
A Library Writer’s Guide to Shortcut Fusion

Thomas Harper
Department of Computer Science, University of Oxford

tom.harper@cs.ox.ac.uk

Abstract
There are now a variety of shortcut fusion techniques in the wild for
removing intermediate data structures in Haskell. They are often
presented, however, specialised to a specific data structure and
interface. This can make it difficult to transfer these techniques to
other settings. In this paper, we give a roadmap for a library writer
who would like to implement fusion for his own library. We explain
shortcut fusion without reference to any specific implementation
by treating it as an instance of data refinement. We also provide an
example application of our framework using the features available
in the Glasgow Haskell Compiler.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.4 [Program-
ming Languages]: Optimisation

General Terms Languages, Algorithms

Keywords Deforestation, optimisation, program transformation,
program fusion, functional programming, shortcut fusion

1. Introduction
When writing a library, a programmer often seeks to get the best
performance possible out of his data structures and interface. How-
ever, even if the data structure is well-designed and the interface
functions carefully tuned, it is still up to the compiler to optimise
programs written by users of the library. In Haskell, programmers
can compose simple functions to create a complex “pipeline” that
transforms a data structure. For example, the program

f :: (Int , Int)→ Int
f = sum ◦map (+1) ◦ filter odd ◦ between

forms a pipeline of functions over a list. It starts with the function
between , which generates an enumeration between two numbers
as a list, filters out any even numbers, and then increments the
remaining numbers before summing them together. This method
allows us to write powerful programs over a data structure functions
in a concise, modular way.

Because these are recursively defined functions over a recursive
datatype, such a program produces intermediate data structures.
Each function consumes a structure and produces a new one to
pass on to the next function in the pipeline. Such structures glue
the components together, but do not appear in the final result. They

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’11, September 22, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0860-1/11/09. . . $10.00

nevertheless take up space in memory and ultimately affect the
performance of the program.

It is possible, however, to rewrite such a program so that it uses
a single loop:

f ′ :: (Int , Int)→ Int
f ′ (x , y) = loop x

where
loop x | x > y = 0

| otherwise = if odd x
then (x + 1) + loop (x + 1)
else loop (x + 1)

This program is equivalent to the first, but produces no intermediate
data structures. Transforming a program in this manner is known as
fusion. Obviously, performing fusion by hand requires a program-
mer to know about the details of the functions and data structure, an
unrealistic exception for the user of a library. It would be preferable
if, instead, the compiler could perform this transformation for us.

Shortcut fusion allows a programmer to implement mechanised
fusion for a specific data structure and interface. This is a term that
originally referred to foldr/build [8] fusion, but has come to encom-
pass other incarnations that take a similar approach. The program-
mer chooses a datatype and a recursive scheme over it. The cho-
sen recursion pattern is encapsulated in combinators that signify
the consumption and production of a data structure. Program trans-
formations can then be phrased as simple syntactic rewrites that
remove instances of the production combinator followed immedi-
ately by the consumption combinator. Any remaining work can be
finished by compiler using its usual complement of optimisation
techniques. This allows the programmer to implement fusion with-
out touching compiler or worrying about the impact of program
transformations on unrelated parts of the program. Instead, the pro-
grammer has the responsibility of doing the specialisation himself.

Although many have investigated shortcut fusion in a datatype-
generic way, the presentation is often highly theoretical. On the
other hand, more practical papers on the subject present shortcut
fusion in the context of a specific data structure. This can lead to
the view that many of the innovations are unique to a particular
implementation, or at the least it can obscure the principles used
to arrive at that implementation. We intend to join these two paths
by giving a description of shortcut fusion that can be used by the
aspiring library writer to implement fusion for his own library. We
do this by treating shortcut fusion as an instance of data abstrac-
tion, which allows us to describe it without reference to a specific
datatype, but provide a framework that can be instantiated the li-
brary writer straightforwardly.

The main contributions of this paper are as follows:

• A description of shortcut fusion as an instance of data abstrac-
tion (Section 3), which provides a concise description of the
theory of shortcut fusion that can also be instantiated for a spe-
cific datatype.

47

• A description of Church encodings and Cochurch encodings
and a demonstration of how they can be used to implement
shortcut fusion (Section 4).

• An example implementation using Church and Cochurch en-
codings to fuse an interface over leaf trees, providing a roadmap
for the aspiring library author that demonstrates how to use the
infrastructure in the Glasgow Haskell Compiler (GHC) to im-
plement shortcut fusion (Section 5) and accompanying bench-
marks of the interface (Section 6).

Additionally, Section 2 reviews some prerequisites for discussing
Church and Cochurch encodings: initial algebras and folds, fi-
nal coalgebras and unfolds, and natural transformations. We sum-
marise related work in Section 7 and conclude in Section 8.

2. Background: Initial algebras and final
coalgebras

2.1 Initial algebras and folds
Folds and unfolds provide a common pattern for defining functions
over recursively defined datatypes. Category theory provides a set-
ting for reasoning about folds and unfolds using initial algebras
and final coalgebras. In this section, we will briefly review these
concepts. In this description, we assume a basic knowledge of cat-
egories and functors.

For a category C and a functor F : C → C, an algebra is a
pair (A, a), where A is an object in C and a is an arrow of type
F A → A. If we have another algebra (B , b), then an algebra
homomorphism is a function h : A → B such that the following
diagram commutes:

F A

a
��

F h // F B

b
��

A
h
// B

Together, algebras and algebra homomorphisms form a cate-
gory. The initial algebra is the initial object in such a category. The
initial algebra is denoted (µF , in) and has the property that there
is a unique arrow from it to any algebra. For an algebra (A, a),
this arrow is called fold f, denoted ((f)), which makes the following
diagram commute:

F (µF)

in
��

F ((a))
// F A

a
��

µF
((a))

// A

The initiality of µF , and therefore uniqueness of ((a)), is captured
by the universal property of folds

h = ((a)) ⇐⇒ h ◦ in = a ◦ F h (1)

Initial algebras provide a semantics for consuming a recursive
data structure. Consider the functor L A B = 1 + A × B . The
functor L A is the base functor for lists with elements of type A.
In Haskell, we can define this as

data List a b = Nil | Cons a b

instance Functor (List a) where
fmap f Nil = Nil
fmap f (Cons a b) = Cons a (f b)

This corresponds to a datatype declaration for a list but with the
recursive call abstracted away into an additional type parameter.
(Note that we declare a datatype with an underscore to represent
the base functor). The sum type is expressed as a type with a
constructor for each summand, and a product type corresponds to a
constructor with one field per operand. The initial algebra for this
functor is the type List a , which is obtain by passing a recursive
call as the argument to the functor:

data List a = Cons a (List a) | Nil

The corresponding function, in

in :: List a (List a)→ List a
in Nil = Nil
in (Cons x xs) = Cons x xs

specifies how to construct a List either from the final object Nil ,
or from a pair consisting of an element and an already-constructed
List . The universal property provides us with a definition for fold;
if we apply the left hand side to the right, we obtain the computation
law

((a)) ◦ in = a ◦ F ((a)) (2)

which states that we place the recursive call over the tail of the
list (determined by our definition of fmap), and then combine the
results of this call with the head of the list using a:

fold :: (List a b → b)→ List a → b
fold a Nil = (a ◦ fmap (fold a)) Nil
fold a (Cons x xs) = (a ◦ fmap (fold a)) (Cons x xs)

Thus, the base functor determines the shape of a data structure as
well as the recursion pattern over it. This pattern gives us a way
to combine elements of a data structure using an algebra, which is
just a function of type List a b → b, where a is the type of the
elements of the list and b is the type of the result of the fold. While
this definition illustrates the relationship between the base functor
and the recursive pattern, we will hence use a more Haskellish style
of explicitly placing the recursive call:

fold ′ :: (List a b → b)→ List a → b
fold ′ a Nil = a Nil
fold ′ a (Cons x xs) = a (Cons x (fold ′ a xs))

The algebra describes a single step, while fold takes care of re-
cursively applying it. If we fold the initial algebra over some data
structure, we get the same structure back, as we are just swapping
data constructors for themselves. This is called the reflection law

((in)) = id (3)

Finally, folds also come with a fusion law. As its name hints, it
lets us combine a function with a fold, in this case “absorbing” a
function that appears after a fold under certain conditions:

h ◦ ((a)) = ((b)) ⇐= h ◦ a = b ◦ Fh (4)

The precondition requires that h is an algebra homomorphism from
a to b.

