
Stream Differential Equations:

concrete formats for coinductive definitions

Clemens Kupke1, Milad Niqui2 and Jan Rutten2,3

1University of Oxford,
2Centrum Wiskunde & Informatica, Amsterdam,

3Radboud Universiteit Nijmegen

December 16, 2011

Abstract

In this article we give an accessible introduction to stream differential equations, ie.,
equations that take the shape of differential equations from analysis and that are used to
define infinite streams. Furthermore we discuss a syntactic format for stream differential
equations that ensures that any system of equations that fits into the format has a unique
solution. It turns out that the stream functions that can be defined using our format
are precisely the causal stream functions. Finally, we are going to discuss non-standard
stream calculus that uses basic (co-)operations different from the usual head and tail
operations in order to define and to reason about streams and stream functions.

1 Introduction

In recent years, coinduction has come to play an ever more important role in the theory of
computing and computer science. Coinduction is a method for specifying and reasoning about
infinite data types such as streams (i.e., infinite sequences) and, more generally all kinds of
automata with circular behaviour. Coinduction is studied in various disciplines, including
type theory [Coq94, Ber05, GM03] and functional programming [Gor94, Hin08], modal logic
[Mos99], and automata theory [Rut98, KV08].

The notion of coinduction is dual to the classical, well-known notion of induction. This
duality is best explained by the theory of coalgebra [JR97, Rut00]. Since the early nineties,
coalgebra has become an active area of research in which one tries to understand all kinds
of infinite data types, automata, transition systems and dynamical systems from a unifying
perspective. The focus of coalgebra is on observable behaviour and one uses coinduction as
a central methodology, both for behavioural specifications and to prove behavioural equiva-
lences. As such, coalgebra builds on the pioneering work of Milner and Park [Mil80, Par81]
on observational equivalence and bisimulation.

Classical definition and proof principles such as well-founded induction and recursion
belong to mainstream mathematics, and they are common knowledge for many computer
scientists as well. However, a common understanding of coinductive definition and proof
principles is still lacking.

In ongoing research on coinduction, one tries to find suitable formats for the formulation
of coinductive definition and proof principles. In the world of functional programming and

1

coalgebra, these formats have often been defined as the dual of familiar inductive notions such
as iteration and (primitive) recursion, leading to very general and abstract schemes such as
(λ-)coiteration and (primitive) corecursion (cf. [Bar03] and [Geu92, MD97, UV99]). Many
of the existing formalisms for coinduction are often very general but too abstract for easy
use, or concrete enough but limited in their applicability. In this paper, we shall therefore
focus on one very concrete family of coinductive specifications called behavioural differential
equations (BDEs) that seem to offer a good compromise between generality and practicality.

BDEs are a behavioural variant of classical differential equations of mathematical analysis.
They were introduced in [Rut03], building on earlier work in automata theory [Brz64, Con71],
formal power series [BR88, McI99], and coalgebra and logic [Rut98, PE98, Rut99]. They are
particularly well suited for the specification of behaviour that involves combinations of both
quantitative and qualitative aspects. The usefulness of BDEs is illustrated by many recent
applications, including work in the following areas: automata and formal languages [Rut98],
analytical differential equations [PE98, Rut05], denotational semantics [BG06], control of dis-
crete event systems [KvS08], synthesis [Rut06, HR10], binary trees [SR10], stream processing
networks [NR10], concurrent timed systems [Kom10], and language-based security protocols
[MBG10].

1.1 Stream differential equations

In the present paper, we shall focus on a very specific but at the same time prototypical
instance of BDEs, namely stream differential equations (SDEs) [Rut05]. Below we introduce
the basic notions involved, discuss some examples, and give an outline of the remainder of
this paper.

We define the set of all streams over a given set A by

Aω = {σ | σ : IN→ A }

We shall sometimes denote individual streams by

σ = (σ(0), σ(1), σ(2), . . .)

We define the initial value of σ by σ(0) and we define the stream derivative σ′ of σ by

σ′ = (σ(1), σ(2), σ(3), . . .)

We can view streams as states of an abstract machine, for which initial value and derivative
together determine the behaviour : one can think of the initial value σ(0) as an (initial)
observation on σ, after which it moves to a next state σ′. The initial value σ′(0) of σ′, which
is equal to σ(1), will then be the next observation on σ, and so on. In this manner, a stream
presents all of its values one by one, by means of what is called lazy evaluation in functional
programming.

The terminology of initial value and derivative – rather than the more common head and
tail – has been chosen to emphasize a close analogy with classical differential equations from
mathematical analysis: we can define streams and streams functions by means of so-called
stream differential equations (SDEs). Let us look at a few examples, considering streams of
natural numbers, that is, putting A = IN.

A trivial example of a stream differential equation is

σ′ = σ σ(0) = 1

2

which uniquely determines the stream σ = (1, 1, 1, . . .). The following SDE defines the stream
of Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, . . .):

σ′′ = σ′ + σ σ(0) = 0 σ(1) = 1 (1)

Here + is element-wise addition of streams, which itself can also be defined by a BDE, as
follows:

(σ + τ)′ = σ′ + τ ′ (σ + τ)(0) = σ(0) + τ(0)

This example illustrates that SDEs can be used to define not only streams but also functions
on streams.

The stream of Fibonacci numbers can be equivalently defined by the following recurrence
relation:

σ(n+ 2) = σ(n+ 1) + σ(n) σ(0) = 0 σ(1) = 1

However, not for all SDEs such an equivalent definition by a recurrence relation exists. For
instance, the following SDE defines the stream of the so-called Hamming numbers, consisting
of all natural numbers of the form 2i3j5k, for i, j, k ≥ 0, in increasing order (cf. [Dij81, Bar03]):

σ′ = (2× σ) ‖ (3× σ) ‖ (5× σ) σ(0) = 1 (2)

Here (k × σ)(n) = k × (σ(n)), for all k = 2, 3, 5 and all n ≥ 0; and the operator ‖ zips the
three streams by always taking the smallest initial value first, removing doubles if necessary;
a formal definition follows later, in Section 3. There is no obvious way to define the stream
of Hamming numbers by means of a recurrence relation.

1.2 Solving SDEs

As with classical differential equations in mathematical analysis, a SDE can have the following
three properties:

(i) It is well-defined; that is, it has a unique solution.

(ii) This solution is computable: we have an algorithm for computing all its finite approxi-
mations.

(iii) The solution has a closed form: we can express it in terms of a given set of basic
operations.

In most cases, property (iii) implies property (ii) which at its turn implies property (i).
Although it might make sense to allow (nondeterministic) specifications with more than one
solution, we shall typically view condition (i) as a basic requirement. For any kind of practical
use, SDEs should better also satisfy (ii). In contrast, there will be only rare cases where we
have a closed form (condition (iii)) for the solution of a SDE.

Let us illustrate these properties with a few examples. The equation σ′ = σ without an
initial solution obviously has many solutions, namely, every constant stream is a solution. A
more interesting example is given by the following SDE:

c′′ = even(c) c(0) = 0 c(1) = 0 (3)

where the function even is defined by the following SDE:

even(σ)′ = even(σ′′) even(σ)(0) = σ(0)

3

One can easily prove that

even(σ(0), σ(1), σ(2), . . .) = (σ(0), σ(2), σ(4), , . . .)

We observe that the SDE (3) above for the stream c has many different solutions, such as
(0, 0, 0, 0, 0, . . .) and (0, 0, 0, 0, 1, 1, 1, . . .). So this is a not entirely trivial example1 of a SDE
that does not satisfy property (i).

As we will see in Section 3, the SDE defining the Hamming numbers (equation (2) above)
has a unique solution. Furthermore, the SDE itself, together with the corresponding SDEs for
the operations of merge and multiplication, can be used to compute arbitrary initial segments
of the stream of all Hamming numbers. Thus this SDE satisfies (ii). As far as we can tell,
however, there exist in the literature no proposal for a closed form, and so this stream does
not seem to satisfy condition (iii).

An example of a stream satisfying all of (i), (ii) and (iii) is the stream of the Fibonacci
numbers, defined by the SDE (1). As we shall see in Section 5, its unique solution can be
expressed in stream calculus (in a way that is reminiscent of generating functions) as

X

1−X −X2
= (0, 1, 1, 2, 3, 5, 8, 13, . . .)

In spite of the above and other similar such examples, there hardly exist general criteria
that allow one to decide whether a SDE satisfies any of the properties above. This is in
contrast with mathematical analysis, where one studies various well-defined classes of differ-
ential equations such as linear and non-linear equations, homogeneous and non-homogeneous
equations, and the like.

