
NESTED HOARE TRIPLES AND FRAME RULES FOR
HIGHER-ORDER STORE

JAN SCHWINGHAMMER, LARS BIRKEDAL, BERNHARD REUS, AND HONGSEOK YANG

Programming Systems Lab, Saarland University, 66123 Saarbrücken, Germany
e-mail address: jan@ps.uni-saarland.de

IT University of Copenhagen, Rued Langgaards Vej 7, 2300 København S., Denmark
e-mail address: birkedal@itu.dk

School of Informatics, University of Sussex, Brighton BN1 9QH, U.K.
e-mail address: bernhard@sussex.ac.uk

Department of Computer Science, University of Oxford, Oxford OX1 3QD, U.K.
e-mail address: Hongseok.Yang@cs.ox.ac.uk

Abstract. Separation logic is a Hoare-style logic for reasoning about programs with
heap-allocated mutable data structures. As a step toward extending separation logic to
high-level languages with ML-style general (higher-order) storage, we investigate the com-
patibility of nested Hoare triples with several variations of higher-order frame rules.

The interaction of nested triples and frame rules can be subtle, and the inclusion of
certain frame rules is in fact unsound. A particular combination of rules can be shown
consistent by means of a Kripke model where worlds live in a recursively defined ultrametric
space. The resulting logic allows us to elegantly prove programs involving stored code. In
particular, using recursively defined assertions, it leads to natural specifications and proofs
of invariants required for dealing with recursion through the store.

1. Introduction

Many programming languages permit not only the storage of first-order data, but also
forms of higher-order store. Examples are code pointers in C, and ML-like general references.
It is therefore important to have modular reasoning principles for these language features.
Separation logic is an effective formalism for modular reasoning about pointer programs, in
low-level C-like programming languages and, more recently, also in higher-level languages
[13, 14, 17, 25]. However, its assertions are usually limited to talk about first-order data.

In previous work, we have begun the study of separation logic for languages with higher-
order store [5, 23]. A challenge in this research is the combination of proof rules from
separation logic for modular reasoning, and proof rules for code stored on the heap. Ideally,

1998 ACM Subject Classification: F.3.1, F.3.2.
Key words and phrases: Higher-order store, Hoare logic, separation logic, semantics.
A preliminary version of this work was presented at the 18th EACSL Annual Conference on Computer

Science Logic (CSL’09), 7–11 September 2009, Coimbra, Portugal [26].

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Schwinghammer et al.
Creative Commons

1



2 SCHWINGHAMMER ET AL.

a program logic for higher-order store provides sufficiently expressive proof rules that, e.g.,
can deal with recursion through the store, and at the same time interact well with (higher-
order) frame rules, which enable modular program verification.

Our earlier work [5, 23] shows that separation logic is consistent with higher-order store.
However, the formulation in this earlier work has a shortcoming: code is treated like any
other data in that assertions can only mention concrete commands. In order to obtain
modular, open and reusable reasoning principles, it is clearly desirable to abstract from
particular code and instead (partially) specify its behaviour. For example, when verifying
mutually recursive procedures on the heap, one would like to consider each procedure in
isolation, relying on properties but not the implementations of the others. The recursion
rule given by Birkedal et al. [5] and Reus and Schwinghammer [23] does not achieve this.
A second, and less obvious consequence of lacking behavioural specifications for code in
assertions is that one cannot take full advantage of the frame rules of separation logic. For
instance, the programming language in [5] can simulate higher-order procedures by passing
arguments through the heap, but the available (higher-order) frame rules are not useful
here because an appropriate specification for this encoding is missing.

In this article, we address these shortcomings by investigating a program logic in which
stored code can be specified using Hoare triples, i.e., an assertion language with nested
triples. This is an obvious idea, but the combination of nested triples and frame rules turns
out to be tricky: the most natural combination is in fact unsound.

The main technical contributions of this article are therefore:
(1) the observation that certain “deep” frame rules can be unsound,
(2) the suggestion of a “good” combination of nested Hoare triples and frame rules, and
(3) the verification of those rules by means of an elegant Kripke model, based on a de-

notational semantics of the programming language, where the worlds are themselves
world-dependent sets of heaps.

The worlds form a complete metric space and (the denotation of) the operation ⊗, needed
to generically express higher-order frame rules, is contractive; as a consequence, our logic
permits recursively defined assertions.

Outline. After introducing the syntax of programming language and assertions in Section 2
we discuss some unsound combinations of rules in Section 3. This section also contains the
suggested set of rules for our logic. The soundness of the logic is then shown in Section 4.
Section 5 discusses further proof rules for nested triples. Finally the conclusion addresses
related work and the differences between the model presented here and a step-indexed
model.

2. Syntax of Programs and Assertions

This section presents the syntax of the programming language and that of assertions.

2.1. Programming language. We consider a simple imperative programming language
extended with operations for stored code and heap manipulation. The syntax of the lan-
guage is shown in Figure 1. The expressions in the language are integer expressions, vari-
ables, and the quote expression ‘C’ for representing an unevaluated command C. The in-
teger or code value denoted by expression e1 can be stored in a heap cell e0 using [e0]:=e1,
and this stored value can later be looked up and bound to the (immutable) variable y by



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 3

e ∈ Exp ::= 0 | -1 | 1 | . . . | e1+e2 | . . . | x integer expressions, variable
| ‘C’ quote (command as expression)

C ∈ Com ::= [e1]:=e2 | let y=[e] in C | eval [e] assignment, lookup, unquote
| let x=new (e1, . . . , en) in C | free e allocation, disposal
| skip |C1;C2 no op, sequencing
| if (e1=e2) thenC1 elseC2 conditional

P,Q∈Assn ::= false | true | P ∨Q | P ∧Q | P ⇒Q intuitionistic-logic connectives
| ∀x.P | ∃x.P | e1=e2 | e1≤e2 quantifiers, atomic formulas
| e1 7→ e2 | emp | P ∗Q separating connectives
| {P} e {Q} | P ⊗Q Hoare triple, invariant extension
| X(~e) | (µX(~x).P )(~e) | . . . relation variable, recursion

Figure 1: Syntax of expressions, commands and assertions

let y=[e0] in D. In case the value stored in cell e0 is code ‘C’, we can run (or “evaluate”)
this code by executing eval [e0]. Our language also provides constructs for allocating and
disposing heap cells such as e0 above.

We point out that, as in ML, all variables x, y, z in our language are immutable, so
that once they are bound to a value, their values do not change. This property of the
language lets us avoid side conditions on variables when studying frame rules. Finally, we
do not include while loops in our language; these could be added easily, and they can also
be expressed by stored code (using Landin’s knot).1

Example 1 (Iterate procedure). An iterator that calls its parameter function as well as itself
through the store can be programmed as follows.

Cit ,f,c ≡ let n = [c] in
if n =0 then skip else ( eval [f ]; [c] :=n-1; eval [it] )

Here we assume that cells it, f and c are some fixed global constants, and that the iterator
code is stored in the cell it. Command Cit ,f,c then calls the code in f as many times as the
value of counter cell c prescribes.

2.2. Assertions and distribution axioms. Our assertion language is standard first-order
intuitionistic logic, extended with separating connectives emp and ∗, the points-to predicate
7→ [25], and recursively defined assertions (µX(~x).P )(~e). The syntax of assertions appears in
Figure 1. Each assertion describes a property of states, which consist of an immutable stack
and a mutable heap. Formula emp means that the heap component of the state is empty,
and P ∗Q means that the heap component can be split into two, one satisfying P and the
other satisfying Q, both evaluated with respect to the same stack. The spatial implication
operator (“magic wand”) is omitted here for reasons explained later in Remark 14. The
points-to predicate e0 7→ e1 states that the heap component consists of only one cell e0
whose content is e1 or, in case e1 is a command, an approximation e′ of e1 which is defined

1To obtain the original while rule of Hoare logic one needs to be able to hide the additional pointer storing
the body of the while loop. This can be achieved using anti-frame rules as discussed e.g. in [28].



4 SCHWINGHAMMER ET AL.

P ◦R def= (P ⊗R) ∗R
{P} e {Q}⊗R⇔{P ◦R} e {Q ◦R}
(P ⊗R′)⊗R⇔ P ⊗ (R′ ◦R)

(κx.P )⊗R⇔ κx.(P ⊗R) (κ∈{∀,∃}, x /∈ fv(R))
(P ⊕Q)⊗R⇔ (P ⊗R)⊕ (Q⊗R) (⊕∈{⇒,∧,∨, ∗})

P ⊗R⇔ P (P is one of true, false, emp, e= e′, e 7→ e′)

Figure 2: Axioms for distributing −⊗R

(terminates) for less heaps than e1. This is in line with the fact that we consider partial
correctness only.

One interesting aspect of our assertion language is that it includes Hoare triples {P} e {Q}
and invariant extensions P⊗Q; previous work [7, 5] does not treat them as assertions but as
so-called specifications, which form a different syntactic category. A consequence of having
these new constructs as assertions is that they allow us to study proof rules for exploiting
locality of stored code systematically, as we will describe shortly.

Intuitively, {P} e {Q}means that e denotes code satisfying {P} {Q}, and P⊗Q denotes
a modification of P where all the pre- and post-conditions of triples inside P are ∗-extended
with Q. In other words, all code specified by pre- and postconditions inside P must preserve
invariant Q. For instance, the assertion (∃k. (1 7→ k)∧{emp} k {emp})⊗ (27→0) is equivalent
to (∃k. (1 7→ k)∧{27→0} k {27→0}). This assertion says that cell 1 is the only cell in the heap
and it stores code k that satisfies the triple {2 7→0} {2 7→0}. This intuition about the ⊗
operator is made precise in the set of axioms in Figure 2, which let us distribute ⊗ through
the constructs of the assertion language.

Note that since triples are assertions, they can appear in pre- and post-conditions of
triples. This nested use of triples is useful in reasoning, because it allows one to specify
stored code behaviourally, in terms of properties that it satisfies. Typically, a program logic
consists of both an assertion logic and a specification logic (e.g. [24]). With the introduction
of nested triples, assertions and specifications necessarily become mutually recursive; for
simplicity, we have chosen to identify our specification and assertion logics and just work
with a single logic of assertions.

A second interesting aspect of our assertion language is that assertions include (n-
ary) relation variables X(~e), and that assertions can be defined recursively: the assertion
(µX(~x).P )(~e) binds X and ~x = x1 . . . xn in P and satisfies the axiom

(µX(~x).P )(~e) ⇔ P [X := µX(~x).P, ~x := ~e] . (2.1)

In the case where X has arity 0 we will simply write X in place of X().

Example 2 (Specification of the iterator via recursion through the store). The previously
given command

Cit ,f,c ≡ let n = [c] in
if n =0 then skip else ( eval [f ]; [c] :=n-1; eval [it] )

can be specified as follows, if we assume that the called procedure in f does preserve some
invariant I that does not access the counter and iterator cells c and it , respectively. For
instance, I could be emp (in case f has no side effects) or ∃m.x 7→ m ∗ y 7→ n!/m! when



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 5

the factorial of n is computed in y. If x contains the content of the counter then, like with
a while loop, upon termination y contains the expected result. In the following, to keep the
triples simple, we assume that I = emp.

{c 7→ ∗ f 7→{emp} {emp} ∗Rit} ‘Cit ,f,c’ {c 7→0 ∗ f 7→{emp} {emp} ∗Rit} .
Here, we use the abbreviation e 7→{P} {Q} for (∃k. (e 7→ k) ∧ {P} k {Q}), and Rit is a
recursive specification for the iterator itself:

Rit ≡ µX. it 7→{c 7→ ∗ f 7→{emp} {emp} ∗X} {c 7→0 ∗ f 7→{emp} {emp} ∗X} .
Consequently, heap it 7→ ‘Cit ,f,c’ is in Rit and thus one can prove (see Example 5) that

{ c 7→ ∗ f 7→{emp} {emp} ∗ it 7→ }
[it ]:= ‘C it ,f,c’; eval [it]
{ c 7→0 ∗ f 7→{emp} {emp} ∗Rit} .

The specification for the iterator in it is recursive since the iterator calls itself through the
store and any recursive call through the store requires the same specification as the original
call. Assuming that procedure f has no side effect, we guarantee that the iterator will have
no other side effect than setting the counter to 0. The iterator specification also works with
more sophisticated behaviour of f : in Example 4 below we will discuss how to deal with
situations where f has side effects on some heap space (but preserves an invariant I). It
will turn out that we can generalise from invariant emp to I without even having to reprove
the original side-effect free specification given here, using the so-called deep frame rule.

Analogously to the definition of equi-recursive types in typed lambda calculi, for the
assertion (µX(~x).P )(~e) to be well-formed we require that P is (formally) contractive in
X [18]. This means that X can occur in P only in subterms of the form {P ′} e {Q′} or
P ′′ ⊗ R′ where P ′′ is formally contractive in X. (We omit the straightforward inductive
definition of formal contractiveness.) Semantically, this requirement ensures that µX(~x).P
is well-defined as a unique fixed point. Note that in particular all assertions of the form
P ⊗X and {P ′ ∗X} e {Q′ ∗X} are formally contractive in X, provided X does not appear
in P . Thus, µX.P ⊗X, and µX.it 7→{P ∗X} e {Q ∗X} are well-formed (in particular, Rit

above). Let R abbreviate the latter assertion. Then, with the help of Axiom 2.1 and the
distribution axioms of Figure 2 one can show that R is equivalent to it 7→{P ∗R} e {Q ∗R}
which in turn is equivalent to it 7→{P ∗ it 7→{P ∗R} e {Q ∗R}} e {Q ∗ it 7→{P ∗R} e {Q ∗R}}
and one can keep unfolding R as many times as one wishes. A successful invocation of the
code in it thus requires a heap satisfying P as well as containing it again pointing to code
that satisfies the very same specification. It is this potentially infinite unfolding that frees
one from having to prove triples by various forms of induction on the number of recursive
calls as in [12, 5].

More generally, in order to deal with mutually recursive stored procedures we may
need to compute fixpoints of mutually recursively defined assertions. For brevity we omit
formal syntax for mutual recursion. We will say more about the use of recursively defined
predicates and their existence in Sections 3 and 4. In particular, the semantics in Section 4
can be used to interpret mutually recursive families of assertions.

Finally, note that we have not included an axiom for distributing ⊗ through a recursive
type in Figure 2. In particular, the axiom (µX.P ) ⊗ R ⇔ µX.(P ⊗ R) does not hold in
the presence of nested triples. Instead, one has to use the axiom µX.P ⇔ P [X := µX.P ]
and unfold the recursive type to exhibit a “proper” connective through which ⊗R can be
distributed.



6 SCHWINGHAMMER ET AL.

We shall make use of two abbreviations. The first is Q ◦ R, which stands for (Q ⊗
R) ∗ R and which has already been used in Figure 2. This abbreviation describes the
combination of two invariants Q and R into a single invariant in the axiom (P ⊗Q)⊗R⇔
P ⊗ (Q ◦R). It is also used to add an invariant R to a Hoare triple {P} e {Q}, so as to obtain
{P ◦R} e {Q ◦R}. We use the asymmetric ◦ instead of the symmetric ∗ here to extend not
only Q (P and Q resp.) by R but also ensure, via ⊗, that all Hoare triples nested inside
Q (P and Q, resp.) preserve R as an invariant. The ◦ operator has been introduced
in [20], where it is credited to Paul-André Melliès and Nicolas Tabareau. The second
abbreviation is for the points-to operator of separation logic: e1 7→P [e2]

def= e1 7→ e2∧P [e2]
and e1 7→P [ ] def= ∃x. e1 7→P [x]. Here x is a fresh (logic) variable and P [·] is an assertion
with an expression hole, such as {Q} · {R}, · = e or · ≤ e.2

3. Proof Rules for Higher-order Store

In our formal setting, reasoning about programs is done by deriving judgements of the
form Ξ; Γ ` P , where P is an assertion expressing properties of programs, Ξ is a list of
(distinct) relation variables X1, . . . , Xn containing all the free relation variables in P , and Γ
is a list of (distinct) variables x1, . . . , xn containing all the free variables in P . For instance,
to prove that command C stores at cell 1 the code that initializes cell 10 to 0, we need
to derive Ξ; Γ ` {1 7→ } ‘C’ {1 7→ {10 7→ } {10 7→ 0}}. (One concrete example of such a
command C is [1]:=‘[10]:=0’.) Below, we will sometimes omit the contexts Ξ and Γ when
they are empty.

In this section, we describe inference rules and axioms for assertions that let one effi-
ciently reason about programs. We focus on those related to higher-order store.

3.1. Standard proof rules. The proof rules include the standard proof rules for intuition-
istic3 logic and the logic of bunched implications [15] (not repeated here). Moreover, the
proof rules include variations of standard separation logic proof rules, see Figures 3 and
4. The (Update), (Free) and (Skip) rules in the figure are not the usual small axioms
in separation logic, since they contain an assertion P that describes the unchanged part.
Since we have the standard frame rule for ∗, we could have used small axioms instead here.
We chose not to do this, because the current non-small axioms make it easier to follow
our discussions on frame rules and higher-order store in the next subsection. We added a
specific version of (Update), called (UpdateInv), which will turn out not to be derivable
from (Update) because triples cannot be used in the (Invariance) rule. (This will be
explained in Section 5). The side condition of (Invariance) “ψ is pure” ensures that ψ is
an assertion denoting a predicate that is actually independent of the heap. Examples for
pure predicates are arithmetic formulae like x = 1.

