
Stream Fusion on Haskell Unicode Strings

Thomas Harper1

Oxford University Computing Laboratory
Oxford, United Kingdom

Abstract. Prior papers have presented a fusion framework called stream
fusion for removing intermediate data structures from both lists and ar-
rays in Haskell. Stream fusion is unique in using an explicit datatype to
accomplish fusion. We demonstrate how this can be exploited in the cre-
ation of a new Haskell string representation Text, which achieves better
performance and data density than String . Text uses streams not only
to accomplish fusion, but also as a way to abstract away from various
underlying representations. This allows the same set of combinators to
manipulate Unicode text that is stored in a variety of ways.

1 Introduction

Lists are the primary workhorse data structure of functional programming. In
the programming language Haskell[1], strings are represented using the built-in
list type. This allows programmers to use standard polymorphic list combinators
to build complex string manipulation functions in the same way that they would
manipulate other lists. Haskell programmers often take advantage of this by
composing list functions to form “pipelines” for transforming lists (and strings).
For example:

return · words ·map toUpper · filter isAlpha =<< readFile f

This program reads in a file, filters out the non-alphabetic characters, converts
the remaining characters to uppercase, and then tokenises them. It exemplifies
Haskell’s ability to create concise yet powerful programs through the compo-
sition of modular functions. It is also, however, extremely inefficient. Haskell’s
Strings are much larger than, for example, their C counterparts. To address these
inefficiencies, there is an alternative to String in the Haskell core libraries called
ByteString . ByteString addresses String ’s inefficiencies and achieves greater per-
formance, but it does so at the cost of support for non-ASCII characters. We
are introducing a new data type, Text , to fill in the gap left between these two
approaches. Text addresses the performance issues associated with String while
maintaining Unicode support.

The Text type is an array-based string representation that is faster and more
compact than String . Its API is based on Haskell’s list library, which means
that it can be used as a drop-in replacement for String . Figure 1 shows the
speed-up achieved by using Texts to run the example program from above. The
main contribution of this paper is a faster, more compact string representation

Text
String

Comparing runtimes

Time (in seconds)

0 5 10 15 20 25

Fig. 1. Sample comparison of Text and String runtimes

for Haskell that incorporates Unicode support. We implement Haskell’s list API
over Texts. Like ByteString , we use stream fusion to remove intermediate data
structures. Our use of stream fusion demonstrates how to exploit it in a novel
way. Our API implementation uses the Stream type as an abstraction over more
complex underlying representations. As we will show, this is an important aspect
of how we implemented the API for Text .

The rest of the paper is organised as follows: Section 2 provides some impor-
tant background information. It discusses Haskell’s String type and its advan-
tages and disadvantages. It presents some information on the Unicode standard
and Unicode encoding standards. It also provides a short introduction to stream
fusion. Section 3 discusses the internal structure of the Text datatype and how
it addresses the inefficiencies of String . Section 4 describes the API for Text and
how it uses stream fusion in its implementation. Section 5 presents and discusses
some benchmarks of Text in comparison with both String and ByteString . Sec-
tion 6 discusses some of the related fusion and string alternative efforts. Section 7
presents our conclusions and proposals for further work.

2 Background

2.1 The String and ByteString types

Haskell defines String using the built-in list and Char types:

type String = [Char]

There are many benefits to this design. It is consistent with the notion that
a string is a list of individual characters and allows us to manipulate them as
we would other lists. Haskell’s polymorphic list library contains functions that
encapsulate a variety of common recursion patterns. Programmers can compose
these functions to create modular programs where each of the individual compo-
nents can be reused. Strings are also Unicode-compliant. This elegance, however,
comes with a price. Figure 2 shows the structure of String . Using the Haskell list
type as the basis for String means that it uses a series of Cons cells to store val-
ues. In the case of String , each of these Cons cells points to both a heap-allocated
Char and then the next Cons cell in the list. Each heap-allocated object has a

