge bases. We then introduce a ranking for individuals in our

approach, called ObjectRank, which generalizes the standard PageRank ranking of Web pages. Although

we implicitly assume the tractable description logic DL-LiteA (cf. Appendix A) as underlying ontology

language for Semantic Web knowledge bases and search queries, any other ontology languages may be

used as well.

3.1 Semantic Web Knowledge Bases

Informally, a Semantic Web knowledge base consists of a background TBox and a collection of ABoxes,

one for every concrete Web page and for every object on a Web page. For example, the homepage of a

scientist may be such a concrete Web page and be associated with an ABox, while the publications on the

homepage may be such objects, which are also associated with one ABox each.

We assume pairwise disjoint sets D, A, RA, RD, I, and V of atomic datatypes, atomic concepts, atomic

roles, atomic attributes, individuals, and data values, respectively. Let I be the disjoint union of two sets P

and O of Web pages and Web objects, respectively. Informally, every Web page p∈P is an identifier for a

concrete Web page, while every Web object o∈O is an identifier for a concrete object on a concrete Web

page. We assume the atomic roles links to between Web pages and contains between Web pages and Web

objects. The former represents the link structure between concrete Web pages, while the latter encodes the

occurrences of concrete objects on concrete Web pages.

Definition 1 A semantic annotation Aa for a Web page or object a∈P∪O is a finite set of concept mem-

bership axiomsA(a), role membership axioms P (a, b), and attribute membership axioms U(a, v) (which all

have the Web page or object a as first argument), where A∈A, P ∈RA, U ∈RD, b∈ I, and v ∈V. A Se-

mantic Web knowledge base KB = (T , (Aa)a∈P∪O) consists of a TBox T and one semantic annotation Aa

for every Web page and object a∈P∪O.

Informally, a Semantic Web knowledge base consists of some background terminological knowledge and

some assertional knowledge for every concrete Web page and for every concrete object on a Web page. The

terminological knowledge may be an ontology from some global Semantic Web repository or an ontology

defined locally by the user site. In contrast to the terminological knowledge, the assertional knowledge

will be directly stored on the Web (on annotation pages like the described standard Web pages) and is thus

accessible via Web search engines.

Example 1 (Scientific Database cont’d). Continuing the running example of Section 2, a Semantic Web

knowledge base may specify some simple information about scientists and their publications. The sets of

atomic concepts, atomic roles, atomic attributes, individuals, and data values are given as follows:

A = {Scientist,PhDStudent,Article,ConferencePaper, JournalPaper},
RA = {hasAuthor, isAuthorOf, hasFirstAuthor, contains},
RD = {name, title, yearOfPublication, keyword},
I = {i1, i2, i3, i4},
V = {“mary”, “Semantic Web search”, 2008,

“Semantic Web search engines”, “RDF ”} .

RR-11-08 9

The set I is partitioned into the set P= {i1} of Web pages and the set O= {i2, i3, i4} of Web objects on i1.

Then, a Semantic Web knowledge base is given by KB = (T , (Aa)a∈P∪O), where the TBox T is given by

the axioms in Eq. 1, and the semantic annotations Aa of the individuals a∈P ∪O are the ones in Eq. 2.

3.2 Semantic Web Search Queries

As Semantic Web search queries to Semantic Web knowledge bases, we use unions of conjunctive queries

with conjunctive and negated conjunctive subqueries. We now first define the syntax of Semantic Web search

queries and then the semantics of positive and general such queries to Semantic Web knowledge bases.

Syntax

Intuitively, using database and description logic terminology, Semantic Web search queries are unions of

conjunctive queries, which may contain conjunctive queries and negated conjunctive queries in addition to

atoms and equalities as conjuncts.

We first give some preparative definitions as follows. Let X be a finite set of variables. A term is either a

Web page p∈P, a Web object o∈O, a data value v ∈V, or a variable x∈X. An atomic formula (or atom)

α has one of the following forms:

(i) d(t), where d is an atomic datatype, and t is a term;

(ii) A(t), where A is an atomic concept, and t is a term;

(iii) P (t, t′), where P is an atomic role, and t, t′ are terms; and

(iv) U(t, t′), where U is an atomic attribute, and t, t′ are terms.

An equality is of the form =(t, t′), where t and t′ are terms. A conjunctive formula ∃y φ(x,y) is an

existentially quantified conjunction of atoms α and equalities =(t, t′), which have free variables among x

and y. We are now ready to define the notion of a Semantic Web search query as follows.

Definition 2 A Semantic Web search query Q(x) is an expression of the form
∨n

i=1
∃yi φi(x,yi), where

each φi with i∈{1, . . . , n} is a conjunction of atoms α (also called positive atoms), conjunctive formulas

ψ, negated conjunctive formulas not ψ, and equalities =(t, t′), which have free variables among x and yi.

Example 2 (Scientific Database cont’d). The query Q(x) of Eq. 3 is a Semantic Web search query. Two

other Semantic Web search queries are:

Q1(x)= (Scientist(x) ∧ not doctoralDegree(x, “oxford university”)∧
worksFor(x, “oxford university”)) ∨ (Scientist(x) ∧ doctoralDegree(x,
“oxford university”) ∧ not worksFor(x, “oxford university”));

Q2(x)= ∃y (Scientist(x) ∧ worksFor(x, “oxford university”) ∧ isAuthorOf(x, y)∧
not ConferencePaper(y) ∧ not ∃z yearOfPublication(y, z)).

Informally, Q1(x) asks for all scientists who are either working for oxford university and did not receive

their Ph.D. from that university, or who received their Ph.D. from oxford university but do not work for

it. Whereas Q2(x) asks for all scientists of oxford university who are authors of at least one unpublished

non-conference paper. Note that when searching for scientists, the system automatically searches for all

subconcepts (known according to the TBox T of the underlying Semantic Web knowledge base KB), such

as Ph.D. students or computer scientists.

10 RR-11-08

Semantics of Positive Search Queries

We define the semantics of positive Semantic Web search queries, which are negation-free, in terms of

ground substitutions via the notion of logical consequence.

We first give some preliminary definitions. A Semantic Web search query Q(x) is positive iff it contains

no negated conjunctive subqueries. A (variable) substitution θ maps variables from X to terms. A sub-

stitution θ is ground iff it maps to Web pages p∈P, Web objects o∈O, and data values v ∈V. A closed

first-order formula φ is a logical consequence of a knowledge base KB = (T , (Aa)a∈P∪O), denoted

KB |=φ, iff every first-order model I of T ∪
⋃

a∈P∪O
Aa also satisfies φ.

Definition 3 Given a Semantic Web knowledge base KB and a positive Semantic Web search query Q(x)
with free variables x, an answer for Q(x) to KB is a ground substitution θ for the variables x such

that KB |=Q(xθ).

Example 3 (Scientific Database cont’d). Consider again the Semantic Web knowledge base KB of Exam-

ple 1. The Semantic Web search query Q(x) of Eq. 3 is positive, and an answer for Q(x) to KB is given

by θ = {x/i2}.

Semantics of General Search Queries

We next define the semantics of general search queries by reduction to the semantics of positive ones,

interpreting negated conjunctive subqueries not ψ as the lack of evidence about the truth of ψ. That is,

negations are interpreted by a closed-world semantics on top of the open-world semantics of description

logics.

Definition 4 Given a Semantic Web knowledge base KB and search query

Q(x)=
∨n

i=1
∃yi(φi,1(x,yi)∧ · · · ∧φi,li(x,yi)∧not φi,li+1(x,yi)∧ · · · ∧not φi,mi

(x,yi)) ,

an answer for Q(x) to KB is a ground substitution θ for the variables x such that KB |=Q+(xθ) and

KB 6|=Q−(xθ), where the positive search queries Q+(x) and Q−(x) are defined as follows:

Q+(x)=
∨n

i=1
∃yi (φi,1(x,yi) ∧ · · · ∧ φi,li(x,yi)) and

Q−(x)=
∨n

i=1
∃yi (φi,1(x,yi) ∧ · · · ∧ φi,li(x,yi) ∧ (φi,li+1(x,yi) ∨ · · · ∨ φi,mi

(x,yi))) .

Informally, a ground substitution θ is an answer for the search query Q(x) to KB iff (i) θ is an answer

for Q+(x) to KB , and (ii) θ is not an answer for Q−(x) to KB , where Q+(x) is the positive part of Q(x),
while Q−(x) is the positive part of Q(x) combined with the complement of the negative one.

Example 4 (Scientific Database cont’d). Consider again the Semantic Web knowledge base KB = (T ,
(Aa)a∈P∪O) of Example 1 and the following general Semantic Web search query, asking for Mary’s unpub-

lished non-journal papers:

Q(x)= ∃y (Article(x) ∧ hasAuthor(x, y) ∧ name(y, “mary”) ∧ not JournalPaper(x)∧
not ∃z yearOfPublication(x, z)).

Then, an answer for Q(x) to KB is given by θ = {x/i3}. Recall that i3 represents an unpublished confer-

ence paper entitled “Semantic Web search”. Note that the membership axioms Article(i3) and hasAuthor(i2,
i3) are not in the semantic annotations Aa, a∈P∪O, but they can be inferred from them using the ontol-

ogy T .

RR-11-08 11

3.3 Ranking Answers

As for the ranking of all answers for a Semantic Web search queryQ to a Semantic Web knowledge base KB

(i.e., ground substitutions for all free variables in Q, which correspond to tuples of Web pages, Web objects,

and data values), we generalize the PageRank technique [8]: rather than considering only Web pages and the

link structure between Web pages (expressed through the role links to here), we also consider Web objects,

which may occur on Web pages (expressed through the role contains), and which may also be related to

other Web objects via other roles. More concretely, we define the ObjectRank of a Web page or object a as

follows:

R(a)= d ·
∑

b∈Ba
R(b) /Nb + (1− d) · E(a) , (4)

where (i) Ba is the set of all Web pages and objects o that relate to a (i.e., o relates to a via some role), (ii)

Nb is the number of Web pages and objects o that relate from b (i.e., b relates to o via some role), (iii) d is a

damping factor, and (iv) E associates with every Web page and object an initial value, called source of rank.

So, rather than depending only on the link structure between Web pages, the new ranking depends also on

the relationships between Web pages and objects, and on the relationships between Web objects, where the

user fixes the roles to be considered. Note that in some cases, only a subset of all relationships may be used

for specifying ObjectRank. For example, in the Scientific Database, the relationship “cites” alone between

articles produces a very useful ranking on articles.

The ranking on Web pages and objects is then naturally extended to answers (i.e., tuples of Web pages,

Web objects, and values) for Semantic Web search queries to Semantic Web knowledge bases. For example,

the answers can be ordered lexicographically, or the rank of an answer can be defined as the minimum (or

maximum) of the ranks of its Web pages and objects, and then ordered as usual.

4 Realizing Semantic Web Search

The main idea behind processing Semantic Web search queries Q to a knowledge base KB is to reduce

them to standard Web search queries. To this end, the TBox T of KB must be considered when performing

standard Web search. There are two main ways to do so. The first is to compile T into Q, yielding a new

standard Web search query Q′ on the ABox A of KB . The second, which we adopt here, is to compile

T via offline ontology reasoning into the ABox A of KB , yielding a completed ABox A′, which (being

represented on the Web in addition to the standard Web pages) is then searched online by a collection of

standard Web search queries depending onQ. So, processing Semantic Web search queriesQ is divided into

• an offline ontology reasoning step, where all semantic annotations of Web pages and objects are

completed by membership axioms entailed from KB , and

• an online reduction to standard Web search, where Q is transformed into standard Web search queries

whose answers are used to construct the answer for Q.

Observe that the compilation of the TBox T via an offline ontology reasoning step into the ABox A
of KB has several important advantages over the compilation of T into the query Q. Note that the latter

technique is also applied in the inference and query processing algorithms of DL-Lite; it implies that ontol-

ogy reasoning is done online during the query processing step. As a first advantage of the former, ontology

reasoning is done offline (i.e., before and independently from query processing), and thus its computation

time does not appear in the query processing time. Second, ontology reasoning is done only once, and then

12 RR-11-08

used in processing different queries, while the compilation of T into Q requires to newly perform ontology

reasoning for every query, and thus results into many repeated computations. The above two advantages

are especially important for very large knowledge bases, as it is the case in Semantic Web search. Third,

online query processing on the data resulting from an offline ontology inference step is very close to current

Web search techniques, which also include the offline construction of a search index, which is then used for

rather efficiently performing online query processing. In a sense, offline ontology inference can be consid-

ered as the offline construction of an ontological index, in addition to the standard index for Web search.

