
Modular Verification of Preemptive OS Kernels

Alexey Gotsman
IMDEA Software Institute

Alexey.Gotsman@imdea.org

Hongseok Yang
University of Oxford

Hongseok.Yang@cs.ox.ac.uk

Abstract
Most major OS kernels today run on multiprocessor systems and
are preemptive: it is possible for a process running in the kernel
mode to get descheduled. Existing modular techniques for verify-
ing concurrent code are not directly applicable in this setting: they
rely on scheduling being implemented correctly, and in a preemp-
tive kernel, the correctness of the scheduler is interdependent with
the correctness of the code it schedules. This interdependency is
even stronger in mainstream kernels, such as Linux, FreeBSD or
XNU, where the scheduler and processes interact in complex ways.

We propose the first logic that is able to decompose the verifi-
cation of preemptive multiprocessor kernel code into verifying the
scheduler and the rest of the kernel separately, even in the pres-
ence of complex interdependencies between the two components.
The logic hides the manipulation of control by the scheduler when
reasoning about preemptable code and soundly inherits proof rules
from concurrent separation logic to verify it thread-modularly. This
is achieved by establishing a novel form of refinement between an
operational semantics of the real machine and an axiomatic seman-
tics of OS processes, where the latter assumes an abstract machine
with each process executing on a separate virtual CPU. The refine-
ment is local in the sense that the logic focuses only on the relevant
state of the kernel while verifying the scheduler. We illustrate the
power of our logic by verifying an example scheduler, modelled on
the one from Linux 2.6.11.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.4.1 [Operating Systems]: Process Management

General Terms Languages, Theory, Verification

Keywords Verification, Concurrency, Scheduling, Modularity

1. Introduction
Developments in formal verification now allow us to consider
the full verification of an operating system (OS) kernel, one of
the most crucial components in any system today. Several recent
projects have demonstrated that formal verification can tackle real-
istic OS kernels, such as a variant of the L4 microkernel [16] and
Microsoft’s Hyper-V hypervisor [3]. Having dealt with relatively
small microkernels, these projects nevertheless give us hope that in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

the future we will be able to verify the likes of kernels from today’s
mainstream operating systems, such as Windows and Linux.

In this paper, we tackle one of the main challenges in realising
this hope—handling kernel preemption in a multiprocessor system.
Most major OS kernels are designed to run with multiple CPUs and
are preemptive: it is possible for a process running in the kernel
mode to get descheduled. Reasoning about such kernels is difficult
for the following reasons.

First of all, in a multiprocessor system several invocations of a
system call may be running concurrently in a shared address space,
so reasoning about the call needs to consider all possible interac-
tions among them. This is a notoriously difficult problem; how-
ever, we now have a number of logics [3–5, 13, 19, 22] that can
reason about concurrent code. The way the logics make verifica-
tion tractable is by using thread-modular reasoning principles that
consider every thread of computation in isolation under some as-
sumptions about its environment and thus avoid direct reasoning
about all possible interactions.

The problem is that all these logics can verify code only un-
der so-called interleaving semantics, expressed by the well-known
operation semantics rule:

Ck −→ C′
k

C1 ‖ . . . ‖ Ck ‖ . . . ‖ Cn −→ C1 ‖ . . . ‖ C′
k ‖ . . . ‖ Cn

This rule effectively assumes an abstract machine where every
process Ck has its own CPU, whereas in reality, the processes are
multiplexed onto available CPUs by a scheduler. Furthermore, in a
preemptive kernel, the scheduler is part of the kernel being verified
and its correctness is interdependent with the correctness of the
rest of the kernel (which, in the following, we refer to as just the
kernel). Thus, what you see in a C implementation of OS system
calls and what most logics reason about is not what you execute in
such a kernel. When reasoning about a system call implementation
in reality, we have to consider the possibility of context-switch code
getting executed at almost every program point. Upon a context
switch, the state of the system call will be stored in kernel data
structures and subsequently loaded for execution again, possibly on
a different CPU. A bug in the scheduling code can load an incorrect
state of the system call implementation upon a context switch, and
a bug in the system call can corrupt the scheduler’s data structures.
It is, of course, possible to reason about the kernel together with the
scheduler as a whole, using one of the available logics. However,
in a mainstream kernel, where kernel preemption is enabled most
of the time, such reasoning would quickly become intractable.

In this paper we propose a logic that is able to decompose the
verification of safety properties of preemptive OS code into ver-
ifying the scheduler and preemptable code separately. This is the
first logic that can handle interdependencies between the scheduler
and the kernel present in mainstream OS kernels, such as Linux,
FreeBSD and XNU. Our logic consists of two proof systems, which
we call high-level and low-level. The high-level system verifies
preemptable code assuming that the scheduler is implemented cor-

rectly (Section 4.3). It hides the complex manipulation of control
by the scheduler, which stores program counters of processes (de-
scribing their continuations) and jumps to one of them during a
context switch. In this way, the high-level proof system provides
the illusion that every process has its own virtual CPU—the con-
trol moves from one program point in the process code to the next
without changing its state. This illusion is justified by verifying the
scheduler code separately from the kernel in the low-level proof
system (Section 4.4).

A common way to simplify reasoning about program compo-
nents sharing an address space, such as the scheduler and the ker-
nel, is to introduce the notion of ownership of memory areas: only
the component owning an area of memory has the right to access
it. The main difficulty of decomposing the verification of the main-
stream OS kernels mentioned above lies in the fact that in such
kernels there is no static address space separation between data
structures owned by the scheduler and the rest of the kernel: the
boundary between these changes according to a protocol for trans-
ferring the ownership of memory cells and permissions to access
them in a certain way. For example, when an implementation of
the fork system call asks the scheduler to make a new process
runnable, the scheduler usually gains the ownership of the process
descriptor provided by the system call implementation. This leads
to several technical challenges our logic has to deal with.

First, this setting introduces an obligation to prove that the
scheduler and the kernel do not corrupt each other’s data structures.
To this end, we base our proof systems on concurrent separation
logic [19], which allows us to track the dynamic memory partition-
ing between the scheduler and the rest of the kernel and prohibit
memory accesses that cross the partitioning boundary. For exam-
ple, assertions in the high-level proof system talk only about the
memory belonging to the kernel and completely hide the memory
belonging to the scheduler. A frame property, validated by concur-
rent separation logic, implies that in this case any memory not men-
tioned in the assertions, e.g., the memory belonging to the sched-
uler, is guaranteed not to be changed by the kernel. A realistic in-
terface between the scheduler and the kernel is supported by proof
rules for ownership transfer of logical assertions between the two
components describing permissions to access memory cells.

Second, in reasoning about mainstream operating systems, the
ownership transfer between the scheduler and the kernel can in-
volve not only fixed memory cells, but arbitrary logical facts de-
scribing them (Section 4.3). Such ownership transfers make even
formalising the notion of scheduler correctness non-trivial, as they
are difficult to accommodate in an operational semantics of the ab-
stract machine with one CPU per process the scheduler is supposed
to implement. In this paper we resolve this problem by introduc-
ing a concept of logical refinement between an operational seman-
tics of the real machine and an axiomatic (as opposed to opera-
tional) semantics of the abstract machine, defined in our logic by
the high-level proof system. Namely, desired properties of OS code
are proved with respect to the abstract machine using the high-level
proof system; the low-level system then relates the concrete and the
abstract machines. However, proofs in neither of the two systems
are interpreted with respect to any semantics alone, as would be the
case in the usual semantic refinement. Instead, our soundness state-
ment (Section 6) interprets a proof of the kernel in the high-level
system and a proof of the scheduler in the low-level one together
with respect to the semantics of the concrete machine.

Finally, while we would like to hide the scheduler state com-
pletely when reasoning about the kernel, the converse is not true:
the scheduler has to be able to access at least some of the local
state of every process, such as its register values. For this reason,
the low-level proof system (Section 4.4) includes special assertions
to describe the state of the OS processes the scheduler manages.

These assertions are also interpreted as exclusive permissions to
schedule the corresponding processes, which allows us to reason
about scheduling on multiprocessors. A novel feature of the low-
level proof system that allows verifying schedulers separately from
the rest of the kernel is its locality: proofs about the scheduler focus
only on a small relevant part of the state of processes.

Even though all of the OS verification projects carried out so far
had to deal with a scheduler (see Section 7 for a discussion), to our
knowledge they have not produced methods for handling practical
multiprocessor schedulers with a complicated scheduler/kernel in-
terface. We illustrate the power of our logic by verifying an exam-
ple scheduler, modelled on the one from Linux 2.6.11 (Sections 2.2
and 5), which exhibits the issues mentioned above.

2. Informal development
We first explain our results informally, sketching the machine we
use for formalising them (Section 2.1), illustrating the challenges
of reasoning about schedulers by an example (Section 2.2) and
describing the approach we take in our program logic (Section 2.3).

2.1 Example machine
To keep the presentation tractable, we formalise our results for a
simple machine, defined in Section 3. Here we present it informally
to the extent needed for understanding the rest of this section.

We consider a machine with multiple CPUs, identified by in-
tegers from 1 to NCPUS, communicating via the shared memory.
We assume that the program the machine executes is stored sepa-
rately from the heap and may not be modified; its commands are
identified by labels. For simplicity we also assume that programs
can synchronise using a set of built-in locks (in reality they would
be implemented as spin-locks). Every CPU has a single interrupt,
with its handler located at a distinguished label schedule, which a
scheduler can use to trigger a context switch. There are four special-
purpose registers, ip, if, ss and sp, and m general-purpose ones,
gr1, . . . , grm. The ip register is the instruction pointer. The if
register controls interrupts: they are disabled on the corresponding
CPU when it is zero and enabled otherwise. As if affects only one
CPU, we might have several instances of the scheduler code execut-
ing in parallel on different CPUs. Upon an interrupt, the CPU sets
if to 0, which prevents nested interrupts. The ss register keeps the
starting address of the stack, and sp points to the top of the stack,
i.e., its first free slot. The stack grows upwards, so we always have
ss<sp.

Since we are primarily interested in interactions of components
within an OS kernel, our machine does not make a distinction
between the user mode and the kernel mode—all processes can
potentially access all available memory and execute all commands.

The machine executes programs in a minimalistic assembly-like
programming language. It is described in full in Section 3; for now
it suffices to say that the language includes standard commands for
accessing registers and memory, and the following special ones:

• lock(`) and unlock(`) acquire and release the lock `.
• savecpuid(e) stores the identifier of the CPU executing it at the

address e.
• call(l) is a call to the function that starts at the label l. It pushes

the label of the next instruction in the program and the values
of the general-purpose registers onto the stack, and jumps to the
label l. icall(l) behaves the same as call(l), except that it also
disables interrupts by modifying the if register.

• ret is the return command. It pops the return label and the saved
general-purpose registers off the stack, updates the registers with
the new values, and jumps to the return label. iret is a variant
of ret that additionally enables interrupts.

2.2 Motivating example
Figure 1 presents an implementation of the scheduler we use as a
running example. We would like to be able to verify safety proper-
ties of OS processes managed by this scheduler using off-the-shelf
concurrency logics, i.e., as though every process has its own vir-
tual CPU. The scheduler uses data structures and an interface with
the rest of the kernel similar to the ones in Linux 2.6.11 [2]1. To
concentrate on key issues of scheduler verification, we make some
simplifying assumptions: we do not consider virtual memory and
assume that processes are never removed and never go to sleep. We
have also omitted the code for data structure initialisation.

The scheduler’s interface consists of two functions: schedule
and create. The former is called as the interrupt handler or directly
by a process and is responsible for switching the process running
on the CPU and migrating processes between CPUs. The latter
can be called by the kernel implementation of the fork system
call and is responsible for inserting a newly created process into
the scheduler’s data structures, thereby making it runnable. Both
functions are called by processes using the icall command that
disables interrupts, thus, the scheduler routines always execute with
interrupts disabled.

Programming language. Even though we formalise our results for
a machine executing a minimalistic programming language, we
present the example in C. We now explain how a C program, such
as the one in Figure 1, is mapped to our machine.

We assume that global variables are allocated at fixed addresses
in memory. Local variable declarations allocate local variables on
the stack in the activation records of the corresponding procedures;
these variables are then addressed via the sp register. When the
variables go out of scope, they are removed from the stack by
decrementing the sp register. The general-purpose registers are
used to store intermediate values while computing complex ex-
pressions. We allow the ss and sp registers to be accessed di-
rectly as _ss and _sp. Function calls and returns are implemented
using the call and ret commands of the machine. By default,
parameters and return values are passed via the stack; in partic-
ular, a zero-filled slot for a return value is allocated on the stack
before calling a function. Parameters of functions annotated with
_regparam (such as create) are passed via registers. We assume
macros lock, unlock, savecpuid and iret for the correspond-
ing machine commands. We also use some library functions: e.g.,
remove node deletes a node from the doubly-linked list it belongs
to, and insert node after inserts the node given as its second
argument after the list node given as its first argument.

Data structures. Every process is associated with a process de-
scriptor of type Process. Its prev and next fields are used
by the scheduler to connect descriptors into doubly-linked lists
of processes it manages (runqueues). The scheduler uses per-
CPU runqueues with dummy head nodes pointed to by the en-
tries in the runqueue array. These are protected by the locks
in the runqueue_lock array, meaning that a runqueue can only
be accessed with the corresponding lock held. The entries in the
current array point to the descriptors of the processes running on
the corresponding CPUs; these descriptors are not members of any
runqueue. Thus, every process descriptor is either in the current
array or in some runqueue. Note that every CPU always has at
least one process to run—the one in the corresponding slot of the
current array. Every process has its own kernel stack of a fixed
size StackSize, represented by the kernel_stack field of its de-

1 We modelled our scheduler on an older version of the Linux kernel (from
2005) because it uses simpler data structures. Newer versions use more ef-
ficient data structures [17] that would only complicate our running example
without adding anything interesting.

#define FORK_FRAME sizeof(Process*)
#define SCHED_FRAME sizeof(Process*)+sizeof(int)

struct Process {
Process *prev, *next;
word kernel_stack[StackSize];
word *saved_sp;
int timeslice; };

Lock *runqueue_lock[NCPUS];
Process *runqueue[NCPUS];
Process *current[NCPUS];

void schedule() {
int cpu;
Process *old_process;
savecpuid(&cpu);
load_balance(cpu);
old_process = current[cpu];
if (--old_process->timeslice) iret();
old_process->timeslice = SCHED_QUANTUM;
lock(runqueue_lock[cpu]);
insert_node_after(runqueue[cpu]->prev, old_process);
current[cpu] = runqueue[cpu]->next;
remove_node(current[cpu]);
old_process->saved_sp = _sp;
_sp = current[cpu]->saved_sp;
savecpuid(&cpu);
_ss = &(current[cpu]->kernel_stack[0]);
unlock(runqueue_lock[cpu]);
iret();

}

void load_balance(int cpu) {
int cpu2;
Process *proc;
if (random(0, 1)) return;
do { cpu2 = random(0, NCPUS-1); } while (cpu == cpu2);
if (cpu < cpu2) {

lock(runqueue_lock[cpu]); lock(runqueue_lock[cpu2]);
} else {

lock(runqueue_lock[cpu2]); lock(runqueue_lock[cpu]);
}
if (runqueue[cpu2]->next != runqueue[cpu2]) {

proc = runqueue[cpu2]->next;
remove_node(proc);
insert_node_after(runqueue[cpu], proc);

}
unlock(runqueue_lock[cpu]);
unlock(runqueue_lock[cpu2]);

}

_regparam void create(Process *new_process) {
int cpu;
savecpuid(&cpu);
new_process->timeslice = SCHED_QUANTUM;
lock(runqueue_lock[cpu]);
insert_node_after(runqueue[cpu], new_process);
unlock(runqueue_lock[cpu]);
iret();

}

int fork() {
Process *new_process;
new_process = malloc(sizeof(Process));
memcpy(new_process->kernel_stack, _ss, StackSize);
new_process->saved_sp = new_process->kernel_stack+

_sp-_ss-FORK_FRAME+SCHED_FRAME;
_icall create(new_process);
return 1;

}

Figure 1. The example scheduler

activation records ip gr1 . . . grm cpu old process . . .
↑

saved sp

Figure 2. The invariant of the stack of a preempted process

scriptor. When a process is preempted, the saved_sp field is used
to save the value of the stack pointer register sp. Finally, while a
process is running, the timeslice field gives the remaining time
from its scheduling time quantum and is periodically updated by
the scheduler.

Apart from the data structures described above, a realistic kernel
would contain many others not related to scheduling, including
additional fields in process descriptors. The kernel data structures
reside in the same address space as the ones belonging to the
scheduler, thus, while verifying the OS, we have to prove that the
two components do not corrupt each other’s data structures.

The schedule function. According to the semantics of our ma-
chine, when schedule starts executing, interrupts are disabled and
the previous values of ip and the general-purpose registers are
saved on the top of the stack. The scheduler uses the empty slots on
the stack of the process it has preempted to store activation records
of its procedures and thus expects the kernel to leave enough of
these. Intuitively, while a process is running, only this process has
the right to access its stack, i.e., owns it. When the scheduler pre-
empts the process, the right to access the empty slots on the stack
(their ownership) is transferred to the scheduler. When the sched-
uler returns the control to this process, it transfers the ownership of
the stack slots back. This is one example of ownership transfer we
have to reason about.