����

����

����

����

����

����

���

��� ��� ���

Fig. 2. The low-level structure of a String

word-sized (either 32-bit or 64-bit) header. All pointers are also word-sized. Each
Char is also word-sized. This amounts to a string representation that requires
20 bytes per character on a 32-bit system where only 8 to 32 bits are needed [2].1

Coutts et al. [3] created a new string type, ByteString , which offers better
density and performance than String . In order to overcome String ’s memory
and performance drawbacks, ByteString uses a strict, array-based representa-
tion. The underlying structure of this representation is shown in Figure 3. This

��

������������������

����� ���

����� ���
������ ������

���

������

����
�����������������

Fig. 3. The low-level structure of a ByteString

array structure eliminates the need for memory-consuming pointers and headers
for each character. It only uses a 8 bits for each character instead of String ’s
32 bits. This compactness, while desirable, also sacrifices support for Unicode
characters, leaving a rather large gap between the performance of ASCII text
and Unicode text in Haskell. As a strict data structure, the creation of interme-
diate ByteStrings would have a severe impact on performance. To address this
problem, the authors of ByteString introduced a new fusion technique which
they called stream fusion [4]. This technique, which we also employ, is explained
briefly in Section 2.3.

2.2 Unicode

Unicode is a world standard for representing text in nearly all of the world’s
modern and historical writing systems [5], including, for example, Cyrillic, Ara-
bic, and East Asian scripts. The Unicode Standard also specifies three encoding
systems for Unicode code points: UTF-8, UTF-16, and UTF-32. Of these, UTF-8
and UTF-16 are variable-width, and UTF-32 is fixed-width. For variable-width

1 For ASCII characters, each repeated character only requires an additional 12 bytes
because GHC pre-allocates and shares ASCII characters.

encodings, decoding a Unicode stream into Unicode code points involves some
binary arithmetic.

UTF-8 is a byte-oriented encoding in which each code point requires between
one and four bytes depending on its value (the larger the code point value,
the more bytes required). This encoding is the most compact, using only one
byte for the smallest code points. It is also backward compatible with ASCII
(that is, a UTF-8 document consisting only of those characters in ASCII will
be exactly the same). The price for UTF-8’s compactness is increased overhead
in decoding. Outside of traditional ASCII characters (i.e. any code point above
U+7F2), it is necessary to reconstruct code points from two or more bytes for
many commonly used characters (e.g. every character in the Cyrillic alphabet
or Arabic alphabets).

UTF-16 is a 16-bit-word-oriented encoding. Characters are encoded using one
or two words. Two adjacent words that are used to represent a character together
are a surrogate pair. In comparison with UTF-8, UTF-16 is less compact; the
minimum space required for a code point is 16 bits rather than 8. What this
costs in space, however, is gained in efficiency. The range of code points that fit
into one UTF-16 word is U+0000 to U+FFFF. This range is known as the Basic
Multilingual Plane, and contains all writing systems currently in use around the
world, as well as some historic ones.3. This means that surrogate pairs occur
rarely in modern language documents. Those code points that are stored in only
one 16-bit word are stored as raw values; no arithmetic is required to decode
them.

Of the three encodings, UTF-32 is the simplest. It represents each code point
as a 32-bit number. A code point requires at most 21-bits to represent its value,
so UTF-32 can represent any of them without any splitting or arithmetic. While
this is the most straightforward implementation of Unicode, it is also the most
inefficient in terms of space. All common (and even many obscure) code points
take up two to four times as much space as necessary.

Although UTF-8 is the most compact encoding, Text uses UTF-16 due to
its much lower overhead. In the case of ASCII characters, this does represent a
greater use of space that is strictly necessary. However, given the fact that UTF-
8 also requires 16 bits for any non-Basic Latin character, UTF-16 represents a
similar solution with far less overhead, especially for non-Latin-based scripts.