2.2 Final coalgebras and unfolds
Dual to initial algebras are final coalgebras, which give us a se-
mantics for producing a data structure. For a functor F : C → C,
a coalgebra is a pair (c,C) consisting of an object C in C, along
with an arrow c : C → F C . Given another coalgebra (d ,D), a
coalgebra homomorphism is a function h : C → D such that the
following diagram commutes:

48

C

c
��

h // D

d
��

F C
F h
// F D

Coalgebras and coalgebra homomorphisms also form a category.
The final coalgebra is the final object in such a category. The
final coalgebra of a functor F is denoted (out , νF). As the final
object, there exists a unique arrow from every coalgebra to it. For
a coalgebra (c,C), this arrow is called unfold c, denoted [(c)], and
makes the following diagram commute:

C

c
��

[(c)]
// νF

out
��

F C
F [(c)]
// F (νF)

The finality of (out , νF) is captured in the universal property of
unfolds

h = [(c)] ⇐⇒ out ◦ h = F h ◦ c (5)
This provides us with another recursion scheme for recursive

data types. We can continue our example using List a as a base
functor; the carrier of the final coalgebra for this functor is also
List a . This is because, in Haskell, datatypes represented by µF
and νF coincide, allowing us to phrase functions as both folds
and unfolds over the same datatype. This property is known as
algebraic compactness [4].

From the universal property of unfolds, we also get a computa-
tion law providing us with a definition for unfolds:

out ◦ [(c)] = F [(c)] ◦ c (6)

An unfold applies a coalgebra to a seed, which produces an el-
ement of the data structure along with an F-shaped collection of
successive seeds. These are then recursively unfolded to yield a
data structure. For List a , this has the definition

unfold :: (s → List a s)→ s → List a
unfold c s = case c s of

Nil → Nil
Cons x s ′ → Cons x (unfold c s ′)

Here, we have already placed the recursive call explicitly. We then
collect the results in a List a , thereby producing a data structure.

Unlike in , out describes how to deconstruct a data structure:

out :: List a → List a (List a)
out Nil = Nil
out (Cons x xs) = Cons x xs

In the case of a list, out returns the head and tail as a pair. If we
use a data structure as a seed and out as the coalgebra, we will just
recursively split up a data structure and then recollect the results,
meaning we get the original data structure back. Therefore, the
reflection law for data unfolds is

[(out)] = id (7)

There is also a fusion law for unfolds. It allows us to absorb a
function to the right of an unfold, this time:

[(c)] = [(d)] ◦ h ⇐= F h ◦ c = d ◦ h (8)

In this case, h must be a coalgebra homomorphism from c to d .
Although we have explained folds and unfolds by modelling

a specific datatype as an initial algebra and final coalgebra, the

power of these recursion schemes is that we can reason about them
without considering the specifics of the data structure in question.
The universal properties provide datatype-generic definitions of
folds and unfolds and properties of them. We will use this to our
advantage later by showing how folds and unfolds can be used in
shortcut fusion and thereby giving a roadmap for doing so for any
datatype.

2.3 Natural transformations
Natural transformations provide a way for mapping between func-
tors. For functors F ,G : C → D, a natural transformation f is a
collection of arrows, one for each object in C, such that fA :F A→
G A. Furthermore, for all arrows h :A→ B , a natural transforma-
tion possesses a coherence property, which states that

G h ◦ fA = fB ◦ F h (9)

This guarantees that f respects the structure of the functors while
mapping objects between them. The notion of natural transforma-
tions can be used to provide a semantics for functions that modify
the elements of a recursive datatype but not the structure. For ex-
ample, a map over lists can be viewed as ((in ◦ (m f))), where m
takes a function f : a → b and m f is a natural transformation
that defines the transformation of a single element from List a to
List b, which are two different functors:

m :: (a → b)→ List a c → List b c
m f Nil = Nil
m f (Cons x xs) = Cons (f x) xs

After this, in constructs a list from the transformed element and the
tail xs , which is a list of already transformed elements.

3. Shortcut fusion as data abstraction
We use the term fusion to describe a program transformation that
transforms the composition of a series of functions

f = fn ◦ · · · ◦ f1

defined over a recursive datatype into a single recursive pass f ′

such that f = f ′. The purpose of this transformation is to remove
the intermediate data structures that are passed from fi to fi+1. Re-
moving the intermediate data structures from such a program poses
some challenges for the compiler’s usual arsenal of optimisations
because they give up when they encounter recursive definitions.

The shortcut fusion solution to this problem is to convert values
of recursive datatypes to a different representation that the opti-
miser can deal with. For example, assume that we want to convert
values of the recursive datatype µF to values of a type C . The
idea is that C can faithfully represent values of µF , but composed
functions over C can be fused automatically. Instead of writing
functions directly over µF , we define them in terms of functions
over C along with conversion functions that convert between µF
and C . We call these conversion functions con : µF → C and
abs : C → µF .

In data abstraction terms [12], µF is the abstract datatype over
which the interface is defined, and C is the concrete datatype over
which the interface is implemented. In order for C to be a faithful
representation of µF , con and abs must have the property

abs ◦ con = idµF (10)

This requires that C be capable of representing all values of µF
uniquely.

A fusible function usually has a counterpart that can be written
directly over the abstract datatype. This makes a fusible function a
concrete refinement of the abstract function. Therefore, we want
to ensure that this refinement actually implements the original

49

function. In order to define a fusible version of a function f :µF →
µF in terms of C , we must define a function fC :C → C such that
the following diagram commutes:

µF

f
��

C
abs
oo

fC
��

µF C
abs
oo

If we have implemented such a function, then we can define a
function over the abstract type f ′ = abs ◦ fC ◦ con . In isolation,
this definition does not necessarily gain us anything. Indeed, the
cost of converting between µF and C may even make this function
less efficient than one that is defined directly over µF . Suppose,
however, that we have functions g : µF → µF and gC : C → C
defined similarly and compose f and g :

µF

f
��

con // C

fC
��

µF
con

//

g
��

C
absoo

gC
��

µF C
abs
oo

Down the left hand side of this diagram, we see the program as writ-
ten over µF , in which f communicates with g using intermediate
data structures. If this diagram commutes, however, we can move
to the right hand side using con and chase the arrows down to the
bottom, converting the result back using abs , thereby obtaining the
fusible program

abs ◦ gC ◦ fC ◦ con

Such a program is only correct, however, if we are able to discard
the conversion con ◦ abs that arises. The simplest situation is the
one in which con ◦ abs = id , which means that we can remove it
unconditionally. This is an extremely strong condition, demanding
that not only does C faithfully represent values of µF , but also vice
versa i.e. that µF ∼= C . Instead, we can prove that if fC and gC are
correct implementations of f and g i.e. that they satisfy the property
stated above, then the fusible program preserves the meaning of the
original:

abs ◦ fC ◦ gC ◦ con

= { f ◦ abs = abs ◦ fC }
f ◦ abs ◦ gC ◦ con

= { g ◦ abs = abs ◦ gC }
f ◦ g ◦ abs ◦ con

= { abs ◦ con = idµF }
f ◦ g

In addition to transformation functions that, like those above,
consume a data structure to produce a new one, we can also fuse
those that produce a recursive data structure from some seed and
those that consume a recursive data structure to produce a value.
As for transformations, a producer p : S → µF and a consumer
c : µF → T will have fusible counterparts pC : S → C and
cC : C → T , respectively, such that