The schedule function first calls load_balance, which mi-
grates processes between CPUs to balance the load; we describe
it below. The function then decrements the timeslice of the cur-
rently running process, and if it becomes zero, schedules another
one. The processes are scheduled in a round-robin fashion, thus, the
function inserts the current process at the end of the local runqueue
and dequeues the process at the front of the runqueue, making it
current. The function also refills the scheduling quantum of the
process being descheduled. The runqueue manipulations are done
with the corresponding lock held. Note that in a realistic OS choos-
ing a process to run would be more complicated, but still based on
scheduler-private data structures protected by runqueue locks.

To save the state of the process being preempted, schedule
copies sp into the saved_sp field of the process descriptor. This
field, together with the kernel stack of the process forms its
saved state. The stack of a preempted process contains the activa-
tion records of functions called before the process was preempted,
the label of the instruction to resume the process from, the values
of general-purpose registers saved upon the interrupt, and the ac-
tivation record of schedule, as shown in Figure 2. This invariant
holds for descriptors of all preempted processes.

The actual context switch is performed by the assignment to
sp, which switches the current stack to another one satisfying the
invariant in Figure 2. Since this changes the activation record of
schedule, the function has to update the cpu variable, which lets
it then retrieve and load the new value of ss. The iret command at
the end of schedule loads the values of the registers stored on the
stack and enables interrupts, thus completing the context switch.

The load balance function checks if the CPU given as its pa-
rameter is underloaded and, if it is the case, tries to migrate a pro-
cess from another CPU to this one. The particular way the function
performs the check and chooses the process is irrelevant for our
purposes, and is thus abstracted by a random choice. To migrate a
process, the function chooses a runqueue to steal a process from

and locks it together with the current runqueue in the order deter-
mined by the corresponding CPU identifiers, to avoid deadlocks.
The function then removes one process from the victim runqueue,
if it is non-empty, and inserts it into the current one. Note that two
concurrent scheduler invocations executing load balance on dif-
ferent CPUs may access the same runqueue. While verifying the
OS, we have to ensure they synchronise their accesses correctly.

The create function inserts the descriptor of a newly created pro-
cess with the address given as its parameter into the runqueue of the
current CPU. We pass the parameter via a register, as this simplifies
the following treatment of the example. The descriptor must be ini-
tialised like that of a preempted process, hence, its stack must sat-
isfy the invariant in Figure 2. To prevent deadlocks, create must
be called using icall, which disables interrupts. Upon a call to
create, the ownership of the descriptor is transferred from the ker-
nel to the scheduler.

The fork function is not part of the scheduler. It illustrates how
the rest of the kernel can use create to implement a common
system call that creates a clone of the current process. This function
allocates a new descriptor, copies the stack of the current process to
it and initialises the stack as expected by create (Figure 2). This
amounts to discarding the topmost activation record of fork and
pushing a fake activation record of schedule (note that the values
of registers the new process should start from have been saved on
the stack upon the call to fork). Since stack slots for return values
are initialised with zeros, this is what fork in the child process will
return; we return 1 in the parent process.

The need for modularity. We could try to verify the scheduler and
the rest of the kernel as a whole, modelling every CPU as a process
in one of the existing program logics for concurrency [3–5, 13,
19, 22]. However, in this case our proofs would have to consider
the possibility of the control-flow going from any statement in a
process to the schedule function, and from there to any other
process. Thus, in reasoning about a system call implementation
we would end up having to reason explicitly about invariants and
actions of both schedule and all other processes, making the
reasoning unintuitive and, most likely, intractable. In the rest of the
paper we propose a logic that avoids this pitfall.

2.3 Approach
Before presenting our logic in detail, we give an informal overview
of the reasoning principles behind it.

Modular reasoning via memory partitioning. The first issue we
have to deal with while designing the logic is how to verify the
scheduler and the kernel separately, despite the fact that they share
the same address space. To this end, our logic partitions the mem-
ory into two disjoint parts. The memory cells in each of the parts
are owned by the corresponding component, meaning that only this
component can access them. It is important to note that this parti-
tioning does not exist in the semantics, but is enforced by proofs
in the logic to enable modular reasoning about the system. Mod-
ular reasoning becomes possible because, while reasoning about
one component, one does not have to consider the memory par-
tition owned by the other, since it cannot influence the behaviour
of the component. An important feature of our logic, required for
handling schedulers from mainstream kernels, is that the memory
partitioning is not required to be static: the logic permits ownership
transfer of memory cells between the areas owned by the scheduler
and the kernel according to an axiomatically defined interface. For
example, in reasoning about the scheduler of Section 2.2, the logic
permits the transfer of the descriptor for a new process from the
kernel to the scheduler at a call to create.

As we have noted before, our logic consists of two proof sys-
tems: the high-level system (Section 4.3) for verifying the ker-

nel and the low-level one for the scheduler (Section 4.4). These
proof systems implement a form of assume-guarantee reasoning
between the two components, where one component assumes that
the other does not touch its memory partition and provides well-
formed pieces of memory at ownership transfer points.

Concurrent separation logic. We use concurrent separation
logic [19] as a basis for modular reasoning within a given com-
ponent, i.e., either among concurrent OS processes or concurrent
scheduler invocations on different CPUs. This choice was guided
by the convenience of presentation; see Section 8 for a discussion
of how more advanced logics can be integrated. However, the use
of a version of separation logic is crucial, because we inherently
rely on the frame property validated by the logic: the memory that
is not mentioned in the assertions in a proof of a command is guar-
anteed not to be changed by it. While reasoning about a component,
we consider only the memory partition belonging to it. Hence, we
automatically know that the component cannot modify the others.

Concurrent separation logic achieves modular reasoning by fur-
ther partitioning the memory owned by the component under con-
sideration into disjoint process-local parts (one for each process
or scheduler invocation on a given CPU) and protected parts (one
for each free lock). A process-local part can only be accessed by
the corresponding process or scheduler invocation, and a lock-
protected part only when the process holds the lock. The resulting
partitioning of the system state is illustrated in Figure 3. The frame
property guarantees that a process cannot access the partition of the
heap belonging to another one. To reason modularly about parts of
the state protected by locks, the logic associates with every lock an
assertion—its lock invariant—that describes the part of the state it
protects. Resource invariants restrict how processes can change the
protected state, and hence, allow reasoning about them in isolation.

Scheduler-agnostic verification of kernel code. The high-level
proof system (Section 4.3) reasons about preemptable code assum-
ing an abstract machine where every process has its own virtual
CPU. It relies on the partitioned view of memory described above
to hide the state of the scheduler, with all the remaining state split
among processes and locks accessible to them, as illustrated in Fig-
ure 4. We have primed process identifiers in the figure to emphasise
that the virtual state of the process can be represented differently in
the abstract and physical machines: for example, if a process is not
running, the values of its local registers can be stored in scheduler-
private data structures, rather than in CPU registers.

Apart from hiding the state of the scheduler, the high-level
system also hides the complex manipulation of the control-flow
performed by it: the proof system assumes that the control moves
from one point in the process code to the next without changing
its state, ignoring the possibility of the scheduler getting executed
upon an interrupt. Explicit calls to the scheduler are treated as if
they were executed atomically.

Technically, the proof system is a straightforward adaptation of
concurrent separation logic, which is augmented with proof rules
axiomatising the effect of scheduler routines explicitly called by
processes. The novelty here is that we can use such a scheduler-
agnostic logic in this context at all.

Proving schedulers correct via logical refinement. The use of
the high-level proof system is justified by verifying the scheduler
implementation using a low-level proof system (Section 4.4). What
does it mean for a scheduler to be functionally correct? Intuitively,
a scheduler must provide an illusion of a system where every
process has its own virtual CPU with a dedicated set of registers.
To formalise this, we could define a semantics of such an abstract
system and prove that any behaviour of the concrete system is
reproducible in the abstract one, thus establishing a refinement
between the two systems. The main technical challenge we have to

SchedulerKernel
CPU1

CPU2

lock1

lock2
process1

process2

process3

Figure 3. The partitioning of the system state enforced by the
logic. The memory is partitioned into two parts, owned by the
scheduler and the kernel, respectively. The memory of each compo-
nent is further partitioned into parts local to processes or scheduler
invocations on a given CPU, and parts protected by locks.

lock1
process1’

process2’

process3’

Kernel

Figure 4. The state of the abstract system with one virtual CPU per
process. Process identifiers are primed to emphasise that the virtual
state of the process can be represented differently in the abstract
and physical machines (cf. Figure 3). Dark regions illustrate the
parts of process state that are tracked by a scheduler invocation
running on a particular physical CPU.

deal with in this paper is that for realistic OS schedulers, defining
a semantics for the abstract system a scheduler implements is
difficult. This is because, in reasoning about mainstream operating
systems, the ownership transfer between the scheduler and the
kernel can involve not only fixed memory cells, but arbitrary logical
facts describing them, which is difficult to describe operationally
(see the treatment of the desc predicate in Section 4.3).

In this paper we resolve this problem in a novel way. Instead
of defining the semantics of the abstract machine operationally,
we define it only axiomatically as the high-level proof system
described above. As expected, the low-level proof system is used
to reason about the correspondence between the concrete and the
abstract system, with its assertions relating their states. However,
proofs in neither of the two systems are interpreted with respect to
any semantics alone: our soundness statement (Section 6) interprets
a proof of the kernel in the high-level system and a proof of
the scheduler in the low-level one together with respect to the
semantics of the concrete machine. Thus, instead of relating sets
of executions of the two systems, the soundness statement relates
logical statements about the abstract system (given by high-level
proofs) to logical statements about the concrete one (given by a
constraint on concrete states). We call this form of establishing a
correspondence between the two systems a logical refinement. Note
that in this case the soundness statement for the logic does not
yield a semantic statement of correctness for the scheduler being
considered. Rather, its correctness is established indirectly by the
fact that reasoning in the high-level proof system, which assumes

Reg = {ip, if, ss, sp, gr1, . . . , grm} Loc ⊆ Val

Context = Reg→Val CPUid = {1, . . . , NCPUS}
GContext = CPUid ⇀ Context Heap = Loc ⇀ Val

Lock = {`1, `2, . . . , `n} Lockset = P(Lock)

Config = GContext× Heap× Lockset

Figure 5. The set of machine configurations Config. We assume
sets Loc of valid memory addresses and Val of values, respectively.

the abstract one-CPU-per-process machine, is sound with respect
to the concrete machine.

To verify the scheduler separately from the processes it man-
ages, low-level assertions focus only on a small relevant part of the
state of the kernel, which we call scheduler-visible. Namely, the
assertions relate the state local to a scheduler invocation on a par-
ticular CPU in the concrete system (e.g., the region marked CPU1
in Figure 3) to parts of abstract states of some of the OS processes
(e.g., the dark regions in Figure 4). The latter parts can include,
e.g., the values of registers of the virtual CPU of the process, but
not the process-local memory. They are used in the low-level proof
system to verify that the operations performed by the scheduler
in the concrete machine correctly implement the required actions
in the abstract machine. These parts also function as permissions
to schedule the corresponding processes, i.e., a given part can be
owned by at most one scheduler invocation at a time. For example,
a scheduler invocation owning the parts of process states marked
in Figure 4 has a permission to schedule processes 1 and 2, but not
3. Such a permission reading is crucial for handling scheduling on
multiprocessors, as it ensures that a process may not be scheduled
at two CPUs at the same time.

Summary. In the following we formalise the above approach for
a particular class of schedulers. Despite the formalisaton being
performed for this class, the technical methods we develop here
can be reused in other settings (see Section 8 for a discussion). In
particular, we propose the following novel ideas:

• exploiting a logic validating the frame property to hide the state
of the scheduler while verifying the kernel and vice versa;

• using a logical refinement in a context where defining an abstract
semantics refined by the concrete one is difficult; and

• focusing on relevant parts of the two systems related in the
refinement and giving a permission interpretation to them.

3. Preliminaries
In this section, we give a formal semantics to the example machine
informally presented in Section 2.1.

3.1 Storage model
Figure 5 gives a model for the set of configurations Config that can
arise during an execution of the machine. A machine configuration
is a triple with the components describing the values of registers
of the CPUs in the machine, the state of the heap and the set of
locks taken by some CPU. The configurations in which the heap
or the global context is a partial function are not encountered in
the semantics we define in this section. They come in handy in
Sections 4 and 6 to give a semantics to the assertion language and
express the soundness of our logic.

In this paper, we use the following notation for partial functions:
f [x : y] is the function that has the same value as f everywhere,
except for x, where it has the value y; [] is a nowhere-defined
function; f]g is the union of the disjoint partial functions f and g.

3.2 Commands
Programs for our machine consist of primitive commands c:

r ∈ Reg − {ip} ` ∈ Lock l ∈ Label = N
e ::= r | 0 | 1 | 2 | . . . | e + e | e− e

b ::= e = e | e ≤ e | b ∧ b | b ∨ b | ¬b

c ::= skip | r := e | r := [e] | [e] := e | assume(b)
| lock(`) | unlock(`) | savecpuid(e)
| call(l) | icall(l) | ret | iret

In addition to the primitive commands listed in Section 2, we have
the following ones: skip and r := e have the standard meaning;
r := [e] reads the contents of a heap cell e and assigns the value
read to r; [e] := e′ updates the contents of cell e by e′; assume(b)
acts as a filter on the state space of programs, choosing those
satisfying b. We write PComm for the set of primitive commands.
Note that the commands cannot access the ip register directly.

Commands C are partial maps from Label to PComm ×
P(Label). Intuitively, if C(l) = (c, X), then c is labelled with l in
C and is followed by commands with labels in X . In this case we
let comm(C, l) = c and next(C, l) = X . We denote the domain
of C with labels(C) and the set of all commands with Comm.

The language constructs used in the example scheduler of Sec-
tion 2, such as loops and conditionals, can be expressed as com-
mands in a standard way, with conditions translated using assume.

3.3 Semantics
We now give a standard operational semantics to our programming
language. We interpret primitive commands c using a transition
relation ;c of the following type:

State = Context× Heap× Lockset

;c ⊆
`
CPUid× State× Label2

´
×

`
State× Label ∪ {>})

The input to ;c consists of four components. The first is the identi-
fier of the CPU executing the command, and the next the configura-
tion of the system projected to this CPU, which we call a state. The
latter includes the context of the CPU and the information about the
shared resources—the heap and locks. The last two components of
the input are the labels of the command c and a primitive command
following it in the program. Given this input, the transition relation
;c for c nondeterministically computes the next state of the CPU
after running c, together with the label of the primitive command to
run next. The former may be a special > state signalling a machine
crash. The latter may be different from the label given as the last
component of the input, when c is a call or a return.

The relation ;c appears in Figure 6. In the figure and in the rest
of the paper, we write for an expression whose value is irrelevant
and implicitly existentially quantified. The relation follows the
informal meaning of primitive commands given in Sections 2.1
and 3.2. Note that ;c may yield no post-state for a given pre-state.
Unlike a transition to the > state, this represents the divergence of
the command. For example, according to Figure 6, acquiring the
same lock twice leads to a deadlock, and releasing a lock that is
not held crashes the system. Note that we do not prevent a held
lock from being released by a CPU that did not acquire it, so locks
behave like binary semaphores.

The program our machine executes is given by a command C
that includes a primitive command labelled schedule, serving as
the entry point of the interrupt handler. For such a command C,
we give its meaning using a small-step operational semantics, for-
malised by the transition relation→C ⊆ Config×(Config∪{>})
in Figure 7. The first rule in the figure describes a normal execu-
tion, where the ip register of CPU k is used to choose the primitive
command c to run. After choosing c, the machine picks the label
l′ of a following command, runs c according to the semantics ;c,

(k, (r, h[[[e]]r : u], L), l, l′) ;r:=[e] ((r[r : u], h[[[e]]r : u], L), l′)

(k, (r, h, L), l, l′) ;assume(b) ((r, h, L), l′), if [[b]]r = true

(k, (r, h, L), l, l′) 6;assume(b) if [[b]]r = false

(k, (r, h, L), l, l′) ;lock(`) ((r, h, L ∪ {`}), l′), if ` 6∈ L

(k, (r, h, L), l, l′) 6;lock(`) if ` ∈ L

(k, (r, h, L), l, l′) ;unlock(`) ((r, h, L− {`}), l′), if ` ∈ L

(k, (r, h[[[e]]r :], L), l, l′) ;savecpuid(e) ((r, h[[[e]]r : k], L), l′)

(k, (r, h[r(sp) : , . . . , r(sp)+m :], L), l, l′)

;call(l′′) ((r[sp : r(sp)+m+1],

h[r(sp) : l′, r(sp)+1 : r(gr1), . . . , r(sp)+m : r(grm)], L), l′′)

(k, (r, h[r(sp)−m−1 : l′′, r(sp)−m : g1, . . . , r(sp)−1 : gm],L), l, l′)

;ret ((r[sp : r(sp)−m−1, gr1 : g1, . . . , grm : gm],

h[r(sp)−m−1 : l′′, r(sp)−m : g1, . . . , r(sp)−1 : gm], L), l′′)

(k, (r, h, L), l, l′) ;c >, otherwise

Figure 6. Semantics of primitive commands. We have omitted
standard definitions for skip and most of assignments (see [20]).
We have also omitted them for icall and iret: the definitions are
the same as for call and ret, but additionally modify if. In the
figure ;c> indicates that the command c crashes, and 6;c means
that it does not crash, but diverges. The function [[·]]r evaluates
expressions with respect to the context r.

r(ip) = l ∈ labels(C) l′ ∈ next(C, l)

(k, (r, h, L), l, l′) ;comm(C,l) ((r′, h′, L′), l′′)

(R[k : r], h, L) →C (R[k : r′[ip : l′′]], h′, L′)

r(ip) = l ∈ labels(C) r(if)= 1

(k, (r, h, L), l, l) ;icall(schedule) ((r′, h′, L′), l′′)

(R[k : r], h, L) →C (R[k : r′[ip : l′′]], h′, L′)

r(ip) = l ∈ labels(C)

l′ ∈ next(C, l) (k, (r, h, L), l, l′) ;comm(C,l) >
(R[k : r], h, L) →C >

r(ip) 6∈ labels(C)

(R[k : r], h, L) →C >
r(if) = 1 {r(sp), . . . , r(sp)+m} 6⊆ dom(h)

(R[k : r], h, L) →C >

Figure 7. Operational semantics of the machine

and uses the result of this run to update the registers of CPU k and
the heap and the lockset of the machine. The next rule concerns
interrupts. Upon an interrupt, the interrupt handler label schedule
is loaded into ip, and the label of the command to execute after
the handler returns is pushed onto the stack together with the val-
ues of the general-purpose registers. The remaining rules deal with
crashes arising from erroneous execution of primitive commands,
undefined command labels and a stack overflow upon an interrupt.