Fourth, our approach reuses existing Web search techniques and can easily be integrated with them, which

is generally not possible for the compilation of T into Q, as this requires a logically correct handling of

Boolean operators in search queries; current standard Web search engines, however, are generally lacking

such a handling. Fifth, as another advantage, the compilation of T into A actually also makes our approach

independent from the underlying ontology language. A disadvantage of our approach to offline reasoning

compared to the compilation of T into Q is that its result must be updated whenever the TBox T or the

ABox A change, which is, however, less an issue especially when T and A change only rarely.

In the offline ontology reasoning step, we check whether the Semantic Web knowledge base is satisfiable,

and we compute the completion of all semantic annotations, i.e., we augment the semantic annotations with

all concept, role, and attribute membership axioms that can be deduced from the semantic annotations and

the ontology. We suggest to use only the so-called simple completion of all semantic annotations, which is

sufficient for a large class of Semantic Web knowledge bases and search queries. It is important to point out

that since ontology reasoning is done offline (like the construction of an index structure for Web search),

its running time does not contribute to the running time of the actual online processing of Semantic Web

search queries. Thus, the running time used for ontology reasoning can be fully neglected. Nonetheless, in

tractable ontology languages such as DL-LiteA, checking whether a Semantic Web knowledge base KB is

satisfiable, and checking whether a membership axiom is a logical consequence of KB for computing the

simple completion of KB can both be done in LOGSPACE in the data complexity, and one can use existing

systems such as QuOnto [12].

In the online reduction to standard Web search, we decompose a given Semantic Web search query Q
into a collection of standard Web search queries, of which the answers are then used to construct the answer

for Q. The standard Web search queries are processed with existing search engines on the Web. Publishing

the completed semantic annotations as standard Web pages, as we propose here, this standard Web search

can be done immediately with existing standard Web search engines (see Section 7 for an implementation of

semantic desktop search on top of standard desktop search). Alternatively, we may also keep the completed

semantic annotations in a virtual way only and use them for the construction of the index structure for

Web search only. In that case, the offline ontology reasoning step can be combined with the construction

of the index structure for Web search.

Note that the terms “online” and “offline” are here used in a computational sense. In the following, we

describe the offline ontology reasoning step in Section 5 and the online reduction to standard Web search in

Section 6. We finally describe the implementation of a semantic desktop search engine in Section 7.

5 Offline Ontology Compilation

The offline ontology reasoning step compiles the implicit pieces of terminological knowledge in the TBox

of a Semantic Web knowledge base into explicit membership axioms in the ABox, i.e., in the semantic an-

notations of Web pages and objects, so that they (in addition to the standard Web pages) can be searched by

RR-11-08 13

standard Web search engines. This compilation is always correct, also for other underlying ontology lan-

guages different from DL-LiteA. To also obtain completeness under DL-LiteA, (a) in the case of quantifier-

free search queries, (b) when the TBox is equivalent to a Datalog program, and (c) more generally (relative

to both) when the existentially quantified variables in search queries occur only in safe positions, it is suffi-

cient to add all logically entailed membership axioms constructed from Web pages, Web objects, and data

values. Note that this completeness result assumes that Semantic Web knowledge bases are defined relative

to DL-LiteA.

5.1 Simple Completion

We now introduce the notion of simple completion for Semantic Web knowledge bases, which formalizes

the compilation of TBox into ABox knowledge. Informally, for every Web page and object a, all deducible

ground membership axioms are collected in a completed semantic annotation of a. Observe here that the

notion of simple completion of a Semantic Web knowledge base depends only on its sets of atomic con-

cepts, atomic roles, atomic attributes, individuals, and data values, and is otherwise independent from the

underlying ontology language.

Definition 5 Let KB =(T , (Aa)a∈P∪O) be a satisfiable Semantic Web knowledge base. The simple com-

pletion of KB is the knowledge base KB ′=(∅, (Aa
′)a∈P∪O) where each Aa

′ is the set of all concept mem-

bership axioms A(a), role membership axioms P (a, b), and attribute membership axioms U(a, v) logically

implied by T ∪
⋃

a∈P∪O
Aa, where A∈A, P ∈RA, U ∈RD, b∈ I, and v ∈V.

Example 5 (Scientific Database cont’d). Consider again the Semantic Web knowledge base KB =(T ,
(Aa)a∈P∪O) of Example 1. Then, the simple completion of KB contains in particular the three new axioms

Article(i3), hasAuthor(i3, i2), and Article(i4). The first two are added to Ai3 and the last one to Ai4 .

In general, for any underlying ontology language of a Semantic Web knowledge base, the simple com-

pletion allows for correctly but not for completely evaluating Semantic Web search queries (i.e., all answers

are correct, but some answers may be missing). This is because existentially quantified variables in the

search query may refer to incompletely specified existentially quantified entries in the Semantic Web knowl-

edge base, which thus may not be connected to concrete individuals and values. Hence, one case where we

easily obtain completeness is when there are no existential quantifiers in the search query. Towards this re-

sult, the following theorem shows that positive quantifier-free search queries to a knowledge base KB over

DL-LiteA can be evaluated on the simple completion of KB (which contains only compiled but no explicit

TBox knowledge anymore).

Theorem 1 Let KB be a satisfiable Semantic Web knowledge base over DL-LiteA, let Q(x) be a positive

Semantic Web search query without existential quantifiers, and let θ be a ground substitution for x. Then, θ
is an answer for Q(x) to KB iff θ is an answer for Q(x) to the simple completion of KB .

As an immediate consequence, general quantifier-free search queries to a Semantic Web knowledge

base KB over DL-LiteA can also be evaluated on the simple completion of KB , which is expressed by the

following corollary.

Corollary 2 Let KB be a satisfiable Semantic Web knowledge base over DL-LiteA, Q(x) be a (general)

Semantic Web search query without existential quantifiers, and θ be a ground substitution for x. Then, θ

14 RR-11-08

is an answer for Q(x) to KB iff θ is an answer for Q+(x) but not an answer for Q−(x) to the simple

completion of KB .

Another case where we easily obtain completeness is when there are no incomplete existentially quanti-

fied entries in the Semantic Web knowledge base, which requires to disallow some concept inclusion axioms,

and which actually means that the knowledge base is equivalent to a Datalog program. This is expressed by

the following theorem for positive search queries. Observe that the theorem does not exclude existentially

quantified variables to occur in such queries.

Theorem 3 Let KB be a satisfiable Semantic Web knowledge base over DL-LiteA such that none of the

concept inclusion axioms in KB has one of the forms B⊑∃P , B⊑∃P−, B⊑ δ(U), B⊑∃P.C, and

B⊑∃P−.C. Let Q(x) be a positive Semantic Web search query, and let θ be a ground substitution for

x. Then, θ is an answer for Q(x) to KB iff θ is an answer for Q(x) to the simple completion of KB .

It follows immediately that fully general search queries to a Semantic Web knowledge base KB over

DL-LiteA, where the same concept inclusion axioms are disallowed, can also be evaluated on the simple

completion of KB .

Corollary 4 Let KB be a satisfiable Semantic Web knowledge base over DL-LiteA such that none of the

concept inclusion axioms in KB has one of the forms B⊑∃P , B⊑∃P−, B⊑ δ(U), B⊑∃P.C, and

B⊑∃P−.C. Let Q(x) be a (general) Semantic Web search query, and let θ be a ground substitution

for x. Then, θ is an answer for Q(x) to KB iff θ is an answer for Q+(x) but not an answer for Q−(x) to

the simple completion of KB .

More generally, we also obtain completeness when all existentially quantified variables in search queries

occur only in positions that do not carry any incomplete existentially quantified entry in the Semantic Web

knowledge base. To formalize this result, we first define the notion of positions and their safeness as follows.

A position F [i] consists of an atomic concept, atomic role, or attribute F and an argument position i=1,

if F is an atomic concept, and i∈{1, 2}, if F is an atomic role or attribute. A position F [i] is safe relative

to a Semantic Web knowledge base KB =(T , (Aa)a∈P∪O) iff only Web pages p∈P, Web objects o∈O,

and values v ∈V occur in that position in atoms in any universal model of the Datalog± translation of

T ∪
⋃

a∈P∪O
Aa [11]. The following theorem then formalizes the above idea for the case of positive search

queries; it generalizes Theorems 1 and 3.

Theorem 5 Let KB be a satisfiable Semantic Web knowledge base over DL-LiteA. Let Q(x) be a positive

Semantic Web search query such that all existentially quantified variables occur only in safe positions, and

let θ be a ground substitution for x. Then, θ is an answer for Q(x) to KB iff θ is an answer for Q(x) to the

simple completion of KB .

As an immediate consequence, this result also carries over to the case of general search queries to a

Semantic Web knowledge base KB over DL-LiteA. This is expressed by the following corollary, which

generalizes Corollaries 2 and 4.

Corollary 6 Let KB be a satisfiable Semantic Web knowledge base over DL-LiteA. LetQ(x) be a (general)

Semantic Web search query such that all existentially quantified variables occur only in safe positions, and

let θ be a ground substitution for x. Then, θ is an answer for Q(x) to KB iff θ is an answer for Q+(x) but

not an answer for Q−(x) to the simple completion of KB .

RR-11-08 15

To obtain a sufficient syntactic condition for the safeness of positions relative to KB , we now define the

notion of unsafe positions, which is based on modeling the propagation of existentially quantified entries in

the Datalog± encoding of KB . Given a Semantic Web knowledge base KB over DL-LiteA, we define the

set of all unsafe positions relative to KB , denoted UKB , inductively as follows:

• UKB contains (1) P [2], (2) P [1], (3) U [2], (4) P [2] and A[1], and (5) P [1] and A[1] for every concept

inclusion axiom B⊑C in KB such that C has the form (1) ∃P , (2) ∃P−, (3) δ(U), (4) ∃P.A, and (5)

∃P−.A, respectively;

• if UKB contains (1) A1[1], (2) P1[1], (3) P1[2], and (4) U1[1] for B of the form (1) A1, (2) ∃P1, (3)

∃P−
1

, and (4) δ(U1), respectively, then UKB also contains (5) A2[1], (6) P2[1], (7) P2[2], (8) U2[1],
(9) P2[1], and (10) P2[2] for every concept inclusion axiom B⊑C in KB such that C has the form

(5) A2, (6) ∃P2, (7) ∃P−
2

, (8) δ(U2), (9) ∃P2.A2, and (10) ∃P−
2
.A2, respectively;

• if UKB contains (1) P1[1] and (2) P1[2] for Q of the form (1) P1 and (2) P−
1

, respectively, then UKB

also contains (3) P2[1] and (4) P2[2] for every role inclusion axiom Q⊑R in KB such that R has the

form (3) P2 and (4) P−
2

, respectively;

• if UKB contains (1) P1[1] and (2) P1[2] for Q of the form (1) P−
1

and (2) P1, respectively, then UKB

also contains (3) P2[2] and (4) P2[1] for every role inclusion axiom Q⊑R in KB such that R has the

form (3) P2 and (4) P−
2

, respectively;

• if UKB contains (1) U1[1] and (2) U1[2] then UKB also contains (1) U2[1] and (2) U2[2], respectively,

for every role inclusion axiom U1⊑U2 in KB .

Informally, the set of all unsafe positions is a superset for the set of all positions that are not safe, since

some of the assumed propagations may not actually occur, because the corresponding rule in the Datalog±

program may be inactive due to missing data. This result is formally expressed by the following theorem.

Theorem 7 Let KB be a satisfiable Semantic Web knowledge base over DL-LiteA. Then, any position that

is not unsafe relative to KB is safe relative to KB .

The following result shows that deciding the satisfiability of Semantic Web knowledge bases and the

logical consequence of ground atoms can be done in polynomial time in general and in LOGSPACE in the

data complexity.

Theorem 8 Given a Semantic Web knowledge base KB over DL-LiteA, deciding (a) whether KB is satisfi-

able and (b) whether a given ground atom is in the simple completion of KB can both be done in polynomial

time in general and in LOGSPACE in the size of the ABox of KB in the data complexity.

The next result says that the size of the simple completion of every semantic annotation in a Semantic

Web knowledge base KB is quadratic in the size of KB in general and linear in the size of the ABox of KB

in the data complexity.