S

p
��

pC

µF C

abs
oo

and

µF

c
��

con // C

cC~~
T

commute. This gives us the obligations p = abs ◦ pC and c =
con◦cC . Like the property for transformations, these conditions are
sufficient to allow us to remove the unnecessary conversions. To tie
it all together, consider a pipeline c◦f ◦g ◦p, whose functions have
types as above and meet the necessary obligations for their fusible
counterparts. Diagrammatically, we can represent this pipeline as

S

p
��

pC

µF

f
��

con
// C

absoo

fC
��

µF
con

//

g
��

C
absoo

gC
��

µF

c
��

con
// C

cC~~

absoo

T

We can see that, by removing the con ◦ abs conversions, we can
obtain a pipeline in which we no longer depend on the unfusible
functions over a recursive datatype. Instead, the program cC ◦
fC ◦ gC ◦ pC , when optimised by the compiler, will take a seed
of type S and use it to produce some data that it transforms and
consumes without producing any intermediate data structures in
order to produce a single value, like the second example from the
introduction.

So far, we have provided a generic setup for implementing
shortcut fusion. We have established the central idea of represen-
tation change and how to use this to obtain fusible programs. We
have been silent, however, about the sort of representations that can
faithfully represent recursive datatypes, but nevertheless allow the
compiler to fuse their functions automatically. We cover such rep-
resentations and how they can fit into the above framework in the
next section.

4. Concrete representations
As mentioned before, the issue at hand is that the compiler cannot
fuse pipelines composed of recursive functions. It will, however,
inline non-recursive functions and remove intermediate data struc-
tures from the resulting program. For shortcut fusion, we therefore
need a type that faithfully represents a recursive datatype but, para-
doxically, allows us to write functions with non-recursive defini-
tions over it. In this section, we will describe two classes of such
representations. These are the Church encodings and Cochurch en-
codings of recursive datatypes.

Church and Cochurch encodings are closely related to the con-
cept of folds and unfolds, respectively. The Church encoding of a
data structure represents it as a higher-order function that takes an
algebra and returns the fold of that algebra over the data structure.
For an endofunctor F : C→ C, the Church encoding is of type

data Church F = Ch (∀A . (F A→ A)→ A)

50

Note the rank-2 polymorphic type; the parametricity of this func-
tion guarantees that it obtains the final value of type A by applying
the algebra to elements of the underlying data structure.

Church encodings allow us to represent a recursive datatype
such that the recursion is “built-in” i.e. we do not to specify the
recursive call in our definitions, only a single step in the form
of an algebra that has a non-recursive definition. A pipeline of
such functions can therefore be fused by the usual complement of
compiler optimisations.

To use this as a representation, we instantiate conversion func-
tions toCh and fromCh for con and abs . We convert a data struc-
ture of type µF to its Church encoding by defining a function that
takes an algebra and folds that algebra over the data structure:

toCh :: µF → Church F
toCh x = Ch (λa → ((a)) x)

To get the data structure back, we simply apply the Church encod-
ing to the initial algebra in : F (µF)→ µF

fromCh :: Church F → µF
fromCh (Ch g) = g in

which defines how to construct the datatype. To prove that Church
encodings faithfully represent their underlying datatype, we are re-
quired to prove fromCh◦toCh = id . This is simply a consequence
of the universal properties of folds:

fromCh (toCh x)

= { definition of toCh }
fromCh (Ch (λa → ((a)) x))

= { definition of fromCh }
(λa → ((a)) x) in

= { function application }
((in)) x

= { fold reflection law (3) }
x

We can also prove the other direction, however, because Church
encodings are isomorphic to their underlying datatypes. We have
just proved one direction of this isomorphism, but the other direc-
tion, toCh ◦ fromCh = id , requires a different tactic:

toCh (fromCh (Ch g)) = Ch g

⇐⇒ { definition of fromCh }
toCh (g in) = (Ch g)

⇐⇒ { definition of toCh }
Ch (λa → ((a)) (g in)) = (Ch g)

⇐⇒ { extensionality }
∀a . ((a)) (g in) = g a

To satisfy the final condition, we must prove that constructing a
recursive datatype from its Church encoding and then folding an
algebra over it is the same as folding the algebra over the Church
encoding itself. The proof of this rests on the free theorem [20]
of the Church encoded datatype g , which is a function of type
∀A . (F A→ A)→ A:

h ◦ b = c ◦ F h =⇒ h (g b) = g c (11)

The precondition requires that h be an algebra homomorphism
from b to c (here, we omit the associated carriers of these algebras).
If it is, applying g to b i.e. folding b over the underlying datatype
encoded by g , and then passing the result to h , is the same as just
folding c over the datatype. If we plug in h = ((a)), which is,

by definition, an algebra homomorphism from in to a , then the
theorem becomes

((a)) (g in) = g a (12)
which is precisely the condition we are required to prove.

As outlined in Section 3, we are obliged to prove that our
fusible functions constitute implementations of the functions that
they are replacing. Because we are using Church encodings, we
know that we can only replace functions that take the form of
folds. For consumers, this obligation is rather simple; a consumer
simply applies the Church-encoded value to an algebra, so cC =
λ(Ch g) → g b for some algebra b : F B → B . We can prove
that this is equivalent to folding this algebra over the original data
structure, which satisfies the proof obligation for consumers:

(λ(Ch g)→ g b) (toCh x)

= { definition of toCh }
(λ(Ch g)→ g b) (Ch (λa → ((a)) x))

= { function application }
(λa → ((a)) x) b

= { function application }
((b)) x

For producers, the situation is less straightforward. Unlike con-
sumers, these functions do not have the form of a fold. Instead,
they construct a data structure recursively (we cover the limitations
of which functions can have recursive definitions in Section 5). The
fusible version also uses a recursive function, but this function takes
as an argument an algebra that it puts where the constructors would
go. Therefore, a producer has the form (λx → Ch (λa → f a x))
where f recursively creates elements, and folds them by putting a
where the constructors belong. If we actually construct this data
structure, we end up simply passing in to f :

fromCh ((λx → Ch (λa → f a x)) s)

= { function application }
fromCh (Ch (λa → f a s))

= { definition of fromCh }
(λa → f a s) in

= { function application }
f in s

The proof obligation amounts to requiring that, if f is passed in ,
it must construct the same data structure as the producer that it is
replacing.