4. The logic
In this paper we consider schedulers whose interface consists of
two routines: create and schedule. Like in our example sched-
uler (Section 2.2), create makes a new process runnable, and
schedule performs a context-switch. (Our results can be extended
when new scheduler routines are introduced; see Section 8 for a
discussion.) Our logic thus reasons about programs of the form:

C] [lc : (iret, {lc+1})]] S] [ls : (iret, {ls+1})]] K (OS)

where C and S are pieces of code implementing the create and
schedule routines of the scheduler and K is the rest of the kernel
code. Our high-level proof system is designed for proving K, and
the low-level system for proving C and S.

We place several restrictions on programs. First, we require
that C and S define primitive commands labelled create and
schedule, which are meant to be the entry points for the corre-
sponding scheduler routines. The create routine expects the ad-
dress of the descriptor of the new process to be stored in the regis-
ter gr1. By our convention schedule also marks the entry point of
the interrupt handler. Thus, schedule may be called both directly
by a process or by an interrupt. For simplicity, we assume that the
scheduler data structures are properly initialised when the program
starts executing.

To ensure that the scheduler routines execute with interrupts
disabled, we require that C and S may not contain icall, iret
and assignments accessing the if register. We also need to ensure
that the kernel may not affect the status of interrupts, become
aware of the particular CPU it is executing on, or change the stack
address. Thus, K may not contain savecpuid, icall and iret
(except calls to the scheduler routines schedule and create),
assignments accessing if or writing to ss. In reality, a kernel
might need to disable interrupts. We discuss how our results can
be extended to handle this in Section 8. Finally, we require that the
kernel K and the scheduler C and S access disjoint sets of locks.
This condition simplifies the soundness statement in Section 6 and
can be lifted.

The core part of our logic is the low-level proof system for ver-
ifying scheduler code, which we present in Section 4.4. It extends
the high-level proof system used for verifying kernel code, which,
in turn, adapts concurrent separation logic to our setting. For this
reason, we present the high-level system first.

4.1 Assertion language
We now present the assertion language of the high-level proof
system. Assertions describe properties of a single process, as if
it were running on a separate virtual CPU. The state of the pro-
cess thus consists of the values of the CPU registers (its context),
the heap local to the process and the locks the process has a per-
mission to release (its lockset). Mathematically, states of a pro-
cess are just elements of State defined in Section 3.3: State =
Context×Heap× Lockset. However, unlike in the semantics of
Section 3.3, a heap here can be a partial function, with its domain
defining the part of the heap owned by the process. A lockset is now
meant to contain only the set of locks that the process has a permis-
sion to release (in our logic such permissions can be transferred
between processes).

To denote sets of process states in our logic, we use a minor
extension of the assertion language of separation logic [20]. Let
NVar and CVar be disjoint sets containing logical variables for
values and contexts, respectively. Assertions are defined as follows:

x, y ∈ NVar γ ∈ CVar

r ∈ Reg − {ip} r ∈ {ip, if, ss, sp, gr1, . . . , grm}
E ::= x | r | 0 | 1 | . . . | E+E | E−E | G(r)
G ::= γ | [ip : E, if : E, ss : E, sp : E, ~gr : ~E]

Σ ::= ε | E | Σ Σ

B ::= E=E | Σ=Σ | G=G | E≤E | B ∧B | B ∨B | ¬B

P ::= B | true | P ∧ P | ¬P | ∃x. P | ∃γ. P | emp

| E 7→E | E..E 7→Σ | P ∗P | dllΛ(E, E, E, E) | locked(`)

Expressions E and Booleans B are similar to those in programs,
except that they allow logical variables to appear and include the
lookup G(r) of the value of the register r in the context G. A
context G is either a logical variable or a finite map from register

(r, h, L) |=η B iff [[B]]ηr = true

(r, h, L) |=η P1 ∧ P2 iff (r, h, L) |=η P1 and (r, h, L) |=η P2

(r, h, L) |=η emp iff h = [] and L = ∅
(r, h, L) |=η E0 7→ E1 iff h = [[[E0]]ηr : [[E1]]ηr] and L = ∅
(r, h, L) |=η E0..E1 7→ Σ iff ∃j ≥ 0.∃v1, . . . , vj ∈ Val.

L = ∅, j = [[E1]]ηr−[[E0]]ηr+1, v1v2 . . . vj = [[Σ]]ηr

and h = [[[E0]]ηr : v1, . . . , [[E1]]ηr : vj]

(r, h, L) |=η locked(`) iff h = [] and L = {`}
(r, h, L) |=η P1 ∗ P2 iff ∃h1, h2, L1, L2. h = h1] h2,

L = L1] L2, (r, h1, L1) |=η P1 and (r, h2, L2) |=η P2

Predicate dllΛ is the least one satisfying the equivalence below:
dllΛ(Eh, Ep, En, Et) ⇔ ∃x. (Eh = En ∧ Ep = Et ∧ emp) ∨
Eh.prev 7→Ep ∗ Eh.next 7→x ∗ Λ(Eh) ∗ dllΛ(x, Eh, En, Et)

Figure 8. Semantics of high-level assertions. We have omitted
the standard clauses for most of the first-order connectives. The
function [[·]]ηr evaluates expressions with respect to the context r
and the logical variable environment η.

labels r to expressions. We denote the set of assertions defined here
with AssertK. Let a logical variable environment η be a mapping
from NVar ∪ CVar to Val ∪ Context that respects the types of
variables. Assertions denote sets of states from State as defined by
the satisfaction relation |=η in Figure 8. For an environment η and
an assertion P , we denote with [[P]]η the set of states satisfying P .

The assertions in the first line of the definition of P except
emp are connectives from the first-order logic with the standard
semantics. We can define the missing connectives from the given
ones. The following assertions from emp up to the dllΛ predicate
are standard assertions of separation logic [20]. Informally, emp
describes the empty heap, and E 7→ E′ the heap with only one
cell at the address E containing E′. The assertion E..E′ 7→ Σ
is the generalisation of the latter to several consecutive cells at the
addresses from E to E′ inclusive containing the sequence of values
Σ. For a value u of a C type t taking several cells, we shorten
E..(E+sizeof(t)−1) 7→ u to just E 7→ u. For a field f of a C
structure, we use E.f 7→ E′ as a shortcut for E + off 7→ E′, where
off is the offset of f in the structure. The separating conjunction
P1 ∗P2 talks about the splitting of the local state, which consists of
the heap and the lockset of the process. It says that a pair (h, L) can
be split into two disjoint parts, such that one part (h1, L1) satisfies
P1 and the other (h2, L2) satisfies P2.

The assertion dllΛ(Eh, Ep, En, Et) is an inductive predicate
describing a segment of a doubly-linked list. It assumes a C struc-
ture definition with fields prev and next. Here Eh is the address of
the head of the list, Et the address of its tail, Ep the pointer in the
prev field of the head node, and En the pointer in the next field
of the tail node. The Λ parameter is a formula with one free logi-
cal variable describing the shape of each node in the list, excluding
the prev and next fields; the logical variable defines the address of
the node. For instance, a simple doubly-linked list can be expressed
using Λ(x) = emp. We included dllΛ to describe the runqueues of
the scheduler in our example. Predicates for other data structures
can be added straightforwardly [20].

Finally, the assertion locked(`) is specific to reasoning about
concurrent programs and denotes states with an empty local heap
and the lockset consisting of `, i.e., it denotes a permission to
release the lock `. Note that locked(`) ∗ locked(`) is inconsistent:
acquiring the same lock twice leads to a deadlock.

To summarise, our assertion language extends that of concurrent
separation logic with expressions to denote contexts and locked
assertions to keep track of permissions to release locks.

4.2 Interface parameters
As we noted in Section 2.3, our logic can be viewed as imple-
menting a form of assume-guarantee reasoning between the sched-
uler and the kernel. In particular, interactions between them in-
volve ownership transfer of memory cells at points where the con-
trol crosses the boundary between the two components. Hence, the
high- and low-level proof systems have to agree on the description
of the memory areas being transferred and the properties they have
to satisfy. These descriptions form the specification of the inter-
face between the scheduler and the kernel, and, correspondingly,
between the two proof systems. Here we describe parameters used
to formulate it. We note that the interface parameters we present
here are tied to a particular class of schedulers for which we present
our logic. As we argue in Section 8, our results can be carried over
to schedulers with more elaborate interfaces.

Ownership transfer happens at calls to and returns from the
scheduler routines create and schedule. When the kernel calls
the create routine of the scheduler, the latter should get the own-
ership of the process descriptor supplied as the parameter. In the
two proof systems, we specify this descriptor using an assertion
desc(d, γ) ∈ AssertK with two free logical variables and no regis-
ter occurrences. Our intention is that it describes the descriptor of
a process with the context γ, allocated at the address d. However,
the user of our logic is free to choose any assertion, depending on
a particular scheduler implementation being verified. As the sched-
uler and the kernel access disjoint sets of locks, we require that all
states in [[desc(d, γ)]]η have an empty lockset.

We fix the piece of state transferred from the kernel to the
schedule routine upon an interrupt to be the free part of the stack
of the process being preempted. The parameters determining its
size are the size of the stack StackSize ∈ N and the upper bound
StackBound ∈ N on the stack usage by the kernel (excluding the
scheduler). To ensure that the stack does not overflow while calling
an interrupt hander, we require that StackSize−StackBound ≥
m+1, where m is the number of general-purpose registers.

4.3 High-level proof system
The high-level proof system reasons about the kernel code K. It is
obtained by adapting concurrent separation logic to our setting and
adding proof rules axiomatising the effect of scheduler routines.

The judgements of the high-level proof system are of the form
I, ∆ ` C, where I : Lock ⇀ AssertK is a partial mapping
from locks accessible in the kernel code to their invariants (see
Section 2.3) and ∆ : Label → AssertK is a total mapping from
code labels to preconditions. The parameter ∆ in our judgement
specifies local states of the process at various program points,
which induce pre- and post-conditions for all primitive commands
in C. When considering a complete system in Section 4.5, we
restrict ∆ so that it is false everywhere except at labels in the kernel
code. An example of a lock invariant is

∃x, y. 10.prev 7→ y ∗ 10.next 7→ x ∗ dllΛ(x, 10, 10, y),

where Λ(x) = emp. It states that the lock protects a non-empty
cyclic doubly-linked list with the head node at address 10. We
forbid lock invariants to contain registers or free occurrences of
logical variables. We consider a version of concurrent separation
logic where resource invariants are allowed to be imprecise [19]
at the expense of excluding the conjunction rule from the proof
system [12].

The rule PROG-H for deriving the judgements is given in Fig-
ure 9. The first premise of the rule says that all assertions in ∆
have to satisfy some restrictions regarding stack usage, formulated
using parameters StackSize and StackBound introduced in Sec-
tion 4.2. These ensure that the interrupt handler can safely execute
on the stack of the process it preempts:

∀l ∈ Label(C).∃P ∈ AssertK. ∆(l) ⇔ (0 ≤ sp−ss ≤ StackBound ∧ P ∗ sp..(ss+StackSize−1) 7→)
∀l ∈ labels(C).∀l′ ∈ next(C, l). (I, ∆ �l′ {∆(l)} comm(C, l) {∆(l′)})

I, ∆ ` C
PROG-H

P ⇒ P ′ I, ∆ �l {P ′} c {Q′} Q′ ⇒ Q

I, ∆ �l {P} c {Q}
CONSEQ

I, ∆ �l {P} c {Q} notCallRet(c)

I, ∆ �l {∃x. P} c {∃x. Q} EXISTS

I, ∆ �l {P1} c {Q1} I, ∆ �l {P2} c {Q2}
I, ∆ �l {P1 ∨ P2} c {Q1 ∨Q2}

DISJ
I, ∆ �l {P} c {Q} mod(c) ∩ free(F) = ∅ notCallRet(c)

I, ∆ �l {P ∗ F} c {Q ∗ F} FRAME

I, ∆ �l {P} assume(b) {P ∧ b} ASSUME
I, ∆ �l {e 7→ } [e]:=e′ {e 7→ e′}

STORE

I, ∆ �l {emp} lock(`) {I(`) ∗ locked(`)} LOCK
I, ∆ �l {I(`) ∗ locked(`)} unlock(`) {emp} UNLOCK

(P ∗ (sp..(sp+m) 7→ l gr1 . . . grm)) ⇒ (∆(l′)[sp+m+1/sp])

I, ∆ �l {P ∗ (sp..(sp+m) 7→)} call(l′) {Q}
CALL

I, ∆ �l {P} icall (schedule) {P} SCHED

∀l′ ∈ Label. (P ∗ ((sp−m−1)..(sp−1) 7→ E′ ~E) ∧ E′ = l′) ⇒ (∆(l′)[sp−m−1/sp][~E/ ~gr])

I, ∆ �l {P ∗ ((sp−m−1)..(sp−1) 7→ E′ ~E)} ret {Q}
RET

free(P) ∩ Reg = ∅ ∀l′ ∈ Label. (∃γ. id = γ ∧ γ(ip)= l′ ∧ sp..(ss+StackSize−1) 7→ ∗ P) ⇒ ∆(l′)

I, ∆ �l {∃γ. γ(if) = 1 ∧ desc(gr1, γ) ∗ P ∗Q} icall(create) {∃γ. Q} CREATE

Figure 9. High-level proof system. Here mod(c) is the set of registers modified by c, free(F) is the set of registers appearing in F , and
notCallRet(c) means that c is not one of call, icall, ret and iret. Finally, id = [ip : , if : if, ss : ss, sp : sp, ~gr : ~gr].

• the free part of the stack of the process must always be in its local
state so that it can be transferred to the handler at any time;

• this part must always be large enough for the handler to run
without a stack overflow; and

• the assertions should be independent of any changes to the empty
slots of the stack, which may be modified by the handler.

The other condition in the PROG-H rule is that for every primitive
command c in C and the label l′ of a command following c,
we have to prove I, ∆ �l′ {∆(l)} c {∆(l′)}. This informally
means that, if c is run from an initial state satisfying ∆(l), then it
accesses only the memory specified by ∆(l) and either terminates
normally and ends up in a state satisfying ∆(l′), or jumps to a
label l′′ whose assertion ∆(l′′) holds in the current state. Note
that the italicised clause enforces the frame property (Section 2.3).
The proof rules for such judgements are also given in Figure 9.
The rules CONSEQ, DISJ and EXISTS are standard rules of Hoare
logic. The FRAME rule is inherited from separation logic; it states
that executing a command in a bigger local state does not change
its behaviour. The rule is useful to restrict the reasoning about
primitive commands to the memory they actually access. To keep
the logic sound we have to forbid EXISTS and FRAME to be applied
to calls or returns. The logic also provides standard separation logic
axioms for primitive commands. In Figure 9 we show two of them,
ASSUME and STORE, and omit the others to save space; see [20].

The LOCK and UNLOCK axioms are inherited from concurrent
separation logic and provide tools for modular reasoning about con-
current processes. The LOCK axiom says that, upon acquiring a
lock, the process gets the ownership of its invariant and a permis-
sion to release it. According to UNLOCK, before releasing the lock,
the process must have the corresponding permission and must re-
establish the lock invariant. When the lock is released, the process
gives up the ownership of the permission and the invariant.