1.3 Overview

In the remainder of this paper, we shall present partial answers to some of the questions about
SDEs raised above. In Section 3, we shall sketch a solution method with which a unique so-
lution for the SDE defining the Hamming numbers (equation (2)) can be constructed. This
so-called syntactic method will then be generalised, in Section 4, where we shall introduce a
general format for a large class of SDEs. Moreover, we shall prove that the class of stream
functions one can define with these SDEs contains precisely all so-called causal stream func-
tions. In Section 5, we present yet another format, called linear SDEs. For linear SDEs, we
are able to construct unique solutions, which can be presented by rational expressions. The
stream of Fibonacci numbers that we saw above is an example. Thus the class of linear SDEs
is an example where properties (i) well-definedness, (ii) computability, and (iii) solutions have
a closed form, are all satisfied. Finally, in Section 6, we shall illustrate the generality of the
concept of SDEs by a discussion of what we have called non-standard stream calculus. Before
all this, we first shall discuss a few further preliminaries, in Section 2.

Related Work on Productivity

The ideas presented in this article, in particular in Section 4 on the syntactic format for
defining causal stream functions, aim in a similar direction as the work on (data-oblivious)
productivity of stream definitions in [EGH08, EGH+10]. The two main distinguishing features

1The example is due to Joerg Endrullis.

4

of our approach are on the one hand, that we are using coalgebraic techniques. On the other
hand, we are ensuring productivity by devising a syntactic format such that any definition
in this format of a stream or a stream function will be productive. This is in contrast to
the approach in the cited papers where procedures are described that allow to decide, for a
certain class of stream definitions, whether or not a given stream definition is productive. A
feature of the coalgebraic framework is that the obtained results for streams can be easily
generalised to other infinite structures such as infinite n-ary trees. Furthermore the theory
can be developed parametric in the choice of basic (co-)operations - something we hint at in
this article in Section 6 on non-standard stream calculus. These generalisations are discussed
in detail in [KR10].

2 Preliminaries

We recall the definition of the set of streams over a set A:

Aω = {σ | σ : N→ A}

where N is the set of natural numbers including 0. We already defined the stream derivative
of a stream σ = (σ(0), σ(1), σ(2), . . .) by

σ′ = (σ(1), σ(2), σ(3), . . .)

and the initial value of σ by σ(0).
A stream system over a set A is a pair (X, (o, t)) consisting of a set X of states and a pair

of maps consisting of an output (or observation) map o : X → A and a transition (or next
state) map t : X → X. A homomorphism of stream systems (X, (oX , tX)) and (Y, (oY , tY))
is a map f : X → Y such that, for all x ∈ X,

oY (f(x)) = oX(x) and tY (f(x)) = f(tX(x))

Defining the maps of initial value ι : Aω → A and derivative δ : Aω → Aω by

ι(σ) = σ(0) δ(σ) = σ′

turns the set of streams into a stream system

(Aω, (ι, δ))

It has the universal property of being final in the family of all stream systems over A: for
every stream system (X, (o, t)) there exists a unique stream homomorphism f : X → Aω. It
is given, for x ∈ X and n ≥ 0, by

f(x)(n) = o(tn(x))

where t0 = t and tk+1 = t ◦ tk.
As we will see later, the finality of the set of streams, that is, the unique existence of stream

homomorphisms into Aω, will form an important instrument to prove the unique existence of
solutions of many stream differential equations.

5

Also, the finality of Aω will allow us to prove the equality of streams. In order to formulate
this so-called coinduction proof principle for streams, we need the following notion. A bisim-
ulation relation between stream systems (X, (oX , tX)) and (Y, (oY , tY)) is a set R ⊆ X × Y
such that for all (x, y) ∈ R,

oX(x) = oY (y) and (tX(x), tY (y)) ∈ R

We write x ∼ y if there exists a bisimulation R with (x, y) ∈ R. If we take both X and Y
to be the stream system Aω, we obtain the following definition. A bisimulation on Aω is a
relation R ⊆ Aω ×Aω such that, for all (σ, τ) ∈ R,

σ(0) = τ(0) and (σ′, τ ′) ∈ R

The coinduction proof principle allows us to prove the equality of two streams by establishing
the existence of an appropriate bisimulation relation.

Theorem 2.1 (coinduction proof principle) For all sets A, for all streams σ, τ ∈ Aω,

σ ∼ τ ⇒ σ = τ

In other words: in order to prove σ = τ it suffices to construct a stream bisimulation relation
R ⊆ Aω ×Aω such that (σ, τ) ∈ R.

Proof: Let R ⊆ Aω ×Aω be a stream bisimulation relation. If (σ, τ) ∈ R then one can show
by an easy induction that σ(n) = τ(n), for all n ≥ 0. For an alternative proof, based on the
finality if Aω, consider functions o : R→ A and t : R→ R defined, for all (σ, τ) ∈ R, by

o((σ, τ)) = σ(0) = τ(0) t((σ, τ)) = (σ′, τ ′)

We note that o and t are well-defined because R is a bisimulation. This turns R into a stream
system (R, (o, t)). Because both the projections π1 : R→ Aω and π2 : R→ Aω, defined by

π1((σ, τ)) = σ π2((σ, τ)) = τ

are homomorphisms of stream systems, the finality of Aω implies that π1 = π2. This means
that σ = τ , for all (σ, τ) ∈ R.

(We note that the converse of the theorem holds as well, because the identity relation on
A is a stream bisimulation relation.) qed

3 A syntactic solution method

In this section, we will show how to construct a unique solution for the stream differential
equation for the Hamming numbers [Dij81, Bar03], which we already encountered as equation
(2) in Section 1.1. We will be using a syntactic method to construct a (unique) solution for
this SDE. In Section 4, the same method will be used, more generally, for SDEs defining
so-called causal stream functions.

For (notational) convenience, the stream γ of the Hamming numbers will in our definition
consist of natural numbers having no other prime factors than 2 and 3. The original version,

6

which allows prime factors 2, 3, and 5, can be treated in precisely the same way. Here are
the first elements of γ:

γ = (2030, 2130, 2031, 2230, 2131, 2330, 2032, 2231, . . .)

= (1, 2, 3, 4, 6, 8, 9, 12, . . .)

We define γ by the stream differential equation

γ′ = (2× γ) ‖ (3× γ) γ(0) = 1 (4)

The ordered merge operator
‖ : Nω × Nω → Nω

is itself defined by the stream function differential equation

(σ ‖ τ)′ =

σ′ ‖ τ if σ(0)< τ(0)
σ′ ‖ τ ′ if σ(0) = τ(0)
σ ‖ τ ′ if σ(0)> τ(0)

(σ ‖ τ)(0) =

{
σ(0) if σ(0)< τ(0)
τ(0) if σ(0) ≥ τ(0)

(5)

where, for k = 2, 3, the function k × (−) : Nω → Nω is given by

(k × σ)′ = k × (σ′) (k × σ)(0) = k · σ(0) (6)

We shall use the fact that the stream system (Nω, (ι, δ >)) is final, which we saw in
Section 2, to construct a solution for the SDE (4) above. The uniqueness of this solution will
then follow by coinduction. In fact, our construction will construct a solution for all of the
differential equations above, including those for ‖ and k×.

Let us suppose for a moment that there exist a stream γ and operators ‖ and k× that
satisfy the equations above. If we compute the first few repeated stream derivatives of γ,
using the above equations:

γ′ = (2× γ) ‖ (3× γ)

γ′′ = (2× ((2× γ) ‖ (3× γ))) ‖ (3× γ)

γ′′′ = (2× ((2× γ) ‖ (3× γ))) ‖ (3× ((2× γ) ‖ (3× γ)))

then we see that they exist of expressions denoting repeated compositions of applications of
the functions ‖, 2× and 3× to the stream γ.