Transformations, like consumers, involve recursing over a data
structure, and are therefore folds. Rather than combine the ele-
ments, they transform the elements. Therefore, they have the form
((in ◦ f)), where f is natural transformation that transforms each
element composed with the initial algebra. The Church-encoded
version of this function uses the same transformation f , but it cre-
ates a new Church encoded value, applying original Church en-
coded value to f composed with the resulting Church encoding’s
abstracted algebra. We can satisfy the proof obligation from Sec-
tion 3 for transformations using Equation 12.

fromCh ((λCh g → Ch (λa → g (a ◦ f))) (Ch xs))

= { function application }
fromCh (Ch (λa → xs (a ◦ f)))

= { definition of fromCh }
(λa → xs (a ◦ f)) in

= { function application }
xs (in ◦ f)

51

= { Equation 12 }
((in ◦ f)) (xs in)

= { definition of fromCh }
((in ◦ f)) (fromCh (Ch xs))

The concept of Church encodings dualises to Cochurch encod-
ings, which encapsulate unfolds instead of folds. For a final coal-
gebra (νF , out) with a base functor F : C → C, the type of the
Cochurch encoding is

data CoChurch F = ∃ S . CoCh (S → F S) S

This representation consists of a stepper function and an initial
seed. Applying the stepper function to the seed produces a value
and new seeds. Recursively applying the stepper function to suc-
cessive seeds unfolds the data structure. Dual to the universal quan-
tification we saw in the Church encoding, Cochurch encodings use
existential type quantification to enforce the requirement that the
type of the seed and the type of the stepper function match up. An-
other characterisation of this type is that it encapsulates a stateful
computation, containing an initial state and a transition function
that can yield a result and a new state. We take advantage of this
characterisation in Section 5.

To convert a data structure νF to its Cochurch encoding, we
create a pair with out : νF → F (νF) as the stepper function and
the data structure itself as the seed:

toCoCh :: νF → CoChurch F
toCoCh x = CoCh out x

Whereas Church encodings have the recursive pattern pre-defined
in the encoding, the Cochurch encoding simply has a description of
a single step. To get back to the data structure, we unfold the data
structure using this stepper function by applying it to the initial seed
(and recursively to any resulting ones):

fromCoCh :: CoChurch F → νF
fromCoCh (CoCh h x) = [(h)] x

Like Church encodings, Cochurch encodings are isomorphic to
their underlying datatypes. The proofs proceed along similar lines,
with the conversion to Cochurch encodings and back harnessing
the universal property of unfolds:

fromCoCh (toCoCh x)

= { definition of toCoCh }
fromCoCh (CoCh out x)

= { definition of fromCoCh }
[(out)] x

= { unfold reflection law (7) }
x

The other direction requires a similar theorem to Equation 12.
To start, we note that the type of a function (∃ C . (C →
F C),C)→ D , which unfolds a Cochurch-encoded data structure
to produce a value of a fixed type D , is isomorphic to the type
∀C . (C → F C)→ C → D . The free theorem of this type is

Fh ◦ c = d ◦ h =⇒ f c = f d ◦ h (13)

where f :∀C . (C → F C)→ C → D . The precondition requires
that h be coalgebra homomorphism from c to d . If we plug in the
unfold [(c)], which is a coalgebra homomorphism from c to out , we
obtain the equation

f c = f out ◦ [(c)] (14)
Unlike with Church encodings, we can’t directly apply this rule
to our representation of Cochurch encodings because we use the

isomorphic existential type. To get such a rule, we instantiate the
constructor CoCh for f :

CoCh c = (CoCh out) ◦ [(c)] (15)

This rule states that unfolding a Cochurch-encoded structure and
then re-encoding it yields an equivalent structure. We can now
prove the other direction of the isomorphism:

toCoCh (fromCoCh (CoCh c x))

= { definition of fromCoCh }
toCoCh ([(c)] x)

= { definition of toCoCh }
CoCh out ([(c)] x)

= { composition }
(CoCh out ◦ [(c)]) x

= { Equation 15 }
CoCh c x

As with Church encodings, we can rely on the fact that Cochurch
functions will replace functions of a a certain form when satisfying
the proof obligations, this time unfolds instead of folds. As unfolds
are dual to folds, the easiest case this time is the production of a
data structure. If we have a producer phrased as an unfold [(c)] ap-
plied to a seed s , the equivalent Cochurch version simply takes the
seed and pairs it with the coalgebra:

fromCoCh ((λs → CoCh c s) x)

= { function application }
fromCoCh (CoCh c x)

= { definition of fromCoCh }
[(c)] x

Folds are not naturally producers, so Church producers have
to have recursive definitions that build in the recursion as well
as placement of the abstracted algebra. Similarly, unfolds are not
naturally consumers. This means that a Cochurch consumer will
have the form (λCoCh c s → f c s), where f is a recursive
function that applies the stepper function to seeds and consumes the
values along the way. If we want this to consume data structures in
the same fashion as an abstract function, f should behave the same
way as that function if it is passed out :

(λCoCh c s → f c s) (toCoCh x)

= { definition of toCoCh }
(λCoCh c s → f c s) (CoCh out x)

= { function application }
f out x

Finally, transformers behave similarly to those in Church en-
codings in that they consist of a natural transformation f : F →̇ G
between two functors. A transformation consists of an unfold that
first yields a value, then transforms it with f , so it has the form
f ◦ out . The Cochurch version returns a new CoChurch datatype
where the stepper function is composed with the transformation.
This satisfies the obligation from Section 3:

fromCoCh ((λCoCh c s → CoCh (f ◦ c) s) (CoCh h x))

= { function application }
fromCoCh (CoCh (f ◦ h) x)

= { definition of fromCoCh }
[(f ◦ h)] x

= { fusion law of unfolds (8) }

52

[(f ◦ out)] ◦ [(h)]

Here, we have invoked the fusion law, although instead of using
it to fuse two folds together, we have used it to justify spliting one
apart. Now, we must prove that G [(h)] ◦ f ◦ h = f ◦ out ◦ [(h)]. We
do this by using the fact that f is a natural transformation, with the
coherence property f ◦ Fh = Gh ◦ f :

G [(h)] ◦ f ◦ h = f ◦ out ◦ [(h)]

⇐⇒ { naturality of f }
f ◦ F [(h)] ◦ h = f ◦ out ◦ [(h)]

⇐= { composition }
F [(h)] ◦ h = out ◦ [(h)]

The final statement is true according to the university property of
unfolds.

Church and Cochurch encodings allow us to write functions
over a data type using the familiar recursion schemes of folds
and unfolds while gaining the added benefit of fusibility. They are
also a convenient representation for shortcut fusion because their
correctness generalises to any datatype. Many library writers may
be unsure what the appropriate concrete representation is for their
interface; this choice depends on the data structure and the interface
the author wishes to implement. Some functions can be phrased as
either a fold or an unfold, whereas others are inherently one or the
other (further discussion on this matter can be found in [6]).

5. Application: Fusing leaf trees
So far, we have established the central idea of shortcut fusion and
proposed using Church and Cochurch encodings as representations
of recursive datatypes. We have also shown how they can satisfy the
proof obligations in Section 3. Now, we will show how to instan-
tiate each of these representations for a specific data structure. For
this example, we will use the Glasgow Haskell Compiler’s (GHC)
rewrite rules and inlining system, which is the tool of choice for
implementing shortcut fusion in Haskell. In order to show how this
works for a datatype outside the usual list of suspects, we apply
the framework to leaf trees. This is a data structure that can act as
a sequence type where append is a O(1) operation, which can be
useful in certain applications.

We define leaf trees using following datatype declaration:

data Tree a = Empty
| Leaf a
| Fork (Tree a) (Tree a)

For instructional purposes, the interface will be developed by in-
stantiating both Church and Cochurch encodings in parallel as con-
crete representations. This allows us to compare the two side-by-
side and gives the reader the opportunity to see both of them in
action. Usually, however, a programmer would choose a single rep-
resentation.

5.1 Combinators
To begin, we must instantiate a concrete representation for leaf
trees, along with appropriate conversion functions for con and abs .
As discussed in Section 4, we can use the Church encoding by
defining toCh and fromCh , or the Cochurch encoding by defining
toCoCh and fromCoCh .