The CALL and RET axioms mirror the operational semantics of
call and ret (see Section 2.1 and Figure 6). CALL requires us to
provide enough space on the stack to store the values of registers
before a call. The precondition together with the modified stack

then has to establish the assertion given by ∆ at the target label.
RET similarly requires the precondition to establish the assertion at
the target label after the values of general-purpose registers and ip

(denoted with ~E and E′) have been loaded from the stack.
The axioms CALL and RET provide only a very rudimentary

treatment of procedures. In particular, our logic does not have
analogues of the usual modular Hoare proof rules for procedures
and does not allow applying the FRAME rule over a procedure call.
This is because soundly formulating such proof rules in the setting
where the stack is visible to procedure code and can potentially be
modified by it is non-trivial. This issue is orthogonal to the problem
of scheduler verification we are concerned with, thus, in this paper
we chose the simplest high-level logic possible. See Section 8 for
pointers to more expressive logics for procedures.

What we have presented so far is just an adaptation of concur-
rent separation logic to our setting. We now provide axioms for
calling the scheduler routines schedule and create, which are
specific to our logic. As the high-level proof system hides the im-
plementation of scheduler routines, the corresponding axioms are
significantly different from CALL. In particular, the axioms are for-
mulated as if after these icall commands the control just pro-
ceeded to the next statement in the program instead of jumping
to the implementation of the routines. This is despite the fact that
after a call to schedule, the process may be preempted and the
control-flow given to any other process in the system. In this way,
the axioms abstract from the scheduler implementation.

The SCHED axiom states that invoking schedule has no effect
from the point of view of the process—if it is preempted, the
scheduler resumes it in the same context, and no other process can
touch its local heap. The axiom does not place any requirements
on the process, as the preconditions necessary for the execution
of schedule, which anyway can be invoked at any time as the
interrupt handler, are established by the first condition in PROG-H.

The CREATE axiom is more complicated. First, it requires the
caller of create to provide a new descriptor desc(gr1, γ) for the
process being created with the context γ. We pass the parameter
via the register gr1 and not via the stack, as this simplifies the

following technical presentation. The context is required to have
if set, since after the context switch is finished, the process starts
executing with interrupts enabled. Note that the descriptor is not
present in the postcondition: it gets transferred to the scheduler
and reappears in the precondition of the implementation of create
(Section 4.5). The axiom also allows us to transfer the ownership
of the part of the heap given by P to the newly created process,
thus providing it with an initial local state. This is a typical idiom
for high-level reasoning about processes in separation logics [13].
The premise of the rule correspondingly requires that, after the
registers and the stack are properly initialised, the state P we are
transferring should establish the assertion at the label the process
starts executing from. The effect of loading registers from γ is
formulated using the context id.

For the example scheduler in Section 2.2, desc(d, γ) should
describe a process descriptor with the stack initialised accord-
ing to the invariant of a preempted process pictured in Figure 2:
desc(d, γ) = d.prev 7→ ∗ d.next 7→ ∗ desc0(d, γ), where

desc0(d, γ) ⇔ γ(if)=1 ∧ γ(ss)=d.kernel stack ∧
0 ≤ γ(sp)−γ(ss) ≤ StackBound ∧ d.timeslice 7→ ∗
d.saved sp 7→ (γ(sp)+m+1+SCHED FRAME) ∗
γ(sp)..(γ(sp)+m) 7→ γ(ip)γ(~gr) ∗
(γ(sp)+m+1)..(γ(ss)+StackSize−1) 7→

and SCHED FRAME is the size of the activation record of schedule
(Figure 1). The descriptor does not include filled stack slots; they
can be passed to the process directly in the precondition P .

As we have noted before, desc(d, γ) can be an arbitrary log-
ical predicate. In some cases, e.g., when it is imprecise [19], its
transfer from the kernel to the scheduler is hard to express oper-
ationally when defining a semantics of the kernel separately from
the implementation of the scheduler; see [12] for a discussion. The
situation would be worse had we based our logic on one of ad-
vanced modular concurrency logics, such as deny-guarantee [4],
which are needed to handle real OS code. This is because proofs
of soudness for such logics do not give an operational semantics to
separate components of a program. The above difficulties with an
operational definition of ownership transfer are a prime reason for
using logical refinement in this paper.

The high-level proof system provides modern tools for modular
reasoning about concurrent processes using proof rules of concur-
rent separation logic. The PROG-H rule of the system subsumes the
usual sequential composition rule of Hoare logic, which assumes
that the control-flow follows the structure of the process code and
ignores the possibility of scheduler code getting executed at an in-
terrupt. The axioms SCHED and CREATE abstract the implementa-
tion of scheduler routines by treating them like atomic commands.
Thus, the state and the control-flow of the scheduler is completely
hidden by the proof system. The soundness of such an illusion is
established by verifying the scheduler code using a low-level proof
system, which we describe next.

4.4 Low-level proof system
We now present the core of our logic—the low-level proof sys-
tem, which is used to prove that the commands C and S of the
OS program implement scheduling correctly. As we explained in
Section 2.3, assertions of the proof system relate the states of the
concrete machine and an abstract one, where every process has its
own virtual CPU. The state of the concrete machine can be de-
scribed using separation logic assertions introduced in Section 4.1.
To describe states of the abstract machine, we extend the assertion
language of Section 4.3 with an additional predicate: P ::= . . . |
Process(G), where G ranges over context expressions. We denote
the set of such assertions with AssertS. The Process(G) predicate

(r, h, L), M |=η Process(G) iff h = [], L = ∅, M = {[[G]]ηr}
(r, h, L), M |=η P ∗Q iff ∃h1, h2, L1, L2, M1, M2.

h = h1] h2, L = L1] L2, M = M1]M2,

(r, h1, L1), M1 |=η P and (r, h2, L2), M2 |=η Q

(r, h, L), M |=η emp iff h = [], L = ∅ and M = ∅
(r, h, L), M |=η P ∧Q iff

(r, h, L), M |=η P and (r, h, L), M |=η Q

Figure 10. Semantics of low-level assertions. The] operation on
multisets adds up the number of occurrences of each element in its
operands.

describes a process with the values of registers of its virtual CPU
given by the context G.

The addition of the Process predicate changes objects described
by assertions: they now denote relations defined by subsets of
RelState = State × M(Context), where M(A) is the set of
all finite multisets with elements from A. Relations in RelState
connect the states of the concrete machine and the abstract machine
with one CPU per process. As we have noted before, these relations
do not describe the full state of the machines. The first component
in a relation describes the local state of a scheduler invocation
running on a CPU, including its context and the heap and the
lockset local to it (e.g., the region marked CPU1 in Figure 3). The
multiset in the second part records the scheduler-visible states of
processes described by Process predicates in the assertion, i.e.,
parts of their local states that may be referred to by proofs about
the scheduler (cf. the dark regions in Figure 4). These include the
context of a process, but exclude its local heap and lockset: the
latter are irrelevant for the schedulers we consider here and are
therefore invisible to them. The low-level logic we present in this
section is based on separation logic, hence, the invisibility of parts
of process state to the scheduler automatically guarantees that it
cannot access them.

Apart from keeping track of the state of a process, a Process
predicate serves in the logic as an exclusive permission for the
scheduler invocation owning it to schedule the corresponding pro-
cess. To enforce this, the semantics of assertions defined below
forbids the duplication of Process predicates: Process(G) 6⇒
Process(G) ∗ Process(G). Furthermore, the proof obligations for
the scheduler we define in Section 4.5 state that it needs a Process
predicate to schedule a process. Such a permission interpretation of
Process is a key feature of our logic that allows us to reason about
schedulers for multiprocessors: it ensures that, at a given time, only
one scheduler invocation can own a Process predicate for a pro-
cess, and hence, it can be scheduled only on one CPU at a time.

We give the formal semantics of assertions using the satisfac-
tion relation |=η in Figure 10, parameterised by environments η.
The first two cases in the figure are the most interesting ones.
Process(G) relates a scheduler invocation having the empty heap
and the empty lockset to a single process with the register values
G. To be related by the separating conjunction P ∗ Q, all parts of
the state-multiset pair except the context should be split such that
the first part is related by P and the second by Q. The semantic
definitions of the remaining assertions are obtained from the corre-
sponding cases in our high-level proof system (Figure 8) either by
requiring the multiset component M to be empty, like in the case of
emp, or by propagating M to their sub-assertions, like in the case
of P ∧Q. We denote with [[P]]η the set of states satisfying P .

The judgements of the low-level proof system have the form
I, ∆ `k C, where k ∈ CPUid, I : Lock ⇀ AssertS is a vector
of resource invariants for locks accessible to the scheduler, and ∆ :
Label → AssertS is a mapping from program positions to low-level
assertions. When considering a complete system in Section 4.5,

we restrict ∆ so that it is false everywhere except at labels in
the scheduler code. The intuitive meaning of the judgements is the
same as in the high-level system (Section 4.3), with the component
describing scheduler-visible process states unchanged during the
execution of scheduler commands. The judgements thus express
how the scheduler code changes the relationship between the state
of the scheduler on the CPU k and those of processes running on
the machine. The proof rule for deriving our judgements is:

∀l ∈ labels(C).∀l′ ∈ next(C, l).

I, ∆ �k
l′ {∆(l)} comm(C, l) {∆(l′)}

I, ∆ `k C
PROG-L

Note that the syntactic structure of the OS program (see the be-
ginning of Section 4) ensures that the scheduler always executes
with interrupts disabled. Thus, in the rule we are able to follow the
control flow of C. The low-level system inherits the proof rules for
deriving judgements for primitive commands I, ∆ �l {P} c {Q}
in Figure 9, adding the superscript k to �l and ignoring the rules
for icall(schedule) and icall(create). It also has a rule for
savecpuid, which makes use of the index k:

I, ∆ �k
l {e 7→ } savecpuid(e) {e 7→ k}

CPUID

4.5 Putting the two proof systems together
The proof systems presented in Sections 4.3 and 4.4 allow us to
reason about the kernel and the scheduler code. We now describe
a rule for combining judgements from the two systems, which
defines proof obligations for the OS components. This allows us
to prove the OS program defined at the beginning of Section 4.

As can be seen from the example of Section 2.2, a scheduler
might need to maintain some data structures related to every CPU,
which can be accessed by a scheduler invocation on it. A data
structure of this kind in our example scheduler is the element of
the current array corresponding to the current CPU. Let Jk be
an invariant of such data structures for CPU k, which is meant to
be maintained when the scheduler is not running on it. Similarly
to lock invariants, we forbid Jk to contain free logical variables or
registers, except ss. In this case we can allow ss because we have
previously required that the kernel cannot modify it. We denote
with J the vector of invariants Jk.

Consider assertions IK, ∆K and IS, ∆
k
S for all k ∈ CPUid, such

that:

• dom(IK) ∩ dom(IS) = ∅;
• ∀l. l 6∈ dom(K) ⇒ ∆K(l) = false;

• ∀l. l 6∈ dom(S)] dom(C)] {ls, lc} ⇒ ∆k
S(l) = false.

The proof rule for the program OS is as follows:

IK, ∆K ` K

∀k∈CPUid. IS, ∆
k
S `k S, IS, ∆

k
S `k C

∀k∈CPUid. ∆k
S(schedule)= ∆k

S(ls)= ∆k
S(lc)= SchedStatek

∀k∈CPUid. ∆k
S(create) = (∃γ. γ(if)=1 ∧

SchedStatek ∗ desc(gr1, γ) ∗ Process(γ))

IK, ∆K | IS, {∆k
S}k∈CPUid | J ` (S, C, K)

where
SchedStatek = ∃l, ~g. if=0 ∧ 0≤ sp−ss−m−1≤ StackBound

∧ (sp−m−1)..(sp−1) 7→ l~g ∗ sp..(ss+StackSize−1) 7→ ∗
Jk ∗ Process([ip : l, if : 1, ss : ss, sp : sp−m−1, ~gr : ~g])

The first three premises require us to prove the kernel and the
scheduler code in their respective proof systems. The rest define
pre- and postconditions for schedule and create by fixing the

assertions at the corresponding labels. This is done using the predi-
cate SchedStatek, which describes the state of a scheduler invoca-
tion at CPU k right after it is called using icall or before it returns
by executing iret.

When schedule is called, the stack satisfies the bound on
stack usage and interrupts are disabled. The scheduler gets the
ownership of the per-CPU data structure Jk, a part of the stack of
the process being preempted (which contains the values of registers
saved upon the call together with the empty slots), and a Process
predicate consistent with the registers saved on the stack. The
predicate certifies that, when the scheduler starts executing, the
state of the preempted process in the machine corresponds to its
state in the abstract machine. The schedule routine has to re-
establish the same assertion before returning. In the case when it
schedules a different process, this will be done using a different
Process predicate. However, since the scheduler can only get a
Process predicate in the precondition of schedule (and when a
new process is created; see below), its postcondition guarantees
that the process being scheduled has the same register values it had
last time it was preempted. Note that the precondition of schedule
mirrors the first premise of the PROG-H rule. Thus, the assumptions
it makes about the kernel are justified by the proof of the latter in
the high-level system.

The precondition of create is similar to that of schedule,
but additionally assumes a process descriptor for a new process
with the address in gr1, and a corresponding Process assertion ini-
tialised according to the information in the descriptor. This descrip-
tor is guaranteed to be provided by the kernel by the precondition of
the CREATE rule. Adding the new Process assertion can be under-
stood intuitively as creating a fresh virtual CPU for the new process
in the abstract machine.

5. Verifying the example scheduler
We have used the logic to manually construct a proof of the ex-
ample scheduler of Section 2.2, establishing the judgements about
schedule and create required by the proof rule in Section 4.5.
By the soundness theorem for our logic (presented in Section 6),
this implies that any property of a piece of high-level code proved
in concurrent separation logic, including memory safety and func-
tional correctness, holds of the code when it is managed by the ex-
ample scheduler. The detailed proof is given in Appendix A. Here
we present only lock and per-CPU scheduler invariants together
with some informal explanations.

The invariants of runqueue locks are as follows:

I(runqueue lock[k]) = ∃x, y, z. runqueue[k] 7→ z ∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ x ∗ dllΛ(x, z, z, y)

where Λ(d) = ∃γ. desc0(d, γ) ∗ Process(γ) and desc0 is defined
in Section 4.3. The per-CPU scheduler invariants are:

Jk = ∃d. (d.kernel stack=ss) ∧ current[k] 7→ d ∗
d.prev 7→ ∗ d.next 7→ ∗ d.timeslice 7→ ∗ d.saved sp 7→
According to these definitions, a runqueue for a CPU k contains
a list of descriptors of preempted processes together with Process
predicates matching the state stored in them. When an invocation of
schedule acquires the runqueue lock and removes a node from the
list, it gets the ownership of the corresponding Process predicate,
which lets it schedule the process by establishing the postcondition
SchedStatek of schedule (see Section 4.5). The descriptor of the
process just scheduled, pointed to by an entry in the current array,
forms the scheduler’s per-CPU state and is described by Jk. When
the process is preempted again, schedule receives the Process
predicate in its precondition SchedStatek. This predicate and the
state in Jk let the scheduler insert the descriptor back into the
runqueue while maintaining its invariant.

6. Soundness
In this section, we explain the guarantees about the entire kernel
that follow from proofs in our logic. Consider a program OS of the
form introduced in Section 4. We formulate a theorem, proved in
Appendix B, which describes how proofs of a scheduler and the
kernel in our logic can be combined to construct an inductive in-
variant of the entire system. To aid understanding, we first state
the theorem and explain the components used to formulate it infor-
mally. Only after this do we provide formal definitions.

THEOREM 1. If IK, ∆K | IS, {∆k
S}k∈CPUid | J ` (S, C, K), then

for all environments η, the following set of configurations Rk is
preserved by →OS:

compose(
S

L]L′=dom(IS)
heldS(L) ∩ (lowinvη ?S lowlockL′),S

L]L′=dom(IK) heldK(L) ∩ (highinvη ?K highlockL′))

Informal explanation. The invariant R is constructed in several
steps by conjoining the descriptions of pieces of program state
owned by different OS components. First, from assertions ∆k

S and
J in the proof of the scheduler, we construct a predicate

lowinvη ⊆ RelConfig
def
= Config ×M(Context)

Consider ((R, h, L), M) ∈ lowinvη . For register values of the
CPUs in the machine given by R, the components h and L describe
the part of the machine state belonging to the scheduler, and M the
contexts of the processes it has a permission to schedule. Similarly,
from assertions ∆K in the proof of the kernel, we construct a
predicate

highinvη ⊆ HighConfig
def
= M(Context)× Heap× Lockset

Consider (M, h, L) ∈ highinvη . For any set of processes with the
contexts given by M , the components h and L describe the part of
the machine state belonging to these processes.

To construct the complete machine state, we also have to take
into account the parts of the heap protected by free locks. Thus, for
any set of free locks L′ accessible to the scheduler, from resource
invariants IS we construct a predicate lowlockL′ ⊆ RelConfig
describing the state protected by the locks. A similar predicate
highlockL′ ⊆ HighConfig, constructed from IK, describes the
state protected by a set of free locks L′ accessible to the kernel.
The predicates lowlockL′ and highlockL′ are then combined with
lowinvη and highinvη using operations

?S : P(RelConfig)× P(RelConfig) → P(RelConfig)

?K : P(HighConfig)× P(HighConfig) → P(HighConfig)

To ensure that L′ is indeed the set of all free locks, we require
that the rest of the locks L are held by intersecting the result with
heldS(L) ⊆ P(RelConfig) or heldK(L) ⊆ P(HighConfig).