The figure neither includes the rule for executing stored code with eval [e] nor the
frame rule for adding invariants to triples. The reason for this omission is that these two

2These abbreviations do not necessarily lead to a unique reading, e.g. x7→1 ≤ 2 could mean x7→1∧ 1 ≤ 2
or x7→2 ∧ 1 ≤ 2, but we will only use them when the P in question is uniquely defined.

3A classical interpretation of the assertion language is inconsistent, see Section 3.5.



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 7

Deref
Ξ; Γ, x`{P ∗ e 7→x} ‘C’ {Q}

Ξ; Γ`{∃x.P ∗ e 7→x} ‘letx=[e] inC’ {Q}
(x 6∈ fv(e,Q))

Update

Ξ; Γ`{e 7→ ∗P} ‘[e] := e0’ {e 7→ e0 ∗P}

UpdateInv

Ξ; Γ`{e 7→ ∗ (e1 7→e0 ∧{A} e0 {B})} ‘[e] := e0’ {(e 7→ e0 ∧{A} e0 {B}) ∗ (e1 7→e0 ∧{A} e0 {B})}

New
Ξ; Γ, x`{P ∗ x 7→ e} ‘C’ {Q}

Ξ; Γ`{P} ‘letx=new e inC’ {Q}
(x 6∈ fv(P, e,Q))

Free

Ξ; Γ ` {e 7→ ∗ P} ‘free(e)’ {P}

If
Ξ; Γ ` {P ∧ e0=e1} ‘C’ {Q} Ξ; Γ ` {P ∧ e0 6=e1} ‘D’ {Q}

Ξ; Γ ` {P} ‘if (e0=e1) then C else D’ {Q}

Skip

Ξ; Γ ` {P} ‘skip’ {P}

Seq

Ξ; Γ ` {P} ‘C’ {R} Γ ` {R} ‘D’ {Q}
Ξ; Γ ` {P} ‘C;D’ {Q}

Figure 3: Proof rules from separation logic

rules raise nontrivial issues in the presence of higher-order store and nested triples, as we
shall discuss below. We also omit the conjunction axiom for triples:

Conj

Ξ; Γ ` {P2} e {Q2}∧ {P1} e {Q1}⇒ {P1∧P2} e {Q1∧Q2}
as it is not sound (neither as a rule) in the presence of higher-order or deep frame rules,
for the reasons given in [16]. If we wanted to use it we would need to restrict to precise
assertions, as they do.

3.2. Proof rule for recursive assertions. Besides the axiom (2.1) which lets us unfold
recursive assertions, we include a proof rule that expresses the uniqueness of recursive
assertions,

RUnique

Ξ; Γ ` R⇔ P [X := R] Ξ; Γ ` S ⇔ P [X := S]
Ξ; Γ ` R⇔ S

for any P formally contractive in X. Using this rule, the equivalence of (possibly recursively
defined) assertions R and S can be proved by finding a suitable assertion P that has both
R and S as fixed points.



8 SCHWINGHAMMER ET AL.

Conseq

Ξ; Γ ` P ′⇒P Ξ; Γ ` Q⇒Q′

Ξ; Γ ` {P} e {Q}⇒ {P ′} e {Q′}

Disj

Ξ; Γ ` {P} e {Q}∧ {P ′} e {Q′}⇒ {P ∨ P ′} e {Q ∨Q′}

ExistAux

Ξ; Γ ` (∀x.{P} e {Q}) ⇒{∃x.P} e {∃x.Q}
(x 6∈ fv(e))

Invariance

Ξ; Γ ` {P} e {Q}⇒ {P ∧ ψ} e {Q ∧ ψ}
(ψ is pure)

Figure 4: Non-syntax driven proof rules

3.3. Frame rule for higher-order store. The frame rule is the most important rule in
separation logic, and it formalizes the intuition of local reasoning, where proofs focus on
the footprints of the programs we verify. For instance, in Example 2, we have said we can
prove

{c 7→ ∗ f 7→{emp} {emp} ∗Rit} ‘Cit ,f,c’ {c 7→0 ∗ f 7→{emp} {emp} ∗Rit} (3.1)

But if we wanted now to prove a similar result for an f that had some side effect like

f 7→ ‘let r=[x] in let v=[y] in [y]:= r*v; [x]:= r−1’

then setting I def= ∃m.x 7→m ∗ y 7→n!/m! we can prove {I} f {I} but now we need to show

{c 7→ ∗ f 7→{I} {I} ∗ (Rit ⊗ I) ∗ I} ‘Cit ,f,c’ {c 7→0 ∗ f 7→{I} {I} ∗ (Rit ⊗ I) ∗ I} (3.2)

The so-called “deep frame rule” will allow us to do just that, to prove triple (3.2) from
triple (3.1) in one reasoning step, such that we can re-use our original proof. This rule will
be discussed below and details of its concrete usage can be seen in Example 4. Note also
that the first-order (or shallow) frame rule does not achieve this, it would only give us

{c 7→ ∗ f 7→{emp} {emp} ∗Rit ∗ I} ‘Cit ,f,c’ {c 7→0 ∗ f 7→{emp} {emp} ∗Rit ∗ I} (3.3)

which is not useful here.
Establishing “deep” frame rules in our setting is challenging, because nested triples

allow for several choices regarding the shape of the rule. Moreover, the recursive nature of
the higher-order store complicates matters and it is difficult to see which choices actually
make sense (i.e., do not lead to inconsistency).

To see this problem more clearly, consider the rules below:

Ξ; Γ ` {P} e {Q}
Ξ; Γ ` {P � R} e {Q � R}

and
Ξ; Γ ` {P} e {Q}⇒ {P � R} e {Q � R}

for � ∈ {∗, ◦}.

Note that we have four choices, depending on whether we use � = ∗ or � = ◦ and on
whether we have an inference rule or an axiom. If we choose the separating conjunction ∗
for �, we obtain shallow frame rules that add R to the outermost triple {P} e {Q} only;
they do not add R in nested triples appearing in pre-condition P and post-condition Q. On
the other hand, if we choose ◦ for �, since (A ◦ R) = (A ⊗ R ∗ R), we obtain deep frame



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 9

rules that add the invariant R not just to the outermost triple but also to all the nested
triples in P and Q.

The distinction between inference rule and axiom has some bearing on where the frame
rule can be applied. With the axiom version, we can apply the frame rule not just to valid
triples, but also to nested triples appearing in pre- or post-conditions which is not possible
with the inference rule

Ideally, we would like to have the axiom versions of the frame rules for both the ∗ and ◦
connectives. Unfortunately, this is not possible for ◦: adding the axiom version for ◦ makes
our logic unsound. The source of the problem is that with the axiom version for ◦, one can
add invariants selectively to some, but not necessarily all, nested triples. This flexibility
can be abused to derive incorrect conclusions.

Concretely, with the axiom version for ◦ (DeepFrameAxiom) we can make the fol-
lowing derivation:

Ξ; Γ ` {P ◦S} e {Q ◦S}
Ξ; Γ ` {P} e {Q}⊗S

⊗-Distr
Ξ; Γ ` {P} e {Q}⇒ {P ◦R} e {Q ◦R}

DeepFrameAx.

Ξ; Γ ` {P} e {Q}⊗S ⇒{P ◦R} e {Q ◦R}⊗S
⊗-Mono

Ξ; Γ ` {P ◦R} e {Q ◦R}⊗S
Ξ; Γ ` {(P ◦R) ◦S} e {(Q ◦R) ◦S}

⊗-Distr

ModusPon.

Here we use the monotonicity of − ⊗ R in the form of rule (⊗-Mono), cf. Figure 9 in
the Appendix. The steps annotated ⊗-Distr use the first equivalence {P} e {Q} ⊗ R ⇔
{P ◦R} e {Q ◦R} of the distribution axioms for ⊗ in Fig. 2 (in ⇐ and ⇒ direction, respec-
tively). We annotate the application of an axiom between triples with r to indicate that
we apply it actually as a rule via the application of (ModusPonens). So, for instance,
(Conseq)r, used frequently below, denotes a sub-derivation of the following form:

{A} e {B}
A′ ⇒ A B ⇒ B′

{A} e {B}⇒ {A′} e {B′}
Conseq

{A′} e {B′}
ModusPonens

where we will usually omit the implications A′ ⇒ A and B ⇒ B′ when they are obvious
from the context.

The fact we could derive {(P ◦R) ◦S} e {(Q ◦R) ◦S} means that when adding R to
nested triples, we can skip the triples in the S part of the pre- and post-conditions of
{P ◦S} e {Q ◦S}. This flexibility leads to the unsoundness:

Proposition 3.1. Adding the axiom version (DeepFrameAxiom) of the frame rule for ◦
renders our logic unsound.

Proof. Let R be the recursive assertion µX.(3 7→ {1 7→ } {17→ }) ⊗ X, and note that this
means R⇔ (3 7→ {1 7→ } {17→ })⊗R holds. Then, we can derive the triple:

Conseqr

k ` {2 7→ {1 7→ } {1 7→ } ◦R} k {2 7→ ◦R}
k ` {

(
2 7→ {17→ } {1 7→ } ◦ 1 7→

)
◦R} k {

(
2 7→ ◦ 1 7→

)
◦R}

k ` {2 7→‘free(−1)’ ∗ 1 7→ ∗R} k {27→ ∗ 1 7→ ∗ 3 7→ {1 7→ ∗R} {1 7→ ∗R}} (3.4)

Here the first step uses the derivation above for adding invariants selectively, and the last
step uses the consequence rule with the following two implications:



10 SCHWINGHAMMER ET AL.

2 7→ {1 7→ } {1 7→ } ◦ 1 7→ ◦R⇐⇒ 2 7→ {17→ ∗ 17→ ∗R} {1 7→ ∗ 1 7→ ∗R} ∗ 17→ ∗R
⇐⇒ 2 7→ {false} {false} ∗ 17→ ∗R
⇐= 2 7→‘free(−1)’ ∗ 17→ ∗R

where the second equivalence follows from the fact that 1 7→ ∗ 17→ ⇔ false (use axioms (?-
Overlap), (?-Zero), and (?-Mono) of Separation Logic from Figure 9) with (Conseq)4,
and

2 7→ ◦ 17→ ◦R ⇐⇒ 2 7→ ∗ 17→ ∗R
⇐⇒ 2 7→ ∗ 17→ ∗ ((3 7→ {1 7→ } {17→ })⊗R)
⇐⇒ 2 7→ ∗ 17→ ∗ 3 7→ {1 7→ ∗R} {1 7→ ∗R}.

in which the distribution axioms of Figure 2 are used, again in concert with (Conseq) and
Separation Logic rules like (?-Mono).

Consider C ≡ let x=[2] in [3]:=x, i.e., the program that copies the contents from cell
2 to cell 3. When P [y] ≡ {1 7→ } y {1 7→ }⊗R such that R⇔ 37→P [ ] holds,

x`{37→ ∗ (27→x ∧ P [x])} ‘[3]:=x’ {(37→x ∧ P [x]) ∗ (27→x ∧ P [x])}
UpdateInv

x`{3 7→ ∗ (27→x ∧ P [x])} ‘[3]:=x’ {3 7→P [ ] ∗ 27→P [ ]}
Conseqr

` {∃x. 37→ ∗ (27→x ∧ P [x])} ‘let x=[2] in [3]:=x’ {3 7→P [ ] ∗ 27→P [ ]}
Deref

` {37→P [ ] ∗ 2 7→P [ ]} ‘C’ {3 7→P [ ] ∗ 27→P [ ]}
Conseqr

` {R ∗ 2 7→P [ ]} ‘C’ {R ∗ 2 7→P [ ]}
Conseqr

` {2 7→ {17→ } {1 7→ } ◦R} ‘C’ {2 7→ ◦R}
Conseqr

Now we instantiate k in (3.4) with ‘C’, discharge the premise of the resulting derivation
with the above derivation for C, and obtain

...
` {2 7→ ‘free(−1)’ ∗ 1 7→ ∗R} ‘C’ {2 7→ ∗ 1 7→ ∗ 3 7→ {1 7→ ∗R} {17→ ∗R}}

But the post-condition of the conclusion here is equivalent to 2 7→ ∗ 17→ ∗R by the definition
of R and the distribution axioms for ⊗. Thus, as our rule for eval will show later, we should
be able to conclude that

`{2 7→ ‘free(−1)’ ∗ 1 7→ ∗R} ‘C; eval [3]’ {2 7→ ∗ 1 7→ ∗ 3 7→ {17→ ∗R} {1 7→ ∗R}}
However, since −1 is not even an address, the program (C; eval [3]) which executes the
code free(-1) now stored in cell 3 always faults, contradicting the requirement of separation
logic that proved programs run without faulting.

Remark 3 (Counterexample for the Deep Frame Axiom). Notice that in the derivation above
it is essential that R is a recursively defined assertion, otherwise we would not obtain that
the locations 2 and 3 point to code satisfying the same assertion P .

While the above counterexample has been the first such counterexample historically,
there is also another form of counterexample discovered later which uses the same ideas as
the above but works “through the store.” More precisely, in this alternative counterexample

4Note that it is important here that (Conseq) derives an implication between triples.



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 11

the copying code ‘C’ resides on the heap where the frame axiom can be applied directly on
a nested triple, and not through the derivation

{P ◦ S} e {Q ◦ S}
{(P ◦R) ◦ S} e {(Q ◦R) ◦ S}

This rather follows the style of [21]5 and [10]6. For this counterexample, let R be as above
and let

P1[y] ≡ {1 7→ } y {1 7→ } .
First, observe that the following triple can be derived with a rule for eval (this rule (Eval)
will be explained in detail in Section 3.4):

{2 7→ {false} {false} ∗ c 7→ {2 7→ {false} {false}} {2 7→ {false} {false}}}
‘eval [c]’
{2 7→ ∗ c 7→ }

(3.5)

But the (DeepFrameAxiom) (the axiom version for ◦) can be used to derive

c 7→ {2 7→P1[ ]} {2 7→P1[ ]} =⇒ c 7→ {2 7→P1[ ] ◦ (1 7→ )} {2 7→P1[ ] ◦ (1 7→ )}
which then by applying distribution axioms unfolding the definition of P1 yields:

c 7→ {2 7→P1[ ]} {2 7→P1[ ]} =⇒ c 7→ { 2 7→ {false} {false} } { 2 7→ {false} {false} }
Applying this to triple (3.5) with the help of an appropriate (Conseqr) step we can therefore
derive

`{2 7→ {false} {false} ∗ c 7→ {2 7→P1[ ]} {2 7→P1[ ]}} ‘eval [c]’ {2 7→ ∗ c 7→ }
and thus by the shallow frame rule again

`{1 7→ ∗ 2 7→ {false} {false} ∗ c 7→ {2 7→P1[ ]} {2 7→P1[ ]}} ‘eval [c]’ {1 7→ ∗ 2 7→ ∗ c 7→ }
This triple should not hold for all heaps since actually now the code in 2 has been laundered
to work with its caller code in c although the code in c, to function properly, might depend
on the code in 2 meeting the specification P1. Using the above derivation, we can now
construct a program that is provably safe but crashes, showing that (DeepFrameAxiom)
cannot be correct (as the other used rules and axioms clearly are). First, with the rule
version for ◦ (DeepFrameRule) to add R one gets

{ 1 7→ ∗ 2 7→ {false} {false} ∗ c 7→ {2 7→P1[ ] ◦R} {2 7→P1[ ] ◦R} ∗R }
‘eval [c]’
{ 1 7→ ∗ 2 7→ ∗ c 7→ ∗R }

so that by definition of ◦, P1, and R we obtain

{ 1 7→ ∗ 2 7→ {false} {false} ∗ c 7→ {2 7→P [ ] ∗R} {2 7→P [ ] ∗R} ∗R }
‘eval [c]’
{ 1 7→ ∗ 2 7→ ∗ c 7→ ∗R }

5However, the antiframe rule is used there.
6This uses a version where the copied code accesses a cell that is then disposed of before the code itself

is executed later.



12 SCHWINGHAMMER ET AL.

where P [y] is the assertion {17→ } y {1 7→ }⊗R (also used in the proof of Proposition 3.1).
From that one can easily derive with the rules (Seq), (Eval) and (Conseq) that

{1 7→ ∗ 2 7→ {false} {false} ∗ c 7→ {2 7→P [ ] ∗R} {2 7→P [ ] ∗R} ∗R}
‘eval [c];eval [3]’
{1 7→ ∗ 2 7→ ∗ c 7→ ∗R } .

Yet, if c 7→ ‘let x=[2] in [3]:=x’ and 2 7→ ‘free(-1)’, then the above program crashes.
Although the code in c does not call the crashing code ‘free(-1)’ in 2, it copies ‘free(-1)’
into 3, which is possible due to the “laundered” specification of 2 in the triple for c.

Again, this shows how essential it is that P1[ ] ⊗ R is equivalent to R which forces R
to be recursively defined to actually allow the copying to be performed. This version of
the counterexample uses the (DeepFrameRule) rather than (ModusPonens) and (⊗-
Mono), and its pattern is more likely to appear in “naturally occurring” examples.

As Proposition 3.1 shows, we cannot include (DeepFrameAxiom) in the proof system.
Fortunately, the second best choice of frame axioms leads to a consistent proof system:

Proposition 3.2. Both the inference rule version of the frame rule for ◦ and the axiom
version for ∗ are sound. In fact, the following more general version (⊗-Frame) of the rule
for ◦ holds:

Ξ; Γ ` P

Ξ; Γ ` P ⊗R

We will prove this proposition in Section 4 by a model construction.