For the Church encoding version, we start by declaring the base
functor for Tree , which is the same as the datatype declaration but
with the recursive definition abstracted away:

data Tree a b = Empty | Leaf a | Fork b b

Because Tree is a polymorphic type, the base functor we are
concerned with is Tree a . We are now able to define the Church
encoding type over Trees:

data Tree† a = Tree† (∀b . (Tree a b → b)→ b)

Next, we provide the definition for our con combinator, toCh

toCh :: Tree a → Tree† a

toCh t = Tree† (λa → fold a t)

fold :: (Tree a b → b)→ Tree a → b
fold a Empty = a Empty
fold a (Leaf x) = a (Leaf x)
fold a (Fork l r) = a (Fork (fold a l)

(fold a r))

The fold function is simply the fold over Trees, which takes an
algebra a and applies it accordingly. For Church encodings, this is
where the recursion is built-in to the type.

For abs , we use fromCh , which reconstructs the tree by apply-
ing the Church encoding to the initial algebra in:

fromCh :: Tree† a → Tree a

fromCh (Tree† fold) = fold in

in :: Tree a (Tree a)→ Tree a
in Empty = Empty
in (Leaf x) = Leaf x
in (Fork l r) = Fork l r

As with the list example in Section 2, in is defined by having one
case per constructor. In this case, single step of construction simply
swaps the constructors back to those of Tree . The built-in recursion
of the Tree† takes care of applying in recursively.

Dually, we can instantiate con and abs with conversion func-
tions to and from the Cochurch encoding. We can use the same
base functor as for the Church encoding. An unfold, instead of re-
cursively combining results, creates a tree by branching into two
subtrees, yielding a value of the sequence, or simply stopping when
the subtree is empty.

Again, from Section 4, we get the definition of the Cochurch
encoding

data Tree‡ a = ∃s. Tree‡ (s → Tree a s) s

as a pair consisting of a stepper function and an initial seed.
To convert a tree to its Cochurch encoding, we pair the original

tree with a function that describes how to perform single step in the
unfold:

toCoCh :: Tree a → Tree‡ a

toCoCh t = Tree‡ out t

out Empty = Empty
out (Leaf a) = Leaf a
out (Fork l r) = Fork l r

Dual to in , out describes to destruct a recursive data structure into
its components. Going back the other way, we recursively apply the
stepper function to each successive seed.

fromCoCh :: Tree‡ a → Tree a

fromCoCh (Tree‡ h s) = unfold h s

unfold h s = case h s of
Empty → Empty
Leaf a → Leaf a
Fork sl sr → Fork (unfold h sl) (unfold h sr)

We can again see the duality between these two representations.
For Church encodings, the recursion pattern is completely baked
into the representation as it is created. The Cochurch encoding, on

53

the other hand, provides a blueprint for how to construct a tree, but
the recursion itself appears when the encoding is converted back to
a regular tree. In both cases, the proof of correctness comes with
the encoding for free, because we have proved that Church and
Cochurch encodings and the associated fold and unfold semantics
satisfy the proof obligations for fusion.

5.2 Rewrite rules
Now that we have defined representations and conversion func-
tions, and discharged the associated proof obligations, it is time
to implement the syntactic transformation. Luckily, GHC provides
a relatively simple way to do this with the RULES pragma [14].
This pragma allows us to specify an equation in which we replace
any instance of the left hand side by the right hand side. For exam-
ple, we can specify how to remove instances of fromCh followed
by toCh by declaring the rule

{-# RULES "toCh/fromCh fusion"
forall x. toCh (fromCh x) = x #-}

The {-#. . .#-} brackets signify that the text in between is a com-
piler pragma. The keyword RULES specifies the name of the
pragma, and the string in quotes is simply a unique name for the
rule, which can be used to identify it in compiler-generated statis-
tics. The rewrite equation itself begins with the keyword forall ,
which allows us to universally quantify one or more variables in
the following equation. Finally, the equation contains a left hand
side that we wish to rewrite into the right hand side. In our case, we
want to remove the unnecessary conversion of a value, so we re-
move the conversion functions in the expression replace it with the
value itself. We can also define the analogous rule for our Cochurch
encoding combinators:

{-# RULES "toCoCh/fromCoCh fusion"
forall x. toCoCh (fromCoCh x) = x #-}

The programmer should be aware that the RULES pragma
comes with almost no guarantees. Aside from checking that the
types of the two sides match, the RULES pragma does nothing to
check the correctness of the transformation. Furthermore, specify-
ing this rule does not guarantee that the compiler will rewrite all
(or even any) of the situations where this rule can be applied! This
is because encountering these situations depends on GHC inlining
functions in a pipeline definition in order to expose the conversion
functions, but also not inline away the combinators themselves be-
fore the rule can be applied. We can address this issue by fine-
tuning how GHC inlines our conversion functions, which we will
discuss next.

The first case, ensuring that functions containing these combi-
nators are inlined, is a simple matter of using the INLINE pragma
to encourage the GHC inliner [16] to inline it, even if it might not
otherwise. However, it it also possible to tell GHC when to inline a
function, which is important in order to keep the conversion combi-
nators visible long enough for the simplifier to see them and apply
the rewrite rule. To accomplish this, we pass an integer that speci-
fies a phase of the simplifier in the pragma. In doing so, we signal
to the simplifier not to inline the given function until that phase has
been reached. Phases are numbered in decreasing order, with the
final being phase 0, so if we specify the pragmas

{-# INLINE [0] toCh #-}
{-# INLINE [0] fromCh #-}

for our Church encoding combinators and

{-# INLINE [0] toCoCh #-}
{-# INLINE [0] fromCoCh #-}

for our Cochurch encoding combinators, then we give GHC as long
as possible to eliminate these functions. If they still remain by the
final phase, we assume that they cannot be fused away and allow
GHC to inline and optimise them.

The main principle of writing fusible functions is to use the re-
cursion provided by the concrete representation; recall that the pur-
pose of this whole exercise is to allow us provide non-recursive
definitions for our interface functions so that the compiler does
the low-level work for us—introducing extra recursion will stump
the compiler. Previously, we divided such functions into three cate-
gories based upon their use of the conversion combinators. We also
use these divisions in establishing guidelines for fusible functions
and will deal with an example of each of them here.

5.3 Producers
Producers are functions that produce a data structure without con-
suming one. As an example of such a function, we use the function
between , which takes a pair of integers and generates the enumer-
ation from the first to the second, inclusive:

between :: (Int , Int)→ Tree Int
between (x , y)
| x > y = Empty
| x y = Leaf x
| x < y = Fork (between (x ,mid))

(between (mid + 1, y))
where

mid = (x + y) ‘div ‘ 2

Written as a Church encoding, nothing is going to build in the
recursive pattern for us, as this is usually done by toCh when
converting an already existing data structure. There, the Church-
encoding-based producer must encapsulate the recursive pattern to
create the Tree† representation of this tree:

between† :: (Int , Int)→ Tree† Int

between† (x , y) = Tree† (λa → loop a (x , y))
where

loop a (x , y)
| x > y = a Empty
| x y = a (Leaf x)
| x < y = a (Fork (loop a (x ,mid))

(loop a (mid + 1, y)))
where

mid = (x + y) ‘div ‘ 2

As a Church producer, this is an example of a function that is
allowed to have recursion. The loop function simultaneously de-
scribes how to construct the enumeration as well as the place-
ment of the abstracted algebra a , which describes how to reduce
the structure. To actually produce the tree, fromCh will apply the
Tree† function to in:

between ′ :: (Int , Int)→ Tree Int

between ′ = fromCh ◦ between†

{-# INLINE between’ #-}
If fromCh is fused away, however, the next algebra will be applied
instead, which means the elements of the enumeration will be con-
sumed without writing out the actual tree. Note the use of the un-
conditional INLINE pragma to ensure that we inline between ′ so
that the fromCh is exposed and subsequently removed, if possible.