Theorem 9 Let KB =(T , (Aa)a∈P∪O) be a satisfiable Semantic Web knowledge base over DL-LiteA, let

A′, R′
A, R′

D, P, O, and V′ denote the sets of all atomic concepts, atomic roles, atomic attributes, Web

pages, Web objects, and values that occur in KB , respectively, and let KB ′=(∅, (A′
a)a∈P∪O) be the simple

completion of KB . Then, the size of every A′
a with a ∈ P∪O is inO(|A′|+|R′

A| · |P∪O|+|R′
D| · |V

′|), i.e.,

it is quadratic in the size of KB in general and linear in the size of the ABox of KB in the data complexity.

16 RR-11-08

It thus follows immediately from the above two theorems that the simple completion of a Semantic Web

knowledge base KB has a cubic size in the size of KB in general and a quadratic size in the size of the

ABox of KB in the data complexity, and that it can be computed in polynomial time in the size of KB .

These results are more formally expressed by the following corollary.

Corollary 10 Let KB be a Semantic Web knowledge base over DL-LiteA. Then, (a) the size of the simple

completion KB
′ of KB is cubic in the size of KB in general and quadratic in the size of the ABox of KB in

the data complexity, and (b) computing KB
′ can be done in polynomial time in the size of KB .

In summary, the simple completion of a Semantic Web knowledge base KB has a cubic size in the size

of KB in general and a quadratic size in the size of the ABox of KB in the data complexity, and it can

be computed in polynomial time. Furthermore, the simple completion assures always a correct query pro-

cessing, and also guarantees a complete query processing for a large class of Semantic Web search queries.

Intuitively, query processing under the simple completion essentially corresponds to ignoring existentially

quantified entries in the Semantic Web knowledge base that cannot be concretely instantiated by individuals

or values, i.e., such query processing actually only results into a slightly different semantics of answers. For

these reasons, and since completeness of query processing is actually not that much an issue in an inherently

incomplete environment like the Web, we propose to use the simple completion as the basis of our Semantic

Web search.

5.2 HTML Encoding

Once the completed semantic annotations are computed, we encode them as HTML pages, so that they are

searchable via standard keyword search. We build one HTML page for the semantic annotation Aa of each

individual a∈P ∪O. That is, for each individual a, we build a page p containing all the atomic concepts

whose argument is a and all the atomic roles/attributes where the first argument is a.

Observe that this HTML encoding can be done in a way such that the atomic concepts, atomic roles,

atomic attributes, individuals, and data values do not mix up with strings that occur on standard Web pages,

e.g., by marking the HTML pages that are representing semantic annotations as such, and considering only

such marked HTML pages during the online processing of Semantic Web search queries. Alternatively, one

can also use a unique identifier (which does not occur elsewhere on the Web) for every ontology as a prefix

in the encoding of atomic concepts, roles, and attributes, as well as individuals and data values.

After rewriting the annotations, also search queries are rewritten to deal with the new syntax of the

annotations. Specifically, we remove all the variables and the brackets. For example, the query Q(x) =
Article(x) ∧ yearOfPublication(x, 2008) ∧ keyword(x, “RDF”) is translated into Article AND “yearOf-

Publication 2008” AND “keyword RDF”. In this form, the query can be evaluated by standard Web search

engines, since it is only a conjunction of a keyword and a phrase.

We rely on the assumption that each Web page and object a ∈ P ∪ O is associated with an identifier,

which uniquely characterizes the individual. Here, we use the HTML address of the Web page’s and object’s

annotation page as identifier. We employ the identifiers to evaluate complex queries involving more than one

atomic concept, thus involving several annotations. For example, consider the query Q(x) of Section 2 and

the standard queries Q1= PhDStudent AND isAuthorOf and Q2= Article AND “yearOfPublication 2008”

obtained from it. To evaluate Q(x), we submit Q1 and Q2 to a Web search engine, and we collect the results

r1 and r2 of the two queries, which are the sets of annotation pages {i2} and {i4}, respectively. We return

the annotation page p belonging to r1 if there exists an annotation page in r2 that occurs beside isAuthorOf

on p. Since i4 occurs beside isAuthorOf on the annotation page i2, we thus return i2 as overall query result.

RR-11-08 17

6 Online Query Processing

We now define simple and safe Semantic Web search queries and describe how they can be reduced to

collections of standard Web search queries, assuming that each completed semantic annotation of a Web

page or object a∈P ∪ O is stored on an HTML page on the Web. We also show how the computation of

the ObjectRank ranking can be reduced to the computation of the standard PageRank ranking.

6.1 Simple Search Queries

Semantic Web search queries that contain no equalities and only one free variable, which is the first argument

in every atom, are called simple search queries.

Definition 6 A Semantic Web search query is simple iff it has the form Q(x) =
∨n

i=1
Qi,0(x) ∧

∧ni

j=1
not

Qi,j(x), where x is a single variable from X, and every Qi,j(x) =
∧mj

k=1
φki,j with i∈{1, . . . , n} and

j ∈{0, . . . , ni} is an equality-free conjunctive formula with x as first argument in all atoms, i.e., either

φki,j = pki,j(x) or φki,j = pki,j(x, t
k
i,j), for all i∈{1, . . . , n} and j ∈{0, . . . , ni}.

Example 6 (Scientific Database cont’d). Query Q1(x) of Example 2 is simple.

Simple Semantic Web search queries can immediately be translated into exactly one variable-free Bool-

ean keyword-based standard Web search query.

Theorem 11 Let KB =(∅, (Aa)a∈P∪O) be a Semantic Web knowledge base. Let Q(x) be a simple Se-

mantic Web search query as in Definition 6. Then, the set of all answers for Q(x) to KB is given by

{θ= {x/a} | a∈
⋃n

i=1
Ii,0 \ (

⋃ni

j=1
Ii,j)}, where Ii,j = {a∈P∪O | ∀k : pki,j(a)∈Aa or pki,j(a, t

k
i,j)∈Aa}.

Example 7 (Scientific Database cont’d). Query Q1(x) of Example 2 can be translated into the following

variable-free Boolean keyword-based Web search query:

(Scientist ∧ not doctoralDegree(“oxford university”)∧
worksFor(“oxford university”))∨
(Scientist ∧ doctoralDegree(“oxford university”)∧
not worksFor(“oxford university”)) .

6.2 Safe Search Queries

Search queries where all free variables in negated conjunctive formulas and in equalities also occur in

positive atoms are safe queries. That is, we connect the use of negation to a safeness condition, as usual in

databases. They are reduced to collections of standard atomic Web search queries, one collection for the

positive part, and one for every negative subquery. Due to the safeness, we retain all results of the positive

part that are not matching with any result of a negative subquery.

Definition 7 A Semantic Web search query Q(x)=
∨n

i=1
∃yi φi(x,yi) is safe iff, for every i∈{1, . . . , n},

each variable that occurs in an equality in φi and freely in a negated conjunctive formula also occurs in a

positive atom in φi.

18 RR-11-08

Algorithm SWSearch

Input: Semantic Web knowledge base KB = (∅, (Aa)a∈P∪O); safe (=-free) Semantic

Web search query Q(x)=
∨n

i=1
∃yi Qi(x,yi), where Qi(x,yi)=Qi,0(x,yi)∧∧ni

j=1
not Qi,j(x,yi) and the free variables of Qi(x,yi) are among x,yi.

Output: set Θ of all answers θ for Q(x) to KB .

1. R := ∅;

2. for i := 1 to n do begin

3. Ri,0 := PositiveSWSearch(KB , Qi,0(x,yi));
4. for j := 1 to ni do begin

5. Ri,j := PositiveSWSearch(KB , Qi,j(x,yi));
6. Ri,0 := {t∈Ri,0 | ∀ti,j ∈Ri,j : t[Ri,j] 6= ti,j}
7. end;

8. R := R∪πx(Ri,0)
9. end;

10. return R.

Figure 4: Algorithm SWSearch.

Example 8 (Scientific Database cont’d). The following Semantic Web search queries ask for all students

who do not attend at least one existing course (resp., event):

Q1(x)= ∃y (Student(x) ∧ not attends(x, y) ∧ Course(y)),
Q2(x)= ∃y (Student(x) ∧ not attends(x, y)).

Observe that query Q1(x) is safe, whereas Q2(x) is not, since the variable y does not occur in any positive

atom of Q2(x).

We now describe an algorithm for the online reduction of safe Semantic Web search queries Q to stan-

dard Web search queries. Since such Q’s with equalities can easily be reduced to those without (via variable

substitutions, if possible at all), we assume w.l.o.g. that Q is equality-free. Furthermore, we assume w.l.o.g.

that Q contains no conjunctive subqueries. So, the algorithm reduces fully general but safe (and equality-

free) Semantic Web search queries (without conjunctive subqueries) to several standard Web search queries.

Algorithm SWSearch in Fig. 4 takes as input a Semantic Web knowledge base KB = (∅, (Aa)a∈P∪O)
and a safe (equality-free) Semantic Web search query Q(x), and it returns as output the set Θ of all answers

θ for Q(x) to KB . The main ideas behind it are informally described as follows. We first decompose the

query Q(x) into the positive subqueries Qi,j(x,yi) with i ∈ {1, . . . , n} and j ∈ {0, . . . , ni} whose free

variables are among x and yi. Here, Qi,0(x,yi) stands for the positive part of the i-th disjunct of Q(x),
while the Qi,j(x,yi)’s with j > 0 stand for the negative parts of the i-th disjunct of Q(x). We then compute

the answers for the positive subqueries Qi,j(x,yi) via Algorithm PositiveSWSearch in Fig. 5 (lines 3 and

5). Thereafter, the result for the i-th disjunct of Q(x) is computed by removing from the set of all answers

for the positive part all tuples matching with an answer for one of the negative parts (line 6). Here, t[Ri,j]
denotes the restriction of the tuple t to the attributes of the tuples in Ri,j . Finally, the overall result is

computed by projecting the results for all disjuncts onto the free variables x of Q(x) and unifying the

resulting answer sets (line 8).

Algorithm PositiveSWSearch in Fig. 5 computes the set of all answers for positive Semantic Web search

queries. It takes as input a Semantic Web knowledge base KB =(∅, (Aa)a∈P∪O) and a positive (equality-

free) Semantic Web search query Q(x), and it returns as output the set Θ of all answers θ for Q(x) to

RR-11-08 19

Algorithm PositiveSWSearch

Input: Semantic Web knowledge base KB = (∅, (Aa)a∈P∪O); positive (=-free)

Semantic Web search query Q(x)= ∃y
∧n

i=1
Qi(x,y), where Qi(x,y)=

∧ni

j=1
φi,j ,

for all i∈{1, . . . , n}, with φi,j = pi,j(ti) or φi,j = pi,j(ti, ti,j), and the free

variables of Qi(x,y) are among x,y.

Output: set Θ of all answers θ for Q(x) to KB .

1. for i := 1 to n do begin

2. if ti ∈P ∪O then Ii := {ti}
3. else Ii := {a ∈ P∪O | ∃θ ∀j : pi,j(a)∈Aa or pi,j(a, ti,jθ)∈Aa};

4. for each a∈ Ii do

5. for j := 1 to ni do

6. Ri,j [ti, ti,j] := {(a, ti,jθ) | pi,j(a)∈Aa or pi,j(a, ti,jθ)∈Aa}
7. end;

8. return πx(⊲⊳
n
i=1⊲⊳

ni

j=1
Ri,j).

Figure 5: Algorithm PositiveSWSearch.

KB . We first decompose the query Q(x) into the subqueries Qi(x,y)=
∧ni

j=1
φi,j , i∈{1, . . . , n}, where

φi,j = pi,j(ti) or φi,j = pi,j(ti, ti,j), whose free variables are among x and y. Note that all atoms in such

queries have the same term ti as first argument. We then collect the set Ii of all matching Web pages and

objects in KB for ti as follows. If ti is already a Web page or object, then Ii= {ti} (line 2), and if ti is a

variable, then we collect in Ii all Web pages and objects a with a matching semantic annotation Aa in KB

(line 3). These matching Web pages and objects in Ii are then used in a look-up step on KB to fill all the

matching identifiers, identifier-value pairs, and identifier-identifier pairs from the semantic annotations Aa

in KB for all atomic conceptsA(ti), attributes U(ti, ti,j), and roles P (ti, ti,j) inQi(x,y) into collections of

unary and/or binary relations A[ti], U [ti, ti,j], and P [ti, ti,j], respectively (line 6). These relations are then

joined via common variables, individuals, and values in Qi(x,y), and finally projected to all free variables

x in Q(x) (line 8).