Example 4 (Application of (⊗-Frame)). Recall our specification

{c 7→ ∗ f 7→{emp} {emp} ∗Rit} ‘Cit ,f,c’ {c 7→0 ∗ f 7→{emp} {emp} ∗Rit} (3.6)

of the iteration command in Example 2, where Rit is a recursive specification for the iterator
itself:

Rit ≡ µX. it 7→{c 7→ ∗ f 7→{emp} {emp} ∗X} {c 7→0 ∗ f 7→{emp} {emp} ∗X}
Assume this triple has been already proven (cf. Example 5 below). If the code Cit ,f,c is to
be used on a procedure f that needs some state I, e.g. I ≡ a7→ , then we need to show

{c 7→ ∗ f 7→{I} {I} ∗ (Rit ⊗ I) ∗ I}‘Cit ,f,c’{c 7→0 ∗ f 7→{I} {I} ∗ (Rit ⊗ I) ∗ I}
This triple could be established by a proof similar to the one for the triple 3.6 above, just
carrying around the extra assumption I. If we want to reuse this proof though, or even
more importantly, if we do not have the proof of the above triple because it is part of a
module for which we do not have the actual code, then we can use rule (⊗-Frame) on
triple (3.6) to derive:(

{c 7→ ∗ f 7→{emp} {emp} ∗Rit} ‘Cit ,f,x’ {c 7→0 ∗ f 7→{emp} {emp} ∗Rit}
)
⊗ I

A Conseqr step using the equivalence of the first axiom in Figure 2 in both directions for
the pre- and postcondition, respectively, thus gives us the triple:

{(c 7→ ⊗ I) ∗ (f 7→{emp} {emp}⊗ I) ∗ (Rit ⊗ I) ∗ I}
‘Cit ,f,x’
{(c 7→0⊗ I) ∗ (f 7→{emp} {emp}⊗ I) ∗ (Rit ⊗ I) ∗ I}



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 13

which by another four applications of distribution axioms yields the required triple. Note
that the rule (RUnique) would be needed to show that Rit⊗I is equivalent to the recursive
assertion

µY. it 7→{c 7→ ∗ f 7→{I} {I} ∗ I ∗ Y } {c 7→0 ∗ f 7→{I} {I} ∗ I ∗ Y } .

3.4. Rule for executing stored code. An important and challenging part of the design of
a program logic for higher-order store is the design of a proof rule for eval [e], the command
that executes code stored at e. Indeed, the rule should overcome two challenges directly
related to the recursive nature of higher-order store: (1) implicit recursion through the store
(i.e., Landin’s knot), and (2) extensional specifications of stored code.

These two challenges are addressed, using the expressiveness of our assertion language,
by the following rule for eval [e]:

Eval
Ξ; Γ, k ` R[k] ⇒{P ∗ e 7→R[ ]} k {Q}
Ξ; Γ ` {P ∗ e 7→R[ ]} ‘eval [e]’ {Q}

This rule states that in order to prove {P ∗ e 7→R[ ]} ‘eval [e]’ {Q} for executing stored code
in [e] under the assumption that e points to arbitrary code k (expressed by the which is
an abbreviation for ∃k.e 7→ R[k]), it suffices to show that the specification R[k] implies that
k itself fulfils triple {P ∗ e 7→R[ ]} k {Q}.

In the above rule we do not make any assumptions about what code e actually points
to, as long as it fulfils the specification R. It may even be updated between recursive
calls. However, for recursion through the store, R must be recursively defined as it needs
to maintain itself as an invariant of the code in e.

Example 5 (Recursion through the store with the iterator). As seen in the iterator Example 2
one would like to prove

{ c 7→ ∗ f 7→{emp} {emp} ∗Rit } ‘eval [it ]’ { c 7→0 ∗ f 7→{emp} {emp} ∗Rit }
with the help of (Eval). First we set

R ≡ {c 7→ ∗ f 7→{emp} {emp} ∗Rit} {c 7→0 ∗ f 7→{emp} {emp} ∗Rit}
such that Rit is the same as it 7→R[ ]. We are now in a position to apply (Eval) obtaining
the following proof obligation

R[k] ⇒{c 7→ ∗ f 7→{emp} {emp} ∗ it 7→R[ ]} k {c 7→0 ∗ f 7→{emp} {emp} ∗Rit}
which can be seen to be identical to R[k] ⇒ R[k] which holds trivially.

The (Eval) rule crucially relies on the expressiveness of our assertion language, espe-
cially the presence of nested triples and recursive assertions. In our previous work, we did
not consider nested triples. As a result, we had to reason explicitly with stored code, rather
than properties of the code, as illustrated by one of our previous rules for eval [5]:

OldEval
Ξ; Γ ` {P} ‘eval [e]’ {Q} ⇒ {P} ‘C’ {Q}

Ξ; Γ ` {P ∗ e 7→ ‘C’} ‘eval [e]’ {Q ∗ e 7→ ‘C’}
Here the actual code C is specified explicitly in the pre- and post-conditions of the triple. In
both rules the intuition is that the premise states that the body of the recursive procedure
fulfils the triple, under the assumption that the recursive call already does so. In the (Eval)



14 SCHWINGHAMMER ET AL.

EvalNonRec1

Ξ; Γ ` {P ∗ e 7→ ∀~y.{P} {Q}} ‘eval [e]’ {Q ∗ e 7→ ∀~y.{P} {Q}}

EvalNonRecUpd

Ξ; Γ ` {P ∗ e 7→ ∀~y.{P ∗ e 7→ } {Q}} ‘eval [e]’ {Q}

EvalRec

Ξ; Γ ` {P ◦R} ‘eval [e]’ {Q ◦R}
(where R = µX.(e 7→ ∀~y.{P} {Q} ∗ P0)⊗X)

Figure 5: Derived rules from Eval

rule this is done without direct reference to the code itself, using the variable k to stand for
arbitrary code satisfying R. The soundness proof of (OldEval) proceeded along the lines
of Pitts’ method for establishing relational properties of domains [19]. On the other hand,
as we will show in Section 4, (Eval) relies on the availability of recursive assertions, the
existence of which is guaranteed by Banach’s fixpoint theorem.

From the (Eval) rule one can easily derive the axioms of Figure 5. The first two axioms
are for non-recursive calls. This can be seen from the fact that in the pre-condition of the
nested triples e does not appear at all or does not have a specification, respectively. Only
the third axiom (EvalRec) allows for recursive calls. The idea of this axiom is that one
assumes that the code in [e] fulfils the required triple provided the code that e points to
at call-time fulfils the triple as well. Let us look at the actual derivation of (EvalRec) to
make this evident. We write

S[k] ≡ ∀~y.{P ◦R} k {Q ◦R}
such that for the original

R = µX.(e 7→ ∀~y.{P} {Q} ∗ P0)⊗X

of the rule (EvalRec) we obtain with the help of Axiom (2.1):

R⇔ (e 7→S[ ]) ∗ (P0 ⊗R) (3.7)

Note that in the derivation below Γ contains the variables ~y which may appear freely in P
and Q.

Ξ; Γ, k ` (∀~y.{P ◦R} k {Q ◦R}) ⇒{P ◦R} k {Q ◦R}
Ξ; Γ, k ` S[k] ⇒{P ◦R} k {Q ◦R}

Ξ; Γ, k ` S[k] ⇒{(P ⊗R) ∗ e 7→ S[ ] ∗ (P0 ⊗R)} k {Q ◦R}
Ξ; Γ ` {(P ⊗R) ∗ e 7→ S[ ] ∗ (P0 ⊗R)} ‘eval [e]’ {Q ◦R}

Eval

Ξ; Γ ` {P ◦R} ‘eval [e]’ {Q ◦R}
Conseqr

Csub

Def. of S

FOL

In the derivation tree above, the axiom used at the top is simply a first-order axiom for ∀
elimination. The quantified variables ~y are substituted by the variables with the same name
from the context. After an application of rule (EvalRec), those variables ~y can then be



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 15

substituted further. Step Csub abbreviates the following derivation where contexts have
been omitted for clarity:

...
S[k] ⇒{P ◦R} k {Q ◦R}

P ◦R⇒ P ◦R
R⇒

(P ⊗R) ∗R⇒ P ◦R
Def. ◦

(P ⊗R) ∗ e 7→ S[ ] ∗ (P0 ⊗R) ⇒ P ◦R
unfold

Q ◦R⇒ Q ◦R
R⇒

{P ◦R} k {Q ◦R}⇒ {(P ⊗R) ∗ e 7→ S[ ] ∗ (P0 ⊗R)} k {Q ◦R}
Conseq

S[k] ⇒{(P ⊗R) ∗ e 7→ S[ ] ∗ (P0 ⊗R)} k {Q ◦R}
T⇒

In the above derivation, (R⇒) and (T⇒) denote reflexivity and transitivity of implication,
respectively, and step unfold denotes the following sub-derivation:

P ⊗R⇒ P ⊗R
R⇒

e 7→ S[ ] ∗ (P0 ⊗R) ⇒ R
(3.7)

(P ⊗R) ∗ e 7→ S[ ] ∗ (P0 ⊗R) ⇒ (P ⊗R) ∗R
?-Mono

...
(P ⊗R) ∗R⇒ P ◦Q

(P ⊗R) ∗ e 7→ S[ ] ∗ (P0 ⊗R) ⇒ P ◦R
T⇒

The use of recursive specification

R = µX.(e 7→ ∀~y.{P} {Q} ∗ P0)⊗X

is essential here as it allows us to unroll the definition (see equivalence (3.7)) so that the
(Eval) rule can be applied. Note that in the logic of [12], which also uses nested triples but
features neither a specification logic nor any frame rules or axioms, recursive specifications
do not exist. Avoiding them, one loses an elegant specification mechanism to allow for code
updates during recursion. Such updates are indeed possible as eval uses a pointer to call
code from the (obviously changeable) heap. In the logic of [12] specifications would have to
refer to other means to deal with such code updates, like e.g. families of code with uniform
specifications. But it is unclear to what extent such a formulation would allow for modular
extensions. For modular reasoning one must not rely on concrete families of code in proofs,
otherwise these proofs are not reusable when the family has to be changed to allow for
additional code. Assuming the code in e does not change, the recursively defined R above
can be expressed without recursion (we can omit the P0 now, as this is only needed for
mutually recursively defined triples) as follows:

e 7→ {e 7→ k ∗ P} k {e 7→ k ∗Q}.
The question however remains how the assertion can be proved for some concrete ‘C’ that
is stored in [e]. In [12] this is done by an induction on some appropriate argument, which is
possible since only total correctness is considered there. In our logic, (OldEval) is strik-
ingly similar to a fixpoint induction rule in “de Bakker and Scott” style and (Eval) even
allows one to abstract away from concrete code. These rules are elegant and simple to use.
Not only do they allow for recursion through the store, (Eval) also disentangles the rea-
soning from the concrete code stored in the heap, supporting modularity and extensibility.



16 SCHWINGHAMMER ET AL.

⊗-Frame
Ξ; Γ ` P

Ξ; Γ ` P ⊗R

∗-Frame

Ξ; Γ ` {P} e {Q}⇒ {P ∗R} e {Q ∗R}

Eval
Ξ; Γ, k ` R[k] ⇒{P ∗ e 7→R[ ]} k {Q}
Ξ; Γ ` {P ∗ e 7→R[ ]} ‘eval [e]’ {Q}

Figure 6: Proof rules specific to higher-order store

Figure 6 summarizes a particular choice of proof-rule set from the current and previous
subsections. Soundness is proved in Section 4.

3.5. Nested triples and classical assertion logic. One may wonder why we insist on
an intuitionistic program logic. Unfortunately, as the following proposition shows, it is not
possible to use a classical version of our logic; more precisely, the combination of a classical
specification logic and rule (⊗-Frame) is not sound. Thus, by our identification of assertion
and specification language, we cannot have a classical assertion logic either.

Proposition 3.3. Adding rule (⊗-Frame) to a classical specification logic is not sound.

Proof. Assuming the rule for the elimination of double negation, we can derive the prob-
lematic triple

{true} ‘skip’ {false} .
Assume ¬{true} ‘skip’ {false}, using the abbreviation ¬ϕ for ϕ ⇒ false. With rule (⊗-
Frame) to frame in false we can derive the triple (¬{true} ‘skip’ {false}) ⊗ false from
¬{true} ‘skip’ {false}. Since true∗false ⇔ false and false∗false ⇔ false, rule (Conseq) and
the distribution axioms then let us derive ¬{false} ‘skip’ {false}. On the other hand, rule
(Skip) derives the triple {false} ‘skip’ {false}. Thus, we have shown that from the assump-
tion ¬{true} ‘skip’ {false} we can derive false, i.e. we have shown ¬¬{true} ‘skip’ {false}.
By eliminating the double negation we can now derive the triple {true} ‘skip’ {false}.

Note that this derivation does not use nested triples, and also applies to the specification
logics used in [7, 5].

4. Semantics of Nested Triples

This section develops a model for the programming language and logic we have pre-
sented. The semantics of programs, given in Subsection 4.2 using an untyped domain-
theoretic model, is standard. The following semantics of the logic is, however, unusual; it
is a possible world semantics where the worlds live in a recursively defined metric space.
Before we begin with the technical devlopment proper we give a brief overview of the main
ideas employed.



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 17

4.1. Overview of the technical development. In earlier work, Birkedal, Torp-Smith,
and Yang [7, 8] showed how to model a specification logic with higher-order frame rules
but for a language with first-order store. There, the assertion and specification logic were
kept distinct. Assertions were modelled as semantic predicates Pred = P (H), with H the
set of heaps, and specifications as world-indexed truth values W → 2. (These latter maps
were restricted to be monotone in a certain sense, but that does not matter for the present
explanation.) The informal idea was that the set of worlds would consist of invariants that
had been framed in and thus worlds consisted of semantic predicates, W = Pred. Here, with
higher-order store and nested triples and the collapse of assertion and specification logic,
assertions will be modelled as world-indexed predicates. So we get Pred = W → P (H).
Worlds will still consist of semantic predicates, so W = Pred. Thus we see that the set of
worlds W should be recursively defined. This captures the idea that any assertion can serve
as an invariant to be framed in via a frame rule.

The idea of using such a Kripke model over a recursively defined set of worlds comes
from [6], where this idea was used to define a model of a type system with general ML-
like references (hence higher-order store). Following [6] we show how to find a solution to
the recursive world equation in a category of complete bounded ultra-metric spaces (the
definition of which we recall below). This is possible by restricting the subsets of H that
we use to so-called uniform admissible subsets of H. The set UAdm of all such forms a
complete bounded ultra-metric space and thence we can solve the recursive world equation.
Having solved that, we show how to define a world extension operator ⊗ (which will be used
to model the syntactic ⊗ operator used earlier), as a fixed point of a suitable contractive
operator. Moreover, we show that the subset UAdm of P (H) is a complete Heyting algebra
with a commutative and monotone monoid structure, as needed for the interpretation of
separation logic.

Having defined semantic predicates in certain metric spaces allows us to interpret re-
cursively defined assertions via application of Banach’s fixed point theorem.

The final core idea in the development is the interpretation of triples. Here we bake
in the frame rules to the model by including suitable quantifications over future worlds,
following ideas from earlier work [5]. To ensure that nested triples are modelled as semantic
predicates, we also force the interpretation of triples to be metrically non-expansive in the
worlds argument. In particular, predicates involving nested triples can be used in recursive
definitions of assertions.

4.2. Semantics of expressions and commands. The interpretation of the programming
language is given in the category Cppo⊥ of pointed cpos and strict continuous functions7

and is the same as in our previous work [5]. That is, commands denote strict continuous
functions JCKη ∈ Heap ( Terr(Heap) where

Heap = Rec(Val) Val = Integers⊥⊕Com⊥ Com = Heap (Terr(Heap) (4.1)

In these equations, Terr(D) = D ⊕ {error}⊥ denotes the error monad, and Rec(D) denotes
records with entries from D and labelled by positive natural numbers. Formally, Rec(D) =(∑

N⊆finNats+(N→D↓)
)
⊥ where (N→D↓) is the cpo of maps from the finite address set N to

the cpo D↓ = D−{⊥} of non-bottom elements of D. We use some evident record notation,

7As usual, v denote the partial order of a cpo and ⊥ denotes the least element of a pointed cpo, ie. ⊥ v d
for any d.



18 SCHWINGHAMMER ET AL.

JskipKη h
def= h

JC1;C2Kη h
def= if JC1Kη h∈{⊥, error} then JC1Kη h else JC2Kη(JC1Kη h)

Jif e1=e2 thenC1 elseC2Kη h
def= if {Je1Kη , Je2Kη} ⊆ Com⊥ then ⊥

else if (Je1Kη = Je2Kη) then JC1Kη h else JC2Kη h

Jletx=new e1, ..., en inCKη h
def= let ` = min{` | ∀`′. (`≤`′<`+n) ⇒ `′ /∈ dom(h)}

in JCKη[x 7→`] (h · {|`= Je1Kη , . . . , `+n−1= JenKη|})
Jfree eKη h

def= if JeKη /∈ dom(h) then error
else (let h′ s.t. h = h′ · {|JeKη =h(JeKη)|} in h′)

J[e1]:=e2Kη h
def= if Je1Kη /∈ dom(h) then error else (h[Je1Kη 7→ Je2Kη])

Jlet x=[e] in CKη h
def= if JeKη /∈ dom(h) then error else JCKη[x 7→h(JeKη)] h

Jeval [e]Kη h
def= if (JeKη /∈ dom(h) ∨ h(JeKη) /∈ Com) then error

else (h(JeKη))(h)

Figure 7: Interpretation of commands JCKη ∈ Heap ( Terr(Heap)

such as {|`1=d1, . . . , `n=dn|} for the record mapping label `i to di, and dom(r) for the set of
labels of a record r. The disjointness predicate r# r′ on records holds if r and r′ are not ⊥
and have disjoint domains, and a partial combining operation r · r′ is defined by

r · r′ def= if r# r′ then r ∪ r′ else ⊥ .