In the Cochurch encoding, fromCoCh encapsulates our recur-
sive pattern, and therefore we supply a non-recursive coalgebra that
describes how to construct a single step:

between‡ :: (Int , Int)→ Tree‡ Int

between‡ (x , y) = Tree‡ h (x , y)

54

where
h (x , y)
| x > y = Empty
| x y = Leaf x
| x < y = Fork (x ,mid) (mid + 1, y)
where

mid = (x + y) ‘div ‘ 2

between ′′ :: (Int , Int)→ Tree Int

between ′′ = fromCoCh ◦ between‡

{-# INLINE between” #-}

We depend on fromCoCh to recursively apply c to successive
seeds until the tree is fully constructed. If, however, the fromCoCh
call is fused away, the next function has a description of how to
build a tree, which it can use to do so, or, alternatively, consume
the values as they are yielded to produce a single value.

5.4 Consumers
Whereas Church producers may be recursive and Cochurch pro-
ducers may not be, the opposite is true for consumers.

Since the toCh function encapsulates the recursive pattern,
which describes how to reduce the structure to a single value. For
example, the function sum

sum :: Tree Int → Int
sum Empty = 0
sum (Leaf x) = x
sum (Fork x y) = sum x + sum y

combines a Tree Int into a single Int by adding the elements
together.

The function sum† mirrors this form, but removes the recursive
call because folds (and therefore Church encodings) build in the
recursion for consumption. Instead, we just have to supply an
algebra that describes how to deal with a single step:

sum† :: Tree† Int → Int

sum† (Tree† g) = g s

s :: Tree Int Int → Int
s Empty = 0
s (Leaf x) = x
s (Fork x y) = x + y

sum ′ :: Tree Int → Int

sum ′ = sum† ◦ toCh
{-# INLINE sum’ #-}

Instead, it is the Cochurch encoding version, sum‡, that must do
the recursive work on its own:

sum‡ :: Tree‡ Int → Int

sum‡ (Tree‡ h s) = loop s
where

loop s = case h s of
Empty → 0
Leaf x → x
Fork l r → loop l + loop r

sum ′′ :: Tree Int → Int

sum ′′ = sum‡ ◦ toCoCh
{-# INLINE sum” #-}

To accomplish this task, sum‡ is armed with h , which it can apply
to the initial seed s . At each step, the loop function consumes the
result, either by unwrapping and returning an Int or recursively
obtaining the results of consuming two of subtrees and adding them
together.

We now know how to create trees and consume them using this
framework. Now, we move on to functions that are both producers
and consumers.

5.5 Transformations
A transformation is a function that consumes a tree in order to pro-
duce a new one, and is therefore both a producer and a consumer.

Because of this, they should not be recursive in either represen-
tation, instead always using the built-in recursive pattern.

As examples of transformations, we develop Tree versions of
two familiar functions: reverse and filter . First, take the function
reverse , which reverses the ordering of the elements of the tree:

reverse :: Tree a → Tree a
reverse Empty = Empty
reverse (Leaf a) = Leaf a
reverse (Fork l r) = Fork r l

The reverse function recursive swaps all subtrees and leaves the
leaf elements intact.

As discussed in Section 4, such functions take the form of a
transformation composed with either an algebra or coalgebra. In
the case of reverse , this transformation defines a single swap of
substrees:

r :: Tree a c → Tree a c
r Empty = Empty
r (Leaf a) = Leaf a
r (Fork l r) = Fork r l

For the Church encoding, reverse† creates a new Tree† that applies
the Church encoded input value to the abstracted algebra precom-
posed with r , i.e transforms swaps the subtrees of a Fork and then
passes that result on to the next algebra:

reverse† :: Tree† a → Tree† a

reverse† (Tree† g) = Tree† (λa → g (a ◦ r))

reverse ′ :: Tree a → Tree a

reverse ′ = fromCh ◦ reverse† ◦ toCh
{-# INLINE reverse’ #-}

Dually, the Cochurch encoding takes the input stepper function and
simply postcomposes r , i.e. as each subtree is yielded, it is then
transformed:

reverse‡ :: Tree‡ a → Tree‡ a

reverse‡ (Tree‡ h s) = Tree‡ (r ◦ h) s

reverse ′′ :: Tree a → Tree a

reverse ′′ = fromCoCh ◦ reverse‡ ◦ toCoCh
{-# INLINE reverse” #-}

In a similar way, we can define the function filter over Trees

filter :: (a → Bool)→ Tree a → Tree a
filter p Empty = Empty
filter p (Leaf a) = if p a then Leaf a else Empty
filter p (Fork l r) = append (filter p l) (filter p r)

which takes a predicate p and discards any elements that do not
satisfy the predicate. Unlike a filter on linear sequences, discarding
an element does not mean we have to recursively search for the next
element. Instead, we simply return Empty .

Like reverse , filter is defined with a transformation that is
composed with a (co)algebra

f :: (a → Bool)→ Tree a c → Tree a c
f p Empty = Empty
f p (Leaf x) = if p x then (Leaf x) else Empty
f p (Fork l r) = Fork l r

55

which tests each of the elements using the predicate p, and returns
Empty if they fail.

The definition for the Church encoding version of filter is then
similar to that of reverse:

filter† :: (a → Bool)→ Tree† a → Tree† a

filter† p (Tree† g) = Tree† (λa → g (a ◦ (f p)))

filter ′ :: (a → Bool)→ Tree a → Tree a

filter ′ p = fromCh ◦ filter† p ◦ toCh
{-# INLINE filter’ #-}

and likewise for the Cochurch encoding:

filter‡ :: (a → Bool)→ Tree‡ a → Tree‡ a

filter‡ p (Tree‡ h s) = Tree‡ (f p ◦ h) s

filter ′′ :: (a → Bool)→ Tree a → Tree a

filter ′′ p = fromCoCh ◦ filter‡ p ◦ toCoCh
{-# INLINE filter” #-}

At this point, we are able to write fusible producers, consumers, and
transformers by defining functions over our concrete representation
and converting to and from it when necessary. The goal of this ef-
fort is to provide an implementation of an interface that is more ef-
ficient and therefore obtains better performance than the analogous
functions over the abstract datatype. There may be cases, however,
where the analogous function over the abstract datatype is more
efficient in certain contexts.

5.6 Rewrite rules, revisited
One of the features of leaf trees is that appending two trees is a
constant time, non-recursive operation:

append :: Tree a → Tree a → Tree a
append t1 Empty = t1
append Empty t2 = t2
append t1 t2 = Fork t1 t2

This is extremely efficient as it requires no recursion and no copy-
ing. The downside, however, is that, if this is in the middle of a
recursive pipeline such as

sumApp (x , y) = sum (append (between (x , y))
(between (x , y)))

the fusion of the pipeline breaks down because between has to
write out an intermediate data structure for use by append , and
then sum consumes the newly appended tree. We can, of course,
define fusible versions of append using both Church encodings
and Cochurch encodings. The Church encoding version applies the
abstracted algebra h ′ to the two subtrees joined by a Fork , each
of which is also applied to h ′.