Finally, we connect the resulting predicates describing the states
of the scheduler and the kernel using a form of relational composi-
tion, implemented by

compose : P(RelConfig)× P(HighConfig) → P(Config)

The operation conjoins the heaps and locksets described by the
predicates and makes sure that the scheduler-visible states of pro-
cesses they describe match. The result is an invariant of the entire
machine maintained by each step of the kernel or the scheduler.

We now formally define the above operations and predicates.

Composition operations. Each of the operations ?S, ?K and
compose is obtained by lifting a partial function in A×B ⇀ C to
a function in P(A) × P(B) → P(C) pointwise. To define ?K we
lift the operation •K on HighConfig that combines the information

about processes, heaps and locksets:

(M1, h1, L1) •K (M2, h2, L2) = (M1]M2, h1] h2, L1] L2)

(Recall that the] operation on multisets adds up the number of
occurrences of each element in its operands.)

To define ?S we similarly lift •S on RelConfig that combines the
information about contexts, heaps, locksets and processes:

((R1, h1, L1), M1) •S ((R2, h2, L2), M2)

= ((R1]R2, h1] h2, L1] L2), M1]M2)

Finally, we lift •compose : RelConfig × HighConfig ⇀ Config that
combines heaps and locksets provided the scheduler-visible states
of processes in both arguments match:

((R, h1, L1), M1) •compose (M2, h2, L2) = (R, h1]h2, L1]L2)

if both unions are defined and M1 = M2; undefined otherwise. It is
this operation that carries over statements proved in the high-level
proof system about the abstract machine with one virtual CPU per
process to the concrete machine: the second operand (M2, h2, L2)
represents the state owned by the processes running on the abstract
machine, and the first ((R, h1, L1), M1) relates the scheduler state
in the concrete machine to the processes it has permissions to
schedule. The components M1 and M2 are used to ensure that the
two operands describe the same set of processes.

Predicate definitions. Consider p ⊆ RelState and q ⊆ State.
Given k ∈ CPUid and r ∈ Context, we define the following
embedding operations converting states to configurations:

bpck = {(([k : r], h, L), M) ∈ RelConfig | ((r, h, L), M) ∈ p}
bqcr = {({r}, h, L) ∈ HighConfig |

(r, h] [r(sp)..(r(ss)+StackSize−1) :], L) ∈ q}
bpc = {(([], h, L), M) ∈ RelConfig | ((r, h, L), M) ∈ p}
bqc = {(∅, h, L) ∈ HighConfig | (r, h, L) ∈ q}
The first one tags states with CPU identifiers and is used to con-
struct lowinvη . The second selects the states with a given context r
and is used for highinvη . For technical reasons it removes the empty
slots of the process stack, which are accounted for in the scheduler
state (see the definition of SchedSleepk below). The remaining two
operations are used for lowlockL′ and highlockL′ . As resource in-
variants do not restrict registers, they ignore contexts. We also need
predicates defining states where the CPU is at a particular label l,
or configurations with a particular lockset L:

atS(l) = {((r, h, L), M) ∈ RelState | r(ip) = l}
heldS(L) = {((R, h, L), M) ∈ RelConfig}
heldK(L) = {(M, h, L) ∈ HighConfig}

The following predicate describes the state of the scheduler on
CPU k, when a process is running on this CPU and is at label l:

SchedSleepk(l) = Jk ∗ sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp, ~gr : ~gr])

Finally, let ?S# and ?K# be the iterated versions of ?S and ?K.
Using the above notation, we can define the predicates from the

theorem. For LS ⊆ dom(IS) and LK ⊆ dom(IK), we have:

lowinvη = ?S#
k∈CPUid

(
S

l∈labels(K)b[[SchedSleepk(l)]]η ∩ atS(l)ck∪S
l∈(labels(S]C)]{ls,lc})b[[∆

k
S(l)]]η ∩ atS(l)ck)

highinvη =
S

M∈M(Context)

?K#
r∈M

b[[∆K(r(ip))]]ηcr

lowlockLS = ?S#̀
∈LS

b[[IS(`)]]c

highlockLK
= ?K#

`∈LK

b[[IK(`)]]c

The definitions follow the informal explanation given at the be-
ginning of this section. To determine the state of the scheduler on
a given CPU when defining lowinvη , we branch over all possible
program positions l of that CPU. Depending on whether l is in
the scheduler or the kernel code, we use either the assertion in the
scheduler proof or the invariant SchedSleepk, describing the state
of the scheduler when it is not running. Since assertions do not re-
strict the value of the ip register, we have to do this explicitly using
atS. Note that, although assertions in the high-level proof system
mention the empty slots of the process stack, the slots in fact be-
long to the scheduler when the process is preempted. For simplicity
we choose always to count them in the scheduler state (the assertion
in ∆k

S or the scheduler invariant SchedSleepk).
To define highinvη we branch over all possible finite multisets

of contexts M , representing processes that may run on the machine.
For every context r in M , the local state of the corresponding
process is then determined by the assertion in the proof of the
kernel at the program point r(ip), restricted to the states with the
context r. Note that the comprehension r ∈ M over a multiset M
considers every duplicate of an element in the multiset separately.

Finally, lowlockLS and highlockLK
are straightforward combi-

nations of resource invariants for the given sets of locks.

Ownership transfer. It is instructive to analyse how ownership
transfer between the scheduler and the kernel is handled by our
soundness statement. For example, consider a transfer of a new pro-
cess descriptor desc(d, γ) from the kernel to the scheduler at a call
to create. Since the CREATE axiom requires the descriptor in its
precondition, before the kernel calls create, the state partitioning
defined by R counts the descriptor as part of highinvη . Since the
implementation of create receives the descriptor in its precondi-
tion, in the configuration immediately after the call to create, R
defines it to be part of lowinvη . Thus, ownership transfer reparti-
tions program state among the parts defined in Theorem 1.

Consequences. Theorem 1 allows us to check invariance properties
of preemptable code. For example, assume that the initial config-
uration satisfies R. Then the soundness statement ensures that the
machine cannot reach an error label le on any CPU, provided the as-
sertion at this program point in all high-level proofs is false. Indeed,
in this case the invariantR does not contain any states where one of
the CPUs is at le. Note that the functional correctness of an OS ker-
nel is usually formulated as a simulation between the kernel and its
specification. As an OS kernel does not usually make any assump-
tions about user processes, proving the simulation can be reduced
to proving an invariance property relating the two (e.g., [10, 16]).
Thus, Theorem 1 can be also used to justify such proofs.

7. Related work
There have been a number of OS verification projects; see [15]
for a survey. To our knowledge, none of these has included the
verification of a scheduler in a preemptive kernel with the realistic
features we consider. A representative example is the L4.verified
project [16], which verified the L4 microkernel as a whole, together
with the scheduler. There, proofs about kernel components other
than the scheduler had to ensure the preservation of its invariants,
e.g., the preservation of its runqueue. The proof was still tractable
because the kernel was running on a uniprocessor and preemption
was disabled most of the time. However, such architecture is not
used by mainstream operating systems.

The closest work to ours is the one by Feng et al. [6–8], who
verified an idealised scheduler without dynamic process creation.
Their logic considers a uniprocessor and does not handle ownership
transfer between the scheduler and processes. Like us, they have
separate proof systems for the scheduler and preemptable code.
However, their high-level system is non-modular in that it does not

have a notion of a process-local state. Their approach to low-level
reasoning and proving the soundness of the logic is also different
from ours. Because Feng et al. consider a restricted scheduler and
high-level proof system, they are able to avoid designing a special
relational low-level logic. Instead, they view calls to and returns
from the scheduler as jumps and compile proofs of the scheduler
and the rest of the system into OCAP [6], a logic supporting first-
class code pointers. According to our understanding, extending
this approach to handle multiprocessing, ownership transfer and a
modular high-level proof system would be non-trivial.

Maeda and Yonezawa have proved a simple context-switch rou-
tine using an extension of alias types [18]. Their proof expresses
the disjointness of data structures belonging to the scheduler and
the rest of the kernel using the tensor operator of alias types, which
corresponds to our separating conjunction. However, their type sys-
tem does not hide the internal data structures of the scheduler while
proving the rest of the kernel, and is thus non-modular.

Yang and Hawblitzel [23] have recently proposed a kernel
where most of the codebase is typechecked and therefore cannot
directly access data structures belonging to the core part of the ker-
nel, including the scheduler. However, the guarantees established
by the type system do not take into account the contents of data
structures, so the kernel can still subvert the scheduler by leaving
them in an inconsistent state. The OS resorts to runtime checks in
such cases, introducing a performance penalty. The relationship to
this work is that of a trade-off: type safety guarantees are easier to
get, but are not as strong as those provided by a program logic.

Refinement is a well-known approach in verification of both
operating systems and general concurrent programs [1, 10, 14, 16,
21]. We advance it further by proposing its novel form where the
target of the refinement is defined axiomatically and refinement
relations focus only on the relevant state of the systems related.
This allows us to handle systems with complex ownership transfers.

8. Discussion
In this paper we have neither verified a complete operating system
nor built an automatic tool. Instead, we have proposed a proof rule
that allows decomposing the verification of a preemptive OS kernel
into two simpler tasks—verifying the scheduler and preemptable
code separately. Such a result is relevant no matter what type of
formal analysis of OS code one is performing: manual or automatic
verification, or even bug-finding. Moreover, as we argued in Sec-
tion 2.2, the straightforward approach of verifying the scheduler to-
gether with the rest of the kernel makes reasoning intractable; thus,
a result such as ours is in fact indispensable for verifying realistic
OS kernels.

The only way we could communicate the proposed reasoning
principles understandably is by presenting our results in a simpli-
fied setting. Besides, we could not cover all the interesting features
of mainstream OS kernels, even in regards to scheduling, in one
paper. Below we list some of the limitations of our results and pos-
sible ways to lift them, which also provide avenues for future work:

• We based our logic for preemptable code on concurrent sep-
aration logic, which would not be able to handle complicated
concurrency mechanisms employed in modern OS kernels. The
proof of soundness of our logic follows an approach that has been
applied extensively to various concurrent derivatives of separa-
tion logic [11, 12]. This leads us to believe that we can integrate
more advanced logics from this class [4, 5, 22] without problems.

• Our treatment of procedure calls is naive in that it does not
allow us to reason about procedures modularly. We consider this
problem orthogonal to our goal and believe that our logic can be
combined with more powerful logics for procedures in low-level
code, such as [9].

• We have considered schedulers with only two procedures in their
interface, and fixed the piece of state transferred between the
scheduler and the kernel at schedule to be the empty slots of the
process stack. It is straightforward to add new procedures and de-
fine their pre- and postconditions abstractly, like desc in the pre-
condition of create. The real issue is how to restrict the ways
the scheduler is allowed to change the state it receives before giv-
ing the state back to the kernel. For example, in some operating
systems (e.g., XNU), schedule can receive the ownership of the
whole stack of the process being preempted and may reallocate
the stack when it schedules the process again, while preserving
its contents. Such an interference is routinely described in com-
binations of separation logic and rely-guarantee [4, 5, 22] and
can be integrated into our logic.

• Modern OS kernels have a number of features that break through
the abstraction of a virtual CPU implemented by the scheduler.
For example, they allow preemptable code to disable interrupts,
e.g., to access data structures local to a particular CPU. The
effects of such features can be axiomatised in the high-level logic
in much the same way as we axiomatise the effect of the create
routine of the scheduler. We plan to report on extensions of our
logic to such features in future papers.

• Our logic is designed for proving safety properties only. Proof
methods for liveness properties or the absence of deadlocks usu-
ally rely on modular methods for safety properties. Thus, our
logic is a prerequisite for attacking liveness in the future.

Despite the above limitations, our logic is the first to handle
patterns of interaction between the scheduler and the kernel that
are present in mainstream operating systems. Even though the logic
has been formalised in a particular setting, its key technical ideas—
the use of proof systems validating the frame property, logical
refinement and a local way of establishing it—are transferable and
can be reused in OS verification projects.

Acknowledgements
We would like to thank Anindya Banerjee, Xinyu Feng, Boris
Koepf, Mark Marron, Peter O’Hearn, Matthew Parkinson, Noam
Rinetzky, Zhong Shao, Viktor Vafeiadis and Jules Villard for com-
ments and discussions that helped improve the paper. Yang was
supported by EPSRC.

References
[1] R.-J. Back. On correct refinement of programs. Journal of Computer

and System Sciences, 23:49–68, 1981.

[2] D. Bovet and M. Cesati. Understanding the Linux Kernel, 3rd ed.
O’Reilly, 2005.

[3] E. Cohen, W. Schulte, and S. Tobies. Local verification of global
invariants in concurrent programs. In CAV’10: Conference on
Computer-Aided Verification, volume 6174 of LNCS, pages 480–494.
Springer, 2010.

[4] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. In ECOOP’10: Euro-
pean Conference on Object-Oriented Programming, pages 504–528.
Springer, 2010.

[5] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concur-
rent separation logic and assume-guarantee reasoning. In ESOP’07:
European Conference on Programming, volume 4421 of LNCS, pages
173–188. Springer, 2007.

[6] X. Feng, Z. Ni, Z. Shao, and Y. Guo. An open framework for founda-
tional proof-carrying code. In TLDI’07: Workshop on Types in Lan-
guage Design and Implementation, pages 67–78. ACM, 2007.

[7] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level pro-
grams with hardware interrupts and preemptive threads. In PLDI’08:

Conference on Programming Language Design and Implementation,
pages 170–182. ACM, 2008.

[8] X. Feng, Z. Shao, Y. Guo, and Y. Dong. Combining domain-specific
and foundational logics to verify complete software systems. In
VSTTE’08: Conference on Verified Software: Theories, Tools, Experi-
ments, volume 5295 of LNCS, pages 54–69. Springer, 2008.

[9] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular ver-
ification of assembly code with stack-based control abstractions. In
PLDI’06: Conference on Programming Language Design and Imple-
mentation, pages 401–414. ACM, 2006.

[10] M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the
correctness of operating system kernels. In TPHOLs: Conference
on Theorem Proving in Higher Order Logics, volume 3603 of LNCS,
pages 1–16. Springer, 2005.

[11] A. Gotsman. Logics and analyses for concurrent heap-manipulating
programs. PhD Thesis, University of Cambridge, 2009.

[12] A. Gotsman, J. Berdine, and B. Cook. Precision and the conjunction
rule in concurrent separation logic. In MFPS’11: Conference on
Mathematical Foundations of Programming Semantics, 2011. To
appear.

[13] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local
reasoning for storable locks and threads. In APLAS’07: Asian Sympo-
sium on Programming Languages and Systems, volume 4807 of LNCS,
pages 19–37. Springer, 2007.

[14] C. Jones. Splitting atoms safely. Theoretical Computer Science,
375:109–119, 2007.

[15] G. Klein. Operating system verification–an overview. Sādhanā,
34:26–69, 2009.

[16] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel.
In SOSP’09: Symposium on Operating Systems Principles, pages 207–
220. ACM, 2009.

[17] R. Love. Linux Kernel Development, 3rd ed. Addison Wesley, 2010.
[18] T. Maeda and A. Yonezawa. Writing an OS kernel in a strictly and

statically typed language. In Formal to Practical Security, volume
5458 of LNCS, pages 181–197. Springer, 2009.

[19] P. W. O’Hearn. Resources, concurrency and local reasoning. Theoret-
ical Computer Science, 375:271–307, 2007.

[20] J. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In LICS’02: Symposium on Logic in Computer Science, pages
55–74. IEEE, 2002.

[21] A. Turon and M. Wand. A separation logic for refining concurrent
objects. In POPL’11: Symposium on Principles of Programming
Languages, pages 247–258. ACM, 2011.

[22] V. Vafeiadis and M. J. Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR’07: Conference on Concurrency The-
ory, volume 4703 of LNCS, pages 256–271. Springer, 2007.

[23] J. Yang and C. Hawblitzel. Safe to the last instruction: automated
verification of a type-safe operating system. In PLDI’10: Conference
on Programming Language Design and Implementation, pages 99–
110. ACM, 2010.

A. Proof of the example scheduler
Below we provide a proof outline for the scheduler in Figure 1.
We establish the judgements for schedule and create in the low-
level proof system required by the proof rule in Section 4.5 and
verify fork in the high-level proof system.

Note that despite assertions in the proof being long, all the steps
in it are purely mechanical. In fact, the data structure manipulations
involved are of the kind that can be handled by automatic tools
based on separation logic2.

In the proof we write var
 P for a local C variable or
procedure parameter var instead of

∃var . sp−var off 7→ var ∗ P

where var off is the offset of var with respect to the top of the
stack in the activation record of the function where it is declared
(note that here var is a program variable, whereas var is a logical
one). In the proof of fork, F is the local state of the parent,
Σ the contents of its stack and P the precondition of the newly
created thread (excluding a copy of the parent’s stack also passed
to the child thread). In the proof of load_balance, the assertion
Q describes the local state of the schedule function calling it:

(cpu, old process
 ∃l, ~g, d. if = 0 ∧ d.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ d ∗ d.prev 7→ ∗ d.next 7→ ∗
d.timeslice 7→ ∗ d.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g]))
[sp−m−1−sizeof(int)/sp]

We abbreviate SCHED_FRAME to s and FORK_FRAME to f . We as-
sume that

StackSize−StackBound ≥
2∗m+2+4∗sizeof(int)+2∗sizeof(Process∗)

so that the kernel leaves enough space on the stack for the activation
records of schedule and load_balance or create.