The interpretation of commands is repeated in Figure 7 (assuming h 6= ⊥) and below we
point out where this interpretation deviates from the norm. Firstly, the new statement
uses a deterministic allocator which, however, can not be controlled by the programmer8

which is important to ensure that allocation respects the frame rule. Any deterministic
allocator would work here, but note that in our denotational semantics we can only work
with deterministic allocation. The semantics of the if statement is divergence if one of the
expressions in the test is a command. If we wanted to raise an error in this case (which is
more appropriate), we would have to include type checking into the logic due to our fault
avoiding semantics of triples. We decided not do this here as it would clutter the rules
with type checking assertions like int(e) or com(e) which are true in case expression e is an
integer valued expression or a command, respectively.

The interpretation of expressions is entirely standard with the exception of the quote
operation, ‘C’, that uses the injection of Com into Val . Thus, the semantic equations for
expressions are omitted.

A solution to equation (4.1) for Heap can be obtained by the usual inverse limit con-
struction [29] in the category Cppo⊥. This solution is an SFP domain (e.g., [31]), and
thus comes equipped with an increasing chain πn : Heap → Heap of continuous projection
maps, satisfying π0 = ⊥,

⊔
n∈ω πn = idHeap , and πn ◦ πm = πmin{n,m} . The image of each

πn is finite, hence each πn(h) is a compact element of Heap. Moreover, the projections are
compatible with composition of heaps: we have πn(h · h′) = πn(h) · πn(h′) for all h, h′.

8This means that there is no way to stipulate what the new location is as this must depend solely on the
already allocated locations.



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 19

4.3. Semantic domain for assertions. A subset p ⊆ Heap is admissible if ⊥ ∈ p and if p
is closed under taking least upper bounds of ω-chains. It is uniform [6] if it is closed under
the projections, i.e., if h ∈ p implies πn(h) ∈ p for all n. We write UAdm for the set of all
uniform admissible subsets of Heap. For p ∈ UAdm, p[n] denotes the image of p under πn.
Note that uniformity means p[n] ⊆ p, and that p[n] ∈ UAdm. We may regard any subset
p ⊆ Heap (not necessarily uniform or admissible) as a subset of Terr(Heap) in the evident
way.

The uniform admissible subsets will form the basic building block when interpreting
the assertions of our logic. As we have already described informally above, assertions in
general depend on invariants for stored code. Thus, the space of semantic predicates Pred
will consist of functions W → UAdm from a set of “worlds,” describing the invariants, to
the collection of uniform admissible subsets of heaps. But, the invariants for stored code
are themselves semantic predicates, and the interaction between Pred and W is governed by
(the semantics of) ⊗. Hence we seek a space of worlds W that is “the same” as W → UAdm.
We obtain such a W using metric spaces.

Recall that a 1-bounded ultrametric space (X, d) is a metric space where the distance
function d : X × X → R takes values in the closed interval [0, 1] and satisfies the strong
triangle inequality d(x, y) ≤ max{d(x, z), d(z, y)}, for all x, y, z ∈ X. An (ultra-) metric
space is complete if every Cauchy sequence has a limit. A function f : X1 → X2 between
metric spaces (X1, d1) and (X2, d2) is non-expansive if for all x, y ∈ X1, d2(f(x), f(y)) ≤
d1(x, y). It is contractive if for some δ < 1, d2(f(x), f(y)) ≤ δ · d1(x, y) for all x, y ∈ X1.
By the Banach fixed point theorem, every contractive function f : X → X on a non-empty
and complete metric space (X, d) has a unique fixed point.

The complete, 1-bounded, non-empty ultrametric spaces and non-expansive functions
between them form a Cartesian closed category CBUlt . Products in CBUlt are given by
the set-theoretic product where the distance is the maximum of the componentwise dis-
tances. The exponentials are given by the non-expansive functions equipped with the
sup-metric, i.e., the exponential (X1, d1) → (X2, d2) has the set of non-expansive func-
tions from (X1, d1) to (X2, d2) as underlying set, and distance function: dX1→X2(f, g) =
sup{d2(f(x), g(x)) | x ∈ X1}. A functor F : CBUltop × CBUlt −→ CBUlt is locally non-
expansive if d(F (f, g), F (f ′, g′)) ≤ max{d(f, f ′), d(g, g′)} for all non-expansive f, f ′, g, g′,
and it is locally contractive if d(F (f, g), F (f ′, g′)) ≤ δ · max{d(f, f ′), d(g, g′)} for some
δ < 1. The functor that results from composing a locally non-expansive functor with a
locally contractive one is locally contractive. By multiplication of the distance function of
an ultrametric space (X, d) with a shrinking factor δ < 1 one obtains a new ultrametric
space, δ · (X, d) = (X, d′) where d′(x, y) = δ ·d(x, y). Using this operation, a locally contrac-
tive functor (δ ·F )(X1, X2) = δ ·(F (X1, X2)) can be obtained from any locally non-expansive
functor F .

The set UAdm of uniform admissible subsets of Heap becomes a complete, 1-bounded
ultrametric space when equipped with the following distance function:

d(p, q) =

{
2−max{i∈ω | p[i]=q[i]} if p 6= q

0 otherwise

Note that d is well-defined: first, because π0 = ⊥ and ⊥ ∈ p for all p ∈ UAdm the set
{i ∈ ω | p[i] = q[i]} is non-empty; second, this set is finite, because p 6= q implies p[i] 6= q[i] for
all sufficiently large i by the uniformity of p, q and the fact that the limit of the projections
πi is the identity on Heap.



20 SCHWINGHAMMER ET AL.

Theorem 6 (Existence of recursive worlds). There exists an ultrametric space W and an
isomorphism ι from 1

2 · (W → UAdm) to W in CBUlt .

Proof. By an application of America & Rutten’s existence theorem for fixed points of locally
contractive functors [1], applied to the functor F (X,Y ) = 1

2 ·(X → UAdm) on CBUlt . See [6]
for details of a similar recent application.

We write Pred for 1
2 · (W → UAdm) and ι−1 : W ∼= Pred for the inverse to ι.

Definition 7 (Approximate equality, [6]). For an ultrametric space (X, d) and n ∈ ω we
use the notation x n= y to mean that d(x, y) ≤ 2−n.

We conclude this subsection with a number of simple but useful observations, which
will be used repeatedly in the following proofs. By the ultrametric inequality, each n= is
an equivalence relation on X. Moreover, if n ≤ m then n= ⊇ m=, and x = y if and only if
x

n= y for all n ∈ ω. Since all non-zero distances in UAdm are of the form 2−n for some
n ∈ ω, this is also the case for the distance function on W . Therefore, to show that a
map is non-expansive it suffices to show that f(x) n= f(y) whenever x n= y. Finally, the
definition of Pred has the following consequence: for p, q ∈ Pred, p n= q holds if and only if
p(w) n−1= q(w) for all w ∈W .

4.4. Separating conjunction and invariant extension. For p, q ∈ UAdm, the separat-
ing conjunction p ∗ q is defined as usual, by

h ∈ p ∗ q def⇔ ∃h1, h2. h = h1 · h2 ∧ h1 ∈ p ∧ h2 ∈ q.
This operation is lifted to non-expansive functions p1, p2 ∈ Pred pointwise, by letting
(p1 ∗ p2)(w) = p1(w) ∗ p2(w). This lifting is well-defined, and moreover determines a non-
expansive operation on the space Pred:

Lemma 8 (Separating conjunction). If p, q ∈ Pred then p ∗ q ∈ Pred. Moreover, the
assignment of p, q to p ∗ q is a non-expansive operation on Pred.

Proof. As a preliminary step one shows that separating conjunction on UAdm is well-
defined, i.e., if p, q ∈ UAdm then so is p∗q: The admissibility of p∗q follows from ⊥ = ⊥·⊥,
and from the fact that (non-⊥) heaps are only comparable with respect to the order on Heap
if they have equal (finite) domains. More precisely, any chain h0 v h1 v . . . in p ∗ q must
have a subsequence (hik)k = (h′ik · h

′′
ik

)k that splits into chains h′i1 v h′i2 v . . . in p and
h′′i1 v h′′i2 v . . . in q. The combination of their respective lubs in p and q is the lub of the
hk’s, and therefore in p ∗ q by the admissibility of p and q. The uniformity of p ∗ q is a
consequence of the equation πn(h1 · h2) = πn(h1) · πn(h2) ∈ p ∗ q.

We now show that for p, q ∈ Pred, p∗q is a non-expansive function. Suppose w,w′ ∈W
such that w n= w′, and suppose πn(h) ∈ (p ∗ q)(w) = p(w) ∗ q(w). We must show that
πn(h) ∈ (p ∗ q)(w′). By definition of ∗ on UAdm there exist h1 ∈ p(w) and h2 ∈ q(w) such
that πn(h) = h1 · h2. By uniformity, we also have πn(h1) ∈ p(w) and πn(h2) ∈ q(w). Since
we assumed w n= w′, this yields

πn(h1 · h2) = πn(h1) · πn(h2) ∈ p(w′) ∗ q(w′) = (p ∗ q)(w′).
Finally, since πn(h) = πn(πn(h)) = πn(h1 · h2), the statement πn(h) ∈ (p ∗ q)(w′) follows.

To see that separating conjunction is non-expansive, assume that p n= p′ and q n= q′ for
arbitrary p, p′, q, q′ ∈ Pred. We must show that p∗q n= p′∗q′. Since Pred = 1

2 ·(W → UAdm)



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 21

we can equivalently show that p(w) ∗ q(w) n−1= p′(w) ∗ q′(w) for all w ∈ W . This follows
from the assumption that p n= p′ and q n= q′ and the fact that πn−1(h) =πn−1(h1) ·πn−1(h2)
whenever h=h1 · h2.

The corresponding unit for the lifted separating conjunction is the non-expansive func-
tion emp=λw.{{||} ,⊥}, i.e., p ∗ emp = emp ∗ p = p holds for all p ∈ Pred. We let the world
emp def= ι(emp) be its image under the isomorphism.

The following lemma introduces semantic analogues of the syntactic invariant extension
operation P ⊗R and the invariant combination R ◦R′.

Lemma 9 (Invariant combination and invariant extension). There exists a non-expansive
map ◦ : W ×W → W and a map ⊗ : Pred ×W → Pred that is non-expansive in its first
and contractive in its second argument, satisfying the equations

r ◦ r′ = ι(ι−1(r)⊗ r′ ∗ ι−1(r′)) and (p⊗ r)(w) = p(r ◦ w)

for all p∈Pred and r, r′ ∈W .

Proof. The defining equations of both operations give rise to contractive maps, which have
(unique) fixed points by Banach’s fixed point theorem. More precisely, consider the endo-
function · on the function space W ×W → W , defined for all ◦ ∈ (W ×W → W ) and all
r, r′ ∈W by

r ◦ r′ = ι((λw.ι−1(r)(r′ ◦ w)) ∗ ι−1(r′)) .

Note that ◦ is indeed a non-expansive function, i.e., an element of the function space
(W ×W → W ): if r n= s and r′

n= s′ then r′ ◦ w n= s′ ◦ w holds in W , for all w ∈ W ,
and ι−1(r) n= ι−1(s) and ι−1(r′) n= ι−1(s′) holds in Pred. Since separating conjunction is
non-expansive by Lemma 8, the approximate equality

(λw.ι−1(r)(r′ ◦ w)) ∗ ι−1(r′) n−1= (λw.ι−1(s)(s′ ◦ w)) ∗ ι−1(s′)

holds in W → UAdm, so that r ◦ r′ n= s ◦ s′ in W .
We show that the function · is contractive. Assume that ◦1

n= ◦2 holds in W ×W →W ;
we must show that ◦1

n+1= ◦2. Let r, r′ ∈ W be arbitrary. Then by the sup-metric on
W ×W →W it suffices to prove that r ◦1 r

′ n+1= r ◦2 r
′ holds in W , or equivalently, that

(λw.ι−1(r)(r′ ◦1 w)) ∗ ι−1(r′) n= (λw.ι−1(r)(r′ ◦2 w)) ∗ ι−1(r′)

holds in W → UAdm. By the non-expansiveness of separating conjunction (Lemma 8) and
the sup-metric on W → UAdm, this follows since r′ ◦1 w

n= r′ ◦2 w holds for all w ∈ W by
the assumption that ◦1

n= ◦2, and hence ι−1(r)(r′ ◦1 w) n= ι−1(r)(r′ ◦2 w) holds.
By contractiveness of · and the Banach fixed point theorem, there exists a unique non-

expansive map ◦ satisfying r ◦ r′ = r ◦ r′. We can now define the operation ⊗ : Pred×W →
Pred by p⊗r def= λw.p(r◦w) for all p ∈ Pred and r ∈W , from which the required equivalences
follow:

r ◦ r′ = r ◦ r′ = ι(λw.ι−1(r)(r′ ◦ w) ∗ ι−1(r′)) = ι(ι−1(r)⊗ r′ ∗ ι−1(r′))

Finally, we note that if p n= p′ and r
m= r′ then p ⊗ r

k= p′ ⊗ r′ for k = min{n,m + 1}, i.e.,
the operation is non-expansive in its first argument and contractive in its second argument.
To see this, suppose p n= p′ holds in Pred and r m= r′ holds in W . Without loss of generality



22 SCHWINGHAMMER ET AL.

we may assume n > 0, so that p n−1= p′ holds in W → UAdm. By non-expansiveness of ◦ it

follows that r ◦ w m= r′ ◦ w for all w, and therefore λw.p(r ◦ w)
min{n−1,m}

= λw.p′(r′ ◦ w) in

W → UAdm. Hence p⊗ r
min{n,m+1}

= p′ ⊗ r′ holds in Pred as required.

The following lemma establishes key properties of the two operations ◦ and ⊗ that we
defined in Lemma 9. These properties provide a semantic explanation of the distribution
axioms given in Figure 2.

Lemma 10 (Monoid structure and monoid action). (W, ◦, emp) is a monoid in CBUlt .
Moreover, ⊗ is an action of this monoid on Pred.

Proof. First, emp is a left-unit for ◦, since

emp ◦ r = ι((λw.ι−1(emp)(r ◦ w)) ∗ ι−1(r)) = ι(ι−1(r)) = r .

Using this fact, it is easy to prove that it is also a right-unit for the ◦ operation:

r ◦ emp = ι(λw.ι−1(r)(emp ◦ w) ∗ ι−1(emp)) = ι(λw.ι−1(r)(w) ∗ emp) = r .

Next, we prove by induction that for all n ∈ ω, ◦ is associative up to distance 2−n, from
which associativity follows. By the 1-boundedness of W the base case is clear. For the
inductive step n > 0, by definition of the distance function on Pred it suffices to show that
for all w ∈ W , ι−1((r ◦ s) ◦ t)(w) n−1= ι−1(r ◦ (s ◦ t))(w). This equation follows from the
definition of ◦ as follows:

ι−1((r ◦ s) ◦ t)(w) = ι−1(r ◦ s)(t ◦ w) ∗ ι−1(t)(w)

= ι−1(r)(s ◦ (t ◦ w)) ∗ ι−1(s)(t ◦ w) ∗ ι−1(t)(w)

= ι−1(r)(s ◦ (t ◦ w)) ∗ ι−1(s ◦ t)(w)
n−1= ι−1(r)((s ◦ t) ◦ w) ∗ ι−1(s ◦ t)(w)

= ι−1(r ◦ (s ◦ t))(w) .

The second last step in this derivation is by the inductive hypothesis, using the non-
expansiveness of ι−1(r).

That⊗ forms an action ofW on Pred follows from these properties of ◦. First, p⊗emp =
λw.p(emp ◦ w) = p since emp is a unit for ◦. Second,

(p⊗ r)⊗ s = λw.p(r ◦ (s ◦ w)) = λw.p((r ◦ s) ◦ w) = p⊗ (r ◦ s)
by the associativity of ◦.

4.5. Semantics of triples and assertions. Since assertions appear in the pre- and post-
conditions of Hoare triples, and triples can be nested inside assertions, the interpretation
of assertions and the validity of triples must be defined simultaneously. To achieve this, we
first define a notion of fault-avoiding semantic triple.

Definition 11 (Semantic triple). A semantic Hoare triple consists of predicates p, q ∈ Pred
and a strict continuous function c ∈ Heap ( Terr(Heap), written {p} c {q}. For w ∈ W , a
semantic triple {p} c {q} is forced by w, written w |= {p} c {q}, if for all r ∈ UAdm and all
h ∈ Heap:

h ∈ p(w) ∗ ι−1(w)(emp) ∗ r ⇒ c(h) ∈ Ad(q(w) ∗ ι−1(w)(emp) ∗ r),



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 23

where Ad(r) denotes the least downward closed and admissible set of heaps containing r.
A semantic triple is valid, written |= {p} c {q}, if w |= {p} c {q} for all w ∈ W . We extend
semantic triples from Com = Heap ( Terr(Heap) to all d ∈ Val , by w |= {p} d {q} iff d = c
for some command c ∈ Com and w |= {p} c {q}.
A triple holds approximately up to level k, w |=k {p} d {q}, if w |= {p}πk; d;πk {q}.