2.3 Stream fusion

Stream fusion is a technique for removing intermediate data structures that
appear from the composition of recursive functions. These data structures are
created when one function passes data on to the next. They are then discarded,
waiting to be garbage collected. Depending on the situation, this can have a

2 Unicode code points are usually represented as “U+” prefixed to the hexadecimal
form of the number

3 The exception to this is about 40,000 of the “Han Unification” characters used for
East Asian languages. These are rarely used or obscure.

significant impact on performance. Although other techniques have been imple-
mented in Haskell[6, 7], the use of stream fusion for ByteString has demonstrated
that it is well-suited to fusing arrays. In contrast, other common fusion systems
are generally adapted for fusing lists. Here, we give an overview of the stream
fusion material published by Coutts et al., whose papers provide a more in-depth
explanation of the technique.

Stream fusion differs from other fusion strategies in using an explicit data
type:

data Stream a = ∃s. Stream (s → Step s a) s

data Step s a = Done | Yield a s | Skip s

A Stream is a co-recursive form of a list, where each element of the list may
be yielded one at a time. It contains a stepper function, which is used to unfold
the Stream, and an initial seed to pass to the stepper function. The results of
the stepper function cover three possibilities. The Yield constructor produces an
element and a new seed. The Done constructor signals the end of the list. The
case of Skip allows a new seed to be produced without yielding a value. This is
important in allowing us to define functions that have potentially non-productive
steps (e.g. filter). The central idea of stream fusion is that instead of recursive
functions over data structures, we can define non-recursive ones over streams.
We can then convert our data structures to and from streams to achieve the
desired transformation.

Data structures are converted to and from streams by the functions stream
and unstream. The stream function converts a data structure into a Stream. It
creates a new Stream with a stepper function that yields successive values of
the data structure until its end, finally yielding Done. For example, the stream
function over lists is

stream :: [a]→ Stream a
stream s0 = Stream next s0

where
next [] = Done
next (x : xs) = Yield x xs ·

The way to convert back to our original structure is with unstream. This function
actually applies a Stream’s stepper function recursively to each successive seed
until it encounters Done. For lists, the unstream function is

unstream :: Stream a → [a]
unstream (Stream next s0) = unfold s0

where unfold s = case next s of
Done → []
Skip s ′ → unfold s ′

Yield x xs → x : unfold xs ·

Functions over streams transform it by modifying the definition of its stepper
function. This is done by defining a new function that calls the original stepper

mapS :: (a → b)→ Stream a → Stream b
mapS (Stream next s0) = Stream next ′ s0

where
next ′ s = case next s of

Done → Done
Skip s ′ → Skip s ′

Yield a s ′ → Yield (f a) s ′

filterS :: (a → Bool)→ Stream a → Stream a
filterS p (Stream next s0) = Stream next ′ s0

where
next ′ s = case next s of

Done → Done
Skip s ′ → Skip s ′

Yield a s ′ | p x → Yield a s ′

| otherwise → Skip s ′

Fig. 4. Some examples of stream functions

function and pattern matching on each of the three Step constructors. Figure 4
shows the stream version of some common list functions. The function filterS is
particularly notable in demonstrating the use of the Skip constructor. In the case
where the predicate p is not satisfied the Yield is replaced with a Skip which
discards the value and only keeps the seed. This allows the stepper function to
be productive without yielding an element we wish to discard.

It is important to note that stepper functions are non-recursive. When a
stream is unfolded, all the transformations are applied to a yielded element be-
fore producing a new one. This merges what would be several recursive traver-
sals over a structure into a single recursive unfold of a stream. In general, fusible
functions on streamable data structures are defined in terms of their analogous
stream transformers, stream, and unstream. A fusible function defined in terms
of streams tends to have the following structure:

f x = unstream · fS · stream

where fS is the stream transformation analogue of f . Functions that only con-
sume streams have no unstream, and functions that only produce streams will
have no stream. When two fusible functions f and g are composed as f · g , they
can be inlined to form

unstream · fS · stream · unstream · gS · stream

In the middle of this function, there is an instance of unfolding a stream, only
to create a new one. Eliminating occurrences of stream · unstream yields the
program:

unstream · fS · gS · stream

Removing this portion of the program produces a new program that is equiv-
alent. The occurrence of stream · unstream would have created an intermediate

data structure, only to convert it to new stream. Instead, the original stream is
transformed twice and then unfolded. To accomplish this fusion automatically,
we specify the following rewrite rule:

〈stream/unstream fusion〉 ∀s. stream (unstream s) 7→ s

This rule can be specified in GHC using compiler directives [8], which allows us
to apply it automatically during compilation.