The operations in lines 3 and 6 of Algorithm PositiveSWSearch are realized by a standard Web search

and by a look-up on the Web, respectively. In detail, recall that the semantic annotation Aa for every Web

page and object a∈P∪O is stored on the Web as an HTML annotation page. The annotation page for a
contains a collection of URIs, namely, the HTML address of a’s standard Web page, if a is a Web page, and

all standard Web pages mentioning a, if a is a Web object. In addition, it contains all atomic concepts “A”

such that KB |= A(a), all atomic-attribute-value pairs “U v” such that KB |= U(a, v), and all atomic-role-

identifier pairs “P b” such that KB |= P (a, b). Hence, the search in line 3 can be realized by searching for

all the URIs whose pages contain all atomic concepts “A”, attributes “U” (resp., “U ti,j”, if ti,j is a value),

and roles “P ” (resp., “P ti,j”, if ti,j is an identifier) such that A(ti), U(ti, ti,j), and P (ti, ti,j), respectively,

occur inQi(x,y), while the operations in line 6 can be realized by look-ups under the given URIs, collecting

all the matching data.

The following theorem shows that SWSearch and PositiveSWSearch in Figs. 4 and 5, respectively, are

correct, i.e., they return the set of all answers for safe (and equality-free) general and positive Semantic Web

search queries, respectively, to Semantic Web knowledge bases KB = (T , (Aa)a∈P∪O) with T = ∅. The

theorem holds by the above textual explanations of the two algorithms.

Theorem 12 Let KB =(∅, (Aa)a∈P∪O) be a Semantic Web knowledge base, and let Q(x) be a safe (and

20 RR-11-08

equality-free) Semantic Web search query. Then, Algorithm SWSearch on KB and Q(x) returns the set of

all answers for Q(x) to KB .

6.3 Ranking Answers

The following theorem shows that computing the ObjectRank ranking can be reduced to computing the

PageRank ranking. That is, using the encoding of semantic annotations as HTML pages on the Web, the

ObjectRank of all Web pages and objects is given by the PageRank of their HTML pages on the Web.

Theorem 13 Let KB =(∅, (Aa)a∈P∪O) be a Semantic Web knowledge base, let E be a source of rank, and

let d be a damping factor. Let the directed graph GKB = (V,E) be defined by V =P∪O and (u, v)∈E iff

P (u, v)∈Au. Then, for every u∈P ∪O, the ObjectRank of u relative to KB is the PageRank of u relative

to GKB .

7 Implementation

We have implemented two prototypes (the one described in [27] and a new one) of Serene for a semantic

desktop search engine (in desktop search, it was possible to quickly index 500,000 facts at once). In the

following, we report on the new prototype implementation in the context of this paper. The implementation

is based on the above offline inference technique and a (slightly more sophisticated) desktop version of the

above online Semantic Web search (by reduction to standard Web search). The former uses the deductive

database system DLV [41], while the latter is written in C# (nearly 2 000 lines of code) and uses Microsoft

Windows Desktop Search 3.0 (WDS) as external desktop search engine. More concretely, it uses the search

index created by WDS, which is queried using an OLE DB connection and an SQL-like syntax; the template

used for an index query is as follows (as described in the Windows Search 3x SDK released by Microsoft):

SELECT System.ItemName

FROM SystemIndex

WHERE freetext(′〈positivePart〉′) [AND NOT freetext(′〈negativePart〉′)]⋆

Here, as usual, the “⋆” means that the portion enclosed in squared brackets is optional and may be

repeated as needed.

The prototype uses a slightly more sophisticated version of the two algorithms in Section 6, yielding

improved performances. In fact, computationally, the most expensive operations are index queries and the

look-up phase. The former are queries over the index generated by WDS, aimed at finding all the resources

containing a set of keywords, while the look-up phase is the scanning (i.e., parsing) of annotations, needed to

search for repeated variables in different annotations to verify the (roles of the) query. Algorithm SWSearch,

in general, recalls PositiveSWSearch a huge and unnecessary number of times without a precise order,

which causes a huge and unnecessary number of index queries. Furthermore, PositiveSWSearch, after

querying the index, during the look-up phase, performs an exhaustive search of the found annotations,

scanning a huge and unnecessary number of annotations. To avoid such a wasting of time, we slightly

changed the two algorithms.

The implemented algorithm first decomposes a given query Q(x) into the n subqueries Qi(x,y) =∧ni

j=1
φi,j , i ∈ {1, . . . , n}, where φi,j = pi,j(ti) or φi,j = pi,j(ti, ti,j), whose free variables are among x

and y, in the same way as in Algorithm PositiveSWSearch. Note that also here, all atoms in such queries

RR-11-08 21

have the same term ti as first argument. Then, it divides these subqueries into Qa, containing the subqueries

about concepts for which may be specified attributes but no roles, and Qb, containing the other subqueries,

i.e., those about concepts for which at least one role is specified. Formally, Qa is the set of all Qi such that

i∈{1, . . . , n} and no pi,j with j ∈{1, . . . , ni} is an atomic role, and Qb = {Q1, . . . , Qn} \Qa.

Now we can start with the subqueries of Qa, executing index queries that require a computationally

cheap look-up phase: in fact, these queries can be realized by searching for all the annotations containing

all atomic concepts “A” and attributes “U” (resp., “U v”, if v is a value) such that A(ti) and U(ti, v),
respectively, occur in a Qi(x,y), thus obtaining one set of resulting annotations for each executed query.

Then, we sort this set on the basis of the sizes of its elements, and we scan it: for each set element, from

resulting annotations, we extract the URI of the corresponding Web page, updating, for each annotation the

sets of positive and negative URIs, depending on A (i.e., if it is positive or not). At the end of this stage,

we thus have a partial result with a candidate resulting set of URIs (i.e., Web pages) and/or forbidden URIs

(i.e., those extracted from resulting annotations corresponding to negated concepts of Qa).

Regarding the subqueries of Qb, to avoid useless scanning of annotations, we define the directed graph

of Qb as (V,E), where V is the set of all concepts that are in Qb, and (id1, id2)∈E iff Qb contains some

p(id1, id2) such that p is an atomic role, and id1 and id2 are concept identifiers. Here, we assume that the

above directed graph is acyclic, but all the algorithms can be easily extended to the cyclic case by adding a

preprocessing step, removing some roles and thus the cycles in the query, and a verification step at the end.

Then, exploiting the graph, we make a new decomposition of the queries of Qb as follows: component Qb,1

contains the nodes without ingoing edges, and every component Qb,i with i≥ 2 contains the nodes with

ingoing edges starting from nodes of Qb,i−1.

First, we execute index queries for Qb,1 as described above for the subqueries of Qa, with the only

difference that now the annotations must also contain roles “P ” such that P (id1, id2) occur in Qb,1. Again,

we obtain a set of resulting annotations, which we can sort on the basis of the sizes of its elements. We

scan this set and for each set element and resulting annotation, we extract the URI of the corresponding

Web page and store it for the next step iff such URI is between the candidate ones (and/or not between the

forbidden ones); if it is the case, we look up the resulting annotations to find the aforementioned id2’s of

the P (id1, id2)’s of Qb,1.

Then, we update the sets of candidate URIs and forbidden ones, on the basis of the resulting annota-

tions found, execute index queries for Qb,2 and look up the resulting annotations in order to find identifiers

matching with the id2’s. If a resulting annotation has an identifier that matches with one of the id2’s, we

store it for the next step and update the sets of candidate URIs and forbidden ones. We proceed, in turn, in

a similar way for the other partitions Qb,i.

In this way, we improve the performance of the two algorithms, because:

• we execute a reduced set of index queries;

• we execute a complete scan of an annotation iff it can lead to a resulting Web page or to a forbidden

one;

• we prune the search space whenever possible, updating the sets of candidate URIs and forbidden ones

at each step.

8 Experimental Results

In this section, we report on our experimental results with the two prototype implementations for a semantic

desktop search engine (the prototype implementation described in [27] and the new one), namely, on the

22 RR-11-08

size of completed annotations, the running time of the online query processing step, and the precision and

the recall of our approach to Semantic Web search compared to Google.

8.1 Size of Completed Annotations

By Theorem 9, given a Semantic Web knowledge base KB , the (worst-case) size of every generated com-

pleted semantic annotation of KB is in O(|A′|+ |R′
A| · |P∪O|+ |R′

D| · |V
′|) (where A′, R′

A, R′
D, P, O,

and V′ denote the sets of all atomic concepts, atomic roles, atomic attributes, Web pages, Web objects, and

values that occur in KB , respectively), i.e., it is quadratic in the size of KB in general and linear in the size

of the ABox of KB in the data complexity.

In practice, since ontological hierarchies are generally not that deep (intuitively, a concept/role/attribute

has generally at most a dozen superconcepts/-roles/-attributes), the generated completed semantic annota-

tions are generally even much smaller. To prove this experimentally, we have measured the size of the

generated completed annotations for some commonly used and standard benchmark ontologies, namely,

for the Adolena, Buildings & Places, Cell, DOLCE-Lite, Pathway, Pizza, and Zebrafish ontologies from

the TONES Repository6, for the Finite-State-Machine (FSM), New-Testament-Names (NTN), Science, and

Surface-Water-Model (SWM) ontologies from the Protégé Ontology Library7, for the Stock Exchange and

Vicodi ontologies [47], for the Finance ontology8, for the Lehigh University Benchmark (LUBM) ontology9,

for the SWETO ontology10, for the Uniprot (core) ontology11, and for the University Ontology Benchmark

(UOBM) ontology [44]. We have computed the completed annotations either for individuals that are already

included in the above ontologies, where such (rather realistic) individuals are available (in the majority of

cases), or for artificially created individuals, otherwise. Indeed, the experimental results in Table 1 show that

the maximal and average sizes of completed annotations (i.e., the maximal and average numbers of all ABox

axioms, denoted Max Comp and Avg Comp, respectively) are rather small. Table 1 also provides for every

ontology the DL expressivity (i.e., the underlying description logic), the size (i.e., the number of all TBox

and ABox axioms), the maximal and average depths of property (i.e., role or attribute) hierarchies (denoted

Max DPH and Avg DPH, respectively), as well as the maximal and average depths of concept hierarchies

(denoted Max DCH and Avg DCH, respectively).

8.2 Efficiency of Online Query Processing

Experiments with our two implemented semantic desktop search engines (the implementation described in

[27] and the new one) show the principle feasibility of our approach, and that it scales quite well to very large

collections of standard pages, annotation pages, and background ontologies. The results are summarized in

Table 2, which shows in bold the total time (in ms) used by our new system (including the WDS calls)

on a standard laptop for processing ten different search queries (Q1, . . . , Q10) on a randomly generated

knowledge base (in the context of the running Scientific Database), consisting of 5 000 annotations with

590 027 facts. Notice that this total time (for the decomposition of the query, for processing all subqueries

via WDS, and for the composition of the query results) is very small (all below one second). Table 2 also

shows the different numbers of returned pages and objects. Observe that our new prototype is on the average

6http://owl.cs.manchester.ac.uk/repository/
7http://protegewiki.stanford.edu/index.php/Protege Ontology Library
8http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
9http://swat.cse.lehigh.edu/projects/lubm/

10http://knoesis.wright.edu/library/ontologies/sweto/
11http://dev.isb-sib.ch/projects/uniprot-rdf/owl/

RR-11-08 23

Table 1: Maximal and average sizes of completed annotations for different ontologies.

Ontology DL Expressivity Size
Max Avg Max Avg Max Avg

DPH DPH DCH DCH Comp Comp

Adolena SHI(D) 418 1 0.12 9 5.1 12 5.34

Buildings & Places ALCHIO(D) 3635 1 0.05 6 2.6 213 9.37

Cell EL++ 4184 0 0 15 9.3 42 4.84

DOLCE-Lite SHIF 538 4 2.24 6 4.7 10 3.47

Finance ALCHIF 3204 3 1.83 10 4.2 40 6.70

FSM SF(D) 294 0 0 4 2.7 1 0.29

LUBM ALEHI+ 246 2 0.17 5 3 3 1.74

NTN SHIF(D) 416 1 0.35 6 4 2 1.50

Pathway EL 2500 0 0 8 4.8 2 1.06

Pizza SHOIN 1006 1 0.66 8 5.3 18 5.24

Science ALCIF 2217 0 0 5 2.7 5 2.09

Stock Exchange ALCI 81 0 0 4 2.1 6 3.3

SWETO ALH(D) 736 2 0.02 4 3.5 2 1.38

SWM ALCOF(D) 647 0 0 5 2.2 4 1.71

Uniprot (core) ALCHIOF(D) 1293 1 0.12 4 2.7 8 2.53

UOBM SHIN (D) 501 2 0.26 5 3.1 4 1.54

Vicodi RDFS(DL) 426 2 1.57 8 5.8 2 1.05

Zebrafish S 19302 0 0 11 4.0 181 50.59

more than 130 times quicker than our previous one described in [27]. This performance increase of the new

over the old prototype is due to several code optimizations, including the direct use of the API of WDS for

querying the search index created by WDS, rather than a cmdlet script in Microsoft Powershell 1.0. Further

dramatic reductions (even with much larger datasets) can be achieved by employing a Web search engine

(such as Google) rather than a desktop search engine (since Web search is actually much faster, even with a

much larger search space, especially because it uses a huge number of processors, differently from desktop

search).