Thus, semantic triples bake in the first-order frame property (by conjoining r), and
“close” the “open” recursion (by applying the world w, on which the triple implicitly de-
pends, to emp). The semantics also ensures that if a triple holds the command in question
must not have produced error as result. One calls such a semantics fault-avoiding and this is
one of the intrinsic features of Separation Logic. In our case fault-avoidance follows directly
from the fact that semantics of assertions indexed by worlds lives in UAdm that ranges over
heaps and does not include value error. The admissible downward closure that is applied to
the entire post-condition is in line with a partial correctness interpretation of triples. In par-
ticular, it entails that the sets {c ∈ Com | w |=k {p} c {q}} and {c ∈ Com | w |= {p} c {q}}
are admissible and downward closed subsets of Com.

Since there is a closure operation applied to the post-condition of semantic triples, but
no similar closure used in the pre-condition, it may not be immediate that proved commands
compose. The following characterisation is helpful, for instance when proving soundness of
the rule of sequential composition.

Lemma 12 (Closure). If f :D(D′ is a strict continuous function, q ⊆ D′ is an admissible
and downwards closed subset of D′, and p ⊆ D is an arbitrary subset of D, then f(p) ⊆ q
implies f(Ad(p)) ⊆ q.

Proof. Since f is continuous, the pre-image f−1(q) of q is admissible and downward closed.
From the assumption that f(p)⊆ q it follows that p⊆ f−1(q), and thus Ad(p)⊆ f−1(q) as
the former is by definition the least admissible and downward closed subset of D containing
p. Thus, if h∈Ad(p) then f(h)∈ q.

Observe that w |=k {p} d {q} provides indeed an approximation of the judgement w |=
{p} c {q}, in the sense that w |= {p} c {q} is equivalent to ∀k ∈ ω.w |=k {p} c {q}. Finally,
semantic triples are non-expansive, in the sense that if wn+1= w′ and w |=n {p} c {q}, then
w′ |=n {p} c {q}; they are similarly non-expansive in the pre- and post-conditions p and q.
This observation plays a key role in the following definition of the semantics of nested triples.

Lemma 13 (Non-expansiveness of semantic triples). Let w,w′ ∈W such that w n+1= w′. Let
p, p′, q, q′ ∈ Pred be such that p n= p′ and q n= q′. If w |=n {p} c {q}, then w′ |=n {p′} c {q′}.

Proof. Let w,w′, p, p′, q and q′ be as in the statement of the lemma, and let c : Heap (
Terr(Heap) be such that w |=n {p} c {q}. To prove that w′ |=n {p} c′ {q}, suppose r ∈
UAdm and h ∈ Heap are such that h ∈ p′(w′) ∗ ι−1(w′)(emp) ∗ r. We have to show that
πn(c(πn h)) ∈ Ad(q′(w′) ∗ ι−1(w′)(emp) ∗ r).

Since w
n+1= w′ holds by assumption, we have ι−1(w′)(emp) n= ι−1(w)(emp). Hence,

by the non-expansiveness of p, by the assumption p
n= p′, and by the compatibility of the

heap combination operation with projections, we have πn(h) ∈ p(w) ∗ ι−1(w)(emp) ∗ r.
By the assumption that w |=n {p} c {q} and since πn ◦ πn = πn, this yields πn(c(πn h)) ∈
Ad(q(w) ∗ ι−1(w)(emp) ∗ r). Using the non-expansiveness of q, the assumption q

n= q′,
uniformity of r, and the fact that ι−1(w)(emp) n= ι−1(w′)(emp), we know that πn(h′) ∈



24 SCHWINGHAMMER ET AL.

q′(w′)∗ι−1(w′)(emp)∗r holds whenever h′ ∈ q(w)∗ι−1(w)(emp)∗r. Thus, using πn◦πn = πn

again, πn(c(πn(h))) ∈ Ad(q′(w′) ∗ ι−1(w′)(emp) ∗ r) holds by Lemma 12 and the continuity
of the projection πn.

Assertions (without free relation variables) are interpreted as elements JP Kη ∈ Pred.
More generally, assume that the free relation variables of P are contained in Ξ = X1, . . . , Xn,
where the arity ofXi is ni. Then P denotes a non-expansive function from

∏
Xi∈Ξ Pred(Valni )

to Pred. Note that (UAdm,⊆) is a complete Heyting algebra (as shown in Appendix B.1,
Lemma 28). Using the pointwise extension of the operations of this algebra to the set
of non-expansive functions W → UAdm, we also obtain a complete Heyting algebra on
Pred = 1

2 · (W → UAdm) which soundly models the intuitionistic predicate part of the
assertion logic. (See Appendix B.1, Lemma 29 for details.) The monoid action of W on
Pred serves to model the invariant extension of the assertion logic.

Remark 14. While UAdm (and hence Pred) is a complete Heyting algebra, it is not a
complete Heyting BI algebra, as usually assumed for the interpretation of the assertion
language in separation logic [22]. More precisely, what is missing is the right adjoint (“magic
wand”) for the monoid operation ∗: the candidate operation,

p−∗ q = {h | ∀n ∈ ω.∀h′ ∈ Heap. if πn(h′) ∈ p ∧ πn(h) #πn(h′) then πn(h · h′) ∈ q} ,
alas, fails to be non-expansive. This is a particularly annoying shortcoming of our model
since this spatial implication is important when dealing with shared memory. For instance,
(P −∗Q) ∗ (P −∗R) ∗P expresses that R and Q overlap in shared part P . Recently, we have
constructed an alternative model of our logic, based on an operational semantics of the
programming language and using the ideas of step-indexing, where the right adjoint does
exist.

In order to define an interpretation of nested triples we use the following definition:

Definition 15 (Rank of a heap). If h is a compact element of Heap, then the least n for
which πn(h) = h is the rank of h, abbreviated rnk(h), otherwise the rank is undefined.

The interpretation of assertions is spelled out in detail in Figure 8. The interpretation
of a nested triple {P} e {Q} is not independent of the heap, unlike the (more traditional)
semantics of “top-level” triples, i.e. |= {p} c {q}. More precisely, the definition in Figure 8
means that triples as assertions depend on the rank of the current heap. This is necessary to
provide a non-expansive function fromW to UAdm. Simpler definitions of the interpretation
of triples, like {h ∈ Heap |w |= {JP Kη,ρ} JeKη {JQKη,ρ}}, are heap independent but not
non-expansive. A similar approach has been taken in [6] to force non-expansiveness for
a reference type constructor for ML-style references. We discuss the ramifications of this
choice in Section 5. Note also that the only atomic assertions that depend on the world w
are triples, as they are the only ones that are affected by invariants.

Lemma 16 (Well-definedness). The interpretation in Figure 8 is well-defined:
(1) If the free relation variables of P are contained in Ξ = X1, . . . , Xn then JP Kη denotes

a non-expansive function from
∏

Xi∈Ξ Pred(Valni ) to Pred.
(2) If P is formally contractive in X then the functional λq. JP Kη,ρ[X:=q] is a contractive

map from Pred(Valn) to Pred.



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 25

JX(~e)Kη,ρw = ρ(X)(J~eKη)w

JfalseKη,ρw = {⊥}
JtrueKη,ρw = Heap

JP ∨QKη,ρw = JP Kη,ρw ∪ JQKη,ρw

JP ∧QKη,ρw = JP Kη,ρw ∩ JQKη,ρw

JP ⇒ QKη,ρw = {h | ∀n ∈ ω. πn(h) ∈ JP Kη,ρw implies πn(h) ∈ JQKη,ρw}
J∀x.P Kη,ρw =

⋂
d∈Val JP Kη[x:=d],ρw

J∃x.P Kη,ρw = {h | ∀n ∈ ω. πn(h) ∈
⋃

d∈Val JP Kη[x:=d],ρw}
Je1 = e2Kη,ρw = {h | h 6= ⊥ ⇒ Je1Kη = Je2Kη}
Je1 7→ e2Kη,ρw = {h | h v {|Je1Kη = Je2Kη|}}

JempKη,ρw = {{||} ,⊥}
JP ∗QKη,ρw = JP Kη,ρw ∗ JQKη,ρw

J{P} e {Q}Kη,ρw = Ad{h ∈ Heap | rnk(h) > 0 ⇒ w |=rnk(h)−1 {JP Kη,ρ} JeKη {JQKη,ρ}}
JP ⊗QKη,ρw = (JP Kη,ρ ⊗ ι(JQKη,ρ))w

J(µX(~x).P )(~e)Kη,ρw = fix(λq, ~d. JP K
η[~x:=~d],ρ[X:=q]

)(J~eKη)w

Figure 8: Semantics of assertions

Proof sketch. Both parts are proved simultaneously by induction on the structure of P . The
second part is used to show the well-definedness of recursive specifications, using the fact
that the fixed point operator itself is non-expansive. Details are given in Appendix B.2.

As a consequence of the interpretation of triples, the axiom {{A} e {B}∧A} e {B} does
not hold; the inner triple is only approximately valid up to the level of the rank of the
argument heap. Similarly, the following rule

{A} e {B}⇒ {P} e′ {Q}
{{A} e {B}∧ P} e′ {Q}

is not validated by our semantics (the opposite direction actually holds; see Section 5).
Axioms and rules like these are used, e.g., by Honda et al. [12], in proofs for recursion
through the store; instead we use (Eval).

4.6. Soundness of the axioms and proof rules. We prove soundness of the axioms
and proof rules listed in Sections 2 and 3. We start by defining a notion of validity for
judgements and rules with respect to which the soundness will be shown.

Definition 17 (Validity of judgements). A judgement Ξ; Γ ` {P} ‘C’ {Q} is valid if, and
only if, for all η ∈ Env such that dom(η) ⊇ Γ and for all ρ ∈

∏
Xi∈Ξ Pred(Valni ) such that

ni is the arity of Xi we have |= {JP Kη,ρ} JCKη {JQKη,ρ}. A rule J1
J2

is then called sound
if validity of judgement J1 implies the validity of judgement J2. Similarly, an axiom J is
called sound if judgement J is valid.



26 SCHWINGHAMMER ET AL.

Below we prove the most interesting rules of our logic sound. Where proofs are para-
metric in the assertions we will directly work with semantic Hoare triples.

Let us first consider the distribution axioms for −⊗R given in Figure 2.

Lemma 18 (Distribution axioms). The distribution axioms for −⊗R are valid.

Proof. We consider the case of invariant extension and triples:
• The validity of (P ⊗Q)⊗R ⇔ P ⊗ (Q ◦R) is an instance of the fact that ⊗ is a

monoid action (Lemma 10).
• The validity of {P} e {Q}⊗R⇔{P ◦R} e {Q ◦R} follows from the following claim:

for all p, q, r ∈ Pred, strict continuous c : Heap ( Terr(Heap) and all w ∈ W ,
ι(r) ◦ w |= {p} c {q} if and only if w |= {p⊗ ι(r) ∗ r} c {q ⊗ ι(r) ∗ r}. The proof of
this claim uses the property

∀p. (p⊗ ι(r) ∗ r)(w) ∗ ι−1(w)(emp) = p(ι(r) ◦ w) ∗ ι−1(ι(r) ◦ w)(emp) .

This property is a consequence of the definitions of ⊗ and ◦:
(p⊗ ι(r) ∗ r)(w) ∗ ι−1(w)(emp) = (p⊗ ι(r))(w) ∗ r(w) ∗ ι−1(w)(emp)

= p(ι(r) ◦ w) ∗ r(w ◦ emp) ∗ ι−1(w)(emp)

= p(ι(r) ◦ w) ∗ (r ⊗ w)(emp) ∗ ι−1(w)(emp)

= p(ι(r) ◦ w) ∗ (r ⊗ w ∗ ι−1(w))(emp)

= p(ι(r) ◦ w) ∗ ι−1(ι(r) ◦ w)(emp) .

The proofs of the remaining distribution axioms are easy since the logical connectives are
interpreted pointwise, and since emp and (e1 7→ e2) are constant.

Next, we consider the proof rules for higher-order store given in Figure 6.

Lemma 19 (⊗-Frame). The ⊗-Frame rule is sound: if h ∈ p(w) for all h ∈ Heap and
w ∈W , then h ∈ (p⊗ ι(r))(w) for all h ∈ Heap, w ∈W and r ∈ Pred.

Proof. Assume that h∈ p(w) holds for all h ∈ Heap and w ∈ W . Let r∈Pred, w∈W and
h∈Heap. We show h∈ (p⊗ ι(r))(w). Note that we have (p⊗ ι(r))(w) = p(ι(r) ◦w) by the
definition of ⊗. So, for w′ def= ι(r) ◦w, the assumption yields h∈ p(w′) = (p⊗ ι(r))(w).

The rule (⊗-Mono), which expresses the monotonicity of ⊗ in its left-hand argument,
is in fact derivable from (⊗-Frame) and the distribution axioms. Thus, its soundness is a
consequence of Lemmas 18 and 19.

Lemma 20 (∗-Frame). The axiom {P} e {Q}⇒{P ∗R} e {Q ∗R} is valid for all P,Q,R, e.

Proof. We show that for all worlds w∈W , predicates p, q, r∈Pred and commands c∈Com,
if w |={p} c {q}, then w |={p ∗ r} c {q ∗ r}. This implies the lemma as follows. If k > 0 is the
rank of πn(h) and πn(h)∈ J{P} e {Q}Kη,ρw, then w |=k−1 {JP Kη,ρ} JeKη {JQKη,ρ}. This lets
us conclude w |=k−1 {JP ∗RKη,ρ} JeKη {JQ ∗RKη,ρ}, which in turn implies that πn(h) is in
J{P ∗R} e {Q ∗R}Kη,ρw.

To prove the claim, assume w |={p} c {q}. We must show that w |= {p ∗ r} c {q ∗ r}. Let
r′ ∈ UAdm and assume

h ∈ (p ∗ r)(w) ∗ ι−1(w)(emp) ∗ r′ = p(w) ∗ ι−1(w)(emp) ∗ (r(w) ∗ r′) .



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 27

Since w |={p} c {q}, it follows that

c(h)∈Ad(q(w) ∗ ι−1(w)(emp) ∗ (r(w) ∗ r′)) = Ad((q ∗ r)(w) ∗ ι−1(w)(emp) ∗ r′) ,
which establishes w |={p ∗ r} c {q ∗ r}.

Lemma 21 (Eval). Suppose that R[k] ⇒{P ∗ e 7→R[ ]} k {Q} is a valid implication. Then,
if there are no free occurrences of k, also {P ∗ e 7→R[ ]} ‘eval [e]’ {Q} is valid.

Proof. Let w ∈W , η ∈ Env and r ∈ UAdm. Let ρ be a suitable assertion environment. Let
h ∈ JP ∗ e 7→ R[ ]Kη,ρw ∗ ι−1(w)(emp) ∗ r, so that h = h′ · h′′ for some h′ and h′′ such that

h′ ∈ Je 7→ R[ ]Kη,ρw and h′′ ∈ JP Kη,ρw ∗ ι
−1(w)(emp) ∗ r. (4.2)

We must show that Jeval [e]Kη h ∈ Ad(JQKη,ρw ∗ ι−1(w)(emp) ∗ r). Recall that e 7→ R[ ]
abbreviates ∃k.e 7→ k∧R[k] for fresh k. By (4.2) we have for all n ≥ 0 such that πn(h′) 6= ⊥:

JeKη ∈ dom(πn(h′)) = dom(h′) ⊆ dom(h) (4.3)

∃dn. πn(h)(JeKη) = πn(h′)(JeKη) v dn and πn(h′) ∈ JR[k]Kη[k:=dn],ρw (4.4)

Let us denote η[k := dn] by ηn. The assumption that R[k] ⇒ {P ∗ e 7→R[ ]} k {Q} is valid
yields:

πn(h′) ∈ JR[k]Kηn,ρw implies πn(h′) ∈ J{P ∗ e 7→R[ ]} k {Q}Kηn,ρw

Therefore, by (4.4), πn(h′) ∈ J{P ∗ e 7→R[ ]} k {Q}Kηn,ρw holds for all n sufficiently large.
Let rn be the rank of πn(h′). Since πn(h′) 6= ⊥ we have rn > 0. It follows that

∀n. w |= {JP ∗ e 7→R[ ]Kηn,ρ}πrn−1; dn;πrn−1 {JQKηn,ρ} .
Since

πn(h′)(JeKη) = πrn(πn(h′))(JeKη) v πrn−1; dn;πrn−1 , (4.5)

the downward closure of semantic triples in the command argument gives

∀n. w |= {JP ∗ e 7→R[ ]Kηn,ρ}πn(h′)(JeKη) {JQKηn,ρ} .
Since k was chosen fresh, by the admissibility of semantic triples we thus obtain

∀n. w |= {JP ∗ e 7→R[ ]Kη,ρ}h
′(JeKη) {JQKη,ρ} . (4.6)

In particular, (4.6) entails that h(JeKη) = h′(JeKη) ∈ Com, and thus Jeval [e]Kη h =
h′(JeKη)(h). Since we assumed that h ∈ JP ∗ e 7→ R[ ]Kη,ρw ∗ ι−1(w)(emp) ∗ r, we can
conclude Jeval [e]Kη h ∈ Ad(JQKη,ρw ∗ ι−1(w)(emp) ∗ r) by (4.6).

The soundness of the standard Hoare logic rules is straightforward. We illustrate this
for the sequencing rule next.

Lemma 22 (Sequencing). If {P} ‘C’ {R} and {R} ‘D’ {Q} are valid, then so is {P} ‘C;D’ {Q}.