3 The Text Data Type

The first step in creating Text is to design its underlying datatype. The purpose
of the Text datatype is to store Unicode text more efficiently than String . Having
seen the effectiveness of array-based storage, we use this approach in Text . Using
an array removes the numerous pointers and Cons cells that account for so
much of the space consumed by a String . We can also remove the pointers to
elements, and their associated headers, by using an array of unboxed elements.
Finally, we can decrease the minimum size of a character by utilising a Unicode
encoding instead of representing them as raw code points. In this case, we chose
UTF-16. The reason for this decision is not arbitrary; UTF-16 achieved better
performance in benchmarks that dealt with large amounts of non-ASCII test,
most likely because of its simpler arithmetic [9]. We consider such a case to be
a major use of this library and therefore an important factor.

The result is the following definition of Text :

data Text = Text !(UArray Int Word16) !Int !Int

Text is an unboxed array of 16-bit words indexed by integers. The other integers
are offset and length fields. These fields allow “free” creation of substrings merely
by modifying these fields and pointing to the original string’s array. The excla-
mation points are strictness annotations which prevent these fields from being
calculated lazily; since the underlying array is strict anyway, any laziness will
only introduce inefficiencies. Figure 5 shows the underlying structure of Text .
The use of Word16 reflects our use of UTF-16, which is based on converting 1

������

���

���
������ ������

���

����
����

�����������������

����

���

�� �� ���

Fig. 5. The low-level structure of a Text

or 2 16-bit words into a Unicode code point. Even in the worst case, Text still
only requires 32 bits instead of Strings 20 bytes.

The switch from a list-based representation to an array-based one alters the
complexity of some fundamental string operations. Some operations are now

faster and consume less memory. Indexing is now a constant time operation,
allowing for easy reads in the middle of the string. Because of the length and
offset fields, operations involving substring creation (e.g. take and drop) do not
require any additional space. Functions that construct strings, however, require
more resources than before. Both cons and concat require all of its inputs to be
copied into a new array. This shifts cons from a constant time operation to linear
one, and concat has gone from being linear in the length of its first argument
to linear in the length of both arguments combined. The impact of these design
decisions is also measured in Section 5.

4 Fusion and the Text API

In Section 2, we introduced the Stream datatype, along with the associated
functions stream and unstream. These functions allowed us to use transformers
over Stream as transformers over a target data structure. The use of stream
and unstream allows us to syntactically identify and remove intermediate data
structures from a program automatically.

In order to take advantage of stream fusion, all we need to do is implement
Text versions of stream and unstream. The stream function must define a step-
per function and seed that will traverse an array. Slightly more complicated is
unstream, which needs to unfold the stream and place the yielded elements in
an array. This entails allocating an array of the appropriate size. The initial
solution to this problem was to start with a small array, allocating a new ar-
ray that was double the size of the original when needed. The cost of copying,
however, quickly overtook any performance gains. Instead, we added a strict Int
field to Stream. This field holds the length of the array from which the stream
was created, allowing the unstream to make a good guess of what the string
size will be. Copying can still be performed if necessary but is avoided in most
cases. Functions that modify the length of a string (e.g. cons,concat ,take,drop)
can modify this length field.

The crucial question in streaming Texts is how to manipulate them. In prior
implementations of stream fusion, the elements of the underlying data structure
are simply turned into a Stream of the same elements. This logic would lead us to
converting Texts to Stream Word16 s. This would mean that programmers would
have to deal with encoding and decoding UTF-16 values themselves, which is
highly undesirable. The idea is to abstract away from the underlying representa-
tion in our API, thus letting programmers deal with Chars. Therefore, we need
to implement stream and unstream so that they not only create a Stream, but
decode and re-encode UTF-16 values.