Next we formally introduce the set of all such expressions as follows. In order to distinguish
between syntax and semantics, we first introduce new syntactic names: the letter c will be
used to denote γ; the term merge denotes ‖; the term 2times denotes 2×; and the term
3times denotes 3×. Moreover, we introduce for every stream σ ∈ Nω a syntactic term σ. We
inductively define the set Term of all terms by

Term 3 t ::= c | σ (σ ∈ Nω) | 2times(t) | 3times(t) | merge(t1, t2)

In order to use the finality of the stream system (Nω, (ι, δ)), we turn the set Term of terms
into a stream system (Term, (o, n))). To this end, we define functions

o : Term→ N n : Term→ Term

7

by induction on the structure of the terms as follows. The definition of o : Term→ N is based
on the initial values of the SDEs (4), (5), and (6):

o(c) = 1

o(merge(t1, t2)) =

{
o(t1) if o(t1)< o(t2)
o(t2) if o(t1) ≥ o(t2)

o(2times(t)) = 2 · o(t)

o(3times(t)) = 3 · o(t)

And for σ ∈ Nω, we put
o(σ) = σ(0)

The definition of n : Term→ Term is similarly based on the SDEs above:

n(c) = merge(2times(c), 3times(c))

n(σ) = σ′

n(merge(t1, t2)) =

merge(n(t1), t2) if o(t1)< o(t2)
merge(n(t1), n(t2)) if o(t1) = o(t2)
merge(t1, n(t2)) if o(t1)> o(t2)

n(2times(t)) = 2times(n(t))

n(3times(t)) = 3times(n(t))

(We note that the definition of n uses the definition of o.)
Now there exists, by the finality of (Nω, (ι, δ)), a unique homomorphism

f : (Nω, (ι, δ))→ (Term, (o, n)))

We use f to define γ and our operators as follows:

γ = f(c)

σ ‖ τ = f(merge(σ, τ))

2× σ = f(2times(σ))

3× σ = f(3times(σ))

Proposition 3.1 The stream γ and the functions ‖, 2× and 3× are the unique solutions of
the differential equations (4), (5) and (6) above.

Proof: We prove that γ satisfies equation (4) and leave the other statements to the reader.
For γ, we have γ(0) = f(c)(0) = o(c) = 1, using for the second equality the fact that f is a
homomorphism. Furthermore,

γ′ = f(c)′

= f(n(c)) [because f is a homomorphism]

= f(merge(2times(c), 3times(c)))

= f(2times(c)) ‖ f(3times(c))

= (2× f(c)) ‖ (2× f(c))

= (2× γ) ‖ (3× γ)

8

Here the fourth and fifth equalities use the fact that f is compositional. A proof of this, as
well as the proof of the uniqueness of the solution is omitted here. It will follow from the
more general results in Section 4. qed

4 A format for defining causal stream functions

In the previous section we discussed a concrete example of a syntactic method for solving
stream differential equations. We are going to use the example from the previous section as
a guideline for setting up a general scheme for defining causal stream functions.

4.1 The basic system

In this section we are considering the set Aω of infinite streams over a set A. Here (−)(0) :
Aω → A is the function that maps a stream σ = σ0σ1 · · · to its first element σ0 ∈ A and
(−)′ : Aω → Aω denotes the tail operation.

A signature Σ is a collection of constant and operation symbols, each of which has a
fixed arity. The intended interpretation of a k-ary symbol f ∈ Σ will be a stream function

f : (Aω)k → Aω. The core ingredient of our format for defining stream functions is the set
TΣ of Σ-terms.

Definition 4.1 Let Σ be a signature. We define the set TΣ(X) of Σ-terms over a set X of
generators inductively as follows:

TΣ(X) 3 t ::= x ∈ X | f(t, · · · , t), f ∈ Σ,

and we put TΣ := TΣ(Aω), where Aω := {τ | τ ∈ Aω}.
Let S = {f}f∈Σ be a collection of operations such that for any k-ary operation symbol f ,

f : (Aω)k → Aω is a k-ary operation. We define an interpretation IS : TΣ → Aω by putting
IS(τ) := τ and IS(f(t1, . . . , tk)) = f(IS(t1), . . . , IS(tk)).

The set of terms comes equipped with the standard notion of substitution.

Definition 4.2 For terms t, s1, . . . , sk ∈ TΣ(X) and distinct variables x1, . . . , xk we define
the term t[x1 := s1, . . . , xk := sk], in which variable xi has been substituted by si for each
i ∈ {1, . . . , k}, inductively as usual:

x[x1 := s1, . . . , xk := sk] =

{
si if x = xi for some i ∈ {1, . . . , k}
x otherwise,

f(t1, . . . , tn)[x1 := s1, . . . , xk := sk] = f(t1[x1 := s1, . . . , xk := sk], . . . , tn[x1 := s1, . . . , xk := sk])

Furthermore we write t[xi := si] as shorthand for t[x1 := s1, . . . , xk := sk] if the set of indices
i is clear from the context.

Definition 4.3 Let Σ be a signature and let f ∈ Σ be a k-ary operation symbol. A stream
equation for f is a pair 〈i, d〉 (of “initial” value i and “derivative” d) where

i : Ak → A

d : Ak → TΣ({x1, . . . , xk, y1, . . . , yk})

9

A stream definition is a set D of stream equations containing one equation 〈if , df 〉 for each
f ∈ Σ.

A solution of a stream definition is family of functions S = {f}f∈Σ such that for every
k-ary operation symbol f the function f is of type

f : (Aω)k → Aω

and such that for all f ∈ Σ we have

f(τ1, . . . , τk)(0) = if (τ1(0), . . . , τk(0))

f(τ1, . . . , τk)
′ = IS

(
df (τ1(0), . . . , τk(0))[xi := τ i, yi := τ ′i]

)
We will now prove that every stream definition D has a unique solution S. First of all we
define a candidate for such a solution.

Definition 4.4 Let Σ be a signature and let D = {〈if , df 〉}f∈Σ be a stream definition for Σ.
We define a map [[]]D : TΣ → Aω as the unique coalgebra morphism from (TΣ, 〈o, n〉) into the
final stream coalgebra:

TΣ
[[]]D //

〈o,n〉
��

Aω

〈()(0),()′〉
��

A× TΣ
idA×[[]]D

// A×Aω

Here o : TΣ → A (“output”) and n : TΣ → TΣ (“next”) are defined inductively by putting

o(τ) = τ(0)

o(f(t1, . . . , tk)) = if (o(t1), . . . , o(tk))

n(τ) = τ ′

n(f(t1, . . . , tk)) = df (o(t1), . . . , o(tk))[xi := ti, yi := n(ti)]

Furthermore we let S(D) := {f̂}f∈Σ where

f̂(τ1, . . . , τk) := [[f(τ1, . . . , τk)]]D ∈ Aω.

Remark 4.5 A reader familiar with coalgebras might find it useful to see how the existence
of a unique solution S of D can be obtained as a corollary of results on λ-coiteration and
bialgebras [Bar03]. One can think of a stream equation for an n-ary f ∈ Σ as a specification

of a natural transformation ρf : (Id × (A × Id))n → A × TΣ(). Following the argument in
Corollary 5.7 of [Bar03] this uniquely determines for every f ∈ Σ a function δf : (Aω)→ Aω

which precisely corresponds to the unique solution of the stream definition. We prefer to
derive the unique existence of a solution without directly referring to the result in [Bar03],
because we want to keep this chapter as elementary and self-contained as possible.

In order to show that S(D) is in fact the unique solution of D, we will prove that solutions
of D and coalgebra morphisms from (TΣ, 〈o, n〉) into the final stream coalgebra are closely
related. To begin with, we need two technical lemmas about bisimilarity on the coalgebra
(TΣ, 〈o, n〉).

10

Lemma 4.6 For all t ∈ TΣ we have t ∼ [[t]]D where ∼ denotes bisimilarity on (TΣ, 〈o, n〉).

Proof: We prove by induction on t that the relation

R := {([[t]]D, t) | t ∈ TΣ}

is a bisimulation. For the base case consider t = τ for some τ ∈ Aω. Then o([[τ]]D) =
[[τ]]D(0) = o(τ) and thus the output function agrees on both terms as required. Furthermore
we have

n([[τ]]D) = [[τ]]′D = [[n(τ)]]D and
(

[[n(τ)]]D, n(τ)
)
∈ R

and thus (n([[τ]]D), n(τ)) as required.
Consider now some g(t1, . . . , tk) ∈ TΣ with ([[g(t1, . . . , tk)]]D, g(t1, . . . , tk)) ∈ R. We calcu-

late

o([[g(t1, . . . , tk)]]D) = [[g(t1, . . . , tk)]]D(0) = o(g(t1, . . . , tk))

n([[g(t1, . . . , tk)]]D) = [[g(t1, . . . , tk)]]
′
D = [[n(g(t1, . . . , tk))]]D

and thus (n([[g(t1, . . . , tk)]]D), n(g(t1, . . . , tk))) ∈ R as required. qed

The second lemma states that bisimilarity on (TΣ, 〈o, n〉) is a congruence.

Lemma 4.7 Let t ∈ TΣ({zj}j∈J) be a term with variables in {zj}j∈J and let {sj}j∈J and
{ŝj}j∈J be two families of terms sj , ŝj ∈ TΣ such that sj ∼ ŝj for all j ∈ J . Then

t[zj := sj] ∼ t[zj := ŝj].