Proof. Let η ∈ Env, w ∈W , let ρ be an assertion environment, and let r ∈ UAdm. Let h ∈
JP Kη,ρ (w)∗ ι−1(w)(emp)∗r. We must show that JC;DKη h ∈ Ad(JQKη,ρ (w)∗ ι−1(w)(emp)∗
r). First note that JCKη h ∈ Ad(JRKη,ρ (w) ∗ ι−1(w)(emp) ∗ r), by the assumption that
{P} ‘C’ {R} is valid. In particular, JCKη h 6= error. Moreover, in the case where JCKη h =
⊥ we also have JC;DKη h = ⊥ by the semantics of sequential composition, so that the
admissibility of Ad(JQKη,ρ (w) ∗ ι−1(w)(emp) ∗ r) gives the result.



28 SCHWINGHAMMER ET AL.

Thus, we can assume that JC;DKη h = JDKη (JCKη h). From the assumption that
{R} ‘D’ {Q} is valid it follows that JDKη maps the set (JRKη,ρ (w) ∗ ι−1(w)(emp) ∗ r) into
Ad(JQKη,ρ (w) ∗ ι−1(w)(emp) ∗ r). Since JCKη h ∈ Ad(JRKη,ρ (w) ∗ ι−1(w)(emp) ∗ r) we ob-
tain JDKη (JCKη h)∈Ad(JQKη,ρ (w) ∗ ι−1(w)(emp) ∗ r) by Lemma 12 and continuity of JDKη.

The proofs for the remaining rules from Figure 3 are similar, and given in Appendix
B.3. An exception is the rule of consequence: The soundness proof of rule (Conseq) is
slightly different from those of the others because (Conseq) involves an implication between
triples, whereas the other rules are inference rules for transforming valid Hoare triples. Due
to the pointwise interpretation of implication and the inclusion of the approximations in the
interpretation of triples, this form of the consequence rule could be potentially problematic.
Our proof of (Conseq) overcomes this potential problem, by exploiting the fact that the
rule is “parametric” in the command, i.e., it is the same command that appears in all
the triples of the rule. Two further cases that are similar in this respect are the axioms
(ExistAux) for the elimination of auxiliary variables and (Disj); see Appendix B.3.

Lemma 23 (Consequence). If P ′ ⇒ P and Q ⇒ Q′ are valid implications, then so is
{P} e {Q}⇒ {P ′} e {Q′}.

Proof. Let η ∈ Env, ρ an assertion environment, and fix w ∈W and n ≥ 0. Let p = JP Kη,ρ,
p′ = JP ′Kη,ρ, q = JQKη,ρ and q′ = JQ′Kη,ρ, and assume that πn(h) ∈ J{P} e {Q}Kη w. We
must prove that πn(h) ∈ J{P ′} e {Q′}Kη w.

Let k denote the rank of πn(h). Without loss of generality, we can assume k > 0. Let
c denote the command πk−1; JeKη ;πk−1. Then the assumption yields w |= {p} c {q}, and it
suffices to establish w |= {p′} c {q′}. For this, suppose that r ∈ UAdm and let h′ ∈ p′(w) ∗
ι−1(w)(emp)∗r. We must show that c(h′) ∈ Ad(q′(w)∗ι−1(w)(emp)∗r). By the assumption
that P ′ ⇒ P is valid, we also have h′ ∈ p(w)∗ ι−1(w)(emp)∗ r by the monotonicity of ∗. By
assumption, c(h′) ∈ Ad(q(w) ∗ ι−1(w)(emp) ∗ r). By the assumption that Q⇒ Q′ is valid,
and using monotonicity of ∗ and Ad(·), we obtain c(h′) ∈ Ad(q′(w) ∗ ι−1(w)(emp) ∗ r) as
required.

5. Proof Rules involving different Nesting Levels

The soundness of rule (Eval) as shown in Lemma 21 involves an assertion R that is
used at different nesting levels in its hypothesis and conclusion. In this section we discuss
two further proof rules that relate nested triples to top-level implications in a similar way:

Out-T
Ξ; Γ ` {{A} d {B}∧ P} e {Q}
Ξ; Γ ` {A} d {B}⇒ {P} e {Q}

In-T
Ξ; Γ ` {A} d {B}⇒ {P} e {Q}
Ξ; Γ ` {{A} d {B}∧ P} e {Q}

While, at first glance, both rules may seem reasonable, we will show below that in our
model rule (Out-T) is valid but rule (In-T) is not. We begin by making some observations
regarding the semantics of nested triples.

Lemma 24. For any w ∈ W,p, q ∈ Pred and c ∈ Com we have that w |=k {p} c {q} if and
only if for all r ∈ UAdm, n ≤ k and all h ∈ Heap:

πn(h) ∈ p(w) ∗ ι−1(w)(emp) ∗ r ⇒ πn(c(πn(h))) ∈ Ad(q(w) ∗ ι−1(w)(emp) ∗ r).



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 29

Proof. For the direction from left to right, let n ≤ k. Using the assumption and πn(h) ∈
p(w) ∗ ι−1(w)(emp) ∗ r we obtain πk(c(πk(πn(h)))) ∈ Ad(q(w) ∗ ι−1(w)(emp) ∗ r), thus
πk(c(πn(h))) ∈ Ad(q(w) ∗ ι−1(w)(emp) ∗ r) and by downward-closure also πn(c(πn(h))) ∈
Ad(q(w) ∗ ι−1(w)(emp) ∗ r).

For the direction from right to left, let h ∈ p(w) ∗ ι−1(w)(emp) ∗ r. By uniformity we
know that for all n ∈ ω also πn(h) ∈ p(w) ∗ ι−1(w)(emp) ∗ r. We thus know by assumption
that πn(c(πn(h))) ∈ Ad(q(w)∗ι−1(w)(emp)∗r) for n ≤ k and thus in particular for n = k.

Definition 25. A predicate p ∈ Pred is pseudo pure if for all h, h′ ∈ Heap such that
rnk(h) = rnk(h′) and all w ∈ W we have that h ∈ p(w) if, and only if, h′ ∈ p(w). An
assertion is pseudo pure if its denotation is a pseudo pure predicate.

In the following, φ will always stand for an assertion that is pseudo pure. Note that the
typical examples for pseudo pure assertions are triples. Obviously, every pure (i.e., entirely
heap-independent) assertion is trivially also pseudo pure. Assertions that depend on the
shape and content of the heap itself, e.g. x 7→ , are not pseudo pure. We also observe that
the interpretation of a pseudo pure assertion is downward closed in the rank itself:

Lemma 26. For any pseudo pure assertion p, and any heaps h and h′, if rnk(h′) ≤ rnk(h)
then h ∈ p(w) implies h′ ∈ p(w).

Proof. Suppose h ∈ p(w), and let n = rnk(h′) ≤ rnk(h). Thus we have rnk(πn(h)) = n.
Since πn(h) ∈ p(w) by uniformity, we can conclude h′ ∈ p(w) from the assumption that p
is pseudo pure.

With the definition of pseudo pure in place, we can now generalise the rules (Out-T)
and (In-T) in the following way:

Out
Ξ; Γ ` {φ ∧ P} e {Q}
Ξ; Γ ` φ⇒{P} e {Q}

(φ pseudo pure)

In
Ξ; Γ ` φ⇒{P} e {Q}
Ξ; Γ ` {φ ∧ P} e {Q}

(φ pseudo pure)

Proposition 5.1. The above rule (Out) is sound.

Proof. Assume environments η and ρ, let n ∈ ω,w ∈W and h ∈ Heap be such that

πn(h) ∈ JφKη,ρ w (5.1)

We have to show that πn(h) ∈ J{P} e {Q}Kη,ρ w. Let k denote the rank of πn(h). If k = 0
we are done. Otherwise we have to show that w |=k−1 {JP Kη,ρ} JeKη {JQKη,ρ}. But by the
observation in Lemma 24, it suffices to show for any heap h′ and any l ≤ k − 1 that if
πl(h′) ∈ JP Kη,ρ (w) ∗ ι−1(w)(emp) ∗ r then πl(c(πl(h′))) ∈ Ad(JQKη,ρ (w) ∗ ι−1(w)(emp) ∗ r).
From the interpretation of the premise of the rule using η, w and l we get the desired result
if we can show that πl(h′) ∈ JP Kη,ρ (w) ∗ ι−1(w)(emp) ∗ r implies πl(h′) ∈ Jφ ∧ P Kη,ρ (w) ∗
ι−1(w)(emp) ∗ r. Yet, πl(h′) ∈ JφKη,ρ (w) follows from Lemma 26 due to assumption (5.1),
the fact that φ is pseudo pure, and the fact that rnk(πl(h′)) ≤ l < k = rnk(πn(h)).

Proposition 5.2. The rule ( In) does not hold in our model.

Proof. Assuming that (In) holds in our semantics we can derive an invalid triple as follows.
Let R abbreviate the recursive assertion µX.{X} ‘skip’ {false}. Then, from the tautol-
ogy R ⇒ R we obtain R ⇒ {R} ‘skip’ {false} by unfolding the recursive definition of R.
Applying (In) and the consequence rule thus gives

` {R} ‘skip’ {false} (5.2)



30 SCHWINGHAMMER ET AL.

Our model validates the implication emp ⇒ R: By definition of implication, it suffices to
prove that rnk({||}) = n implies w |=n−1 {JRK} JskipK {JfalseK}. Since the empty heap has
rank 1, this implication holds trivially for any triple on the right hand side, in particular
R. From (5.2) and this implication we conclude that the triple {emp} ‘skip’ {false} holds,
which is clearly not the case by definition of the semantics of triples. We conclude that rule
(In) cannot hold with respect to our semantics.

It is worth looking more closely at the reason why rule (In) does not hold in our
semantics. Essentially, to show the triple in the conclusion at level k, one needs to show
that in the hypothesis the formula φ holds for a heap with rank k + 1. But this property
cannot be established in general from the assumptions of the triple in the conclusion at level
k.9 Note that, in the case of (Eval), the corresponding property can be established since
the heap access of the eval command offsets the increase in the rank (cf. equation (4.5) in
the proof of Lemma 21).

In the case where the command is arbitrary (i.e., not eval), one can express the upwards
shift of levels explicitly with the help of a modal operator ♦P (“previous P ,” or “P one
level up”). This operator is defined by h ∈ J♦P Kη,ρ w if and only if

• rnk(h) = ∞ and h ∈ JP Kη,ρ w or
• rnk(h) = k < ∞ and there exists h′ ∈ JP Kη,ρ w such that rnk(h′) = k + 1 and
πk(h′) = h,

and thus ♦P denotes a downward closed, admissible predicate. With the help of the modal-
ity, we can give variants of the above rules that keep track of the rank information:

♦Out
Ξ; Γ ` {φ ∧ P} e {Q}

Ξ; Γ ` φ⇒ ♦{P} e {Q}

♦In
Ξ; Γ ` φ⇒ ♦{P} e {Q}
Ξ; Γ ` {φ ∧ P} e {Q}

♦E

Ξ; Γ ` ♦P ⇒ P

In our semantics, which still satisfies (♦Out) and (♦E), even this strengthened variant
(♦In) does not hold. This is due to the following simple observation, which means that
ranks are not preserved by the separating conjunction that is used in the interpretation of
triples.

Lemma 27. Given a heap h = h1 ·h2 with rank n, such that rnk(h1) = n1 and rnk(h2) = n2

it may well be the case that n1 < n or n2 < n.

However, the modal rules can be proved sound with the help of a step-indexed model. In
such a model, the ranks are replaced by an explicit natural number index that gives a lower
bound on the number of steps that can be safely taken in an operational semantics without
invalidating a given assertion. The slightly unintuitive implications emp ⇒ {P} e {Q} will
not hold in the step-indexed model either. However, also the step-indexed model does not
validate (In), and we conjecture that this rule renders the logic inconsistent. More details
about step-indexed models can be found in [4].

It is worth pointing out that not only unintuitive implications emp ⇒ {P} e {Q} do
hold in our model, but also that the so-called invariance rule10

9Rule (In) does hold in the special case when φ is pure.
10This should not be confused with the stronger conjunction rule which is known to be inconsistent with

higher-order frame rules [16]).



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 31

Invariance
Ξ; Γ ` {P} e {Q}

Ξ; Γ ` {P ∧{A} k {B}} e {Q ∧{A} k {B}}
does not hold. It is only valid for invariants that are pure, so it does not hold for {A} k {B}
nor any other pseudo pure invariant. This can be easily seen by considering the triple

{emp} ‘letx = new 0 in [x]:=‘skip’ ’ {∃x. x7→{emp} {emp}}
with invariant {emp} skip {false}, since the latter only holds for heaps with rank 1, for
instance the empty heap. Unfortunately, not even the following restricted form of invariance
holds:

InvarianceR
Ξ; Γ ` {P ∗ e1 7→ e2} e {Q ∗ e1 7→ e2}

Ξ; Γ ` {P ∗ (e1 7→ e2 ∧ φ)} e {Q ∗ (e1 7→ e2 ∧ φ)}
(φ pseudo pure)

since the semantics of triples and of 7→ does not guarantee that the data stored at Je1K,
and thus the rank of any heap fulfilling Je1 7→ e2 ∧ φK, is invariant. It could still be the case
that the result heap meeting the postcondition Je1 7→ e2 ∧ φK has a higher rank than the
pre-execution heap meeting the same condition. The only way to guarantee that invariance
involving triples or other pseudo pure assertions holds is to ensure that the rank (or even
the content) of the heap cells in question does not change during execution. Because of this
issue we needed another update rule for programs that copy code:

UpdateInv

Ξ; Γ`{e 7→ ∗ (e1 7→e0 ∧ φ)} ‘[e] := e0’ {(e 7→ e0 ∧ φ) ∗ (e1 7→e0 ∧ φ)}
(φ pseudo pure)

Note that φmay contain the expression e0 (which can also be a variable) and will typically be
a triple {A} k {B}. The soundness of this rule follows from the soundness of the assignment
rule (Update) and the fact that the rank of the heap with domain Je1K is not changed by
the command. Consequently, the heap with domain JeK, which is identical to the one with
domain Je1K after execution, satisfies φ. But this axiom is not derivable from (Update) as,
for a pseudo pure φ, the axiom

e 7→ e0 ∗ (e1 7→e0 ∧ φ) ⇒ (e 7→ e0 ∧ φ) ∗ (e1 7→e0 ∧ φ)

does not hold for the same reasons as (InvarianceR) does not hold.

6. Conclusion

In this article we have investigated a separation logic for a simple programming language
with higher-order store. As our counterexamples illustrate, the design of such a logic is not
straightforward:

• In the presence of recursive assertions, unrestricted use of a deep frame axiom per-
mits the “laundering” of code, which allows for the derivation of insufficient memory
footprints (Proposition 3.1).

• Higher-order frame rules are inconsistent with a classical specification logic (and
hence in our case, due to the identification of assertion and specification language,
with a classical assertion logic; Proposition 3.3).

• In the presence of recursive assertions, one cannot move global assumptions of
triples, expressed as implications, into pre-conditions (Proposition 5.2).



32 SCHWINGHAMMER ET AL.

Note that the first two points are independent of any choice of model whereas this is not
clear for the third point.

In our model, we use recursively defined Kripke worlds to interpret the invariant exten-
sion P ⊗ R. In a logic without recursive assertions (and assertion variables), like the one
considered by Birkedal et al. for Idealized Algol [7], the invariant extension operation can
be considered essentially as a syntactic abbreviation. In particular, it need not be treated
as a primitive operation and recursive worlds are not needed. In a logic with second-order
quantification, frame conditions can be made explicit in a specification, which gives rise to
a modular proof pattern without explicit deep frame rule; this idea is discussed and used
in, e.g., [3, 10].

Recursive worlds similar to the ones employed here can be used to construct a model
for Pottier’s anti-frame rule, a proof rule for hiding local state from the context [20]. In
that case, predicates must depend on the worlds in a monotonic way (with respect to an
order on worlds defined from the composition operation ◦), which complicates the model
construction considerably [28, 27].

During the process of writing this article, it has been discovered that one can also build
a model for the presented logic, including deep frame rules and recursive assertions, with the
help of step-indexing [2] based on an operational semantics for the programming language.
We have already pointed out differences regarding both models throughout the paper but
here is a short summary. The domain model in our work uses ranks of heaps in order
to equip semantic assertions with an ultrametric. Whereas steps are counted separately
in the step-indexed approach, heaps, and thus their ranks, are manipulated by programs.
This leads to some contamination of the assertion semantics that the step-index model does
not share. First of all, we do not get a BI algebra, more precisely we do not get spatial
implication. Secondly, triples are not pure but pseudo pure. This, in turn, means that the
invariance rule for triples is not valid and holds only for programs that do not change the
rank of the heap in question (as expressed in (UpdateInv)). Moreover, some unwanted
implications between triples are validated. The (In-T) rule does not hold in either of the
two models but it holds in [12]. The (♦In) rule, on the other hand, does hold in the step-
indexed model but not the presented one. Despite the complications caused by the ranks of
heaps, the denotational model has some upsides as well. From earlier work one knows that it
represents a way to combine some equational reasoning with Hoare style logics. Equational
reasoning has been used to some extent to prove properties of the model, in particular the
soundness of the presented rules. It remains to be seen whether the denotational models
have more advantages over the operational step-indexed ones regarding binary relations,
e.g. in order to prove parametricity results.

A detailed description of the step-indexed model and its applications will appear else-
where in due course.

The work of Honda et al. [12] also presents a logic for higher-order functions and general
references, including even observational completeness, i.e. two programs are equal if they
fulfill the same triples. The main differences with respect to the logic presented here are
as follows. In [32] a logic for total correctness is given. Therefore, there is no need for a
specific rule handling recursion through the store, since procedures are always proved sound
using induction on a termination measure that the verifier needs to guess. Moreover, local
reasoning is ignored so there are no frame rules. The follow-up work [32] addressed this
issue, but using content quantification and not separation logic. There does not appear to
be an implementation of the logic of [32] either.