The first function, stream, decodes a UTF-16 array and creates a Stream from
the result. This function is show in Figure 6. This function creates a Stream Char
whose stepper function next both decodes and streams elements of the array.
The seeds for this function are indices of the array. This implementation makes
some important assumptions about the input Text . First, it assumes that all
elements are valid UTF-16 values. This eliminates the need to perform certain

stream :: Text → Stream Char
stream (Text arr off len) = Stream next off len

where
end = off + len
next !i
| i > end = Done
| n > 0xD800 ∧ n 6 0xDBFF = Yield (chr2 n n2) (i + 2)
| otherwise = Yield (unsafeChr n) (i + 1)
where

n = unsafeAt arr i
n2 = unsafeAt arr (i + 1)

Fig. 6. The stream function for Text
.

bounds checks. The only condition we check about the elements is whether or
not they are the beginning of a surrogate pair. If they are, it is assumed the
following element is a valid second member of a surrogate pair. Finally, we use
unsafeAt and unsafeChr , which assume that the values they are given are valid
indices and character values, respectively. Making these assumptions cuts down
significantly on the number of bounds checks we need to perform. For large
strings, doing these for ever character has a significant impact on performance.
We allow ourselves to make these assumptions by assuming that all Texts are
always valid UTF-16 streams. We can do this because we do full Unicode checks
when Texts are created from other sources, and then control the manipulation
of Texts through our API.

The unstream function needs to convert a Char back into its UTF-16 equiv-
alent. This is shown in Figure 7. This function allocates an array based upon
length information given in the Stream. It then converts each character into one
or two Word16 s according to the UTF-16 standard. We again make the assump-
tion of safety of our characters and do not perform full Unicode bounds checking.
We can assume this rather safely because, unless the programmer is doing some-
thing tricky, Char will not contain an invalid Unicode code point. Furthermore,
we manually track the bounds of the allocated array so that bounds checking
does not need to be done with every write by the array API functions (hence
unsafeWrite).

Together, these two functions perform all of the Unicode encoding and de-
coding necessary for string manipulation. This decision makes it easy to find and
eliminate bottlenecks in our code. All of the encoding overhead is concentrated
in only these two functions. Because stream fusion requires writing transforma-
tions over an explicit datatype, the usual stream transformers will work with
a streamed Text . The only modifications we make are to restrict the type of
certain functions (elements of a Text are always characters, and there are no
nested Texts) and modify our length field where appropriate.

Placing our decoding and encoding functionality in the stream conversion
functions has another benefit: the stream fusion rewrite rule removes interme-

unstream :: Stream Char → Text
unstream (Stream next0 s0 len) = x ‘seq ‘ Text (fst x) 0 (snd x)

where
x :: ((UArray Int Word16), Int)
x = runST ((unsafeNewArray (0, len + 1) :: ST s (STUArray s Int Word16))
>>= (λarr → loop arr 0 (len + 1) s0))

loop arr !i !max !s
| i + 1>max = do

arr ′ ← unsafeNewArray (0,max ∗ 2)
case next0 s of

Done → liftM2 (,) (unsafeFreezeSTUArray arr) (return i)
→ copy arr arr ′ >> loop arr ′ i (max ∗ 2) s

| otherwise = case next0 s of
Done → liftM2 (,) (unsafeFreezeSTUArray arr) (return i)
Skip s ′ → loop arr i max s ′

Yield x s ′

| n < 0x10000→ do
unsafeWrite arr i (fromIntegral n :: Word16)
loop arr (i + 1) max s ′

| otherwise → do
unsafeWrite arr i l
unsafeWrite arr (i + 1) r
loop arr (i + 2) max s ′

where
n = ord x ; m = n − 0x10000
l = fromIntegral ((shiftR m 10) + (0xD800))
r = fromIntegral ((m .&. (0x3FF)) + (0xDC00))

Fig. 7. The unstream function for Text

diate data structures and reduces the number of decodings/encodings that take
place within a program automatically. This concept is key to the abstraction
that we wish to achieve from the underlying data structure. Once we have a
definition for stream and unstream, we no longer care about the data represen-
tation that is being used in Text when writing transformations. Regardless of
the encoding of the characters, or the structure of the underlying sequence, the
string manipulation functions are identical.