Proof: We define a family {Zi}i∈IN of relations and denote the union of all Zi by Z:

Z0 := ∼
Zn+1 :=

{
(t, t̂) ∈ (TΣ)2 | ∃t′ ∈ TΣ(X)∃s1, . . . , sm, ŝ1, . . . , ŝm ∈ TΣ s.t. t = t′[xj := sj],

t̂ = t′[xj := ŝj] and (sj , ŝj) ∈ Zn for all j ∈ {1, . . . ,m}
}

Z :=

n⋃
i=1

Zn

Note that Zn1 ⊆ Zn2 whenever n1 ≤ n2. We show that the relation Z is a bisimulation, ie.
o(t) = o(t̂) and (n(t), n(t̂)) ∈ Z for all (t, t̂) ∈ Zn for some n ∈ IN. The proof proceeds by
induction on n and on the size of the smallest t′ ∈ TΣ(X) that is a “witness” for (t, t̂) ∈ Z.
The base case, that n = 0 is trivial as Z0 relates all bisimilar pairs. Suppose now that
(t, t̂) ∈ Zm+1. If t′ = x for some variable x, the claim follows from the fact that (t, t̂) ∈ Zm
and the inductive hypothesis.

Let t′ = g(t′1, . . . , t
′
k). We first check that o(t) = o(t̂):

o(t) = o(t′[xj := sj]) = o(g(t′1, . . . , t
′
k)[xj := sj])

= ig(o(t
′
1[xj := sj]), . . . , o(t

′
k[xj := sj]))

I.H.
= ig(o(t

′
1[xj := ŝj]), . . . , o(t

′
k[xj := ŝj]))

= · · · = o(t̂)

11

The condition that n(t) ∼ n(t′) is equally straightforward:

n(t) = n(t′[xj := sj]) = n(g(t′1, . . . , t
′
k)[xj := sj])

= dg(o(t
′
1[xj := sj]), . . . , o(t

′
k[xj := sj]))[xi := t′i[xj := sj], yi := n(t′i[xj := sj])]

I.H.
= dg(o(t

′
1[xj := ŝj]), . . . , o(t

′
k[xj := ŝj]))[xi := t′i[xj := sj], yi := n(t′i[xj := sj])]

By definition we have (t′i[xj := sj], t
′
i[xj := ŝj]) ∈ Zm+1 and by the inductive hypothesis we

have (n(t′i[xj := sj]), n(t′i[xj := ŝj])) ∈ Z, ie. (n(t′i[xj := sj]), n(t′i[xj := ŝj])) ∈ Zm′ for some
m′ ∈ IN. It is now easy to check that indeed (n(t), n(t̂)) ∈ Z as required. qed

The next proposition establishes a correspondence between coalgebra morphisms from (TΣ, 〈o, n〉)
into the final stream coalgebra and solutions of D.

Proposition 4.8 Let D be a stream definition for some signature Σ and let S = {f}f∈Σ be a

family of functions containing for each k-ary symbol f ∈ Σ a function f : (Aω)k → Aω. Then
S is a solution of D iff IS : TΣ → Aω is a coalgebra morphism from (TΣ, 〈o, n〉) into the final
coalgebra (Aω, 〈()(0), ()′〉).

Proof: Let S = {f}f∈Σ be a solution of D. We will prove that for all t ∈ TΣ we have
IS(t)(0) = o(t) and IS(t)′ = IS(n(t)), ie., that S induces a coalgebra morphism IS . The
claim is proven by induction on t. For the base case consider t = τ for some τ ∈ Aω. Then
IS(τ)(0) = τ(0) = o(τ) and IS(τ)′ = τ ′ = IS(τ ′) = IS(n(τ)) as required.

For the induction step consider t = g(t1, . . . , tk) ∈ TΣ. We calculate

IS(g(t1, . . . , tk))(0) = g(IS(t1), . . . , IS(tk))(0)

= ig(IS(t1)(0), . . . , IS(tk)(0))
I.H.
= ig(o(t1), . . . , o(tk))

Def. of o
= o(g(t1, . . . , tk))

and

IS(g(t1, . . . , tk))
′ = g(IS(t1), . . . , IS(tk))

′

S solution
= IS

(
dg(IS(t1)(0), . . . , IS(tk)(0))[xi := IS(ti), yi := IS(ti)

′]
)

I.H.
= IS

(
dg(o(t1), . . . , o(tk))[xi := IS(ti), yi := IS(n(ti))]

)
(∗)
= IS (dg(o(t1), . . . , o(tk))[xi := ti, yi := n(ti)])

= IS(n(g(t1, . . . , tk)))

where the equality (∗) follows from the fact that for arbitrary t ∈ TΣ({xj}j∈J) and {sj}j∈J ⊆
TΣ we have IS(t[xj := sj]) = IS(t[xj := IS(sj)]). This can be easily proven by induction on
t. Therefore we finished the proof that IS is a coalgebra morphism.

For the converse, suppose now that S induces a coalgebra morphism IS . We have to show
that S is a solution of D. Consider some k-ary f ∈ Σ and let τ1, . . . , τk ∈ Aω. We calculate:

f(τ1, . . . , τk)(0) = IS(f(τ1, . . . , τk))(0)
coal.mor

= o(f(τ1, . . . , τk)) = if (o(τ1), . . . , o(τk))

= if (τ1(0), . . . , τk(0)).

12

and

f(τ1, . . . , τk)
′ = IS(f(τ1, . . . , τk))

′

coal.mor
= IS(n(f(τ1, . . . , τk)))

= IS(df (o(τ1), . . . , o(τk))[xi := τi, yi := τ ′i])

= IS(df (τ1(0), . . . , τk(0))[xi := τi, yi := τ ′i])

which proves that S is indeed a solution of D. qed

Finally we have all ingredients in place in order to prove that every stream definition has a
unique solution.

Theorem 4.9 Let D be a stream definition for some signature Σ. Then S(D) is the unique
solution of D.

Proof: In order to see that S(D) is the unique solution of D it suffices to show that

[[t]]D = IS(D)(t) for t ∈ TΣ, (7)

because [[]]D is a coalgebra morphism by definition. Thus IS(D) is a coalgebra morphism which
implies that S(D) is a solution of D by Prop. 4.8. Clearly such a solution has to be unique:
any other solution S ′ would induce by Prop. 4.8 a coalgebra morphism IS′ : TΣ → Aω such
that IS′ 6= IS = [[]]D which contradicts the fact that [[]]D is the unique coalgebra morphism
of that type.

We now prove (7) by induction on t. For t = τ we obviously have [[τ]]D = τ = IS(D)(τ).
Furthermore, for t = f(t1, . . . , tk), we have

[[f(t1, . . . , tk)]]D
(∗)
= [[f([[t1]]D, . . . , [[tk]]D)]]D

= f̂([[t1]]D, . . . , [[tk]]D)
I.H.
= f̂(IS(D)(t1), . . . , IS(D)(tk)) = IS(D)(f(t1, . . . , tk))

Here equality (∗) follows from the fact that by Lemma 4.6 we have ti ∼ [[ti]]D for all i ∈
{1, . . . , k} and thus f(t1, . . . , tk) ∼ f([[t1]]D, . . . , [[tk]]D) by Lemma 4.7. As [[]]D is a coalgebra
morphism, it identifies bisimilar elements of TΣ which shows that (∗) holds. qed

We conclude the discussion of the syntactic format by looking at some examples.

Example 4.10 1. The function zip : Aω×Aω → Aω that maps two streams σ(0)σ(1)σ(2) . . .
and τ(0)τ(1)τ(2) . . . to the stream zip(σ, τ) := σ(0)τ(0)σ(1)τ(1) . . . is defined by a
stream equation 〈i, d〉 given by

i(a1, a2) := a1

d(a1.a2) := zip(y2, x1)

for a1, a2 ∈ A. The equation expresses that the first element of zip(σ, τ) is equal to the
first element of σ and that the tail of zip(σ, τ) is equal to zip(τ, σ′).

13

2. The function merge from Section 3 can be defined within the syntactic format. Let
Σ = {merge, 2times, 3times} be the signature. The equations, which are essentially the
ones from Section 3 written in a different way, look now as follows:

i2times(a) := 2 · a
i3times(a) := 3 · a

imerge(a1, a2) :=

{
a1 if a1 < a2

a2 otherwise.

d2times(a) := 2times(y)

d3times(a) := 3times(y)

dmerge(a1, a2) :=

merge(y1, x2) if a1 < a2

merge(y1, y2) if a1 = a2

merge(x1, y2) if a1 > a2

4.2 Causal functions

In this section we are going to prove that our format for defining stream functions defines
precisely the causal stream functions.