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 33

A variant of our logic, for a language with recursive procedures and the possibility of
partial application, has been implemented in the Crowfoot tool [9]. This verification tool is
mainly targeted to prove memory safety for programs with stored procedures automatically.
In its current state it does not yet cover a full-fledged first-order logic. Some example
specifications for nested triples and recursive assertions can be found e.g. in [11].

Acknowledgment

We would like to thank Nathaniel “Billiejoe” Charlton, François Pottier, Kristian
Støvring and Jacob Thamsborg for helpful discussions. Kristian suggested that ⊗ is a
monoid action. We are grateful for the suggestions of the anonymous referees to improve
the paper. Partial support has been provided by FNU project 272-07-0305 “Modular reason-
ing about software” (Birkedal), EPSRC projects EP/G003173/1 “From reasoning principles
for function pointers to logics for self-configuring programs” (Reus), EP/E053041/1 “Scal-
able program analysis for software verification” and EP/H008373/1 “Resource reasoning”
(Yang).

References

[1] P. America and J. J. M. M. Rutten. Solving reflexive domain equations in a category of complete metric
spaces. J. Comput. Syst. Sci., 39(3):343–375, 1989.

[2] A. W. Appel and D. A. McAllester. An indexed model of recursive types for foundational proof-carrying
code. ACM Trans. Program. Lang. Syst., 23(5):657–683, 2001.

[3] N. Benton. Abstracting allocation. In Proceedings of CSL, pages 182–196, 2006.
[4] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg, and H. Yang. Step-indexed Kripke

models over recursive worlds. In Proceedings of POPL, pages 119–132, 2011.
[5] L. Birkedal, B. Reus, J. Schwinghammer, and H. Yang. A simple model of separation logic for higher-

order store. In Proceedings of ICALP, pages 348–360, 2008.
[6] L. Birkedal, K. Støvring, and J. Thamsborg. Realizability semantics of parametric polymorphism, gen-

eral references, and recursive types. In Proceedings of FOSSACS, pages 456–470, 2009.
[7] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing and higher-order frame

rules for Algol-like languages. Logical Methods in Computer Science, 2(5:1), 2006.
[8] L. Birkedal and H. Yang. Relational parametricity and separation logic. Logical Methods in Computer

Science, 4(2:6), 2008.
[9] N. Charlton, B. Horsfall, and B. Reus. Crowfoot: a verifier for higher order store programs.

Unpublished, available at http://www.informatics.sussex.ac.uk/research/projects/PL4HOStore/

crowfoot,, Feb. 2011.
[10] N. Charlton and B. Reus. A deeper understanding of the deep frame axiom (extended abstract). Pre-

sented at LOLA Workshop 2010 (Syntax and Semantics of Low Level Languages), July 2010.
[11] N. Charlton and B. Reus. Specification patterns and proofs for recursion through the store. In Proceed-

ings of FCT, 2011.
[12] K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic for imperative higher-

order functions. In Proceedings of LICS, pages 270–279, 2005.
[13] N. Krishnaswami, L. Birkedal, J. Aldrich, and J. C. Reynolds. Idealized ML and Its Separation Logic.

Available at http://www.cs.cmu.edu/∼neelk/, 2007.
[14] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: dependent types for

imperative programs. In Proceedings of ICFP, pages 229–240, 2008.
[15] P. W. O’Hearn and D. J. Pym. The logic of bunched implications. B. Symb. Log., 5(2):215–244, 1999.
[16] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In Proceedings of

POPL, pages 268–280, 2004.
[17] M. Parkinson and G. Biermann. Separation logic, abstraction and inheritance. In Proceedings of POPL,

pages 75–86, 2008.

http://www.informatics.sussex.ac.uk/research/projects/PL4HOStore/crowfoot
http://www.informatics.sussex.ac.uk/research/projects/PL4HOStore/crowfoot
http://www.cs.cmu.edu/~neelk/


34 SCHWINGHAMMER ET AL.

[18] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[19] A. M. Pitts. Relational properties of domains. Inf. Comput., 127:66–90, 1996.
[20] F. Pottier. Hiding local state in direct style: a higher-order anti-frame rule. In Proceedings of LICS,

pages 331–340, 2008.
[21] F. Pottier. Three comments on the anti-frame rule. Unpublished, July 2009.
[22] D. J. Pym, P. W. O’Hearn, and H. Yang. Possible worlds and resources: the semantics of BI. Theor.

Comput. Sci., 315(1):257–305, May 2004.
[23] B. Reus and J. Schwinghammer. Separation logic for higher-order store. In Proceedings of CSL, pages

575–590, 2006.
[24] J. C. Reynolds. Idealized Algol and its specification logic. In D. Néel, editor, Tools and Notions for

Program Construction, pages 121–161. Cambridge University Press, 1982.
[25] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of LICS,

pages 55–74, 2002.
[26] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples and frame rules for higher-

order store. In Proceedings of CSL, pages 440–454, 2009.
[27] J. Schwinghammer, L. Birkedal, and K. Støvring. A step-indexed Kripke model of hidden state via

recursive properties on recursively defined metric spaces. In Proceedings of FOSSACS, pages 305–319,
2011.

[28] J. Schwinghammer, H. Yang, L. Birkedal, F. Pottier, and B. Reus. A semantic foundation for hidden
state. In Proceedings of FOSSACS, pages 2–17, 2010.

[29] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain equations. SIAM
J. Comput., 11(4):761–783, 1982.

[30] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, volume 149 of Studies
in Logic and the Foundations of Mathematics. Elsevier, 2006.

[31] T. Streicher. Domain-theoretic Foundations of Functional Programming. World Scientific, 2006.
[32] N. Yoshida, K. Honda, and M. Berger. Logical reasoning for higher-order functions with local state. In

Foundations of Software Science and Computation Structure, pages 361–377, 2007.



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 35

Appendix A. Summary of Proof Rules

Figure 9 summarizes the proof rules that we have proved sound with respect to our
model. Not shown are the standard proof rules for (intuitionistic) first-order logic (for
instance, see [30]) and the distribution axioms for ⊗ that appear in Figure 2.

Appendix B. Proofs

This section contains the proofs omitted from the main part of the paper.

B.1. Heyting algebra structure of uniform admissible subsets.

Lemma 28 (Heyting algebra). Let I = {{||} ,⊥}. Then (UAdm,⊆) is a complete Heyting
algebra with a (monotone) commutative monoid structure (UAdm, ∗, I). All the algebra
operations are non-expansive with respect to the metric defined in Section 4.3.

Proof. Since admissibility and uniformity are preserved by taking arbitrary intersections,
UAdm is a complete lattice, with meets given by set-theoretic intersection, least element
{⊥} and greatest element Heap. Binary joins are given by set-theoretic union, and arbitrary
joins by

⊔
i pi =

⋂
{p ∈ UAdm | p ⊇

⋃
i pi}.

The join is described more explicitly as
⊔

i pi = {h | ∀n ∈ ω. πn(h) ∈
⋃

i pi}. First,

note that the right hand side r def= {h | ∀n ∈ ω. πn(h) ∈
⋃

i pi} is an element of UAdm: r
is uniform, i.e., h ∈ r implies πm(h) ∈ r for all m ∈ ω, since πn · πm = πmin{n,m}. To show
that r is also admissible suppose h0 v h1 v . . . is a chain in r, and let h be the lub of this
chain. We must show that πn(h) ∈

⋃
i pi for all n ∈ ω. By compactness, πn(h) v hk v h

for some k, and hence πn(h) = πn(hk) ∈
⋃
pi using the idempotency of πn and the fact

that hk ∈ r. To see the inclusion r ⊆
⊔

i pi, note that for all h, if πn(h) ∈
⋃

i pi ⊆ p for
all n ∈ ω and some arbitrary p ∈ UAdm, then also h = tnπn(h) ∈ p by admissibility,
and hence h ∈

⊔
i pi follows. For the other inclusion, we claim that the right hand side

r
def= {h | ∀n ∈ ω. πn(h) ∈

⋃
i pi} is one of the elements appearing in the intersection;

from this claim it is immediate that r ⊇
⊔

i pi. The claim follows since r ⊇
⋃

i pi by the
uniformity of the pi’s.

The implication of this complete lattice UAdm is described by p ⇒ q
def= {h | ∀n ∈

ω. if πn(h) ∈ p then πn(h) ∈ q}: Using πn · πm = πmin{n,m} it is easy to see that p ⇒ q is
uniform. Admissibility follows analogously to the case of joins: if h0 v h1 v . . . is a chain
in p⇒ q with lub h, and if n ∈ ω is such that πn(h) ∈ p then we must show that πn(h) ∈ q.
Since πn(h) v h is compact, there is some k such that πn(h) v hk v h, and thus the
required πn(h) = πn(hk) ∈ q follows from hk ∈ p⇒ q. Next, to see that p⇒ q is indeed the
implication in UAdm, first note that we have p∩ (p⇒ q) ⊆ q, using the uniformity of p and
the admissibility of q. If p ∩ r ⊆ q for some r ∈ UAdm, and h ∈ r and πn(h) ∈ p for some
n ∈ ω, then the uniformity of r yields πn(h) ∈ q. Thus we obtain p ∩ r ⊆ q ⇔ r ⊆ p⇒ q.

That ∗ is an operation on UAdm is established in the proof of Lemma 8. It is easy
to check that ∗ is commutative and associative and that it is monotone, i.e., if p ⊆ p′ and
q ⊆ q′ then p ∗ q ⊆ p′ ∗ q′. Moreover, we have I ∈ UAdm, and the fact that p ∗ I = p = I ∗ p
follows from the definition of the heap combination h · h′.

For the non-expansiveness of the algebra operations, we only consider the case of meets
as an example. Assume p n= p′ and q n= q′, then whenever h ∈ p ∩ q we have πn(h) ∈ p′ and
πn(h) ∈ q′ by assumption. Thus also p ∩ q n= p′ ∩ q′.



36 SCHWINGHAMMER ET AL.

∗-Assoc Ξ; Γ ` P ∗ (Q ∗R) ⇔ (P ∗Q) ∗R

∗-Comm Ξ; Γ ` P ∗Q⇔ Q ∗ P

∗-Unit Ξ; Γ ` P ∗ emp ⇔ P

∗-Zero Ξ; Γ ` P ∗ false ⇔ false

∗-Overlap Ξ; Γ ` (e 7→ e1 ∗ e 7→ e2) ⇔ false

∗-Mono
Ξ; Γ ` P ⇒ P ′ Ξ; Γ ` Q⇒ Q′

Ξ; Γ ` P ∗Q⇒ P ′ ∗Q′

⊗-Mono
Ξ; Γ ` P ⇒ P ′

Ξ; Γ ` P ⊗R⇒ P ′ ⊗R

Deref
Ξ; Γ, x`{P ∗ e 7→x} ‘C’ {Q}

Ξ; Γ`{∃x.P ∗ e 7→x} ‘letx=[e] inC’ {Q}
(x 6∈ fv(e,Q))

Update Ξ; Γ`{e 7→ ∗P} ‘[e] := e0’ {e 7→ e0 ∗P}

UpdateInv (φ pseudo pure)

Ξ; Γ`{e 7→ ∗ (e1 7→e0 ∧ φ)} ‘[e] := e0’ {(e 7→ e0 ∧ φ) ∗ (e1 7→e0 ∧ φ)}

New
Ξ; Γ, x`{P ∗ x 7→ e} ‘C’ {Q}

Ξ; Γ`{P} ‘letx=new e inC’ {Q}
(x 6∈ fv(P, e,Q))

Free Ξ; Γ ` {e 7→ ∗ P} ‘free(e)’ {P}

If
Ξ; Γ ` {P ∧ e0=e1} ‘C’ {Q} Ξ; Γ ` {P ∧ e0 6=e1} ‘D’ {Q}

Ξ; Γ ` {P} ‘if (e0=e1) then C else D’ {Q}

Skip Ξ; Γ ` {P} ‘skip’ {P}

Seq
Ξ; Γ ` {P} ‘C’ {R} Γ ` {R} ‘D’ {Q}

Ξ; Γ ` {P} ‘C;D’ {Q}

Eval
Ξ; Γ, k ` R[k] ⇒{P ∗ e 7→R[ ]} k {Q}
Ξ; Γ ` {P ∗ e 7→R[ ]} ‘eval [e]’ {Q}

Conseq
Ξ; Γ ` P ′⇒P Ξ; Γ ` Q⇒Q′

Ξ; Γ ` {P} e {Q}⇒ {P ′} e {Q′}

Disj Ξ; Γ ` ({P} e {Q}∧ {P ′} e {Q′}) ⇒{P ∨ P ′} e {Q ∨Q′}

Figure 9: Axioms and proof rules. Rule ⊗-Mono is in fact a derived rule.



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 37

ExistAux Ξ; Γ ` (∀x.{P} e {Q}) ⇒{∃x.P} e {∃x.Q} (x 6∈ fv(e))

Invariance Ξ; Γ ` {P} e {Q}⇒ {P ∧ ψ} e {Q ∧ ψ} (ψ is pure)

⊗-Frame
Ξ; Γ ` P

Ξ; Γ ` P ⊗R

∗-Frame Ξ; Γ ` {P} e {Q}⇒ {P ∗R} e {Q ∗R}

RUnique
Ξ; Γ ` R⇔ P [X := R] Ξ; Γ ` S ⇔ P [X := S]

Ξ; Γ ` R⇔ S
(P formally contr. in X)

Figure 9: Axioms and proof rules (cont.).

Lemma 29 (Heyting algebra, II). The set of non-expansive functions W → UAdm, or-
dered pointwise, forms a complete Heyting algebra with a (monotone) commutative monoid
structure. The operations are given by the pointwise extension of the corresponding ones
on UAdm, and they are non-expansive with respect to the sup-metric on W → UAdm.

Proof. We begin by showing that all the claimed algebra operations on W → UAdm are
well-defined, i.e., that the pointwise definitions give rise to non-expansive functions from
W to UAdm. The cases of the various units are given by constant functions and thus
non-expansive:

>(w) = Heap ⊥(w) = {⊥} I(w) = {{||} ,⊥}
Next, consider the case of meets. Let (pi)i∈I be a family of functions pi in W → UAdm and
w,w′ ∈W such that w n= w′, we have

(
l

i∈I

pi)(w) =
⋂
i∈I

pi(w) n=
⋂
i∈I

pi(w′) = (
l

i∈I

pi)(w′)

by the non-expansiveness of each pi. Well-definedness for the other operations is shown
analogously.

We now show that the operations are non-expansive. Again, we consider the case of
meets only, as the remaining cases are similar. Let (pi)i∈I and (qi)i∈I be two families of
non-expansive functions such that pi

n= qi holds for all i ∈ I. To see that
d

i pi
n=

d
i qi

holds, by definition of the sup-metric it suffices to prove (
d

i pi)(w) n= (
d

i qi)(w) for all
w ∈W . This follows from the pointwise definition since pi(w) n= qi(w) holds for every i ∈ I
by assumption.

B.2. Interpretation of assertions.

Lemma 30 (Non-expansiveness of fix, [6]). Let (X, d) be an object in CBUlt , and let
f, g : X → X be contractive functions on X. Then d(fix f,fix g) ≤ supx∈X d(f(x), g(x)).

Lemma 31 (Well-definedness). The interpretation in Fig. 8 is well-defined. More precisely,
let P be an assertion with free relation variables in Ξ = X1, . . . , Xk, where the arity of Xi

is ni. Then:



38 SCHWINGHAMMER ET AL.

(1) for every η ∈ ValVar and ρ ∈
∏

Xi∈Ξ Pred(Valni ), JP Kη,ρ is an element of Pred, i.e., a
non-expansive function W → UAdm;

(2) JP Kη denotes a non-expansive function from
∏

Xi∈Ξ Pred(Valni ) to Pred;
(3) If P is formally contractive in X then the functional λq. JP Kη,ρ[X:=q] is a contractive

map from Pred(Valn) to Pred, where X is an n-ary relation variable.

Proof. The claims are proved simultaneously by induction on the structure of P . Note that
the composition of non-expansive functions is again a non-expansive function, and that the
composition of a contractive function with a non-expansive function is again a contractive
function.

• For the logical connectives, the claims follow from the inductive hypothesis and
Lemmas 28 and 29 respectively.

• The case of invariant extension, P ⊗ R, follows from Lemma 9. In particular,
q 7→ JP ⊗RKη,ρ[X:=q] is a contractive function whenever P is formally contractive in
X.

• The case of a relation variable, Xi(~e), follows from the assumption that ρ(Xi) is a
non-expansive function from Valni to Pred.

• In the case of recursive assertions, (µX(~x).P )(~e), the well-formedness requirement
that P be formally contractive in X means that λq. JP Kη,ρ[X:=q] is contractive, by

part (3) of the induction hypothesis. Hence, λq, ~d. JP K
η[~x:=~d],ρ[X:=q]

is a contrac-

tive endofunction on PredValn . In particular, the fixed point in the definition of
J(µX(~x).P )(~e)K is well-defined, and by Lemma 30,

J(µX(~x).P )(~e)Kη = λρ.(fix(λq, ~d. JP K
η[~x:=~d],ρ[X:=q]

))(J~eKη)

is a non-expansive function.
Similarly, if P is formally contractive in Y 6= X, then λq. J(µX(~x).P )(~e)Kη,ρ[Y :=q]

is contractive by Lemma 30 and the inductive hypothesis that q 7→ JP Kη,ρ′[Y :=q] is
contractive for any ρ′.