The ten search queries Q1, . . . , Q10 are more concretely given as follows (where the ai’s, ci’s, oi’s, and

ui’s are either individuals or values); they ask for all the following individuals (so also yielding the Web

pages containing them):

(1) professors giving the course c12:

Q1(x)=Professor(x) ∧ teacherOf(x, c12) ;

(2) professors giving the course c12 but not the course c20:

Q2(x)=Professor(x) ∧ teacherOf(x, c12) ∧ not teacherOf(x, c20) ;

24 RR-11-08

Table 2: Total time used (in ms) and number of returned URIs for processing the ten Semantic Web search

queries Q1, . . . , Q10 on a randomly generated Semantic Web knowledge base with 5000 semantic annota-

tions and 590270 facts.

Query
Total Time (ms)

No. URIs
FoIKS-2010 Prototype New Prototype

Q1(x) 12123 204 613

Q2(x) 5893 27 116

Q3(x) 20858 153 582

Q4(x) 14592 91 529

Q5(x) 23001 521 679

Q6(x) 16264 220 204

Q7(x) 43847 976 687

Q8(x) 4979 10 20

Q9(x) 38971 870 687

Q10(x) 54403 884 671

(3) scientists working for o12 and authoring a4, or scientists working for o3 and authoring a25:

Q3(x)= (Scientist(x) ∧ worksFor(x, o12) ∧ hasWritten(x, a4))∨
(Scientist(x) ∧ worksFor(x, o3) ∧ hasWritten(x, a25)) ;

(4) scientists working for u but not having a doctoral degree from u, or scientists having a doctoral degree

from u but not working for u:

Q4(x)= (Scientist(x) ∧ worksFor(x, u) ∧ not doctoralDegree(x, u))∨
(Scientist(x) ∧ doctoralDegree(x, u) ∧ not worksFor(x, u)) ;

(5) professors who are also the head of a department:

Q5(x)= ∃y (Professor(x) ∧ headOf(x, y) ∧ Department(y)) ;

(6) articles with an Italian author and published in 2007:

Q6(x)= ∃y (Article(x) ∧ yearOfPublication(x, 2007) ∧ hasWritten(y, x)∧
Scientist(y) ∧ nationality(y, italian)) ;

(7) scientists who are the authors of a journal and a conference paper published in 2007, or scientists who

are the authors of a book published in 2007:

Q7(x)= ∃y, z (Scientist(x) ∧ hasWritten(x, y) ∧ JournalPaper(y)∧
yearOfPublication(y, 2007) ∧ hasWritten(x, z) ∧ ConferencePaper(z)∧
yearOfPublication(z, 2007)) ∨ ∃y (Scientist(x) ∧ hasWritten(x, y)∧
Book(y) ∧ yearOfPublication(y, 2007)) ;

RR-11-08 25

(8) Italian professors who are not heading any department:

Q8(x)=Professor(x)∧ nationality(x, italian)∧
not ∃y (headOf(x, y)∧Department(y)) ;

(9) scientists who work for a university, but for no university from which they have the doctoral degree:

Q9(x)= ∃z (Scientist(x) ∧ worksFor(x, z) ∧ University(z)∧
not ∃y (doctoralDegree(x, y) ∧ worksFor(x, y) ∧ University(y))) ;

(10) Italian scientists who have a non-Italian doctoral degree and work for an Italian organization, or non-

Italian scientists who have an Italian doctoral degree and work for a non-Italian organization:

Q10(x)= ∃y, z (Scientist(x) ∧ nationality(x, italian) ∧ University(y)∧
not state(y, italy) ∧ doctoralDegree(x, y) ∧ worksFor(x, z)∧
Organization(z) ∧ state(z, italy))∨
∃y, z (Scientist(x) ∧ not nationality(x, italian) ∧ University(y)∧
state(y, italy) ∧ doctoralDegree(x, y) ∧ worksFor(x, z)∧
Organization(z) ∧ not state(z, italy)) .

8.3 Efficiency Comparison to the Corese System

We now compare the running time of query processing in our new prototype with the running time of query

processing in the Corese system [17], which is the Semantic Web search system in the literature that is most

closely related to our approach. It turns out that our new prototype is on the average nearly 18 times quicker

than Corese. Note that this difference in the query processing time is partially due to the fact that Corese’s

ontological inference is performed online (i.e., at query processing time), while the ontological inference in

our approach is done offline. The detailed results are summarized in Table 3, which shows the total time

(in ms) used by Corese and by our new prototype on a standard laptop for processing ten different search

queries (Q1, . . . , Q10) on a randomly generated knowledge base (in the context of the running Scientific

Database), consisting of 5580 annotations with 33519 facts. In detail, the ten search queries Q1, . . . , Q10

are given as follows:

(1) female employees:

Q1(x)=Woman(x)∧work(x, employee) ;

(2) female physicians who are married:

Q2(x)= ∃y (Woman(x)∧work(x, physician)∧ hasSpouse(x, y)) ;

(3) persons who are not married and have no friends

Q3(x)=Person(x)∧not ∃y hasSpouse(x, y)∧not ∃y hasFriend(x, y) ;

(4) employees or teachers:

Q4(x)= (Person(x)∧work(x, employee)) ∨ (Person(x)∧work(x, teacher)) ;

26 RR-11-08

Table 3: Total time used (in ms) by Corese and by our new prototype, along with the number of returned

URIs, for processing the Semantic Web search queriesQ1, . . . , Q10 on a randomly generated Semantic Web

knowledge base with 5580 semantic annotations and 33519 facts.

Query
Total Time (ms)

No. URIs
Corese New Prototype

Q1(x) 531 115 946

Q2(x) 420 43 313

Q3(x) 581 226 1942

Q4(x) 395 225 1896

Q5(x) 402 76 613

Q6(x) 391 45 335

Q7(x) 336 4 7

Q8(x) 556 209 1252

Q9(x) 521 10 32

Q10(x) 557 155 970

(5) non-married female employees:

Q5(x)=Woman(x)∧work(x, employee)∧not ∃y hasSpouse(x, y) ;

(6) female employees without friends:

Q6(x)=Woman(x)∧work(x, employee)∧not ∃y hasFriend(x, y) ;

(7) Bettina’s friends:

Q7(x)=Person(x)∧ hasFriend(x,Bettina) ;

(8) married persons who have friends and work, but not as employees:

Q8(x)= ∃y, z, z′ (Person(x)∧ hasSpouse(x, y)∧ hasFriend(x, z)∧
work(y, z′)∧not work(y, employee)) ;

(9) married men who are 40 years old:

Q9(x)= ∃y (Man(x)∧ age(x, 40)∧ hasSpouse(x, y)) ;

(10) men who work and have no friends:

Q10(x)= ∃y (Man(x)∧work(x, y)∧not ∃z hasFriend(x, z)) .

Note that Corese has its own query syntax, which is based on RDF(S). For example, the search query

Q1(x) is expressed by the following query in Corese:

select ?x display xml

where {?x rdf:type animals:Woman .

RR-11-08 27

?x animals:work ?y

FILTER (?y=’employee’)}

8.4 Precision and Recall of Semantic Web Search

Differently from conventional Boolean keyword-oriented Web search, the proposed Semantic Web search

clearly empowers the user to precisely describe her information need for certain kinds of queries, resulting

in a very precise result set and a very high precision and recall [2] for the query result. In particular, in many

cases, Semantic Web search queries exactly describe the desired answer sets, resulting into a precision and a

recall of 1. Some examples of such Semantic Web search queries (addressed to the CIA World Fact Book12

relative to the WORLD-FACT-BOOK ontology13), which have a precision and a recall of 1 in our approach

to Semantic Web search, are shown below, along with corresponding Google queries:

(1) countries having a common border with Austria:

Q1(x)=Country(x)∧ borderCountries(x,Austria),
′′border countries′′ Austria ;

(2) countries having Bulgaria as exports partners:

Q2(x)=Country(x)∧ exportsPartners(x,Bulgaria),
′′exports - partners′′ Bulgaria ;

(3) countries in which Italian is spoken:

Q3(x)=Country(x)∧ languages(x, Italian),
languages Italian ;

(4) countries importing tobacco:

Q4(x)=Country(x)∧ importsCommodities(x, tobacco),
′′imports - commodities′′ tobacco ;

(5) countries exporting tobacco and in which French is spoken:

Q5(x)=Country(x)∧ exportsCommodities(x, tobacco)∧ languages(x,French),
′′exports - commodities′′ tobacco languages French ;

(6) countries in which Italian is not spoken:

Q6(x)=Country(x)∧not languages(x, Italian),
languages -Italian ;

(7) countries in which Arabic is spoken:

Q7(x)=Country(x)∧ languages(x,Arabic),
languages Arabic ;

12http://www.cia.gov/library/publications/the-world-factbook/
13http://www.ontoknowledge.org/oil/case-studies/

28 RR-11-08

(8) countries in which Arabic is spoken and not English:

Q8(x)=Country(x)∧ languages(x,Arabic)∧not languages(x,English),
languages Arabic -English ;

(9) countries importing tobacco and food:

Q9(x)=Country(x)∧ importsCommodities(x, tobacco)∧
importsCommodities(x, food),

′′imports - commodities′′ tobacco food ;

(10) countries importing tobacco and not food:

Q10(x)=Country(x)∧ importsCommodities(x, tobacco)∧
not importsCommodities(x, food),

′′imports - commodities′′ tobacco -food .

The precision and the recall of the above ten Google queries compared to their Semantic Web search queries

are shown in Table 4. Observe that the Google queries often cannot that precisely describe the desired answer

sets, and are thus often resulting into a precision and a recall much below 1. Note that this lower precision

and recall is due to the limited expressivity of Google queries, and not due to some incomplete indexing;

this is especially obvious for queries that use the negation: Google’s recall is always 1 in positive queries,

and it is less than 1 in queries containing at least one negated predicate having a keyword as value; the lower

recall in the latter case is because Google discards all the pages containing the keyword, including those

where the keyword does not refer to the specified predicate, e.g., when processing the query “languages

-Italian”, Google discards all the pages containing “Italian”, including those where “Italian” does not refer

to “languages”; however, Google’s precision is often 1 for such queries with negated predicates, since all

the returned pages are in general also answers to the queries.

9 Semantic Web Search on the Internet Movie Database

In this section, we show that our approach to Semantic Web search can be readily applied to existing Web

pages, even if they are currently not yet semantically annotated. More specifically, we show how our ap-

proach can be used to perform a vertical ontology-based search on the Web pages of the Internet Movie

Database (IMDB)14. To this end, the necessary semantic annotations are automatically constructed from the

IMDB Web pages. That is, we are actually mapping the IMDB Web pages into an ontological knowledge

base, which then allows for processing Semantic Web search queries in the query language of the underlying

ontology. Intuitively, such an ontological knowledge base can be considered as an ontological index over the

IMDB, against which ontological conjunctive search queries on the IMDB can be answered. So, our vertical

search on the IMDB works on an ontologically structured copy of the IMDB without actually changing it.

We considered a sample set of more than 60 000 movies and actors of the IMDB. To avoid a manual

annotation of Web pages, we automatically extracted the annotations for all the movies and actors in our

sample set via the wrapper SCRAP [26].

SCRAP is able to extract pieces of information from HTML pages and to reorganize them into new XML

documents. To accomplish this task, SCRAP uses a set of extraction rules and an extraction schema. The

extraction rules are XPath expressions identifying the portion of the HTML pages to be extracted, while the

14http://www.imdb.com

RR-11-08 29

Table 4: Precision and recall of Google vs. Semantic Web search (SWS).