Definition 4.11 A function f : (Aω)k → Aω is definable if there exists a signature Σ and
a stream definition D for Σ such that f is part of the unique solution of D, ie., such that
f ∈ S(D).

Definition 4.12 Let τ = τ(0)τ(1) · · · ∈ Aω and σ = σ(0)σ(1) · · · ∈ Aω be two streams.
For a natural number n ∈ IN we say that τ and σ are n-equivalent (Notation: τ ≡n σ)
if τ(i) = σ(i) for all i ∈ {0, . . . , n}. A stream function f : (Aω)k → Aω is causal if for
all n ∈ IN and for all τ1, . . . , τk, σ1, . . . , σk ∈ Aω with τi ≡n σi for i ∈ {1, . . . , k} we have
f(τ1, . . . , τk) ≡n f(σ1, . . . , σk).

In other words, a stream function f is causal if the first n elements of the output stream
f(τ1, . . . , τk) depend only on the first n elements of each of the input streams τ1, . . . , τk. The
set Ck of causal stream functions of arity k ∈ IN form the carrier of a final coalgebra for the
functor (A ×)A

k
. The first component C → (Ak → A) of the structure map of the final

coalgebra is given by

f 7→ f [a1, . . . , ak] := f(a1 : α1, . . . , ak : αk)

where α1, . . . , αk ∈ Aω are arbitrary streams. The second component C→ (Ak → Ck) is given
by

f 7→ f(a1,...,ak) := λx1 . . . λxk (f(a1 : x1, . . . , ak : xk))

For the details on causal functions and final coalgebras see [HR10]. We are now ready to
prove the key lemma that allows us to show that any stream function defined in our syntactic
format is causal.

14

Lemma 4.13 Let Σ be a signature and let D be a stream definition for Σ. Furthermore let
t ∈ TΣ({z1, . . . , zl}) be a term with at most l variables and let τ1, . . . , τl, σ1, . . . , σl ∈ Aω be
streams such that τj ≡n σj for j ∈ {1, . . . , l} and some n ∈ IN. Then

[[t[zj := τj]]]D ≡n [[t[zj := σj]]]D.

Proof: The claim is proven by induction on n and the structure of t. For the case n = 0 and
t = zj for some j′ ∈ {1, . . . , l} we get [[t[zj := τj]]]D = [[τj′]]D = τj′ ≡0 σj′ = [[t[zj := σj]]]D.

In the case n = 0 and t = g(t1, . . . , tm) we calculate

[[g(t1, . . . , tm)[zj := τj]]]D(0) = o
(
g(t1, . . . , tm)[zj := τj]

)
= ig

(
o(t1[zj := τj]), . . . , o(tm[zj := τj])

)
= ig

(
[[t1[zj := τj]]]D(0), . . . , [[tm[zj := τj]]]D(0)

)
I.H.
= ig

(
[[t1[zj := σj]]]D(0), . . . , [[tm[zj := σj]]]D(0)

)
= [[g(t1, . . . , tm)[zj := σj]]]D(0)

which implies [[g(t1, . . . , tm)[zj := τj]]]D ≡0 [[g(t1, . . . , tm)[zj := σj]]]D as required.

Suppose now that τj ≡n+1 σj for j ∈ {1, . . . , l}. In the case t = zj′ it is again easy to see
that [[zj′ [zj := τj]]]D ≡n+1 [[zj′ [zj := σj]]]D. In the case t = g(t1, . . . , tm) we calculate:

[[g(t1, . . . , tm)[zj := τj]]]
′
D

[[]] co. mor.
= [[n(g(t1, . . . , tm)[zj := τj]]]D

= [[dg

(
o(ti[zj := τj])

)
[xi := ti[zj := τj], yi = n(ti[zj := τj])]]]D

= [[dg

(
o(ti[zj := τj])

)
[xi := [[ti[zj := τj]]], yi = [[ti[zj := τj]]]

′]]]D

(∗)
≡n [[dg

(
o(ti[zj := σj])

)
[xi := [[ti[zj := σj]]], yi = [[ti[zj := σj]]]

′]]]D

...

= [[g(t1, . . . , tm)[zj := σj]]]
′
D

Here the equivalence (∗) follows from multiple uses of the inductive hypothesis: we have
[[ti[zj := τj]]] ≡n+1 [[ti[zj := σj]]] and [[ti[zj := τj]]]

′ ≡n [[ti[zj := σj]]]
′ by the inductive

hypothesis on t. Therefore also (∗) holds by the inductive hypothesis on n. qed

Theorem 4.14 A function f : (Aω)k → Aω is definable iff f is causal.

Proof: The fact that every definable stream function is causal is almost immediate from
Lemma 4.13 and we leave the details of the precise argument to the reader.

In order to prove the converse we are going to define all causal functions in one (rather
big) stream definition. Let ΣC := {f | f : (Aω)k → Aω} be the signature that contains for
every causal function f a corresponding symbol f . We define a stream definition DC for ΣC

by considering for each k-ary f ∈ Σ the stream equation given by

if (a1, . . . , ak) := f [a1, . . . , ak]

df (a1, . . . , ak) := f(a1,...,ak)(x1, . . . , xk)

15

for all a1, . . . , ak ∈ A. In order to see now that every causal function is definable it suffices to
prove that SC := {f}f∈C is a solution of DC. This can be seen easily checked. We have

f(a1 : τ1, . . . , ak : τk)(0) = f [a1, . . . , ak] = if (a1, . . . , ak)

f(a1 : τ1, . . . , ak : τk)
′ = f(a1,...,ak)(τ1, . . . , τk)

= ISC
(
df (a1, . . . , ak)[xi := τi]

)
which shows that SC fulfils the conditions for being the unique solution of DC. qed

The reader might feel a bit uneasy about the fact that in the proof of the theorem we
used an infinite set of equations for defining a given causal function f : (Aω)k → Aω. First of
all this was necessary, because we defined all causal functions simultaneously. Secondly, there
are causal functions f that have an infinite number of distinct derivatives {fw | w ∈ (Ak)∗}
where fw is defined by fε = f and fw·(a1,...,ak) = (fw)(a1,...,ak). For those causal functions f ,
that only have a finite number of derivatives, it is easy to modify the argument in the proof
of Theorem 4.14 in order to obtain a definition for f that uses only θ(f) stream equations,
where θ(f) is the number of derivatives of f .

5 Linear stream differential equations

In this section, we shall discuss the class of linear SDEs and show that their solutions consist
of so-called rational streams. We begin by recalling a bit of elementary stream calculus from
[Rut05, Rut08].

5.1 Stream calculus

If we assume that A has some algebraic structure, the set Aω of streams over A inherits (parts
of) this structure [BR88]. More specifically, let us assume that

〈A, +, · , 0, 1 〉

is a semiring. Examples are the set 2 = {0, 1} of the Booleans, with disjunction for plus and
conjunction for times; and the sets of the natural or real numbers, with plus and times as
usual.

For r ∈ A, we define the constant stream

[r] = (r, 0, 0, 0, . . .)

which we often denote simply as r. Another constant stream is

X = (0, 1, 0, 0, 0, . . .)

We define the sum of two streams σ, τ ∈ Aω by the SDE

(σ + τ)′ = σ′ + τ ′

with initial value (σ + τ)(0) = σ(0) + τ(0). The convolution product of σ and τ is given by

(σ × τ)′ = (σ′ × τ) + ([σ(0)]× τ ′)

16

with initial value (σ × τ)(0) = σ(0) · τ(0). Equivalently, we have for all σ, τ ∈ Aω and n ≥ 0,

(σ + τ)(n) = σ(n) + τ(n)

(σ × τ)(n) =

n∑
i=0

σ(i) · τ(n− i)

Now it can be shown that
〈Aω,+,×, [0], [1]〉

is a semi-ring [BR88].
One can compute a stream from its initial value and derivative by the so-called fundamental

theorem of stream calculus [Rut05]: for all σ ∈ Aω,

σ = σ(0) + (X × σ′) (8)

(writing σ(0) for [σ(0)]). As we shall see below, the fundamental theorem can be used to
solve certain SDEs.

For the remainder of this section, we assume that A is a field: it has an operation − that
is inverse to + (making of A a ring). Moreover, every nonzero element in A has a unique
multiplicative inverse.

The operations of minus and multiplicative inverse on A can be carried over to Aω. For
σ ∈ Aω, we define

−σ = (−σ(0),−σ(1),−σ(2), . . .)