append† :: Tree† a → Tree† a → Tree† a

append† (Tree† g1) (Tree† g2) =

Tree† (λa → a (Fork (g1 a) (g2 a)))

append ′ :: Tree a → Tree a → Tree a

append ′ t1 t2 = fromCh (append† (toCh t1) (toCh t2))
{-# INLINE append’ #-}

The Cochurch encoding version uses a feature we have hitherto
been silent about: state. We can think of the seed of a Cochurch en-
coding as a state, and the stepper function as an iterator. The iterator
takes this state as an argument and uses it to perform a computation
that produces values each time it is applied and an updated state. In
our case, the possibilities are to halt the computation with no value
using Empty , halt but yield a value using Leaf , or to branch
into two new states using Fork . Our Cochurch encoding does not

specify a specific state type, only requiring that it match the argu-
ment type of the stepper function. Therefore, we can transform a
Cochurch encoded tree by creating a stepper function that applies
prior one, then wraps successive states in a new, more expressive
state type. This new state type can then be used to determine what
do to next. For the append‡ function,

append‡ :: Tree‡ a → Tree‡ a → Tree‡ a

append‡ (Tree‡ h1 s1) (Tree‡ h2 s2) = Tree‡ h ′ Nothing
where

h ′ Nothing = Fork (Just (Tree‡ h1 s1))

(Just (Tree‡ h2 s2))

h ′ (Just (Tree‡ h s)) = case h s of
Empty → Empty
Leaf a → Leaf a

Fork l r → Fork (Just (Tree‡ h l))

(Just (Tree‡ h r))

append ′′ :: Tree a → Tree a → Tree a
append ′′ t1 t2 = fromCoCh

(append‡ (toCoCh t1) (toCoCh t2))
{-# INLINE append” #-}

we wrap the original state in a Maybe type that signals whether
the stepper function is is being called the first time (the Nothing
case), in which case it should yield its two arguments joined by a
Fork . The Nothing case then wraps each resulting state so that
it contains the seed and stepper function of one of the arguments.
When the stepper function is applied to each of these states, it can
then apply the correct stepper function for branch it is being called
on.

For both Church and Cochurch encodings, these functions allow
us to fuse appends, solving the problem within a pipeline. When
unfused, however, these functions are extremely inefficient. Even
if we make no changes to a tree, converting it to another repre-
sentation and back again involves a full traversal of the structure
and forces the entire tree to be copied. The original version, on the
other hand, did not need to inspect either subtree and could join
them without copying. When append is part of a pipeline that al-
ready does this, it actually improves performance by fusing and
avoiding intermediate data structures. Otherwise, it actually creates
even more intermediate data structures than the original.

We now have a situation where we would like to use different
versions of append based on whether or not it appears in a pipeline.
We could, of course, provide an interface that allows the program-
mer to choose between different implementations of append . It
would be unacceptably arduous, however, to require that the pro-
grammer always choose the right one for a given situation, and for
large programs this might not even be feasible. Luckily, the rewrite
pragmas that we discussed in Section 5.2 allow us define two ver-
sions of a function and then leave it to the compiler to choose the
appropriate one for us at compile time:

{-# RULES
"append -> fused" [~1] forall t1 t2.

append t1 t2 =

fromCh (append† (toCh t1) (toCh t2))
"append -> unfused" [1] forall t1 t2.

fromCh (append† (toCh t1) (toCh t2)) =
append t1 t2 #-}

These rules use the simplifier phase notation that we previously
used with the INLINE pragma. The symbol can be read as “be-
fore”. The first rule swaps the out the bog-standard definition of
append for the Church encoded version whenever it is encoun-
tered before simplifier phase 1. Once the simplifier reaches this, its

56

��� ������� ��	
��� ��� ����� ���	� ������

�

���

����

����

����

����

�����������	�����������

���

����

����

�
��
�
��
�
��
��
�
�
�
�
�
�
�
�

Figure 1. Single function timings

second to last phase, it checks to see if there are any instances of
append† left that have not either of their conversion combinators
fused away. If not, it puts the original append back, since it would
be more efficient in this situation. We can, of course, implement the
same sort of rules for the Cochurch encoding version by swapping
the combinators and using append‡ instead.

6. Benchmarks
Now that we have implemented our interface, it is time to test
whether or not it achieves any speed up. We perform some mi-
crobenchmarks as a “sanity-check”, comparing functions in isola-
tion with their performance in a fused context. We start by testing
our interface functions in isolation and comparing them with the
traditional versions of these functions. Our benchmarks cover the
functions we have implemented so far, plus the familiar functions
map and maximum , the former mapping a transformation func-
tion over the elements of a tree and the latter finding the maximum
element of a tree. The program was compiled with GHC 7.0.2 us-
ing the −O2 flag. The timings for these functions over a Tree of
10, 000 elements is shown in Figure 1. In the case of between , we
are measuring the time to create such a tree.

We can see that, in single-function tests, the use of shortcut fu-
sion does not necessarily give any speedup. In fact, such implemen-
tations are sometimes even slower, especially the append function.
This is not particularly surprising nor should it be cause for alarm;
the purpose of this approach is to optimise pipelines, not single
functions. If a particular function is often used its unfused form, and
there is an intolerable slowdown in such cases, we can use rewrite
rules to choose the correct version of the function automatically.

To test the performance of these functions when fused, we
compose them to form the pipeline given in the introduction

sum ◦map (+1) ◦ filter odd ◦ between

and test this for an input of (1, 10000). In addition, we test the
function sumApp on the same input, both with the fusible forms
of append and the non-recursive Tree version. The execution times
for these pipelines are shown in Figure 2. As can be seen from the
timings, the power of shortcut fusion shines clearly in this example.
Both the Church and Cochurch representations achieve significant
speedups over the conventional Tree example.

Finally, we provide more coverage by compositions of the func-
tions we have tested singly. The results are shown in Figure 3. The
results show a speedup, sometimes significant. Some what surpris-
ingly, however, this is not completely consistent across all tests.
There are still some cases in which the unfused functions outper-
form the fusible ones. This may be because the cost of conversion

�������� ������	��������	
������� ������	��������	
�����

�

���

����

����

����

����

����

��������	������

����

�����

�����

�
��
�
	�
�
	�
��
��

�
�
�
�
�

Figure 2. Pipeline timings

�����������	
�		�
������������
	�

�������������
�������	
�		�

��������
	�
���������

�	�	��	������
�������	�	��	

�	�	��	�����
	�
��
	�����	�	��	

�������	�	��	
�����������	�	��	

�	�	��	����	
�		�

�

���

���

���

���

���

���

���

���

���

����

������	�� ��!
����"����#�

"�		

"�		$

"�		%
"
��
	
��
�
��
�!
��
�
	
!
�
�
�
�

Figure 3. Fusion timings

is not “paid back” for a pipeline consisting of only two functions,
or because the data set is too small. The worst performance seems
to be with the reverse function, so this may be a case where fu-
sion can only be of limited help. Interestingly, however, we note
that Cochurch encodings consistently outperform Church encod-
ings, sometimes by a significant margin. While we do not consider
these results conclusive, we think that these results merit further
investigation of this issue. It may be due to how GHC optimises
code, or an issue that is specific to the fusion of tree or tree-like
data structures.

Overall, our micro-benchmarks confirm the guidelines that we
laid down in Section 5. We confirm that our shortcut fusion frame-
work has the potential to provide a speedup, particularly when us-
ing Cochurch encodings. It would appear that, even when they do
not provide a significant speedup, they do not decrease program
performance as much as Church encodings. In a full-fledged li-
brary, benchmarking is an important part of the development pro-
cess, and using shortcut fusion is not substitute. When such in-
stances are identified, strategies such as the rewrite rule trick in
Section 5.6 can be used to refine an implementation to provide the
best performance.