#define FORK_FRAME sizeof(Process*)
#define SCHED_FRAME sizeof(Process*)+sizeof(int)

struct Process {
Process *prev;
Process *next;
word kernel_stack[StackSize];
word *saved_sp;
int timeslice;

};

Lock *runqueue_lock[NCPUS];
Process *runqueue[NCPUS];
Process *current[NCPUS];

void schedule() {
{SchedStatek}
int cpu;
Process *old_process;
{cpu, old process
 ∃l, ~g, d. if = 0 ∧ d.kernel stack = ss ∧
0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ d ∗ d.prev 7→ ∗ d.next 7→ ∗
d.timeslice 7→ ∗ d.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗

2 For example: H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D.
Distefano, and P. W. O’Hearn. Scalable shape analysis for systems code.
In CAV’08: Conferece on Computer-Aided Verification, volume 5123 of
LNCS, pages 385–398. Springer, 2008.

Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g])}
savecpuid(&cpu);
{cpu, old process
 ∃l, ~g, d. if = 0 ∧ d.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ d ∗ d.prev 7→ ∗ d.next 7→ ∗
d.timeslice 7→ ∗ d.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g])}

load_balance(cpu);
{cpu, old process
 ∃l, ~g, d. if = 0 ∧ d.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ d ∗ d.prev 7→ ∗ d.next 7→ ∗
d.timeslice 7→ ∗ d.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g])}

old_process = current[cpu];
{cpu, old process
 ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ old process ∗
old process.prev 7→ ∗ old process.next 7→ ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g])}

if (--old_process->timeslice) {
// We deallocate local variables here
{SchedStatek}
iret();

}
{cpu, old process
 ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ old process ∗
old process.prev 7→ ∗ old process.next 7→ ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g])}

old_process->timeslice = SCHED_QUANTUM;
{cpu, old process
 ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ old process ∗
old process.prev 7→ ∗ old process.next 7→ ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g])}

lock(runqueue_lock[cpu]);
{cpu, old process
 locked(runqueue lock[k]) ∗ ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ old process ∗
old process.prev 7→ ∗ old process.next 7→ ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g]) ∗
∃x, y, z. runqueue[k] 7→ z ∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ x ∗ dllΛ(x, z, z, y)}

insert_node_after(runqueue[cpu]->prev, old_process);
{cpu, old process
 locked(runqueue lock[k]) ∗ ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ old process ∗
old process.prev 7→ y ∗ old process.next 7→ z ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗

Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g]) ∗
∃x, y, z. runqueue[k] 7→ z ∗ desc0(z,) ∗
z.prev 7→ old process ∗ z.next 7→ x ∗ dllΛ(x, z, old process, y)}

current[cpu] = runqueue[cpu]->next;
{(cpu, old process
 locked(runqueue lock[k]) ∗ ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ old process ∗
old process.prev 7→ z ∗ old process.next 7→ z ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g]) ∗
∃x, y, z. runqueue[k] 7→ z ∗ desc0(z,) ∗
z.prev 7→ old process ∗ z.next 7→ old process)
∨
(cpu, old process
 locked(runqueue lock[k]) ∗ ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ x ∗
old process.prev 7→ y ∗ old process.next 7→ z ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g]) ∗
∃x, y, z, w, γ. runqueue[k] 7→ z ∗ desc0(z,) ∗
z.prev 7→ old process ∗ z.next 7→ x ∗ desc0(x, γ) ∗Process(γ) ∗
x.prev 7→ z ∗ x.next 7→ w ∗ dllΛ(w, x, old process, y))}

remove_node(current[cpu]);
{(cpu, old process
 locked(runqueue lock[k]) ∗ ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ old process ∗
old process.prev 7→ ∗ old process.next 7→ ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g]) ∗
∃x, y, z. runqueue[k] 7→ z ∗ desc0(z,) ∗
z.prev 7→ z ∗ z.next 7→ z)
∨
(cpu, old process
 locked(runqueue lock[k]) ∗ ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ x ∗
old process.prev 7→ y ∗ old process.next 7→ z ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g]) ∗
∃x, y, z, w, γ. runqueue[k] 7→ z ∗ desc0(z,) ∗
z.prev 7→ old process ∗ z.next 7→ w ∗ desc0(x, γ) ∗Process(γ) ∗
x.prev 7→ ∗ x.next 7→ ∗ dllΛ(w, z, old process, y))}

old_process->saved_sp = _sp;
{(cpu, old process
 locked(runqueue lock[k]) ∗ ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ old process ∗
old process.prev 7→ ∗ old process.next 7→ ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ sp ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g]) ∗
∃x, y, z. runqueue[k] 7→ z ∗ desc0(z,) ∗
z.prev 7→ z ∗ z.next 7→ z)
∨
(cpu, old process
 locked(runqueue lock[k]) ∗ ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ x ∗
old process.prev 7→ y ∗ old process.next 7→ z ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ sp ∗

(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g]) ∗
∃x, y, z, w, γ. runqueue[k] 7→ z ∗ desc0(z,) ∗
z.prev 7→ old process ∗ z.next 7→ w ∗ desc0(x, γ) ∗Process(γ) ∗
x.prev 7→ ∗ x.next 7→ ∗ dllΛ(w, z, old process, y))}

_sp = current[cpu]->saved_sp;
{(cpu, old process
 locked(runqueue lock[k]) ∗ ∃l, ~g. if = 0 ∧
old process.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ old process ∗
old process.prev 7→ ∗ old process.next 7→ ∗
old process.timeslice 7→ ∗ old process.saved sp 7→ sp ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g]) ∗
∃x, y, z. runqueue[k] 7→ z ∗ desc0(z,) ∗
z.prev 7→ z ∗ z.next 7→ z)
∨
(cpu, old process
 locked(runqueue lock[k]) ∗
∃old process′, γ′. if = 0 ∧ current[k] 7→ x ∗
old process′.prev 7→ y ∗ old process′.next 7→ z ∗
desc0(old process′, γ′) ∗ Process(γ′) ∗
∃x, y, z, w, γ. runqueue[k] 7→ z ∗ desc0(z,) ∗
z.prev 7→ old process′ ∗ z.next 7→ w ∗ Process(γ) ∗
x.prev 7→ ∗ x.next 7→ ∗ dllΛ(w, z, old process′, y) ∗
(γ(if)=1 ∧ γ(ss)=x.kernel stack ∧ γ(sp)=sp−m−s−1 ∧
0 ≤ γ(sp)−γ(ss) ≤ StackBound ∧ x.timeslice 7→ ∗
x.saved sp 7→ (γ(sp)+m+1+s) ∗
γ(sp)..(γ(sp)+m) 7→ γ(ip)γ(~gr) ∗
(γ(sp)+m+s+1)..(γ(ss)+StackSize−1) 7→))}

savecpuid(&cpu);
_ss = &(current[cpu]->kernel_stack[0]);
{(cpu, old process
 locked(runqueue lock[k]) ∗
∃l, ~g, d. if = 0 ∧ d.kernel stack = ss ∧
cpu = k ∧ 0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ d ∗
d.prev 7→ ∗ d.next 7→ ∗
d.timeslice 7→ ∗ d.saved sp 7→ sp ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g]) ∗
∃x, y, z. runqueue[k] 7→ z ∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ x ∗ dllΛ(x, z, z, y)}

unlock(runqueue_lock[cpu]);
{cpu, old process
 ∃l, ~g, d. if = 0 ∧ d.kernel stack = ss ∧
0 ≤ sp−ss−m−s−1 ≤ StackBound ∧
current[k] 7→ d ∗ d.prev 7→ ∗ d.next 7→ ∗
d.timeslice 7→ ∗ d.saved sp 7→ ∗
(sp−s−m−1)..(sp−s−1) 7→ l~g ∗
sp..(ss+StackSize−1) 7→ ∗
Process([ip : l, if : 1, ss : ss, sp : sp−s−m−1, ~gr : ~g])}

// We deallocate local variables here
{SchedStatek}
iret();

}

void load_balance(int cpu) {
{cpu
 0 ≤ cpu < NCPUS ∧Q ∗ sp..(ss+StackSize−1) 7→ }
int cpu2, non_empty;
Process *proc;
{cpu, cpu2 ,non empty, proc
 0 ≤ cpu < NCPUS ∧
Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ }

lock(runqueue_lock[cpu]);
{cpu, cpu2 ,non empty, proc
 0 ≤ cpu < NCPUS ∧
Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ ∗ locked(runqueue lock[cpu]) ∗
∃x, y, z. runqueue[cpu] 7→ z ∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ x ∗ dllΛ(x, z, z, y)}

non_empty = (runqueue[cpu]->next != runqueue[cpu]);
{cpu, cpu2 ,non empty, proc
 0 ≤ cpu < NCPUS ∧

Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ ∗ locked(runqueue lock[cpu]) ∗
∃x, y, z. runqueue[cpu] 7→ z ∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ x ∗ dllΛ(x, z, z, y)}

unlock(runqueue_lock[cpu]);
{cpu, cpu2 ,non empty, proc
 0 ≤ cpu < NCPUS ∧
Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ }

if (non_empty || random(0, 1)) {
{cpu, cpu2 ,non empty, proc

Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ }

// We deallocate local variables here
{cpu
 Q ∗ sp..(ss+StackSize−1) 7→ }
return;

}
{cpu, cpu2 ,non empty, proc
 0 ≤ cpu < NCPUS ∧
Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ }

do { cpu2 = random(0, NCPUS-1); } while (cpu == cpu2);
{cpu, cpu2 ,non empty, proc

0 ≤ cpu, cpu2 < NCPUS ∧ cpu 6= cpu2 ∧
Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ }

if (cpu < cpu2) {
lock(runqueue_lock[cpu]); lock(runqueue_lock[cpu2]);

} else {
lock(runqueue_lock[cpu2]); lock(runqueue_lock[cpu]);

}
{cpu, cpu2 ,non empty, proc
 0 ≤ cpu, cpu2 < NCPUS ∧
locked(runqueue lock[cpu]) ∗ locked(runqueue lock[cpu2]) ∗
Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ ∗ ∃x, y, z, x′, y′, z′, w.
runqueue[cpu] 7→ z ∗ runqueue[cpu2] 7→ z′ ∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ x ∗ dllΛ(x, z, z, y)
desc0(z′,) ∗ z′.prev 7→ y′ ∗ z′.next 7→ x′ ∗ dllΛ(x′, z′, z′, y′)}

if (runqueue[cpu2]->next != runqueue[cpu2]) {
{cpu, cpu2 ,non empty, proc
 0 ≤ cpu, cpu2 < NCPUS ∧
locked(runqueue lock[cpu])∗ locked(runqueue lock[cpu2])∗
Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ ∗ ∃x, y, z, x′, y′, z′, w.
runqueue[cpu] 7→ z ∗ runqueue[cpu2] 7→ z′ ∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ x ∗ dllΛ(x, z, z, y)
desc0(z′,) ∗ z′.prev 7→ y′ ∗ z′.next 7→ x′ ∗
x′.prev 7→ z′ ∗ x′.next 7→ w ∗
(∃γ. desc0(x′, γ) ∗ Process(γ)) ∗ dllΛ(w, x′, z′, y′)}

proc = runqueue[cpu2]->next;
{cpu, cpu2 ,non empty, proc
 0 ≤ cpu, cpu2 < NCPUS ∧
locked(runqueue lock[cpu])∗ locked(runqueue lock[cpu2])∗
Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ ∗
∃x, y, z, y′, z′, w. runqueue[cpu] 7→ z∗runqueue[cpu2] 7→ z′∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ x ∗ dllΛ(x, z, z, y)
desc0(z′,) ∗ z′.prev 7→ y′ ∗ z′.next 7→ proc ∗
proc.prev 7→ z′ ∗ proc.next 7→ w ∗
(∃γ. desc0(proc, γ) ∗ Process(γ)) ∗ dllΛ(w, proc, z′, y′)}

remove_node(proc);
{cpu, cpu2 ,non empty, proc
 0 ≤ cpu, cpu2 < NCPUS ∧
locked(runqueue lock[cpu])∗ locked(runqueue lock[cpu2])∗
Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ ∗
∃x, y, z, y′, z′, w. runqueue[cpu] 7→ z∗runqueue[cpu2] 7→ z′∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ x ∗ dllΛ(x, z, z, y)
desc0(z′,) ∗ z′.prev 7→ y′ ∗ z′.next 7→ w ∗
proc.prev 7→ z′ ∗ proc.next 7→ w ∗
(∃γ. desc0(proc, γ) ∗ Process(γ)) ∗ dllΛ(w, z′, z′, y′)}

insert_node_after(runqueue[cpu], proc);
{cpu, cpu2 ,non empty, proc
 0 ≤ cpu, cpu2 < NCPUS ∧
locked(runqueue lock[cpu])∗ locked(runqueue lock[cpu2])∗
Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ ∗
∃x, y, z, y′, z′, w. runqueue[cpu] 7→ z∗runqueue[cpu2] 7→ z′∗

desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ proc ∗ dllΛ(x, proc, z, y)
desc0(z′,) ∗ z′.prev 7→ y′ ∗ z′.next 7→ w ∗
proc.prev 7→ z ∗ proc.next 7→ x ∗
(∃γ. desc0(proc, γ) ∗ Process(γ)) ∗ dllΛ(w, z′, z′, y′)}

}
{cpu, cpu2 ,non empty, proc
 0 ≤ cpu, cpu2 < NCPUS ∧
locked(runqueue lock[cpu]) ∗ locked(runqueue lock[cpu2]) ∗
Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ ∗
∃x, y, z, x′, y′, z′. runqueue[cpu] 7→ z ∗ runqueue[cpu2] 7→ z′ ∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ x ∗ dllΛ(x, z, z, y)
desc0(z′,) ∗ z′.prev 7→ y′ ∗ z′.next 7→ x′ ∗ dllΛ(x′, z′, z′, y′)}

unlock(runqueue_lock[cpu]);
unlock(runqueue_lock[cpu2]);
{cpu, cpu2 ,non empty, proc

Q[sp−2∗sizeof(int)−sizeof(Process∗)/sp] ∗
sp..(ss+StackSize−1) 7→ }

// We deallocate local variables here
{cpu
 Q ∗ sp..(ss+StackSize−1) 7→ }

}

_regparam void create(Process *new_process) {
// Here we move the parameter from gr1 into
// the new_process local variable
{new process
 ∃γ. γ(if)=1 ∧
SchedStatek[sp−sizeof(Process∗)/sp] ∗
desc(new process, γ) ∗ Process(γ)}

int cpu;
{new process, cpu
 ∃γ. γ(if)=1 ∧
SchedStatek[sp−sizeof(int)−sizeof(Process∗)/sp] ∗
desc(new process, γ) ∗ Process(γ)}

savecpuid(&cpu);
{new process, cpu
 ∃γ. cpu = k ∧ γ(if)=1 ∧
SchedStatek[sp−sizeof(int)−sizeof(Process∗)/sp] ∗
new process.prev 7→ ∗ new process.next 7→ ∗
desc0(new process, γ) ∗ Process(γ)}

new_process->timeslice = SCHED_QUANTUM;
{new process, cpu
 ∃γ. cpu = k ∧ γ(if)=1 ∧
SchedStatek[sp−sizeof(int)−sizeof(Process∗)/sp] ∗
new process.prev 7→ ∗ new process.next 7→ ∗
desc0(new process, γ) ∗ Process(γ)}

lock(runqueue_lock[cpu]);
{new process, cpu
 ∃γ. cpu = k ∧ γ(if)=1 ∧
SchedStatek[sp−sizeof(int)−sizeof(Process∗)/sp] ∗
new process.prev 7→ ∗ new process.next 7→ ∗
desc0(new process, γ)∗Process(γ)∗∃x, y, z. runqueue[k] 7→ z ∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ x ∗ dllΛ(x, z, z, y) ∗
locked(runqueue lock[k])}

insert_node_after(runqueue[cpu], new_process);
{new process, cpu
 ∃γ. cpu = k ∧ γ(if)=1 ∧
SchedStatek[sp−sizeof(int)−sizeof(Process∗)/sp] ∗
new process.prev 7→ z ∗ new process.next 7→ x ∗
desc0(new process, γ)∗Process(γ)∗∃x, y, z. runqueue[k] 7→ z ∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ new process ∗
dllΛ(x,new process, z, y)}
{new process, cpu
 cpu = k ∧
SchedStatek[sp−sizeof(int)−sizeof(Process∗)/sp] ∗
∃x, y, z. runqueue[k] 7→ z ∗
desc0(z,) ∗ z.prev 7→ y ∗ z.next 7→ new process ∗
dllΛ(new process, z, z, y) ∗ locked(runqueue lock[k])}

unlock(runqueue_lock[cpu]);
{new process, cpu
 SchedStatek

[sp−sizeof(int)−sizeof(Process∗)/sp]}
// We deallocate local variables here
{SchedStatek}
iret();

}

int fork() {

{0 ≤ sp−ss ≤ StackBound−f ∧
ss..(sp−1) 7→ Σ0l~g ∗ sp..(ss+StackSize−1) 7→ ∗ F ∗ P}

Process *new_process;

{new process
 0 ≤ sp−ss ≤ StackBound ∧
ss..(sp−f−1) 7→ Σ0l~g ∗ sp..(ss+StackSize−1) 7→ ∗ F ∗ P}

new_process = malloc(sizeof(Process));

{new process
 0 ≤ sp−ss ≤ StackBound ∧
ss..(sp−f−1) 7→ Σ0l~g ∗ sp..(ss+StackSize−1) 7→ ∗ F ∗ P ∗
new process.prev 7→ ∗ new process.next 7→ ∗
new process.timeslice 7→ ∗ new process.saved sp 7→ ∗
new process.kernel stack..
(new process.kernel stack+StackSize−1) 7→ }

memcpy(new_process->kernel_stack, _ss, StackSize);

{new process
 0 ≤ sp−ss ≤ StackBound ∧
ss..(sp−f−1) 7→ Σ0l~g ∗ sp..(ss+StackSize−1) 7→ ∗ F ∗ P ∗
new process.prev 7→ ∗ new process.next 7→ ∗
new process.timeslice 7→ ∗ new process.saved sp 7→ ∗
new process.kernel stack..