Equivalently, we can define minus by the SDE

(−σ)′ = −(σ′)

with initial value (−σ)(0) = −σ(0).
If σ(0) 6= 0 then the stream σ has a (unique) multiplicative inverse σ−1 in Aω, satisfying

σ−1 × σ = [1]. It can be defined as the unique solution of the SDE

(σ−1)′ = −[σ(0)−1]× σ′ × σ−1

with initial value
σ−1(0) = σ(0)−1

As usual, we shall often write 1/σ for σ−1 and σ/τ for σ × τ−1.
We call a stream π ∈ Aω polynomial if there are k ≥ 0 and ai ∈ A such that

π = a0 + a1X + a2X
2 + · · ·+ akX

k = (a0, a1, a2, . . . , ak, 0, 0, 0, . . .)

where we write aiX
i for [ai]×Xi with Xi the i-fold product of X with itself. For instance,

1 +X + 3X2 + 7X3 = (1, 1, 3, 7, 0, 0, 0, . . .)

is a polynomial stream.
We call a stream ρ ∈ Aω rational if it is the quotient ρ = σ/τ of two polynomial streams

σ and τ with τ(0) 6= 0. The stream

2−X
(1−X)2

= (2, 3, 4, 5, 6, . . .)

17

is an example of a rational stream.
As we mentioned above, the fundamental theorem of stream calculus can be used to solve

stream differential equations. Here we give an example of a single SDE; in the next subsection,
we shall see how to deal with systems of SDEs. Consider the following SDE:

σ′ = −(3× σ)

with initial value σ(0) = 1. Using the fundamental theorem, we calculate its solution as
follows:

σ = σ(0) + (X × σ′)
= 1 + (X ×−(3× σ))

= 1− (3X × σ)

This implies (1 + 3X)× σ = 1 whence

σ =
1

1 + 3X

One can easily prove that σ = (1,−3, 9,−27, . . .).

5.2 Solving linear systems of stream differential equations

Using some elementary linear algebra notation (matrices and vectors), we show next how to
solve linear systems of stream differential equations. For notational convenience, we shall deal
with linear systems of dimension 2, which can be straightforwardly generalised to systems of
higher dimensions. They are given by the following data:(

σ
τ

)′
= M ×

(
σ
τ

) (
σ
τ

)
(0) = N (9)

where M is a 2× 2-matrix and N is a 1× 2-matrix over A:

M =

(
m11 m12

m21 m22

)
N =

(
n1

n2

)
for mij , ni ∈ A. The above notation is really just a short hand for the following system of
two stream differential equations:

σ′ = (m11 × σ) + (m12 × τ) σ(0) = n1

τ ′ = (m21 × σ) + (m22 × τ) τ(0) = n2

We can solve such a system of equations by using twice the fundamental theorem of stream
calculus (equation (8) above), once for σ and once for τ :

σ = σ(0) + (X × σ′)

τ = τ(0) + (X × τ ′)

In matrix notation, the fundamental theorem looks like(
σ
τ

)
=

(
σ
τ

)
(0) + X ×

(
σ
τ

)′
18

Next we can solve our linear system (9) above by happily calculating as follows:(
σ
τ

)
=

(
σ
τ

)
(0) + X ×

(
σ
τ

)′
= N + X ×M ×

(
σ
τ

)
This leads to

(I − (X ×M))

(
σ
τ

)
= N

where I and X ×M are given by

I =

(
1 0
0 1

)
X ×M =

(
m11 ×X m12 ×X
m21 ×X m22 ×X

)
Finally, we can express the unique solution of our linear system of stream differential equations
as follows: (

σ
τ

)
= (I − (X ×M))−1 × N (10)

The advantage of the matrix notations above now becomes clear: we can compute the inverse
of the matrix

(I − (X ×M)) =

(
1− (m11 ×X) −(m12 ×X)
−(m21 ×X) 1− (m22 ×X)

)
whose values are simple polynomial streams, by standard linear algebra.

Let us look at an example and consider the following system of SDEs:

σ′ = τ

τ ′ = −σ + 2τ

with initial values σ(0) = 1 and τ(0) = 2. In other words,(
σ
τ

)
= (I − (X ×M))−1 × N

with

M =

(
0 1
−1 2

)
N =

(
1
2

)
The solution of this system of SDEs is now given by(

σ
τ

)
= (I − (X ×M))−1 × N

=

(
1 −X
X 1− 2X

)−1

×
(

1
2

)
=

(
1−2X

(1−X)2
X

(1−X)2
−X

(1−X)2
1

(1−X)2

)
×
(

1
2

)
And so we find

σ =
1

(1−X)2
τ =

2−X
(1−X)2

19

For another example, we return to the SDE defining the Fibonacci numbers (equation (1)
in Section 1.1)

σ′′ = σ′ + σ σ(0) = 0 σ(1) = 1

This SDE is higher-order: it involves a second derivative. One can transform it in the usual
fashion into a linear system of ordinary SDEs:

σ′ = τ

τ ′ = σ + τ

with initial values σ(0) = 0 and τ(0) = 1. This system corresponds to the following values of
M and N :

M =

(
0 1
1 1

)
N =

(
0
1

)
As before, the solution is given by(

σ
τ

)
= (I − (X ×M))−1 × N

=

(
1 −X
−X 1−X

)−1

×
(

0
1

)
=

(
1−X

1−X−X2
X

1−X−X2

X
1−X−X2

1
1−X−X2

)
×
(

0
1

)
It follows that the solution of our higher-order SDE is

σ =
X

1−X −X2

We conclude this section with the observation that the solutions of linear systems of
stream differential equations always consist of rational streams. This follows from the general
formula for the solution – equation (10) above – and the fact that if a matrix has polynomial
streams as entries then the entries of its inverse are rational streams.

6 Non-standard stream calculus

Coalgebras are usually studied “up-to-isomorphism”, e.g., one talks about the final coalgebra
of a functor because it is determined uniquely up-to-isomorphism. When reasoning about
a concrete type of coalgebras one then has a certain “canonical” representation of the final
coalgebra in mind. For the stream functor A × the final coalgebra is usually given by
the set of infinite A-streams Aω together with the usual operations ()(0) and ()′. There
are, however, infinitely many ways of turning Aω into the final stream coalgebra - we will
discuss some of them in this section. Our aim is to convince the reader that each of these
representations of Aω as final coalgebra is potentially interesting on its own as each of them
yields a different syntactic definition format. We confine ourselves to giving a list of examples
for both non-standard stream representations and some examples of definitions that make
good use of them.

20

6.1 Non-standard coalgebraic stream representations

Most of the examples for non-standard representations of the set Aω make use of some alge-
braic operations on A. Let us look at some examples for the case A = IR where IR denotes
the set of real numbers.

Example 6.1 1. We can supply the set IRω of streams over the set IR of real numbers
with a coalgebra structure as follows. For σ ∈ IRω we define

∆σ = (σ(1)− σ(0), σ(2)− σ(1), σ(3)− σ(2), . . .)

(cf. [PE98, Rut05]). We claim that IRω together with the map

< ()(0), ∆ >: IRω → IR× IRω σ 7→< σ(0), ∆σ >

is a final IR× -coalgebra.

2. Another coalgebra structure on IRω is obtained by defining

dσ

dX
= (σ(1), 2 · σ(2), 3 · σ(3), . . .)

for σ ∈ IRω. Again (IRω, 〈()(0), d
dX 〉) is a final IR× -coalgebra.

3. In a similar fashion lots of examples could be designed: Given a set A together with
some operation o : A×A→ A, we define

∆oσ = (o(σ(0), σ(1)), o(σ(1), σ(2)), o(σ(2), σ(3)), . . .)

and we can see that Aω together with the map < ()(0), ∆o >: Aω → A×Aω is a final
coalgebra provided that for any a ∈ A the map a′ 7→ o(a, a′) has an inverse.

But the examples for non-standard stream representations are not limited to coalgebras for
the stream functor A× as the following two interesting examples show.

Example 6.2 1. We define two functions Even : Aω → Aω and odd : Aω → Aω by putting

odd(σ(0), σ(1), σ(2), . . .) := (σ(1), σ(3), . . .)

Even(σ(0), σ(1), σ(2), . . .) := (σ(2), σ(4), . . .).

It is not difficult to see that Aω together with the map 〈()(0), odd,Even〉 : Aω →
A×Aω ×Aω is the final (A× ×)-coalgebra.