7. Related work
Our work draws on prior shortcut fusion implementations, namely
foldr/build [8], destroy/unfoldr [17], and stream fusion [1]. Of
those, stream fusion introduces an explicit datatype that takes ad-
vantage of the fact that representations need not be isomorphic by
adding an additional Skip constructor which allowed them to define
more functions as unfolds. This was used to write fusible interfaces
over arrays [2] and Unicode-encoded text representations [9]. A

57

similar setup has been provided by the worker-wrapper [7] transfor-
mation, which also proves a general set-up for implementing some
optimisations, namely unboxing types.

The correctness and genericity of fusion has been explored in
a variety of settings. Takano and Meijer [18] provided a calcula-
tional view of fusion using hylomorphisms. Ghani, Uustalu, and
Vene have also given a “semantic footing” to foldr/build fusion
and addressed the theoretical aspects of generalising it to arbi-
trary datatypes [5]. Johann and Ghani have also harnessed the con-
cept of Church encodings in showing how to apply initial algebra
semantics, and thus foldr/build fusion, to nested datatypes [13].
Voigtländer has also used free theorems to show correctness,
specifically of a destroy/build rule [19] that suggests the possibility
of mixing Church and CoChurch encodings within the same inter-
face. We have also previously examined these fusion techniques
in a categorical setting [11] in which we were able to compare
previously incompatible fusion techniques within the same frame-
work. These efforts, however, have remained largely in theoretical
settings and left the pragmatic details relatively untouched.

The pragmatics of applying fusion to new datatypes has, how-
ever, been addressed in attempts to mechanise certain fusion tech-
niques. Warm fusion attempts to derive fold and build combinators
for a data type and automatically rewrite explicitly recursive func-
tions [15]. The HFusion framework works similarly, although using
hylomorphisms, which are more general [3]. Fusion is also accom-
plished by supercompilation [10], where it is not the goal but one of
many consequences of method. Shortcut fusion is a less automated
approach in the sense that it requires more setup from the program-
mer to get the fusion, but it is also a more targeted approach. The
automated methods we mentioned either require modification of
the compiler itself, or have to consider entire programs as a whole,
or both. With shortcut fusion, a library writer is able to use his
specialised knowledge of a data structure and interface to provide
better performance without impacting other parts of a program. Ad-
ditionally, shortcut fusion appears to offer a degree flexibility by
allowing the author to choose a concrete representation to suit the
needs of the data structure and interface. Such a comparison merits
more investigation as automated methods, especially supercompi-
lation, become more popular.

8. Conclusions
We have presented shortcut fusion as a method of providing better
performance for functions written over recursive datatypes. Unlike
prior approaches, we have moved away from depending on a spe-
cific recursion scheme or representation by showing how shortcut
fusion is an instance of data refinement. We have shown we can
instantiate shortcut fusion to a specific datatype and representation
by fulfilling the specification we laid out. Using GHC’s compiler
pragmas, we have given an example that shows how the aspiring
library author can apply the same method to a new interface for a
datatype. Our benchmarks give an example of some of the weak
spots the programmer might look for in his own framework and we
have shown possible ways of mitigating some common problems.

Now that we have introduced a new setup for implementing
shortcut fusion, we would like to find new applications of shortcut
fusion that reach out beyond the representations we discussed here.
Our new “view” has more clearly specified requirements for short-
cut fusion techniques, which will enable use to explore them more
systematically. In particular, we are interested in those case where,
unlike Church and Cochurch encodings, the concrete representa-
tion is not isomorphic but still faithfully represents the datatype.
For example, stream fusion has shown that this can be useful for
expanding the expressivity of shortcut fusion, in this case by intro-
ducing a Skip constructor. They have also shown that a “concrete”
representation can serve as abstraction over another non-fusible

datatype, such as an array. This notion has remained rather con-
fined, despite having possibly wider applications.

References
[1] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion. Proceed-

ings of the 12th ACM SIGPLAN international conference on Func-
tional programming (ICFP ’07), 42(9):315–326, Oct. 2007. ISSN
03621340.

[2] D. Coutts, D. Stewart, and R. Leshchinskiy. Rewriting Haskell Strings.
In PADL ’07, volume 4354, pages 50–64. Springer-Verlag, 2007.

[3] F. Domı́nguez. HFusion: a fusion tool based on Acid Rain plus
extensions. Master thesis, Universidad de la República, 2009.

[4] P. J. Freyd. Remarks on algebraically compact categories. In M. P.
Fourman, P. T. Johnstone, and A. M. Pitts, editors, Applications of
Categories in Computer Science, volume 177 of LMS Lecture Note
Series, pages 95–106. Cambridge University Press, 1992.

[5] N. Ghani, T. Uustalu, and V. Vene. Build, augment and destroy.
Universally. pages 327–347. In Asian Symposium on Programming
Languages, Proceedings, 2004.

[6] J. Gibbons, G. Hutton, and T. Altenkirch. When is a function a fold
or an unfold? In ”Proceedings of the 4th International Workshop on
Coalgebraic Methods in Computer Science”. Elsevier Science, 2001.

[7] A. Gill and G. Hutton. The Worker Wrapper Transformation. Journal
of Functional Programming, 19(2):227—-251, 2009.

[8] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to
deforestation. ACM Press, New York, New York, USA, 1993.

[9] T. Harper. Stream fusion on Haskell Unicode strings. In M. Morazán
and S.-B. Scholz, editors, IFL’09 Proceedings of the 21st interna-
tional conference on Implementation and application of functional
languages, pages 125–140, Berlin, Sept. 2009. Springer-Verlag.

[10] M. Heine, B. Sørensen, and R. Glück. Introduction to Supercompi-
lation. In J. Hatcliff, T. Mogensen, and P. Thiemann, editors, Partial
Evaluation, volume 1706 of Lecture Notes in Computer Science, pages
246–270. Springer Berlin / Heidelberg, 1999.

[11] R. Hinze, D. W. James, and T. Harper. Theory and practice of fusion.
In J. Hage, editor, Pre-proceedings of the 22nd Symposium on the
Implementation and Application of Functional Languages (IFL ’10),
pages 402–421, September 2010.

[12] C. A. R. Hoare. Proof of correctness of data representations. Acta
Informatica, 1:271–281, 1972. ISSN 0001-5903.

[13] P. Johann and N. Ghani. Initial algebra semantics is enough!, volume
4583 of Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2007.

[14] S. P. Jones, A. Tolmach, and T. Hoare. Playing by the Rules: Rewriting
as a practical optimisation technique in GHC. In Haskell Workshop,
pages 203–233. ACM SIGPLAN, 2001.

[15] J. Launchbury and T. Sheard. Warm fusion: deriving build-catas
from recursive definitions. Functional Programming Languages and
Computer Architecture, page 314, 1995.

[16] S. L. Peyton-Jones and A. L. M. Santos. A transformation-based
optimiser for Haskell. Science of Computer Programming, 32(1-3):
3–47, Sept. 1998. ISSN 01676423.

[17] J. Svenningsson. Shortcut fusion for accumulating parameters &
zip-like functions. In Proceedings of the seventh ACM SIGPLAN
international conference on Functional programming - ICFP ’02,
volume 37, pages 124–132, New York, New York, USA, 2002. ACM
Press.

[18] A. Takano and E. Meijer. Shortcut deforestation in calculational
form. Functional Programming Languages and Computer Architec-
ture, page 306, 1995.

[19] J. Voigtländer. Proving correctness via free theorems: the case of the
destroy/build-rule. ACM/SIGPLAN Workshop Partial Evaluation and
Semantics-Based Program Manipulation, 2008.

[20] P. Wadler. Theorems for free! In FPCA ’89: Proceedings of the fourth
international conference on Functional programming languages and
computer architecture, pages 347—-359, London, 1989. ACM.

58