• It remains to consider the case of (nested) triples. Note that the interpretation of
triples is defined in terms of the admissible downward closure, so it is clear that
J{P} e {Q}Kη,ρw is uniform and admissible. We first prove claim (1), i.e., the non-
expansiveness of J{P1} e {Q1}Kη,ρ. To this end, assume that w n= w′, and let h ∈
J{P} e {Q}Kη,ρw. We must show that πn(h) ∈ J{P} e {Q}Kη w

′. By the downward

closure, we also know that πn(h) ∈ J{P} e {Q}Kη,ρw. Since k def= rnk(πn(h)) ≤ n,

we also have w
k= w′. Without loss of generality we can assume that k > 0,

and thus must have w |=k−1 {JP Kη,ρ} JeKη {JQKη,ρ}. By Lemma 13 this implies
w′ |=k−1 {JP Kη,ρ} JeKη {JQKη,ρ}, and thus also πn(h) ∈ J{P} e {Q}Kη,ρ.

We now prove the following claim which implies the non-expansiveness and con-
tractiveness properties stated in conditions (2) and (3):

ρ
n= ρ′ ⇒ J{P} e {Q}Kη,ρ

n+1= J{P} e {Q}Kη,ρ′

For the proof of this claim, assume ρ n= ρ′ and h ∈ J{P} e {Q}Kη,ρw for some w.

We must show that πn+1(h) ∈ J{P} e {Q}Kη,ρ′ w. Let k def= rnk(πn+1(h)) ≤ n + 1.
Without loss of generality we can assume k > 0 (and hence k − 1 ≤ n), and thus



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 39

obtain w |=k−1 {JP Kη,ρ} JeKη {JQKη,ρ}. By induction hypothesis, JP Kη and JQKη are

non-expansive, and thus JP Kη,ρ
k−1= JP Kη,ρ′ and JQKη,ρ

k−1= JQKη,ρ′ . By Lemma 13 we
obtain w |=k−1 {JP Kη,ρ′} JeKη {JQKη,ρ′}. This yields πn+1(h) ∈ J{P} e {Q}Kη,ρ′ w.

B.3. Soundness of standard rules from separation logic. The following lemmas show
that the usual rules of separation logic, expressed using triples containing quoted commands
as shown in Figure 3, are sound.

Lemma 32 (Skip). The axiom {P} ‘skip’ {P} is valid.

Proof. This follows from the fact that JskipKη h = h for all h ∈ Heap, and that Ad(·) is a
closure operation.

Lemma 33 (Conditional). If {P ∧ e0=e1} ‘C’ {Q} and {P ∧ e0 6=e1} ‘D’ {Q} are both valid,
then so is {P} ‘if (e0=e1) then C else D’ {Q}.

Proof. Let w ∈ W and r ∈ UAdm and suppose h ∈ JP Kη,ρw ∗ ι−1(w)(emp) ∗ r. From the
semantics of the conditional, we can assume without loss of generality that Je0Kη and Je1Kη

are not both in Com⊥. We must show that

c(h) ∈ Ad(JQKη,ρw ∗ ι
−1(w)(emp) ∗ r),

where c(h) = if (Je0Kη = Je1Kη) then JCKη h else JDKη h. Depending on whether the state-
ment Je0Kη = Je1Kη hold, we have Je0=e1Kη w = Heap or Je0 6=e1Kη w = Heap. Therefore, the
claim follows from either the first or the second assumed triple.

Lemma 34 (Update). The axiom {e 7→ ∗P} ‘[e] := e0’ {e 7→ e0 ∗P} is valid.

Proof. By Lemma 20, it suffices to prove the validity of

{e 7→ } ‘[e] := e0’ {e 7→ e0} .
Let η ∈ Env, ρ ∈ PredΞ, p = Je 7→ Kη,ρ, q = Je 7→ e0Kη,ρ and c = J[e] := e0Kη. We will show
that w |= {p} c {q} holds for all w ∈W .

Let w ∈ W and r ∈ UAdm, and suppose h ∈ p(w) ∗ ι−1(w)(emp) ∗ r. We may assume
that h 6= ⊥, for otherwise c(h) = ⊥ ∈ q(w)∗ ι−1(w)(emp)∗ r is immediate. Thus, h = h′ ·h′′
such that h′ ∈ p(w) and h′′ ∈ ι−1(w)(emp) ∗ r. In particular, since h′ ∈ p(w) = Je 7→ Kη,ρw,
we obtain that JeKη ∈ dom(h′) ⊆ dom(h). Therefore, from the semantics of the assignment
command, c(h) = h[JeKη 7→ Je0Kη]. But this heap is the same as {|JeKη = Je1Kη|} · h′′, and
therefore c(h) ∈ q(w)∗ι−1(w)(emp)∗r. The latter set is contained in Ad(q(w)∗ι−1(w)(emp)∗
r) since Ad(·) is a closure operation.

Lemma 35 (UpdateInv). The axiom
UpdateInv

Ξ; Γ`{e 7→ ∗ (e1 7→e0 ∧ φ)} ‘[e] := e0’ {(e 7→ e0 ∧ φ) ∗ (e1 7→e0 ∧ φ)}
(φ pseudo pure)

is valid.



40 SCHWINGHAMMER ET AL.

Proof. Let η ∈ Env, ρ ∈ PredΞ, p = Je 7→ ∗ e1 7→e0 ∧ φKη,ρ, q = J(e 7→ e0 ∧ φ) ∗ (e1 7→e0 ∧ φ)Kη,ρ

and c = J[e] := e0Kη. We will show that w |= {p} c {q} holds for all w ∈W .
Let w ∈ W and r ∈ UAdm, and suppose h ∈ p(w) ∗ ι−1(w)(emp) ∗ r. We may as-

sume that h 6= ⊥, for otherwise c(h) = ⊥ ∈ q(w) ∗ ι−1(w)(emp) ∗ r is immediate. Thus,
h = h′ · h′′ such that h′ ∈ p(w) and h′′ ∈ ι−1(w)(emp) ∗ r. In particular, since h′ ∈
p(w) = Je 7→ ∗ (e1 7→e0 ∧ φ)Kη,ρw, we obtain that h′ = h1 ·h2 such that {JeKη} = dom(h1) ⊆
dom(h′) ⊆ dom(h) and {Je1Kη} = dom(h2) ⊆ dom(h′) ⊆ dom(h) and h2 ∈ JφKη,ρw. There-
fore, from the semantics of the assignment command, c(h) = h[JeKη 7→ Je0Kη]. But this heap
is the same as ({|JeKη = Je0Kη|} · {|Je1Kη = Je0Kη|}) · h2. Now the rank of heap {|JeKη = Je0Kη|}
is obviously identical to the rank of {|Je1Kη = Je0Kη|} and thus {|JeKη = Je0Kη|} ∈ JφKη,ρ as φ is
pseudo pure and {|Je1Kη = Je0Kη|}= h2 ∈ JφKη,ρw. Therefore c(h) ∈ q(w) ∗ ι−1(w)(emp) ∗ r.
The latter set is contained in Ad(q(w)∗ι−1(w)(emp)∗r) since Ad(·) is a closure operation.

Lemma 36 (Free). The axiom {e 7→ ∗ P} ‘free(e)’ {P} is valid.

Proof. By Lemma 20, it suffices to prove the validity of

{e 7→ } ‘free(e)’ {emp} .
Let η ∈ Env, ρ ∈ PredΞ, p = Je 7→ Kη,ρ, q = JempKη,ρ and c = Jfree(e)Kη. We will prove
that w |= {p} c {q} holds for all w ∈W .

Let w ∈ W , let r ∈ UAdm and suppose h ∈ p(w) ∗ ι−1(w)(emp) ∗ r. Since q(w) is
the unit for ∗ and Ad(·) is a closure operation, we must only show c(h) ∈ ι−1(w)(emp) ∗ r.
We may assume that h 6= ⊥, for otherwise c(h) = ⊥ ∈ ι−1(w)(emp) ∗ r is immediate.
Thus, h = h′ · h′′ such that h′ ∈ p(w) and h′′ ∈ ι−1(w)(emp) ∗ r. In particular, since
h′ ∈ p(w) = Je 7→ Kη,ρw, we obtain that {JeKη} = dom(h′) ⊆ dom(h). Therefore, from the
semantics of the deallocation command, c(h) = h′′. It follows that c(h) ∈ ι−1(w)(emp)∗r.

Lemma 37 (Deref). If {P ∗ e 7→x} ‘C’ {Q} is valid and x is not free in e and Q, then
{∃x.P ∗ e 7→x} ‘letx=[e] inC’ {Q} is also valid.

Proof. Assume that {P ∗ e 7→x} ‘C’ {Q} is valid, and pick η ∈ Env and ρ ∈ PredΞ. Let
c = Jletx=[e] inCKη. We will show that w |= {J∃x.P ∗ e 7→xKη,ρ} c {JQKη,ρ} for all w ∈W .

Let w ∈W , r ∈ UAdm and h ∈ J∃x.P ∗ e 7→xKη,ρ (w) ∗ ι−1(w)(emp) ∗ r. We must show
that c(h) ∈ Ad(JQKη,ρ (w) ∗ ι−1(w)(emp) ∗ r). By definition there are heaps h′, h′′ such that
h = h′ · h′′ and h′ ∈ J∃x.P ∗ e 7→xKη,ρ (w) and h′′ ∈ ι−1(w)(emp) ∗ r. By definition this
means that

∀n. ∃dn ∈ Val . πn(h′) ∈ JP ∗ e 7→xKη[x:=dn],ρ (w).

Let us write ηn for η[x := dn]. In the remainder of the proof, we will prove that

∀n. c(πn(h)) ∈ Ad(JQKη,ρ ∗ ι
−1(w)(emp) ∗ r),

because then, by admissibility and the continuity of c, we obtain the required c(h) ∈
Ad(JQKη,ρ ∗ ι−1(w)(emp) ∗ r).

Without loss of generality we can assume that πn(h) 6= ⊥, so that πn(h′) 6= ⊥ as
well. Then, since x /∈ fv(e), we have in particular JeKη ∈ dom(πn(h′)) ⊆ dom(h) and
πn(h′)(JeKη) v dn. Using the monotonicity of commands with respect to the environment,
this gives

c(πn(h)) = JCKη[x:=πn(h′)(JeKη)] (πn(h)) v JCKηn
(πn(h))



NESTED HOARE TRIPLES AND FRAME RULES FOR HIGHER-ORDER STORE 41

By uniformity of ι−1(w)(emp) ∗ r, we have πn(h) ∈ JP ∗ e 7→ xKηn,ρ ∗ ι−1(w)(emp) ∗ r, so
that the assumption gives us

c(πn(h)) v JCKηn
(πn(h)) ∈ Ad(JQKηn,ρ ∗ ι

−1(w)(emp) ∗ r).

Since Ad(p′) is a downward-closed set for every predicate p′, the above formula implies
that c(πn(h)) belongs to the set on the right hand side. Furthermore, since x /∈ fv(Q),
we have JQKηn

= JQKη. The combination of these two facts gives the desired c(πn(h)) ∈
Ad(JQKη,ρ ∗ ι−1(w)(emp) ∗ r).

Lemma 38 (New). If {P ∗x 7→ e} ‘C’ {Q} is valid and x is not free in P , Q and e, then
{P} ‘letx=new e inC’ {Q} is valid.

Proof. Let w ∈ W , η ∈ Env, ρ ∈ PredΞ and r ∈ UAdm. Suppose h ∈ JP Kη,ρ (w) ∗
ι−1(w)(emp) ∗ r. We must show that c(h) ∈ Ad(JQKη,ρ (w) ∗ ι−1(w)(emp) ∗ r). Consider the
following environment η′ and heap h′:

η′
def= η[x := `] h′

def= h · {|` = JeKη|}
where ` is the least natural number not contained in dom(h). Since x is not free in e and
P , we have JeKη = JeKη′ and JP Kη = JP Kη′ . Thus by the assumption on h we obtain:

h′ ∈ JP ∗ x 7→ eKη′,ρw ∗ ι
−1(w)(emp) ∗ r.

Then the assumption that {P ∗ x 7→ e} ‘C’ {Q} is valid implies:

JCKη′ h
′ ∈ Ad(JQKη′,ρ (w) ∗ ι−1(w)(emp) ∗ r).

Using the fact that Jletx=new e inCKη (h) = JCKη′ h
′ and since JQKη′ = JQKη, this proves

the statement.

Lemma 39 (Auxiliary variable). Assume that x is not free in e. Then the axiom
ExistAux

Γ ` (∀x.{P} e {Q}) ⇒{∃x.P} e {∃x.Q}
is valid.

Proof. Let η ∈ Env, ρ ∈ PredΞ, and fix w ∈ W . For each d ∈ Val , let ηd = η[x:=d],
pd = JP Kηd,ρ and qd = JQKηd,ρ. Since x is not free in e, we have JeKηd

= JeKη. Thus, a similar
reasoning with rank as that in the proof of Consequence implies that it is sufficient to prove
the following claim:

for all c, if w |= {pd} c {qd} for every d, then w |= {
⊔

d pd} c {
⊔

d qd}.

Assume w |= {pd} c {qd}, let r ∈ UAdm and h ∈ (
⊔

d pd)(w)∗ι−1(w)(emp)∗r. We must show
that c(h) ∈ Ad((

⊔
d qd)(w)∗ι−1(w)(emp)∗r). By definition, h = h′·h′′ where h′ ∈ (

⊔
d qd)(w)

and h′′ ∈ ι−1(w)(emp) ∗ r. Thus, for each n there exists d ∈ Val such that πn(h′) ∈ pd(w),
and therefore πn(h) ∈ pd(w) ∗ ι−1(w)(emp) ∗ r by the uniformity of ι−1(w)(emp) ∗ r. From
the assumption w |= {pd} c {qd} we then obtain that for each n,

c(πn(h)) ∈ Ad(qd(w) ∗ ι−1(w)(emp) ∗ r) ⊆ Ad((
⊔

d qd)(w) ∗ ι−1(w)(emp) ∗ r).
Using the admissibility of Ad((

⊔
d qd)(w)∗ι−1(w)(emp)∗r) and the continuity of c, it follows

that c(h) ∈ Ad((
⊔

d qd)(w) ∗ ι−1(w)(emp) ∗ r).



42 SCHWINGHAMMER ET AL.

Lemma 40 (Invariance). Then the axiom
Invariance

Ξ; Γ ` {P} e {Q}⇒ {P ∧ ψ} e {Q ∧ ψ} (ψ is pure)

is valid.

Proof. Let η ∈ Env, ρ ∈ PredΞ, and fix w ∈ W . For each d ∈ Val ,let p = JP Kη,ρ and
q = JQKη,ρ and f = JψKη,ρ. A similar reasoning with rank as that in the proof of (Conseq)
implies that it is sufficient to prove the following claim:

for all c, if w |= {p} c {q} then w |= {p ∩ f} c {q ∩ f}.
But since ψ is pure, either f w = Heap for all w ∈ W or f w = ∅ for all w ∈ W . In
the former case, the above implication reduces to the identity axiom, in the latter case
w |= {p ∩ f} c {q ∩ f} always holds.

Lemma 41 (Disjunction). For all P, P ′, Q,Q′ and e, the axiom
Disj

{P} e {Q}∧ {P ′} e {Q′}⇒ {P ∨ P ′} e {Q ∨Q′}
is valid.

Proof. Let η ∈ Env, ρ ∈ PredΞ, and fix w ∈ W . Let p = JP Kη,ρ, p
′ = JP ′Kη,ρ, q = JQKη,ρ

and JQ′Kη,ρ. As in the preceding proofs, it suffices to show that

for all c, if w |= {p} c {q} and w |= {p′} c {q′}, then w |= {p ∪ p′} c {q ∪ q′}.

For this, suppose that r ∈ UAdm and let h ∈ (p ∪ p′)(w) ∗ ι−1(w)(emp) ∗ r. We must show
that c(h) ∈ (q∪ q′)(w) ∗ ι−1(w)(emp) ∗ r. Note that h ∈ (p∪ p′)(w) ∗ ι−1(w)(emp) ∗ r entails
that h ∈ p(w)∗ι−1(w)(emp)∗r or h ∈ p′(w)∗ι−1(w)(emp)∗r. Therefore, by the assumption
we know that c(h) ∈ Ad(q(w) ∗ ι−1(w)(emp) ∗ r) or c(h) ∈ Ad(q′(w) ∗ ι−1(w)(emp) ∗ r),
from which it follows that c(h) ∈ Ad((q ∪ q′)(w) ∗ ι−1(w)(emp) ∗ r) by the monotonicity of
∗ and of the closure operation.


	1. Introduction
	2. Syntax of Programs and Assertions
	2.1. Programming language
	2.2. Assertions and distribution axioms

	3. Proof Rules for Higher-order Store
	3.1. Standard proof rules
	3.2. Proof rule for recursive assertions
	3.3. Frame rule for higher-order store
	3.4. Rule for executing stored code
	3.5. Nested triples and classical assertion logic

	4. Semantics of Nested Triples
	4.1. Overview of the technical development
	4.2. Semantics of expressions and commands
	4.3. Semantic domain for assertions
	4.4. Separating conjunction and invariant extension
	4.5. Semantics of triples and assertions
	4.6. Soundness of the axioms and proof rules

	5. Proof Rules involving different Nesting Levels
	6. Conclusion
	Acknowledgment
	References
	Appendix A. Summary of Proof Rules
	Appendix B. Proofs
	B.1. Heyting algebra structure of uniform admissible subsets
	B.2. Interpretation of assertions
	B.3. Soundness of standard rules from separation logic