This abstraction has useful implications. Suppose that we want to use a
function from some other library that only gives us Strings. For our Text library
to work, we have to convert it first. For this, we use the pack function.

pack :: String → Text
pack str = (unstream (stream list str))

where
stream list s0 = Stream next s0 (length xs)

where
next [] = Done
next (x : xs) = Yield x xs

The pack function allows us to convert a String into a Text using streams. It
uses its own stream list function, which is actually just the list version of stream.
We then use unstream, which has already been heavily optimised, to write out
the stream to a Text . Using streams here doesn’t just make the function concise,
though. If we transform a Text created using pack , we can fuse any intermediate
Texts that are created. This means that in such a pipeline, only the final output
Text is created, even though the input to the pipeline is a String .

Another example of where this is exploited is in file I/O. One of the benefits of
ByteString is its extremely fast file I/O. To take advantage of this, we implement
stream fusion over ByteStrings as well. Unlike the original implementation of
ByteString fusion, though, we don’t treat ByteString as an array of characters
but rather as an array of bytes. We then implement the functions encode and
decode, which read to and write from ByteStrings. Again, we do so using streams
so that conversions do not result in unnecessary Texts being written. In addition,
we implement the arithmetic to encode/decode all possible Unicode encoding
standards. This is an example of where Unicode validation takes place when
creating Texts . Because it involves reading from an external source, we must
also checks to make sure all the Unicode characters are valid and insert fallback
characters if necessary.

The use of stream fusion also allows for easy expansion of the API, for exam-
ple by an end-user of the library. As described in Section 2.3, transformations are
composed of stream, unstream, and a stream transformer. Programmers can eas-
ily define their own stream transformers and compose them with stream and/or
unstream as necessary to define their own fusible functions. The fusion can be
applied to them as it is to any pre-defined function.

While stream fusion is an extremely useful abstraction, there are some in-
stances where exploiting the low-level data structure can achieve better perfor-
mance. For example, the length and offset fields allow us to create a version of
tail that does not require copying:

unfused tail :: Text → Text
unfused tail (Text arr off len)
| len 6 0 = errorEmptyList "tail"
| n > 0 xD800 ∧

n 6 0 xDBFF = Text arr (off + 2) (len − 2)
| otherwise = Text arr (off + 1) (len − 1)
where

n = unsafeAt arr off

By checking whether the first character is a surrogate pair or not, we can
decide whether to move the offset by one or two characters and have a Text with
the desired contents without the copying of the Stream version. It isn’t fusible,
though. We would prefer a way to automatically choose the best version of tail
for a given situation. This can be accomplished with the following rule:

〈tail/unfused〉 ∀t . unstream (tailS (stream t)) 7→ unfused tail t

This rule states that any occurrence of tailS that is not fused with another
stream transformer should be converted to our low-level definition of unfused tail .

If a call to tail were fusible, it would not directly follow a call to stream because
stream fusion would have removed this call. Now, we have GHC choosing the
most appropriate function for us. This technique is useful for a variety of func-
tions where totally decoding or copying the string is not strictly necessary, such
as init , last , and append .