2. Alternatively, we can define a function even : Aω → Aω by putting

even(σ) := (σ(0), σ(2), σ(4), . . .)

for σ ∈ Aω. In this case the set Aω together with the function 〈()(0), even, odd〉 is
not a final coalgebra, but a subcoalgebra of the final (A× ×)-coalgebra. It has been
demonstrated in [KR10] that this representation as a subcoalgebra of the final coalgebra
is sufficient for obtaining a syntactic definition format.

21

6.2 Examples of non-standard stream calculus

We now turn to the examples of stream differential equations that make use of the different
representations of Aω. Essential in all examples is the fact that we have a “non-standard”
representation of Aω as a (subcoalgebra of a) final coalgebra. Therefore we can use finality in
order to define stream constants and functions using stream differential equations that employ
these representations. This has been made formal in [KR10] where a definition format is
described that generalises the one from Section 4 to arbitrary non-standard representations.
Here we are only going to state the stream differential equations without formally defining
the notion of a solution and without proving that such a solution is uniquely determined.

Example 6.3 1. An example of a differential equation using the representation from Ex-
ample 6.1(1)) is the following:

σ(0) = 1 , ∆σ = σ

It has as unique solution the stream σ = (20, 21, 22, . . .). A closed expression for this
solution can be computed using the following identity, which can be viewed as the
fundamental theorem of the difference calculus: for all τ ∈ IRω,

τ =
1

1−X
× (τ0 + X ×∆τ)

Using this and the differential equation above, one obtains

σ =
1

1− 2X
= (20, 21, 22, . . .)

2. The following is an example of an differential equation using the stream representation
from Example 6.1(2)):

σ(0) = 1 ,
dσ

dX
= σ

Again, it has a unique solution, which is now given by σ(n) = 1
n! . (It is not obvious

how to find a closed expression for σ.)

Two interesting examples that use that ()(0), even and odd representation are provided by
differential equations for the well-known Thue-Morse and Toeplitz sequence [AS99].

Example 6.4 Let A = F2 be the two-element Boolean field. We are going to define stream
constants and operations on the set Fω2 . The following definition should be read as one
collection of stream differential equations in the style of our formal definition scheme from
Section 4. The difference to Section 4 is that we do not use the ()(0), ()′-representation,
but the ()(0), even and odd-representation of streams. The following three equations on the
left specify a function inv : Fω2 → Fω2 that computes the pointwise Boolean inverse of a given
stream σ, ie.,

inv(σ) = (1− σ(0))(1− σ(1))(1− σ(2)) . . .

The three equations on the right specify the Thue-Morse sequence.

inv(x)(0) = 1− x(0) M(0) = 0
even(inv(x)) = inv(even(x)) even(M) = M
odd(inv(x)) = inv(odd(x)) odd(M) = inv(M)

22

Furthermore we can add six equations that specify the sequence 1 that consists of 1’s only
and the Toeplitz-sequence.

1(0) = 1 T(0) = 1
even(1) = 1 even(T) = 1
odd(1) = 1 odd(T) = inv(T)

Recently we observed that the definability of the Thue-Morse and Toeplitz streams in non-
standard stream calculus is an instance of a general result: Every k-automatic sequence in
the sense of [AS99] can be defined using a finite number of equations in non-standard stream
calculus. The details can be found in [KR11].

6.3 Coinduction for non-standard stream representations

The non-standard stream representations that we discussed are not only useful for definitions
but also for coinductive proofs: If we represent Aω as a (subcoalgebra of a) final coalgebra,
we can show that two streams σ1, σ2 ∈ Aω are equal by proving that they are bisimilar.
For example, for showing that σ1 = σ2 for σ1, σ2 ∈ Aω, it suffices to show that there is a
relation R ⊆ Aω × Aω with (τ1, τ2) ∈ R implies τ1(0) = τ2(0) and (∆(τ1),∆(τ2)). In this
case we call R a {()(0),∆}-bisimulation. Similarly, we can use {()(0), d

dX }-bisimulations or
{()(0), even, odd}-bisimulations for proving equalities between streams. We are now going to
discuss two examples where this non-standard coinduction leads to simple proofs of non-trivial
facts about streams.

As a preparation for the first example we define the following so-called falling powers of
X, for all n ≥ 0, by

Xn = Xn/(1−X)n+1

Note that ∆X0 = ∆(1/(1 −X)) = 0 and ∆Xn+1 = Xn. For a stream σ ∈ IRω we define its
n-th coordinate in the ∆-representation by putting

rσn =
(

∆(n) σ
)

(0) ∈ IR

Now we can represent a given stream as the following sum of falling powers

sum(σ) = rσ0 × X0 + rσ1 × X1 + rσ2 × X2 + · · ·

The fact that sum(σ) is indeed a representation of σ has straightforward proof by {()(0),∆}-
coinduction.

Theorem 6.5 For all σ ∈ IRω we have σ = sum(σ).

Proof: We show that
R = { (σ, sum(σ)) | σ ∈ IRω }

is an {h,∆}-bisimulation. Clearly,

σ(0) = sum(σ)(0))

23

Furthermore we have

∆ sum(σ)

= ∆
(
rσ0 × X0 + rσ1 × X1 + rσ2 × X2 + · · ·

)
= rσ0 × ∆X0 + rσ1 × ∆X1 + rσ2 × ∆X2 + · · ·
= rσ1 × X0 + rσ2 × X1 + rσ3 × X2 + · · ·
= sum(∆σ)

where for the latter equality we use rσn+1 = r∆σ
n . As a consequence, we have

(∆σ, ∆ sum(σ)) = (∆σ, sum(∆σ)) ∈ R

This proves that R is an {()(0),∆}-bisimulation. qed

The theorem above was first presented in [Rut05, Thm 11.1] using “ordinary” {()(0), ()′}-
coinduction. The reader is invited to check that the proof there is quite a bit more complicated
which demonstrates the usefulness of non-standard stream representations.

Another example for non-standard coinduction builds on Example 6.4 where we defined
the Thue-Morse sequence M and the Toeplitz sequence T. The statement we want to prove
establishes a close connection between these sequences.

Theorem 6.6 We have T = ∆(M) = M + M′.

In order to prove the theorem we need a small collection of lemmas.

Lemma 6.7 The following holds for all streams σ, τ ∈ 2ω:

1. σ + inv(σ) = 1,

2. σ + σ = 0,

3. inv(σ) + τ = inv(σ + τ)

4. inv(1) = 0,

5. inv(inv(σ)) = σ.

Proof: All claims have a simple coinductive proof. We put

R := {(σ + inv(σ), 1) | σ ∈ 2ω} ∪ {(σ + σ, 0) | σ ∈ 2ω}
{(inv(σ) + τ), inv(σ + τ)) | σ, τ ∈ 2ω} ∪ {(inv(1), 0)}
{(inv(inv(σ)), σ) | σ ∈ 2ω}.

and show that R is a {()(0), even, odd}-bisimulation. Consider first (σ+ inv(σ), 1) ∈ R, then
(σ + inv(σ))(0) = σ(0) + inv(σ)(0) = σ(0) + 1 − σ(0) = 1 = 1(0). Furthermore even(σ +
inv(σ)) = even(σ)+ even(inv(σ)) = even(σ)+ inv(even(σ)) and even(1) = 1 and thus (even(σ+
inv(σ)), even(1)) ∈ R. Similarly we can show that (odd(σ + inv(σ)), odd(1)) ∈ R. The other
cases can be verified analogously, which shows that R is indeed a bisimulation and that the
claims of the lemma hold true. qed

24

We can now turn to the proof of Theorem 6.6.

Proof: In order to prove the theorem, we show that the following relation is a {()(0), even, odd}-
bisimulation:

R := {(T,M + M′), (inv(T), inv(M + M′)), (1, 1), (0, 0)}

Throughout the proof we are using the following identities which can be easily seen to be true
for any stream σ ∈ Aω:

σ′(0) = odd(σ)(0)

odd(σ′) = even(σ)′

even(σ′) = odd(σ)

Let us now see that R is indeed a bisimulation. It suffices to check the bisimulation condition
for first two elements of R as it obviously is fulfilled for the pairs (1, 1) and (0, 0).

We have (M + M′)(0) = M(0) + M′(0) = 0 + odd(M)(0) = 0 + inv(M) = 0 + 1 = 1 =
T(0). Furthermore even(M + M′) = even(M) + even(M′) = M + odd(M) = M + inv(M) = 1
where the last equality follows from Item 1 of Lemma 6.7. As even(T) = 1 this shows
that (even(T), even(M + M′)) ∈ R. In addition to that we have odd(M + M′) = odd(M) +
odd(M′) = inv(M) + even(M)′ = inv(M) + M′ = inv(M + M′) where the last equality is a
consequence of Item 3 of Lemma 6.7. On the other hand odd(T) = inv(T) which proves that
(odd(T), odd(M + M′)) ∈ R.