Query
Results Correct Correct Results Precision Recall Precision Recall

Google Results Google Google Google SWS SWS

Q1(x) 17 8 8 0.47 1 1 1

Q2(x) 19 5 5 0.26 1 1 1

Q3(x) 21 13 13 0.62 1 1 1

Q4(x) 51 10 10 0.2 1 1 1

Q5(x) 24 4 4 0.17 1 1 1

Q6(x) 229 253 229 1 0.91 1 1

Q7(x) 33 32 32 0.97 1 1 1

Q8(x) 11 13 11 1 0.85 1 1

Q9(x) 45 7 7 0.16 1 1 1

Q10(x) 6 3 1 0.17 0.33 1 1

extraction schema is a document type definition (DTD) specifying the structure of the output XML document

and associating each element type with an extraction rule. Thus, an extraction rule is used to define the path

in the input HTML page that locates the text to be returned as the content of an XML element. In our

context, this feature will be exploited for the purpose of annotation by using XML tag names that describe

the semantics of the pieces of information extracted.

The process of generating the annotations was divided into the following two phases. In the first phase,

by using SCRAP, we extracted the information of the HTML pages to be inserted in the annotations (such

as movie titles, actor names, etc.), and returned it in the form of XML documents conforming to the spec-

ified DTD. In the second phase, we then further processed these XML documents and translated them into

documents conforming to our annotation syntax.

In more detail, in the first phase, we used a visual tool provided by SCRAP to define the schemas for

extracting the information about movies and actors. In particular, the extraction schema for movies consisted

of the following DTD:

<!ELEMENT doc (Movie)>

<!ELEMENT Movie (title,director*,creator*,writer*,genre*,

language*,country?,releaseDate?,awards?,star*)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT director (#PCDATA)>

<!ELEMENT creator (#PCDATA)>

<!ELEMENT genre (#PCDATA)>

<!ELEMENT writer (#PCDATA)>

<!ELEMENT star (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!ELEMENT releaseDate (#PCDATA)>

<!ELEMENT awards (#PCDATA)>

<!ELEMENT language (#PCDATA)>

The semantics of this extraction schema is that, for every HTML page describing a movie, an XML

30 RR-11-08

Figure 6: An excerpt of a movie page.

document must be generated containing the title of the movie, the director, the country, the names of all

the actors of the movie, etc. By means of an analogous extraction schema, suitable for every HTML page

describing an actor, we specified that an XML document must be generated which contains the name of the

actor, the year of birth, the city of birth, the titles of all the movies starring her, etc. The tag names and

the structure of the extraction schema were defined according to the IMDB ontology15. Exploiting SCRAP

facilities, we also associated each element type of the extraction schemas with an appropriate extraction

rule. For instance, we associated the element type title of the above-reported DTD with the following

XPath extraction rule: html/head/title/text(), which captures the text contained in the specified

path of the HTML pages.

After defining the extraction schemas and the associated set of extraction rules, we ran SCRAP on the

sample set from the IMDB, thus obtaining a set of XML documents, each containing the desired information

about a movie or an actor. For instance, consider the HTML page shown in Fig. 6. The XML document

obtained by running SCRAP on it is shown in Fig. 7.

In the second phase, we took each XML document returned by SCRAP in the first phase, and automat-

ically transformed it into a final annotation, conforming to our syntax. The final annotation obtained from

the HTML of Fig. 6 is shown in Fig. 8.

We point out that, since all the HTML pages describing movies in the IMDB site share the same struc-

ture, the set of extraction rules was defined looking only at a sample page, and then used to support the

extraction from all the other pages. The same strategy was used for actor pages. This way, we dramatically

reduced the overall human effort needed for the annotation task. In fact, the only human work to be done

was the definition of extraction schemas and rules, thus not requiring any user to be called for annotating

HTML pages one by one.

The following are some Semantic Web search queries, which we processed in our Semantic Web search

interface for the IMDB:

(1) comedy movies in English that were nominated for the Oscar:

15http://www.csd.abdn.ac.uk/∼ggrimnes/dev/imdb/IMDB.rdfs

RR-11-08 31

Figure 7: XML document output of SCRAP. Figure 8: Final annotation.

Q1(x)=Movie(x) ∧ genre(x,Comedy) ∧ language(x,English)∧
awards(x,NominatedforOscar) ;

(2) comedy movies directed either by Frank Capra or Woody Allen:

Q2(x)=Movie(x) ∧ genre(x,Comedy) ∧ (director(x,FrankCapra)∨
director(x,WoodyAllen)) ;

(3) actors born in 1964 or in New York who are still alive:

Q3(x)=Actor(x) ∧ (yearOfBirth(x, 1964) ∨ cityOfBirth(x,NewYorkCity))∧
not ∃y (yearOfDeath(x, y)) ;

(4) crime movies in English with an award and Nicolas Cage as a star:

Q4(x)=Movie(x) ∧ genre(x,Crime) ∧ language(x,English)∧
∃y awards(x, y) ∧ star(x,NicolasCage) ;

(5) American movies with Julia Roberts and not Clive Owen as a star:

Q5(x)=Movie(x) ∧ country(x,USA) ∧ star(x, JuliaRoberts)∧
not star(x,CliveOwen) ;

(6) movies not directed by Julien Temple and with Monica Bellucci as a star:

Q6(x)=Movie(x) ∧ not director(x, JulienTemple) ∧ star(x,MonicaBellucci) ;

(7) actors who played in at least one comedy and no western movie:

Q7(x)= ∃y (Actor(x) ∧ film(x, y) ∧ Movie(y) ∧ genre(y,Comedy)∧
not ∃z (Movie(z) ∧ genre(z,Western) ∧ film(x, z))) ;

32 RR-11-08

Table 5: Total time used (in ms) and number of returned URIs for processing the Semantic Web search

queries Q1, . . . , Q10 on a sample set of Web pages extracted from the IMDB, which included more than

60 000 movies and actors, resulting into more than one million facts.

Query Total Time (ms) No. URIs

Q1(x) 128 143

Q2(x) 43 24

Q3(x) 160 407

Q4(x) 119 5

Q5(x) 24 22

Q6(x) 14 12

Q7(x) 5915 3271

Q8(x) 1987 981

Q9(x) 2196 11867

Q10(x) 1298 10522

(8) actors who played in at least one movie in Italian:

Q8(x)= ∃y (Actor(x) ∧ film(x, y) ∧ Movie(y) ∧ language(y, Italian)) ;

(9) actors who played in no movie in French:

Q9(x)=Actor(x) ∧ not ∃z (Movie(z) ∧ language(z,French) ∧ film(x, z)) ;

(10) drama movies without thrillers:

Q10(x)=Movie(x) ∧ genre(x,Drama) ∧ not genre(x, Thriller) .

The total processing times (used by the new prototype implementation described in Section 7 on a standard

laptop) and the numbers of returned URIs for the above Semantic Web search queries are shown in Table 5.

Note that most of the search queries had a total processing time below one second; only those with large

outputs were taking slightly more time (some few up to six seconds).

It is also important to point out that the precision and the recall of our approach to Semantic Web search

for the above ten Semantic Web search queries are both 1, as the search queries describe exactly their natural-

language descriptions. That is, in the IMDB application scenario, our approach to Semantic Web search is

both sound and complete, and a precision and recall different from 1 for the above ten search queries would

mean that the prototype implementation contains some errors.

10 Related Work

We now discuss related work on Semantic Web search (see especially [28] for a recent survey), which can

roughly be divided into (1) approaches that are based on structured query languages, such as [17, 30, 35, 38,

45, 46, 50], and (2) approaches for naive users, requiring no familiarity with structured query languages. In

this category, we distinguish keyword-based approaches, such as [13, 33, 34, 40, 51, 52, 55], where queries

consist of lists of keywords, and natural-language-based approaches, such as [16, 23, 29, 32, 42, 43], where

RR-11-08 33

users can express queries in natural language. Finally, we also discuss related work on ranking techniques

for the Semantic Web.

In order to evaluate user queries on Semantic Web documents, both keyword-based and natural-language-

based approaches need a reformulation phase, where user queries are transformed into “semantic” queries.

In keyword-based approaches, query processing generally starts with the assignment of a semantic meaning

to the keywords, i.e., each keyword is mapped to an ontological concept (property, entity, class, etc.). Since

each keyword can match a class, a property, or an instance, several combinations of semantic matchings of

the keywords are considered, and, in some cases, the user is asked for choosing the right assignment. Sim-

ilarly, natural-language-based approaches focus mainly on the translation of queries from natural language

to structured languages, by directly mapping query terms to ontological concepts or by using some ad-hoc

translation techniques.

In the following, we discuss some approaches based on structured query languages, which are most

closely related to ours. We first focus on some more general approaches [17, 35, 38] closest in spirit to ours in

that they aim at providing general semantic search facilities. We then discuss some proposals [30, 50, 45, 46]

that address some specific aspects of semantic search or that are targeted at specific domains, so that they

cannot be strictly viewed as semantic search engines.

The Corese system [17] is an ontology-based search engine for the Semantic Web, which retrieves Web

resources that are annotated in RDF(S) via a query language based on RDF(S). It is the system that is perhaps

closest in spirit to our approach. In a first phase, Corese translates annotations into conceptual graphs, it

then applies proper inference rules to augment the information contained in the graphs, and finally evaluates

a user query by projecting it onto the annotation graphs. The Corese query language is based on RDF, and

it allows variables and operators.

SHOE [35] is one of the first attempts to semantically query the Web. It provides the following: a tool

for annotating Web pages, allowing users to add SHOE markup to a page by selecting ontologies, classes,

and properties from a list; a Web crawler, which searches for Web pages with SHOE markup and stores the

information in a knowledge base (KB); an inference engine, which provides new markups by means of in-

ference rules (basically, Horn clauses); and several query tools, which allow users to pose structured queries

against an ontology. One of the query tools allows users to draw a graph in which nodes represent con-

stant or variable instances, and arcs represent relations. To answer the query, the system retrieves subgraphs

matching the user graph. The SHOE search tool allows users to pose queries by first choosing an ontology

from a drop-down list and next choosing classes and properties from another list. Finally, the system builds

a conjunctive query, issues the query to the KB, and presents the results in a tabular form.

NAGA [38] provides a graph-based query language to query the underlying KB encoded as a graph. The

KB is built automatically by a tool that extends the approach proposed in [49] and extracts knowledge from

three Web sources: Wordnet, Wikipedia, and IMDB. The nodes and edges in the knowledge graph represent

entities and relationships between entities, respectively. The query language is based on SPARQL, and adds

the possibility of formulating graph queries with regular expressions on edge labels, but the language does

not allow queries with negation. Answers to a query are subgraphs of the knowledge graph matching the

query graph and are ranked using a specific scoring model for weighted labeled graphs.

Comparing the above three approaches to ours, in addition to the differences in the adopted query lan-

guages (in particular, SHOE and NAGA do not allow complex queries with negation) and underlying on-

tology languages, there is a strong difference in the query-processing strategy. Indeed, Corese, SHOE,

and NAGA all rely on building a unique KB, which collects the information disseminated among the data

sources, and which is suitably organized for query processing via the adopted query language. However,

this has a strong limitations. First, representing the whole information spread across the Web in a unique KB

34 RR-11-08

and efficiently processing each user query on the thus obtained huge amount of data is a rather challenging

task. This makes these approaches more suitable for specific domains, where the amount of data to be dealt

with is usually much smaller. In contrast, our approach allows the query processing task to be supported

by well-established Web search technologies. In fact, we do not evaluate user queries on a single KB, but

we represent the information implied by the annotations on different Web pages, and evaluate queries in a

distributed way. Specifically, user queries are processed as Web searches over completed annotations. We

thus realize Semantic Web search by using standard Web search technologies as well-established solutions

to the problem of querying huge amounts of data. Second, a closely related limitation of query processing in

Corese, SHOE, and NAGA is its tight connection to the underlying ontology language, while our approach is

actually independent from the ontology language and works in the same way for other underlying ontology

languages.

Swoogle [30] is a crawler-based system for discovering, indexing, and querying RDF documents. Swoo-

gle mainly provides a search for Semantic Web documents and terms (i.e., the URIs of classes and prop-

erties). It allows users to search for all instance data about a specified class, or on a specified subject, and

to specify queries containing conditions on the document-level metadata (i.e., queries asking for documents

having .rdf as the file extension), but it does not allow complex queries. Retrieved documents are ranked

according to a ranking algorithm measuring the documents’ importance on the Semantic Web.

ONTOSEARCH2 [50] is a search and query engine for ontologies on the Semantic Web. It stores a

copy of the ontologies in a tractable description logic and allows SPARQL queries to be evaluated on both

the structures and instances of ontologies. The Coraal system [45] is a knowledge-based search engine for

biomedical literature. Coraal uses NLP-based heuristics to process texts and build RDF triples from them.

These RDF triples are integrated with existing domain knowledge and all the collected information can be

queried by the user via a specific query language.