5 Performance

As a more compact and more efficient version of String , it is expected that
Text should be much faster than String . This is generally the case. Compared
to String , Text usually achieves much better performance. In comparison with
ByteString , the extra overhead of Unicode encoding and decoding means that,
for ASCII text, ByteString is still faster (and, at 8-bits per character, more
compact). Figure 8 shows the runtimes for each of the three string representa-
tions for some common functions. Although both Text and ByteString generally

Fig. 8. Benchmarks: ASCII Text

outperform String , the runtimes of the cons function exhibit some of inherent
disadvantages of using an array based string representation. Unlike lists, im-
plementations of cons over Texts require copying the source array completely,
resulting in a linear time operation instead of a list’s constant time one. Similar
functions, such as append , suffer from similar problems.

Figures 9 and 10 show the performance of String versus Text for different
sets of Unicode text. Figure 9 shows benchmarks for Unicode text in the Basic
Multilingual Plane. The performance figures are very similar to the ASCII ones.
This is to be expected, as ASCII text is treated the same as other low-numbered
Unicode code points in UTF-16.

Figure 10 shows the performance of Text and String with text solely from
the Supplementary Multilingual Plane (SMP). The SMP consists of more rarely
used characters such as musical and mathematical notations. In general, a doc-
ument will very rarely contain more than a relatively small number of these
characters. This benchmark represents a “worst case” of dealing with a docu-
ment that comprises exclusively such characters. This has a critical impact on

Fig. 9. Benchmarks: BMP Text

Fig. 10. Benchmarks: SMP Text

performance because all SMP characters require two UTF-16 code points and
must be assembled and disassembled when being streamed and unstreamed. In
this case, Text slows down nearly to the performance of String , although still
outperforms it in most cases. This shows that, in a worst case scenario, Text still
scales well and can outperform String .

The benchmarks above show that Text outperforms String in single transfor-
mations, but fusion is an important aspect of this library. Figure 11 shows the
performance of Text versus String in a variety of common fusion patterns. These
benchmarks compare Text using stream fusion with String using foldr/build fu-
sion. The figures show that Text significantly outperforms String in these situ-
ations. This figure is perhaps the most crucial, as string manipulation functions
are more likely to be pipelined than called singly.

These benchmarks reveal that Text usually outperforms String , but that the
low-level differences between the two must be considered when using Text . The
inherent differences between arrays and lists makes some operations differ with

Fig. 11. Fusion Benchmarks

respect to complexity. This performance can sometimes be regained by fusion.
The Stream version of these slower functions can easily fuse with other functions,
in which case there is very little extra cost to performing them because the Text
is already being copied anyway, for example, in cons x · map f xs, cons would
not have the same impact on performance that it does in isolation.

Text is therefore most useful for manipulating strings, for example from user
input or a file. Its performance becomes less desirable when constructing strings
through concatenation and similar operations.

Another consideration is the strictness of Text . In programs that use file I/O,
a lazy data structure will only read data into memory as necessary. Consider the
example program in Section 1. Although Text ’s runtime was better, the maximal
memory consumption was actually much smaller in String . This is because, in
String , new data only be read in by readFile as it was consumed by foldl , but
in Text the entire file is read in, and then consumed. For more discussion of lazy
Texts, see Section 7.

6 Related Work

Although stream fusion was chosen as the fusion framework for this particular
library, there are other related fusion frameworks that have been implemented
in Haskell:

foldr/build The foldr/build fusion framework is currently used in GHC for
fusing lists [6]. It uses foldr with its traditional definition to consume lists
and a function called build to produce them. This makes some functions,
such as filter , much more straightforward to implement. It cannot, however,
fuse zips.

destroy/unfoldr The destroy/unfoldr fusion system [7] is the most similar to
stream fusion. Like stream fusion, destroy/unfoldr uses the notion of co-data
to produce a list, but using the well-known list function unfoldr . Compared

with stream fusion, destroy/unfoldr has similar fusion capabilities, being able
to express left folds and zips. However, unlike stream fusion, it requires re-
cursion for filter -like functions, which affect the compiler’s ability to perform
certain optimisations and can drastically impact performance.

Neither of these frameworks uses an explicit data type. This unique characteristic
of stream fusion is what makes it such a desirable candidate for our library,
because we can clearly separate the conversion between Chars and Word16 s
using the Stream datatype.