(new process.kernel stack+sp−ss−f−1) 7→ Σ0l~g ∗
(new process.kernel stack+sp−ss−f)..

(new process.kernel stack+StackSize−1) 7→ }
new_process->saved_sp = new_process->kernel_stack+

_sp-_ss-FORK_FRAME+SCHED_FRAME;

{new process
 0 ≤ sp−ss ≤ StackBound ∧
ss..(sp−f−1) 7→ Σ0l~g ∗ sp..(ss+StackSize−1) 7→ ∗ F ∗ P ∗
new process.prev 7→ ∗ new process.next 7→ ∗
new process.timeslice 7→ ∗
new process.saved sp 7→
new process.kernel stack+sp−ss−f+s ∗
new process.kernel stack..
(new process.kernel stack+sp−ss−f−1) 7→ Σ0l~g ∗
(new process.kernel stack+sp−ss−f)..

(new process.kernel stack+StackSize−1) 7→ }
{new process
 0 ≤ sp−ss ≤ StackBound ∧
ss..(sp−f−1) 7→ Σ0l~g ∗ sp..(ss+StackSize−1) 7→ ∗ F ∗ P ∗
∃γ. γ(ip)=l ∧ γ(~gr)=~g ∧ γ(ss)=new process.kernel stack ∧
γ(sp)=new process.kernel stack+sp−ss−f−m−1 ∧
γ(if)=1 ∧ desc(new process, γ) ∗ γ(ss)..(γ(sp)−1) 7→ Σ0}

// We assume P satisfies the premise of the Create rule

_icall create(new_process);

{new process
 0 ≤ sp−ss ≤ StackBound ∧
ss..(sp−f−1) 7→ Σ0l~g ∗ sp..(ss+StackSize−1) 7→ ∗ F}

// We deallocate local variables here

{0 ≤ sp−ss−f ≤ StackBound ∧
ss..(sp−1) 7→ Σ0l~g ∗ sp..(ss+StackSize−1) 7→ ∗ F}

return 1;

}

B. Proof of Theorem 1
In this section we provide the proof of the soundness of our logic
(Theorem 1). Note that to use the logic as a part of a verification
system based on an interactive theorem prover (such as HOL4, Is-
abelle, Coq, etc.), our soundness proof would have to be formalised
in the underlying logic of the proof assistant used. We would like
to stress that the proof presented here uses only basic technical de-
vices and is based on an approach that have been used extensively
in proving various concurrent versions of separation logic [11].
Thus, we do not foresee any major difficulties in formalising it in
an interactive theorem proving system, if such a need arises.

Auxiliary definitions. In the following we write {E()}, where E
is an expression with occurrences of , to mean the set of values
arising from evaluating E with substituted for any values from
the corresponding domains.

For a set Σ, M ∈ M(Context) and an element σ ∈ Σ ∪ {>}
we let 〈σ, M〉 = > when σ = > and 〈σ, M〉 = (σ, M) otherwise.

Recall the semantic domains used in this paper:

State = Context× Heap× Lockset
RelState = State×M(Context)

Config = GContext× Heap× Lockset
RelConfig = Config ×M(Context)

HighConfig = M(Context)× Heap× Lockset

Let p ⊆ State, q ⊆ RelState, l ∈ Label, k ∈ CPUid, ` ∈ Lock,
R ∈ Context and M ∈ M(Context). In our proof, we use the
following definitions:

atK(l) = {(r, h, L) ∈ State | r(ip) = l}
lkK(`) = {(, [], {`}) ∈ State}
lkS(`) = {((, [], {`}), ∅) ∈ RelState}
bpck = {([k : r], h, L) ∈ Config | (r, h, L) ∈ p}

conf(R) = {(R, [], ∅) ∈ Config}
confS(R) = {((R, [], ∅), ∅) ∈ RelConfig}
toK(l, p) = {(r[ip : l], h, L) ∈ State | (r, h, L) ∈ p}
toS(l, q) = {((r[ip : l], h, L), M) ∈ RelState |

((r, h, L), M) ∈ q}
We also let b>ck = >.

For a set Σ let P(Σ)> be the domain of subsets of Σ with a
special element >. The order v in the domain P(Σ)> is subset
inclusion with > being the greatest element. For σ ∈ Σ ∪ {>} we
denote with {|σ}| the singleton set {σ}, if σ ∈ Σ, and >, if σ = >.
Thus, {|σ}| ∈ P(Σ)>.

If Σ has a partial operation ∗ : Σ × Σ ⇀ Σ defined on it, we
can lift ∗ to P(Σ)> pointwise: for all p, q ∈ P(Σ)

p ∗ q =
S
{σ ∗ η | σ ∈ p, η ∈ q, σ ∗ η is defined}

> ∗ p = p ∗ > = >
We now define three such partial operations

∗K : State× State ⇀ State
∗S : RelState× RelState ⇀ RelState
∗C : Config × Config ⇀ Config

with the first two interpreting the ∗ connectives in the high- and
low-level proof systems, respectively.

For (r1, h1, L1), (r2, h2, L2) ∈ State we let

(r1, h1, L1) ∗K(r2, h2, L2) = (r1, h1] h2, L1] L2)

if r1 = r2; undefined otherwise.
For ((r1, h1, L1), M1), ((r2, h2, L2), M2) ∈ RelState we let3

((r1, h1, L1), M1) ∗S((r2, h2, L2), M2) =

((r1, h1] h2, L1] L2), M1]M2)

if r1 = r2; undefined otherwise.
For (R1, h1, L1), (R2, h2, L2) ∈ Config we let

(R1, h1, L1) ∗C(R2, h2, L2) = (R1]R2, h1] h2, L1] L2)

We lift the operations defined above to the corresponding do-
mains.

It is convenient for us to reformulate the the semantics of prim-
itive commands in Figure 6 in terms of transformers

fk
c : Label× Label× State → P(State)>, k ∈ CPUid

for c ∈ PComm, defined as follows: fk
c (l, l′, (r, h, L)) = >, if

k, (r, h, L), l, l′ ;c >, and

fk
c (l, l′, (r, h, L)) =

[˘
(r′[ip : l′′], h′, L′) |

(k, (r, h, L), l, l′) ;c ((r′, h′, L′), l′′)
¯

3 Recall that the] operation on multisets adds up the number of occurrences
of each element in its operands.

otherwise. We extend the transformers to

fk
c : Label× Label× RelState → P(RelState)>, k ∈ CPUid

as follows:

fk
c (l, l′, ((r, h, L), M)) = 〈fk

c (l, l′, (r, h, L)), M〉 (1)

We lift the above transformers to P(State)> and
P(RelState)> pointwise. For example, for p ∈ P(State)>

we let

fk
c (l, l′, p) =

(F
{fk

c (l, l′, (r, h, L)) | (r, h, L) ∈ p}, if p 6= >
>, if p = >

The transformers thus defined satisfy the property of locality4

with respect to the operations ∗K and ∗S:

fk
c ({(r, h1, L1)} ∗K{(, h2, L2)}) v

fk
c (r, h1, L1) ∗K{(, h2, L2)} (2)

fk
c ({((r, h1, L1), M1)} ∗S{((, h2, L2), M2)}) v

fk
c ((r, h1, L1), M1) ∗S{((, h2, L2), M2)} (3)

Finally, consider a process descriptor desc(d, γ) with free log-
ical variables d and γ and an interpretation of logical variables η.
We define descη : Val×Context → State as follows: for u ∈ Val
and r ∈ Context we let descη(u, r) = [[desc(d, γ)]]η[d:u,γ:r].

Semantic proofs. To prove Theorem 1, we translate a syntactic
proof in our logic (Section 4.5) into a semantic form. Namely, given
an interpretation of logical variables η, a semantic proof [11, 12] of
the OS program is defined as a tuple (GS, GK, IS, IK,J), where

• Gk
S : Label → P(RelState), k ∈ CPUid;

• GK : Label → P(State);
• IS ∈ Lock ⇀ P(RelState);
• IK ∈ Lock ⇀ P(State);
• Jk ∈ P(RelState), k ∈ CPUid

such that

dom(IK) ∩ dom(IS) = ∅
∀l. l 6∈ dom(K) ⇒ GK(l) = ∅ (4)

∀l. l 6∈ dom(S)] dom(C)] {ls, lc} ⇒ Gk
S(l) = ∅ (5)

and

Gk
S(schedule) = [[SchedStatek]]η ∩ atS(schedule) (6)

Gk
S(ls) = [[SchedStatek]]η ∩ atS(ls) (7)

Gk
S(create) = J∃γ. γ(if)=1 ∧ SchedStatek ∗

desc(gr1, γ) ∗ Process(γ)Kη ∩ atS(create) (8)

Gk
S(lc) = [[SchedStatek]]η ∩ atS(lc); (9)

for all l ∈ Label and (r, h, L) ∈ GK(l),

0 ≤ r(sp)−r(ss) ≤ StackBound ∧
dom(h) ⊆ {r(sp), . . . , r(ss)+StackSize−1} ∧
∀h′. (∀u 6∈ {r(sp), . . . , r(ss)+StackSize−1}.

h(u) = h′(u)) ⇒ (r, h′, L) ∈ GK(l);

(10)

and for all l ∈ labels(OS), l′ ∈ next(OS, l), c = comm(OS, l)
and k ∈ CPUid, we have:

4 C. Calcagno, P. O’Hearn and H. Yang. Local action and abstract separation
logic. In LICS’07: Symposium on Logic in Computer Science, pages 366–
378. IEEE, 2007.

• if c is not lock or unlock, and l ∈ labels(S)] labels(C), then

fk
c (l, l′, Gk

S(l)) 6= > ∧
∀((r, h, L), M) ∈ fk

c (l, l′, Gk
S(l)). ((r, h, L), M) ∈ Gk

S(r(ip))
(11)

• if c is not lock, unlock or icall and l ∈ labels(K), then

fk
c (l, l′, GK(l)) 6= > ∧

∀(r, h, L) ∈ fk
c (l, l′, GK(l)). (r, h, L) ∈ GK(r(ip))

(12)

• if c is lock(`) and l ∈ labels(S)] labels(C), then

toS(l
′, (Gk

S(l) ∗S IS(`) ∗S lkS(`))) ⊆ Gk
S(l′) (13)

• if c is lock(`) and l ∈ labels(K), then

toK(l′, (GK(l) ∗K IK(`) ∗K lkK(`))) ⊆ GK(l′) (14)

• if c is unlock(`) and l ∈ labels(S)] labels(C), then

toS(l
′, Gk

S(l)) ⊆ Gk
S(l′) ∗S IS(`) ∗S lkS(`) (15)

• if c is unlock(`) and l ∈ labels(K), then

toK(l′, GK(l)) ⊆ GK(l′) ∗K IK(`) ∗K lkK(`) (16)

• if c is icall(schedule), then

toK(l′, GK(l)) ⊆ GK(l′) (17)

• if c is icall(create), then for some high-level assertions
P, Q ∈ AssertK such that free(P) ∩ Reg = ∅ we have

GK(l) ⊆ [[∃γ. γ(if) = 1 ∧ desc(gr1, γ) ∗ P ∗Q]]η ∩ atK(l)
(18)

GK(l′) ⊇ [[∃γ. Q]]η ∩ atK(l′) (19)
and for all r ∈ Context

{(r, [r(sp)..(r(ss)+StackSize−1) :], ∅)} ∗K[[P]]η[γ:r]

⊆ GK(r(ip)) (20)

Conditions (4)–(20) are semantic counterparts of the axioms in the
high- and low-level proof systems.

The following lemma shows that a syntactic proof can be con-
verted into a semantic one.

LEMMA 1. Given a proof

IK, ∆K | IS, {∆k
S}k∈CPUid | J ` (S, C, K)

and an interpretation η, there exists a semantic proof
(GS, GK, [[IS]]η, [[IK]]η, [[J]]η) such that for all l ∈ Label and
k ∈ CPUid we have

GK(l) = [[∆K(l)]]η ∩ atK(l), Gk
S(l) = [[∆k

S(l)]]η ∩ atS(l)

We omit the straightforward proof of the lemma and proceed to
prove the main soundness theorem.

Proof of Theorem 1. Let us fix an interpretation η. We first apply
Lemma 1 to construct a semantic proof (GS, GK, IS, IK,J) from
the given syntactic one. Assume now that σ ∈ R and σ →OS σ′

for some σ′ ∈ Config ∪ {>}. We need to show that σ′ ∈ R.
Let the command in σ →OS σ′ be executed by thread k. We can

thus assume
σ = (R[k : r], h, L), R(k) is undefined, r(ip) = l

c = comm(OS, l), l′ ∈ next(OS, l)

Recall that R is defined as

compose(
S

L]L′=dom(IS)
heldS(L) ∩ (lowinvη ?S lowlockL′),S

L]L′=dom(IK) heldK(L) ∩ (highinvη ?K highlockL′))

Hence, there exist

h1, h2 ∈ Heap, L1 ⊆ dom(IS), L2 ⊆ dom(IK),
M ∈M(Context)

such that

((R[k : r], h1, L1), M) ∈ lowinvη ?S lowlockdom(IS)−L1 (21)
(M, h2, L2) ∈ highinvη ?K highlockdom(IK)−L2

(22)

h = h1] h2, L = L1] L2 (23)

We now consider several cases of how σ′ may be obtained.

Case 1. σ′ is obtained by applying the fourth rule in Figure 7.
This case is impossible, since by (21) and the definition of lowinvη

we have l = r(ip) ∈ labels(OS).

Case 2. σ′ is obtained by applying the first or the third rule in
Figure 7, with the command executed by the scheduler and different
from lock, unlock or iret. In this case l ∈ labels(S)] labels(C)
and

{|σ′}| v conf(R) ∗Cbfk
c (l, l′, (r, h, L))ck (24)

From (21), for some hS ∈ Heap, LS ∈ Lockset and MS ∈
M(Context) we have

((r, h1, L1), M) ∈ Gk
S(l) ∗S{((, hS, LS), MS)} (25)

and
((R, hS, LS), MS) ∈

?S#
j∈CPUid

j 6=k

(
S

l∈labels(K)b[[SchedSleepk(l)]]η ∩ atS(l)ck ∪

S
l∈(labels(S]C)]{ls,lc})b[[∆

k
S(l)]]η ∩ atS(l)ck)?Slowlockdom(IS)−L1

(26)
We have:
{|〈σ′, M〉}|

v confS(R) ?S b〈fk
c (l, l′, (r, h, L)), M〉ck (24)

v confS(R) ?S

b〈fk
c (l, l′, {(r, h1, L1)} ∗K{(, h2, L2)}), M〉ck (23)

= confS(R) ?S

bfk
c (l, l′, {((r, h1, L1), M)} ∗S{((, h2, L2), ∅)})ck (1)

v confS(R) ?S

bfk
c (l, l′, Gk

S(l) ∗S{((, h2] hS, L2] LS), MS)})ck (25)
v confS(R) ?S

bfk
c (l, l′, Gk

S(l)) ∗S{((, h2] hS, L2] LS), MS)}ck (3)

From (11), fk
c (l, l′, Gk

S(l)) 6= >, hence, σ′ 6= >. Let σ′ = (R[k :
r′], h′, L). Then by (11), we have

((R[k : r′], h′, L), M) ∈
confS(R) ?S bGk

S(r′(ip)) ∗S{((, h2] hS, L2] LS), MS)}ck

From this and (5) we get r′(ip) ∈ dom(S)] dom(C)] {ls, lc}.
Hence, by (26) we have

((R[k : r′], h′, L), M) ∈
lowinvη ?S lowlockdom(IS)−L1 ?S {(([], h2, L2), ∅)}

Then from (22) and the definition of compose we get σ′ ∈ R.