The aim of the approach proposed in [46] is approximately querying RDF datasets with SPARQL [53].

To this end, a SPARQL query is encoded as a set of triple constraints with variables, and an approximate

answer is a substitution of the variables with data that may not satisfy all the constraints. The proposed

strategy refines the accuracy of the answers progressively, so that the algorithm searching for the answers

can be stopped at any time producing a meaningful result.

There is a plethora of ranking techniques for the Semantic Web; here, we discuss only some most closely

related ones. Also the ObjectRank approach in [3] adds link semantics to the PageRank technique, but it

requires weights for different forms of links before its application. Such weights are assigned by experts and

influence the random walk of users. Beagle++ [14] extends the Beagle desktop search engine, applying

ObjectRank to RDF metadata about desktop objects for an improved ranking in desktop search. TripleRank

[31] also considers the semantics of links, but it does not rely on an expert assignment of link weights,

and is based on the HITS technique [39] instead of PageRank. Our ObjectRank technique, in contrast, is

conceptually simpler, and it can be easily reduced to the standard PageRank technique in the context of our

approach to Semantic Web search (cf. Theorem 13).

11 Conclusion

We have presented a novel approach to Semantic Web search, which allows for a semantic processing of Web

search queries relative to an underlying ontology, and for evaluating ontology-based complex Web search

queries that involve reasoning over the Web. We have shown how the approach can be implemented on top of

standard Web search engines and ontological inference technologies. We have developed the formal model

behind this approach, and we have also generalized the PageRank technique to our approach. We have then

RR-11-08 35

provided a technique for processing Semantic Web search queries, which consists of an offline ontological

inference step and an online reduction to standard Web search queries (which can be implemented using

efficient relational database technology), and we have proved it ontologically correct (and in many cases

also ontologically complete). The offline inference compiles terminological knowledge into completed an-

notations, which have a polynomial size, can be computed in polynomial time, and are also rather small in

practice. We have reported on two prototype implementations in desktop search, and provided very positive

experimental results on the running time of the online query processing step, and the precision and the recall

of our approach to Semantic Web search. We have also shown that our Semantic Web search can be readily

applied to existing Web pages without annotations. More specifically, we have implemented a Semantic

Web search interface for the Internet Movie Database.

In a companion work [20, 21, 22], we have explored a variant of our Semantic Web search, which uses

inductive reasoning techniques (based on similarity search for retrieving the resources that likely have a

query property), rather than deductive ones in the offline ontological inference step. This adds an increased

robustness, as it allows for handling inconsistencies, noise, and incompleteness in Semantic Web knowledge

bases. Furthermore, inductive reasoning allows to infer new (not logically deducible) knowledge (from

training individuals). The main idea behind the inductive approach in [20, 21, 22] is also closely related

to the idea of using probabilistic ontologies to increase the precision and the recall of querying databases

and of information retrieval in general. However, rather than learning probabilistic ontologies from data,

representing them, and reasoning with them, the inductive approach directly uses the data in the inductive

inference step.

In the future, we aim especially at extending the desktop implementation to a real Web implementa-

tion, using existing Web search engines, and to more deeply investigate the properties of the ObjectRank

technique. Another interesting topic for future research is to explore how search expressions that are for-

mulated as plain natural language sentences can be translated into the ontological conjunctive queries of our

approach. It would also be interesting to investigate whether our approach to Semantic Web search can be

combined with top-k query techniques from databases for a further improved performance. Finally, another

interesting topic is to explore the use of probabilistic ontologies rather than classical ones.

A Appendix: Description Logics

As underlying ontology language, we use the tractable description logic DL-LiteA [48], which adds data-

types to a restricted combination of the tractable description logics DL-LiteF (also called DL-Lite) and

DL-LiteR. All these description logics belong to the DL-Lite family [12], which are a class of restricted

description logics for which the main reasoning tasks are feasible in polynomial time in general and some

of them even in LOGSPACE in the data complexity. The DL-Lite description logics are fragments of OWL

and the most common tractable ontology languages in the Semantic Web context. In particular, DL-LiteR
provides the logical underpinning for the OWL 2 profile QL, and it is also able to fully capture the (DL

fragment of) RDF Schema [7], the vocabulary description language for RDF; see [25] for a translation. The

DL-Lite description logics are especially directed towards data-intensive applications, and they can all be

translated into Datalog±
0

[11, 10]. We now briefly recall the syntax and the semantics of DL-LiteA. For more

details on description logics in general, we refer the reader to [1].

Intuitively, description logics model a domain of interest in terms of concepts and roles, which represent

classes of individuals and binary relations between classes of individuals, respectively. A knowledge base

encodes especially subset relationships between concepts, subset relationships between roles, the mem-

bership of individuals to concepts, and the membership of pairs of individuals to roles. As an important

36 RR-11-08

ingredient, DL-LiteA also allows for datatypes in such pieces of knowledge.

Syntax

As for the elementary ingredients of DL-LiteA, let D be a finite set of atomic datatypes d, which are associ-

ated with pairwise disjoint sets of data values Vd. Let A, RA, RD, and I be pairwise disjoint sets of atomic

concepts, atomic roles, atomic attributes, and individuals, respectively, and let V=
⋃

d∈DVd. From these,

roles, concepts, attributes, and datatypes are then constructed as follows:

• A basic role Q is either an atomic role P ∈RA or its inverse P−. A (general) role R is either a basic

role Q or the negation of a basic role ¬Q.

• A basic concept B is either an atomic concept A∈A, or an existential restriction on a basic role Q,

denoted ∃Q, or the domain of an atomic attribute U ∈RD, denoted δ(U). A (general) concept C is

either the universal concept ⊤C , or a basic concept B, or the negation of a basic concept ¬B, or an

existential restriction on a basic role Q of the form ∃Q.C, where C is a concept.

• A (general) attribute V is either an atomic attributeU ∈RD or the negation of an atomic attribute ¬U .

• A basic datatype E is the range of an atomic attribute U ∈RD, denoted ρ(U). A (general) datatype

F is either the universal datatype ⊤D or an atomic datatype.

An axiom is an expression of one of the following forms: (1) B⊑C (concept inclusion axiom), where

B is a basic concept, and C is a concept; (2) Q⊑R (role inclusion axiom), where Q is a basic role, and R
is a role; (3) U ⊑V (attribute inclusion axiom), where U is an atomic attribute, and V is an attribute; (4)

E⊑F (datatype inclusion axiom), where E is a basic datatype, and F is a datatype; (5) (funct Q) (role

functionality axiom), where Q is a basic role; (6) (funct U) (attribute functionality axiom), where U is an

atomic attribute; (7)A(a) (concept membership axiom), whereA is an atomic concept and a∈ I, (8) P (a, b)
(role membership axiom), where P is an atomic role and a, b∈ I; (9) U(a, v) (attribute membership axiom),

where U is an atomic attribute, a∈ I, and v ∈V.

Note that concept inclusion axioms of the form B⊑⊤C and datatype inclusion axioms of the form

ρ(U)⊑⊤D can be safely ignored, and that concept inclusion axioms of the form B⊑∃Q.C can be ex-

pressed by the two concept inclusion axioms B⊑∃Q.A and A⊑C, where A is a fresh atomic concept.

We next define knowledge bases, which consist of a restricted finite set of inclusion and functionality

axioms, called TBox, and a finite set of membership axioms, called ABox. We also define queries to such

knowledge bases. Formally, a TBox is a finite set T of inclusion and functionality axioms such that every

identifying property in T is primitive (see [48] for a definition of primitive identifying properties). An ABox

A is a finite set of membership axioms. A knowledge base KB =(T ,A) consists of a TBox T and an

ABox A. A query φ is an open formula of first-order logic with equalities. A conjunctive query is of the

form ∃y φ(x,y), where φ is a conjunction of atoms and equalities with free variables among x and y. A

union of conjunctive queries is of the form
∨n

i=1
∃yi φi(x,yi), where each φi is a conjunction of atoms and

equalities with free variables among x and yi.

Example 9 (Scientific Database). Continuing the running example of Section 2, we use a knowledge base

KB =(T ,A) in DL-LiteA to specify some simple information about scientists and their publications. The

sets of atomic concepts, atomic roles, atomic attributes, individuals, and data values are defined as in Ex-

ample 9. Then, a TBox T and an ABox A are given by the axioms in Eqs. 1 and 2, respectively, while the

query Q(x) of Eq. 3 is actually a conjunctive query.

RR-11-08 37

Semantics

The semantics of DL-LiteA is defined in terms of standard first-order interpretations as follows. An inter-

pretation I =(∆I , ·I) consists of (i) a nonempty domain ∆I =(∆I
O,∆

I
V), which is the disjoint union of

the domain of objects ∆I
O and the domain of values ∆I

V =
⋃

d∈D ∆I
d , where the ∆I

d ’s are pairwise disjoint

domains of values for the datatypes d∈D, and (ii) a mapping ·I that assigns to each datatype d∈D its

domain of values ∆I
d , to each data value v ∈Vd an element of ∆I

d (such that v 6=w implies vI 6=wI), to

each atomic concept A∈A a subset of ∆I
O, to each atomic role P ∈RA a subset of ∆I

O ×∆I
O, to each

atomic attribute P ∈RD a subset of ∆I
O ×∆I

V , to each individual a∈ I an element of ∆I
O (such that a 6= b

implies aI 6= bI). Note that different data values (resp., individuals) are associated with different elements

of ∆I
V (resp., ∆I

O) (unique name assumption). The extension of ·I to all concepts, roles, attributes, and

datatypes, and the satisfaction of an axiom α in I = (∆I , ·I), denoted I |=α, are defined as usual [48].

The interpretation I satisfies the axiom α, or I is a model of α, iff I |=α. The interpretation I satisfies a

knowledge base KB =(T ,A), or I is a model of KB , denoted I |=KB , iff I |=α for all α∈T ∪A. We say

KB is satisfiable (resp., unsatisfiable) iff KB has a (resp., no) model. An axiom α is a logical consequence

of KB , denoted KB |=α, iff every model of KB satisfies α. An answer for a query φ to KB is a ground

substitution θ for all free variables in φ such that φθ is a logical consequence of KB .

As shown in [48], in particular, deciding the satisfiability of knowledge bases in DL-LiteA and decid-

ing logical consequences of membership axioms from knowledge bases in DL-LiteA can both be done in

LOGSPACE in the size of the ABox in the data complexity (where only the ABox is variable, but the rest is

fixed).

Example 10 (Scientific Database cont’d). It is not difficult to verify that the knowledge base KB =(T ,A)
of Example 9 is satisfiable, and that the two axioms Jour- nalPaper⊑¬ConferencePaper and hasAuthor(i3,
i2) are logical consequences of KB . Informally, KB implies that no journal paper is a conference paper, and

that i3 has the author i2. Furthermore, the ground substitution θ= {x/i2} is an answer for the conjunctive

query Q(x) of Example 9. Informally, mary is a Ph.D. student who has published an article in 2008 with

RDF as a keyword

B Appendix: Proofs

Proof of Theorem 1. Recall that the ground substitution θ is an answer for Q(x) = q1(x) ∧ · · · ∧ qm(x)
to KB iff Q(xθ) is a logical consequence of KB . The latter is equivalent to all qi(xθ) with i∈{1, . . . ,m}
being a logical consequence of KB , which in turn is equivalent to all qi(xθ) with i∈{1, . . . ,m} being in

the simple completion of KB . That is, Q(xθ) is a logical consequence of the simple completion of KB .