Stream fusion also already appears in the Haskell library ByteString [3]. As
previously mentioned, it has helped ByteString achieve (and sometimes beat) the
performance of similar programs written in C. ByteString also uses a ForeignPtr
for it’s underlying data structure, making it accessible to code in other languages
(notably C). There is also an implementation of stream fusion over Haskell lists
[4].

7 Conclusions

Stream fusion is already a known and successful fusion framework, but we have
exploited a useful aspect of it in the creation of Text . By treating stream fusion’s
Stream type as an abstraction from underlying representations, we have used
the stream fusion framework as tool for designing a library over strings that
is independent of various low-level representations. In doing so, stream fusion
not only prevents the creation of intermediate Texts in a string transformation
pipeline, it also prevents unnecessary conversion between different encodings and
data structures.

There is still plenty of work being done for Text . Since the completion of
this project, Bryan O’Sullivan has continued to maintain and refine Text . His
major contributions to the project have been to replace UArray with a lower
level (and thus faster and smaller) data type and to create a lazy version of
Text . He has done this by using a list of array chunks. He has also achieved 93%
QuickCheck [10] coverage of API functions, weeding out several subtle issues.
He has also shifted certain list API functions so that integer-based indexing is
less used (e.g. instead of returning the index of the first occurrence of ’c’, split
at the first occurrence of ’c’), which is more efficient. The most recent version
of Text is available in the Hackage database.

The performance of Text is generally better than that of String , and provides
a fast way to transformation Unicode text in a functional style. It’s current,
array-based representation limits its flexibility in creating strings efficiently, and
so while the API abstracts away from its low-level representation, this still must
be considered when using Text to achieve the best performance. However, it may
be possible to use more sophisticated persistent data structures to create a more
versatile Text with even better performance.

Text ’s array-based structure also has some drawbacks with respect to persis-
tence. Currently, substrings can be created by modifying the length and offset
fields of an existing Text . While this has the benefit of allowing constant time

substring creation, it does not take into account the size of the substring relative
to its parent string. A very small substring may keep a much larger string from
garbage collection. We also have many operations with undesirable complexities
for building strings. We wish to investigate the possibility of using another data
structure for the underlying representation of Text . A possible candidate is to
use finger trees [11] of arrays to create a fusible rope [12]. This would make the
library better suited to manipulating and building strings.

References

1. Peyton-Jones, S.: The Haskell 98 Report (2002)
2. The GHC Team: The Glorious Glasgow Haskell Compilation System User’s Guide,

Version 6.12.1
3. Coutts, D., Stewart, D., Leshchinskiy, R.: Rewriting Haskell Strings. In: PADL

’07. LNCS 4354, Springer-Verlag (2007) 50–64
4. Coutts, D., Leshchinskiy, R., Stewart, D.: Stream Fusion: From Lists to Streams

to Nothing At All. In: ICFP ’07, New York, ACM (October 2007)
5. The Unicode Consortium: The Unicode Standard, Version 5.2.0 (2010)
6. Gill, A., Launchbury, J., Peyton-Jones, S.: A Short Cut to Deforestation. In: ICFP

’93, New York, ACM (1993) 223–232
7. Svenningsson, J.: Shortcut fusion for accumulating parameters & zip-like functions.

In: ICFP ’02, New York, ACM (2002) 124–132
8. Petyon-Jones, S., Tolmach, A., Hoare, T.: Playing by the Rules: Rewriting as a

practical optimisation technique in GHC. In: Haskell Workshop, ACM SIGPLAN
(2001) 203–233

9. Harper, T.: Fusion on Haskell Unicode Strings, Master’s Thesis, University of
Oxford (2008)

10. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ICFP ’00, New York, ACM (2000)

11. Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data structure.
Journal of Functional Programming 16(2) (2006)

12. Boehm, H.J., Atkinson, R., Plass, M.: Ropes: an Alternative to Strings. Software:
Practice and Experience 25(12) (1995) 1315–1330