Case 3. σ′ is obtained by applying the first rule in Figure 7, with
the scheduler executing lock. In this case

l ∈ labels(S)] labels(C), c = lock(`), ` 6∈ L
σ′ = (R[k : r[ip : l′]], h, L ∪ {`})

From (21), for some hS, LS, MS we have

((r, h1, L1), M) ∈ Gk
S(l) ∗S IS(`) ∗S{((, hS, LS), MS)}

and
((R, hS, LS), MS) ∈ lowlockdom(IS)−(L1∪{`}) ?S

?S#
j∈CPUid

j 6=k

(
S

l∈labels(K)b[[SchedSleepk(l)]]η ∩ atS(l)ck ∪

S
l∈(labels(S]C)]{ls,lc})b[[∆

k
S(l)]]η ∩ atS(l)ck)

(27)

Then

((r[ip : l′], h1, L1 ∪ {`}), M) ∈
toS(l

′, (Gk
S(l) ∗S IS(`) ∗S lkS(`))) ∗S{((, hS, LS), MS)}

By (13), this implies

((r[ip : l′], h1, L1 ∪ {`}), M) ∈ Gk
S(l′) ∗S{((, hS, LS), MS)}

From this and (5) we get l′ ∈ dom(S)]dom(C)]{ls, lc}. Hence,
by (27)

((R[k : r[ip : l′]], h1, L1 ∪ {`}), M) ∈
lowinvη ?S lowlockdom(IS)−(L1∪{`})

Then from (22) and the definition of compose we get σ′ ∈ R.

Case 4. σ′ is obtained by applying the first or the third rule
in Figure 7, with the scheduler executing unlock. In this case
l ∈ labels(S)] labels(C), c = unlock(`) and (24) holds.

From (21), there exist hS, LS, MS satisfying (25) and (26).
From (25) we then get

((r[ip : l′], h1, L1), M) ∈ toS(l
′, Gk

S(l)) ∗S{((, hS, LS), MS)}
Then by (15)

((r[ip : l′], h1, L1), M) ∈
Gk

S(l′) ∗S IS(`) ∗S lkS(`) ∗S{((, hS, LS), MS)}

Hence, ` ∈ L1, which means that σ′ 6= >. Then σ′ = (R[k :
r[ip : l′]], h, L− {`}). The above also implies

((r[ip : l′], h1, L1 − {`}), M) ∈
Gk

S(l′) ∗S IS(`) ∗S{((, hS, LS), MS)}

From this and (5) we get l′ ∈ dom(S)]dom(C)]{ls, lc}. Hence,
by (26)

(R[k : r[ip : l′]], h1, L1 − {`}) ∈
lowinvη ?S lowlockdom(IS)−(L1−{`})

Then from (22) and the definition of compose we get σ′ ∈ R.

Case 5. σ′ is obtained by applying the first or the third rule in
Figure 7, with the command executed by the kernel and different
from lock, unlock or icall. In this case l ∈ labels(K) and (24)
holds.

From (21), there exist hS, LS, MS satisfying (26) such that

((r, h1, L1), M) ∈
([[SchedSleepk(l)]]η ∩ atS(l)) ∗S{((, hS, LS), MS)}

which implies

((r, h1, L1), M) ∈ Jk ∗S

{((, [r(sp)..(r(ss)+StackSize−1 :)]]hS, LS), {r}]MS)}
(28)

Then for some h′1 ∈ Heap and

h0 ∈ {[r(sp)..(r(ss)+StackSize−1) :]}

we have h1 = h′1] h0 and

((r, h′1, L1), M) ∈ Jk ∗S{((, hS, LS), {r}]MS)}

Let h′2 = h2] h0, then

h = h′1] h′2, L = L1] L2 (29)

Note that from the above it follows that r ∈ M . Then by (22)
and (10) for some hK ∈ Heap and LK ∈ Lockset we have

(r, h′2, L2) ∈ GK(l) ∗K{(, hK, LK)} (30)

and

(M − {r}, hK, LK) ∈
?K#

r′′∈M−{r}
b[[∆K(r′′(ip))]]ηcr′′ ?K highlockdom(IK)−L2

(31)

We have:

{|σ′}|
v conf(R) ∗Cbfk

c (l, l′, (r, h, L))ck (24)
= conf(R) ∗Cbfk

c (l, l′, {(r, h′2, L2)} ∗K{(, h′1, L1)})ck (29)
v conf(R) ∗Cbfk

c (l, l′, GK(l) ∗K{(, h′1] hK, L1] LK)})ck (30)
v conf(R) ∗Cbfk

c (l, l′, GK(l)) ∗K{(, h′1] hK, L1] LK)}ck (2)

By (12), fk
c (l, l′, GK(l)) 6= >, hence, σ′ 6= >. Let σ′ = (R[k :

r′], h′, L). Then by (12)

(R[k : r′], h′, L) ∈
conf(R) ∗CbGK(r′(ip)) ∗K{(, h′1] hK, L1] LK)}ck

Using (10), we conclude that for some h′′2 ∈ Heap and

h′0 ∈ [r′(sp)..(r′(ss)+StackSize−1) :]

we have h′ = h′′2] h′0] h′1 and

({r′}, h′′2 , L2) ∈ b[[∆K(r′(ip))]]ηcr′ ?K {(∅, hK, LK)}

From this and (4) we get r′(ip) ∈ dom(K). Let M ′ = (M −
{r})] {r′}5. Then by (31) this implies

(M ′, h′′2 , L2) ∈ highinvη ?K highlockdom(IK)−L2
(32)

Let h′′1 = h′1] h′0. Then from (28) we get

((r′, h′′1 , L1), M
′) ∈

([[SchedSleepk(r′(ip))]]η∩atS(r
′(ip))) ∗S{((, hS, LS), MS)}

Since r′(ip) ∈ dom(K), together with (26), this implies

((R[k : r′], h′′1 , L1), M
′) ∈ lowinvη ?S lowlockdom(IS)−L1

By the definition of compose, from this and (32) we get σ′ ∈ R.

Case 6. σ′ is obtained by applying the first rule in Figure 7, with
the kernel executing lock. In this case

l ∈ labels(K), c = lock(`), ` 6∈ L
σ′ = (R[k : r[ip : l′]], h, L ∪ {`})

Like in Case 5, there exist hS, LS, MS, h
′
1, h0, h

′
2 satisfying the

conditions stated there. Additionally, from (22) for some hK, LK

we get

(r, h′2, L2) ∈ GK(l) ∗K IK(`) ∗K{(, hK, LK)}

5 Note that, if there are several occurences of r in M , M − {r} removes
only one of them.

and

(M − {r}, hK, LK) ∈
?K#

r′′∈M−{r}
b[[∆K(r′′(ip))]]ηcr′′ ?K highlockdom(IK)−(L2∪{`})

(33)

This implies

(r[ip : l′], h′2, L2 ∪ {`}) ∈
toK(l′, (GK(l) ∗K IK(`) ∗K lkK(`))) ∗K{(, hK, LK)}

Hence, by (14)

(r[ip : l′], h′2, L2 ∪ {`}) ∈ GK(l′) ∗K{(, hK, LK)}
Then from (10) it follows that

({r[ip : l′]}, h2, L2∪{`}) ∈ b[[∆K(l′)]]ηcr[ip:l′] ?K {(∅, hK, LK)}

From this and (4) we get l′ ∈ dom(K). Let M ′ = (M − {r})]
{r[ip : l′]}. Then by (33) we get

(M ′, h2, L2∪{`}) ∈ highinvη?Khighlockdom(IK)−(L2∪{`}) (34)

From (28) we get

((r[ip : l′], h1, L1), M
′) ∈

([[SchedSleepk(l′)]]η ∩ atS(l
′)) ∗S{((, hS, LS), MS)}

Since l′ ∈ dom(K), together with (26), this implies

((R[k : r[ip : l′]], h1, L1), M
′) ∈ lowinvη ?S lowlockdom(IS)−L1

(35)
By the definition of compose, from this and (34) we get σ′ ∈ R.

Case 7. σ′ is obtained by applying the first or the third rule
in Figure 7, with the kernel executing unlock. In this case l ∈
labels(K), c = unlock(`) and (24) holds.

Like in Case 5, there exist hS, LS, MS, h
′
1, h0, h

′
2, hK, LK satis-

fying the conditions stated there. Then using (30), we get

(r[ip : l′], h′2, L2) ∈ toK(l′, GK(l)) ∗K{(, hK, LK)}
Hence, by (16)

(r[ip : l′], h′2, L2) ∈ GK(l′) ∗K IK(`) ∗K lkK(`) ∗K{(, hK, LK)}
Hence, ` ∈ L2, which means that σ′ 6= >. Then σ′ = (R[k :
r[ip : l′]], h, L− {`}). The above also implies

(r[ip : l′], h′2, L2 − {`}) ∈ GK(l′) ∗K IK(`) ∗K{(, hK, LK)}
Then from (10) it follows that

({r[ip : l′]}, h2, L2 − {`}) ∈
b[[∆K(l′)]]ηcr[ip:l′] ?K bIK(`) ∗K{(, hK, LK)}c

From this and (4) we get l′ ∈ dom(K). Let M ′ = (M − {r})]
{r[ip : l′]}. Then by (31) we get

(M ′, h2, L2 − {`}) ∈ highinvη ?K highlockdom(IK)−(L2−{`})

Like in the previous case, from (28) and (26) we can establish (35).
Together with the last inclusion, this implies σ′ ∈ R.

Case 8. σ′ is obtained by applying the first or the third rule in
Figure 7, with the kernel executing icall(schedule). In this case
l ∈ labels(K), c = icall(schedule) and (24) holds.

Like in Case 5, there exist hS, LS, MS, h
′
1, h0, h

′
2, hK, LK satis-

fying the conditions stated there. From (30) we then get

(r[ip : l′], h′2, L2) ∈ toK(l′, GK(l)) ∗K{(, hK, LK)}

By (17), this implies

(r[ip : l′], h′2, L2) ∈ GK(l′) ∗K{(, hK, LK)}
Then using (10) we get

({r[ip : l′]}, h2, L2) ∈ b[[∆K(l′)]]ηcr[ip:l′] ∗K{(, hK, LK)}

Let M ′ = (M − {r})] {r[ip : l′]}. Then by (31) we have

(M ′, h2, L2) ∈ highinvη ?S highlockdom(IK)−L2
(36)

From (28) we get dom(h) ⊇ {r(sp), . . . , r(sp)+m+1},
which implies that σ′ 6= >. Then σ′ = (R[k : r′′], h′′1] h2, L),
where

r′′ = r[ip : schedule, sp : r(sp)+m+1, if : 0]

and

h′′1 = h1[r(sp) : l′, r(sp)+1 : r(gr1), . . . , r(sp)+m : r(grm)]
(37)

From (28) we also get

((r, h1, L1), M
′) ∈ Jk ∗S

{((, [r(sp)..(r(ss)+StackSize−1) :]] hS, LS),

{r[ip : l′]}]MS)}
Hence,

((r′′, h′′1 , L1), M
′) ∈

Jk ∗S

{((, [(r′′(sp)−m−1)..(r′′(sp)−1) : l′r(gr1) . . . r(grm),
r′′(sp)..(r′′(ss)+StackSize−1) :]] hS, LS),

{r[ip : l′]}]MS)}
From (30) and (10) we get 0 ≤ r(sp)−r(ss) ≤ StackBound,
so that 0 ≤ r′′(sp)−r′′(ss)−m−1 ≤ StackBound. Besides, the
form of the OS program ensures that r(if) = 1. Thus,

((r′′, h′′1 , L1), M
′) ∈

([[SchedStatek]]η ∩ atS(schedule)) ∗S{((, hS, LS), MS)}
Together with (26) and (6), this implies

((R[k : r′′], h′′1 , L1), M
′) ∈ lowinvη ?S lowlockdom(IS)−L1

By the definition of compose, from this and (36) we get σ′ ∈ R.

Case 9. σ′ is obtained by applying the second or the last rule
in Figure 7, i.e., by executing an interrupt. This case is virtually
identical to the previous one and is omitted.

Case 10. σ′ is obtained by applying the first or the third rule in
Figure 7, with the scheduler executing iret at ls or lc. In this case

l ∈ {ls, lc}, l′ ∈ {ls+1, lc+1}, c = iret

and (24) holds.
From (21), there exist hS, LS, MS satisfying (25) and (26). Then

from (25), (7) and (9) we get

((r, h1, L1), M) ∈ ([[SchedStatek]]η ∩
(atS(ls) ∪ atS(lc))) ∗S{((, hS, LS), MS)} (38)

Hence, dom(h1) ⊇ {r(sp)−m−1, . . . , r(sp)−1} and σ′ 6= >.
Let

l′′ = h1(r(sp)−m−1), g1 = h1(r(sp)−m), . . . ,

gm = h1(r(sp)−1)

Then σ′ = (r′, h, L), where

r′ = r[ip : l′′, sp : r(sp)−m−1, gr1 : g1, . . . , grm : gm, if : 1]

From (38) we now obtain

((r[ip : l′′], h1, L1), M) ∈
([[SchedStatek]]η ∩ atS(l

′′)) ∗S{((, hS, LS), MS)}
Hence,

((r′, h1, L1), M) ∈
atS(l

′′) ∩ ({((, [sp..(ss+StackSize−1) :]] hS, LS),

{r′}]MS)} ∗S Jk)

which is equivalent to

((r′, h1, L1), M) ∈
([[SchedSleepk(l′′)]]η ∩ atS(l

′′)) ∗S{((, hS, LS), MS)}

Note that r′ ∈ M . Hence, from (22) and (4) we get l′′ ∈ labels(K).
By (26) we then have

((R[k : r′], h1, L1), M) ∈ lowinvη ?S lowlockdom(IS)−L1

From (22) and the definition of compose we get σ′ ∈ R.

Case 11. σ′ is obtained by applying the first or the third rule in
Figure 7, with the kernel executing icall(create). In this case
l ∈ labels(K), c = icall(create) and (24) holds.

Like in Case 5, there exist hS, LS, MS, h
′
1, h0, h

′
2, hK, LK satis-

fying the conditions stated there. Then from (30) and (18) we get

(r, h′2, L2) ∈ {(, hK, LK)} ∗K

[[∃γ. γ(if) = 1 ∧ desc(gr1, γ) ∗ P ∗Q]]η

Hence, there exists r′ such that r′(if) = 1 and

(r, h′2, L2) ∈ descη(u, r′) ∗K[[P]]η′ ∗K[[Q]]η′ ∗K{(, hK, LK)}
where u = r(gr1) and η′ = η[γ : r′]. Since free(P) ∩ Reg = ∅
and free(desc(d, γ)) ∩ Reg = ∅, we have

(r[ip : l′], h′2, L2) ∈ descη(u, r′) ∗K

[[P]]η′ ∗K toK(l′, [[Q]]η′) ∗K{(, hK, LK)}
Using (19), we then get

(r[ip : l′], h′2, L2) ∈ descη(u, r′) ∗K

[[P]]η′ ∗K GK(l′) ∗K{(, hK, LK)}
According to (10), this implies

({r[ip : l′]}, h2, L2) ∈
bdescη(u, r′)c?Kb[[P]]η′c?Kb[[∆K(l′)]]ηcr[ip:l′]?K{(∅, hK, LK)}

Then for some h′′2 , hd ∈ Heap such that h2 = h′′2] hd we have
{(, hd, ∅)} ⊆ descη(u, r′) (recall that all states from descη(u, r′)
have an empty lockset; see Section 4.2) and

({r[ip : l′]}, h′′2 , L2) ∈
b[[P]]η′c ?K b[[∆K(l′)]]ηcr[ip:l′] ?K {(∅, hK, LK)}

Then from (20) and (10) we get

({r[ip : l′], r′}, h′′2 , L2) ∈
b[[∆K(r′(ip))]]ηcr′ ?K b[[∆K(l′)]]ηcr[ip:l′] ?K {(∅, hK, LK)}

Let M ′ = (M − {r})] {r[ip : l′], r′}. Then by (31) we have

(M ′, h′′2 , L2) ∈ highinvη ?S highlockdom(IK)−L2
(39)

Like in Case 8, we can assume that

σ′ = (R[k : r′′], h′′1] h2, L) = (R[k : r′′], h′′1] hd] h′′2 , L)

where

r′′ = r[ip : create, sp : r(sp)+m+1, if : 0]

and h′′1 is defined by (37). Let h′′′1 = h′′1] hd. Then from (28) we
get

((r, h′′′1 , L1), M
′) ∈ Jk ∗S(descη(u, r′)× {∅}) ∗S

{((, [r(sp)..(r(sp)+m) : l′r(gr1) . . . r(grm),

(r(sp)+m+1)..(r(ss)+StackSize−1) :]] hS, LS),

{r[ip : l′], r′}]MS)}
Similarly to how it was done in Case 8, using (8) we now establish

((r′′, h′′′1 , L1), M
′) ∈ Gk

S(create) ∗S{((, hS, LS), MS)}
Together with (26), this implies

((R[k : r′′], h′′′1 , L1), M
′) ∈ lowinvη ?S lowlockdom(IS)−L1

By the definition of compose, from this and (39) we get σ′ ∈ R.
2