That is, θ is an answer for Q(x) to the simple completion of KB . �

Proof of Theorem 3. As shown in [11], every knowledge base KB in DL-LiteA can be translated into a

program PKB in Datalog±. Suppose that no concept inclusion axiom in KB has one of the forms B⊑∃P ,

B⊑∃P−, B⊑ δ(U), B⊑∃P.C, and B⊑∃P−.C. Then, the resulting PKB is simply a Datalog program,

and any universal model for evaluating the conjunctive queryQ(x) relative to PKB (i.e., also relative to KB)

is given by the simple completion of KB . That is, θ is an answer forQ(x) to KB iff θ is an answer forQ(x)
to the simple completion of KB . �

Proof of Theorem 5. Consider the Datalog± encoding PKB of KB [11]. Then, (i) θ is an answer for Q(x)
to KB iff θ is an answer for Q(x) to PKB , (ii) deciding whether θ is an answer for Q(x) to PKB can be

38 RR-11-08

evaluated on any universal model of PKB , and (iii) only Web pages p∈P, Web objects o∈O, and values

v ∈V occur in safe positions in facts in any universal model of PKB . Hence, deciding whether θ is an

answer for Q(x) to PKB (and thus to KB) can actually already be evaluated on the simple completion of

KB , which is a subset of every universal model of PKB . �

Proof of Theorem 7 (sketch). A universal model of the Datalog± encoding PKB of KB [11] can be con-

structed via the chase, which follows the rules of PKB , and generates and propagates existentially quantified

entries in the same way as described above in the definition of unsafe positions relative to KB . �

Proof of Theorem 8. Immediate by the observation that KB corresponds to a knowledge base in DL-LiteA,

and that deciding satisfiability and logical consequences of ground atoms for such knowledge bases can both

be done in polynomial time in general and in LOGSPACE in the size of the ABox in the data complexity. �

Proof of Theorem 9. The Datalog± encoding PKB of KB [11] is safe in that the Web pages p∈P, Web

objects o∈O, and values v ∈V in any universal model must already occur in PKB , i.e., in the ABox of

KB . Hence, every A′
a in the simple completion of KB has at most |A′| + |R′

A| · |P ∪ O| + |R′
D| · |V

′|
elements. �

Proof of Theorem 11. Recall that the ground substitution θ= {x/a} with a ∈ P∪O is an answer forQ(x)
to KB iff θ is an answer for

∨n
i=1

Qi,0(x) to KB but not an answer for
∨n

i=1
Qi,0(x)∧

∨ni

j=1
Qi,j(x) to KB .

Since the TBox of KB is empty, the latter is equivalent to a∈
⋃n

i=1
Ii,0 but not a ∈

⋃n
i=1

Ii,0 ∩ (
⋃ni

j=1
Ii,j),

where Ii,j = {a ∈ P∪O | ∀k : pki,j(a)∈Aa or pki,j(a, t
k
i,j)∈Aa}. That is, a ∈

⋃n
i=1

Ii,0 \ (
⋃ni

j=1
Ii,j).

Observe also that any ground substitution θ= {x/v} with v ∈V cannot be an answer forQ(x) to KB , since

x is the first argument in all atoms of Q(x). �

Proof of Theorem 13. Recall that the PageRankR(u) of a node u∈V relative toGKB is defined as follows:

R(u)= d ·
∑

v∈Bu
R(v) /Nv + (1− d) · E(u) ,

where (i) Bu is the set of nodes that point to u, and (ii) Nv is the number of links from v [8]. This already

shows that the PageRank of u coincides with the ObjectRank of u (see Eq. 4), for all Web pages and

objects u∈P ∪O. �

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The Descrip-

tion Logic Handbook. Cambridge University Press, 2003.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou. ObjectRank: Authority-based keyword search in

databases. In Proceedings VLDB-2004, pp. 564–575. Morgan Kaufmann, 2004.

[4] J. Bao, E. F. Kendall, D. L. McGuinness, and E. K. Wallace. OWL2 Web ontology language: Quick

reference guide, 2008. www.w3.org/TR/owl2-quick-reference/.

[5] T. Berners-Lee. Weaving the Web. Harper, San Francisco, CA, 1999.

RR-11-08 39

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Sci. Amer., 284:34–43, 2001.

[7] D. Brickley and R. V. Guha. RDF vocabulary description language 1.0: RDF Schema, 2004. W3C

Recommendation.

[8] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw.,

30(1–7):107–117, 1998.

[9] P. Buitelaar and P. Cimiano. Ontology Learning and Population: Bridging the Gap Between Text and

Knowledge. IOS Press, 2008.

[10] A. Calı̀, G. Gottlob, and T. Lukasiewicz. Datalog±: A unified approach to ontologies and integrity

constraints. In Proceedings ICDT-2009, ACM International Conference Proceeding Series 361, pp.

14–30. ACM Press, 2009.

[11] A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general Datalog-based framework for tractable query

answering over ontologies. In Proceedings PODS-2009, pp. 77–86. ACM Press, 2009.

[12] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and

efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–

429, 2007.

[13] G. Cheng, W. Ge, and Y. Qu. Falcons: Searching and browsing entities on the Semantic Web. In

Proceedings WWW-2008, pp. 1101–1102. ACM Press, 2008.

[14] P.-A. Chirita, S. Costache, W. Nejdl, and R. Paiu. Beagle++: Semantically enhanced searching and

ranking on the desktop. In Proceedings ESWC-2006, LNCS 4011, pp. 348–362. Springer, 2006.

[15] P.-A. Chirita, S. Costache, W. Nejdl, and S. Handschuh. P-TAG: Large scale automatic generation

of personalized annotation tags for the Web. In Proceedings WWW-2007, pp. 845–854. ACM Press,

2007.

[16] P. Cimiano, P. Haase, J. Heizmann, M. Mantel, and R. Studer. Towards portable natural language

interfaces to knowledge bases — The case of the ORAKEL system. Data Knowl. Eng., 65(2):325–

354, 2008.

[17] O. Corby, R. Dieng-Kuntz, and C. Faron-Zucker. Querying the Semantic Web with Corese search

engine. In Proceedings ECAI-2004, pp. 705–709. IOS Press, 2004.

[18] L. Ding and T. Finin. Characterizing the Semantic Web on the Web. In Proceedings ISWC-2006, LNCS

4273, pp. 242–257. Springer, 2006.

[19] L. Ding, T. W. Finin, A. Joshi, Y. Peng, R. Pan, and P. Reddivari. Search on the Semantic Web. IEEE

Computer, 38(10):62–69, 2005.

[20] C. d’Amato, F. Esposito, N. Fanizzi, B. Fazzinga, G. Gottlob, and T. Lukasiewicz. Inductive reasoning

and Semantic Web search. In Proceedings SAC-2010, pp. 1446–1447. ACM Press, 2010.

[21] C. d’Amato, N. Fanizzi, B. Fazzinga, G. Gottlob, and T. Lukasiewicz. Combining Semantic Web search

with the power of inductive reasoning. In Proceedings URSW-2009, CEUR Workshop Proceedings 527.

CEUR-WS.org, 2009.

40 RR-11-08

[22] C. d’Amato, N. Fanizzi, B. Fazzinga, G. Gottlob, and T. Lukasiewicz. Combining Semantic Web

search with the power of inductive reasoning. In Proceedings SUM-2010, LNCS 6379, pp. 137–150.

Springer, 2010.

[23] D. Damljanovic, M. Agatonovic, and H. Cunningham. Natural language interface to ontologies: Com-

bining syntactic analysis and ontology-based lookup through the user interaction. In Proceedings

ESWC-2010, Part I, LNCS 6088, pp. 106–120. Springer, 2010.

[24] N. Fanizzi, C. d’Amato, and F. Esposito. Metric-based stochastic conceptual clustering for ontologies.

Inf. Syst., 34(8):792–806, 2009.

[25] J. de Bruijn and S. Heymans. Logical foundations of (e)RDF(S): Complexity and reasoning. In

Proceedings ISWC-2007, LNCS 4825, pp. 86–99. Springer, 2007.

[26] B. Fazzinga, S. Flesca, and A. Tagarelli. Schema-based Web wrapping. Knowl. Inf. Syst., 26(1):127–

173, 2011.

[27] B. Fazzinga, G. Gianforme, G. Gottlob, and T. Lukasiewicz. Semantic Web search based on ontological

conjunctive queries. In Proceedings FoIKS-2010, LNCS 5956, pp. 153–172. Springer, 2010.

[28] B. Fazzinga and T. Lukasiewicz. Semantic search on the Web. Semantic Web, 1(1/2):89–96, 2010.

[29] M. Fernández, V. Lopez, M. Sabou, V. S. Uren, D. Vallet, E. Motta, and P. Castells. Semantic search

meets the Web. In Proceedings ICSC-2008, pp. 253–260. IEEE Computer Society, 2008.

[30] T. W. Finin, L. Ding, R. Pan, A. Joshi, P. Kolari, A. Java, and Y. Peng. Swoogle: Searching for

knowledge on the Semantic Web. In Proceedings AAAI-2005, pp. 1682–1683. AAAI Press / MIT

Press, 2005.

[31] T. Franz, A. Schultz, S. Sizov, and S. Staab. TripleRank: Ranking Semantic Web data by tensor

decomposition. In Proceedings ISWC-2009, LNCS 5823, pp. 213–228. Springer, 2009.

[32] Google. http://www.google.com.

[33] R. V. Guha, R. McCool, and E. Miller. Semantic search. In Proceedings WWW-2003, pp. 700–709.

ACM Press, 2003.

[34] A. Harth, A. Hogan, R. Delbru, J. Umbrich, S. O’Riain, and S. Decker. SWSE: Answers before links!

In Proceedings Semantic Web Challenge 2007, CEUR Workshop Proceedings 295. CEUR-WS.org,

2007.

[35] J. Heflin, J. A. Hendler, and S. Luke. SHOE: A blueprint for the Semantic Web. In D. Fensel,

W. Wahlster, and H. Lieberman, editors, Spinning the Semantic Web: Bringing the World Wide Web to

Its Full Potential, pp. 29–63. MIT Press, 2003.

[36] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The making

of a Web ontology language. J. Web Sem., 1(1):7–26, 2003.

[37] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expressive description

logics. In Proceedings IJCAI-2005, pp. 466–471. Professional Book Center, 2005.

[38] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum. NAGA: Searching and ranking

knowledge. In Proceedings ICDE-2008, pp. 953–962. IEEE Computer Society, 2008.

RR-11-08 41

[39] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46(5):604–632, 1999.

[40] Y. Lei, V. S. Uren, and E. Motta. SemSearch: A search engine for the Semantic Web. In Proceedings

EKAW-2006, LNCS 4248, pp. 238–245. Springer, 2006.

[41] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV system for

knowledge representation and reasoning. ACM Trans. Comput. Log., 7(3):499–562, 2006.

[42] V. Lopez, M. Pasin, and E. Motta. AquaLog: An ontology-portable question answering system for the

Semantic Web. In Proceedings ESWC-2005, LNCS 3532, pp. 546–562. Springer, 2005.

[43] V. Lopez, M. Sabou, and E. Motta. PowerMap: Mapping the real Semantic Web on the fly. In

Proceedings ISWC-2006, LNCS 4273, pp. 414–427. Springer, 2006.

[44] L. Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, and S. Liu. Towards a complete OWL ontology benchmark.

In Proceedings ESWC-2006, LNCS 4011, pp. 125–139. Springer, 2006.

[45] V. Novácek, T. Groza, and S. Handschuh. CORAAL — Towards deep exploitation of textual resources

in life sciences. In Proceedings AIME-2009, LNCS 5651, pp. 206–215. Springer, 2009.

[46] E. Oren, C. Guéret, and S. Schlobach. Anytime query answering in RDF through evolutionary algo-

rithms. In Proceedings ISWC-2008, LNCS 5318, pp. 98–113. Springer, 2008.

[47] H. Pérez-Urbina, I. Horrocks, and B. Motik. Efficient query answering for OWL 2. In Proceedings

ISWC-2009, LNCS 5823, pp. 489–504. Springer, 2009.

[48] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking data to

ontologies. J. Data Semantics, 10:133–173, 2008.

[49] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core of semantic knowledge. In Proceedings

WWW-2007, pp. 697–706. ACM Press, 2007.

[50] E. Thomas, J. Z. Pan, and D. H. Sleeman. ONTOSEARCH2: Searching ontologies semantically. In

Proceedings OWLED-2007, CEUR Workshop Proceedings 258. CEUR-WS.org, 2007.

[51] T. Tran, P. Cimiano, S. Rudolph, and R. Studer. Ontology-based interpretation of keywords for seman-

tic search. In Proceedings ISWC/ASWC-2007, LNCS 4825, pp. 523–536. Springer, 2007.

[52] G. Tummarello, R. Cyganiak, M. Catasta, S. Danielczyk, R. Delbru, and S. Decker. Sig.ma: Live

views on the Web of data. In Proceedings WWW-2010, pp. 1301–1304. ACM Press, 2010.

[53] W3C. SPARQL Query Language for RDF, 2008. W3C Recommendation (15 January 2008). http:

//www.w3.org/TR/rdf-sparql-query/.

[54] W3C. OWL web ontology language overview, 2004. W3C Recommendation (10 Feb- ruary 2004).

www.w3.org/TR/2004/REC-owl-features-20040210/.

[55] G. Zenz, X. Zhou, E. Minack, W. Siberski, and W. Nejdl. From keywords to semantic queries —

Incremental query construction on the Semantic Web. J. Web Sem., 7(3):166–176, 2009.