Let us now check the bisimulation conditions for the pair (inv(T), inv(M + M′)). We
calculate inv(T)(0) = 1 − T(0) = 1 − 1 = 0 and inv(M + M′)(0) = inv(M)(0) + (M′)(0) =
(1−M(0)) + M′(0) = 1 + odd(M)(0) = 1 + inv(M)(0) = 1 + 1 = 0. where the first equality is
again a consequence of Item 3 of Lemma 6.7. For the even-part we compute even(inv(T)) =
inv(even(T)) = inv(1) = 0 where the last equality is Item 4 of Lemma 6.7. Moreover we have

even(inv(M + M′)) = even(inv(M) + M′) = even(inv(M)) + even(M′)

= inv(even(M)) + odd(M) = inv(M) + inv(M) = 0

which follows from Item 2 of Lemma 6.7. This implies that the pair (even(inv(T)), even(inv(M+
M′))) is an element of R as required.

Finally, consider the odd-part of the bisimulation condition: On the one hand we have
odd(inv(T)) = inv(odd(T)) = inv(inv(T)) = T where the last equality is a consequence of
Item 5 of Lemma 6.7. On the other hand we have odd(inv(M)+M′) = odd(inv(M))+odd(M′) =
inv(odd(M)) + even(M)′ = inv(inv(M)) + M′ = M + M′ where the last equality is again a
consequence of Item 5 of Lemma 6.7. Therefore (odd(inv(T)), odd(inv(M) + M′)) ∈ R as
required. qed

References

[AS99] J.-P. Allouche and J. Shallit. The Ubiquitous Prouhet–Thue–Morse Sequence. In
Sequences and Their Applications: Proceedings of SETA ’98, pages 1–16. Springer,
1999.

[Bar03] F. Bartels. Generalised coinduction. Mathematical Structures in Computer Sci-
ence, 13(2):321–348, 2003.

25

[Ber05] Y. Bertot. Filters on coinductive streams, an application to eratosthenes’ sieve. In
Pawel Urzyczyn, editor, TLCA, volume 3461 of LNCS, pages 102–115. Springer,
2005.

[BG06] M. Boreale and F. Gadducci. Processes as formal power series: A coinductive
approach to denotational semantics. Theor. Comput. Sci., 360(1-3):440–458, 2006.

[BR88] J. Berstel and C. Reutenauer. Rational series and their languages, volume 12 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

[Brz64] J.A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, 1964.

[Con71] J.H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.

[Coq94] T. Coquand. Infinite objects in type theory. In Henk Barendregt and Tobias Nip-
kow, editors, Types for Proofs and Programs, International Workshop TYPES’93,
Nijmegen, The Netherlands, May 24–28, 1993, Selected Papers, volume 806 of
Lecture Notes in Comput. Sci., pages 62–78. Springer-Verlag, 1994.

[Dij81] E.W. Dijkstra. Hamming’s exercise in SASL. Hand-written note EWD792, Uni-
verity of Texas, 1981.

[EGH+07] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W. Klop. Productivity
of Stream Definitions. In Proc. Conf. on Fundamentals of Computation Theory
(FCT 2007), number 4639 in LNCS, pages 274–287. Springer, 2007.

[EGH08] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-Oblivious Stream Productiv-
ity. In Proc. Conf. on Logic for Programming Artificial Intelligence and Reasoning
(LPAR 2008), number 5330 in LNCS, pages 79–96. Springer, 2008.

[EGH+10] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W. Klop. Productivity
of Stream Definitions. Theoretical Computer Science, 411:765–782, 2010. Extended
version of [EGH+07].

[Geu92] H. Geuvers. Inductive and coinductive types with iteration and recursion. In
Proceedings of the 1992 Workshop on Types for Proofs and Programs, Bastad,
pages 193–217, 1992.

[GM03] P. Di Gianantonio and M. Miculan. A Unifying Approach to Recursive and Co-
recursive Definitions. In H. Geuvers and F. Wiedijk, editors, Types for Proofs
and Programs, Second International Workshop, TYPES 2002, Berg en Dal, The
Netherlands, April 24-28, 2002, Selected Papers, volume 2646 of LNCS, pages
148–161. Springer, 2003.

[Gor94] A.D. Gordon. A tutorial on co-induction and functional programming. In Glasgow
functional programming workshop, pages 78–95. Springer, 1994.

[Hin08] R. Hinze. Functional pearl: streams and unique fixed points. In Proceeding of the
13th ACM SIGPLAN international conference on Functional programming, ICFP
2008, pages 189–200. ACM, 2008.

26

[HR10] H.H. Hansen and J.J.M.M. Rutten. Symbolic synthesis of Mealy machines from
arithmetic bitstream functions. Scientific Annals of Computer Science, 2010. To
appear.

[JR97] B. Jacobs and J. J. M. M. Rutten. A Tutorial on (Co)Algebras and (Co)Induction.
Bulletin of EATCS, 62:222–259, 1997.

[Kom10] J. Komenda. Coinduction in concurrent timed systems. In Proceedings CMCS
2010, ENTCS. Elsevier, 2010.

[KR10] C. Kupke and J.J.M.M. Rutten. Complete sets of cooperations. Information and
Computation, 208(12):1398–1420, 2010.

[KR11] C. A. Kupke and J. J. M. M. Rutten. On The Final Coalgebra Of Automatic
Sequences. CWI Technical Report SEN-1112, CWI, December 2011.

[KV08] C. Kupke and Y. Venema. Coalgebraic automata theory: Basic results. Logical
Methods in Computer Science, 4(4), 2008.

[KvS08] J. Komenda and J.H. van Schuppen. Modular control of discrete-event systems
with coalgebra. IEEE Trans. Automatic Control, 53:447–460, 2008.

[MBG10] D. Clark M. Boreale and D. Gorla. A semiring-based trace semantics for processes
with applications to information leakage analysis. In C. Calude and V. Sassone,
editors, Proc. of 6th International IFIP Conference on Theoretical Computer Sci-
ence (IFIP-TCS 2010). Springer, 2010.

[McI99] M.D. McIlroy. Power series, power serious. Journal of Functional Programming,
9:323–335, 1999.

[MD97] L.S. Moss and N. Danner. On the foundations of corecursion. Logic Journal of
the IGPL, 5(2), 1997.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

[Mos99] L.S. Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96(1-3):277–317, 1999.

[NR10] M. Niqui and J. Rutten. Sampling, splitting and merging in coinductive stream
calculus. In MPC, pages 310–330, 2010.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings 5th GI conference, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer-Verlag, 1981.

[PE98] D. Pavlović and M.H. Escardó. Calculus in Coinductive Form. In Proc. Symp. on
Logic in Computer Science (LICS 1998), pages 408–417, 1998.

[Rut98] J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra). In D. San-
giorgi and R. de Simone, editors, Proceedings of CONCUR’98, volume 1466 of
LNCS, pages 194–218, 1998.

27

[Rut99] J.J.M.M. Rutten. Automata, power series, and coinduction: taking input deriva-
tives seriously (extended abstract). In J. Wiedermann, P. van Emde Boas, and
M. Nielsen, editors, Proceedings of ICALP’99, volume 1644 of LNCS, pages 645–
654, 1999.

[Rut00] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249(1):3–80, 2000. Fundamental Study.

[Rut03] J.J.M.M. Rutten. Behavioural Differential Equations: a Coinductive Calculus of
Streams, Automata, and Power Series. Theoretical Computer Science, 308(1-3):1–
53, 2003.

[Rut05] J.J.M.M. Rutten. Algebra, bitstreams, and circuits. In Proceedings of the Dresden
Conference 2004 (AAA68), volume 16 of Contributions to General Algebra, pages
231–250. Verlag Johannes Heyn, 2005.

[Rut06] J.J.M.M. Rutten. Algebraic specification and coalgebraic synthesis of Mealy au-
tomata. In Proceedings of FACS 2005, volume 160 of ENTCS, pages 305–319.
Elsevier Science Publishers, 2006.

[Rut08] J.J.M.M. Rutten. Rational streams coalgebraically. Logical Methods in Computer
Science, 4(3), 2008.

[SR10] A. Silva and J.J.M.M. Rutten. A coinductive calculus of binary trees. Information
and Computation, 208(5):578–593, 2010.

[UV99] T. Uustalu and V. Vene. Primitive (co)recursion and course-of-value (co)iteration,
categorically. Informatica, Lith. Acad. Sci., 10(1):5–26, 1999.

28

